
Chapter 1
Discovery of Complex User Communities

Georgios Paliouras, Symeon Papadopoulos and Dimitrios Vogiatzis

Abstract This chapter serves as an introduction to the book on User Community
Discovery, setting the scene for the presentation in the rest of the book of various
methods for the discovery of user communities in the social Web. In this context, the
current chapter introduces the various types of user community, as they appeared in
the early days of the Web, and how they converged to the common concept of active
user community in the socialWeb. In thismanner, the chapter aims to clarify the use of
terminology in the various research areas that study user communities. Additionally,
the main approaches to discovering user communities are briefly introduced and a
number of newchallenges for community discovery in the socialWeb are highlighted.
In particularwe emphasize the complexity of the networks that are constructed among
users and other entities in the social Web. Social networks are typically multi-modal,
i.e. containing different types of entity, multi-relational, i.e. comprising different
relation types, and dynamic, i.e. changing over time. The complexity of the networks
calls for new versatile and efficient methods for community discovery. Details about
such methods are provided in the rest of the book.
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1.1 Introduction

Nowadays, much of our social activity takes place online. Technological advances
have led to the emergence of the social Web (also known as Web 2.0), which made
Webusers active participants, generating their owncontent and formingOnlineSocial
Networks (OSNs). Friendship and interaction among users lead naturally to the for-
mation of communities either by explicit connections or by connections that can be
inferred through the similarity of the users or the online trails of their interactions
(implicit communities). The composition of communities and the underlying char-
acteristics that their members share is valuable knowledge to companies that provide
products and services online. As an example, taking into account the communities
in which social network users participate can considerably improve the relevance
of the recommended content and ultimately the engagement of users, i.e. a form of
social recommendation [103].

The focus of this book is on the discovery of implicit communities of users,1 i.e.
beyond the explicit friendship or other types of connection that can be found inOSNs.
This discovery process is data-driven and it is based on statistical and machine learn-
ing approaches. Even though it has made its appearance in user modeling research
more than 20 years ago [20, 74] it has been recently revived in the context of sta-
tistical physics [27] and graph mining research [94]. Such data mining methods
have supported new powerful ways of personalization, such as collaborative filtering
and recommendation [40, 49, 50, 98]. However, the advent of the social Web has
introduced a number of new challenges and opportunities for community discovery
methods. Social media, generated primarily by the users themselves and exchanged
over OSNs, make user data richer, larger in size and highly multi-dimensional [80].
In fact, user data is becoming truly social data, like the data one would collect by
observing the interaction of the members of a society. Discovery methods need to be
adapted to this new type of data, in order to be able to identify the complex multi-
scale community structures that are formed. At the same time, the ease with which
such rich social data can be collected increases the responsibility of researchers and
service providers to respect the privacy of individuals and user groups.

This chapter serves as an introduction to the book, setting the scene for the pre-
sentation of various methods for discovering user communities in the rest of the
book. Based on the categorization introduced in [75], the chapter starts (Sect. 1.2)
by presenting the different types of user community that have been studied in the
literature and how these converge into the common concept of active user com-
munity in the social Web. Then, in Sect. 1.3, it presents the basic characteristics of
communities, as subgraphs of a larger graph of connected entities, e.g., a network
of users. Section1.4 presents briefly the main approaches to community discovery,
while Sect. 1.5 explains the challenges and opportunities for community discovery in
the social Web. A more thorough treatment of community discovery methods in the

1Although the term “community discovery” is more suitable to describe this process, throughout
the text we adopt the term “community detection”, which is the prevalent term used in the literature
to refer to this problem.
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social Web is provided in the rest of the book chapters. Section1.6 highlights some
example applications of community discovery in the social Web. Finally, Sect. 1.7
summarizes the main concepts introduced in this chapter and discusses some of the
main open issues.

1.2 Types of Web Community

According to [75] the term “Web community” has been used with three different
meanings in computer science literature:

User communities correspond to clusters of users of a Web site, who share com-
mon interests. Typical such communities are the customers of online shops. User
communities are formed on the basis of user log data, as recorded on the Web
servers of the site. These data are analyzed by statistical and machine learning
methods [76] in order to identify groups of users with common interests or behav-
ior, e.g., users who buy similar products.

Web communities correspond to subgraphs of theWeb graph, i.e. clusters ofWeb
pages, that are densely connected. Such dense subgraphs are identified by graph
mining methods [26, 52] and indicate Web sites that provide similar or related
content, e.g., art museums in different countries.

