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Preface

This volume contains papers presented at the 10th International Conference on Security
and Privacy in Communication Networks, held in Beijing, China, during September
24–26, 2014. The conference was organized by the Institute of Information Engi-
neering, Chinese Academy of Sciences, China.

The main track received 98 submissions, and after a doubly anonymous review
process, 27 regular papers and 17 short papers of high quality were selected. The book
also includes 22 papers accepted for four workshops (ATCS, SSS, SLSS, and DAPRO)
in conjunction with the conference, 6 doctoral symposium papers, and 8 posters. We
were helped by 42 Program Committee members for the main track. In this respect,
special thanks are due to the TPC members for their handling of the challenging, heavy,
and rewarding task of selecting the papers to be included in the proceedings.

This volume highlights and addresses several key challenges in the area of security
and privacy in networks. The papers have been grouped into the following topics:

– Security and Privacy in Wired, Wireless, Mobile, Hybrid, Sensor, and Ad Hoc
Networks;

– Network Intrusion Detection and Prevention, Firewalls, and Packet Filters;
– Malware, Botnets, and Distributed Denial of Service;
– Communication Privacy and Anonymity;
– Network and Internet Forensics Techniques;
– Public Key Infrastructures, Key Management, and Credential Management;
– Secure Routing, Naming/Addressing, and Network Management;
– Security and Privacy in Pervasive and Ubiquitous Computing, e.g., RFIDs;
– Security and Privacy for Emerging Technologies: VoIP, Peer-to-Peer and Overlay

Network Systems;
– Security and Isolation in Data Center Networks;
– Security and Isolation in Software Defined Networking.

The audience of this volume may include professors, researchers, graduate students,
and professionals in the areas of network security, cryptology, information privacy and
assurance, as well as network and Internet forensics techniques. The book also
addresses administrators, programmers, IT managers, or just readers who cannot pro-
tect themselves if they do not know the protection techniques of network and privacy.

January 2015 Jiwu Jing
Mudhakar Srivatsa
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Abstract. Enterprise networks are migrating to the public cloud to
acquire computing resources for promising benefits in terms of efficiency,
expense, and flexibility. Except for some public services, the enterprise
network islands in cloud are expected to be absolutely isolated from
each other. However, some “stealthy bridges” may be created to break
such isolation due to two features of the public cloud: virtual machine
image sharing and virtual machine co-residency. This paper proposes
to use cross-layer Bayesian networks to infer the stealthy bridges exist-
ing between enterprise network islands. Prior to constructing cross-layer
Bayesian networks, cloud-level attack graphs are built to capture the
potential attacks enabled by stealthy bridges and reveal hidden pos-
sible attack paths. The result of the experiment justifies the cross-
layer Bayesian network’s capability of inferring the existence of stealthy
bridges given supporting evidence from other intrusion steps in a multi-
step attack.

Keywords: Cloud · Stealthy bridge · Bayesian network · Attack graph

1 Introduction

Enterprises have begun to move parts of their networks (such as web server, mail
server, etc.) from traditional infrastructure into cloud computing environments.
Cloud providers such as Amazon Elastic Compute Cloud (EC2) [1], Rackspace
[2], and Microsoft’s Azure cloud platform [3] provide virtual servers that can be
rented on demand by users. This paradigm enables cloud customers to acquire
computing resources with high efficiency, low cost, and great flexibility. However,
it also introduces some security issues that are yet to be solved.

A public cloud can provide virtual infrastructures to many enterprises.
Except for some public services, enterprise networks are expected to be like iso-
lated islands in the cloud: connections from the outside network to the protected
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 3–23, 2015.
DOI: 10.1007/978-3-319-23829-6 1
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Fig. 1. The attack scenario

internal network should be prohibited. Consequently, an attack path that shows
the multi-step exploitation sequence in an enterprise network should also be con-
fined inside this island. However, as enterprise networks migrate into the cloud
and replace traditional physical hosts with virtual machines, some “stealthy
bridges” could be created between the isolated enterprise network islands, as
shown in Fig. 1. Moreover, with the stealthy bridges, the attack path confined
inside an enterprise network is able to traverse to another enterprise network in
cloud.

The creation of such “stealthy bridges” is enabled by two unique features
of the public cloud. First, cloud users are allowed to create and share virtual
machine images (VMIs) with other users. Besides, cloud providers also provide
VMIs with pre-configured software, saving users’ efforts of installing the software
from scratch. These VMIs provided by both cloud providers and users form a
large repository. For convenience, users can take a VMI directly from the repos-
itory and instantiate it with ease. The instance virtual machine inherits all the
security characteristics from the parent image, such as the security configura-
tions and vulnerabilities. Therefore, if a user instantiates a malicious VMI, it’s
like moving the attacker’s machine directly into the internal enterprise network,
without triggering the Intrusion Detection Systems (IDSs) or the firewall. In this
case, a “stealthy bridge” can be created via security holes such as backdoors.
For example, in Amazon EC2, if an attacker intentionally leaves his public key
unremoved when publishing an AMI (Amazon Machine Image), the attacker can
later login into the running instances of this AMI with his own private key.

Second, virtual machines owned by different tenants may co-reside on the
same physical host machine. To achieve high efficiency, customer workloads
are multiplexed onto a single physical machine utilizing virtualization. Virtual
machines on the same host may belong to unrelated users, or even rivals. Thus co-
resident virtual machines are expected to be absolutely isolated from each other.
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However, current virutalization mechanisms cannot ensure perfect isolation. The
co-residency relationship can still enable security problems such as information
leakage, performance interference [4], or even co-resident virtual machine crash-
ing. Previous work [5] has shown that it is possible to identify on which physical
host a target virtual machine is likely to reside, and then intentionally place
an attacker virtual machine onto the same host in Amazon EC2. Once the co-
residency is achieved, a “stealthy bridge” can be further established, such as
a side-channel for passively observing the activities of the target machine to
extract information for credential recovering [6], or a covert-channel for actively
sending information from the target machine [8].

Stealthy bridges are stealthy information tunnels existing between disparate
networks in cloud, that are unknown to security sensors and should have been
forbidden. Stealthy bridges are developed mainly by exploiting vulnerabilities
that are unknown to vulnerability scanners. Isolated enterprise network islands
are connected via these stealthy tunnels, through which information (data, com-
mands, etc.) can be acquired, transmitted or exchanged maliciously. Therefore
stealthy bridges pose very severe threats to the security of public cloud. However,
the stealthy bridges are inherently unknown or hard to detect: they either exploit
unknown vulnerabilities, or cannot be easily distinguished from authorized activ-
ities by security sensors. For example, side-channel attacks extract information
by passively observing the activities of resources shared by the attacker and
the target virtual machine (e.g. CPU, cache), without interfering the normal
running of the target virtual machine. Similarly, the activity of logging into an
instance by leveraging intentionally left credentials (passwords, public keys, etc.)
also hides in the authorized user activties.

The stealthy bridges can be used to construct a multi-step attack and facil-
itate subsequent intrusion steps across enterprise network islands in cloud. The
stealthy bridges per se are difficult to detect, but the intrusion steps before and
after the construction of stealthy bridges may trigger some abnormal activities.
Human administrators or security sensors like IDS could notice such abnormal
activities and raise corresponding alerts, which can be collected as the evidence
of attack happening1. So our approach has two insights: (1) It is quite straightfor-
ward to build a cloud-level attack graph to capture the potential attacks enabled
by stealthy bridges. (2) To leverage the evidence collected from other intrusion
steps, we construct a cross-layer Bayesian Network (BN) to infer the existence
of stealthy bridges. Based on the inference, security analysts will know where
stealthy bridges are most likely to exist and need to be further scrutinized.

The main contributions of this paper are as follows:
First, a cloud-level attack graph is built to capture the potential attacks

enabled by stealthy bridges and reveal possible hidden attack paths that are
previously missed by individual enterprise network attack graphs.

1 In our trust model, we assume cloud providers are fully trusted by cloud customers.
In addition to security alerts generated at cloud level, such as alerts from hypervisors
or cache monitors, the cloud providers also have the privilege of accessing alerts
generated by customers’ virtual machines.
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Second, based on the cloud-level attack graph, a cross-layer Bayesian net-
work is constructed by identifying four types of uncertainties. The cross-layer
Bayesian network is able to infer the existence of stealthy bridges given support-
ing evidence from other intrusion steps.

2 Cloud-Level Attack Graph Model

A Bayesian network is a probabilistic graphical model that is applicable for
real-time security analysis. Prior to the construction of a Bayesian Network, an
attack graph should be built to reflect the attacks enabled by stealthy bridges.

2.1 Logical Attack Graph

An attack graph is a valuable tool for network vulnerability analysis. Current
network defenders should not only understand how attackers could exploit a
specific vulnerability to compromise one single host, but also clearly know how
the security holes can be combined together for achieving an attack goal. An
attack graph is powerful for dealing with the combination of security holes. Tak-
ing vulnerabilities existing in a network as the input, attack graph can generate
the possible attack paths for a network. An attack path shows a sequence of
potential exploitations to specific attack goals. For instance, an attacker may
first exploit a vulnerability on Web Server to obtain the root privilege, and then
further compromise Database Server through the acquired privilege. A variety of
attack graphs have been developed for vulnerability analysis, mainly including
state enumeration attack graphs [12–14] and dependency attack graphs [15–17].
The tool MulVAL employed in this paper is able to generate the logical attack
graph, which is a type of dependency attack graph.

Figure 2 shows part of an exemplar logical attack graph. There are two types
of nodes in logical attack graph: derivation nodes (also called rule nodes, repre-
sented with ellipse), and fact nodes. The fact nodes could be further classified
into primitive fact nodes (in rectangles), and derived fact nodes (in diamonds).
Primitive fact nodes are typically objective conditions of the network, including
network connectivity, host configuration, and vulnerability information. Derived
fact nodes represent the facts inferred from logical derivation. Derivation nodes

26: networkServiceInfo(web
Server, openssl,tcp,22,_)

27: vulExists(webServer, ’CVE -2008-
0166’, openssl, remoteExploit, privEscalation)

22 :Rule (remote exploit of a server program)

14: execCode(webServer,root)

23 :netAccess( webServer,tcp,22)

...

...

Fig. 2. A portion of an example logical attack graph
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represent the interaction rules used for derivation. The directed edges in this
graph represent the causality relationship between nodes. In a logical depen-
dency attack graph, one or more fact nodes could serve as the preconditions of a
derivation node and cause it to take effect. One or more derivation nodes could
further cause a derived fact node to become true. Each derivation node repre-
sents the application of an interaction rule given in [19] that yields the derived
fact.

For example, in Fig. 2, Node 26, 27 (primitive fact nodes) and Node 23
(derived fact node) are three fact nodes. They represent three preconditions
respectively: Node 23, the attacker has access to the Web Server; Node 26, Web
Server provides OpenSSL service; Node 27, Openssl has a vulnerability CVE-
2008-0166. With the three preconditions satisfied simultaneously, the rule of
Node 22 (derivation node) can take effect, meaning the remote exploit of a server
program could happen. This derivation rule can further cause Node 14 (derived
fact node) to be valid, meaning attacker can execute code on Web Server.

2.2 Cloud-Level Attack Graph

In the cloud, each enterprise network can scan its own virtual machines for exist-
ing vulnerabilities and then generate an attack graph. The individual attack
graph shows how attackers could exploit certain vulnerabilities and conduct a
sequence of attack steps inside the enterprise network. However, such individ-
ual attack graphs are confined to the enterprise networks without considering
the potential threats from cloud environment. The existence of stealthy bridges
could activate the prerequisites of some attacks that are previously impossible
in traditional network environment and thus enable new attack paths. These
attack paths are easily missed by individual attack graphs. For example, in
Fig. 1, without assuming the stealthy bridge existing between enterprise A and
B, the individual attack graph for enterprise B can be incomplete or even not
established due to lack of exploitable vulnerabilities. Therefore, a cloud-level
attack graph needs to be built to incorporate the existence of stealthy bridges in
the cloud. By considering the attack preconditions enabled by stealthy bridges,
the cloud-level attack graph can reveal hidden potential attack paths that are
missed by individual attack graphs.

The cloud-level attack graph should be modeled based on the cloud structure.
Due to the VMI sharing feature and the co-residency feature of cloud, a public
cloud has the following structural characteristics. First, virtual machines can be
created by instantiating VMIs. Therefore virtual machines residing on different
hosts may actually be instances of the same VMI. In simple words, they could
have the same VMI parents. Second, virtual machines belong to one enterprise
network may be assigned to a number of different physical hosts that are shared
by other enterprise networks. That is, the virtual machines employed by different
enterprise networks are likely to reside on the same host. As shown in Fig. 3,
the vm11 on host 1 and vm2j on host 2 may be instances of the same VMI,
while vm12 and vm2k could belong to the same enterprise network. Third, the
real enterprise network could be a hybrid of a cloud network and a traditional
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network. For example, the servers of an enterprise network could be implemented
in the cloud, while the personal computers and workstations could be in the
traditional network infrastructure.

Fig. 3. Features of the public cloud structure

Due to the above characteristics of cloud structure, the model for the cloud-
level attack graph should have the following corresponding characteristics.

(1) The cloud-level attack graph is a cross-layer graph that is composed of three
layers: virtual machine layer, VMI layer, and host layer, as shown in Fig. 4.

(2) The virtual machine layer is the major layer in the attack graph stack. This
layer reflects the causality relationship between vulnerabilities existing inside
the virtual machines and the potential exploits towards these vulnerabilities.
If stealthy bridges do not exist, the attack graph generated in this layer is
scattered: each enterprise network has an individual attack graph that is
isolated from others. The individual attack graphs can be the same as the
ones generated by cloud customers themselves through scanning the virtual
machines for known vulnerabilities. However, if stealthy bridges exist on
the other two layers, the isolated attack graph could be connected, or even
experience dramatic changes: some hidden potential attack paths will be
revealed and the original attack graph is enriched. For example, in Fig. 4,
without the stealthy bridge on h1, attack paths in enterprise network C will
be missing or incomplete because no exploitable vulnerability is available as
the entry point for attack.

(3) The VMI layer mainly captures the stealthy bridges and corresponding
attacks caused by VMI sharing. Since virtual machines in different enterprise
networks may be instantiated from the same parent VMI, they could inherit
the same security issues from parent image, such as software vulnerabilities,
malware, or backdoors, etc. Evidence from [20] shows that 98 % of Windows
VMI and 58 % of Linux VMIs in Amazon EC2 contain software with criti-
cal vulnerabilities. A large number of software on these VMIs are more than
two years old. Since cloud customers take full responsibility for securing their
virtual machines, many of these vulnerabilities remain unpatched and thus
pose great risks to cloud. Once a vulnerability or an attack type is identified
in the parent VMI, the attack graph for all the children virtual machine
instances may be affected: a precondition node could be activated, or a new
interaction rule should be constructed in attack graph generation tool.
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The incorporation of the VMI layer provides another benefit to the sub-
sequent Bayesian network analysis. It enables the interaction between the
virtual machine layer and the VMI layer. On one hand, the probability of a
vulnerability existence on a VMI will affect the probability of the vulnerabil-
ity existence on its children instance virtual machines. On the other hand, if
new evidence is found regarding the vulnerability existence on the children
instances, the probability change will in turn influence the parent VMI. If
the same evidence is observed on multiple instances of the VMI, this VMI
is very likely to be problematic.

(4) The host layer is able to reason exploits of stealthy bridges caused by virtual
machine co-residency. Exploits on this layer could lead to further penetra-
tions on the virtual machine layer. In addition, this layer actually captures
all attacks that could happen on the host level, including those on pure
physical hosts with no virtual machines. Hence it provides a good interface
to hybrid enterprise networks that are implemented with partial cloud and
partial traditional infrastructures. The potential attack paths identified on
the cloud part could possibly extend to traditional infrastructures if all pre-
requisites for the remote exploits are satisfied, such as network access being
allowed, and exploitable vulnerabilities existing, etc. As in Fig. 4, the attack
graph for enterprise C extends from virtual machine layer to host layer.

Fig. 4. An example cloud-level attack graph model

3 Cross-Layer Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model representing cause
and effect relations. For example, it is able to show the probabilistic causal
relationships between a disease and the corresponding symptoms. Formally, a
Bayesian network is a Directed Acyclic Graph (DAG) that contains a set of nodes
and directed edges. The nodes represent random variables of interest and the
directed edges represent the causal influence among the variables. The strength
of such influence is represented with a conditional probability table (CPT). For
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example, Fig. 5 shows a portion of a BN constructed directly from the attack
graph in Fig. 2 by removing the rule Node 22. Node 14 can be associated with
the CPT table as shown. This CPT means that if all of the preconditions of
Node 14 are satisfied, the probability of Node 14 being true is 0.9. Node 14 is
false in all other cases.

Fig. 5. A portion of Bayesian network with associated CPT table

A Bayesian network can be used to compute the probabilities of variables of
interest. It is especially powerful for diagnosis and prediction analysis. For exam-
ple, in diagnosis analysis, given the symptoms being observed, a BN can calcu-
late the probability of the causing fact (respresented with Pr(cause | symptom =
True)). While in prediction analysis, given the causing fact, a BN will predict the
probability of the corresponding symptoms showing up (Pr(symptom|cause =
True)). In the cybersecurity field, similar diagnosis and prediction analysis can
also be performed, such as calculating the probability of an exploitation hap-
pening if related IDS alerts are observed(Pr(exploitation|IDSalert = True)),
or the probability of the IDS raising an alert if an exploitation already hap-
pened (Pr(IDSalert|exploitation = True)). This paper mainly carries out a
diagnosis analysis that computes the probability of stealthy bridge existence
by collecting evidence from other intrusion steps. Diagnosis analysis is a kind
of “backward” computation. In the cause-and-symptom model, a concrete evi-
dence about the symptom could change the posterior probability of the cause by
computing Pr(cause|symptom = True). More intuitively, as more evidence is
collected regarding the symptom, the probability of the cause will become closer
to reality if the BN is constructed properly.

3.1 Identify the Uncertainties

Inferring the existence of stealthy bridges requires real-time evidence being col-
lected and analyzed. BN has the capability, which attack graphs lack, of perform-
ing such real-time security analysis. Attack graphs correlate vulnerabilities and
potential exploits in different machines and enables determinstic reasoning. For
example, if all the preconditions of an attack are satisfied, the attacker should
be able to launch the attack. However, in real-time security analysis, there are
a range of uncertainties associated with this attack that cannot be reflected in
an attack graph. For example, has the attacker chosen to launch the attack?
If he launched it, did he succeed to compromise the host? Are the Snort [22]
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alerts raised on this host related to the attack? Should we be more confident if
we got other alerts from other hosts in this network? Such uncertainty aspects
should be taken into account when performing real-time security analysis. BN
is a valuable tool for capturing these uncertainties.

One non-trivial difficulty for constructing a well functioning BN is to identify
and model the uncertainty types existing in the attack procedure. In this paper,
we mainly consider four types of uncertainties related to cloud security.

Uncertainty of Stealthy Bridges Existence. The presence of known vulner-
abilities is usually deterministic due to the availability of vulnerability scanners.
After scanning a virtual machine or a physical host, the vulnerability scanner
such as Nessus [24] is able to tell whether a known vulnerability exists or not2.
However, due to its unknown or hard-to-detect feature, effective scanners for
stealthy bridges are rare. Therefore, the existence of stealthy bridges itself is
a type of uncertainty. In this paper, to enable the construction of a complete
attack graph, stealthy bridges are hypothesized to be existing when correspond-
ing conditions are met. For example, if two virtual machines co-reside on the
same physical host and one of them has been compromised by the attacker, the
attack graph will be generated by making a hypothesis that a stealthy bridge
can be created between these two virtual machines. This is enforced by crafting
a new interaction rule as follows in MulVAL:

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

Afterwards, the BN constructed based on the attack graph will infer the
probability of this hypothesis being true.

Uncertainty of Attacker Action. Uncertainty of attacker action is first iden-
tified by [23]. Even if all the prerequsites for an attack are satisfied, the attack
may not happen because attackers may not take action. Therefore, a kind of
Attack Action Node (AAN) is added to the BN to model attackers’ actions.
An AAN node is introduced as an additional parent node for the attack. For
example, the BN shown in Fig. 5 is changed to Fig. 6 after adding an AAN node.
Correspondingly, the CPT table is modified as in Fig. 6. This means “attacker
taking action” is another prerequisite to be satisfied for the attack to happen.

An AAN node is not added for all attacks. They are needed only for important
attacks such as the very first intrustion steps in a multi-step attack, or attacks
that need attackers’ action. Since an AAN node represents the primitive fact of
whether an attacker taking action and has no parent nodes, a prior probability
distribution should be assigned to an AAN to indicate the likelihood of an attack.
The posterior probability of AAN will change as more evidence is collected.
2 The assumption here is that a capable vulnerability scanner is able to scan out all

the known vulnerabilities.
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Fig. 6. A portion of bayesian network with AAN node

Uncertainty of Exploitation Success. Uncertainty of exploitation success
goes to the question of “did the attacker succeed in this step?”. Even if all
the prerequisites are satisfied and the attacker indeed launches the attack, the
attack is not guarenteed to succeed. The success likelihood of an attack mainly
depends on the exploit difficulty of vulnerabilities. For some vulnerabilities,
usable exploit code is already publicly available. While for some other vulnera-
bilities, the exploit is still in the proof-of-concept stage and no successful exploit
has been demonstrated. Therefore, the exploit difficulty of a vulnerability can
be used to derive the CPT table of an exploitation. For example, if the exploit
difficulty for the vulnerability in Fig. 5 is very high, the probability for Node
14 when all parent nodes are true could be assigned as very low, such as 0.3.
If in the future a public exploit code is made available for this vulnerability,
the probability for Node 14 may be changed to a higher value accordingly. The
National Vulnerability Database (NVD) [25] maintains a CVSS [26] scoring sys-
tem for all CVE [27] vulnerabilities. In CVSS, Access Complexity (AC) is a
metric that describes the exploit complexity of a vulnerability using values of
“high”, “medium”, “low”. Hence the AC metric can be employed to derive CPT
tables of exploitations and model the uncertainty of exploitation success.

Uncertainty of Evidence. Evidence is the key factor for BN to function. In
BN, uncertainties are indicated with probabilities of related nodes. Each node
describes a real or hypothetical event, such as “attacker can execute code on
Web Server”, or “a stealthy bridge exists between virtual machine A and B”,
etc. Evidence is collected to reduce uncertainty and calculate the probabilities of
these events. According to the uncertainty types mentioned above, evidence is
also classified into three types: evidence for stealthy bridges existence, evidence
for attacker action, and evidence for exploitation success. Whenever a piece of
evidence is observed, it is assigned to one of the above evidence types to support
the corresponding event. This is done by adding evidence as the children nodes
to the event nodes. For example, an IDS alert about a large number of login
attempts can be regarded as evidence of attacker action, showing that an attacker
could have tried to launch an attack. This evidence is then added as the child
node to an AAN, as exemplified in Fig. 7. For another example, the alert “system
log is deleted” given by Tripwire [28] can be the child of the node “attacker can
execute code”, showing that an exploit has been successfully achieved.

However, evidence per se contain uncertainty. The uncertainty is twofold.
First, the support of evidence to an event is uncertain. For analogy, a symptom
of coughing cannot completely prove the presence of lung disease. In the above
examples, could the multiple login attempts testify that attackers have launched
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Fig. 7. The evidence-condidence pair and associated exemplar CPT

the attack? How likely is it that attackers have succeeded in compromising the
host if a system log deletion is observed? Second, evidence from security sensors
is not 100 % accurate. IDS systems such as Snort, Tripwire, etc. suffer a lot from
a high false alert rate. For example, an event may trigger an IDS to raise an
alert while actually no attack happens. In this case, the alert is a false positive.
The reverse case is a false negative, that is, when an IDS should have raised an
alarm but doesn’t. Therefore, we propose to model the uncertainty of evidence
with an Evidence-Confidence(EC) pair as shown in Fig. 7. The EC pair has two
nodes, an Evidence node and an Evidence Confidence Node (ECN). An ECN
is assigned as the parent of an Evidence node to model the confidence level of
the evidence. If the confidence level is high, the child evidence node will have
larger impact on other nodes. Otherwise, the evidence will have lower impact on
others. An example CPT associated with the evidence node is given in Fig. 7.
Whenever new evidence is observed, an EC pair is attached to the supported
node. A node can have several EC pairs attached with it if multiple instances of
evidence are observed. With ECN nodes, security experts can tune confidence
levels of evidence with ease based on their domain knowledge and experience.
This will greatly enhance the flexibility and accuracy of BN analysis.

4 Implementation

4.1 Cloud-Level Attack Graph Generation

This paper uses MulVAL [19] as the attack graph generation tool. To construct a
cloud-level attack graph, new primitive fact nodes and interaction rules have to
be crafted in MulVAL on the VMI layer and host layer to model the existence of
stealthy bridges. Each virtual machine has an ID tuple (Vm id, VMI id, H id)
associated with it, which represents the ID for the virtual machine itself, the
VMI it was derived from, and the host it resides on. The VMI layer mainly
focuses on the model of VMI vulnerability inheritance and the VMI backdoor
problems. The host layer mainly focuses on modeling the virtual machine co-
residency problems. Table 1 provides a sample set of newly crafted interaction
rules that are incorporated into MulVAL for cloud-level attack graph generation.

4.2 Construction of Bayesian Networks

Deriving Bayesian networks from cross-layer attack graphs consists of four major
components: removing rule nodes in the attack graph, adding new nodes, deter-
mining prior probabilities, and constructing CPT tables.
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Table 1. A sample set of interaction rules

/***Model the Virtual Machine Image Vulnerability Inheritance***/
primitive(IsInstance(Vm_id, VMI_id))
primitive(ImageVulExists(VMI_id, vulID, _program, _range, _consequence))
derived(VulExists(Vm_id, vulID, _program,_range,_consequence)).

%remove vulExists from the primitive fact set
primitive(vulExists(_host, _vulID, _program, _range, _consequence)

interaction rule(
(VulExists(Vm_id, vulID, _program, _range, _consequence):-

ImageVulExists(VMI_id, vulID, _program, _range, _consequence),
IsInstance(Vm_id, VMI_id)),

rule_desc(‘A virtual machine instance inherits the vulnerability from the parent VMI’)).

/***Model the Virtual Machine Image Backdoor Problem***/
primitive(IsThirdPartyImage(VMI_id)).
derived(ImageVulExists(VMI_id, sealthyBridge_id, _, _remoteExploit, privEscalation)).

interaction rule(
(ImageVulExists(VMI_id,stealthyBridge_id, _, _remoteExploit, privEscalation):-

IsThirdPartyImage(VMI_id)),
rule_desc(‘A third party VMI could contain a stealthy bridge’)).

interaction rule(
(execCode(Vm_id, Perm):

VulEixsts(Vm_id, stealthyBridge_id, _, _, privEscalation),
netAccess(H, _Protocol, _Port)),

rule_desc(‘remoteExploit of a stealthy bridge’)).

/***Model the Virtual Machine Co-residency Problem***/
primitive(ResideOn(VM_id, H_id)).
derived(stealthyBridgeExists(Vm_1,Vm_2, H_id, stealthyBridge_id).

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

interaction rule(
(execCode(Vm_2,_user):-

stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id)),
rule_desc(‘A stealthy bridge could lead to privilege escalation on victim machine’)).

interaction rule(
(canAccessHost(Vm_2):-

logInService(Vm_2,Protocol,Port),
stealthyBridgeExists(Vm_1,Vm_2,Host,stealthyBridge_id)),

rule_desc(‘Access a host through a log-in service by obtaining authentication
information through stealthy bridges’)).

Remove rule Nodes of Attack Graph. In an attack graph, the rule nodes
imply how postconditions are derived from preconditions. The derivation is
deterministic and contains no uncertainty. Therefore, these rule nodes have no
effect on the reasoning process, and thus can be removed when constructing the
BN. To remove a rule node, its preconditions are connected directly to its post-
conditions. For example, in Fig. 2, Node 26, 27, and 23 will be connected directly
to Node 14 by removing Node 22.
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Adding New Nodes. New nodes are added to capture the uncertainty of
attacker action and the uncertainty of evidence. To capture the uncertainty of
attacker action, each step has a separate AAN node as the parent, rather than
sharing the same AAN among multiple steps. The AAN node models attacker
action at the granularity of attack steps, and thus reflects the actual attack paths.
To model the uncertainty of evidence, whenever new evidence is observed, an
EC pair is constructed and attached to the supported node with uncertainty.

Determining Prior Probabilities. Prior probability distributions should be
determined for all root nodes that have no parents, such as the vulnerability
existence nodes, the network access nodes, or the AAN nodes.

Constructing CPT Tables. Some CPT tables can be determined according
to a standard, such as the the AC metric in CVSS scoring system. The AC
metric describes the exploit complexity of vulnerabilities and thus can be used
to derive the CPT tables for corresponding exploitations. Some other CPT tables
may involve security experts’ domain knowledge and experience. For example,
the VMIs from a trusted third party may have lower probability of containing
security holes such as backdoors, while those created and shared by individual
cloud users may have higher probability.

The constructed BN should be robust against small changes in prior prob-
abilities and CPT tables. To ensure such robustness, we use SamIam [33] for
sensitivity analysis when constructing and debugging the BN. By specifying the
requirements for an interested node’s probability, SamIam will check the asso-
ciated CPT tables and provide suggestions on feasible changes. For example, if
we want to change P (N5 = True) from 0.34 to 0.2, SamIam will provide two
suggestions, either changing P (N5 = True|N2 = True,N3 = True) from 0.9
to <= 0.43, or changing P (N3 = True|N1 = True) from 0.3 to <= 0.125.

5 Experiment

5.1 Attack Scenario

Figure 1 shows the network structure in our attack scenario. We have 3 major
enterprise networks: A, B, and C. A and B are all implemented within the cloud,
while C is implemented by partially cloud, and partially traditional network
(the servers are located in the cloud and the workstations are in a traditional
network). The attack includes several steps conducted by attacker Mallory.

Step 1, Mallory first publishes a VMI that provides a web service in the cloud.
This VMI is malicious in that it contains a security hole that Mallory knows how
to exploit. For example, this security hole could be an SSH user authentication
key (the public key located in .ssh/authorized keys) that is intentionally left in
the VMI by Mallory. The leftover creates a backdoor that allows Mallory to login
into any instances derived from this malicious VMI using his own private key.
The security hole could also be an unknown vulnerability that is not yet publicly
known. To make the attack scenario more generic, we choose a vulnerability
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CVE-2007-2446 [29], existing in Samba 3.0.0 [30], as the one imbedded in the
malicious VMI, but assume it as unknown for the purpose of simulation.

Step 2, the malicious VMI is then adopted and instantiated as a web server
by an innocent user from A. Mallory now wants to compromise the live instances,
but he needs to know which instances are derived from his malicious VMI. [20]
provides three possible ways for machine fingerprinting: ssh matching, service
matching, and web matching. Through ssh key matching, Mallory finds the right
instance in A and completes the exploitation towards CVE-2007-2446 [29].

Step 3, enterprise network B provides web services to a limited number of
customers, including A. With the acquired root privilege from A’s web server,
Mallory is able to access B’s web server, exploit one of its vulnerabilities CVE-
2007-5423 [31] from application tikiwiki 1.9.8 [32], and create a reverse shell.

Step 4, Mallory notices that enterprise B and C has a special relationship:
their web servers are implemented with virtual machines co-residing on the same
host. C is a start-up company that has some valuable information stored on
its CEO’s workstation. Mallory then leverages the co-residency relationship of
the web servers and launches a side-channel attack towards C’s web server to
extract its password. Mallory obtains user privilege through the attack. Mallory
also establishes a covert channel between the co-resident virtual machines for
convenient information exchange.

Step 5, the NFS server in C has a directory that is shared by all the servers
and workstations inside the company. Normally C’s web server should not have
write permission to this shared directory. But due to a configuration error of
the NFS export table, the web server is given write permission. Therefore, if
Mallory can upload a Trojan horse to the shared directory, other innocent users
may download the Trojan horse from this directory and install it. Hence Mallory
crafts a Trojan horse management tool.deb and uploads it into the shared NSF
directory on web server.

Step 6, The innocent CEO from C downloads management tool.deb and
installs it. Mallory then exploits the Trojan horse and creats a unsolicited con-
nection back to his own machine.

Step 7, Mallory’s VMI is also adopted by several other enterprise networks,
so Mallory compromises their instances using the same method in Step 2.

In this scenario, two stealthy bridges are established3: one is from Internet
to enterprise network A through exploiting an unknown vulnerability, the other
one is between enterprise network B and C by leveraging virtual machine co-
residency. The attack path crosses over three enterprise networks that reside in
the same cloud, and extends to C’s traditional network.

5.2 Experiment Result

The purpose of our experiment is to check whether the BN-based tool is able to
infer the existence of stealthy bridges given the evidence. The Bayesian network

3 The enterprise networks in Step 7 are not key players, so we do not analyze the
stealthy bridges established in this step, but still use the raised alerts as evidence.
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has two inputs: the network deployment (network connection, host configuration,
and vulnerability information, etc.) and the evidence. The output of BN is the
probability of specific events, such as the probability of stealthy bridges being
established, or the probability of a web server being compromised. We view the
attackers’ sequence of attack steps as a set of ground truth. To evaluate the
effectiveness of the constructed BN, we compare the output of the BN with the
ground truth of the attack sequence. For example, given the ground truth that a
stealthy bridge has been established, we will check the corresponding probability
provided by the BN to see whether the result is convincible.

For the attack scenario illustrated in Fig. 1, the cross-layer BN is constructed
as in Fig. 8. By taking into account the existence of stealthy bridges, the cloud-
level attack graph has the capability of revealing potential hidden attack paths.
Therefore, the constructed BN also inherits the revealed hidden paths from the
cloud-level attack graph. For example, the white part in Fig. 8 shows the hidden
paths enabled by the stealthy bridge between enterprise network B and C. These
paths will be missed by individual attack graphs if the stealthy bridge is not
considered. The inputs for this BN are respectively the network deployment
shown in Table 24 and the collected evidence is shown in Table 3. Evidence is
collected against the attack steps described in our attack scenario. Not all attack
steps have corresponding observed evidence.

Table 2. Network deployment

Node Deployed facts

N1 IsThirdPartyImage(VMI)

N2 IsInstance(Aws, VMI)

N4 netAccess(Aws, protocol, port)

N17 netServiceInfo(Bws, tikiwiki, http, 80, )

N19 ResideOn(Bws, H)

N20 ResideOn(Cws, H)

N21 hacl(Cws, Cnfs, nfsProtocol, nfsPort)

N27 nfsExport(Cnfs, ‘/export’, write, Cws)

N30 nfsMountd(CworkStation,‘/mnt/share’, Cnfs, ‘/export’, read)

N32 VulExists(CworkStation, ‘CVE-2009-2692’, kernel, localExploit, privEscalation)

N41 IsInstance(Dws, VMI)

N43 netAccess(Dws, protocol, port)

We conducted four sets of simulation experiments, each with a specific pur-
pose. For simplicity, we assume all attack steps are completed instantly with no
time delay. The ground truth in our attack scenario tells that one stealthy bridge
between attacker and enterprise A is established in attack step 2, and the other

4 Aws,Bws,Cws,Cnfs,Cworkstation denote A’s web server, B’s web server, C’s web
server, C’s NFS server, C’s workstation respectively.
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Table 3. Collected evidence corresponding to attack steps

Node Step Collected evidence

N9 2 Wireshark shows multiple suspicious connections established

N11 2 IDS shows malicious packet detected

N13 2 Wireshark “follow tcp stream” shows a back telnet connection is instructed to open

N23 4 Cache monitor observes abnormal cache activities

N34 5 Tripwire shows several file modification toward management tool.deb

N37 6 IDS shows Trojan horse installation

N39 6 Wireshark “follow tcp stream” find plain text in supposed encrypted-connection

N47 7 Wireshark shows a back telnet connection is instructed to open

N49 7 IDS shows malicious packet detected

one between B and C is established in step 4. By taking evidence with a certain
order as input, the BN will generate a corresponding sequence of marginal prob-
abilities for events of interest. The probabilities are compared with the ground
truth to evaluate the performance of the BN.

In experiment 1, we assume all the evidence is observed in the order of the
corresponding attack steps. We are interested in four events, a stealthy bridge
exists in enterprise A’s web server (N5), the attacker can execute arbitrary code
on A’s web server (N8), a stealthy bridge exists in the host that B’s web server
reside (N22), and the attacker can execute arbitrary code on C’s web server
(N25). N8 and N25 respectively imply that the stealthy bridges in N5 and N22
are successfully established. Table 4 shows the results of experiment 1 given
supporting evidence with corresponding confidence values. The results indicate
that the probability of stealthy bridge existence is initially very low, and increases
as more evidence is collected. For example, marginal probability Pr(N5 = True)
increases from 34 % with no evidence observed to 88.95 % given all evidence
presented. This means that a stealthy bridge is very likely to exist on enterprise
A’s web server after enough evidence is collected.

The first stealthy bridge in our attack scenario is established in attack step 2,
and the corresponding pieces of evidence are N9, N11, and N13. Pr(N8 = True)
is 95.77 % after all the evidence from step 2 is observed, but Pr(N5 = True) is
only 74.64 %. This means that although the BN is almost sure that A’s web server
has been compromised, it doesn’t have the same confidence of attributing the
exploitation to the stealthy bridge, which is caused by the unknown vulnerability
inherited from a VMI. Pr(N5 = True) increases to 88.95 % only after evidence
N47 and N49 from other enterprise networks is observed for attack step 7. This
means that if the same alerts appear in other instances of the same VMI, the
VMI is very likely to contain the related unknown vulnerability.

The second stealthy bridge is established in step 4, and the corresponding evi-
dence is N23. Pr(N22 = True) is 57.45 % after evidence N9 to N23 is collected.
The number seems to be low. However, considering the unusual difficulty of lever-
aging a co-residency relationship, this low probability still should be treated with
great attention. After all evidence is observed, the increase of Pr(N22 = True)
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Fig. 8. The cross-layer Bayesian network constructed for the attack scenario

Table 4. Results of experiment 1

Events
No N9 N11 N13 N23 N34 N37 N39 N47 N49

evidence Medium High High High VeryHigh High VeryHigh VeryHigh VeryHigh

N5=True 34% 34% 51.54% 74.64% 75.22% 75.22% 75.41% 75.5% 86.07% 88.95%
N8=True 20.25% 22.96% 54.38% 95.77% 96.81% 96.81% 97.14% 97.31% 98.14% 98.37%
N22=True 13.91% 14.32% 19.03% 25.23% 57.45% 57.45% 67.67% 73.04% 73.24% 73.29%
N25=True 17.52% 17.89% 22.13% 27.71% 56.7% 56.7% 68.11% 74.1% 74.27% 74.32%

from 13.91 % to 73.29 % may require security experts to carefully scrutinize the
virtual machine isolation status on the related host.

Experiment 2 tests the influence of false alerts to BN. In this experiment,
we assume evidence N11 is a false alert generated by IDS. We perform the same
analysis as in experiment 1 and compare results with it. Table 5 shows that when
only 3 pieces of evidence (N9, N11, and N13) are observed, the probability of the
related event is greatly affected by the false alert. For instance, Pr(N5 = True)
is 74.64 % when N11 is correct, and is 53.9 % when N11 is a false alert. But
Pr(N8 = True) is not greatly influenced by N11 because it’s not closely related
to the false alert. When all evidence is input into the BN, the influence of false
alerts to related events is reduced to an acceptable level. This shows that a BN
can provide relatively correct answer by combining the overall evidence set.

Since security experts may change their confidence value towards evidence
based on their new knowledge and observation, experiment 3 tests the influence
of evidence confidence value to the BN. This experiment generates similar results
as in experiment 2, as shown in Table 6. When evidence is rare, the confidence
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Table 5. Results of experiment 2

Events With 3 pieces of evidence With all evidence

N11 = True N11 = False N11 = True N11 = False

N5 74.64 % 53.9 % 88.95 % 79.59 %

N8 95.77 % 58.6 % 98.37 % 79.07 %

N22 25.23 % 19.66 % 73.29 % 68.62 %

N25 27.71 % 22.7 % 74.32 % 70.24 %

Table 6. Results of experiment 3

Events With 3 pieces of evidence With all evidence

N14 = VeryHigh N14 = Low N14 = VeryHigh N14 = Low

N5 74.64 % 54.29 % 88.95 % 79.82 %

N8 95.77 % 59.30 % 98.37 % 79.54 %

N22 25.23 % 19.77 % 73.29 % 68.73 %

N25 27.71 % 22.79 % 74.32 % 70.34 %

value changes from VeryHigh to Low has larger influence to related events than
when evidence is sufficient.

In experiment 4, we test the affect of evidence input order to the BN analysis
result. We bring forward the evidence N47 and N49 from step 7 and insert them
before N23 and N37 respectively. The analysis shows that a BN can still produce
reliable results in the presence of changing evidence order.

6 Related Work

We explore the literature for the following topics that are related to our paper.

VMI Sharing. [34] explores a variety of attacks that leverage the virtual
machine image sharing in Amazon EC2. Researchers were able to extract highly
sensitive information from publicly available VMIs. The analysis revealed that
30 % of the 1100 analyzed AMIs (Amazon Machine Images) at the time of the
analysis contained public keys that are backdoors for the AMI Publishers. The
backdoor problem is not limited to AMIs created by individuals, but also affects
those from well-known open-source projects and companies.

Co-Residency. The security issues caused by virtual machine co-residency
have attracted researchers’ attention recently. [11] pointed out that the shared
resource environment of cloud will introduce security issues that are fundamen-
tally new and unique to cloud. [5] shows how attackers can identify on which
host a target virtual machine is likely to reside in Amazon EC2, and then place
the malicious virtual machine onto the same host through a number of instan-
tiating attemps. Such co-residency can be used for further malicious activities,
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such as launching side-channel attack to extract information from a target vir-
tual machine [6]. [10] takes an opposite perspective and proposes to detect co-
residency via side-channel analysis. [4] demonstrates a new class of attacks called
resource-freeing attacks (RFAs), which leverage the performance interference of
co-resident virtual machine. [8] presents a traffic analysis attack that can ini-
tiate a covert channel and confirm co-residency with a target virtual machine
instance. [7] also considers attacks towards hypervisor and propose to eliminate
the hypervisor attack surface through new system design.

Bayesian Networks. BNs have been applied to intrusion detection [35] and
cyber security analysis in traditional networks [23]. [23] analyzes which hosts
are likely to be compromised based on known vulnerabilities and observed alerts.
Our work lands on a different cloud environment and takes a reverse strategy
by using BN to infer the stealthy bridges, which are unknown in nature. In the
future, the inference of stealthy bridges can be further extended to identify the
zero-day attack paths in cloud, as in [9] for traditional networks.

7 Conclusion and Discussion

This paper identifies the problem of stealthy bridges between isolated enterprise
networks in the public cloud. To infer the existence of stealthy bridges, we pro-
pose a two-step approach. A cloud-level attack graph is first built to capture
the potential attacks enabled by stealthy bridges. Based on the attack graph,
a cross-layer Bayesian network is constructed by identifying uncertainty types
existing in attacks exploiting stealthy bridges. The experiments show that the
cross-layer Bayesian network is able to infer the existence of stealthy bridges
given supporting evidence from other intrusion steps. However, one challenge
posed by cloud environments needs further effort. Since the structure of cloud
is very dynamic, generating the cloud-level attack graph from scratch whenever
a change happens is expensive and time-consuming. Therefore, an incremental
algorithm needs to be developed to address such frequent changes such as virtual
machine turning on and off, configuration changes, etc.
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Abstract. Virtual machine migration is an important tool that can be used in
cloud computing environment for load balancing, disaster recovery, server
consolidation, hardware maintenance, etc. Currently a few techniques have been
proposed to secure the virtual machine migration process. However, these
techniques have number of limitations e.g. lack of standard access control,
mutual authentication, confidentiality, non-repudiation and integrity of VM data.
Some of the techniques provide security services such as mutual authentication
using TPM (Trusted Platform Module), however, not all the hardware platforms
yet possess the TPM capability. This limits the deployment of such solutions in
legacy systems. The architecture, presented in this paper, attempts to overcome
these limitations with existing hardware support. In particular, we designed a
secure and efficient protocol that migrates virtual machine from source cloud
domain to destination cloud domain by considering fundamental security ser-
vices such as confidentiality, integrity, standard access control and
non-repudiation.

Keywords: Authentication � Authorization � Cloud computing � Confidenti-
ality � ECDH � Integrity � SHA-256 � Virtual machine migration

1 Introduction

Virtual machine (VM) migration is an administrative tool supported by many virtu-
alization software or Virtual Machine Monitors (VMMs). For example XEN [1],
VMware [2], KVM [3], Hyper-V etc. provide flexible migration and management of
VMs. In distributed computing environment such as cloud computing, VM migration
allows transfer of complete operating system that runs inside a VM along with
applications running on it, from one physical location to other. The service of VM
migration aids in load balancing, elastic scaling, fault tolerance, disaster recovery and
easier hardware maintenance [4–6]. VM migration can be of two types i.e. Offline or
Cold VM migration and Live VM migration. Live VM migration includes the transfer
of VM’s operating system and applications running on it from one physical location to
other physical location while it is executing. During Live migration, applications
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running on being migrated VM might face varying downtime during final synchroni-
zation. In offline migration, VM is paused or stopped at source, then sent over the
network and resumed at destination. Migration of VMs is a useful tool in data centers
and cloud environments in which a virtual machine is migrated from one storage
location to another for the sake of load balancing or in a scenario where a hardware
failure is imminent.

Businesses are increasingly acquiring cloud services using IAAS (Infrastructure as
a Service) service delivery model by provisioning of virtual machines. In order to
satisfy the concerns of enterprises acquiring cloud services and providing them with
flexibility of migrating their virtual machines securely, it has become crucial to develop
some uniform security scheme along with a negotiation protocol that deals with
security issues of virtual machine migration in cloud environment. As VM migration
involves sending critical infrastructural information over network, therefore, VM
migration involves number of security challenges. For example unencrypted traffic may
result in exposing machine states, secret keys and passphrases [7]. Similarly, unau-
thorized VM migration may result in VM to be migrated to a platform under the control
of attacker. Moreover, lack of mutual authentication may also result in same kind of
attacks i.e. man in the middle attack whereas lack of proper access control may result in
unauthorized VM migrations causing release of sensitive data to adversary. Also, large
number of unsolicited migration requests may cause DoS or clogging attack [8, 9]. As
these security issues have not yet been dealt properly therefore, there is a need to design
some comprehensive security solution for the VM migration process. In this regard, we
propose a protocol for secure virtual machine migration among clouds that preserves
confidentiality, authenticity and integrity of virtual machine before, during and after
transit; both on source and destination platform.

The proposed approach provides the authenticated and authorized migration of
virtual machine from source cloud domain to destination cloud domain. In source
domain, system administrator is first authenticated and authorized to initiate the VM
migration process. The designed approach provides the access control for initiating and
responding to the VM migration process thus preventing unauthorized VM migration.
The migration request is evaluated against the policy rules that are set using XACML
3.0 (eXtensible Access Control Markup Language) [10]. Source and destination cloud
mutually authenticate each other and validate migration request. This helps avoid
unintended migration of VM to some malicious destination under the control of
attacker. Similarly this also helped to avoid unintended malicious VM potentially with
rogue applications to be received on a legitimate destination. The mutual authentication
of source and destination cloud domain is performed based on Federal Information
Processing Standard, FIPS PUB 196 i.e. Authentication Using public key cryptogra-
phy. The domains must have acquired X.509 certificate from trusted Certificate
Authority. Confidentiality and integrity of VM data is achieved by applying Advanced
Encryption Standard (AES) and SHA-256 respectively. The scheme presented in this
paper also provides the non-repudiation service. Each of the domains presents the
signed ticket containing digitally signed request/response with the domain’s private
key.

Rest of the paper is organized as follows: Sect. 2 covers related work and limita-
tions of existing techniques. Section 3 discusses proposed architecture and protocol
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description. Section 4 presents the discussion on performance modeling in terms of
delay of the proposed scheme and in the end Sect. 5 concludes the paper.

2 Related Work

Most of the existing work for VM migration is focused on following two areas. First
area is the optimization techniques for reducing the redundant disk data in VM
migration to achieve better transfer performance over low bandwidth and high latency
links. And the other area is the approaches that deal with the transfer of the active
network connections of VM over Wide Area Network (WAN). The area of secure VM
migration is recently getting attention. In literature, a few solutions are proposed
regarding different aspects of security issues related to the VM migration process,
however, no complete architecture is presented that comprehensively addresses these
issues.

Timothy et al. discussed how active connections of applications can be seamlessly
redirected while migrating a virtual machine from an enterprise to a cloud over the
WAN [11]. The CloudNet platform developed by authors uses VPLS (Virtual Pri-
vate LAN Services) that bridges the VLANs at the cloud and the enterprise thus
enabling open network connections to be seamlessly redirected to the VM’s new
location. The optimization technique and algorithm helped to reduce the bandwidth
issue and pause time of VM during migration, but it increases the CPU overhead due to
excessive processing such as taking hash of each page to be sent. Authors used layer 2
VPN’s for protecting transmission channel in order to provide the confidentiality
service. Analysis of the processes that allow live migration of VMs over long-haul
networks is presented in [6]. The paper explains how VMs can be migrated across
geographical distances transparently to applications. Optimization techniques through
data de-duplication for a group of migrating VMs is presented in [12].

Security issues in VM migration are being studied in recent years. A few protocols
are proposed for secure migration of VMs. Attacks on data and control plane of
migrating VM are categorized and implemented in [4]. Authors demonstrated that
integrity of data can easily be harmed during migration. However, they did not provide
solution for it which drew our major inspiration to devise a secure protocol for VM
migration. Security issues regarding the protected processes running inside a VM are
discussed in [5]. The encryption applied to only protected processes should have been
applied to all memory pages for confidentiality and security reasons but scope of paper
is limited to protected processes only.

An approach that checks for software updates and scans virtual machines for
known security vulnerabilities is presented in [13]. Similarly advanced cloud protection
system provided by [14] is integrated into virtualization software (virtual machine
monitor) to monitor the integrity of guest VMs. It provides integrity of VMs and
cloud’s critical infrastructure. However both of above mentioned approaches do not
help in secure migration. The process of live migration of virtual machine using KVM
(Kernel based Virtual Machine) was carried out in [15]. The authors state that KVM
and Xen expose entire machine state i.e. operating system kernel and applications
during the process of migration however, they do not provide solution for it.
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Two major security issues of VM migration i.e. platform authenticity and confi-
dentiality of VM data during transit are discussed in [16]. For platform authenticity,
authors proposed a Platform Trust Assurance Authority (PTAA) which assigns trust
levels to platforms based on their configurations. As cloud is a big infrastructure its
software and hardware configuration might change frequently, so after every update or
change it could potentially require a new trust-token from third party. In this scenario,
Trust Assurance Level (TAL) value assigned to a particular software configuration may
frequently be outdated or become false after a software patch.

A TPM based VM migration protocol using virtual TPM (Trusted Platform
Module) is presented in [17]. Authors presented a hardware based protection system
which provides information protection and software authenticity in private clouds. The
solution creates a hierarchy of TPM keys that are migrated along with the migrating
VM which might cause the protection level to degrade as TPM’s security relies on its
non-migratable keys. In both of the above mentioned approaches, the protocols work
only if the infrastructure has TPM support, thus introducing the hardware dependency.
Moreover, these approaches also lack standard access control for the process of
migration.

Most of the existing solutions for VM migration are either TPM based and fail to
work with legacy hardware, or they cater VM migration security issues individually.
The process of VM migration carried out using one of the security features such as
encryption, provides confidentiality of data but its security may potentially fail if other
security features are absent such as access control, mutual authentication and data
integrity. For example, lack of access control may cause unauthorized VM migration
resulting in VM to be migrated to a platform under the control of an attacker, even if
VM was encrypted during transmission [18]. The focus of proposed solution is to
address the limitations of existing techniques and devise a comprehensive protocol for
securely migrating the virtual machine in an authenticated and authorized process.
Moreover, the approach presented in this paper does not introduce hardware depen-
dency and works with legacy hardware support.

After a deliberate review of literature, following security requirements are con-
sidered while designing our proposed solution:

• Standard Access Control for VM migration process
• Mutual Authentication of source and destination domain
• Confidentiality of VM data in transit
• Integrity of VM data in transit
• Non-Repudiation of migration process

The approach presented in this paper attempts to cover all the above mentioned
security issues as a single comprehensive solution.

3 Proposed Inter-Cloud VM Migration Architecture

As shown in Fig. 1, in the proposed architecture, the process of inter-cloud virtual
machine migration consists of following steps:
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Step-1: Acquire X.509 certificates: Source and destination cloud providers are
required to have X.509 certificates from a trusted Certificate Authority.

Step-2: Request for VM migration process initiation: The process of VM migration
can be initiated either by a cloud provider or by a cloud subscriber. A cloud provider
may require migrating virtual machine from its data centre to another data centre for
increasing its data centre’s resources which may fall short in peak service hours.
A cloud subscriber may require VM migration if he finds cost benefit with some other
cloud provider.

Step-3: Authentication from local authentication server: After verifying the cre-
dentials presented by the migration client, the authentication server provides an
authentication ticket to the migration client.

Step-4: Getting authorization ticket from local authorization server: The migration
client presents the authentication ticket to the authorization server. After necessary
verification, authorization server issues an authorization ticket to the migration client.

Step-5: Migration request to the destination cloud domain: The migration client
sends the migration request to the destination cloud domain. This request contains the
public key certification of the source cloud domain and the authorization ticket issued
by the authorization server of the source cloud domain.

Step-6: Mutual Authentication: The authorization server in destination cloud
domain verifies the public key certificate and authorization ticket for VM migration
sent by the source domain. The authorization server in destination cloud domain
verifies the rights of requesting domain for the migration request. After needful veri-
fication, the destination domain sends the positive reply for the migration request and
also sends its own public key certificate. The source cloud domain verifies public key

Fig. 1. Proposed architecture for secure migration of virtual machine
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certificate of the destination cloud domain. This process provides the mutual authen-
tication service for both source as well as destination cloud domains.

Step-7: Shared Key Generation: After both domains authenticate each other, a
symmetric master key is generated using ECDH (Elliptic Curve Diffie-Hellmann
Scheme) [19]. This master key is further used to generate session key to encrypt the
virtual machine data before migration.

Step-8: VM Data Transfer: VM data is encrypted with the shared key using
symmetric key algorithm e.g. AES [20] and then this encrypted data is sent to the
destination cloud domain. The integrity of VM data during transit is ensured using
SHA-256 hash algorithm [21]. The reason for using SHA-256 is its recommendation
by the standard for the message size up to (2)64 bits. As migratable VM data is far less
than this size therefore SHA-256 is sufficient for this purpose.

Step-9: Acknowledgement: Destination cloud domain performs the integrity veri-
fication and then sends back the acknowledgement message for successful transfer of
virtual machine data. The process of VM data transfer and acknowledgement continues
until all the VM data is successfully transferred to the destination cloud domain.

Figure 2 shows the message exchange between different components of source and
destination cloud domain for secure VM migration process.

In the first step, the migration client is authenticated from local authentication
server. The client sends authentication request message along with its user ID to the
local authentication server in source domain. In response, the authentication server
sends back the authentication reply message containing the user ID, Authentication
Ticket and the shared key for secure communication between migration client and the
authorization server.

Fig. 2. Message exchange for secure migration of virtual machine
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The communication between migration client, authentication server and authori-
zation server is secured using shared key cryptography algorithm e.g. AES. SK1 is
shared key between migration client and the authentication server. SK2 is the shared
key between migration client and the authorization server and SK3 is the shared key
between authentication server and the authorization server. These keys can either be
used as pre-shared keys or can be generated by the authentication server. Nonce is used
to avoid the replay attacks.

Authentication Request ¼ ½UserID jj Nonce1�

Authentication Reply ¼ ½ESK1ðUserIDjjNonce1jjSK2ÞjjðAutht TktÞ�

Authentication Ticket ¼ ESK3ðUserID jj Nonce2Þ½ �

The migration client forwards the migration request message along with authen-
tication ticket to the Authorization Server. The authorization server decrypts the
authentication ticket using shared key between authentication and authorization server
i.e. SK3. Ticket and message both contain nonce to avoid message replay attack. After
verifying the authenticity of request, authorization server checks the access rights of the
user. The authorization server further generates an Authorization Ticket containing
Domain ID (DID), user ID, migration request and nonce signed with private key of
source cloud domain. The message is encrypted with public key of destination cloud
domain; therefore it remains confidential during transit. The destination domain
decrypts this message using its private key; it also verifies the digital signature of
source domain in the message. The destination’s authorization server checks the rights
for requesting domain and decides to proceed or abort. Furthermore, in case of positive
response, the destination domain sends back the digitally signed encrypted migration
response message to source domain.

Migration Requestlocal ¼ ½ESK2ðMig RqstjjDest DIDjjUserIDjjNonce3ÞjjðAuthr TktÞ�

Authorization Ticket ¼ EPrAðSrc DIDjjDest DIDjjUserIDjjNonce4Þ½ �

Migration Requestremote ¼ ½EpbBðMig RqstjjSrc DIDjjDest DIDjjUserIDÞjjAuthr TktjjCertA�

Migration Responseremote ¼ ½EpbAðSignprBðDest DIDjjAckjjNonce5ÞÞjjCertB�

Both of the domains keep the digitally signed messages as a record thus providing
the feature of non-repudiation to the system. The use of public key cryptography is not
recommended for bulk data transfer e.g. VM data due to relatively slow encryption
process. Therefore, a shared symmetric key is required which is used to encrypt the
VM states during transit. Both source and destination domains generate shared key
using Elliptic Curve Diffie-Hellman Scheme (ECDH). After generation of ECDH based
shared key, the authorization servers at both ends exchange the session key with Virtual
Machine Monitor (VMM) at the respective ends. VMM of source domain encrypts the
VM states using this session key (SKS) and a SHA-256 hash of data is calculated and
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concatenated with the sent message. Destination cloud domain after successfully
receiving the VM data sends back the acknowledgement messages.

VM Data Transfer ¼ ½EsksðVM DatajjHash VM datað ÞÞ�

Migration Ack ¼ ½EsksðAckÞ�

The use of ECDH is made due to performance and security edge that it has over
simple Diffie-Hellman and other approaches for key generation. As the protocol
exchanges least possible inter domain messages for mutual authentication of domains,
thus we refer it as a secure and efficient protocol for VM migration.

4 Performance Modeling

As delay involved in migrating the virtual machine across the wide area network is the
most important performance parameter therefore, this section models the delay
involved in performing such virtual machine migration.

Delay ¼ Local Message Exchange DelayþWAN Message Exchange Delay

Delay ¼ n � SL
BL

þ DPL þ DProc

� �
þ m � Sw

Bw
þ DPw þ DProc

� �

Here,

n = Number of Local Control Messages Exchanged
SL = Size of the Local Control Messages
BL = Bandwidth on Local Link
DPL = Propagation Delay in Local Network
DProc = Processing Delay that depends upon the cryptographic algorithms used
m = Number of Control Messages Exchanged over WAN
SW = Size of the Control Messages Exchanged over WAN
BW = Bandwidth on WAN Link
DPW = Propagation Delay in WAN

Figure 3 shows the effect of available bandwidth for WAN connectivity over
migration delay. The graph is drawn for three different public key storage file formats
i.e. DER, Base64 and PKCS7. The graph shows that increasing the WAN bandwidth
decreases the migration delay. This trend is obvious; however, the notable thing is that
when the bandwidth is increased greater than a certain limit, it gives no advantage
towards decrease in migration delay.

Figure 4 shows the effect of propagation delay between two datacenter locations
over the migration delay. The graph shows that the propagation delay has linear affect
over the migration delay i.e. with the increased the propagation delay the delay
involved in migrating the virtual machine from one datacenter location to another
datacenter location over the WAN will linearly increase. The factors that may affect the
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propagation delay include the available bandwidth, geographical distance between two
datacenter locations, congestion over the WAN path, etc. Depending upon these
mentioned parameters, propagation delay over the Internet usually varies between
100 ms to 350 ms and overall migration delay that is affected from this propagation
delay varies only from 1 s to 2 s.

Figure 5 shows the migration delay with the varying number of messages that are
exchanged during the virtual machine migration. The number of messages depends
upon two factors; one is the control messages exchanged by the migration protocol and
other is the size of the virtual machine itself.

Fig. 3. Delay for migrating virtual machine with increasing bandwidth over WAN link

Fig. 4. Delay for migrating virtual machine with increasing propagation delay over WAN link
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Figure 6 shows the comparison of the delay in terms of initial response time of the
proposed architecture with the IPsec and TLS protocols. Initial response time is the
delay involved in mutual authentication of the two cloud domains and the establish-
ment of the shared master key. The proposed architecture exchanges two messages for
this purpose whereas IPsec Internet Key Exchange Protocol (IKEv2) takes at least four
control messages for this purpose [22]. Similarly Transport Layer Security Protocol
(TLSv1.2) takes at least nine messages for this purpose including the Ack
messages [23]. If let some of the Ack messages of TLS are piggybacked with the TLS
Handshake messages even then TLS takes on average seven messages in order to
complete the TLS mutual authentication and the generation of the shared key. In this
respect, the overhead of the proposed architecture is less as compared to the IPsec and
TLS.

Fig. 5. Delay for migrating virtual machine with increasing number of control messages over
WAN link

Fig. 6. Comparison of initial response time of the proposed architecture with IPsec and TLS
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Result of Figs. 3, 4, 5, and 6 shows that out of number of factors e.g. available
bandwidth, distance between two datacenter locations over the WAN, number of
messages, the main factor that affects the migration delay is the number of messages
exchanged. Although bandwidth and distance also affect the migration delay, however,
their affect is considerably small as compared to the affect caused by the number of
messages exchanged.

5 Conclusion

In this paper, the security requirements for secure migration of virtual machine, are
analyzed and it is identified that lack of single security feature may arise many other
vulnerabilities in the process of VM migration. The approach presented in this paper
provides various security services as a single comprehensive solution for secure VM
migration to an authenticated and authorized environment. The proposed protocol
initially performs the local authentication and authorization of migration client. The
authorization servers on both of the source and destination domains mutually
authenticate the domains (using FIPS-196) through exchange of digitally signed tick-
ets. A symmetric session key is generated on both ends using ECDH and VM data is
encrypted during transmission using AES. For data integrity SHA-256 is used.
Moreover, least possible inter domain message exchange for mutual authentication of
domains make the protocol not only secure but efficient as well.
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Abstract. Cloud computing is growing exponentially, whereby there are
now hundreds of cloud service providers (CSPs) of various sizes. While
the cloud consumers may enjoy cheaper data storage and computation
offered in this multi-cloud environment, they are also in face of more
complicated reliability issues and privacy preservation problems of their
outsourced data. In this paper, we propose a privacy-preserving STor-
age and REtrieval (STRE) mechanism that not only ensures security
and privacy but also provides reliability guarantees for the outsourced
searchable encrypted data. The STRE mechanism enables the cloud users
to distribute and search their encrypted data in multiple cloud service
providers (CSPs), and is robust even when a certain number of CSPs
crash. Besides the reliability, STRE also offers the benefit of partially
hidden search pattern.

Keywords: Private keyword search · Searchable encryption · Cloud
computing

1 Introduction

Cloud computing is growing exponentially, whereby there are now hundreds of
cloud service providers (CSPs) of various sizes. This multi-cloud environment
[2,10] offers plenty of new opportunities and avenues to cloud consumers. Cloud
consumers will be able to leverage not just one cloud provider, but many, to
solve their diverse needs and switch providers if one ceases service. To promote
the multiple clouds, IEEE has initiated Intercloud Testbed that helps make
interactions among multiple clouds.

However, while cloud consumers may enjoy cheaper data storage and pow-
erful computation capabilities offered by multiple clouds, consumers also face
more complicated reliability issues and privacy preservation problems of their
outsourced data. More specifically, as it is difficult to obtain clear guarantees on
the trustworthiness of each CSP [7], cloud consumers are typically suggested to
adopt searchable encryption techniques [8] to encrypt their outsourced data in
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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a way that the encrypted data can be directly searched by the CSPs without
decryption. Despite many efforts (e.g., [5,6], etc.) devoted to improving efficiency
and security of the searchable encryption, there is little consideration on ensuring
the reliability of the searchable encrypted data.

Existing reliability guarantees solely rely on each CSP’s own backup solu-
tion, which however could be a single-point of failure. For instance, the crash
of Amazon’s elastic computing service in 2011 took some popular social media
sites off-line for a day and one energy department collaboration site unavailable
for nearly two days. More seriously, this crash has permanently destroyed many
customers’ data with serious consequences for some users. It is worth noting that
a comprehensive solution to simultaneously ensuring searchability, privacy, and
reliability on data outsourced to multiple clouds is not trivial to define. Simply
replicating data at multiple CSPs is the most straightforward method, which
however is the least cost-efficient approach. To the best of our knowledge, we
are not aware of any existing work that addresses the three requirements in a
comprehensive manner.

To address the aforementioned challenges, we propose a privacy-preserving
STorage and REtrieval (STRE) mechanism that enables cloud users to distrib-
ute and search their encrypted data in CSPs residing in multiple clouds while
obtaining reliability guarantees. We have designed efficient and secure multi-
party protocols based on the secret sharing mechanism, to ensure that a user
will be able to reconstruct the query results even if (n− t) CSPs have been com-
promised, where n is the total number of CSPs storing the user’s files and t is
a threshold value predefined. Moreover, the STRE mechanism also offers better
protection on the use’s search pattern compared to existing works. Specifically,
many existing works on searchable encryption would completely disclose the
user’s search pattern that indicates whether two searches are for the same key-
word or not [3,4]. In our STRE mechanism, this risk originated from pattern
leakage is lowered because the search is conducted in distribution and the search
pattern will be revealed only if there are more than t CSPs collude.

The rest of the paper is organized as follows. In Sect. 2, we present the system
model as well as introduce notations used in this paper. The proposed STRE
mechanism is provided in Sect. 3. Finally, Sect. 4 draws the conclusion of this
paper.

2 Model and Notations

2.1 System Model

In this work, we consider the cloud storage services offered in a multi-cloud
environment, which involves two types of entities: (1) Users, who store a large
number of encrypted files in multiple clouds and execute keyword-based queries
to access and manipulate their stored files; (2) Cloud Service Providers (CSPs),
who possess storage and computation resources and are willing to cooperatively
store and manage the users’ files. Under this architecture, we focus on search-
ability of encrypted data, stored by users in one or many multi-cloud service



38 J. Li et al.

providers. Informally, searchability refers to the ability of end users to retrieve
encrypted files without having the CSP to decrypt it. These searches are typically
carried out using keywords, which the client uses to locate the desired files.

We assume that the CSPs in the multi-cloud environment are honest-but-
curious, in that each CSP will honestly execute the proposed protocols but they
may be curious and try to learn from the information stored at their sites. Our
design goals include the following objectives:

– Reliability. Given n CSPs, the system should still function if at most n − t
(t < n) CSPs have been compromised, where t is a predefined threshold value
for the system.

– Semantic Security. The system should be semantically secure [3] by sat-
isfying the following two requirements. First, given the file index I and the
collection of encrypted files, no adversary can learn any information about
the original files f except the file lengths. Second, given a set of trapdoors
for a sequence of keyword queries, no adversary can learn any information of
the original files except the access pattern (i.e., the identifiers of the files that
contain the query keyword) or the search pattern (i.e., whether two searches
are looking for the same keyword or not).

– Trapdoor Security. We aim to achieve the conditional trapdoor security.
Specifically, we require that any information about the query keyword -
including the search pattern- should not be leaked before the multiple CSPs’
collaborative search. This requirement holds even if at most (t − 1) CSPs
collude together.

– Robustness. We require that (1) when the protocol successfully completes,
the correct files are returned to the users; (2) when the protocol aborts, even
in the collaborative search stage, nothing is returned and CSPs learn nothing
about the file collection or the underlying searched keyword.

2.2 Notations

Let Δ = {w1, . . . , w|Δ|} be a dictionary of |Δ| distinct keywords in lexicographic
order, and 2Δ be the set of all possible files with keywords in Δ. Furthermore, let
f ⊆ 2Δ be a collection of files f = {f1, f2, . . . , f|f |}, where id(f) is the identifier
of file f whereby the identifier could be a string such as a memory location
that uniquely identifies a file, and f(w) is the lexicographically ordered vector
consisting of the identifiers of all files in f containing the keyword w. Suppose
S is a matrix. S[i][j] denotes the element at the ith row and jth column of S,
while S[i] denotes the ith column vector of S. If S is a vector, we also utilize
S[i] to denote the ith element of S.

3 STRE Mechanism

3.1 Overview

The STRE mechanism consists of two major phases: Storage Phase and Retrieval
Phase.
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Storage Phase. This phase consists of two main steps:

– Step S1. A master secret key msk is generated from a security parameter 1λ

and given to the user. Note that the security parameter 1λ which is assumed to
be known to all the adversaries, specifying the input size of the problem. Both
the resource requirements of the cryptographic algorithm or protocol and the
adversary’s probability of breaking security are also expressed in terms of the
security parameter.

– Step S2. Upon taking a collection of files f and master secret key msk as
input, user generates and uploads encrypted file chunks and file index (ci, I)
to the ith CSP for i = 1, 2, . . . , n.

Retrieval Phase. This phase includes three steps:

– Step R1. The user generates a collection of keyword trapdoors {tpi}n
i=1 based

on the query keyword w and the master secret key msk, and then send each
trapdoor to the respective CSP.

– Step R2. n CSPs collaborate together to search w, and the ith CSP returns
a collection of encrypted chunks yi back to the user for i = 1, 2, . . . , n. Note
that if a certain CSP crashes, its response is yi = ∅.

– Step R3. The user uses his/her master secret key to obtain a collection of
clear files x from at least t non-empty yi in {yi}n

i=1. The correctness of protocol
requires that for any file f , f ∈ x holds when and only when id(f) ∈ f(w).

3.2 STRE Protocols

Let SKE1 = (Gen,Enc,Dec) and SKE2 = (Gen,Enc,Dec) denote two symmetric-
key encryption schemes. We propose two novel efficient protocols: Storage Pro-
tocol and Retrieval Protocol, respectively used in the storage phase and retrieval
phase.

Storage Protocol. The storage protocol is for users to encrypt and distribute
their files to multiple CSPs. We present its detail as follows.
Step S1: Given the security parameter 1λ, the following computations are exe-
cuted.

(1) Initiate three pseudo-random functions: P : {0, 1}λ ×{0, 1}λ → {0, 1}λ+log2r,
Q : {0, 1}λ × {0, 1}s → {0, 1, . . . , |Δ|},R : {0, 1}λ × {0, 1}s+log2(maxw∈Δ|f(w)|)

→ {0, 1}log2r, where r is the total number of appearances of keywords in f and
s is the bit-size of each keyword.

(2) After computing msk1,msk2,msk3 ∈R {0, 1}λ and msk4 = SKE1.Gen(1λ),
send the master secret key msk = (msk1, msk2,msk3,msk4) to user.

Step S2: User builds an index I similar (as shown in Fig. 1) to [3,4]. This index
includes a search array A and a look-up table T, which respectively contains
r and |Δ| entries. We then describe how to construct this index for the files
consisting of a keyword w ∈ Δ.
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Fig. 1. Compressed Index

(1) Create a list lw = (N1, . . . , N|f(w)|), where each node Ni corresponds to
a certain file consisting of keyword w. We specify the structure of Ni as
Ni = f(w)[i]||ki+1|| addrA(w)[i + 1], where f(w)[i] is the identifier of the
ith file in f(w) (i.e., the ith file that consists of w), ki+1 = SKE2.Gen(1λ)
is a symmetric key to be used for encrypting the next node Ni+1 and
addrA(w)[i + 1] = R(msk3, w|| (i + 1)) which will be the location for storing
the encryption of next node Ni+1 in A. Note that for the last node Nf(w),
the stored information k|f(w)|+1 = 0λ and addrA(w)[|f(w)| + 1] = 0log2r.

(2) For each node Ni where 2 ≤ i ≤ |f(w)|, compute and store the encryption
Ci = SKE2.Enc(ki, Ni) at the location addrA(w)[i] in A.

(3) For the first node N1, after randomly picking its encryption key k1 =
SKE2.Gen(1λ) and storage position addrA(w)[1] = R(msk3, w||1), store
C1 = SKE2.Enc(k1, N1) at the location addrA(w)[1] in A.

(4) Mask addrA(w)[1] and k1 by computing and storing (addrA(w)[1]||k1) ⊕
P(msk1, w) at location Q(msk2, w) in T. This enables CSP to use P(msk1, w)
and Q(msk2, w) to know N1 and further efficiently access the identifiers of
files that consist of w.

Moreover, the user encrypts all the files in f and attaches the MDS code to
each of them. Informally, after encryption, each encrypted file is firstly divided
into t equal-sized native chunks. Further, the native chunks can then be encoded
by linear combinations to form another (n − t) code chunks. All the n chunks
(including native chunks and code chunks) will be sent one-to-one to the n
CSPs. This enables us to reconstruct the encrypted file from any t out of n
chunks (from t CSPs) so as to enhance the reliability of the outsourced files.
The detailed process for each file f ∈ f is described as follows.

(5) After computing the ciphertext c = SKE1.Enc(msk4, f), divide c into t equal-
size native chunks, denoted by {c′

i}t
i=1.

(6) Construct the n code chunks through linear combination. Specifically, pick an
encoding matrix E = [αij ]n×t for some coefficients in the Galois field GF(28)
with a rank of t, and compute ci =

∑t
j=1 αijc

′
j for i = 1, 2, . . . , n. Then, each

code chunk and the identifier id(f) form a pair (id(f), ci). Note that the
encoding matrix E should be kept at local for encrypted file reconstruction
in future.
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Finally, the user uploads the encrypted file chunks as well as the metadata
(i.e., the index) to each CSP. Specifically, for i = 1, 2, . . . , n, user sends (ci, I) to
the ith CSP, where ci = {(id(f), ci) : f ∈ f} is the set of pairs of file identifier
and its ith code chunk.

Retrieval Protocol. In order to achieve privacy preserving keyword search over
multiple clouds, we propose a novel retrieval protocol that consists of two stages:
(1) query sharing stage; (2) and reconstruction stage. The query sharing stage
generates a (t, n)-secret sharing on the user’s keyword query and distribute the
shares to n CSPs. The reconstruction stage allows the user to obtain the query
results when at least t (t ≤ n) CSPs are functioning.

Recall that a user’s keyword query in [3] is typically described as a pair of
location (e.g., Q(msk2, w)) and blinding value (e.g., P(msk1, w)), where location
records the location of the first node of the searched keyword list in T, and
blinding value is a shadow for this entry in T to prevent CSPs from accessing
it. In order to ensure trapdoor security, the query sharing stage in our retrieval
protocol conducts secret sharing on both the location and the blinding value.
This type of trapdoor is randomly and completely shared with n CSPs and its
privacy is preserved even if at most (t − 1) CSPs collude together. In this way,
the search pattern is hidden before the collaborative search. More specifically,
we leverage Bai’s multiple secret sharing scheme [1]. We build and share a secret
matrix S consisting of both the secrets and some random values which are used
for partially checking the correctness of reconstruction later. We let S[1][1] and
S[1][2] record the blinding value and location respectively, and pick random val-
ues to fill the other entries of S. In addition, another “mirror matrix” S′ defined
the same as S except S′[1][1] = 0, S′[1][2] = 0 is published. Later on, when the
secret matrix is reconstructed, S′ can be used for partially correctness checking.

In the reconstruction stage, our approach is based on the secure data aggre-
gation scheme [9]. In a general sense, for i = 1, 2, . . . , n, after receiving the share
vi on secret matrix S, the ith CSP maintains a (t × n) matrix Bi with its share
vi in the ith column and 0 otherwise. After making a (n, n)-secret sharing on
each entry of such a matrix, each CSP keeps one share Bii at local and respec-
tively distributes the remaining shares {Bij}j �=i to the other (n − 1) CSPs. In
this way, each CSP is able to obtain n “sub-shares”, (n − 1) received from other
CSPs and one kept by itself, and compute one share, say B

′
i, of the “share

matrix” B = [v1, v2, . . . , vn] through summing up all these “sub-shares” (due
to the additive homomorphism of (n, n)-secret sharing). Each CSP continues
to distribute the summing result to the other CSPs and the “share matrix” B
can be reconstructed by summing up all the gathered distributions. Then, the
rest of reconstruction is identical to Bai’s scheme [1] with an additional step
for partially checking the correctness of secret reconstructed (using the “mirror
matrix” S′).

After correctly reconstructing the location and blinding value, the encrypted
file chunks can be found and sent back by each CSP [3,4]. The user groups these
chunks according to the unique identifier of file and recovers the whole encrypted
files with MDS code. The original files can be derived through decryption.
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We now elaborate on the detailed steps of the retrieval protocol. Note that
in all the steps, whenever an entity fails or any verification step fails, the entity
sends the signal “fail” to the other entities and aborts. Moreover, whenever any
entity receives a signal “fail”, it aborts as well.
Step R1: Given the master key msk and the query keyword w, the user first
builds a secret matrix and its mirror matrix.

