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Preface

This book aims to introduce the reader to concepts and methods of user community
discovery on the social Web. It does so by presenting the evolution of online user
communities from the early days of the Web to the complex online social networks
that we have formed today. On this basis it explains how state-of-the-art methods
for web community discovery can be adapted to address new challenges. It also
presents opportunities for research in the new setting and provides examples of new
methods that have appeared in the literature.

The basis for current research on community discovery methods is the early
work on Web community discovery. Since the wide adoption of Internet-based
services and applications, the users’ digital traces on Web sites allowed the seg-
mentation of users into communities of “like-minded” individuals. Such commu-
nities supported the provision of personalized services to Web users.

Subsequently, the emergence of online social networks and media sharing ser-
vices allowed users to post information and media content, and to establish explicit
social relations with other users. Detecting communities in this context poses
various new challenges, in terms of computational complexity and community
representation. It also provides a wealth of new opportunities for discovering truly
social groups and facilitating both personalization and social interaction among
users.

In this fascinating new environment, the current book emphasizes the com-
plexity and richness of social networks, i.e., networks with multiple types of nodes,
and multiple types of relation between their nodes, while also examining the issues
of scalability, time, and geolocation. It also touches upon the important issue of user
privacy and its relation to community discovery.

The editors would like to acknowledge the high-quality contributions of the
authors in this volume, which will make it an important read in the field of social
network analysis and data mining. We are also indebted to the reviews provided by
researchers and practitioners as they made possible the production of a high-quality
volume.
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Chapter 1
Discovery of Complex User Communities

Georgios Paliouras, Symeon Papadopoulos and Dimitrios Vogiatzis

Abstract This chapter serves as an introduction to the book on User Community
Discovery, setting the scene for the presentation in the rest of the book of various
methods for the discovery of user communities in the social Web. In this context, the
current chapter introduces the various types of user community, as they appeared in
the early days of the Web, and how they converged to the common concept of active
user community in the socialWeb. In thismanner, the chapter aims to clarify the use of
terminology in the various research areas that study user communities. Additionally,
the main approaches to discovering user communities are briefly introduced and a
number of newchallenges for community discovery in the socialWeb are highlighted.
In particularwe emphasize the complexity of the networks that are constructed among
users and other entities in the social Web. Social networks are typically multi-modal,
i.e. containing different types of entity, multi-relational, i.e. comprising different
relation types, and dynamic, i.e. changing over time. The complexity of the networks
calls for new versatile and efficient methods for community discovery. Details about
such methods are provided in the rest of the book.
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1.1 Introduction

Nowadays, much of our social activity takes place online. Technological advances
have led to the emergence of the social Web (also known as Web 2.0), which made
Webusers active participants, generating their owncontent and formingOnlineSocial
Networks (OSNs). Friendship and interaction among users lead naturally to the for-
mation of communities either by explicit connections or by connections that can be
inferred through the similarity of the users or the online trails of their interactions
(implicit communities). The composition of communities and the underlying char-
acteristics that their members share is valuable knowledge to companies that provide
products and services online. As an example, taking into account the communities
in which social network users participate can considerably improve the relevance
of the recommended content and ultimately the engagement of users, i.e. a form of
social recommendation [103].

The focus of this book is on the discovery of implicit communities of users,1 i.e.
beyond the explicit friendship or other types of connection that can be found inOSNs.
This discovery process is data-driven and it is based on statistical and machine learn-
ing approaches. Even though it has made its appearance in user modeling research
more than 20 years ago [20, 74] it has been recently revived in the context of sta-
tistical physics [27] and graph mining research [94]. Such data mining methods
have supported new powerful ways of personalization, such as collaborative filtering
and recommendation [40, 49, 50, 98]. However, the advent of the social Web has
introduced a number of new challenges and opportunities for community discovery
methods. Social media, generated primarily by the users themselves and exchanged
over OSNs, make user data richer, larger in size and highly multi-dimensional [80].
In fact, user data is becoming truly social data, like the data one would collect by
observing the interaction of the members of a society. Discovery methods need to be
adapted to this new type of data, in order to be able to identify the complex multi-
scale community structures that are formed. At the same time, the ease with which
such rich social data can be collected increases the responsibility of researchers and
service providers to respect the privacy of individuals and user groups.

This chapter serves as an introduction to the book, setting the scene for the pre-
sentation of various methods for discovering user communities in the rest of the
book. Based on the categorization introduced in [75], the chapter starts (Sect. 1.2)
by presenting the different types of user community that have been studied in the
literature and how these converge into the common concept of active user com-
munity in the social Web. Then, in Sect. 1.3, it presents the basic characteristics of
communities, as subgraphs of a larger graph of connected entities, e.g., a network
of users. Section1.4 presents briefly the main approaches to community discovery,
while Sect. 1.5 explains the challenges and opportunities for community discovery in
the social Web. A more thorough treatment of community discovery methods in the

1Although the term “community discovery” is more suitable to describe this process, throughout
the text we adopt the term “community detection”, which is the prevalent term used in the literature
to refer to this problem.
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social Web is provided in the rest of the book chapters. Section1.6 highlights some
example applications of community discovery in the social Web. Finally, Sect. 1.7
summarizes the main concepts introduced in this chapter and discusses some of the
main open issues.

1.2 Types of Web Community

According to [75] the term “Web community” has been used with three different
meanings in computer science literature:

User communities correspond to clusters of users of a Web site, who share com-
mon interests. Typical such communities are the customers of online shops. User
communities are formed on the basis of user log data, as recorded on the Web
servers of the site. These data are analyzed by statistical and machine learning
methods [76] in order to identify groups of users with common interests or behav-
ior, e.g., users who buy similar products.

Web communities correspond to subgraphs of theWeb graph, i.e. clusters ofWeb
pages, that are densely connected. Such dense subgraphs are identified by graph
mining methods [26, 52] and indicate Web sites that provide similar or related
content, e.g., art museums in different countries.

Web-based communities are associated with systems that support the formation
or strengthening of real-life communities. These were typically either local com-
munities (e.g., within a University campus) or interest-driven ones (e.g., profes-
sional associations). Early work in this field focused on community networks [95]
and virtual communities [90], which then evolved into Web community portals
[100] and finally into Web-based communities [10].What makes this type of com-
munity particularly interesting is the fact that users start producing content for the
community. In other words, they move from being passive consumers of content
to becoming active community participants. This idea, aided by corresponding
technological advances, later developed in what we now call the social Web.

The social Web has been facilitated by technological advances in the interaction of
the userswithWeb resources (a.k.a.Web 2.0 technologies) and has facilitated, in turn,
two important socio-technical developments, often referred to as social media and
Online Social Networks (OSNs). Social media and user-generated content represent
the widespread participation ofWeb users in the generation and publication of digital
content, which has now become more dynamic than ever before. It is this active
participation of the users in content publishing that has led to the use of the term active
user in the social Web. On the other hand, OSNs are typically Web applications that
support the active networking of users, much in the spirit ofWeb-based communities.
OSNs can be considered the natural descendants of Web-based communities and
community networks. As such, they bear similarities to those earlier paradigms, for
instance the goal of linking people with common interests or needs. However, OSNs
also have significant differences from their predecessors [11], among which are:
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• Their much larger user base.
• The diversity of their user base and their detachment from particular themes or
geographic locations.

• The fact that people link to each other, but do not necessarily join predefined
groups. A social network is a graph, in the sense of the Web itself, rather than a
group of people.

• Their participatory nature turns passive consumers into active users, who provide
content and information of many new and interesting types.

Using the terminology of [75], we call communities of users in OSNs active user
communities. These are naturally related to Web-based communities, but they are
also related to the other two types of community mentioned above.

Due to the fact that OSNs are naturallymapped to graphs, active user communities
are subgraphs of the larger graph, similar to Web communities. In contrast to theWeb
though, the nodes of the social graph are typically users and thus its subgraphs form
user communities. In this manner, the three different types of community seem to
converge to the common and much richer structure of the active user community in
the social Web.

Beyond the fact that they bring together the three different notions of community,
active user communities introduce a number of novel and interesting possibilities.
In the social Web, users provide much richer information about their preferences
and needs, than what the logs of a Web server could reveal. They choose their
neighbors in the network, they publish their own content, they rate and tag content
that other people have provided and participate in a number of online activities.
Due to the variety of entities involved in the social Web, one may choose to create
graphs other than those connecting users, e.g., by relating content items posted by the
users, or even multi-partite graphs that relate different types of entity (see Chap.3).
Additionally, these graphsmay contain different edge types, e.g., edges that represent
friendship and others that represent communication among the users. This multi-
relational nature of the social Web (see Chap. 4) makes the task of active community
discovery particularly interesting and challenging.

1.3 Representation of Communities

1.3.1 Communities as Graphs

The common representation of a community is that of a graph C = (V, E), where V
and E represent the nodes and edges respectively, that connect closely-related users
or other entities. Usually, this graph is a subgraph of a larger one C ⊆ G, e.g., all the
users of a social network, and is assumed to have a dense structure, representing the
close relation among its members. However, there is considerable discussion about
the best choice for representing such a dense structure.

http://dx.doi.org/10.1007/978-3-319-23835-7_3
http://dx.doi.org/10.1007/978-3-319-23835-7_4
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(a) (b) (c)

(d)

Fig. 1.1 Several attributes that may characterise community structure: a overlap, b weighted mem-
bership, c node (vertex) roles within/across communities, d hierarchical organization. Image orig-
inally presented in [80]

A large body of literature assumes that G should be partitioned into subsets (the
communities), whereby each node of the graph belongs to exactly one subgraph.
However, in reality, especially in the context of the social Web, community mem-
bership is more complicated. A user may well belong to more than one community
and may belong to different communities in different degrees (Fig. 1.1a). The need to
allow overlaps between communities was realized even in early research in commu-
nity discovery (e.g., [74]). Being the most dense graph structure, cliques (i.e. fully
connected subgraphs: ∀v ∈ V (C) : degreeC (v) = |V | − 1) were among the first
options to be considered. Thus, in the early days of community detection research,
community graphs G were required to be maximal cliques of C , i.e., cliques that are
not subsumed by other cliques of C . The strictness of this definition often leads to
unwanted effects, such as very low participation of nodes to communities.

In order to overcome this problem, alternative, less strict definitions were used,
such as cores or k-shells (introduced in [97]). A k-shell is a subgraph C of a graph
G = (V, E) iff ∀v ∈ V (C) : degreeG(v) ≥ k and C is the maximum subgraph with
this property.An equivalent definition is that k-shell is amaximal subset of nodes such
that each is reachable from each of the others by at least k node independent paths.
Two paths are defined as node independent if they share none of the same nodes,
with the exception of the start and the end nodes [69, Sect. 7.8.2]. Among their
other benefits, k-shells can be computed efficiently in large graphs, such as social
networks. This concept of core has been expanded in [9, 92], and core-periphery
structures have been studied in the context of weighted networks [29], hypergraphs
[87], as well as in temporal networks [63].

Additionally, a number of other graph structures have been used in the literature
to address the issue of overlapping communities, some based on cliques, e.g. Palla



6 G. Paliouras et al.

et al. [77], but many others as well [17, 18, 37, 58]. An extensive treatment of the
problem of overlapping community detection is presented in [108].

1.3.2 Community Attributes

The assumption that communities either partition the graph or are allowed to overlap
is an important differentiating attribute of community representation and discov-
ery approaches. In addition, there are other attributes that nodes of a network may
have in relation to communities. For instance, different nodes may participate with
varying degrees in a community depending on their centrality2 within it (Fig. 1.1b).
Moreover, nodes may have discrete roles: for example, Xu et al. [109] define two
roles (hubs and outliers) for nodes that are not assigned to any community. Hubs
are connected to multiple communities and act as liaisons, thus enabling interactions
among communities. Outliers are connected to a single community through a single
link, therefore they are usually considered as noise. Community-based node roles are
also discussed by Scripps et al. [96]. Specifically, the roles of “loners”, “big fish”,
“bridges” and “ambassadors” are defined (Fig. 1.1c).

It is also possible to impose hierarchical (Fig. 1.1d) or multi-scale structure on
communities [1]. Community organization may be defined at different scales with
respect to real-world systems. For instance, a set of users of a social Web application
may be organised in a community focused on a very specific topic (e.g., fans of a
particular indie-rock band) and at the same time they may be considered as members
of a broader community (rock music). In many cases, however, such hierarchies are
not flexible enough to model the complexities of multi-level organization in social
Web systems, as for instance in the case of folksonomies [15].

An orthogonal dimension concerning the characterization of communities is time.
This is a significant aspect of community detection that is worth further attention
especially due to the volatile and highly dynamic nature of social Web data and
interactions. According to a recent survey on the topic [35], a three-layered stream
of graph snapshots can be used to capture the evolution of social interactions. Graph
snapshots are used at the lowest level to capture the state at specific points in time. At
a higher level, these are grouped into segments, 3D tensor structures, encompassing
short-term evolutions. At the top level the complete graph stream captures the history
of interactions among the graph nodes. An alternative representation of graph evolu-
tion relies on an initial (base) graph that corresponds to the original state, and a stream
of changes (e.g., node additions/removals, edge additions/removals). Accordingly,
time-awareness can be incorporated in the underlying community structure of time-
evolving graphs, either by considering a series of community structures defined at
the corresponding graph snapshots and a set of pairwise community structure associ-
ations across snapshots, or by considering an initial (base) community structure and
a stream of changes on this structure, or by inherently integrating time-awareness

2Centrality quantifies how often nodes belong to the paths connecting other nodes.
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into the community detection process [31]. A set of basic changes (or transforma-
tions) that community structures may undergo are described in the seminal work by
Palla et al. [77]: Essentially, there are three types of transformation: (a) one-to-one,
which involves community growth or contraction, (b) one-to-many, which involves
one community splitting to many or many communities merging to one, and (c)
one-to-zero (and zero-to-one), which involves the emergence or the extinction of a
community.

1.4 Community Detection on Simple Graphs

Depending on the underlying methodological principles, five broad classes of com-
munity detection and graph clustering methods were defined in [80]: (a) cohesive
subgraph discovery, (b) vertex (or node) clustering, (c) community quality optimiza-
tion, (d) divisive, and (e) model-based. Note that these classes are not mutually
exclusive. For instance, spectral community detection methods [72] can be consid-
ered both to perform quality optimization and be divisive.

Cohesive subgraph discovery. The methods of this class presume a specifica-
tion of the structural properties that a subgraph of the network should satisfy to be
considered a community. Once such a subgraph structure is chosen, methods involve
the enumeration of subgraphs in the network under study. Local community defi-
nitions, such as cliques, n-cliques, k-cores, LS sets and lambda sets, are examples
of such cohesive structures and therefore algorithmic schemes for enumerating such
structures, such as the Bron-Kerbosch algorithm [13] and the efficient k-core decom-
position algorithm of Batagelj and Zaversnik [4], belong to this class of community
detection methods. In addition, methods such as the Clique Percolation Method [78]
and the SCAN algorithm [109], which lead to the discovery of subgraph structures
with well-specified properties, fall under the same class of methods.

Vertex (node) clustering. Such techniques originate from traditional data clus-
tering research. A typical means of casting a graph clustering problem to one that can
be solved by conventional data clustering methods (such as k-means and hierarchical
agglomerative clustering) is by embedding graph nodes in a vector space, where pair-
wise distances between nodes can be calculated. Another popular method is to use
the spectrum of the graph for mapping graph nodes to points in a low-dimensional
space, where the cluster structure is more profound [23, 59]. Other node similar-
ity measures such as structural equivalence [12] and neighborhood overlap have
been used to compute similarities between graph nodes [107]. Finally, a noteworthy
method, calledWalktrap [81], makes use of a random-walk based similarity between
nodes and between communities and uses modularity in a hierarchical agglomerative
clustering scheme to derive an optimal node clustering structure.

Community quality optimization. There is a large number of methods that are
founded on the basis of optimizing some graph-basedmeasure of community quality.
Subgraph density and cut-based measures, such as normalized cut [99] and conduc-
tance [47], were among the first to be used for quantifying the quality of some
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network division into clusters. A whole new wave of research was stimulated by
the measure of modularity. Approximate modularity maximization schemes abound
in the literature. Apart from the seminal greedy optimization technique of Newman
[70], and speeded up versions of it, such as max-heap based agglomeration [19] and
iterative heuristic schemes [7], more sophisticated optimization methods have been
devised, for instance, extremal optimization [24], speeded simulated annealing [61]
and spectral optimization [71].Methods aiming at the optimization of local measures
of community quality, such as local and subgraph modularity [18, 58]), also belong
to this category. Finally, this category includes methods that exploit the “hills” and
“valleys” in the distribution of network-based node or edge functions, e.g., the Mod-
uLand framework proposed by Kovács et al. [51] and the “reachability” measure by
Chen et al. [17], and the highly popular OSLOMmethod [53], which performs local
optimization of a fitness function expressing the statistical significance of clusters.

Divisive. These methods rely on the identification of network elements (edges
and nodes) that are positioned between communities. For instance, the seminal algo-
rithm by Girvan and Newman [36] progressively removes the edges of a network,
based on some edge betweeness measure until communities emerge as disconnected
components of the graph. Several measures of edge betweeness have been devised,
for instance, edge, random-walk, and current-flow betweeness [73], as well as infor-
mation centrality [28] and the edge clustering coefficient [85]. A similar principle
is adopted by node removal methods [105]; such methods remove nodes in order to
reveal the underlying community structure. Finally, min-cut/max-flow methods [26,
44] adopt a different divisive perspective: they try to identify graph cuts (i.e. sets of
edges that separate the graph into pieces) of minimum size.

Model-based. This is a broad and more recent category of methods that either
consider a dynamic process taking place on the network, which reveals its commu-
nities, or they consider an underlying model of statistical nature that can generate
the division of the network into communities. Examples of dynamic processes are
label propagation [37, 54, 86], synchronization of Kuramoto oscillators [3], diffu-
sion flow, better known as Markov Cluster Algorithm [104], and the popular spin
model by Reichardt and Bornholdt [89]. In addition, community detection can be
cast as a modelling problem, such as the well-known stochastic blockmodel [41] and
its extensions [2], or a statistical inference problem [39], assuming some underlying
probabilistic model, such as the planted partition model, that generates the com-
munity structure and estimating the parameters of this model. Other model-based
approaches rely on the principle that a good clustering is determined by a low encod-
ing cost and thus they perform community detection by finding the cluster structure
that results in the lowest possible cluster encoding cost [16, 93].

Several of the aforementioned and other methods and are discussed in detail
in the survey articles by Danon et al. [21], Fortunato [27], Porter et al. [82], and
Schaeffer [94]. Also, a useful listing of a large number of community detection
methods appears in the supplementary material of Kovács et al. [51]. The majority
of the aforementioned methods have been designed for use with undirected graphs.
A thorough treatment of the community detection problem in the context of directed
networks is presented in [60].
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It isworth stressing thatmethods such as the ones listed above, have been proposed
and applied in the context of User and Web communities (as defined in Sect. 1.2,
typically giving rise to graphs with a single type of node and edge. In recent years,
however, there has been a tendency for increasing complexity in the structure of real-
world networks with the emergence of active user communities, as discussed above.
This naturally leads to more sophisticated data models, for instance networks with
attributed nodes [111], networks with content-associated edges [83], as well asmulti-
mode and multi-relational networks. Consequently, the active user communities call
for new representations and new detection methods. For instance, modern OSNs,
such as Twitter and Facebook, can be modelled by means of different entities, such
as users, resources, and tags, and relations, such as likes, comments, affiliations, etc.
In the next section, we examine how this additional complexity has brought new
developments to the research field of community detection.

1.5 Communities in the Social Web

As previously discussed, OSNs are complex systems comprising multiple entity
types associated with multiple relations. Thus, there may be users connected to other
users, but also users creating posts, or replying to, sharing, commenting or rating
posts.Moreover, the posts could contain references to external resources such asWeb
pages, be associated with a theme or a geographic location and carry a timestamp.

A complete representation of an OSN would require a graph to represent users,
posts, and other entities in the form of nodes, whereas replies, comments, partici-
pation in groups would be represented as relations. Moreover, the relations between
entities could be binary, ternary or of higher order. In the context of this chapter
we use the term multi-dimensional graph to refer to graphs that contain edges that
comprise more than two nodes, or to graphs that contain multiple types of edge. An
overview of such graphs can be found in [48]. We divide multi-dimensional graphs
into two broad categories, hypergraphs and multi-relational graphs.

Hypergraphs. Multi-dimensional graphs that contain a single type of edge will be
referred to as hypergraphs, formally defined as G = (V,E), where V is the set of
nodes andE ⊆ V ×V ×· · ·×V , is the set of hyperedges.A further distinction between
hypergraphs could be made between single partite and multi-partite hypergraphs. In
the latter case there are nodes of more than one type, i.e. E ⊆ V1 × V2 × · · · × Vk ,
given k types of node (see Fig. 1.2). Despite their recent popularity in social network
analysis, hypergraphs are not a novel concept, as they were already proposed by
Berge in 1973 [5].

In hypergraphs, the definitions of graph properties such as node degree, path,
cycle, clustering coefficient and clique have been extended to accommodate the new
properties of the hyperedges. For instance, hypergraph path definitions can be found
in [106], centrality in [8] and cliques in [22].
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(a) (b)

Fig. 1.2 Hypergraphs and hyperedges: a general hypergraph, b tripartite graph; e1, e2, e3 denote
hyperedges. The nodes in (a) are of single type, whereas the nodes in (b) are of three types: u, t, r

Tri-partite graphs in particular, have been studied in the context of social tagging
systems. They arose from the need to represent triadic relations. For instance, a
seller, a buyer and a broker participating in a business transaction; or a person seeing
a movie, and annotating it with tags. Thus, one partite could stand for users, another
for tags and a third for movies. Hyperedges could be interpreted as tag assignments
by a user to a resource. Moreover, it is often assumed that there are no connections
between nodes of the same partite and each edge contains one node from each partite.
In this case, i.e. if each hyperedge has a node from each partite, the result is a k-partite
uniform hypergraph. Three commonly used datasets for the study of hypergraphs are
excerpts from Delicious, MovieLens and LastFM.3

The usage of a uniform k-partite network could be extended to represent other
social networks that were not originally conceived to be such; for instance in Twit-
ter, we may consider three partites: users, named entities (such as people, places
and organizations) that are referred to in the tweet text, and references to external
resources such as URLs.

Multi-relational graphs. Multi-relational graphs comprise more that one relations
between their nodes. These can be represented as G = (V,E), where V is the set of
nodes and E = E1, E2, . . . , El is a set of sets of edges, l is the number of relations,
and Ei ⊆ V × V . Each edge type carries certain semantics, for instance relations
could denote colleagues, friends, etc. Multi-relational graphs appeared in the field of
artificial intelligence as semantic networks [84], in the field of machine translation as
a representational language [91] and ultimately they originate from predicate logic.
Multi-relational networks are a natural way to represent the various forms of relation
in OSN, but also to represent information across OSNs that could be used to unify
relevant information about users. For instance, in Fig. 1.3, various users are present in
both the Twitter and the LinkedIn OSNs. In the aforementioned definition of multi-
relational networks we implied that the relations are binary, but this definition can
be generalized to cover multi-relational hyper-graphs.

3http://grouplens.org/datasets/hetrec-2011/.

http://grouplens.org/datasets/hetrec-2011/
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Fig. 1.3 Multi-relational
graph representing three
types of relation over two
networks. Contacts in
LinkedIn; and Followers and
Replies in Twitter. The node
labels denote the user, for
instance user 1 participates
in all relations, across all
networks

1.5.1 Definitions of Communities in the Social Web

Next, we provide definitions of the community types for the social Web that are
relevant in the current presentation. We will be making references to the diagram
of Fig. 1.4. Let G(V, E) denote a social network of |V | nodes and |E | edges. A
set of non-overlapping communities is represented as {C1, . . . ,Ck}, where Ci =
{vi(1), vi(2), . . . , vi(k)} ∈ V , and ∀i, j Ci

⋂
C j = ∅. In the case of overlapping

communities ∃i, j, Ci
⋂

C j �= ∅.
Communities can also be structured, as in the case of hierarchical communities,

where ∃i, j, Ci ⊂ C j . Additionally, in multi-partite networks we can discover a
complex community structure that relates communities of a single type of node.
Relations between communities are shaped by the link (or edge) pattern. That is,
∀i Pi ⊂ V , where Pi are the nodes from a single partite, and CPi, j denotes a
community j from partite i . The relation of communities from different partites

Fig. 1.4 A taxonomy of communities
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Fig. 1.5 Complex structure inmulti-partite communities. Each user community is related to one tag
community, and all are related to a single resource community. The numbers on the ovals correspond
to community identifiers

can be expressed as: {CPi1, j (1) ,CPi1, j (2) ,CPi2, j (1) ,CPi2, j (2) ,CPi3, j (3) , . . .}, where the
first index denotes the partite, and j is an index to the community. For instance in
Fig. 1.5, the complex community structure can be expressed as: {CP1,1,CP2,1 ,CP3,1},
and {CP1,2 ,CP2,2 ,CP3,1}.

Finally, in the case of temporal communities there is an ordering for each commu-
nity aswell as a labelingof the evolutionary phenomena that the communities undergo
from time frame to time frame, i.e. Ct1(i) ≺ Ct2(i) . . ., and ek = f (Ct1(i),Ct2(i)),
where ek is the evolutionary phenomenon that occurred to Ct1(i) and transformed it
into Ct2(i). Typically the evolutionary phenomenon can be growth, shrinking, contin-
uation, dissolution, etc. An extensive discussion of temporal communities is included
in [42, 43].

1.5.2 Community Detection on Social Graphs

We briefly review some community detection methods in hypergraphs and multi-
relational graphs, aiming to provide an overviewof somewidely establishedmethods.
Adetailed analysis of hypergraph andmulti-relationalmethods is exposed inChaps. 3
and 4 of the current volume respectively. Moreover, there is also a relevant review
in [48].

http://dx.doi.org/10.1007/978-3-319-23835-7_3
http://dx.doi.org/10.1007/978-3-319-23835-7_4
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Community detection has been applied in the context of hypergraphs broadly
following two main approaches: (a) mapping the hypergraph to a simpler structure
to discover communities with any algorithm for simple graphs (such as the ones
discussed in Sect. 1.4), and (b) discovering communities directly on the hypergraph.
Following the first approach,multi-partite graphs can bemapped to graphs, where the
nodes are typically users. In this case the connections between the nodes are meant
to represent the node similarity or proximity in the original hypergraph. However, in
the case of bi-partite graphs it has been shown that the discovered communities in
the simple graph are not always a faithful representation of the original communities
under some structural measures [38].

Following the second approach, established methods of community detection
in single-partite graphs have been extended to multi-partite graphs. For instance,
modularity maximization, which is a widely used method in single-partite graphs
has been formulated for bi-partite graphs [65]. Then it was suggested that tri-partite
uniform graphs can be projected onto bi-partite graphs and the modularity of the
tri-partite graph can be computed as the aggregated modularity of bi-partite graphs
[68]. However, this method results in a proliferation of bi-partite structures, which
makes it challenging to scale beyond more than three partites. Also, modularity
maximization was subsequently formulated for tri-partite graphs [66, 67]. Moreover,
spectral clustering, which can be used to embed a simple graph into the Euclidean
space and then to perform clustering in that space, has been extended to multi-partite
graphs [114].

Another major category of algorithms attempt to cluster links instead of nodes to
detect communities; this concept has also been extended to tri-partite graphs [34].
In particular, the first step is to detect pairwise similarities between hyperedges,
which is done by considering the neighbourhood of each node that is incident to a
hyperedge. The result is a pairwise matrix of hyperedge similarities, on which any
community detection method on simple graphs can be applied. Eventually, commu-
nities of hyperedges are obtained, and consequently the node communities can be
overlapping.

In multi-relational networks there are several ways to deal with the different
edge types when performing community detection. First, one could simply ignore
the semantics of the edges by integrating all different edges connecting two nodes
in a single one. This approach is problematic, for instance in the case that some
edges denote friendship, whereas others denote animosity (as in the case of signed
networks). Thus it is important to have a specific perspective on the network because
this will substantiate the relations and allow their integration. A general approach
is to consider each relation and the relevant nodes as a separate network, and then
to proceed with some sort of integration [102]. Another approach is to focus on the
discovery of relations that bind a given set of users. This results in a network with a
weight matrix that is a linear combination of the various relations [14]. The resulting
network is single-relational and hence communities can be discovered with standard
methods.

Themethods mentioned above essentially try to reduce a multi-relational network
into a single-relational one. There are, however, approaches that follow a different
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path: they try to detect groups of consistent interactions (i.e. relations) between the
entities of an OSN, and these are considered to form a community. There are two
basic approaches in this line of research. The first is based on tensor factorization. The
multiple relations between the entities of an OSN can be represented as the modes of
a tensor. For instance, relations among users together with relations between users
and visited items form a three-mode tensor. Tensor decomposition can be used for
extracting latent features that are later used to build communities [57]. The second
approach in community detection directly in multi-relational networks is to extend
the widely used statistical measure of modularity maximization [45].

Temporal networks can also be considered as multi-relational by considering
discrete time steps. Given also the fact that time is an ordinal attribute, there can be an
ordering of time relationships. Thus, an email exchange network, or a co-authorship
network can be subject to an analysis that discovers communities per time frame
and then associates them across time frames to study their evolution [101]. This
problem has also been addressed with matrix factorization [32]. Issues such as the
longevity of email communities, or the forms of their evolution are important for
their characterization.

1.6 Applications of Community Detection

An important application of community detection is in the domain of user-contributed
multimedia mining. The majority of social Web applications offer facilities for users
to upload and annotate multimedia content. Typical and popular examples of social
Web multimedia sharing applications are Flickr and Instagram for images, Sound-
Cloud for audio and YouTube, Vimeo and DailyMotion for video. A common appli-
cation associated with multimedia sharing on the social Web is the mining of multi-
media communities, i.e. communities comprisingmedia items.Having such structure
at one’s disposal, one can derive user communities by translating item communities
to user communities through the respective authorship/ownership (e.g., users belong
to the same communities that their respective items belong to). Alternatively, to
derive multimedia communities, one may take into account the rich social context
(in the form of interactions or affiliations) that is associated with the respective users.
Given the huge increase in the amounts of user-contributed content in social Web
multimedia sharing applications, being able to perform clustering on them can help
their users navigate larger parts of the content more efficiently (i.e. by looking at one
representative item per cluster instead of all cluster members).

A common analysis approach for mining communities of user-generated multi-
media is to first construct a similarity graph that captures the pairwise similarities
betweenmedia items and then to apply a community detection approachwith the goal
of extracting clusters of similar media items. Moëllic et al. [64] pursue photo clus-
tering by use of a shared nearest neighbors approach on two graphs of photos where
edges between photos are computed either by use of shared tags (tag-based graph) or
based onvisual similarity (visual graph). The employed clustering technique is shown
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to achieve improved clustering performance compared with conventional clustering
algorithms (k-means and one of its speeded-up variants). Also, comparing the results
of their methods with the clusters available from Flickr (Groups explicitly defined
by users of the application), the authors noted similar clustering quality.

A more sophisticated application of graph clustering is presented by Li et al. [55].
Their goal is to collect different representative (iconic) photos for popular landmarks
and use the massive visual content that is associated with them in order to create 3D
landmark models. They devised a multi-stage photo processing framework, in which
an important task was to group iconic photos together in order to reduce the amount
of photos that are processed by the computationally intensive 3D reconstruction step.
They achieve photo grouping by creating a photo graph where photos are connected
by edges when they are visually similar and by applying the N -cut graph clustering
algorithm by Shi and Malik [99] on this graph. In that way, they managed to recon-
struct the major views of three famous landmarks (Statue of Liberty, Notre Dame
and San Marco).

Papadopoulos et al. [79] identified real-world landmarks and events in large tagged
photo collections by use of photo cluster classification. They applied the SCAN
algorithm [109] on a hybrid photo similarity graph that encodes both visual and tag
similarity between photos. Subsequently, the derived photo and tag communities
are classified as landmarks or events based on cluster features such as the cluster
duration and number of unique users with photos in the cluster. In their analysis,
manual inspection of the results reveals that most of the clusters correspond either to
famous landmarks of the city or to real events (e.g., music concerts). Furthermore,
the automatically selected cluster tags provide meaningful descriptions for them.

Gargi et al. [30] used community detection to perform clustering of YouTube
videos. As a first step, they formed a video similarity graph using co-watch statistics
(i.e., an edge between two videos is inserted if many users watch the two videos in
the same session). Then, they applied a multi-step community detection approach,
consisting of a local seed community detection step based on the concept of density
and conductance, and a cluster refinement step, where the text similarity between
videos is taken into account to ensure topical coherence between the videos. The
proposed approach was designed with scalability in mind, due to the very large size
of the underlying video similarity graph, and was shown to lead to meaningful and
coherent clusters.

The association of content together with structure in social Web multimedia shar-
ing applications has recently motivated the development of community detection
approaches that take into account such content [83]. Edge content provides unique
insights into communities because it characterizes the nature of the interactions
between participants more effectively. This is because the use of purely structural
information cannot easily characterize the nature of the interactions between par-
ticipants effectively. Similarly, the information which is available only at the nodes
may not be able to easily distinguish the different interactions of nodes that belong
to multiple communities. Correspondingly, the use of edge content enables richer
insights which can be used for more effective community detection.
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Content recommendation is another important application of community detection
in OSNs. As mentioned before, users contribute content and they may also comment,
tag or vote on the content produced by them or by others. This forms the context,
and indeed the context can influence users’ experience. Digg4 is a social network
that allows news sharing among users. In particular users submit news stories related
to a topic, and they may vote, comment or reply to stories submitted by other users.
Apart from users, there are other entities such as stories, and comments. Relations
among the entities can be binary such as (user, story) or ternary such as (user, story,
comment), and they vary with time. A method based on online tensor factorization
has been used to detect communities that comprise users voting or commenting with
respect to news items [56], thus capturing the social news context. Based on this,
the next step is to predict future votes of a user on stories as well as to recommend
stories.

Beyond content clustering and recommendation, another application of commu-
nity detection that has been increasingly attracting interest in view of the ubiquitous
use of OSNs is the automatic organization of users’ online connections into mean-
ingful groups, also referred to as “social circles”, e.g. family, colleagues, etc. This
is particularly valuable as a user empowerment mechanism, since it enables OSN
users to share different content with different groups of their connections (e.g., per-
sonal content with close friends, professional content with colleagues, etc.). Jones
and O’Neill were among the first to apply community detection on this problem [46]
and found out that using the SCAN algorithm [109] led to the discovery of social
circles that matched well with the perceptions of users (probed with the use of a
carefully designed user study). Mcauley and Leskovec defined and formulated this
problem as a multi-membership node clustering problem on a user’s ego network
and proposed a hybrid clustering approach relying both on the network structure of
the ego network (using community detection) and on the attribute similarity between
the user and their connections [62].

Finally, discovering the communities in which users participate across multiple
networks may be used for user profiling. For instance, discovering a user’s com-
munities in LinkedIn could reveal his/her interests, the opinion of other users on
him/her, and thus it will provide useful information for a relatively recent profile or
activity of the same user in Twitter. This process may require the matching of user
profile information across different networks, where a variety of methods may be
used [112].

1.7 Conclusions and Open Issues

This chapter laid out the basis and context for this book, which is the discovery of
communities in the social Web. The emphasis was on the challenges one faces in
adapting community discovery methods to the complexity of the social graph. The

4http://digg.com/.

http://digg.com/
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sources of this complexity are the multitude of entities involved in the social Web,
the variety of relationships that are formed among them and the sheer volume of data
that need to be analyzed. The main approaches to the problem were highlighted in
this chapter, but more details about the corresponding methods are provided in the
rest of the book.

Most of the work on community discovery in the social Web so far involves graph
miningmethods that have been used in the past for discoveringWeb communities and
Web user communities. These methods are either used on simplified versions of the
social graph, e.g., the user graph of a social network, or they are extended to deal with
multiple entity types or multiple relations. The latter approach leads to a number of
interesting new methods, which however are commonly limited by the assumptions
made by the original methods. Therefore, the need arises for novel methods that
inherently tackle the complexity of communities in the social Web. Such methods
require an appropriate multi-dimensional and multi-relational model of the social
graph, as well as algorithms for extracting higher-order relational patterns from this
graph.