Web-based communities are associated with systems that support the formation
or strengthening of real-life communities. These were typically either local com-
munities (e.g., within a University campus) or interest-driven ones (e.g., profes-
sional associations). Early work in this field focused on community networks [95]
and virtual communities [90], which then evolved into Web community portals
[100] and finally into Web-based communities [10].What makes this type of com-
munity particularly interesting is the fact that users start producing content for the
community. In other words, they move from being passive consumers of content
to becoming active community participants. This idea, aided by corresponding
technological advances, later developed in what we now call the social Web.

The social Web has been facilitated by technological advances in the interaction of
the userswithWeb resources (a.k.a.Web 2.0 technologies) and has facilitated, in turn,
two important socio-technical developments, often referred to as social media and
Online Social Networks (OSNs). Social media and user-generated content represent
the widespread participation ofWeb users in the generation and publication of digital
content, which has now become more dynamic than ever before. It is this active
participation of the users in content publishing that has led to the use of the term active
user in the social Web. On the other hand, OSNs are typically Web applications that
support the active networking of users, much in the spirit ofWeb-based communities.
OSNs can be considered the natural descendants of Web-based communities and
community networks. As such, they bear similarities to those earlier paradigms, for
instance the goal of linking people with common interests or needs. However, OSNs
also have significant differences from their predecessors [11], among which are:
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• Their much larger user base.
• The diversity of their user base and their detachment from particular themes or
geographic locations.

• The fact that people link to each other, but do not necessarily join predefined
groups. A social network is a graph, in the sense of the Web itself, rather than a
group of people.

• Their participatory nature turns passive consumers into active users, who provide
content and information of many new and interesting types.

Using the terminology of [75], we call communities of users in OSNs active user
communities. These are naturally related to Web-based communities, but they are
also related to the other two types of community mentioned above.

Due to the fact that OSNs are naturallymapped to graphs, active user communities
are subgraphs of the larger graph, similar to Web communities. In contrast to theWeb
though, the nodes of the social graph are typically users and thus its subgraphs form
user communities. In this manner, the three different types of community seem to
converge to the common and much richer structure of the active user community in
the social Web.

Beyond the fact that they bring together the three different notions of community,
active user communities introduce a number of novel and interesting possibilities.
In the social Web, users provide much richer information about their preferences
and needs, than what the logs of a Web server could reveal. They choose their
neighbors in the network, they publish their own content, they rate and tag content
that other people have provided and participate in a number of online activities.
Due to the variety of entities involved in the social Web, one may choose to create
graphs other than those connecting users, e.g., by relating content items posted by the
users, or even multi-partite graphs that relate different types of entity (see Chap.3).
Additionally, these graphsmay contain different edge types, e.g., edges that represent
friendship and others that represent communication among the users. This multi-
relational nature of the social Web (see Chap. 4) makes the task of active community
discovery particularly interesting and challenging.

1.3 Representation of Communities

1.3.1 Communities as Graphs

The common representation of a community is that of a graph C = (V, E), where V
and E represent the nodes and edges respectively, that connect closely-related users
or other entities. Usually, this graph is a subgraph of a larger one C ⊆ G, e.g., all the
users of a social network, and is assumed to have a dense structure, representing the
close relation among its members. However, there is considerable discussion about
the best choice for representing such a dense structure.

http://dx.doi.org/10.1007/978-3-319-23835-7_3
http://dx.doi.org/10.1007/978-3-319-23835-7_4
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(a) (b) (c)

(d)

Fig. 1.1 Several attributes that may characterise community structure: a overlap, b weighted mem-
bership, c node (vertex) roles within/across communities, d hierarchical organization. Image orig-
inally presented in [80]

A large body of literature assumes that G should be partitioned into subsets (the
communities), whereby each node of the graph belongs to exactly one subgraph.
However, in reality, especially in the context of the social Web, community mem-
bership is more complicated. A user may well belong to more than one community
and may belong to different communities in different degrees (Fig. 1.1a). The need to
allow overlaps between communities was realized even in early research in commu-
nity discovery (e.g., [74]). Being the most dense graph structure, cliques (i.e. fully
connected subgraphs: ∀v ∈ V (C) : degreeC (v) = |V | − 1) were among the first
options to be considered. Thus, in the early days of community detection research,
community graphs G were required to be maximal cliques of C , i.e., cliques that are
not subsumed by other cliques of C . The strictness of this definition often leads to
unwanted effects, such as very low participation of nodes to communities.

In order to overcome this problem, alternative, less strict definitions were used,
such as cores or k-shells (introduced in [97]). A k-shell is a subgraph C of a graph
G = (V, E) iff ∀v ∈ V (C) : degreeG(v) ≥ k and C is the maximum subgraph with
this property.An equivalent definition is that k-shell is amaximal subset of nodes such
that each is reachable from each of the others by at least k node independent paths.
Two paths are defined as node independent if they share none of the same nodes,
with the exception of the start and the end nodes [69, Sect. 7.8.2]. Among their
other benefits, k-shells can be computed efficiently in large graphs, such as social
networks. This concept of core has been expanded in [9, 92], and core-periphery
structures have been studied in the context of weighted networks [29], hypergraphs
[87], as well as in temporal networks [63].