(1) Build (m × t) secret matrix S such that S[1][1] = P(msk1, w), S[1][2] =
Q(msk2, w) and random values are filled at the other entries. We can just
set m = 2t − 2 to reduce communication overload.

(2) Build a mirror matrix S′ as the same as S except S′[1][1] = S′[1][2] = 0.
Then, S′ is published out for correctness check in future.

Secondly, the user performs the following computations to make a multiple
secret sharing on the secret matrix S.

(3) After randomly picking a (m× t) matrix A of rank t, compute the projection
matrix M = A(ATA)−1AT mod p and publish the reminder matrix R =
S − M mod p where p is a public big prime number.

(4) Randomly choose (t × 1) vectors xi for i = 1, 2, . . . , n such that any t of
{xi}n

i=1 are linearly independent, and compute each share vi = Axi mod p.

Finally, user submits the share vi to the ith CSP for i = 1, 2, . . . , n, to retrieve
all the files containing the keyword w.
Step R2: For the ith CSP, i = 1, 2, . . . , n, upon receiving the share vi, it first
submits and collects shares through multi-party computation according to the
following steps:

(1) Build a matrix Bi such that Bi[i] = vi and the other entries of Bi are filled
with 0.

(2) After making an (n, n)-secret sharing on Bi, i.e., randomly pick Bi1, . . . , Bin

such that
∑n

j=1 Bij = Bi, send Bij to the jth CSP for j = 1, . . . , i − 1, i +
1, . . . , n. Note that the matrix Bii is kept at local by the ith CSP.

(3) Upon receiving Bji from the other CSP, where j = 1, . . . , i − 1, i + 1, . . . , n,
send back (to the jth CSP) a response ack. Note that if the response is not
received by the jth CSP, the jth CSP needs to set Bjj = Bjj + Bji.

(4) Suppose B1i, . . . , B(i−1)i, B(i+1)i, . . . , Bni have been successfully gathered
and responded. Compute and broadcast Bi =

∑n
j=1 Bji (Bii is the local

share computed by ith CSP) to all the other active CSPs (i.e., the CSPs
which have successfully sent back valid response before).

(5) After gathering B1, . . . , Bi−1, Bi+1, . . . , Bn from the other CSPs and Bi

from local, the ith CSP computes and obtains the share matrix B =∑n
j=1 Bj .

Then, the ith CSP attempts to reconstruct the secret matrix S as follows:

(6) Randomly collect any t columns from B and construct the matrix B.
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(7) Calculate projection matrix M = (B(BTB)−1BT) mod p and the secret
matrix can be reconstructed as S′′ = M + R mod p.

(8) Verify the correctness of reconstruction by checking all the entries except
S′′[1][1] and S′′[1][2] of S′′ and S′. If not passed, return back to Step R2.(6).

Step R3: Upon computing P = S′′[1][1] and Q = S′′[1][2], the ith CSP proceeds
as follows to collect and return the code chunks:

(1) Compute T[Q] ⊕ P = tmp and parse tmp as loc and k. Then, loc is the
location of the first node of lw in A and k is the symmetric key used for the
encryption of this node.

(2) Compute info = SKE2.Dec(k,A[loc]).
(3) After parsing info as id, loc and k, fetch the code chunks (id, ci) with (id, ci) ∈

ci. Then, test loc||k: if loc||k �= 0λ+log2r, return back to Step R3.(2).

After gathering all the code chunks {(id, ci)}id∈Γ for i = 1, 2, . . . , n, where Γ is
an underlying set of file identifiers satisfying the search criterion as intrinsically
indicated above, the ith CSP sends back results (i, {(id, ci)}id∈Γ).
Step R4: Upon receiving the results, the user continues to proceed as follows.

(1) Suppose Ω is the set of CSP identifiers i, the chunks of which have been suc-
cessfully received. If |Ω| < t, user reports “fail” and the protocol is aborted.
Otherwise, he/she randomly selects t-element set Ω ⊆ Ω, and constructs a
matrix E from the corresponding t row vectors of E. Recall that E is the
encoding matrix of encrypted files maintained by user. The rank of E is
t, which guarantees that E is invertible. Straightforwardly, for each file, its
encrypted form can be reconstructed by multiplying the inverse matrix of E
with the corresponding code chunks.

(2) Finally, user uses msk4 to decrypt the reconstructed encrypted files and
obtains the search results in plain.

Finally, it is worth noting that although our current discussion is focused on
CSPs that store the same amount of file chunks, our mechanism can be easily
extended to a more flexible storage strategy. For example, we can encode the
encrypted file into more than n chunks and store more than one chunk in the
cheaper or more reliable CSP.

4 Conclusion

In this paper, we propose the STRE mechanism, to promote reliability of out-
sourced searchable encrypted data. In STRE, user’s searchable encrypted data
is strategically distributed to and stored at multiple CSPs, so as to achieve high
crash tolerance. Besides reliability, the STRE mechanism also affords efficient
and flexible storage properties and partially hidden search pattern.
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Abstract. With the increasing popularity of cloud computing, more and more
sensitive or private information is being outsourced to cloud server. For pro-
tecting data privacy, sensitive data are always encrypted before being outsour-
ced. Although the existing searchable encryption schemes enable users to search
over encrypted data, these schemes support only exact keyword search, which
greatly affects data usability. Moreover, these schemes do not support verifi-
ability of search result. To tackle the challenge, a smart semantic search scheme
is proposed in this paper, which returns not only the result of keyword-based
exact match, but also the result of keyword-based semantic match. At the same
time, the proposed scheme supports the verifiability of search result.

Keywords: Cloud computing � Semantic search � Verifiable search

1 Introduction

Cloud computing has become more and more prevalent, due to its benefits, including
relief of the burden for storage, flexible data access, reduction of cost on hardware and
software. More and more sensitive data (e.g. emails, personal health records and
financial transactions, etc.) has been centralized into the cloud. It is common practice to
encrypt sensitive information before outsourcing for protecting information privacy and
alerting unauthorized access. However, data encryption makes existing search tech-
niques on plaintext useless, thus prompting a big challenge to effective data utilization.
A popular way to address this problem is searchable encryption, which can retrieve
specific files through keyword-based search supporting data protection and keyword
privacy-preserving.

In recent years, various efficient search schemes over encrypted cloud data based on
searchable encryption have been proposed. However, these searchable encryption schemes
based on keyword have two shortcomings. One is that most of these schemes support only
exact keyword search. That means, the returned results are completely dependent on
whether query terms users enter match pre-set keywords. The other one is that existing
searchable encryption schemes assume that cloud server is honest-but-curious. However,
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we noticed that cloud server may be selfish to save its computation or download band-
width, which is significantly beyond the conventional honest-but-curious server model.

To meet the challenge of verifiable search and semantic search, in the paper, we
propose an efficient verifiable keyword-based semantic search scheme. Our contribu-
tions in this paper can be summarized as follows:

(1) We propose a keyword-based semantic search scheme over encrypted data by
building a semantic tree in real time, which can enable cloud server find out the
keywords semantically similar to original query terms, improving the flexibility of
system.

(2) By combining the keyword-based semantic search scheme with verifiable sym-
metric searchable encryption, we propose a search scheme supporting verification
for search results. Our scheme is secure and privacy-preserving according to the
rigorous security analysis.

(3) Our scheme is implemented and tested with real data sets. The extensive exper-
iment results validate the practicality and efficiency of our proposed scheme.

2 Related Work

Symmetric Searchable Encryption: The first construction of symmetric searchable
encryption (SSE) was proposed by Song et al. [1], in which after data encrypted
symmetrically is outsourced into the untrusted server, client can search for data files by
giving the server a search token that does not reveal any information on keyword or
encrypted data. To achieve efficiency, Chang et al. [2] and Curtmola et al. [3] both
build similar index, in which each entry contains encrypted trapdoor of a keyword and
a series of corresponding encrypted file identifiers.

Asymmetric searchable encryption: Asymmetric searchable encryption (public-key
version) [4] is used in a analogous scenario, except that anyone who owns the public
key can encrypt and store data on a server, but only someone holding the private key
can search and decrypt data files. Golle et al. [5], Hwang et al. [6] and Ballard et al. [7]
have done some research on conjunctive keyword search. Then Boneh et al. [8] and Shi
et al. [9] discussed some issues concerned with keyword conjunction and range query.
Recently, great development on Asymmetric searchable encryption has achieved by
some researchers.

However, all such research is focused on database field, not fully applied to cloud
computing. To apply the searchable encryption to cloud computing, some researchers
have been studying further on how to search over encrypted cloud data efficiently
[10–14]. Li et al. [10] firstly proposed a fuzzy keyword search scheme over encrypted
cloud data, which combines edit distance with wildcard-based technique to construct
fuzzy keyword sets, to address problems of minor typos and format inconsistence.
Wang et al. [11] proposed a secure ranked search scheme, in which through giving each
keyword weight by TF-IDF, under the help of the order preserving symmetric
encryption, the cloud server can rank relevant data files with no knowledge of specific
keyword weigh. But this scheme supports only single keyword search. Then Cao et al.
[12] proposed a privacy-preserving ranked scheme supporting multi-keyword, which

46 Z. Fu et al.



uses vector space model and characteristics of matrix to realize trapdoor unlinkablility
and thereby preserves data privacy.

3 Preliminaries

Semantic Tree Model. In this paper, the semantic tree model to express the semantic
relevance of the keywords will be constructed. In the model, the m-best tree is adopted
as the semantic unit composed of keywords. When querying, the semantic tree will be
set up in real-time based on query terms and some keywords satisfying the qualifica-
tions can be chosen out.

m-best Tree. The m-best tree here is considered as the unit in the semantic tree model,
which is composed of keywords. sim(q,p) denotes the similarity between word q and
word p. Given any word q, a tree model can be used to express relationships with any
other words. It is worth noting that all the leaf nodes from left to right are sorted
according to the similarity with the root node. That means the more similar the leaf
node is to the root node, the more left it will be. It should satisfy the following formula:

simðq; p1Þ� simðq; p2Þ� � � � � simðq; pmÞ ð1Þ

sim(q,p) can be calculated by WordNet. The left most m leaf nodes are chosen and
other leaf nodes are given up. It is called m-best tree, which is the unit in the semantic
tree model. Note that the variable m can be adjusted according to the specific situation.

Term Similarity Tree. Given a query term vector Q = (q1,q2,…,qk) containing
K terms, a term similarity tree TST(Q,v,m) based on Q in real-time can be built, as
shown in Fig. 1.

The variable v is the number of layers in the tree and the variable m means each unit
of the tree is the m-best tree. With the term similarity tree TST(Q,v,m), the similarity
between the root node and any internal node or leaf node can be easily calculated.
Specific definitions are described below:

(1) The path weight between the root node q1 and the node p is multiply of all the
weight in the path.

(2) The shortest path between the root node qi and the node p is the path of the
maximal weight.

(3) sim(qi,p) is the weight of the shortest path between them.

WordNet. WordNet is a lexical database for English language, which is created by
Princeton University. It groups the English words into sets of synonyms called synsets,
provides short, general definitions, and records the various semantic relations between
these synonym sets. a variety of semantic similarity and relatedness measures based on
WordNet can be easily implemented.
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4 Verifiable Keyword-Based Semantic Search Scheme
in Cloud

4.1 Technique for Keyword Semantic Extension Query

When the authorized user wants to retrieve some data files of his interest, he may type
in some query terms, denoted as Q = (q1,q2,…,qk) which contains K query terms. To
enable search more practical and flexible, a keyword extension technique to extend
original query terms is proposed, getting some appropriate additional terms semanti-
cally related to the original query terms. Here, building the semantic similarity tree TST
(Q,v,m) to extend original query terms Q is adopted. To extend query terms, firstly, TST
(Q,v,m) should be built and then the extended terms meeting the requirements are
chosen out. If the term v satisfies the following criteria, it can be considered as an
extended term.

simðQ;wÞ¼
PK
i¼1

simðqi;wÞ�K�uðvÞ

overlayðTSTðQ;v;mÞ;wÞ� K
2b cþ1

8><
>: ð2Þ

sim(Q,w) is the similarity between the original query terms Q and the term w. sim(qi,w)
is the similarity between the query term qi and the term w. The uðvÞ is the increasing
function of the level v, and it is defined as follows:

uðvÞ ¼ sinðpv
60
Þ þ 0:5; v 2 ð0; 10Þ; v 2 N ð3Þ

In the formula above, when v 2 ð0; 10Þ; v 2 N, the domain of values of u vð Þ
ranges from 0.5 to nearly 1. The value will increase with the increase of level v
overlay TST Q; v;mð Þ;wð Þ denotes how many subtrees in TST the term w exists. k

2

� �
will

always round down to the nearest whole unit to K=2.

Fig. 1. TST(Q,v,m)
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From the type, the first formula evaluates similarity between the term w and the
query term q1,q2,…,qk and the second formula represents the similarity between the
term w and the whole original query terms Q. The whole query terms Q represents
user’s semantic tendency of query, which can be seen as a point in the semantic space.
The extended terms should be more similar to the point. That means, the extended term
should be more similar to the whole query terms Q rather than one query term qi among
Q for the reason that the whole query terms Q expresses the explicit meaning, but one
single query term qi among Q cannot convey the explicit meaning.

4.2 The Verifiable Keyword-Based Semantic Search Scheme

In this section, the proposed scheme is emphatically presented in detail. The scheme
includes five algorithms (Setup, GenIndex, GenQuery, Search, and Verify).

• Setup
In this initialization phase, the data owner initiates the scheme to generate a random
key kR f0; 1gk and a secret key ZRf0; 1gL.

• GenIndex
Assuming that ∙ = {ai} is a predefined symbol set, where the number of distinct
symbols is |∙| = 2∙ and each symbol ai 2 D is denoted as ∙-bit binary vector. Below,
the L is the output length of the function pðk; �Þ.

Preprocess:

(1) The data owner scans the plaintext document collection D and extracts the
distinct keywords of D, denoted as W;

(2) The data owner computes the score SWi;Di for each Wi 2 W and Dj 2 D. For
all data files containing the keyword Wi, the identifier set is denoted as
FIDWi ¼ IDðD1Þ jj ezðsWi;D1Þ; . . . jj IDðDjÞ jj ezðsWi;DjÞ.

Build the symbol-based index trie:

(1) The data owner computes TWi ¼ pðk;wiÞ for each Wi 2 W with the random
key k, and then divides them into symbols as TWi ¼ ai;1; ai;2; . . .; ai;L = h

� �
.

(2) The data owner builds up a symbol-based index trie G covering all the TWi

for eachWi 2 W , where each node contains two attributes (r0,r1). r0 stores the
symbol in the ∙; r1 is a globally unique value path||memory||gk(path||mem-
ory) in G. The path is the sequence symbols from the root to the current
node, denoted as ai;1; ai;2; . . .; ai;j, where j� L = h; The memory is 2θ-bit
binary string, which represents the set of the children nodes of the current
node. If the current node has a children node whose r0 is the i-th symbol in ∙,
and then the i-th bit is set “1”, while other bits are set “0”. In parallel to build
search index G, plaintext documents are separately encrypted by a symmetric
way in a traditional manner.

(3) The data owner attaches IDSet which is FIDWi jj gk FIDWið Þf g1� i� n to index
G and outsources it together with encrypted files to the cloud server.
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• GenQuery

(1) When the user inputs the query terms Q = (q1,q2,…,qk), first builds term
similarity tree TST(Q,v,m) and executes keyword semantic extension, getting
the extended query Q = (q1,q2,…,qk,qk+1,…,qm);

(2) For each qi 2 Q, the user computes the trapdoor Tqi ¼ p k; qið Þ, and divides
them into symbols as Tqi ¼ ai;1; ai;2; . . .; ai;L=h

� �
, finally sends fTqigqi2Q to the

cloud server. Meanwhile, the user should store fTqigqi2Q temporarily to verify
the search result later.

• Search
Upon receiving the search request, the cloud server performs the search operation
over the index G. The search is principally to find a path in G according to the search
request, from the root node to the leaf node. The existence of a path indicates that the
queried words happens at least one of the targeted data files. During every step of
path exploration, the cloud server produces the proof which is later together with
FIDS returned to the user for validity of search outcome. Note that the proof is the r1
of each node found in the path during search, which is a globally unique value.

• Verify and Rank
When the user receives the outcome from the cloud server, he can verify the
correctness and completeness of search result. The key idea behind it is that the
outcome returned by the cloud server contains the proof, which is a globally unique
value and is produced by a pseudo-random function gk with the random key
k. Without the random key k, which is only shared in authorized users, the cloud
server cannot forge a valid proof. The outcome returned by the cloud server can be
divided into two situations: successful and unsuccessful.
(1) If the outcome is successful, the outcome will contain IDSet and proof. Firstly,

the user can verify the completeness of the IDSet, which consists of
FIDWi jj gk FIDWið Þf g1� i� n. The user can extract the FIDWi and compute

gk FIDWið Þ, where FIDWi is the concatenation of identifiers received by the
user. Then the user can test whether gk FIDWið Þ is equal to the received
gk FIDWið Þ. If they are equal, the user can consider the search result is com-
plete. Otherwise, the search result is incomplete. After the first step, the user
will utilize the proof to verify the correctness of the search outcome. Similar to
the first step, the user computes the gk(path||memory) and tests whether it is
equal to the received gk(path||memory), where the path||memory is the former
part of proof. If they are not equal, the user can see the cloud server is not
worth being trusted.

(2) If the outcome is unsuccessful, the user could directly verify the correctness of
the search outcome. The proof is returned in the format of Go;yo ½r1�jj. . .jjGj;yj

½r1� jj j. b[j] is defined as a j-bit vector, where the last bit is set “0”, other bits
are set “1”. This part of the process is to verify each unit fGj;yj ½r1�g of proof,
which contains three steps below:
(a) The user computes gk(path||memory) and tests whether it is equal to

received gk(path||memory), where path||memory is the former part of the
proof.
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(b) If the first step pass, the user tests whether the received path is equal to
corresponding fai;1; ai;2; . . .; ai;jg stored in user side.

(c) If the second step pass again, the user continue testing whether
memory½ordðTqi ½jþ 1�Þ� is equal to b[j + 1], where Tqi ½jþ 1� is the next
symbol of the current node according to the sequence symbol in the
trapdoor. If not equal, the cloud server is lazy, that means, it only exe-
cuted a fraction of search.

After verifying that the outcome is correct and complete, the user can decrypt IDSet
with decryption key z and sort the returned data files.

5 Performance Analysis

Testing of Building Symbol-based Trie Tree. In the experiment, θ = 4 is chosen and
SHA-1 is used as hash function with output length of L = 160 bits. So, the height of the
symbol-based trie is L/h= 40 and that means every path in the trie is 40. Figure 2 shows
the trie construction time. It shows that the construction time increases linearly with the
number of distinct keywords. And the construction time is very fast and it can be
conducted off-line and just one-time cost.

Testing of GenQuery. With the help of m-best tree, if users input a single query term,
he will find its synonyms, various morphological forms and similar words. And when
users input several query terms, he will find some words close to the whole query under
the construction of term similarity tree. Therefore, our semantic search scheme supports

Fig. 2. Time cost to build trie
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both single keyword and multi-keyword search. In our test, 20 users are invited to
conduct a large quantity of queries to test the performance of keywordbased semantic
extension. During the test, we continually adjust the variable m and v of the term
similarity tree according to the feedback of users. Figure 3 shows the time cost to
generate query of a single keyword.

Fig. 3. Time cost to generate query

Fig. 4. Time cost to search
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Testing of Search. Given the search index comprised of 5806 distinct keywords, we
measure the time cost of search operation, shown in Fig. 4.

We obtained an estimation of throughput of search: 4000 words/second. In addi-
tion, we notice that searching for irrelevant word is much faster, which is because
search will stop if there is a mismatch between symbols of trapdoor and the index. This
“incomplete traversing” saves a lot of operating time.

6 Conclusion

In the paper, we propose an efficient verifiable keywordbased semantic search scheme.
Comparing to most of the existing searchable encryption schemes, our scheme is more
practical and flexible, better suiting users’ different search intentions. Moreover, our
scheme protects data privacy and supports verifiable searchability, in the presence of
the semi-honest server in the cloud computing environment. Through ample theoretical
analysis and experimental study using the real data set, our scheme is quite efficient.
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Abstract. The MapReduce framework has been widely adopted for
processing Big Data in the cloud. While efficient, MapReduce offers very
complicated (if any) means for users to request nodes that satisfy certain
security and privacy requirements to process their data.

In this paper, we propose a novel approach to seamlessly integrate
node selection control to the MapReduce framework for increasing data
security. We define a succinct yet expressive policy language for MapRe-
duce environments, according to which users can specify their security
and privacy concerns over their data. Then, we propose corresponding
data preprocessing techniques and node verification protocols to achieve
strong policy enforcement. Our experimental study demonstrates that,
compared to the traditional MapReduce framework, our policy control
mechanism allows to achieve data privacy without introducing significant
overhead.

Keywords: MapReduce · Node selection · Access control

1 Introduction

The MapReduce computing paradigm is an architectural and programming model
that utilizes a large number of worker nodes in parallel to efficiently process mas-
sive amount of raw unstructured data [1,3,9]. Initial constructions of MapReduce
only ran in a single trusted data center. With the proliferation of the cloud com-
puting, MapReduce has now become a popular means, and typically uses the
worker nodes residing in untrusted public cloud to process Big Data [13,22].
For instance, in the Cisco Nexus 1000V InterCloud, not only are the virtual
machines’ environment heterogeneous, but the actual physical hosts are also
geographically distributed, and offer different degrees of trust and security.

The fact that MapReduce may utilize un-trusted nodes for processing data
raises concerns to data owners who wish to use MapReduce tasks on sensitive
information. For example, with the explosion of patient data after the adoption
of electronic health record, health care organizations are currently outsourcing
data analytics tasks to the cloud, such as counting the occurrences of common
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 55–72, 2015.
DOI: 10.1007/978-3-319-23829-6 5
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Fig. 1. Overview of the main ACEM framework

diseases at different age ranges using the MapReduce. Some health records that
belong to young adults may be privacy sensitive according to the HIPAA law,
and hence the health care organizations may require such sensitive records to be
processed only by the cloud servers (worker nodes) with cryptographic capabil-
ities and also located in USA. Unfortunately, this kind of requirements on the
worker nodes cannot be achieved in any existing MapReduce implementations,
without tedious manual configuration. It is also worth noting that although
methods such as homomorphic encryption [5,18] or outsourced private compu-
tation [4] can protect the data by processing in the encrypted domain, these
approaches are typically computationally expensive and are only feasible for
limited applications [7].

To overcome the above challenge, we propose a novel access control enforce-
ment mechanism, called ACEM (Access Control Enforcement in Mapreduce),
which automatically selects and verifies worker nodes in the MapReduce accord-
ing to data owners’ access control policies. In particular, we first propose a
MapReduce Policy Language (MPL), that is tailored according to the charac-
teristics of MapReduce environments (e.g., the properties of worker nodes in
the MapReduce), facilitating data owners to specify their privacy and security
concerns regarding worker nodes that handle their data. For example, using
MPL, a data owner can explicitly specify that his/her sensitive data can only
be processed by worker nodes located in USA. Since a data owner may have
different access control policies regarding different portions of his/her data, we
further propose a data-policy binding algorithm that automatically partitions
the user’s data based on access control policies and binds each data partition
with the respective policy. Then, we design an efficient collaborative verification
protocol to select qualifying worker nodes for each data partition. Our proposed
approach is elegantly interleaved with existing MapReduce scheduling process
without affecting the core MapReduce architecture. We have implemented a
prototype of our proposed ACEM mechanism as an extension to the Azure’s
iterative MapReduce-Daytona [3,15], and our experimental results demonstrate
both effectiveness and efficiency of our approach.

The rest of the paper is organized as follows. Section 2 gives an overview of
MapReduce and discusses security and privacy issues in MapReduce. Section 3
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presents an overview of the proposed framework. Section 4 defines a policy lan-
guage for MapReduce. Section 5 introduces the data preprocessing algorithms.
Section 6 describes the policy-based node selection in MapReduce. Section 7
reports experimental results. Finally, Sect. 8 concludes the paper.

2 Related Works

In this section, we first give an overview of the MapReduce, and then discuss
security and privacy issues in MapReduce.

2.1 Background of MapReduce

MapReduce is a functional programming paradigm. It enables parallel program-
ming of large data efficiently using multiple nodes. Its programming model is
built upon a distributed file system (DFS) which provides distributed storage.
Programmers specify two functions: Map and Reduce. The Map function receives
a key/value pair as input and generates intermediate key/value pairs to be fur-
ther processed. The Reduce function merges all the intermediate key/value pairs
associated with the same (intermediate) key and then generates final output. In
a cloud computing setting, these functions are orchestrated by the Master, and
carried out by the mappers, and reducers. The Master acts as the coordinator
responsible for task scheduling, job management, etc. A Master’s module (typi-
cally the data partitioner) splits input data into a set of M blocks, which will be
read by M mappers through DFS I/O. The execution of map and reduce tasks
are automatically distributed across all the nodes in the cluster. The map func-
tion takes as input one of the M blocks, which is defined as a key-value pair, and
produces a set of intermediate key-value pairs. The intermediate result is sorted
by the keys so that all pairs with the same key will be grouped together (the
shuffle phase). If the memory size is limited, the locations of the intermediate
results are sent to the Master who notifies the reducers to prepare to receive the
intermediate results as their input. Reducers then use Remote Procedure Call
(RPC) to read data from mappers and execute user defined reduce functions, in
which the key pairs with the same key will be reduced in some way, depending
on the user defined reduce function. Finally, the output will be written to DFS.

2.2 Security and Privacy in MapReduce

There is growing interest in security of MapReduce [2,5,12,14,16,18,19,24,25].
The Sedic framework [25], is the closest effort to ours. Sedic aims to partition
the data according to the inputs sensitivity level. If a data piece is sensitive, it is
sent to a sensitive mapper. For reducer computations, Sedic modifies the reducer
routines by checking whether they contain certain loop dependent variables: if so,
the partition of sensitive and non-sensitive data is affected, otherwise data from
sensitive mappers would be pushed to non sensitive reducers. Sedic achieves this
goals by modifying how the data is read: normally, the entire data is read using a
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single pointer, while with Sedic only a block of data is read using a given pointer.
As we discuss in Sect. 5.1, ACEM also includes algorithms for data partitioning,
in addition to checking that the workers satisfy user-specified conditions before
they are allowed to process the data.

Also closely related is the Airavat [19] project. Airavat is a secure and pri-
vate framework for MapReduce systems. Airavat aims to enforce differential
privacy, i.e., it aims to ensure that the output of aggregate computations does
not violate the privacy of individual inputs. It achieves this by modifying the
Java Virtual Machine and the MapReduce framework and adding SELinux-like
Mandatory Access Control to the DFS. It is worth noting that, not only does
the methodology of Airavat differ from that of ACEM, but the end goals of the
frameworks are also different: While Airavat tries to prevent the processing of
the data against untrusted code, ACEM tries to prevent the processing of the
data against untrusted nodes.

Another related work, which, similar to our work, relies on distributed verifi-
cation (see Sect. 6.1) is the SecureMR framework [24]. The framework is intended
to be a practical service integrity assurance framework for MapReduce. It allows
mappers to examine the integrity of data blocks from the DFS; verify the authen-
ticity and correctness of the mappers’ results; and allows users to check the
authenticity and correctness of the reducers’ final results.

Finally, this paper is loosely related to the body of work focusing on cloud
computing integrity of computation [4,16,23]. For example Moca’s [16] proposal
deals with distributed results checking for MapReduce. The work relies on the
distributed voting method to check the correctness of the results produced by
MapReduce. This work is complementary to ours in that while it relies on a
distributed approach, it verifies the correctness of the computation, rather than
whether a user’s requirements of the nodes are satisfied.

3 An Overview of ACEM Mechanism

We propose an ACEM (Access Control Enforcement in Mapreduce) framework
that considers security and privacy issues of worker nodes in MapReduce. The
ACEM framework enables data owners to impose security requirements on their
sensitive data and then selects worker nodes that satisfy the users’ security
requirements to perform the MapReduce functions on their data. Figure 1 illus-
trates the main components of the ACEM framework and their interactions.
There are three entities involved in ACEM.

– Clients equipped with the policy specification plug-in is able to submit com-
putation task as well as a set of policies. These policies express the constraints
against properties of the workers computing or managing clients’ data.

– Master node taking with a policy enforcement point (PEP) module is responsi-
ble for scheduling the MapReduce tasks and coordinate distributed evaluation
of users’ policies.

– Each worker node is installed a policy evaluation/verification module, such
that the properties of this worker node could be evaluated to assess their
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eligibilities to access potion of user data, while the other nodes in synch with
the master node could act as verifiers to verify the correctness of the policy
evaluations.

We assume that at least the master node is always under the control of
the cloud service provider, and therefore can be fully trusted. We adopt the
semi-honest adversary model for worker nodes in that workers in the cloud are
expected to follow the ACEM protocols but may explore the information they
processed.

The execution of ACEM-MapReduce programs is similar to MapReduce pro-
grams, the difference being that nodes processing MapReduce tasks on a given
client input are selected according to clients’ policies, while preserving the origi-
nal execution flow. Recall the example of outsourcing patient records mentioned
in the introduction, wherein the health care organization would request that
sensitive patient records should be handled only by the worker nodes located
in the USA and with cryptographic capabilities. In this case, the master node,
upon receiving the policy, completes two preliminary steps: (1) it pre-processes
the input data to partition them according to the user’s policies, and (2) it
triggers the collaborative property verification protocols, to identify nodes capa-
ble to carry out the required MapReduce tasks that also meet the users’ policy
requirements (e.g. it verifies which nodes are in the USA and whether they have
cryptographic capabilities). Upon verification of the policy’s satisfiability, the
data distributed by the master becomes available to the eligible nodes, starting
the process at the mappers. As the mappers complete their tasks, the control is
back to the master. The master, upon shuffling the data in accordance with the
application’s logic and MapReduce routines, will assign the intermediate data
to worker nodes that satisfy policies for reduce tasks. To keep track of the input
data and its related policies, the data may be tainted after the processing as
they go through intermediate stages.

4 MapReduce Policy Language

The first challenge in achieving access control in MapReduce is to formally spec-
ify data owners’ various security and privacy requirements on their data items
such that only the policy-compliant worker nodes are allowed to access these
items. Although traditional policy language such as XACML is high expressive,
it would introduce high degree of complexity (for both configuration and enforce-
ment of policies), escaping from for our purposes. To tackle this challenge, we
propose a more succinct yet still expressive policy language, called MapReduce
Policy Language (MPL). Compared to traditional policy language, MPL enjoys
two unique features: (1) MPL policies can be quickly composed by removing
unnecessary components in traditional policy languages. (2) MPL policies can
be evaluated within a tractable time. In what follows, we firstly give the defini-
tion of MPL, and then describe how to evaluate MPL.
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4.1 MPL Definition

Before introducing MapReduce Policy Language (MPL), we first provide the
definition of a condition language that is used in MPL.

Definition 1 (Condition Language). Suppose U = {u1, u2, . . . , un} is the
attribute universe, and domui

is the domain of each attribute ui ∈ U . Let θi ⊆
{<,≤,=, �=, >,≥,⊂,⊆,⊇,⊃} denote the operation set defined for attribute ui in
its domain domi. Then, we can recursively define the condition language LU on
U as follows:

– For any attribute ui, value v ∈ domui
and operation θ ∈ θi, the atomic con-

dition 〈uiθv〉 belongs to LU .
– For any condition ci, cj ∈ LU , the composite conditions ci∧cj and ci∨cj belong

to LU , where “∧” and “∨” respectively denotes “AND” and “OR” operation.

As an example, we consider a two attribute-universe {u1, u2}. Suppose u1

has domain domu1 = [1, 3] and the operation set {<,>,≤,≥,=, �=} defined on
domu1 ; u2 has domain domu2 = {1, 2, 3} and the operation set {⊂,⊆,⊇,⊃,=, �=}
defined on domu2 . Then, we can have atomic conditions: 〈u1 < 1〉, 〈u1 < 2〉, 〈u1 <
3〉, 〈u1 > 1〉, . . . for u1 and 〈u2 ⊂ {1}〉, 〈u2 ⊂ {1, 2}〉, . . . for u2, which belong to
L{u1,u2}. Moreover, any AND/OR-composition (e.g., 〈u1 < 3〉∧ 〈u2 ⊆ {1, 2, 3}〉)
of the conditions in Lc still belongs to Lc. It is worth noting that, Lc has infinite
number of conditions and most of them (e.g., 〈u1 < 3〉 ∧ 〈u2 ⊆ {1, 2, 3}〉 ∧ 〈u1 >
3〉) are permanently not satisfied. Of course, we only account for the significant
subset of Lc, in which the conditions could be satisfied.

Unlike arbitrary Boolean expressions, the Boolean expressions in Lc can be
solved in a polynomial time, which is important for ensuring the efficiency of
policy evaluation when integrating ACEM system into MapReduce. In terms
of expressiveness, Lc covers all cases except the condition that involves direct
comparison of multiple attributes (e.g., ui > uj). We argue that such comparison
of multiple attributes rarely occurs in the MapReduce data processing since
attributes associated with a data item (or a worker node) are different from one
another and usually not comparable, e.g., we do not compare attributes “age”
with “location” in a person’s medical record.

Next, we explain our proposed policy language MPL. In MPL, both users’
data items and worker nodes are represented as a set of attribute-value pairs.
Specifically, a user’s dataset is a collection of data items, i.e., D = {data1, data2

..., datan}, and each data item datai (1 ≤ i ≤ n) is in the form of datai={(u1, v1)

. . . (us, vs)}, where uj(j = 1, . . . , s) is an attribute name and vj (j = 1, . . . , s) is
the corresponding attribute value. Similarly, a worker node node is represented
by a set of property-value pairs, i.e., node={(w1, v1), ..., (wt, vt)}, where wi is
property name and vi is the corresponding value. For example, we consider a
health care organization (HCO) outsource computing task to cloud and have a
set of attributes for data items like data={(age, 26), (gender,male), (country,
USA), (diagnos,HIV ), (date, 10/2013)}, which means a 26-year old male born
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in USA was diagnosed HIV in Oct 2013. Correspondingly, a worker node’s prop-
erties may look like: node={(location, USA), (AES, enabled)} which means the
worker node is located in USA and has cryptographic capability.

Based on the attribute expression on both user’s data and worker node, we
can then define MPL. Informally, MPL is a set of policies, each of which specifies
the requirements that a worker node should satisfy to access a certain data item.
The formal definition of MPL is as follows.

Definition 2 (MapReduce Policy Language). Suppose U and W are respec-
tively the universe of data items’ attributes and worker nodes’ properties. A policy
Pi in MPL is a set of rules Pi = {R1, R2, . . . , Rk}, and each rule includes two
components.

– Target is a condition in the condition language LU on U , describing which
data item is to be accessed in this rule.

– Cond is a condition in the condition language LW on W, specifying the security
and privacy requirements that a worker node should satisfy to access the data
item.

To be more clear, let us re-consider the previous HCO example. Suppose
that the task outsourced to the cloud by HCO is to count the number of dis-
eases occurring at each age range. Since some of the patient records are privacy
sensitive, such as patient records belong to young adults (age≤ 14) or patients
who have severe diseases (e.g., HIV), HCO may require the sensitive records to
be handled by cloud servers (worker nodes) that are located in USA with cryp-
tographic capability, while other non-sensitive records just need to be processed
by the servers located in USA. Such requirements can be specified in a MPL
policy as follows:

PHCO = {
R1 : Target〈(age ≤ 14) ∨ (diagnose = HIV )〉,

Cond〈(location = USA) ∧ (AES = enabled)〉
R2 : Target〈(age > 14) ∧ (diagnose �= HIV )〉,

Cond〈(location = USA)]〉
}

4.2 MPL Evaluation

In this section, we discuss how an access request is evaluated against a policy.
First, we define an access request from a worker node as follows.

Definition 3. An access request Qnode is in the form Qnode = (data, node),
which means a worker node node requests to access a data item data.

Given an access request Qnode from a worker node, a rule in a policy will
output a decision value belonging to {Permit, Deny, NotApplicable} as defined
in Definition 4.
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Definition 4 (Rule Evaluation). Given an access request Qnode = (data,
node) and a rule R = (Target, Cond), the effect E(R(Qnode)) of the rule R on
Qnode is defined as follows.

– E(R(Qnode)) = Permit, if R.Target is satisfied by the data item data and
R.Target is satisfied by node.

– E(R(Qnode)) = Deny, if R.Target is satisfied by data but R.Cond is not sat-
isfied by attrnode.

– E(R(Qnode)) = NotApplicable, if R.Target is not satisfied by data.

Since one policy may contain multiple rules and each rule may return dif-
ferent effects regarding the same request, we adopt the first-one-applicable rule
combining algorithm to resolve any possible policy conflict in a simple and effi-
cient manner. The first-one-applicable rule combining algorithm can speed up
the policy evaluation process since the evaluation stops once one applicable rule
is identified.

Definition 5 (First-One-Applicable). Suppose R1, R2, . . . , Rn is a set of rules
in a policy P and Q is an access request. The evaluation Eval(P(Q)) of the policy
P on Q is defined as follows.

– E(P(Q)) = Permit, if the first rule in P that is applicable to Q yields Permit.
– E(P(Q)) = Deny, if the first rule in P that is applicable to Q yields Deny.
– E(P(Q)) = NotApplicable, if none of the rules in P is applicable to Q.

5 Policy-Based Binding

A data owner may have fine-grained security and privacy requirements on various
portions of their data (e.g., sensitive data and non-sensitive data), leading to
multiple access control rules in the corresponding access control policy. In order
to ensure that each portion of data is protected by the respective policy before
being processed, we propose a simple approach to assign the data with the
access control rules that apply to it. Our approach involves two tasks: (i) data
partitioning; and (ii) data tainting.

5.1 Policy-Based Data Partitioning

The policy-based data partitioning aims to partition a data owner’s data items
into subsets according to the access policy imposed on them. After the partition-
ing process, we will obtain multiple equal-sized data buckets. Each data bucket
will contain one or more groups of data items, and each group of data items is
associated with the same access rule. These data buckets will then be treated as
input files to MapReduce for further data processing. In what follows, we present
the detailed algorithm for policy-based data partitioning.

Suppose that a user submits a set of data items D = {datai} along with a
policy P = {R1, ..., Rn} to be enforced. Algorithm 1 shows the data partitioning
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algorithm on D in terms of P. Initially, the master node creates an empty bucket
with fixed capacity for each rule in P (lines 2 to 5 in Algorithm 1). The size of
the bucket is pre-defined according to a scheduling algorithm followed by the
master node.

The master node then starts scanning the data items. Each data item will
be evaluated against the rules in P. According to the “first-one-applicable” rule
combining algorithm, if Ri is the first rule that is applicable to data, i.e., data
satisfies the target component in Ri, the master node will insert data into the
bucket bucketi and stop checking the remaining rules. In the case that the
bucket of the first applicable rule Ri is full, the master node will add one more
bucket to the first identified applicable rule and assign data to it. If none of
the remaining rules applicable to di, di will be inserted to a separate bucket
marked as “FreeBucket”. Data items in this FreeBucket can be assigned to any
worker nodes. At the end, up to n + 1 data partitions will be generated, where
each partition may be associated with multiple buckets. An example of the data
partitioning is given below.

Reconsider the policy PHCO in Sect. 4.1 and the following data items:
data1={(age, 26), (gender,male), (country, USA), (diagnos,HIV ), (date, 10/2013)}
data2={(age, 22), (gender, female), (country, USA), (diagnos, flu), (date, 11/2013)}
data3={(age, 56), (gender,male), (country,USA), (diagnos, diabeties), (date, 8/2013)}
data4={(age, 10), (gender,male), (country, USA), (diagnos, flu), (date, 10/2013)}

After data partitioning, two buckets will be generated with respect to the
two rules in PHCO. Since data1 and data4 satisfy PHCO.R1.Target while data2

and data3 satisfy PHCO.R2.Target, bucket1 = {data1, data4} and bucket2 =
{data2, data3}. FreeBucket is not needed in this case.

5.2 Data Tainting

In some MapReduce applications that involve multiple rounds of map and reduce
phases, the output data may no longer possess the same set of attributes as the
original input, which causes difficulty in determining the proper access policies
on the intermediate results. For example, suppose a user has a spatial policy
P = {(Target〈length > 10〉, Cond〈 (location = “US WEST”) ∧ (crypto =
“3DES”)〉} on the initial input file. After the first round of computation, we
could obtain an area of rooms as the output which typically does not have the
same type or unit compared to the input. In this case, we cannot easily determine
whether the policy target still applies to the data (now an area) for the next
round of processing.

To address this issue, we adopt data tainting techniques to the data being
protected. The underlying idea is to taint the data so that output data items are
protected in the same way as the input data, i.e., under the protection of the same
policy rule. In order to track the relationship between the input and output data,
we let the master node apply the taint [8,17] to the input data before assigning
the mapping tasks. Tainting results in a modification of the input data type
to add a new property to the data. In the above example, tainting consists of
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Algorithm 1. Data Partitioning Algorithm
1: procedure DataPartition(D, P)
2: for i ← 1 to n do
3: create an empty bucket bucketi
4: end for
5: for each item data ∈ D do
6: for i ← 1 to n do
7: if data satisfies Ri.Target then
8: if bucketi is not full then
9: insert data into bucketi

10: break
11: else
12: add one more bucket appended with bucketi and put data in it
13: break
14: end if
15: end if
16: if i equals n then
17: if freebucket is not created then
18: create a new freebucket

19: end if
20: insert data into freebucket

21: end if
22: end for
23: end for
24: end procedure

modifying the input length (usually defined as int or float) to an object. The
object includes a data portion with the original integer or float, along with a
Boolean portion called tainted showing whether the object is tainted or not, and
a string portion called taint which is used to set a particular taint value. After
the map round, mappers may also apply or re-apply the taint in either of the
following two cases: (1) when the input to the mapper is tainted, or (2) when
the user inserts, deletes or revises existing policies. Implementation details about
data tainting will be provided in Sect. 7.

6 Policy Evaluation and Enforcement in MapReduce

In this section, we first present the overall algorithm for collaborative policy
evaluation in MapReduce, and then make specific to two important issues in the
collaborative verification protocol, i.e., (1) how to determine the number of nodes
needed for verification and (2) how to conduct a single property verification at
a verifying node.

6.1 Collaborative Policy Evaluation Protocol

In order to verify whether the properties of worker nodes in charge of computing
satisfy the conditions imposed in the respective policy, a straightforward method
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is to let the trusted master node verify the worker’s properties and perform the
policy evaluation. However, this method suffers from several shortcomings: on
the one side, it introduces overhead computation at the master node, which
would become the bottleneck of the entire system and negatively impact the
distributed nature of MapReduce; on the other side, it is also hard for master
node to keep track of all the worker nodes’ properties up to date [3,9].

To overcome these issues, we propose a collaborative property verification
protocol to facilitate the policy evaluation at the master node. The underlying
intuition in the collaborative property verification is to maximize computing
resource utilization and use ordinary worker nodes, instead of the master node
in straightforward method, to carry out verification of other worker nodes’ prop-
erties. In our proposed protocol, at each round any worker node’s properties is
verified by multiple peers randomly selected; and any peer is able to verify a ran-
domly selected set of properties, not only speeding up the verification process
but also reducing the probability of worker nodes’ collusion. The number of
nodes to use as verifiers is chosen carefully according to the probabilistic scheme
discussed in the next section, to define a combination of verifier nodes which are
redundant enough to ensure low risk of collusion.

Our proposed collaborative verification protocol works as follows. Suppose
that a client submits a policy P = {R1, R2, . . . , Rn} along with the data D, and
the master node has partitioned the data into buckets: bucket1, . . . , bucketn
and freebucket, respectively associated with the rule R1, R2, . . . , Rn and non-
compliant policy, as described in Sect. 5.1.

Initially, the master node scans the condition components of all the rules
and extracts a set of worker node properties attrR that need to be verified. For
instance, consider the rules exemplified in Sect. 4.1, attrR1 = {location,AES}
with respect to R1 : Target〈(age ≤ 14) ∨ (diagnose = HIV )〉, Cond〈(location =
USA) ∧ (AES = enabled)〉, while attrR2 = {location} for the rule R2 : Target
〈(age > 14) ∧ (diagnose �= HIV )〉, Cond〈(location = USA)]〉.

Next, the master node invoke the collaborative verification protocol to verify
the extracted properties. Suppose that the condition component of R.cond is
written in the conjunctive form c1 ∧ . . . ∧ ck where ci (1 ≤ i ≤ k) is a disjunc-
tive form (i.e., ci = ci1 ∨ ci2 ...). To reduce the risk of possible corruption of the
verifier nodes, our proposed verification protocol aims to verify each disjunctive
sub-clause ciby at least t peer worker nodes. Accordingly, the master node com-
putes hash S = Hash(w1|| . . . ||w|attrR|) and conducts a two-layer secret sharing
on S according to R.Cond. Specifically, S is firstly broken into k first layer shares
(denoted as s1, s2, . . . , sk) through (k, k)-secret sharing, and then for the first
layer share si, the master node further breaks it into |ci|r sub-shares (denoted
as si,1, si,2, . . . , si,|ci|r) through (t, |ci|r)-secret sharing, where |ci| denotes the
number of properties in ci and r is a system parameter restricting the number
of verifying nodes. Then master node assigns the verification tasks (e.g. location
verification, security property verification) to selected verifying nodes (the total
number of verifying nodes is r

∑k
i=1 |ci|), and each verification task includes veri-

fying a particular property against the corresponding condition. The verification
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task is distributed and assigned to each verifying node along with a sub-share
si,j for i = 1, 2, . . . , k and j = 1, 2, . . . , |ci|r.

Besides assigning verification tasks, the master node needs to inform the
selected worker nodes where to verify their properties. To this end, a verification
direction message of the form

({(vlisti, wi)}, rnd,EncS(data),Sig(Hash({(vlisti, wi)}||rnd||data))

is required to be delivered to each selected worker node, where (vlisti, wi) is the
pair of verifying node list and its assigned property to be verified, EncS(data) is
the encrypted data item using key S (or the address where the encrypted data
is located), rnd is a random sequential number for preventing replay attack and
Sig(Hash({(vnodei, wi)}||rnd||data) is a signed hash of all the message content
to ensure authentication and integrity of the entire message.

Upon receiving a verification direction message, the worker node (say wnodei)
sends t claims for each property wi to the corresponding verifiers in vlisti to
be verified. The message to be sent to verifying nodes includes the verifying
property wi, the corresponding claim ci, a random nonce non and a hash of
the content for guaranteeing message integrity. For example, if three verifiers
are in charge of property location verification and the threshold t is set 2, the
worker node randomly picks verifying nodes, and respectively sends a request
message (location, clocation, non, Hash(location||clocation||non)) to two of them.
Upon receiving the request message, verifying node vnodei and the worker node
wnodei engage in a property-specific verification protocol. As the protocol is
successfully completed, the share for vnodei is released to wnodei.

Upon completing t successful verifications for each property in sub-clause ci,
the worker node is able to obtain t|ci| shares to reconstruct the first layer share
si. Notice that since ci is a disjunctive sub-clause, the worker node only needs t
sub-shares for reconstruction (even some of them originate from the verification
of different properties). The rest of sub-shares could be used for verifying the
correctness of reconstruction, i.e., check whether all obtained the sub-shares
are from a single secret. In a similar way, the other first layer shares can be
obtained, and the master could further access the data item by reconstructing
S and decrypting DecS(data).

6.2 Number of Verifiers for Collusion Control

Let c1 ∧ . . . ∧ ck denote the condition component in a rule to be evaluated
against a worker node, where ci (1 ≤ i ≤ k) is a disjunctive form. Since some
peer worker nodes may be corrupted and may not send back the requested
secret share in time, we estimate the minimum number (denoted as n) of nodes
needed for a worker node to successfully compute the rule effect from received
verification results, at a probability larger than a given threshold ρ. Specifically,
n =

∑k
i=1 |ci|r, where |ci| denotes the number of worker properties in ci, and

r denotes the number of verifying nodes needed for each property to guarantee
the desired verification successful rate ρ.
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Suppose that prob is the probability of a verifying node being corrupted. The
probability probS of receiving secret shares from non-corrupted nodes could be
computed as follows.

probS =
k∏

i=1

(
r|ci|

t

)

probr|ci|−t(1 − prob)t (1)

= (1 − prob)t
k∏

i=1

(
r|ci|

t

)

probr|ci|−t (2)

Equation (2) can be understood as follows. For each disjunctive sub-clause ci
in R.Cond, There are r|ci| verifying nodes having been assigned. Since each
disjunctive sub-clause ci needs to be verified at least t times, there are

(
r|ci|
t

)

different ways to choose t from r|ci| nodes. The number of combinations is then
multiplied with the probability for t nodes not being corrupted, i.e., probn−t(1−
prob)t to get the probability of successfully reconstructing the share si for ci.
Finally, the probabilities of k disjunctive sub-clauses are multiplied together to
compute the final probability probS .

The corruption probability prob could be obtained from statistic data while
t is a system parameter with respect to the user desired reliability level. Given
known values of t and prob, we can compute the minimum value of r and hence
the minimum value of n by resolving the following inequality probS ≥ ρ.

6.3 Property Specific Verification

Verifying the properties associated with any worker (see Sect. 6.1 of the verifi-
cation protocol), entails some property-specific verification protocols. We now
present two examples of two possible types of such protocols.

Location Verification. Location specific verification protocol includes two
main steps. First, the verifying node ascertains that the input and output loca-
tions specified by the worker node match its actual input and output locations,
and checks the locations of the virtual machine hosts to perform computations
satisfy the location requirement specified by the user. Second, the verifying node
continues to check whether the directories specified for the input and output as
well as the computation assemblies indeed exist. The latter location verification
protocol is treated by our system as a security verification task, and is similar
to file access security verification, i.e., the verifier tries to either store or access
a document from the specified directory

To estimate a node’s location with reasonable accuracy, the verifier can test
and analyze the round trip time (RTT) of a message sent from the worker node to
estimate its source, following an approach similar to the mulitlateration scheme
used for distance verification in mobile ad-hoc networks [6]. Specifically, in the
MapReduce environment, the verifying node could have multiple sub-nodes from
different locations working as sub-verifiers, and know the maximum, minimum
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and average number of hops from its own location to the geographical locations
wherein the sub-verifiers are located. Each sub-verifier requests the worker node
to echo a message within a given number of hops or a specified time time interval.
With the knowledge of sub-verifiers’ locations, the verifying node can then use
the minimum and maximum time/number of hops collected by the sub-verifiers
to estimate the worker’s location. Notice that the number of hops and the time
constraint requested by each verifier should be varied, such that the worker node
could not know the location being requested beforehand.

Security Capabilities. The restrictions on security capabilities are expressed
to identify whether a node is capable of providing basic security functions. One
such example is the support of file level access control, or encryption/decryption.
Additional properties also include database access control, private calculations,
secure storage, etc. By specifying one or more of these security properties in a
policy, clients could gain security guarantees on the MapReduce computation.
Intuitively, these security properties specified by client in policy could be numer-
ous, and the corresponding verification protocol may change accordingly. In what
follows, we briefly discuss the verification of encryption/decryption support for
instance.

The encryption/decryption support could be verified using the cryptographic
algorithm verification program provided by NIST (National Institute of Stan-
dards and Technology) [21]. Specifically, the verification program maintains a list
of implementations of various algorithms such as the AES, DED, Triple-DES.
For each of the algorithms, the program also has a set of tests built to verify
different modes of operation of these algorithms, with different key sizes. When
the start of verification, the program requests configuration information, and
then provides the worker node with some test data (i.e. the key, some plaintext,
and an initialization vector if applicable) to be processed. The results are finally
sent back to the verifying node and validated to identify whether the worker
node’s implementation of the algorithm is indeed standard-compliant.

7 Deployment and Evaluation

In this section we discuss our proof-of-concept implementation, followed by a
discussion of the results of our experimental analysis on the proposed protocols.

7.1 Deployment Overview

We implemented the proposed framework on top of Microsoft Azure frame-
work. For our deployment, we used the Daytona as our MapReduce runtime,
and selected the West US affinity group to create and co-host the host service.
In our testbed, we allocated a varying number of VMs per core, starting from 1
and scaling up to 20. We deployed 5 of these projects, to utilize a total of about
5 cores. The sample application of k-means is updated with our modules using
Visual Studio 2012.
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We extended Daytona’s modules to integrate the functionalities offered by the
proposed ACEM framework. The core modules of ACEM are Policy Enforcement
Point (PEP) and Policy Decision Points (PDP), which are respectively in charge
of the enforcement and evaluation of policies.

– PEP includes data pre-processing, tainting and evaluation, and is typically
deployed at the master node. (1) Pre-processing is a method integrated into
the IDataPartitioner class, such that the data loaded from the input file
could be treated in a single batch into string arrays for pre-processing. (2) Taint
is allowed to be part of the Controller and IMapper respectively deployed
at both worker nodes and master node, and to carefully taint the data in
different ways based on the proprietary nature of the applications, to avoid
bleaching. (3) Evaluation of worker nodes’ properties.

– PDP implements the collaborative verification modules including data parti-
tioning, verifiers’ selection and secret key generation, all of which reside with
the classes Controller and IDataPartitioner at the master node. In our
current prototype, the Controller calculates the minimum number of verifiers
required [11] according to Eq. (6.2), with an assumption that the probability
that any given verifier is corrupted is 0.1, and uses a random 256-bit length
nonce to generate the requisite number of key share. The communication pro-
tocols between the worker nodes and the verifying nodes reside at both the
IMapper and IReducer classes. Every node hosts the methods required to
carry out property verification.

7.2 Experimental Evaluation

Since the data partitioning only needs to be done once off-line for all kinds
of analysis tasks, in the following, we report the runtime overhead caused by
tainting and collaborative policy evaluation.

The first set of experiments aims to measure the overhead introduced by
tainting. Tainting is executed by the master node before mapping phase, and
the mappers have to apply the taint again once the mapping is completed. Since
the master and worker nodes have the similar configurations, the measurement
for both tasks can be done at any node. We simply chose a worker node at
random for these measurements. The results of this evaluation are reported in
Fig. 2(a). As shown in the figure, it is not surprising to see that the time taken
for tainting increases with the number of the data partitions. This is because
the more data partitions, the more data items need to be tainted.

Next, we evaluate the efficiency of the collaborative policy evaluation protocol
introduced in Sect. 6. Figure 2(b) shows the time from the property extraction to
the key generation by executing the two-layer secret sharing; and then Fig. 2(c)
shows the total time for executing a k-means clustering task that involves the
actual verification of a worker node’s properties including nodes’ capabilities,
location, files access, support for cryptographic protocols (i.e. AES, DES, 3DES).
The detailed explanation of the results are the following.

As shown in Fig. 2(b), the time taken for the keys to be obtained by the
verifying worker nodes increases linearly with the total number of worker nodes.
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Specifically, in the experiments, up to 36 nodes act as verifiers for 99 workers.
When a fewer number of worker nodes are used for a job, the number of veri-
fiers is accordingly reduced to maintain a ratio of worker nodes to verifiers as
about 2.75 : 1, to ensure that the probability of receiving a key share from an
uncorrupted verifier is higher than 0.5. Therefore, the more worker nodes to be
verified, the more key shares need to be generated and hence the time increases.

Figure 2(c) shows the comparison of our proposed collaborative policy eval-
uation approach (dented as “distributed”) against a centralized policy evalu-
ation approach (denoted as “centralized” in the figure). Both one-round K-
means clustering and iterative (10-round) K-means clustering are considered.
It is clearly shown that our distributed approach is several orders of magnitude
faster than the centralized approach. This is because the centralized approach
requires the master node to conduct all the property verifications and the master
node becomes the performance bottleneck. In addition, we would like to mention
that our approach incurs very little overhead to the original K-means algorithm.
For instance, the runtime for the original k-means algorithm on 1000 data points
averages at around 40 seconds for one iteration. After introducing our approach
for privacy protection, the runtime is only 45 seconds (about 10 % overhead).
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8 Conclusion

In this paper, we proposed a novel access control mechanism for node selection
and data processing in MapReduce, i.e., the ACEM (Access Control Enforce-
ment in Mapreduce). ACEM provides data owners with strong controls on the
worker nodes managing their potentially sensitive data. Bay restricting access to
nodes with desirable properties, simultaneously not burdening users with com-
plex configuration tasks, data owners can gain confidence on the trustworthiness
of the computation.

Needless to say, our solution tackles only a small problem in the complex
space of secure and customized computation in the cloud settings, and has some
limitations itself. For instance, even if successfully verified, there is no guarantee
that if some functional properties are tested (like cryptographic support) the
worker will actually behave as expected. Further, since properties are verified by
at least t nodes, the nodes can cheat the verification process if enough of them
collude with each other. In future, we will strengthen our current approach by
ensuring the verifiers selected do not consist of any loops [10]. Alternatively, we
may employ incentivized supervision schemes (e.g. [20]).
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Abstract. Despite their widespread usage, text-based passwords are vul-
nerable to password cracking as users tend to choose weak passwords. This
is mainly because the more secure a password is, the harder it is for a user
to remember it. As a promising alternative, various graphical password
systems, which take advantage of the fact that humans are more sensi-
tive to visual information than verbal text, have been proposed over the
past decade. However, graphical passwords come with their own vulner-
abilities, such as high susceptibility to shoulder surfing and hotspots. In
this paper, we develop a new cued-recall graphical password system called
GridMap by exploring (1) the use of grids with variable input entered
through the keyboard, and (2) the use of geopolitical maps as background
images. As a result, GridMap is able to achieve high keyspace and resis-
tance to shoulder surfing attacks. To validate the efficacy of GridMap in
practice, we conduct a user study with 50 participants. Our experimental
results show that GridMap works well in domains in which a user logs in
on a regular basis, and provides a memorability benefit if the chosen map
has a personal significance to the user.

Keywords: User authentication · Graphical password · Grid · Map
image

1 Introduction

Passwords have been widely used for decades as the most common method for
user authentication. It is estimated that an average person normally uses pass-
words for authentication 7.5 times every day [10] in order to accesses information
ranging from emails to bank accounts. Whereas the text-based passwords are the
dominant method of online authentication for these daily scenarios, their security
depends on creating strong passwords and protecting them from being stolen.
A strong password should be sufficiently long, random, and hard to discover
by crackers, while a weak password is usually short, common, easy to guess,
and susceptible to brute-force and dictionary attacks. However, the dilemma in
a text-based password system is that a strong password is hard for a human
user to remember—and more often than not, users tend to choose to create
weak passwords simply because they are easier to remember than strong ones.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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Attempts to have users employ more secure passwords by either forcing them to
follow certain rules when creating them or randomly assigning passwords, have
not successfully addressed the problem because users experience more trouble
remembering these passwords.

Psychological research [1,15,17] suggests that humans can remember visual
information with more ease than textual information. This has led researchers
to study the use of graphical passwords as replacements for text passwords with
the assumption that the use of visual information will reduce the memory bur-
den placed on users when using more secure passwords. Moreover, three differ-
ent memory retrieval approaches have been proposed for graphical passwords.
The first approach, called recall-based, requires a user to retrieve his password
directly from memory, usually in the form of a drawn picture or pattern. The
second approach, called recognition-based, relies on a user’s ability to recognize
visual information that has been seen before. This approach generally gives a
user a portfolio of images as his password and asks him to choose these given
images from amongst a set of decoys as the password entry process. The third
approach, called cued-recall-based, relies on a user’s ability to retrieve infor-
mation from memory given a cue. This approach usually has a user create a
password using the image as some sort of direct or indirect guide. In some cases
the password is contained within the image itself, and in others it is simply based
on the image.

Graphical passwords, while improving on text based passwords in many ways,
have also introduced new problems unique to them. Most of graphical password
schemes are vulnerable to shoulder surfing attacks, in which a password is stolen
by observation or recording during a login session. In this case, the ease of visual
memory actually works against the password security. Many cued-recall systems
also suffer from a problem known as hotspots, which stems from the fact that
some parts of an image are more likely to be selected by users than others.
In addition, many graphical password systems have difficulty attaining a large
theoretical key space.

In this paper, we investigate the use of a grid input system in a cued-recall
password system, in which a geopolitical map is used as the background image.
Our design has a user choose those elements of a map image that have personal
significance for creating a password, and then, to input the password by using
a grid. In particular, each cell of the grid contains text, and the user needs to
locate those cells that constitute his password and enter the text from each cell
into a password field as parts of his password. The text in each cell is randomly
changed for every login session, making the capture of the password considerably
more difficult. This method allows us to retain the key space and memory cuing
benefits of cued-recall schemes while significantly hardening the security via
randomly changed text input and impacting usability as little as possible.

We develop a prototype of the proposed graphical password system, called
GridMap, and validate its efficacy by running a user study involving 50 partici-
pants who create passwords and then log in again after varying periods of time.
From this user study, we observe that GridMap works well in scenarios where
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users log in on a daily basis, but has the drawback that users tend to take longer
to log in and, if left on their own, will often choose predictable passwords. We
also observe that the users who can find higher significance in an image will
perform better at recalling their passwords than the users to whom the image is
less significant.

The remainder of this paper is structured as follows. Section 2 surveys related
work. Section 3 details the design of GridMap. Section 4 analyzes the secu-
rity benefits of GridMap. Section 5 describes the prototype implementation of
GridMap. Section 6 presents the experimental methodology and results of our
user study. Section 7 lists the limitations of GridMap, and finally Sect. 8 sum-
marizes our work.

2 Related Work

In the area of recall-based schemes, the most known system is Draw-A-Secret
(DAS) [14]. Originally designed for PDAs, DAS has a user draw a picture on a grid
and records the password as a series of pen-up, pen-down, and edge-crossing events.
However, users ofDASwere found to choose very symmetric patterns for their pass-
words, and, to address this, an enhanced system called Background Draw-A-Secret
(BDAS) has been proposed [9], in which an image is used as a background to the
grid resulting in a reduction of symmetric patterns. Zakaria et al. [22] developed a
variant of DAS used on smartphones, and they proposed different methods, includ-
ing the use of decoy lines and snaking lines, to provide shoulder surfing resistance.

Designed as an alternative to PIN numbers, a commercial recall-based sys-
tem called grIDsure [13] uses a 5× 5 grid of randomized single digit numbers
combined with keyboard input. Such a design of grIDsure makes it difficult for
a malicious observer to capture the PIN, leading to shoulder surfing resistance.
An overview of security concerns of grIDsure is presented by Bond [3].

Research into shoulder surfing resistant systems has also been done with
recognition based systems, in particular Passfaces [7] as the best known scheme in
this category. Its basic idea is to have each user choose or be assigned a portfolio
of images consisting of portraits of peoples faces. In order to authenticate, a user
would go through multiple rounds, in each of which he would be displayed a set
of nine images, one from his portfolio and the others as decoys, and need to click
on the image belonging to his portfolio. One shoulder surfing resistant variation
is studied in previous research [19], in which the shoulder surfing resistance of
graphical passwords is compared to that of text-based passwords. In particular,
the original Passfaces scheme is compared to alphanumeric text-based passwords
and a variation of Passfaces which uses the number pad on the keyboard, instead
of the mouse, for input. It is observed that the Passfaces variation outperforms
both the original Passfaces scheme and the text-based passwords alike, in terms
of shoulder surfing resistance. Another variation of Passfaces has been proposed
by Dunphy et al. [8], which uses eye tracking technology to determine a user’s
choice by tracking where his gaze is on the screen.

In the cued-recall area, the most well known password scheme is PassPoints
[20,21]. This scheme stores a password as a series of points on an image, in
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which a user needs to click on. A variation of this scheme called Cued-Click-
Points (CCP) [6] has also been proposed. In CCP, a user chooses one point on
each of five different images rather than five points on a single image. As each
point progressively maps to a different image, a user’s password constitutes a
path of images determined by the choices of points the user makes. However,
both systems have been shown to have a problem known as hotspots, where
certain points in an image are more likely to be chosen by a user than others. To
tackle the hotspot problem, a variant CCP called Persuasive Cued-Click-Points
(PCCP) [5] has been proposed, in which a user could only choose points from
inside a given viewport that is randomly located on the image. The location of
this viewport could be changed with a shuffle button. A recent variation called
Cued-Gaze-Points (CGP) [11], similarly to Dunphy’s variation on Passfaces, uses
eye tracking hardware for the input of the users points in order to avoid shoulder
surfing. Another cued-recall system is called Inkblot [18], in which a user is shown
a series of images and asked to think of a phrase that describes each image and
use the first and last letters of each phrase to form a password. This system,
although much less vulnerable to dictionary attacks, has a considerable amount
in common with text-based passwords than other graphical passwords.

3 Design of GridMap

While most graphical passwords are susceptible to shoulder surfing, click based
schemes are particularly vulnerable as it is easy to visually follow the cursor
on the screen and track the locations of the user’s click points. Even more of a
concern is the possibility of the screen being recorded, which can now be easily
accomplished with the wide spread use of handheld recording devices such as
smartphones.

To the best of our knowledge, previous efforts in this area have focused on solu-
tions that require specialized hardware, or on systems that are designed for very
specific user authentication environments. This suggests that an alternative input
method that does not leave visual queues on the screen would be preferable, and
for this, baring the use of specialized hardware, the keyboard is the best option.

The design guidelines of GridMap lie in two aspects. First, we should use an
image that can provide enhanced memorability, and second, the input method
must be able to meet the security requirements of general purpose imaged based
passwords, including high key space requirements, resistance to phishing and
shoulder surfing attacks, which are the security problems many graphical pass-
word schemes have been plagued with. GridMap meets these design guidelines
by (1) using geopolitical maps as the memorability enhanced image and (2) cre-
ating an adaptation of the grid input system to address the security and usability
concerns of a graphical password system. In general GridMap is capable of pro-
viding more secure user authentication, especially greater resistance to shoulder
surfing. Meanwhile, GridMap is able to provide similar, if not much improved,
usability as the existing click-based schemes.
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Fig. 1. On the left, sub-figure (a) shows what a grid would look like during the password
creation phase. Sub-figure (b) on the right shows an example of the text used in the
grid for verification and login. Note that the numbers remain constant while the letters
change for different login sessions. Here the user’s chosen cell is the top right one with
the number of 0, highlighted in red, the letters from that cell would be entered as the
password as seen in the text boxes in the example.

3.1 Basic Design

The basic working mechanism of GridMap is to superimpose a grid on top of the
image of a map dividing it into cells. Each of these cells contains two forms of
text. One is a variable (changes every session) text used to input the password,
and the other is a fixed form of text used to aid in remembering the password.
During the password creation phase, a user chooses a series of cells from the
image as his password by simply clicking these cells via the mouse. And for
the purpose future logins, the user needs to remember the location and related
features, including the fixed number, for each selected cell. During a regular login
session, the user recalls the chosen cells and types in the variable text inside each
of these cells into a password field, which hides the typed text like it does for
a text password. Once the entire string is typed into the password field, it is
converted to the coordinates of the cells, which are the input to the system for
user authentication. Note that the password comprises the cells chosen by the
user, not the text that is entered into the password field. The text that the user
inputs is dependent on what is displayed in those cells an will change with each
login session. Figure 1 shows a very simple example of how this input method
works with a 2× 2 grid and one selected cell. For the presentation purpose, the
variable text typed in the password field is not hidden.

The user can also choose to change the map image used as the background or
the alignment of the grid within the image. The image can be selected from a pool
of available images, and the user can choose the one with the most meaningful fea-
tures to him such that it would be the easiest to remember. The alignment of the
grid within the image can also be changed so that the cells that comprise the pass-
word can line up better with the features chosen by the user. In our current design,
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all the cells in the password must be chosen using the same image and grid align-
ment. Both configuration setups are saved by GridMap as a part of the password.

Upon submission, the password is sent to the server in the form of grid
coordinates, i.e., the row and column numbers of the chosen cells, along with
two characters which identify the chosen image and grid alignment. Since this
graphical password information is simply a string of numbers, the server can treat
it the same as a text password and save it using a hashing function. In other
words, the server can treat the passwords generated with our scheme as same as
regular text-based passwords. The graphical part of our scheme is implemented
on the client side, and no change is needed on the server side.

3.2 Design Choices

Here we discuss a few design choices made in GridMap. The first choice is the
use of maps as the background images, from which users choose passwords. The
second choice is how many cells a grid should divide the image into and how
many of these cells a user needs to create a password. Finally, we discuss the
exact choices of the variable text, which is used to input the password, and the
fixed text that is used to aid in memorability.

Image Choice (Maps). Although stock images are usually used for cued-
recall graphical password systems, we choose to use maps instead. We believe
that although, in a generic sense, there is no benefit to one image over another
[20], images that have more significance or are more personally meaningful to
a user would result in passwords that are easier to remember. For this reason,
maps are chosen to be used as the images in GridMap since many users may
give a personal significance to the location portrayed in a map. Users could
then choose these locations as the password making it easier to remember. One
concern with this design is that an attacker with intimate knowledge of a user
could use his personal information to guess the password, however, gaining this
type of personal information is costly and only affects one target rather than a
large password corpus.

The particular maps we use are geopolitical maps or ones portraying com-
monly known landmarks and other characteristic of the region portrayed in them.
A landmark or a state may hold more significance to a user than a specific
address, so that this type of map is preferable to a street map. This also helps
in the sense that with a street map a user is likely to choose an address of his
own home, which would make it easier to guess than a vacation location or place
where relatives live for example. A street map also poses a larger problem for
implementation since it requires less detail or a smaller area, which is less likely
to contain something significant to a user to be displayed, and, for this reason, we
choose not to use them. An example map with a corresponding grid is illustrated
in Fig. 2, showing the “key” state of Florida with a grid superimposed.

Number of Cells in Image and Password. We also need to decide on how
many cells to divide the grid into. The problem comes with the difficulty of
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Fig. 2. A portion of a map showing the state of Florida with the grid superimposed

leaving the image uncluttered and the text visible. For this reason, the image
needs to be very large taking up most of the screen. Taking low resolution screens,
such as those on many laptops, into consideration we set the grid to have no
more than 500 cells in it. We observe that much more than this number leaves
the image too cluttered and the text in individual cells hard to focus on. If a
larger keyspace is desired, we suggest to increase the number of grid alignment
options or the number of maps available for a user to choose from, instead of the
number of cells in an image. On the other hand, we do not recommend the use of
less than 300 cells in an image as the keyspace becomes too small and too many
features of the image end up in each cell. We make three different grid alignments
available for a user to select from, which is consistent with existing systems, and
recommend that the sum of the cells among all three grid alignments be no less
than 1200 cells in total. The default grid contains 500 cells, but the user has the
option of using a grid with 400 cells or a grid with 300 cells instead.

GridMap uses a minimum of five cells per password, which is consistent
with most of the existing cued-recall schemes. If a loss of theoretical keyspace is
acceptable, the number of cells in a password can be lowered to four to achieve
better usability; however, we recommend that no lower than five cells per pass-
word be used in scenarios where keyspace is a concern.

Variable Text. The variable text, which the user types into a password field
as input, is comprised of two lower-case letters. Both numbers and symbols are
avoided because most users are more used to typing from the alphabetical part
of the keyboard rather than the numerical portion, given the fact that most of
the typing done by a user is for writing natural language. We also avoid using
upper-case letters to eliminate the need for a user to press the shift key, especially
given that the text in the password field is hidden and it will very hard for a
user to see if he made a mistake by typing a lower-case letter where a capital
should be or vice versa.
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Fig. 3. Password creation and confirmation processes.

We set two letters per cell to minimize the amount of typing that a user
needs to do when inputting the text. Using a single letter should be avoided.
This is because there are not enough letters in the alphabet list to give each cell
a unique letter, making it easier for an attacker to guess a password in a brute
force attempt where guessing a single letter would cover multiple cells at once.
Each cell could include three letters, which has the advantage of using actual
English words in cells; however, we feel that the advantage of being able to use
words is not significant enough to justify the extra typing time necessary to
input them. We do not recommend the use of more than three letters as it leads
to have the grid getting too cluttered with text and takes considerably longer
to input.

Fixed Text. Each cell additionally has a single digit number in it. These num-
bers do not change between sessions and are organized in such a way that two
cells with the same number will not be closer than 4 cells away. We use numbers
here for two reasons. One is to avoid having users confuse this text with the
variable text which does not use numbers, and more importantly the other is to
help a user to create a meaningful sequence, like a zip code, to aid in memora-
bility. Sometimes a user may remember the general area, in which a cell in the
password is located, but not the exact location of the cell. Thus, with the help
of numbers, the user can pinpoint the exact cells in the password. And, since
the two numbers with the same value are far enough away from each other, it is
unlikely that the same number will show up twice in the same area. This will aid
a user in remembering the order of the chosen cells, which can be of concern as
shown in previous research [16]. The authors of [16] compared the memorability
of text passwords with that of passwords strictly based on images, and they
observed that most users have more trouble remembering the order of the items
of their password than the exact contents.

3.3 Password Creation and Confirmation

The password creation procedure of GridMap is very different from the login
procedure. We assume that the password is created in a private environment
like a home or office with the user having a mouse and keyboard available for
input. The image is presented to the user with the fixed number in each cell,
but without the variable text used for input. Then he just moves the mouse and
clicks on the chosen cells rather than typing in text from them. Before that, the
user needs to make a decision on the choices of image and grid alignment. Such
a creation process allows the user to concentrate on the image without the text
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and prevents the user from attempting to form a password based on the variable
text, which would change every login session. Note that although GridMap is
vulnerable to shoulder surfing attacks during the password creation phase, as it
is expected to be conducted in a private environment, and only once per user
account, we believe that the security risk is low. Meanwhile, users will simply be
warned of the risk and use discretion when creating a password.

Once the password is created, a user will be asked to re-input the password
in a confirmation step. During the confirmation phase, the image with both
numbers and letters is shown to the user, and the user resorts to the regular
input method (i.e. typing the letters into the password field). The purpose of
the confirmation is to help the user be familiar with how GridMap works and
memorize the password. Figure 3 illustrates the password creation and confirma-
tion processes.

3.4 Password Login

During a regular login session, GridMap acts as same as its confirmation process.
A user has to use the text from the cells as input via the keyboard. For user
convenience, GridMap could give a user the option of choosing to either type the
text from the keyboard or simply click the cells via the mouse. If users are in a
private environment like home, they may choose this more user friendly clicking
method for input. However, in a general case, users should use the default input
device—keyboard—to type the text into the password field.

4 Security Analysis

The theoretical keyspace for GridMap is dependent on the number of images
available, the number of grid alignment options available, the number of cells
in a given grid alignment, and the number of cells in a user’s password. The
following equation is used to calculate the keyspace measured in bits:

log2

(
K∑

i=1

m

(
ni!

(ni − r)!

))

,

where m is the number of images available, r is the number of cells in a password,
K is the number of grid alignment options available, and ni is the number of
cells in a grid alignment i. In our design, m could range from one to three,
r could range from four to five, while K is set to three and then the value
of ni, corresponding to individual grid alignments, will be 300, 400, and 500,
respectively. Note that although our implementation provides two-image options,
in this analysis we set the value of m to one for ease of comparison with existing
systems whose keyspace calculation assumes only one image. Below we show the
theoretical keyspace in bits for GridMap.
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= 45.28 bits
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Table 1. A comparison of GridMap and the two most similar schemes, Passpoints and
grIDsure.

grid input system Passpoints grIDsure

Theoretical keyspace 45 43 18

User choice resilience None None None

Variant response Yes No Yes

Server probes 0 - 1 1 0

It is clear that the keyspace of GridMap is within the range of 40–60 bits
that accounts for the average keyspace of text passwords. This value may increase
depending on how many image choices are available in the deployment and how
the images are used.

The combination of a grid and random input text enables GridMap with a
higher shoulder surfing resistance than either click-based graphical passwords
or traditional text-based passwords. An attacker trying to shoulder surf would
need to keep track of every letter combination a user types in as well as locate
the cells in the grid that match the typed letters before the user submits the
password. This makes it very difficult to steal the password since both the letters
typed by the user and the text filling the grid must come from the same session,
and memorizing one ahead of time would not give any advantage. It would
still be possible to capture the password with a recording device, but it would
be much more difficult due to the need of recording both the screen and the
keyboard. This would make it impractical to use a handheld device such as
a smartphone for recording, since only the screen can be easily seen from a
distance and getting close enough to record the keyboard would likely make the
attacker’s intention obvious. Mounting an attack with recording devices would
require very discrete cameras that can see both the screen and the keyboard well
enough to distinguish what the user is typing, which can only be achieved under
very limited circumstances.

This resistance is also able to defend against malware like keyloggers. Even
though the input is done via the keyboard, a keylogger alone would not suffice
to capture a password. The random variant nature of the text would require an
attacker to capture the screen as well as the keyboard input to actually recover
the password.