The area of statistical relational learning [33] lends itself naturally to the problem
of community detection in multi-relational networks. Statistical relational methods
combine the expressive power of relational logic with the statistical capabilities of
probabilistic graphical models. This combination facilitates probabilistic inference
and statistical analysis on top of graphical representations of relational knowledge.
Statistical relational learning has started being used for community discovery in
the social Web (e.g., in [25, 110]) and matrix factorization approaches are often
considered to belong to this area (e.g., [56, 88]). However, these methods also need
considerable improvement in order to be applied to the scale of the social Web,
particularly due to their computational cost. Therefore, the development of statistical
relational community discovery methods is both a promising and an open area for
research.

Last but not least, an increasingly important research aspect in the context of social
Web communities pertains to privacy risks and issues arising from the collective
nature and function of user communities. In particular, the possibility of analyzing
communities of mixed public-private user profiles for conducting inferences about
the attributes of the private profiles poses new research and ethical questions with
respect to information sharing and data mining in the context of social networks
[113]. Community membership (even when it is not explicit) and online relations
and interactions can be actually considered as a latent feature that could lead to
the discovery of user interests and attributes [6]. Coupled with the fact that there is
an abundance of weak annotations in the social Web in the form of e.g., hashtags,
membership in groups/lists, etc., one may conclude that community detection and
analysis approaches can be increasingly considered as a powerful tool for mining
user profiles, thus raising important considerations and risks with respect to online
privacy.



18 G. Paliouras et al.

References

1. Ahn Y-Y, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in
networks. Nature 466:761–764

2. Amini AA, Chen A, Bickel PJ, Levina E (2013) Pseudo-likelihood methods for community
detection in large sparse networks. Ann Stat 41(4):2097–2122

3. Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological
scales in complex networks. Phys Rev Lett 96:114102

4. Batagelj V, Zaversnik M (2003) An o(m) algorithm for cores decomposition of networks.
CoRR, arXiv:cs.DS/0310049

5. Berge C, Minieka E (1973) Graphs and hypergraphs, vol 7. North-Holland Publishing Com-
pany, Amsterdam

6. Bhattacharya P, Zafar MB, Ganguly N, Ghosh S, Gummadi KP (2014) Inferring user interests
in the twitter social network. In: Proceedings of the 8th ACM conference on recommender
systems, RecSys’14. ACM, New York, pp 357–360

7. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities
in large networks. J Stat Mech 2008(10):P10008

8. Bonanich P, Holdren AC, Johnston M (2004) Hyper-edges and multidimensional centrality.
Soc Netw 26:189–203

9. Borgatti SP, Everett MG (1999) Models of core/periphery structures. Soc Netw 21:375–395
10. Bouras C, Igglesis V, Kapoulas V, Tsiatsos T (2005) A web-based virtual community. IJWBC

1(2):127–139
11. Boyd DM, Ellison NB (2007) Social network sites: definition, history, and scholarship. J

Comput-Mediat Commun 13(1):210–230
12. Breiger RL, Boorman SA, Arabie P (1975) An algorithm for clustering relational data with

applications to social network analysis and comparisonwithmultidimensional scaling. JMath
Psychol 12(3):328–383

13. BronC,Kerbosch J (1973)Algorithm457: finding all cliques of an undirected graph. Commun
ACM 16(9):575–577 September

14. Cai D, Shao Z,HeX,YanX,Han J (2005) Communitymining frommulti-relational networks.
Knowledge discovery in databases: PKDD 2005. Springer, New York, pp 445–452

15. Cattuto C, Baldassarri A, Servedio VDP, Loreto V (2008) Emergent community structure in
social tagging systems. Adv Complex Syst 11(4):597–608

16. Chakrabarti D (2004) Autopart: parameter-free graph partitioning and outlier detection. In:
Boulicaut J-F, Esposito F, Giannotti F, Pedreschi D (eds) PKDD, Lecture Notes in Computer
Science, vol 3202. Springer, New York, pp 112–124

17. Chen J, Zaïane O, Goebel R (2009) A visual data mining approach to find overlapping com-
munities in networks. Proceedings of the 2009 international conference on advances in social
network analysis and mining, ASONAM’09. IEEE Computer Society, Washington, pp 338–
343

18. Clauset A (2005) Finding local community structure in networks. Phys Rev E 72:026132
19. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large net-

works. Phys Rev E 1–6
20. Cooley R, Mobasher B, Srivastava J (1997) Web mining: Information and pattern discovery

on the world wide web. In: Proceedings of the nineth international conference on tools with
artificial intelligence (ICTAI). Newport Beach, pp 558–567

21. Danon L, Guilera AD, Duch J, Arenas A (2005) Comparing community structure identifica-
tion. J Stat Mech: Theory Exp 2005(9):P09008–P09008

22. Dawande M, Keskinocak P, Swaminathan JM, Tayur S (2001) On bipartite and multipartite
clique problems. J Algorithm 41(2):388–403

23. Donetti L, MunozMA (2004) Detecting network communities: a new systematic and efficient
algorithm. J Stat Mech 2004:P10012

24. Duch J, Arenas A (2005) Community detection in complex networks using extremal opti-
mization. Phys Rev E 72:027104

http://arxiv.org/abs/cs.DS/0310049


1 Discovery of Complex User Communities 19

25. Esposito F, Ferilli S, Basile T, Di Mauro N (2012) Social networks and statistical relational
learning: a survey. Int J Soc Netw Min 1(2):185–208

26. Flake G, Lawrence S, Lee Giles C (2000) Efficient identification of web communities. In:
Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery
and data mining, KDD’00. ACM, New York, pp 150–160

27. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174
28. Fortunato S, Latora V, Marchiori M (2004) Method to find community structures based on

information centrality. Phys Rev E 70(5):056104
29. Garas A, Schweitzer F, Havlin S (2012) A k-shell decomposition method for weighted net-

works. New J Phys 14(8):083030
30. Gargi U, LuW,Mirrokni VS, Yoon S (2011) Large-scale community detection on youtube for

topic discovery and exploration. In: Adamic LA, Baeza-Yates RA, Counts S (eds) ICWSM.
The AAAI Press, Palo Alto

31. Gauvin L, Panisson A, Cattuto C (2013) Detecting the community structure and activ-
ity patterns of temporal networks: a non-negative tensor factorization approach. CoRR.
arXiv:abs/1308.0723

32. Gauvin L, Panisson A, Cattuto C (2014) Detecting the community structure and activity
patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE
9(1):e86028

33. GetoorL,TaskarB (2007) Introduction to statistical relational learning.MITPress,Cambridge
34. Ghosh S, Kane P, Ganguly N (2011) Identifying overlapping communities in folksonomies

or tripartite hypergraphs. In: Proceedings of the 20th international conference companion on
world wide web. ACM, pp 39–40

35. Giatsoglou M, Vakali A (2013) Capturing social data evolution using graph clustering. IEEE
Internet Comput 17(1):74–79

36. GirvanM, NewmanMEJ (2002) Community structure in social and biological networks. Proc
Natl Acad Sci 99(12):7821–7826

37. Gregory S (2010) Finding overlapping communities in networks by label propagation. New
J Phys 12(10):103018

38. Guimerà R, Sales-Pardo M, Amaral L (2007) Module identification in bipartite and directed
networks. Phys Rev Lett 76(3):036102

39. Hastings MB (2006) Community detection as an inference problem. Phys Rev E 74:035102
40. HillWC, SteadL, RosensteinM, FurnasGW(1995)Recommending and evaluating choices in

a virtual community of use. In: Proceedings of the conference on human factors in computing
systems (CHI). Denver, Colorado, pp 194–201

41. Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: first steps. Soc Netw
5(2):109–137

42. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125
43. Holme P, Saramäki J (2013) Temporal networks. Springer, New York
44. Ino H, Kudo M, Nakamura A (2005) Partitioning of web graphs by community topology. In:

WWW. ACM, New York, pp 661–669
45. Jacquin A, Misakova L, Gay M (2008) A hybrid object-based classification approach for

mapping urban sprawl in periurban environment. Landsc Urban Plan 84(2):152–165
46. Jones S, O’Neill E (2010) Feasibility of structural network clustering for group-based privacy

control in social networks. In: Proceedings of the sixth symposium on usable privacy and
security, SOUPS’10. ACM, New York, pp 9:1–9:13

47. Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral. J ACM
51(3):497–515 May

48. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer
networks. J Complex Netw 2(3):203–271

49. Konstan JA, Riedl J (2012) Recommender systems: from algorithms to user experience. User
modeling and user-adapted interaction 22 (this issue)

50. Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J (1997) GroupLens:
applying collaborative filtering to usenet news. Commun ACM 40(3):77–87

http://arxiv.org/abs/1308.0723


20 G. Paliouras et al.

51. Kovács IA, Palotai R, Szalay MS, Csermely P (2010) Community landscapes: an integrative
approach to determine overlapping network module hierarchy, identify key nodes and predict
network dynamics. PLoS ONE 5(9):e12528

52. Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) Trawling the web for emerging
cyber-communities. Comput Netw 31(11–16):1481–1493

53. Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant
communities in networks. PLoS ONE 6(5):e18961

54. Leung IXY, Hui P, Liò P, Crowcroft J (2009) Towards real-time community detection in large
networks. Phys Rev E 79:066107

55. Li X, Wu C, Zach C, Lazebnik S, Frahm J-M (2008) Modeling and recognition of landmark
image collections using iconic scene graphs. In: Proceedings of the 10th European conference
on computer vision: part I, ECCV’08. Springer, Berlin, pp 427–440

56. Lin Y-R, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A (2009) MetaFac: community
discovery via relational hypergraph factorization. In: Proceedings of the 15th ACM SIGKDD
international conference on knowledge discovery and data mining, KDD’09. ACM, pp 527–
536

57. Lin Y-R, Sundaram H, Kelliher A (2009) JAM: joint action matrix factorization for summa-
rizing a temporal heterogeneous social network. In: Proceedings of the third international
conference on weblogs and social media, ICWSM 2009. San Jose, California, 17–20 May
2009

58. Luo F,Wang JZ, PromislowE (2006) Exploring local community structures in large networks.
In: Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence,
WI’06. IEEE Computer Society, Washington

59. Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
60. Malliaros FD, Vazirgiannis M (2013) Clustering and community detection in directed net-

works: a survey. Phys Rep 533:95–142
61. Massen CP, Doye JPK (2005) Identifying communities within energy landscapes. Phys Rev

E 71:046101
62. Mcauley J, Leskovec J (2014) Discovering social circles in Ego networks. ACMTrans Knowl

Discov Data 8(1):4:1–4:28
63. Miorandi D, De Pellegrini F (2010) K-shell decomposition for dynamic complex networks.

In: 2010 Proceedings of the 8th international symposium on modeling and optimization in
mobile, ad hoc and wireless networks (WiOpt). IEEE, pp 488–496

64. Moëllic P-A, Haugeard J-E, Pitel G (2008) Image clustering based on a shared nearest neigh-
bors approach for tagged collections. In: Proceedings of the 2008 international conference on
content-based image and video retrieval, CIVR’08. ACM, New York, pp 269–278

65. Murata T (2009) Modularities for bipartite networks. In: Proceedings of the 20th ACM con-
ference on hypertext and hypermedia. ACM, pp 245–250

66. Murata T (2010) Detecting communities from tripartite networks. In: Proceedings of the 19th
international conference on world wide web. ACM, pp 1159–1160

67. Murata T (2011) Detecting communities from social tagging networks based on tripartite
modularity. In: Proceedings of the workshop on link analysis in heterogeneous information
networks

68. Neubauer N, Obermayer K (2010) Community detection in tagging-induced hypergraphs.
Workshop on information in networks. New York University, New York, pp 24–25

69. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford
70. Newman MEJ (2003) Fast algorithm for detecting community structure in networks. Phys

Rev E 69:066133
71. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of

matrices. Phys Rev E 74(3):036104
72. NewmanMEJ (2013) Spectral methods for community detection and graph partitioning. Phys

Rev E 88:042822
73. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks.

Phys Rev E 69:026113



1 Discovery of Complex User Communities 21

74. Orwant J (1995) Heterogeneous learning in the doppelgänger user modeling system. User
Model User-Adapt Interact 4(2):107–130

75. Paliouras G (2012) Discovery of web user communities and their role in personalization. User
Model User-Adapt Interact 22(1–2):151–175

76. Paliouras G, Papatheodorou C, Karkaletsis V, Spyropoulos CD (2000) Clustering the users of
large web sites into communities. In: Proceedings of the seventeenth international conference
on machine learning (ICML). Stanford, pp 719–726

77. Palla G, Barabasi A-L, Vicsek T (2007) Quantifying social group evolution. Nature
446(7136):664–667

78. Palla G, Dernyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435(7043):814–818

79. Papadopoulos S, Zigkolis C, Kompatsiaris Y, Vakali A (2011) Cluster-based landmark and
event detection for tagged photo collections. IEEE MultiMed 18(1):52–63

80. Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Community detection in
social media. Data Min Knowl Discov 24(3):515–554

81. Pons P, Latapy M (2005) Computing communities in large networks using random
walks (long version). Computer and information sciences-ISCIS 2005, pp 284–293.
arXiv:physics/0512106v1

82. Porter MA, Onnela J-P, Mucha PJ (2009) Communities in networks. Not Am Math Soc
56(9):1082–1097

83. Qi G-J, Aggarwal CC, Huang TS (2012) Community detection with edge content in social
media networks. In: IEEE 28th international conference on data engineering (ICDE 2012),
pp 534–545

84. Quillian MR (1968) Semantic memory. In: Minsky M (ed) Semantic information processing.
MIT Press, Cambridge, pp 27–70

85. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying
communities in networks. Proc Natl Acad Sci 101(9):2658

86. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community
structures in large-scale networks. Phys Rev E 76:036106

87. Ramadan E, Tarafdar A, Pothen A (2004) A hypergraph model for the yeast protein complex
network. Proceedings of the 18th international parallel and distributed processing symposium,
2004. IEEE, p 189

88. Rêgo Drumond L, Diaz-Aviles E, Schmidt-Thieme L, Nejdl W (2014) Optimizing multi-
relational factorization models for multiple target relations. In: Proceedings of the 23rd
ACM international conference on conference on information and knowledge management,
CIKM’14, pp 191–200

89. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E
74:016110

90. RheingoldH (1993)The virtual community: homesteading on the electronic frontier.Addison-
Wesley, New York

91. Richens RH (1956) General program for mechanical translation between any two languages
via an algebraic interlingua. Mech Transl 3(2):37

92. RombachMP, Porter MA, Fowler JH,Mucha PJ (2014) Core-periphery structure in networks.
SIAM J Appl Math 74(1):167–190

93. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal com-
munity structure. Proc Natl Acad Sci 105(4):1118–1123

94. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64
95. Schuler D (1994) Community networks: building a new participatory medium. Commun

ACM 37(1):38–51
96. Scripps J, Tan P-N, Esfahanian A-H (2007) Node roles and community structure in networks.

In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on web mining and
social network analysis, WebKDD/SNA-KDD’07. ACM, New York, pp 26–35

97. Seidman SB (1983) Network structure and minimum degree. Soc Netw 5(3):269–287

http://arxiv.org/abs/physics/0512106v1


22 G. Paliouras et al.

98. Shardanand U, Maes P (1995) Social information filtering: algorithms for automating “word
of mouth”. In: Proceedings of the conference on human factors in computing systems (CHI).
Denver, Colorado, pp 210–217

99. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal
Mach Intell 22(8):888–905

100. Staab S, Angele J, Decker S, Erdmann M, Hotho A, Maedche A, Schnurr H-P, Studer R, Sure
Y (2000) Semantic community web portals. Comput Netw 33(1–6):473–491

101. Takaffoli M, Sangi F, Fagnan J, Zäıane O (2011) Community evolution mining in dynamic
social networks. Procedia-Soc Behav Sci 22:49–58

102. Tang L, Liu H (2010) Community detection and mining in social media (synthesis lectures
on data mining and knowledge discovery). Morgan & Claypool Publishers, San Rafael

103. Tang J, HuX, Liu H (2013) Social recommendation: a review. Soc NetwAnalMin 3(4):1113–
1133

104. van Dongen S (2000) Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht
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Chapter 2
Community Discovery: Simple and Scalable
Approaches

Yiye Ruan, David Fuhry, Jiongqian Liang, Yu Wang
and Srinivasan Parthasarathy

Abstract The increasing size and complexity of online social networks have brought
distinct challenges to the task of community discovery. A community discovery algo-
rithm needs to be efficient, not taking a prohibitive amount of time to finish. The algo-
rithm should also be scalable, capable of handling large networks containing billions
of edges or even more. Furthermore, a community discovery algorithm should be
effective in that it produces community assignments of high quality. In this chapter,
we present a selection of algorithms that follow simple design principles, and have
proven highly effective and efficient according to extensive empirical evaluations.
We start by discussing a generic approach of community discovery by combining
multilevel graph contraction with core clustering algorithms. Next we describe the
usage of network sampling in community discovery, where the goal is to reduce the
number of nodes and/or edges while retaining the network’s underlying community
structure. Finally, we review research efforts that leverage various parallel and dis-
tributed computing paradigms in community discovery, which can facilitate finding
communities in tera- and peta-scale networks.

2.1 Introduction

Community discovery has long served as an important primitive operator in the field
of network science, and the ability of identifying user communities in social networks
has lead to a plethora of applications including, among others, churn prediction [42],
political analytics [1], and human behavior study [56]. While it is relatively easy
to directly spot community structures embedded in the smallest networks, for other
networks the task quickly becomes challenging for human beings. To illustrate, there
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are 1.35 billion monthly active users on Facebook as of September, 2014.1 If we are
to plot all of those users on the computer screen, assuming each user only occupies
one single pixel, we will need more than 1700 monitors of the typical 1024-by-768
resolution to just show all of them.

The rapidly-growing size of available user network data hasmultiple implications,
all underlining the acute need for automatic community discovery algorithms that
are efficient, scalable, and effective. First of all, algorithm complexity becomes a
practical concern, as the improvement (or degradation) in running time is pronounced
and easily perceivable. The difference between log-linear and quadratic complexities
is now seconds versus years. Secondly, the RAM capacity of a single machine may
be too low to fully store the underlying network in memory, let alone any auxiliary
data required for the algorithm itself. Lastly, as network size grows, more noise is
introduced inevitably, and this is especially true for online social networks where
spammers and bots can create fake links with trivial cost, for instance. To produce
results of high quality, a community discovery algorithm has to be robust and capable
of differentiating between signal and noise.

In order to address these issues, many algorithms have been proposed in the lit-
erature of community discovery. In this chapter, we outline a collection of existing
methods that have proven simple yet effective and scalable. Furthermore, we dis-
cuss some promising directions that deserve further investigation. In the next three
sections, we focus on three respective categories:

• Section 2.2: Multilevel community discovery methods, which recursively con-
tract a larger network into a smaller version on which a core community discovery
algorithm will be run. The procedure of contraction (also known as coarsening)
can follow different strategies, and they also differ on whether the core discovery
algorithm is run only once or for multiple times. As a byproduct, the multilevel
paradigm also produces a natural hierarchy of communities in the network.

• Section 2.3: Sampling-based preprocessing algorithms, which selectively keep
a subset of vertices and/or edges to reduce the network size while attempting
to preserve the community structure of the underlying network. The sampling
process is typically guided by some quality measures, and can leverage additional
information, such as vertex attributes or content.

• Section 2.4: Parallel and distributed community discovery approaches, which
perform community identification in parallel to speed up the process.2 Given the
fact thatmany discovery algorithms are based onmatrix/vector operations, and that
many computation kernels specially designed for such operations have been devel-
oped in the parallel computing community, there is a great potential of performing
community discovery in an efficient parallel environment. Furthermore, some of
such algorithms also store data in a distributed fashion (e.g. HDFS), making it
possible to overcome the capacity limit of one single machine.

1http://newsroom.fb.com/company-info/. Accessed in December 2014.
2Here, we will discuss methods based on both shared-memory and distributed-memory architec-
tures.

http://newsroom.fb.com/company-info/
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Table 2.1 Table of notations used in this chapter
G(V, E) An undirected graph with the vertex set V and edge set E.
Γu The neighborhood of a node u, that is, (u, v) ∈ E, ∀v ∈ Γu and

�v ∈ V − Γu such that (u, v) ∈ E.
ΓS The neighborhood of a set of nodes S, that is,

⋃
u∈S Γu.

A ∈ {0, 1}|V |×|V | The symmetric adjacency matrix of G, i.e. A(u, v) = A(v, u) =
1 if (u, v) ∈ E, and 0 if (u, v) /∈ E.

D ∈ N|V |×|V | The diagonal matrix of node degrees, i.e. D(u, u) = |Γu| and
D(u, v) = 0, ∀u �= v.

Nc The number of communities to detect.

Among existing literature, the definition of “community” itself is still open-
ended and highly context-dependent, leading to various input and output specifi-
cations across different methods. Here we summarize the premise of the algorithms
described in this chapter. All these algorithms can operate on unweighted, undirected
networks, and some readily accept weighted/directed networks as inputs, or can be
easily adapted to do so. With the exception of Louvain algorithm in Sect. 2.2, all
algorithms take the desired number of communities as an additional input, either
directly or indirectly (via other control parameters). In terms of output, communities
generated by those algorithms are disjoint, in that no two communities will overlap
with each other. Few algorithms, such as METIS (Sect. 2.2), produce communities
of equal size, while most allow variation in community size. With all the distinct
properties of each method in mind, one key observation from this chapter is: Most
approaches introduced here can also be viewed as meta-algorithms, and one can
reuse and enhance many existing community discovery algorithms by plugging them
into these frameworks.

Before proceeding, we note that this chapter is not intended as an exhaustive
survey of community discovery algorithms, and we have provided references for
further reading in Sect. 2.5. Rather, we aim at simple and scalable approaches that fall
into one of the three categories mentioned above. Apart from technical descriptions,
we also hope to provide a systematic view of these three generic design principles,
and to inspire new algorithms that follow them. Moreover, it is feasible for one to
devise methods that leverage more than one of these approaches simultaneously, as
they are complementary to each other.

Notations in Table2.1 will be used throughout this chapter. Note that, we will use
the terms “node” and “vertex” interchangeably, as well as “network” and “graph”.

2.2 Multilevel Approach for Community Discovery

We begin with the introduction of multilevel approach, an effective scheme that has
been applied in conjunction with different community detection algorithms. The key
motivation behind all multilevel algorithms is to efficiently obtain a partitioning of
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nodes at a coarse-grained level, and then recover fine-grained communities from
high-level clusters in a recursive manner. A key point to the efficacy of the multilevel
paradigm is, therefore, retaining the graph’s backbone structure when reducing its
size, andwewill discuss several principled andheuristic-driven approaches to achieve
this requirement.

Aside from being efficient, the multilevel scheme also brings the benefit of flexi-
bility since it is largely orthogonal to the underlying community detection algorithms.
This enables practitioners to experiment with various community detection “kernels”
with minimal change in the implementation. Moreover, multilevel approaches natu-
rally produce a hierarchy of communities, making it easy to explore the community
structure of a graph at different scales.

Here, we will showcase concrete implementations of the multilevel approach by
presenting four representative algorithms: METIS, MLR-MCL, Graclus and Lou-
vain. There are three main phases in all multilevel community discovery algorithms:

• Contraction (Sect.2.2.2): From the original network, a series of networks of
decreasing size are generated. Each small network is created by contracting mul-
tiple nodes in the parent-level network into a multinode, and their edges to other
nodes in the network are retained. The selections of nodes to contract and their
ordering can be decided by various strategies, as we shall see below.

• Partitioning (Sect.2.2.3): This refers to running a core partitioning algorithm
on the aforementioned contracted networks. The key motivation is that such an
algorithm will run more efficiently on the contracted networks because their sizes
are smaller. While some approaches only call the core algorithm on the smallest
contracted network, others execute the core algorithm on the contracted network
at each level.

• Refinement (Sect.2.2.4): To obtain community assignments on the original net-
work, partitions on a smaller network will be projected back to the higher level
by decomposing multinodes. A fast refinement procedure often follows the pro-
jection, so that the community assignments are further improved. Typically, the
refinement subroutine is lightweight and only performs simple local operations.
In some cases such as MLR-MCL and Graclus, however, refinement can involve
the core partitioning algorithm itself, too.

2.2.1 Overview

METIS METIS [19] is a graph clustering algorithm for undirected graphs with
optionally both edge weights and vertex weights. It recursively contracts the graph
and partitions the smallest graph. Then the partitioning is projected to the original
graph. METIS performs recursive contraction, recursive partitioning and recursive
projection separately.

MLR-MCLMultilevelRegularizedMarkovClustering (MLR-MCL) is anothermul-
tilevel approach for graph clustering, introduced in [45]. UnlikeMETIS, MLR-MCL
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is based on Markov Clustering [49], which is a flow-based graph clustering algo-
rithm.MCL follows the nature of flow and transition probability in graphs to conduct
clustering and is able to generate clustering results in different granularities by tuning
parameters. MLR-MCL goes further to improve clustering quality and the scalability
of the algorithm through additional regularization and multilevel mechanism.

Graclus Graclus [9] is quite similar toMLR-MCL, except it utilizes weighted kernel
k-means in the partitioning and refinement phases. Many variants of weighted kernel
k-means can be derived depending on different categories of objective functions, e.g.
Kernighan-Lin objective. The multilevel mechanism guarantees a desirable initial
clustering at each refinement level, making the refinement step converge very fast.

Louvain Louvain [3] also adopts the multilevel framework but aims at optimizing
modularity, which is a commonly-used criterion to evaluate community detection
[32]. Louvain recursively optimizes modularity at each level and deals with graphs
with edgeweights. It alternates between contraction and partitioningwhile the refine-
ment phase is mostly trivial.

2.2.2 Contraction

A series of graphs, called contracted graphs, are generated in this phase. We
denote them as G0, G1, . . . , Gm, where G0 = G is the original graph. Each
Gi+1 = (Vi+1, Ei+1) is obtained by contracting Gi = (Vi, Ei), and hence is smaller
than Gi. Correspondingly, Gi is referred to as the parent graph of Gi+1. If a ver-
tex v ∈ Vi+1 corresponds to a group of nodes in Vi, we call v a multinode for Gi.
There are two types of contraction: edge contraction and vertex contraction [39].
The former is to contract a pair of adjacent vertices into one multinode, whereas the
latter is to contract a vertex and its neighbors into one. In general, vertex contraction
shrinks the graph more significantly than edge contraction because the latter shrinks
the graph at most by half each time.

METIS, MLR-MCL, and Graclus In the contraction phase, METIS, MLR-MCL
and Graclus all follow the same procedure. Edge contraction can be done by finding
a maximal matching [39]. When a maximal matching is identified, the graph is
contracted in this way: Replace a matched node pair by a multinode whose weight
is the sum of those of the two absorbed nodes; If parallel edges are created between
the multinode and other nodes, they are replaced by one single edge whose weight is
the sum of those of all parallel edges. Gi+1 is constructed when the whole matching
in Gi are replaced. An heuristic called Heavy Edge Matching is used to construct the
maximal matching. The idea is to maximize the difference of edge weights between
two consecutive contracted graphs. The motivation is to minimize the edge weight
of the contracted graph and thus the upper bound of edge cut, a commonly-used
partitioning criterion (Sect. 2.2.3), in the contracted graph. The contraction process
recursively contracts the graphuntil |Vi|/|Vi+1| is smaller than a predefined threshold,
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that is, the decrease in graph size is no longer significant. An alternative strategy is
to terminate the process when |Vi| itself, instead of the ratio, is below a threshold.

Louvain Louvain algorithm alternates between contraction and partitioning. The
contraction phase itself is simple: Contract all nodes in the same community (from
the parent graph) into a single multinode, and replace each group of parallel edges
with one single edge of the aggregated weights. When the contraction phase ends, a
new graphwith fewer nodes, each ofwhich representing a community, is constructed.

2.2.3 Partitioning

Partitioning is to partition the graph into multiple communities such that vertices
within the same community are more densely connected than vertices across com-
munities. The partitioning algorithms of all four methods here produce disjoint com-
munities.3 Partitioning of METIS only occurs on the coarsest graph, whereas MLR-
MCL and Graclus perform partitioning in the whole process of refinement from Gm

to G0 incrementally. On the other hand, Louvain performs partitioning in the process
of contraction.

METIS METIS tries to find balanced communities, i.e. communities have similar
number of vertices in an unweighted graph while have similar sum of weights in
a weighted graph. A bisection procedure [15, 16] is explained here while a more
sophisticated k-way partition can be found in [19]. The bisection procedure works
to recursively partition the graph/sub-graph into two parts until a desired number
of communities are obtained. METIS can be coupled with three bisection algo-
rithms, one using spectral bisectionwhile the others adapting a strategy ofminimizing
edge-cut.
Spectral Bisection Fiedler vector [13, 36] is used for partitioning the graph. The
Fiedler vector f of a network is the eigenvector corresponding to the second smallest
eigenvalue of its Laplacian matrix. After computing f , let f (v) be the vth element
of f , the graph is bisected by a threshold t, which minimizes |∑f (v)≤t vw(v) −∑

f (v)>t vw(v)|, where vw(v) stands for the weight of vertex v.

KL Algorithm The Kernighan-Lin (KL) algorithm [12, 21] is an iterative algorithm
starting from an initial bipartition. Nodes are ranked based on their potential of edge-
cut reduction. After selecting proper nodes, edge-cut is decreased in each iteration
by swapping two subsets of the nodes from the two parts. KL algorithm relies on
good initial partition [5]. If a good initial partition is not available, one can run KL
algorithm on multiple random initial partitions and select the one with the smallest
edge-cut.

3Overlapping community detection has also attracted considerable research attention [51, 53], yet
existing studies have not adapted themultilevel framework discussed here. Combining themultilevel
paradigm with overlapping community discovery will be an exciting future direction.
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An easier implementation is tomove one vertex at a time rather than swapping two
subsets. The iteration terminates when no vertex can be moved or edge-cut decreases
little in some consecutive moves.

Greedy Graph Growing Partitioning Algorithm This algorithm performs
heuristic-guided breadth-first search from a vertex until half of the graph, in terms
of number of vertices (for unweighted graphs) or the sum of vertex weights (for
weighted graphs), are included. It works by growing a community from an indi-
vidual vertex. The heuristic is to order the vertices on the frontier of the growing
community based on their potential to decrease edge-cut and move the vertex with
the highest ranking. The frontier and the ranking should be maintained dynamically.
Reference [19] shows that this algorithm requires the same data structure as KL
algorithm. Reaching the desired number of communities is a termination condition
for this algorithm.

MLR-MCL The partitioning phase of MLR-MCL follows the Regularized Markov
Clustering (R-MCL). R-MCL itself is a clustering algorithm based on stochastic
matrices and flows. In graph G, let A be the adjacency matrix, where A(i, j) is the
weight of the edge between vertex vi and vertex vj. Then a column stochastic matrix
MG is the matrix of the transition probabilities of a random walk in the graph.
Specifically, MG(j, i) represents the probability of transiting from vertex vi to vj.
The column-stochastic transition matrix MG is usually derived by normalizing the
columns of the adjacencymatrixA such that each column sums up to 1, i.e.MG(i, j) =

A(i,j)∑n
k=1 A(k,j)

. This is usually obtained from MG = AD−1, where D is the diagonal

degreematrix of graphG andD(i, i) = ∑n
j=1 A(j, i).Wecall thismatrix the canonical

transition matrix.

R-MCL, similar to MCL [49], follows three steps. The first step is expansion,
which allows flow to go to different parts of the graph. It can be done by usingMexp =
Expand(M) = M ∗ MG, where M is the flow distribution matrix from the previous
iteration (initially it isMG). The second step is inflation, which both strengthens what

is strong and weakens what is weak of the flow by using Minf (i, j) = Mexp(i,j)r
∑n

k=1 Mexp(k,j)r .

The purpose of inflation is to expedite the convergence of partitioning. As long as
r > 1, this operator will exaggerate the imbalanced distribution of each column of
Mexp. A higher r means a more aggressive inflation and by default, it is set as 2.
The third steps is pruning, which aims to eliminate those very small values in Minf .
Pruning will make the matrix sparser and help save memory and computation. The
threshold used to prune the small values can be computed based on the average and
maximum in each column (see [49] for more details) and then all the entries below
the threshold will be pruned.

At the partitioning phase for a contracted graphGi, the canonical transitionmatrix
is built, and the expansion-inflation-pruning cycle is performed for a small number
of iterations. The corresponding flow distribution Minf will be projected back to the
finer graph (Gi−1) and be treated as the initial flow distribution for R-MCL on Gi−1.
Details of the refinement process will be discussed in the next subsection.
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Graclus For Graclus, we apply a base clustering algorithm on the coarsest graph.
We can use the region-growing algorithm of METIS, which is usually very efficient.
Spectral clustering and bisection methods are other alternative approaches for base
clustering.

However, from Gm−1 to G0, Graclus adopts weighted kernel k-means to per-
form partitioning. Weighted kernel k-means is a variant of k-means which adopts a
non-linear mapping kernel function and adds a weight to each cluster. With certain
objective functions (either based on association or cuts), we can use weighted ker-
nel k-means for graph clustering. One example will be clustering a graph based on
association, where we aim to partition the graph into k disjoint parts π1,π2, . . . ,πk ,
whose union is V , such that W Assoc(G) = ∑k

c=1
links(πc,πc)

w(πc)
is maximized. Here,

links(πc,πc) is the sum of the edge weights inside the cluster πc and w(πc) is the
sum of node weights inside πc.

As [9] proved, the trace maximization formula of objectives in weighted kernel
k-means and graph clustering are actually equivalent. By setting kernel matrix K as
W −1AW −1, where W is the diagonal matrix of weights and A is adjacency matrix,
we can run weighted kernel k-means for graph clustering without calculating its
eigenvectors. In other words, graph clustering can be done by using a simple iterative
algorithm.

Similar to MLR-MCL, we do not directly run weighted kernel k-means on the
original graph. Instead, we run this clustering algorithm from Gm−1 to G0. The
partitioning result from Gi is used as the initial community assignment of Gi−1 after
projection. More details of refinement will be introduced in next subsection.

Louvain Partitioning and contraction are alternately performed in the same recursion
in Louvain algorithm. Each node of the current graph is treated as a community. For
each node vi, the algorithm considers each neighbor vj of vi and evaluates the gain of
modularity by moving vi from its community to the community of vj. A node vi will
be moved only if there is positive gain, and it is moved to the community that yields
the maximum modularity gain. Otherwise, vi remains in the original community.
This process is applied repeatedly and sequentially for all nodes until reaching a
Pareto frontier, i.e. no further improvement can be achieved. Then the partitioning
phase terminates. It is shown that the order of node selection may affect computation
time but not the convergence of modularity.

2.2.4 Refinement

Since our goal is to perform community detection on the original graph, we need
to refine the partitioning results starting from Gm to G0. Given the communities
of multinodes on the contracted graph, we need to project the communities back
to the parent graph. We define Pi to be a partition on graph Gi projected from
Pi+1. For METIS, the main task of refinement phase is projection, while MLR-MCL
and Graclus also need to run partitioning techniques on the projected result. The
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refinement phase runs from Gm to G0 and the final community detection results are
obtained when it reaches the original graph.

METIS Let V v
i be the set of nodes in Gi that are contracted to the node v in Gi+1.

The recursion of Pi is defined as Pi(u) = Pi+1(v), ∀u ∈ V v
i . Since uncoarsening

makes graphs finer, the local optimum Pi+1 of Gi+1 does not necessarily lead to a
local optimum of Gi. Thus, it is possible for refinement to reach a local optimum
on a finer graph. Recall that the KL algorithm starts with an initial partitioning and
iteratively reduces edge-cut by swapping subsets. Similar ideas work in refining and
uncoarsening the graph. The strategy derived from the KL algorithm is discussed
below.
Boundary KL Refinement This strategy takes Pi, which is projected directly from
the partitioning on Gi+1, as an initial partitioning and applies KL algorithm on Gi to
obtain a locally optimal partitioning. One difference from the KL algorithm is that
only the boundary nodes are included in the ranking to reduce redundant computation.
This refinement generates a high quality partitioning due to the high quality of the
initial partitioning. It is also efficient since few nodes need to be swapped given the
initial partitioning is close to a local optimum. By considering the marginal decrease
of edge-cut, [19] proposes a termination condition: stop after the first iteration, which
reduces time cost by a factor of two to four.

MLR-MCL The refinement phase of MLR-MCL starts from the coarsest graph to
the original one, i.e. Gm, . . . , G2, G1. In each refinement from Gi to Gi−1, R-MCL
is first run for 4 to 5 iterations. Then the flow from the coarser graph Gi is projected
onto the refined graph Gi−1. Given the flow distribution of a node in the coarser
graph, the flow projection can be done by choosing one of its constituent nodes (in
the larger graph) and assigning all the flow into it to the chosen constituent node.
After the flow projection, we get a new transition matrix M and can move on to next
refinement from Gi−1 to Gi−2. We keep doing this until we reach the original graph.