Additionally, a number of other graph structures have been used in the literature
to address the issue of overlapping communities, some based on cliques, e.g. Palla
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et al. [77], but many others as well [17, 18, 37, 58]. An extensive treatment of the
problem of overlapping community detection is presented in [108].

1.3.2 Community Attributes

The assumption that communities either partition the graph or are allowed to overlap
is an important differentiating attribute of community representation and discov-
ery approaches. In addition, there are other attributes that nodes of a network may
have in relation to communities. For instance, different nodes may participate with
varying degrees in a community depending on their centrality2 within it (Fig. 1.1b).
Moreover, nodes may have discrete roles: for example, Xu et al. [109] define two
roles (hubs and outliers) for nodes that are not assigned to any community. Hubs
are connected to multiple communities and act as liaisons, thus enabling interactions
among communities. Outliers are connected to a single community through a single
link, therefore they are usually considered as noise. Community-based node roles are
also discussed by Scripps et al. [96]. Specifically, the roles of “loners”, “big fish”,
“bridges” and “ambassadors” are defined (Fig. 1.1c).

It is also possible to impose hierarchical (Fig. 1.1d) or multi-scale structure on
communities [1]. Community organization may be defined at different scales with
respect to real-world systems. For instance, a set of users of a social Web application
may be organised in a community focused on a very specific topic (e.g., fans of a
particular indie-rock band) and at the same time they may be considered as members
of a broader community (rock music). In many cases, however, such hierarchies are
not flexible enough to model the complexities of multi-level organization in social
Web systems, as for instance in the case of folksonomies [15].

An orthogonal dimension concerning the characterization of communities is time.
This is a significant aspect of community detection that is worth further attention
especially due to the volatile and highly dynamic nature of social Web data and
interactions. According to a recent survey on the topic [35], a three-layered stream
of graph snapshots can be used to capture the evolution of social interactions. Graph
snapshots are used at the lowest level to capture the state at specific points in time. At
a higher level, these are grouped into segments, 3D tensor structures, encompassing
short-term evolutions. At the top level the complete graph stream captures the history
of interactions among the graph nodes. An alternative representation of graph evolu-
tion relies on an initial (base) graph that corresponds to the original state, and a stream
of changes (e.g., node additions/removals, edge additions/removals). Accordingly,
time-awareness can be incorporated in the underlying community structure of time-
evolving graphs, either by considering a series of community structures defined at
the corresponding graph snapshots and a set of pairwise community structure associ-
ations across snapshots, or by considering an initial (base) community structure and
a stream of changes on this structure, or by inherently integrating time-awareness

2Centrality quantifies how often nodes belong to the paths connecting other nodes.
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into the community detection process [31]. A set of basic changes (or transforma-
tions) that community structures may undergo are described in the seminal work by
Palla et al. [77]: Essentially, there are three types of transformation: (a) one-to-one,
which involves community growth or contraction, (b) one-to-many, which involves
one community splitting to many or many communities merging to one, and (c)
one-to-zero (and zero-to-one), which involves the emergence or the extinction of a
community.

1.4 Community Detection on Simple Graphs

Depending on the underlying methodological principles, five broad classes of com-
munity detection and graph clustering methods were defined in [80]: (a) cohesive
subgraph discovery, (b) vertex (or node) clustering, (c) community quality optimiza-
tion, (d) divisive, and (e) model-based. Note that these classes are not mutually
exclusive. For instance, spectral community detection methods [72] can be consid-
ered both to perform quality optimization and be divisive.

Cohesive subgraph discovery. The methods of this class presume a specifica-
tion of the structural properties that a subgraph of the network should satisfy to be
considered a community. Once such a subgraph structure is chosen, methods involve
the enumeration of subgraphs in the network under study. Local community defi-
nitions, such as cliques, n-cliques, k-cores, LS sets and lambda sets, are examples
of such cohesive structures and therefore algorithmic schemes for enumerating such
structures, such as the Bron-Kerbosch algorithm [13] and the efficient k-core decom-
position algorithm of Batagelj and Zaversnik [4], belong to this class of community
detection methods. In addition, methods such as the Clique Percolation Method [78]
and the SCAN algorithm [109], which lead to the discovery of subgraph structures
with well-specified properties, fall under the same class of methods.