Resistance to phishing attacks can be built into GridMap, but it’s effec-
tiveness depends on how GridMap is implemented. A strong resistance against
phishing attacks can be gained by eliminating the need for a user to select the
image at the login time. With this method, when a password is created, the user
would still choose, or be assigned automatically, an image to use as the back-
ground for the grid; however, when the user returns to login, the chosen image
will always be shown as the background automatically so that there is no need
for the user to choose the correct image for login. Without knowing the right
background image for login, a phisher cannot create a close to real phishing page
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Fig. 4. A screen shot of GridMap.

to deceive a user. The drawback to this method, however, is that the keyspace
is reduced to the case in which m is set to 1.

Compared with previous schemes, GridMap has no obvious advantages on the
issues of hotspots and user predictability. The grid is conducive to predictable
patterns, such as five cells in a row, and the map image is still just as likely to have
hotspots as in an existing click based system. However, we theorize that GridMap
will have an increase in patterns due to the grid and a decrease in hot spots
because (1) the grid lines split many of the images features and (2) the maps
used are more likely to have different features be significant to different users.
It is possible to further reduce the problems by applying persuasive technology
such as that used in PCCP, which will be explored in our future work.

In Table 1, we can see a side by side comparison of GridMap with the two
most similar schemes, Passpoints and grIDsure. The data on these two existing
systems is taken from the graphical password survey by Biddle et al. [2].

5 Implementation

A prototype implementation of GridMap is developed for this study. This proto-
type mainly consists of two web-based user interfaces: one used to create a new
password, and the other used as a login page. Both user interfaces are written
using HTML, CSS, and Javascript, and each of them has a corresponding PHP
script on the server.

The grid portion is created using an HTML table, in which each table data
element corresponds to a cell and the image is set as its background. The table is
generated using a javascript loop, and every table data element is divided with
two < div > elements. The first < div > contains the static number, which is
generated using the pattern described before and displayed on the top left corner
of the cell. The second < div > contains a two-letter string (i.e., two lower-case
randomly changed letters) displayed at the bottom right corner. These strings
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are read into an array from a file containing all possible combinations of two
lower-case letters. The array is then shuffled and used to fill in the cells by order
of index. The array is re-shuffled on every page refresh. Since the number of
strings in the file is larger than the number of cells in any single grid alignment,
it is possible that two sessions will have different sets of strings filling the grid.

For all these numbers and letters in the grid, bold font is used for visibility.
Opposing corners are used so as to cover up the least amount of the image
displayed in each cell as possible. Upon implementation, we noted that if the
space given to the table is too small, it is not easy to view the image over the
text, and in some cases, there is even no enough space for the text. To deal with
this problem, large images are used and the table is set to automatically take
up as much visible space as possible. This entails taking up the entire vertical
space that the browser allows a webpage, while taking up whatever horizontal
space left by the authentication form.

To simulate the scenarios where three grid alignments line up differently, we
choose to change the number of cells and divide the image into 500, 400, and
300 cells, respectively. When the number of cells changes, the size of each cell
changes as well to accommodate filling the image. This makes a grid alignment
with less cells have bigger cells, resulting in the cell borders to locate in different
parts of the image.

The authentication form contains two text fields: one for username and the
other for password, like those used in text-based passwords. To input a password
using the typing method, the user would simply need to type the two letter
strings from the bottom right corners of the chosen cells into the password field.
For the click input method, each table data element is given a onclick event
handler. When a user clicks a cell, a Javascript identifies the two-letter string
for that particular cell and appends it to the end of the current content of the
password field. In both cases, the user can simply erase the string in the password
field and start over if the user thinks he may have made a mistake. The form
also contains two sets of radio buttons: one set allows the user to change the
grid alignment, and the other set allows the user to change the background
image. When one of the radio buttons with a grid alignment option is pressed,
a Javascript function regenerates the table with the new number of cells. The
radio buttons with the image options each show a thumbnail of the image and
also call a Javascript function which changes the image and, in some cases, the
color of the font to create enough contrast with the image. In some cases, it is
even necessary to reduce the brightness of the image to draw enough contrast
and see the characters.

When the user clicks the submit button, a Javascript function is called. This
function reads the content of the password field and replaces each pair of letters
with the indexes of the row and column of the chosen cell. This step is necessary
because the pair of letters in each cell randomly changes with every session,
GridMap cannot store the password as those letters. Instead, it must store the
coordinates of the chosen cells. This is done on the client side to avoid the
overhead of sending all the mappings between text and coordinates of cells to
the server.
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Fig. 5. Image options provided to users. The U.S. map on the left is set as default,
and the World map to the right could be switched to if desired by users.

The function also performs error checking, such as passwords are too short
or text does not match with the letters in the corresponding cells. If a problem
is detected, the form is not submitted and the user is given an alert indicating
the error. Should no error be found, two numbers, one identifying the image and
one identifying the grid alignment are appended to the end of the text in the
password field. Then, the form is submitted to the server. A PHP script on the
server checks if the username exists and the password is correct. It then gives
the user feedback by either notifying a successful submission, or by displaying an
error message indicating that either the username does not exist or the password
is wrong, and provides a link back to the authentication page.

In this prototype system, no password hashing is implemented for two rea-
sons. The first reason is that it would not allow for certain types of analysis,
such as hotspot analysis, to be performed; and the second is that hashing is not
directly related to what we are attempting to address and would only be an addi-
tional step that requires implementation. We assume that in a real deployment
the passwords should have been hashed.

6 Evaluation

We conduct a usability and user predictability study involving 50 participants
with age from 18 to 36. The majority of participants are college undergraduate
students from a variety of majors. The rest are grad students in Computer
Science, except for two who are professional software developers and one who
is an office manager. All participants are regular computer users. Twenty one
of the users completed the study as part of a class while the rest did the study
over the Internet at their leisure. The methodology used in this study has been
approved by the University’s board of ethics for testing on human subjects.

Each of the users is directed to a webpage with instructions on how to
use GridMap. The instructions are presented using hypertext as recommended
by Forget et al. [12]. The participants from the class session are also given a
demonstration by an instructor, while the remaining participants only have the
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Table 2. The number of successful logins in 3 and 5 attempts and unsuccessful logins
for participants who waited 1 day, 1 week, and 2 weeks between creation and login.

User Group 3 attempts 5 attempts Unsuccessful

1 day 18/21 18/21 3/21

1 week 14/23 14/23 9/23

2 week 3/6 5/6 1/6

provided instructions. There are no other differences in the experimental method-
ology between the two groups. During the first session, the users are asked to
create a password and then re-enter it as a confirmation. As mentioned before,
in the creation of the password, the users are shown the grid with the static
numbers in the cells only, and users click on the chosen cells via mouse to form
the password. The participants are able to choose between a map of the United
State and a map of the World, as shown in Fig. 5, with the U.S. map set as
default. Some users create passwords with four cells and some create passwords
with five or more cells. For the confirmation step, given the grid with both num-
bers and letters, the users are asked to re-input their passwords by typing the
random text into the password field via the keyboard.

Certain rules that the participants are not aware of have been applied at
password creation. These rules disallow the use of more than two consecutive
cells in the same row, more than two consecutive cells in the same column, more
than two consecutive cells in the same diagonal line, and the use of more than two
corners. These represent the patterns observed in previous trials of the similar
input system [4]. If a user violates one of these rules when creating his password,
an alert box will be displayed to make the user aware of the rule being violated.
The violation of a rule is recorded. The password field is then reset to empty
and the participant has to create a new password.

During the second session, the users are asked to attempt to log in within
five trials after either one day, one week, or two weeks. If a user is unable to
log in within the five attempts, then the system simply informs him that he is
done and does not ask for the password to be input anymore. A group of 21
participants, called the 1 day group, completed the login portion of the study
after at least 12 hour but less than 48 hours. Another group of 23 participants,
called the 1week group, completed the login portion of the study after waiting at
least 7 days, but less than 14 days. Finally, a group of 6 participants completed
the login task after waiting more than 14 days. We refer to this final group as
the 2week group.

An additional survey is also filled out by 42 of the participants, asking the
following questions:

– How many years have you lived in the United States? Please give an answer
as a whole number rounded down, e.g., use 0 if less than one year.

– How many states within the U.S. have you visited/lived in?
– How many Countries have you visited/lived in?
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Table 3. The number of successful and failed logins of users with 4 and 5 or more cells
for all 50 participants involved in the study.

User Group 4 cells 5 cells

Succeeded Failed Succeeded Failed

1 day 7/7 0/7 11/14 3/14

1 week 6/9 3/9 8/14 6/14

2 week 3/4 1/4 2/2 0/2

Table 4. Password creation and login times displayed in seconds.

Creation (second) Log in (second)

Mean 136.6 51.8

Max 514 223

Min 18 4

This survey is made available as we theorize that the amount of travel done
by users can effect their passwords and image choices.

In rest of this section, we summarize our data analysis and findings with
regard to the usability and predictability of user choice of GridMap.

6.1 Success Rates

We record two success rates for each of the groups 1 day, 1week, and 2weeks,
respectively. The first one records the number of users who are able to correctly
reproduce their passwords within 3 attempts, and the second one records the
number of users who are able to correctly reproduce their passwords within
5 attempts. Across all three groups, we achieve a 70 % success rate within 3
attempts and a 74 % success rate within 5 attempts.

Table 2 shows in detail how many users are able to successfully log in after
3 and 5 attempts as well as how many are unable to remember their passwords.
We note that after 1 day 86 % of users are able to remember their passwords, but
after one and two weeks only 61 % and 83 % of users remember their passwords,
respectively.

It is also worth mentioning that the 2 week group was originally comprised of
much more than six participants. However, out of this larger group only the six
participants shown in Table 2 were able to remember their usernames at login
time. As such, the others are excluded from this study since we are only interested
in participants who can at least correctly recall their usernames. This accounts
for the higher success rate after two weeks than after one week in our data. Note
that all the users in the 1 day and 1 week groups were able to remember their
usernames.
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We also compare the success rates of users who used 4 cells in their passwords
with those who used 5 or more cells. After one day, 79 % of users who with 5
cells and 100 % of users with 4 cells were able to log in, but in the cases of the
groups who logged in after one and two weeks, only 63 % of users with 5 cells
and 69 % of users who used 4 cells were able to successfully log in. These results
suggest that using a password length of 4 cells, instead of 5, can improve a user’s
ability to remember his password when login is done on a regular basis; however,
as the time lapsed between logins increases, the memorability benefit provided
by the shorter password decreases and is no longer justifiable due to the loss in
security. The detailed results are listed in Table 3.

6.2 Timing

There are two timing metrics we are interested: (1) the amount of time taken by
the participants to create a password and (2) the amount of time taken to input
the password during a login session.

The time a participant spent for creating a password is measured by taking a
time stamp when the page has been fully loaded and a second time stamp when
the user successfully submits a password to the server. The measured time of a
participant for creating a password is reflective of the entire process since a failed
submission attempt, such as one that violates a rule by having too many cells in
a row, will not cause the second time stamp to be taken. For the login process,
we use a similar method, but every password submission to the server, correct
or incorrect, is logged separately. In other words, if a participant makes three
attempts to get the correct password, three separate times would be recorded.
This is because we are interested in how long it takes a password to be input
but not how long an entire login process would take.

The means along with the maximum and minimum values for the creation
and login times are listed in Table 4. We believe that all the values for password
creation and the mean for login times are accurate; however, it is not likely that
the maximum and minimum values from the login column would be observed
often in practice. In the case of the lower end, it is observed that all the values
but two under 20 s are caused by those users who are unable to log in. It is likely
that most of these users give up trying to remember their passwords and simply
enter the easiest password possible to use up all five tries. In the case of these two
users who are able to log in, one of them uses the same cell multiple times in the
password, and the other has two cells in a row followed by two cells immediately
below the first two. The rules for creating a password in our implementation
simply disallow a user to have more than two cells next to each other in a row,
column, or diagonal, but does not put any restriction on repetition. Thus, none
of the cases mentioned above are in violation of these rules.

Figure 6 illustrates the distribution of login times, i.e., the times taken by
the users to enter their passwords. The values at the two extremes, i.e., less
than 10 or higher than 70 s, are not likely to be observed in practice. There are
instances of users who were distracted while the login page was open or who
forgot their passwords and simply tried to complete the five trials as fast as
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Fig. 6. The distribution of login times. The x-axis shows the time in ten second inter-
vals, and the y-axis shows the number of users who logged in with that time interval.

possible, which likely account for the values at the two extremes. There are also
cases in which the users had typos leading to the letters not matching with those
in the grid. In these cases, the form fails to submit and the user needs to reenter
the password with the correct characters, resulting in a longer login time. Due to
this observation, we believe that in practice most users would display login times
between 18 and 35 s, but this would require more extensive testing to confirm.

6.3 User Predictability

Due to the tendency of users to create predictable passwords, we enforce certain
rules to prevent users from creating what we believe are the most common pass-
words, a straight line and the four corners; but we record those attempts that
violate the rules. In this way, we are able to know how many users would have
created one of those passwords if allowed and still measure the predictability of
passwords without these common cases.

We observe that 24 % of the 50 participants attempted to make one of these
passwords. On inspecting the data, we observe that many users still created
predictable passwords such as every other cell in a row or column, and two
adjacent cells in a row followed by two adjacent cells in a row directly below.

In order to visually characterize this user tendency, we measure the distance
between each cell in the password with every other cell in both the vertical and
horizontal directions. For example, if a password has a cell in row 5 and another
in row 6, the vertical distance between these two cells would be one since you
would need to move over a distance of one cell to move from one point to the
other. Equivalently, if two cells in a password are both on the same column, their
horizontal distance is zero.

The frequency with which each distance occurs is represented as a bar shown
in Fig. 7. The x axis represents a distance and the y axis represents the number
of pairs of cells that are found to have that distance from each other. The top
graph displays the calculated vertical distances (i.e., the number of rows between
cells) and the bottom graph displays the horizontal distances (i.e., the number
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Fig. 7. Distributions of distances between cells in passwords.

of columns between cells). As a whole, each of these graphs can be viewed as a
probability distribution of the distance between cells.

Both graphs have the very similar shape with the higher frequencies in the
lower distances and the highest frequency occurred in the distance of one cell.
This implies that users are more likely to choose cells that are close to each other
rather than those cells that are farther away, with the most probable distance
of being one.

6.4 Other Observations

We also study whether a user’s history of travel and residence can affect his
performance under GridMap, which uses geopolitical maps as the background
image, using the data gathered from the survey.

We observe that users who are able to successfully remember their passwords
have traveled, on average, more than those who could not remember their pass-
words, with an average of 10.48 states and 4.24 countries visited for the former
group, and 5.88 states and 2.66 countries in the latter. We also observe that
among users who choose the U.S. map, the ones who are able to successfully log
in have lived in the United States with an average of 17.53 years as opposed to
10.66 years for those who cannot remember their passwords.

We think that these results are due to the fact that users who travel more
and spend a longer time in the locations depicted in the map have a higher
familiarity with the locations in cells on it. This would mean that there are
more cells that are significant to such a user available as choices in a password
making it easier to remember later. This would suggest that providing a user
with a map of an area that is familiar and significant to him will increase the
chances of remembering his password.

7 Limitations

One drawback of GripMap is the amount of time it takes for a user to input
a password. This is expected because the user must perform the task of visu-
ally locating his cells on the image first and then typing those cells’ text into
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the password field. This procedure, for most users, involves looking from side to
side across the screen with intermittent typing in between. In consequence, the
resulting times recorded during login sessions are slightly slower than desired.
However, we feel that many of these numbers are skewed towards one of the
extreme cases: some users either spend a lot of time trying to recall their pass-
words or perform other tasks while the webpage is already up and has started to
count time; while other users simply submit blank or bogus passwords to fulfill
the five tries as fast as possible. We believe that in a real deployment, for those
users who are familiar with GridMap, the time will be between 18 and 30 s, but
more research is required to verify whether this is true or not.

Another problem of GripMap is the tendency of users to choose passwords
with predictable patterns. About one quarter of the users in our study attempt
to create highly predictable passwords. Given the restricted rules for creating a
password, we can still see a high degree of clustering among the created pass-
words, which could be exploited to mount a dictionary attack. However, this
security threat can be greatly reduced by employing persuasive technology sim-
ilar to that used in PCCP [5]. A number of cells in the grid would be randomly
chosen and grayed out, forcing the user to choose from the cells that are still
clear. A shuffle button would allow the user to gray out a different set of cells if
the current selection is not to his preference. This issue will be investigated in
our future work.

8 Conclusion

Based on grid input and geopolitical maps, we have proposed a new cued-recall
graphical password system called GridMap, which is more secure than the exist-
ing graphical password schemes in terms of keyspace and shoulder surfing resis-
tance. In addition, the robust design of GridMap defends against malware like
keylogger and phishing attacks. We have developed a prototype of GridMap and
conducted a user study involving 50 participants. Our experimental results show
that GridMap works well for user authentication on a daily basis. Moreover, we
have observed that those users who are more familiar with the map images have
less difficulty recalling their passwords. This observation implies that we can
further improve the memorability of GridMap by providing map images that are
more significant to users. In our future work, we will investigate how to shorten
the password input time and will apply the persuasive techniques for GridMap
to reduce user password predictability.
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Abstract. In this paper we present UAuth, a two-layer authentica-
tion framework that provides more security assurances than two-factor
authentication while offering a simpler authentication experience. When
authenticating, users first verified their static credentials (such as pass-
word, fingerprint, etc.) in the local layer, then submit the OTP-signed
response generated by their device to the server to complete the server-
layer authentication. We also propose the three-level account association
mechanism, which completes the association of devices, users and ser-
vices, establishing a mapping from a user’s device to the user’s accounts
in the Internet. Users can easily gain access to different service via a
single personal device. Our goal is to provide a quick and convenient
SSO-like login process on the basis of security authentication. To meet
the goal, we implement our UAuth, and evaluate our designs.

Keywords: Authentication · Mobile terminal · Multi-accounts

1 Introduction

As the network’s development and popularity of the Internet, many people today
have multiple accounts in the Internet. If one uses different and unrelated pass-
words for each account, the coming up with secured passwords to remember is
a very challenging task for him. Single Sign-On (SSO) allows users to sign in
numerous relying party (RP) websites using one single identity provider (IdP)
account. Therefore, users are relieved from the huge burden of registering many
online accounts and remembering many passwords. However, it just reduces
the problem of securely authenticating to relying parties to the one of securely
authenticating to an identity provider. It does not, in fact, address the issue
of securely authenticating. Now some popular SSO services (e.g., OpenID [9])
still use the traditional password authentication. An adversary who manages to
steal the password in IdP from a legitimate user can impersonate that user to
the trusted RPs, which leads to a chain reaction of resource misuse. Recently,
some password leaks [7] highlight the current traditional password authentica-
tion vulnerability. Though some additional encryption measures have been taken,
users transmit the hash of password instead of plain text or transmit above SSL.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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DOI: 10.1007/978-3-319-23829-6 7



96 Y. Wang et al.

The emergence of powerful password-cracking platforms [10] or the use of vulner-
abilities [1] has enabled attackers to recover the original passwords in an efficient
manner, an attacker can still impersonate a legitimate user login into the web-
site using the recovered password. We can find that all these vulnerabilities arise
primarily due to the sensitive authentication credentials (e.g., password) are ver-
ified in the server layer, the credentials are not dynamic and are transmitted over
the insecure Internet. Each time when user login into a website, they use the
same credentials, so if an attacker steals the credentials, he can impersonate the
user at any time without worry about the password failure.

We propose Uniform Authentication (UAuth), a two-layer authentication
framework. In addition to the server layer verification, a local layer verifica-
tion is provided. The sensitive static authentication credentials are verified in
local layer while the dynamic credential is verified after submit to the server
layer. The unpredictability of the credentials and multi-layer authentication
make the attacker have no approach to access the sensitive data, significantly
improves the security of the authentication. The UAuth also provides a three-
level account association about the mobile terminal, the account in UAuth and
the account in SP, which significantly reduces identity management and authen-
tication infrastructure complexity. FIDO (Fast IDentity Online) Alliance [5] has
proposed similar ideas, from its newly published specifications we can find that
it concentrates little on Federated Login. And the discussion is based only on
the high-level description. We make some improvement from it and develop a
system that runs correctly. We also give the detailed implementation.

2 Related Work

Two-factor authentication, such as Google 2-Step Verification [4], utilizes two
factors from independent channel when authenticating. But if users reuse pass-
words across different websites [14], at which point once the attacker get the
password in the site which employ two-factor authentication, they would be able
to impersonate the user in other sites which don’t employ two-factor authentica-
tion [3,12]. It will also lead to poor user experience when copy the string of the
OTP from a mobile phone to the login page. Czeskis et al. present PhoneAuth
[13], an authentication method that does not require operation of the phone.
In its strict mode, there is no user interaction necessary during a login, other
than typing the username and password. However, without user’s operations,
the automatic authentication can also lead to potential threats. At the same
time, with the increase of account, the device that authentication requires also
increases, it is quite inconvenient either in portability or cost.

Kontaxis et al. present SAuth [17]. A protocol for synergy-based enhanced
authentication. But it is obviously that it’s a single factor authentication method,
the security has not greatly improved. The YubiKey [6] by Yubico is a kind of
authentication token, users can use the One-Time Code that Yubikey gener-
ates as the second factor. However, it also meets the problem that two-factor
authentication encounters, such as the password reuse and the portability issues.
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Several promising services are now available at various stages of polish, each
with their own vision of user identification and authentication. The study by
Bonneau et al. in 2012 lists some popular authentication mechanisms and crit-
ically analyzes them via a framework of 25 different “benefits” that authenti-
cation mechanisms should provide [11]. Reference [13] also give an evaluation
about their work using the framework. We agree with most of the analysis and
rate our system under that framework.

3 Threat Model

We allow adversaries to obtain the user’s password - either through phishing or
by social engineering attacks, but he can’t simultaneously get the password and
the user’s mobile terminal. The browser in the fixed terminal uses the certificate
in AP to establish an SSL connection with the server. We assume that the data
in the mobile terminal is stored in security storage, only certain procedures can
access their own resources. The attackers can perform software attacks against
the terminal and install, modify or compromise all software components installed
on the terminal. But it’s obviously that they are unable to visit the data belongs
to UAuth application in the security storage. The attacker is also able to deploy
some malware on the user’s machine, such as a keylogger. The malware have the
access to the document in the user’s machine and they can also visit the data
in the browser. However, the attacker is not able to simultaneously compromise
the user’s PC and user’s mobile terminal.

Since there will be some sensitive data transmission between the mobile ter-
minal, the user’s PC and the UAuth server during the initial authentication
step, the attacker may directly access the data easily. But considering that the
frequency of these cases is low. We choose to focus on the subsequent case after
the initial step.

4 Architecture

4.1 System Model

Our system model is depicted in Fig. 1. The design consists of several categories
of components: Authenticate Plug-in (AP) in the fixed terminal (B), mobile ter-
minal (M), Validate Server (VS), Validation Cache (VC), UAuth Web Server
(WS), Server Provider (SP). They have completed the three-level association
system: the binding, authorization, management between the mobile terminal
identification information (OID), the user account in WS (UID) and the user
account in SP (SPID). Using UID as the medium, users can use their own termi-
nal to get access to the Internet service. Moreover, all the association is controlled
by WS, and WS is able to create a management module to complete the multi-
binding, which means users are capable of binding more than one terminal or SP
to their own UID. As can be seen from Fig. 2, multiple OID as well as SPID are
bound to UID. So when authenticating, user can choose the appropriate device
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Fig. 1. System model Fig. 2. Three-level account association

to visit the Internet service he wants. Three-level account association has greatly
increased the convenience and flexibility of authentication.

VS provide registration functions, all the mobile terminals need to be reg-
istered in it prior to use. It will negotiate the OID and the key that used to
generate the OTP (One Time Password [2]) with mobile terminals, store these
data and update it to the VC. VC is a caching server for the data in VS, which
is physical proximity to the WS. Each time after WS submits the OID and
response, it can efficiently determine whether the OID and response correspond
or not. WS is the core part of UAuth, with which user can manage their UID and
account binding (UID and OID binding, UID and SPID binding). Users need to
get the credential of SPID from WS when they are authenticating to SP. The
mobile terminal can be various, but they all provide a local layer authentication
method. The terminal registers itself to the VS by negotiating the key used to
generate the OTP and telling the server it’s OID. It would not generate the OTP
to achieve the server layer authentication unless the local layer authentication
is succeeded. AP is a customized functional component installed in use’s fixed
terminal, it helps to complete the authentication by establishing a communica-
tion between the WS and user’s mobile terminal. It also informs the WS of the
presence of a mobile terminal, and relays the encrypted authentication stream
to WS. SP is the entity that provides Internet services, it needs to establish a
trust relation with WS and build a secure communication channel.

4.2 UAuth Details

Initialization. Before login with this method, users have to initialize the mobile
phone and the fixed terminal.

The user installs the authentication application in the mobile phone and
initializes it. It will connect to the VS server to register itself, negotiate to get the
user’s mobile phone private certificate. The certificate is used to identify itself,
and establish an SSL session with fixed terminal. While they also negotiate to get
the OID, as well as to get key K which used to generate OTP. After successful
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Fig. 3. Protocol details

registration, VS will update the registration information to VC. The user should
also bind his UID to OID and SPID respectively in the WS page.

The user also has to install the AP in fixed terminal, which assist to achieve
a complete login process.

Protocol Details. When users are authenticating with SP, they have to suc-
cessfully authenticate to our WS via a two-layer authentication: after the local
layer verification on the mobile terminal, users will forward the response gen-
erated by the mobile terminal on-the-fly to the WS, then obtain the credential
of SP account and login to SP. As shown in Fig. 3, a complete authentication
requires these steps. Since in our framework the mobile terminal is not limited
to a certain type, which can be a variety of devices, in this paper we use smart
phone as an example to illustrate a specific process.

If one uses UAuth to sign in the website SP, the page will redirect to the login
page on WS (step 1). WS generates a QR code with a random string S in it and
displays it on the use’s browser. Meanwhile, the AP in the browser will establish
a temporary Wi-Fi access point using the information calculated from S (step
2). The user will unlock the UAuth application in the Mobile Terminal M, which
is the local authentication procedure. Then scan the QR code displayed on the
browser to get S, M uses the same method like AP to calculate the information
from S, with the information M connects to the access point in B and establishes
an SSL session at last (step 3). M generates σ and replies it to B (step 4). After
SSL decryption, AP obtains the data in σ and encrypts it with KWB , then
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forwards σ1 to WS through the SSL session. AP will close the temporary Wi-Fi
access point once it receives the data from M (step 5). WS gets σ1 and decrypts
it, verifies S that it is generated by WS and it is not expired. Upon successful
verification, WS forwards the OID, S and Sig to VC and submits a request
to verify the validity of these data (step 6). VC verifies OID and Sig, and
responds to WS with the result (step 7). If validation passes, it means that the
UID account OID bound to login successful. WS page displays the SP accounts
that the UID has bound with. The user is required to select the SP account
which he wants to login into SP. WS will randomly generate a Authorization
Code mapping to the selected SP account. Finally WS returns a link that will
redirect to SP with parameters, which contain Authorization Code (step 8). B
submit the Authorization Code to SP so SP can gain the authorization of SPID
with it (step 9–11). Finally, SP show the login result on B (step 12).

Discussion. A complete login process of UAuth consists of two-layer authenti-
cation. For user’s personal device is varied, they may select a smartphone, a USB
token, a fingerprint reader or others as an authentication terminal. It enables
users to choose a appropriate method depending on the device they are using.
For example, user can use password verification when they use their phone or
use their fingerprint to authentication with their fingerprint reader. A success
verification of user’s password or other authentication information in local layer,
prove that user has the corresponding authentication device, and the device is
not used by a impersonate user. The server layer authentication of OTP-signed
response generated by the mobile device, indicate the user who is authenticating
and prove that the legitimate user is using the correct device to login again.
Since OTP is changing with time, even if an attacker to crack the encrypted
channel and get the response, OTP at this time is likely to have been in ineffec-
tive. The signature of the data in the transfer process also protects the integrity
of the data, with it an attacker is difficult to modify or forgery the data. The
use of the combination of the two layers, either prevents the attacker to steal the
static password when transmitting in the insecure network, or protects the data
in user’s device from being read and used when the device is lost, at the same
time the response validation ensures the security in authentication process.

5 Implementation and Evaluation

In order to demonstrate the feasibility of UAuth, we implemented the system
discussed in Sect. 4, which includes Authenticate Plug-in (AP) in Chrome web
browser, Validate Server (VS), Validation Cache (VC),UAuth Web Server (WS)
and Android application.

We evaluated our system using Bonneau et al.’s framework of 25 different
“benefits” that authentication mechanisms should provide, and analyzed our
work from three aspects: the usability, deployability and security. We also include
the incumbent passwords, Google 2-step verification, PhoneAuth and SAuth as
a baseline. The results of our evaluation are shown in Table 1.
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Usability. In the usability arena, since there is little user interaction necessary
during a login, and existence of private mobile terminal certificate enabling that
one mobile terminal can be bound to multiple UID, and the UID can bind a
plurality of SPID, so it is Scalable-for-Users. It is Easy-to-Learn and Easy-
to-Use because users only need to enter a password and use the mobile to scan
the QR code once, which also makes it does not have Memorywise-Effortless,
Nothing-to-Carry and Physically-Effortless. We rated it as somewhat provid-
ing the Infrequent-Errors benefit since they will cause an error if the wireless
connection does not work or if the mobile terminal in not available. Similar to
Google 2-step Verification, it somewhat provides the Easy-Recovery-from-Loss
because of the inconvenience of having to replace the phone is then compounded
by the fact that the lost phone also holds the secrets.

Deployability. Accessing the deployability benefits comes down to evaluat-
ing how much change would be required in current systems in order to get our
proposed system adopted. In UAuth system, since the authentication is com-
pleted by the phone in conjunction with local password, and requires AP to
play a role in the process, Accessible, Negligible-Cost-Per-User and Browser-
Compatible is somewhat provided. For general SP server, it only needs to be
modified to be compatible with UAuth, the change is little so it is somewhat
Server-Compatible.

Security. Since the UAuth employs both local password and OTP, it can meet
most of the security properties. When faced with phishing and eavesdropping, it
would have a good security performance. However, some real-time attack makes
it vulnerable. The adversary may steal the sensitive data in this attack, so it
somewhat provides Resilient-to-Internal-Observation benefits.

Conclusion. In Table 1, it can be seen that UAuth owns a good performance
in the evaluation and get a high score in the ease of Usability, Deployability and
Security.

Performance. We evaluated the performance of our implementation of UAuth:
(1) the time required to establish the Wi-Fi access point, (2) the time required
to establish the connection between the fixed terminal and the mobile terminal,
and (3) the time required to complete the UID login process. That is to say we
measure the time between the step 1–8, this can reflect the total performance
since the step 9–12 spends little time that can be ignored (usually less than
0.2 s). The result of our measurements averaged over 50 protocol runs are shown
in Table 2. Remove the time of user operations (such as take their phone out
of their pocket and unlock it), the total time of a complete login process most
spent on establishing a Wi-Fi access point and the connection between the mobile
terminal and fixed terminal. They are about 1.1 s and 4.2 s. And our solutions
requires about 11.4 s for the whole process. Note that for a user that uses 2-factor
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Table 1. Comparison of UAuth against password, Google 2-step Verification,
PhoneAuth and SAuth using Bonneau et al.’s evaluation framework. ‘y’ means the
benefit is provided, ‘s’ means the benefit is somewhat provided, while blank means the
benefit is not provided

login service, he will type a username and password, and copy the OTP from
the mobile phone to the page, which will take an average login time of 24.5 s
[13]. Login has speed up with our system, while at the same time improving the
login experience to simple input and scan operations.

Table 2. Performance of UAuth

Wi-Fi access point Connection Total

Avg. Time(s) 1.1 4.2 11.4

[Min, Max](s) [0.7, 1.8] [2.5, 9.2] [6.8, 19.3]

6 Conclusion

We have presented UAuth, a two-layer authentication framework. It enables
users to enjoy the security benefits of using the physic device to authenticate:
use the OTP generated by the device in the two-layer authentication. At the same
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time, users receive the convenience of the SSO-like login: user can visit more than
one SPID with their UID in the three-level account association. Specifically, in
local authentication, users can choose a correct way to authenticate depending
on their own device, The variety of personal devices and its flexibility also make
our UAuth have a good performance in authentication.

We implemented and evaluated UAuth, and we get a conclusion that the
UAuth has a relatively good performance in safety and user experience, it will
enhance the current authentication technology on the web today.
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Abstract. Hadoop is an open source distributed system for data storage
and parallel computations that is widely used. It is essential to ensure
the security, authenticity, and integrity of all Hadoop’s entities. The cur-
rent secure implementations of Hadoop rely on Kerberos, which suffers
from many security and performance issues including single point of
failure, online availability requirement, and concentration of authentica-
tion credentials. Most importantly, these solutions do not guard against
malicious and privileged insiders. In this paper, we design and imple-
ment an authentication framework for Hadoop systems based on Trusted
Platform Module (TPM) technologies. The proposed protocol not only
overcomes the shortcomings of the state-of-the-art protocols, but also
provides additional significant security guarantees that guard against
insider threats. We analyze and compare the security features and over-
head of our protocol with the state-of-the-art protocols, and show that
our protocol provides better security guarantees with lower optimized
overhead.

Keywords: Hadoop · Kerberos · Trusted Platform Module (TPM) ·
Authentication · Platform attestation · Insider threats

1 Introduction and Related Work

Apache Hadoop provides a distributed file system and a framework for the analy-
sis and transformation of very large data sets using the MapReduce paradigm
[1,2]. The basic architecture of Hadoop is shown in Fig. 1. The core components
are Hadoop Distributed File System (HDFS) and Hadoop MapReduce. HDFS
provides distributed file system in a Master/Slave manner. The master is the
NameNode, which maintains the namespace tree and the mapping of data blocks
to DataNodes. The slaves are the DataNodes which store the actual data blocks.
A client splits his data into standardized data blocks and stores them in different
DataNodes with a default replication factor of 3. The MapReduce is a software
framework for processing large data sets in a parallel and distributed fashion
among many DataNodes. MapReduce contains two sub-components: JobTracker
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 105–122, 2015.
DOI: 10.1007/978-3-319-23829-6 8



106 I. Khalil et al.

and TaskTracker. The JobTracker, together with the NameNode, receives the
MapReduce jobs submitted by the clients and splits them into smaller tasks to
be sent later to TaskTrackers for processing. Each DataNode has a corresponding
TaskTracker, which handles the MapReduce tasks.

Fig. 1. Basic architecture of Hadoop.

There are 5 types of communication
protocols in HDFS: DataNodeProtocol
(between a DataNode and the NameN-
ode); InterDataNodeProtocol (among
different DataNodes); ClientDataN-
odeProtocol (between client and Data
Nodes); ClientProtocol (between a
client and the NameNode); NameN-
odeProtocol (between the NameNode
and the Secondary NameNode). On
the other hand, there are 3 types of
communication protocols in MapRe-
duce: InterTrackerProtocol (between
the JobTracker and a TaskTracker); JobSubmissionProtocol (between a client
and the JobTracker); and TaskUmbilicalProtocol (between task child process
and the Tasktracker). In addtion, there is a DataTransferProtocol for data flow
of Hadoop.

Hadoop clients access services via Hadoop’s remote procedure call (RPC)
library. All RPC connections between Hadoop entities that require authentica-
tion use the Simple Authentication and Security Layer (SASL) protocol. On the
top of SASL, Hadoop supports different types of sub-protocols for authentica-
tion, such as generic security service application program interface (GSSAPI,
e.g., Kerberos [3,4]) or digest access authentication (i.e., DIGEST-MD5) [5]. In
practice, Hadoop uses Kerberos as the primary/initial authentication method
and uses security tokens (DIGEST-MD5 as protocol) to supplement the pri-
mary Kerberos authentication process within the various components of Hadoop
(NameNode, DataNodes, JobTracker, TaskTracker, etc.). This Kerberos based
authentication mechanism is first implemented in 2009 by a team at Yahoo [5].

However, there are many limitations and security issues in using Kerberos for
Hadoop authentication. The first weakness of Kerberos lies in its dependency on
passwords. The session key for data encryption during the initial communication
phase to key distribution center (KDC) is derived from the user’s password. It has
been shown in many situations that passwords are relatively easy to break (e.g.,
password guessing, hardware key-loggers, shoulder surfing etc.) mainly due to bad
or lazy selections of passwords. For example, in 2013, almost 150 million people
have been affected by a breach into Adobe’s database [6]. The breach is due to mis-
takes made by Adobe in handling clients’ passwords. All passwords in the affected
database were encrypted with the same key. Additionally, the encryption algo-
rithm used did not handle identical plaintexts, which results in similar passwords
being encrypted into similar ciphers. Disclosure of KDC passwords allows attack-
ers to capture users’ credentials, which turns all Hadoop’s security to be useless
(at least for the owners of the disclosed passwords). The second issue of Kerberos
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lies in having a single point of failure. Kerberos requires continuous availability
of the KDC. When the KDC is down, the system will suffer from the single point
of failure problem. Although Hadoop security design deploys delegation tokens
to overcome this bottleneck of Kerberos, it introduces a more complex authenti-
cation mechanism. The introduced tokens add extra data flows to enable access
to Hadoop services. Moreover, many token types have been introduced including
delegation tokens, block tokens, and job tokens for different subsequent authenti-
cations, which complicate the configuration and management of these tokens [7].
The third issue in Kerberos lies in its dependence on a third-party online database
of keys. If anyone other than the proper user has access to the key distribution cen-
ter (KDC), the entire Kerberos authentication infrastructure is compromised and
the attacker will be capable of impersonating any user [8]. This issue highlights
the insider threat problems in Kerberos. Kerberos cannot provide any protection
against an administrator who has the privilege to install hardware/software key
loggers or any other malware to steal users’ credentials and other sensitive data
(passwords, tokens, session keys, and data).

In early 2013, Intel launched an open source effort called Project Rhino to
improve the security capabilities of Hadoop. They propose Task HADOOP-
9392 (Token-Based Authentication and Single Sign-On) which is planned to
support tokens for many authentication mechanisms such as Lightweight Direc-
tory Access Protocol (LDAP), Kerberos, X.509 Certificate authentication, SQL
authentication, and Security Assertion Markup Language (SAML) [9]. They
mainly focus on how to extend the current authentication framework to a stan-
dard interface for supporting different types of authentication protocols. Nev-
ertheless, all these authentication protocols, including Kerberos, are software-
based methods that are vulnerable to privileged user manipulations. A privileged
insider may be able indirectly collect users’ credentials through, for example, the
installation of malware/spyware tools on the machines they have access to in a
way that is transparent to the victims. Furthermore, Rhino trades off flexibility
with complexity. It enhances the flexibility of the authentication mechanisms at
the cost of increasing the complexity of the overall system. Project Rinho did
not provide overhead analysis or performance evaluation which makes it hard to
compare with other protocols and raises questions about its practicality.

In this work, we propose an TPM-based authentication protocol for Hadoop
that overcomes the shortcomings of the current state-of-the-art authentication
protocols. To date, more than 500 million PCs have been shipped with TPMs,
an embedded crypto capability that supports user, application, and machine
authentication with a single solution [10]. TPM offers facilities for the secure
generation of cryptographic keys, and limitation of their use, in addition to
a random number generator. TPM supports three main services, namely: (1)
Remote Attestation which creates a nearly un-forgeable hash-key summary of the
hardware and software configuration. The program encrypting the data deter-
mines the extent of the summary of the software. This allows a third party to
verify that the software has not been changed or tampered with. (2) Binding
which encrypts data using the TPM endorsement key, a unique RSA key burned
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into the chip during its production, or another trusted key descended from it.
(3) Sealing which encrypts data in similar manner to binding, but in addition
specifies a state in which the TPM must be in order for the data to be decrypted
(unsealed). Since each TPM chip has a unique secret RSA key burned in as it is
produced, it is capable of performing platform authentication [11].

In addition to providing the regular authentication services supported by
Hadoop, our protocol ensures additional security services that cannot be achieved
by the current state-of-the-art Hadoop authentication protocols. In addition
to eliminating the aforementioned security weakness of Kerberos, our proto-
col guards against any tamper in the target machines (the machine in the cloud
that is supposed to store users’ encrypted data and process it) hardware or soft-
ware. In public cloud environments, the user does not need to trust the system
administrators on the cloud. Malicious cloud system administrators pose great
threats to users’ data (even though it may be encrypted) and computations.
Those administrators, even though, may not have direct access to the user’s
data, they may be able to install malicious software (malware, spyware, etc.)
and hardware (key loggers, side channels, etc.) tools that can ex-filtrate users
data and sensitive credentials.

In [12], the author proposes a TPM-based Kerberos protocol. By integrating
Private Certification Authority (PCA) functionality into the Kerberos authen-
tication server (AS) and remote attestation is done by the (Ticket-Granting
Server) TGS, the proposed protocol is able to issue tickets bound to the client
platform. However, the present mechanism does not provide any attestation for
Hadoop internal components. Nothing can prevent malicious Hadoop insiders
from tampering with internal Hadoop components. In this paper, we use TPM
functionalities to perform authentication directly inside Hadoop to completely
get rid of the trusted-third-party.

In [13], the authors propose a Trusted MapReduce (TMR) framework to inte-
grate MapReduce systems with the Trusted Computing Infrastructure (TCG).
They present an attestation protocol between the JobTracker and the Task-
Tracker to ensure the integrity of each party in the MapReduce framework. How-
ever, they mainly focus on the integrity verification of the Hadoop MapReduce
framework, and did not address the authentication issues of Hadoop’s HDFS
and Clients. The work does not provide a general authentication framework for
the whole Hadoop system.

In [14], the authors present a design of a trusted cloud computing platform
(TCCP)based on TPM techniques, which guarantees confidential execution of
guest VMs, and allows users to attest to the IaaS provider to determine if the
service is secure before they launch their VMs. Nevertheless, they do not provide
much details about how this work will be implemented and no performance
evaluation is provided. Also, this work does not focus on a general authentication
framework specific for the Hadoop system.

In this paper, we design and implement a TPM-based authentication protocol
for Hadoop that provides strong mutual authentication between any internally
interacting Hadoop entities, in addition to mutually authenticate with exter-
nal clients. Each entity in Hadoop is equipped with a TPM (or vTPM) that
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locks-in the root keys to be used for authenticating that entity to the outside
world. In addition to locally hiding the authentication keys and the authentica-
tion operations, the TPM captures the current software and hardware configu-
rations of the machine hosting it in an internal set of registers (PCRs). Using
the authentication keys and the PCRs, the TPM-enabled communicating enti-
ties establish session keys that can be sealed (decrypted only inside the TPM)
and bound to specific trusted PCRs value. The bind and seal operations protect
against malicious insiders since insiders will not be able to change the state of
the machine without affecting the PCR values. Additionally, our protocol pro-
vides remote platform attestation services to clients of third party, possibly not
trusted, Hadoop providers. Moreover, the seal of the session key protects against
the ability to disclose the encrypted data in any platform other than the one
that matches the trusted configurations specified by the communicating enti-
ties. Finally, our protocol eliminates the trusted third party requirement (such
as Kerberos KDC) with all its associated issues including single point of failure,
online availability, and concentration of trust and credentials. Figure 2 shows the
high level overview of our protocol.

Fig. 2. High level overview of the authen-
tication framework.

We summarize our contributions
in this work as follows: (1) Propose
a TPM-based authentication protocol
for Hadoop that overcomes the short-
comings of Kerberos. Our protocol
utilizes the binding and sealing func-
tions of TPM to secure the authenti-
cation credentials (e.g., Session keys)
in Hadoop communications. (2) Pro-
pose and implement a periodic plat-
form remote attestation mechanism to
guard against insider malicious tam-
pering with Hadoop entities. (3) Perform performance and security evaluation of
our protocol and show the significant security benefits together with the accept-
able overhead of our new authentication protocol over the current state-of-the-
art protocols (Kerberos). (4) Implement our protocol within Hadoop to make it
practically available for vetting by Hadoop community.

The rest of this paper is organized as follows. In Sect. 2, in addition to provid-
ing a background on the state-of-the-art Hadoop security design and the TPMs,
we lay out our attack model. In Sect. 3, we describe our proposed TPM-based
authentication protocol in details. In Sect. 4, we present the system design and
implementation method. In Sect. 5, we conduct the performance evaluation of
our proposed authentication protocol.
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2 Background

2.1 Hadoop Security Design

Apache Hadoop uses Kerberos to support the primary authentication in Hadoop
communications. It introduces three types of security tokens as Supplementary
Mechanisms. The first token is the Delegation Token (DT). After the initial
authentication to the NameNode using Kerberos credentials, a user obtains a
delegation token, which will be used to support subsequent authentications of
user’s jobs. The second token is Block Access Token (BAT). The BAT is gen-
erated by the NameNode and is delivered to the client to access the required
DataNodes. The third token is the Job Token (JT). When a job is submitted,
the JobTracker creates a secret key that is only used by the tasks of the job to
request new tasks or report status [5].

Fig. 3. Authentication process of
Hadoop security design developed
by Yahoo.

The complete authentication process in
Hadoop using Kerberos is shown in Fig. 3. The
client obtains a delegation token through ini-
tial Kerberos authentication (step 1). When
the client uses the delegation token to authen-
ticate, she first sends the ID of the DT to the
NameNode (step 2). The NameNode checks if
the DT is valid. If the DT is valid, the client
and NameNode try to mutually authenticate
using their own Token Authenticators (which
is contained in the delegation token) as the secret key and DIGEST-MD5 as the
protocol (step 3, 4, 5 and 6) [15]. This represents the main authentication process
in secure Hadoop system, although there are other slightly different authentica-
tion procedures such as the Shuffle in the MapReduce process.

2.2 Trusted Platform Module

The Trusted Platform Module (TPM) is a secure crypto-processor, which is
designed to secure hardware platforms by integrating cryptographic keys into
devices [11]. It is specifically designed to enhance platform security which is
beyond the capabilities of today’s software-based protections [16]. Figure 4 shows
the components of a Trusted Platform Module.

The TPM has a random number generator, a RSA key generator, an SHA-1
hash generator and an encryption-decryption-signature-engine. In the persistent
memory, there is an Endorsement Key (EK). It is an encryption key that is per-
manently embedded in the Trusted Platform Module (TPM) security hardware
at the time of manufacture. The private portion of the EK is never released
outside of the TPM. The public portion of the EK helps to recognize a genuine
TPM. The storage root key (SRK) is also embedded in persistent memory and
is used to protect TPM keys created by applications. Specifically, SRK is used
to encrypt other keys stored outside the TPM to prevent these keys from being
usable in any platform other than the trusted one [17].
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Fig. 4. Components of a Trusted
Platform Module [18].

In the versatile memory, the Platform
Configuration Register (PCR) is a 160 bit
storage location for integrity measurements
(24 PCRs in total). The integrity measure-
ments includes: (1) BIOS, ROM, Memory
Block Register [PCR index 0-4]; (2) OS
loaders [PCR index 5-7]; (3) Operating Sys-
tem (OS) [PCR index 8-15]; (4) Debug
[PCR index 16]; (5) Localities, Trusted OS
[PCR index 17-22]; and (6) Applications
specific measurements [PCR index 23] [19].

The TPM is able to create an unlimited
number of Attestation Identity Keys (AIK). The AIK is an asymmetric key pair
used for signing, and is never used for encryption and it is only used to sign
information generated internally by the TPM, e.g., PCR values [20]. For signing
the external data, storage keys are required. A storage key is derived from the
Storage Root Key (SRK) which is embedded in the persistent memory of the
TPM during manufacture. Using the generated storage key along with PCR
values, one could perform sealing operation to bind data into a certain platform
state. The encrypted data could only be unsealed/decrypted under the same
PCR values (i.e., the same platform state).

2.3 Attack Model

In addition to the traditional external threats, we believe that clouds are more
susceptible to internal security threats especially from untrusted privileged users
such as system administrators.

Many enterprises are likely to deploy their data and computations among
different cloud providers for many reasons including load balancing, high avail-
ability, fault tolerance, and security, in addition to avoiding single-point of failure
and provider locking [21–23]. For example, an enterprise may choose to deploy
the NameNode in their home machine to provide high security by only allow-
ing local access to local managers, and deploy the DataNodes among different
cloud platforms to distribute the storage and computational load. Obviously,
this increases the probability of compromise of the DataNodes. If one of the
DataNodes is injected with some malwares, Hadoop becomes vulnerable.

In the public cloud deployments of Hadoop, a privileged user could mali-
ciously operate on behalf of the user by installing or executing malicious software
to steal sensitive data or authentication credentials. For example, a malicious sys-
tem administrator in one of the DataNodes on the public cloud may be able to
steal users’ private data (e.g., insurance information etc.) that is stored in the
compromised DataNode. With the appropriate privileges, the administrator can
install a malware/spyware that ex-filtrates the stored sensitive data. Kerberos
based Hadoop authentication cannot protect against such insider attackers and
thus systems running Kerberos are vulnerable to this attack. In Kerberos-based
secure Hadoop, the DataNode authenticates with other parties using delegation
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tokens, and the action of installing malware on the DataNode machine will not
be detected. On the other hand, the Trusted Platform Module (TPM) is capable
of detecting the changes of hardware and software configurations, which will help
in mitigating such attacks.

We assume attackers are capable of performing replay attacks. The attacker
could record the message during the communication and try to use it to forge a
future communication message. Such replay attacks may cause serious problems,
such as denial of service (keep sending the message to overload the server), or
repeated valid transaction threats (e.g., the attacker capture the message of a
final confirmation for a transaction, then he can repeatedly send it message to the
server and result in repeated valid transactions if there is no proper protection).

3 TPM-Based Hadoop Authentication Protocol

In this section, we present the details of our proposed Hadoop authentication
protocol. The key idea of the protocol lies in the utilization of TPM binding
keys to securely exchange and manage the session keys between any two parties
of Hadoop (NameNode/JobTracker, DataNodes/TaskTracker and Client).

Fig. 5. The high level processes of our
TPM-based Hadoop authentication proto-
col (Client to NameNode in this example).

To achieve this, we assume every
party in Hadoop, namely, the DataN-
ode, the NameNode, and the client,
has a TPM. Figure 5 depicts the high
level processes of the protocol which
are explained in detail in the following
sub sections. The protocol consists of
two processes, the certification process
and the authentication process.

3.1 The Certification Process

Fig. 6. Certification process of the
TPM binding key.

The certification process (which is similar
to that presented in [12]) is triggered by
the client and is depicted in Fig. 6. The
client’s TPM creates a RSA key using the
SRK as a parent. This key will be used
as the client’s Attestation Identity Keys
(AIK[client]). The AIK [client] is then cer-
tified by a PCA. This process only takes
place once during the initialization of the
TPM (a one-time pre-configuration oper-
ation). The client’s TPM then creates a
binding key that is bound to a certain platform (i.e., the private portion of the
binding key is inside the TPM and could only be used in this platform), then we
seal the private part of the binding key to a certain PCR configuration. Finally,
the client uses the AIK[client] which is certified by the PCA to certify the public
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part of the binding key. The AIK[client] is not used directly for authentication in
order to maintain higher security guarantees by minimizing the chances of suc-
cessful cipher analysis attacks to disclose the key. The AIK[client] is only used
to sign PCRs value and other TPM keys. We can certify the binding key directly
through the PCA instead of using the certified AIK[client]. However, using the
certified AIK[client] is simpler, faster and provides the same security guarantees.
Once we certify the AIK[client], we can use it to sign all kinds of keys generated
by the clients’ TPM without referring back to the PCA, which greatly reduces
the communication overhead at the cost of local processing overhead.

3.2 The Authentication Process

In the authentication process (Fig. 7), the client tries to authenticate itself to
the NameNode and the NameNode authenticates itself to the client. The Client
sends a random number K1 along with the corresponding IDs (e.g., fully quali-
fied domain name) to the NameNode. This message is encrypted by the public
binding key of the NameNode. The NameNode sends a random number K2

along with corresponding ID to the client. This message is encrypted by the
public binding key of the client. Using K1 and K2, both the client and the
NameNode generate the session key Key session = K1 ⊕ K2. Note that only
the correct NameNode can obtain K1 by decrypting the message sent by the
client using the NameNode’s SK bind, which is bind to the target NameNode’s
TPM with a certain software and hardware configuration (sealed binding key).
Similarly, only the correct client can obtain K2 by decrypting the message sent
by the NameNode using the client’s SK bind, which is bind to the client’s TPM
with the appropriate software and hardware configurations. This ensures mutual
authentication between the client and the NameNode.

Fig. 7. The authentication process
of the TPM-based authentication
protocol.

The session key exchanged is then locked
into a certain PCRs value in an opera-
tion known as seal operation using the
TPM command Seal that takes the two
inputs: the PCRs value and the session key
(Seal(PCRsindexes,Key session)). This
ensures that Key session can only be
decrypted using the hardware secured keys
of the TPM in that particular platform
state. By sealing the session key to specific
acceptable hardware and software configu-

rations (specific PCRs value), we protect against any tamper of the firmware,
hardware, or software on the target machine through for example, malware
installations or added hardware/software key loggers. Moreover, the session
key (Key session) is made to be valid only for a predefined period of time,
after which the session key expires and the authentication process has to be
restarted to establish a new session key if needed. The validity period of the
session key is an important security parameter in our protocol. Short validity
periods provide better security in the case of session key disclosure since fewer
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communications are exposed by disclosing the key. However, shorter periods
incur extra overhead in establishing more session keys. Additionally, a nonce
is added to every message (for example, Nonce = K2 + +) to prevent replay
attacks. Finally, message authentication codes (MAC) are included with each
message to ensure data integrity. The communication message format is as fol-
lows: (Message,MAC,Nonce = K2 + +, IDs)key session.

3.3 Periodic “Fingerprint” Checking (Cross Platform
Authentication)

In a non-virtualized environment, the Trusted Platform Module (TPM) speci-
fication assumes a one to one relationship between the operating system (OS)
and the TPM. On the other hand, virtualized scenarios assume one to one rela-
tionship between a virtual platform (virtual machine) and a virtual TPM [24].
However, Hadoop systems are master/slaves architectures. The NameNode is
the master that manages many DataNodes as slaves. If the number of DataN-
odes grows, the number of session establishment processes that the NameNode
is involved in also grows relatively. Each session involves many TPM operations
(e.g., Seal and unseal). For large systems, the TPM may become a bottleneck due
to the limitation of one TPM/vTPM per each NameNode according to current
implementations of TPM/vTPM.

Fig. 8. Random attestation and
periodic “Fingerprint” attestation
illustration.

To address this issue and alleviate the
potential performance penalty of TPM inter-
actions, we introduce the concept of periodic
“Fingerprint” platform checking mechanism
based on the Heartbeat protocol in Hadoop
(Fig. 8). The idea is to offload most of the
work from the TPM of the NameNode to
the NameNode itself. However, this requires
us to loosen our security guarantees and
change the attack model by assuming that
the NameNode is “partially” trusted. Par-
tially here, means that an untrusted (compro-
mised) NameNode will only have transient
damage on the security of Hadoop system. A nameNode that gets compro-
mised will only stay unnoticed for a short time since other interacting parties
(such as DataNodes) may randomly request attestation of the authenticity of the
NameNode. In this on-demand attestation request, an interacting entity with the
NameNode (e.g., DataNode, client, etc.) asks the name node to send a TPM-
sealed value of its current software and hardware configuration. If the requesting
entity receives the right values for the PCRs of the NameNode within a prede-
fined time, then the NameNode is trusted, otherwise a suspicious alert is raised
about the healthiness of the NameNode. The response time to receive the sealed
PCRs value from the NameNode is set to account for the communication time,
the load on the NameNodes (size of Hadoop System), and the seal operations
assuming that the perpetrator controlling the untrusted NameNode will not be
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able to roll back the configurations of the NameNode to the trusted one within
this time.

As mentioned earlier, the PCR values inside the TPM captures the software
and hardware configurations of the system hosting the TPM. Therefore, a par-
ticular PCR value can be considered as a “Fingerprint” of the corresponding
platform. We collect the “Fingerprint” of each entity that needs to interact with
the NameNode (e.g., DataNode) a priori and store it on the NameNode (This
can be achieved during the registration process of the entity to the NameNode).
The Heartbeat protocol in Hadoop periodically sends alive information from one
entity to another (e.g., from DataNode to NameNode). Therefore, we configure
each entity interacting with the NameNode (e.g., DataNode) to periodically (or
can be configured to be on-demand) send the new PCR values (achieve by PCR
extension operation) to the NameNode to check the consistency of the stored
PCRs and the new PCRs. The TPM in the interacting entity signs its current
PCR values using its AIK key and sends the message to the NameNode. When
the NameNode receives the signed PCR values, it verifies the signature, and if
valid, it compares the received values with the trusted pre-stored values. If a
match is found, the authentication will succeed and the session will continue.
Otherwise, the authentication will fail and penalty will apply (e.g., clear up
the session key, shut down the corresponding DataNode, etc.). By doing so, the
number of NameNode side TPM operations decrease significantly as we replace
the TPM seal and unseal operations with the “Fingerprint” verification that are
carried out outside the TPM. See Fig. 8.

3.4 Security Features

In this section, we elaborate on the security services provided by our protocol.
The security services can be broadly classified into the Common security services
and the New security services. The common security services are supported by
both our protocol and other Hadoop authentication protocols, while the new
security services are novel and supported only by our protocol. The common
security services include: (1) Replay attack prevention. A nonce = K2 + + is
included with each communicated message to prevent replay attacks. (2) Data
Integrity. A MAC is included in the message to ensure data integrity. The MAC
is computed as Hash(SessionKey||Message). Digital signature is another way
to achieve data integrity as well as authenticity. However, digital signatures
are more computationally involved, as they rely on asymmetric keys, compared
to hash functions that use symmetric keys. The New security services include:
(1) Session key binding. The session key is generated by XORing a local and
an external random numbers (K1 and K2). The local one is generated locally
and the external is received from the other party. The local random number is
encrypted using the public portion of the binding key of the other party before
sending it to that party. This ensures that only the party that has the appropriate
private portion of the binding key will be able to decrypt the message and get
the external random number. Furthermore, the decryption keys exist only inside
the TPM chip and are sealed under a certain hardware/software configuration.
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This protects against even malicious insiders as they will not be able to know
anything about the session key. (2) Session key sealing. The session key is sealed
with TPM functions. The sealed session key can be decrypted only under the
same platform conditions (as specified by the PCRs value) using the associated
EK that resides inside the TPM. If the attacker installs malware/spyware to steal
the session key, he will not be able to successfully decrypt and obtain the key as
the decryption will fail due to the change in the system configuration which will
be reflected in the PCRs. (3) Periodic “Fingerprint” attestation mechanism. This
enables one way attestation of DataNode while reducing the load on a partially
trusted NameNode. This disables any privileged malicious user controlling a
DataNode from being able to install or inject malware/spyware without affecting
the internal view of the TPM about the system. (4) Disk Encryption. In addition
to the traditional disk encryption, we could choose using TPM keys to protect
the HDFS data from directly steal on the disk.

4 System Design and Implementation

Fig. 9. The three Hadoop archi-
tectures implemented: (a) Hadoop
without Security; (b) Hadoop with
Kerberos Security; (c) Hadoop with
TPM-based Security.

To evaluate the security guarantees and
the performance overhead of our authenti-
cation protocol, we compared three different
Hadoop implementations, namely, Hadoop
without Security (Baseline), Hadoop with
Kerberos (Kerberos) and Hadoop with our
protocol (TPM). We use Hadoop version
0.20.2-cdh3u6 [25] since it is the most stable
version of the classic first generation of HDFS
and MapReduce. We modify the source code
of Hadoop using ant on Eclipse [26]. For Ker-
beros, we use krb5.x86 64 [27]. For TPM, we
use TPM Emulator since it is the best choice

for debugging and testing purposes. To incorporate TPM with Hadoop project,
we use IAIK jTSS (TCG Software Stack for the Java (tm) Platform [28]) as the
Java interface between Hadoop and TPM. The three Hadoop architectures are
shown in Fig. 9.

4.1 Implementation Details

A. Hadoop Deployment. We configure Hadoop-0.20.2-cdh3 in a distributed
manner. The implementation involves two virtual machines with CentOS 6.5
operating system, 1 GB memory, 20 GB hard disk, Java version = jdk-7u51-linux-
x64. One of the machines is installed with one NameNode, one JobTracker, one
DataNode and one TaskTracker, the other one installed with one DataNode and
one TaskTracker.

B. Hadoop Deployment with Kerberos. For Hadoop security design with
Kerberos, we had to configure Hadoop and Kerberos separately. Table 1 shows
the summary of the corresponding configurations.
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Table 1. Summary of Kerberos secured Hadoop configuration.

Hadoop Install hadoop-0.20-native; hadoop-0.20-sbin. Configure
core-site.xml; hdfs-site.xml; mapred-site-xml. Add
taskcontroller.cfg

Kerberos Install krb5-server.x86 64; krb5-workstation.x86 64;
krb5-devel.x86 64. Configure krb5.conf; kdc.conf; kadm5.acl.
Create “EXAMPLE.COM” database. Add
hdfs/fully.qualified.domain.name@EXAMPLE.COM;
mapred/fully.qualified.domain.name@EXAMPLE.COM;
host/fully.qualified.domain.name@EXAMPLE.COM. Generate
hdfs.keytab; mapred.keytab

C. Hadoop Deployment with TPM. Hadoop deployment here involves two
parts: (1) TPM emulator configuration and jTSS java interface configuration;
(2) Hadoop source codes modification environment setup. We use software based
TPM emulator [29], which provides researchers and engineers of trusted systems
with a powerful testing and debugging tool.

We use IAIK jTSS 0.7.1 (TCG Software Stack for the Java (tm) Platform,
Copyright (c) IAIK, Graz University of Technology) as the java interface between
TPM and Hadoop project. There are two ways to configure the IAIK jTSS: (1)
local bindings, which is well suited for development, experimenting and debug-
ging. (2) SOAP bindings, which allows any unprivileged application access [28].
We choose SOAP bindings since we want Hadoop to utilize TPM. For integrating
TPM functionalities into Hadoop project, we setup a modification environment.
Since the Hadoop-0.20.2-chd3u6 is used, we choose Eclipse IDE for Java EE
Developers as platform and Apache Ant 1.9.3 as build tool.

5 Performance Evaluation

5.1 Security Analysis and Evaluation

We discuss here the security features of our protocol and compare it with Ker-
beros based Hadoop. Table 2 summarizes the results of the comparison.

As we can see from Table 2, Kerberos-based Hadoop depends on passwords.
Loss of passwords means loss of authentication capability and deny of access
to any of the resources. Similarly, in TPM-based Hadoop, the ownership of a
TPM depends on the password. Loss of password will result in authentication
incapability and encrypted data inaccessible.

However, TPM-based Hadoop provides hardware security in addition to
the software security provided in Kerberos-based Hadoop. The TPM ensures
the security bond to the hardware and software configurations, which pro-
tects against tamper in the software or the hardware (including install mal-
ware/spyware). On the other hand, Kerberos-based Hadoop solely rely on the
security of soft tokens/tickets. Also, the Kerberos based Hadoop requires an
on-line KDC, which presents a single point of failure.
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Table 2. Comparison of TPM-based Hadoop and Kerberos-based Hadoop.

Kerberos-based Hadoop TPM-based Hadoop

Password/ticket/token are required to
authenticate users. Weakness on
password dependency and
ticket/tokens lost

TPM key is used to authenticate
users. The key is stored on TPM,
and secured by PCRs (a certain
platform state). Hardware security

An online Key Distribution Center
(KDC) is required. Kerberos has a
single point failure problem (KDC)

Not apply

Lost password: loss of passwords
prevents the ability to
authentication with KDC

Lost Password: Loss of passwords
associated with the TPM will result
in encrypted data inaccessible

Not apply Only support one to one mode
between one VM and one
TPM/VTPM, resource insufficient
for unsealing operation

In our protocol, the authentication credentials exchanged are not only
encrypted with the public keys of the parties but also bound to specific hard-
ware and software configurations in each party. This setup ensures that not only
the right party can access the credentials, but also that the credentials can only
be accessed under specific hardware and software configurations. This guards
against both user and machine masquerading. For example, in the session estab-
lishment between the NameNode and a DataNode, the random number K1 is
encrypted with the public key of the NameNode. K1 can be decrypted only by
the NameNode with certain hardware and software configurations, because the
decryption key is bonded to the corresponding PCR values.

We setup an experiment to evaluate this security feature in our protocol,
using the “Fingerprint” as a sample scenario. We develop pseudo codes to sim-
ulate the changes of PCR value (i.e., manually change the PCR values after
5 heartbeats of the DataNodes). In our modified heartbeat protocol, we set
the heartbeat interval to 3 s (i.e., The DataNode sends the PCRs value to the
NameNode every 3 s). We set a counter to an initial value of zero and adds one
every single heartbeat. When the counter reaches 5, we manually set the PCR
to a wrong value. The results show that the authentication fails and the session
with this DataNode is shut down by the NameNode. Table 3 summarizes the
parameters and the results of the experiment.

5.2 Overhead Analysis and Evaluation

In our work, we realize that it is not enough to develop a secure authentication
protocol, but most importantly, we have to ensure that the algorithm is practi-
cal. Therefore, we have to keep the performance penalty and cost of the added
security guarantees within acceptable bounds. In this section, we thoroughly ana-
lyze the performance overhead of our protocol and compare it with the baseline
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Table 3. Evaluation of the periodic “Fingerprint” checking mechanism (Heartbeat
Interval = 3 s).

NameNode
“Finger-
print”

DataNode PCR values Expected result Result

PCR = “0” PCR = “0” (count= 1:4).
PCR = “1” (count = 5).
Count: # of heartbeats

DataNode
shutdown when
count= 5

DataNode
shutdown when
count= 5

and the Kerberos-based authentication protocols. The necessary additions to the
exchanged messages that to prevent replay attacks, ensure data integrity, ensure
data confidentiality (encryption and decryption operations of the exchanged data
messages) are the same for both our protocol and Kerberos-based protocol. How-
ever, both our protocol and Kerberos-based protocol have extra overhead that
does not exist in the other. In our protocol, we have a onetime TPM setup over-
head which is introduced when the TPM in each Hadoop component generates
the binding keys, AIK, in addition to obtaining certificates for these keys. This is
a lightweight overhead and will not impact the day-to-day operation of Hadoop
system as it is a pre-configuration one time overhead. Furthermore, at the begin-
ning of each RPC session, our protocol introduces an extra overhead to transfer
two random numbers and to generate the session key by Xoring the two random
numbers. Additionally, during each RPC session, our protocol involves a recurring
overhead to seal and unseal the session keys and the “Fingerprint” heartbeat ver-
ifications. The seal operation only reoccurs when a legitimate change in the PCRs
value of the other party is acknowledged and approved. In this case, the first party
needs to reseal the session key to work with the new PCRs value in the second
party. The unseal operation reoccurs with every RPC request for data exchange
since we need to retrieve the session key through TPM unseal operation. Finally,
the “Fingerprint” heartbeat checking is an overhead that depends on the security
parameters configured, i.e., how frequently the first party needs to check the sta-
tus of the second and whether it is done periodically or on-demand. We evaluated
the one time overhead (binding key generation and certification) using jTSS under
SAOP binding, which is used for third party application such as Hadoop. Table 4
shows the average overhead for each step.

We next compare the overhead of the baseline Hadoop (no security),
Kerberos-based Hadoop, and TPM-based Hadoop (our protocol). We use a clas-
sic MapReduce job: Pi example. Pi example is to calculate the value of π in
a distributed way. We set the number of map tasks to 5 and set the number

Table 4. One time overhead of the proposed system design.

Binding key
creation

Binding key
loading

AIK cre-
ation

AIK
loading

Binding key
certification

Sum

∼355.8 ms ∼27.1 ms ∼08.4 ms ∼24.1 ms ∼17.0 ms ∼532.4 ms
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Table 5. Overhead comparison of the three Hadoop implementations (No security,
Kerberos, and TPM).

No security Kerberos TPM-based Hadoop w/unseal
operation

TPM-based Hadoop
w/fingerprint check

∼38.90 s ∼46.24 s 3 RPC sessions × 40.8 ms +99
unseal operations × 45.1 ms
+441.9 ms = 5.03 s

3 RPC sessions × 40.8 ms
+14 heartbeats
×(41.1 + 15.7 + 0.3) ms
+441.9 ms=1.36 s

of samples per task to 1000 (#map task = 5, #samples per task = 10000). This
means, we divide the job into five smaller tasks, each task will be handling 1000
samples using quasi-Monte Carlo method.

Since we have not finished the entire authentication framework implemen-
tation of the TPM-based Hadoop, we use for this work the number of RPC
sessions (i.e., the # of session key generations) and the number of RPC connec-
tion requests (correspond to the # of “unseal” operation) during the Pi example
excution. There are 3 RPC sessions created during this Pi example. The average
overhead to transfer two random numbers (1024 bits each) via RPC connection
(i.e., simulation in Java program) and to generate the session key is around
40.8 ms, which indicates there is an total overhead around 122.4 ms for the Pi
example. Furthermore, the average overhead of “unseal” operation of the unseal
overhead is the # of RPC requests times the average “unsealing” time. In the
Pi example, 99 RPC connection requests initiated that result in 99 “unseal”
operations to decrypt session keys. The average “unseal” operation overhead
was 45.1 ms, which makes the accumulated overhead around 4.46 s for the Pi
example. Next. We compute the overhead for encryption and decryption. For
the Pi example, according to the task report, there are 1205 bytes data read
from the HDFS, 215 bytes data written to the HDFS and 140 bytes data for
the reduce shuffle phase. By simulation using triple data encryption algorithm
(3DES, i.e., the default encryption algorithm for Kerberos based Hadoop), the
additionally cryptographic overhead is around 441.9 ms (i.e., 269 ms for encryp-
tion and 172.9 ms for decryption).

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Heartbeat Interval (second)

E
st

im
at

ed
 O

ve
rh

ea
d 

(s
ec

on
d)

Fig. 10. Estimated overhead
of Heartbeat “Fingerprint”
checking of different heartbeat
interval (1 KB measurements).

On the other hand, for the repeated over-
head of the periodic “Fingerprint” attestation, it
depends on the length of the heartbeat interval
(i.e., integer of seconds) and the PCR extension,
AIK signing and signature verification process
for each heartbeat. The PCR extension operation
takes the old PCR’s value and the platform new
measurements as input, therefore its overhead
depends on the size of the new measurements.
The new measurements are conducted by a third
party called Integrity Measurement Architecture
(IMA) [30]. As a result, the Estimated Overhead
for Heartbeat “Fingerprint” checking = # of Heartbeats × (PCR extension(size
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of new measurements)+AIK signing+Signture verification)). With the jTSS
soap binding, for 1 KB measurements, the average overhead for each PCR exten-
sion is 41.1 ms, for each AIK signing is 15.7 ms, and for each signature verification
is 0.3 ms. With heartbeat interval equals to 3 s, in the Pi example, there will be
about 14 times heartbeats such that we have about 799.4 ms overhead for our
system. Table 5 shows the results.

As mentioned on Sect. 3.3, the number of NameNode side TPM operations
decreases significantly as we replace the TPM seal and unseal operations with
the finger print verification that is carried out outside the TPM. Furthermore,
in Fig. 10, we show that the Heartbeat “Fingerprint” checking interval could be
adjusted according to the security requirements for different applications (e.g.,
longer interval means lower security).

6 Conclusion and Future Work

In this paper, we design and implement a TPM-based authentication protocol
for Hadoop that provides strong mutual authentication between any internally
interacting Hadoop entities, in addition to mutually authenticate with external
clients. The bind and seal operations supported by the TPM protect against
malicious insiders since insiders cannot change the machine state without affect-
ing the PCR values. Additionally, our protocol provides remote platform attes-
tation services to clients of third party, possibly not trusted, Hadoop providers.
Moreover, the seal of the session key protects against the ability to disclose the
encrypted data in any platform other than the one that matches the trusted
configurations specified by the communicating entities. Finally, our protocol
eliminates the trusted third party requirement (such as Kerberos KDC) with
all its associated issues such as single point of failure, online availability, and
concentration of trust and credentials.

We analyze the security features of our protocol and evaluate its perfor-
mance overhead. Moreover, we study and resolve the practical limitations that
are imposed by the current Hadoop design (one NameNode) and by the current
TPM implementations (one TPM/vTPM per machine). Finally, we compare the
security features and overhead of our protocol with the state-of-the-art protocols
and show that our protocol provides better security guarantees with acceptable
overhead.

In the future work, we will tighten the security requirements of the NameNode
by removing the assumption of partial trust. Specifically, we plan to explore the
use of server-aided cryptography techniques to shift most of the work of sealing
and unsealing from inside the TPM chip to off the chip (in the NameNode itself).
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Abstract. Recently, wireless sensor networks have attracted the atten-
tion of research comunity due to its numerous applications especially in
mobility scenarios. However it also increases the security threats against
confidentiality, integrity and privacy of the information as well as against
their connectivity. Hence a proper key management scheme needs to be
proposed to secure both information and connectivity as well as provide
better authentication in mobility enabled applications. In this paper,
we present an authentication and key management scheme supporting
node mobility in a heterogeneous sensor networks that consists of several
low capabilities sensor nodes and few high capabilities sensor nodes. We
analyze our proposed solution agaist a well know attacks (sybil attacks)
to show that it has good resilience against attacks compared to some
existing schemes. We also propose two levels of secure authentication
methods for the mobile sensor nodes for secure authentication and key
establishment.

Keywords: Key management · Authentication · Sybil attacks

1 Introduction

The Wireless Sensor Network (WSN) are usually deployed in possibly remote
and unattended locations they are definitely prone to security attacks. Hence to
secure the network operation and securely gather and forward the information,
security threats and its counter measures should be considered at design time
in terms of both requirements and implementation techniques. The design of
security algorithms considering the homogeneous sensor networks was the first
step to secure sensor networks. However, some research work [1,2] have shown
that homogeneous sensor networks have high communication and computation
overheads, high storage requirements and suffer from severe performance bot-
tlenecks. Hence, recent research work [3,4] introduced heterogeneous sensor net-
works, which consists of High-end sensors nodes (H-sensors) and Low-end sensors
nodes (L-sensors). To achieve better performance and scalability, H-sensors have
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 123–131, 2015.
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more resources compared to L-sensors. However, both H-Sensors and L-sensors
are still highly vulnerable in nature and are exposed to several security threats
and particularly prone to physical attacks. Thus, proper security mechanisms
should be applied to protect these nodes against attacks. Hence, a novel key
management scheme for heterogeneous sensor networks suitable for scenarios
with partial mobility is presented. The proposed solution relies on two types
of keys: authentication keys and secret communication codes used to generate
secret keys whenever needed. The remaining of the paper is organized as follows.
Section 2 presents existing work. Section 3 describes the proposed key manage-
ment scheme, while in Sect. 4 describe the security analysis of the proposed
scheme, and finally conclusions are provided in Sect. 5.

2 Related Work

To secure wireless sensor networks, Perrig [5] proposed SPINS, in which there
a secure central entity called server which is responsible for establishing a key
among the sensor nodes. Since it is based on centralized base station approach,
the failure of base station severely affects the performance of network. To over-
come the above mentioned issue, a randomly key distributed approach is pro-
posed by Eschenauer and Gligor [3]. In this scheme, there is no centralized entity
like a base station for key distribution and management. Each node in the net-
work is assigned a set of randomly selected keys from a large key set. Since
the keys are distributed randomly, the two communicating nodes need to have
at least one common key in their sets for secure communication. To further
improve the network security, sharing of at least q-keys concept for establishing
a secret key is introduced by Chan [6]. The prior knowledge of node’s deploy-
ment in the network helps in increasing the network connectivity and reduce the
memory requirements [7] combined with the Rabin’s scheme [14]. To achieve bet-
ter security and network connectivity with less memory requirements with low
computational cost, NPKPS scheme is proposed by Zhang [8] for wireless sen-
sor networks. To reduce the memory cost, Kim [9] introduced a level-based key
management scheme while a two-layered dynamic key management for clustered
based wireless sensor networks is presented by Chuang [10].

The management of secret keys (MASY) protocol is presented by Maerien in
[11] which is based on the trust assumption among the networks managers/base
stations. To further improve the network connectivity and reduce the memory
requirements of the symmetric key distribution approaches, Du [4] presents an
asymmetric key pre-distribution (AP) approach. Du sensor network model con-
sists of two different types of nodes making it a Heterogeneous Sensor Networks
(HSNs). This assumption significantly increases the network connectivity and
reduces memory requirements compared to the existing symmetric key manage-
ment approaches. Lu [12] proposes a framework for key management schemes
in distributed peer-to-peer wireless sensor networks with heterogeneous sensor
nodes and shows by simulation that heterogeneity results in higher connectivity
and higher resilience. Du [13] proposes a routing-driven key management scheme
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Fig. 1. Virtual network architecture

for heterogeneous wireless sensor networks, based on Elliptic Curve Cryptogra-
phy (ECC), which provides better security with significant reduction of memory
overhead.

The considered network model is a Heterogeneous Sensor Network (HSN)
composed base station and H-sensors (fixed) while L-sensors are Mobile Nodes
(MNs). The virtual network organization is shown in Fig. 1.