When we reach the original graph after refinement, R-MCL is performed until
convergence. Finally, we interpret the transition matrix M we obtain to figure out the
clustering result.

Graclus The refinement of Graclus is quite similar to MLR-MCL. Starting from the
coarsest graph Gm, we perform the refinement until we reach the original graph G0
(namely G). Suppose we are refining the graph from Gi to Gi−1. We get the initial
clustering for Gi−1 from Gi by simply following this: nodes in the same cluster on Gi

cause their constituent nodes on Gi−1 to be in the same cluster. We then improve this
initial clustering by usingweighted kernel k-means.Given the adjacencymatrix of the
current graph and the objective function for graph clustering, we can set the weights
and kernel matrix and run weighted kernel k-means. Note the initial clustering above
is usually quite desirable so the k-means can converge very fast. Eventually, we run
weighted kernel k-means on the original graph, which generates the final result of
communities. Besides, weighted kernel k-means can be greatly sped up by focusing
only on the boundary nodes, i.e. nodes that contain an edge to a node in another
cluster. This optimization can bring much efficiency with little loss in cluster quality.
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Table 2.2 Characteristics of four multilevel community discovery algorithms

Require # of
communities as
input?

Produce
communities of
equal size?

Core partitioning
algorithm

Partitioning
algorithm usage

METIS Yes Yes Kernighan-Lin
algorithm

Only on the most
contracted
network

MLR-MCL Yes No Markov
clustering

On contracted
network at each
level, during
refinement

Graclus Yes No Weighted kernel
k-means

On contracted
network at each
level, during
refinement

Louvain No No Modularity
optimization

On contracted
network at each
level, during
contraction

Louvain Because partitioning has already been performed at each level during the
contraction phase, the Louvain method has a trivial projection phase: just release all
the original nodes from the multinode in the smallest contracted graph and assign
nodes absorbed into the same multinode the same community label.

2.2.5 Empirical Results and Summary

In this section, we have introduced four community discovery algorithms that share
the same pattern of following a three-phase workflow: contraction, partitioning, and
refinement. These methods differ in their core partitioning methods, as well as in the
stage at which their partitioning subroutine is invoked. Table2.2 outlines several key
characteristics that make each algorithm distinct from others.

In the literature where these methods were originally proposed, it is typically
found that the multilevel paradigm significantly speeds up the computation, often
leading to implementations that are two to three orders faster than their counterparts
without the multilevel approach. However, few studies exist that benchmark these
algorithms and directly compare their performances. To provide a more comprehen-
sive picture on the effectiveness and efficiency of these algorithms, we perform a
series of experiments on multiple real-world networks. Specifically, we downloaded
six distinct networks from the Stanford large network dataset repository,4 including
both social networks and web networks. Network sizes are listed in the first two

4http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html
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Table 2.3 Information on network size, and F-1 scores of communities identified by fourmultilevel
algorithms

|V | |E| METIS MLR-MCL Graclus Louvain

Facebook 4039 88234 0.2356 0.2701 0.3026 0.3868

Twitter 81306 1342303 0.1628 0.1146 0.2147 0.1086

Google+ 107614 12238285 0.1664 0.0100 0.1789 0.0549

Youtube 1134890 2987624 0.0441 0.0068 N/A 0.0100

LiveJournal 3997962 34681189 0.1864 0.1497 N/A 0.1527

Amazon 334863 925872 0.4465 0.5001 N/A 0.2759

The best-performing algorithm on each network is boldfaced. If an algorithm does not finish on a
particular network, the corresponding cell is marked “N/A”

columns in Table2.3, and more detailed description of the datasets can be found
on the repository webpage. These networks are then transformed to unweighted
and undirected networks. For METIS, MLR-MCL and Graclus, we also provide the
number of ground truth communities as input.

Table2.3 also reports the quality of communities that are identified by each algo-
rithm, using F-1 scores. The formulation of F-1 score follows the one in [53], which
assesses both the quality of discovered communities aswell as the coverage of ground
truth communities. Specifically, given Ĉ, the set of detected communities, and C∗,
the set of ground truth communities, the F-1 score reported in the table is calculated
by:

1

2
·
⎡

⎣ 1

|Ĉ| ·
∑

ĉ∈Ĉ

max
c∗∈C∗ f (ĉ, c∗) + 1

|C∗| ·
∑

c∗∈C∗
max
ĉ∈Ĉ

f (ĉ, c∗)

⎤

⎦

where f (ĉ, c∗) is the typical harmonic mean of ĉ’s precision and recall, with regard
to c∗. That is, F-1 scores of best matchings for all detected communities as well as
ground truth communities are averaged. Note that, since overlapping communities
are present in the ground truth information, F-1 scores are biased against the four
algorithms under discussion. The amounts of time (in seconds) for each algorithm
to run are listed in Table2.4.

Table 2.4 Running time (in seconds) by four multilevel algorithms

METIS MLR-MCL Graclus Louvain

Facebook 0 0 0 0

Twitter 7 14 42 1

Google+ 31 122 35 2

Youtube 68 334 N/A 7

LiveJournal 682 2957 N/A 123

Amazon 22 10 N/A 2

The fastest algorithm on each network is boldfaced. If an algorithm does not finish on a particular
network, the corresponding cell is marked “N/A”
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As seen from both tables, the scalability of Graclus is limited when compared
with others. It fails to finish on the three largest networks (Youtube, LiveJournal,
Amazon), and those cells are marked “N/A” accordingly. The Louvain algorithm
boasts a pronounced advantage in terms of efficiency, as it is uniformly faster than
others. However, in terms of output quality, there is no clear winner across the board.
Each algorithm is the best-performer on at least one network, and faster algorithms
do not necessarily produce results of a higher quality. For practitioners of community
discovery, this leaves an open choice of the underlying algorithm. If the number of
communities in the network is specified in advance, or if there is a relatively small
range for that value, it is highly suggested to experiment with various algorithms.
Otherwise, the Louvain algorithm may be preferred because it does not require the
number of communities as input.

2.3 Speeding up Community Discovery by Network
Sampling

In the previous section, we have introduced a multilevel paradigm in community
detection, based on the rationale that a community detection algorithm runs faster
on a graph with fewer nodes and/or edges. Here, we discuss another commonly-
used approach to generate small graphs: sampling. By selecting a subset of nodes
and/or edges from the original graph, we also obtain a smaller graph to operate on,
hence speeding up the computation process. Since network sampling is used for pre-
processing, and independent from the subsequent community detection algorithm, it
has the potential of providing performance improvement to all community discovery
algorithms.

Although the concept of sampling is straightforward and easy to understand, its
implementation will have direct implications on the results of community detection,
in terms of both effectiveness and efficiency. Specifically, it has been shown that
naively sampling nodes or edges by uniform randomness will introduce bias into the
resultant graph, whichwill affect the results negatively. In this section, wewill review
a series of sampling methods that have been proposed, and describe the intuition,
strategy and performance behind each of them.

Sampling methods can be divided into two broad categories: those that only select
a subset of nodes and those that preserve all nodes. In the following discussion, we
refer to the first type as node sampling, and the second type as edge sampling.5

Table2.5 lists the algorithms to be discussed in each category. For node sampling,
a relevant problem is how to obtain community assignments for all nodes after
a community detection algorithm has been run on the sampled network. We will
discuss the solution to this problem as well, in Sect. 2.3.1.

5Note that node sampling can also be achieved by creating an edge-induced subgraph from a subset
of edges, therefore the node selection process is not always explicitly performed. The key distinction
here is whether all nodes from the original graph are kept in the resultant sample graph.
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Table 2.5 Classification of network sampling algorithms

Node sampling (Sect. 2.3.1) Random node sampling

Random walk sampling with restart

Random walk sampling with jump

Forest fire sampling

Expansion-based snowball sampling

Edge sampling (Sect. 2.3.2) Random edge sampling

Structural similarity-based sampling

Structure- and content-based sampling

2.3.1 Node Sampling for Community Discovery

Walk-Based Sampling The first category of node sampling approaches to be dis-
cussed here are based on random walk and its variants, and they often mimic the
exploratory behavior in real-world activities. Given a network, a node starts by
exploring its vicinity according to a probabilistic way. The exploration continues
recursively on node(s) that has just been explored, until n (n < |V |), a specified
number, nodes have been visited. At that point, all nodes and edges that have been
accessed during the walk are extracted and constitute the sampled graph. We intro-
duce threewalk-basedmethods: randomwalkwith restart, randomwalkwith random
jump, and forest fire model [25].

Random Walk with Restart To perform a random walk with restart, we randomly
select a starting node u0 in the graph. Let ui be the node that the random walk
process is visiting at step i. At the i+1st step, with a probability of p, we will select
one node v ∈ Γui uniformly and walk to v, hence the method’s name. Otherwise,
we will move to u0 (referred to as “restart”), even if u0 is not connected with ui.
Random walk terminates when n nodes are reached, or the number of steps exceeds
a threshold.

If the input graph G is not connected, the sampled graph will be confined to the
connected component that u0 belongs to, because by design the random walk will
never reach other components. As a result, the number of sampled nodes is upper-
bounded by the number of nodes in the connected component, which can be less
than n.

A common practice to address this problem is to start another random walk if
not enough nodes have been sampled after a number of steps. This can be repeated
multiple times, until n distinct nodes have been accessed in total. Then the union of
sampled graphs from all walks are returned as the sample.

Random Walk with Jump Random walk with jump also performs walking at each
step with a probability p. However, with probability 1 − p the walk will randomly
select any node in the graph to jump to. This is the key distinction from random walk
with restart, which only allows jumping back to u0, and it helps to let the walk out
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when it is stuck in a local neighborhood or connected component, alleviating the
problem of a disconnected graph.

By definition, p in both types of random walk can be any value between 0 and 1.
Typically the value of p is much greater than 1− p, so that walks are less likely to be
terminated by restarting/jumping and the sampled graph can retain more community
structure from the original graph. In practice, p is often set to 0.85.

Forest Fire Model The forest fire model is analogous to the action of fire spreading
in woods. Unlike random walk where only one node is selected at a time by either
walking, jumping or restarting, forest fire can possibly select multiple nodes and
visit all of them simultaneously in the next step. As a result, the sequence of nodes
sampled is no longer linear, but rather like a tree.

The forest firemodel accepts one parameter p ∈ [0, 1), which controls the number
of neighbors to visit at each step.6 To start, a seed node u0 is randomly chosen. Then
an integer x is drawn from a geometric distribution with mean p

1−p . Such geometric
distributionmodels the number of binary trials it takes before thefirst success appears,
and p is the probability of failure. Naturally, as p increases, the value of x is expected
to be greater, too. Existing literature has recommended setting p to 0.7 [24].

After the value x is decided, u0 will randomly select x of its unvisited neighbors
and “burn” them. It is possible that less than x nodes can be found to satisfy the
requirement, because the degree of u0 is less than x or less than x neighbors are still
unvisited. In that case, the forest fire model will burn all of them.

The process continues until n nodes have been sampled or no more nodes can be
burned, at which time nodes and edges that have been burned are returned as the sam-
pled graph. At each step, one or more nodes are burning neighbors simultaneously,
and this distinguishes forest fire from random walk. Also note that a node can be
burned at most once, in order to prevent cycling. If the fire dies out before a sufficient
number of nodes have been sampled, additional runs of forest fire can be done.

Evaluation and comparison of those walk-based methods are discussed in [24],
where the authors compare the distribution of various graph statistics between the
original graph and the sampled graph. The statistics include degree, size of connected
component, hop-plot and clustering coefficient. Random walk with restart and forest
fire generally outperform other approaches, including random node selection and
random edge selection. Furthermore, those methods are able to match properties of
the original graph with as few as 15% of nodes.

Expansion-Based Sampling Another type of node sampling is expansion-based
methods.Before describing the algorithm,wefirst define themeaningof “expansion”.
Given a set of nodes S on graph G, its expansion factor is calculated as

X(S) ≡ |ΓS|
|S|

6The forest fire model described here is slightly different from that originally proposed in [25],
which operates on directed graphs and thus has two parameters to control the “burning” of in- and
out-links, respectively.
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Correspondingly, the maximum expander set of size k, as defined in [31], is a set of
k nodes with the maximal expansion factor:

arg max
S:|S|=k

X(S)

Expansion-based sampling methods hinge on the conjecture that samples with
high expansion factors are more representative of the original graph’s community
structure, compared with samples with low expansion factors. Since nodes with high
expansion factors are usually bridges nodes leading to new communities, a sampled
graph that includes those nodes is likely to contain most communities in the original
network.

Based on this intuition, the problem of identifying a good sample of the network
becomes finding the maximal expansion set of a specific size. However, solving the
maximal expansion set problem exactly has high complexity due to its combinatorial
nature, and two approximate sampling methods are proposed in [31].

Snowball Sampling The first approach, snowball sampling, is a greedy algorithm
which adds the node that maximally improves the expansion at each step, given
the current set of sampled nodes. Let S0 = ∅ be the initial set of sampled nodes,
then at the ith step, we update the new sample set as Si = Si−1 ∪ {u}, where u =
argmaxu∈V −Si−1 |Γu − (ΓSi−1 ∪ Si−1)|. That is, adding u to the current sample set S
introduces more new neighbors than any other node outside of S does. Alternatively,
one can adopt a stochastic approach and select a node with a probability proportional
to its improvement of expansion. This can account for occasional cases where nodes
with near-highest expansion improvement actually lead to more communities.

Markov Chain Monte Carlo (MCMC) The second approach for expansion sam-
pling is to use Markov Chain Monte Carlo (MCMC), where each of G’s subgraphs
of size n (the desired sample size) is considered as one state in the Markov chain.
Recall that the definition of expansion factor of a sample set S is |ΓS |

|S| . The maximal

possible expansion factor for any set S is |V −S|
|S| , i.e. S can reach every node in G with

one hop. The normalized expansion factor is therefore

|ΓS|
|V − S|

and this value is used as the quality score for a sample S in the Markov chain.
The Markov chain consists of each subset of n nodes as a state, and it starts by

randomly choosing a state S0 that has n nodes. At the ith step, we find a candidate
state Si

can by randomly replacing one node in Si−1 with a node not in V − Si−1.
Depending on the quality scores (that is, the normalized expansion factor defined
above) of Si−1 and Si

can, there are two outcomes. If the quality score of Si
can is greater
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than that of Si−1, we accept it as the next state, letting Si = Si
can. Otherwise, we only

accept it with a probability of

[
quality(Si−1)

quality(Si
can)

]p

where p = 10 |E|
|V | log10 |V |, a function of both network size and the edge-to-node

ratio [17]. If Si
can fails to be accepted, we keep Si = Si−1.

When reaching the stationary distribution, sampling from the Markov chain
becomes equivalent to sampling from all subgraphs of size n according to their
quality scores. If S is the node set sampled from the Markov chain, we return the
node-induced subgraph of S on G as the sampled graph.

Inferring Community Assignments for All Nodes Given a sampled graph from
any aforementioned node sampling technique, we can run community detection algo-
rithms on it efficiently because of the much smaller scale. One question unresolved,
however, is how community assignments of nodes in the sampled graph can be
translated back to other nodes in the original network, since the goal is to perform
community detection on all nodes in the graph.

To that end, one can resort to relational learning techniques, where community
label is the attribute of interest. This is a univariate collective inferencing prob-
lem [30], whose input are G = (V, E) and xu,∀u ∈ S, i.e. the community labels
for nodes in the sampled graph. The goal is to learn the exact community label or
the distribution over possible labels for each unsampled node u ∈ V − S. A number
of collective inference methods have been proposed and evaluated, and in [30] the
authors find that relaxation labeling with a weighted majority relation model yields
the best overall performance. In [31], the authors compare the quality of communities
identified by several sampling methods. Their observation is that expansion-based
sampling combined with the aforementioned inference technique produces commu-
nity labels that are closest to running the community detection algorithm on the entire
graph directly.

2.3.2 Edge Sampling for Community Discovery

Contrary to node sampling, where only a subset of nodes is retained, edge sampling
aims at selecting edges with certain criterion while preserving all nodes. One advan-
tage of edge sampling, therefore, is that community assignments can be learned on
all nodes at once without the need of further inference.

Since the purpose of sampling is to create a representative subnetwork that cap-
tures the graph’s community structure, naive techniques do not fare well. For exam-
ple, selecting edges by equal probability is known to be biased towards high-degree
nodes. Therefore, the edge selection criterion needs to consider the importance of
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each edge in the community structure. Here, we introduce twomethods which utilize
the notion of similarity in performing edge sampling.

Sampling Using Structural Similarity Intuition The intuition behind sampling
based on structural similarity [46] can be stated as: An edge is likely to (not) connect
two distinct clusters if the adjacency lists of its two incident nodes have high (low)
overlap. High overlap of adjacency lists indicates a large number of triangles that the
edge belongs to, hence a high likelihood of the edge residing in a dense region, i.e.
a cluster. We view those edges as having high structural similarity.

By preferentially retaining edges with high structural similarity which are likely
to be intra-cluster, we expect to preserve the community structure in the sampled
graph. Note that in order to keep the sampled graph significantly smaller than the
original graph, it is inevitable that somehigh-similarity edgeswill be discardedduring
the sampling process. However, provided that a great fraction of low-similarity noise
edges are removed aswell, wewill still be able to recover the community assignments
of nodes from the sampled graph.

Calculating structural similarity The next question is to identify high-similarity
edges efficiently. While edge centrality measures, such as betweenness central-
ity [32], have been proposed before to find “bottleneck” edges, i.e. low-similarity
edges, they are prohibitively expensive to calculate with a complexity of O(|V | · |E|).
To address this issue, one can calculate the Jaccard similarity of two incident nodes’
adjacency lists and use it as the edge’s structural similarity. For an edge (u, v), we
view the neighborhoods of u and v as two sets, and the Jaccard similarity between
the two sets is defined as:

sim(u, v) = |Γu ∩ Γv|
|Γu ∪ Γv|

More importantly, establishedmethods likemin-wise hashing [4] can be leveraged
to estimate the Jaccard similarity of two sets in constant time. To generate one min-
wise hash of Γu, we apply π, a permutation of V , on it and take the minimal value
after the permutation. Formally, the hash value hπ(Γu) (or hπ(u) for short) is:

hπ(u) ≡ hπ(Γu) = min
v∈Γu

(π(v))

A min-wise hash signature of length k for u is generated by randomly drawing k
permutations π1 . . . πk and concatenating the resultant hash values hπ1(u) . . . hπk (u).
The same set of permutations are applied to all adjacency lists to generate the corre-
sponding length-k signature for each node in V . The following statistic is an unbiased
estimator of the Jaccard similarity between Γu and Γv:

ˆsim(u, v) ≡ 1
k

∑k
n=1 I[hπn(u) = hπn(v)]

E[ ˆsim(u, v)] = sim(u, v)

where I[•] is the identity function, and it only takes O(k) time to compute, a constant
to the size of G.
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Global and local sampling Given the structural similarity value of each edge in
G, sampling can be done in one of two ways. In global sampling, all edges are
sorted in decreasing order of their structural similarity values, and a number of top-
ranked edges are retained. While easy to implement, this scheme suffers from a key
drawback that it treats all edges in the graph equally and does not distinguish between
clusters of varying densities. In practice, it will be able to preserve the structure of
denser communities but not relatively sparse communities, since edges in the latter
will have lower structural similarity and be pruned away. Global sampling also risks
disconnecting the graph, since it is possible that all edges incident to a node are
removed.

An alternative strategy is local sampling, where sampling is performed within
each node’s neighborhood separately. The number of incident edges that each node
can keep is a function of the node’s degree, for example, a power function de where
d is degree and e is a user-specified sampling exponent (e < 1). This eliminates the
need for a global threshold. Operating on each node separately also keeps the graph
connected, as each node will be connected to at least one neighbor. Furthermore, the
strict concavity of the power function ensures that sampling on high-degree nodes
is more aggressive, i.e. a larger proportion of edges are removed from them. This is
desirable, since high-degree nodes tend to straddlemultiple clusters, and thus contain
a higher fraction of inter-cluster edges.

Sampling using structural and content similarities Many real-world graphs are
associated with abundant content and/or attribute information,7 apart from the inher-
ent network topology. The existence of content information can be leveraged to
eliminate the impact of noise in the network and strengthen the community signal.
This is studied in [44] where the authors investigate edge sampling based on both
structural and content similarities.

Calculating content information similarity Given any two nodes of interest, the
first step is to calculate their similarity based on the corresponding content informa-
tion. One approach is to measure the cosine similarity between two nodes’ content
vectors, since many types of information can be represented as feature vectors, such
as TF-IDF values for documents, SIFT features for images, as well as discrete and
continuous attributes.

Furthermore, hashing via random projection method [7] can be used to efficiently
estimate the cosine similarity. Let cu ∈ Rd≥0 be the content vector of node u, we

can draw a random vector r ∈ {0, 1}d and use hr(u) ≡ sgn(cu · r) as one hash
value for cu. Similar to the case of min-wise hashing, if we draw k different random
projections and apply them to each content vector, the following result provides a
way to estimate the cosine similarity of two vectors in constant time:

7Both content and attribute information are modeled as an auxiliary feature vector associated with
each node in the graph, so that the formulation is applicable to text, image, and many other forms
of information, all of which will be referred to as “content information” henceforth.
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E

[
1

k

k∑

n=1

I[hrn(u) = hrn(v)]
]

= 1 − arccos(cos(cu, cv))

π

Combining structural and content similarities Before fusing two types of simi-
larity, it is important to note that edges not currently present in the graph G should
also be considered. The intuition is that if a pair of nodes shares common neighbors
and contents but are not directly connected in G, they would otherwise be omitted.

To that end, one can independently find K neighbors with most similar content
vectors for each node, and denote this set of edges asEcontent .8 For each node, we then
consider its neighborhood under E ∪ Econtent and combine the structural similarity
and content similarity of each edge therein. For simplicity, the combination can be
done as averaging with equal weight, and in practice no significant difference in the
quality of resultant communities is observed when the weight is varied.

Local sampling can then be performed using the combined similarity values of
edges, following the same procedure described previously. It is worth noting that the
process can possibly introduce new edges that do not exist in G, via the creation of
Econtent , therefore the resultant graph is not always a subgraph of G. In the case of
such edge “recovery”, however, the corresponding edges always have high combined
similarity and are very likely to be intra-community.

Sampling using combined similarity is particularly beneficial to graphs that are
already sparse, where otherwise little improvement could be obtained by sampling
using structural similarity alone. By considering content vectors during the sampling
process, information encoded in edges is greatly enriched, leading to communities of
higher quality with more meaningful real-world implications. On graphs of modest
density, the combined sampling strategy also outperforms other approaches without
significant detriment to efficiency.

2.3.3 Empirical Results and Summary

In this section, we have described various approaches in the realm of network sam-
pling. Rather than working as standalone algorithms, those methods aim at pre-
processing a network, keeping only a subset of nodes and/or edges in the network. The
benefit to any subsequent community discovery algorithm is two-fold: preprocessing
reduces the size of the network, and it preserves the community structure, instead of
noise, in the network.

Network sampling algorithms can be divided into two general categories: those
that keep a selected subset of nodes (i.e. node sampling in Sect. 2.3.1), and those that
retain all nodes but fewer edges (i.e. edge sampling in Sect. 2.3.2). Existing work in

8An empirical guideline to select K is to let the size of Econtent be similar to that of E.
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node sampling has approached it from various angles, and has contributed methods
such as walk- and expansion-based sampling. Edge sampling has also shown promis-
ing results, as it biases towards edges that are more likely to reside in a community.
Furthermore, structural similarity can be integrated with auxiliary information, such
as content or attributes, when it is available, so that a more informed sampling deci-
sion can be reached.

The effectiveness and efficiency of sampling are evaluated in [46], where real-
world networks are processed by various edge-sampling schemes, in order to com-
pare sampled networks with the same set of nodes. The experiments are run on a
combination of:

• Three social networks: Orkut (|V | = 3072626, |E| = 117185083), Twitter (|V | =
146170, |E| = 83271147),9 Flickr (|V | = 31019, |E| = 520040).

• Four sampling methods: random edge sampling, forest fire (Sect. 2.3.1),10 global
and local similarity-based sampling (Sect. 2.3.2).

• Three multilevel community discovery algorithms (Sect. 2.2): METIS, MLR-
MCL, Graclus.

Contrary to the benchmark networks used in Sect. 2.2, no ground truth informa-
tion is associated with the three datasets evaluated here. Therefore, averaged con-
ductance [8, 26] is used to measure the structural quality of communities that are
discovered. The conductance of a community is the total number of edges leaving
it, divided by the total number of edges with endpoint in the community, or the total
number of edges with endpoint in the complement of the community, whichever is
smaller.A lowconductance value of a community represents a small inter-community
edge volume, thus clear separation of it from the rest of the network. The conductance
values of all communities are averaged to measure the overall structural quality.

The improvements of network sampling on conductance and running time are
shown in Tables2.6 and 2.7, respectively. The running time of a sampling method
includes times for both the sampling process itself and community discovery on the
subsequent sampled network. Across the board, local sampling based on structural
similarity demonstrates the best balance between quality improvement and speedup.
Although simpler sampling methods (random edge sampling, forest fire sampling)
are faster, they do not preserve the community structure in the network, resulting in
lower structural quality of the output communities. Global similarity-based sampling
suffers from similar issues, as it tends to generate an extraordinarily high proportion
of singletons, disconnecting them from the rest of the network.

9This is different from the Twitter network described in Sect. 2.2.5.
10Although forest fire is designed for node sampling, one can perform forest fire repeatedly, each
time on a randomly-selected unburned node, until most nodes are burned. The collection of all
burned edges are considered sampled edges.
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2.4 Exploiting Parallelism and Distributed Architectures
in Community Discovery

All algorithms described so far in this chapter operate as single-thread processes
on a single machine, and that leaves two problems to be addressed. First of all, the
parallelism that is inherent to many community discovery algorithms has not been
fully exploited. Two forms of parallelism are being considered here: data parallelism
that allows accessingmultiple segments of data for computation at the same time, and
control parallelism that enables the execution of the algorithm on multiple nodes or
communities simultaneously. The second problem is rooted in the fact that network
data is growing at an unprecedented rate, and more and more frequently exceeds
the RAM capacity of a single machine. To be able to handle very large networks,
we will need to resort to various distributed computing architectures that have been
developed over the years, such as message passing, MapReduce, and others.

In this section, we discuss some promising directions that have the potential of
solving these two issues in community discovery. We will first emphasize the critical
role that (sparse) matrix/vector operations play in many community discovery algo-
rithms (Sect. 2.4.1). This underpins the possibility of scaling up community discovery
by leveraging computation kernels on various frameworks, includingOpenMP,Many
IntegratedCore (MIC),General-PurposeGPU (GPGPU), andHadoop.While the dis-
cussion focuses on selected families of community discovery algorithms, the findings
are generalizable tomany others, as long as they are composed of matrix/vector oper-
ations.

We will also introduce the parallelization of several community discovery algo-
rithms that are based on optimizing certain objective function values. For many
algorithms in this category [20, 41, 53], the serial version was proposed first, and
subsequent algorithm speedup is accomplished by parallelizing critical subroutines
that are otherwise time-consuming, such as the calculation of objective function
values. Depending on the problem scale, algorithms have been proposed for both
shared-memory systems (Sect. 2.4.2) and distributed-memory systems (Sect. 2.4.2).
We will introduce one instance for each type of system.

2.4.1 Speeding up and Scaling up Matrix Operation-Based
Algorithms

Many community discovery problems such asMarkov clustering, spectral clustering,
andmatrix factorization can be reduced tomatrix operations.Much progress has been
made in performing parallel matrix operations efficiently, which directly contributes
to faster and more scalable community discovery algorithms. Here, we describe the
optimizations for two types of them: Markov clustering (Sect. 2.4.1) and spectral
clustering (Sect. 2.4.1).
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Fast MLR-MCL with Efficient Sparse Matrix-Matrix Multiplication (SpMM)
As seen in Sect. 2.2, MLR-MCL implements a multilevel version of regularized
Markov clustering (R-MCL). Perhaps not surprisingly, the most time-consuming
block in MLR-MCL is R-MCL, because it involves multiplying two large sparse
matrices, M and MG. If one can exploit the data sparsity and speed up the mul-
tiplication subroutine, the efficiency of MLR-MCL can be significantly improved.
The same reasoning applies to other matrix operation-based community discovery
algorithms as well.

To this end, researchers have recently investigated the effect of applying SpMM
kernels to MLR-MCL on various parallel architectures. In [33], the authors success-
fully improve the performance ofMLR-MCL onmulti-processor CPUs by designing
a novel SpMM computation kernel. In order to perform SpMM efficiently, memory
footprint analysis is performed so that the workload is well-balanced among proces-
sors. Experiments on eleven networks report a speedup of up to 10x. More impor-
tantly, the utility of the SpMM kernel implemented in this work has a broader impact
beyond one single algorithm. Given its superior performance against the Intel Math
Kernel Library on both multi-processor CPU and the new multi-core MIC archi-
tecture (2x on average), similar speedups can be expected if the kernel is properly
applied to other matrix-based community discovery algorithms.

Another promising direction in accelerating matrix operations is GPGPU pro-
gramming. The architecture of GPUs is by design highly parallel, and computation
can be performed by on-board chips accessing high-throughput on-board memory,
without incurring latency between GPU and CPU. As a result, GPGPU has become
a powerful and low-cost platform that is suitable for matrix-matrix multiplication
and other similar operations. Such advantages have been leveraged in [6], where a
CUDA-based implementation of MCL (CUDA-MCL) is proposed and has proven
highly efficient. Future research efforts are warranted to extend this work to MLR-
MCL, as well as other community discovery algorithms that can utilize SpMM or
SpMV(ector) kernels.

Hadoop-Based Eigensolver for Scalable Spectral Clustering Spectral graph the-
ory has been extensively studied [8], and researchers have drawn a close link between
the spectral properties of a graph and its community structure. Briefly speaking, the
goal of spectral clustering is to represent nodes by their representations induced from

the top k eigenvectors of matrix D− 1
2 (D − A)D− 1

2 , equivalent to eigenvectors asso-

ciated with the k smallest eigenvalues of matrix D− 1
2 AD− 1

2 . K-means clustering can
be run on those length-k vectors to find community assignments for nodes [50].

While it may be tempting to apply spectral clustering on large networks using
distributed computing, in practice non-trivial efforts are required. Storing network
information is straightforward, as only |V | ∗ k � |E| values need to be stored. How-
ever, finding the k eigenvectors requires significant memory, and consequently exist-
ing eigensolvers (e.g. PLAPACK, ScaLAPACK) do not scale to billion-by-billion
matrices.

To address this challenge, a Hadoop-based eigensolver called HEigen is pro-
posed [18]. It employs the Lanczos algorithm, and selectively reorthogonalizes vec-
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tors to avoid generating spurious eigenvalues. Expensive operations such as matrix-
vector and matrix-matrix multiplication are distributed using the MapReduce frame-
work. HEigen also uses blocking to transfer data of multiple nodes at once, so that a
significant amount of time is saved in network transfer. Furthermore, data size skew-
ness is also exploited, and small vectors/matrices are sent to mappers as distributed
caches in Hadoop.

According to the evaluation on HEigen’s scalability and efficiency, it is able to
scale to graphs with billions of edges. Several design choices facilitate reducing the
running time, and the cached matrix-matrix multiplication kernel contributes most
to the speedup (76X compared with a naive implementation of the multiplication
kernel). However, the quality of spectral clustering is not measured, presumably due
to the lack of ground truth for these very large networks or the difficulty in cal-
culating clustering quality measures (e.g. conductance, normalized cut, normalized
mutual information) itself. In the future, one remedy is to evaluate the performance
of this Hadoop-based spectral clustering algorithm on synthetic networks generated
by benchmark suites such as LFR [22], where the gold standard is readily available.

2.4.2 Parallelizing Objective Function Optimization-Based
Algorithms

Here, we introduce two parallel community discovery algorithms that are based on
optimizing the value of a certain objective function. SCD (Sect. 2.4.2) maximizes
the weighted clustering coefficient, whereas ParMETIS (Sect. 2.4.2) minimizes the
edge-cut among communities. They both can be parallelized thanks to repeating
local computations. One distinction is that SCD is implemented on shared-memory
systems, while ParMETIS is designed for distributed-memory systems, facing the
additional challenge of reducing communication cost.

Scalable Community Detection (SCD) SCD [41] is a two-phase algorithm which
parallelizes repeating computations. It sits on the Pareto frontier of time com-
plexity and quality coordinates among all state-of-the-art algorithms. It optimizes
a modularity-based function: Weighted Clustering Coefficient (WCC) [40], which
essentially counts the number of triangles. The objective function and the movement
function (discussed later) can be computed locally while requiring global informa-
tion. As a result, the algorithm can be parallelized on a shared memory framework
using techniques such as OpenMP and the like.

WCC is a community metric based on the number of triangles. Intuitively, for a
node v and a community C, the more triangles v closes within C, the more likely
v belongs to C, and the higher its WCC value with regard to C is. The WCC of
a community is the average WCC over all nodes in the community, and the WCC
of the community assignments in a network is the weighted average WCC over all
communities.
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SCD has two partitioning phases plus a preprocessing phase, which removes
edges that are far from any triangle. The initial partitioning first computes the local
clustering coefficient [47] of each node, and sorts all nodes in descending order of
their local clustering coefficients. Then it uses each node in the ranking as the center
of a star to partition the graph, which makes each community a star with a high local
clustering coefficient node as its center. The local clustering coefficient computation
can be parallelized where each thread computes the local clustering coefficients of a
subset of nodes.

The refinement partitioning phase moves nodes among communities as follows.
For each node in the graph, its movement function is computed. When all movement
functions are obtained, the partition and WCC are updated. This process repeats
until the WCC value converges. The movement function of a node decides whether
and how to move a node based on the WCC gain of the action, and it can be either
(1) moving the node to another selected community, or (2) keeping the node in its
current community. Both outcomes can lead to the creation or removal of a single-
node community. The computation of themovement function can also be parallelized
where each thread computes the movement function of a subset of nodes.

ParMETIS ParMETIS [20] is the parallel version of METIS (Sect. 2.2.1). It is
designed for tasks like solving linear systems and computing finite element meshes
in a distributed manner. Hence the implicit assumption is that the number of par-
titions/communities is no greater than the number of processors. This framework
achieves a significant time reduction compared with the serial version of METIS,
while maintaining comparable quality in terms of edge-cut.

Framework and challenges Similar to the serial version, ParMETIS also contains
three phases: contraction, partitioning and refinement. The contraction phase is sim-
ilar to that in the serial version except that multiple processors participate in the
computation of maximal matching. While it is straightforward in a shared-memory
system, a great number of communications and synchronizations are required to
obtain a good matching in a distributed-memory architecture. A local matching,
where each processor only computes matching of vertices in its own memory, can
perform decently only when the graph has already been well-partitioned and each
partition component is stored in a processor. This pre-condition is unrealistic since
it is exactly the goal of the algorithm: to obtain a good partitioning of the graph.
On the other hand, a global matching, where each processor considers vertices in
other processors while computing matching, requires a high degree of fine-grained
inter-processor communication. Moreover, a distributed architecture may encounter
circular matching among processors, whichmakes some local optimum inaccessible.

After the coarsening phase, the graph has already been significantly reduced and
one processor can handle the partitioning computation efficiently. Yet, since the
graph is stored distributedly, moving data to a single processor still incurs additional
cost. ParMETIS computes a p-way partitioning (p is the number of processors) via a
recursive bisection algorithm similar to [19], and each processor explores a recursive
branch.
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During the refinement phase, ParMETIS refines partitioning while uncoarsening
the series of graphs. Again, circular movement poses the same challenge as that in
the contraction phase. A scheme proposed by [10] suggests that multiple runs of ver-
tex movement between disjoint pairwise partitions can avoid the circular movement
problem. The bottleneck, however, is that if each partition i has ki neighboring par-
titions, the number of runs is no less than maxi ki. Another drawback of this scheme
is that the local greedy approach lacks a global view and can easily be trapped at a
low quality local optimum.

A coloring-based scheme to avoid circular matching and movement To over-
come the aforementioned challenges, a method approach based on graph coloring is
proposed here. Recall that a coloring of a graph partitions a graph into κ indepen-
dent sets, where κ is its chromatic number. The constraint that every time only the
vertices of the same color are moved avoids circular matching and movement. To
color a graph, Luby’s algorithm [29], an incremental algorithm which works well on
shared-memory architectures, is modified and adopted.