Vertex (node) clustering. Such techniques originate from traditional data clus-
tering research. A typical means of casting a graph clustering problem to one that can
be solved by conventional data clustering methods (such as k-means and hierarchical
agglomerative clustering) is by embedding graph nodes in a vector space, where pair-
wise distances between nodes can be calculated. Another popular method is to use
the spectrum of the graph for mapping graph nodes to points in a low-dimensional
space, where the cluster structure is more profound [23, 59]. Other node similar-
ity measures such as structural equivalence [12] and neighborhood overlap have
been used to compute similarities between graph nodes [107]. Finally, a noteworthy
method, calledWalktrap [81], makes use of a random-walk based similarity between
nodes and between communities and uses modularity in a hierarchical agglomerative
clustering scheme to derive an optimal node clustering structure.

Community quality optimization. There is a large number of methods that are
founded on the basis of optimizing some graph-basedmeasure of community quality.
Subgraph density and cut-based measures, such as normalized cut [99] and conduc-
tance [47], were among the first to be used for quantifying the quality of some
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network division into clusters. A whole new wave of research was stimulated by
the measure of modularity. Approximate modularity maximization schemes abound
in the literature. Apart from the seminal greedy optimization technique of Newman
[70], and speeded up versions of it, such as max-heap based agglomeration [19] and
iterative heuristic schemes [7], more sophisticated optimization methods have been
devised, for instance, extremal optimization [24], speeded simulated annealing [61]
and spectral optimization [71].Methods aiming at the optimization of local measures
of community quality, such as local and subgraph modularity [18, 58]), also belong
to this category. Finally, this category includes methods that exploit the “hills” and
“valleys” in the distribution of network-based node or edge functions, e.g., the Mod-
uLand framework proposed by Kovács et al. [51] and the “reachability” measure by
Chen et al. [17], and the highly popular OSLOMmethod [53], which performs local
optimization of a fitness function expressing the statistical significance of clusters.

Divisive. These methods rely on the identification of network elements (edges
and nodes) that are positioned between communities. For instance, the seminal algo-
rithm by Girvan and Newman [36] progressively removes the edges of a network,
based on some edge betweeness measure until communities emerge as disconnected
components of the graph. Several measures of edge betweeness have been devised,
for instance, edge, random-walk, and current-flow betweeness [73], as well as infor-
mation centrality [28] and the edge clustering coefficient [85]. A similar principle
is adopted by node removal methods [105]; such methods remove nodes in order to
reveal the underlying community structure. Finally, min-cut/max-flow methods [26,
44] adopt a different divisive perspective: they try to identify graph cuts (i.e. sets of
edges that separate the graph into pieces) of minimum size.

Model-based. This is a broad and more recent category of methods that either
consider a dynamic process taking place on the network, which reveals its commu-
nities, or they consider an underlying model of statistical nature that can generate
the division of the network into communities. Examples of dynamic processes are
label propagation [37, 54, 86], synchronization of Kuramoto oscillators [3], diffu-
sion flow, better known as Markov Cluster Algorithm [104], and the popular spin
model by Reichardt and Bornholdt [89]. In addition, community detection can be
cast as a modelling problem, such as the well-known stochastic blockmodel [41] and
its extensions [2], or a statistical inference problem [39], assuming some underlying
probabilistic model, such as the planted partition model, that generates the com-
munity structure and estimating the parameters of this model. Other model-based
approaches rely on the principle that a good clustering is determined by a low encod-
ing cost and thus they perform community detection by finding the cluster structure
that results in the lowest possible cluster encoding cost [16, 93].

Several of the aforementioned and other methods and are discussed in detail
in the survey articles by Danon et al. [21], Fortunato [27], Porter et al. [82], and
Schaeffer [94]. Also, a useful listing of a large number of community detection
methods appears in the supplementary material of Kovács et al. [51]. The majority
of the aforementioned methods have been designed for use with undirected graphs.
A thorough treatment of the community detection problem in the context of directed
networks is presented in [60].
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It isworth stressing thatmethods such as the ones listed above, have been proposed
and applied in the context of User and Web communities (as defined in Sect. 1.2,
typically giving rise to graphs with a single type of node and edge. In recent years,
however, there has been a tendency for increasing complexity in the structure of real-
world networks with the emergence of active user communities, as discussed above.
This naturally leads to more sophisticated data models, for instance networks with
attributed nodes [111], networks with content-associated edges [83], as well asmulti-
mode and multi-relational networks. Consequently, the active user communities call
for new representations and new detection methods. For instance, modern OSNs,
such as Twitter and Facebook, can be modelled by means of different entities, such
as users, resources, and tags, and relations, such as likes, comments, affiliations, etc.
In the next section, we examine how this additional complexity has brought new
developments to the research field of community detection.