CH: Cluster Head MN: Mobile Node

FN: Fixed Node Pmain: Main large key pool

PFN : Sub key pool for Fixed Nodes PMN : Sub key pool for Mobile Nodes

Kplc: Public key Kprt: Private key

prand(): Prime number generator Cauth: Authentication code

PN: Generated prime number SMN : Scalar product of a Mobile Node

TFN : Scalar product of a Fixed Node SCC: Secret communication code

3 Proposed Scheme

First we describe a list of abbreviations used in the proposed solution. Since
the proposed key management scheme is built on top of the above network
model to provide effective authentication and dynamic key establishment. The
key material is generated at the BS. More specifically, a large key pool Pmain

is created and then divided into two sub key pools KPFN and PMN such that
PMN ∩ PFN = ∅.

The key pool PFN is used by the FNs of the network while the key pool
PMN is used by the MNs of the network for the secret key establishment. For
authentication purposes, Elliptic Curve Cryptography (ECC) is used during the
initialization phase for key generation. Three different phases have been taken
into account
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1. Key pre-distribution
2. Node’s authentication
3. Communication key establishment.

Further details will be provided in the following subsections.

3.1 Key Pre-distribution

Each FN i is assigned a randomly selected key pool PFNi
from the key pool PFN

where PFNi
<< PFN and contains |PFNi

| keys while each MN j is assigned a
randomly selected key pool PMNj

from the key pool PMN where PMNj
<< PMN

and contains |PMNj
| keys. Since these two key pools are disjoint, PFNi

∩PMNj
=

∅. These assigned key pools will be used by the FNs and by the MNs for the
establishment of a secret communication key using the assigned key generation
algorithm.

Concerning the authentication key material, each FN and each MN is
assigned an elliptic curve E(a, b) over a finite Galois field F (G) and a base
point G along with a unique authentication code Cauth. Each FN and each MN
is also assigned an ECC-based public/private key pair (Kplc,Kprt) and a prime
number generator (prand()).

All the previously introduced key material is transferred to each node of
the network by means of secure side channels. Then, after this pre-distribution
phase, the specific key material assigned to each type of node of the network is
as follows:

– the BS owns all the key material that needs to be pre-distributed (plus, as
already described, the public key of each FN)

– each FN i has been given E(a, b), G and Cauthi
for authentication purposes

and key pool PFNi
for communication key establishment

– each MN j has been given E(a, b), G and Cauthj
for authentication purposes

and PMNj
for communication key establishment.

3.2 Node Authentication

After the deployment and key pre-distribution phase, each FN of the network
broadcasts periodic Hello messages. This mechanism enables each FN to fill a
table with all neighboring MNs. The FN ID is included in the Hello message
along with a random nonce signed by the FN’s private key. Upon the reception
of those Hello messages, each MN selects a FN as its Cluster Head (CH), e.g.
the one with the highest signal strength, after the verification of Hello message
by using the FN public key. Since Hello message verification is a part of the
authentication phase, at this point the authentication phase among the FNs and
the MNs can start. To this aim, each MNj authenticates the Hello message of
the selected FNi as a CH as follow: First MNj uses the FNi ID and generates
a prime number PNFNi

using the prime number generator prand()

PNFNj
= prand(IDFNi

) (1)
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After the generation of PNFNi
, the MNj generates the public key of the FNi as

Kplc = (PNFNi
+ IDFNi

) • G (2)

Then the MNj can verify the Hello message signature. Successful verification of
the Hello message signature authenticates the CH i.e. FNi to the MNj . The MN
then calculates the scalar product of the assigned authentication code Cauthj

and
its private key as

SMNj
=

(
Cauthj

+ IDMNj

) • Kprt (3)

Then the MNj sends a joining request including its ID, SMNj
, and the nonce it

had received from the CH back to its selected CH, all signed by its private key.
After receiving the MNj ’s joining request message, the FNi first authenticates
MNj before registering it as a trusted cluster member. The FNi follows the same
procedure as the MNj did to check the authenticity of the received messages.
First the FNi use the MNj ID and generate a prime number PNMNj

using the
prime number generator prand()

PNMNj
= prand(IDMNj

) (4)

After the generation of PNMNj
, the FNi generates the public key of the MNj

using scalar multiplication as

Kplc =
(
PNMNj

+ IDMNj

) • G (5)

After the generation of the MNj public key, the FNi verifies the joining message
signature. Successful verification and reception of the correct nonce ensure that
the MNj is an authentic mobile node belonging to the network. The CH registers
this MNj into its authentic MN member list and calculates the scalar product
of Cauthi

and its private key as

TFNi
= (Cauthi

+ IDFNi
) • Kprt (6)

Finally the CH generates an authentication certificate for this MN using SMNj

and TFNi
as

Authentication Certificate = SMNj
• TFNi

mod G (7)

The CH sends TFNi
to the MNj which uses in the secret key generation and

for the authentication certificate generation.

3.3 Communication Key Establishment

Once the MN and CH/FN authenticate each other successfully, the key estab-
lishment phase starts. During this phase, the MN sends one of its secret commu-
nication codes SCC1, randomly selected from PMN and encrypted by the CH
public key to its CH as described above. The CH also selects randomly another
secret communication code SCC2 from its pool PFN and sends it to the corre-
sponding MN. After the reception of this secret code by the MN, the MN and
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the FN both have the same SCC1 and SCC2 and are able to generate a secret
key using these two codes, SMNj

and TFNi
as

Secret Key = SCC1 • SCC2 mod (SMNj
• TFNi

) (8)

Once a secret key is established between the CH and each MN, the CH has
assigned a Shared Secret Code (SSC) to its all member MNs. This shared secret
code is updated both periodically and when a MN compromission is detected.
Since the MNs move in the network to perform their duties, they may need to
establish a secure communication link also with neighboring MNs, possibly very
frequently due to their movement within the network. In order to keep track
of their neighboring MNs, each MN broadcasts a short range Hello message to
know about its neighboring MNs. To establish a secret key with a neighboring
MN, both MNs will share their secret communication code IDs assigned to them
as PMN . Now both the MNs will find the maximum number of shared codes
with one another and will generate a secret key using all of them as

Secret Key =
f∏

l=1

SCC1l mod SSC (9)

where ‘f’ represents the total number of common secret communication codes.
Since the distributions of the SCC1 codes to the MNs is random and proba-
bilistic, two neighboring MNs might not have any secret communication code in
common. In this case, to avoid any discontinuity, the MNs will use the assigned
Shared Secret Code (SSC) from their common CH and their IDs to establishment
a secret key with its neighboring MNs. For example, if MNm wants to establish
a secret key with MNn but these two nodes do not have any common secret
communication code (SCC), then they establish a secret key by first calculating
and sharing L and K with each other as

L = prand(IDMNn
) • SMNm

• Cauthm
• SSC mod G (10)

K = prand(IDMNm
) • SMNn

• Cauthn
• SSC mod G (11)

Secret key = L • K mod SSC (12)

4 Security Evaluation

4.1 Denial of Service Attack

In this section we describe some kind of Denial of Service attacks (DoS attacks)
that can be brought against our proposed scheme, as well as possible counter
measures. The main objective of DoS attacks is to make the resources unavailable
to an intended user of the network.
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1. FN Hello messages: The first possible DOS attack against the proposed
scheme is to broadcast Hello messages pretending to be a FN of the net-
work to exhaust the resources of the MNs. Since each Hello message is signed
by the private key of the FN, MNs will verify it using the public key of that
FN. Since the adversary FN is not an authentic node, the MN would not be
able to verify that Hello message and once a MN detects this attack, it will
inform its other neighboring authentic FNs. The authentic FNs would then
inform the BS and neighboring MNs about this fake FN ID so that they can
avoid the messages from that node.

2. MN Hello messages: When a MN finds its current CH signal strength value
below a threshold value, it starts broadcasting the MN Hello messages to
know about its new neighboring FNs. The attacker can launch such MN
Hello message broadcast attack by introducing a fake MN. Since the MN
Hello broadcast message is also signed by the MN private key, the new FNs
first verify it by using the MN public key. This would not be possible for a
fake MN. Thus the FNs inform the BS and other neighboring FNs about this
malicious MN.

4.2 Sybil Attack

Sybil attacks are those in which a malicious node illegitimately taking on mul-
tiple identities. We call the nodes performing these attacks as sybil nodes. Sybil
attacks can be of different forms e.g. using direct or indirect communication
and fabricated or stolen identities. In the direct communication sybil attacks,
a Sybil node communicates directly with a legitimate node. But since, in the
proposed scheme, the sybil node is first authenticated by sending a message
signed with its private key, the FN would not be able to authenticate it. In the
indirect communication sybil attacks, malicious node (who deploy sybil nodes in
the network) becomes a router for forwarding the communication to the Sybil
node from the FN which is not possible in the proposed scheme because each
MN is the end user of the network. In the fabricated sybil attacks, the attacker
assigns an unuse identity to the sybil node. In this case, this sybil node needs
to authenticate itself to the FNs which would again not be possible in the pro-
posed scheme as described above. Stolen identity based sybil attacks are very
dangerous in such resource constrained networks. But this type of sybil attack
does not affect the proposed scheme because each communication is encrypted
with the key agreed already with the original node having this ID, and the sybil
node does not have these keys.

In the key pre-distribution approach, if every MN is assigned KPMN keys
and every FN is assigned KPFN keys from a key pool of size KPmain and an
attacker compromises ’c’ nodes to create a compromised key pool of size ’n’,
then the probability of a sybil node to be successful created is

Prsybil node =
KPMN∑

t=1

(
n
t

)(
KPmain−n
KPMN−t

)

(
KPmain

KPMN

)

(
KPmain−KPMN+t

KPMN

)

(
KPmain

KPMN

) (13)
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Fig. 2. Probability of generation sybil nodes

Figure 2 shows the probability of successfully generated sybil nodes in the
proposed scheme compared with scheme [7,9].

5 Conclusion

In this paper, we proposed a new authentication and key management scheme
for Heterogeneous Sensor Networks including mobile nodes. The proposed key
management scheme is based on two different types of the key pools i.e. an
authentication key pool and a communication key pool. Based on these pools,
a key pre-distribution mechanism has been defined. The results showed that
the two considered key pools provide better security. Furthermore, the proposed
solution provides better network resilience against attacks compared to the other
reference protocols considered.
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Abstract. Rumors and defamation are now becoming a main threat
to Online Social Networks (OSNs). To prevent them, Real Name System
(RNS) was proposed, but has been proved vulnerable by the data leakage
in South Korea. In this paper, we propose a new identity model, Social
Authentication Identity (SAI), to trace rumor-makers. In SAI, only a
small number of users (called roots) are required to be authenticated by
RNS. And the others are authenticated by vouching of friends, called
social authentication. We evaluate factors that affect the efficiency of
SAI. Results show that selecting roots in communities are the best strat-
egy, comparing with random and maximum degree strategies. We also
provide an social tracing mechanism to trace down rumor-makes. Analy-
sis shows our social tracing is robust enough to defend Sybil attacks.

Keywords: Online social network · Social authentication · Real name
system · Sybil defend · Network surveillance

1 Introduction

Recent years have witnessed the explosion of Online Social Networks (OSNs).
According to Statistic Brain [1]: facebook now owns more than 1.31 billion users.
While we have seen the power of OSNs in the fields of information sharing
and social media, it is noticeable that baseless rumors, personal defamation
and privacy invasion are becoming an emergent threat to our life. Anonymity,
once was considered as the essential nature of the Internet, now becomes a
nightmare to the security of OSNs. When attacking, attackers try to register
virtual identities or stealing others’ identities. So it’s quit difficult to trace them
down. Worse more, new security threats are coming along with the booming of
OSNs. Large degree nodes are tricked to send rumors or distribute viruses. Well
organized nodes act as Sybil nodes [2] to guide or distort opinions of polls or
reviews of products.

Therefore, the Real Name System (RNS) was proposed. RNS performs like an
map that maps national identity (offline) with virtual identities (online). Often
RNS works as a center server, adopting a schema called ‘anonymity in foreground
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and real-name in background’, meaning virtual names are used to surf the OSN,
while real names must be provided when registering. It’s quit reasonable to
use RNS in financial transaction where high security are required. However, it
sounds harsh to submit real names in OSN. Nevertheless, South Korea becomes
the first to try RNS, which unfortunately ends with leaking more than 35 million
identities and being forced terminated. Many studies are done on the effect of
Real Name Verification Law in South Korea. The empirical analysis of Oh et al.
[3] shows that the alternative RNS (i-pin) is still vulnerable to phishing attack.
Findings of Cho [4] suggest that Real Name Verification Law has a dampening
effect on overall participation in short-term, but not in long term. Again Cho
et al. find that RNS has significant effect on reducing uninhibited behaviors at
the aggregate level, but no significant impact on behavioral shift of a particular
user [5]. Though it is not certain whether RNS has the capability to defend
rumors, it’s quite clear that RNS is vulnerable to protect personal information.

Verifying a user through his national identity is actually a kind of identity
authentication. Traditionally three factors, including something you have (e.g.,
a hardware token) [6], something you are (e.g., a fingerprint) [7,8], and something
you know (e.g., a password) [9] are used in computer authentication. Brainard
et al. [10] introduce the fourth factor, somebody you know, known as social
authentication. Following works are: Schechter et al. [11] build a backup authenti-
cation among trustees and Zhan et al. [9] enhance social authentication by divide
social relations apart. However, all these works are base on offline relations, where
people have face-to-face contact. And then, we’re wondering is it viable to apply-
ing social authentication in OSN, where ‘no one knows you’r a dog’. Fortunately,
many studies suggest that there are enough trusted online relations. In [12], Boyd
and Ellison observe that most links made in OSN have offline relations. Other
researches also suggest links from OSN indicate trusted relations [13]. In a word,
it’s quit feasible to conduct social authentication in OSN.

1.1 Contribution and Organization

Contribution. In this paper, we introduce an online identity model called
Social Authentication Identity (SAI) by exploiting online social relations. In
SAI, only a small number of nodes are required to be authenticated by RNS and
the others are authenticated by friends, so that it’s quit appropriate to replace
RNS in network surveillance. Firstly, we proposed a simple vouching protocol
to implement authentication between friends (social authentication). Then we
discussion how to select roots and evaluate factors that affect the efficiency
of the SAI. Our results show that selecting roots in communities are the best
strategy, comparing with strategies like selecting by random and selecting by
maximum degree. And lastly, we provide an social tracing mechanism to trace
down rumor-makes. Analysis shows our social tracing is robust enough to defend
Sybil attacks.

Organization. Our SAI model is introduced in Sect. 2, including how to authen-
ticate (Sect. 2.1), how to select roots (Sect. 2.2) and how to build an identity
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(Sect. 2.3). In Sect. 3, we discuss the prorogation of authentication and find that
selecting roots in community is the best strategy. In Sect. 4, we propose a social
tracing mechanism and analysis its capability to defend Sybil attack. And in the
last Sect. 5, we make a conclusion of our work.

2 Social Authentication Identity Model

In this section we introduce our Social Authentication Identity (SAI) model.
First, let’s pay attention to the following two common characters in social net-
works. (a) Your friends could identify you (a local view). (b) You would tend
to trust the one who is a friend of your friend, even though your know nothing
about him (highly relies on (a)). SAI model takes idea from both of them and
neither is dispensable. In SAI, we first establish strong ties: edges that both
ends could identify each other through social knowledge will be keep, otherwise
be removed. This step takes ideas from character (a) and is accomplished in
Sect. 2.1. Then we establish strong paths and build social authentication iden-
tity. This step takes ideas from character (b) and is accomplished in Sects. 2.2
and 2.3.

In SAI, there a small number of special roots which are mainly authenti-
cated by RNS. Others are authenticated by social authentication. In a view of
management, this is a kind of distributed authentication where only root are
authenticated by center server. Compared with RNS, personal information now
stores in the brain of the friends of everyone. The name social authentication
comes from the fact that friends authenticate each other using their social knowl-
edge. In social authentication, each user selects friends from his neighbors, then
he exchanges and verifies social knowledge between his friends. If a couple of
friends could identify each other by social knowledge, we say they pass social
authentication. Through social authentication, these authenticated nodes and
edges become reliable.

2.1 Social Authentication Between Friends

Social authentication is used to establish strong ties in OSN. To determine who
is your best friends, Server (that provides social network service) first filters
neighbors of u by their daily behaviors denoted as neighborsserver(u), and then
u choose friends from neighborsserver(u), denoted as friends(u). Our Social
Authentication is implemented by vouching, a peer-level human-intermediate
authentication. The following part provides a simple vouching protocol.

Authentication Parties. The principal parties involved in the social authen-
tication are Asker, Helper and the Server. (a) Asker is the invoker of the
authentication. (b) Helper is responsible to authenticate Asker. (c) Server is
responsible to arbitrate the authentication. Both Asker and Helper should be
valid User and they almost play the same role. Asker can be authenticated
by Helper, if and only if Helper can be authenticated by Asker. The reasons
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Table 1. PRI data item

Visible Invisible

Name: your real name Personal Q&A About Yourself: age, gender,
favorite and etc.

Relation Type: the relation type
between you and the receiver

Social Q&A of The Type Specified Relation:
e.g. for schoolmate relation, question may
be school, major and etc.

that we distinct Asker and Helper apart, one is that it’s convenient to describe
the protocol, and the other one is that some appropriate incentive mechanism
can be applied to Asker to stimulate more invokers and eventually speedup the
authentication process of the whole network. Additionally, we call an party as
sender if it sends data and receiver if receives. All parities can be act as senders
or receivers.

Authentication Data Items. Authentication between Asker and the Helper
is based on their social knowledge about each other. We define a data item called
Person & Relation Information (PRI) to describe it. PRI is a list of Questions
and Answers (Q&A), where questions are always visible but answers are divided
into visible and invisible part (see Table 1). Answer visible part is used to make
the receiver identify the sender. Answer invisible part works as ‘challenge and
response’: receiver has to answer questions with his social knowledge and Server
is responsible to check the answer. When Asker or Helper passes the challenge,
Server sends each of them a security code as another challenge, and they must
exchange their own code and submit to Server to verify the challenge.

Simple Vouching Protocol. The vouching protocol shows in Fig. 1. (a) Asker
sends his PRI to Helper and Server. (b) Helper answers the PRI and sends
result back to Server. (c) Server checks the received answer and if passed, sends
a security code code1 to Helper. For Helper, it requires the similar operations,
showing in Fig. 1 (d), (e), and (f). (g) Then Asker and Helper should exchange
the security code. (h) After exchange, Asker and Helper send exchanged security
code to Server. (i) Server determines whether Asker and Helper get correct
security code. If yes, Sever confirms that the authentication between Asker and
Helper has passed.

Note that If Helper forget something about Asker, so that he cannot answer
the received PRI. At this moment, Helper could get help from Asker through
social contact stealthily (step (h)). To gain the verification from server, users
have to collect a certain number of passed vote from friends.

2.2 Select Root Nodes

When discussing behavior tracing, we need to identify the online user that com-
mits the malicious behavior firstly, and then trace down the real identity of
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Fig. 1. Simple vouching protocol

that guy. The real identity is an offline identity that government can use it to
catch the certain person. Here we refer it to national id, denoted as RI. Our SAI
cannot identify who commit malicious behaviors, but can track down the RI of
the bad guy by social tracing (Sect. 4). To achieve this purpose, we trace along
the paths called pathroot from root to the bad guy to get the RI of the bad.

We hope roots have these properties. (a) High reliability, implying less likely
to be Sybil nodes. Metric to measure it is online behaviors. (b) High influence,
implying faster propagation of authentication. Centrality (e.g. degree, closeness,
betweenness and etc.) could be the metric. (c) Low sensitive to RI. Since roots
are mainly authenticated by RNS, they face the risk of information leakage. This
property means less problems will be caused to the user when his RI is leaked.
It is hard to quantify the property, we assume nodes owned by famous persons
are low sensitive to RI leakage, because most of these people’s information have
already been dug to public.

Since root is authenticated RI, the less number of root, the less risk of infor-
mation leakage. However, the less number of root means the longer of pathroot,
causing SAI less reliable. To balance them, we must consider the distribution
of roots. An useful method is to choose roots from different communities. Set
numcommunity as the number of communities in G, sizecommunity as the average
size of communities. We can simply select one root in small or medium com-
munity and two or more roots from large community. By this way, we could
control percentage of numroot in whole network by community amount and size.
Figure 2 is a example of how to select roots according to their importance in
communities.
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Fig. 2. Example of roots selection in communities (Color figure online)

The graph is sampled from facebook and communities are detected by walk
trap algorithm [14]. For simpleness we defined the importance of nodes u as

db(u) = degree(u)/degree(G) + betweenness(u)/betweenness(G). (1)

Degree is capable to measure the power of a node in a local effect and betweenness
can measure both global and local impact. So we use db(u) as a mixed metric
to measure the importance of u (db distribution Fig. 2(a)). Communities are
separated by different color. We ignore communities with size less than 10 (black
color) which take 94/333 = 28% part (94, ignored part and 333, total amount
of nodes). The selected roots are determined by maximum value of db in each
community and highlighted with large size (Fig. 2(b)).

2.3 Building the Social Authentication Identity

When building the SAI, we should keep the capability of tracing with essen-
tial information, that is to say we can recreate pathroot from SAI with limit
information. Here is a very simple schema of SAI we design.

SAI(u) = [
2∑

k=1

(friendsstep=k(u))][depth][rootrch][rootmin num] (2)

The symbol ‘[ ]’ is used to separate SAI. (a) Part [
∑2

k=1(friendsstep=k(u))] works
as a local view of u. friendsstep=k(u) refers to friend nodes who have a shortest
path length k to u. So part (a) means friends(u) ∪ friends(friends(u)). (b)
Part [depth][rootrch][rootmin num] works as global view of u. From u goes depth
steps to collect root as [rootrch] while the number of [rootrch] should be large
than [rootmin num]. When tracing, [depth] indicates the depth, [rootrch] indicates
the ending roots, and [rootmin num] indicates the strength. For roots themselves,
we can ignore other parts except (a), since they have already been authenticated
by RNS.
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3 Propagation of Social Authentication

Before a pathroot could be established, all edges on the path should be already.
As we have discussed, a SAI could be built only when satisfying the requirement
of depth, rootrch and rootmin num. In order to estimate the effectiveness of SAI,
we conduct an experiment called propagation of social authentication where
propagation starts from all roots, we count these authenticated nodes as numauth

that could be reached by rootmin num of roots within depth steps (result see
Fig. 3). The Data set is got from snap [15], a project of Stanford, which originally
is sampled from facebook with 3964 nodes and 88159 edges. The diameter is
d = 8 and average length is l = 3.68.

Fig. 3. Propagation of social authentication

Figure 3(a) shows the number of authenticated nodes with different mini-
mum number of vouchers (same as rootmin num). There are four different value
of rootmin num which are 1, 2, 3 and 4. We find that (a) The less rootmin num

required, the more nodes could be authenticated. (b) Most of the node will be
authenticated when pathroot reaches around the average path length. For exam-
ple, here l is 3.68 in G, and when depth = 4, more than 90 % nodes are authen-
ticated regardless of rootmin num. However, when less of rootmin num required,
the authentication start faster.

Figure 3(b) shows the number of authenticated nodes with different type
of roots. Three types of root selection strategy are taken: random, maximum
degree and community. Communities are detected by fastgreedy [16] as it’s faster
then walktrap algorithm. The number of community is 13, so we select 13 roots
in all three strategies. The results are (a) roots of communities is the first to
authenticate all of nodes. (b) roots of maximum degree starts faster. In summary,
select root by community strategy is the best choice to satisfy requirements of
less depth with greater rootmin num. We can also infer that networks with small
world property (smaller l) are more easily to be authenticated.
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4 Social Tracing and Sybil Defending
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Fig. 4. Social tracing of Sybil protected node

In this section, we discuss mechanism of social tracing and its capability
to defend Sybil attack. When a rumor spreads on OSN, if we want to find the
rumor-make, we first locate his online identity (this is not our work in this paper).
Then a social tracing mechanism could be used to identify his RI. Figure 4 show
an abnormal user A who has been identified to be a rumor-maker. And at this
moment, we know these information: a friends network Gf , the SAI of A and
RIs of all roots. When tracing the RI of a user A, we first query friends(A)
(here are B, D, C, E). With high probability, we should get RI of A from his
friends. However, it’s possible that attacker passes authentication with the help
of Sybil nodes. In this worst situation, all friends(A) are Sybil nodes, so that
they refuse to answer our query and may be even friends(friends(A)) are also
Sybil nodes that they refuse to answer queries about the RI of friends(A). We
are wondering could we find RI of A The answer is yes. Because the depth in SAI
indicates the maximum iteration time of the query. After depth query, we should
reach roots (Here depth = 3, roots are r1, r2 and r3) whose RIs are known. The
roots are responsible to answer queries about their friend, so could trace back to
A eventually. Therefore, our social tracing could be used to defend sibyl nodes.

5 Conclusion

In this paper, we introduce a new online identity, SAI, which is capable to trace
the real identity of user without real name information. In SAI, some user are
select as informers called roots and authenticated by RNS. Others are authen-
ticated by their friends, called social authentication. We done an experiment to
discussion factors that affect SAI. Our result shows that select root in commu-
nities are the best strategy to meet requirement of shorter authentication length
and more roots as voucher, comparing with strategies like selecting by random
and selecting by maximum degree. We also provide social tracing mechanism to
trace down rumor-makers. Analysis shows that our social tracing mechanism is
robust enough to defend Sybil.
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Abstract. Smart-card-based password authentication, known as two-
factor authentication, is one of the most widely used security mecha-
nisms to validate the legitimacy of a remote client, who must hold a
valid smart card and the correct password in order to successfully login
the server. So far the research on this domain has mainly focused on
developing more secure, privacy-preserving and efficient protocols, which
has led to numerous efficient proposals with a diversity of security pro-
visions, yet little attention has been directed towards another important
aspect, i.e. the usability of a scheme. This paper focuses on the study
of two specific security threats on usability in two-factor authentication.
Using two representative protocols as case studies, we demonstrate two
types of security threats on usability: (1) Password change attack, which
may easily render the smart card completely unusable by changing the
password to a random value; and (2) De-synchronization attack, which
breaks the consistence of the pseudo-identities between the user and the
server. These threats, though realistic in practice, have been paid little
attention in the literature. In addition to revealing the vulnerabilities,
we discuss how to thwart these security threats and secure the protocols.

Keywords: Two-factor authentication · Usability · User anonymity

1 Introduction

With the rapid advancement of wireless network technologies and micro-electro-
mechanical systems, more and more electronic transactions (e.g., Internet bank-
ing, online shopping, online voting, pay-TV and remote home automation) are
processed on mobile devices such as PDAs, laptops, and smart phones. To enable
electronic transactions to be securely processed anytime and anywhere, it is of
great concern that users are authenticated by the server to prevent unautho-
rized access to services. Among numerous mechanisms for user authentication,
smart-card-based password authentication, known as two-factor authentication
[17], becomes one of the most effective and promising techniques due to its cryp-
tographic capability and simplicity.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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As the name implies, the most essential aim of a two-factor authentication
protocol is to achieve “two-factor security” [14], which ensures that only the user
who is both in possession of a valid smart card and a correct password can pass
the verification of the remote server. The past thirty years of research in the
domain of password authenticated key exchange (PAKE) have proved that it is
incredibly difficult to get even a single-factor scheme right, designing a two-factor
protocol that provides truly “two-factor security” can only be harder [7]. Besides
various security goals to be met, a sound two-factor protocol shall also support
a number of desirable properties such as user anonymity, forward secrecy and
no password-related verification table [11]. For example, in 2012, Madhusudhan
and Mittal [11] put forward a metric to evaluate the goodness of a two-factor
scheme in terms of nine security goals and ten desirable properties, and they
concluded that, to date though there have been abundant new proposals, yet
none of them can satisfy all the nineteen design goals.

One crux of this embarrassing situation lies in how to design an efficient two-
factor scheme that can achieve “two-factor security” under the assumption that
smart card can be tampered when lost. Recent progresses in side-channel attacks
reveal that the sensitive data stored in common smart card could be extracted
[12,13]. As a result, previously deemed secure schemes (e.g., [4,5]) are prone to
various attacks under this new assumption about smart cards, and hence it is
more desirable to design schemes based on this new assumption. Several latest
attempts [3,9] have been made, yet invariably they all have been shown to be
unable to achieve “two-factor security” under such an assumption [7,14].

This paper shall study two types of serious threats that specifically target
at usability but not “two-factor security”. As is well known, besides desirable
security and high efficiency, good usability is another indispensable criteria that
a practical scheme shall satisfy. However, so far little attention has paid to this
criteria. Regarding usability, as far as we know, only two properties have been
mentioned in the literature [11,17]: (1) A user shall be able to choose the pass-
word by herself when registration or in the password-changing phase, hereafter
we use the term “freely password choice” for short; and (2) It is admired that a
user can change her password without interaction with the remote server, here-
after we use the term “freely password change” for short. As we will demonstrate
in this work, there are two realistic threats that greatly undermine the usabil-
ity and hence practicality of a scheme, even if this scheme is efficient and can
provide the precious goal of “two-factor security”.

In 2008, Yang et al. [17] showed that a traditional PAKE can be efficiently
transformed into a secure two-factor authentication scheme if there exist pseudo-
random functions and target collision resistant hash functions. They suggested
an evaluation criteria set with five requirements, proposed a new scheme and
constructed a generic framework for two-factor authentication. The fourth and
fifth criteria in Yang et al.’s criteria set [17] are essentially the afore-mentioned
two properties regarding usability, and these two criteria have also been incor-
porated into most of the later evaluation sets (e.g., [11]). However, we will show
that these two criteria is subtly in contradiction with each other by demonstrat-
ing a realistic and devastating usability threat on Yang et al.’s scheme. This kind
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of usability problem exists in many of the subsequent schemes, some latest ones
include [6,16]. To deal with this new threat, we believe that a practical scheme
shall have a property called “password change with verification”.

To accommodate the privacy concerns rapidly raised among individuals and
organizations, a number of two-factor schemes with user anonymity have been
proposed (e.g., [5]). In 2010, Li et al. [10] pointed out that most of the previously
presented anonymous two-factor schemes can only provide the basic level of user
anonymity (i.e., user identity protection) and fail to preserve the more advanced
anonymity property (i.e., user un-traceability) if the smart cards are assumed to
be non-tamper resistant. Accordingly, they further developed a new scheme that
can support the advanced anonymity property under the new assumption about
smart cards. Their main strategy is by employing a synchronization mechanism
to maintain the consistence of the session-variant pseudo-identities between the
user and the server. This scheme is a great success in simultaneously achieving
efficiency, two-factor security and user un-traceability.

However, in this work, we use Li et al.’s scheme [10] as a case study and high-
light that this initial scheme as well as its successors (e.g., [8,16]), which using a
synchronization mechanism to achieve user un-traceability, all have a fatal design
flaw being overlooked. An active attacker, by simply blocking or altering a sin-
gle transcript, can break the synchronization of the pseudo-identities between
the user and the server, resulting in permanent authentication failure in any of
their following protocol runs, which is “too high a price” to pay for privacy. We
hope that future anonymous schemes shall be designed to avoid such a pitfall.
To address this new threat, we believe that any anonymous scheme shall have a
property called “no synchronization mechanism employed”.

2 Review and Cryptanalysis of Yang et al.’s Scheme

2.1 Review of Yang et al.’s Scheme

In 2008, Yang et al. [17] proposed a generic construction framework to convert
the conventional provably secure PAKE protocols to smart-card-based versions
and further proposed a new two-factor authentication scheme to demonstrate
its effectiveness. Yang et al.’s scheme consists of four phases, and here we just
follow the original notations in [17] as closely as possible.

Notations. Let G be a subgroup of prime order q of a multiplicative group Z∗
p .

Let g be a generator of G. Let (PKS , SKS) denote a public/private key pair
of the server S. Besides (PKS , SKS), the server S also maintains a long-term
secret x which is a random string of length k. Let H : {0, 1}∗ → {0, 1}k denote a
collision resistant hash function and PRFK : {0, 1}k → {0, 1}k a pseudo-random
function keyed by K. Let Ui stands for the ith user in the system.

Registration Phase. The registration phase involves the following steps:

R1. Ui arbitrarily selects a unique identity IDi and sends it to S.
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R2. S calculates Bi = PRFx(H(IDi)) ⊕ H(PW0) where PW0 is the initial
password (e.g. a default such as a string of all ‘0’s).

R3. S issues Ui a smart card which stores the security parameters
{PKS , IDi, Bi, p, g, q}. In practice, we can have them except Bi be “burned”
in the read-only memory of the card when it is manufactured.

R4. On receiving the card, Ui updates the password immediately by carrying
out the password change phase as described below.

Login-and-Authentication Phase. In this phase, Ui and S interact to verify
each other. As it has little relevance to our discussions, it is omitted here.

Password Change Phase. The password change phase is provided to allow
users to change their passwords freely and locally. If Ui wants to change her
password, the following steps is carried out:

C1. Ui keys her old password PWi and selects a new one PWnew
i .

C2. Compute Bnew
i = Bi ⊕ H(PWi) ⊕ H(PWnew

i ).
C3. Replace Bi with Bnew

i in the smart card.

2.2 Cryptanalysis of Yang et al.’s Scheme

Yang et al. [17] claimed that their new scheme can satisfy all their proposed
criteria, and in particular it achieves truly “two-factor security” even if the user’s
smart card has been lost and the secret data stored in the card is revealed.
However, in the following, we will show that this scheme is actually vulnerable
to a kind of denial of service attack in which an attacker can easily render the
victimized smart card completely unusable once getting temporary access to it,
thereby contradicting the claim made in [17] that the new scheme is secure even
if the smart card is lost. In addition, this usability problem is worsened due to
the fact that user herself sometimes may input a wrong password accidentally.

Yang et al. put forward a new set of five independent requirements for two-
factor authentication, the last two of which are “Short Password” and “Freedom
of Password Change” (See Sect. 3.1 of [17] for more details). These two require-
ments are essentially identical with the two usability properties introduced in
Sect. 1, i.e. “freely password choice” and “freely password change”, respectively.
These two requirements are in favor of user friendliness, and in this light they
are really reasonable. They have been incorporated into most of the later influ-
ential evaluation sets (e.g., [11]). However, a scheme achieving “freely password
change” probably will go into a dilemma. Let us see what’s the dilemma.

To achieve “Freedom of Password Change” (i.e., “freely password change”),
the password change phase of Yang et al.’s scheme (see Sect. 2.1 (Password
Change Phase)) is performed locally and does not need to interact with the
remote server, which not only improves user friendliness but also reduces com-
munication cost and the danger of disclosure of password-related transcripts.
Note that, there is no verification of the old password that is input by the user
when changing the old password stored in the card memory in Yang et al.’s
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password change phase. In the following, we show that this practice introduces
a serious usability problem.

Usability Problem. If an attacker gains temporary access (e.g., a few seconds)
to Ui’s smart card, then this will give rise to a quite realistic attacking scenario:

“· · · The attacker inserts Ui’s smart card into a card reader and issues a
password change request. Then, she selects a random string X as Ui’s original
password and a new string PWnew

i as the new password. As there is no way to
determine the correctness of the old password, and the smart card will update Bi

to Bnew
i = Bi ⊕H(X )⊕H(PWnew

i ). Since then, legitimate user Ui cannot login
successfully even after getting her smart card back, because Bnew

i ⊕ H(PWi) �=
PRFx(H(IDi)). · · · ”
The Dilemma. Although the above usability problem seem rather simple, it
cannot be well remedied just with minor revisions. It is not difficult to see that,
its root lies in the fact that no verification of the authenticity of the original
password is performed before updating the long-term secret in the card memory.
Accordingly, the corresponding solution would be to add this verification (either
locally or by interacting with the server) when changing password, and we call
schemes that perform this verification support the property “password change
with verification”. To provide local “password change with verification”, besides
Bi, some additional parameter(s) should be stored in the smart card.

Let us assume an additional parameter Ai = H(H(PWi)) is kept in the smart
card. Whenever Ui wants to change her password, first she must submit her old
password PW ∗

i , then the card checks whether H(H(PW ∗
i )) equals the stored Ai.

One can easily find that, if an adversary A compromises the card and obtains
Ai, A could exhaustively search the correct password PWi in the password dic-
tionary Dpw in an offline manner, for the scheme satisfies the requirement “Short
Password” (i.e., “freely password choice”) and thus the password dictionary size
is very limited, e.g., |Dpw| ≤ 106 [1]. This leads to the breach of the goal of
“two-factor security”, which essentially means a compromise of one factor shall
not endanger the security of the other factor.

Now a dilemma arises: For a two-factor scheme that achieves “freely pass-
word change” (and “freely password choice”), if the scheme does not perform
a verification of the old password, it suffers from the above usability problem;
however, if the scheme performs a verification of the old password, there shall
be some password-related verifier stored in the card and an attacker can just
exploit this data to breach the “two-factor security”.

Fuzzy Verifier. In general, there are three possible ways to take. The first one
is to abandon the property “freely password change” and instead let the user
change her password by interacting with the server (i.e., password verification is
performed by the server). Actually, several schemes [3,10] have taken this app-
roach, yet they have neither justified their choice nor explained why they do not
favor the property “freely password change”. An alternative way is to overlook
the above usability problem, just like the schemes in [6,17]. The third solution is
to make an acceptable tradeoff to accommodate conflicts among the four goals
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“freely password choice”, “freely password change”, “two-factor security” and
“password change with verification”.

We note that, if we compute Ai as Ai = H(�(PWi)), then there exists |Dpw|
28 ≈

212 candidates of password (this space is denoted by Dre, and |Dre| = 212) to
frustrate A, even if A has extracted Ai, where |Dpw|= 106 [1] denotes the size
of the password space, and �(·) is a special one-way hash function {0, 1}∗ →
{0, 1, 2, . . . , 255}. In this way, A is prevented from obtaining the exactly correct
password and we call Ai calculated through this new method “a fuzzy verifier”.
This notion was discussed in [14,15], yet its effectiveness is left as an open issue.

Effectiveness. Now we investigate the effectiveness of this solution. For every
password in Dre, if it is indistinguishable from all the other ones by logical
inference or statistical analysis, this is an ideal case. In reality, there might be
some passwords that are more likely to be the password of a specific user, while
some passwords more unlikely to be the password of a specific user. For example,
A knows the victim’s family name is “Wang”, it is unlikely that Zhao****∈
Dre is the victim’s real password; on the other hand, Wang****∈ Dre is highly
likely to be; Wang****∈ Dre is more likely than vfr4nji9∈ Dre to be. Except
for such highly unlikely passwords for the victim (we assume such passwords
constitute the space Dunlikely), A has to launch an online password guessing
attack to exclude every spurious password in Dre−Dunlikely to finally determine
the correct one. Now, if |Dre| − |Dunlikely| ≥ 210, according to the NIST SP800-
63-1 [2], our approach meets a Level 1 certification which requires that the
chance of A succeeding in an online password guessing attempt should be less
than 1/210. The remaining question is, whether will |Dre| − |Dunlikely| ≥ 210 for
every password candidate in Dpw, or it at least holds in most cases? This can
only be testified by real-life password datasets.

Table 1. Guessing entropy (GE) distributions of password datasets that are randomly
divided into 256 equally-sized password pools

Password datasets Percentage of pools with GE ≥ 1024

Rockyou Top1Million 0.00 %

CSDN Top1Million 10.54 %

Rockyou Top2Million 84.63 %

CSDN Top2Million 97.66 %

Rockyou TopxMillion(x ≥ 3) 99.60 %

CSDN TopxMillion(x ≥ 3) 100.00 %

Fortunately, a number of recent catastrophic leakages of millions of web
accounts (e.g., 6 million CSDN passwords1 and 32 million Rockyou passwords2)

1 http://dazzlepod.com/csdn/.
2 http://www.hardwareheaven.com/news.php?newsid=526.

http://dazzlepod.com/csdn/
http://www.hardwareheaven.com/news.php?newsid=526
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have provided wonderful material for this use, and we use the metric of guessing
entropy [1] to demonstrate the effectiveness of our “fuzzy verifier”. This metric
relates to the expected number of tries for finding the correct password using
an optimal guessing strategy, i.e. trying the most likely passwords first. As far
as we know, using guessing entropy to measure the effective candidates in a
given password dataset is currently the best strategy that can be adopted while
corresponding user-specific contextual information is unavailable (or difficult to
be appropriately used due to ethic reasons). The results on guessing entropy
[1] distributions of these two datasets are summarized in Table 1. Due to space
constraints, the experimental designs and related calculations are omitted here.
From Table 1, we can conclude that the CSDN dataset is much stronger than the
Rockyou dataset in term of guessing entropy. For a password dataset as strong
as the CSDN dataset (i.e., they are created under a similar password creation
policy), its space shall be as large as 2 million to be able to reach a guessing
entropy no less than 1024 (i.e., to meet a Level 1 certification).

3 Cryptanalysis of Li et al.’s Scheme

In 2010, Li et al. [10] made the first step towards constructing an efficient and
secure two-factor scheme with user un-traceability. We now show both Li et al.’s
scheme [10] and several subsequent schemes [8,16] achieve user un-traceability
by largely reducing usability: an attacker who merely alters or blocks a single
message flow (e.g., the second flow of [10], fourth flow of [16]), as shown in Fig. 1,
can render the user permanently unable to login. Due to space constraints, here
we do not review the scheme and readers are referred to [10] for more details.

3.1 De-synchronization Attack

To provide un-traceability, Li et al.’s “effective trick” is to randomize the tran-
scripts in such a way that no adversary over the channel can link different conver-
sations and that only the legitimate parties can recognize the received messages.
Most essentially, the user updates its session-variant pseudonym identity bN0

IDi

to bN1
IDi

after having received the response from the server S and validated the
legitimacy of S, while the server updates the related parameters {IDi, CIi, N0}
to {IDi, CIi, N1} in its registration table before sending out its response. In
this way, both Ui and S will keep the same one-time identity bN1

IDi
that will

be used in Ui’s next login request. Quite a number of subsequent privacy-
preserving schemes [8,16] attempt to achieve user un-traceability by adopting
a similar strategy. However, the following effective de-synchronization attack
demonstrates the infeasibility of such an “effective trick”.

We notice that the synchronization of the one-time identities between the
user Ui and the server S, i.e. bN1

IDi
on the user and {IDi, CIi, N1} on the server,

is crucial for the success of their following protocol runs. Once this consistency
is broken, the user will no longer be able to login S. Actually, many factors
can lead to the inconsistency between these two parties. Let us see a concrete
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example. Suppose S sends {Nb1, u ⊕ h64(bN1
IDi

),MS} to Ui as per the protocol
specification, which implies S has replaced {IDi, CIi, N0} with {IDi, CIi, N1}
in its database. Before {Nb1, u ⊕ h64(bN1

IDi
),MS} reaches Ui, the attacker M

intercepts this message and alters it to {Nb1, u ⊕ h64(bN1
IDi

),X}, where X is a
random value. Upon receiving S’s response, Ui will find X �= h(c‖u‖VIDi

), and
of course, will not update bN0

IDi
to bN1

IDi
in the card memory. As a result, the

consistency of the one-time identities between Ui and S is broken. From then
on, Ui’s subsequent login requests will always be rejected by S due to N0 �= N1.

Input PWi;
Generate a random N1 ∈R {0, 1}64;

Compute e = rG, c = rPS ;

EVIDi
(N1 e), b

N0
IDi

Reject if no record matching {IDi, CIi, N0};
Compute VIDi

= h(IDi s CIi);

bN0
IDi

with bN1
IDi

;

MS , Nb1, u ⊕ h64(b
N1
IDi

)

User Ui Server S

Reject due to MS = X;
Compute MS = h(c u VIDi

);

Decrypt bN0
IDi

to obtain {IDi, CIi, N0, · · ·};

Generate a random u ∈R {0, 1}64;
Compute c = xe, MS = h(c u VIDi

);
bN1
IDi

= Es((IDi CIi N1) · · ·);

M

Retrieve {e, c, VIDi
, bN0

IDi
};

Pre-computation phase:

Login phase:
Obtain {N1, e} by decrypting EVIDi

(N1 e);
Update {IDi, CIi, N0} to {IDi, CIi, N1};

Nb1 = bN1
IDi

⊕ (h(N1 e 1) · · ·);
MS = h(c u VIDi

);
, Nb1, u ⊕ h64(b

N1
IDi

)X

Fail to update

Fig. 1. De-synchronization attack on Li et al.’s scheme

Remark 1. The above attack is rather efficient and realistic, yet as far as we
know, little attention (except [14]) has been given to this destructive threat in
the domain of two-factor authentication. As with Li et al.’s scheme, its succes-
sors (e.g., [8,16]) all overlook the damaging threat of de-synchronization. This
repeated failure suggests the urgency of this work to highlight the importance
of being aware of potential attacks when designing a practical protocol.

Remark 2. Though the identified de-synchronization attack seems rather sim-
ple, to completely address it is not an easy task. A specious solution is that, server
S defers replacing {IDi, CIi, N0} with {IDi, CIi, N1} in its database until hav-
ing received the expected third message flow from Ui. However, the attacker M
can still succeed by only blocking (or altering) the third messages flow. In this
case, Ui has updated its data in the card memory before sending out the third
flow, but S is waiting for the (third) message which never comes, resulting in
failure in updating data on the server side.

Another seemingly workable (but unsatisfactory) fix is to store both bN0
IDi

and
bN1
IDi

on the card memory. If a login with bN1
IDi

succeeds, bN0
IDi

is replaced with bN2
IDi

;
otherwise, the user steps back to use bN0

IDi
to login. While this patch alleviates
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the presented attack, it may leads to the violation of user un-traceability: if M
blocks the login request that using bN2

IDi
(which means the previous login request

has used bN1
IDi

), then Ui will step back to use bN1
IDi

to login. This means Ui has
using the same pseudo-identity bN1

IDi
in two login request and thus can be traced.

In a nutshell, there is no easy way to work out the identified problem on
how to maintain the consistency of the one-time identities between Ui and S
when using some synchronization mechanism to achieve user un-traceability.
This suggests a call for a requirement that “no synchronization mechanism is
employed”.

4 Conclusion

In this work, we have employed two influential schemes, i.e. Yang et al.’s scheme
[17] and Li et al.’s scheme [10], as case studies to show that the usability issues of
previous two-factor authentication schemes should have been paid more atten-
tion. We propose the properties “password change with verification” and “no syn-
chronization mechanism employed” as important usability criteria when design-
ing and evaluating a two-factor scheme. We also discuss the solutions to cope
with the identified issues. To the best of knowledge, this work is the first one
that mainly focus on the useability problem of two-factor schemes, which we
believe deserves attention from both the academia and the industry. A natural
future work is to fully identify the practical threats on two-factor authentication
and develop efficient and usable schemes with provable security.
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Abstract. Secure search query routing is a long-standing problem in
distributed networks, which has often been addressed using “all-or-
nothing” approaches, that require either full anonymity and encrypted
routing or full trust on the routing nodes. An important problem with
secure routing is how to guarantee the search query is transmitted in
an expected way. In this paper, we tackle the problem of secure routing
by considering a generic policy-driven routing approach, and focus on
the steps required to verify in a fully distributed manner that a search
query is routed in accordance to a requester’s preferences and detect
cheating nodes. We present an efficient and effective verification method
for query routes, that is agnostic to the specific routing algorithm being
used and achieves strong security guarantees. We cast our approach in
the context of content dissemination networks (CDN) and show through
experimental evaluations the performance of our approach.

Keywords: Resource discovery · Query routing · Security · Content
dissemination networks · Malicious forwarding

1 Introduction

Content hosting or dissemination networks are those networks that store content
in a distributed manner. Today, such networks are gaining popularity. Content
providers such as Netflix and Youtube utilize content distribution networks to
store their data [15]. Most of the current Internet activities are based on content
retrieval than point-to-point communications [13]. Resources in content sharing
and dissemination networks (CDN) are discovered through search queries, dis-
seminated along the network using a routing protocol, raising potential security
and privacy concerns against the query and the search route.

In these networks, user information privacy and security are considered
important issues [15], as content providers, in addition to their own information,
store their client’s information in the CDNs. In order to sustain their businesses,
clients’ information should be handled very carefully.
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One of the privacy and security problems of these environments is associated
with the propagation path of search query, which may be very sensitive, and may
ideally be handled only by trusted peers, due to the content of the query (and
possible business interests associated with them). The query owner or requester
might want to forward the query only to selected nodes in the network, according
to the company data management policies of the requester. For instance, a user
might request an album stored in his Flickr account, and Flickr uses Yahoo’s
cloud to store photos. The search query for the album might traverse the Internet
over random routing nodes and the user might not prefer such a random routing
path taken by his or her query and the content. Also, Flickr, in order to protect
the customer’s privacy might want the query to be routed only through specific
nodes that satisfy certain user or company requirements. As highlighted by this
example, we urge a practical method to detect cheating nodes in the query
propagation path, that do not comply with the user or company requirements.

In this paper, we assume the existence of a policy based routing protocol
in place (e.g., [11,19]), wherein the routing preferences of a node requesting a
resource through a distributed search are expressed by means of a set of policy
conditions. Our main goal is to detect nodes that tamper with such routing
protocols by (i) forwarding the query to policy non-satisfying nodes and (ii)
dropping the query even though there are policy satisfying nodes present. It is
worth noting that our focus on policy-compliant distributed search is different
from the problem of protecting the content of search query, which just aims
at preventing other (policy-non-compliant) nodes from learning the content of
search query, and can be easily achieved using one-to-many encryption [3,10,
18]. Here, we consider a more challenging issue, i.e., guaranteeing the query is
transmitted in correct path, which not only implies protecting the content of
search query, but also limits unnecessary access of the query over the network.

Toward developing solutions for ensuring policy-compliant distributed search,
we design a two-phased routing compliance verification mechanism in the con-
text of content dissemination networks. Our proposed scheme works by firstly
identifying the correct path of search query propagation, and then checking the
policy satisfiability of all the nodes in the path. Our scheme is secure, in terms of
verifiability and non-repudiable search compliance, if the path is correctly iden-
tified in the first phase. We also consider practical methods to further improve
the efficiency and enhance security of our proposed scheme. Note that our verifi-
cation method does not presume a specific policy routing method. Rather, given
a generic policy routing search wherein queries are routed across nodes based on
conditions of the relaying nodes, we wish to ensure that it has been forwarded
correctly, that is, as intended by the requester. We conduct an experimental
analysis of our approach, and obtain an estimate of the computational overhead
our approach generates. Our results show that our approach is efficient, even in
case of large networks.

The rest of the paper is organized as follows. Section 2 overviews related
work. Section 3 reviews the main cryptographic notions adopted by our scheme.
Section 4 discusses threat model and main assumptions. We define the policy
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compliant search in Sect. 5. In Sect. 6, we present our approach to detecting
malicious nodes. Section 7 discusses the security aspects of our approach. In
Sect. 8, we present our experimental analysis. We conclude in Sect. 9.

2 Related Work

Trust establishment is a well-known challenge in distributed networks. Malicious
nodes can abuse the data or the established search query forwarding protocols
in a number of ways. To address these issues, a large body of work exists on
secure distributed networks, tackling sybil attacks, denial of service, free riders
and cheat detection [4,9,15–17]. In the context of content dissemination net-
works, researchers have focused primarily on the issues of denial of service attacks
[4,7,9], privacy and security of the content propagated within the content centric
networks [23], and sybil attacks [15]. Some recent work has also explored issues
related to access control in ad-hoc networks [12]. In addition, issues related to
secure search query propagation are very crucial to content dissemination net-
works as searching is the main purpose of content dissemination networks, and
hence the protection of search query propagation through the network is very
important. In this work, we aim to tackle the security issues of search query
propagation in distributed networks.

In this space, recent work has focused on efficient query processing. For
instance, Durr et al. [5] analyzed different query forwarding strategies in
privacy preserving social networks. Also, many have investigated intelligent
query processing methods [2,14,20,22]. However, unlike in our work, intelligent
processing methods do not consider the security aspects of the query forwarding
process itself.

Zhang et al. [23] propose a mechanism to protect the confidentiality of data
by encrypting them with identity based cryptography in content-centric net-
works. While it is sensible to utilize identity based cryptography to protect the
confidentiality of the data propagated and selectively disseminate data, it is also
important to detect malicious nodes in the network which propagate the data to
false nodes. In this work, we employ efficient identity based signature schemes
and attribute based encryption schemes to establish the integrity of the path
taken by the search query and detect the malicious nodes that abuse the query
forwarding algorithms. On a similar note, Padmanabhan and Simon [17], pro-
pose a mechanism to identify offending routers in a network and securely trace
the path of the traffic. Their approach requires each node in a path to respond
to the requester with an OK response that it received a packet. In contrast, we
propose an efficient approach in which we use aggregated signatures to ensure
the integrity of the path taken by a search query. Our protocol does not require
a message from every node that the traffic or the query passes through. Mirzak
et al. [16] also propose an approach to detect malicious routers, based only on the
traffic information that each node has. Our approach is different from theirs in
that it detects the malicious nodes mainly based on the attributes or properties
of the nodes in the network, by making use of policies.
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In summary, while several interesting works exist on policy compliance rout-
ing (e.g. [11,19]), we are not aware of any work on detection of malicious nodes
that do not comply with the query forwarding protocol established for the net-
work. Rather, previous works focus on policy specification, and assume that the
nodes are honest. In this work, we detect malicious nodes that do not comply
with such query routing protocols. Since search query forwarding is an impor-
tant phase of the dissemination of content in content dissemination and peer to
peer networks, we aim to provide a solution to efficiently and effectively support
verifiable query forwarding in these networks.

3 Cryptographic Background

3.1 Attribute-Based Encryption

Attribute-based encryption (ABE) has been widely applied to impose fine-
grained access control on encrypted data [18]. Two kinds of ABE have been
proposed so far: key-policy attribute-based encryption (KP-ABE) [10] and
ciphertext-policy attribute-based encryption (CP-ABE) [3]. In KP-ABE, each
ciphertext is labeled with a set of descriptive attributes, and each private key
is associated with an access policy that specifies which type of ciphertexts the
key can decrypt. In CP-ABE, the access policy is specified in ciphertext and the
private key is associated with a set of attributes. In this paper, we will utilize
CP-ABE for policy-compliance checking, and thus introduce its main primitives
below.

– Setup(λ): The setup algorithm takes as input a security parameter λ, and
outputs (pk,msk), where pk denotes the public key and msk denotes the
master secret key of ABE system.

– KeyGen(ω,msk): The key generation algorithm takes as input an attribute set
ω and the master secret key msk, and outputs the decryption key dkω.

– Enc(m,P): The encryption algorithm takes as input a message m and the
policy P, and outputs the ciphertext [ct]P with respect to access policy P.

– Dec([ct]P , dkω): The decryption algorithm takes as input a ciphertext [ct]P
which was assumed to be encrypted under a policy P and the decryption key
dkω for attribute set ω, and outputs the original message m if and only if ω
satisfies P.

3.2 Identity-Based Aggregate Signature

An aggregate signature is a single short string that convinces a verifier that a set
of n messages are signed by n distinct signers [8]. In this paper, we will utilize
a special line of aggregate signature, namely identity-based aggregate signature,
in which users’ identities (e.g., email address) are used as their public keys, and
thus the verifier only needs a description of who signed what for verification.
The algorithms of identity-based aggregated signature are described as follows.
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– Setup(λ): The setup algorithm takes as input a security parameter λ, and
outputs (pk,msk), where pk denotes the public key and msk denotes the
master secret key of identity-based aggregate signature.

– KeyGen(id,msk): The key generation algorithm takes as input a descriptive
identity id and the master secret key msk, and outputs the signing key skid.

– Sign(m, skid): The signing algorithm takes as input a message m and the
signing key skid, and outputs the signature [σ]id.

– Agg([σ]S1 , S1, [σ]S2 , S2): The aggregate algorithm takes as input two sets of
identity-message pairs S1 and S2, and two identity-based (aggregate) signa-
tures [σ]S1 and [σ]S2 on the identity-message pairs contained in sets S1 and
S2 respectively; if Ver([σ]S1 , S1) = 1 and Ver([σ]S2 , S2) = 1, this algorithm
outputs the signature [σ]S1∪S2 on the identity-message pairs in S1 ∪ S2.

– Ver([σ]S , S): The verification algorithm takes as input - the (aggregate) sig-
nature [σ]S and a description of the identity-message pairs in S, and outputs
1 if and only if [σ]S could be a valid signature output from Sign or Agg for S.

4 Design Goals and Threat Model

Our overarching goal is to guarantee policy compliant search, where policies can
be specified by means of a set of conditions against the relaying nodes. Our
specific objectives to accomplish this goal are outlined as follows.

(1) Verifiable Search Compliance: The main design goal of this work is to provide
a mechanism to verify that a search query in a CDN is forwarded in compliance
with the requester’s preferences. These routing preferences are defined over the
nodes’ attributes by means of policies, similar to conventional policy-based rout-
ing. Note that we do not aim to define a new way of performing policy-routing.
We assume the existence of a policy-compliant routing scheme such as [11]. We
aim to provide an effective mechanism to verify that policy routing is carried out
correctly. (2) Non-repudiable Search Compliance: we would like to ensure that if
a node is involved in a search query, it cannot deny having received the query.
(3) Cost-effective: the modifications and overhead for providing verifiable policy
routing should not represent a major additional cost to conventional routing,
nor should they alter the way either routing or caching operate.

Our approach to meet these objectives is based on the following threat model
and assumptions. We assume that the network is static. Nodes have knowledge
of their direct neighbors, but may not know any peers beyond their first degree
neighbors. Each node in the network is globally identifiable, and initially assigned
with its identity-based secret key skid and attribute-based decryption key dkprof .
Nodes find resources by forwarding requests through distributed search proto-
cols [1], wherein a resource request is evaluated by a receiving node and either
satisfied or relayed to the neighbor node in search of a node able to provide the
requested resource. Precisely, we assume that only nodes with certain properties,
indicated in a policy by the node originating the request, are asked and allowed
to forward the resource requests. We assume that the majority of the nodes are
semi-honest. That is, the nodes keep their individual identifiable information
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(e.g., skid and dkprof ) away from other nodes to avoid the leakage of private
information. Malicious nodes may not adhere to the policy-compliant search
protocol, and may send the search query to nodes which do not satisfy the
requester’s policy.

5 Search Query and Policy Compliant Search

5.1 Bloom Filters of the Nodes and Search Queries

The resources available in the peer network G are described by means of
attributes storing their main features, and are categorized based on their content
type (e.g. media files, services, etc.).1

A
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B
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conBFA

conBFB conBFC

Fig. 1. Creation of concatenated Bloom Filter (conBFs)

We assume that resources and attributes of each node are encoded using
bloom filter (BF ) by the node itself. More precisely for each attribute (say fee)
its corresponding value is encoded by means of a single order preserving hash
function [6,21] h agreed upon by the network. The hash function generates an
index value for the attribute value, where a 1 is placed in the corresponding
position in the filter. For instance, assuming fee = 100 and h(100) = 7, the
corresponding attribute filter should have the 7th element set to 1, whereas
the remaining elements are set to 0. Since the profile of a node consists of a
set of attributes, a bloom filter associated with a profile is generated as the
concatenation of attribute filters encoding all attribute values, in a known order.
Note that by using an order preserving hash function, there is no need of using
multiple hash functions to represent the attributes as there would not be any
collisions among the index values.

We also assume that all the nodes are aware of the neighbor nodes’ attributes.
Initially, all nodes send their local BF to their neighbor nodes, such that each

1 Examples of categories in T are Standard Industrial Classification (SIC), or the
North American Industry Classification System (NAICS).
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node is able to maintain a concatenated bloom filter (conBF ) to keep track of
its neighbor’s information. A conBF consists of several layers, each of which is a
BF corresponding to a neighbor node, and the BF consists of the attribute infor-
mation of is neighbors. Figure 1 shows an example of how a concatenated filter,
conBF , may be created. The two pairs of nodes A and B, A and C exchange their
local attribute BF with each other, and finally three conBFs are respectively
built at these nodes.

Bloom filters aid in routing a query in a policy-compliant manner, which will
be discussed in the next section. Precisely, a search query is specified in terms of
the requested resource categories, and possible attribute conditions against the
service attributes.

Definition 1 (Search Query). A Search Query (SQ) is an expression of the
form: SQ = ({c1, . . . , cn}; {a1Θ1v1, . . . , amΘmvm}), where {c1, . . . , cn} ∈ T is a
set of resource categories, and {a1, . . . , am} is a set of resource attributes in A,
Θj ∈ {<,>,=,≥,≤}, and {v1, . . . , vm} is the set of attribute values.

Example 1. Let the requester specify the following search query, SQ =
({Weather}, {Fee < $100, ExecT ime < 20s}). The requester is looking for
a resource belonging to the Weather category, and the querying of this resource
should charge the requester less than 100 dollars fee and should execute in less
than 20 s.

As introduced in Sect. 4, given a service search query SQ, we aim to verify
that it is routed in the peer network only through compliant nodes. Compliant
nodes are the nodes that meet the conditions of the search policy (denoted as
SP ), and therefore are involved in the resource discovery process. For the purpose
of this work we consider search policies defined against possible attributes of the
routing nodes themselves (e.g. support for certain services, domain, etc.), rather
than on the conditions for routing itself (e.g. minimal search path etc.). To
verify compliance, we model the profile prof of each node by a set of attributes
describing its features, related to security and privacy, routing.

For simplicity, an SP is defined as a combination of atomic Boolean condi-
tions (or Node Criteria), although a more sophisticated definition could also be
supported. Before formally introducing SP , we define node criteria, as follows.

Definition 2 (Node Criteria (NCriteria)). A node criteria is defined as
a combination of clauses in disjunctive normal form c1 ∨ · · · ∨ cn, where each
cj is an atomic clause, denoting a single or a conjunction of conditions cj =
cond1 ∧ .. ∧ condj, and each condi, i ∈ [1, j] is of the form: ATT OP value where:
(1) ATT is an attribute, (2) OP (e.g., =,≥, ≤) is a matching operator; (3) value
is the node preferred value for ATT, and can be a constant or a variable.

5.2 Search Policies and Policy Compliant Search

Having defined search queries, we are now ready to formalize search policy.
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Definition 3 (Search Policy). Given a search query SQ, a search policy SP
is defined as a couple (NCriteria,NHop), where: NCriteria is the node criteria
specified according to Definition 2; NHop can take either a value n, n ≥ 0, or
it can be set to ∗. NHop denotes the maximum number of intermediate nodes,
that SQ will be allowed to traverse per a possible path, whose profile satisfies
NCriteria. NHop = ∗ denotes that no restrictions are placed on the hop count.

Given a node n and a search policy SP = (NCriteria, NHop) specified by a
requester r, a node is compliant if NCriteria is satisfied by the profile (profn)
of n and the number of hops transmitted from r to n is not more than NHop.2

A policy-compliant distributed search is simply defined as a list of connected
nodes satisfying SP .

Definition 4 (Policy-Compliant Distributed Search). Let G =< N,E >
be a network, and (SP, SQ) be a pair of search policy and query specified by
a requester node r. Suppose there is a (cycle-free) sequence of connected nodes
Path = {r, n1, . . . , nk = d} in G connecting r with a node d able to resolve the
query SQ. If every node ni ∈ Path satisfies the search policy SP , then Path
distributed search is policy-compliant with respect to SP .

Note that in the definition above we essentially request a sequence of nodes
in the network graph where each node satisfies the policy and that leads to the
successful resolution of query. We do not impose any condition against how this
path is found or against any other properties of the path itself (if it is an optimal
path or if it is minimal). Several path finding algorithms could be used, with no
impact on our problem statement.

r
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B
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Domain: 192.168.250.2
{(Weather; fee: $30)}

Domain: 192.168.253.18

Domain: 192.168.250.3
Domain: 192.168.250.5
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que
ry 

se
nd

ing

query sending

Fig. 2. An example for policy-compliant distributed search

A weaker notion of the above definition, which will be useful for our verifi-
cation algorithms is defined as α compliance.

Definition 5 (α-Policy-Compliant Distributed Search). Let the pair
(SP, SQ) be a search policy and query specified by a requester node r. Let the
2 If NHop = ∗, we consider it is infinitely large.
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set Path contain all the nodes transmitted during a time of distributed search
(SP, SQ). If, for any arbitrarily sampled node n ∈ Path, the probability that
n satisfies the search policy SP is not less than α (0 < α ≤ 1), then Path is
α-policy-compliant.

An example of policy-compliant distributed search is given below.

Example 2. Assume a P2P network is organized as in Fig. 2. A requester node
(denoted as r in Fig. 2) sends a query asking for academic files. r requests that
the files do not cost more than $25. Accordingly, the search query is formalized
as SQ = ({Academicfiles}, {fee ≤ $25}). Moreover, r requests the search to be
carried out only within its local area network and hence, defining the following
node criteria or policy: NCriteria = {(Domain = 192.168.250.X)}. This policy
indicates that the search is required to be performed within a subnet, the IP
address of which ranges from 191.168.250.1 to 192.168.250.255, and also restricts
the search zone to be its direct neighbor nodes (NHop is set to be 1). The
corresponding distributed search for this request is shown in Fig. 2. It is clear
that this query should not be transmitted to node C or node D, because the
former is in a different domain from the one specified in NCriteria, while the
latter violates the NHop restriction.

6 Malicious Node Detection

We now describe our routing compliance verification mechanism. Our solution
includes two main phases: resource discovery, and compliance checking phase.
During the resource discovery phase, the requester propagates a pair (SP, SQ) of
search policy and query to discover the resources satisfying SQ, while restricting
the query routing only through the nodes satisfying SP . Upon resolving the
query, the discovered resource R, as well as a path proof PF , are returned back
to requester. In the compliance checking phase, the requester takes as input PF
and verifies the policy-compliance of the returned search path.

6.1 Resource Discovery

We now describe the resource discovery phase of our policy verification mecha-
nism.

Suppose a requester issues a search query SQ = ({c1, . . . , cn}; {a1Θ1v1, . . . ,
amΘmvm}) (see Definition 1), simultaneously restricting the search query prop-
agation path to be controlled by a search policy SP = (NCriteria,NHop) (see
Definition 3). The following steps are executed.

Assume an exhaustive search across the network is enforced, where the query
is forwarded to all suitable nodes. The requester r firstly evaluates the node crite-
ria on all of its neighbor nodes. Let us consider each individual atomic condition
condi in search policy SP . Recall that condi is in the form of Att OP Value
(see Definition 2), and h is the hash function used for encoding the attribute
Att in the bloom filter. The requester computes the index indexcondi

of this
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atomic condition by hashing h(Value). For example, for partly bounded condi-
tions (e.g. A < 1), the upper or lower bound of the condition are hashed (e.g.
h(10)). The computed indexcondi

is then compared with the positions of the
non-full index values of bloom filter in conBFr. This condition condi is fully
satisfied by a bloom filter BF in conBFr, when (1) BF in the exact position
equal to indexcondi

have 1, in case of equality conditions (Att = value); (2) or
BF in the positions anywhere before or after indexcond have 1s, in case of partly
bounded conditions (Att ≥ / ≤ value).

For every node (we say nj) satisfying BFs, the requester stores a hop item
to collect three pieces of information: the identity of the previous node (⊥ for
requester), idprev, the identity of current hop idcur and the identity of next hop
idnxt. Each of the hop items is signed under the requester’s signing key skr, and
encapsulated into a hop list L. The hop list is then to be passed along with the
search query and updated and signed by each node, such that the requester can
finally verify the authenticity of the propagation path.

During resource discovery, every node nj receives (SQ, SP ) as well as (L =
〈er·, . . . , eij〉, σ), where L is the hop list consisting of the hop items the search
query has transmitted by and σ is the signature aggregated on these hop items.
More precisely, suppose nj receives this data from a previous node ni (ni could
be the requester nr). nj firstly verifies the authenticity of L. This is achieved by
completing two operations.

1. nj picks out the last item eij = (·, id′
i, id

′
j) of L and checks whether id′

i = idi

and id′
j = idj , to guarantee that the search query propagates in a authentic

way at this hop from ni to nj ;
2. nj checks the validity of signature σ on messages er·, . . . , eij and identities

idr, . . . , idi to guarantee this search query propagated correctly in all of the
previous hops.

Operation (1) guarantees that ni honestly sends query following the hop
information recorded in L, while (2) guarantees that none of the faked hop
items exists in previous propagation path. If either of the checks fails, an error
is reported and the search for resource is aborted.

Node nj then checks the satisfaction of local resources and neighbor node
criteria based on bloom filter, using the same approach described above for node
criteria evaluation. One of the following two cases could arise:

– Case 1. If a query-satisfying resource is found locally by nj or none of the
neighbor nodes satisfies the search policy, the search is over. A new hop item
ej⊥ = (idi, idj ,⊥) is generated to indicate “end hop”, and signed using nj ’s
signing key skj . The signature (on ej⊥) is then aggregated with the previous
aggregated signature σ to generate a new version of σ. Finally, after appending
ej⊥ with L, the authenticated path (L, σ) is sent back to the requester (either
traversing backward through the whole path or directly, depending on the
specific query resolution algorithm being adopted).

– Case 2. Otherwise, there must exist at least one neighboring node satisfying
SP . For every satisfying neighbor node (we say nk), (L, σ) is replicated, and
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another hop item ejk = (idi, idj , idk) is generated and appended with the
new copy of L, to indicate that next hop is nk. Similar to the first case, after
signing ejk and aggregating the new signature into (the copy) σ, the updated
(L, σ) is then sent to node nk, along with the query-policy pair (SQ, SP ).

Note that, although we present it for the case of exhaustive search, our scheme
can be easily adapted to support any routing protocol (e.g. random walk). As
compared to existing protocols, in our scheme, the requester is able to restrict
the query to be forwarded only through certain nodes by defining a policy over
the query.

Example 3. Figure 3 shows a toy example for the process of resource discovery.
Two neighbor nodes (n1 and n3) are respectively sent the resource query from
nr. For the node n3, a satisfying resource is found locally, and returned back
to requester along with the authenticated path. For the node n1, it forwards
the query to a next policy satisfying node n2, which does not have any policy
satisfying neighbor nodes. So, another path of authenticated nodes is sent back
to the requester following this path: n2 → n1 → nr.

6.2 Compliance Checking

Upon receiving the authenticated path, the requester starts to check whether it
is also policy compliant. Verifying policy compliance is a two-step process. The
first step consists of checking path authenticity. The requester examines the hop
list L, in specific, whether the concatenation of nodes is correct. For example, for
any two continuous hop items (we say eij and ejk), the requester checks whether
idcur in eij equals idprev in ejk and whether idnxt in eij equals idcur. Then, it
verifies the validity of the aggregated signature σ using all the identities stored in
the current node entry of hop items in L. This is achieved by examining whether
σ is a valid aggregated signature on a series of messages er·, . . . , ejk, ek⊥ by the
public identities idr, . . . , idj , idk, where idi (i = r, . . . , j, k) is the identity of node
generating and signing the hop item ei·. If either of the verification steps fails,
an error is reported.

The second step is to check whether the authentic path is policy compliant.
The step is of course necessary as some nodes may have passed the message
along without meeting the policy conditions. Generally, our algorithm is based
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Fig. 3. Resource discovery
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requester node nr target node ni

[idr, idi, skr, g, p] [idi, idr, ski, g, p]

pick random integer x

m′
b = ABE.Dec(dki, [cb]SPi

)
m′

1−b = ABE.Dec(dki, [c1−b]SP i
)

([cb]SPi
, [c1−b]SP i

)

(m′
b, m

′
1−b)check mb

?= m′
b

pkr = gx mod p pkr

pick random integer y
pki = gy mod p

pki

pick b ∈R {0, 1}
pick random messages m0, m1

SPi = SP ∧ {ID = idi}

kri = pkx
i mod p kri = pky

r mod p

SP i = SP ∧ {ID = idi}
[cb]SPi = ABE.Enc(SP i, mb)

[c1−b]SP i
= ABE.Enc(SP i, m1−b)

Fig. 4. Protocol for checking policy satisfaction of node in iterative model (the group
generator g and big prime p are predefined as system parameters)

on examining the policy satisfiability of nodes in the propagation path using
attribute-based encryption, and follows either the iterative model or the non-
iterative model. Suppose the requester wants to check the satisfiability of node ni.
Iterative Model. The algorithm in iterative model shown in Fig. 4 is executed.
Firstly, the requester is to establish a secure communication channel with the
target node ni following the well known Diffie-Hellman key exchange protocol.
Notice that to avoid the man-in-the-middle attacks, the exchange step needs to
be cryptographically bounded. To this end, rather than trivially exchange DH
public keys, both nodes append their identity-based signatures along with their
DH public keys (omitted in Fig. 4 for simplicity), therefore preventing adversaries
from faking public keys and eavesdropping the shared session key kri.

After establishing a secure channel with ni, the requester generates two ran-
dom messages m0 and m1, and picks a random bit b ∈R {0, 1} for encrypting
m0,m1 respectively, under the hybrid policy SPi and its complementary SPi

using attribute-based encryption. Specifically, after building SPi = SP ∧ {ID =
idi}, where ∧ is an AND gate connecting SP and an atomic policy {ID = idi},
the requester encrypts mb under SP for obtaining [cb]SPi

, while m1−b under SPi

for obtaining [c1−b]SPi
. [cb]SPi

and [c1−b]SPi
are then sent to ni for decryption.

The target node ni tries to decrypt both the ciphertexts using its decryption
key dki and feeds back the messages (m′

b,m
′
1−b). The requester checks whether

mb = m′
b, if not, a policy-violating routing is reported. The reason to build

a hybrid policy SPi (binding the target node’s identity with test policy) is to
prevent collusion among nodes, in which a policy satisfying node could lend its
decryption key to the target node to help it pass the test. In other words, under
the hybrid policy, even if other satisfying nodes share their decryption keys with
the target node, the checking cannot be passed, because the lent decryption keys
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from other nodes do not satisfy the binding policy ID = idi, and fail to decrypt
the test ciphertext.

Non-Iterative Model. In the verification algorithm above, the requester is able
to detect non-compliant nodes in an adaptive manner. In other words, since the
requester runs the proposed protocol with the target node one by one, to check
the policy compliance of a full path, it is able to know the intermediate check-
ing results at each node, and decide the node to be checked for the next time.
For higher efficiency, the requester may prefer to check nodes in a non-iterative
manner. Suppose S = {idik}|S|

k=1 is the set consisting of all the target nodes
to be checked. For each node idij (j = 1, . . . , n) in S, two random messages
(m(ij)

0 ,m
(ij)
1 ) are generated and encrypted in the same way for m0 and m1 as

the algorithm of Fig. 4. All the test messages {(m(x)
0 ,m

(x)
1 )}idx∈S are then prop-

agated along with the set S in the checking path. Each node tries to decrypt
the pair of encrypted messages if its identity is in S. Finally, the decrypted
messages are sent back to the requester for final decision. Each decrypted mes-
sage can be optionally signed by the nodes in the path to avoid modifications
to the decrypted messages by other nodes in the path. Through this model,
the requester is only required to be online when preparing test messages and
when checking the decrypted results, reducing the computational overhead sig-
nificantly.

Example 4. Let us re-consider Example 3. Suppose the path delivered back to
requester is {nr, n1, n2}, and the requester nr tries to verify the policy com-
pliance of n1 and n2. To this end, nr generates two pairs of random messages
(m(1)

0 ,m
(1)
1 ) and (m(2)

0 ,m
(2)
1 ), and for each pair (m(i)

0 ,m
(i)
1 ) (where i = 1, 2)

respectively encrypts m
(i)
0 and m

(i)
1 under the policy SP ∧ {ID = ni} and

SP ∧ {ID = ni}. In the iterative model of the compliance checking proto-
col, requester sends C1 = ([c(1)0 ]SP∧{ID=n1}, [c

(1)
1 ]SP∧{ID=n1}) to n1 for decryp-

tion, and if the decrypted ciphertext m
(1)′
1 does not equal m

(1)
1 , an unsatis-

fying node is reported; otherwise requester continues to test n2 using C2 =
([c(2)0 ]SP∧{ID=n2}, [c

(2)
1 ]SP∧{ID=n2})) in the same way. In the non-iterative model

mode of this protocol, the requester sends the two pairs (i.e., C1 and C2) of
ciphertext to n1 at once, which tries to decrypt the pair (i.e., C1) of ciphertext
intended for it and forwards the other pair (i.e., C2) to n2 for decryption. The
response (i.e., decryptions of C2 and C1) is then sent back to requester for final
decision along the path from n2, n1 to nr.

7 Practical and Security Considerations

Recall our proposed two-phased method works by identifying the correct path
of search query propagation and then checking the policy satisfiability of all
the nodes in the path. The method is secure if the path is correctly identified at
first. In spite of this, our approach suffers from two shortcomings. First, it places
a computational burden on the requester for testing the policy satisfiability of
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the nodes in the path. Second, our method relies on the correctness of the query
propagation path, resulting that there might exist a few potential attacks aiming
at breaking our method through faking a cheating path. In this section, we
consider some practical methods to address both shortcomings.

7.1 Determining the Number of Nodes to Verify

In this subsection, we analyze the number of nodes the requester should check to
achieve α-compliance (i.e., at least a percentage α of the nodes in path satisfies
the policy), for both cases.