• Concurrent coloring of graph vertices On a distributed-memory architecture, a
multinode and its neighbors might be stored in different processors. Therefore, the
communication cost of inquiry a neighbor’s location may be large. Moreover, the
original Luby’s algorithm has significant synchronization overheads. A variant of
Luby’s algorithm, which trades quality11 for concurrency and time efficiency, is
proposed here. The variant is simple: prior to the execution of Luby’s algorithm,
a communication setup phase occurs, where each vertex’s external relation, i.e.
whether a vertex has a neighbor located in another processor, is determined. Not
all nodes are colored in each iteration, and the algorithm terminates when a large
fraction of nodes are colored.

• Matching after coloring Matching after coloring can avoid circular matching and
achieve high concurrency. The matching algorithm based on a colored graph is
efficient when parallelized, and it works as follows: Initially each vertex has amark
variable called Match with a value of −1. At the end of computation, the Match
variable of a matched vertex is its partner. Iterating on each color, each unmatched
vertex selects one of its unmatched neighbors based on the heavy-edge heuristic,
and updates both vertices’ Match variables to be each other. Multiple vertices may
attempt matching the same vertex. On a shared-memory architecture, this is solved
by a first-come-first-match strategy. On a distributed-memory architecture, upon
receiving all matching requests, the to-be-matched vertex determines its partner
based on the heavy-edge heuristic and rejects other matching requests. Matching
computation terminates after all colors have a chance to match.

• Refining after coloring Implemented in a way similar to the matching procedure,
moving a vertex color by color from a partition to another also avoids circular
movement. There are two optimization techniques to be considered here. The
first one stems from the observation that on a distributed-memory architecture,
the algorithm does not actually move a vertex from the processor containing one

11The computed independent set is no longer guaranteed to be maximal.
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partition to the processor that contains another partition. Rather, it only need to
assign each vertex (multinode) a partition ID. The other optimization dealswith the
balance constraint in each partition. Since one partitionmay be stored distributedly,
at the end of each color’s movement, the weights of the partitions are globally
recomputed and each processor updates the related information.

2.4.3 Summary

In this section, we have listed several promising approaches of scaling up community
discovery algorithms by exploiting the intrinsic parallelism and existing distributed
computing frameworks such as message passing and MapReduce. We first point
out that many community discovery algorithms essentially involve matrix-matrix
multiplications and other similar operations, and the underlying matrices are often
sparse. This enables us to leverage matrix operation kernels that have been proposed
on various architectures including multi-processor CPU, many-core CPU, GPGPU,
and Hadoop, and to obtain significant speedup of community discovery algorithms
such as Markov clustering and spectral clustering. We then discuss how both shared-
memory and distributed-memory systems can be adapted to perform community dis-
covery based on optimizing objective function values. The two instances described,
SCD and ParMETIS, are able to execute orders of magnitude faster than their serial
counterparts, with only minor impact on the output quality.

There exists more work in the literature that aims at parallelizing community
discovery algorithms, such as parallel label propagation [34], parallel Louvain
method [48], and parallel modularity-based agglomerative clustering [43]. While we
do not describe them in details in this section, they also deserve substantial research
attention.

2.5 Conclusion

In this chapter, we have presented three categories of simple approaches that aim
at performing effective community discovery in an efficient and scalable fashion.
We first describe a generic contract-and-conquer multilevel framework, where a
network is recursively contracted into a series of increasingly smaller networks,
so that a core community discovery algorithm can run efficiently on the miniature
networks. We then review the idea of sampling vertices and/or edges in a network
via various strategies, and we show that one can indeed reduce the network size, thus
accelerating the community discovery process, and retain its community structure
at the same time. Finally, we outline existing efforts and future work directions for
performing community discovery in a parallel or distributed computing environment,
in order to ensure sufficient storage for large-scale networks as well as to speed up
the computation. It is important to note that these three groups of methods are not
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mutually exclusive, and there are great potentials in combining them to design new
community discovery algorithms that can process networks of tera-scale (or even
larger) in a reasonable amount of time.

We believe that for a community discovery algorithm to be practical for large
networks, it needs to follow simple but effective design principles. As a result, we
focus on the three aforementioned categories which are well-tested in empirical
evaluations and are highly flexible. For more thorough reviews of state-of-the-art
methods in the field of community discovery in general, readers can refer to various
recent surveys [14, 35, 37, 38].

Specifically,we limit the algorithms discussed in this chapter to those that discover
disjoint communities, instead of allowing communities to overlap. Detecting over-
lapping communities is another focal point in community discovery that is being
actively studied [23, 28, 53], and they can benefit from all the three approaches
introduced in this chapter. Furthermore, most algorithms covered here also require
parameters in some forms to determine the number of communities to discover. In
practice, if such information is absent, one can often estimate the value based on
some empirical rules of thumb, such as the one in [27].

Apart from overlapping and non-parametric community discovery, there are other
outstanding challenges in the realm of user community discovery that are worthy of
significant future efforts. In particular they include:

• Community discovery in graph streamsGraph data in many domains are chang-
ing rapidly, such as the addition and removal of user connections in online social
networks. In such cases, it becomes inefficient to apply static community discovery
algorithms to a collection of network snapshots. Further complicating the problem
is the fact that graph data may arrive in a streaming fashion, making it infeasible
to store updates and revisit them in the future. The states of communities need to
be maintained and updated in an efficient way, in order to avoid backlog in the
processing pipeline. To date, only a small number of work [2] has approached this
problem directly.

• Community discovery in signed networks A signed network is a network whose
edges can represent positive or negative relationships. Such relationships can be
explicit, e.g. stated friendship or rivalry between two social network users, or
implicit, e.g. empirically-measured excitation or inhibition between two proteins.
Existing literature on mining communities from signed networks [11, 52] only
operates on small networks that have at most thousands of nodes, and has not
attained the ability to efficiently handle large-scale user networks.

• Community discovery combining structure and attribute/content informa-
tion Many network datasets are accompanied by a rich collection of auxiliary
information, such as social network user attributes and content. Prior work has
explored the use of these data in addition to structural information, and managed
to identify communities of users that are dense in connection as well as coherent in
attributes/content [44, 54, 55]. While improving the quality of communities that
are discovered, these approaches are not as efficient as their structural information-
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only counterparts. Therefore, it is important to design more efficient methods that
can leverage attribute and content information in community discovery.

The three paradigms summarized in this chapter have all demonstrated superior
flexibility and the ability to improve algorithmic efficiency and scalability. In the
future, we envision wide adoption of these paradigms in well-investigated as well
as emerging community discovery problems, in order to create more powerful tools
for identifying user communities in large networks. Since these frameworks are not
mutually exclusive but rather complementary, it is also viable to leverage multiple
of them in conjunction, and the potential improvement of performance and output
quality can be profound.
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Chapter 3
Community Discovery in Multi-Mode
Networks

Isaac Jones, Lei Tang and Huan Liu

Abstract As social media becomes more feature-rich and the capability for interac-
tions between users becomes more complex as a result, it may become necessary to
expand the models used in data analysis to represent more complex interactions and
networks. To that effect, researchers have begun using graphs with different types of
vertices or even hyperedges to represent more complex networks. In this chapter, we
will explore some of the community detection approaches state-of-the-art research
uses to deal with the increasing complexity of social networks, and particularly rep-
resenting those networks as multi-mode networks (or heterogeneous networks). This
chapter will cover the approaches used as well as the graph representations of com-
plex networks. Though thework studied uses social networks as the basis for analysis,
the use of multi-mode networks and hyperedges is principled in any analysis task
where the complexity of the data calls for multiple types of entities with interactions
involving two or more entities in the network.

3.1 Motivation

In November 2010, one of the biggest takedowns of illegal botnets occurred
when Dutch authorities systematically dismantled a network of 30 million infected
machines.1 These machines were located across the globe and were responsible
for sending out over 30 million spam messages every day. The reason this type of
takedown is possible is through community analysis, the detection of community
structures. The infected computers in the botnet destroyed by the Dutch authorities
forms a community similar, though obviously more nefarious than, the one formed

1http://www.zdnet.com/article/dutch-police-take-down-bredolab-botnet/.
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by a group of high school classmates or members of a tennis club. By performing
some of the same analysis on communication networks that we do on social net-
works, we can uncover covert networks like the botnets the Dutch authorities did.
However, since this 2010 takedown, both social media networks and the botnets that
operate online have gotten more complex, to enhance user experience in the former
case and to evade detection in the latter case. This may seem like a strange parallel to
draw, but both social media networks and communication networks have similarities
that make their analysis similar. For example, on Twitter and Facebook the follow-
ing and friend links (respectively) can be seen as communication pathways between
computers in a botnet, and tweets or posts can be seen as the messages that go across
these communication pathways.

Since 2010, socialmedia networks have continued to add features. In 2012, Twitter
acquired and integrated the features from Vine, a popular video-sharing network.
Facebook famously acquired Instagram, and subsequently its feature set, in a billion
dollar deal. In addition, Twitter launched Twitter Music in 2013, adding even more
features for its users. The addition of these feature layers to their host social media
networks makes them more appealing to users, but it also makes the representation
of these networks more difficult for community detection and other network analy-
sis. Consider the standard network representation that we might use on a Facebook
network, how would we represent the action of commenting on a posted Instagram
photo? This newfound complexity is not easily handled by traditional network for-
mulations. One possible way to represent this new data is by adding supplementary
graphs, linking users and their photos, users and their comments, comments and the
photos they are posted on, and so forth, for as many graphs is necessary. However,
this could be inconvenient representation and only grows more complex as more
features are added and interactions become richer.

One sensible alternative is to use amulti-mode graph. These types of graphs, as we
will detail throughout this chapter, are capable of representing an arbitrary number
of feature layers in a network and scale quickly and easily to represent interactions
between those features. To use the previous example; comments, photos, and users
can all be easily represented on one graph without the complexity of maintaining
supplementary graphs.

Another challenge beyond is the noisiness of interaction data in communications
networks. For instance, as of late 2014, users posted 70 million images to Instagram
every day, and for some analysis tasks a great portion of those images are bound
to be irrelevant. However, a great variety of analysis tasks occur on social media
networks, so keeping as many data points as possible is important in case that data
becomes relevant in future tasks. This shifting relevance of data makes noise a major
concern for researchers. The multi-mode networks are an excellent way to deal with
this noise since they remain compatible with the network denoising processes that
researchers rely on to winnow down data to only its salient features. These denoising
processes rely on the availability of outside information to power their ability to filter
out unneeded information. Since multimode networks have that information easily
available, in fact built right in to the graph, they can be more effective.
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The sheer quantity of noise in the system also makes spurious results inevitable.
No system provides perfect accuracywith no false positives, and this provides its own
set of challenges for researchers. The risks associated with false positives from data
analysis are well documented within the financial auditing community. Dealing with
some of the impacts is an unfortunate part of the job in this community. The Foren-
sic Examiner featured a six-page article2 outlining the risks associated with fraud
detection specifically and some management strategies for fraud detection experts.
Though multi-mode networks do not directly combat the false positive problem, the
ability of multi-mode networks to effectively and efficiently factor in more informa-
tion will assist in making the techniques that utilize them more effective, giving the
users better tools for their decision making process.

Another challenge that the enormous size, noisiness, and complexity combine
to bring the fore is the volatility of social media network. With billions of users of
active users everymonth, Facebooks social network can hardly be expected to remain
static for any appreciable length of time. This has been a continuous challenge for
analysts of social media networks [16] and has recently been addressed with various
methods that take the changing nature of social networks into account, appropriately
classed as evolutionary methods. Though we deal only with static network snapshots
in this chapter, a number of the methods we look at have either the capability or
extensions designed to handle time-varying networks [13]. Key to the evolutionary
methods is the ability of multi-mode networks to handle additional information in
its network representation, which means that evolutionary methods and multi-mode
representations are a natural fit for one another. If the time-dependent structure of
the network can be encoded into the multi-mode representation, standard analysis
techniques can be used on the networks. This would provide significant potential for
analyzing these types of networks, since time information can be easily represented
as another mode in the representation.

Multi-mode networks clearly have a significant usefulness when it comes to rep-
resenting complex social media data and other communication data. The new data
demands of increasingly complex social and technical interactions online can be
elegantly met by this new network representation that enables and even facilitates
analysis. It stands to reason that fields outside of social network analysis can even
benefit from using this representation in their techniques. In this chapter, we will
discuss three techniques that take advantage of multi-mode networks in their analy-
sis and their results help make the case that this avenue of research is valuable for
future work. However, many researchers have considered multi-mode networks in
their work, so some terminology may be confusing to readers who aren’t familiar
with these types of networks already. In the next section, the terminology that will
be used in this chapter is introduced and alternative terminology is presented.

2http://www.all-about-forensic-science.com/support-files/fraud-detection.pdf.

http://www.all-about-forensic-science.com/support-files/fraud-detection.pdf
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3.2 Definitions

The feature rich and increasingly complex nature of social networks has causedmany
researchers to simultaneously develop bothmethodology and terminology for dealing
with these increasingly complex networks. In order to maintain clarity and consis-
tency throughout the chapter, we will start by defining some of the common terms
used by researchers, as well as presenting alternative terms with similar meanings
used by the research community.

3.2.1 Multi-Mode Networks

In traditional graph theory, an underlying assumption is that all of the vertices in the
network being inspected are of the same type. For example, a graph representing
a social network might consist of only vertices representing users of that network.
Concomitantly, the edges between vertices in this network would represent relation-
ships between the users represented by vertices. Figure3.1 demonstrates a simple
example of such a network.

Networks like those depicted in Fig. 3.1 have received extensive attention both
in the existing scientific literature and in previous chapters. As such, the content of
this chapter will focus on the more complex networks alluded to above. In this text,
and in portions of the existing literature, these networks are referred to as mulit-
mode networks. In order to better understand this term, it is useful to break it down
into its component parts and consider them independently. Here, network is used
interchangeably with graph, and has the same meaning that “graph” does. The other
part of the term, multi-mode, refers to the computing definition of “mode,” a way
of operating or using a system. In this case, the system in question is the vertices
specified in the network or graph. These vertices adhere to one of a multiplicity of
ways of operation in the network.

By way of example, consider the social network discussed above. In the stated
formulation, we already represent users of the network as vertices and their explicit
relationships as edges. Suppose that the social network also has a messaging feature
and we want to represent messages passed from one user to another on the network.
We could change the edges to indicate that a message has been sent between two

Fig. 3.1 An example of a
uni-mode network. Image
courtesy of Wikipedia
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Fig. 3.2 An example social
network with message
vertices

users, but that has two possible problems. Firstly, it is possible that messages can be
sent to more than one person, which would be impossible to capture in the current
formulation. There are other edge types that can capture this relationship, which
we will discuss in Sect. 3.2.2. Secondly, and possibly more importantly, this erases
the information in the network about the relationships between users that may be
important for analysis conducted on the network. In order to represent this more
complex set of relationships, we can instead add a mode to the existing set of vertices
and represent messages sent between users as vertices using this new mode. Then,
directed edges going from these new vertices to the users represent the senders and
receivers of the messages. And example of a possible network using this formulation
is given in Fig. 3.2.

The network in the example above is an example of a graph with two modes, a bi-
mode network or 2-mode network. If, instead of the small toy network, we had a very
complex network like Facebook3 where users perform a wide variety of actions like
posting images, posting links, posting statuses, commenting on statuses, replying to
comments, commenting on fan pages, and so on, representing each of these actions
as a mode of the network could result in a very high modality. Thus, for simplicity,
any network with more than one mode is simply referred to as a multi-mode network.

In addition to the terminology used above, other researchers have other terms
they prefer. For example, networks like the one depicted in Fig. 3.2 are referred to
in [11] as heterogeneous networks. This calls attention to the contrast between the
network of Fig. 3.1, which is homogeneous because it contains only one type of
vertex. In this way, referring to a network as heterogeneous is equivalent to referring
to it as multi-mode. In addition, these types of networks are referred to in [8] as
multi-dimensional networks, where “dimensional” refers to the increase in matrix
dimensions necessary to represent the network in its adjacency matrix form. Note
that the same term, multi-dimensional networks, is used in [2, 15] to represent a

3www.facebook.com.

www.facebook.com
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Fig. 3.3 A graph
demonstrating hyperedges.
Image courtesy of Wikipedia

uni-mode network with multiple types of interactions between vertices of the single
mode, which are also referred to as multiplex or multi-relational networks [4].

3.2.2 Hyperedge and Hypergraph

When a network possesses multiple modes, the complexity of interactions between
vertices also increases. A simple edge represents the interaction between two vertices.
This definition of edges canbe extended to includemore than twovertices, resulting in
hyperedges as shown in Fig. 3.3. This expansion of simple edge to hyperedge captures
more information, but also increases complexity, similar to the way that expanding
a network’s modality increases complexity. Note that any graph that contains edges
of increased complexity like hyperedges is called a hypergraph.

In simple uni-mode networks, edges necessarily occur between two vertices of
the same type. In multi-mode networks, one edge can involve vertices of one or two
modes, or even more than two modes. For example, in [8], the user actions on the
Digg4 network are modeled as a five-mode network with vertices representing users,
stories, comments, topics, or keywords. Hyperedges are used to represent complex
relationships between these objects; for example, a comment action involves vertices
from three modes: user, story, and comment.

Since hypergraphs and, particularly, hyperedges are specifically included to cap-
ture relationships between vertices, it may be valuable to re-imagine the network of
Fig. 3.2 as a hypergraph. Figure3.4 demonstrates this conversion.

While “hyperedge” and “hypergraph” have their roots in mathematics literature,
researchers in computer science often use alternate terminology to refer to these
concepts and types of graphs. For example, multi-relational is used in [8] to capture
the idea that not only do the hyperedges used in the representation capture relations
the way that a relational database does, but that there are many different possible
types of relations. In addition, metagraph is used in [8] to describe a graph that has

4www.digg.com.

www.digg.com
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Fig. 3.4 The two-mode
graph of Fig. 3.2 converted to
a hypergraph. Note that M1
and M2 were removed to
reduce clutter

both the properties of a hypergraph and a multi-mode graph. Further adding nota-
tional complexity, the term metagraph is used in [3] to indicate that a graph consists
of both standard vertices and aggregate vertices that represent fine-grained commu-
nities. Some researchers, however, choose to avoid the complexity of hypergraphs
by changing the network representation. For example, in [11], the authors choose
to re-formulate the network as a Star Network in order to avoid using hyperedges,
which we will discuss in more detail in Sect. 3.4.2.

In this chapter, we will use the term multi-mode network to refer to networks with
more than one type of vertex and hyperedges to refer to edge representations that
are more complex than the traditional edges. Accordingly, any graph that contains
hyperedges will be referred to as a hypergraph.

3.3 Problem Formulation

Community detection on multi-mode networks or hypergraphs requires careful for-
mulation in order to make the problem tractable. While the basis of the formulation
remains the same, individual researchers formulate the problem in different ways in
order to apply their unique methods to the problem. However, commonalities exist
in the formulations. Here, we will discuss the formulation in terms of those com-
monalities. In Sect. 3.4 we will discuss the specific modifications to the formulation
that are necessary for each approach.

3.3.1 Community Detection

Fundamentally, the problem of community detection can be formulated as follows:
Given a set of n actors, represented by vertices, N = {n1, n2, . . . , nn} the task of
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Fig. 3.5 The results of
community detection with
overlapping communities on
a sample network. Image
courtesy of mathworks

community detection is to partition the vertices into k groups, called communities,
such thatCi = {n1i , n2i , . . . , nmi }. In this case, communityCi is of sizemi , but com-
munities need not be of a uniform size, nor are communities necessarily exclusive.
Indeed, an argument can be made (and has, frequently) that non-exclusive commu-
nities are more representative of real social networks [12]. Figure3.5 demonstrates
an example of detecting communities on a network with only one type of vertex.

However, this formulation obviously falls short when expanded to multi-mode
communities. In multi-mode networks, the set of vertices cannot be as simply par-
titioned. This is because uni-mode community detection algorithms assume that all
vertices in the network are of the same type. Obviously, this assumption is not valid
on multi-mode networks. For the example discussed in Sect. 3.2, it would be unsat-
isfactory if we treat all vertices the same and cluster the vertices representing users
and the vertices representing messages into the same cluster. Putting them into one
cluster would imply that the vertices are “equivalent.” This would allow the cluster-
ing algorithm to treat messages and users identically, which could lead to clusters of
users including messages, even messages that were not sent by any of the users in
the cluster. Thus, the problem formulation must be modified to take into account the
mode information for multi-mode networks.

3.3.2 Multi-Mode Communities

As discussed, the variations in vertex modality must be represented, and this addi-
tional complexity has cascading effects in the formulation. In this section, we will
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cover changes to the basic community detection formulation that must be made to
expand to a multi-mode network. In particular, the set of all vertices is defined by:

N = {Nt }T
t=1

This means that given T types of vertices, the set of all vertices is divided into smaller
sets corresponding to the type of vertex. This ensures that each type of vertex is
treated differently, unlike the previous formulation. Of course, it would be possible
to do community detection on only one of the Nt terms, but as discussed before, this
removes valuable information. Instead, each of the T terms in N is clustered into
one of kt communities. Note that in this case, the number of communities can vary
based on the type of the vertex. Thus, what community membership indicates can
vary from mode to mode. For example, continuing the example used in Sect. 3.2, the
message mode could have a cluster for messages about sports and one for messages
about pet care while the user dimensions contains clusterings based on high school
graduating class. Certainly, there are members from every graduating class who are
interested in sports, and the same for pet lovers.

In order to capture the cross-mode information, we must also capture the relation-
ships between vertices of different modalities. To do this, we define a relationship
matrix between vertices. This matrix

Ri, j ∈ R
|Nti |×|Nt j |

represents both the existence and strength of a relationship between elements of
modality i and j . Note that in this formulation, i and j can be equal, and this matrix
represents the relationships between vertices of the same modality. Typically, 0 is
used to indicate that no relationship exists between two given vertices and 1 is used to
indicate that such a relationship does exist. However, [0, 1] normalized values have
been used by some researchers to indicate the strength of this relationship as well as
the presence.

In addition to representing the vertices and their relationships, it is necessary to
represent the object of the community detection problem, the communities them-
selves. In the generic multi-mode community detection problem formulation, we
assume that communities are bounded to only one mode of the graph, and so we
define community indicator or community membership matrix as:

Ci, j ∈ {0, 1}|Nti |×ki .

as before, ki represents the number of communities into which mode i is partitioned.
Note that since communities do not transcend modal boundaries, it is not necessary
for the set of all C matrices to contain cross-modal relationships, as was required to
properly represent the relationships between vertices in the relationship matrix.

In addition to the interactions between vertices in the graph, we also assume
that communities in the graph are not totally independent, even across modalities.
It would be inappropriate to assume, for example, that the community of messages
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about pet care and the community of users interested in pet care artist completely
independently. Obviously, these two groups are related, even though they are in
different modes of the network. Thus, we define a community interaction matrix

Ai, j ∈ Rki ×k j ,

Note that this matrix is smaller than the vertex interaction matrix, as the number of
communities is much less than the number of vertices. This matrix can also serve as
an abstraction of all cross-mode relationships to a smaller feature space.

Note that all the notations above assume that there are no hyperedges in the
graph. As we shall see later, these notations can be extended in a consistent way
(using tensors, to be discussed later) to handle hyperedges and hypergraphs.

3.4 Methods

In this section, we will discuss three different approaches to performing community
detection onmulti-mode networks. Themethods discussedwill be those presented by
Tang et al. in [14], Sun et al. in [11], and Lin et al. in [8]. Each of these methods will
be referred to by the names the authors gave their systems. These are, respectively:
EMMC, NetClus, and Metafac. At the end of this section, we compare all the three
methods and discuss their connections.

3.4.1 Evolutionary Multi-Mode Clustering

Presented by Tang et al. in [14], Evolutionary Multi-Mode Clustering (EMMC) is
formulated in such away that it takes community changes over time into account (thus
evolving). However, this does not affect its ability to detect communities in multi-
mode networks. While evolutionary clustering is an emerging field of community
detection research and has its own challenges and applications, it is not within scope
for this chapter, so the evolutionary portion of this work will be disregarded.

The EMMC method starts out with an assumption that the relationship matrix R
captures interactions of the communities of interest in the graph. Mathematically:

Ri, j ≈ Ci Ai, j (C j )′

Here, Ai, j is the confounding factor that links the community memberships in mode
i and j , which is the community interaction matrix discussed in the previous section.
Consequently, it is reasonable to attempt to estimate the community membership of
two modes of the network as:

min ||Ri, j − Ci Ai, j (C j )′||2F (3.1)
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s.t. Ci ∈ {0, 1}|Nti |×ki

ki∑

k=1

Ci
k = 1 (3.2)

C j ∈ {0, 1}|Nt j |×k j

k j∑

k=1

C j
k = 1 (3.3)

The objective function in Eq. (3.1) attempts to minimize the Frobenius Norm of two
matrices. Combining this objective for all cross-mode interactions, it follows that:

min
∑

i

∑

j

wi, j ||Ri, j − Ci Ai, j (C j )′||2F (3.4)

s.t. Ci ∈ {0, 1}|Nti |×ki ,

ki∑

k=1

Ci
k = 1 for all i = 1, 2, . . . , T (3.5)

wherewi, j is the weight assigned to the interaction betweenmodes i and j . Summing
up the results over all pairs of dimensions ensures that the relationships between all
pairs of modes are taken into account. Since there is no constraint that i �= j ,
communities within the same mode are also taken into account.

However, due to the discrete nature of constraints in Eq. (3.5), the minimization
problem is NP-Hard. In order to alleviate this issue, the authors use a well-studied
technique in the spectral clustering literature [17]. This technique is to relax the dis-
crete constraints into continuous constraints. By using continuous constraints, we
can think of the community indication matrix as indicating a “level of membership”
for each community. This also has the effect of transforming the single-community
solution proposed initially to an overlapping community solution. Since the com-
munity indication matrix can now have more than one non-zero value, we can say
that a vertex belongs primarily to the community with which it has the highest value,
but partially to all of the other communities with which it has a non-zero value. This
relaxation transforms the constraints in Eq. (3.5) into:

(Ci )′Ci = Iki . (3.6)

In English, this mean that the community indicator matrix is column orthogonal,
which yields the following final problem formulation:

min
∑

i

∑

j

wi, j ||Ri, j − Ci Ai, j (C j )′||2F (3.7)

s.t. (Ci )′Ci = Iki (3.8)

There is no analytical solution to the problem above because of the simultaneous
unknowns Ci , C j , and Ai, j . However, alternating optimization can be adapted to
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solve it. That is, we can compute one variable while fixing all other variables. When
fixing Ci and C j , the optimal Ai, j is as follows:

Ai, j = (Ci )T Ri, j C j (3.9)

It can be shown that the optimal Ci , given all other variables, is the left singular
vector of a matrix P that consists of several sub-matrices concated column-wise:

Pi =
[{√

wi, j Ri, j C j
}]

(3.10)

Hence, EMMCcan be solved iteratively. In each iteration,we cycle through allmodes
and then update Ci as the left singular vectors of the matrix Pi .

3.4.2 Net-Clustering

Sun et al. describe in [11] a method for performing multi-mode community detection
based on transforming a traditional multi-mode network into a type of network called
a star network. This modification to the network results in some changes to the
problem formulation we presented in Sect. 3.3, as well as requiring discussion of the
Star Network modification for clarity.

In order to understand the NetClus formulation, it is important to first discuss the
network representation the authors use for the multi-mode network. Consider the
original formulation of the network:

G = 〈N , E〉
where N = {Nt }T

t=1

In the formulation used in [11], an additional element is added to the graph definition,
a set of weights on the set of edges E , these weights (denoted W for the set and
Wni ,n j for the weight of an individual edge) correspond to the real-values entries of
the adjacency matrix R previously mentioned. In addition, the authors of NetClus
add another constraint to the network, the star network constraint.

The star network constraint imposes a limitation on the connectivity of edges in
the network. Normally, an edge in the network is represented by e = 〈ni , n j 〉 where
the vertices ni and n j can be from any modality in T . However, the star network
constraint designates a particular member of T (t = 1 for simplicity) as the target
type and forces all edges to have exactly one endpoint in the target type. That is, the
set of all edges E has an additional constraint that:

∀e ∈ E, e = 〈ni , n j 〉, ni ∈ N1, n j ∈ Nt (t �= 1) (3.11)
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Note that this also imposes the constraint that vertices in the target type may not be
connected to one another. For notational purposes, modes of the network other than
the first mode are referred to as attribute types. Because the star network scheme
places such a high emphasis on the target type, using this scheme facilitates the clus-
tering in the mode of the target type, thus the term “target.” However, forcing edges
to have one end in the target type reduces the ability of a star network formulation
to represent real-world graphs. The advantage of using a star network formulation in
this context is that the removal of edges between vertices of the target types forces a
communities detected in the target type to have attribute vertices linking the vertices
of the target type. Based on the attribute vertices used as linkages, this forces a com-
munity to have some meaning to human interpreters, serving as both a explanation
for the community’s existence and a sanity check on that community’s existence.
These modification to the formulation of the problem power the strengths of the
NetClus algorithm.

In particular, the authors define a net cluster as a cluster that consists of a target
vertex and its highly relevant attribute vertices. Though the authorsmodel the domain
they study as a multi-mode star network, it is perhaps more intuitive to interpret
the cluster definition and algorithm by thinking of target vertices as objects and
attribute vertices as the object’s different attributes. Consequently, a cluster is mainly
composed of target vertices and their most frequently considered attributes.

Unlike EMMC, NetClus does not minimize an matrix approximation error func-
tion to obtain its results. Instead, the algorithm adopts a k-means-like method to
compute the most likely assignments of target type vertices to clusters. The NetClus
algorithm can be described by the following steps, according to the authors in [11]:

1. Generate initial partitions for target objects and induce initial net-clusters from
the original networks according to these partitions, i.e., {C0

i }k
i=1;

2. For each cluster, compute out the conditional probability that one attribute vertex
is associated with the cluster. i.e., {P(x |Ct

i )}k
i=1;

3. Calculate the posterior probabilities for each target object (p(Ct
i |x)) and then

adjust their cluster assignment according to the new measure defined by the pos-
terior probabilities to each cluster.

4. Repeat Steps 2 and 3 until the cluster does not change significantly, i.e., {C∗
i }k

i=1 =
{Ct

i }k
i=1 = {Ct−1

i }k
i=1.

5. Calculate the posterior probabilities for each attribute object (p(C∗
k |x)) in each

net-cluster.

Step 2 can be thought of as finding a ranking on the target vertices to best describe the
interactions observed in the cluster. This distribution is similar to using “sufficient
statistics” to describe the cluster, which is comparable to the cluster centroid in
classical k-means clustering algorithm. Step 3 then updates the cluster assignment
for each attribute vertex.

As a general approach to the problem,NetClus is an exemplar ofmethods based on
iterative improvement of a model that mathematically describes the data. In this case,
the authors of NetClus chose to use a probabilistic model that iteratively improves
clusters based on the probability that a particular instance of the target type with its
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linked attribute type objects is generated by the clusters the algorithm identifies as
being strongly related.

3.4.3 MetaGraph Factorization

Presented by Lin et al. in [8], the final method, MetaFac extends conventional multi-
mode networks to include hyperedges as discussed in Sect. 3.2. Unlike EMMC,
where all edges are interactions between exactly two vertices and possibly of dif-
ferent modes, MetaFac tackles the cases when multiple modes interact simultane-
ously. In order to handle community discovery in these hypergraphs, we must extend
the traditional matrix representation to tensors, a form of higher-order matrices, to
represent hyperedges. Tensors are a useful mathematical construct for representing
hypergraphs due to their flexibility and the properties of the construction. A brief
overview of tensor mathematics is given in [8] and further information can be found
in [1]. Though tensor mathematics is not within scope here, some coverage will be
necessary in the course of discussing the problem formulation.

We start with simple case of conventional edges representing two-way interac-
tions. Let xi j represent the interaction of two entities (possibly from differentmodes),
k denote a community, pk→i indicate how likely an interaction in the kth community
involves entity i , and pk be the probability of any interaction in the kth community.
Given these things, the probability of interaction can be approximated by:

xi j ≈
∑

k

pk · pk→i · pk→ j (3.12)

A 3-way interaction is a simple extension:

xi1i2i3 ≈
∑

k

pk · pk→i1 · pk→i2 · pk→i3 (3.13)

Hence, a set of interactions among three modes can be rewritten as

X ≈
∑

k

pk · u(1)
k ◦ u(2)

k ◦ u(3)
k = [z]

3∏

m=1

×mU(m) (3.14)

Here X is the data tensor representing all interaction involving three modes and Z
is the core tensor.

Using tensors, as mentioned above, the authors of [8] formulate MetaFac as an
optimization problem. The known inputs to the problem solution are the metagraph5

G = 〈V, E〉. Unlike the original definition of a graph, E is represented by a tensor

5Recall from Sect. 3.2, that a metagraph is a multi-mode graph by another name.
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that involves multiple modes for each hyperedge in the original multi-mode graph.
These edges are represented asX (i), where i is a unique value for each hyperedge.
The authors of MetaFac chose KL-divergence [7] (denoted D(·||·)) to determine
the quality of their estimation. Since the KL-divergence is only defined on a single
relation (one instance of X i ), the contribution to the total divergence from each
relation must be summed up as follows:

min
∑

r∈E

D(X (r)||[z] ·
∏

m:v(m)∈e(r)

U(m) (3.15)

s.t.U(q)
ik = 1 ∀q∀k (3.16)

Note that in Eq. (3.15), v(m) ∈ e(r) is used to indicate that v(m) is one of the vertices
involved in hyperedge r . By minimizing this cost over the two free variables, [z] and
U∗, we can find community interaction core tensor, represented by [z], and a set of
community memberships, represented by U∗, that reconstruct the observed data as
accurately as possible. This is subject to some regularizing constraints as specified
in Eq. (3.16). to ensure that U(q) is a representation of interaction probabilities.

Optimizing theMetaFac objective function is non-trivial and we encourage reader
to refer to the source paper for algorithm details. Generally speaking, the authors
propose to perform an iterative process. At each iteration, the author compute the
optimal [z] and U∗ alternatively.

3.4.4 Discussions

In the previous subsections, we have briefly reviewed three different approaches
to find communities for multi-mode networks. Below we summarize the data sets
studied for each method.

Data and Comparison For EMMC, two network data sets are selected; the Enron
email corpus, made public in the wake of the October 2001 scandal, and Digital
Bibliography & Library Project (DBLP) data. For the Enron data, the authors con-
structed a three-mode network. The three modes used are users, messages (e-mails),
and words. Users are linked to both the messages that they send and those that they
receive. Messages and words are in turn linked together by usage in a particular
message. Figure3.6 show a visual representation of the cross-mode linkages in the
data set. The DBLP data is modeled as a network with four modes: papers, authors,
terms (words in the title), and venues (conferences or journals). The cross-modal
links used for this dataset are the obvious ones, and are depicted in Fig. 3.7.

The authors of NetClus use a similar, but not identical, DBLP data set, setting
paper as the target mode and venue, author, and term the other attribute modes.
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Fig. 3.6 A visual
representation of the
cross-mode links in the
Enron E-mail corpus

Fig. 3.7 A visual
representation of the
cross-mode links in the
DBLP corpus

Table 3.1 Relations used in
MetaFac performed on the
Digg datasets and the modes
they connect

Relation Modes

Content Story, Keyword, Topic

Contact User, User

Submit User, Story

Digg User, Story

Comment User, Story, Comment

Reply User, Comment

The authors of MetaFac model the activities on Digg6 using hyperedges. The data
set contains five modes: users, stories, comments, keywords, and topics. In addition,
it contains hyperedges connecting these modes. Table3.1 describes the different
hyperedges and the modes they connect. Note that in this dataset, Submit and Digg
connect the same modes.

At first glance, the three methods look very different, because each method pro-
poses to handle different types of multi-mode networks. In particular, EMMC aims
to handle general multi-mode networks with only two-way interactions. MetaFac

6www.digg.com.

www.digg.com
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Fig. 3.8 Conversion between star network and data-attribute table

can be thought of as an extension of EMMC with a modification to handle care of
multi-way interactions represented by hyperedges, though different loss functions
are used for approximation. NetClus, on the contrary, transforms a multi-mode net-
work into a star network. Note that not all networks can be represented by this star
network schema. Taking advantage of this schema, a k-means like algorithm can be
adopted to compute the communities of target mode vertices. In terms of algorithms,
all three methods are iterative, with the clustering results of one mode updated based
on the clustering or Interaction probability of other modes.