1.5 Communities in the Social Web

As previously discussed, OSNs are complex systems comprising multiple entity
types associated with multiple relations. Thus, there may be users connected to other
users, but also users creating posts, or replying to, sharing, commenting or rating
posts.Moreover, the posts could contain references to external resources such asWeb
pages, be associated with a theme or a geographic location and carry a timestamp.

A complete representation of an OSN would require a graph to represent users,
posts, and other entities in the form of nodes, whereas replies, comments, partici-
pation in groups would be represented as relations. Moreover, the relations between
entities could be binary, ternary or of higher order. In the context of this chapter
we use the term multi-dimensional graph to refer to graphs that contain edges that
comprise more than two nodes, or to graphs that contain multiple types of edge. An
overview of such graphs can be found in [48]. We divide multi-dimensional graphs
into two broad categories, hypergraphs and multi-relational graphs.

Hypergraphs. Multi-dimensional graphs that contain a single type of edge will be
referred to as hypergraphs, formally defined as G = (V,E), where V is the set of
nodes andE ⊆ V ×V ×· · ·×V , is the set of hyperedges.A further distinction between
hypergraphs could be made between single partite and multi-partite hypergraphs. In
the latter case there are nodes of more than one type, i.e. E ⊆ V1 × V2 × · · · × Vk ,
given k types of node (see Fig. 1.2). Despite their recent popularity in social network
analysis, hypergraphs are not a novel concept, as they were already proposed by
Berge in 1973 [5].

In hypergraphs, the definitions of graph properties such as node degree, path,
cycle, clustering coefficient and clique have been extended to accommodate the new
properties of the hyperedges. For instance, hypergraph path definitions can be found
in [106], centrality in [8] and cliques in [22].



10 G. Paliouras et al.

(a) (b)

Fig. 1.2 Hypergraphs and hyperedges: a general hypergraph, b tripartite graph; e1, e2, e3 denote
hyperedges. The nodes in (a) are of single type, whereas the nodes in (b) are of three types: u, t, r

Tri-partite graphs in particular, have been studied in the context of social tagging
systems. They arose from the need to represent triadic relations. For instance, a
seller, a buyer and a broker participating in a business transaction; or a person seeing
a movie, and annotating it with tags. Thus, one partite could stand for users, another
for tags and a third for movies. Hyperedges could be interpreted as tag assignments
by a user to a resource. Moreover, it is often assumed that there are no connections
between nodes of the same partite and each edge contains one node from each partite.
In this case, i.e. if each hyperedge has a node from each partite, the result is a k-partite
uniform hypergraph. Three commonly used datasets for the study of hypergraphs are
excerpts from Delicious, MovieLens and LastFM.3

The usage of a uniform k-partite network could be extended to represent other
social networks that were not originally conceived to be such; for instance in Twit-
ter, we may consider three partites: users, named entities (such as people, places
and organizations) that are referred to in the tweet text, and references to external
resources such as URLs.

Multi-relational graphs. Multi-relational graphs comprise more that one relations
between their nodes. These can be represented as G = (V,E), where V is the set of
nodes and E = E1, E2, . . . , El is a set of sets of edges, l is the number of relations,
and Ei ⊆ V × V . Each edge type carries certain semantics, for instance relations
could denote colleagues, friends, etc. Multi-relational graphs appeared in the field of
artificial intelligence as semantic networks [84], in the field of machine translation as
a representational language [91] and ultimately they originate from predicate logic.
Multi-relational networks are a natural way to represent the various forms of relation
in OSN, but also to represent information across OSNs that could be used to unify
relevant information about users. For instance, in Fig. 1.3, various users are present in
both the Twitter and the LinkedIn OSNs. In the aforementioned definition of multi-
relational networks we implied that the relations are binary, but this definition can
be generalized to cover multi-relational hyper-graphs.

3http://grouplens.org/datasets/hetrec-2011/.

http://grouplens.org/datasets/hetrec-2011/
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Fig. 1.3 Multi-relational
graph representing three
types of relation over two
networks. Contacts in
LinkedIn; and Followers and
Replies in Twitter. The node
labels denote the user, for
instance user 1 participates
in all relations, across all
networks

1.5.1 Definitions of Communities in the Social Web

Next, we provide definitions of the community types for the social Web that are
relevant in the current presentation. We will be making references to the diagram
of Fig. 1.4. Let G(V, E) denote a social network of |V | nodes and |E | edges. A
set of non-overlapping communities is represented as {C1, . . . ,Ck}, where Ci =
{vi(1), vi(2), . . . , vi(k)} ∈ V , and ∀i, j Ci