We model our problem as follows. Suppose a query SQ has been resolved by
a given Path, where |Path| = n indicates that n unique nodes were involved
during this search. Assume that an arbitrary number of nodes m (m < n) in the
path does not satisfy our policy requirement. Our aim is to estimate the number
of nodes to be checked to detect this dishonest behavior with a confidence greater
than α3. Note that our detection model follows the “once for all” philosophy.
That is, if only one non-compliant node is found, we consider the full search
dishonest.

Non-iterative Probabilistic Model. In the first verification model, discussed in
Sect. 6.2, we assume that the requester generates all the target nodes (constitute
the target set target) to check at once. The requester does not obtain any
feedback about the intermediate checking results before it generates all the target
nodes. Suppose the number of nodes to be checked is x (i.e., |target| = x in
this case)4.

Given known values of n and m, we can compute the minimum value of x by
resolving the following inequality which contains only x as an unknown value.

1 −
(
n−m

x

)

(
n
x

) ≥ α ⇒ 1 − (n − m)!(n − x)!
n!(n − m − x)!

≥ α (1)

The equation is easily understood. Our problem consists of selecting x nodes
at once from n path nodes to be checked, with

(
n
x

)
possibilities. Assume the x

target nodes to check are all selected from the n−m satisfying nodes, which has(
n−m

x

)
possibilities.

Then, we can compute the probability of not detecting a dishonest node

by randomly checking x nodes as (n−m
x )

(nx)
. Thus, 1 − (n−m

x )
(nx)

is the probability of

detecting any non-compliant node by checking x nodes.

Iterative Probabilistic Model. In the iterative probabilistic model presented in
Sect. 6.2, we assume that the requester is able to adaptively generate the target
node to be checked. Since in this scheme, the requester knows the intermediate
results obtained from previous checks, it can decide accordingly which nodes are
3 The symbol α is abused here to denote the confidence threshold in dishonesty detec-

tion.
4 We need to restrict that x ≤ n − m in our models. This is because, we can always

detect non-compliant nodes if we test more than n − m nodes.
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to be checked. Suppose the number of nodes to be checked is x. Suppose Ak is
the probability for detecting dishonesty by checking k nodes in Path. It is clear
that A1 = m

n and

Ak = (1 −
k−1∑

i=1

Ai)
m

n − k + 1
(2)

In what follows we explain the above equation. Since the requester can adap-
tively generate the target node, the probability of selecting the satisfying node
is not identical each time a check is performed. For example, if the requester
successfully selects a non-compliant node the first time, and detects a dishonest
node, then A1 = m

n . The next time, in the adaptive case, the probability of
catching a non-compliant node becomes m

n−1 , because one satisfying node has
been verified already, and should be removed for all the subsequent selections.
Thus, the probability m

n−1 holds in the case that the non-compliant node is not
caught in the first time, having probability 1 − A1.

Accordingly, the probability of catching non-compliant nodes in the second
check is computed as A2 = (1 − A1) m

n−1 . Recursively, for Ak, (1 − ∑k−1
i=1 Ai)

is the probability that any non-compliant node is not caught in the first k − 1
times of checking. At the kth round, k − 1 satisfying nodes are removed due to
the inability of catching non-compliant nodes in the first k − 1 times, and thus
the probability of catching a dishonest node for the k th time is m

n−k+1 . Finally,
we can get the probability Ak = (1 − ∑k−1

i=1 Ai) m
n−k+1 .

We are to solve the following inequality with respect to unknown x:
x∑

i=1

Ai ≥ α (3)

Interestingly, although our proposed non-iterative and iterative models work
in a different manner, they achieve the same probability of catching dishon-
est nodes, assuming they check the same number of nodes. This finding can
be demonstrated by solving the general formula (2) and comparing the result∑x

i=1 Ai with the probability of non-iterative model (i.e., the left part of inequal-
ity (1)). In what follows, we provide a detailed proof that the left part of
Eq. (3) equals to the left part of Eq. (1). That is, for a fixed value of x,
∑x

i=1 Ai = 1 − (n−m)!(n−x)
n!(n−m−x)! where Ak = (1 − ∑k−1

i=1 Ai) m
n−k+1 for k = 2, 3, . . . , x.

Without loss of generality, we denote probnonitera(k) = 1− (n−m)!(n−k)!
n!(n−m−k)! indi-

cating the probability of catching dishonest nodes in the non-iterative model
when checking x nodes. Similarly, probitera(x) =

∑x
i=1 Ai is the probability of

catching dishonest nodes in the interactive model. It is clear that in the iterative
model Ax = probitera(x) − probitera(x − 1), and we substitute this expression
into Eq. (2) to obtain

probitera(k) − probitera(k − 1) = (1 − probitera(k − 1))
m

n − k + 1

1 − probitera(k) = (1 − m

n − k + 1
)(1 − probitera(k − 1)) (4)
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Then, our aim is to recursively solve the Eq. (4) to obtain probitera(k), with
the condition that probitera(1) = A1 = m

n . To this end, we iterate the variable k
in Eq. (4) from k down to 2 to get a series of k − 1 equations as follows.

1 − probitera(k) = (1 − m

n − k + 1
)(1 − probitera(k − 1))

. . . . . .

1 − probitera(2) = (1 − m

n − 2 + 1
)(1 − probitera(1))

We then multiply these k − 1 equations together to get

1 − probitera(k) = (1 − probitera(1)) ×
∏k

i=2(n − i + 1 − m)
∏k

i=2(n − i + 1)
(5)

It is clear that
∏k

i=2(n−i+1−m) = (n−m−k+1) . . . (n−m−1) = (n−m−1)!
(n−m−k)!

and
∏k

i=2(n − i + 1) = (n − k + 1) . . . (n − 1) = (n−1)!
(n−k)! . We further substitute

both equations as well as probitera(1) = m
n into Eq. (5).

1 − probitera(k) =
n − m

n

(n − m − 1)!(n − k)!
(n − 1)!(n − m − k)!

probitera(k) = 1 − (n − m)!(n − k)!
n!(n − m − k)!

= probnonitera(k)
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Fig. 5. Probability estimation of dishonest detection in non-iterative and iterative
models

In Fig. 5, we provide some numerical examples about probability of detecting
dishonest nodes proportional to the number of nodes to be verified. In this
numerical example, the path consists of 100 loop-free nodes. We present three
cases wherein we assume there are respectively 15%, 20% and 25% nodes in
the path that do not satisfy the requester’s policy, and show the confidence
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of detecting dishonest nodes. It is clear from Fig. 5 that, in order to achieve a
detection confidence of 0.9, we only need to check a small set of nodes in the path.
Precisely, the requester will need to check 8, 11 and 15 nodes in the 15%, 20%
and 25% case for ensuring 0.9 confidence. Only a subset of the nodes in the path
are to be verified for high confidence results, and we can check only part of the
nodes in the path to save computing and networking resources.

7.2 Attacks and Countermeasures

There are a number of potential attacks against our scheme. In this subsection,
we outline two of the most common attacks, along with some potential counter-
measures.

– In the first potential attack, since the metadata (i.e., the hop list L and
aggregated signature σ) in resource discovery phase would be transferred back
to the requester, a malicious node could record this information, and use it
for launching replay attack in the future. For example, suppose a requester
requests for resources, with the same policy twice. Since the policy is the same,
it would follow the same path for the both times of search. A malicious node
could record the hop list as well as the aggregated signature returned back
in the first time, and use it for cheating the next time of search. Specifically,
in the second time of search, even if the malicious node does not forward the
query to the policy satisfying neighbor node, it can send back the recorded hop
list and aggregated signature in the first time to cheat that it has forwarded
the query in the correct way. A simple countermeasure to this attack is to
append another time entry in the hop item in L and ask each node to sign
on the hop item including not only previous, current and next node, but also
a time period to distinguish the signatures for two times of search. In this
way, during verification, the requester can easily detect the old metadata and
catch the dishonest node.

– The second potential attack originates from the fact that a malicious node
is lazy, which does not forward the search query to satisfying neighbor node
and cheat that none of the neighbor nodes satisfy the policy. Suppose A is
a lazy node adjacent to the requester r, and we can detect this lazy node in
the following ways. The requester node r compares the policy with the BF
received from a neighbor node A, and notes down the value x that lies in
the corresponding positions related to the policy. This value gives the number
of A’s neighbor nodes satisfying the search policy. The requester expects to
receive x aggregated signatures from its neighbor A. If it did not receive at
least x aggregated signatures (and an exhaustive search was implemented),
then it concludes that A is lazy or that it has dropped SQ5.

– In the third potential attack, a malicious node (say A), upon receiving a
search query, could cheat that none of the neighbor nodes satisfies the policy

5 If a non-exhaustive search algorithm is used, the requestor would expect at least k
responses, where k is to be determined according to the routing scheme employed
by the network.
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and return back the updated (L, σ) to requester, but forwards the search
query to a policy unsatisfying neighbor node (say B), which will drop the
forwarding of the query and/or does not send the aggregated signature to the
requester. We point out that, this attack is challenging to be detected, since
the malicious nodes (A and B) are adjacent. In this case, some additional
controls are needed, in addition to the scheme discussed in this paper. A
simple approach to fully prevent the policy unsatisfying nodes from accessing
the search query, is for the requester to encrypt the content of the query using
attribute-based encryption, such that only the policy satisfying nodes are able
to decrypt and access the query. In this way, even if a policy unsatisfying node
receives the search query, it is not able to learn the content of query.

8 Experimental Analysis

We conducted our experiments on an Intel core i7 CPU @2.00 GHz, 8 GB RAM,
Ubuntu machine. In these experiments, we are mainly concerned with the com-
putational times of our protocols rather than the network delays involved. Hence,
our experiments do not reflect network communication delays among the nodes
in the network. We conduct our experiment on a peer to peer network topology
whose structure is obtained from http://snap.stanford.edu/data/. The network
consists of 10,000 + nodes.

Our first experiment involves testing for the computational times of the first
step of our protocol, that is, secure proof of identities of the path of the search
query (see Sect. 6.1). This experiment has two parts to it. The first part measures
the computational times for the aggregated signature and search query traversal
through the network. The second part measures the computational times for the
verification by the requester, of the aggregated signatures of the paths that the
search query had taken.

First, we vary the path length traversed by the search query and observe the
respective computational times. Path length is the number of nodes traversed
by the search query in a path. From the graph in Fig. 6(a), we observe that
as the path length increases, the time for computing the aggregated signatures
increases. Next, in the second part, we vary the path length and observe the
respective computational times. Interestingly, from the graph in Fig. 6(b), we
observe that even though as the number of nodes in a path increases, the time
to verify the aggregated signatures increases very negligibly, in the order of
milliseconds. This confirms that using aggregated signatures for secure proof of
identities of a path is efficient when compared to sending individual signatures
by each node in the path to the requester. This is because as the number of nodes
increases in a path, the number of individual signatures to verify will increase
for the verifier. Hence, receiving individual signatures from every node would
drastically increase the communication overhead of the protocol.

Our second set of experiments test the policy compliance of the nodes in the
paths taken by the search query, that is, to test the phase where the requester
uses attribute based encryption. First, we compute the computational times

http://snap.stanford.edu/data/
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Fig. 6. Computational times of steps

of the encryption of messages performed by the requester or the owner of the
query for each node in a path taken by the query. If there are n nodes in a path,
then the requester encrypts n messages with the ABE protocol. We compute
the computational times by varying the number of nodes in a path, and also we
perform the same experiment for different number of attributes in the encryption
policy of the requester. From the graph in Fig. 6(c), we observe that as the
number of nodes in a path increases, the computational time linearly increases
for encrypting the messages with ABE. We also observe that, as the number of
attributes in a policy increases, the computational time linearly increases. Next,
we also compute the times of the decryption of messages by all the nodes in a
path. That is, in this experiment, each node in the path sequentially decrypts
the message encrypted by the requester for the node, with the requester’s policy.
We compute the computational times by varying the number of nodes in a path.
From the graph in Fig. 6(d), we observe that the time for all the nodes in a
path to decrypt the ABE message linearly increases as the number of nodes in
a path increases. In this experiment, the number of attributes in the policy does
not affect the computational time for decrypting the message, as for decryption,
each node uses its own private key to decrypt the message, and the private key
is not associated with the number of attributes in the encryption policy.
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9 Conclusion

In this paper, we posit that search queries are critical in such content dissemi-
nation networks, as eventually these queries lead to the discovery of the desired
content. The importance of search queries, requires us to develop security mech-
anisms to ensure that the queries are appropriately forwarded based on the needs
and policies of the query owner. We propose an effective and efficient protocol
to detect malicious nodes that do not comply with the forwarding protocols
established in the network. In addition to this, our protocol also aims to protect
the integrity of the proof of various paths taken by a search query through the
network. In the future, we aim to efficiently address the collusion problem such
that the requester is able to verify the policy compliance by just preparing a
single ABE encrypted message instead of a multiple encrypted messages equal
to the number of nodes in the path.

Acknowledgement. Portion of the work from Dr. Squicciarini was funded under the
auspices of National Science Foundation, Grant #1250319.
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Abstract. We present a novel anomaly-based detection approach capa-
ble of detecting botnet Command and Control traffic in an enterprise
network by estimating the trustworthiness of the traffic destinations.
A traffic flow is classified as anomalous if its destination identifier does
not origin from: human input, prior traffic from a trusted destination, or
a defined set of legitimate applications. This allows for real-time detec-
tion of diverse types of Command and Control traffic. The detection
approach and its accuracy are evaluated by experiments in a controlled
environment.

Keywords: Botnets · Network intrusion detection · Anomaly detection

1 Introduction

In this paper we present a new approach to detect botnet C&C(Command and
Control) traffic in an enterprise network. With the term enterprise network we
refer to a computer network that is exclusively used by an organization under
one common administration. Passive network-based detection of botnet traffic is
an attractive defense layer against botnets because of its low risk of compromise.
A basic approach is misuse detection, based on knowledge of malicious traffic,
such as signatures [14]. However, the dependency on knowledge of specific bot-
nets, makes it ineffective against new types of C&C communication. Anomaly
detection addresses this problem by observing deviations from normal traffic.
Detection by DNS anomalies is a popular approach, but obviously limited to
bots that use DNS in their C&C communication. Correlation-based approaches
can detect a broader range of C&C traffic, however they require multiple mali-
cious traffic instances for detection [7].

In contrast, our approach is capable of real-time detection of a broad range
of C&C traffic by just a single traffic instance. It is based on trust of traffic
destinations. Trust is a complex concept and can be defined in many different
ways. We use a context-specific definition of trust, derived from the more generic
definition of Olmedilla et al. [13]. In our context, which is an enterprise network
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with potentially bot-recruited computers, we define trust as the measurable belief
of an organization that a specific entity does not collude in a botnet. We assume
that the organization trusts its employees and a defined set of legitimate soft-
ware applications if deployed on an uninfected computer. On the other hand,
the enterprise computers including the installed OS and software instances, are
not trusted, since they can become compromised and recruited in a botnet.
Traffic destinations are initially not trusted, because they can be part of a C&C
infrastructure that is contacted by an inside bot. However, a destination becomes
trusted by transitivity, if its identifier origins from another trusted entity. The
identifier of a destination can be an IP-address, name, URI, or any other data
that is used to direct the traffic to a remote computer or resource.

Evaluation of the origin of destination identifiers enables the detection of
C&C traffic. Traffic is classified as normal, if the destination identifier origins
directly from: human input, a legitimate application, or the received content
from a trusted destination. All other destination identifiers are not trusted and
the associated traffic is classified as anomalous.

We will refer to this anomaly detection approach as Untrusted Destination
by Identifier Detection or UDI Detection. Section 2 describes the details of UDI
detection. Section 3 evaluates UDI detection by experiments with real traffic.
Section 4 elaborates evasion possibilities. UDI detection is compared with other
work in Sect. 5. Finally Sect. 6 concludes and proposes future work.

2 UDI Detection Approach

We assume the typical scenario of client computers in a segment of an enterprise
network, protected by a stateful firewall. This enforces inside bots as the initiator
of C&C communication(phone home). All traffic is passively captured by the UDI
detector and organized in traffic flows. The detector evaluates the egress flows
on trust of their destinations. An egress flow is only classified as normal if its
destination is trusted. Ingress flows inherit the trust and anomaly state of the
associated egress flow.

For each new egress flow, trust is determined by its destination identifier in
three consecutive stages as shown in Fig. 1.

The first stage tests the presence of the destination identifier in a prede-
fined set of legitimate destinations, used by trusted applications. This typically
includes destinations of servers for software updates, browser home pages, and
local management traffic. Flows to these destinations are classified as normal
and not further evaluated.

The second stage tests if the destination identifier matches a reference that
was received in the payload of a prior ingress flow from a trusted destination.
Reference examples are URL’s in HTTP content and IP-addresses in DNS replies.
If the destination identifier matches a reference, the destination is trusted, and
the associated flow is classified as normal and not further evaluated.

The third stage evaluates the remaining destination identifiers on the likeli-
hood of being directly entered by a human. We assume that humans normally
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Fig. 1. Schematic overview of UDI detection.

enter destination identifiers that can be distinguished by their relatively low
complexity and high predictability.

The remaining destination identifiers represent untrusted destinations that
belong to flows that are likely automatically generated by illegal processes. The
combination of the three stages results in a system that can immediately detect
botnet phone home traffic, even if it has a low volume and uses popular traffic
types, to stay below the radar of existing Intrusion Detection Systems. The
passive traffic monitoring and real-time classification of UDI detection, allow for
implementation in an edge-router, or a network Intrusion Prevention System,
to prevent any contact between an inside bot and outside C&C entities. The
necessary deep packet inspection of traffic payloads and the management of a
set of known trusted legitimate destinations, are especially feasible in enterprise
networks.

2.1 Logical Destination Identifiers and Forward References

Before further elaborating UDI detection, we introduce the ldi (logical destina-
tion identifier) of an egress flow X, defined by Eq. 1.

ldiX = (host-idX , resource-idX) (1)

The host-id identifies the contacted remote host of flow X. It is directly repre-
sented by the remote IP address or a hostname, as defined by Eq. 2.

host-idX =

{
hostname(IPdest,X) if hostname(IPdest,X) �= null

IPdest,X if hostname(IPdest,X) = null
(2)

IPdest,X is the destination address of the egress flow. If this address is the result
of a DNS lookup, the hostname is obtained from a cache by hostname().

The resource-id in Eq. 1 identifies a specific resource of the remote host and
is extracted from the payload of the egress flow. An example of a resource-id is
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the path/querystring, used in a HTTP GET request. In this particular example
the complete ldi is very similar to a URI. A completely different example is an
ICMP flow of a ping. In this case the resource-id in the ldi is empty.

In case of a DNS lookup, the ldi of the associated egress DNS flow is defined
by the hostname that must be resolved instead of the IP-address of the involved
DNS server (Eq. 3). This allows for immediate detection during a DNS question
stage of C&C communication.

ldiX = queryX if X = DNS flow (3)

We define a forward reference as a data element in the payload of an ingress flow
that can be used as the ldi of a future flow. It can range from a URL in a HTTP
hyperlink to an IP-address in a DNS A-record. For UDI detection all forward
references in the payloads of ingress are stored in a list of trusted references.
Obviously, if the ingress flow is associated with an egress flow that was classified
as anomalous by an untrusted ldi, the forward references are not stored. The
size of the list remains limited by a maximum allowed validity time of forward
references, defined by cache properties of the observed computers (Fig. 2).

Fig. 2. The remote destination B of egress flow F3, identified by ldiB , is trusted because
it was referenced in a prior ingress flow F2 of trusted destination A.

2.2 The UDI Detection Algorithm

The three stages of Fig. 1 identify ldi’s of trusted destinations. After the three
stages, the remaining ldi’s represent destinations that are not trusted and their
associated flows are classified as anomalous. Algorithm 1 shows the complete
detection procedure.

– isEgress(X) is true if X is an egress flow
– IdentifyDestination(X) extracts the ldi from egress flow X according to Eq. 1

or 3.
– isLegitimate(), isReferenced(ldi), isUserSubmitted() are the tests of the three

consecutive stages of Fig. 1.
– getStatusofAssociatedFlow(X) is NORMAL or ANOMALOUS, depending on

the state of the associated egress flow of ingress flow(X).
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Algorithm 1. UDI detection algorithm
for each new flow X do

if isEgress(X) then
ldi = identifyDestination(X);
if isLegitimate(ldi) or isReferenced(ldi) or isUserSubmitted(ldi) then

X.Status = NORMAL;
else

X.Status = ANOMALOUS;
signalAnomaly(X);

end if
else

X.Status = getStatusOfAssociatedF low(X);
if X.Status = NORMAL then

extractForwardReferences(X);
end if

end if
end for

– extractForwardReferences(X)will extract and store forward references of flowX.

The string matching process in all three stages can be significantly simplified
by truncation of the ldi, typically by excluding the resource-id and reducing the
hostname to the second level domain name. We will refer to this as partial ldi
matching. It will reduce the size of the list of trusted destinations and simplify
the extraction of both ldi and forward refences. A disadvantage of partial ldi
matching is the increase of False Negatives, caused by accidental matches of
malicious ldi’s with trusted ldi’s. This will be discussed in Sect. 4.

3 Experimental Evaluation

We constructed a basic UDI detector as a proof of concept and evaluated its
accuracy in experiments with real traffic. We implemented the UDI detection
algorithm in C++ on a X86-64 PC with a Linux OS. It was inserted as a bridge
in a LAN. In addition to real-time detection, traffic was captured in pcap format
for offline evaluation by the UDI detector. To limit the complexity of payload
parsing, only DNS and HTTP payloads were inspected for forward references.
Partial ldi matching was implemented, by excluding the resource-id of Eq. 1 and
truncating DNS hostnames to the second level domain name.

We derived simple name-based features from [2,3], an [10], resulting in isUser-
Submitted()=TRUE if three conditions are met:

1. number of characters � C
2. number of non-letter characters � N
3. top level domain ∈ {set of popular human-input TLD’s (region dependend)}
We evaluated the accuracy of UDI detection with traces of both normal traffic
and malicious C&C-traffic in a controlled environment that allowed for testing
with a wide variety of legitimate and botnet traffic.
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3.1 Evaluation of False Positives

In the first experiment we evaluated False Positives by traffic of 40 selected cases
of preinstalled applications and web applications, all commonly used by students
of our university, such as: the use of email, popular social media, Google Maps,
the planning of a journey by Dutch public transport, WhatsApp, games and
downloading. Depending on the case, the traffic was produced by a Windows
7, Linux, or Android device. Although corporate traffic is expected to be less
diverse, we chose for this selection, to test the detector under difficult conditions.

The parameters of the function isUsersubmitted() were chosen: C=20, N=3
and a TLD set of {.com, .org, .net, .nl, .uk, .de, .gov}. Two particular cases
resulted in an excessive number of false positives (FPR > 0.5). The first case was
a download with Bittorrent. Since our implementation of UDI detection cannot
extract the peer IP addresses of encrypted tracker information, all P2P connec-
tions were classified as anomalous. The second case was an Android game that
continuously connected to different destinations. Since both cases are not repre-
sentative for corporate usage, they were excluded from further FPR calculation.

The traces of the remaining 38 cases contain 24362 flows with 54 % HTTP,
8 % of HTTPS, 36 % DNS, and 2 % of other traffic. Since all cases were produced
with freshly installed software, we assume no C&C traffic. Consequently every
flow, classified by the detector as anomalous, is regarded as a False Positive.
This resulted in a FPR of 0.0026 (64 False Positives in 24362 flows). Manual
inspection revealed that the majority of False Positives was caused by failures of
the detector to extract forward references from SSL payloads and complex web
scripts. We will also further elaborate this in Sect. 4.

3.2 Evaluation of True Positives

For the analysis of True Positives, five traces with a mixture of normal and C&C
traffic were composed. The normal traffic consisted of 8358 traffic flows, gener-
ated by the usage of the 30 most popular global websites, derived from rankings,
such as Alexa [1]. The C&C traffic consisted of isolated C&C conversations, cap-
tured from bots with different types of C&C communication. Ten copies of the
same conversation were injected in the normal traffic at equidistant times. We
used a self-developed tool that could modify timestamps and ephemeral ports
of the injected C&C traffic, to obtain a consistent composition of normal traffic
and ten similar C&C conversations. We composed in this way the five traces,
each with a different type of C&C traffic. Table 1 shows the number of measured
True Positives and the resulting DR (Detection Rate or True Positive Rate).

All injected C&C flows were detected, with the exception of Twebot, because
Twitter.com is a simple name that could have been entered by a human. In
addition Twitter.com was also referred by other legitimate traffic. A solution for
this problem is proposed in the next Section.
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Table 1. Measured FPR and DR of UDI detection with 5 different infected traces.

Trace C&C type C&C dia-
logues

C&C flows TP FP DR FPR

Top30 + Kelihos [6] DNS + HTTP 10 40 40 16 1 0.0019

Top30 + Storm [8] P2P 10 20 20 16 1 0.0019

Top30 + Twebot [12] Twitter 10 60 0 16 0 0.0019

Top30 + TBOT [5] TOR 10 20 20 16 1 0.0019

Top30 + Morto [11] DNS 10 20 20 16 1 0.0019

4 Evasion of UDI Detection and Solutions

If a C&C flow is erroneously classified as trusted by at least one of the three
stages, UDI detection is evaded. For the first and second stage of Fig. 1, this
is only possible if the adversary can communicate from a trusted destination.
It requires control over a trusted destination in addition to the local bot. This
makes the evasion effort relatively high in an enterprise environment with a
limited number of trusted destinations. Evasion of the third stage is possible
by the use of a simple ldi that could origin from human input. This also raises
problems for the botnet, since human-friendly hostnames are often occupied and
in case of a takedown, replacement is difficult. Addition of more features and
machine learning can result in a more accurate human input classification that
can adapt to specific situations.

Unfortunatly the partial ldi matching in our proof of concept facilitates eva-
sion, because the ldi is not completely evaluated. This was demonstrated in our
experiments with Twitter C&C traffic. Although the complete ldi of the con-
tacted account was Twitter.com/tlab32768, including the timeline of the mali-
cious account, partial ldi matching only evaluated the hostname Twitter.com,
which resulted in a classification as trusted.

The solution is a complete ldi match instead of a partial, however, this
requires an accurate matching process that can identify all resource-id’s and for-
ward references in payloads. SSL/TLS encryption and complex script
constructions in web pages complicate the matching process. An SSL/TLS inter-
ception proxy with associated public-key certificate on all computers in an orga-
nization [9] allows for inspection of the encrypted traffic. Browser emulation in
the UDI detector improves the identification of ldi’s and forward references in
complex payloads. The two mentioned techniques enable UDI detection with full
ldi matching, however, but the accompanying complex and processing-intensive
payload analysis requires further research.

5 Related Work

Detection of C&C traffic by flow-based analysis over several consecutive stages
that isolate the malicious traffic, is a common approach. Strayer et al. propose



C&C Traffic Detection by the Identification of Untrusted Destinations 181

multistage detection for C&C traffic over IRC [15]. Unlike our UDI detection,
the approach is limited IRC C&C traffic and uses statistical flow-based and
topological properties that depend on the presence of multiple infected bots.

The second stage of our UDI detector tests if the ldi of a new flow is refer-
enced in prior ingress flows. Zhang et al. propose CR-miner [17], a system that
detects malicious automatic traffic, by evaluating traffic dependencies between
connections and user events. In contrast to our method CR-miner is imple-
mented in the observed computer itself, to observe user and process properties.
This significantly increases the exposure level to potential malware. CR-minor
associates flows by the Referer field in the HTTP header. This makes the app-
roach only applicable to HTTP traffic that supports this field. It can be easily
manipulated by malware, since it is produced in a potentially infected computer.
UDI detection is not sensitive for this type of tampering, because forward ref-
erences are captured from payloads of ingress flows that origin from other com-
puters and because ldi’s cannot be manipulated, without changing the egress
flow destination.

Burghouwt et al. use causal relationships between flows to detect botnet
C&C traffic [4]. Instead of the destination, detection is based on the direct cause
of a flow. Unlike UDI detection this demands for the accurate measurement of
delay between certain events and induced new flows. Another difference is the
required monitoring of user events by a software agent or a hardware device.

Whyte et al. present a detector of scanning worms by determining IP-
addresses that are not earlier seen in DNS-replies or received HTTP-data [16].
This can be seen as a special case of flow referral, that isolates flows with unref-
erenced destination IP-addresses, as is often seen with worms.

6 Conclusions and Future Work

UDI detection detects different types of stealth C&C phone home communication
in an enterprise network by the trustworthiness of contacted destinations. It
evaluates the ldi’s in three different stages. Advantages of UDI detection are:
real-time detection of even a single C&C flow, detection of zero-day traffic and
a low exposure to malware.

Partial ldi matching simplifies the UDI detector implementation. The results
of experiments with samples of C&C traffic and normal traffic support the detec-
tion approach.

In future work we plan improvement of UDI detection by complete ldi match-
ing, to detect also C&C traffic over popular social media. This requires SSL traffic
interception, payload parsing by browser emulation, and the selection of more
features with an appropriate machine-learning algorithm for a more accurate
and adaptive classification of human input.
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Abstract. Sybil attack is one of the major threats in distributed systems.
A number of colluded Sybil peers can pollute and disrupt the system’s key
functions. The main idea of defense against Sybil attack is to distinguish the
Sybils according to specific rules. Prior works are all limited by attack edges, the
connections between normal and Sybil peers. The problem is that the number of
attack edges could be huge, resulting in low accuracies. Besides, Sybil peers
always present in groups and bring about the bridge problem, which is always
ignored. In this paper, we propose KFOut, a light weighted framework for Sybil
detection. At the heart of KFOut lie a trust model of social relations and a
security mechanism of path notification of K-different paths, which can conquer
the bridge problem effectively. We prove through experiments that KFOut can
accept normal peers and reject Sybil peers both with high accuracies.

Keywords: Sybil attack � Detection � Social relation � P2P system

1 Introduction

Due to the nature of P2P systems, such as anonymity [1] and self-organization [2, 3],
many applications are vulnerable to Sybil attack, which refers to the threat resulting
from the arbitrary use of fake identities.

In P2P systems, every user is identified as a peer. Generally a single user creates
only one peer, which makes a fair environment for everyone. However, in some cases if
a malicious user creates a number of fake peers, he may break down the fairness and
take advantages in system functions, such as voting [4, 5] and rating [6]. In using of
these fake peers, the adversary may disrupt the key functions of the system. And even
worse, if he controls enough fake peers, the trust relationship will be manipulated and
the whole system may be in charge.

It has been proven that the only way to eliminate Sybil attack is to build a trusted
identify authority [7], in which every user’s real life identity is kept and identified.
However, it’s unpractical lying in some implementation problems and information
leaking concerns. As a result, researchers refer to defense mechanisms to restrict the
corruptive influences. Leveraging social network turns out to be the most effective
approach [8, 9].

In this paper, we present KFOut, a decentralized Sybil-resilient protocol. We aim to
detect Sybil peers with social relations. Honest peers are accepted, while the Sybil
peers are rejected. The contribution of this paper is three fold. First, KFOut presents
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high accuracies both in accepting honest peers and rejecting Sybil peers. Second, we
efficiently solve the bridge problem, which refers to the problem that some Sybil peers
act as bridges to make the other Sybil peers to be accepted. Third, KFOut is light-
weight, which is essential in networked systems.

The rest of this paper is organized as follows. In Sect. 2, we introduce the system
models. Key thoughts and the details of KFOut are described in Sect. 3. The perfor-
mance evaluation results are presented in Sect. 4. Related works are reviewed in
Sect. 5. And finally, discussion and conclusion are in Sect. 6.

2 System Model

In P2P networks, users are represented as peers. Every peer is a digital identity of a
user. However, it’s not necessary that every user has only one peer. Our system
includes N peers, manipulated by M users (N>M). For the rest of this paper, we use
peer and user interchangeably unless explicitly mentioned.

We’re motivated to reduce the power of Sybil attack by rejecting Sybil peers. This
is fulfilled with the use of social relations. Through communication and participation in
system affairs, peers build trust relations with each other. We believe that every peer
has his experiences to distinguish Sybil peers, and an honest peer would not like to trust
and interact with a Sybil one. If a peer trusts another, a relationship is built. In our
system, every peer defines a list of trust relations according to his historical interactions
and local experiences. The peers in the list are named as the neighbors or friends.

The relations in our model are built on daily interactions. Different from the tra-
ditional interactions of sending and receiving service, the socialized interactions can’t
be fulfilled only by machines or agents. Instead, it takes human efforts. Thus although a
Sybil user can create many Sybil peers, limited by time, energy and other resources, he
cannot maintain social relations for all of them. In fact, in practice, a Sybil user only
focuses on one or two certain peers, and uses them to interact with others. These peers
are known as the pretended peers. As for the rest, they are poorly connected and named
as the fake peers. Since it takes human efforts to maintain a pretended peer, the count of
pretended peers would be small. By contrast, the count of fake peers can be huge since
it doesn’t need many efforts to register a peer. This assumption has been exploited and
examined in many other works [8–11]. In this paper, we use it as the basic hypothesis.

In our model, a peer is chosen to be the verifier. Once the verifier has decided to
believe that a peer is honest, we say that the verifier accepts that peer. Otherwise, we
say that the verifier rejects that peer. A good protocol aims to accept most honest peers
and reject most Sybil peers. In a centralized setting, the server can perform as the
verifier. However, in a decentralized setting such as P2P networks, every peer could be
his own verifier.

It’s noticed that we don’t aim to figure out all Sybil peers. Since the power of Sybil
attack is determined by the number of Sybil peers, and the majority of them are fake
peers. If we detect and reject the fake ones effectively, the rest pretended peers are
powerless to launch an attack. So in this paper, we mainly focus on the detection of
fake peers.
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3 Protocol Design

In this section we first give the definition of K-similar paths, and then describe our
protocol in details.

3.1 K-Similar Paths

We detect Sybil peers on the basis of social relations. All the relations construct a social
network, which is described as a social graph G. We use the trust paths as clues to
prove honesty. If a peer has many paths linking from others, it indicates that he’s
trustable and would not like to be a Sybil peer.

However, the problem is that the Sybil peers never present along, but in groups.
The pretended peers may get enough trusts and share with the fake ones. Here the
pretended peers act as bridges, so we name the problem as the bridge problem.

The bridge problem is crucial because it disrupts the effectiveness of detection
methods. However, in many prior works it’s often ignored. We conquer the bridge
problem through extra restrictions of trust paths.

For two paths P1 and P2, P1 ¼ fv1; v2. . .vng and P2 ¼ u1; u2. . .unf g, if v1 ¼ u1,
v2 ¼ u2, … vi ¼ ui, we say that P1 and P2 satisfy i-similar. If K is the max value of i,
we define the coefficient of similarity (cos) of P1 and P2 is K.

For example, if p1 ¼ fq; s; tg, p1 ¼ fq; s; pg, then P1 and P2 satisfy 1-like and
2-like, and the cos is 2.

Let’s explain how to use the K-similar paths to solve the bridge problem with the
topology of Fig. 1. We assume that u0 has got a path P with a length of n. The other
peers can share paths from u0. For example, u1 can get P; u0f g from u0. Then u5 can
get four paths P; u0; u1f g, P; u0; u2f g, P; u0; u3f g and P; u0; u4f g from u1, u2, u3 and
u4. Finally u9 gets sixteen paths totally. And this explains how the Sybil peers share
paths and how the bridge problem happens.

There’re four paths of u9 originating from u1, P; u0; u1; u5f g, P; u0; u1; u6f g,
P; u0; u1; u7f g and P; u0; u1; u8f g. Now let’s assume that only paths with smaller cos

than K can be taken into account. It’s clear that all the four paths above are (n + 2)-
similar. If we define K > n + 2, then all of them will be accepted. But if we define

u5 u6 u7
u8

u1 u2 u3 u4

u0

u9

Fig. 1. An example topology of Sybil group
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k = n + 2, then only one of them will be accepted and u9 can finally get four paths only.
What’s more, if we denote K < n, then all these peers can only get one path because the
cos between any two paths is larger than K.

3.2 The Procedure of Notification

Our framework is built in a decentralized environment. Initially, everyone only knows
its direct neighbors, but have no knowledge about others. The first step is to inform the
others the paths leading to the verifier. We achieve this through a path notification
procedure.

Every peer should define its own methods to encrypt and decrypt. We represent
them as encryptðÞ and decryptðÞ respectively. They are out-of-band, any approach is
feasible.

First, the verifier v initials a path P0 ¼ vf g and a token T0. After encryption on T0,
both the path and the encrypted token are sent to v’s neighbors in notification messages.

If a peer ui receives a notification message, it should first check the effectiveness of
the embedded path P. There’re some relevant conceptions need to define first.

(a) The length of P is shorter than the max hop /.
(b) ui does not exist in P.
(c) The cos between P and any path in ui‘s path table is smaller than K.
(d) P is shorter than its K-similar path in ui‘s path table.

If P is effective to ui, then a\ b\ c[ dð Þ should be satisfied. In that case, ui need to
update its path table. First P is added in. Then all the K-similar paths are discarded if
exist. Once ui finished updating, the updates need to be propagated to the neighbors in
new notification messages.

The new notification messages also consist of both of the new path and the new
token. The new path is generated by appending ui to the end of P. And the new token is
a re-encryption on the original token. Anyone that receives such a message should
repeat the procedures above until the path become ineffective.

3.3 The Procedure of Aggregation and Verification

Once all peers have finished notification and no long receive any notification messages,
the verifier can carry out admission control to decide which one to accept.

Anyone who wants to be verified first submits its path table to the verifier. The
verifier will decide whether to trust the peer or not according to the count of paths
submitted. But first, the credibility of the paths needs to be checked because the Sybil
peers may disobey the rules and make up inexistent paths arbitrarily.

Two sets, VS and US, are defined to store the paths has been verified and wait to be
verified respectively. VS is initialized as null, while US consists of all the submitted
paths.

Every time if US is not empty, the shortest path is chosen and validated with its
token as the algorithm shown in Algorithm 1.
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If US becomes null, it indicates that all the paths have been validated and all the
credible ones have been kept in VS. Then the verifier can distinguish the Sybil peers
according to the counts of credible paths. A threshold d is defined. A peer is accepted as
long as it provides more than d credible paths. It’s worthy to say that the value of d is
adjustable. A bigger d rejects more peers while a smaller d accepts more peers. An ideal
protocol accepts most honest peers but rejects most Sybil peers.

4 Experiment Result

In this section, we evaluate the effectiveness of KFOut in synthetic networks. The
results are discussed below.

4.1 Experimental Methodology

We synthesize our networks as the methodology of Barabasi and Albert [12]. A small
fraction of peers are randomly chosen to be the pretended peers. Additional fake peers
are introduced to establish Sybil group, which is connected as the same methodology.

Two factors are used to characterize the system performance, the accept rate of
honest peer (AR) and the reject rate of Sybil peer (RR). We call them accept rate and
reject rate for short respectively. Our goal is to achieve high rates for both of them.

First we test the performance in different scales of network. We generate three
networks: a 1000-peer network, a 5,000-peer network and a 10,000-peer network. The
static properties of these networks are shown in Table 1. 10 % of the peers are chosen
to be the pretended peers. Fake peers are introduced with an equal number.

Table 1. Static properties and average node degrees of synthetic networks

Peers Links Avg. degree

1,000 20,320 19.352
5,000 103,027 19.672
10,000 197,609 19.820
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Figure 2 measures the fractions of AR and RR under these three networks. The
value of d represents the threshold of acceptable paths. A peer can be accepted as long
as it provides more than d credible paths. In the beginning, the value of d is small, so
almost all the peers can be accepted. As the increase of d, more Sybil peers are rejected
because the lack of relations. Some honest peers are also rejected for the same reason.
Finally, the value of d has increased too much, both the honest and the Sybil cannot get
enough paths. So the RR is high but the AR is low.

It’s obvious that a higher AR results in a lower RR. However, our goal is to gain
high values for both of them. So a proper d is needed to get a balance. As shown in
Fig. 2, for each network, the two curves cross with each other. We define the best
performance at the cross point, where AR and RR are similar to each other. In the rest of
this paper we use the same definition when referring to the best performance.

4.2 Impact of the Count of Sybil Peers

In our framework, there’re two kinds of Sybil peers, the pretended and the fake. We
also investigate the impacts of them to the performance of KFOut respectively.

We synthesize a network with 5000 peers. First 1000 peers are chosen to be the
fake peers. The number of the pretended peers is increased from 0 to 1000. Then 1000
peers are chosen to be the pretended peers, and the number of the fake peers is
increased from 10 to 3000. Figure 3 depicts the distribution of AR and RR.
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Number of Acceptable Paths ( )
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te AR with N=1000
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Fig. 2. Accept Rate(AR) and Reject Rate(RR) with different scales(N) as a fraction of the
threshold value of acceptable paths(δ).

Fig. 3. Accept Rate(AR) and Reject Rate(RR) under the number of pretended peers (a) and fake
peers (b)
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We can see that the curves give a decline as the increase of the count of pretended
peers. Since the pretend peers are similar to honest peers in behavior and connections,
it’s easy to understand that if a Sybil user creates more pretended peers, he get more
convenience to manage them to be accepted, because there’re more paths to share. We
can see that the experimental results are inspiring. Even if 20 % of the peers are
pretended, our system can still get a promising result, both the AR and the RR are as
high as 80 %.

It’s interesting to see that as the increase of the count of fake peers, both the AR and
the RR increase too, which is different to the pretended peers. That’s because the
additional Sybil peers only contribute to the total number of Sybil peers, but not the
connections with the honest. And it may result in a disproportion between honest peers
and Sybil peers.

The experiment results suggests that for a Sybil user, if he wants to enhance the
power of his Sybil peers, he should focus on the pretended peers and find a proper
count for the fake peers. If the fake peers are few, it’s hard to detect for the defending
system, but the power of the Sybil group is also limited. On the contrary, if the number
is high, the Sybil group can be powerful but is easy to be detected.

5 Related Works

Although Sybil attack is defined nearly by Douceur [7], it has been universal in P2P
systems long before that. Despite the fact that it’s not possible to eliminate Sybil attack
completely nowadays, many works have been attempted to mitigate the corrupt threat.

Resource testing is built on the assumption that every identity consumes some
resources and a user’s resources are limited. So some fierce tests, such as check for
computing ability, storage ability and network bandwidth, the count of IP addresses,
are proposed on the identities [13, 14]. The intensity of every test is designed delicately
so the ordinary users can afford but the Sybil users would not because they have to
handle for multiple identities. However, this method can only be used in some specific
fields and taking such a test would be exhausted because the test machine consumes the
same resource as the machine being tested. Besides, the facilitation of NAT and botnet
has also made it impossible to detect the Sybil through that way. So researchers turn to
defense mechanisms to reduce the influence of attack.

SybilGuard [11] is the first attempt to deal with Sybil attack with social network. It
assumes that malicious users can create many identities but few trust relations, thus the
poor connectivity of the Sybil peers may result in a disproportionately small cut
between honest peers and Sybil peers in the graph. This assumption has also been
adopted by many other works. SybilGuard is decentralized and has been improved as
SybilLimit [15], which leverages the same insight as SybilGuard but provides more
precise results.

Gatekeeper [10] is another decentralized protocol. It uses a ticket distribution to
detect Sybil peers. An admission controller randomly chooses multiple peers as ticket
sources to distribute tickets. Each peer who receives tickets should keep one and
propagate the others to its direct neighbors. When the ticket distribution is finished, the
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admission controller examines the number of ticket that the others receive. Sybil peers
are separated because of the poor connectivity.

SybilInfer [16] is a typical centralized algorithm that uses a Bayesian inference
approach to distinguish the Sybil. The main idea is that in the social network, the
mixing between honest peers is fast, while that between honest peers and Sybil peers is
slow. So the problem of computing the set of honest peers can be related to the problem
of computing the bottleneck cut of the graph that result in slow mixing.

Another centralized algorithm is SumUp [17], which uses adaptive vote flow to
prevent from arbitrarily manipulating voting results. The goal of SumUp is to use a
Sybil resilient manner to collect votes, some of which are from Sybil identities. The
number of l votes is limited to no more than the number of attack edge.

Sybil attack is not unique in P2P systems. Many other systems are vulnerable to
Sybil attack too. There’re also some researches aiming to using the system features to
deal with Sybil attack on a system basis, such as in commercial sites [6], recommender
systems [18], Ad hoc [19] and wireless networks [20].

6 Conclusion and Discussion

Sybil attack is prevalent in P2P systems. Many fields and applications are vulnerable to
Sybil attack. The openness of Internet makes it easy to launch but difficult to detect. In
this paper, we presented KFOut, a decentralized defending protocol against Sybil
attack. KFOut leverages social relations to detect Sybil peers. The basic assumption is
that the fake peers lack connections with the honest peers, which results in an
unsymmetrical topology in social graph. Simulation results demonstrate that KFOut
can detect Sybil peers with a very high accuracy. Even in the worst cases, KFOut can
accept most honest peers and reject most Sybil peers.
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Abstract. Publish-subscribe protocols offer a unique means of data dis-
tribution, that has many applications for distributed systems. These pro-
tocols enable message delivery based on subscription rather than specific
addressing; meaning a message is addressed by a subject string rather
than to a specific recipient. Recipients may then subscribe to subjects
they are interested in receiving using a variety of parameters, and receive
these messages immediately without having to poll for them. This for-
mat is a natural match for anonymous delivery systems: systems that
enable users to send messages without revealing their identity. These
systems are an area of great interest, ranging from messaging relays like
Tor, to publication systems like FreeHaven. However, existing systems
do not allow delivery based on topics, a mechanism which is a natural
match for anonymous communication since it is not addressed based on
identity. We concretely describe the properties of and propose a system
that allows publish-subscribe based delivery, while protecting the identi-
ties of both the publishers and subscribers from each other, from outside
parties, and from entities that handle the implementation of the system.

Keywords: Anonymous · Publish subscribe · Push · Multicast

1 Introduction

In the publish-subscribe model, messages can be published to topics, rather than
addressed to recipients. These are then multicast to the entire set of recipients
that have previously subscribed to those topics. These topics can be anything
from a set of specific match strings to ranged attributes on a multi-dimensional
array. These types of messaging systems are typically implemented using a third
party who manages subscriptions and acts as a relay between publishers and
subscribers, though distributed systems have been implemented which allow for
greater scalability.

This paradigm adds a different kind of flexibility in that senders and recipi-
ents are decoupled and can operate without even knowing of each other’s exis-
tence. This can be a more suitable mode of operation for many kinds of systems.
For example, a chat or newsgroup application is more cleanly implemented where
the speaker does not have to obtain and maintain an enumerated list of all peo-
ple who are interested in what he has to say. In a normal addressing system, he
would have to be aware of all the people he means to send messages to. In a
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 195–211, 2015.
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publish-subscribe system, he only needs to publish his message on a topic, and all
interested readers can subscribe to those topics without either party knowing of
the other. Another possible application is a search protocol in a document pub-
lishing and distribution system, where data providers subscribe to topics they
provide and queriers publish messages indicating their interest. Data providers
would then become aware of all the people searching for their content and could
initiate a transfer. Another system that would benefit from publish-subscribe
would be a notification system to mobile users that are interested in events on a
geographical basis. This could be implemented using ranged attribute subscrip-
tions filled in via GPS coordinates. Any system where addressing is preferably
based upon the nature of the content rather than knowledge of the recipient can
benefit from a publish-subscribe architecture.

Another area of interest is anonymous communication systems, wherein users
can contact each other and exchange data while protecting their identities from
each other and from outside parties. These include messaging systems and relays
such as mixnets [4,11] and onion routing networks [13], and publishing sys-
tems like FreeHaven [9] and FreeNet [6]. Anonymous relays allow users to send
addressed messages while protecting their identities from the recipients and
against all third parties. They may also allow users to create pseudonymous
“addresses” that they can announce, whereby others may contact them without
knowing who their true identities. Anonymous publishing systems allow users
to store and advertise documents online that can then be freely accessed by the
public without revealing the identity of the authors. They may also protect the
identities of readers who are either accessing these documents or using search
protocols that allow them to find documents of interest to them.

We introduce a new system that achieves anonymous publish-subscription.
We do so by creating a network of multi-cast nodes using an existing point-
to-point anonymous communication network (such as an onion-routing network
like TOR [13]). This supports a push publish-subscribe architecture: messages
will be delivered to recipients without needing to be polled or requested on an
individual basis. It also supports publication topics as string matches, integer
ranges, and multi-attribute ranges mapping integer values to multiple labels.

1.1 Why Merge Publish-Subscribe with Anonymous
Communication?

Anonymous communication systems are of clear value for protecting sensitive
data or interests. However, to date, we are unaware of systems that work on
a publish-subscribe basis while providing any sort of clearly defined anonymity
guarantees for sender or receiver. Although there are some systems that claim
to provide anonymous publish/subscribe, neither the difficulty of identifying
publishers nor the efficiency of the system is thoroughly analyzed. This is unfor-
tunate, since the publish-subscribe paradigm is a natural match for anonymous
communication. In many scenarios which require anonymous communication,
there are two separate problems: how to establish relationships between sender
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and receiver when neither knows the other’s identity, and then how to anony-
mously deliver their messages. Many anonymous communication systems do not
address the first problem of how to establish anonymous relationships where
meaningful communication should occur; this is left as outside the scope of the
system. But by its very nature, publish-subscribe aims to support communi-
cation based on content rather than by identity, and users need not concern
themselves with the details of finding the entities they aim to communicate with
anonymously. It thus naturally solves this issue.

Such a system could for example allow for newsgroups and real-time chat
applications that discuss sensitive topics like medical conditions or radical polit-
ical movements such as discussions between members of Falun Gong or Arab
Spring. Since in a group discussion a user is already sending messages without
requiring awareness of the recipients, it is a natural step to provide a guarantee
that this identity remain anonymous.

These applications could not be efficiently met by existing anonymous com-
munication systems, which do not support any form of multi-cast and work based
on known-recipient addressing. Nor could they be met by anonymous publish-
ing systems, which work on a pull-basis rather than a push-basis. This makes
them unsuitable for real-time applications. Publish-subscribe systems naturally
provide flexibility that is likely to be useful for any type of anonymous commu-
nication need, since they do not require assumptions about participant identity
by other participants.

1.2 Paper Organization

In Sect. 2 we overview related work on the subject. Section 3 concretely states
the framework that our systems aim to fulfill. We present the system design
itself and compare it to naive approaches in Sect. 4. Implementation details and
performance results are given in Sect. 5. We summarize our results in Sect. 6.

2 Related Work

Non-anonymous publish subscribe systems were developed a great deal by
TIBCO, who developed the Rendezvous system [14], which introduced wild-
card topic matching, used a de-centralized architecture which supported topic
priority in routing. The most currently used publish-subscribe system is Pub-
SubHubbub [10]. PubSubHubbub is an extension of the RSS web feed protocol,
but improves upon it by implementing the delivery of messages using a push
mechanism. In other words, feed updates are pushed from the sender immedi-
ately to the receivers rather than waiting for them to poll the feed, making it
a publish-subscribe protocol. Similarly, there are cloud-based content distrib-
ution mechanisms designed to ensure secure, but not identity-hidden, delivery
of messages [3,7,15]. None of these systems, however, provide any anonymity
protection. They are intended to be used between openly known clients.



198 B. Vo and S. Bellovin

There are numerous anonymous data distribution systems besides those that
work on a publish-subscribe basis. Tor provides a simple anonymous routing
network that relays messages through a number of nodes with layered encryption,
such that unless an attacker can either compromise all nodes on the path or
monitor both the beginning and end, the sender cannot be identified [13]. Since
messages are addressed, this is not a publish-subscribe system of delivery. Also,
the recipient’s identity is not protected. One thing a publish-subscribe system
handles well that an addressed system does not is broadcast delivery of messages
to a wide audience. There are anonymous systems that do this, but not using a
publish-subscribe model.

One well known system for widescale document distribution is the Free Haven
project [9], a peer-to-peer file-sharing system. In this system, users can publish
documents, making them freely available without revealing their identities. It is
based on a community of servers that distribute storage of split shares of pub-
lished documents. Recipients broadcast requests throughout the storage space,
and those with pieces of interest return them encrypted. The documents are asso-
ciated with private key encryption pairs to maintain ownership through updates
and deletions.

Another similar system is FreeNet [6], also a peer-to-peer file-sharing sys-
tem, but one with routed document requests rather than universally broadcast
ones. Documents are associated with hashes of descriptive keyword strings, and
migrated over time so that similar documents tend to migrate to geographically
close servers on the network topology. Queries are then sent on a hill-climbing
search over these lexical hashes. It is more scalable, and has more flexible doc-
ument retrieval (keyword search rather than simple unique-name lookup) than
FreeHaven, however it does not protect recipient identity, only that of the doc-
ument owners.

Finally, another approach to anonymous distribution is TOR hidden ser-
vices [13]. These allow a user to create a pseudonymous address through which
they may be reached anonymously through the TOR network. Other users can
then initiate connections through this address without revealing their own iden-
tities or knowing who they are contacting behind the pseudonymous address.
These are not inherently multi-cast systems; each recipient must establish an
individual connection, which creates additional load on the server when many
clients are involved.

In all of these anonymous distribution systems, since users must expressly
request messages, they are not push systems and furthermore do not allow for
continuous messages based upon a topic. They also are not generally intended for
low-latency delivery of messages; a distributor stores a message to the network
whereupon they will be fetched by an interested party at a later time. They are
thus not publish-subscribe systems. Document publishing systems such as these
are suited to applications where a sender wishes to send a limited amount of data
in a short time to be made available over a much longer time period. Publish-
subscribe systems, however, are better suited to applications where there will
be an ongoing stream of data relating to a specific subject, and where messages
have a shorter lifespan.
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The only existing publish-subscribe system we are aware of that aims to pro-
vide anonymity is by Datta et al. [1,8]. They propose a routing system based
on maintaining multiple layers of weakly connected directed acyclic graphs. In
this system, one or more sink nodes, which may change over time, become dis-
semination points receiving all publications and forwarding them to subscribers.
However, anonymity is provided only by stating that the node a receiver gets a
message from may not be the original publisher. However, an adversary would
still know that node could possibly be an original publisher. Without proba-
bilistic analysis of this possibility, it is difficult to say how well protected the
publishers actually are. Also, no mention is made as to how difficult it is to
identify subscribers in the system. Further, the system is neither analyzed for
efficiency and scalability, nor implemented, so it is unclear at what cost this
protection comes. There is no guarantee that the shape of the directed graphs
that forms over very large networks scales in an efficient manner.

3 Anonymous Publish-Subscribe

Our system will aim to provide publish-subscribe functionality while protecting
sender and receiver identities. This means that in terms of functionality, it will
allow users to subscribe and unsubscribe to topics, and publish to topics, ensuring
that published messages on a topic are delivered to all of its subscribers. More
concretely, the system provides the following functions to its users:

– Subscribe(u, t): User u specifies interest in topic t. The system maintains
an internal, protected subscription of the tuple (u, t). u listens for messages
sent with the topic t.

– Unsubscribe(u, t): The system removes any subscription of (u, t) if present,
and u ceases to listen for relevant messages.

– Publish(m, t): A message m is sent into the system under topic t. For every
subscription tuple (ui, ti) s.t. t matches ti, m will be sent to ui.

In the above functions, the nature of a topic and what constitutes a match
between publication and subscription topics are left undefined. A variety of dif-
ferent matching types can be supported by a publish-subscribe system depending
on what it is trying to accomplish. The most basic of these is exact string match-
ing; in other words users subscribe specifically to a unique topic, and receive
messages that are published exactly to that topic string. This is useful for estab-
lishing communication between defined clusters of users, such as newsgroups.

We will also deal with less concrete groupings, and allow users to instead
define communication on one or more dimensions of ranges so that we can define
geometric shapes of users. In such a case, a topic would consist of one or more
labels, each being associated with an integer value within some pre-defined and
limited range. A subscription would then be a list of label-range pairs indicating
what range of values to accept along each axis. This can be useful for applications
such as geographically based communication, or alert systems that are notified of
values in certain ranges generated from physical sensor networks. Thus we have
matching types on strings, integer ranges, and ranges across multiple dimensions:
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– Labels: Each topic is a human-readable string. A publication and subscription
are deemed to match if their topics are identical.

– Ranges: A publication topic is a numerical value v (either integer or float).
A subscription consists of a tuple (l, h) s.t. l ≤ h. A publication and subscrip-
tion are deemed to match if l ≤ v ≤ h.

– Multi-attribute ranges: A publication topic is a list of tuples (t, v). A subscrip-
tion topic is a list of tuples (t, l, h). A publication and subscription are deemed
to match if for every tuple in the subscription (ts, ls, vs), there exists at least
one tuple in the publication (tp, vp) s.t. ts = tp and ls ≤ vp ≤ hs.

Our system will be able to make guarantees that messages will be success-
fully delivered. It should also make guarantees in regards to the amount of excess
delivery that occurs. Delivery of messages that were not subscribed to is accept-
able to an extent, since the receiver can simply ignore them himself. By default,
these systems are not designed to prevent users from subscribing to any topic
of their choosing, so it is not considered a leakage for them to receive extra
messages. If it were desirable to prevent such leakages, that could be achieved
independently using encryption systems for each topic. Hence, for the underlying
message delivery system, excessive message receipt is an efficiency issue, not a
security one. To be called anonymous, the system should ensure that using the
basic publish and subscribe functionality does not compromise one’s identity. In
other words, we aim to prevent interactors and third parties from identifying
two parties: the publishers and the subscribers. The specifics of this protection,
which parties are prevented from identifying the participants and under what
circumstances, are dependent on the implementing system.

We begin with correctness definitions:

– Completeness: For every publication (mp, tp) and subscription (us, ts), if tp
and ts match, then mp will be delivered to us.

– Non-excessiveness: For every publication (mp, tp) and subscription (us, ts),
if tp and ts do not match, then mp will be delivered to us with probability
Pr ≤ ε.

These capture the requirement that messages be delivered to those who are
subscribed to them, and that the system not produce undue load by delivering
them to a large amount of uninterested parties. More complicated are the security
definitions. First is publisher anonymity: we will guarantee that no adversary can
learn the identity of the publisher of any message.

Definition 1. Publisher anonymity: Let p be the publisher of message m, and
let H be the set of h honest users in the system. Let A be any collaboration of
entities not in H, including subscribers, entities related to the operation of the
system, outside observers, and other publishers. These entities may enter any
number and type of published messages as publishers,and observe the outputs as
subscribers. A cannot then identify p given m with probability greater than 1

h .

We allow an adversary to collude with or compromise any number of other
users (both publishers and subscribers) in the system. They may then for any
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length of time take any of the actions those entities might take: publishing mes-
sages, subscribing to topics, and observing the messages received as a result of
those subscriptions or through the normal routing of other messages in the sys-
tem. They may do so in an adaptive fashion, choosing what types of publications
or subscriptions to issue based on observations from previous messages, including
the one they are attempting to de-anonymize. They may also attempt to subvert
the system by refusing to forward messages the protocol would otherwise require
them to, and observe the results of such actions in terms of additional traffic
sent. We claim that our system will prevent such an adversary from identifying
the publisher of any given message with probability any better than random
guessing from amongst the pool of non-compromised users.

Next is subscriber anonymity, which encapsulates the protection of the iden-
tities of users who are subscribed to a topic. There are two types of anonymity
we wish to protect:

Definition 2. Topic subscriber anonymity: Let t be a topic for which there are
s subscribers out of a group of S total participants in the system. Let A be any
collaboration of entities having As subscribers, and possibly including entities
related to the operation of the system, outside observers, and publishers. These
entities may enter any number and type of published messages as publishers,and
observe the outputs as subscribers. A cannot identify determine if user u is sub-
scribed to t with probability greater than s−As

S−As
.

This captures subscriber anonymity in the first direction, an adversary should
not be able to identify the subscribers of a given topic with probability greater
than random guessing. Again, we assume an adversary may compromise any
number of users in the system, and learn whatever information it can by taking
all actions normally available to those compromised users. It may again also learn
adaptively, using observations from previous messages to form new publications
and subscriptions to enter into the system. It may do so indefinitely over the
lifetime of a subscription. We claim our system will prevent such an adversary
from identifying any subscriber of a given topic with probability better than
random guessing from amongst the pool of non-compromised users.

Definition 3. Subscription anonymity: Let t be a topic and s be a user sub-
scribed to t. Let A be any collaboration of entities including those related to
the operation of the system, outside observers, other subscribers, and publishers.
These entities may enter any number and type of published messages as pub-
lishers,and observe the outputs as subscribers. Given s, A cannot identify t with
probability greater than 1

T where T is the total number of possible topics.

This captures the opposite direction: an adversary should not be able to,
given a user, determine what topics he is subscribed to. This will assume the
same types of powers for the adversary as with subscriber anonymity, and the
adversary will attempt to defeat our system by guessing from amongst the pool
of possible subscriptions.
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4 Our Systems

We introduce two systems for providing anonymous publish-subscribe. The first
provides a stronger anonymity guarantee, but uses a central point of dissemi-
nation. As such, it does not scale as well as the second system which provides
better scalability at a cost of weaker anonymity. Both systems assume an honest-
but-curious model and do not aim to protect against a global passive adversary.

4.1 Central Server Routing

Our first solution will be based off of a central server that handles the logic
of matching publications to subscriptions and routing. To guarantee anonymity
from this server, and from other participants, both publishers and subscribers
will connect to it through an obfuscating proxy, which is trusted not to collab-
orate with the server. There are thus four types of entities:

– Server: Stores subscriptions, matches publications, and routes messages. It
should not be able to read message content, subject content, or identify senders
or recipients.

– Publisher: Sends messages into the system.
– Subscriber: Sends subscriptions and receives matching messages from the sys-

tem.
– Proxy: Entry point for communication between the server and publishers or

subscribers. It is responsible for all contact with these entities, and for obscur-
ing their identities from the server.

Trust is separated between the proxy and the server. The proxy will be able to
see the identities of senders and recipients of messages, but will not be able to see
the content of the messages being sent or the subjects they are being sent upon.
The server will be able to see a deterministic encryption of this information,
but will not know who is sending or receiving the messages. Although these
deterministic encryptions can be matched to each other, since all origin points
look identical to the server, he cannot link publishers. This separation of trust
ensures to the user that no single entity can monitor his behavior.

To achieve this separation of information, we make use of a protocol called
re-routable encryption [12]. This protocol allows for a sender and a receiver, each
with unique symmetric encryption keys, and a third router entity. It provides a
fast multi-party computation between the three parties, resulting in the router
receiving a transformation key which then allows him to transform messages
encrypted by the sender into messages encrypted by the receiver’s key without
being able to see or compute the cleartext on his own. This protocol allows
us to efficiently realize the separation of trust between the server and proxy.
These transformation keys will be generated between the server, proxy, and
client (publisher or subscriber) once to introduce each participant to the system.
Owning transformation keys allows the proxy to relay messages to and from the
server without seeing their content or revealing the other communicating party
without the expensive overhead of an obfuscating mixnet.
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We also make use of Bloom filters [2] to manage and match large quantities
of publications and subscriptions on the server end while obscuring topic content
from the server. Bloom Filters allow matching against sets that can store any
number of elements with a boundable false positive rate that can be reduced by
increasing Bloom Filter size relative to the number of terms stored.

The server will store an index of all subscriptions on a per-subscriber basis as
a Bloom Filter index. Each subscriber is represented as one Bloom Filter storing
all of his subscriptions. The exact nature of the subscriptions can be anything
supported by Bloom Filters (exact topic keywords, ranges using our range-query
protocol, multi-dimensional ranges, etc.) In our system, the subscribers will be
pseudonymous from the server’s point of view. If subscribers wish to prevent
linkage between their subscriptions, they can do so by creating a pseudonym per
subscription.

The proxies will use re-routable encryption to deliver messages from source
to destination: deterministic for communication of subjects from publisher to
server, and non-deterministic for communication of messages from publisher to
server to subscriber. The proxy contains a transformation key from the server
key to and from the key of each subscriber. This key must be computed between
the user, proxy, and server once to join each new user into the system. The
proxy maintains this mapping using the same pseudonyms used by the Bloom
Filter index held on the message server. The server maintains its own encryption
key kr. To subscribe to a subject, a user generates his own key ku, engages in
secure multiparty computation with the proxy and server that results in the
server learning transformation key k r

u
. He then deterministically encrypts his

subject subscription under ku and sends it to the proxy, who transforms it to
encryption under kr and forwards it to the server where it is stored, along with
a pseudonym that the proxy would understand to correspond to the user. We
are now ready for publishers to send messages to subscribers. The system and
message path is thus laid out as in Fig. 1.

Fig. 1. Centralized anonymous publish-subscribe system
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A publisher generates a message m, and encrypts it non-deterministically
under ku. He determines a subject s, and encrypts it deterministically under
ku. These are both transformed by the proxy to be encrypted under kr before
being forwarded to the server. The server checks s under deterministic encryption
by kr against his BF index. He then re-randomizes the random component of m
encrypted by kr and sends it to the proxy, along with all the BF match identities.
For each corresponding recipient u′, the proxy transforms m to encryption under
ku′ , and forwards the message to the corresponding users.

Security Analysis. That our system achieves completeness and non-
excessiveness is easy to see: since Bloom Filters promise a zero false negative
rate all messages will be properly routed to their appropriate destinations. By
adjusting the Bloom Filter parameters, the amount of excess publications cre-
ated by false positives can be made arbitrarily small.

We aim to protect the identity of the participants from the server, and the
content of the messages and subjects from the proxy. This is under the assump-
tion that the proxy and server do not collaborate with each other, and that the
proxy does not collaborate with other publishers or subscribers. The server and
proxy are trusted to be honest-but-curious; that is they will obey the protocols,
but may attempt to learn more than they should from the results.

Claim. Our system achieves trusted-party publisher anonymity.

Let us assume that there were a full collaboration of all other meaningful
entities except for the proxy, who we will treat as a trusted party. The receiver
sees only a delivered message which is entirely agnostic to its origin. Similarly, the
server sees only the message and topic delivered by the proxy after transforming
them to encryption under his own key. These would look identical regardless of
which user originated the publication. Thus even if the adversary consisted of
the server, the receiver, and any number of dishonest publishers, their combined
view of any given message looks identical regardless of which honest user sent
it. Therefore, they cannot gain an advantage in identifying the user.

Claim. Our system achieves both trusted-party topic subscriber anonymity and
trusted-party subscription anonymity.

Again, we can assume collaboration between the server and any number of
publishers publishing on a given topic. The subscription is delivered to the server
by the proxy after transforming the encryption to his own key. This would look
identical regardless of which user is subscribing to the topic. Thus for a given
topic, he will see only a set of subscriptions which do not give any information
that distinguishes between subscribers. In the reverse, given a subscriber, the
subscriptions seen by the server do not look different whether or not he is the
origin. Thus the server cannot gain any information that would help distinguish
between subscribers given a topic, or identify topics given a subscriber.

The proxy is privy to both of these identities, and is thus treated as the
trusted third party. However, he cannot see what content is being delivered or
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what topic it is being published to. This is given under the same assumptions
as the underlying re-routable encryption scheme.

Owing to the use of Bloom Filters to match publications and subscriptions,
there is an existing false positive rate. However, since the system is used for open
subscription, this is a non-issue from a security standpoint. The recipient can
simply ignore any messages he is not interested in. As we mentioned before, this
system is only secure if the proxy cannot act as a user. If he is able to, then he
can use transformation keys to transform anything encrypted by the server’s key
into his own key, and thus read messages that are routed through him, breaking
the security of the system.

4.2 Spanning Tree Routing

Our second solution will route messages to all subscribers using per-subscriber
spanning tree structures. This will be accomplished by providing an overlay net-
work of the nodes, and then representing each spanning tree within the routing
tables of the nodes in the overlay.

The list of nodes in the network will be registered in a global directory, which
can be either a single server, or a DHT for greater scalability. Nodes will then
use Bloom Filter indexes as routing tables to forward messages by checking their
subjects against the indexes. A destination will be represented as a single Bloom
Filter, storing subjects as elements in the filter. Subscriptions live as elements in
these filters. We can thus support routing based on topic for any type of topic
that can be represented in a Bloom Filter (i.e. exact strings, ranges, etc.). In
order to prevent cycles, each message will carry a header with a Bloom Filter
storing unique labels that nodes can check to see if they have already forwarded
the same message. These will be randomly generated and updated on regular
intervals.

All that remains now is to set the routing Bloom Filters such that all pub-
lished messages will be received by all interested subscribers. To do this, each
subscriber will construct a unique spanning tree of the network, rooted on him-
self. We assume the existence of an underlying anonymous communication net-
work that allows both sending a message while protecting the identity of the
sender, and providing a pseudonymous address by which other users can route
messages to a recipient who wishes to protect their true identity. In our imple-
mentation, we use Tor [13] to provide these functionalities. Although Tor has
many known limitations, it is efficient and used often in the real world.

A subscriber will then anonymously instruct all nodes in the network to
add a routing entry for that subject to their parent in his uniquely constructed
tree. Thus, any message anywhere in the network, when routed on this subject,
will find its way to every subscriber that is interested. Although expensive for
subscription, this is fast for publication, and so is well suited for systems where
publications dominate subscriptions in terms of network load. Unsubscription
is a little trickier, and is not handled by our current implementation. We could
handle this in the future either by allowing Bloom Filters to expire and requiring
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subscriptions to be updated on a regular basis, or by using counting Bloom
Filters which will allow deletion of entries.

– Subscribe(u, t): User u looks up the node from directory D. As a constant
parameter of the system, he assumes a routing chain length of r. He then
constructs a random, balanced spanning tree of depth r using all nodes in the
network with himself as the root. For each node in the tree, he anonymously
contacts that node, and instructs it to route all messages with subject t to their
parent in the tree. This is done more efficiently by forwarding instructions for
each node through their parents with layered encryption in the same manner
as an onion routing network. Thus, we multicast the subscription along the
same structure as the tree itself.

– Publish(m, t): The sender picks a random origin point in the network, and
uses the underlying anonymous communication network to send his message
to that node. That node routes his message to the nodes indicated by looking
up the subject on its own Bloom Filter index. All other nodes will forward
the message in similar fashion, except first checking their loop-detection label,
then inserting it into the header of the message.

The system and message path is thus laid out as in Fig. 2.

Fig. 2. Spanning tree anonymous publish-subscribe system

In the absence of false positives within the routing Bloom Filters, the common
case is that for each publication, there will be a randomly selected path of length
r from the initial node the publisher selects to each subscriber. If the number
of nodes is significantly larger than the number of subscribers for a single topic,
then in all likelihood, the initial node will have to multiply the message for each
end subscriber. However, this is still a benefit over the central server solution,
since the central server solution uses a single node to multiply all traffic within
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the system, whereas with the spanning tree solution, each publication will use
a different randomly selected initial point. This will better distribute load when
there are a large number of publications going out simultaneously.

Efficiency Comparison. We now compare the efficiency of our protocols for n
receivers, and a tree depth of k, and a load involving p simultaneous publishers.

The primary tradeoffs are between the longest path, which affects the latency
of message delivery, and the bottleneck branching point, which determines how
scalable the protocol is. The central server solution will have a fixed longest
path of four hops (from publisher, to proxy, to server, to proxy, to subscriber).
So for low-load situations, we can expect the latency to be O(1). Conversely,
the spanning tree solution’s path will scale with the depth of the spanning trees
selected, and so has a worse O(k) behavior. However, spanning tree depth is
simply chosen to add layers of indirection and does not need to scale with the
size of the system. So while the spanning tree has worse latency, it is boundable.

Both solutions involve a single point of multicast for each publication in the
expected case. For the central server solution, this is the server. For the spanning
tree solution, if the subscribers are not a significant portion of the total userbase,
then likely each has a unique path from the publisher, making the publisher the
point of multicast. However, in the central server solution, all published messages
share the same point, whereas in the spanning tree solution each has a unique
one. Thus the central server solution faces a load of θ(kp) on the server, whereas
the spanning tree solution faces a load no greater than θ(k) on any one node.
Clearly, the spanning tree solution can handle multiple publisher load scaling
better.

Security Analysis. Our system provides Completeness and Non-excessiveness
under the honest-but-curious model, that is when all parties perform the protocol
correctly but may try to learn more than they should. If all nodes are forwarding
correctly, messages are guaranteed to be routed to all interested subscribers, with
a boundable false positive rate on loop detection.

Claim. Assuming the security of the underlying anonymous communication sys-
tem, our system achieves complete publisher anonymity.

The message itself does not contain any information unique to the publisher.
From the perspective of the initial receiving node, any message it receives is only
visible as an output of the underlying anonymous communication system. Thus,
if it can identify the origin, then that implies a failure of that system. From then
on, clearly no other node in the network can do better in terms of identifying
the publisher.

Claim. Assuming our underlying TOR system is secure against identification
attacks, our system achieves topic subscriber anonymity.
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For any given topic in the system, every node will have one or more nodes
which it is expected to route matching messages towards. And if TOR protects
the identities of its senders, then the subscription process itself will not reveal
the subscriber identity. Thus, no node can distinguish between a neighbor who
is an interested party, and a neighbor who is merely forwarding towards one.
In order to identify a node as an endpoint, an adversary would need to identify
a publication originating from one of the leaves of its subscription tree, and
then compromise all of the nodes on the path from publisher to subscriber, a
requirement as stringent as for an adversary of TOR.

A more complicated issue is denial of service attacks. An attacker who was
himself a subscriber could refuse delivery of messages to nodes he is intended to
forward towards. However, since it is the subscribers who choose the routing tree
that leads to them, an attacker would not be able to fully block a particular sub-
scriber from receiving messages, nor fully block a publisher from disseminating
them. Nor would he have any control over which particular publisher-subscriber
relationships he could interfere with. Furthermore, if subscriptions are updated
on a regular basis, his sphere of influence would be steadily changing. A system
of checks wherein a subscriber occasionally publishes test messages and begins
them at different points in the network could be implemented to specifically
identify malicious nodes, however this remains to be further developed.

5 Performance

We implemented and tested both our central server and splay-tree based systems
to observe scaling issues both in subscription and publication. Unfortunately, to
our knowledge, there exist no other anonymous publish-subscribe systems to
compare to, so we show only to demonstrate usability in comparison to normal
network transactions, and to demonstrate efficiency differences between the two.
To obtain a large number of nodes for scalability testing, we used the PlanetLab
network [5]. Each participating node has at minimum 4x 2.4 Ghz Intel cores,
4 GByte ram, and 500 GB disk space. Nodes are distributed around the globe to
provide a simulation of internet traffic. For our experiments, we used nodes with
varying geographic locations contained within the US.

Figure 3 shows time to add subscriptions for a varying number of subscribers
for the central server and spanning tree solutions. This was done for a system
with a total of 500 participating nodes. Measurements for the central server
solution were taken using a one server and two proxy arrangement (one proxy
for publishers and one for subscribers). This was measured from a start time
when the subscription requests are queued into the systems, to the time when
the last subscriber completes their request. Time scales roughly linearly for the
central server system, because it is bottlenecked by the single point of connection
and later subscriptions must wait for earlier ones to complete. The spanning tree
solution performs worse at lower numbers of subscribers, due to its more involved
protocol. However, it scales much better for larger numbers of subscribers as
they can be handled concurrently. The growth is not entirely smooth, as the
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Fig. 3. Subscription cost

tree generation for each of the subscribers is random, and can cause more or
less requests to be bottlenecked by various nodes depending on what kinds of
overlap results.

Fig. 4. Publication cost

Figure 4 shows time to deliver a publication. This was measured by observing
a single node which subscribes to the same topic it is publishing on, and recording
the time taken to receive its own message. Messages chosen were small text
strings. This was measured from start time when the publisher initiated the
publication to time when the last subscriber reported reception of the message.
Again, time taken scales linearly with the number of subscribing nodes, again
bottle-necking on the server which must duplicate the message once for each
subscriber. In this test, only one publication is issued into the system at a time.
Because of this, the spanning tree solution scales with similar behavior to the
central server solution, but with a large constant overhead for the multiple hop
message transmissions.



210 B. Vo and S. Bellovin

Fig. 5. Publication cost in active system

Figure 5 shows the same measurements taken with increasing numbers of
simultaneous publications issued into the system. The number of subscribers is
kept constant at 50. The X axis shows the number of participating publishers,
with each sending a publication at the same time. The Y axis shows the time
taken for a single node which we are monitoring to receive a single publication
it has itself sent into the system. In this case, we see that the spanning tree
solution steadily outperforms the central server solution, demonstrating a greater
ability to distribute the load in an active system with multiple publishers and
subscribers.

6 Conclusion

We have proposed combining anonymous communication with publish-subscribe
routing, a pairing which is not explored by existing research. We have fur-
ther proposed two systems for accomplishing this, with tradeoffs in performance
and security. Although the latency overhead to handle publish-subscribe anony-
mously is significant, it is reasonable for systems with large numbers of users
with small communities formed around particular topics. This fills a void in
existing anonymous communication: the question of how anonymous entities
should decide who to communicate with.
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Abstract. In this paper we explore the prospect of using friendly jam-
ming for the secure localization of vehicles. In friendly jamming confi-
dential information is obscured from eavesdroppers through the use of
opportunistic jamming on the part of the parties engaged in communi-
cation. We analyze the effectiveness of friendly jamming and compare
it to the traditional localization approaches of distance bounding and
verifiable trilateration for similar highway infrastructures. We present
our results in terms of the probability of spoofing a given position by
maliciously-controlled vehicles.