Connections A multi-mode network representation blurs the conventional defini-
tion of attributes, vertices, and relations. For example, NetClus studies multi-mode
networks with one target mode and others being attribute modes. Since vertices in
attribute modes interact only with those of the target mode, we can think of them as
attributes of the target mode vertices to which they are connected. Equivalently, each
attribute mode represents one feature, and vertices in that mode become different
attribute values, as shown in Fig. 3.8. This makes the NetClus algorithm looks very
much like a k-means clustering algorithm handling data associated with different
attributes.

On the other hand, hyperedges complicate the community detection problem in
multi-mode networks. However, hyperedges can be “flattened,” and thus reduced to
normal edges, by adding more modes to the network. We can create one additional
mode for each hyperedge relation, then each hyperedge becomes one vertex in that
mode. Obviously, all the modes involved in the original hyperedge will be connected
to this new mode. Figure3.9 demonstrates such a change. Essentially, a hyperedge
relation involving m modes is converted into m two-way interactions between the
m modes and one newly created hyperedge mode. Interestingly, such a change is

Fig. 3.9 Conversion between hyperedge and flattened multi-mode network
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exactly a star network schema. However, when multiple hyperedges are observed in
the original network, then the modes after conversion will interdependent, returning
to the general multi-mode network EMMC deals with.

3.5 Extensions

As alluded to in Sect. 3.4, community detection efforts have multiple extensions
above and beyond simply detecting communities. In both [11] and [14], the basic
community detection problem is extended into an evolving communities problem.
In this section, the community detection extensions of Community Evolution, Link
Prediction, and Ranking will be introduced and briefly discussed.

3.5.1 Community Evolution

The first extension, community evolution, deals with the time-varying nature of social
networks. Part of the nature of social networks is that they are fundamentally dynamic
constructs. Links between users are constantly formed and removed, and with these
links community structures change; sometimes growing, sometimes shrinking. In
some cases, communities merge together and become one larger community. The
work described in [14] and [11] contains a discussion of evolving communities as
well as simple modifications to the models already presented that enable analysis
of community evolution. As demonstrated by [5], evolutionary clustering continues
to be a popular extension of community detection as social networks become more
mature and more time-varying data is available.

3.5.2 Link Prediction

Communities detected by community detection algorithms inherently represent areas
of denser connectivity in the underlying graph. In standard community detection,
modularity, a measure of the density of connections inside the community compared
with those outside, is commonly used as an indicator of community quality [9].
It is reasonable, then, to assume that areas of the graph that have high density of
connections will also have a high number of new connections. Thus, it is reasonable
to assume that detected communitieswill indicate locationswhere new links are likely
to form. MetaFac, the method discussed in Sect. 3.4.3 was used by the authors of [8]
to make predictions on new links between entities. The results of this prediction
demonstrate the potential of community detection algorithms to supplement link
prediction algorithms.
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3.5.3 Ranking

Lastly, in the real world, each community tends to have a single individual or small
group that are highly influential. The problem of finding influential users or vertices
in network data is a longstanding problem. This has lead to the development of
algorithms like PageRank [10] and its precursor, HITS [6]. Finding influential users
given the network is a well-studied problem, but like the work in Link Prediction,
ranking problems can benefit from exploiting community structure. The NetClus
work described in Sect. 3.4.2 also contains a ranking component to find highly ranked
conferences in the Data Mining area [11]. The rankings they find from the DBLP
data set match their evaluation of the conferences present in the data set.

3.6 Summary

Community detection [13], and by extension multi-mode community detection, is a
highly dynamic, fast-moving field. Multi-mode community detection, in particular,
has great potential to provide insight into networks that are becoming increasingly
complex with the evolution of social media. As social networks become increasingly
expressive and allow their users to conduct more and more of their daily business
online, the modality of the network and size of the possible relationship set will have
to increase to compensate for this. Current trends in social media support the idea
that social networks will become increasingly complex. Facebook7 continues to add
more and more ways for users to interact with one another. Twitter8 recently debuted
the Vine9 video-sharing service as a way to integrate another form of media, in this
case video, into the Twitter social network. Google has made great (albeit controver-
sial) steps by integrating their services together and thus increasingly the number of
ways that users of Google’s services can interact with one another. Recently, Google
opted to integrate Google Plus services with their widely popular YouTube service,
requiring users to use their Google Plus identity to comment on YouTube videos.
While this was unpopular with YouTube’s users,10 it is easy to see from a community
detection perspective how this change massively increased the amount of available
data, both in size and complexity.

As the data sets for detecting communities in multi-mode communities become
larger and larger, increasingly sophisticated algorithms are needed to draw meaning-
ful conclusions from that data. The variousmotivational reasons discussed in Sect. 3.1
drive both commercial interests and more academically inclined researchers to strive
for better and better community results. The various cross-disciplinary applications

7www.facebook.com.
8www.twitter.com.
9https://vine.co/.
10www.forbes.com/sites/insertcoin/2013/11/09/google-plus-creates-uproar-over-forced-youtube-
integration/.

www.facebook.com
www.twitter.com
https://vine.co/
www.forbes.com/sites/insertcoin/2013/11/09/google-plus-creates-uproar-over-forced-youtube-integration/
www.forbes.com/sites/insertcoin/2013/11/09/google-plus-creates-uproar-over-forced-youtube-integration/
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discussed briefly in Sect. 3.5 make community detection a widely followed research
area, as researchers from a wide variety of disciplines incorporate the latest results
from community detection into their work to improve performance.
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Chapter 4
Discovering Communities in Multi-relational
Networks

Zhiang Wu, Zhan Bu, Jie Cao and Yi Zhuang

Abstract Multi-relational networks (in short as MRNs) refer to such networks
including one-typed nodes but associated with each other in poly-relations. MRNs
are prevalent in the real world. For example, interactions in social networks include
various kinds of information diffusion: email exchange, instant messaging services
and so on. Community detection is a long-standing yet very difficult task in social
network analysis, especially when meeting MRNs. This chapter gradually explores
the research into discovering communities from MRNs. It begins by introducing the
generalized modularity of the MRN, which paves the way for applying modularity
optimization-based community detection methods on MRNs. However, the main-
stream methods for discovering communities on MRNs are to integrate information
frommultiple dimensions. The existing integration methods fall into four categories:
network integration, utility integration, feature integration, and partition integration.
Learning or ranking the weight for each relation in MRN constitutes building blocks
of network, utility and feature integrations. Thus, we turn our attention into several
co-ranking frameworks on MRNs. We then discuss two different kinds of partition
integration strategies, including the frequent pattern mining based method and the
consensus clustering based method. Finally, for the purpose of conducting perfor-
mance validation, we present several techniques for constructing the MRN based on
both multivariate data and forum data.
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4.1 Introduction

Multi-relational networks (MRNs), being composed of one-typed nodes but multi-
typed relations, have been found ubiquitous in the real world. For example, in Twitter,
the multi-relations among users contain followers or followees, retweeting tweets,
publishing relevant tweets with others, and so on. There are also various types of rela-
tions among users in social networks, including friendship, contact, co-subscription
or co-tagging to the same resource, co-contact with the third one, and so on. Another
important reason attracting a great deal of focus to MRNs is that the MRN is closely
related to the time-dependent network [18]. That is, if taking every snapshot as a
network in one relation, the time-dependent network becomes a MRN. Relations
in MRNs can be either explicit or implicit [3]. Explicit relations directly reflect the
various interactions in reality, but implicit relations are inferred from the available
data to reflect different interesting qualities of the interactions.

Some studies target at establishing theoretical basis for multi-relational network
analysis, such as algebra operations [22] and analytical measures extensions [2, 3].
Community discovery in MRNs has become one of the prevailing topic among stud-
ies on multi-relational network analysis. Similar to community detection methods
with global models in single-relational networks,Mucha et al. [18] proposed the gen-
eralized modularity (Q function), and aimed to optimize this criterion defined over
the network partition. However, most of studies [26, 32, 34] attempted to integrate
information from multiple dimensions to discover the shared community structure
across multiple network dimensions. According to the four components involved in
a network, the existing integration methods can be summarized as four categories:
network integration, utility integration, feature integration, and partition integra-
tion [26]. After any integration strategy applied on a MRN, various community
detection methods (such as spectral clustering, block models, latent space approach,
and modularity optimization) will be applicable on the MRN. An unified view for
integration and then community detection has been given in [26, 28].

The goal of three integration strategies, i.e., network integration, utility integra-
tion, and feature integration, is very similar. That is, they target at transforming a
MRN to a SRN, by integrating topological, utility matrices, and structural features
from multiple relations with average or biased weights, respectively. So, how to
learn/rank the weight for every relation becomes an important problem during the
integration process. In this chapter, we discuss several co-ranking frameworks on the
multi-relational data/network, which differentiates with the unified view introduced
in [26, 28]. As for partition integration, we review two different methods includ-
ing the frequent pattern mining based method and the consensus clustering based
method.

The remainder of this chapter is organized as follows. In Sect. 4.2, we formulate
the problem of community discovery on multi-relational networks. In Sect. 4.3, we
introduce the concept of generalized modularity, which lays the foundation for mod-
ularity optimization based community detection. In Sect. 4.4, we first overview net-
work/utility/feature integration strategies, and thus highlight co-ranking techniques
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that serve as building blocks for these integration strategies. In Sect. 4.5, we present
two kinds of partition integration methods. We discuss some issues for conducting
performance validation on MRNs in Sect. 4.6, and finally conclude this chapter in
Sect. 4.7.

4.2 Problem Formulation

This section provides preliminary knowledge of the MRN and community discovery
on it, which serves as a consolidated reference for the following sections. A single-
relational network is usually represented as an adjacency matrix that is also known
as a two-way tensor because it has two dimensions. Stated in this way, an MRN
can be represented as a three-way tensor consisting of a series of matrix “slice”. We
formally define the MRN as follows:

Definition 4.1 (Multi-relational Network) A m-relational network is defined as a
set of graphs M = (V,E = {E1, . . . , Em ⊆ (V × V )}), where V denotes the node
set with n elements, and E is the m-relational edge set. Let A ∈ {0, 1}n×n×m be a
three-way tensor, then

Ad
i, j =

{
1 if (i, j) ∈ Ed : 1 ≤ d ≤ m

0 otherwise
(4.1)

In this formulation,A represents the primary structure by which every adjacency
matrix “slice” Ad ∈ {0, 1}n×n is indexed. An MRN actually contains homogeneous
nodes but heterogeneous relations, which is different with the multi-mode network
or the heterogeneous network [28]. Figure4.1 illustrates the difference between the
MRN and the multi-mode network. Although much research has been done on dis-
covering communities from static or dynamic multi-mode networks [24, 27, 28], the
scope of this chapter is limited to community detection from MRNs.

Since nodes in an MRN are homogeneous, the problem of discovering com-
munities on MRNs is similar to that on SRNs. That is, community detection aims
to find a good K -way partition P = {C1, . . . , CK }, where Ck is the kth commu-
nity, and C1

⋃ · · · ⋃ CK ⊆ V . K can either be given in advance or determined
by the community detection algorithm itself. For a crisp partition, we have an
additional requirement: Ck

⋂
Ck′ = ∅ ∀ k �= k′. However, for a overlapping or

fuzzy partition, overlapping communities can be represented as amembershipmatrix
U = [ui,k], i = 1, . . . , n, k = 1, . . . , K , where 0 ≤ ui,k ≤ 1 denotes the member-
ship that node i belongs to Ck . If node i belongs to only one community, ui,k = 1,
and it clearly follows that

∑K
k=1 ui,k = 1 for all 1 ≤ i ≤ n.
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(a) (b)

Fig. 4.1 Illustration of the difference between MRN and MMN. a The multi-relational network.
b The multi-mode network

4.3 Generalized Modularity Optimization

The choice of null model is a crucial consideration for modularity definition and thus
for community detection. In the early literature, many null models have been pro-
posed for modularity definition in the SRNs, among which, Newman-Girvan’s [19]
is the most used and best known one. The basic idea behind Newman-Girvan’s null
model is that a random graph is not expected to have a community structure, so
the possible existence of communities is revealed by the comparison between the
intra-community edge weight and that expected at random. Other null models for the
SRNs along this line can be found in [1, 11, 16]. However, such null models have
not been available for MRNs.

Figure4.2 shows such an example with a typical MRN defined by coupling mul-
tiple adjacency matrices, where the connections encoded by the network “slices” are
flexible; they can represent variations across time, variations across different types
of connections, or even community detection of the same network at different scales.
Let Ad

i, j represent the intra-slice coupling that connect node i and node j in slice

d, and Cd,r
i indicate the inter-slice coupling that connect node i in slice r to itself in

slice d. As these inter-slice couplings are either present or absent by definition, when
they do fall inside communities, their contribution in count of intra-community edges
exactly cancels that expected at random. Therefore, the usual null models fails to
provide any contribution from these inter-slice couplings. In contrast, by formulating
a null model in terms of stability of communities under Laplacian dynamics, one can
derive a principled generalization of community detection to MRNs [18].
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Fig. 4.2 An example of MRN defined by coupling four network “slices”

4.3.1 Laplacian Dynamics Formalism

TheLaplacian dynamics formalism,which has been recently developed byLambiotte
et al. [13], is to rederive network modularity from the continuous-time normalized
Laplacian dynamics ṗi = ∑

j
1
k j
Ai, j p j − pi on a unipartite, undirected network

defined by the adjacencymatrix componentsAi, j with node strengths ki = ∑
j Ai, j .

Note that there is a steady state given by p∗
j = k j/(2m), where 2m = ∑

i ki =
∑

i, j Ai, j , describes the total strength in the network. So the stability of communities
under such dynamics can be measured by directly comparing the joint probability at
stationarity of independent appearances at nodes i and j with the linear approximate
map from node j to node i . Under the guidance of this direction, Lambiotte et al.
quantified a measure of the stability R(t) of a specified partition of the network into
communities using the probability that a random walker remains within the same
community after time t , in statistically steady conditions, relative to that expected
under independence. Given the operator Li, j = Ai, j/k j − δi, j of the dynamics,
where δi, j is the Kronecker delta, the stability R(t) is defined as following:

R(t) =
∑

i, j

[
(etL)i, j p∗

j − p∗
i p∗

j

]
δ(gi , g j ), (4.2)

where p∗
i p∗

j denotes the contribution from an independence assumption. Expanding

the matrix exponential in Eq. (4.2) to first-order in t , we have (etL)i, j 
 δi, j + t Li, j .
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As δi, j factors always contribute to the sum, R(t) can be directly yielded to the

quality function Q(t) = 1
2m

∑
i, j [tAi, j − ki k j

2m ]δ(gi , g j ). When t = 1, the resulting
quality function reduces to Newman-Girvan modularity. Moreover, if both sides of
the equation are divided by t , the quality can be written in the usual form: Q =
1
2m

∑
i, j [Ai, j − γ

ki k j
2m ]δ(gi , g j ), with the resolution parameter γ = 1/t . Hence, the

stability of the community partition relative to that expected under independence
provides a natural definition for the null model employed in the quality function.

4.3.2 Generalized Laplacian Dynamics

Along the above line, Mucha et al. [18] developed a generalized framework of net-
work quality functions that allowed us to study the community structure of MRNs,
which are combinations of individual networks coupled through links that connect
each node in one network slice to itself in other slices. Without loss of generality, we
restricted our attention to undirected network slices (i.e.,Ad

i, j = Ad
j,i ) and undirected

couplings (i.e., Cd,r
i = Cr,d

i ). Notating the strengths of each node individually in each

slice by ki,d = ∑
i Ad

i, j , and across slices by ci,d = ∑
r Cd,r

i . Thus, the multi-slice
strength of the node is given by κi,d = ki,d +ci,d , and the continuous-time Laplacian
dynamics is defined as

ṗi,d =
∑

jr

(
Ad

i, jδd,r + δi, jCd,r
j

)
p j,r

κ j,r
− pi,d , (4.3)

which respects the intra-slice nature ofAd
i, j and the inter-slice couplings of Cd,r

j . The
steady state in such case is p∗

j,r = κ j,r/(
∑

j,r κ j,r ). Thus, the associated multi-slice
null model can be specified by the probability ρi,d| j,r of sampling node-slice (i, d)

conditional on whether the multi-slice structure allows one to step from node-slice
( j, r) to node-slice (i, d).

ρi,d| j,r p∗
j,r =

[
ki,d

2md

k j,r

κ j,r
δd,r + Cd,r

j

c jr

c j,r

κ j,r
δi, j

]
κ j,r

∑
j,r κ j,r

, (4.4)

where md = ∑
i ki,d . That is, the conditional probability of stepping from ( j, r) to

(i, d) along an inter-slice coupling is nonzero if i = j , and it is proportional to the
probability Cd,r

j /k j,r of selecting the precise inter-slice link that connects to slice d.
Subtracting this conditional joint probability from the linear approximation of the
exponential describing the Laplacian dynamics on MRNs, a multi-slice generaliza-
tion of modularity can be obtained as follows.
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QMRN = 1
∑

j,r κ j,r

∑

i, j,d,r

[(

Ai, j,d − γd
ki,dk j,d

2md

)

δd,r + δi, jCd,r
j

]

δ(gi,d , g j,r ).

(4.5)
Some notable remarks for Eq. (4.5) should be highlighted. First, the corresponding

resolution parameter for the inter-slice couplings is absorbed into the magnitude of
the elements of Cd,r

j , which is a binary value in {0, w}. w = 0 indicates there is no
benefit from extending communities across slices, and therefore the optimal partition
is obtained from independent optimization of the corresponding quality function in
each slice. Otherwise, when w becomes sufficiently large, the quality-optimizing
partitions force the community assignment of a node to remain the same across all
slices in which that node appears, and the multi-slice quality reduces to a difference
between the adjacency matrix summed over the contributions from the individual
slices and the sum over the separate single-slice null models.

Second, a re-weighting technique was used in conditional probabilities, which
allows for different resolutions γd in each slice. In the absence of such a re-weighting
in the interpretation of the stability of the partition, with γd = γ for all d, the
corresponding prefactor on Cd,r

j absorbed above is (1 − γ ). Imposing the choice
γ = 1 then recovered the usual interpretation of modularity as a count of the total
weight of intra-slice edges minus the weight expected at random, and the specified
deterministic Cd,r

j contribution was dropped out entirely.
Community discovery inMRNs can then proceed usingmany of the same compu-

tational heuristics that are currently available for single-relational networks. During
this process, one may exert special caution about the resolution of communities and
the likelihood of complex quality landscapes that necessitate caution in interpreting
results on real-world networks.

4.4 Co-Ranking Frameworks

With multi-typed interactions, the community structures hidden in MRNs can be
complicated. Integrating information from multiple dimensions for community dis-
covery has become the dominant method [6, 7, 32, 34]. In this section, we first
overview three integration strategies, i.e., network integration, utility integration,
and feature integration, and thus point out that the key issue in these integration
strategies is how to rank the weight for every relation. We then introduce two kinds
of co-ranking frameworks (i.e., MultiRank and MutuRank) as a complemental tech-
nique to integration methods.
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4.4.1 Integration Methods: An Overview

Without loss of generality, let a three-way tensor S = [si, j,d ], 1 ≤ i, j ≤ n, 1 ≤ d ≤
m denote the information/object to be integrated. For network integration, S = A
is the m-relational edge set. For utility integration, S consists of m utility matrices,
which is equivalent to optimizing the objective function over all types of interactions
simultaneously [26]. For feature integration, S denotes structural features associated
with nodes, commonly extracted by overlapping community detection methods from
each relation. If we further let −→p = [p1, p2, . . . , pn] and −→q = [q1, q2, . . . , qm]
denote vectors representing the importance weights of nodes and relations on an
MRN, respectively. The synthesized weight matrixW = [wi, j ] can be calculated as
follows.

wi, j =
m∑

d=1

qd · si, j,d . (4.6)

Thekey task in the integration is to determine theweight vector of relations−→q . The
simplest way used in [6, 7, 26] modeled −→q as an uniform distribution, i.e., qd = 1

m ,
which obviously failed to distinguish different roles played by various relations. If the
network is single-relational, several well-known algorithms such as HITS [12] and
PageRank [21] can be applied to rank the importance of nodes, i.e., to compute −→p .
As the network become multi-relational, nodes and relations exert mutual influences
to each other, and people need to co-rank both nodes and relations simultaneously.
To address this challenge, two kinds of co-ranking algorithms MultiRank [20] and
MutuRank [32, 34] have been presented. Before diving into the algorithmic details,
we have to introduce some basic operations and definitions. Let R be the real field.

We define two vectors A−→p −→q ∈ R
n and A−→p −→

p′ ∈ R
m as

(A−→p −→q )i =
n∑

j=1

m∑

d=1

ai, j,d · p j · qd , i = 1, 2, . . . , n, (4.7)

(A−→p −→
p′ )d =

n∑

i=1

n∑

j=1

ai, j,d · pi · p′
j , d = 1, 2, . . . , m. (4.8)

Aswe imagine a randomwalk applied on anMRN,we can construct two transition
probability tensorsO = [oi, j,d ] andR = [ri, j,d ]with respect to objects and relations
by normalizing the entries of A as follows [20]:

oi, j,d = ai, j,d
∑n

l=1 al, j,d
, ri, j,d = ai, j,d

∑m
e=1 ai, j,e

. (4.9)

Figure4.3a illustrates the construction ofO andR based uponA. To be specific,
tensorsO andR have same orders withA, where oi, j,d is normalized by the i th row
in dth relation and ri, j,d is normalized by the vertical line fixed by i and j . Let Xt
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(a) (b)

Fig. 4.3 Illustration of some variables in MutiRank and MutuRank. a Tensors O andR. b Condi-
tional probabilities

and Yt be random variables referring to visit at any particular node and to use any
particular relation respectively at the time t . We have:

oi, j,d = Prob[Xt = i |Xt−1 = j, Yt = d], (4.10)

ri, j,d = Prob[Yt = d|Xt = i, Xt−1 = j]. (4.11)

Clearly, the sequence of random variables (Xt , Yt : t = 0, 1, . . .) is a Markov
chain. The co-ranking algorithms try to compute the following probabilities with
respect to two transition probability tensors O and R.

Prob[Xt = i] =
n∑

j=1

m∑

d=1

oi, j,d · Prob[Xt−1 = j, Yt = d], (4.12)

Prob[Yt = d] =
n∑

i=1

n∑

j=1

ri, j,d · Prob[Xt = i, Xt−1 = j]. (4.13)

Therefore, −→p and −→q are equilibrium/stationary distributions of nodes and rela-
tions. Themost important property of the stationary distributions is that if the network
M is non-bipartite, then the distributions of Xt and Yt tend to stationary distributions,
as t → ∞. Formally, we have:

pi = lim
t→∞Prob(Xt = i), qd = lim

t→∞Prob(Yt = d).

From above analysis, we can summarize that to compute two joint probability
distributions Prob[Xt−1 = j, Yt = d] and Prob[Xt = i, Xt−1 = j] becomes the key
operation for determining the stationary distributions−→p and−→q . For this, MultiRank
and MutuRank have presented different solutions, which will be introduced in the
following sub-sections.
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4.4.2 MultiRank Algorithm

The important assumption in MultiRank [20] is that two random variables (i.e., Xt

and Yt ) are independent from each other. Two joint probability distributions can
therefore be modeled as a product form of individual probability distributions. More
precisely, MultiRank assumed that

Prob[Xt−1 = j, Yt = d] = Prob[Xt−1 = j] · Prob[Yt = d], (4.14)

Prob[Xt = i, Xt−1 = j] = Prob[Xt−1 = j] · Prob[Xt = i]. (4.15)

Under this assumption, Eqs. (4.12) and (4.13) can be written as the iteration form
with respect to t .

p(t+1)
i =

n∑

j=1

m∑

d=1

oi, j,d · p(t)
j · q(t)

d , (4.16)

q(t+1)
d =

n∑

i=1

n∑

j=1

ri, j,d · p(t)
i · p(t)

j . (4.17)

We can see from Eqs. (4.16) and (4.17) that the MultiRank makes full use of the
mutual influence between relations and nodes. Specifically, the mutual feedback here
means that: (i) the importance of a relation depends on the probability distribution
of nodes and the importance of other relations, i.e., a relation, selected by high-
weight nodes with high probabilities, deserves high weight itself; (ii) the importance
of a node depends on the probability distribution of relations and its neighbors’
importance, i.e., a node, linked by high-weight nodes with strong and high-weight
relations, deserves high-weight. By using the tensor operation shown in Eqs. (4.7)
and (4.8), we can represent Eqs. (4.16) and (4.17) in a concise manner, i.e., matrix
notations.

−−−→
p(t+1) = O

−→
p(t)

−→
q(t),

−−−→
q(t+1) = R

−→
p(t)

−→
p(t). (4.18)

According to Eq. (4.18), an iterative algorithm can naturally be designed to com-

pute −→p and −→q for the MultiRank. It starts by assigning random values as
−→
p(0) and−→

q(0), and then applies iterative computation based on Eq. (4.18) until the Frobenius
norm converges to a tolerance value.

4.4.3 MutuRank Algorithm

The assumption that Xt and Yt are independent from each other in MultiRank might
be too strong. However, the distributions of nodes and relations are actually coupled



4 Discovering Communities in Multi-relational Networks 85

together. We therefore propose to use the conditional probability for modeling two
joint probability distributions [32, 34].

Prob[Xt−1 = j, Yt = d] = Prob[Xt−1 = j] · Prob[Yt = d|Xt−1 = j], (4.19)

Prob[Xt = i, Xt−1 = j] = Prob[Xt−1 = j] · Prob[Xt = i |Xt−1 = j]. (4.20)

Given a node j , the probabilities for selecting the dth relation, and for transiting
from j to its neighbor i are as follows. Figure4.3b shows the computations of two
conditional probabilities in three-way tensor.

Prob[Yt = d|Xt−1 = j] = Prob[d| j] = qd · ∑n
l=1 a j,l,d

∑n
l=1

∑m
d=1 qd · a j,l,d

, (4.21)

Prob[Xt = i |Xt−1 = j] = Prob[i | j] =
∑m

d=1 qd · a j,i,d
∑n

l=1
∑m

d=1 qd · a j,l,d
. (4.22)

Therefore, by using conditional probabilities, Eqs. (4.12) and (4.13) become:

p(t+1)
i =

n∑

j=1

m∑

d=1

p(t)
j · oi, j,d · q(t)

d · ∑n
l=1 a j,l,d

∑n
l=1

∑m
d=1 q(t)

d · a j,l,d

, (4.23)

q(t+1)
d =

n∑

i=1

n∑

j=1

p(t)
j · ri, j,d ·

∑m
d=1 q(t)

d · a j,i,d
∑n

l=1
∑m

d=1 q(t)
d · a j,l,d

. (4.24)

The iterative formofMutuRank shown inEqs. (4.23) and (4.24) seemed somewhat
complicated. However, similar to any random walk model, we also can represent
MutuRankusing concisematrix notations. To this end,wehave to define twoauxiliary
matrixes V = [−→Vj ]m×1 and U = [−→U j ]n×1, j = 1, . . . , n. V and U are n × m and

n × m dimensional, and they are represented by nm × 1 dimensional vectors
−→
Vj

and n × 1 dimensional vectors
−→
U j , respectively.

−→
Vj = [v j,d ] and −→

U j = [u j,i ] are
defined as:

v j,d = qd ·
n∑

l=1

s j,l,d , u j,i =
m∑

d=1

qd · s j,i,d .

If we let V and U be row-normalized, we have:

Prob(Yt = d|Xt−1 = j) = v j,d , Prob(Xt = i |Xt−1 = j) = u j,i .

Under the tensor operations, Eqs. (4.23) and (4.24) can be simplified as:

−−−→
p(t+1) = O

−→
p(t)V,

−−−→
q(t+1) = R

−→
p(t)U. (4.25)
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Obviously, −→p and −→q of the MutuRank also can be computed by an iterative
algorithm being similar to MultiRank.

4.5 Partition Integration

If we consider a MRN as m independent single-relational network, we can utilize
any community detection method on every slice. As the community partition of each
slice is ready, partition integration takes effect, and it targets at assembling multiple
community partitions as a consensus single community partition. In this section, we
introduce two different kinds of method for partition integration.

4.5.1 Frequent Itemsets Mining Based Method

Berlingerio et al. [4] devised a novel algorithm named frequent pAttern mining-
BAsed Community discoverer in mUltidimensional networkS (ABACUS for short)
for partition integration. ABACUS is able to extract communities fromMRNs based
on frequent closed itemsets mining from single-relational community memberships.

The key to understand ABACUS is how to use transaction model to represent the
results of community partition on each slice. The transaction model builds the bridge
frompartition integration to frequent itemsetsmining. InABACUS, each transaction,
i.e., a record in the transaction database, corresponds to a node, where an item is a
pair (dimension, community), expressing the membership of the node in the various
dimensions. In the field of association analysis, frequent closed itemsets provide
a minimal representation of itemsets without losing their support information. An
itemset X is closed if none of its immediate supersets has exactly the same support
count as X [25]. Therefore, under the transaction model adopted by ABACUS, a
frequent closed itemset consists of a set of nodes, and it represents nodes in this
itemset are frequently grouped together in different slices. As the support count of
an itemset exceeds a pre-defined threshold, nodes in this itemset are extracted as a
community.

Consider a simple MRN with six nodes and three relations. After the community
partition of each slice is ready, the lattice view of pattern mining in ABACUS is
shown in Fig. 4.4. “TID” corresponds to the node ID, and each item corresponds to
a community. For instance, “A=VLDB-1” represents the #1 community in “VLDB”
relation. The mined frequent closed itemsets shown in dotted-lined rectangles are
communities extracted by ABACUS. For example, nodes 1, 2 and 3 share their
memberships to the communities “VLDB-2” and “KDD-1”, which implies they are
closely interrelated.

Although the pattern mining method is novel and enlightening, it leaves us too
many research issues. On the one hand, a large number of studies pointed out that
the frequent patterns [8, 25, 33], i.e., itemsets, are not always interesting, such as the
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Fig. 4.4 An illustration example for ABACUS

famous “coffee–tea” example. Also, interesting patterns might always infrequent. A
set of well-accepted criteria were established for evaluating the interestingness of
patterns, such as lift, cosine, All-confidence, etc., but as a pattern describes a set of
nodes in social networks, how to measure the interestingness from the community
perspective, and thus how to mine them in an efficient manner deserve the deep
research. On the other hand, patterns are always nested and most of them may be
very small. So, how to exploit patterns to discover communities with rationale size,
or even to reveal hierarchical community structures also deserved the future research.

4.5.2 Consensus Clustering Based Method

Consensus clustering, also known as cluster ensemble or clustering aggregation, aims
to find a single partitioning of data frommultiple existing basic partitionings [10, 14,
31]. In the literature, lots of consensus clustering algorithms have been proposed,
such as the graph-basedmethods [23], the co-associationmatrix-basedmethods [10],
the K-means-based methods [31], and other heuristic approaches [9]. However, most
research on consensus clustering focused on text data, and few attentions have been
paid to exploiting consensus clustering for community discovery on graph data.

Recently, Lancichinetti and Fortunato [15] proposed the Algorithm which Inte-
grates Consensus Clustering in a given community detection Method (AICCM for
short) on single-relational networks. Consensus clustering is used by AICCM to
enhance the quality and robustness of any given community detection method. We
introduce the main idea of AICCM by an example as shown in Fig. 4.5. First, it
employed a given community detection method for several times to obtain several
basic partitionings, e.g., (1)–(4) in the left part of Fig. 4.5. Second, it assembled all
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Fig. 4.5 An illustration example for the consensus graph

basic partitionings to get an overall similarity matrix S. Let Hd ∈ {0, 1}n×kd
, 1 ≤

d ≤ m denote a binary membership indicator matrix of a basic partitioning. S is
computed as

S = 1

m
HHT = 1

m

m∑

d=1

Hd(Hd)T . (4.26)

The similarity matrix S can be regraded as an adjacent matrix of a weighted con-
sensus graph illustrated on the right part of Fig. 4.5, where the thickness of each
edge is proportional to its weight. In the consensus graph the cluster structure of the
original network is more visible: the two communities have become “weak” cliques,
with “heavy” edges, whereas the connections between them are quite weak. Inter-
estingly, this improvement has been achieved despite the absence of two inaccurate
partitions H3 and H4. After that, AICCM again applies the same algorithm on this
consensus graph four times to acquire four partitions. If the partitions are all equal,
stop; otherwise, repeat the above steps.

Applying consensus clustering for partition integration on MRNs is straightfor-
ward, when we take the basic partition Hd as the results of community detection on
dth relation. In [26], three graph-based methods [23], including Cluster-based Simi-
larity Partitioning Algorithm (CSPA), HyperGraph-Partitioning Algorithm (HGPA),
and Meta-CLustering Algorithm (MCLA), have been used for partition integration.
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CSPA first assemble basic partitionings as a consensus graph being same as AICCM,
and then apply any community detection method on that graph. HGPA is to reparti-
tion the data using the given clusters as indications of strong bonds, and to formulate
consensus clustering as the hypergraph partitioning problem. Analogously, MCLA
is to group and collapse related hyperedges, and thus to assign each object to the
collapsed hyperedge in which it participates most strongly. The hyperedges that are
considered related for the purpose of collapsing are determined by a graph-based
clustering of hyperedges.

Despite ofmuch above-mentioned research efforts, some research issues still exist.
The computed similarity matrix by CSPA is usually much denser, which would make
the application of any clustering algorithm computationally expensive. HGPA may
be not appropriate if the natural MRN data clusters are highly imbalanced. More-
over, MCLA is more data-dependent, i.e., performing poorly on some benchmark
datasets [29].Meanwhile, the efficiency is always amajor concern of consensus clus-
tering, since it is a combinatorial optimization problem in essence. Therefore, when
facing graph data especially big graph data, how to design both effective and efficient
consensus clustering algorithms for partition integration remains a great challenge.

4.6 Experimental Networks

Over the past few decades, a large amount of real-world single-relational networks
have been published, containing from hundreds of nodes to millions of nodes. A
typical network repository is Stanford large network dataset collection (http://snap.
stanford.edu/data/). However, the public real-world datasets forMRNs are absolutely
rare. To the best of our knowledge, only one dataset named 3T [17] containing mul-
tiple social relationships was collected directly from people’s daily life, but unfor-
tunately, it is now not public to researchers due to privacy concerns. There are com-
monly two ways for researchers to construct MRNs to validate their new methods
or algorithms: using the synthetic data, and constructing MRNs based on attribute
values collected from the real-world websites [4, 6, 7, 20, 28, 32].

The synthetic data is usually simple and relatively smaller, but the ground-truth
is known, which enables researchers to utilize it for basic performance comparison.
Otherwise, MRNs constructed on real-world attributes are often complex and large,
but the ground-truth is unknown. Thus, the internal measures and semantic informa-
tion are often used for performance validation. The DBLP is the most used dataset for
constructing the MRN. Some MRNs can be directly crawled from websites, such as
YouTube used in [28]. In this section, we introduce the technique for constructing
the MRN on DBLP data, which can also be applied to other similar data. Then, we
discuss how to construct MRNs based on forum data.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
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4.6.1 Constructing MRN on DBLP Data

The DBLP becomes the most popular data for performance validation in MRN
research field due to the following reasons. First, the semantic of authors is clear. For
example,Jiawei Han is a well-accepted authority in data mining. Second, the cat-
egories associated with conferences and papers are easier to be obtained. One typical
source for rankings and categories of authoritative conferences in computer science
is the website (http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html).

Publication information on DBLP includes title, authors, reference list (i.e., cita-
tions), conference/journal name, abstract, and classification categories. Based upon
these attributes, many kinds of different MRNs can be constructed. In community
discovery, nodes often correspond to authors, and multiple relations often corre-
spond to categories such as data mining, databases, multimedia, and so on. Thus,
the attributes can be used usually include the publication number of every author
on every category, or citations of an author through a category. So, the key task of
constructing a MRN is how to compute the weight between author in each category,
i.e., relation. Let pi,d and p j,d denote the attribute values of two researchers i and j
on dth category. Tensor A is computed as [6, 7]

Ad
i, j = e−(pi,d−p j,d )2 . (4.27)

A variant of Eq. (4.27) is presented in [32].