⋂
C j = ∅. In the case of overlapping

communities ∃i, j, Ci
⋂

C j �= ∅.
Communities can also be structured, as in the case of hierarchical communities,

where ∃i, j, Ci ⊂ C j . Additionally, in multi-partite networks we can discover a
complex community structure that relates communities of a single type of node.
Relations between communities are shaped by the link (or edge) pattern. That is,
∀i Pi ⊂ V , where Pi are the nodes from a single partite, and CPi, j denotes a
community j from partite i . The relation of communities from different partites

Fig. 1.4 A taxonomy of communities
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Fig. 1.5 Complex structure inmulti-partite communities. Each user community is related to one tag
community, and all are related to a single resource community. The numbers on the ovals correspond
to community identifiers

can be expressed as: {CPi1, j (1) ,CPi1, j (2) ,CPi2, j (1) ,CPi2, j (2) ,CPi3, j (3) , . . .}, where the
first index denotes the partite, and j is an index to the community. For instance in
Fig. 1.5, the complex community structure can be expressed as: {CP1,1,CP2,1 ,CP3,1},
and {CP1,2 ,CP2,2 ,CP3,1}.

Finally, in the case of temporal communities there is an ordering for each commu-
nity aswell as a labelingof the evolutionary phenomena that the communities undergo
from time frame to time frame, i.e. Ct1(i) ≺ Ct2(i) . . ., and ek = f (Ct1(i),Ct2(i)),
where ek is the evolutionary phenomenon that occurred to Ct1(i) and transformed it
into Ct2(i). Typically the evolutionary phenomenon can be growth, shrinking, contin-
uation, dissolution, etc. An extensive discussion of temporal communities is included
in [42, 43].

1.5.2 Community Detection on Social Graphs

We briefly review some community detection methods in hypergraphs and multi-
relational graphs, aiming to provide an overviewof somewidely establishedmethods.
Adetailed analysis of hypergraph andmulti-relationalmethods is exposed inChaps. 3
and 4 of the current volume respectively. Moreover, there is also a relevant review
in [48].

http://dx.doi.org/10.1007/978-3-319-23835-7_3
http://dx.doi.org/10.1007/978-3-319-23835-7_4
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Community detection has been applied in the context of hypergraphs broadly
following two main approaches: (a) mapping the hypergraph to a simpler structure
to discover communities with any algorithm for simple graphs (such as the ones
discussed in Sect. 1.4), and (b) discovering communities directly on the hypergraph.
Following the first approach,multi-partite graphs can bemapped to graphs, where the
nodes are typically users. In this case the connections between the nodes are meant
to represent the node similarity or proximity in the original hypergraph. However, in
the case of bi-partite graphs it has been shown that the discovered communities in
the simple graph are not always a faithful representation of the original communities
under some structural measures [38].

Following the second approach, established methods of community detection
in single-partite graphs have been extended to multi-partite graphs. For instance,
modularity maximization, which is a widely used method in single-partite graphs
has been formulated for bi-partite graphs [65]. Then it was suggested that tri-partite
uniform graphs can be projected onto bi-partite graphs and the modularity of the
tri-partite graph can be computed as the aggregated modularity of bi-partite graphs
[68]. However, this method results in a proliferation of bi-partite structures, which
makes it challenging to scale beyond more than three partites. Also, modularity
maximization was subsequently formulated for tri-partite graphs [66, 67]. Moreover,
spectral clustering, which can be used to embed a simple graph into the Euclidean
space and then to perform clustering in that space, has been extended to multi-partite
graphs [114].

Another major category of algorithms attempt to cluster links instead of nodes to
detect communities; this concept has also been extended to tri-partite graphs [34].
In particular, the first step is to detect pairwise similarities between hyperedges,
which is done by considering the neighbourhood of each node that is incident to a
hyperedge. The result is a pairwise matrix of hyperedge similarities, on which any
community detection method on simple graphs can be applied. Eventually, commu-
nities of hyperedges are obtained, and consequently the node communities can be
overlapping.

In multi-relational networks there are several ways to deal with the different
edge types when performing community detection. First, one could simply ignore
the semantics of the edges by integrating all different edges connecting two nodes
in a single one. This approach is problematic, for instance in the case that some
edges denote friendship, whereas others denote animosity (as in the case of signed
networks). Thus it is important to have a specific perspective on the network because
this will substantiate the relations and allow their integration. A general approach
is to consider each relation and the relevant nodes as a separate network, and then
to proceed with some sort of integration [102]. Another approach is to focus on the
discovery of relations that bind a given set of users. This results in a network with a
weight matrix that is a linear combination of the various relations [14]. The resulting
network is single-relational and hence communities can be discovered with standard
methods.