Keywords: Intelligent transportation · Friendly jamming · Secure
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1 Introduction

The goals of an intelligent transportation system (ITS) are to reduce the num-
ber and severity of accidents, lessen congestion, and decrease emissions through
the creation of a transportation system utilizing vehicle-to-vehicle and vehicle-
to-infrastructure communication [1]. To accomplish this a suitable deployment
of wired and wireless networking technologies and sensors are used to report
and disseminate information about vehicle positions, speeds, and destinations;
obstacles on the roadway; weather conditions; and accidents [2]. In order to uti-
lize this information it is important to securely localize vehicles; e.g. to prevent
the dissemination of bogus information that causes traffic to be sub-optimally
routed [3].

In this work we propose a secure localization method that utilizes radio inter-
ference (friendly jamming) to ensure that messages passed between a prover
(vehicle) and verifier can only be received at a given locality. We show how this
approach can be used to verify the velocity and position information provided
by vehicles. The method is analyzed for the case of a single vehicle moving down
the highway, as well as for multiple vehicles colluding to prove spurious position
and velocity claims. To evaluate the relative security of ITS infrastructures using
a particular localization approach, we introduce a metric based upon the prob-
ability of a given position on a segment of highway being spoofed. Specifically,
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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we compare our approach to the traditional secure localization approaches of
distance bounding (DB) [4] or verifiable trilateration (VT) [5].

1.1 Paper Structure

This section concludes with a brief review of existing localization techniques and
the defining of our threat model. Our friendly jamming based approach is then
introduced in Sect. 2. A performance metric to compare localization approaches
for ITS is presented and used in Sect. 3. As our method requires that certain
signals be obscured by interference, Sect. 4 discusses several approaches to frus-
trate interference cancellation techniques that could be employed by attackers
to recover the obscured signals. Finally, the conclusion discusses future work in
the area of friendly jamming for secure localization.

1.2 Related Work

Several methods have been studied and implemented for the secure localization of
nodes in wireless sensor networks [5–7]. However, existing approaches are secure
against a lone attacker but are vulnerable to multiple, colluding attackers. In [6]
mobile or hidden verifiers offer some additional security, at the cost of keeping the
verifier locations secret or continually moving them, each of which is impractical
at the scale of a transportation system. We refer the reader to [8] for a survey
of the strengths and weaknesses of existing secure localization techniques.

As mentioned by Zeng et al., secure localization under the assumption of
mobility has not been as thoroughly studied as the static case. Two represen-
tative works [9,10] in this area focus on filtering out spurious location claims
through comparison with other node claims. In contrast, our approach is to
invalidate such claims without respect to other nodes by leveraging the physical
and kinematic limitations of vehicles. Furthermore, [9] assumes that attackers
are not able to directly corrupt the measurements of other nodes, while wormhole
attacks are not addressed in [10]. Our approach considers both possibilities.

Friendly jamming for fading, multipath channels was proposed in [11] as a
physical layer method of preventing eavesdropping between a transmitter and
legitimate receiver. By opportunistically contaminating the channel with addi-
tive white Gaussian noise (AWGN) channel, Vilela et al. showed that is pos-
sible to prevent the leaking of secret information. They note that secrecy can
increased by either increasing the signal to noise ratio (SNR) of the legitimate
receiver or by reducing the SNR for the eavesdropper by introducing controlled
interference. In this work, we make use of the latter technique to ensure that a
vehicle outside the locale of a verifier cannot receive messages necessary to prove
a spoofed position. Our approach is conceptually similar to that of [12], in which
jamming was used to prevent outside observers from eavesdropping on wireless
communications.
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1.3 Threat Model and Assumptions

In what follows we assume an ITS infrastructure consisting of a single high-
way lane. Vehicles are able to transmit/receive information to/from a trusted
infrastructure through the use of onboard radios and roadside transceivers. To
prevent eavesdropping and provide authentication, vehicles utilize a secure and
identity-preserving method for authentication and message passing, with non-
repudiation, along the lines of [13]. In addition, vehicles are equipped with GPS
and transmit their position and velocity to the infrastructure periodically.

The goal of an attacker(s) is to falsely claim (spoof) a position on the highway.
In our analysis we consider two colluding attackers who are willing to share
identities and transmit/receive messages on the others behalf. We assume that
attackers are traveling along the same single lane and thus cannot overtake each
other. They also do not have control over their initial position on the highway.
Finally, for our proposed localization approach we assume that attackers are
capable of accelerating and decelerating up to a given limit.

2 Friendly Jamming for Localization

In our proposed secure localization approach, a vehicle proves its position claim
by responding to messages from verifiers that can only be received within the
locale of the verifiers. To ensure that communication between provers and veri-
fiers can only take place within a certain radius of the verifiers we utilize friendly
jamming at the verifiers. To accomplish this each verifier would employ one set
of antennas to transmit the verification message, with a second set placed out-
side the first and transmitting noise in an outward direction so as to obscure the
verification message (Fig. 1). The granularity of position measurements would

Fig. 1. (LEFT) A friendly jamming verifier design using jammers (red) that ensures
a verification message (blue) can only be received at given locality (green circle). A
vehicle’s position can be verified as it would have to be within the green circle to
receive a message. (RIGHT) Verifying a vehicle’s location via friendly jamming: A
vehicle’s claimed position and velocity are used to determine when the infrastructure
will transmit nonces at specified locations (Color online figure).
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depend on the number and spacing of these verifiers. In addition, establishing
the veracity of a vehicle’s position claim using friendly jamming requires sepa-
rate channels for communication between the vehicle and a coordinating agent
(part of the local verification infrastructure) and the vehicle and two verifiers. So
as not to interfere with regular vehicle-to-vehicle and vehicle-to-infrastructure
communication, it is assumed that a dedicated set of channels is set aside for
position verification purposes. Adjacent verifiers operate on separate channels.

The protocol is as follows (Fig. 1): First, the vehicle under consideration
(prover P) is queried for its current location, x0, and velocity, v0. Having received
this information, the infrastructure (I), calculates the time t1, based on the
reported position/velocity and current time, t0, at which the vehicle should reach
the nearest upcoming verifier, V1 (located at x1). A random nonce, N1, is then
generated and sent to V1 along with the time, t1, at which it should be trans-
mitted. This process is repeated for a second verifier, V2 (located at x2), using
a new nonce, N2, and transmit time, t2. At time t1 and t2 the vehicle passes
within the range of V1 and V2, respectively, and collects N1 and N2. To prove its
original position claim the vehicle retransmits the nonces to the infrastructure.

It is assumed that the infrastructure, verifiers, and vehicles are equipped
with public/private key pairs, denoted by KI , KVn

, and KP , respectively,
and participate in the same public key infrastructure. Communication between
the infrastructure and verifiers is encrypted and digital signatures are used to
authenticate messages.

For a preliminary analysis of the security of this approach, let us assume that
an attacker located at xa and traveling with a uniform velocity va attempts to
spoof the position P by reporting, at time t = 0, its location and velocity as x0

and v0, respectively (Fig. 2). Allowing the verifiers V1 and V2 to be located at
x1 and x2, respectively, at times t1 = (x1 − x0)/v0 and t2 = (x2 − x0)/v0 the
verifiers will transmit their respective nonces. The attacker’s actual position and
velocity must be such that at times t1 and t2 they are at x1 and x2; i.e. xa, va

must satisfy x1 = xa +vat1 and x2 = xa +vat2. By rearranging these expressions

Fig. 2. Friendly Jamming infrastructure: verifiers V1 and V2 are used to verify a posi-
tion/velocity claim along the highway segment d. At times t1 and t2 the system will
transmit nonces that can only be received within a radius δ of the verifier. An attacker
claiming position x0 with velocity v0, while their actual position and velocity are xa

and va, must arrive at x1 and x2 at t1 = (x1 − x0)/v0 and t2 = (x2 − x0)/v0 to receive
and then retransmit the nonces in order prove a position/velocity claim.



216 B. Deka et al.

and taking the ratios of t1 and t2, we have that

t1
t2

=
x1 − x0

x2 − x0
=

x1 − xa

x2 − xa
(1)

which shows that the attacker must be at the position P (xa = x0) in order to
acquire both nonces. Thus, it is not possible for an the attacker traveling at a
constant velocity to prove any position but their actual position. We consider
the case of a single attacker accelerating or decelerating in order to be able to
reach the verifiers at the correct times, as well as multiple attackers sharing the
same identity and coordinating their movements, in Sect. 3.2.

3 Spoofing Probability

To compare localization methods for ITS we propose to use a measure based
on the probability of a randomly placed attacker(s) successfully spoofing an
arbitrary point along the highway. Calculating the probability at all positions
along the highway gives us an overall idea of how secure the localization method
is for the defined threat model.

Definition 1. Spoofing Probability: The likelihood of a verifier calculating the
vehicle position of a legitimate vehicle erroneously, due to false information pro-
vided by malicious vehicles randomly situated on the highway.

3.1 Sample Space and Probability Density Function

We use σ-algebra to define our sample space and then we assign a probability
measure to each element of this sample space. Following the three criteria for a
set to defined as a σ-algebra [14], we consider a set of points, (Σ) lying within
the verification scope of a given verifier to be a σ-algebra defined over the set,(Ω)
which is the set of all points on the highway. In set-notation,

Ω = {x (P ) ∈ [0,∞)} and Σ ⊂ Ω defined by
Σ = {y (P ) ∈ [0, d] : y (P ) = |x (P ) − x (V )|}

where x (P ) = position of the point P from x = 0, x (V ) = position of the verifier
V from x = 0, and d = distance between adjacent verifiers. The cardinality of
the set is the verifier scope for the given infrastructure. Suppose the position of
the attacker A is at x(A). It can then spoof the point at x(P ) from the verifier
at x(V ) if

|x (A) − x (V )| ≤ |x (P ) − x (V )| (2)

where the value of |x (P ) − x (V )| is half the spoofing range of P from verifier V .
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3.2 Spoofing Probability for Friendly Jamming

We assume that an attacker would spoof only those positions that are not already
occupied by another vehicle. This is because if a position is occupied by a legiti-
mate vehicle, then this vehicle crosses the verifiers at the times calculated by the
verifiers from its position/velocity (PV) information, thus denying the attacker
the opportunity to verify its spoofed claim.

We will find the spoofing probability as a ratio of the available positions
within the range of velocity differences available for spoofing and the sum of
all possible positions along the verification unit. To find the available positions
and the range of velocity differences, we establish an upper and lower bound on
the difference between the actual and target PV information and then find a
condition such that for an instant of verifying a point from a given verifier, the
outcome S (that the position cannot be spoofed) is true. We provide a sketch
of the derivation for the spoofing probability for a single attacker below; for a
detailed derivation, including the case of two colluding attackers, see [15].

Let {x0, v0} be the PV information that an attacker wants to spoof, {xa, va}
the attacker’s actual PV, and Δx = xa−x0 and Δv = va−v0. The infrastructure
determines the times of crossing t1 = (x1 − x0)/v0 and t2 = (x2 − x0)/v0. As
per Sect. 2, the attacker must accelerate in order to be able to reach the verifiers
on time. Allow a1 and a2 to be the accelerations required to reach verifier V1 in
time t1 and V2 in time t2. As vehicles are limited in their ability to accelerate,
allow the magnitude of maximum acceleration to be denoted by γ.

Now, using the equations of motion for an attacker moving from the beginning
of the verification segment (considered to be the origin) to V1 and then from V1

to V2 with the bounds on a1 and a2, we have

|a1| ≤ γ ⇒ |Δx| v0 + |Δv| (d − x0) ≤ γ

2
(d − x0)

2

v0
(3)

|a2| ≤ γ ⇒ 2 |Δx| v0 + |Δv| (d − x0) ≤ γ

2
d (d − x0)

v0
(4)

Considering (3) and (4) with the limit Δv → 0, we find the maximum value
of Δx; similarly with limit Δx → 0 we find the maximum value of Δv. The range
of values Δx and Δv are then given by

0 < |Δx| <
γ

2
(d − x0)

2

v2
0

and 0 < |Δv| <
γ

2
d − x0

v0
for verifier V1

0 < |Δx| <
γ

4
d (d − x0)

v2
0

and 0 < |Δv| <
γ

4
d − x0

2v0
for verifier V2

(5)

Equation 5 provides limits on much an attacker can deviate from its reported
position (x0) and velocity (v0). The spoofing probability then will be the number
of (Δx, Δv) combinations which satisfy (3) for verifier V1 and (4) for verifier V2

divided by the total number of such (Δx, Δv) combinations.
For illustrative purposes, let us define the spoofing probability for a constant

difference in velocities; i.e. Δv = 0, ..., vn, ...,Δvmax, where vn is an arbitrary
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value of Δv and Δvmax is the maximum value of Δv given by Eq. 5. The formula
of spoofing probability for verifiers V1 and V2, when v0 and Δv are constants
and x0 varies, are given by

PV1,v0,Δv (x = x0,Δv = vn) =
γ
2
(d−x0)

2

v2
0

− vn
(d−x0)

v0

∑d
x0=0

γ
2
(d−x0)

2

v2
0

− vn
(d−x0)

v0

(6)

PV2,v0,Δv (x = x0,Δv = vn) =
γ
4

d(d−x0)
v2
0

− vn
(d−x0)
2v0

∑d
x0=0

γ
4

d(d−x0)
v2
0

− vn
(d−x0)
2v0

(7)

The probabilities PV1 and PV2 are not independent of each other. Therefore, the
spoofing probability is their intersection

PV1,v0,Δv

⋂
PV2,v0,Δv = P (V2|V1)P (V1). (8)

As the bounds for V2 are calculated assuming that the attacker has already
crossed V1, P (V2|V1) = PV2,v0,Δv. Therefore

PV1,v0,Δv

⋂
PV 2,v0,Δv = PV1,v0,ΔvPV2,v0,Δv (9)

3.3 Results and Discussion

We calculated the maximum spoofing probability for all pair-wise combinations
of v0 = {18, 36, 54} m/s and γ = {1, 5, 10} m/s2. We note that γ = 10 m/s2

is well beyond the capabilities of all but the most high performance vehi-
cles available today. We allowed the attackers’ actual velocities to vary from
Δv = 0 to Δvmax. A verifier separation of 100 meters was assumed. Our findings
are summarized in Table 1; for the sake of comparison the maximum spoofing
probabilities for DB (two verifiers placed in the middle of the roadway) and VT
(verifiers placed in a triangular configuration beside the roadway) are given in
Table 1. See [15] for details on DB and VT infrastructures and spoofing proba-
bility derivations.

We see that the friendly jamming approach has a significantly lower spoof-
ing probability than either distance bounding or verifiable trilateration. We also
notice that as the attackers’ ability to accelerate increases and the reported

Table 1. (LEFT) Maximum spoofing probability for friendly-jamming based secure
localization for three attacker accelerations (γ) and nominal velocities of v0 =
{18, 36, 54} kmph. (RIGHT) Maximum spoofing probability for DB and VT.
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velocity v0 decreases the spoofing probability for the friendly jamming app-
roach increases, though even under the worst circumstances (v0 = 18 kmph and
γ = 10m/s2) the spoofing probability is still substantially lower than either DB
or VT. Finally, while it is true that any position on the highway having a non-
zero spoofing probability could be spoofed by attackers, we intend to explore
continuous or mandatory verification, occurring at random times, as a counter-
measure to attackers opportunistically verifying spoofed positions.

4 Interference Cancellation and Friendly-Jamming

In this section, we identify anti-jamming techniques that could otherwise be
used to recover the verification messages outside the interference-free regions
surrounding the verifiers, and then analyze the security of our scheme against
them.

4.1 Overview of Threats to Friendly Jamming

Friendly jamming signals could be cancelled out by an attacker equipped with
multiple antennas. In [16], Tippenhauer et al. examined the case of a jamming
unit equipped with a single antenna and an attacker using a pair of antennas to
recover a message obscured by interference. The attacker’s two antennas are posi-
tioned such that the jamming signal was received by each with a relative phase
difference of 180 degrees. Specifically, the attacker’s antennas were positioned at
the same distance r from the jammer and the two received signals subtracted to
remove the common interference. We note that a line-of-sight channel condition
was assumed, which presents a worst case scenario from the perspective of the
jammer.

4.2 Security Analysis Against Cancellation Attacks

In our scheme we deploy multiple outward facing jamming antennas (M) sur-
rounding the transmitter that simultaneously send out random jamming signals.
Suppose that the attacker has N antennas. The channel state (CSI) between
each pair of antennas can be represented as a matrix: H = [hi,j ], 1 ≤ i ≤ M, 1 ≤
j ≤ N . In the worst case that the all the CSI values are static and known by the
attacker (e.g., a stable line-of-sight channel condition), the attacker only needs
to have N = �M/2	+1 antennas because only M/2 of the jamming antennas will
affect each direction, and �M/2	+1 linear equations can be established to solve
for all the �M/2	 jamming signals and cancel them out, leaving the transmitted
signal. Therefore, the defense reduces to an antenna race against the attacker.

However, the above case is too ideal in practice. The wireless channel on a
highway is typically not stable, as it is affected by multiple factors such as multi-
path fading, shadowing by the vehicles passing by, and doppler effects. It will be
very difficult for the attacker to fully measure or gain the knowledge of all the
M ×N CSI in H. Especially, if the attacker does not have any prior knowledge of
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the CSI matrix, the jamming signals cannot be recovered no matter how many
antennas the attacker possesses. Of course this is another extreme, but in reality
we expect the attacker with some prior knowledge of the CSI matrix to use
N ∈ [�M/2	 + 1,∞] antennas to cancel out the jamming signals. The difficulty
and cost of such signal cancellation depend upon the intrinsic randomness and
unpredictability of the channels themselves. We can employ artificial external
disturbance to change the channel condition in real-time, for example, rotating
the jamming antennas [17]. This direction will be part of our future work.

5 Conclusion

We proposed a method for secure localization based on friendly jamming and
found it to be less prone to spoofing attacks than either distance bounding or
verifiable trilateration for an ITS infrastructure. We are in the process of evalu-
ating its performance in terms of other metrics such as cost and complexity. An
analysis of the verification protocol under varying network conditions and vehi-
cle densities is also required. Near-term efforts will also include the creation and
validation of a jammer-based verifier. The number and position of the verifier’s
antennas, along with their radiating characteristics and interference signals, will
be selected to counter anti-jamming techniques, as per Sect. 4.
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Abstract. Wireless sensor networks (WSNs) are gaining more and more
interest in the research community due to their unique characteristics. In
addition to energy consumption considerations, security has emerged as
an equally important aspect in their network design. This is because
WSNs are vulnerable to various types of attacks and to node com-
promises that threaten the security, integrity, and availability of data
that resides in these networked systems. This paper develops a powerful,
anomaly detection system that relies on visual analytics to monitor and
promptly detect a particularly devastating form of attack, the wormhole
attack. Wormhole attacks can severely deteriorate the network perfor-
mance and compromise the security by disrupting the routing protocols.
The proposed system, called VA-WAD, efficiently utilizes the routing
dynamics to expose an adversary conducting a wormhole attack. Then,
the output of the anomaly detection engine feeds the radial visualiza-
tion engine of VA-WAD, which further assists the understanding and
analysis of the network topology improving the detection accuracy. By
employing an outer ring, VA-WAD also records the network security
events occurring in the WSN on a 24 h basis. The obtained simulation
results demonstrate the system’s visual and anomaly detection efficacy
in exposing concurrent wormhole attacks.

Keywords: Wireless sensor networks · Wormhole attacks · Anomaly
detection · Security visualization

1 Introduction

A wireless sensor network is a network of cheap and simple processing devices
(called sensor nodes) that are spatially distributed in an area of interest in order
to cooperatively monitor physical or environmental conditions and transmit the
collected information to a remote server for further processing [1]. Most of the
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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applications in Wireless Sensor Networks (WSNs) are envisaged to support the
remote and unattended operation of a large number of sensor nodes. In such a
setting, efforts to extend the network lifetime are of crucial importance. Besides
energy consumption considerations, security is an equally critical component
that contributes to the performance of WSNs. The major challenges that need
to be dealt with in addressing security issues mainly stem from the open nature of
the wireless medium and the multi-hop cooperative communication environment.
These factors make network services more vulnerable, specifically due to attacks
originating from within the network [2–4].

Routing protocols in WSNs are susceptible to numerous attacks. A detailed
survey of security attacks can be found in [5]. In this paper, we focus on a partic-
ularly devastating form of attack, the wormhole attack [6,7]. A wormhole attack
is a special type of collusion attack on sensor networks in which two colluding
malicious nodes use wormhole links to capture and replay communicated mes-
sages in order to disrupt the network protocol. To launch a wormhole attack,
the colluded malicious nodes establish a direct communication channel between
themselves bypassing several intermediate nodes. The established channel can
be an out-of-band high-speed communication link or an in-band logical tunnel.
Once established, the wormhole link attracts most of the traffic since the con-
trol packets traversing through a wormhole link advertise a much better link
metric. Selection of such links results in denial-of-service (DoS), affecting the
performance of the network severely. It is even possible to occur more than once
wormhole links making the problematic situation yet harder. It has been shown
that a strategic placement of the wormhole can disrupt on average 32 % of all
communication across the network [8].

A number of security solutions have been proposed to deal with these attacks
[7,9,10]. Most of these defensive methods, however, require the sensor nodes to
be equipped with some special hardware, such as location-finding devices (Global
Positioning System, GPS), synchronized clocks, or directional antennas. Hence,
such methods are limited in their efficacy owing to high computational resource
requirements and communication overhead. Recently published wormhole detec-
tion algorithms [11–13] overcome this problem by relying solely on neighborhood
or connectivity information. Nevertheless, these automated tools are limited in
their efficiency owing to computational resource requirements and incurred com-
munication overhead, but most importantly, they lack the reasoning ability that
is crucial for making decisions about anomalous data that may or may not be a
threat, with the typical consequence of a high false positive rate.

Since wormhole attacks are dynamic, if analysts cannot absorb or properly
correlate the network traffic data, it will be difficult for them to detect them.
Developing tools that increase the situational awareness of all those actions
responsible for the network’s safe operation can increase the network’s overall
security. System administrators are typically limited to textual or simple graph-
ical representations of network activity. Information visualization instead, has
effectively increased operators’ situational awareness, letting the security pro-
fessionals to more effectively detect, diagnose, and treat anomalous conditions.
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A growing body of research validates the use of visualization to solve complex
data problems [14,15]. Visualization elevates information comprehension by fos-
tering rapid correlation and perceived associations. To that end, the display’s
design must support the decision-making process by identifying problems, char-
acterizing them, and determining appropriate responses [16].

Our visualization technique integrates information from network log files into
an intuitive, flexible, extensible, and scalable visualization tool, called VA-WAD,
that presents critical information concerning network activity in an integrated
manner, increasing the user’s situational awareness. VA-WAD tackles the worm-
hole detection problem in large-scale WSNs by relying on the dynamics of con-
centric circles. To help address the security visualization challenges, VA-WAD
offers the following contributions;

– A novel wormhole attack detection engine that relies on topological compar-
isons to timely detect and resolve multiple instances of wormhole attacks that
are present in the WSN.

– A powerful visualization engine that uses a novel, cross-free radial layout to
monitor the evolving status of the network and to efficiently reveal active
wormhole links. It consists of the planar view, which uses concentric circles
that expand outwards radially to visualize the network topology, and the event
logger that keeps track of the network events on a time-adjusting basis.

The remainder of the paper is organized as follows. Section 2 reviews exist-
ing security approaches aimed at detecting wormhole attacks launched against
WSNs. Section 3 introduces the anomaly detection and visualization engines of
VA-WAD. In Sect. 4, the detection accuracy and visual efficacy of the VA-WAD
system are evaluated through a simulated attack scenario. Finally, Sect. 5 con-
cludes the paper and discusses future extensions.

2 Related Work

There are several potential ways of defending against wormhole attacks, each of
which exploits a different unique feature exhibited by a wormhole link. Generally
speaking, these methods can be categorized in two broad categories;

Automated Approaches: Most of the existing schemes [10] exploit the abnor-
mal length of a wormhole. As previously stated, a wormhole link is usually estab-
lished between nodes that are physically separated by a large distance, thereby
bypass several intermediate nodes. Therefore, the simplest way to defend against
a wormhole attack is by preventing nodes from being tricked into forming a
wormhole link through equipping nodes with GPS and verifying the relative posi-
tion of a transmitter during peer (link) establishment. Location-based schemes
can successfully defend external wormhole attacks, but cannot prevent Byzan-
tine wormholes [17,18] from being established as the colluded nodes involved in
the attack are legitimate part of the network.
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The other unique characteristic of a wormhole is that it abnormally increases
the node’s neighborhood, and this feature is being exploited in [12] to detect
hidden wormholes. Let W1 be a wormhole node that shares an out-of-band
channel with another wormhole node W2. Now, W1 can relay on its neighbor-
hood information to W2 and trick W2’s neighbors into believing that they share
direct neighborhood with W1’s neighbors. This abnormally increases the neigh-
bor count of a node-sharing neighborhood with a wormhole node. Unfortunately,
such schemes fail to detect Byzantine wormholes as the link being established
between colluded internal nodes does not alter the neighborhood information of
their respective neighbors. On similar lines, protocols exist that exploit abnor-
mal path attractions of wormhole nodes [11].

Visual-based Approaches: On the visualization frontier, two schemes have
been proposed to address the problem of visual-based wormhole detection in
WSNs. Early in 2004, Wang and Bhargava [19] proposed a security enhanc-
ing visualization mechanism for WSNs, called MDS-VOW, which is capable of
identifying the occurrence of a wormhole attack in stationary wireless sensor net-
works. Using multi-dimensional scaling (MDS) and a surface smoothing strat-
egy, a virtual layout of the network is computed. The shape of the reconstructed
network is then analyzed. If any wormhole exists, the shape of the network
will bend and curve towards the wormhole, otherwise the network will appear
flat. Later on, Wang and Lu [20] extended the MDS-VOW concept proposing
an improved detection mechanism, called interactive visualization of wormholes
(IVoW). IVoW efficiently integrates automatic intrusion detection algorithms
with visual representation and user interaction to support visualization of sev-
eral wormholes in large-scale dynamic WSNs. While promising, the approaches
of this category require greater visualization effort in order to come up with a
firm final resolution as well as a more insightful human-computer interaction [21].

As apparent, the existing security solutions (both automated and visual-
based) are either limited in their efficiency owing to computational resource
requirements and communication overheads or can only deal with a single worm-
hole attack instance that is present in the network. Compared to the previous
security mechanisms, VA-WAD encompasses the strengths of both automated
and visual-based approaches in order to accurately and promptly detect concur-
rent wormhole attack instances in WSNs. In the subsequent sections, we describe
in detail the anomaly detection and visualization engines of VA-WAD.

3 VA-WAD: A Visual-Assisted Wormhole Attack
Detection System for WSNs

VA-WAD is a system that fully leverages the power of both visualization and
anomaly detection analytics to guide the user to quickly and accurately detect
wormhole attacks in large-scale WSNs. The VA-WAD system builds on two core
components; the wormhole anomaly detection engine (WAD), and the visualiza-
tion engine. The WAD component represents the system’s automated anomaly
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detection logic, while the visualization engine, is the projection tool. We begin
our analysis by stating the network assumptions, and then we describe in details
the two main components of VA-WAD.

3.1 Model Assumptions

In the present work, we consider a typical WSN comprised of a large number
of autonomous sensors that are spatially distributed in an area of interest in
order to support a security-oriented application. A snapshot of the simulated
topology is shown in Fig. 1. In such a setting, the sensor nodes remain more or
less static for the duration of the deployment. Moreover, the legitimate sensors
establish secure peer links [22] and forward the sensed data to the Base Station
(BS), which is a typical reporting method in WSNs. The communication between
the nodes is based on a flat routing scheme where all nodes are assigned equal
roles, i.e., they are peer. The BS is responsible for collecting the control packets
that are being traversed through the network. These packets contain various
information such as the routing cost, the neighbor list, and the next hop of each
node. We also assume that the WSN is protected during the initial deployment
and setup phase due to the following reasons:

– In many cases, the initial deployment and routing setup takes place under
supervision discouraging any malicious actions.

– The initial routing setup phase is completed when all nodes have determined
the shortest path to the BS. In most cases, the duration of such a process
could be performed within a short period of time impeding malicious actors
to timely employ their attack.

– In cases of an unsupervised deployment, either the deployment location is
temporarily unknown, e.g., in military applications, or the time needed for
launching a wormhole attack is much longer than the initial routing setup.

Regarding the attacker model, we assume that during the simulation, ran-
domly selected intelligent adversaries include themselves in the network by repli-
cating (compromising) legitimate sensor nodes. An adversary is capable of estab-

Fig. 1. The topology of a WSN with 10 nodes; nodes n3 and n5 form a wormhole link.
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lishing a high-speed low-latency communication link, required to launch a hidden
wormhole attack.

3.2 The Anomaly Detection Engine

The first major component of VA-WAD is the anomaly detection engine. The
employed Wormhole Attack Detection (WAD) mechanism of this engine is tasked
with capturing the routing dynamics of the network. Owing to the visualization
need [21], the WAD mechanism is supposed to be centralized (meaning that
the processing and decision making is done centrally) and is independent of the
routing protocol in use. Since a wormhole attack intends to disorientate the
routing protocol of the WSN, there is little doubt that it will leave signs of
intrusion that affect several key routing features. In particular, the operation of
a wormhole attack influences; (a) the neighbor list maintained by each node (nl),
(b) the next hop of each node (nh), and (c) the routing cost to the sink node (rc).
Hence, the proposed detection mechanism monitors the aforementioned routing
features to capture any suspicious actions. To accomplish this feat, WAD runs
in phases; the anchor phase, the monitoring phase, the detection phase, and the
resolution phase.

Anchor Phase: In this initial routing setup phase, which comes right after the
WSN deployment phase, the WAD mechanism stores centrally a set of values
for each sensor node relative to the routing process. Having in mind that any
applied routing protocol provides the nodes with the optimal routing cost to the
BS roptc along with its next hop node nopt

h , the mechanism takes the opportunity
to record these “optimal” routing values of each node, also known as anchor
values. The mechanism makes use of this information to construct the list of the
intermediate routing nodes, inl. This list contains the route a packet follows to
reach the BS based on the next hop neighbor of each node. These three features
are utilized by WAD to facilitate the detection of wormhole attacks.

Monitoring Phase: The second phase declares the monitoring period. Under
normal operation, the nodes uninterruptedly and periodically exchange routing
information in a neighbor-to-neighbor basis following the routing updates of the
adopted protocol. Normal operation of the WSN implies that all nodes advertise
either routing cost equal to the anchor cost or a larger one, in case for example
an intermediate routing node stops functioning due to battery exhaustion. If a
node advertises an updated routing cost rnewc less than its anchor cost roptc , then
the mechanism pinpoints the suspicious change and switches to the detection
phase.

Detection Phase: The third phase aims at detecting the adversary nodes
forming the wormhole link. The detection algorithm acts as follows; first, it
creates an affected node list, anl, by inserting those nodes that advertised reduced
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routing costs in it. Apparently, one of the two nodes forming the wormhole link is
included in this list. For the wormhole link to become attractive to the highest
percentage of network traffic flows, one of the two ends of the link needs to
deliberately choose its location such that it is closer to the BS. Keeping this fact
in mind, the nodes forming the wormhole link exhibit the following properties:

– the malicious node that is part of the wormhole link, and is closer to the BS
has a routing cost that is unchanged before and after the attack.

– the malicious node that is part of the wormhole link and is farther from the
location of the BS, advertises smaller routing cost after the attack, and as
such it is included in the affected node list, hereafter, designated as source
node, ns.

The detection phase targets the filtering of the affected node list in order to
expose the source node. A new list is thus produced, called critical node list, cnl,
in accordance to the following criterion: “since nodes that belong to the affected
node list present reduced routing cost as an outcome of the attack, these nodes
subtly include the source node within their list of intermediate routing nodes”.
Hence, the source node is present in the list of every affected legitimate node. To
this end, the detection algorithm examines those nodes that exist in every list of
intermediate routing nodes, inl, and creates the critical node list, cnl. Lastly, the
algorithm selects the node having the minimum routing cost, rmin

c within the
critical node list to be the source node, ns. Apparently, the node in the other
end of the wormhole link is the next hop node of the source node.

Algorithm 1. The Wormhole Attack Detection (WAD) Mechanism
{ Anchor Phase }
Initialize the following lists; inl, anl, and cnl

for each routing setup information coming from node i in the network do
update the inl list with the following data roptc , nopt

h associated with node i
end for
{ Monitoring Phase }
for each routing update coming from node i in the network do

update the routing cost, rnew
c of node i

end for
{ Detection Phase }
if rnew

c < roptc then
insert node in affected node list, anl

end if
for every possible pair of nodes in the affected node list, anl do

compare the inl and anl lists and create the critical node list, cnl

select the node having the rmin
c within the cnl list to be the ns

end for
{ Resolution Phase }
black list and isolate the source node, ns and its next hop.
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Fig. 2. The visual interface of VA-WAD consisting of the Planar View (on the left),
and the Event Logger (on the right).

Resolution Phase: During the final phase, the WAD mechanism attempts to
mitigate the wormhole attack. Upon detecting the pair of malicious nodes con-
stituting the two ends of the wormhole link, the mechanism black lists these
nodes, and re-initializes the routing process. Following this, the pair of mali-
cious nodes is isolated from the routing process. It is worth mentioning that the
anchor values are kept untouched during the routing reset process. After that,
the mechanism returns to the monitoring phase, and keeps monitoring the WSN
to detect other potential wormhole threats.

3.3 The Visualization Engine

The WAD engine is complemented with the visualization engine enriching the
VA-WAD system with simple, but powerful visual forms in order to provide
the user with real-time, informative, and accurate views of the evolving network
status in an animated fashion. Figure 2 illustrates the main Graphical User Inter-
face (GUI) of the visualization engine of VA-WAD. As it can be seen, the entire
screen space of VA-WAD is divided into two sections; the Planar View (on the
left), and the Event Logger (on the right). The width ratio of the two regions is
defined as 7:3. Next we describe, each of these components in detail.
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Fig. 3. (a) The structure of the Core Circle, (b) the orbital placement of the nodes on
each ring defined by the parameter ϕi.

The Planar View: The Planar View is further divided into the Core Circle,
and the Time Ring. This outer ring is used in order to enhance the visual dynam-
ics with time domain information. On the other hand, the Core Circle constitutes
the main visualization engine that interprets and projects the outcome of the
WAD mechanism utilizing effective visual analytics techniques. Next, the above
views are introduced and described in detail.

The Core Circle: The Core Circle defines the fundamental visualization mech-
anism. In essence, it constitutes a fully dynamic visualization environment that
endeavors to expose and resolve wormhole attacks on a real time basis by continu-
ously reconstructing the network topology that is laid out on a radial layout [23].
The visualization places the circles in insightful orbital positions and dynami-
cally changes the morphology of the inner rings. Inspired by the comparative
analysis between Cartesian and radial variants of information visualization per-
formed by Diehl et al. [24], VA-WAD utilizes a radial graph layout for arranging
thousands of sensor nodes in the screen space. Each legitimate node is repre-
sented by a circle colored in light blue [25], having the node ID drawn in the
center of the circle with a black color.

Figure 3 shows the structure of the Core Circle. The circle radius is denoted
by R. Similar to the detection and resolution mechanism, the visualization inter-
face obtains routing dynamics and generates the inner rings. The nodes, shaped
in circles, are suitably placed on the ring perimeter. In this way, each circle
defines an orbit on the ring. The maximum value of the routing cost differen-
tiation amongst all nodes defines the number of inner rings, and it is repre-
sented by the MaxCostDif parameter. The routing cost differentiation expresses
the difference between the current routing value, and the anchor routing value.
The maximum value of this difference is calculated in order to demonstrate the
magnitude of the tunnel length of a potential wormhole attack. This value is
provided to the visualization platform by the WAD strategy. The system creates
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MaxCostDif + 1 inner rings to place the nodes. The radius of the i-th ring is
equal to:

ri =
R × i

MaxCostDif
(1)

where i stands for the index of each inner ring. Each ring implies a specific
value of routing cost differentiation. Nodes whose value is zero are placed on the
most inner ring perimeter. On the other hand, the most outer ring carries those
nodes that present the largest noticed routing cost differentiation. However, it
is important to point that during the anchor phase, the strategy provides the
environment with this value, which is continuously updated since the nodes
improve their routing information trying to find the optimal value. At this phase,
the inner rings simply construct a visual pattern. At the end of this phase, a
distinctive visual pattern is obtained as an indication of the unique identity of
the WSN under investigation. Upon completion of the anchor phase, the normal
operation of the WSN is demonstrated by a single outer ring declaring that
all nodes advertise a zero difference between the updated routing cost and the
anchor cost value.

The placement of the circles on the rings’ perimeter takes place in a simple,
yet effective way avoiding occlusion effects. As depicted in Fig. 3, the number
of nodes associated with each inner ring, i (denoted by Ni), is calculated for
each time instant, and each node is placed in a unique position on the ring
perimeter. In particular, the ring is divided into Ni sectors. The angle that
defines each sector is determined by the parameter ϕi (in rads), which is given
by the following expression:

ϕi =
2π

Ni
(2)

The visualization engine follows the outcome of the WAD mechanism by
producing informative network reconstructions and visual patterns that aid the
security analysts to timely detect wormhole attacks. As it can be seen from the
Fig. 2, the Core Circle provides the user with multiple levels of data details. To
this end, the proposed visualization system applies the following visual forms:

– Upon the production of the critical node list, the system highlights the criti-
cal nodes, represented as circles with an outer red ring. Hence, the user can
distinguish the candidate malicious nodes during the detection phase of the
source node.

– Upon detection of the source node(s), the system uses a larger circle to rep-
resent the adversary. It also uses red colored link metaphors to highlight the
two ends of the wormhole link. We used the bezier curves for this purpose. By
doing this, the wormhole links remain highlighted until a user maintenance
is performed and the attack is mitigated. Figure 2 shows six wormhole links
(6–45, 68–60, 41–59, 12–13, 54–50, and 42–18) that are highlighted in this
way. Note that each link has a different color variation. Supposing a number
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of q links, the color of each link is a red one, having an alpha parameter,
Ai, 1 ≤ i ≤ q, which is determined as follows:

Ai =
255 × i

q
,where 0 ≤ Ai ≤ 255 (3)

The Time Ring: The Core Circle is accompanied by a Time Ring, which enhances
the visualization framework with crucial temporal information. The visualization
projection produces messages that are placed on the time ring based on their
generation time. In particular, the time ring shows an integrated view of the
network activity, e.g., what happened in the past hour or past 24-hours or on
any time-adjusting basis. A time runner is designed to pinpoint the time elapsed
since the beginning of the operation of the visualization system. The runner is
moving in a clock-wise manner while the zero-point (starting point) is considered
the 12 o’clock point of the circle. The runner is moving in a different speed
based on the time basis defined on the time ring. In a nutshell, the Time Ring is
considered as an essential component of the visualization engine in view of the
time domain provisioning.

The Event Logger: The Event Logger section is located at the right region of
the screen. Its light grey background is used to divide the screen into two distinc-
tive regions. Each message produced consists of a colored bullet, the generation
date and the message text. The colored bullet that is placed before the text is
colored in accordance to the message type. Three message types are defined,
namely (a) the initial setup completion message, colored in black, (b) the worm-
hole detection message, colored in red, and (c) the message announcing the
resolution of the attack in green. Furthermore, a serial number is kept for each
message in order to facilitate the information interpretation on the user side.
The event logger is automatically updated as the number of messages increases.
This means that old messages are removed, and are replaced by new messages
as soon as the screen space is full. As shown in Fig. 2, upon generation of a
message, a relevant circle is placed on the time ring according to the generation
time using the bullet’s color. Thus, the generated events are directly linked with
the visualization system through the colored circles on the time ring. Moreover,
the event logger informs the user about the pair of detected malicious nodes. As
it can be seen, Fig. 2 pinpoints six pairs of malicious nodes (6–45, 68–60, 41–59,
12–13, 54–50, and 42–18) and provides information about their detection and
resolution time.

4 Performance Evaluation

In this section, we evaluate the visual and wormhole attack detection efficacy
of the VA-WAD system. We used the OMNeT++ [26] environment in order
to generate our simulation scenario (network topology and traffic), and to feed
the VA-WAD system. We simulated a 802.15.4 peer-to-peer sensor network con-
figured with the WAD detection scheme. A number of legitimate sensor nodes
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(varying from 50 up to 100) were uniformly placed in the sensor area without
inducing unconnected nodes. The nodes are considered to be stationary during
the simulation. Each node has a communication range of radius R = 50m. A
number of wormhole links (up to six) were also introduced and were capable
of launching an attack against the WSN. The routing update period was set
to 1.5 s. In all investigated scenarios, it is considered that neither the malicious
node nor the legitimate nodes are aware of the actual position of each other.

4.1 Visual Efficacy

Firstly, we validate the efficacy of the VA-WAD’s visualization engine. We used
the simulated attack scenario described above to generate the following figures.
The sequence of figures that follow shows how a set of wormhole attacks emerges
out of the background noise of the visual interface, assisting users to rapidly
detect and identify wormhole attacks. Please note that for reasons of higher
resolution the event logger is omitted in each of those figures.

Initially, the WSN is deployed. The nodes begin to identify their neighbors,
and then, they apply the predefined routing protocol to identify their path to the
BS. The anchor phase of the proposed WAD mechanism is thus active. After a
short period of time, the initial routing setup process is finalized. For simplicity
reasons, we consider a routing protocol that utilizes a hop count routing metric
as a routing strategy. At this point, the nodes have found the shortest path
to the sink node. The Planar View, as illustrated in Fig. 4a, shows the final
reconstructed topology of the anchor phase. At this point, the visual pattern
of the initial routing setup has been produced. For example, node 6 has been
placed in the fifth inner ring. This means that node 6 experienced six-hops
difference since the beginning of the network operation. Hence, it advertises to
their neighbors that it has a routing cost equal to eight towards the sink node.
The WAD mechanism records the anchor values.

The subsequent image shown in Fig. 4b dominates the planar view. It is what
we get since the first event, i.e., the initial setup, has been finalized. The first
event has been recorded in the time ring as well with a circle containing the
number 1 (the event logger is not shown here due to space limitations). The
visualization interface implies that the WSN is operating normally. The WAD
mechanism then switches to the monitoring phase.

To demonstrate VA-WAD’s ability to detect multiple wormhole attacks, in
Figs. 5 and 6 we launch two concurrent wormhole attacks. The two wormhole
links are created between nodes 6 and 45, and nodes 41 and 59. Figure 5a, illus-
trates the impact of these attacks which are captured by the dynamics of the
concentric circles. Suppose that the WAD mechanism is in the detection phase.
A new message has been generated indicating the presence of the adversary. At
this point, the system is unaware of the number of attacks in the network. Actu-
ally, it knows that a wormhole attack is active, and as such, it tries to expose
the source node(s). The visualization interface has marked with red a list of
suspicious nodes 6, 7, 8, 18, 40, and 41. At least one of them is the source node
of a wormhole link. Note that in Fig. 5a, node 6 is now located on the third ring
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Fig. 4. (a) (Left) Network topology reconstruction prior to finalization of the initial
routing setup. (b) (Right) Network in normal activity.

Fig. 5. (a) (Left) VA-WAD detected an abnormal activity. Critical nodes are marked
in red color. (b) (Right) VA-WAD resolved a wormhole link between nodes 6 and 45
(Color figure online).

perimeter out of the total six rings. Following the above remarks, a user could
interpret this visual information and conceive that node 6 now has a routing cost
equal to 6-3 = 2, due to the presence of the wormhole link. A snapshot of the
subsequent frame of the animation is illustrated in Fig. 5b. Indeed, nodes 6 and
45, which form the wormhole link, appear to be connected with the help of a link
metaphor. We used a bezier curve to highlight the connection of the two ends
of the wormhole. Following the identification and isolation of the wormhole link,
the system returns to the monitoring phase. The routing information is updated
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Fig. 6. (a) (Left) A second wormhole attack is detected. Suspicious nodes are high-
lighted. (b) (Right) The second wormhole link between nodes 41 and 59 is successfully
resolved. VA-WAD returns to the monitoring phase.

without taking these two nodes into account. The WAD mechanism also returns
to the monitoring phase. It compares the current routing cost of each node with
the anchor values. Again, it founds that a new set of nodes advertised lower
routing cost than the anchor value.

Figure 6a, depicts the visualization interface after the second alarm. A new
message (numbered as 4) has been inserted on the time ring. The critical node
list now contains the following nodes: 38, 39, 40, 41, 56, and 63. One of them is
the source node of the second wormhole tunnel. The mechanism examines their
current routing cost, and discovers that node 41 is the malicious one. As shown
in Fig. 6b, the wormhole link is resolved, and the network status returns to its
normal state. Using this illustration, the user is able to have a full insight of the
past network activity at a glance. Even without noticing the past events in real
time, the user is highly assisted by the VA-WAD system towards interpreting
what preceded in the network. The aforementioned defensive mechanism is able
to protect the network integrity from multiple wormhole attacks informing the
user about the intruder in an efficient, user-friendly, and engaging way.

4.2 Detection Accuracy

In this subsection, we examine the detection efficacy of the VA-WAD system.
The success achieved by a wormhole detection algorithm is measured in terms
of the percentage of wormholes detected and the percentage of false positives
generated. Table 1 summarizes the detection rate and the false positive rate
of VA-WAD. As it can be seen, VA-WAD reports 100 % detection rate in all
investigated scenarios. Even in the case of 6 concurrent wormhole links present
in the WSN, no attack goes undetected by VA-WAD. The second row of the
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Table 1. Wormhole detection as a function of the number of concurrent wormholes

# of concurrent wormhole links 1 2 3 4 5 6

Detection rate (%) 100 100 100 100 99.99 99.91

False positive rate (%) 0.00 0.00 0.00 0.001 0.003 0.008

table depicts the false positive rate achieved by VA-WAD. As it can be seen, the
scenarios where a genuine link is falsely reported as a wormhole is negligible.

4.3 Detection Timeliness

Table 2 reports the detection time as a function of the number of concurrent
wormhole links in the WSN keeping the number of legitimate nodes fixed and
equal to 70. We introduced up to 6 concurrent wormhole links. In the most
extreme hostile case, the number of malicious nodes equals to the 8.57% of the
total legitimate nodes of the network. As it can be seen from this table, the WAD
algorithm is quick in identifying the wormhole links. As expected, the detection
time increases almost linearly with the number of concurrent wormhole links.
However, even in the extreme case where 6 wormhole links are present in the
WSN, it only requires 7.5 s to detect all wormhole links limiting as such the
chance of the malicious nodes to damage the network.

Table 2. Detection time as a function of the number of concurrent wormholes

# of concurrent wormhole links 1 2 3 4 5 6

Detection time (in seconds) 0.4297 1.7547 3.1953 4.725 6.0969 7.5359

Table 3 depicts the obtained results with regard to the detection time as a
function of the number of the legitimate sensor nodes. In this scenario, only two
wormhole links are present in the WSN. The legitimate number of sensors alters
between 50 to 100 with a step of 10. As it can be seen, the proposed algorithm
shows quick adaptation to the presented anomalies since the detection is com-
plete within a very limited time. As the number of legitimate nodes increases,
the detection time increases as well. This is attributed to the fact that the time
required to perform routing cost differentiations lasts more. Moreover, the criti-
cal node list is getting bigger, increasing as such the processing time of the WAD
mechanism. However, even in the case of 100 nodes, the total detection time is

Table 3. Detection time as a function of the number of sensor nodes

# of legitimate sensor nodes 50 60 70 80 90 100

Detection time (in seconds) 1.2734 1.4406 1.7547 2.0218 2.2205 2.5823
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less than 2.6 s. Hence, the recovery process to address a single or more detected
wormhole threats is accelerated.

5 Conclusions

The ever-increasing amount of security events reported in mission-critical appli-
cations wireless sensor networks are envisaged to support asks for new tools to
deal with them. As a novel network security visualization tool, VA-WAD stands
out as one such solution. In this work, we proposed a robust, visual-assisted
anomaly detection system that is capable of identifying concurrent wormhole
attacks; one of the most daunting challenges in the sensor network security field.
The VA-WAD system efficiently utilized the routing dynamics in order to mon-
itor and timely detect such attacks. We evaluated the detection accuracy and
visual efficacy of the proposed system by simulating a demanding attack sce-
nario, and showed how our tool can be used to expose the attacks and visually
correlate the wormhole tunnel. In the future, we intend to validate the VA-WAD
system through extended user studies where network analysts and experts will
use the system and provide feedback on its usability. Moreover, we will extend
the capabilities of the VA-WAD system in order to enable the tool to detect a
series of new attack patterns, such as Sybil attacks, Sinkhole attacks, etc.
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Abstract. Recently revealed information on secret agencies eavesdrop-
ping on the politicians’ phone calls all over the world, have shown how
common practice it is. Although the insecurity of the mobile telecommu-
nication system GSM has been known in the scientific community, these
events made it clear to the public. Particularly, the extent and usage of
such techniques demonstrates its relevance in the current society. In this
paper, we will demonstrate techniques used to intercept mobile calls and
analyze the feasibility of man-in-the-middle attacks in real-life scenarios.
We show how to build an affordable and effective IMSI catcher which
works even when mutual authentication between phone and a network is
enforced. The methods to detect it and other potential countermeasures
are discussed as well.

Keywords: Security · Mobile · Privacy

1 Introduction

The recent news about Edward Snowden’s ongoing disclosure reveal the National
Security Agency’s (NSA) mass surveillance program. The Leaked document indi-
cates that the NSA spied on 35 world leaders [8]. Moreover, the NSA is not the
only intelligence organization performing such activities, and it seems that it
became a common practice [12]. The core issue here is not the very fact of sur-
veillance but the lack of warrant for such programs. The tool often utilized for
implementing such programs in the field is an IMSI catcher.

In GSM only the subscriber is authenticated to the network. The network
does not have to authenticate to the subscriber [5, Sect. 4.3.2b]. This allows the
communication to be billed to the appropriate subscriber, but because of the
lack of mutual authentication, any base station (BTS) can pretend to belong to
any operator, and lure the corresponding subscriber group to itself. Such BTS
devices are called IMSI catchers. Their original purpose was merely to collect
the International Mobile Subscriber Identity (IMSI) of the subscribers, which
the phone sends while trying to attach to their base station and register on the
falsely advertised network. This reveals the presence of GSM devices nearby and
allows to geolocate them. The same would apply to 3G and 4G networks as
well — mobile device is expected to first reveal its basic identity information
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 239–256, 2015.
DOI: 10.1007/978-3-319-23829-6 18
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before attempting to run any security protocols. However, in GSM the lack of
end-to-end security allows IMSI catcher to function as a full base station. While
forwarding the traffic from the subscriber to the real network, the attacker inter-
cept the ongoing communication. Such capability was offered by the GA 900
from Rohde & Schwarz in May 1997 [9]. Furthermore, this flaw allows additional
man-in-the-middle attacks to be performed, although with somewhat relaxed
definition of an attack [17]. Normally attacker is standing between communicat-
ing parties representing each one of them at the same time. This is not the case
in the attack described in [17] — attacker is unable to pretend to be the mobile
and the network at the same time, traffic forwarding have to be organized by
some other means. The practical limitations of such approach are further dis-
cussed in Sect. 4. Nowadays it is even possible to build an IMSI catcher using
commodity hardware and open source software [25].

In most of the countries legislation mandates telecommunication operators
to provide an interface to their network for lawful interception of traffic and
geolocation of the subscribers. This allows the appropriate authorities to per-
form their duties in preventing crimes, provided they obtained the appropriate
warrant. IMSI catchers are, however, allow eavesdropping telecommunication
where the interested party has no access to these lawful interception interfaces,
particularly in foreign countries.

IMSI catchers work quite well in GSM because of the lack of mutual authen-
tication. One could argue that this has already been fixed in 3G networks like
UMTS, as well as the 4G network LTE. Modern phones support 3G and 4G,1

however, very few phones allow you to enforce 3G and 4G only, and not by
default. Moreover, GSM still dominates the network coverage: while nearly 100 %
of the population and 90 % of the territory is covered by GSM in Europe, 3G
coverage is only available in 68 % of the territory, where 90 % of the subscribers
live [11]. In developing countries the difference is even greater, where 3G is only
available in major metropolitan cities due to higher cost and lower per-cell cov-
erage of 3G. Thus, turning off GSM on phones would leave a significant number
of users without mobile connectivity.

Another important aspect for continuous operation of GSM is the indus-
try. The number of 2G connections is barely decreasing, because it is now
used by various industry standards and networks. For example Machine-to-
Machine (M2M) and Internet-of-Things (IoT) networks use equipment, which
only has GSM modems, as these fulfill the requirement and are cost-effective. The
GSM-for-Railroads (GSM-R), communication standard for railways currently
rolled-out throughout Europe, is also based on GSM. In general, GSM will not
disappear in the foreseeable future, and thus its inherent weaknesses is here
to stay.

We can use this to our advantage. Using the off-the-shelf equipment and free
software, it is possible to create an GSM base station for $1500, and build an
affordable and easy to obtain IMSI catcher out of it [25]. Moreover, by knowing
the inner works and characteristics of IMSI catcher techniques, it is possible
1 Alongside with GSM which is the common denominator of supported protocols.
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to integrate these aspects so to make it stealthy and hardly detectable by the
user. Even with mutual authentication added to GSM, IMSI catchers remain
useful: using the flaw presented in [16] allows circumventing authentication and
implement successful attack, shown in this paper.

1.1 Contributions

The contributions of this paper are following:

– Shown how to configure and inexpensive, readily available base station to build
an efficient IMSI catcher with UMTS authentication, and intercept commu-
nications.

– Tested the behavior of the phones from different manufacturers when exposed
to GSM IMSI catcher, which support the UMTS authentication procedure
over GSM air interface.

– New security vulnerability affecting vast majority of baseband vendors dis-
covered.

– Tested GSM IMSI catcher implementation capable of circumventing the mutual
authentication.

– Reviewed the methods to detect IMSI catchers, and accordingly ways to build
a stealthy solution.

To the best of the author’s knowledge, it has only been shown how to build an
IMSI catcher [25], but not how to make it efficient and stealthy. While the mutual
authentication has been proven as flawed in GSM [16], no publicly available,
practical implementation and analysis has yet been done. This partially explains
why vulnerability described in Sect. 5 has not been found before.

The rest of this paper is organized as follows: related work is covered in
Sect. 2, hybrid mobile networks described in Sect. 3, the attack is explained in
details in Sect. 4. Attack feasibility and previously undisclosed security vulner-
ability found while testing against basebands from various vendors discussed in
Sect. 5. The paper concludes with Sect. 6. Details on software and hardware used
in this work are available in Appendix.

2 Related Work

The theoretical feasibility of man-in-the-middle attack was described in [16],
although the attack practicality has been questioned [19]. The reason for that
is that attack presented in [16] is not, strictly speaking, classical man-in-the-
middle attack when attacker pretend to be the mobile network to the phone
and pretend to be the phone to the mobile network while transparently for-
warding traffic between them. What actually presented is the authentication
protocol flaw, which allows to circumvent mutual authentication between the
mobile phone and the network. This is not enough to build complete man-in-
the-middle but combining it with other techniques allows to create viable attack
in some scenarios as shown in Sect. 5.
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The purpose of the IMSI catcher is to become the GSM cell selected by the
target phone so it will have access to all the traffic generated by the phone and
will be capable of generating arbitrary traffic for the phone. Authors of [23]
describe such a device in great detail. Another implementation is presented
in [25]. However, both devices do not consider the operation of GSM network as
a radio frontend for UMTS network, which is the most common case nowadays.

There are systems designed to detect operations of IMSI catcher [15] either
via observing anomalies related to the radio interface, like disappeared encryp-
tion or by detecting location attempts with silent SMS. However, no definite
method has been proposed so far: IMSI catcher can use A5/1 encryption and
break it using well-known attacks like the one implemented in [13]. The absence
of paging traffic on a given BTS while it is present on other BTS in the same LAC
is a certain give-away for IMSI catcher. This traffic, however, could be emulated
or obtained from existing operator cell and repeated. This would increase the
load on the IMSI catcher due to incoming RACH requests from paged phones.
The victim’s location information might be obtained from other sources without
the need to use silent SMS or call, which are easily detectable by the target
phone.

In case of GSM-R network the scarce distribution of BTSes might lead to
false positive IMSI catcher detection based on the lack of neighboring cells in
broadcast traffic of the GSM-R BTS [15].

3 GSM Network with UMTS Authentication

In this section, we describe how GSM and UMTS networks are glued together.
First, we review GSM and UMTS authentication procedures over radio net-
work and then provide an overview of interactions with SIM and USIM during
authentication between the mobile phone and the network.

3.1 Authentication

The GSM and UMTS authentication procedures are described in [17] in great
detail. Due to the gradual transition by telecom operators between generations
of mobile networks, it might happen that the core 3G network is connected to
both 2G and 3G base stations. The same applies to 4G.

In case of hybrid network where GSM acts as a radio frontend for the UMTS
core, the AUTN (UMTS authentication token) is transmitted as an extension
data in the Authentication Request message [5, Sect. 9.2.2] alongside with the
RAND challenge.2 This data is supplied to the USIM, which has the secret key
(K) needed to produce an Authentication Response [5, Sect. 9.2.3] and corre-
sponding ciphering (CK) and integrity (IK) keys.

Unlike in GSM authentication, AUTN contains MAC and protected sequence
number (SQN ⊕ AK, where AK is derived according to Fig. 1), which must be

2 Older phones, which do not support UMTS authentication will ignore it.



IMSI Catcher 243

used to verify the authenticity and the freshness of the request. The presence
of the MAC is supposed to prevent man-in-the-middle attack: phone computes
the MAC using secret key K and compare it to the MAC received as a part of
the AUTN to verify that authentication is requested by a legitimate network.
Replay attack protection is ensured by the fact that the actual value of the SQN is
unknown, the only way to unmask it is by xoring data received from the network
with AK, which requires the same secret key K used in the MAC computation.
The value of the SQN is updated with every authentication attempt by both
network and phone and if the SQN expected by the phone does not match the
one provided by the network, it might trigger a resynchronization procedure
instead of an authentication.

3.2 (U)SIM

What is commonly known as USIM is actually a smartcard conforming to the
UICC standard [3] which might have SIM and USIM applications running inside.

Fig. 1. Key generation [6, Sect. 6.3.2].

The interaction of key generation functions is shown in Fig. 1. This function
is run by the operator’s authentication center and inside the USIM application
on the smartcard: it uses a secret key K, which is stored inside the USIM and
is not supposed to be directly accessible from outside. Note that during the
attack we have access to RAND and AUTN parameters but not to K (which is
never transmitted over the air), so we are unable to know the exact value of the
sequence number SQN, since it is masked with AK.
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The USIM compares the XMAC (value from the f1 function) with the MAC
(the value received from the radio interface) to verify request authenticity. Then
RES is sent back to the base station for verification (this is how the network
verifies the authenticity of the phone). IK and CK are used to derive the GSM
ciphering key Kc = CK1 ⊕ CK2 ⊕ IK1 ⊕ IK2, where xKn is 64 bit long part
of the corresponding key [6, Sect. 6.8.1.2]. RES, ciphering and integrity keys are
only generated by the USIM if the sequence number matches its expectation,
otherwise, re-synchronization message AUTS, which consists of expected SQN
masked with AK and corresponding MAC, is computed [6, Sect. 6.3.3].

3.3 IMSI Catcher

To avoid detection by systems like [15], IMSI catcher should mimic the work of
a real network as closely as possible.

There are 3 types of IMSI catcher possible:3

– GSM IMSI catcher.
– Hybrid IMSI catcher.
– UMTS IMSI catcher.

GSM IMSI catcher rely on by-design insecurity of GSM, where the network
never authenticates itself to the phone. UMTS IMSI catcher is possible if an
attacker could gain access to the operator’s internal network by, for example,
by breaking into femtocell [10]. This grants indirect access to operator’s authen-
tication center, which allows attacker to request authentication credentials at
any time. The hybrid IMSI catcher described in this paper uses a corner-case
when the GSM radio interface is used to communicate with the UMTS core to
circumvent mutual authentication without direct access to operator’s network.

To build IMSI catcher and avoid detection one must understand cell selection
procedures used in GSM. When phone is looking for GSM cell to connect to, it
chooses the one with highest C1 value (path loss criterion). It is calculated as
follows [1, Sect. 6.4]:

C1 = RLAC − RXMIN − max(MSTX + POFF − P, 0) (1)

where RLAC is a running average of received signal level, RXMIN is the
minimum received signal level at the mobile station (MS) required for access
to the network, MSTX is the maximum transmission power level an MS may
use when accessing the network and P is the maximum RF output power of
the MS. More details on power offset POFF and other parameters can be found
in [23]. It is important to notice that the cell with the highest radio transmission
power (RLAC) as observed by a phone is not necessarily the one with highest C1

value calculated according to Eq. 1. The RLAC is measured by the GSM radio
modem, while RXMIN , MSTX are part of BTS configuration and broadcasted
alongside with other information. P is a characteristic of MS radio transmitter
capabilities.
3 The case of LTE is not considered in this paper and left out for future work.
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The cell reselection procedure is only relevant to the continuation of traffic
interception. In our case cell selection procedure is employed for the attack by
both target and attacking phones. Baseband of the attacking phone is not pow-
ered before the attack and jammer forces target phone to switch from UMTS to
GSM — in both cases phones have to use cell selection procedure. The neighbor
list consists of the base stations4 regularly broadcasted by each cell. The phone
is expected to monitor cells from this list to check whether it is worth switching
over to one of them.

To prevent the phone from triggering cell reselection away from the IMSI
catcher, it should have a higher C2 value than any of the neighbor cells monitored
by the phone [1, Sect. 6.6.2]. It is calculated as follows:

C2 =

{
C1 + CR − Toff ∗ H[Tpen − T ] if Tpen �= 11111,
C1 − CR if Tpen = 11111.

(2)

where CR is cell reselection offset, Toff is temporary offset, Tpen is penalty
time, T is a timer implemented for each cell in the list of strongest carriers [1,
Sect. 6.6.1] and H[x] is a discrete form of Heaviside step function. The idea
behind timer T is to prevent fast moving mobile from performing unnecessary
location updates in small-coverage cells: this timer is started when a new cell
is added to the list for monitoring and if the cell coverage is small and MS is
moving fast enough it will pass by before Tpen is reached without triggering cell
reselections.

The correspondence between parameters used in [1], the variables in Eq. 2
and BTS configuration options used in actual experiments is summarized in
Table 3.

Broadcasting non-existent neighbor cell list will effectively lock down target
phone to the IMSI catcher but it will also make IMSI catcher’s detection much
easier, hence the preferred method for avoiding cell reselection is to broadcast
authentic neighbor cell list but give IMSI catcher high C2 value by setting high
CR and setting Toff = 0.

4 Attack

We have implemented the attack first described in [16]. The messages exchange
between involved parties during the attack is shown in Fig. 2.

There are two distinct stages of the attack clearly visible in Fig. 2: before
and after the credentials extraction step. The first stage is when XGoldmon-
compatible (see Sect. 6 for details) phone with USIM card programmed with the
target’s IMSI and a random secret key K is attempting to camp on the operator’s
network. The attacking phone could be configured to use UMTS-only networks
to avoid interference from our own IMSI catcher.5 When fresh credentials are
4 Up to 6 cells in GSM and up to 15 in UMTS.
5 Not all the phones supported by XGoldmon provide such option.
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Target phone IMSI catcher Attacking phone Operator’s BTS

Man in the Middle setup

Air/Uu interfaceAir/Um interface

Location update REQ

Authentication REQ

Authentication RESP
1

Authentication FAIL
1

Credentials extraction

 UMTS jamming 

Location update REQ

Authentication REQ

Request authenticity
verification

Authentication RESP

Cipher Mode CMD

All further communication is intercepted (1): optional

Fig. 2. Attack outline.

received from the operator The second stage begins. The credentials are re-used
by the IMSI catcher, which supplies them to the target mobile phone.

The response messages from the attacking phone (the last two messages of the
first attack stage, which are marked as optional in Fig. 2) will fail authentication
and might lead to the operator banning mobile phone (by IMEI) from accessing
the network if an authentication is attempted too frequently. However, we can
stop the bogus authentication messages from reaching the operator’s network
by interrupting the communication between SIM card and the attacking phone
using a specially crafted firmware for simtrace — see Sect. 6 for details. This
helps to prevent the operator from banning attacking phone due to multiple
failed authentication attempts.

The timing requirements between those two attack stages are rather flex-
ible: the freshness of the necessary credentials is determined not by the time
elapsed since last authentication attempt but by whether target phone per-
formed authentication with the operator’s network between the attack stages
or not. See the explanation on SQN usage in Sect. 3.2.
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Each stage begins with the phone sending a Location Update Request mes-
sage to the BTS, followed by an Authentication Request message from the BTS,
to which the phone replies with an Authentication Response. The Location
Update Request is used by the mobile phone to update the BTS on its status.
The Authentication requests sent during the first and second stage of the attack
are identical — the whole purpose of the first attack stage is to obtain correct
credentials, so that verifiable Authentication Request could be constructed dur-
ing the second attack stage. Target phone response is received by the attacking
BTS and the Cipher Mode Command issued without attempting any verification
(that would require access to secret key K which we do not have). This gives the
IMSI catcher full control over the encryption used by the target phone.

The attack is possible because there is no integrity protection for the Cipher
Mode Command in GSM and RAND and AUTN parameters are available in
clear text. In UMTS the corresponding Security Mode Command is both integrity
protected and includes security capabilities transmitted by the phone. This
allows the phone to easily detect an attempt to use weak or no encryption by
an attacker [16].

Although the attack is called man-in-the-middle in [16], in practice it is
impossible to impersonate the mobile phone to the operator’s network while per-
forming successful impersonation of the GSM BSS to the target phone. There
are four potential scenarios for the phone impersonation depending on the com-
bination of UICC profile and phone baseband capabilities, which we are trying
to exploit:

Table 1. Phone impersonation requirements

Type SIM USIM

GSM SRES, Kc XRES, Kc

UMTS SRES, Kc XRES, CK, IK

Due to lack of access to the secret key Ki stored in the (U)SIM used by
the target phone, we have to obtain the information presented in Table 1 to
successfully impersonate the target phone to the original network and perform a
complete man-in-the-middle attack. The problem is that we cannot reuse XRES,
which we have obtained during the attack described in Sect. 4 because it is
derived from RAND chosen by the network and is explicitly protected from
reuse by the sequence number SQN synchronization mechanism [4, Sect. 6.3.2].
Moreover, even if we force same RAND and derive SRES from XRES according
to Eq. 3, we still would not be able to perform impersonation with the Kc, which
we could have after breaking A5/1 for example. The Kc used in pure GSM is
computed as Kc = COMP128(RAND,Ki), while in our case it is derived from
UMTS keys CK and IK as Kc = CK1 ⊕ CK2 ⊕ IK1 ⊕ IK2. An additional
challenge is imposed by the fact that security capabilities (available encryption
algorithms) sent by the mobile phone to the network will be mirrored back to the
phone by UMTS network with the Security Mode Command, protected with IK.
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This limits the scope of the implemented attack. There are, however, few
use cases where such an attack is still feasible. For example, when performing
a targeted attack, a social engineer might be interested in placing call from
particular number towards the target (for example, a call from the head of
department phone number for added credibility). In this case the lack of the
target phone impersonation is irrelevant since the IMSI catcher is capable of
supplying any desired phone number as a call origin. Another use case is the
detection of planted GSM bugs (wiretapping devices) in the office building. Here
we do not want to provide connectivity to the original command and control
servers hence there is no need for GSM bug impersonation.

Without a proper target phone impersonation, we can implement man-in-the-
middle attack by forwarding target phone calls and SMSes using VoIP service.
The downside is that the call recipient will see incoming call from the VoIP
operator number instead of expected target phone number, which will reveal the
man-in-the-middle attack. In case of long-distance calls, however, it is often the
case even without IMSI catcher: telecom operators sometimes rely on cheaper
intermediary VoIP operators to decrease traffic cost, which leads to essentially
the same effect. In the set of test calls from a mobile phone in Germany to
mobile phones in Russia, some calls were indicated as originating from short
numbers, Russia-based numbers or no number information was given to the call
counterpart at all.6

Using VoIP operator might be advantageous to attacker in other way as
well: it is possible to arrange the use of custom sender-ID to make sure that
intercepted calls and SMS will arrive from the expected number. However, this
option obviously exposes the attacker to the VoIP operator and, potentially, law
enforcement agencies having legitimate access to the operator’s infrastructure.
Also, this feature is unavailable in some countries due to local laws and it hardly
could be considered an inexpensive solution.

4.1 Experimental Setup

The experimental setup consisted of a Samsung Galaxy phone7 acting as an
attacking phone, connected to a laptop running modified OpenBTS software,
which acted as an IMSI catcher using UmTRX radio frontend. More details on
software and hardware used for the attack implementation and verification can
be found in Appendix.

4.2 Success Verification

There are plenty of cases where authentication and key agreement between differ-
ent mobile network standards performed [24]. That is why it is essential to under-
stand what is happening within the target phone exposed to our IMSI catcher.
6 Another explanation would be the pervasive use of IMSI catchers in Germany of

course.
7 Both SII and SIII models.
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For that we will analyze over-the-air messages between the target phone and an
IMSI catcher and the messages exchanged between the target phone modem and
its USIM card. In particular we will have a look at SRES (GSM response) and
XRES (UMTS response) parts of the Authentication Response. According to
[6, Sect. 6.8.1.2] the conversion performed using following formula:

SRES = XRES∗
1 ⊕ XRES∗

2 ⊕ XRES∗
3 ⊕ XRES∗

4 (3)

where

XRES∗ =

{
XRES if ‖ XRES‖ == 128,
XRES ‖ 0 . . . 0 if ‖ XRES‖ < 128.

(4)

and XRES∗
i are 4 byte chunks of XRES∗. Note: in Eq. 4 length is given in bits.

However, when the phone supports UMTS authentication, there is no need
to make such conversion. According to [5, Sect. 10.5.3.2.1], the most significant
bytes of XRES are transmitted in place of SRES (5161ca9b in Fig. 3) while the
rest is transmitted as an extension to Authentication Response message. It can
be observed in Fig. 3 which shows the example attack in wireshark8 traced from
points of view of both attacker (BTS and attacking phone) and victim (phone
and SIM card) via GSMTAP with the help of XGoldmon and simtrace tools.

If the target phone is an old phone without UMTS authentication support
than the first bytes of XRES are interpreted as SRES and the UMTS extension
is ignored. In this case, the attack is an example of the classical GSM IMSI
catcher described in [23].

Note that both Authentication Request (downlink) and Response (uplink)
are shown twice because they appear first in the BTS GSMTAP flow than in
XGoldmon GSMTAP flow.

We can verify that the phone indeed performed UMTS authentication pro-
cedure and responded with unconverted XRES value. For that we take RAND
value (left side of Fig. 3) and use it to request authentication data from the
SIM card using the osmo-sim-auth tool. The result is compared with the SRES
value calculated by substituting XRES data from Fig. 3 into the formula from
[6, Sect. 6.8.1.2]:
�

./osmo -sim -auth.py -s -r c313af9c5f3496c7f2b8acd448b7cb68

GSM Authentication

SRES: 38255549

Kc: e10d4807f0b94ffd
� �

Substituting values from the traffic dump into Eq. 3 we can show that indeed:

0x38255549 == 0x5161CA9B ⊕ 0x69449FD2

Hence, the phone sent the unconverted result of the UMTS authentication
procedure.
8 The results may vary depending on the dissectors available to Wireshark tool.



250 M. Suraev

Fig. 3. Attack traffic dump.

Another verification of the attack success (besides the fact that victim phone
responded with “Authentication response” instead of “MAC failure” or “Sync
failure”) can be obtained by carefully studying the interaction between phone
and the SIM card. Figure 4 shows the phone requesting SIM card to perform
authentication. Unparsed data in GSM SIM 11.11 begins with 00 88 00 81 which,
according to [4, Sect. 7.1.2], means that USIM AUTHENTICATE function (88
00) was called in 3G security context (81).

Fig. 4. Victim SIM request and response.

The SIM card response is shown to the right in Fig. 4. The GSM 11.11 field
begins with 00 C0 00 00 35 DB, which according to [4, Sect. 7.1.2.1], means that
the authentication function succeeded (DB). Following bytes are RES length,
RES itself, length of CK, CK itself and the remaining output of the authentica-
tion procedure.

Thus, we have verified that when the target phone connects to our IMSI
catcher, the UMTS authentication is indeed takes place. This, however, is just
one part of the overall attack: first we have to make sure that the target phone
actually connects to us and we have to handle the traffic to and from the phone
to make the attack practically feasible, which is described in greater details in
Sect. 5.
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5 Feasibility

Theoretical attacks can be modeled for formal verification and studied using
simulation. The comprehensive overview of interoperability between various gen-
erations of mobile networks is given in [24]. However, as it was shown in [18] it
is easy to overlook some details due to the complexity of choosing the correct
assumptions for a formal model. That is why practical implementation and field
experiments with real hardware are essential and cannot be replaced with sim-
ulation only.

Table 2. Baseband behavior on MAC failure

Phone Vendor Version Call in/out SMS in/out

iPhone 5 Qualcomm 10b350 3.04.25 OK/OK OK/OK

iPhone 4 Qualcomm MC605IP/A 04.12.09 OK/OK OK/OK

Galaxy S2 Infineon I9100BOLP5 OK/OK OK/OK

Galaxy SIII Infineon I9300BOLF1 OK/OK OK/OK

Samsung corby pro unknown B5310AEJ1 OK/OK OK/OK

Google nexus 1 (HTC) Qualcomm 32.41.00.32U 5.08.00.04 OK/OK OK/OK

Geekphone Qualcomm unknown OK/OK OK/OK

Keon Qualcomm unknown OK/OK OK/OK

Nokia N900 Nokia 20.2010.36-2 blocked blocked

During the experiments, we have observed peculiar behavior of many phones
in case of a MAC failure. According to [5, Sect. 4.3.2.6], if a MAC failure is
detected, the phone should stop all further communication with the BTS in
question. Moreover, [2, Sect. 3.5.5] explicitly specify that such a cell should be
treated as barred for timer T3212 minus one minute (if available) or for 12 hours
by default. Most of the phones, however, proceed as if authentication succeeded.
The behavior of different models is summarized in Table 2. Information about
the version of the phone baseband or even on the vendor of the baseband for a
particular model is not always available. Note that none of the phones indicated
any error to the user regardless if it allowed for calls or SMS.

This violation of the GSM standards is not just a mere testing oversight: it
puts both user’s privacy and its voice and SMS traffic confidentiality at risk. The
widespread lack of even basic security status indication on many phones leaves
affected users unaware of the very presence of this dangerous vulnerability.

Given the very limited number of baseband vendors, this means that the
majority of the phones available on the market do not even attempt to use
security improvements offered by UMTS. This makes IMSI catcher attack highly
practical: even if correct authentication challenge was not obtained in time to
execute man-in-the-middle attack, the IMSI catcher still might intercept all the
voice calls and SMS from the phone.
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5.1 Countermeasures

Similarly to other man-in-the-middle attack implementations, IMSI catchers can
operate due to either lack of mutual authentication between communicating par-
ties or due to some flaws discovered in authentication protocols. Sometimes,
however, users consciously choose communication over insecure channel as an
acceptable security risk: for example when accepting self-signed certificate in
web browser to access website, which does not contain highly valuable informa-
tion or request access credentials. In mobile communication such situations arise
inevitably: legal requirements clearly hold safety (ability to place emergency call)
higher than security.

Complete assurance from man-in-the-middle attacks is impossible as long as
we would like to preserve backward compatibility with insecure communication
technologies. However, it does not mean that we should make an attacker’s job
easier. To make IMSI catcher attacks harder to implement, baseband authors
should follow security procedures described in 3GPP standards.

Broken ciphers like A5/1 should be phased out, although judging from the
time required for A5/2 withdrawal, this might take very long time. It also might
be difficult due to the backward compatibility issues.

Nevertheless, users should always have clear indication whether encryption
is available or not. Operators could try to disable the ciphering indicator via
(U)SIM option [4, Sect. 4.2.8]. However, [7, Sect. 14] explicitly states that phone
could allow a configuration, which would override operator’s settings. For exam-
ple user could explicitly express preference to rely on operator’s choice or spe-
cial secure version of the phone with always-on ciphering indicator could be
produced. This feature is trivial to implement because it does not require any
changes to 3GPP standards. Unfortunately, the vast majority of the phones avail-
able on the market as of time of writing do not implement this feature. Even
mobile phones with open OS (Operating System) like Android9, FirefoxOS10,
Mer11 and Ubuntu Touch12 do not provide this obvious security improvement
yet.

6 Conclusion

In this paper we have demonstrated practical feasibility of building low-cost
IMSI catcher, which uses man-in-the-middle attack against hybrid GSM/UMTS
networks with mutual authentication. The limitations and potential attack detec-
tion measures were studied: scenarios which makes this attack practically rele-
vant were proposed.