Ad
i, j = e

−
(

2(pi,d −p j,d )

pi,d +p j,d

)2

. (4.28)

Although using the difference value to measure the relation strength in MRN is
widely-used, it may not reflect the truth in some cases. For instance, node i is an
famous expert who has published a great many papers in a category, and node j is i’s
studentwhopublished fewpapers. Thus, according toEq. (4.27) or (4.28), the relation
strength between i and j is weak, but they are strongly connected in the real world.
So, how to define the relation strength (or similarity) based on attributes remains an
important issue to be solved. Despite of this, it is interesting to use this technique to
transform multivariate UCI datasets with ground-truth to MRNs. For example, the
Iris dataset has 4 attributes and 150 instances, and it is used to construct a MRN
with 150 nodes and 4 relations by computing the relation strength between instances
on every relations.

4.6.2 Constructing MRN on Forum Data

Online forums (e.g., Google Groups, HardForum, and Tianya) are appealing
places for members of which to communicate due to their openness and freedom.

http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
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Generally, forum data include two categories: the initial article and the reply article.
The initial article is the initiator/organizer of a topic, while a reply article comments
on an initial article or another reply article so as to continue the discussion. There-
fore, given an initial article (i.e., a topic), lots of forum users will be involved into
discussion (i.e., interactions) under that topic. These interactions are indicated by the
replier ID, recipient ID, reply time, and the content contained in each reply article.
Mining text data about discussion articles can reveal multiple hidden interactions
between users, which implicitly forms a MRN.

Wehave conducted some initial researchon forumdata processing (e.g.,Tianya).
In particular, we presented several kinds of measurement models for various inter-
actions between users, including undirected dense/sparse (UDN/USN), interest(IN),
emotion(EN) and similar view networks(SVN) [5, 35], which can be used to con-
structed a MRN on forum data. According to community discovery and evaluation
on each dimension, we obtained some interesting findings. First, though community
structures are not very clear on interest and similar view dimensions, users in the
same group tend to have similar interests or consistent perspectives. Second, the emo-
tional dimension played the most important role among multiple relations, on which
the identified communities are strongly segregated with each other. This implies the
emotional information on forum can better guide the community discovery.

Here, we introduce a possible way for constructing MRNs using the data from
Tianya, a popular bulletin-board service in China. Let each node in theMRN i ⊆ V
corresponds to a registered user ID on Tianya forum, and each edge (i, j) ⊆ E

represents a specific interaction mined from users’ comment activities. Also, Let ni, j

be the number of times that user i writes a comment to user j .
We construct a five-relational network using the data from Tianya, a popular

bulletin-board service in China. Every registered user identification (ID) in Tianya
forum corresponds to a node i ⊆ V in a MRN. Edges (i, j) ⊆ E represent some
social relations between two users that results Tensor A is computed as

Ad
i, j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ni, j + n j,i if (i, j) ∈ EUDN

min(ni, j , n j,i ) if (i, j) ∈ EUSN
∑

p⊆Pi, j
min(ni,p, n j,p) if (i, j) ∈ EIN

trusti, j if (i, j) ∈ EEN

ACi, j if (i, j) ∈ ESVN

(4.29)

where Pi, j is the set of users to whom user i and j together comment. The sign of a
given comment can be defined as positive or negative based on the average semantic
orientation of seed emotional words in the review [30]. If we use Ei, j,k to represent
the emotion value of kth reply from user i to j , the “trust” between user i and user
j , trusti, j , can be defined as

trusti, j =
∑ni, j

k=1 Ei, j,k + ∑n j,i
k=1 E j,i,k

ni, j + n j,i
, (4.30)
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Bu et al. [5] further indicated that the similar user pair should have similar interests
and consistent perspectives to most topics they participate together. So, the attitude
consistency of user i and j , ACi, j is defined as:

ACi, j =
∑

t⊆Ti, j

∑
p⊆Pt

i, j
σ(ξ t

i,p, ξ
t
j,p)

∑
t⊆Ti, j

card(Pt
i, j )

, (4.31)

where ξ t
i,p is the perspective from user i to user p under the topic t . Pt

i, j is a user
set, it includes the users to whom user i and j together comment in the discussion
of topic t . Ti, j is a topic set, it includes the topics which are together discussed by
user i and j . card(·) returns the total number of users in the user set. And σ(x, y) is
a judgment function determined by x and y, which obeys:

σ(x, y) =
{
1 if x > 0.5, y > 0.5 or x < 0.5, y < 0.5

0 otherwise
(4.32)

The range of ACi, j is between 0 and 1, and a higher value corresponds to a greater
degree of attitude consistency of the given user pair to their together-reply top-
ics/users.

Figure4.6a shows a tree structure corresponding to a small thread of depth 4.
Labels denote the user who writes the contribution and valid comments are shown
within the gray region. The post triggers three responses from users A, C and D.

(a) (b) (c)

(d) (e) (f)

Fig. 4.6 An illustration example for the TianyaMRN. a An example of discussion list. b Undi-
rected dense network. cUndirected sparse network.d Interest network. eEmotion network. f Similar
view network
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At the second nesting level, eight comments appear. At the third level, there are still
seven comments and finally, there is one last comment from C . The attitude of every
comment can be represented using + or −, with + denoting a user is supportive to
the viewpoint and− otherwise. The corresponding undirected dense/sparse, interest,
emotion and similar view networks excavated from original thread of comments are
shown in Fig. 4.6b–f respectively. The weight attached to each edge represents the
strength of connections between the corresponding members.

4.7 Summary

This chapter defined the community discovery problem on multi-relational networks
and reviewed representative research on this problem. We start by introducing the
generalized modularity of the MRN, which paves the way for applying modularity
optimization-based community detectionmethods onMRNs.According to the classi-
fication of the mainstreammethod—integration methods, including network integra-
tion, utility integration, feature integration, and partition integration. We introduced
several co-ranking frameworks on MRNs, which could learn the biased weights of
every relations for more precise integrations. We then discussed two typical meth-
ods for the partition integration, including frequent itemsets mining based method
and consensus clustering based method. Last but not the least, due to the lack of
real-world MRNs, we presented several techniques for constructing the MRN based
on both multivariate data and forum data. This provides operational and practical
experimental techniques to MRN-related research.
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Chapter 5
Group Types in Social Media

Luca Maria Aiello

Abstract Dynamics of social systems are the result of the complex superposition of
interactions taking place at different scales, ranging from the pairwise communica-
tions between individuals to the macroscopic evolutionary patterns of the full inter-
action graph. Social communities, namely groups of people originated by any spon-
taneous aggregation process, constitute the mid-ground between such two extremes.
Groups are important constituents of social environments as they form the basis
for people’s participation and engagement beyond their minute dyadic interactions.
Communities in online social media have been studied widely in their static and
evolutionary aspects, but only recently some attention has been devoted to the explo-
ration of their nature. Besides the characterization of online communities along their
spatio-temporal and activity features, the recent advancements in the emerging field
of computational sociology have provided a new lens to study social aggregations
along their social and topical dimensions. Using the online photo sharing community
Flickr as a main running example, we survey some techniques that have been used
to get a multi-faceted description of group types and we show that different types of
groups impact on orthogonal interaction processes on the social graph, such as the
diffusion of information along social ties. Our overview supports the intuition that a
more nuanced description of groups could not only improve the understanding of the
activity of the user base but can also foster a better interpretation of other phenomena
occurring on social graphs.

5.1 Bridging Gaps in the Study of Communities

Most human pleasures have their roots in social life. [...] Much of human suffering as well as
much of human happiness has its source in the actions of other human beings. One follows
from the other, given the facts of group life, where pairs do not exist in complete isolation
from other social relations.

L.M. Aiello (B)

Yahoo Labs, 125 Shaftesbury Avenue, London, UK
e-mail: alucca@yahoo-inc.com
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This is how sociologist Peter Blau introduces the discussion about the structure
of social associations in his famous book “Exchange and Power in Social Life” [11],
acknowledging the pivotal role of groups in providing motivations and rewards for
people in a social ecosystem. Together with dyadic social interactions, groups form
the basis for the social instantiation of any individual.

Given the centrality and pervasiveness of such social structures in our everyday
life, it is no surprise that their transposition in online social media has gained an
explosive and apparently ever-growing success. Besides providing the possibility to
establish pairwise social connections online, social media allow for the creation of
groups (or communities1) that are characterized, depending on the online system
considered, by different properties [30, 40, 44]. As a result, groups in social media
have flourished and they nowadays form a strong basis for user participation and
engagement in online services.

Groups, either online or offline, have been the object of studies in social sciences
for decades and yet, because the notion of group itself hides an enormous variety of
concepts representing as many group types in real life, it is very difficult to provide
a general definition of what a group really is. In fact, a group can be characterized
simply by a social aggregation involving more than a certain number of actors,
as well as by more abstract concepts such as similarity or interdependence of the
members. One of the most well-established interpretation of the meaning of groups
is based on the notion of social identity, an elusive idea that is hard to frame and has
been object of debate and investigation. Social identity is understood by the social
psychologist Henri Tajfel, one of the pioneers of the social identity theory, as the
part of an individual’s self-concept deriving from the membership of a social group,
together with the emotional valuation that the membership may imply [56]. Tajfel has
himself acknowledged that the discussion on what identity is can be often “endless
and sterile” [57] because of the complexity of social interactions that surround an
individual.

On a parallel track, computer science research has partly confirmed some of the
key notions illustrated above through data-driven studies. By intensively investigat-
ing online groups, evidence has been found about the tendency of actors to flock
in communities pushed by a number of reasons including affiliation by similarity,
common interest, conflict with other groups, local proximity, or even just by the need
of defining a distinctive identity with respect to the rest of the population [1–3, 31,
38, 40].

Despite all the efforts spent in the study of online groups, there are still some major
gaps that just recently have begun to be filled to reach a more coherent, complete
and nuanced description of the nature of groups. First, the research community has
mainly considered groups as homogeneous entities, overlooking the fact that groups
are not all created equal, as they emerge by different collective processes and by the

1The distinction between “group” and “community” is very subtle and varies in different research fields. If not specified
differently, we will use the two terms interchangeably in this chapter.
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different motivations of their founders or members. Such lapse has been exasperated
by the tendency of studying different characterizing dimensions of online groups—
temporal, structural, spatial, etc.—in separation. Last, although computer science
research on online groups has corroborated the theories developed in social sciences,
more systematic approaches to the verification of sociological findings with compu-
tational methods have been emerging only very recently [18]. As a consequence, a
thorough exploration of the nature of online groups is still a work in progress, with
still very few systematic approaches to characterize groups along multiple quantita-
tive dimensions.

This chapter aims to present recent work that has been directed to address the
limitations mentioned above. We will describe work that has contributed to compose
the fractiousness within the computer science literature by attempting multifaceted
characterizations of groups. The work we describe also attempts to bridge the gap
with social science studies by operationalizing theories about communities that have
been previously developed in sociology.

Specifically, we will describe a categorization of online groups that considers spa-
tial, temporal (Sect. 5.4) and socio-topical (Sect. 5.5) dimensions for the first time in
combination (Sect. 5.6) and that captures in a computational framework an instantia-
tion of the notion of common identity (as opposed to common bond) that has been for
long time discussed in social sciences. We explore also the implications of the group
size on its activity—in relation with the so-called Dunbar number theory (Sect. 5.8)—
and discuss the relationship between communities that are spontaneously created
by the user base and those that are algorithmically found by community detection
algorithms, based on the density of interactions between actors (Sect. 5.7). Also, to
further support the belief that a nuanced characterization of groups matters, espe-
cially if informed by notions coming from the social sciences, we speculate about
the impact that different group types may have in another important social process
occurring in social networks: information diffusion. We follow the intuition that
the shape information cascades is partly determined by the type of community in
which the piece of information is propagating (Sect. 5.9). Finally, we conclude by
briefly discussing the role of social groups in addressing the micro-macro problem
in sociology (Sect. 5.10).

Along the remainder of the chapter, our main case-study will be Flickr, the world-
famous photo-sharing social platform. The experiments we report have ben run on
a large scale Flickr dataset described in Sect. 5.3. Flickr has a rich set of features
accessible via public API2 including a direct social network, explicit declaration of
groups, annotated content, dyadic conversations, etc. thus being an ideal dataset to
explore different facets of social aggregations.

2https://www.flickr.com/services/api/.

https://www.flickr.com/services/api/
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5.2 Group Characterization in the Literature

Next, to provide a general context of the state of the art on the study of online and
offline groups, we review some of the most notable work in the fields of computer
science and social sciences that have been published around the topic. That will set
the background upon which the following discussion will build on.

5.2.1 Groups in Computer Science

Social online communities have been investigated since the beginning of the social
web. Besides spending efforts in finding empirical evidences to support different
notions of communities [48], researchers have explored groups in relation to several
applications including recommendation and profiling [19, 65]. The static structure, as
well as the evolutionary dynamics of communities have been investigated extensively
over a variety of large-scale and heterogeneous datasets. Extensive evidence has been
produced about the broad distribution of the structural and temporal features of online
social groups [16, 38]. Those characteristics are largely determined by the intrinsic
group fitness [25] and by the density of social ties connecting their members [6].

Groups are extremely varied in terms of their emerging features, from their size [9]
to their purpose [27]. Such variety has triggered a line of research work that attempted
to capture the nature of social groups along several axes, but most often with a lack of
any quantitative framework for their classification. Consequently, the results achieved
in this area are mostly scattered and lack of consistence.

Due to its open nature, Flickr has been the most studied platform in this respect.
Early work identified differences in the usage of Flickr groups through user studies
and interviews [62], concluding that memory, narrative, relationships maintenance,
self-representation, and self-expression are the five main motivations to join a group.
Similarly, later work has come up with several alternative and partially overlapping
classifications [37, 43].

Negoescu and colleagues have been among the main contributors in the study
of Flickr groups. Initially, they manually categorized communities in geographical,
topical, visual, and catch-all [40]. Following this initial categorization, they propose
to detect hypergroups (i.e., groups of groups) based on the similarity of their topical
focus, as determined by LDA [45]; on the opposite, Negi et al. have worked on
splitting large Flickr communities in smaller subgroups using MoM-LDA on photo
tags [39]. Negoescu et al. also analyzed groups in relation to their membership,
with special attention to topicality and to peer-to-peer communication [41]. More
recently they have discussed about how to represent Flickr groups according to the
topics and tags defined by their members [42]. Supported by earlier studies on the
same matter [62], they identify “real” groups as those motivated by self-expression
and relationship maintenance, in contrast with those built around a specific topic
(similarly to the socio-topical split we discuss later).
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Motivated by a conceptual framework defined in earlier work [12], Cox et al. intro-
duced the measure of “groupness” whose formulation takes into account the size of
the group membership, the volume of photos, and the length of group description [16].
They propose to classify groups into topical (focused on a theme), highlighting (to
promote photos to a wider public) and geographical (rooted into a specific geolo-
cation); however their classification is ultimately arbitrary and not supported by any
quantitative result. In partial contrast with previous work [42], their study suggests
that small groups are more important than the big ones to improve social interaction
dynamics because they operate at “human scale.” The work was later extended [28]
and the categorization was manually refined into four categories: location-based,
award, learning, and topical groups.

Prieur et al. discuss the interplay between sociality and topicality in Flickr groups.
By using PCA on a set of group features they detect the main components that
characterize the group type. They find three main dimensions underlying as many
types of groups: social media-use, MySpace-like, and photo stockpiling [47, 50, 51].

Social groups have also been described in terms the engagement of their mem-
bers. From a quantitative perspective, the degree of involvement of the members in
activities related to the group is varied and strongly dependent on group size [8].
Intra-group activity has been characterized in terms of item sharing practices [40],
propensity of people to address other members’ questions [66], or coherence of
discussion topics [22]. Modeling inner activity of groups has helped in finding effec-
tive strategies to predict future group growth [31], recommend group affiliation, or
improve the search experience on social platforms [45].

Groups have been studied also in other online platforms. User interaction patterns
in groups extracted from YouTube, LiveJournal, DBLP, Orkut, and Yahoo Groups
have been investigated in the past [7, 8, 38, 55]. In particular, the tendency to both
topicality and sociality and the small-world nature of group interactions has been
found in YouTube groups by Laine et al., who also envision in future work an analysis
of the interplay between groups and the process of social influence [33].

Besides user-defined groups, the study of automatically detected groups through
community detection algorithms has attracted much interest lately [54]. Detected
communities are meant to represent meaningful aggregations of people where dense
or intense social exchanges take place among their members [26]. Nevertheless, even
if there is a variety of synthetic methods to verify the quality of detected communi-
ties [34], it is unclear whether such artificial groups capture any notion of community,
as perceived by the users. If on the one hand the computation of cluster-goodness
metrics over user-created groups can give useful hints about their structural cohe-
sion [64], on the other hand a direct comparison between user-created groups and
detected communities is still missing, particularly in terms of the amount of social-
ity or topical coherence they embed. Only recently researchers have been trying to
address this question in a more systematic way [27, 29].
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5.2.2 Groups in Social Sciences

Recent work in the field of computational social science tried to characterize com-
munities according to the principles defined by well-known theories from social
sciences. Activity and connectivity are heavily correlated with group size in several
online social platforms [23, 26, 31], with a consistent patterns that recalls Dunbar’s
theory on the upper bound of around 150 stable social relationships for an average
human [21]. Similarity between group members has been identified also as a factor
driving the creation of social communities [59], also because of the tendency of social
agents to aggregate according to the homophily principle [2]. However, similarity is
not necessarily the strongest indicator for group stability or longevity, as diversity
of content shared between group members is a major factor to keep the interest of
members alive [36].

Social and thematic components of communities have been widely studied in
social science, most of all within the common identity and common bond theory that
will be discussed later in this chapter [49, 52, 53]. The principles behind the theory
have never been translated into practical metrics to categorize groups, nor tested on
large datasets, until recently. On the other hand, data-driven studies have investi-
gated social and thematic components separately when characterizing groups [16].
Preliminary insights on the interplay between such dimensions have been given in
exploratory work on Flickr, where signals of correlation between social density and
tag dispersion in groups has been found [51] and where two different clusters emerge
naturally when plotting the groups size against the number of internal links [9].

5.3 The Flickr Case-Study

As mentioned earlier, all the dimensions that we shall investigate in the following
sections are quantitatively measured on a dataset extracted from Flickr. Its wide
variety of user groups, the richness of interaction types, and the openness of the data
make Flickr an ideal platform for this kind of study. Next, we shortly describe the
main features of the dataset.

Users of Flickr can create, moderate and administer their own groups. Most groups
allow users to join without an invite, whereas others are by invitation only and
joining requires the administrator’s permission. We consider a random sample of
500 K public groups created until the end of year 2008. For each of these groups, we
extracted all the public information related to them (retrievable via the Flickr public
API). All the data have been anonymized and processed in aggregate.

First, we collect the public information of group members about their social
interactions:

• Comments. User u comments on a photo of user v. This interaction is mediated
through the photo. We filter out the comments of users on their own photos,
obtaining a total of 238M comments.
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• Favorites. User u marks one of user v’s photos as a favorite. The interaction is
mediated through the favorited photo. We extract 112M favorite interactions.

• Contacts. User u adds user v among his contacts. Social contacts in Flickr are
directed and may be reciprocated. One person can choose another person as his
contact only once and the relation remains in the same state until the contact is
removed. There are 71M contacts in our dataset.

Additionally, we also rely on the information related to specific actions that users
make to interact with the group itself:

• Uploads. User u uploads a photo p to the group photo pool. Flickr groups provide
pools to store pictures related to the group. Pictures can be stored in multiple pools,
but only members of the group can upload a photo to its pool.

• Subscriptions. User u joins the group at a certain time.

Last, we collect photo tags. The primary set of photos from which we extract tags
is the photo pool. In addition, the interactions between members of the group that are
mediated through photos (i.e., comments, favorites) result in two additional photo
sets from which tags are extracted. In the following, we will consider the three tag
sets separately (pool, comments, favorites).
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Fig. 5.1 Distributions (PDFs) of the characteristic dimensions of the dataset. Average values are
reported in the plots. a Number of users in a group; b number of photos in a group pool; c number
of groups a user is subscribed to; d out degree of the follower network induced by the users in our
sample
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The distributions of some of the main dimensions we consider in this study are
reported in Fig. 5.1.

5.4 Space and Time Patterns of Groups

Actions within a group take place in a spatial and temporal context. Especially
in online groups, where members can communicate even from long distance and
maintain connections with relatively low cost, the spatial and temporal patterns can
vary quite much. Next, we identify some metrics that can be used effectively to
characterize communities along space (Sect. 5.4.1) and time (Sect. 5.4.2) [18], and
we use them to classify groups in our Flickr dataset (Sect. 5.4.3).

5.4.1 Spatial Features

The first aspect we take into account is the location, namely the geographical position
of the members or of the photos that are uploaded in the group pool. Geographical
distribution of group members can indeed be correlated with the purpose of the
group, being sometimes very localized (e.g., members of a photography club in the
same city) and sometimes very broad (e.g., the club of Nikon camera owners). In his
study on the geographical distribution of viewers of a given photo, Van Zwol [63]
proposed three metrics to account for geographic sparsity. The first is the average
over the geodesic distance geod between all the pairs of locations (Fig. 5.2a):

geod (lat1, lon2, lat2, lon2)

= 2r arcsin

(√

sin2
(

lat1 − lat2
2

)

+ cos(lat1) · cos(lat2) · sin2
(

lon1, lon2

2

))

,

This metric scales quadratically with the number of points and it could be compu-
tationally prohibitive for large sets of locations. A way to overcome this issue is to
estimate the dispersion by computing the standard deviation for the longitudes and
latitudes separately and use them to build a bounding box around the centroid of the
Cartesian coordinates (Fig. 5.2c). Then the Euclidean distance between the angles
of the bounding box is considered as a measure of geographical dispersion. This
solution however does not consider the rounded surface of the Earth, thus biasing the
results by the latitude: same values at different latitudes could map to very different
distances. A direct solution to solve this problem is to use the geodesic distance
instead (Fig. 5.2c). Still, even if the geodesic distance accounts for the curvature, it
does not consider the Earth as a sphere, as longitude is interpreted as a linear metric
(e.g., two points at the two ends of the Bering strait will be considered very far from
each other).
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Fig. 5.2 Methods to measure dispersion of geolocated points (red dots) on a map. a Average of
pairwise geodesic distances between points. b Diagonal of the bounding box defined by the standard
deviations of latitude and longitude around the center of gravity (blue cross). c Same as (b) but
considering the geodesic distance of the diagonal

Fig. 5.3 Center-of-Earth distance method to measure dispersion of geolocated points (red dots) on
the Globe. Points are translated into spatial Cartesian coordinates. The distance from their centroid
to the center of the Earth (blue segment) is calculated as a measure of dispersion

To address these problems, we use the Center-of-Earth distance (coed ) to directly
measure geographical dispersion (Fig. 5.3). We consider each latitude-longitude pair
as a polar-azimuth angle in the spherical coordinate system centered on the center
of the Earth. We convert all the points into the three-dimensional Cartesian system.
As all the points all lie on the spherical surface, their centroid always lies under
the Earth’s surface. The sparsity is then estimated by the distance of the centroid
to the center of the Earth, normalized by the Earth’s radius so that its range is in
[0, 1]. When just one point is available (or when multiple points overlap), the spread
is maximally narrow (coed = 1), whereas points at the antipodes have a centroid
residing exactly at the center of the Earth (coed = 0), yielding to maximum sparsity.
Last, we apply the arc-cosine to the final value to get an angle that more intuitively
relates to the spreading of points on the spherical surface. This solution addresses all
the limitations of previous approaches because it has linear complexity, it takes into
account the Earth’s curvature and it considers the World as spherical.
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5.4.2 Temporal Features

The temporal footprint of a group is represented by the sequence of events that happen
within its boundaries. In the case of Flickr, for example, a photo upload or a new
member joining the group could be events that compose the group’s temporal trace.

Groups exhibit quite broad temporal patterns and the distributions of events in time
are likely unique for each group instance. For this reason, high-level descriptors of the
event timeline are needed to compare and cluster different groups according to their
temporal profile. To do that, we rely on the statistical properties of the distribution
of the events in time, specifically using four different properties: central tendency,
dispersion, skewness and burstiness. In the following, we consider that all the events
take place in a fixed, large time window [0, T ] that goes from the beginning of the
system under study until the present time. Next, we define their meaning and propose
metrics to capture each of them.

Central Tendency. In statistics, the central tendency or centrality of a distribution
captures the tendency of the data to cluster around a central value. Given a sequence
of timestamps in which group events occurred (t0 · · · tn) ∈ [0, T ], with t0 and tn
being the timestamps of the first and last events in the group, respectively, we define
the central tendency as:

μg = 1

n

n∑

i=0

ti . (5.1)

This value expresses the central tendency of the event distribution in time and it is
represented in the range [0, 1]. Values close to 0 indicate a high concentration of
events at the beginning of the group lifetime, as opposed to a prevalence of events
close to the present time for values approaching to 1.

Dispersion. A distinctive property of a distribution is its dispersion, namely how
stretched or narrow a distribution is. To quantify this notion, we use a corrected
version of the standard deviation that considers events on a normalized timeline:

σg =
√
√
√
√ 1

n − 1

n∑

i=0

(ti − μt
g)

2 1

n(1 − μt
g)μ

t
g

. (5.2)

The range of values is [0, 1]. Groups with high central tendency have low dispersion,
but groups with low dispersion could have also low central tendency. However, a
non-corrected standard deviation would correlate heavily with the central tendency:
a series of events with μg = 0.1 can not have a dispersion higher than 0.5. To
disentangle the two metrics, a correction value is required. For the sake of brevity,
we do not report the mathematical details here, but a mathematical justification of
the correction is reported in the Appendix.
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Skewness. Skewness measures the asymmetry of the distribution with respect to its
mean. It is calculated with the normalized difference between the median and the
mean as follows:

γg = μg − mediang

min(μg, 1 − μg)
. (5.3)

Also in this case, the output values are in the [0, 1] interval. A divergence between the
mean and the median implies a skewed distribution as more elements will have values
that are either smaller or larger than the median. The correction factor introduced
in the denominator ensures the independence between the skewness and the central
tendency, as we detail in the Appendix.

Burstiness. Last, we use a burstiness metric to measure the extent to which the group
events happen simultaneously in big bursts. To capture this notion, we recur to the
inter-event time (Δ

ti j
g = t j − ti , i < j). We refer to Δt

g as the overall series of
inter-event times for a group g. The burstiness is defined as follows:

Δ = log10(μ(Δt
g)) − log10(median(Δt

g)). (5.4)

The mean of all the inter-event times μ(Δt
g) is equivalent to the total time between

t0 and tn , divided by the number of events. The median of the inter-event times has
values in the range [0,μ(Δt

g)]. Series with uniformly separated events have equal
values of μ(Δt

g) and median(Δt
g), whereas groups with a bursty behavior will have

a median(Δt
g) that approaches 0.

5.4.3 Spatial and Temporal Groups in Flickr

Next, we apply the metrics of spatial and temporal characterization to the set of Flickr
groups described in Sect. 5.3.

From the geographical perspective, we characterize groups using the single coed

dispersion metric. However, the metric could be computed on different types of
geolocated data: declared user location (in the user profile or in their IP address) and
photo geotags. We do not consider the user geolocations for two reasons. First, some
users do not provide their position in their own profile; additionally, the IP-based
geolocation could be quite unreliable [63]. Last, our goal is to characterize groups
with the information that is directly related to that group rather than to the users
participating to them. For this reason, we consider the geotags attached to the photos
uploaded to the group instead. As an example, consider a group that gathers tourists
from all over the World who take pictures in Paris. In this case, we rather characterize
the group as geographical narrow, as its focus is a single city, rather than describing
the geographical dispersion of the member’s locations.
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Fig. 5.4 Histogram of the ceod dispersion values of Flickr groups (values transformed in radians)

The application of the geographic dispersion metric with photo geotags yields the
distribution over groups shown in Fig. 5.4. The histogram has a bi-modal distribution
with local maximum around zero that includes the groups containing photos geo-
graphically near, and another local maximum around the 0.85 radians (≈50◦), that
is approximately the angle between Europe and US, which are the two continents
with highest data density. A random sample of photos in the dataset produces a peak
at the same point (not shown), therefore suggesting that groups with those higher
dispersion values are groups where the geographical aspect is not functional to the
purpose of the community.

To transition from a continuous value of coed to a discrete clustering of groups
we apply the X-Means algorithm [46] over the monodimensional space of dispersion
values, to avoid manual thresholding. X-Means is a variant of K-Means that allows
for an automatic discovery of the optimal number of clusters K in a much faster
way than optimizing the parameter K with brute force approaches. Not surprisingly,
two clusters are found. The geo-narrow cluster, contains the 56 % of groups, and the
remaining 44 % belongs to the geo-wide cluster.

The temporal metrics can be instantiated on two types of events, namely users
joining the group and photos being uploaded in the group pool. Combining those two
types of events with the four metrics we use to characterize the event distribution, we
obtain eight distinct features. Similarly to the spatial clustering, we apply X-Means
to this 8-dimensional feature space, obtaining three different clusters.

The average and standard deviation of every feature are shown in Table 5.1. The
three features that are most discriminative are the dispersion and burstiness over users
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Fig. 5.5 Scatter plot of the groups with respect to the three most discriminative features for the
clustering on the temporal dimensions. Bursty groups are depicted in green, evergreen in blue, and
short lived in red

joining the group, and the centrality of the uploaded photos. A scatter plot of these
three features for each cluster is reported in Fig. 5.5. After inspecting the clusters, we
name them evergreen, short-lived and bursty. Next, we report their peculiar features.

Short-lived. The short-lived groups represent 13 % of our sample and are charac-
terized by low centrality and small dispersion. This category includes groups that
experienced a low level of activity after they were created and that became inactive
shortly after. Examples include limited-scope photo sharing groups whose activity
ceases shortly after the photos are uploaded and consumed by small social circles.

Evergreen. The evergreen cluster is the biggest one, containing 52 % of the groups.
Groups in this cluster are characterized by high centrality and by dispersion values
around 0.5. They were created at a certain point in the past and they have been
growing in number of users and photos uniformly until the end of the time period we
consider. Examples include groups dedicated to general topics, such as communities
of amateur and professional photographers interested in artistic portraits.

Bursty. The remaining 34 % of the groups belong to the Bursty cluster, containing
groups with lowest skewness and big burstiness, especially in the number of users
joining. Those groups have usually the highest activity at the beginning of their
life and from time to time they experience photo uploads or user subscriptions in
big batches. Some of these groups are related to recurring (e.g., yearly) events that
regularly attract the attention of users.

The evolution of the number of users and photo uploads for the three most repre-
sentative groups in each class is shown in Fig. 5.6.
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Fig. 5.6 Evolution of each of the three most representative groups in each temporal cluster. Values
on the y-axis are normalized by the maximum values reached at the end of the time window of our
dataset

5.5 Social and Topical Groups

5.5.1 Common Identity and Common Bond Theory

As mentioned in the introduction, well-established sociological studies have defined
a connection between social groups and the process of formation of a social identity
of the individual members [56]. The feeling of identity, or in other words the sense of
belonging to a community, can be indeed very strong even in groups whose members
do not know each other, as group identity can originate merely by defining a collection
of people belonging to the same abstract category [60]. In extreme cases, the sense
of identity can even emerge when members are randomly assigned to arbitrarily-
defined communities [58]. Supporters of a political party, people who suffered from
the same illness, members of a fan club, and people interested in the same hobby are
all examples of groups that are defined by a common identity.

Groups that convey a strong identity are usually resistant to membership turnover,
as individual members are interchangeable as long as the same sense of identity is
preserved. However, this is clearly not the case for all the groups we can think of.
For example, a person can join a group mainly because he has a direct friendship
connection with a member, even without feeling a common identity with the group
as a whole. As a result, if the latter leaves the group, the first is likely to quit as
well [32, 52]. In this case, individual social links, more than an abstract notion of
identity, constitute the backbone that allows the group to survive.
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This duality of the groups’ nature has been captured and discussed by Prentice
in its formalization of the common identity and common bond theory [49] which
states that, depending on the prevalent motivation of people to join, groups can be
categorized as either bond-based or identity-based. Prentice assumes that the two
types of groups have distinct and well-recognizable traits. Identity-based attachment
holds when people join a group based on their interest in the community as a whole
or in a well-defined common theme shared by all the members. Members whose
participation is due to identity-based attachment may not directly engage with anyone
and might even participate without revealing their identity. On the other hand, bond-
based attachment is driven by personal relations with other members, and thus the
main theme of the group may be disregarded. The two processes result in two different
group types; for simplicity of exposition, in the following we will refer to those two
categories as social and topical groups respectively.

In practice, groups can be formed from a mixture of bond- and identity-based
attachment, even though very often they tend to lean on one aspect more. According
to the theory, the group type is related with the reciprocity and the topics of discus-
sion. Members of social groups tend to establish reciprocal interactions with other
members, whereas interactions in topical groups are generally not directly recip-
rocated. Furthermore, topics of discussion in social groups tend to cover multiple
subjects, while in topical groups discussions tend to be related to the group scope,
covering specific topics only. According to the theory, social groups are founded on
individual relationships between their members, therefore it is harder for newcomers
to join and integrate with members that already have strong relationships between
each other. As we discussed, this makes social groups more vulnerable to turnover,
since the departure of a person’s friends may influence her own departure. On the
opposite, topical groups are more open to newcomers and more robust to departures.

In recent years, the theory has been widely commented and elaborated by social
scientists from a theoretical perspective and through small-scale experiments [52, 53,
61], but no rigorous methodology to distinguish the two types has been developed
nor tested on large-scale datasets, until recently [27]. Next, we describe a technique
to detect the group type based on the common identity and common bond theory. The
method contributes to validate the theory itself but provides also a general framework
for automatic classification of user groups in online social media.

5.5.2 From Theory to Metrics

It is possible to construct metrics to differentiate between the two types of groups by
quantifying their reciprocity of interactions, and the topical width of the information
exchanged between group members. Next, we describe: (i) reciprocity metrics, used
to quantifying group sociality, (ii) entropy of terms, to determine how much the topics
of discussion vary within a group, and (iii) activity metrics, to measure the liveliness
of the group. We discuss how these metrics are combined in Sect. 5.5.4, with specific
examples on our Flickr case-study.
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Reciprocity. Reciprocity of interaction happens when a user sends any type of mes-
sage to another user and, subsequently, the recipient responds with a new message.
We define intra-reciprocity of a group g as:

r int
g = E int,rec

g /2

E int,rec
g /2 + E int,nrec

g

, (5.5)

where E int,rec
g and E int,nrec

g are, respectively, the number of reciprocated and non-
reciprocated links internal to the group g. Correspondingly, the inter-reciprocity at
the border of the group is defined by r ext

g , accounting for the reciprocity between
members and non-members.

We normalize the intra-reciprocity score using the average reciprocity value
〈
r int
g

〉

over all groups:

tg = r int
g

〈
r int
g

〉 . (5.6)

The larger the intra-reciprocity, the higher the probability that the group is social.
To compensate for the effect of the correlation between reciprocity and the number
of internal interactions, and to account for local effects, the intra-reciprocity can be
normalized by the inter-reciprocity:

ug = r int
g + 1

r ext
g + 1

. (5.7)

We add 1 to both numerator and denominator to reduce the fluctuations of ug at
low values of r ext

g . This relative reciprocity compares the reciprocity between the
members with their reciprocity towards people not belonging to the group.

Topicality. The set of terms T (g) associated with a group indicates the topical
diversity of the group. Thus we measure the entropy of the group as:

H(g) = −
∑

t∈T (g)

p(t) · log2 p(t), (5.8)

where p(t) is the probability of occurrence of the term t in the set T (g). The higher
the entropy, the greater is the variety of terms and, according to the theory, the more
social the group is. Conversely, the lower the entropy, the more topical the group
is. In addition, since not all groups have the same number of terms and the entropy
value grows with the total number of terms, we introduce the normalized entropy hg ,
which is normalized by the average value of entropy for the groups with the same
number of terms:
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hg = H(g)

〈H( f )〉|T (g)|=|T ( f )|
. (5.9)

Activity. Even if, according to the common identity and common bond theory, activ-
ity is not a discriminative factor to discern social from topical groups, it is useful
to characterize the liveliness of a community. Activity is quantified in terms of the
number of internal interactions normalized by the expected number of internal inter-
actions for a set of nodes with the same degree sequence:

ag = E int
g

(Din
g Dout

g )/E
. (5.10)

Din
g and Dout

g are the total numbers of interactions originated by or targeted to mem-
bers of the group g. E is the total number of interactions in the network. Values
higher than 1 are obtained when the number of interactions internal to the group is
higher than the number of interactions expected in a random scenario with the same
group activity volume.