Themethods mentioned above essentially try to reduce a multi-relational network
into a single-relational one. There are, however, approaches that follow a different
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path: they try to detect groups of consistent interactions (i.e. relations) between the
entities of an OSN, and these are considered to form a community. There are two
basic approaches in this line of research. The first is based on tensor factorization. The
multiple relations between the entities of an OSN can be represented as the modes of
a tensor. For instance, relations among users together with relations between users
and visited items form a three-mode tensor. Tensor decomposition can be used for
extracting latent features that are later used to build communities [57]. The second
approach in community detection directly in multi-relational networks is to extend
the widely used statistical measure of modularity maximization [45].

Temporal networks can also be considered as multi-relational by considering
discrete time steps. Given also the fact that time is an ordinal attribute, there can be an
ordering of time relationships. Thus, an email exchange network, or a co-authorship
network can be subject to an analysis that discovers communities per time frame
and then associates them across time frames to study their evolution [101]. This
problem has also been addressed with matrix factorization [32]. Issues such as the
longevity of email communities, or the forms of their evolution are important for
their characterization.

1.6 Applications of Community Detection

An important application of community detection is in the domain of user-contributed
multimedia mining. The majority of social Web applications offer facilities for users
to upload and annotate multimedia content. Typical and popular examples of social
Web multimedia sharing applications are Flickr and Instagram for images, Sound-
Cloud for audio and YouTube, Vimeo and DailyMotion for video. A common appli-
cation associated with multimedia sharing on the social Web is the mining of multi-
media communities, i.e. communities comprisingmedia items.Having such structure
at one’s disposal, one can derive user communities by translating item communities
to user communities through the respective authorship/ownership (e.g., users belong
to the same communities that their respective items belong to). Alternatively, to
derive multimedia communities, one may take into account the rich social context
(in the form of interactions or affiliations) that is associated with the respective users.
Given the huge increase in the amounts of user-contributed content in social Web
multimedia sharing applications, being able to perform clustering on them can help
their users navigate larger parts of the content more efficiently (i.e. by looking at one
representative item per cluster instead of all cluster members).

A common analysis approach for mining communities of user-generated multi-
media is to first construct a similarity graph that captures the pairwise similarities
betweenmedia items and then to apply a community detection approachwith the goal
of extracting clusters of similar media items. Moëllic et al. [64] pursue photo clus-
tering by use of a shared nearest neighbors approach on two graphs of photos where
edges between photos are computed either by use of shared tags (tag-based graph) or
based onvisual similarity (visual graph). The employed clustering technique is shown
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to achieve improved clustering performance compared with conventional clustering
algorithms (k-means and one of its speeded-up variants). Also, comparing the results
of their methods with the clusters available from Flickr (Groups explicitly defined
by users of the application), the authors noted similar clustering quality.

A more sophisticated application of graph clustering is presented by Li et al. [55].
Their goal is to collect different representative (iconic) photos for popular landmarks
and use the massive visual content that is associated with them in order to create 3D
landmark models. They devised a multi-stage photo processing framework, in which
an important task was to group iconic photos together in order to reduce the amount
of photos that are processed by the computationally intensive 3D reconstruction step.
They achieve photo grouping by creating a photo graph where photos are connected
by edges when they are visually similar and by applying the N -cut graph clustering
algorithm by Shi and Malik [99] on this graph. In that way, they managed to recon-
struct the major views of three famous landmarks (Statue of Liberty, Notre Dame
and San Marco).

Papadopoulos et al. [79] identified real-world landmarks and events in large tagged
photo collections by use of photo cluster classification. They applied the SCAN
algorithm [109] on a hybrid photo similarity graph that encodes both visual and tag
similarity between photos. Subsequently, the derived photo and tag communities
are classified as landmarks or events based on cluster features such as the cluster
duration and number of unique users with photos in the cluster. In their analysis,
manual inspection of the results reveals that most of the clusters correspond either to
famous landmarks of the city or to real events (e.g., music concerts). Furthermore,
the automatically selected cluster tags provide meaningful descriptions for them.

Gargi et al. [30] used community detection to perform clustering of YouTube
videos. As a first step, they formed a video similarity graph using co-watch statistics
(i.e., an edge between two videos is inserted if many users watch the two videos in
the same session). Then, they applied a multi-step community detection approach,
consisting of a local seed community detection step based on the concept of density
and conductance, and a cluster refinement step, where the text similarity between
videos is taken into account to ensure topical coherence between the videos. The
proposed approach was designed with scalability in mind, due to the very large size
of the underlying video similarity graph, and was shown to lead to meaningful and
coherent clusters.