Furthermore, experiments with real phones in the presence of developed IMSI
catcher revealed that security aspects are largely neglected by baseband vendors
9 Corresponding bug #5353 dates back to 2009 with no indication of any progress or

intention to fix it so far.
10 See the recent bug #960007 for tracking developments.
11 Bug #838.
12 Bug #1276208.
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in case of hybrid GSM/UMTS networks. The demonstrated vulnerability has
not been previously published to the best of author’s knowledge and potentially
affects millions of users worldwide.

Countermeasures to improve security with regards to IMSI catchers were dis-
cussed. Implementable improvements were reviewed for both long-term (requires
standards update) and short-term (could be deployed as an over-the-air upgrade)
solutions.

Acknowledgment. The author would like to thank Marta Piekarska for her help with
field experiments and Kévin Redon for his help with German papers and draft review.

Appendix: Experimental setup details

In practice the attack consists of two phases: site survey and actual man-in-
the-middle. The first phase is needed to gather information on the cells visible
in particular area — this step is required to properly pick ARFCN on which
attacking BTS should listen. The actual attack is then performed once target
phone enters the area. Note that first phase does not have to be performed right
before the attack — it is possible to gather this data separately.

Software

There are numerous open source projects implementing both network and mobile
side of the GSM and, to some extent, 3G stack of protocols. This allows researchers
unaffiliated with mobile industry to make independent inquiry into operation and
security of mobile networks deployment.

Osmocom-BB [21] is an open source GSM stack implemented around Calypso
chip used in old Motorola phones. It consists of several utilities including actual
GSM phone implemented in software.

The command to start 2G phone is:
�

cd osmocom -bb/src/

./host/osmocon/osmocon -p /dev/ttyUSB0 -m c123xor ./

target/firmware/board/compal_e88/layer1.compalram.bin

./host/layer23/src/mobile/mobile -i 127.0.0.1
� �

Tools like RSSI implemented on top of the Osmocom-BB stack were used
to assess radio environment and monitor signal quality during the experiment.
The following command will chain-load RSSI into Osmocom-compatible phone
(Motorola model C123 and alike):
�

./osmocom -bb/src/host/osmocon/osmocon -p /dev/ttyUSB0 -m

c123xor -c ./osmocom -bb/src/target/firmware/board/

compal_e88/rssi.highram.bin ./osmocom -bb/src/target/

firmware/board/compal_e88/chainload.compalram.bin
� �
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Xgoldmon [14] is the utility, which obtains debug stream from Intel/Infineon
XGold baseband processor. It supports Samsung Galaxy S2/SIII, Note2 and
Nexus phones. The read-only debug stream contains raw 3G messages including
authentication request and response data. By writing IMSI of the target phone
into programmable SIM card we can use xgoldmon-compatible attacking phone
to issue authentication request and thus obtain authentication challenge made
for the target phone as shown in Fig. 2.

OpenBTS [22] implements GSM base station with SIP backend. This makes
experimental setup self-contained: no other components like BSC are required.
During the experiment patched version of OpenBTS were used with additional
functionality taken from Fairwaves version.

Due to version incompatibilities OpenBTS requires the explicit version of
GNURadio13 software stack to work properly with USRPv1. It can be supplied
using following commands:14
�

set -x PKG_CONFIG_PATH"~/gr342/lib64/pkgconfig"

./ configure --with -usrp1

make
� �

OpenBTS uses “open loop” power control, which means it does not actively
control the transmission power of the cellphone. To successfully execute man-
in-the-middle attack we should carefully assess radio environment and choose
proper transmission power and a channel to operate on to make sure that radio
interference from existing cells will not prevent our IMSI catcher from taking
the role of preferred cell for cell selection.

To extract authentication information from xgoldmon the utility daemon was
written. It parses the GSMTAP traffic and updates OpenBTS database with
recent authentication data. This helps to automate the attack and further ease
timing requirements. The authentication challenge contains SQN — sequence
number, which is increased with every challenge so the current authentication
challenge is invalidated as long as the phone receive authentication request with
more recent sequence number.

Hardware

The open source implementations of GSM protocols rely on either SDR hardware
where all the signal processing details are handled in the software itself or on
the chips with known or reverse-engineered specifications, which allows for fine-
grained control over the data sent to the network.

UmTRX [20] is open source hardware project implementing SDR transceiver
capable of GSM and LTE operations. It is a successor to quite popular USRP
hardware with better clocking and multi-channel capabilities available out of
13 64 bit build used in this case.
14 FISH shell syntax used: http://fishshell.com/.

http://fishshell.com/
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Table 3. OpenBTS configuration options and cell (re)selection parameters

Variable Configuration option name GSM Standard

CR GSM.SI3RO.CRO Cell reselection offset

Toff GSM.SI3RO.TEMPORARY OFFSET Temporary offset

Tpen GSM.SI3RO.PENALTY TIME Penalty time

RXMIN GSM.CellSelection.RXLEV-ACCESS-MIN Min. received signal level at
MS

MSTX GSM.CellSelection.MS-TXPWR-MAX-CCH Max. transmission power
level for MS

the box. Both USRPv1 with ClockTamer clock source and UmTRX were used
during the experiments.

Motorola C123 phone with Osmocom-BB firmware and Nokia with net-
monitor feature enabled were used for the site survey during the attack.
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Abstract. Exploit kits have become a major cyber threat over the last
few years. They are widely used in both massive and highly targeted
cyber attack operations. The exploit kits make use of multiple exploits
for major web browsers like Internet Explorer and popular browser plug-
ins such as Adobe Flash and Reader. In this paper, a proactive approach
to preventing this prevalent cyber threat from triggering their exploits is
proposed. The suggested new technique called AFFAF proactively protects
vulnerable systems using a fundamental characteristic of the exploit kits.
Specifically, it utilises version information of web browsers and browser
plugins. AFFAF is a zero-configuration solution, which means that users
do not need to configure anything after installing it. In addition, it is
an easy-to-employ methodology from the perspective of plugin develop-
ers. We have implemented a lightweight prototype and have shown that
AFFAF enabled vulnerable systems can counteract 50 real-world and one
locally deployed exploit kit URLs. Tested exploit kits include popular
and well-maintained ones such as Blackhole 2.0, Redkit, Sakura, Cool
and Bleeding Life 2. We have also demonstrated that the false positive
rate of AFFAF is virtually zero, and it is robust enough to be effective
against real web browser plugin scanners.

Keywords: Exploit kit · Malware · Web browser security

1 Introduction

In recent years, attacks targeting web browsers and browser plugins have become
one of the most prevalent threats [1,2]. These attacks exploit vulnerabilities in
the web browsers, their plugins and operating systems in order to download and
execute malicious software on the victim system. This kind of attack is called
“drive-by download”, and attacks known as “exploit kits” (or exploit pack).
An exploit kit contains several exploits that can compromise diverse systems
from old Windows XP to recent Windows 7. Typically the range of the exploits
included in a single exploit kit usually covers all the popular web browsers and
plugins such as Flash, Adobe Reader and Java so as to maximise the possibility of
successful compromise [3–5]. Also, exploit kits are used in various cyber attacks
from massive spamming to highly sophisticated APT like Aurora operation [6].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 259–277, 2015.
DOI: 10.1007/978-3-319-23829-6 19
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As the number of drive-by download attacks and that of exploit kits increase,
several techniques to detect or prevent them have been proposed [6–12]. These
techniques use one or more static and dynamic features such as characteristics
and behaviours of malicious web pages. Another approach in the industry is
giving users an option to block (or allow) web browser plugins entirely or selec-
tively based on blacklisted (or whitelisted) web sites [13]. Major browsers like the
Internet Explorer, Chrome, Firefox and Safari have basic features for enabling
or disabling plugins, while a few web browser plugins like ClickToPlugin1 and
FlashBlock2 provide more controls over the plugins such as whitelist. In some
cases, operating system blocks outdated plugins [14].

In this paper, we propose a new approach to the exploit kit problem. Rather
than reactively detecting and blocking exploit kits, our approach proactively mod-
ifies certain behaviour of the web browser plugins in order to prevent exploit kits
from triggering their exploits. We have analysed multiple exploit kits and discov-
ered a fundamental difference between benign software developers and malicious
exploit kit developers; they both detect and check the version of to-be used plu-
gin, but the way they check it is completely opposite to each other; we describe
this difference in approach in Sect. 3. This observation led us to the proposed
defensive methodology, AFFAF (A Fake for a Fake), which leverages the dif-
ference to limit exploit kits’ activities, while allowing normal web sites to function
as intended. From a security perspective, AFFAF has several advantages. AFFAF is
more fine grained than the allow/block-based solutions in the sense that it uses
version information of the browser plugins. Next, it protects vulnerable systems
as well as fully updated ones by thwarting exploit kits at the very early stage of
an attack. In addition, it is hard for attackers to bypass AFFAF even after they
know this methodology, since it makes use of an essential feature of exploit kits.
Furthermore, AFFAF is a zero-configuration solution, hence users do not need to
make decisions on whether to enable a specific browser plugin or not every time
they visit a new web site. Finally, AFFAF is easy to apply and adopt as a practical
technique.

We have implemented a prototype based on our methodology. Our prototype
implementation uses JavaScript and web browser extension techniques to inter-
cept communications between the web browser and web pages, and to modify
the behaviour of web browser plugins. Because checking browser plugin versions
using JavaScript is the de-facto standard among web developers and attack-
ers, our prototype successfully blocks multiple real-world exploit kits including
Blackhole 2.0, Redkit, Sakura, Cool and Bleeding Life 2, which proves the effi-
cacy of the proposed methodology. Our evaluation involved Alexa top 100 web
sites with Flash and/or PDF contents as well as ten fully Flash-based sites. In
all theses cases, deployment of our prototype worked very well, suggesting the
false positive rate of zero in these cases.

1 http://hoyois.github.io/safariextensions/clicktoplugin/.
2 https://chrome.google.com/webstore/detail/flashblock/

gofhjkjmkpinhpoiabjplobcaignabnl.

http://hoyois.github.io/safariextensions/clicktoplugin/
https://chrome.google.com/webstore/detail/flashblock/gofhjkjmkpinhpoiabjplobcaignabnl
https://chrome.google.com/webstore/detail/flashblock/gofhjkjmkpinhpoiabjplobcaignabnl
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The remainder of this paper is organised as follows. In Sect. 2, an overview
on exploit kits is given. Our defensive methodology, AFFAF, is explained in
Sect. 3 along with our observations on exploit kits. Prototype implementation
is described in Sect. 4. Three types of evaluation and their results are described
in Sect. 5. We discuss related work in Sect. 6, and then conclude this paper with
some final remarks in Sect. 7.

2 Background

Discussion on exploit kits and detection techniques is given in this section pro-
viding the background knowledge for the problems addressed in this paper. We
also present our observations on the exploitation strategy being used in many
exploit kits.

Implementation of Exploit Kits: Exploit kits consist of two parts: malicious pages
(client-side) and a control panel (server-side). When a victim visits a malicious
link contained in a web site or a spam whose server has been compromised and
poisoned with malicious contents, the user is redirected to the landing page of the
exploit kit (after passing through several intermediary servers). Then the exploit
kit profiles the victim environment using client-side script such as JavaScript.
Based on the information gathered, it determines, delivers and launches one or
more exploits amongst many available exploits for web browsers and their plu-
gins. If the exploitation is successful, a malware is downloaded and executed on
the victim system. This process is called “drive-by download” attack because it
happens without any user consent [3]. The malware starts communicating with
its control panel/administration interface that provides control functionalities
such as remote access and various statistics on the compromised systems. Mali-
cious pages delivered to victims are constructed using HTML and JavaScript,
while control panel used by attackers is written using server-side scripting lan-
guages like PHP and backend software such as MySQL and Apache.

Defensive Techniques: As exploit kits have become a major cyber threat [1,2],
several techniques to detect them have been proposed. One of the initial efforts
was to detect malicious domains/URLs [8,10,15–18] and to build blacklists of
these domains using techniques such as Google Safe Browsing, Malware Domain
List and URL Query. To counteract the efficacy of such defence, attackers began
to use fast-flux DNS and obfuscated code. Fast-flux DNS makes blacklists hard
to be kept up-to-date, and obfuscated and evasive code enables the attackers (1)
to avoid signature or other static feature-based detection techniques and (2) to
protect the code from being analysed [19]. As a consequence, dynamic feature-
based and behaviour-based detection techniques have been proposed in [6,7],
and the arms race continues. These trends in attacks and defence mechanisms
are exactly same as malware history that began with normal binaries and then
evolved into obfuscation bypassing signature-based anti-virus.
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Table 1. CVEs exploited in the tested exploit kits and corresponding vulnerable prod-
ucts with version information

CVE Vulnerable versions CVE Vulnerable versions

CVE-2007-5659/

2008-0655

Adobe Reader≤ 8.1.1 CVE-2011-1255 IE 6-8

CVE-2009-2477 Firefox≤ 3.5.1 CVE-2011-2110 Flash≤ 10.3.181.26

CVE-2008-2992 Adobe Reader≤ 8.1.2 CVE-2011-2140 Flash≤ 10.3.183.5

CVE-2008-5353 Java≤ 6u10 CVE-2011-2371 Firefox≤ 4.0.1

CVE-2009-0927 Adobe Reader≤ 9.1 CVE-2011-2462 Adobe Reader≤ 10.1.1

CVE-2009-3867 Java≤ 6u17 CVE-2011-3106 Chrome≤ 19.0.1084.52

CVE-2009-4324 Adobe Reader≤ 9.3 CVE-2011-3659 Firefox≤ 3.6.26, 4.9

CVE-2010-0188 Adobe Reader≤ 9.3.1 Firefox social engineering Firefox≤ 4

CVE-2010-0094 Java≤ 6u18 CVE-2012-0754 Flash≤ 10.3.183.15, 11.1.102.62

CVE-2010-0840 Java≤ 6u18 CVE-2012-0775 Adobe Reader≤ 10.1.3,≤ 9.5.1

CVE-2010-0842 Java≤ 6u18 CVE-2012-0779 Flash≤ 10.3.183.19, 11.2.202.235

CVE-2010-0886 Java≤ 6u19 Unknown CVE Flash≤ 10.3.183.23, 11.4.402.265

CVE-2010-1240 Adobe Reader≤ 9.3.3 CVE-2012-3683 Safari≤ 6

CVE-2010-1297 Flash≤ 10.1.53.64 CVE-2012-4681 IE 6-9

CVE-2010-1885 Windows XP-2003 CVE-2012-4792 IE 6-8

CVE-2010-0248 IE 6-8 CVE-2012-4969 IE 6-9

CVE-2010-2883 Adobe Reader≤ 9.4 CVE-2012-5076 Java≤ 7u8

CVE-2010-2884 Flash≤ 10.1.82.76 CVE-2012-1880 IE 6-9

CVE-2010-3552 Java≤ 6u21 CVE-2012-1876 IE 6-10

CVE-2010-3654 Flash≤ 10.1.102.64 CVE-2012-1889 Windows XP-7, Server 2003-2008

CVE-2010-4452 Java≤ 6u23 CVE-2013-0422 Java≤ 7u11

CVE-2011-0558 Flash≤ 10.2.152.26 CVE-2013-0634 Flash≤ 10.3.183.51

CVE-2011-0559 Flash≤ 10.2.152.26 CVE-2013-1493 Java≤ 7u15 - 6u41

CVE-2011-0611 Flash≤ 10.2.154.27 CVE-2013-2423 Java≤ 7u17

3 AFFAF: Proposed Methodology

In this section, we give our observations on the exploitation strategy of exploit
kits’, and then propose a novel defensive methodology to counteract it. As a
proactive solution, our technique can be combined with any reactive defensive
technique from blacklists to malicious page/code detection mentioned earlier.

Observations on Exploitation Strategy of Exploit Kits: In addition to evasion
techniques, there is another important commonality that exploit kits share to
install silently malware without user’s notice; they profile the victim system
before launching exploits. After analysing major exploit kits, such as Blackhole
2.0 and Bleeding Life 2, we observed that they all use similar exploit deter-
mination process like the one shown in Fig. 1. It is a flow chart representation
of Blackhole 2.0’s JavaScript code for its Flash exploits. Not only Flash, but
also browser type and other conditions are tested in the diagram. This kind of
version detection is confirmed in many exploit kits [2,3,5,20–24]. In a couple
of ways, profiling is a crucial strategy of exploit kits that enables reliable and
secret compromise. First, it is well-known that unsuccessful software exploita-
tion may make the target web browser or plugin be unresponsive or crash, which
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Fig. 1. Control flow for Flash exploitation (Blackhole 2.0)

will cause suspicions. We have experimented with several exploits and analysed
exploit kits (Table 1), which confirmed this behaviour. In the worst case, such
a crash can lead to the detection of an entire attack operation in which the
exploit kit is involved in. Obviously, the attackers do not want this to happen.
What the attackers usually want is to compromise as many victims as possible
and remain undetected as long as possible. Therefore, attacking only vulnerable
targets and avoiding highly secured (not vulnerable) targets is acceptable for
them. As a result, they avoid non-vulnerable versions where their exploitation
attempts will not succeed. This is why exploit kits exquisitely pinpoint the vul-
nerable web browsers and plugins as given in Fig. 1, prior to downloading and
launching an exploit. Even penetration testing tools like Metasploit3 and SET
(Social Engineering Toolkit)4 check the target version before trying exploits in
order to reliably and secretly compromise target machines. Second, exploit kits
contain more than one exploit. In other words, it can try other exploits (e.g.
Internet Explorer browser exploit) even if a vulnerable version of one plugin
(e.g. old Java) is not installed on the target. This strategy raises the possibil-
ity of successful exploitation as well as reducing the risk of exposure. Third, by
delivering only the required exploit, only a portion of a complete exploit kit is
exposed to victims and security experts, thus making the analysis difficult.

Developers vs. Attackers: After observing the profiling behaviour of exploit kits,
we discovered a fundamental difference between attackers and web developers.
Even though they both use web browser plugins, the attackers exploit them
in a way to compromise victim machines, whereas the developers utilise their
functionalities in order to implement rich web applications. And before actu-
ally using a plugin, both the attackers and the developers check the existence
and/or version of the plugin. However, the way they check the version num-
ber is totally different. Benign developers normally check the existence or the
minimum version number required for their web applications (Java 1.5.XX or
higher, for example); it is a commonly accepted development practice to require
a specific or higher version of software. The developers perform this check for
compatibility. If the required plugin is not installed, or its version is too low

3 http://www.metasploit.com.
4 http://www.social-engineer.org.

http://www.metasploit.com
http://www.social-engineer.org
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and some required functionalities are not provided in the old version, the web
application cannot run on the system. In addition, thanks to backward compat-
ibility practice that is universally deployed in the software industry, developers
normally don’t have to check the upper limit for compatibility. For instance, the
following code from Adobe’s Flash development help page5 shows how a Flash
content is embedded in HTML. It only checks the existence of Flash plugin, and
displays “Get Adobe Flash player” link if Flash is not available on the client
system:
<object class id=” c l s i d : d27cdb6e . . . ” \

width=”550” height=”400” \
id=”movie name” align=”middle ”>

<param name=”movie” value=”movie name . swf ”/>
< !−−[ i f ! IE]>−−>
<object type=” app l i c a t i on /x−shockwave−f l a s h ” \

data=”movie name . swf ” width=”550” . . .>
<param name=”movie” value=”movie name . swf ”/>

< !−−< ! [ e nd i f ]−−>
<a href=”http ://www. adobe . com/go/ g e t f l a s h ”>

<img src=”http ://www. adobe . com/ images / \
. . . / g e t f l a s h p l a y e r . g i f ” \
alt=”Get Adobe Flash p layer ”/>

</a>
< !−−[ i f ! IE]>−−>
</object>
< !−−< ! [ e nd i f ]−−>

</object>

In contrast, the maximum version number required for successful exploita-
tion (for instance, Java 7u11 or lower) is probed by the attackers. This equal to
or less than tendency is evident in Table 1. This table shows CVEs exploited by
the exploit kits that we have analysed and tested.6 The reason for this tendency
is clear. The attackers need to profile victim systems for the reasons discussed
earlier, and the profiling code checks equal to or less than relation because a
vulnerability is applied to a specific version or below, as discussed earlier. For
instance, if a zero-day vulnerability is disclosed for Flash and version 10.2.158
was the latest at that time, the exploit code for the vulnerability is applicable
to 10.2.158 or below. As a concrete example, a notorious exploit kit, Blackhole
2.0, checks an exact version range before trying its Flash exploits as given below
(see Fig. 1 for more detail):
f unc t i on sp l5 ( ) {

var ver1 = f l a s h v e r [ 0 ] ;
var ver2 = f l a s h v e r [ 1 ] ;
var ver3 = f l a s h v e r [ 2 ] ;
i f ( ( ( ver1 == 10 && ver2 == 0 && ver3 > 40) \

| | ( ( ver1 == 10 && ver2 > 0) && \
( ver1 == 10 && ver2 < 2 ) ) ) \

| | ( ( ver1 == 10 && ver2 == 2 && ver3 < 159) \
| | ( ver1 == 10 && ver2 < 2 ) ) ) {
// Embed Flash Exp lo i t ( s )

}
5 http://helpx.adobe.com/flash/kb/object-tag-syntax-flash-professional.html.
6 In order to give correct information, all the data of this table is veri-

fied using the official CVE web site and ExploitPack Table 2013 that are
available at http://cve.mitre.org and https://docs.google.com/spreadsheet/ccc?
key=0AjvsQV3iSLa1dE9EVGhjeUhvQTNReko3c2xhTmphLUE respectively.

http://helpx.adobe.com/flash/kb/object-tag-syntax-flash-professional.html
http://cve.mitre.org
https://docs.google.com/spreadsheet/ccc?key=0AjvsQV3iSLa1dE9EVGhjeUhvQTNReko3c2xhTmphLUE
https://docs.google.com/spreadsheet/ccc?key=0AjvsQV3iSLa1dE9EVGhjeUhvQTNReko3c2xhTmphLUE
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Fig. 2. Proposed mitigation against exploit kits for browser plugins: separate (upper)
or integrated (lower)

The JavaScript code above meticulously pinpoints the target Flash versions
such as 10.2.{0-158} and 10.{0 or 1}.{XXX}, and loads malicious Flash contents
only if one of the conditions is satisfied. Then, action script inside the Flash
contents executes the actual exploit code. Even though JavaScript is the most
popular place where exploit kits perform their version detection (given in Sect. 5),
a few exploit kits check target software version from their malicious payload. For
instance, Redkit exploit kit conducts version detection inside its PDF payload.

Leveraging the Difference: The current situation that developers check the min-
imum required version, while attackers tend to check the maximum vulnera-
ble version can be utilised to protect systems from exploit kits. In most cases,
exploits included in exploit kits are not triggered if the version of the target
browser plugin is higher than the maximum vulnerable version (which means
patched). Therefore, by altering outdated plugins to be the latest (or even a
non-existent future version), we can make all the conditions probed by exploit
kits (such as those of Fig. 1) fail; hence helping to prevent the launch of exploits.
Suppose that a plugin (e.g. Java) advertises its version number to be higher than
its actual version (e.g. the latest or even higher one), it prevents exploit kits from
trying Java exploits that target some old versions or the latest version in the
case of zero-day. More importantly, users can still enjoy Java applets on benign
web sites, since those web sites check either the existence of Java or minimum
required version, which is definitely lower than the fake version. As a result, we
can block plugin exploits contained in exploit kits, while leaving browser plugins
usable to normal web applications. We call this defensive methodology AFFAF
(a fake for a fake), meaning that it uses fake version numbers to thwart exploit
kits and drive-by download attacks. With regard to false positive (the case when
benign web application is blocked as well as exploit kits), it is expected to be low



266 B. Min and V. Varadharajan

because security fixes are normally minor version updates and no new features
are introduced.

This methodology can be implemented as either a separate solution (this
paper’s prototype) or an integrated part of each plugin. Each case is depicted in
Fig. 2. In the former case, AFFAF intercepts version enquires and returns a fake
one, whereas in the latter case, each plugin is responsible for such manipulation.
In both cases, a web browser plugin or AFFAF (1) responds with the requested
plugin object to the web page, and (2) reports the real version information to
relevant vendor so that update is possible, while reporting fake versions to any
other web sites.

3.1 Merits of AFFAF

AFFAF is a fine-grained defence using version numbers of plugins that helps to
counteract attacks. As a consequence, several benefits including the following
major ones are obtained:

1. AFFAF is a zero-configuration solution. Users do not need to disable their
plugins nor blacklist (or whitelist) them; in other words, users need to do
nothing for AFFAF. This means simple convenience. The users can use old
and vulnerable browser plugins without worrying about being exploited by
exploit kits. This is crucial in web user protection, because many users (93 %
of Java and 60 % of Adobe Reader users) do not update their plugins and use
outdated (thus vulnerable) ones [25,26]. Even worse, less than one per cent of
enterprises run the latest version of Java [27]. Some users even want to disable
security warnings for outdated browser plugins provided by browsers [28]. Our
methodology protects these old versions as well as the latest ones without
disabling them.

2. Even after attackers know AFFAF methodology, it is still hard for them to
bypass it. Attackers cannot try an arbitrary exploit, since they do not know
the real versions of browser plugins. For instance, suppose an exploit kit has
an exploit for CVE-2012-0779. It works against Flash up to 10.3.183.19 for
version 10 and up to 11.2.202.235 for version 11 (Table 1). Even after the
attackers guess Flash version obtained from the victim is a fake, they cannot
try this exploit because it may crash the browser or make it unresponsive,
which makes the user suspect an attack. As a result, the attackers hardly
use exploits against seemingly not vulnerable environment as shown earlier.
Until they find a way to obtain the real version number, promiscuously trying
exploits is too risky for the attackers.

3. AFFAF thwarts attacks at the very early stage. Without using their exploits,
exploit kits cannot use any further exploits such as Windows privilege esca-
lation that are supposed to be triggered by the first web browser exploits,
nor can install malware. Therefore, even vulnerable environments such as
unpatched Windows XP can be protected without being exploited by both
zero-day and known exploits. This is especially beneficial to critical infrastruc-
ture and SCADA sites whose systems are usually not patched mainly due to
the 24/7 operation requirement.
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4. AFFAF is a proactive method (i.e. before any actual exploitation happens) that
modifies the behaviour of web browser plugins in order to block triggering of
exploits embedded in the exploit kits. Therefore, unlike reactive detection
techniques, it works well no matter how much exploit kits’ JavaScript code is
obfuscated.

5. AFFAF is more fine grained than blocking web browser plugins or blacklisting
them. This is especially useful to systems where disabling a specific plugin
is impossible. For example, some enterprise-wide software solutions require
Java [27].

6. Employing AFFAF does not require significant workload for plugin vendors.
First, modern browser plugins already provide automatic version check func-
tionality that is reusable in AFFAF that needs the latest version number. Those
plugins automatically check the latest version and pop up an update window
to users, even though many users do not update them. Second, reporting gen-
uine version number only to the vendor is also simple to implement; browser
plugins can use digital certificates or other authentication schemes to verify
the subject who is checking their version.

7. The proposed AFFAF technique can be used in conjunction with other tech-
niques that are already in place.

4 Implementation

We have implemented a prototype as a separate system between the two imple-
mentation methods discussed in the previous section (Fig. 2). Unlike a browser
plugin vendor who can apply AFFAF to its product by updating its source code,
we had to patch individual plugin’s binary if we were to implement AFFAF in
the integrated way. Furthermore, having a separate system provides a more
efficient way to support more than one web browser plugin as an independent
(non-vendor) developer.

Overview and Scope: The current implementation uses two techniques: Internet
Explorer extension that enables JavaScript injection and object override feature
of JavaScript. It demonstrates most merits of AFFAF including defence against
browser exploit kits, zero-configuration, and reporting real version numbers only
to corresponding vendors. Lastly, it does not affect update procedure of web
browser plugins.

The prototype is capable of modifying version numbers of Flash, Adobe
Reader, and Internet Explorer. Support for other browsers and plugins like Java
can be added in the future. It consists of two parts, a browser extension and
JavaScript code, as given in Fig. 3. The former enables the prototype to inject
(i.e. pre-load) JavaScript code in every web page before it is rendered, and the
latter intercepts and modifies version numbers.

Pre-loading JavaScript in Web Pages: We have tested two platforms for
JavaScript injection purpose: IE7Pro and Crossrider. IE7Pro is a browser exten-
sion for Internet Explorer 6, 7, and 8 that aims to enhance the feature set
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Fig. 3. Prototype implementation of AFFAF

provided by the browser. Even though IE 9 is not officially supported, IE7Pro
is compatible with it as well. IE7Pro adds features such as tab enhancement,
advertisement and flash blocker, mouse gestures, inline search, privacy enhance-
ments, online bookmark service, and user script support. We tested the user
script functionality to pre-load JavaScript code, and verified its operation. Sec-
ond option is Crossrider. It is a cloud-based development framework that lets
developers quickly and easily create cross browser extensions. When the develop-
ers write code using Crossrider APIs and JavaScript, Crossrider builds a multi-
browser extension for the code. It supports Internet Explorer, Chrome, Firefox,
and Safari. Among various APIs it provides, includeJS() and addInlineJS add
the contents of the specified JavaScript resource to web pages. We used this API
to pre-load our AFFAF JavaScript, and confirmed it satisfied our requirements.
The features such as user script of IE7Pro and API includeJS() of Crossrider
are mainly intended for page view optimisation such as social media site de-
cluttering. Even though both IE7Pro and Crossrider are viable options, we have
selected Crossrider as our JavaScript injector for a couple of reasons. First, Cross-
rider is actively being developed and supported, while IE7Pro is abandoned and
has not been updated since June 2010. Second, building multi-browser exten-
sion has more potential than making an IE-only one, even though our current
prototype mainly targets IE just like major exploit kits do.

Our Crossrider extension is a shell for AFFAF, hence simple as below. Once a
user installs this extension, a file (affaf.js) is pre-loaded each time a page is
viewed, and the included JavaScript code performs AFFAF’s functionalities.

Modifying Version Numbers: The main body of our implementation is the
JavaScript code injected into every web page the browser loads. First, it uses a
JavaScript’s inheritance feature to override original ActiveXObject that is used
by developers and attackers when checking plugin version:
var f = ActiveXObject ;

// Override ActiveXObject
var ActiveXObject = func t i on ( prog id ) {

var ax = new f ( prog id ) ;
this . prototype = ax . prototype ;
. . .

The overridden object has two functions, one for Flash and the other for
Adobe Reader. In the case of Flash, GetVariable() is overridden in order to
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return fake or real version number depending on the subject that requests the
version. The overridden function first gets the actual version of the active Flash
plugin, adds some random numbers to its major and minor version numbers, and
returns the newly created version number to its caller. It returns the original ver-
sion number only to “adobe.com”. Essentially identical operations are performed
for Adobe Reader as well. Only version parsing routine, progid string that is
compared and the overridden function are different. This implementation also
does not affect updates of Flash and Adobe Reader, since each of these two plug-
ins use a separate process to check and update themselves, which is independent
of the Internet Explorer. If we modified the actual version number embedded
inside plugins, update procedure would have also been affected.

Lastly, in order to modify the version number of Internet Explorer,
navigator object is redefined using the following JavaScript code7, because IE
(unlike other browsers like Chrome and Firefox) does not allow to override getter
functions of navigator’s properties. In the redefined navigator object, proper-
ties related to browser version like userAgent and appName are replaced with fake
strings. And all other properties, such as systemLanguage and cookieEnabled,
are defined as corresponding original values so as to make the new object a
complete replacement of the original navigator.
// navigator rede f ined
var nav igator=new Object ;

// userAgent and other proper t i e s rede f ined
nav igator . userAgent=’ Moz i l l a /5 .0 ( compatible ; . . . ) ’ ;
nav igator . p lat form=’Win32 ’ ;
nav igator . appCodeName=’ Moz i l l a ’ ;
nav igator . appName=’ Microso f t I n t e rn e t Explorer ’ ;
nav igator . appVersion=’ 5 .0 ( compatible ; MSIE . . . ) ’ ;

Even though this prototype is not a full implementation of AFFAF, it achieves
its major aspects. First, as a browser extension, it intercepts communications
between the web browser and web pages, and injects JavaScript code that mod-
ifies version number of Flash and Adobe Reader. Second, it does not affect the
update procedures of Flash and Adobe Reader. Third, it checks the hostname
of version requesting subject, and returns the real version number only to the
vendor (Adobe in this case). We have verified this code using Adobe’s Flash ver-
sion check page8. It is also a zero-configuration extension. A user simply needs
to install this on their system. In addition, it is a lightweight implementation
without any kernel module and dedicated user process.

Limitations: Some exploits (in exploit kits) can be promiscuously triggered if
they are harmless from the perspective of attackers. For example, an exploit for
Internet Explorer (CVE-2006-003) is unconditionally triggered in Blackhole 2.0.
Therefore, it is very important to combine AFFAF with a reactive detection and
prevention solution in order to provide the maximum protection.

7 This is a simplified representation. For instance, many variables have been omitted
whereas some others have been replaced with static strings.

8 http://helpx.adobe.com/flash-player/kb/find-version-flash-player.html.

http://www.adobe.com
http://helpx.adobe.com/flash-player/kb/find-version-flash-player.html
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There is more than one way of checking versions of Flash and Adobe Reader.
For instance, action script inside a Flash object can check the version number
of a currently active Flash object. Since our implementation uses JavaScript, it
cannot intercept this kind of version checking. It can only hook version checking
methods that make use of JavaScript. However, this is an implementation issue
and only applies to our prototype, not to the concept of AFFAF. When plugin ven-
dors like Adobe and Oracle employ AFFAF, it would work in all version checking
situations. In addition, as our evaluation results (Sect. 5) suggest, this prototype
is enough to invalidate many of currently available exploit kits. We suppose this
is because using JavaScript for version checking is the de-facto standard among
developers and attackers.

Finally, the current prototype implementation does not work for other web
browsers like Chrome and plugins such as Java and Microsoft Office. Again, this
limitation is applied only to the current version of the prototype, not to the
proposed methodology.

5 Evaluation

Evaluation of the prototype implementation has been performed from three dif-
ferent aspects. First, AFFAF was tested against live or locally deployed exploit
kits in order to verify its effectiveness. This evaluation demonstrates the efficacy
of the protection that AFFAF provides against real exploit kits. Next, we visited a
wide range of benign web sites that contained Flash and/or PDF contents, and
ascertained whether those sites worked well without any issue. This evaluation
is a test for false positive; for the prototype, a failure of Flash or PDF content
with its deployment is a false positive. Lastly, we tested the implementation with
dedicated browser plugin scanning services to test its robustness.

Configured Vulnerable Environment: Our evaluation environment is composed
of two VMware virtual machines running on a dedicated PC with a 3.4 GHz Intel
Core i7 and 16 GB RAM. One VM runs Windows XP Professional SP3 and the
other runs 32-bit Windows 7 Ultimate. Both are equipped with various vulner-
able versions of Flash (10.0.45.2 and 11.0.1.152) and Adobe Reader (8.1.0, 9.0.0
and 10.0.1). Versions for each software were decided based on the CVE informa-
tion available from Table 1 so that they are vulnerable to exploit kits. In total,
twelve (2 × 2 × 3) software configurations were set up. For each configuration,
two snapshots are saved: one with the prototype and the other without, resulting
in 24 separate snapshots. System utilities like Procmon (Process Monitor) and
tcpdump are also deployed in each VM so as to scrutinise any triggered exploita-
tion. Lastly, no web browser plugins other than Flash and Adobe Reader are
installed on the VMs so they are not compromised by other exploits such as
targeting Java and Microsoft Office.

5.1 Defence Against Exploit Kits

The best way to test AFFAF’s effectiveness is to visit real-world exploit kit URLs
with vulnerable browser plugin configurations. We have collected exploit kit
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Table 2. Examples of tested live exploit kits

Exploit kit URL Blocked by AFFAF

Blackhole 2.0 ilianorkin.ru:8080/forum/links/column.php YES

Blackhole 2.0 actsforcharged.com/closest/209tuj2dsljdglsgjwrigslgkjskga.php YES

Blackhole 2.0 juhajuhaa.ru:8080/forum/links/column.php YES

Blackhole 2.0 ighjaooru.ru:8080/forum/links/public version.php YES

Blackhole 2.0 http://eveningwiththeeditors.com/wp-content/plugins/wp-plugin-

repo-stats/wps.php?c002

YES

Blackhole 2.0 www.quickcraft.com.br/infourl.htm YES

Blackhole 2.0 hillaryklinton.ru:8080/forum/links/column.php YES

Redkit senreibehn.narod.ru/ YES

Redkit actionpreventive.com/mhas.htm?j=1335200 YES

Sakura oto-drukarnia.pl/wp-content/themes/twentyten/amaz.html YES

Cool www.appvenue.dk/seoadvertbb.html YES

Bleeding Life 2 localhost (set up with leaked version) YES

URLs from multiple security mailing lists and sites including Malware Domain
List9, URL Query10, and ZScaler URL Risk Analyzer11. In addition to these live
URLs, we downloaded a popular exploit kit (Bleeding Life 2), and configured it
in our own testbed.

Evaluation Method: The evaluation has been conducted in four steps. First, we
collected malicious URLs from multiple sources and input them to our 24 VM
snapshots. Second, each URL was visited by each snapshot. This process was
automated using VMware’s script support. Next, we analysed twelve snapshots
that do not have AFFAF installed in order to check whether all the components of
an exploit kit, such as JavaScript libraries and exploit code, are live and active.
This was important since many collected landing pages were linked to non-
existent exploit code even one day after the pages were disclosed. Through this
step, we verified (1) that twelve plugin configurations were actually exploitable
by exploit kits and (2) that the exploits for Flash and Adobe Reader included
in the exploit kits were active and working. Landing URLs with broken exploit
links were excluded in this step for accurate evaluation. As a result, we tested
50 live URLs of working exploit kits. Table 2 shows 11 of them, which are still
online and active at the time of August 2013. In the last step, we compared two
snapshots of each software configuration in order to check if AFFAF prevented
exploit kits from triggering their exploits.

On the Modification of Version Number: For each snapshot, we made AFFAF
advertise various versions for Flash and Adobe Reader, and examined if it suc-
cessfully blocked exploit kits. When modifying version numbers, AFFAF only adds
(never subtracts) a random number to the actual version number. And the ran-
dom number was selected in a way that the resultant fake version is same or

9 http://www.malwaredomainlist.com.
10 http://urlquery.net.
11 http://zulu.zscaler.com/.

http://ilianorkin.ru:8080/forum/links/column.php
http://actsforcharged.com/closest/209tuj2dsljdglsgjwrigslgkjskga.php
http://juhajuhaa.ru:8080/forum/links/column.php
http://www.ighjaooru.ru:8080/forum/links/public_version.php
http://eveningwiththeeditors.com/wp-content/plugins/wp-plugin-repo-stats/wps.php?c002
http://eveningwiththeeditors.com/wp-content/plugins/wp-plugin-repo-stats/wps.php?c002
http://www.quickcraft.com.br/infourl.htm
http://hillaryklinton.ru:8080/forum/links/column.php
http://senreibehn.narod.ru/
http://actionpreventive.com/mhas.htm?j=1335200
http://oto-drukarnia.pl/wp-content/themes/twentyten/amaz.html
http://www.appvenue.dk/seoadvertbb.html
http://www.malwaredomainlist.com
http://urlquery.net
http://zulu.zscaler.com/
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higher than the latest version. Therefore, at least two is added in the case of
Adobe Reader 8 to make it look like 10, and one in the case of Flash 10 to make
it seem to be 11. For the versions whose major version number is same as the
latest one (e.g. Flash 11), only minor version numbers are modified.

Results and Discussion: As shown in Table 2, AFFAF successfully blocked all the
exploit kits (50 live URLs and one locally deployed exploit kits) evaluated with
twelve different software configurations. In other words, 612 cases (12 config-
urations× 51 links) that would have been exploited were protected by AFFAF.
Validation was conducted in two ways. First, we recorded exploit URLs, such
as malicious Flash and PDF files, when visiting malicious URLs without AFFAF.
Then, we analysed packet dumps and verified no such file was downloaded dur-
ing AFFAF test. Because exploit kits download and execute a particular exploit
after it decides to use the exploit [3,5,20–22,24,29], the fact that exploit kits did
not download actual exploits proves no exploit was triggered. Second, we also
examined Procmon log files in order to double-check that there was no evidence
of exploitation.

All the five exploit kits tested in this evaluation (Blackhole 2.0, Redkit,
Sakura, Cool and Bleeding Life 2) are actively updated and maintained at the
time of mid 2013 [4]; three of them (Blackhole, Sakura and Bleeding Life) are
included in the most popular exploit kits [1]. This implies that (1) AFFAF is
effective in blocking major exploit kits, and (2) most exploit kits use JavaScript
for version detection, as the current prototype implementation is only capable of
intercepting JavaScript-based version checking methods. Indeed, we found that
all of them use a same public library called PluginDetect12 for browser plugin
detection. PluginDetect is a JavaScript library that detects browser plugins.
It is intended to work with all the major browsers such as Internet Explorer,
Firefox, Mozilla, Netscape, Chrome, Safari, Opera, SeaMonkey and Flock. We
further investigated this interesting aspect, and it turned out that PluginDetect
is also used in other exploit kits such as Neutrino 2.0, Nuclear [30] and White-
hole [29]. It seems that there are a couple of plain advantages for exploit kit
developers to use publicly available library: higher anonymity and better ver-
sion detection. For example, custom version detection code can be used as a
signature/feature for a particular exploit kit. More importantly, it may contain
bugs inside its custom version checking routine. Lastly, defensive solutions like
anti-virus and IPS cannot detect PluginDetect since benign web sites also use
it for compatibility check purpose.

It should be noted that many of the exploits in Table 1 were zero-days when
they were first employed in exploit kits. This was achieved in our testbed VMs
using outdated plugins. This demonstrated that AFFAF is effective in blocking
zero-day exploits as well as known ones.

12 http://www.pinlady.net/PluginDetect/.

http://www.pinlady.net/PluginDetect/
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5.2 Benign Web Sites

We also evaluated AFFAF on benign web sites in order to measure its false positive
rate. For AFFAF, a false positive means that a legitimate web site does not work
properly under the deployment of AFFAF.

Alexa Top 100 Web Sites and Embedded PDF Contents: First, Alexa top 100
web sites including Flash-centric ones such as YouTube, Dailymotion, youku,
LiveJasmin, ESPN, CNN, and CNET.com were tested. In order to verify that
Flash contents actually work, not only the first pages but also specific pages con-
taining Flash-based contents were visited. We confirmed all the Flash contents
on those web sites worked correctly, which implies AFFAF’s false positive rate
is virtually zero. For PDF contents, we searched PDF files and PDF-embedded
web pages on Google, visited them, and checked if PDFs are displayed cor-
rectly. Adobe Reader plugin worked well in all the test cases. This is obvious
since actual content-embedding code (e.g. <object> tag) is not affected by the
prototype implementation. Only version checking APIs like GetVariable() and
GetVersions() are intercepted and overridden.

Top 10 Flash-based Web Sites: Most of the Flash contents tested with Alexa
top 100 web sites are video and advertisement. Even though Flash is basically
a video container, it can also be used for developing an entire web application
such as online game and graphic editor. In order to compensate for this potential
limitation, we performed a second evaluation with the top ten Flash web sites
selected by eBiz13. These ten sites include a variety of Flash-based web sites from
a driving game and to a museum virtual tour. Again, we verified that all the
Flash-based sites worked without any error. This experiment reaffirms AFFAF’s
false positive rate is zero.

5.3 Browser Scan Services

As exploit kits are one of the major cyber threats, security companies like Rapid7
(well-known for Metasploit) and Qualys provide web service, which checks ver-
sions of web browser plugins and warns users of outdated ones. We have tested
AFFAF with two browser scanning services, one from Rapid714 and the other
from Qualys15. The purpose of this evaluation is to check AFFAF’s robustness.
We verified that both services reported fake version numbers returned by AFFAF
for Flash and Adobe Reader, while correct versions were detected for other plu-
gins like Silverlight. This means AFFAF works well even against dedicated plugin
scanning services.

13 http://www.ebizmba.com/articles/best-flash-sites.
14 http://browserscan.rapid7.com/scanme.
15 https://browsercheck.qualys.com.

http://www.ebizmba.com/articles/best-flash-sites
http://browserscan.rapid7.com/scanme
https://browsercheck.qualys.com
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6 Related Work

There have been many research efforts to detect and prevent drive-by download
attacks and exploit kits. Some are focused on malicious host detection, whereas
others are on language-specific detection.

Malicious Host/Download Detection: Lu et al. [6] proposed a browser indepen-
dent operating system kernel extension designed to eliminate drive-by malware
installation performed by exploit kits. Li et al. [15] developed a topology-based
malicious host detection technique based on the unique feature they found by
studying a set of topologically dedicated hosts discovered from malicious web
infrastructures. Invernizzi et al. [10] suggested an approach to search the web
more efficiently for pages that are likely to be malicious. Their system leverages
the crawling infrastructure of search engines to retrieve URLs that are much
more likely to be malicious than a random page on the web by starting from an
initial seed of known malicious web pages. Canali et al. [8] suggested a filter that
quickly discards benign web pages and detects malicious content using static
analysis techniques. Wang et al. [17] developed an automated web patrol sys-
tem to automatically identify and monitor these malicious sites. Nappa et al. [18]
studied drive-by download operations and proposed a technique to detect exploit
servers managed by the same organisation.

Language-specific Detection: On detection of malicious JavaScript code, Kaprav-
elos et al. [7] presented an automatic detection technique for evasive JavaScript
code. It used the observation that two scripts that are similar should be clas-
sified in the same way by web malware detectors. Curtsinger et al. [11] used
Bayesian classification of hierarchical features of the JavaScript abstract syn-
tax tree to identify syntax elements that are highly predictive of malware. Cova
et al. [12] combined anomaly detection with emulation to identify automatically
malicious JavaScript code and to support its analysis. Kolbitsch et al. [9] proposed
a JavaScript multi-execution virtual machine as a way to explore multiple execu-
tion paths within a single execution so that environment-specific malware reveals
itself. Rieck et al. [31] embedded an automatic drive-by download detection and
prevention system inside a web proxy, and blocked delivery of malicious JavaScript
code using static and dynamic code features. Nikiforakis et al. [32] performed a
large-scale crawl on the Internet and suggested a set of metrics that can be used
for JavaScript provider assessment. Through this process, they detected four new
types of vulnerabilities. Regarding Java-based malware, Schlumberger et al. [33]
proposed a detection system for malicious Java applet based on static code
analysis.

7 Concluding Remarks

In this paper, we introduced AFFAF, which is a new approach to protecting
vulnerable systems from a prevalent cyber threat, namely the exploit kits. It is a
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proactive methodology that blocks the execution of exploit kits using the version
information of the browser plugins. It is a zero-configuration solution from user’s
perspective, and is an easy-to-employ method from developer’s view. We have
implemented a lightweight prototype, and demonstrated that AFFAF provided
protection to vulnerable environments with outdated plugins by validating it
against 50 real-world and one locally deployed exploit kit URLs. Tested exploit
kits included popular and well-maintained ones such as Blackhole 2.0, Redkit,
Sakura, Cool and Bleeding Life 2. Also, we showed that the false positive rate
of AFFAF is virtually zero, and the technique is robust enough to be effective
against real web browser plugin scanners.

Currently we are continuing to test AFFAF against new coming and live exploit
kits that will be armed with new zero-day exploits, and confirming that AFFAF
is still effective on those future threats. Support for other browsers and plugins
like Java can be added in the future version of our AFFAF prototype. In addition,
the concept of AFFAF can be extended to any type of software, thus applying
it to other categories of software such as operating system can be part of our
future work.
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Abstract. As information systems become more complex and dynamic,
Policy Decision Points (PDPs) and Policy Enforcement Points (PEPs)
follow the same trend. It becomes thus increasingly important to model
the capabilities of these PDPs and PEPs, both in terms of coverage,
dependencies and scope.

In this paper, we focus on Policy Enforcement Points to model the
objects on which they may enforce security constraints. This model,
called the PEP Responsibility Domain (RD(PEP )), is build based on the
configuration of the PEP following a bottom-up approach. This model
can then be applied to multiple use cases, three of them are shown as
examples in this paper, including policy evaluation and intrusion detec-
tion assessment and alert correlation.

Keywords: Policy Enforcement Point · Approximation Accuracy ·
Alert correlation · Security policy

1 Introduction

Many policy enforcement mechanisms, herein referred to as Policy Enforcement
Points (PEP), have been designed and developed in order to apply the access
control decisions and protect the supervised network. Each policy enforcement
mechanism is characterized by its capability. This capability encompasses both
the kind of information it can collect to filter information (network adresses,
emails, signatures) and on the kind of decision it can enforce (block or reject
a request, send an alert, etc.). It also encompasses the position of the PEP
in the information system, and its position in the processes that provide the
service requested by the users. Thus, having a complete understanding of the
coverage and capabilities of each enforcement mechanism is necessary to deploy
it effectively, to evaluate its performance and to analyze its interactions with
other PEPs.

We propose to model these Policy Enforcement Capabilities in order to have a
good understanding of deployed Policy Enforcement capabilities and tackle sev-
eral issues in security policy management and intrusion detection. This model is
the PEP Responsibility Domain (RD(PEP )). The main objective of RD(PEP )
is to build a consistent view of the deployed policy enforcement capabilities that
may contribute in defining the appropriate response decision. We first propose
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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a definition of a Policy Enforcement Point Responsibility Domain RD(PEP ).
Second, we expose several approximation approaches of the RD(PEP). Third,
we evaluate the differences between these approximations. Finally, we describe
the application of the proposed PEP model on alert correlation.

2 Policy Enforcement Points

The term of Policy Enforcement Point (PEP) was introduced in [1] as an entity
that performs access control by making decisions requests and enforcing autho-
rization decisions by the Policy Decision Point (PDP). In [2], PEP is defined as
the most security critical component, which protects the resources and enforces
the PDP’s decision. Generally, the PDP and the PEP are combined to control
access and enforce the security policy. According to [3], PEPs are defined as
modules which reside on the managed devices and are responsible for installing
and enforcing the Security Policy.

In our approach, we define the PEP as a security entity that is capable to
apply, on the triplet {Subject, Action,Object}, the enforcement decisions repre-
sented by {d1, d2, d3, . . . , dp} (p is the total number of all decisions that can be
applied by the PEP class). In Eq. 1, we give an algebraic representation charac-
terizing a PEP.

PEP : S × A × O −→ {dk}k∈[1...p] (1)

In general, the triplet {Subject, Action, Object} is represented by a set of appro-
priate attributes denoted by {Attri}i∈[1...n]. In the rest of our paper, we do not
consider the decisions applied by the PEPs.

3 PEP Model

In this Section, we briefly define the basic notions used in our proposed approach.

3.1 Selector Definition

The security policy enforcement is usually based on a set of decision/enforcement
criteria known as “Selectors”. In general, a selector is a typed variable having
a finite or infinite domain. We assume in our approach that all the selectors
have a finite domain. This latter is denoted by D(S). We denote by | D(S) | the
cardinality of D(S).

Selector Type. Each selector has a defined Selector Type denoted by S �Type.
We define it by S�Type = {(Type(S),D(S))}. Type(S) represents the type of
the Selector S. It can be for example integer, real, binary, string, timestamp, etc.

Selector Domain Decomposition. Following the previous definition, D(S)
represents the range of all the possible values which can be affected to Selector S.
D(S) can be split into a finite number, l, of totally disjoint sub-domains denoted
by δ(S). Those sub-domains are totally disjoint.
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3.2 PEP Classes

We can distinguish between PEPs based on the communication stack layer:
network-level (e.g. firewalls, routers, IDSes, IPSes), application-level (e.g. data-
bases), or identity and access-level PEPs (directory access control). Hereafter,
we introduce the notion of a PEP class.

Definition 1 PEP class: A family of PEPs shares common functional char-
acteristics and enforces the policy based on a common (sub)set of selectors.

PEP Class Properties. Following the Definition 1, each class of PEP is char-
acterized by an identical core set of Selectors denoted by {S1, S2, S3, . . . , Sn}.

4 Responsibility Domain of PEP Rules

This concept is related to the capability and ability for the PEP to enforce the
Security Policy (SP). It is defined by the PEP’s configuration and its rules. Let’s
m be the total number of configured rules. A rule ri, for i ∈ [1 . . . m], has usually
the following general form:

ri : Ci → Di

where Ci : Conditions defined on Selectors
Ci = {ri(Sj) = sij , ∀i ∈ [1 . . . n]}

and Di : set of decisions

(2)

Di are applied when Ci are satisfied. A rule can apply several decisions such as
denying and logging. Every rule ri, ∀i ∈ [1 . . . m], defined in the PEP configura-
tion has an explicitly defined Responsibility Domain.

Definition 2 Responsibility Domain of a rule: It is derived from the set
of Ci configured for each Selector of the PEP. It includes all of the packets,
requests, etc., on which the rule’s decision(s) may be applied and enforced. We
denote it by RD(ri) as is written as follow:

RD(ri) = < sij >j∈[1...n], 1 ≤ i ≤ m (3)

Since sij ⊆ D(Sj), one rule may include different selectors combination. We
define hereafter the RD(ri) coverage.

Consequence 1 RD(rj) Coverage: RD(ri) Coverage is the number of all the
selectors combination defined in the rule r. It is expressed in Eq. 4.

| RD(ri) | =
∏

j∈[1...n]

| sij | (4)

Example. Consider the following rule of a Network-level Firewall:

r : src ip = 140.192.37. ∗ ∧src port = ∗∧
dst ip = 161.120.33.40 ∧ dst ip = 80 ∧ protocol = tcp
→ deny

(5)
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Its corresponding Responsibility Domain is:

RD(r) =< 140.192.37.∗, ∗, 161.120.33.40, 80, tcp > (6)

and the coverage of RD(r) is:

| RD(r) | =| 140.192.37.∗ |, | ∗ |, | 161.120.33.40 |, | 80 |, | tcp |>
= (28 − 1) × (216 − 1) × 1 × 1 × 1 (7)

4.1 Characterization of Relations Between RD(rj)

In [4], authors define five relations that may exist between rules (Fig. 1). They
demonstrate that these relations are unique and that can be applied to define
the different conflicts and anomalies that may figure between rules. We adopt
these relationships and define them between Responsibility Domain of rules.
Overlaps between rules result in overlaps between their Responsibility Domains.
Hereafter, we detail the relationships that may exist between the Responsibility
Domains of rules.

– RD(r1) and RD(r2) are Completely Disjoint (CD)
and we write CD(r1, r2), iff

∀j ∈ [1 . . . n], r1(Sj) � r2(Sj)
where � ∈ {⊂,⊃,=} (8)

– RD(r1) and RD(r2) are Exactly Matched (EM)
and we write EM(RD(r1), RD(r2)), iff

∀j ∈ [1 . . . n], r1(Sj) = r2(Sj) (9)

– RD(r1) and RD(r2) are Inclusively Matched (IM)
and we write IM(RD(r1), RD(r2)), iff

∀j ∈ [1 . . . n], r1(Sj) ⊆ r2(Sj)
and ∃j′ such that r1(Sj′) �= r2(Sj′) (10)

– RD(r1) and RD(r2) are Partially Matched (PM)
and we write PM(RD(r1), RD(r2)), iff

∃j′, j′′ ∈ [1 . . . n], r1(Sj′) � r2(Sj′)
r1(Sj′′) � r2(Sj′′)

where � ∈ {⊂,⊃,=}
(11)

– RD(r1) and RD(r2) are Correlated (C)
and we write C(RD(r1), RD(r2)), iff

∀j ∈ [1 . . . n], r1(Sj) � r2(Sj)
and ∃ j′, j′′ ∈ [1 . . . n] such that r1(Sj′) ⊂ r2(Sj′)

and r1(Sj′′) ⊃ r2(Sj′′)
where � ∈ {⊂,⊃,=}

(12)

Contrary to [4], these relationships are used in order to set approximation infer-
ences that will be detailed in Sect. 5.
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Fig. 1. Relations between Responsibility Domains of two rules.

5 Responsibility Domain of PEP

5.1 Axioms

Before detailing our proposed approach, it is important to define the assumptions
that constitute a sine qua non condition to develop our approach.

– Axiom 1. All considered PEPs have a finite set of rules. In practice, security
administrators configure on each PEP a finite set of rules which apply the
Security Policy Guidelines.

– Axiom 2. We ignore the default rule of the PEP. Usually, since the default
rule includes the entire selectors domains, it does not inform us about the
configuration specification of the PEP.

– Axiom 3. The definition of the Responsibility Domain should only consider
the intrinsic characterization and deployment of the PEP.

5.2 Definitions

Definition 3 Responsibility Domain of PEP: Each PEP, once deployed
in the network, has a finite range of applicability which we call “Responsibility
Domain”. The Responsibility Domain of the PEP informs us about the enforce-
ment capability of the PEP across the network. We denote it by RD(PEP ). This
domain is an abstraction over the PEP implementation and configuration and
its intrinsic enforcement capabilities.

Definition 4. The Responsibility Domain is a bounded multi dimensional
domain and its dimension is Dim(PEP ).

The RD(PEP ) is a bounded domain. We respectively denote the upper bound
and the lower bound by RDsup(PEP ) and RDinf (PEP ). RDsup(PEP ) con-
siders environmental constraints on the deployed PEP. The identification of this
bound requires external knowledge related to the topological visibility of the
deployed PEP. RDinf (PEP ) is the union of the entire set of Responsibility
Domains of configured rules in the PEP’s instantiation.

As policy enforcement is, in most cases, distributed along the different PEPs,
it is important to model their enforcement capability, RD(PEP ), in order to
support the administrator in selecting the most appropriate ones. Thus, the
definition and identification of an appropriate approximation of the RD(PEP )
must be well defined. Hereafter, we first give an identification of RDinf (PEP )
and then detail several approximations of the RD(PEP ).
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5.3 Definition of RDinf(PEP )

We refer to the configuration matrix Confselectors(PEP ) defined in Eq. 13. It not
only represents the configuration of the PEP but also identify the RDinf (PEP ).
RDinf (PEP ) is the union of the entire set of Responsibility Domains of config-
ured rules in the PEP’s instantiation.

Confselectors(PEP ) =

⎛
⎜⎜⎜⎝

S1 S2 ... Sn

r1 s11 s12 . . . s1n
r2 s21 s22 . . . s2n

.

.

.
.
.
.

.

.

.
. . .

.

.

.
rm sm1 sm2 . . . smn

⎞
⎟⎟⎟⎠

(13)

The definition of RDinf (PEP ) takes into account the entire set of the different
combinations between selectors defined in configured rules while ignoring the
default rule.

RDinf (PEP ) =
⋃

i∈[1...m]
RD(ri)

=
⋃

i∈[1...m]
< sij >j∈[1...n]

(14)

Objective of RD(PEP ) approximations and methodology

Our objective at this stage is to analyze different possibilities of a comprehensive
and appropriate approximation of RD(PEP ) without losing specificities of the
deployed PEP. The RDinf (PEP ) is considered as the unique starting point
for all the approximations. Based on RDinf (PEP ), we define inferences and
data mining operations to build different versions of approximated Responsibility
Domains denoted as RDapprx(PEP ). These operations consider the relations
between rules and characterizations of selectors, their combination properties.
We detail them in the next two paragraphs.

The different approximations that we propose can be split in two major
categories:

– Rule-based (rb) approximations, Eq. 15: It is based on rules which are repre-
sented by the rows of Confselectors(PEP ) matrix.

rb() : U −→ U
RDinf (PEP ) �−→ RDrb apprx1(PEP )

(15)

The first rule-based approximation RDrb apprx1(PEP ) is the result of the
function rb(RDinf ).

– Selector-based (sb) approximations, Eq. 16: It is based on values affected to
selectors across columns of Confselectors(PEP ) matrix.

sb() : U −→ U
RDinf (PEP ) �−→ RDsb apprx1 (PEP )

(16)

The first selector-based approximation RDsb apprx1(PEP ) is the result of the
function sb(RDinf ).
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Due to space limitation, rb() and sb() functions will not be detailed.

gen() : U −→ U
< sj , j ∈ [1 . . . n] > �−→< δkj

, j ∈ [1 . . . n] > (17)

This function, gen(), refers to a generalization process which considers the Selec-
tor Domain Partition defined in Sect. 3.1. For each selector instantiation, sj ,
gen() identifies the corresponding sub-domain including the partition of sj . The
resulting vector will be a tuple of these generalized partitions.

6 Analysis of RD(PEP ) Approximations and
Interpretations

6.1 RD(PEP ) Approximations Properties

As explained above, all the approximations closely depends on the configuration
of the deployed PEP . Therefore, several relations would exist between these
approximations:

– Totally Inclusive Approximations: The application of gen() function
results in a generalization of considered selectors values.

RDrb apprx1 (PEP ) ⊆ RDrb apprx2 (PEP )
⇒ | RDrb apprx1 (PEP ) |�| RDrb apprx2 (PEP ) | (18)

– Partially Joint Approximations: Both of RDrb apprx2(PEP ) and
RDsb apprx1 may have a common set of vectors which is at least the
RDrb apprx1 .

6.2 Qualitative Analysis: Approximation Accuracy Metric

The evaluation results shown in this paragraph are based on the approximations
of RD(Firewall) based on RDinf (Firewall) of the following running example
shown in Fig. 2. It represents a medium size network with two zones (D1 and
D2) connected to the Internet and protected by a border Firewall which is an
instantiation of netFW class.

Identification of RDsup(Firewall): The RDsup of a deployed PEP includes
the set of all possible vectors characterizing the flow that may pass through the
PEP. We denote by Dsup(S) the real domain of a Selector S. It is identified by
considering the topological information about the network.

Dsup(src ip) = {140.192.37.∗, 161.120.33.∗, ∗. ∗ . ∗ .∗}
Dsup(dst ip) = {140.192.37.∗, 161.120.33.∗, ∗. ∗ . ∗ .∗}
Dsup(p) = {tcp, udp}

(19)

RDsup(Firewall) = {Dsup(src ip)
×Dsup(dst ip) × Dsup(p),
such that :
{Dsup(src ip),Dsup(dst ip),
Dsup(p)} are combinable

(20)
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Fig. 2. Running Example: a medium size network with two zones.

Approximation Accuracy has been introduced in several mathematical theories
such as approximation theory, rough set, fuzzy set, etc. In our approach, we
propose to apply this metric in order to evaluate how accurate the approxima-
tions are regarding the real Responsibility Domain of the PEP. We adapt the
Approximation Accuracy expression defined in Rough Set Theory [5]. In [5], the
author define the Accuracy Approximation as a measure to express the quality
of the approximation.

In Eq. 21, we define the Approximation Accuracy of RDapprx(PEP ) which
we denote as Λ(RDapprx(PEP )) as:

Λ(RDapprx(PEP )) = |RDapprx(PEP )|
|RDsup(PEP )| (21)

Obviously, 0 < Λ(RDinf (PEP )) ≤ Λ(RDapprx(PEP )) ≤ 1 for any
RDapprx(PEP ). Following the definition of the approximation of the Respon-
sibility Domain, the more Λ(RDapprx(PEP )) is closer to 1, the more accurate
the approximation is.

In Table 1, we evaluate this metric for the different approximations of the
running example. Based on results shown in Table 1, we notice that the Approx-
imation Accuracy of approximations RDsb apprx1 and RDsb apprx2 is 108 times
bigger than the Λ(RDinf (PEP )). In this case, selector-based approximations
are more appropriate than rule-based approximations.

Table 1. Evaluation of Approximation Accuracy Metric of the running example

RDinf RDrb apprx1 RDrb apprx2 RDsb apprx1 RDsb apprx2

Λ(RDapprx(PEP )) 4 ∗ 10−11 2, 5 ∗ 10−8 1, 3 ∗ 10−3 3, 9 ∗ 10−3 3, 9 ∗ 10−3

7 Application on Alert Correlation

The proposed PEP model can be used in several security applications. Hereafter,
we detail one of the novel applications of such PEP model.

The Responsibility Domain of deployed PEPs is considered as a correlation
feature. Alerts are correlated if they share a common (set of) PEP(s) capable of
applying a countermeasure on the corresponding flow of the alert. Hereafter, we
define our proposed Enforcement-based Alert Correlation.
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Definition 5 Enforcement-based Alert Correlation: Given a set of alerts
and a set of Responsibility Domains of the deployed PEPs, the Enforcement-based
Alert Correlation groups alerts while considering the Responsibility Domains of
PEPs, as the correlation feature.

In Eq. 22, we write the basic correlation inference used in our Enforcement-based
Alert Correlation approach for two different alerts A1 and A2.

A1 ∈ RD(PEP1) ∧ A2 ∈ RD(PEP1)
=⇒ Aec = 〈(A1, A2), (PEP1)〉 (22)

Aec represents the Enforcement-based Correlated Alert. It is composed of two
components. The first component includes the set of correlated alerts. The second
component includes the (set of) PEP(s) that is (are) capable to process the
correlated alerts.

Aec is intended to group one or more previously-sent alerts together, to say
“these alerts can be processed by the common PEP(s)”. This application shows
how our model is capable to enhance the response decision process.

8 Conclusions

We introduce a novel concept to model Policy Enforcement Point by their
Responsibility Domain, RD(PEP ). We first characterize the PEP by the set of
selectors. Then, we define the Responsibility Domain of a configured rule RD(r).
We analyze the relationships that may exist between these domains and define
a set of approximation inferences. Based on the different properties that exist
between RD(r) and the characterization of selectors, we give different approxi-
mations of the RD(PEP ). The advantage of our methodology to approximate
RD(PEP ) is the performance in a ‘blind manner’. Also, the consideration of
the PEP configuration makes the approximations more useful for response deci-
sion. Our future work is mainly oriented toward studying the different properties
that may exist between these approximations of different deployed PEP s. The
main objective would be the application of this model in a distributed response
decision and alert correlation.
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Abstract. Concolic testing is widely regarded as the state-of-the-art
technique in dynamic discovering and analyzing trigger-based behavior
in software programs. It uses symbolic execution and an automatic the-
orem prover to generate new concrete test cases to maximize code cover-
age for scenarios like software verification and malware analysis. While
malicious developers usually try their best to hide malicious executions,
there are also circumstances in which legitimate reasons are presented
for a program to conceal trigger-based conditions and the corresponding
behavior, which leads to the demand of control flow obfuscation tech-
niques. We propose a novel control flow obfuscation design based on the
incomprehensibility of artificial neural networks to fight against reverse
engineering tools including concolic testing. By training neural networks
to simulate conditional behaviors of a program, we manage to precisely
replace essential points of a program’s control flow with neural network
computations. Evaluations show that since the complexity of extracting
rules from trained neural networks easily goes beyond the capability of
program analysis tools, it is infeasible to apply concolic testing on code
obfuscated with our method. Our method also incorporates only basic
integer operations and simple loops, thus can be hard to be distinguished
from regular programs.

Keywords: Software obfuscation · Malware analysis · Reverse
engineering · Concolic testing · Neural network

1 Introduction

In recent years, advances in reverse engineering techniques have made software
verification and malware analysis more and more powerful [1–3]. With the help
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of dynamic code analysis which is able to trace a program’s execution and to
monitor branch information along the trail, an analyzer may explore nearly all
possible paths for software analysis. A representative technique is concolic testing
which helps understanding the control flow structure of program routines [4–9].
It performs symbolic execution along a concrete execution path and generates
new concrete inputs to maximize code coverage of the tested program, thus could
effectively discover trigger-based behavior that leads to malicious execution.

On the other hand, software developers have also realized the fact that envi-
ronments under which software runs must be assumed to be potentially mali-
cious. For example, in man-at-the-end (MATE) attacks [10], a powerful adversary
with full control of the system could thoroughly inspect and analyze the running
program. While concolic testing has been proven powerful in security analysis,
it also provides a sharp scalpel for attacks like software cracking and piracy.

Many works have been done to provide countermeasures against both sta-
tic and dynamic code analysis techniques. Control flow obfuscation, which aims
to confuse the analyzer by complicating programs’ control flow structures, has
been one of the important approaches [11–16]. Previous works have shown effec-
tiveness against automatic analyzers to a certain extent, yet there are well-
documented shortcomings in terms of generality [11,14,15] and performance
[12–14,16].

In this paper, we propose a novel control flow obfuscation design that intro-
duces neural networks to execute conditional control transfers. Our method
obfuscates a candidate conditional operation by replacing it with a neural net-
work trained to simulate its functionality. The powerful computation capability
of neural networks allows our design to work for conditional statements involv-
ing all possible algebraic logic. Meanwhile, the well-known complexity in com-
prehending the rules represented by neural networks [17–19] ensures that the
protected behaviors are turned into an unexplainable form, making it next to
impossible for theorem provers or constraint solvers to find concrete inputs that
lead to the execution paths behind the networks. Hence, our proposed technique
disables concolic testing from exploring control flow structure of the protected
program.

Our obfuscator applies to programs written in C/C++ and is evaluated with
two common concolic testing tools—KLEE [9] and TEMU [20]. The performance
of our design is also tested with selected benchmarks from the SPECint-2006
test suite. Results indicate that our method successfully prevents concolic test-
ing from generating test cases to cover the protected conditional paths while
introducing only negligible overhead.

The rest of the paper is organized as follows. Section 2 discusses related
works on code obfuscation. The main idea as well as some important details are
explained in Sect. 3. The implementation of our obfuscator is given in Sect. 4.
We analyzed the security of our method against possible attacking strategies of
adversaries and show the evaluation results in Sect. 5. Some discussions about
the proposed method are given in Sect. 6. Finally, we give our conclusion in
Sect. 7.
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2 Related Works

2.1 Concolic Testing

Concolic testing is a hybrid software verification technique that combines sym-
bolic execution with concrete testing [4], in which program is tested under a
concrete execution path, and symbolic execution is used in conjunction with
an automated theorem prover (or a constraint solver based on constraint logic
programming) to generate new test cases that cover other concrete paths. Con-
colic testing has been extensively applied in structural exploration and model
checking, and received much attention during the past decade [5–9]. Meanwhile,
concolic testing also provides a powerful tool for program inspecting, which may
lead to further compromise on software integrity.

Nevertheless, several limitations still exist in concolic testing [21], in which we
mainly focus on the capability of underlying theorem prover/constraint solver
that concolic testing depends highly on. When the constraints of a path go
beyond the capability of the solver, concolic testing can no longer perform sym-
bolic execution along it, thus loses the advantage of exploring new behaviors.

2.2 Control Flow Obfuscation

Control flow obfuscation is one of the major methods of code obfuscation, which
aims to make the control flow of a given program difficult to understand [22].
Despite the many efforts made on the subject, existing control flow obfuscation
methods either endure a notable tradeoff on performance, or fit only in limited
scenarios.

Sharif et al. presented a conditional code obfuscation scheme that uses hash
function to protect equal branch conditions [14]. This method is a representative
work of using algorithms that is infeasible to be reversely analyzed in protecting
program’s control logics. Nevertheless, since cryptographic algorithms like hash
function are pseudo-random permutations, they are difficult, if not impossible, to
be applied in obfuscating branches triggered by input from a continuous interval
(e.g., conditions like > or ≤), which significantly limits the application of such
type of methods. Also, encrypting introduces overhead that cannot be neglected.

Tricks or special mechanisms in programming were also exploited in building
control flow obfuscation. There were already attempts to turn control transfers
into signals (traps), then introduce dummy transfers and “junk” code to confuse
static analysis [15], or to achieve control flow obfuscation via code mobility by
computing targets of program’s control transfers remotely on a trusted environ-
ment at runtime [13]. However, the former cannot be used in protecting con-
ditional logics, while the later looks impractical given that it requires frequent
interaction with the remote third-party.

Targeting the drawbacks of specific reverse engineering techniques, such as
exploiting the limitation of symbolic execution in solving unrolling loops in [11],
seems to be a more promising way. Yet a small regret is that the above design
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is not built with a provable theoretic basis. In this paper we try to build control
flow obfuscation on a proven difficulty that is too hard for theorem provers to
solve.

2.3 Neural Network and Rule Extraction

Artificial neural network (ANN) is a connectionist model, consisting of an inter-
connected group of artificial neurons (as demonstrated in Fig. 1). ANN is known
as a highly distributive, fault-tolerant non-linear algorithm with powerful compu-
tational capability. During the 1990s, several researches suggested that a feed-
forward neural network with a single hidden layer (containing finite number
of neurons) is a universal function approximator and should be able to simu-
late arbitrary functions [23,24]. Meanwhile, in artificial intelligence and machine
learning, researchers generally believe that a main weakness of neural network
is the absence of a capability to explain either its process to arrive at a spe-
cific decision/result, or in general, the knowledge embedded in it in human-
comprehensible form [17]. In 1996, Golea [18] studied the intrinsic complexity of
the rule-extraction from neural networks and came out with two key results:

– extracting the minimum Disjunctive Normal Form (DNF) expression from a
trained (feed-forward) neural network; and

– extracting both the best monomial rule and the best M-of-N rule [19] from a
single perceptron within a trained neural network

are both NP-hard problems. We believe, however, that the incomprehensibility
of neural networks, in spite of being treated as a impediment all the time, could
actually become an advantage in control flow obfuscation, where the understand-
ing of knowledge in neural networks can be unwanted.

Input 
Layer

Hidden 
Layer

Output 
Layer

Fig. 1. An example of neural network.

3 Control Flow Obfuscation Using Neural Networks

In programming, conditional logics are used to selectively transfer control to
one of two execution paths, based on whether the value of their inputs satisfy
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given conditions. Yet from another perspective, as shown in Fig. 2, such selective
operations are in some sense equal to a kind of binomial classification tasks
where:

– all possible values of the input space are assigned to 2 groups — true/false,
each corresponds to a determined execution path;

– the input is examined and classified into one of the groups, then the program
is directed to the corresponding path.

This indicates that it is possible to design a control flow obfuscation scheme
based on security properties of certain algorithms (e.g. classification) originally
used in data mining.

Branch 
Condition

Input

Execution
Path A

Execution 
Path B

Category  A Category B

Input space

Fig. 2. An intuitive idea of a potential relation between conditional behaviors and the
classification task.

We choose neural network as a candidate for building our obfuscation design,
not only because it is a well-understood tool in classification, but also due to the
incomprehensible nature of its reasoning procedure. The extreme complexity of
extracting rules embedded inside neural networks could help providing powerful
resistance against reverse engineering techniques that aim to inspect internal
structures of obfuscated program routines.

Neural Network 
Function

Branch 
Condition

Input Value

Neural Network 
Weight Matrix

Fig. 3. The framework of control flow obfuscation with neural networks



292 H. Ma et al.

3.1 Design Overview

The general idea of our method is shown in Fig. 3. The obfuscation takes 2 stages:
At the preparation stage, the obfuscator first locates the target conditional

branches in program’s source code, and for each of them selects a series of values
that trigger both paths to form a training set. It then trains neural networks (in
the form of network weight matrixes) which simulate the behavior of the target
conditional logics.

After this preparation, the obfuscator goes to the transforming stage, in
which it inserts a function to the program to compute output of neural networks,
and replaces the target conditional instructions with calls to the neural network
function. The embedded function receives the same inputs as the replaced logics,
along with the weight matrix of corresponding neural networks, and can then
direct execution towards the correct path.

The detailed implementation of our design is a bit more complicated. A few
tricks are involved in order to ensure the correctness of obfuscation, as well as
enhancing the security.

3.2 Indirect Control Transferring

Similar to some previous control flow obfuscation schemes that transform the
subject logics into more complex but semantically equivalent ones [11,14], the
easiest way of replacing a conditional branch with neural network is to attach it
with a new conditional logic that instead determines based on whether the net-
work’s output is “true”. However, considering the capability of neural networks,
we can certainly do better than that.

conditional transfer

branch A

branch B

EIP

EIP+offset

call neural network

branch A

branch B

ret address
manipulation

network
output

(0/offset)

return
address

neural network
function

Fig. 4. A demonstration of obfuscating a conditional branch behavior via indirect
control transferring manipulated by neural network.

As shown in Fig. 4, a conditional branch is basically to decide whether to jump
over a certain code block (or back to a previous one in case of loops) or stay on
the code stream, thus the address of target instruction when a branch is taken is
usually represented by a relative offset to the value of instruction pointer. Given
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that neural networks are powerful enough to “remember” any pre-defined output
value assigned to each group in classification, it is possible to train the networks
to respond with offset of branches, and turn the neural network function into a
conditional dispatcher. Since replacing a conditional instruction with a call to our
dispatcher will automatically push the address of one of the branches into stack
for function returning, the dispatcher could control program’s execution path by
manipulating its return address according to the output of neural networks. This
method could further confuse of analysis tools since it turns conditional logics
into indirect control transfers, such semantic level modification could certainly
enhance the security of the obfuscation.

3.3 Applying Integer Neural Networks

Due to the unusual sigmoid function used as neuron activator and high precision
weight values assigned for network connections, traditional neural networks can
be quite special and easy to recognize. Although it causes no weakening on the
security basis of obfuscation, this does make the embedded networks easy target
to be located or traced. However, with integer neural network, we managed to
make improvements on this aspect.