Another way of measuring activity of a community is to compare density of its
internal interactions with the density of interactions with the external world:

bg = E int
g /(sg(sg − 1))

Eext
g /(2(N − sg)sg)

, (5.11)

where sg is the cardinality of group g and N is total number of nodes in the network.
Values of bg greater than 1 indicate a density of internal interactions higher than the
density interactions between the group and the rest of the network.

5.5.3 Ground Truth of Social and Topical Flickr Groups

The socio-topical dimension we consider is a rather abstract concept; for this reason,
a validation step is needed to check whether our metrics are able to correctly capture
it. We resort to human editors to build a reliable ground truth of topical an social
groups, under the assumption that the human capability of processing the seman-
tics, aesthetics, and sentiment behind text and photos of a group allows for an easy
discernment of social and topical groups. For the labeling, we randomly sampled
groups that have (i) more than 5 members, (ii) more than 100 internal comments,
(iii) relative activities acom

g and bcom
g higher than 102. The third requirement ensures

that the selected groups are active above the expected values in a random case. After
this selection we obtained over 34 K groups. The editors were asked to label groups
after being presented with the following information:
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Group profile. The Flickr group profile consists of the group name, description
by the creator of the group, discussion board, photo pool, and map of places where
photos uploaded to the group pool were taken.

Comments. We provide the text of all the comments that are made between the
group members. Comments are shown in chronological order and are grouped by
thread, if they appear under the same photo. A link to the photo is also provided.

Tags. An alphabetically-sorted list of the 5 most frequent tags attached to the
photos that group members commented on.

Editors were shown the information described above and asked to categorize
groups as either social, topical or unknown. The last case is reserved for groups
for which text is written in a language unknown to the labeler, making the task
impossible to accomplish. Intentionally, no unsure category was allowed to keep the
categorization strictly binary, as the theory does. Some groups can be both topical and
social, and therefore difficult to categorize, but for the sake of clarity and conformity
with the theory we kept the categorization binary. Editors were asked to label groups
based on well-defined guidelines extracted directly from the common identity and
common bond theory [52]. The guidelines involve the inspection of two aspects. First,
editors look at photos and comments based on the intuition that knowing each other’s
real names, spending time together, co-appearing in photos, sharing common past
experiences, referencing mutually known places, and disclosing personal information
are all signals of the presence of a social relationship [15], as opposed to topical
groups, where the atmosphere is supposed to be more formal and impersonal [53].
Last, the editors inspect the photo tags and the group textual description to assess the
semantic coherence that is typical of identity-based groups. Geo-referenced photos
taken in a narrow geographical space can be an indication of high sociality, instead.

If both tags and comments are highly social or topical, then the label choice is
straightforward. If the tags are highly topical and the comments are not social then the
group is labeled as topical, and vice versa. If the tags are a bit topical and comments
highly social then the group is labeled as social. The labelers were asked to read as
many comments they needed to get to a fairly clear decision.

Clarifying examples have been provided to the labelers to facilitate their task.
For instance the “Airlines Austrian” group, tagged with “aircraft”, “airport” and
“spotting”, that contains photos of airplanes from different countries in Europe is a
clear example of a topical group. The “Camp Baby 2008” group, containing photos
depicting people attending an event and interacting with each other with a friendly
attitude is a social one; although the group has a specific topic and, as such, it
contributes to the creation of the identity of its members, its social component is
greatly predominant.

Multiple independent editors are asked to assess the quality of the extracted ground
truth. A total of 101 groups were labeled by 3 people. The inter-labeler agreement,
measured as Fleiss’ Kappa, is 0.60, meaning that there exists good agreement between
labelers. Once high agreement was assessed, we continued with individual labeling
for a total of 565 distinct groups. We find the two types of groups being quite balanced
in number, with around 48 % of social groups. One of the expectations is that bond-
based groups should not be very large, as the human capacity for stable relationships
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is limited (as later discussed in Sect. 5.8). In line with this expectation, we find that
declared groups labeled as social have on average 35 members, whereas groups
labeled as topical have on average 172 members.

5.5.4 Group Type Prediction in Flickr

Before assessing experimentally the predictive power of the metrics, we inspect their
properties to check how much their values differ between groups labeled as social or
topical. In Fig. 5.7, we plot them as a function of the group size, to compare groups
of similar sizes to draw unbiased conclusions.

We spot almost no differences in the number of photos (not shown), favorites,
and contacts (as in Fig. 5.7b, c) between social and topical groups. The number of
comments is, however, around 2 times higher in social groups than in topical groups
of similar size (Fig. 5.7a). More differences are found when looking at relative activity
(Fig. 5.7d–i), which compares the interaction internal to the group with the overall
activity level of users belonging to groups. In all three types of interaction, the relative
activity metrics for social groups yield values from 2 up to over 10 times higher than
for topical groups.

More importantly, we observe large differences in values of reciprocity and rela-
tive reciprocity of comments and favorites. Social groups exhibit significantly higher
reciprocity than topical groups (Fig. 5.7j–o), in line with the theory. There is no dif-
ference in reciprocity of contacts, plausibly because contacts do not strongly reflect
personal relations between connected users. Possibly, since contacts do not need to be
reciprocal, users often “follow” people they do not know and do not actively interact
with. Finally, we observe much higher values of entropy and normalized entropy in
social groups than in topical ones (Fig. 5.7p, q, s, t). This holds for the tags extracted
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Fig. 5.8 Dependence of fraction f of groups labeled as social on various metrics: computed
considering comments, favorites, contacts and photo pools. Each point corresponds to 50 groups

from photos commented, and favorited between members. Assuming that tags of
photos represent topics of interaction, the result is consistent with bond attachment.
It is expected for members of bond-based groups to engage in interactions cover-
ing many different topics, whereas members of identity-based groups focus their
interactions on specific topics. Apparently though, this does not hold for the tags
extracted from photo pool of the group (Fig. 5.7r, u). This might be explained by the
fact that the content of the photo pool does not always reflect well the interactions
and relations between members of the group.

We also look at the fraction of groups labeled as social with respect to their size,
activity, reciprocity, and entropy (Fig. 5.8). The group size correlates negatively, as
expected (Fig. 5.8a). The correlations with the number of interactions and relative
activity ag are quite weak (Fig. 5.8b, c), whereas surprisingly there is a strong cor-
relation on relative activity bg (Fig. 5.8d). For the lowest values of bcom

g , 95 % of the
groups are topical, while for the highest, 80 % of the groups are social. High values of
bg can mean stronger group-focus, or even an isolation of the group members from
the rest of people they interact with. That might relate to the difficulty of joining
bond-based groups due to strong relations existing between their members and to
the high investment that is required to create such relations with them [52]. Direct
reciprocity of interactions, with the exception of contacts, correlates strongly with
social groups (Fig. 5.8e, f). Furthermore, we find that the entropy of tags correlates
with group sociality, but entropy based on other sources does not (Fig. 5.8g). How-
ever, the normalized entropy performs better and correlates strongly when computed
on tags extracted from both comments and favorites (Fig. 5.8h).

The properties of labeled social and topical groups tend to confirm the validity of
the principles identified by the common identity and common bond theory. A stronger
confirmation would directly come from the ability of the defined metrics to predict
the tendency of a group towards sociality or topicality. To this end, we propose and
compare two methods to predict the group type and we test their accuracy over our
ground truth. The easiest approach to use is a linear combination. To do that, we select
the features that directly implement the sociological theory: tg , ug , and hg . Each of
them is computed for the 3 different interaction types and bags of tags, yielding a total
of 9 values. We transform the values into their t-statistics by subtracting the average
and dividing them by the standard deviation. We weight the normalized scores evenly
and we sum them up to obtain a single sociality score Sg . All of the components are
supposed to score high for social groups, therefore the higher the value of the final
score the higher the chance that the group is social rather than topical. To convert
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the score into a binary label, a fixed threshold above which groups are predicted to
be social is selected.

The second approach relies on machine-learning methods trained with the features
we have identified, using the labeled groups in ground truth as training examples. The
classifier outputs a binary prediction for any new group instance defined in the same
feature space. Due to the limited size of our corpus of labeled groups, we estimate the
classifier performance using 10-fold cross validation. We report results on a Rotation
Forest classifier, which performed best in comparison to other popular classification
approaches. For this supervised approach we use a wider set of features than the one
we used in the linear combination, namely: sg , E int

g , ag , bg , tg , ug , H(g), hg , each
applied to the 3 different interaction types and bags of tags. This results in a total
of 22 features. We selected such a wide set of features to test if indeed the metrics
proposed to distinguish between the social and topical groups are the best ones for
the task. The relative predictive power of the features is measured through a feature
selection algorithm.

The ratio of social groups increases quickly with the score Sg , as illustrated in
Fig. 5.9a, suggesting that the features embedded in the score are able to capture the
nature of the groups to some extent. When the score is around zero, groups can be
characterized by a mix of social or topical aspects, and a decision on the predominant
nature of the group is more difficult. If we fix the threshold for the Sg value to perform
a binary group classification, it is clear that several misclassifications will occur,
especially around the threshold value. An example for threshold at 0 is shown in
Fig. 5.9a. Conversely, the classifier performs much better and achieves the ratio that
adheres much more to the actual ratio of social and topical groups.

Both methods, however, fail more frequently for groups with mixed social and
topical features. The prediction accuracies of the classifier and of the score-based
predictions have an evident drop of performance around 0 (Fig. 5.9b). The accuracy
at the extreme values of the score is close to 0.95, while it falls below 0.6 for groups
with a score close to 0. Consistently, this drop occurs also in the pairwise agreement
between human labelers, measured as a ratio of groups that have been given the same
label. Apparently, this is a shortcoming of the binary classification coming from the
common identity and common bond theory itself, rather than of the features or the
prediction framework.

We compare the performance of the two approaches through ROC curves
(Fig. 5.9c), which astray from the selection of a fixed threshold. The curve for the
classifier (computed for the 10-fold cross validation) always performs better, and
this is reflected in the considerably higher AUC value and accuracy, as shown in
Table 5.2.

Finally, to shed light on which are the most predictive features, we rank them
using Chi-square feature selection. The top 5 are, in decreasing order of importance:
hcom

g , tcom
g , ucom

g , hfav
g , and bcom

g . The selected set is the optimal for the prediction
performance: retraining the classifier on such restricted set of features results in stable
performance, as shown in Table 5.2. The top 4 most predictive features correspond
directly to the expectations of the theory. Reciprocity-based metrics and normalized
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Fig. 5.9 Prediction of group type (social vs. topical). a Ratio of groups classified as social (by
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Table 5.2 Group type prediction performance using (i) the score with threshold at 0, (ii) 10-fold
cross validation on a Rotation Forest classifier trained on all the features, or ( iii) the same classifier
trained on the set of top-5 predictive features, according to the Chi Squared feature selection

Method Accuracy AUC

Score 0.763 0.749

Classifier 0.801 0.879

Classifierχ2
top5 0.803 0.872

entropy are significantly more predictive than other features. The high position of
relative activity bcom

g is instead more unexpected.

5.6 Towards a Comprehensive View on Group Types

We have laid down the foundations for a group characterization along the spatial, tem-
poral, and socio-topical aspects separately. A natural question that arises is whether
there are some cross-dimension relationships between group types, or in other words,
if different clusters of groups in one dimension correspond predominantly to some
other type of group in the other dimension. Blending all the metrics in a single
model could be a way to answer the question. However, such unifying approach
would be quite unpractical because of the different nature of the group characteri-
zation problem in different dimensions (clustering for geo-temporal, classification
for socio-topical) and because of the difficult interpretation of a model that blends
together such diverse types of measures.
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Table 5.3 Percentage of groups in each intersection between clusters

Topical Social

Short-lived
( %)

Evergreen
( %)

Bursty ( %) Short-lived
( %)

Evergreen
( %)

Bursty ( %)

Geo-narrow 4.8 15.8 5.7 5.3 10.9 12.7

Geo-wide 1.4 15.5 4.2 1.5 9.7 11.4

For these reasons, we use a more modular and simple approach to analyze groups
along the three dimensions together just by looking at the intersections between
different classes. In this way we obtain an easier interpretation of results. Two spa-
tial (geo-wide and geo-narrow), three temporal (evergreen, short-lived, and bursty),
and two socio-topical (social and topical) classes yield 12 possible combinations of
classes. The relative volume of the Flickr groups in our sample for each of them is
reported in Table 5.3. Interesting patterns emerge. First, social groups have a much
higher ratio of bursty to evergreen groups than the topical ones. This is likely caused
by the type of social behavior: a group of individuals who know each other would
more likely join all the group right after its creation and the group would probably
experience a activity bursts in correspondence to the real-life events of the social
group. Symmetrically, topical groups tend to belong more to the “evergreen” cate-
gory as some topics are indeed not tied to the churn of social groups or to temporal
trends. Last, we can see a relation between short-lived and geo-narrow groups: groups
that live for a short time have way less probability to spread on a big geographical
scale; in other words, geo-width is an indicator of a better chance of the group to
survive longer.

5.7 Declared Versus Detected Groups

Community detection techniques have been largely employed in recent years to
describe the structure of complex social systems [54]. The need for a clearer assess-
ment of the meaning of the detected clusters has been often expressed from different
angles [34, 64], but never completely satisfied by empirical analysis. Here we con-
tribute to shed light on this matter by comparing user-generated groups (declared
groups) with groups detected algorithmically (detected groups).

To automatically find communities, we apply the OSLOM community detection
algorithm [35] over the entire network of social contacts in our dataset. We choose
OSLOM because it detects overlapping communities, which is a natural feature of
real groups. Moreover, OSLOM has performed well in recent community detection
benchmarks [34] and it outperformed other algorithms we tested. OSLOM detected
646 K groups, overall.

First, we check the tendency of detected communities towards sociality or topical-
ity with another round of manual annotation. Three independent annotators labeled
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Fig. 5.10 Overlap between declared and detected groups. Jaccard similarity between the member
sets of declared and detected groups as a function of their sizes in a the actual data, b in a null
model with randomized groups, and c difference between the two. d Histogram of the similarity
values for a sample of groups in the diagonal

126 distinct detected groups obtaining a Kappa value for detected groups around
0.44. The lower agreement than the one reached for the declared groups is partially
determined by the lack of information about the group’s profile, not available for
detected groups. Among detected groups almost 69 % are labeled as social (vs. 48 %
in declared groups).

We then compare the size of declared and detected groups. The size distribution is
heavy-tailed and close to power-laws in both cases (not shown) but declared groups
tend to be much bigger, having on average 61 members versus 7 members in detected
groups. To test if the groups from the two sets overlap, and to what extent, we measure
the Jaccard similarity between their sets of members. Similarity is computed for all
declared-detected group pairs and for each detected group we select the declared one
with the highest similarity value as the best match. We plot the average similarity of
the best matches as a function of the size of groups in Fig. 5.10a. For the purpose of
comparison with a null model, in Fig. 5.10b we draw the same plot after randomly
reshuffling the members of detected groups, while preserving their sizes. We observe
that the two plots differ in values significantly along the diagonal, and that the dif-
ference between them is substantial, as shown in Fig. 5.10c, meaning that indeed
detected groups are, to some extent, similar to the declared ones. Further insights
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are given by the distribution of similarities of pairs of groups extracted from a small
sector of the diagonal, having between 32 and 64 members (Fig. 5.10d). Unlike in the
randomized scenario, there are multiple detected groups which overlap significantly
with declared groups, and that randomized groups do not show this pattern.

We can therefore conclude that, in some cases the community detection algorithm
finds groups which are very similar to the ones defined by the users. Nevertheless,
substantial overlap is found for just a small percentage of groups and most of the
group pairs have similarity close to 0. The average similarity of detected groups to the
best-matching declared groups is 0.082, while for the randomized detected groups
is 0.058, only slightly lower.

Additionally, we picked 50 detected groups among the ones that are the most sim-
ilar to declared groups. These groups have significant overlap with declared groups
and should share similar properties. Indeed, the ratio of groups labeled as social
among them is closer to that of declared groups and equal to 53 %. We conclude that
detected groups are more likely to be social than declared ones. It is a somewhat
expected result, since clustering algorithms detect dense parts of a network, and so
they are inclined to detect areas with more reciprocal connections. Note that the the-
ory envisions more reciprocal relations in social groups. Thus, community detection
algorithms are more likely to find social groups, however, determining to what extent
that happens is not trivial.

5.8 The Barrier of Membership Size

The membership size is another important feature of groups, as group size necessarily
affects the dynamics of interaction between members.

This intuitive concept has been discussed in depth by the anthropologist Robin
Dunbar. In a study he performed in 1992, he measured the correlation between the
neocortical volume of primates and the typical size of their social communities [20].
The limits in the size of social groups of primates has been explained primarily by
the limited amount of time that an individual could dedicate to social grooming in
addition to the organizational issues that arise when communities grow in size and
that can be tackled only by enforcing norms that help to maintain them stable.

By extrapolating from the result obtained on primates, Dunbar theorized that the
limit of community size for human beings should lie roughly in a ballpark of 100–
250, being larger groups too demanding to manage in terms of cognitive efforts for
an average person. The anecdotal figure, often presented as the Dunbar number is
that the maximum size of groups that an individual can manage with reasonable
cognitive effort is 150.

The advent of online social media has provided large dataset to verify this theory
at scale. One of the most notable attempts has been done by Goncalves et al. [23] on
the Twitter by measuring the average social strength ωout

i of each individual i on the
mention network:
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Fig. 5.11 Out-weight ωout
as a function of the
out-degree in a Twitter
mention network. The red
line corresponds to the
average out-weight, while
the gray shaded area
illustrates the 50 %
confidence interval. Figure
and caption taken from the
original publication, courtesy
of the authors [23]

ωout
i (T ) =

∑
i wi j (T )

kout
i

, (5.12)

where wi j is the weight of the edge between users i and j , the weight representing the
number of messages exchanged within a time window T , and kout

i is the outdegree
of user i , namely the overall number of people he has mentioned durint that time
window. In short, ωout represents the amount of attention that the individual pays to
her social partners in a certain time frame. Averaging the value of ωout for all the
users with the same value of kout and plotting the resulting values against kout results
in the trend displayed in Fig. 5.11. The average strength gradually increases until it
reaches its maximum between 100 and 200 contacts, signaling that a maximum level
of social activity has been reached. Beyond that point, an increase in the number of
contacts can no longer be sustained with the same amount of dedication, as Dunbar
theorized.

The strong evidence that supports Dunbar’s theory in the Twitter scenario by
looking at egocentric networks, can be also corroborated with a group-centered per-
spective. If Dunbar’s hypothesis holds, groups that are larger than a certain size will
have much lower interaction density between their members than smaller groups. To
capture that, we use the activity measure ag that we have presented in Sect. 5.5.2 and
that we report again for the reader’s convenience:

ag = E int
g

(Din
g Dout

g )/E
,

where Din
g and Dout

g are total numbers of interactions originated by members of the
group g or being targeted to members of this group, and E is the total number of
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Fig. 5.12 Group activity ag as a function of the group size for Flickr groups. Activity is measured
considering three types of dyadic interactions that might happen inside the group: commenting,
favoriting, and creation of following contacts. For the purpose of comparison, we also recompute
ag in randomized null model where the members of groups are reshuffled but their size preserved

interactions in the network. The overall value is higher than 1 when the number
of intra-group interactions is higher than the same number expected in a random
scenario. When averaging ag among Flickr groups with the same size, similarly
to the analysis that has been conducted on Twitter, we obtain the curve shown in
Fig. 5.12.

We observe that the activity decays almost monotonically by construction of the
metric: the larger the group, the higher the likelihood of the density of its internal
interactions to drop closer to values expected in a random case. However, when
measuring ag for declared groups, a sharp drop of activity occurs for groups with
size between 100 and 250. This clearly means that after a certain size, the density of
activity within the group cannot be sustained given the high number of participants.
When running the same experiment on detected groups, the activity drop is steady
and much more moderate. That happens because community detection algorithms
tend by design to output node clusters with high numbers of connections between
them.

Individuals with thousands of online social contacts are frequent in online social
networks; likewise, groups with a membership size beyond the Dunbar number exist
as well and indeed there is a large number of groups with thousands of members
in Flickr. Those groups however tend either to be pure manifestations of social
identity, representing more “social labels” than actual social aggregations (e.g., the
group of Canon camera owners), or they are necessarily fragmented in smaller, more
active communities. For this reason, when characterizing a group, size is yet another
important feature to take into account to reach an unbiased understanding of the
group’s nature.
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5.9 The Role of Groups in Other Social Phenomena

Similarly to social links, groups are structural constituent of the social fabric that
mediates most of the interaction dynamics between people. For this reason, the struc-
ture of the social network and the phenomena that occur over it are deeply intertwined.
Nevertheless, studies in the areas of graph mining and social network analysis are too
often conducted in separate sub-branches. One example is the relationship between
the study of communities and research on information diffusion. As cleverly noted
by Easley and Kleinberg [17], the phenomenon of information diffusion, namely the
flow of information along social links generating information cascades on a social
network, is likely strongly coupled with the concept of community.

In fact, communities usually aggregate people that share some common trait and
therefore are more similar to each other than to the rest of the network. The more a
community is dissimilar to the external world, the higher the probability of a piece
of information that generates inside it to never cross the group borders. In other
words: “cascades and clusters truly are natural opposites clusters block the spread
of cascades, and whenever a cascade comes to a stop, there’s a cluster that can be
used to explain why” [17].

Recently, this idea inspired the work of Barbieri et al. [10] who leveraged data on
information cascades to detect hidden communities. Given a directed social graph
and a set of information cascades observed over it, they propose a stochastic mixture
membership generative model to detect communities of nodes that can explain such
cascades.

We argue that the process of spreading could be determined also by the type of
communities involved in the process. Intuitively, when a piece of information about
a certain topic reaches a community that is interested in the same topic then the
information will probably spread easily. But what if a social (instead of topical)
community is reached by the information cascade? To shed light on this matter we
have run an experiment to check information cascades in relation to the types of
groups we identified earlier [18]. To do that, we rely on a well-established work
by Cha et al. [13, 14] that uses Flickr to analyze information propagation. They
define the process of information diffusion using the favorite information. A piece
of information propagates from user u1 to user u2 when all the following conditions
hold in a strict temporal order:

1. u2 starts following u1;
2. u1 favorites a photo p;
3. u2 favorites the same photo p.

This experimental framework is motivated by the fact that, in Flickr, users are notified
about the photos that their followees favorite. The information diffusion links can
be used to reconstruct potentially several information diffusion cascades (also called
“diffusion trees”), where the root is a user who favorited a photo without having any
followees who favorited it before.

To explore the relation between cascades and group types, we have to extend the
aforementioned framework by embedding the notion of group. Specifically, we want
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to check whether a photo that is uploaded to a group pool has a diffusion that is
predominantly restricted to that group or spreads beyond the group boundaries. We
consider roots of our diffusion trees all the users that comply with the following strict
temporal sequence:

1. user u joins group g;
2. photo p is uploaded to g;
3. u favorites p.

For each (g, p)|g ∈ G ∧ p ∈ P pair there could be multiple root users, namely
multiple members of the group who are not following each other and who all favorite
the same photo according to the temporal sequence specified above. We connect all
these root users to a common super-root identified by the (g, p) pair. Once the root
nodes are identified, we apply the framework by Cha et al., thus obtaining information
cascades, each labeled by a unique (g, p) pair. Note that a photo could be uploaded
in multiple group pools, thus originating more than one cascade. We consider each
of these possible cascades separately.

The method we propose is limited by the fact that the root user might favorite a
photo not because it has been published in a group but for any other reason (e.g., it
was discovered by random browsing). However, we argue that if the photo has been
uploaded to the pool we can assume it to be relevant to the group and the nature of
the actual action that triggered the first favorite can be safely disregarded in this type
of study.

Given this experimental setup, we compute a pair of values for each cascade.
Consider Ag,p to be the set of adopters, namely the users who take part in the
diffusion tree for the (g, p) pair, and Mg the set of members of group g. We define:

cg,p = |Ag,p ∩ Mg|
|Mg| (5.13)

sg,p = 1 − |Ag,p ∩ Mg|
|Ag,p| (5.14)

The coverage cg,p measures how much the group is covered by the information
cascade, the portion of group membership that is affected by the spreading process.
The external spreading sg,p measure, instead, is designed to capture how much more
the information spreads outside the group. An example of a cascade is given in
Fig. 5.13.

To characterize each group, all the values cg,p and sg,p are averaged for all their
photos, leading to the aggregate values cg and sg . To study how the information
spreads in different group types, we consider the values for each of the group types
separately and we compute the average values at fixed group size, to account for any
effect possibly given by group dimensionality. The results are shown in Fig. 5.14.

On the socio-topical axis, the difference between different types of group is slight
but noticeable, with the topical groups having more coverage and less external spread-
ing (except for a small range of group sizes). This supports the intuition reported in
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Fig. 5.13 Example of diffusion tree for a photo p uploaded into the photo pool of group g. Circles
represent users and the dashed line marks the boundaries of the group. Red circles are the root users.
In this example 8 users out of 20 members are nodes of the diffusion tree, leading to coverageg,p =
0.4. Also, 3 users outside the group are nodes of the tree, for a total tree size of 11 nodes (except
the meta-root), thus leading to externalCoverageg,p = 0.27
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Fig. 5.14 Information diffusion in different group types. Average values of coverage and external
spreading for all groups with same number of members. Groups are analyzed according to the three
dimensions separately (socio-topical on the left, spatial in the middle, and temporal on the right)
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previous work that identifies the boundaries of topical groups as harder to cross by
information cascades. This is somehow expected when members of topical groups
share interests which are narrow enough to be limited predominantly to the groups
members. Conversely, members of social groups do not necessarily share a specific
common interest, therefore their favoriting behaviour is more varied and with higher
chance to have an echo also outside the group. On the geographical dimension instead
the difference is almost negligible, with slightly higher values for geo-wide groups
for both metrics. This might be related to a better capacity of geo-wide groups to
spread information in general.

More evident trends are obtained for the time dimension. On average, the ever-
green groups have more coverage than the short-lived or the bursty, whereas the bursty
groups are the ones with most external spreading. Evergreen groups are always active,
so they get a lot of attention from their members, partially explaining why photos
published in them get more coverage. On the other hand, bursty groups are often
related to major events with broad scope whose photos can be of interest to a large
audience in the Flickr community not restricted to the members only.

5.10 Are Groups the Missing Link Between Atomic
Interactions and Emergent Social Phenomena?

Social networks fall into the category of complex systems, where relationship
between atomic components give rise to an emergent behaviour that cannot be
inferred or modeled directly from the composition of the individual parts. Complex
processes in networks have been studied in several fields including physics, biol-
ogy, and computer science. Also social scientists have been discussing the so-called
micro-macro problem for long time. That refers to the duality (and often the inco-
herence) between the behaviour of an individual actor or of its interpersonal dyadic
relations and the behaviour of the masses. In his book [11] Peter Blau, commented
on this challenge:

The problem is to derive the social processes that govern the complex structures of com-
munities and societies from the simpler processes that pervade the daily intercourse among
individuals and their interpersonal relations.

Later, in an updated introduction to the same book, he states:

I thought that this microsociological theory could serve as a foundation for building a
macrosociological theory; I no longer think this is true. The reason is that microsociological
and macrosociological theories require different approaches and conceptual schemes, and
their distinct perspective enrich each other.

Groups fall exactly in between the micro and macro scales, being manifestation of
a collective identity that emerges from a limited number of individual motivations.
The important role of groups in bridging different scales motivates even more the
need for a nuanced characterization of their multiple facets.
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We have contributed to fill this gap by proposing a set of general metrics to capture
the spatial, temporal, and socio-topical dimensions of groups, which are the three
aspects about groups that have been informally identified in the previous literature
but never formalized and studied in conjunction. We identify two main classes of
spatially-characterized groups (geo-narrow and geo-wide) and discover three major
patterns of their temporal activity (evergreen, bursty, and short-lived). By transposing
the concepts of the common identity and common theory into metrics of reciprocity,
activity, and topical diversity we are able to accurately tell apart social from topical
groups. The analysis of the three dimensions in combination allows us to show
interesting correlations between different classes. In particular, we find that groups
that manage to spread on geographically-large scale are usually more long-lived than
“local” groups, that topical groups tend to have a constant activity behaviour, being
tolerant to the churn of their users, and that social groups have bursty activity traces,
with all the members joining at first and then interacting with each other from time to
time, after relatively long periods of inactivity. We have also discussed the structural
effect that group size in shaping the amount of activity within members, thus giving
to groups of different sizes different relevance to the aspect of the construction of
a social identity versus being vehicles of social bond construction. Last, inspired
by previous work that puts in relation communities and information cascades and
relying on a well-established model of information diffusion on Flickr, we study
the dependency between group type and volume of information spreading inside
or outside a group. We find that social and bursty groups allow the information to
spread crossing the boundaries of groups more than topical and evergreen groups,
that instead tend to retain more information within them.

Besides carrying on detailed studies about all the facets of groups’ structure and
dynamics, it is equally important, as Blau wisely suggests, to corroborate and comple-
ment the findings of studies focusing at the group level by doing research on related
social structures or dynamics. Especially, the socio-topical dichotomy coming from
the principles of the common identity and common bond theory has been spotted also
at the level of social link, without the need of fixing any apriori classes. In our recent
work [4] we focus on dyadic conversations in Flickr (represented by mutual com-
menting on photos), trying to interpret individual conversational exchanges under
the light of Blau’s social exchange theory [11], stating that every dyad is a repeated
set of exchanges of different types of non-material resources such as knowledge,
social support or manifestation of approval. To associate each message to those non-
material resources, we developed a method that combines topic detection with the
analysis of reciprocation in conversations, motivated by the assumption that con-
versations might touch upon several topics but tend to exchange the same type of
resource all along. This assumption has been derived as a theoretical necessity in the
exchange of status [24], has been shown to exist in the case of social support [5].
The interesting aspect of the method is that, differently from classic classification
approaches, the number of resources is not specified in input, allowing the discovery
of the main non-material resources exchanged in any conversation network.

The application of the method on the Flickr conversation network finds two well-
distinct domains, namely the ones of status exchange and social support, the first
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being associated to expression of appreciation or esteem for each other’s work (e.g.,
“very nice shot, you are a good photographer!”) and the second one representing
everyday minute exchange or chit chat with some emotional evaluation (e.g., “how
is your dad? I hope he is feeling better now”). The parallel between the socio-
topical partition of groups is striking and, although the outcomes of the two different
methods have not been directly compared yet in a quantitative way, it is surprising
to get concordant results from an unsupervised method focused on atomic dyadic
interactions and a supervised classification of groups.

Future work aimed at understanding social structures, either online or offline,
should tap right into this direction: different social phenomena such as formation of
groups and diffusion of information should be studied no longer in separation, as they
are manifestations of the same complex entity. In this setting, groups might represent
a key tile to bridge between the micro and macro scales of social interactions.
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Appendix

Correction Parameter for Standard Deviation

Standard formulation of standard deviation is:

σ2 =
√

1

N − 1

∑
(t − μ)2 (5.15)

Given a list N values t that can assume in [0, 1], with a given mean μ the greater
possible standard deviation would be achieved under a Bernoulli distribution with
t = 1 with probability p and t = 0 with probability q. Under these circumstances
we can write:

∑
(t − μ)2 = N · p · (0 − μ)2 + N · q · (1 − μ)2 (5.16)

which, under a Bernoulli distribution, can be rewritten as:

∑
(t − μ)2 = N · (1 − μ) · (0 − μ)2 + N · μ · (1 − μ)2 (5.17)

= N · (1 − μ)μ2 + N · μ(1 + μ2 − 2μ) (5.18)

= Nμ(1 − μ) (5.19)
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Therefore, being Nμ(1 − μ) the maximum value for
∑

(t − μ)2, we use it as nor-
malization factor in Formula 5.2.

Correction Parameter for Skewness

Under a Bernoulli distribution with that assumes value 0 with probability p(0) and
1 with p(1), the mean μ is equal to p(1), while the median is given by:

median =

⎧
⎪⎨

⎪⎩

0 i f p(0) > p(1)

0.5 i f p(0) = p(1)

1 i f p(0) < p(1)

(5.20)

In case p(0) = p(1) = 0.5 the normalization factor is not relevant so mean and
median are equal and the difference would remain the same. In other cases, one can
define the maximum difference (maxdi f f ) given the mean μ as follows:

maxdi f f =
{

1 − μ i f p(0) < p(1)

μ i f p(0) > p(1)
(5.21)

Under a Bernoulli distribution taking values 0 and 1, the mean is equal to p(1). Also,
p(0) is equal to the remaining 1 − μ. Given that, we can rewrite the equation as:

maxdi f f =
{

1 − μ i f 1 − μ < μ

μ i f 1 − μ > μ
(5.22)

that can be finally rewritten as:

maxdi f f = min(1 − μ,μ) (5.23)

which we use it as normalization factor in Formula 5.3.
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Chapter 6
Privacy Issues in Discovering Communities
in Social Networks

Bin Zhou

Abstract In this chapter, we review the literature on privacy issues in social net-
works, with a special focus on communities in social networks. We consider two
scenarios: privacy breach in social network data publishing and privacy breach in
online social networks. We discuss various aspects of privacy issues in social net-
works, and summarize several representative studies on privacy protection techniques
for social networks.

6.1 Introduction

A social network is used to model complex social structures which involve many
participants. Generally, social networks capture their participants and various social
relationships by graph structures using a set of vertices and direct/indirect edges
between vertices. Vertices model individual social actors in a network, while edges
model relationships between social actors.Nowadays,more andmore social network-
ing sites are available online. The fast development of Web 2.0 applications makes
building social connections much more convenient than ever before. As a result,
the research and development of social networks have received dramatic interests in
recent years.

There are different kinds of social networks existing in our daily life. Popular
examples of such social networks include friendship networks, telephone communi-
cation networks, andacademia co-authorship networks, to name a few.Most recently,
the rapidly increasing popularity of online social networking sites (OSN) such as
Facebook and Twitter makes people around the world all connected. A recent survey
study conducted by Social Networking Watch,1 a popular news website for social
media industry, revealed that more than 80% of the world’s internet population use at
least one such online social networking site. For those online social networks, teens

1http://www.socialnetworkingwatch.com.
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and young adults are the heaviest participants. Specifically, 83% of 13–17 years old
people and 74% of 18–29 years old people visit at least one online social networking
site on a daily basis.2

Social networks contain rich information. Users in online social networks often
share detailed user profiles. Various social relationships between users are usually
beneficial to entrepreneurs and commercial companies. In many cases, those social
networks can be served as a customer relationship management tool for compa-
nies selling products and services. For example, retailers such as Amazon is widely
reported to use social networks to promote specific merchandise and expand their
customer bases.3

6.1.1 Community Detection in Social Networks

With the rapid growth of social networks, social network analysis [36, 42] has
emerged as an important technique in modern sociology, economics, geography,
and information science. Due to the complex social structures in social networks,
many interesting knowledge is hidden underneath the graph structures. The funda-
mental objective of social network analysis is thus to discover those hidden social
patterns.

Early studies of social network analysis have focused on analyzing attributes of
individual social actors. However, recent development of social network analysis
has shown that the complex social relationships between social actors are often
more important and informative than the attributes of individual social actors. Many
different types of social network analysis techniques have been developed in the
literature for discovering interesting knowledge from social networks. Among them,
community detection in social networks is one of the most important social network
analysis techniques.

People naturally tend to form groups, within their working environment, family,
or friends. Communities in social networks, sometimes referred to clusters in social
networks, are groups of social actors which probably share some common properties.
Based on different modeling of properties, communities in social network may have
different representations.

For example, Fig. 6.1 represents a simple social network which contains 9 indi-
viduals. Each vertex in the network corresponds to an individual, and two vertices are
linked using an undirected edge if the two individuals are close friends. By analyzing
the graph structure, two communities can be identified, one containing vertices in
grey color, and the other containing vertices in white color. Individuals in the same

2http://www.priv.gc.ca/information/social/index.asp.
3http://www.internetretailer.com/2011/12/27/amazon-had-most-social-media-influence-holiday-
season.

http://www.priv.gc.ca/information/social/index.asp
http://www.internetretailer.com/2011/12/27/amazon-had-most-social-media-influence-holiday-season
http://www.internetretailer.com/2011/12/27/amazon-had-most-social-media-influence-holiday-season
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Fig. 6.1 A simple friendship
network with two
communities. One
community contains vertices
in grey color, and the other
community contains vertices
in white color

Dell

Bob

Harry Irene

Ada

Cathy

Ed

GeorgeFred

community tend to be connected more closely than those from different communi-
ties. As an exception, the individual “Ada” can be considered in either of the two
communities.