The association of content together with structure in social Web multimedia shar-
ing applications has recently motivated the development of community detection
approaches that take into account such content [83]. Edge content provides unique
insights into communities because it characterizes the nature of the interactions
between participants more effectively. This is because the use of purely structural
information cannot easily characterize the nature of the interactions between par-
ticipants effectively. Similarly, the information which is available only at the nodes
may not be able to easily distinguish the different interactions of nodes that belong
to multiple communities. Correspondingly, the use of edge content enables richer
insights which can be used for more effective community detection.
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Content recommendation is another important application of community detection
in OSNs. As mentioned before, users contribute content and they may also comment,
tag or vote on the content produced by them or by others. This forms the context,
and indeed the context can influence users’ experience. Digg4 is a social network
that allows news sharing among users. In particular users submit news stories related
to a topic, and they may vote, comment or reply to stories submitted by other users.
Apart from users, there are other entities such as stories, and comments. Relations
among the entities can be binary such as (user, story) or ternary such as (user, story,
comment), and they vary with time. A method based on online tensor factorization
has been used to detect communities that comprise users voting or commenting with
respect to news items [56], thus capturing the social news context. Based on this,
the next step is to predict future votes of a user on stories as well as to recommend
stories.

Beyond content clustering and recommendation, another application of commu-
nity detection that has been increasingly attracting interest in view of the ubiquitous
use of OSNs is the automatic organization of users’ online connections into mean-
ingful groups, also referred to as “social circles”, e.g. family, colleagues, etc. This
is particularly valuable as a user empowerment mechanism, since it enables OSN
users to share different content with different groups of their connections (e.g., per-
sonal content with close friends, professional content with colleagues, etc.). Jones
and O’Neill were among the first to apply community detection on this problem [46]
and found out that using the SCAN algorithm [109] led to the discovery of social
circles that matched well with the perceptions of users (probed with the use of a
carefully designed user study). Mcauley and Leskovec defined and formulated this
problem as a multi-membership node clustering problem on a user’s ego network
and proposed a hybrid clustering approach relying both on the network structure of
the ego network (using community detection) and on the attribute similarity between
the user and their connections [62].

Finally, discovering the communities in which users participate across multiple
networks may be used for user profiling. For instance, discovering a user’s com-
munities in LinkedIn could reveal his/her interests, the opinion of other users on
him/her, and thus it will provide useful information for a relatively recent profile or
activity of the same user in Twitter. This process may require the matching of user
profile information across different networks, where a variety of methods may be
used [112].

1.7 Conclusions and Open Issues

This chapter laid out the basis and context for this book, which is the discovery of
communities in the social Web. The emphasis was on the challenges one faces in
adapting community discovery methods to the complexity of the social graph. The

4http://digg.com/.

http://digg.com/
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sources of this complexity are the multitude of entities involved in the social Web,
the variety of relationships that are formed among them and the sheer volume of data
that need to be analyzed. The main approaches to the problem were highlighted in
this chapter, but more details about the corresponding methods are provided in the
rest of the book.

Most of the work on community discovery in the social Web so far involves graph
miningmethods that have been used in the past for discoveringWeb communities and
Web user communities. These methods are either used on simplified versions of the
social graph, e.g., the user graph of a social network, or they are extended to deal with
multiple entity types or multiple relations. The latter approach leads to a number of
interesting new methods, which however are commonly limited by the assumptions
made by the original methods. Therefore, the need arises for novel methods that
inherently tackle the complexity of communities in the social Web. Such methods
require an appropriate multi-dimensional and multi-relational model of the social
graph, as well as algorithms for extracting higher-order relational patterns from this
graph.

The area of statistical relational learning [33] lends itself naturally to the problem
of community detection in multi-relational networks. Statistical relational methods
combine the expressive power of relational logic with the statistical capabilities of
probabilistic graphical models. This combination facilitates probabilistic inference
and statistical analysis on top of graphical representations of relational knowledge.
Statistical relational learning has started being used for community discovery in
the social Web (e.g., in [25, 110]) and matrix factorization approaches are often
considered to belong to this area (e.g., [56, 88]). However, these methods also need
considerable improvement in order to be applied to the scale of the social Web,
particularly due to their computational cost. Therefore, the development of statistical
relational community discovery methods is both a promising and an open area for
research.

Last but not least, an increasingly important research aspect in the context of social
Web communities pertains to privacy risks and issues arising from the collective
nature and function of user communities. In particular, the possibility of analyzing
communities of mixed public-private user profiles for conducting inferences about
the attributes of the private profiles poses new research and ethical questions with
respect to information sharing and data mining in the context of social networks
[113]. Community membership (even when it is not explicit) and online relations
and interactions can be actually considered as a latent feature that could lead to
the discovery of user interests and attributes [6]. Coupled with the fact that there is
an abundance of weak annotations in the social Web in the form of e.g., hashtags,
membership in groups/lists, etc., one may conclude that community detection and
analysis approaches can be increasingly considered as a powerful tool for mining
user profiles, thus raising important considerations and risks with respect to online
privacy.
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