6.1.2 Privacy Threats in Social Communities

Identifying communities in social networks can be useful for some concrete applica-
tions. For example, in the network of purchase relationships between customers and
products of many retailers such as Amazon, identifying groups of customers with
similar interests enables those retailers to provide efficient recommendation systems
to promote specific merchandize and enhance their business opportunities. There
are many other important applications of communities in social networks, such as
prediction of social relationships, classification of user behavior, fraud detection, and
data visualization.

On the other hand, as more and more personal data are shared in social networks,
privacy becomes a serious concern in social network analysis. Data privacy is usually
considered as “freedom from unauthorized intrusion” [40]. A privacy breach occurs
when a piece of private information about an individual is disclosed to an adver-
sary, someone whose goal is to compromise privacy [45]. In online social networks,
individuals join voluntarily, and different types of information, most of which are
accessible to many other members of the network, are stored.

To protect their private information, users in social networks may decide to hide
certain types of information, limit the information access to a selected set of users, or
even simply do not share those personal data in social networks. At first glance, those
strategies may be sufficiently enough to protect individual’s privacy in social net-
works. However, partly due to the power of many social network analysis techniques,
a bunch of recent research studies indicate that even if a well-educated individual
discloses little information in social networks, malicious users may still utilize com-
munity structure to infer additional information about the target individual.

A common scenario of privacy breach considered in the social network privacy
research community is when social networks are released to the third-party data
recipients. In this scenario, the publisher of social networks (i.e., the Twitter com-
pany) is trustworthy and social network users are willing to provide their personal



138 B. Zhou

information to the data publisher; however, the trust is not transitive to the data recip-
ients (e.g., the data analysts) who will conduct various data analytical tasks on the
released social networks.

Example 6.1 (Privacy Breach in Social Network Data Publishing) The attackers are
assumed to be equipped with some background knowledge. For example, consider
the social network in Fig. 6.1, the background knowledge could be some pieces of
information that an attacker knows in advance about the individuals in the network.
Let’s assume that the attacker knows the names of each individual in the network. The
attacker also knows that the individual “Ed” lives inWashington,DC.When the social
network is released to the third-party data recipients, some pieces of informationmay
be removed due to privacy concerns. For example, the individual “George” thinks his
location information is private and thus removes his location in the released social
network.

Can the location information of George be inferred from the released social net-
work? In fact, if the attacker conducts a community detection task on the data, the
attacker may find out that George and Ed are in the same community. According to
the assumption that users in the same community may share some common proper-
ties (e.g., live close to each other in this case), the attacker may easily conclude that
George lives in Washington, DC with a high probability.

In the scenario of publishing social network data, attacker’s background knowledge
plays a vital role to develop countermeasures. Based on different assumptions, many
privacy protection techniques have been developed in the literature. Some repre-
sentative studies about privacy protection of social network data publishing will be
reviewed in Sect. 6.3.

A different scenario of privacy breach considered in the social network privacy
research community focuses on those popular online social networking sites. Once
users join those websites, they are able to publish and share their information such as
personal user profiles and various daily activities with their friends in the network.
To enhance privacy protection, those popular online social networking sites such as
Facebook, Twitter and LinkedIn provide users with different privacy settings. These
access control-based privacy settings enable users to place restrictions on who may
view their personal information shared in the networks.

At first glance, privacy settings provide intuitive ways to categorize users into
different groups. Information access in online social networks can be limited to cer-
tain trusted groups of users. However, there are some practical issues when adopting
access control-based privacy settings. One common issue is that privacy settings in
many online social networking sites are often very complex, sometimes even have
contradictions among different privacy rules. Users often find hard time to set up
proper privacy settings. Moreover, several recent studies indicated that some vulner-
abilities exist in those privacy settings. Attackers may abuse those vulnerabilities in
those privacy settings to breach private information.
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Example 6.2 (Privacy Breach in Online Social Networks)Thedefault access control-
based privacy setting in many online social networking sites is to make information
access restricted to directed friends. For example, consider the simple social network
depicted in Fig. 6.1, Ed may only allow his directed friends Cathy, Irene, and George
to view his social activities shared in the network.

However, some popular online social networking sites are continuously reported
to have vulnerabilities in their privacy settings. For example, the introduction of
open APIs to those online social networking sites creates a new way to circumvent
access control settings. A real-life case is Facebook. Facebook released its social
networking API for third-party developers to design various kinds of applications.
However, once a user installed those applications in his/her private profiles, the
third-party developers immediately obtain the privileges of the profile owners and
can query the API for the personal information of the users andmembers of the users’
groups. It is reported in [37] that many users’ hidden dates of birth can be exposed
in Facebook.

Some recent studies also showed that user’s private information protected by
the privacy settings of those online social networking sites can be easily compro-
mised [35]. It is mainly due to the fact that the privacy setting policy provided by
those social networking sites is intrinsically vulnerable. For instance, in many online
social networking sites such as Facebook, Twitter, and LinkedIn, the friend list can
be set to be “protected” which means only direct friends can access the friend list.
However, users in those online social networking sites can configure their privacy
settings independently. As shown in Fig. 6.1, Ed and George are mutual friends. If
George sets his friend list to be “protected” but Ed sets his friend list to be “public”,
an attacker, who does not establish any connections with Ed or George, is still able to
conclude that Ed is one of George’s friends. The friend list of George is not protected
as it claims to be.

There are several other privacy breach scandals of online social networks reported
up to date [20–24, 31]. The above mentioned privacy threats not only apply to
celebrity but also apply to millions of regular users, among which nearly 20% indi-
viduals are teens and young adults whose self-protection consciousness is relatively
weak. The current privacy settings provided by those online social networking sites
are fragile. Several research efforts have been devoted to enhance access control
settings in online social networks, which will be briefly reviewed in Sect. 6.4.

Privacy issue is a broad term in the society. The scope of this chapter focuses
on privacy issues for user communities in social networks, with an emphasis on
understanding potential privacy threats in social networks and practical privacy pro-
tection techniques. It is worth mentioning that there are also some other studies
related to privacy issues in social networks. For example, Frikken and Golle [15]
studied the problem of constructing a graph from individuals who are vertices in the
graph without intruding the privacy of the individuals. Wang et al. [41] proposed
using description logic as a knowledge representation in social network data pub-
lishing. Leskovec and Faloutsos [27] proposed a method to generate a graph fitting
the graph properties of a give graph. The graph generated can be used as a perturbed
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anonymization of the original graph. Another broad research area of privacy issues
in social networks is related to legal compliance [12]. Interested readers may refer
to a few recent survey studies [45, 48] for broader coverage of privacy research in
social networks.

The remainder of the chapter is organized as follows. In Sect. 6.2, we discuss
different types of information that could be considered as privacy in social networks.
In Sect. 6.3, we focus on the privacy threats when social networks are published
to third-party data recipients, and review a set of representative studies on privacy
protection data publishing of social networks. In Sect. 6.4, we provide a discussion
on recent development of enhancing access control-based privacy settings in online
social networks. Finally, Sect. 6.5 concludes this chapter and provides a few emerging
directions for future studies.

6.2 Modeling Privacy in Social Networks

Rich information is contained in social networks. Somemay be public and no privacy
concerns, but some may lead to serious consequences if they are compromised. To
battle privacy attacks and develop preservation techniques in social networks, we first
need to identify theprivate information in social networkswhichmaybe under attack.
In this section, we first discuss a general graph representation of social networks.
Then, we emphasize various models of privacy in social networks.

6.2.1 Graph Representation of Social Networks

Generally, we model a social network as a simple graph G = (V, E, L ,LV ,

LE , H,HV ), where V is a set of vertices, E ⊆ V × V is a set of edges, L is a set of
labels, and H is a set of groups. There exist a labeling functionLV : V → L which
assigns each vertex a label and a labeling function LE : E → L which assigns
each edge a label. There also exists a group assignment function HV : V → H
which assigns each vertex to some groups in the network. A group of vertices can
be regarded as a community in social networks. For a graph G, V (G), E(G), L(G),
LV (G),LE (G), H(G), andHV (G) are the set of vertices, the set of edges, the set
of labels, the vertex labeling function in G, the edge labeling function in G, the set
of vertex groups, and the group assignment function in G, respectively.

In addition, users in online social networking sites are able to publish and share
various social activities such as posting a message or uploading a photograph. We
use A to denote all the possible social activities in online social networks. There is a
mapping function AV : V → A which indicates which individual does what social
activity.
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6.2.2 Definition of Privacy in Social Networks

The privacy issue in relational data has been well studied in the past decade [2]. For
most existing research about privacy protection on relational data, the attributes in a
relational table are usually divided into two categories: non-sensitive attributes and
sensitive attributes. The values of those sensitive attributes are often considered to be
privacy for specific individuals. However, due to complex structures and rich infor-
mation in social networks, modeling privacy in social networks could be much more
challenging. In many large-scale social networks, much more pieces of information
can be considered as privacy of some individuals.

Some existing studies about social network privacy [25, 28, 30, 45, 48] provided
different coverage on modeling privacy in social networks. In this chapter, we follow
our previous work [48] and summarize several common types of information that
can be modeled as privacy in social networks.

• The existence of an individual in the network. In some social networks, whether
a target individual appears in the network or not can be considered as privacy of
the individual. For example, suppose a social network of millionaires is released
where each vertex in the network represents a millionaire. If a target individual
can be determined appearing in the network, an attacker knows that the target
individual must be a millionaire. As another example, a disease infection network
is valuable in public health research. However, if an attacker can determine that
a target individual appears in the network, then the target individual’s privacy of
having the infection is breached.

• Properties of an individual in the network. In many social networks, some
properties of a vertex such as vertex degree, that is, the number of edges associated
with a vertex, can be considered as privacy of the individual. For example, if an
adversary knows the degree of a target individual in a financial support network, the
adversary knows how many support sources the target individual has. As another
example, if an adversary knows the distance between a target individual to the
center of a community in a social network, whether the victim is a community
leader can be easily derived.

• Sensitive labels of an individual in the network. In some social networks, vertices
may carry labels (i.e., there exists a vertex labeling functionLV : V → L). Similar
to relational data, labels of vertices in social networks can also be divided into two
categories: non-sensitive vertex labels and sensitive vertex labels. Therefore, the
values of sensitive vertex labels in social networks are considered to be privacy of
the individuals. For example, in a disease infection network, each individual may
be associated with a sensitive label disease. The disease of a target individual
can be identified by adversaries once the target can be uniquely linked to a vertex
in the graph or a group of vertices having the same sensitive label in the graph.

• The existence of a relationship in the network. In social networks, an edge
between two vertices indicates that there is a relationship between the two cor-
responding individuals. The relationship between vertices can be considered as
privacy of individuals. For example, in a finance transaction network, two vertices
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are connected by an edge if there is a finance transaction happens between them.
An adversary may detect whether two target individuals have any finance trans-
actions by examining whether there exists an edge between the two individuals in
the network.

• Weights associated with a relationship in the network. Some social networks
may be weighted. The weights of an edge can reflect affinity between two vertices
or record the communication frequency between the two individuals. For exam-
ple, a social network about telephone communications between friends may be
weighted such that the weight of an edge is the communication frequency between
two individuals, which may be considered as privacy for some individuals.

• Sensitive labels of a relationship in the network. In some social networks,
edges may carry several labels as well (i.e., there exists an edge labeling func-
tion LE : E → L). Similar to the above case of sensitive labels of an individual,
the labels of relationships may be divided into non-sensitive edge labels and sen-
sitive edge labels. The values of sensitive edge labels are considered as privacy
for the corresponding two individuals. For example, edges in a social network
about communications may be associated with labels such as duration, time,
and communication location. Some labels of the communication could
be categorized as the privacy of individuals.

• Properties of social network structure. In social network analysis, many graph
metrics have been proposed to analyze the social graph structures, such as between-
ness centrality (that is, the degree an individual lies between other individuals in
the network), closeness centrality (that is, the degree an individual is close to all
other individuals in the network directly or indirectly), degree centrality (that is,
the count of the number of relationships to other individuals in the network), the
length of a path (that is, the distances between pairs of vertices in the network),
reachability (that is, the degree any vertex of a social network can reach other ver-
tices of the network), and so on. As all of the above mentioned metrics of the graph
structure indicate the fundamental properties of the individual in the network, they
may be considered as privacy for some individuals.

• Participation of an individual in a group in the network. Users in social net-
works may participate in different communities/groups (i.e., there exists a group
assignment function HV : V → H ). On one hand, the groups in some online
social networking sites may be explicitly listed. For example, a celebrity or an
organization can create a Facebook page. Users can join those pages to participate
in the groups of similar users. On the other hand, several community detection
methods in social network analysis are able to identify hidden communities in
social networks. In many real-life situations, users may not want to disclose the
information that they participate in certain groups in social networks. Thus, the
participation of an individual in some groups may be considered as privacy.

• Unauthorized disclosure of certain social activities in the network.Many social
network users actively publish their social activities. For example, Facebook users
can post their status updates, upload photographs to the website, click the “like”
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button, or comment on others’ activities. Some usersmay only allow certain trusted
friends to view their social activities. Thus, if unauthorized users obtain access to
those restricted social activities, we could consider that as a privacy breach for
those users in social networks.

Many online social networking sites are continuously under development and new
privacy breach scenariosmay arise. Thus, it is important to emphasize that the catego-
rization of modeling privacy in social networks may need to be evolved accordingly.
The above-mentioned list of modeling privacy captures the majority of well-known
privacy breach scenarios studied in the literature. Modeling privacy is important
since it sets up the goal of privacy protection in social networks. Different privacy
concerns may lead to different problem definitions and accordingly different privacy
protection techniques.

Liu et al. [30] and Zheleva and Getoor [44, 45] proposed different categorizations
of modeling privacy in social networks. They classified different types of privacy
in social networks into identity disclosure (that is, the identity of an individual who
is associated with a vertex is revealed), attribute disclosure (that is, the values of
sensitive attributes associated with each vertex is compromised), and link disclosure
(that is, the sensitive relationship between two individuals is disclosed). Zheleva and
Getoor [45] also described affiliation link disclosurewhichmodels the scenario when
an attacker is able to identify whether an individual joins an affiliation group. The
different categorization schema captures similar sets of privacy breach scenarios.
The categorization presented here provides detailed and more extensive categories
comparing to other categorizations [30, 44, 45].

6.3 Privacy Protection in Social Network Data Publishing

To battle privacy attacks in social networks reviewed in Sect. 6.1.2, a bunch of privacy
protection techniques have been developed in the literature. Generally, different pri-
vacy breach scenarios require different privacy protection techniques. In this section,
wewill focus on the privacybreach scenariowhen some social networks are published
to third-party data recipients. In Sect. 6.4, we will discuss some recent developments
regarding privacy breach scenarios in those online social networking sites.

When social networks are published to third parties, the data recipients have full
access to the released data. As many effective techniques of social network analysis
are available to discover interesting knowledge from data, the published social net-
works need to be sanitized to remove certain sensitive and private information. One
common strategy that data publishers can sanitize the data is by conducting a data
anonymization process [2]. The goal of data anonymization is to transform the orig-
inal data to an anonymized version such that the identifying information is removed
and privacy information of individuals is preserved. Meanwhile, the anonymized
data should still be useful for various data analytical tasks.
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Fig. 6.2 A simple anonymization technique to replace the identifying attributes such asname using
meaningless integer identifiers. a The original social network. b The anonymized social network
by replacing names with integer identifiers

However, is it sufficient to protect privacy in social networks by simply replacing
the identifying attributes such as name and SSN4 of individuals using meaningless
unique identifiers? For example, Fig. 6.2b shows the anonymized network where
vertices are associated with some meaningless integer identifiers. At first glance, we
may think privacy is preserved pretty well since the ananymized network only con-
tains a set of vertices and edges without any identifying information. Unfortunately,
several previous studies showed that an adversary may intrude privacy of some vic-
tims using the published social networks and some background knowledge about the
victims [4, 6, 18, 28, 47]. As an illustration, we assume that an adversary knows
that Ada has four friends in the network. Since the vertex with degree 4 is unique in
the anonymized network (the one with identifier 1), the adversary can determine that
vertex with identifier 1 must correspond to Ada. Thus, all the private information
related to this individual could be easily obtained by analyzing the released social
network.

6.3.1 Adversary’s Background Knowledge

The background knowledge of the adversary is an important factor in many privacy
protection research about social network data publishing. Being equipped with dif-
ferent background knowledge, the adversary’s strategy to breach user’s privacy is
different. Due to the complex graph structures of social networks, the adversary’s
background knowledge may be modeled in different ways. Following our previous
study [48], we summarize some different models of adversary’s background knowl-
edge in social networks.

4Social Security Number, which is unique for individuals in USA.
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• Values of attributes for an individual in the network. In social networks, a
vertex may be linked uniquely to an individual based on some attributes. Here
those attributesmay serve as a role similar to quasi-identifier in relational data [10].
Attributes of vertex are often represented as labels in social networks.An adversary
may know some values of those attributes of certain victims.

• Degrees of a vertex in the network. The degree of a vertex in social networks
captures how many other people the corresponding individual is connected to in
the network. Such information is often easy to collect by adversaries. For example,
the neighbor of a target individual may easily estimate the number of friends the
victim has. An adversary equipped with the knowledge about the degree of the
victim can re-identify the target individual from the networks by simply examining
the vertex degrees in the released network.

• Relationship between individuals in the network. An adversary may know that
there are some specific relationships between some target individuals. For example,
in a social network about friendship relationship, edges may carry labels recording
the channels people use to communicate with each other such as telephone, email,
and/or instant message. An adversary may try to use the background knowledge
that a victim uses only emails to communicate with her friends in the network to
link the victim to certain vertices in the network.

• Neighborhood structure of an individual in the network. An adversary may
have the background knowledge about the neighborhood of some target individu-
als. For example, an adversary may know that a victim has four close friends who
also know each other. Using this type of background knowledge, the adversary
may re-identify the victim by searching vertices in the released social graph whose
neighborhood structures contain a clique of size at least 4. Generally, we can con-
sider the d-neighbor of a target vertex, that is, the vertices within a distance d to
the target vertex in the network, where d is a positive integer.

• Certain subgraphs embedded in the network. An adversary may inject certain
well-constructed subgraphs into a social network before the network is publicly
released. After collecting the released network, it is possible for the adversary to
re-identify the embedded subgraph if the subgraph is unique. As shown in [4], the
creation of 7 vertices by an adversary can reveal an average of 70 target vertices
in a large network.

• Properties of graph structure in the network. In social network analysis, the
graph structures have many important metrics, such as betweenness centrality,
closeness centrality, reachability, and so on. Those properties of graph structure
can be used as background knowledge for the adversaries to breach the privacy of
target individuals.

• Group participation of an individual in the network. Groups are available in
many social networks. An adversary may know the list of groups that a target
individual has participated in. The list of groups can be regarded as a signature for
an adversary to re-identify the victims from the released social networks.
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Many existing studies about privacy protection of social network data publishing
make assumptions that the adversary’s background knowledge is limited. When
social networks are anonymized, the privacy protection techniques can only ensure
that the adversarieswith specific background knowledge cannot breach user’s privacy
from the anonymized data. However, there is no guarantee that other adversaries with
different background knowledge cannot breach victim’s privacy. Due to such weak
and sometimes unrealistic assumption, anonymization techniques are often criticized
as not being able to provide strong protection on data privacy. Recently, the differ-
ential privacy model [11, 33] removes the assumption of adversary’s background
knowledge. In general, the differential privacy model ensures that the addition or
removal of a single data item does not substantially affect the distributional informa-
tion for data analysis. It provides a much stronger privacy protection guarantee on
the data. The differential privacy model was originally introduced for relational data.
Recently, the model has been studied in social networks as well [19, 39]. There are
still many challenging issues in the differential privacy model such as its complexity
and applicability. We do not provide discussions on differential privacy model in this
chapter.

6.3.2 Privacy Protection Models and Anonymization
Techniques

Several anonymization techniques have been developed for social networks in the
past several years. As this chapter focuses on user community in social networks,
we need to emphasize that there are few research which directly addresses how
community information can be used to guide the anonymization techniques. Alter-
natively, the anonymization techniques usually assume that the anonymized networks
may be used to analyze the global network structures. In some other situations, the
anonymized networks may be used to analyze the micro-structures. The golden rule
of data anonymization is to anonymize the data such that privacy is preserved and
the utility of the data is retained as much as possible.

In general, if an attacker cannot uniquely distinguish a target individual from
other vertices in the anonymized social networks, the individual’s privacy can be
considered in secure. In this section, we first briefly review several representative
studies on anonymizing social networks, and then discuss whether the anonymized
social networks can still be used for community detection.

To protect the privacy, one common solution is to guarantee that any individual
cannot be identified correctly in the anonymized social network with a probability
higher than 1

k , where k is a user-specified parameter carrying the same spirit in the
popular k-anonymity model in relational data [38]. There are some anonymization
methods based on this idea.
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Fig. 6.3 Anonymized social networks using k-Degree Anonymity and k-Neighborhood
Anonymity. Dashed edges are added to the networks to achieve privacy requirement. a The 2-
degree anonymous network. b the 2-neighborhood anonymous network

• k-Degree Anonymity. Liu and Terzi [28] studied the k-degree anonymization
problem in social networks. The networks are assumed to be without any vertex
or edge labels. They considered the privacy breach scenario where the identities
of individuals associated with vertices are revealed.
To model the background knowledge of an adversary, the authors considered pos-
sible re-identification attacks against individuals by an adversary using the prior
knowledge of the degree of a target vertex. An adversary is assumed to know the
degree of a target victim. By searching the degrees of vertices in the published
network, the adversary may be able to identify the individual, even when the iden-
tities of the vertices are removed before the network is published. For example,
vertex 1 in Fig. 6.2b is under attack since its degree is unique in the network.
In order to battle degree-based attacks, Liu and Terzi [28] proposed the notion of
k-degree anonymity, which mimics k-anonymity in relational data. Specifically, a
graph is said to be k-degree anonymous if for every vertex v in the graph, there
exist at least k −1 other vertices in the graph with the same degree as v. An adver-
sary with degree background knowledge can identify some target individuals with
the probability at most 1

k . For example, the network in Fig. 6.3a is 2-degree anony-
mous. An additional edge connecting vertices 2 and 3 is needed to achieve this
privacy requirement.
For a graph G(V, E), the degree sequence of G, denoted by d, is a sequence of
vertices in the degree descending order. A degree sequence is k-degree-anonymous
if, for each vertex, there are at least other k − 1 vertices having the same degree.
By providing a privacy parameter k, the anonymization method proceeds in two
steps. In the first step, starting from the original degree sequence d, Liu and
Terzi [28] developed a dynamic programming method to construct a new degree
sequence d̂ that is k-degree-anonymous and minimizes the degree anonymization
cost DA(d̂−d) = L1(d̂−d). In the second step, they constructed a graph Ĝ(V, Ê)

such that d̂ is the degree sequence of Ĝ and Ê ∩ E = E . The graph construction
problem is related to the problem of realizing degree sequence with constraints,
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which has been studied extensively in graph theory [17]. In general, the method of
graph construction follows a randomized scheme. To achieve the desired degree
sequence, a randomized edge swap transformation strategy was adopted in [28].

• k-Neighborhood Anonymity. Zhou and Pei [46] considered anonymization in
social networks where each vertex is associated with non-sensitive attributes. An
attacker may have background knowledge about the neighborhoods of victims.
The goal of privacy protection is to protect neighborhood attacks which use neigh-
borhood matching to re-identify vertices.
Zhou and Pei [46] assumed that no fake vertices should be added to the anonymized
graph. This assumption is often desirable in applications since introducing fake
vertices may often change the global structure of a social network. Moreover, they
assumed that the original connections between vertices in G are retained in the
anonymization.
To battle neighborhood attacks, Zhou and Pei [46] extended the k-anonymity
model in relational data to social networks. For a social network G, suppose an
adversary knows the neighborhood structure of a vertex u ∈ V (G), denoted by
NeighborG(u). If NeighborG(u) has at least k isomorphic copies in G ′ where G ′
is an anonymization of G, then u can be re-identified in G ′ with a confidence of
at most 1

k . For example, the network in Fig. 6.3b is 2-neighborhood anonymous.
Two additional edges connecting vertices 2 and 3 and vertices 8 and 9 are needed
to achieve this privacy requirement.
Zhou and Pei [46] introduced a practical greedy method to anonymize a social
network to satisfy the k-neighborhood anonymity requirement in two steps. In the
first step, the algorithm extracts the neighborhoods of all vertices in the network. To
facilitate the isomorphism tests among neighborhoods of different vertices which
will be conducted frequently in anonymization, a simple yet effective neighbor-
hood component coding technique based onminimal DFS code [43] was proposed
which represents neighborhoods in a concise way. In the second step, the algorithm
greedily organizes vertices into groups and anonymizes the neighborhoods of ver-
tices in a group to the same, until the graph satisfies k-neighborhood anonymity.
Due to the well recognized power-law distribution of vertex degrees in large social
networks, a heuristic of starting with those vertices of large degrees is adopted.
The intuition is that in real social networks, those vertices with large degrees are
the ones vulnerable to neighborhood attacks.

• k-Anonymity in Social Networks. Campan and Truta [6] modeled a social net-
work as a simple undirected graph. Moreover, vertices in the network are asso-
ciated with some attributes, which are classified into three categories, identifying
attributes such as name and SSN which should be removed in data publishing,
quasi-identifier attributes such as zipcode and sex which may be used by
an adversary in certain re-identification attacks, and sensitive attributes such as
diagnosis and incomewhich are assumed to be private information. Further-
more, in [6], edges are not labeled.
To protect privacy in social networks, Campan and Truta [6] advocated the k-
anonymity model. Every vertex should be indistinguishable with at least other
k − 1 vertices in terms of both the attributes and the associated structural infor-
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mation such as neighborhood of vertices. The anonymization method disturbs as
little as possible the social networks, both the attribute data associated with the
vertices and the structural information.
The method for anonymizing vertex attributes uses generalization [2], which has
beenwell studied in the relational data. For anonymizing structural information, the
proposed method partitions vertices into clusters in anonymization. To anonymize
edges, vertices in the same cluster are collapsed into one single vertex, labeledwith
the number of vertices and edges in the cluster. The edges between two clusters
are collapsed into a single edge, labeled by the number of edges between them.

There are some other social network anonymization techniques based on the
well-known k-anonymity principle. For example, Zou et al. [49] proposed a
k-automorphism framework to anonymize social networks. Given an original net-
work, the algorithm in [49] converts the network into a k-automorphic network,
which is then published. Cheng et al. [8] developed the k-isomorphism model which
performs data anonymization by forming k pairwise isomorphic subgraphs in social
networks. For other relevant studies on privacy protection of social network data
publishing, readers may refer to some recent survey studies [45, 48].

Anonymization methods change the original network structure in one way or
another. Some pieces of information may be lost during the anonymization process.
One question people may wonder is how useful the anonymized networks are for var-
ious social network analysis tasks. Campan et al. [7] studied how well anonymized
social networks can preserve community structures from the original social networks.
To anonymize social networks, the two models, k-anonymity for social networks [6]
and k-degree anonymity [28]were considered. Campan et al. [7] focused on a specific
community detection methods named Louvain method. This community detection
method is a heuristic algorithm which is based on modularity optimization. In a nut-
shell, themodularity is a quality function that can be computed for a graph partitioned
into communities.

Campan et al. [7] identified communities from the original network and the
anonymized networks based on the k-anonymity for social networks [6] and the k-
degree anonymity [28]. To compare the results of community detection, they counted
how many vertices from the original communities are remained in the same com-
munity in the anonymized networks. Several real social networks were adopted for
evaluation, including Enron (an email exchange network) and YouTube (an online
video sharing network). The results indicated that when k is set to be small (e.g., 5
or 10), the community information for more than 70% of vertices in fact does not
change in the network. The results verified that the anonymized networks actually
preserve the community information pretty well.

6.3.3 Anonymizing Group Participation in Social Networks

In social networks, users can participate in different groups/communities. If the
groups information is explicitly known, the participation between users and groups
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can be modeled as a bipartite graph. The edges in such a bipartite graph may be
considered as privacy. Bipartite graph has different properties comparing to the gen-
eral graph representation discussed in Sect. 6.2.1. In this section, we discuss some
existing studies on anonymizing bipartite graphs.

Generally, a bipartite graphG = (V, H, E) consists of |V |vertices of one type and
|H | vertices of the other type, and a set of |E | edges E ⊆ V × H . When a bipartite
graph is published, the graph structure is retained. The vertices are clustered into
groups and the mapping between groups in the original graph and groups in the
published graph is released. For example, the mapping table may state that vertices
{x1, x2, x3} in the original graph are mapped to {a20, a31, a206} in the published
graph. By devising the mapping properly, privacy of individuals such as whether a
user participates in a group/community can be preserved.

Cormode et al. [9] focused on the problem of anonymizing bipartite graphs. To
model the background knowledge of adversaries, Cormode et al. [9] considered both
static attacks and learned link attacks. If a group of vertices X ⊂ V only connect to
a group of vertices Y ⊂ H , a static attack can immediately obtain the vertices that
those in X connect to. Generally, if very few edges exist between vertices in X and
vertices not in Y , then a learned link attack can obtain the vertices that those in X
connect to with a high confidence. The data utility is measured by the accuracy of
answering aggregate queries, such as the average number of groups participated for
each user in social networks.

Cormode et al. [9] proposed the safe grouping mechanism to protect privacy. A
safe grouping of a bipartite graph partitions vertices into groups such that two vertices
in the same group of V have no common neighbors in H and vice versa. To control
the anonymization granularity, a (k, l)-safe grouping ensures that each group on V
contains at least k vertices and each group on H contains at least l vertices.

A greedy algorithm is developed in [9], which may or may not always find a
safe grouping. The vertices are processed one by one. For each vertex, the algorithm
checks whether it can be put into an existing group without breaking the safety. If
yes, it is added into a group. Otherwise, a new group is created. After all vertices are
processed, there may be some groups with fewer than k vertices. Those vertices are
collected and the algorithm continues to run on the collection with a larger group
size threshold, say (k + 1). The iteration continues until either a safe grouping is
found or the group size threshold exceeds the number of vertices in the collection of
vertices to be partitioned. In the latter case, the algorithm fails.

6.4 Privacy Settings in Online Social Networks

As elaborated in Sect. 6.1, privacy breaches may also exist due to improper privacy
settings in those online social networking sites. In recent years, the development of
user-friendly, fine-grained tools for protecting personal information is an emerging
problem in online social networks [1, 34].
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Users in online social networking sites can easily share their informationwith oth-
ers. Meanwhile, many users typically do not want to disclose all of their information
with everyone else. As a result, the access control-based privacy settings become a
popular method adopted by many online social networking sites. Users are able to
customize their own privacy settings to meet their privacy protection expectations.
For example, Facebook has a specific “Privacy Settings” page for each user. Individ-
uals in Facebook can specify which pieces of information each friend is permitted to
view. Facebook also provides a functionality to allow users to partition their friends
into different groups. The privacy settings can specify whether pieces of information
are visible to all of their friends or only a selected groups of friends.

Although the privacy settings provide intuitive ways to customize users’ different
privacy protection expectations, there are some important issues which need to be
considered thoroughly. Grandison and Maximilien [16] broadly categorized the pri-
vacy settings and access control issues in the current online social networking sites
as follows.

• Data partitioning, that is, how should user’s data be partitioned into exchangeable
granular pieces? To address this issue, we need to consider requirements from both
end-users as well as different applications in online social networks.

• Privacy settings, that is, what level of granularity is required for privacy settings?
Data should be partitioned and privacy levels should be set up properly so that the
privacy settings are easy and effective. Moreover, multiple applications may share
privacy settings on the same set of user’s data. Then, the communication among
applications should be effective so that no privacy is violated.

• Management, that is, how privacy settings and data are managed? This involves
three different operations. The first one is monitoring the changes of data and
privacy settings. The second one is enforcement. For example, howprivacy settings
are enforced in different applications? The last one is sharing. For example, how
are settings shared amongst users of a group?

In reality, people always find they struggle to express and maintain proper privacy
settings in those popular online social networking sites. Some survey studies indi-
cated that the user interfaces of privacy setting pages are complex and not user-
friendly [34]. Creating groups of friends and assigning different privacy settings for
different groups are often a manual process. If a user has many friends in those sites,
the process of such manual privacy settings is very time-consuming.

Some recent studies developed machine learning methods to automatically create
groups of friends and set up proper privacy settings for social network users. For
example, Fang and LeFevre [13] proposed a privacy wizard for those online social
networking sites. The goal of the privacy wizard is to ease user’s burden and auto-
matically customize a user’s privacy settings. The privacy wizard is based on the
intuition that users often conceive their different privacy settings using a set of pri-
vacy preferences. Specifically, the framework of the privacy wizard takes a limited
amount of user input which describes user’s privacy preferences. In the most general
case, this is in the form of questions and answers. Users can assign privacy labels
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such as “allow” or “deny” to selected friends. Then, a machine learning model such
as classification can be constructed to automatically assign privacy privileges to the
remaining friends in the network.

In specific scenarios, even though an individual has set up proper privacy settings,
the adversary may rely on some other techniques, such as information inference, to
obtain private information from online social networks. A concrete example of such
inference privacy attack is illustrated in Example 6.1. The inference privacy attack is
a challenging problem. The PrivAware system [5], which is a Facebook application
used to score the privacy configuration for a user’s profile, provided some initial
analysis toward quantifying the risk of privacy inference. As a possible solution, the
authors [5] suggested that it is necessary to remove certain relationships in social
networks to reduce the inference risk.

In addition to privacy settings, some other functionalities provided by those online
social networking sitesmay bring privacy concerns aswell. For example, some online
social networking sites allow a functionality called “lookahead”, that is, a user can
reach the neighbors of her/his neighbors, and so on. To understand the side-effect
of lookahead on privacy breach, Korolova et al. [26] considered attacks aiming at
knowledge of a significant fraction of the links in the network. It has been shown that
if an attacker can subvert some user accounts, and look ahead using those accounts,
she/he can use the information obtained from a small number of accounts to intrude
privacy of a large number of links in the network. To protect the link privacy of users,
a social network should have to be very careful in managing lookahead operations.
Probably only 1 or 2 steps lookahead are allowed.

In recent years, several reports also revealed that privacymaybe breached in online
social networking sites due to unappropriate design of social networkingAPIs. Social
networkingAPIs integrate third-party content into the social networking site and give
third-party developers access to user’s data. These open interfaces enable popular
site enhancements but at the same time pose serious risk on privacy by exposing
user data to third-party developers. Felt and Evans [14] explored the privacy risks
associated with social networking APIs. They presented a privacy-by-proxy design
for a privacy preserving API that is motivated by an analysis of the data needs and
uses of Facebook applications. Their study of 150 popular Facebook applications
indicates that nearly all applications can achieve their functionalities using a limited
interface that only provides access to an anonymized social graph and placeholders
of user’s data. Most recently, there has been a flood of malicious Facebook apps that
steal user’s personal information for various malicious purposes such as spam and
identity attacks. Rahman et al. [32] analyzed more than 100K apps in Facebook and
found out that 13% of those apps are in fact malicious. The fighting with malicious
apps in many online social networking sites is emerging.

There are some other recent privacy studies related to graph structures of online
social networks and user communities. For example, Liu and Terzi [29] proposed
a methodology of privacy score for quantifying the risk posed by a user’s privacy
settings. The privacy score indicates the potential privacy risk caused by his partic-
ipation in the network. Liu and Terzi [29] considered two dimensions to define the
privacy score: whether the information revealed by a user is sensitive, and whether
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the disclosed information is visible to a large amount of users in the network. Akcora
et al. [3] proposed a riskmeasure for those online social networking sites. The goal of
the risk measure is to provide a quantifying way to evaluate whether it might be risky
to disclose certain information with others. The proposed risk measure considers
user’s risk attitudes and some user behavior measures.

6.5 Conclusion

In this chapter, we briefly reviewed several privacy issues for communities in social
networks. Two privacy breach scenarios, one for social network data publishing and
another for privacy settings in online social networking sites, were studied. For the
first scenario, we examined the privacy protection techniques based on several impor-
tant dimensions: the definition of privacy, background knowledge, privacy protection
model, and utility of the anonymized data. For the second scenario, we discussed
some recent developments on enhancing privacy settings in online social networks.

The current research and development of privacy protection in social networks
is still far from perfect. As reviewed in the chapter, many existing techniques have
their limitations and cannot be generalized to address all types of privacy threats in
social networks. As social networks contain rich information and the graph structure
is much more complicated comparing to the relational data, privacy protection in
social networks is much more challenging and needs many serious efforts in the
near future. Particularly, modeling adversarial attacks and developing corresponding
privacy protection strategies are crucial.
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