Fig. 5. The different ways of implementing a step activate function. While (a) is the
most intuitive implantation, a equivalently version can be found in (b) where right
shifting operation is exploited to turn nonnegative integers into 0 and negative ones
into -1, thus gets the same behavior.

Integer neural networks limit their weights to integers only, and apply simple
step function (which outputs 1 if the input is equal or greater than 0, or -1
otherwise) as their neuron activator [25,26]. Although the motivation of the
design was simply for getting better performance and enabling the networks
to work on devices with limited hardware [27,28], the fact that integer neural
networks consist of only simple operations on common operands gives them an
advantage when used in obfuscation, since the simple instruction profile makes
them much less significant to potential adversaries. Meanwhile, it is also easier
to diversify the actual implementation of methods involve in computing integer
neural networks. For example, Fig. 5 demonstrates two different ways of realizing
the step function of neural networks. Beside the most intuitive approach that
simply returns different values for different inputs, we can also use the side effect
of bit-wise shifting to compute the exact same results.
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3.4 Dynamic Network Construction

Obfuscating a program with neural networks requires to store the weight matrix
of networks for computing. However, if the adversary manages to locate such
data, it could directly test the neural networks to reveal what they do, thus
avoid analyzing them via reverse engineering techniques. It is impractical to com-
pletely prevent such kind of attacks, but approaches for mitigation the problem
is certainly possible.

Fig. 6. Basic idea of dynamic constructing and updating the neural networks used in
obfuscation.

It is known that compared to static data, analyzing heap-allocated objects,
especially when pointer aliasing exists, is much difficult [29,30]. Hence in our
design, data of neural networks are created and updated dynamically, as briefly
demonstrated in Fig. 6. Doing this has the following benefits that may signifi-
cantly slow down the adversary’s process:

First, when a memory region is allocated for neural networks, pointers can be
created targeting different positions in the region to establish complex aliasing
effect. Neural network updating can later be carried out using these pointers,
creating complicate dynamic data dependencies and making it hard to determine
the resulting networks statically.

Second, assuming that all neural networks used in obfuscation share the same
topology, they can also share the same memory region. After one network finishes
its task, it can be updated into the next one. Each network is only completed
right before being queried in control transferring, and are overwritten afterward.
Therefore, the neural networks may only be observed correctly when program’s
execution reaches the corresponding conditional branches.
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4 Implementation

We implemented our obfuscator on source code level, using a 3-phase approach.
Program is first compiled into binary executable so that static analysis can obtain
information of its conditional branches; after that, neural networks are trained
for each recorded branch; finally, the obfuscator rewrites program’s source code
and compiles it into an obfuscated executable.

4.1 Static Analysis

To begin with, the obfuscator must know the exact conditional instructions to be
replaced before any transformation actually happens. We do this by compiling
the original program sources and statically analyzing the resulting binaries for
all conditional jump instructions. Unconditional jumps that are:

– targeting backward at a lower address, or
– followed by the target of a conditional jump/backward unconditional jump

are also recorded since they help complete if-else, while or for structures and
thus need to be preserved.

With the help of debug information, these instructions in binaries can be
mapped to commands in the corresponding source code. Meanwhile, operands
of jump instructions either indicate absolute addresses or relative distances to
their targets, both are enough to help determining the offsets for training neural
networks. Since code involved in calling a neural network function is longer
than that of a conditional branch, the offset for each conditional branch will be
adjusted accordingly.

4.2 Neural Network Training

Since integer neural networks sacrifice their precision to some degree due to the
data representation, we choose practical swarm optimization (PSO), a sophisti-
cated algorithm that has been widely applied in neural network training [31,32],
to ensure the correctness of networks generated by the obfuscator.

As mentioned in Sect. 3, conditional branches can be replaced with binomial
classifications on linear input spaces, which do not cause much trouble to the
state-of-the-art training methods. Neural networks’ generalization ability also
allows them to correctly simulate a function without understanding its complete
input-output mapping. Our experience shows that output errors (if any) in the
obfuscator only occur on inputs around the branch conditions where values of
different groups are close. Therefore, our obfuscator builds the training set of
neural networks with all values within the distance of ±1000 to the given branch
conditions, along with discretely pick samples from other parts of the input
spaces. In case that a branch is triggered by only a few inputs, these values are
repeatedly included in the training set to balance the two groups.

Since neural network training starts with a random initial state, the effect
of training differs from time to time. Thus after each training, the obfuscator
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verifies the behavior of the resulting network to see if it matches the conditional
logic to be replaced. In case errors are found, the obfuscator goes back to train
the network again with a new initial state, until the resulting network passes
verification.

4.3 Program Re-Writing

After the neural networks are trained, a function that computes their output is
inserted into the program, and conditional logics to be obfuscated are replaced
by calls to the function. Code for constructing weight matrix of networks are
inserted into selected positions of the program according to its control flow graph,
to make sure that during execution, all networks will be correctly prepared before
being queried. With various arithmetic operations, weight matrix construction
can be designed in different ways for each neural network, in order to improve
the difficulty in locating them.

5 Evaluation

The major goal of our design is to stop analyses on programs’ control flow with
automatic tools, and to slow down the adversaries from figuring out the trigger
condition of certain code sections, thus we mainly consider 2 attack scenarios
against our obfuscation:

1. an adversary could always directly perform concolic testing on an obfuscated
program, hoping to reveal certain part of its control flow with the presence
of a set of neural networks handling its conditional logics;

2. alternatively, the adversary could try to de-obfuscate the program by first
extracting the neural networks via approaches like pattern matching and other
static analyses, figure out the conditional logics they represent and remove
them to recover the program’s original control flow.

We evaluate the effectiveness of our design in both cases, while as another aspect,
performances of the obfuscated programs are also tested to show how much
overhead is introduced by our method.

5.1 Against Concolic Testing

While it is well-known that concolic testing is limited in solving non-linear alge-
braic computations, neural networks (even integer neural networks) are typical
non-linear algorithms due to the activator used in the neurons. Although neural
networks are very different from cryptographic primitives like hash functions
(they are not pseudo-random mappings and do not have problems like collision
etc.), the difficulty of extracting rules from them [17–19] still ensures that solv-
ing a complete set of constraints required to reverse the networks’ computation
is practically infeasible.
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Fig. 7. The relation between the structure of artificial neurons in integer neural net-
works and the algebraic expression of their reverse.

Consider a fully connected feedforward neural network (which is applied in
our implementation), during its computing, output of all neurons in the current
layer of the network (starting form the input layer) are passed to every neuron
of the next layer as inputs. Therefore, given an output value of a neural network,
determining the corresponding input value via automatic analyzer requires to:

1. build the inverse system of the given neural network with all neurons replaced
by their reverse formulas and all network flow turned to the opposite direction;
and

2. solve this inverse system under the given output value.

However, as shown in Fig. 7, an artificial neuron receives it inputs and compute
a weighted sum according to connections defined in the neural network, then
transforms it with the neuron activator and gets the output. Thus when reversing
a neuron that receives its input from multiple other neurons (which is common
in neural networks) at step 1, the analyzer actually gets an underdetermined
linear formula of which the number of potential solution is extremely large.
Additionally, the analyzer is most likely to encounter chains of underdetermined
neurons in neural networks while walking against the direction of network flow,
which rapidly amplifies the potential solution space it has to search (growing
exponentially). As a result, it is impossible to avoid combination explosion in
reversely analyzing neural networks.

To verify our analysis, we performed a simulation to test the effect of our
obfuscation against concolic testing on an extremely simple program:

void main ( )
{

int Var=SomeValue ;
i f ( Condit ion (Var ) )

Var++;
}
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We use such a subject program so that the evaluation can be exclusively focused
on the effectiveness of applying neural networks in control obfuscation (given that
the program does not have other components except the conditional logic to be
obfuscated). For the same purpose, we do not apply indirect control transferring
to the subject program in this evaluation, to rule out the hindrance in concolic
testing caused by indirect branches. For generality, neural networks used in the
test are given a series of different topologies, and the branch in the program is
given a series of equal/unequal branch conditions (as shown in Table 1).

Table 1. Test case settings for evaluating the effectiveness of our obfuscator.

Options of Condition(Var) Network topology

Inputs Hidden nodes (· · · /· · · for multi-layer) Outputs

> 16, = 16, ≤ 29,= 29 1 10 1

> 6, = 6, ≤ 11, = 11 1 15 1

> 4, = 4, ≤ 20, = 20 1 7/8 1

> 2, = 2, ≤ 13, = 13 1 8/8 1

We selected 2 popular analysis tools for the simulation, respectively
KLEE [9], and TEMU of the Bitbalze platform [20]. KLEE provides powerful
path exploration on the source it receives, thus is used to test the effect of our
design in impeding analysis that aims to probe unexecuted paths of the program
and to determine their trigger conditions. Meanwhile, TEMU works directly on
binary executables and performs in-depth concolic testing for execution path
verification. It first uses dynamic taint analysis (DTA) to trace an execution
path of the program, then generates a constraint set for the traced path and
feeds it to the constraint solver, which then solves a test case that is supposed
to trigger the given execution path. Although TEMU doesn’t actually do path
exploration, bringing it into evaluation still provides a convincing demonstration
on how our design works against concolic testing.

Our Method Against KLEE. The analysis from KLEE shows that while
the analyzer can easily explore both paths of the original programs and corre-
spondingly generate test cases for them, it can only detect a single feasible path
on programs obfuscated by our method. This indicates that our obfuscation
successfully hindered concolic testing from understanding the programs’ control
structures.

Unfortunately we can only go this far since KLEE provides no more informa-
tion (e.g. errors occurred or unexpected situations happened) to assist the user
other than its final analysis result1. According to the description in [9], we can

1 The output of KLEE includes only the number of paths it discovered along with 1
test case for each path.
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Table 2. Result of TEMU’s execution verification on binary executable of the test
cases.

Statement (unequal) > 16 > 6 > 4 > 2 ≤ 29 ≤ 11 ≤ 20 ≤ 13

Input value -16

Verification result Original -16

Obfuscated NA

# of constraints Original 733

Obfuscated 13751 18759 28931 31584 12809 18759 28931 31658

Statement (equal) = 16 = 6 = 4 = 2 = 29 = 11 = 20 = 13

Input value 16 6 4 2 29 11 20 13

Verification result Original 16 6 4 2 29 11 20 13

Obfuscated NA

# of constraints Original 2566

Obfuscated 12809 18759 28931 31584 12809 18759 28931 31584

only assume that the observed phenomenon is because when KLEE reaches the
branch point where the output of the neural network replaces original branch
condition, it is unable to determine whether both branches are reachable because
its constraint solver fails to find a different output from the neural network.

Our Method Against TEMU. Good thing is that simulations taken on
TEMU show positive results in consistence with the assumption we made in
the previous section. From Table 2 we can see that for the original programs,
TEMU is able to precisely return the input values that cause the execution
paths it observes, indicating successful verification. For all obfuscated programs,
however, the constraint expressions TEMU generated for the dynamic tainted
traces expanded significantly, and it fails to return a valid input value. This result
provides more solid evidence indicating that our method managed to make the
protected conditional behaviors too complicated for the constraint solvers to
reason about.

It should again be emphasized that these evaluations are taken on programs
consisting of only the obfuscated control structure. It certainly infers that the
complexity of obfuscated control flow would be way beyond existing analysis
tools’ capability, should our method be applied on actual applications.

5.2 Against Pattern Matching and Brute Force Testing

As mentioned in Sect. 4.2, since the training process of neural networks starts
with an arbitrary initial state, even the neural networks representing exactly the
same function may look totally different. To our best knowledge, currently there
seems to be no practical method to tell the actual semantic difference between
neural networks. Existing rule extraction methods [17,19] only generate fuzzy
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and approximate rules to “explain” neural networks, not recovering the exact
ones they represent. Consequently, brutally test the input-output behavior of
neural networks seems to be a better choice in this attack scenario.

Because our obfuscation still has to be semantic preserving, a network’s resis-
tance against brute force testing depends highly on the branches being obfus-
cated. E.g., it is in fact that unequal conditions (e.g. ≤ comparisons) being
obfuscated could still be revealed by testing the input spaces with simple binary
searching, should the corresponding neural networks be successfully located.

However, our obfuscator chooses to use integer neural networks, thus the net-
work computations are implemented with only basic instructions without obvious
signatures. The neural network function may also be merged with other opera-
tions of the program, in which case it could become even harder to be located.

Furthermore, as described in Sect. 3.4, our method constructs neural net-
works dynamically rather than putting them in static data region. It also builds
complex pointer aliasing on the network wight matrix region and reuses the same
matrix in different networks by updating its values. Therefore, even if the adver-
sary manages to locate the function that computes outputs of neural networks,
it is still hard to correctly separate the networks themselves since they are mixed
in complicated dynamic data dependencies. The remaining feasible method for
the adversary is to monitor the program dynamically and determine one network
each time the neural network function is called. It is easy to realize that when
enough conditional branches are obfuscated, this forces the adversary to turn to
a path-by-path dynamic testing and to solve each unknown neural network he
encounters one at a time, thus effectively increasing the complexity of digging
the internal structure of the obfuscated program.

5.3 Overhead

The overhead caused by our obfuscation mainly comes from the extra code for
updating weight matrixes and computing in neural network function. To evaluate
the detail performance of our design, we applied our obfuscator on 5 selected
benchmarks from the SPEC-2006 test suite. We obfuscated as many branches
as possible in the chosen benchmark programs, in order to get a better picture
about the overall performance penalty caused by the obfuscation.

Figure 8 shows that on all benchmarks being tested, execution overhead
caused by obfuscation ranges from around 2 % to 20 %. The results depend
mainly on the number of dynamically taken branches in each execution, rather
than the topology of networks2. An unfortunate fact is, however, that neural
networks (especially when constructed in dynamic way) cause notable memory
occupation, as given in Table 3, which might be a small drawback while being
applied in practice.

Nevertheless, it is necessary to mention that in this evaluation, we didn’t
make any kind of optimizations on the code regarding the obfuscation, or use

2 Since the extra execution required by obfuscating each conditional logic is more or
less fixed.
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Fig. 8. Normalized execution time of chosen benchmark programs when obfuscated
with neural networks of different topologies(against their original version).

advanced method to select target branches. Practically, obfuscating all possi-
ble branches makes the resulting program too suspicious and the neural network
computing too obvious. Selectively obfuscating critical points of a program could
result in much better performance, with little and acceptable sacrifice on protec-
tion strength3. Furthermore, data of different neural networks are totally possible
to be same partially, thus the updating could be done in a more efficient way. In
our future work, we plan to improve our obfuscation system from both aspect, in
order to achieve better trade-off between performance and protection strength.
But generally, our obfuscator is more than possible to make a program hard
enough to be analyzed while causing trivial affect on its performance.

Table 3. Memory cost of different neural network structures required for each obfus-
cated branch.

Neural network topology(input-[hidden]-output)

1–[10]–1 1–[15]–1 1–[7/8]–1 1–[8/8]–1

Memory cost(byte) 622 813 1069 1166

6 Discussion

6.1 Scalability on Obfuscating Compound Conditions

In practice it is common to find conditional branches controlled by compound
conditions that involve multiple input variables. Intuitively, obfuscating a com-
pound conditional statement needs to compute each of its sub-conditions with
3 Our experience shows that hiding some conditional behaviors receives much less

benefit than doing so on others, e.g. a loop structure is still relatively easier to
recognize than a conditional jump, even if obfuscated.
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a independent neural network, which can be much more expensive. However it
is not hard to understand that algebraic logics of the same type can be equiv-
alently transformed, e.g. x > A ⇔ (5 − x) ≤ (5 − A), or x = B ⇔ x + C =
D, (D = B + C). Therefore, it is possible to “borrow” existing neural networks
used elsewhere to participate in obfuscating compound conditional branches.

Consider a branch with compound condition x==5 && y>0 to be obfuscated.
Assume there are already 2 neural networks used for obfuscation in the program:
NetA representing condition a!=-1, and NetB representing b>10. Also assume
that both networks output 0 when respective condition is matched, or the off-
set of their branch targets otherwise. In such case, we cam simply train a new
network NetC with condition sum==0 and the target offset of the compound
branch, then replace it by computing NetC(NetA(x-6)+NetB(y+10)). This app-
roach allows to keep the memory cost of obfuscating compound branches to the
same amount as on simple ones, although we cannot also reduce the correspond-
ing time cost of invoking extra network computing.

6.2 Compatibility with Address Space Randomization

Nowadays’ operation systems are in general protected by Address Space Layour
Randomization (ASLR) techniques to prevent code injection or other memory
error exploiting. ASLR loads executables and public libraries at different ran-
dom locations for each execution, which affects operations where code pointers
are involved. However, as described in Sect. 3.2, our obfuscator trains its neural
networks to remember the relative offset of branch targets, while at the obfus-
cated branches, calling the neural network function helps to correctly get the
base addresses for computing the corresponding branch targets. Since typically
ASLR does not disturb the internal structure of program’s modules, it will not
cause negative impact to our obfuscation.

7 Conclusion

We proposed a novel method based on the complexity of understanding rules
embedded in trained neural networks. By training neural networks to simu-
late selected conditional logics, we managed to direct program’s execution path
according to the computing of neural networks, while the protected conditional
logics can be hidden. Our evaluations demonstrated that applying neural net-
works in control flow obfuscation significantly increases the difficulty in revealing
the obfuscated conditional logics either with concolic testing or using pattern
matching and brute force attacks. Simulation on the SPEC benchmarks also
indicated that our method is efficient with acceptable memory cost.

We believe that a fresh and interesting view could be opened by this work,
indicating that special properties of some well-developed methods in other areas
of computer science might be surprisingly useful in designing security applica-
tions like control flow obfuscation. Also, our design could be a solid support to
the argument that in some cases it is possible to provide strong protection with
the absence of tools like cryptographic primitives.
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Abstract. Byzantine fault tolerant (BFT) protocols enhance system
safety and availability in asynchronous networks, despite the arbitrary
faults at both servers and clients. A practical BFT system should be effi-
cient in both contention-free and contending cases, and fault scalable (i.e.,
efficiently tolerating the increasing number of server faults). However, few
existing BFT systems completely satisfy this robustness requirement of
efficiency. In this paper, we propose EFS, the first BFT solution that
provides good efficiency and fault-scalability, in various cases (i.e. faulty
or not, contending or not). EFS is a hybrid BFT system consisting of an
efficient and fault scalable quorum protocol for the contention-free case
and a fast agreement protocol to resolve contention in a fault-scalable
manner. More importantly, its server-directed mode switch does not rely
on digital signature nor introduce any extra communication overhead.
This lightweight switch counters the vulnerability in the existing hybrid
BFT systems, where faulty clients can simply send contending requests
to degrade the performance significantly. The experiment results on the
EFS prototype demonstrate robust fault tolerance.

Keywords: Byzantine fault tolerance · Efficiency · Robustness · Fault-
scalability

1 Introduction

Distributed services often encounter arbitrary failures (a.k.a. Byzantine failures)
that are typically caused by software bugs, dynamic network delays, malicious
actions of compromised nodes, etc. It is desirable that applications, especially
the ones with high security requirements, are able to tolerate such Byzantine
failures.
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Many Byzantine fault tolerant (BFT) systems [1–6] have been proposed to
provide reliable services using state machine replication (SMR) [7,8] – replicate
the service on n servers starting from the same state and executing the same
deterministic operations requested by clients. A certain number of servers (e.g.,
n = 3f + 1 in PBFT [1] or 5f + 1 in Q/U [2]) cooperate to mask the negative
impact of up to f Byzantine faulty servers. BFT systems shall guarantee safety
and liveness in the presence of faulty servers and clients. For safety, non-faulty
servers are expected to execute the requested operations in the same order.
Liveness requires that a client can eventually receive a correct response through
repeated requests with bounded message delays.

For practical BFT services, efficiency is another important consideration.
BFT systems shall be efficient under the following typical scenarios [1,2,4,9].

– Efficiency without fault or contention. Although servers should agree on the
execution order of concurrent operations in the presence of Byzantine failures,
a BFT system usually runs efficiently for sequential requests without any fault.

– Efficiency with faulty clients. In BFT services for large-scale users, clients are
more likely to be compromised than servers due to weaker protections, and
the number of clients is much larger than that of servers.

– Efficiency with the increasing number of server faults tolerated (i.e., fault-
scalability). For massive-scale services (e.g., Farsite [10] and OceanStore [11])
which are deployed in open environments, the number of faulty servers may
increase dramatically due to network errors and component crashes.

Existing BFT systems cannot completely satisfy the above requirements.
PBFT [1] creatively adopts keyed-hash message authentication codes (HMACs)
to authenticate messages among servers and clients. It avoids digital signatures,
the main performance bottleneck in previous systems [12,13]. Zyzzyva further
improves the performance by using speculation [4]. PBFT and Zyzzyva reach
their peak performance when no faults exist, but the throughput drops to zero
if any faulty client crafts series of requests with partially-correct HMACs [9].

To defend partially-correct HMAC attack, Aardvark uses digital signatures
instead of HMACs for authenticating clients’ requests [9]. However, it offers
poor fault-scalability as PBFT, because their agreement protocols require several
rounds of server-to-server communications, introducing a total communication
overhead of O(n2). Q/U [2] proposed a quorum-based architecture with good
fault-scalability and ideal response time (i.e., only two one-way latencies) when
no fault nor contention exists; however, faulty clients can halt the services [2,9]
by fabricating concurrent requests to a set of servers that intersect with every
other quorum but never form one by themselves.

Hybrid BFT solutions such as HQ [3] and Aliph [6], employ the efficient
quorum-based approach in the case of no faults nor contention, and switch to
agreement-based protocols when there are contending requests. However, the
client-directed switch requires a (non-faulty) client to collect digital signatures
from servers, and push servers into the same mode through extra communicating
steps. In addition, servers do not respond to other clients’ requests until the mode
switch completes. Therefore, a faulty client can sharply reduce the throughput
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by intentionally submitting concurrent requests, forcing the system frequently
switch to the less efficient agreement mode at a heavy switch cost.

In this paper, we propose a BFT system called EFS, to provide fault-scalability
and robust efficiency. EFS designs a server-directed lightweight switch to inte-
grate two BFT approaches. When there is no contending request, the servers
work in the efficient quorum mode. And when contention appears due to con-
current requests, the servers switch to the agreement mode to provide services
with a predictable yet limited performance degradation.

EFS provides better efficiency and fault-scalability at a cost of using more
servers. While some BFT systems require 3f +1 servers (e.g., PBFT, HQ, Aliph
and Aardvark) to tolerate f faulty ones, EFS needs 5f + 1 servers, similar to
Q/U which is proposed for massive-scale distributed services in open clusters or
over the WAN. In such settings, backup servers are sufficient. Moreover, as the
server cost has decreased remarkably with the development of virtualization, we
believe that the implementation cost should not be the main obstacle to affect
the adoption of more efficient and reliable BFT solutions.

EFS achieves its peak performance in the case of no faults nor contention.
Moreover, it offers robust efficiency under the following adversarial scenarios:

– Benign contention from correct clients. In this case, EFS adopts a similar
approach as proposed in the FaB agreement algorithm [14] to reach consensus
on the execution order, which is proved to be optimal to reach asynchronous
Byzantine consensus in the number of communication steps (i.e., two steps).

– Partially-correct HMAC attacks from faulty clients. In EFS, a request is sent
to a quorum of 4f+1 servers to verify the correctness of HMACs and eliminate
these attacks.

– Malicious contention from faulty clients. The switch in EFS is lightweight:
it does not require costly digital signatures nor extra communication steps.
Moreover, the switch is initiated by servers. Therefore, during mode switch,
the servers can automatically collect later contending requests to enable batch
executions, resulting in smaller operation delays.

– The increasing number of server faults. EFS’s two work modes are both fault-
scalable: each server responds to clients directly in the quorum mode, while
in the agreement mode, it avoids expensive server-to-server broadcasting in
FaB.

In particular, EFS adopts the quorum protocol of Q/U in the contention-
free case, and implements the FaB algorithm in a fault-scalable manner in the
agreement mode. Through the integration, the protocol of Q/U is also improved
in EFS: (a) the observation of the system are excluded in each operations’ logic
timestamps to save the communication cost; and (b) the support of multi-object
services is facilitated in terms of update locks and contention resolving. When
contention appears, EFS servers not only implement the FaB algorithm to agree
on the execution order, but also ensure the consistency between two work modes.
A side benefit of the server-directed switch is client-transparency : clients use a
uniform protocol for the two different modes and do not involve in the switch.
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We implement the EFS prototype. Performance is evaluated and compared
with other BFT systems. The evaluation results demonstrate that EFS achieves
efficiency and fault-scalability under various scenarios.

2 Background and Related Works

The idea of using SMR to tolerate arbitrary faults in a subset of servers was
proposed in 1980s [15]. Various BFT protocols [16,17] have been proposed to
reach consensus on the execution order among servers [8,12,18,19]. However,
due to the poor efficiency, the concept was considered impractical until Castro
and Liskov’s work on PBFT [1]. PBFT prototype used four servers to tolerate
one faulty server, and achieved a performance that was only 3 % worse than the
standard unreplicated system when no faults exist. While PBFT appears to be
efficient, there is an ongoing competition on improving the efficiency of BFT
systems. Among these solutions [2–6,9], Q/U [2] firstly proposed a quorum-
based BFT system that provides fault-scalablity. However, Q/U suffers from the
live-lock problem under concurrency workloads [2].

To address the performance limitations, HQ [3] proposed a hybrid approach,
it employs PBFT to resolve contention and thus avoids the live-lock problem
in Q/U. However, the adoption of PBFT makes HQ not fault-scalable in the
contending case. Moreover, when contention exists, HQ needs to firstly achieve a
consensus on the latest valid state, introducing extra rounds of processing. In this
paper, we present EFS which avoids server-to-server broadcast communication
either contention exists or not. EFS is more fault-scalable and efficient than HQ
in both the contention-free and contending cases (see Table 1). Aliph [6] is an
integrated system that combines three BFT approaches. However, Aliph is not
fault-scalable in the presence of contention or failures (see Table 1).

Zyzzyva [4] avoids the server-to-server broadcasting in PBFT. But it depends
on the client to detect inconsistency among servers, and requires three message
delays for a request when no faults exist. It is less efficient than EFS, which only
needs two in the quorum mode. Aardvark [9] improves PBFT by eliminating the
optimization designs that lead to significant decrease of efficiency in the presence
of faulty entities. It offers a stable performance but its peak throughput is much
less than other protocols. The faulty primary is also considered in Aardvark and
Prime [20], countermeasures are designed and verified. EFS pays more attention
to impact from (faulty) clients than that from servers, and shares the same spirit
with Aardvark somehow: the execution path is not determined by clients.

FaB [14] is the first protocol that reaches asynchronous Byzantine consensus
in two communication steps when no faults exist. In FaB, each server only accepts
the first value proposed by the primary and then sends responses directly. EFS
cannot simply adopt FaB in the contending case, as it has to keep consistency
between two work modes. Further, in the presence of faulty servers, the primary
may need to modify the proposal to make it accepted by enough servers (detailed
in Sect. 3.3). Moreover, we apply the theoretical FaB to provide practical BFT
service and improve its fault-scalability.
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CBASE [21] exploits application-specific parallelism for high throughput in
BFT systems. [22] separates the servers executing the agreement protocol from
the ones executing operations to reduce the cost for service replication, and
deploys a firewall matrix to provide BFT confidentiality. These mechanisms can
work compatibly with EFS, and will be included in our future work.

3 The EFS Protocol

3.1 System Model

Objects and Versions. In EFS, objects are replicated across n servers. Clients
issue requests to servers to perform a query (i.e., read-only) or an update (i.e.,
modify) operation on an object, according to the argument in the request. The
operation is completed once at least 4f + 1 different servers having executed it.

Whenever a server executes an update operation on an object, it generates a
new object version and assigns a logical timestamp (LT) to this new version. The
operation is executed conditioned on the current object version with timestamp
LTCO, so the timing of the execution can be identified by the pair of timestamps
(LT,LTCO). LT is in the form of (seq, clientID,method, argument), where seq
initiates from 0 and increases by 1 after executing an operation on the object
(i.e. LT.seq = LTCO.seq + 1), clientID is the identifier of the client who issues
the request, method is the exact method invoked on the object, and argument
contains the argument needed by the method. The comparison between LTs
(i.e., =, < and >) is based on comparing seq, clientID, method (lexigraphy
comparison) and then argument (lexigraphy comparison) in order. For each
object, a server maintains a replica history with ordered timestamp pairs to
represent the execution order of update operations on this object. Initially, for
each object, the first entry of the replica history on every server is set as (0,⊥).

In response to a client’s request, a server replies with its replica history. On
the client side, each client maintains an object history set (OHS), which is an
array of replica histories indexed by server. OHS is also included in the client’s
request to the servers. In the Byzantine faulty environment, not all servers could
complete the requests, therefore, an OHS represents each client’s local view of
the server states. To compare two OHSs (i.e., =, < and >), we compare the
largest LT that appears at least 4f + 1 times in each OHS.

Each server classifies the received OHS and determines the corresponding
work mode. If there are different LTs conditioned-on the same LTCO in the
OHS but none of them appears at least 4f + 1 times, this OHS is considered
incomplete, which makes the server switch to work in the agreement mode (see
Sect. 3.2.1); otherwise the OHS is classified as complete, and the server works in
the quorum mode (see Sect. 3.2.1). To preserve the execution order of completed
operations during the mode switch, each server caches the largest complete OHS
that it has received (denoted as OHSs) and the operation conditioned on OHSs

that it has executed (denoted as Os). At the beginning, both OHSs and Os are
set to null.



310 Q. Cai et al.

Faulty Entities. EFS builds SMR services using n = 5f+1 independent servers.
Both the servers and clients might be Byzantine faulty and exhibit arbitrary,
potentially malicious behaviors. Faulty entities (servers and clients) might also
collude with each other. EFS can tolerate an arbitrary number of faulty clients
and up to f faulty servers.

Message Authentication. Servers and clients are connected with unreliable,
asynchronous links. As a result, messages may experience dynamic transmission
delay, or be duplicated, reordered or dropped by the attacker. We adopt the
fair link assumption [22] that a message will be received if it is sent sufficiently
often. To prevent forged messages from faulty entities, we employ point-to-point
message authentication using a keyed hash (HMAC). A secret key μij is shared
between the entity i and j to create the HMAC of message m, denoted as [m]μij

.
Each server i holds a private signature key (denoted as σi) and signs a message
m as [m]σi

. We will present digital signature based authentication for replica
history and communication between servers in Sects. 3.2.1 and 3.2.2, and then
discuss how to avoid these signatures in Sect. 3.3.

3.2 The Protocol

3.2.1 Contention-Free Case
In the contention-free case, EFS adopts a quorum-based protocol similar to
Q/U [2]. Clients send requests in the form of [clientID,method, argument,
OHSc] to a set of servers to invoke a method on an object, where OHSc is
the cached OHS. Each server first verifies the request with the HMAC, and
compares its cached replica history with the corresponding one in the received
OHSc. A matched replica history denotes the client’s view of the object state is
consistent with the server’s actual state. Then, the server sanitizes the entries of
OHSc (i.e., replica histories of other servers) by verifying the signature of each
entry and removing invalid ones. The server classifies the sanitized OHSc only
when there are at least 4f + 1 entries remained. If OHSc is complete, the server
works in the quorum mode to execute the requested operation; otherwise, the
server switches to the agreement mode to resolve contention (Sect. 3.2.2).

In the quorum mode, if this is an update operation, a new object version will
be generated at each server independently, and assigned with LTnew. The new
object version is conditioned on the version with the largest LT that appears at
least 4f+1 times in the OHSc, the server adds (LTnew, LT ) to its replica history,
update the cached OHSs and Os. Then, each server returns the execution result
and the signed replica history to the client. If at least 4f +1 servers are working
in the quorum mode, a same LTnew will be generated at different servers and a
quorum of success responses with consistent replica histories will be returned to
the client. The client updates its OHS with the received replica histories.

However, if the corresponding replica history extracted from OHSc is out-
dated, the server will return a failure response with its current replica history
to the client. Moreover, in the sanitization stage, if the sanitized OHSc has less
than 4f + 1 entries, it will be returned to the client in a failure response. If not
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enough (less than 4f +1) success responses are received by the client, the request
fails and the client needs to re-send the request with the updated OHS. Although
the reason of failure varies, the client is not expected to distinguish the cause or
take different actions. Therefore, the complexity at the client is reduced.

In the contention-free case, an operation is finished in two message steps if
the client receives at least 4f + 1 success responses, otherwise, it will take two
additional message steps to update the entries of OHSc. Therefore, EFS quorum
mode is as efficient as Q/U and more efficient than most of the other protocols.

3.2.2 Contending Case
Contention occurs if the OHS contained in the client’s request is incomplete. It
may be caused by multiple operations conditioned on a same version but fail
to complete due to concurrent requests, network failures or faulty entities. To
resolve the inconsistency, the server should switch to the agreement mode.

Each server moves through a succession of configurations, known as views [1].
A view is identified by a consecutively increasing sequence number v, initially
set to 0 and increased by 1 for each view change (see Sect. 3.2.4). Servers store
the current view number locally. In each view, the server with identifier p, where
p ≡ v (mod n), is the primary, and the others are called backups. The primary is
responsible for keeping consistency between the two work modes, proposing an
execution order for contending requests, and coordinating the backups to reach
an agreement in five steps of message exchanges, as shown in Fig. 1:

1. Initiate: whenever a server detects contention in a request from client c, it
switches to the agreement mode. It sends an initiate message, with cached
OHSs and Os, to the primary of the current view.

2. Propose: the primary maintains an array called InitiateArray to store the
initiate messages from the servers. Upon receiving 4f + 1 valid initiate
messages, the primary selects the largest complete OHS (denoted as OHS[p])
from all the received OHSs. Then, the primary proposes an execution order

initiate

X

propose accept commit response

tentatively
execute

Primary (0)

Client

Backup (1)

Backup (2)

Backup (3)

Backup (4)

Backup (5) Faulty

Fig. 1. EFS’s process in the contending case
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(denoted as
−→
O

[p]) for all the contending operations contained in at least f +1
initiate messages. The operation that appears at least 2f + 1 times in the
4f + 1 initiates is selected as the first operation of

−→
O

[p], and the order
of other operations is determined arbitrarily. Finally, the primary includes
OHS[p],

−→
O

[p] and InitiateArray in a propose message to all the backups.
3. Accept: a backup accepts the proposal if (1) InitiateArray contains messages

from at least 4f +1 servers, (2) the proposed OHS[p] matches at least 2f +1
OHSs in InitiateArray, and (3) the operations in

−→
O

[p] are selected and
ordered correctly. For an accepted propose, the backup generates signatures
of OHS[p] and

−→
O

[p] and sends them in an accept message to the primary.
4. Commit: the primary stores the correctly signed accept messages in an

AcceptArray. If at least 4f + 1 servers have accepted the proposal, the pri-
mary will send a commit message with AcceptArray to all servers.

5. Response: finally, each server validates the integrity and consistency of the
OHS[p] and

−→
O

[p] in the commit message. Then the server retrieves the object
version identified by OHS[p] and executes operations in

−→
O

[p] sequentially to
reach a consistent state, and switches back to the quorum mode.

The procedure is illustrated in Fig. 2. In the agreement mode, non-faulty
primary can coordinate an orderly execution of contending operations at all
servers and eventually bring the system back to a consistent state.

To improve efficiency, EFS supports tentative execution, which is also used
in [1,14]. The tentative execution allows the backups to tentatively execute the
operations in

−→
O

[p] if it accepts the propose, and return the tentative results to
the clients before a consensus is reached. The tentative execution is supported
because EFS allows a client to receive multiple responses from a same server
for a given operation, and overwrite an older response with a newer one. With
tentative execution, all servers can reach a consistent state in two message delays
(instead of four delays in the above flow in Fig. 1) with a correct propose.

3.2.3 Mode Switch
Unlike other BFT protocols, no special request from the clients is needed for
mode switch. This avoids purposeful or delayed switch manipulated by a faulty
client. Mode switch is only triggered by messages received at the servers:

To switch from the quorum mode to the agreement mode, a server needs to
receive either a request with an incomplete OHSc from a client, or a correct
propose message from the primary. The primary, to be invoked to coordinate
contention resolution, needs to receive 4f + 1 valid initiate messages.

To switch from the agreement mode to the quorum mode, the primary needs
to receive 4f + 1 correct accept messages. A backup needs to receive either a
correct commit message or a complete OHS that is larger than the cached OHSs.

Due to network failures or faulty servers, a server may fail to receive the
expected messages in time and thus stays in the less efficient agreement mode.
To mitigate the performance degradation, a backup will call the PullCommit
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1: procedure Backup.OnContend(OHSs, Os, i)
2: send [initiate, i, OHSs, Os]σi to p
3: if timeout for valid update-OHS or commit then
4: if (PullCommit() fails) then
5: StartViewChange(v + 1, OHSs, Os, i)
6: end procedure
7:
8: InitiateNum = 0
9: InitiateArray[n]

10: procedure Primary.OnInitiate(void)
11: if signature of [initiate, i, OHSs, Os] error then
12: return
13: OHSp = OHSs cached by primary
14: OHSi = initiate.OHSs

15: if OHSi is not complete || OHSi < OHSp then
16: reply [update-OHS, OHSp]σp

17: return
18: if InitiateArray[i] == null then
19: InitiateNum++
20: InitiateArray[i] = (the signed initiate from server i)
21: if InitiateNum > 4f then
22: ProposeOrder()
23: end procedure
24:
25: procedure Primary.ProposeOrder(void)
26: Set:={OHS: Order(OHS,InitiateArray)>2f}
27: OHS[p] = LatestOHS(Set)
28: if ∃O : Order(O,InitiateArray)> 2f then

29:
−→
O

[p][0] = O

30: define order of other operations in
−→
O

[p]

31: for i ← [0, n − 1] do

32: send i [propose, OHS[p],
−→
O

[p], InitiateArray]σp

33: end procedure
34:
35: procedure Backup.PullCommit(void)
36: send [pull-commit, OHSs, OHSc]σi to all servers
37: if timeout for complete OHS or commit then
38: return true
39: else
40: return false
41: end procedure
42:
43: procedure Order(element, Set)
44: /* Determine order of element in the Set */
45: end procedure

46: procedure Backup.OnPropose(void)
47: if propose is not correctly signed then
48: return
49: if any initiate signed invalidly in InitiateRecord then
50: return
51: if propose message accepted then

52: send [accept, i, p, OHS[p],
−→
O

[p]]σi to p
53: end procedure
54:
55: AcceptNum = 0
56: AcceptArray[n]
57: procedure Primary.OnAccept(void)

58: if signature of [accept, i, p, OHS[p],
−→
O

[p]] error then
59: return
60: if AcceptArray[i] == null then
61: AcceptNum++

62: AcceptArray[i] = [accept, i, p, OHS[p],
−→
O

[p]]σi

63: if AcceptNum ≤ 4f then return
64: for i ← [0, n − 1] do

65: send i [commit, p, OHS[p],
−→
O

[p], AcceptArray]σp

66: end procedure
67:
68: procedure Backup.OnCommit (void)
69: for i ← [0, n − 1] do

70: if Verify(i,[i, OHS[p],
−→
O

[p]],AcceptArray[i]) then
71: CorrectNum++
72: if CorrectNum > 4f then

73: execute in order defined in
−→
O

[p]

74: end procedure
75:
76: procedure Backup.OnPullCommit(i)
77: OHSl = pull-commit.OHSs

78: if OHSs > OHSl then
79: reply [update-OHS, OHSs]σi

80: if has received valid commit message then
81: reply [push-commit, commit message]σi

82: if pull-commit.OHSc is incomplete then
83: OnContend(OHSs, Os, i)
84: end procedure
85:
86: procedure Verify (i,m,sig)
87: /*Return true if sig is signature of m signed by i */
88: end procedure

Fig. 2. Pseudo-code of EFS in contending case

process, if it does not switch to the quorum mode after pre-defined timeouts.
In the PullCommit process, each server probes other servers to “pull” valid
commits from at least 3f + 1 servers, and uses the consistent commit to update
its own status. If the PullCommit process fails, which indicates the primary is
faulty, the backup will select a new primary through view change.

3.2.4 View Change
If the primary is faulty, the view change will be triggered to select a new primary.

1. When a backup fails to receive a valid reply from the primary pv of view v
after the timeout, it notifies pv+1, the primary of view v + 1, with a signed
start-vc message [start-vc, v + 1, OHSs].

2. The new primary pv+1 validates the message and checks if the included OHSs

is the latest. Once pv+1 receives valid start-vc messages from 3f +1 servers,
it sends a new-view message to all the servers. The 3f +1 start-vc messages
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are included so that the new view will be unique at the presence of f faulty
servers. pv+1 keeps sending the new-view message until it receives 4f + 1
valid initiate messages.

3. Any server receiving a valid new-view message will mandatorily switch to
work in the agreement mode. It updates its view number to v + 1, and con-
structs an initiate message to the new primary.

It might be possible that the new primary is still faulty and tampers with
the view change process. So, the backups use another timer to limit the delay
between sending the start-vc and receiving the new-view. Once timeout, the
backup firstly actively probes the new-view from at least 3f + 1 servers. If it
fails, it considers the current view change as unsuccessful, and invokes a new
view change to view v + 2. A backup may receive multiple new-view messages
for different views, it only needs to respond to the primary of greater view.

3.3 Avoiding Signing

One important optimization presented in PBFT is using an HMAC array to
replace the expensive digital signatures for message authentication. Similar ideas
are adopted in the hybrid BFT systems [3,6]. However, since the hybrid systems
rely on the clients to notify the servers about mode switch, they still employ
the expensive digital signatures during mode switch, leaving a vulnerability for
faulty clients frequently switching the work mode. Differently, EFS enables the
servers to initiate mode switch. Therefore, it is possible to authenticate replica
history, initiate, propose, accept, and commit messages with an HMAC array
(denoted as authenticator), eliminating the signatures in the two work modes
and mode switch. Each entry of authenticator is a HMAC for a same message
using different keys shared between the sender and each of the other servers.

The challenge exists in this replacement. A faulty entity may deliberately
generate valid and invalid HMACs for a same message to create inconsistent
observations for different servers. First, a faulty entity may create valid and
invalid HMACs of its replica history. Since OHS entries with invalid HMACs will
be excluded during sanitization, the faulty entity can manipulate the OHS to be
complete or incomplete to push a certain number of servers into the agreement
mode while keeping the others in the quorum mode. If at least 4f + 1 non-
faulty servers consider the OHS incomplete and switch to the agreement mode,
the contention can be resolved among 4f + 1 servers. However, if less than
4f +1 non-faulty servers consider the OHS incomplete, there will not be enough
servers to resolve the contention in the agreement mode. Here, we consider two
different scenarios: (1) more than 3f but less than 4f + 1 non-faulty servers
receive incomplete OHS, and (2) no more than 3f non-faulty servers receive
incomplete OHS. In the first scenario, the primary may never receive 4f + 1
initiate messages needed for the propose stage. To cope with this problem, the
primary is required to send the InitiateArray to the remaining servers that did
not send the initiate, after receiving 3f + 1 initiate messages. A non-faulty
server verifies the 3f + 1 entries of the InitiateArray (using authenticators),
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and replies a dummy initiate (whose operation is set to null) to the primary.
In this way, the primary can actively “pull” initiates to meet the 4f + 1
requirement. In the second scenario, we modify the PullCommit process to
let each server in the agreement mode “pull” either a valid commit or a same
complete OHS which is larger than its own OHSs, from at least 3f + 1 servers.
The latter can trigger a server to switch back to the quorum mode.

Faulty servers may send initiate and accept messages with valid HMACs
for the primary but invalid HMACs for some backups, which in turn will report
the suspicious messages to the primary. A message suspected by at least f + 1
different servers will be excluded from further processing. Furthermore, a faulty
primary may send different InitiateArray to different backups, trying to con-
struct two different AcceptArrays and make them accepted by different backups.
To solve this problem, each propose should have a monotonically increasing pro-
pose number (denoted as pn), initially set to 0 in each view. The backup tracks
the largest pn it has received in pnb, accepts only the propose with a larger pn
and AcceptArray for the propose whose pn is no less than pnb.

During the mode switch, a primary may receive more than 4f +1 initiates.
It is possible that there exist two different operations, each appearing in more
than 2f + 1 initiates. In such a case, we select the operation with the smaller
hash value as the first operation in

−→
O

[p] without loss of generality. However,
as the faulty servers can insert invalid HMACs into the authenticator for
initiate, some non-faulty backups may generate a different observation from
the one of the primary (and others) so that they will suspect and refuse to
accept the propose. As a result, the primary will fail to receive enough (≥4f +
1) accept needed in the commit step. To cope with this problem, we let a
backup accept a latest propose that is also accepted by at least 3f + 1 servers,
considering the faulty server can only tamper with up to f backups in this type
of attacks (otherwise the initiate will be reported suspicious by f +1 backups
and excluded from the processing).

3.4 Optimization

Reducing Communication. Each server can send clients the portion of their
replica histories with LTs no smaller than the largest LT that appears at least
4f +1 times in its cached OHSs, which reduces the size of the OHS transmitted
between clients and servers. Moreover, the size of LT in the replica history can
be reduced by replacing the argument and operation with their hash value
respectively. In the agreement mode, each backup can send its replica history
instead of the entire OHSs to the primary, which will determine OHS[p] using
the latest complete elements of a quorum of replica histories.

Automatic Batching. Servers in the agreement mode can still respond to the
requests from clients, rather than locking the services, which makes the system
more stable and eliminates the waiting time back to the quorum mode. In the
agreement mode, if a request arrives before the propose message, each server
automatically batches it in Os and sends Os to the primary who will propose the
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executing order for the batched operations that appear in the Os from at least
f + 1 servers. If an operation in Os is included in

−→
O

[p], each server executes it
in the proposed order and sends the result to the client. For those requests that
arrive after the propose message and are not included in the

−→
O

[p], each server
returns its latest replica history to clients after executing all operations in

−→
O

[p].
Multi-object Services. Multi-object update operation requires to update a set
of objects as a whole. EFS supports multi-object update using lock mechanism.
The server locks local object version only when all the OHS are complete, and
releases the lock after finishing the execution. EFS does not enforce any lock
order to avoid deadlock, as when contending requests exist, EFS will switch to
the agreement mode and let the primary decide the execution order.

4 Correctness Analysis

4.1 Correctness Against Byzantine Faults

In SMR systems, correctness means the system should provide safety and liveness
at the same time. EFS ensures correctness by requiring non-faulty servers to
agree on a same conditioned-on version, before executing any operation O. To
ensure correctness, EFS needs at least n = 5f + 1 servers to tolerate up to
f faulty servers. To prove this, let us denote the latest completed operation
as O′. It should be executed on a quorum of q servers, and observed by the
primary from the initiate messages sent from another quorum of q servers in
the agreement mode. In the worst case, the two quorums merely overlap, with
the intersection of at most 2q −n− f non-faulty servers. Furthermore, to ensure
O′ is the conditioned-on operation of O, O′ should be observed in more than
half of the initiate messages, that is (2q − n − f) > (n − f)/2 ⇐⇒ n > 5f .

Safety. The safety property requires that in any case, different requests condi-
tioned on a same LTCO should never be finished. In EFS, safety is guaranteed
by ensuring that any completed operation O that is conditioned-on LTCO is the
only operation that can be completed on the LTCO. We prove this property for
EFS working in both modes, and in the transient state.

EFS works in the quorum (agreement) mode if at least 3f + 1 non-faulty
servers work in the quorum (agreement) mode; otherwise, EFS works in the
transient state. For an operation O to be completed, at least 3f + 1 non-faulty
servers should execute O conditioned on LTCO, and the client can receive at least
4f + 1 consistent replies. Therefore, in the transient state, no operation can be
completed due to the lack of enough consistent replies. In the quorum mode, an
operation O′′ requested to be conditioned on LTCO (i.e., claiming LTCO as the
latest local timestamp) will receive failure messages with newer replica histories
from at least 2f + 1 non-faulty servers to update the dated OHS.

When EFS works in the agreement mode, at least 2f+1 non-faulty servers will
include O in the initiate messages as Os and O is the only operation appeared
at least 2f + 1 times in InitiateArray. If the primary is non-faulty, O will be
the first operation in

−→
O

[p], and consequently the only operation to be finished
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conditioned on LTCO. On the contrary, if the primary is faulty, its proposal will
not be accepted by at least 2f + 1 non-faulty servers, and thus triggers the view
change protocol. Safety of the view change protocol is ensured by proving the
system cannot be in two different views at the same time – different non-faulty
servers are in different views due to different valid new-view messages. As the
new-view message consists of at least 3f + 1 valid start-vc messages, if there
are more than one valid new-view messages, it means a least one non-faulty
server participated in two view change at the same time, which never happens.

Liveness. Liveness denotes that no matter which mode the system is in, a non-
faulty client can eventually receive 4f + 1 consistent responses by sending its
request repeatedly. Therefore, we prove the liveness of EFS in different cases.

Obviously, when there is no contending request, at least 4f + 1 non-faulty
servers will receive and execute the request if OHSc from the client is latest and
object versions at servers are also the latest. Otherwise, a failure message will
be returned to update OHSc, or object synchronization will be called to obtain
the latest object version from f + 1 different servers. After the extra round of
updating, the requested execution is performed.

When there are two contending requests from clients c and c′, respectively,
at most 4f non-faulty servers receive the request with a latest OHSc, from
client c prior to the request from c′. Otherwise, c can receive 4f + 1 consistent
responses to finish the request. Servers that receive the request from c later
than c′ return their replica histories to c to construct a new OHS′

c indicating
contention. Then, c keeps sending new requests with OHS′

c, which will eventually
trigger at least 4f + 1 non-faulty servers to move into the agreement mode (and
send out 4f + 1 initiate messages). If the primary is non-faulty, liveness of
the agreement protocol is guaranteed by non-faulty backups sending client c the
consistent responses after they having received 4f + 1 valid accept messages
contained in the commit message (given at most f faulty servers).

In cases where the primary is faulty, non-faulty backups may not receive a
valid commit message and thus trigger the view change by timeouts. Liveness of
the view change process is guaranteed by pulling commit messages from others. A
non-faulty server verifies at least 3f +1 non-faulty servers in the contending case
have not received commit messages if it fails to get a larger complete OHS or a
valid commit messages. This guarantees that these 3f+1 non-faulty servers in the
contending case eventually help the new primary to construct a valid new-view
message. Similarly, if any initiating backup fails to receive the new-view message
before timeout, it will pull the new-view messages from others to decide to invoke
further view changes. As the view change protocol will eventually succeed after
a non-faulty primary is agreed, the liveness of EFS under view change is proven.

4.2 Efficiency Against Faulty Clients

Faulty clients may harm the efficiency of the system while the correctness can
still be provided, for example by partially-correct HMAC attack or constructing
malicious contention [9]. However, EFS still provides robust efficiency even when
faulty clients exist.
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Partially-Correct HMAC Attack. To launch this attack, faulty clients send
requests with correct HMACs for some servers while incorrect for others, which
results in contention and makes the system switch to work in the agreement
mode seamlessly. In the agreement mode, faulty clients cannot start this attack,
as the primary proposes

−→
O

[p] according to the initiate messages from servers,
who firstly check the HMACs of the requests from clients.

Malicious Contention. The faulty clients may attempt to degrade the system
performance by triggering the system switch to the agreement mode frequently
using malicious contention. However, due to the lightweight switch and efficient
agreement-based protocol in the agreement mode, the performance degrades
much gracefully under this attack.

5 Performance Analysis and Evaluation

5.1 Efficiency Under Faulty Client Attacks

Most existing BFT protocols suffer from faulty client attacks. Faulty clients
can make the throughput of PBFT, Zyzzyva and Q/U drop to 0 [9]. Aardvark
provides robust efficiency against faulty clients at the cost of degradation of
peak throughput in the case of no faults. Only hybrid protocols can address
such faulty client attacks by switching to a less efficient agreement mode at a
mode switch cost, while keeping efficient when no faults exist. To evaluate the
performance of EFS under the attack, we first compare EFS with two existing
hybrid BFT protocols, HQ [3] and Aliph [6], and analyze the performance at the
quorum mode and the agreement mode, and the cost due to mode switch.

Table 1. Cryptographic operations and messages used in three hybrid BFT protocols.

HQ [3] Aliph [6] EFS
quorum agreement switch quorum chain backup switch quorum agreement switch

MAC 4+4f 2+ 8f+1
b 2f+1 6f+4 1+ f+1

b 2+ 8f+1
b 1 8f+2 1+ 15f+3

b 4f+2
Sign 0 0 5 0 0 0 1 0 0 0
Verify 0 0 5f+4 0 0 0 2f+1 0 0 0

Messages 4 4 6 2 2+3f 4 2 2 4 1

All three protocols work in the quorum mode in the case of no faults nor
contention, and switch to the agreement mode (the chain mode in Aliph) when
receiving contending requests. Aliph further switches to the backup mode even
only one faulty entity exists, while others remain in the agreement mode. We
summarize numbers of cryptographic operations (i.e., generating MAC, digital
signature signing and verification) in the bottleneck server and one-way message
transmits in the critical path required by each protocol for per request in Table 1,
where b refers to the batch size. From Table 1, we see that HQ and Aliphi require
expensive signature operations and more messages for mode switch, and thus
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Table 2. The simulated processing time when f = 2 without batch (in ms).

HQ [3] Aliph [6] EFS
quorum agreement switch quorum chain backup switch quorum agreement switch

MAC 0.072 0.114 0.03 0.096 0.024 0.114 0.006 0.108 0.204 0.06
Sign 0 0 11.685 0 0 0 2.337 0 0 0
Verify 0 0 1.82 0 0 0 0.65 0 0 0
Latency 1.348 1.348 2.022 0.674 2.696 1.348 0.674 0.674 1.348 0.337
Total 1.42 1.462 15.557 0.77 2.72 1.462 3.667 0.782 1.552 0.397

need a much longer duration to complete the switch (as shown in Table 2, 39.18
and 9.24 times of the time needed by EFS, respectively).

To measure the processing time per request, we simulate it by summarizing
the time for cryptographic operations and message transmitting in the critical
path. We adopt the commonly used signature and MAC algorithms implemented
in OpenSSL v1.0.0i. Signing and verification for 1024-bit RSA require 2.337 ms
and 0.13 ms, respectively, while SHA-1 digest of 1 KB blocks only needs 0.006 ms.
Without loss of generality, we set b to 1. Assuming to tolerate 2 faulty servers
(i.e., f = 2), the simulated processing time per request are shown in Table 2.
The result shows that EFS has a similar performance as HQ and Aliph in the
agreement mode, and outperforms HQ in the quorum mode.

5.2 Performance Evaluation

Settings. All the experiments ran with 16 servers and 80 logical clients in an
isolated 1000 Mbps Ethernet. Servers ran on identical workstations with an Intel
S1260 (2.0 GHz) CPU and 4 GB of memory. Logical clients were hosted on two
machines, each with 8 GB of memory and two Intel Xeon E5620 (2.4 GHz) CPU.
Network I/O and CPU process on the clients were not found to be a limiting fac-
tor in any of our experiments. The communication between clients and servers is
implemented via TCP. A SHA-1 based HMAC is used to authenticate messages.
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Fig. 4. Latency vs. throughput (f = 1).

We evaluate the performance of EFS on a counter service for the update
operation in the contention-free case. Then we measure the extra time to resolve
contention needed by EFS using micro-benchmarks [1]. We use 0/0 (i.e. the
client sends a null request and receives a null reply) and 4/0 (i.e. the client
sends a 4KB request and receives a null reply) micro-benchmarks to measure the
overhead due to extra BFT computation and communication. For comparison
purpose, we also evaluate the performance of PBFT, HQ and Q/U when all of
the optimizations are adopted. We adopt an optimized PBFT implementation [3]
which replaces the broadcast communication with point-to-point communication
for better fault-scalability, Q/U version 1.3 [2] and an HQ implementation [3].
Contention-Free Case. In the contention-free case, each client with the latest
OHS keeps issuing requests until it receives responses from at least 4f+1 servers.
As the provided implementions [3] of PBFT and HQ do not support the micro-
benchmarks [1], we measure the throughput and latency using the counter server.

Figure 3(a) plots the throughput of EFS, PBFT, HQ and Q/U, with varying
number of clients when f = 2. We observe that EFS achieves a similar peak
throughput as Q/U (at most 1.3 % difference) and significantly outperforms both
PBFT and HQ. The main reason is that each server in PBFT and HQ need to
send 3f + 1 and 2 messages respectively in responding to a client request, while
the server in EFS only requires to send one message and thus greatly reduces
the overhead due to network latency. Fig. 3(b), the throughput of EFS decreases
sub-linearly with increasing number of tolerated faults.

We also study the response time of the four protocols as a function of the
achieved throughput. As shown in Fig. 4, EFS and Q/U achieve consistently
lower response time than HQ and PBFT. Moreover, EFS achieves lower response
time than Q/U at a higher throughput (larger than 2.5 K requests/s) as OHS is
excluded in LT which reduces the total communication in the system.

Contending Case. In this section, we study the additional time needed for the
whole contention resolution which includes mode switch and making consensus
on the execution order for contending requests. In EFS, when a server detects
contending requests, the system switches to the agreement mode to reach a
consensus coordinated by a primary. EFS supports tentative execution (denoted
as EFS(opt)) in which contention can be resolved once 4f +1 non-faulty servers
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Table 3. Average time to resolve contention (in ms).

Faults tolerated 1 2 3

EFS (opt) 0/0 4.5089 7.5551 10.2612

4/0 5.5036 9.5530 12.196

EFS (full) 0/0 7.4030 13.0764 14.9806

4/0 10.2309 13.5275 16.196

receive the same propose message. However, if a faulty primary is selected by
chance, the contention can only be resolved after a commit is received (denoted
as EFS(full)). We measure the time for the servers to reach a consensus using 4/0
and 0/0 micro-benchmarks. When f = 1, the optimized PBFT requires 4.04 ms
for a single counter service in the case of no faults, while EFS with and without
tentative operation take 4.5089 ms and 7.4030 ms respectively,

To study the fault-scalability of EFS, we measure the time to resolve con-
tention with an increasing number of tolerated faults. Table 3 lists the average
of 100 measurements when the batch size is set 2. With a larger batch size, the
average time for contending requests will be further reduced. Table 3 shows that
EFS is efficient even when contentions occur frequently in a large-scale service.

6 Conclusion

We propose EFS that aims to provide BFT service with robust efficiency in the
presence of faulty clients. EFS uses an efficient quorum-based BFT system when
there are no contending requests, and switches to a fast agreement protocol to
resolve contention. The two modes are integrated using a server-directed and
lightweight switch which avoids the switch becoming the bottleneck. Known
attacks from clients cannot harm the efficiency of EFS. Moreover, EFS has good
fault-scalability in both the contention-free and contending cases which ensures
that EFS has robust efficiency in the large-scale service.
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Abstract. Despite the fact that protection mechanisms like Stack-
Guard, ASLR and NX are widespread, the development on new defense
strategies against stack-based buffer overflows has not yet come to an
end. In this paper, we present a compiler-level protection called SCADS:
Separated Control- and Data-Stacks. In our approach, we protect return
addresses and saved frame pointers on a separate stack, called the
Control-Stack (CS). In common computer programs, a single user mode
stack is used to store control information next to data buffers. By sep-
arating control information from the Data-Stack (DS), we protect sen-
sitive pointers of a program’s control flow from being overwritten by
buffer overflows. As we make control flow information simply unreach-
able for buffer overflows, many exploits are stopped at an early stage of
progression with only little performance overhead. To substantiate the
practicability of our approach, we provide SCADS as an open source
patch for the LLVM compiler infrastructure for AMD64 hosts.

Keywords: Stack-based buffer overflows · LLVM · Separate control
stack

1 Introduction

As of 2013, C is still the most frequently used programming language (17.89 %)
closely followed by Java [1]. Unlike Java and many other high-level languages,
C does not check the boundaries of a buffer at runtime or compile time, lead-
ing to the threat of so-called buffer overflow vulnerabilities. With respect to
stack-based buffer overflows, the root of exploits is often the stack design that
stores control information as well as data alternating on the same stack. For
that reason, buffer overflows can be exploited by specially crafted inputs that
manipulate the return address of a subroutine call to affect the program flow in a
controlled manner. This manipulation can be achieved by either redirecting the
return address to previously injected shellcode [2], or by reshaping existing code
of the target process into a new program logic [3]. According to the National Vul-
nerability Database, the number of software flaws classified as buffer overflows is
still growing. In total, 729 CVEs for buffer errors were reported in 2013 [4]. Fur-
thermore, buffer errors are still the most common threat today, namely 14.60 %
of all reported software vulnerabilities were buffer overflows in 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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1.1 Related Work: State-of-the-Art Buffer Overflow Protection

During the last two decades, many protection mechanisms were developed that
limit the consequences of maliciously abused buffer overflows. In 1998, Cowan
et al. proposed a compiler-level extension called StackGuard [5] that guards
return addresses on the stack by so-called canaries. A canary is a random value
on the call stack that is placed between a return address and a buffer. Before
the control flow jumps back to a return address, the integrity of the canary
is checked to test whether a write operation has accessed memory beyond the
buffer boundaries. A drawback of this approach is the additional instruction
sequence, which is executed with each return from a subroutine call, inducing
notable performance overhead. However, StackGuard is frequently in use today
and available as a compiler extension for GCC, LLVM and Visual Studio.

In 2000, the GCC patch StackShield [6] was published, introducing another
compiler-level extension. A so-called shadow stack holds a second copy of each
return address and writes this copy back to the runtime stack whenever a sub-
routine call ends. In 2008, this idea was revisited for the binary rewriting tool
TRUSS (Transparent Runtime Shadow Stack) [7], with the difference that a
return address is compared to its shadow copy rather than enforcing its integrity
by restoring a backup value. Consequently, the TRUSS approach is more inef-
ficient than the StackShield approach because a comparison operation for each
subroutine call is slower than a single copy operation. Note that none of these
solutions, including StackGuard, StackShield, and TRUSS, is entirely secure, as
shown in the literature [8–10].

In 2001, the first widely available version of Address Space Layout Random-
ization (ASLR) was published as part of PaX, a Linux kernel patch for security
enhancements. ASLR randomizes the virtual address space of a process, possi-
bly including the stack, the heap, the data and also the code section (depending
on the OS version and compiler options). Simple buffer overflow exploits are
thwarted by ASLR since correct branch addresses to injected shellcode become
harder to predict for an attacker. In difference to the afore mentioned solutions,
ASLR modifies the environment of a binary and not the binary itself. How-
ever, ASLR alone is not secure against many other exploitation techniques, as
summarized in the literature [10–14].

In 2003, the NX-bit (No eXecute) was introduced as part of the AMD64
architecture and is now available on all modern x86 CPUs. NX is a hardware
extension that prevents the execution of injected shellcode by marking data
pages, e.g., stack pages, as non-executable within the page table. The invention
of NX considerably complicates the creation of buffer overflow exploits as it
becomes impossible to run shellcode on the stack, or any other data page marked
as non-executable. However, more advanced exploitation strategies, known as
return-into-libc [3] and Return-Oriented Programming (ROP) [15], bypass the
protection of NX by running existing code gadgets from executable pages in a
newly composed order. These techniques often succeed in the presence of both
NX and ASLR. Recent research papers generalized ROP to a wider class of
instruction sets [16,17] and to a smaller base of necessary gadgets [18].
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1.2 Contribution: Separated Control- and Data-Stacks

As outlined in the last section, the race between countermeasures and exploita-
tions in the field of buffer overflows is still ongoing today. With several
high-quality publications about Return-Oriented Programming in the last few
years [3,15–19], the attacking side seems to be presently at an advantage over
the defending side. Looking at the way many ROP exploits work today, they
are successful because return addresses can oftentimes still be overwritten. None
of the countermeasures mentioned above prevent return addresses from being
overwritten.

To guarantee the integrity of return addresses in a secure and highly efficient
manner, we propose the compiler-level extension SCADS: Separated Control-
and Data-Stacks. With SCADS, we propose a protection mechanism that pre-
vents return addresses from being overwritten by writing beyond the boundaries
of a buffer. We remove return addresses from the Data-Stack (DS) and place
them on a separate Control-Stack (CS). Unlike StackShield and TRUSS, we do
not introduce a shadow stack holding a copy of control information, but use a
separated stack for control information. As a consequence, SCADS does not have
to deal with comparison operations or backup recoveries, but natively works on
two stacks with mutually exclusive content types.

Using a single stack for data and control information is a de-facto standard
for computer programs of the last decades. But this design is neither required
by the OS nor by the x86 architecture. Therefore, similar to StackGuard and
StackShield, SCADS can be implemented as a compiler-level extension without
support from the OS or hardware. In contrast to previous compiler extensions,
SCADS does not involve an extra sequence of instructions at the end of a sub-
routine call, thus minimizing runtime overhead.

Specifically, our contributions are as follows:

1. Design Concepts of SCADS (Sect. 2): We propose concrete design choices
for the implementation of a separated CS and DS on AMD64 systems. For
example, we explain the relative position of the two stacks within the virtual
address space, discuss whether the stacks grow up- or downward, and reason
which registers are used as a stack or base pointer.

2. Implementation of SCADS (Sect. 3): Based on our design concepts, we present
an open source patch for the LLVM compiler infrastructure, which we make
available under an NCSA Open Source License. We first developed this patch
on Linux and later shifted towards FreeBSD, because the FreeBSD project
announced to move from GCC to LLVM as its default compiler.

3. Evaluation of SCADS (Sect. 4): Based on the practical implementation of
SCADS, we present an evaluation of our approach regarding its security, per-
formance and compatibility. In comparison to other compiler-level extensions,
especially StackGuard, we present improved performance results. However, we
also point to some compatibility issues of SCADS running on current FreeBSD
and Linux hosts.
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2 Design Concepts of SCADS

One of our design goals for SCADS was the creation of a protection mechanism
that modifies the compiling and linking process of a software package without
the need to change underlying operating system or hardware level components.
Consequently, allocating and handling the second stack must be designed in a
way that is compatible with current system environments. From the beginning of
the design phase, we focused on the AMD64 architecture running UNIX systems
like Linux and FreeBSD as a target platform.

2.1 Separating Control Flow Information from Data

As illustrated in Fig. 1, SCADS is based on the idea of separating information
placed on a single call stack into two entities: control information and data.
Control information is placed on the Control-Stack (CS), while data is placed on
the Data-Stack (DS). We classify return addresses and frame pointers as control
information and everything else as data, especially parameters, local variables,
and buffers of any data type. Due to this separation, buffer errors cannot be
directly exploited to overwrite return addresses, and so it becomes hard for an
attacker to redirect a program’s control flow via the manipulation of data entries.

parameters

RIP #1

SFP #1

saved data registers

local variables and buffers
parameters

RIP #2

SFP #2

saved data registers

local variables and buffers

(a) Single call stack.

RIP #1

SFP #1

RIP #2

SFP #2

parameters

saved data registers

local variables and buffers
parameters

saved data registers

local variables and buffers

(b) Separated CS and DS.

Fig. 1. Frames of a single call stack in comparison to separated frames in SCADS. The
CS stores Return Instruction Pointers (RIPs) and Saved Frame Pointers (SFPs).

Note that, although many buffer overflow vulnerabilities are thwarted with
SCADS, it is impossible to protect the control flow of all imaginable C programs.
The principle of separating control flow information from data is stretched to its
limits when it comes to function pointers. Should we classify function pointers
as control information or as regular data? How do we handle buffers of function
pointers, or even more complex data structures that involve function pointers?
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The laconic answer is that we classify function pointers as data. The reason
is that C is not a type safe language when a programmer uses explicit casts.
Untyped function pointers can be casted to and from any data type, or even
be computed at runtime, such that it is impossible to reliably cover all function
pointers at compile time.

Hence, as it is impossible to cover additional control elements that are explic-
itly introduced by the programmer, we decided to position SCADS as a protection
mechanism for control elements that are implicitly introduced by the compiler,
i.e., return addresses and frame pointers. The use of explicit function pointers in
C is rare, at least compared to the number of implicit return addresses, and so
we leave it to the programmer to protect information that is deliberately intro-
duced. Due to this “imperfection”, we designed SCADS in a way that is com-
patible with established protections like ASLR and NX. In this sense, SCADS
is not a replacement for ASLR or NX, but an additional protection mechanism
to thwart the root of many of today’s ROP exploits.

2.2 Stack Alignments in the Virtual Address Space

Inside the virtual address space of an AMD64 process, there are approximately
128 terabytes of free space between the call stack and the heap of a process. We
make use of this area to place the second stack, which arises from splitting the
common call stack into a CS and a DS, as illustrated in Fig. 2.

high low

CS DS TEXTDATAHEAP

CSP DBP DSP

Fig. 2. Virtual address space layout of a user mode process compiled with SCADS.

The position of the CS corresponds to the old unified stack, whereas the DS
is moved to a new position in the area between the CS and the heap. Besides its
position, the CS closely corresponds to the old stack because x86 instructions
like CALL and RET implicitly operate on the stack which is referred by the RSP
register. For the DS, on the other hand, we can use arbitrary CPU registers as
stack and base pointers, as we explain in Sect. 2.4.

From this perspective, the CS is the old stack while the DS is a new stack,
and all data (apart from return addresses and frame pointers) are moved from
the CS to the newly created DS. In practice, the CS, which stores only two
elements per subroutine call, is smaller than the DS, which stores all remaining
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elements. An exception constitute highly recursive subroutine calls that create
only little or no local variables on the DS.

Collisions and interferences of the DS with the CS and the heap are excluded
for several reasons. First, the stack size in modern OS is limited to several
megabytes. For example, the default stack limit in Linux is eight megabytes, and
this limit is applied to both the CS and the DS. Second, the virtual address space
between the CS and the heap spans about 128 terabytes in 64-bit processes. And
third, the empty address space between the stacks and the heap is not mapped
into a running process. If an attacker tries to overwrite buffers in the DS with
gigabytes of data, in order to hit control flow information in the CS, the process
crashes with an access violation error for unmapped memory pages.

To support the compatibility of SCADS with the principles of ASLR, we
let the OS choose a random base address for the CS and additionally compute
a random offset between the CS and the DS at load time. As a consequence,
the relative position of return addresses is not predictable for an attacker, such
that exploits are thwarted that write to arbitrary memory locations, e.g., due
to an uncontrolled format string [20]. We have chosen to randomly select the
least-significant 24 bits of the DS base address, as we explain in Sect. 3.2 in
detail.

2.3 Stack Growth Direction

Talking about stacks, a typical design question is the direction to which a stack
grows, i.e., upwards or downwards. Traditionally, stacks grow downward in the
x86 architecture because back in the days of 16-bit CPUs, the address space
was very limited and having the heap growing upward, while the stack grows
downward, gave the programmer most flexibility. If both the stack and the heap
were growing in the same direction, generally less memory could be used before a
collision. However, on modern 64-bit systems, collisions are not an issue anymore
and therefore, we revisit the decision to let stacks grow downward.

As illustrated in Fig. 2, we have chosen to maintain the growth direction for
both stacks to be downwards, basically due to engineering constraints from the
hardware and the OS. Since CPU instructions like CALL and PUSH reduce the
RSP register, and instructions like RET and POP increase the RSP register, it seems
reasonable to let the CS grow downward to benefit from these x86 instructions.

For the DS, on the other hand, we originally considered to reverse the
growth direction to be upwards. This might involve a minor improvement against
exploits, because if a stack is growing down, a buffer error can overwrite all older
stack elements, whereas if a stack is growing up, a buffer error can only over-
write new stack elements. Assuming that generally more older stack elements
exist around a vulnerable buffer than new ones, reversing the growth direction
of the DS limits the damage caused by a buffer error. However, this is not an
effective protection mechanism on its own, and we eventually chose the DS to be
growing downward due to OS constraints. In Linux, the mmap syscall offers an
option, called MAP GROWSDOWN, to allocate downward growing stacks, but none
to allocate upward growing stacks. As patching the OS kernel was not an option
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for our design, and since handling an automatically growing stack inside the
user mode induces notable performance overhead, we eventually chose the DS
to grow downward.

2.4 Stack- and Base-Pointer Registers

Each stack must be managed by a separate stack pointer, such that two CPU
registers are occupied as stack pointers in SCADS. We refer to these pointers
as CSP for the CS and DSP for the DS, as illustrated in Fig. 2. By design, the
AMD64 architecture provides only a single stack pointer, namely RSP, and in
addition to it a base pointer, namely RBP. As stated above, we are forced to
assign RSP to CSP because instructions like CALL and RET implicitly operate on
the stack which is referred by RSP. However, there is no need to keep track of
a base pointer for the CS because the frame size of the CS is always constant.
Exactly two pointers, namely the RIP and the SFP, are stored per CS frame
as illustrated in Fig. 1. Hence, the RBP register becomes expendable for the CS,
and since x86 instructions like CALL and RET never change RBP implicitly, we can
freely re-assign it for other purposes. We decided to assign RBP to DSP, meaning
that RBP does not serve as a base pointer anymore but as a stack pointer for
the DS.

If Frame Pointer Omission (FPO) is set, which is a default compiler opti-
mization by LLVM to omit the need for base pointers, DBP is not required. In
that case, using RSP as CSP and RBP as DSP is sufficient for the design of SCADS
and no extra registers must be occupied. However, if FPO is not set, or cannot
be used, we assign R15 to DBP, i.e., we misuse the last general purpose register
of AMD64 as base pointer for the DS. Due to the high number of available GPRs
in AMD64, the occupation of R15 does not really affect the runtime performance
of a compiled program. To the contrary, today’s compilers like GCC and LLVM
leave registers like R14 and R15 largely unused in order to maintain a common
code base with IA-32.

However, there is another problem with our design: We cannot use the x86
instructions PUSH and POP to store regular data on the DS, like parameters for
function calls, since PUSH and POP implicitly refer to the RSP, which points to the
CS. As we want to store parameters on the DS, and not on the CS, PUSH must
be transformed into a SUB/MOV sequence as illustrated in Listing 2. Likewise, POP
must be transformed into a MOV/ADD sequence, as also illustrated in Listing 2.

Note that the performance penalty arising from these instruction sequences
is minimal, if present at all, because compilers like GCC and LLVM rarely use
the PUSH instruction today. To the contrary, they deploy a single SUB instruction
followed by a sequence of MOV instructions to store multiple parameters efficiently
on the stack. The same holds true for a sequence of POP instructions, which
is often replaced by a more efficient ADD instruction. Only frame pointers are
frequently stored and restored with PUSH/POP during function epilogues and
prologues. Frame pointers, however, are stored on the CS and can therefore
benefit from PUSH and POP without restrictions.
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Listing 1. Push and pop instructions
on the Control-Stack.

// push instruction

push %rbx

// pop instruction

pop %rbx

Listing 2. Push and pop instructions
on the Data-Stack.

// push simulation

sub 8, %rbp

mov %rbx, (%rbp)

// pop simulation

mov (%rbp), %rbx

add 8, %rbp

3 Implementation of SCADS

We implemented SCADS, based on the design concepts that were outlined in the
last section, in practice as a compiler-level patch for the LLVM infrastructure.
This patch is publicly available on our webpage, licensed under an NCSA Open
Source License which is similar to BSD and MIT licenses (and typically used
for code in the LLVM project). In the following, we address selected points of
our implementation; please refer to the LLVM patch itself for a comprehensive
technical description.

The patch comprises 14 files that were either extended or newly added to
the LLVM project. We focused on x86-64 as LLVM back end for the AMD64
architecture and on Clang as an LLVM front end for C. As it turned out, it is
possible to implement SCADS solely in the back end of the LLVM infrastructure,
and therefore we basically support other front ends, like DragonEgg, too. We
were also able to compile other programming languages, like C++ and Objective-
C, with SCADS (although this requires further testing).

The majority of patches were applied to files that are specific for the x86-
64 architecture. For example, the file X86FrameLowering.cpp, which handles
the creation and removal of stack frames as it defines function prologues and
epilogues, involves a major part of the SCADS implementation. Particularly,
the methods emitPrologue and emitEpilogue are modified within our patch
in a way that they redirect control information and data to either the CS or
the DS. Although we had to make several changes to core files of the compiler
infrastructure, we implemented SCADS in a way that LLVM remains fully back-
ward compatible. To this end, we introduced the following new compiler flags
that handle the usage of SCADS in the back end:

-num-stacks [number of stacks]
-enable-legacy-callback-compat
-enable-legacy-stack-alignment

The flag -num-stacks is the flag that essentially turns SCADS on or off
by defining the number of stacks that are used in the runtime environment.
This number is currently restricted to “1” (SCADS disabled) or “2” (SCADS
enabled), but might be extended in future, e.g., to store explicitly defined func-
tion pointers, as discussed in Sect. 2.1, on a third stack. The latter two flags
enable compatibility modes that we had to implement to deal with subroutine
calls into legacy code.
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3.1 The Control-Stack

The CS replaces the plain old call stack of user mode programs and is automati-
cally allocated by the OS at load time. That is, it is not necessary to allocate the
CS manually from within SCADS and the CS base address is directly affected by
the kernel implementation of ASLR. As aforementioned, by using RSP as stack
pointer, the maintenance of return addresses is inherently implemented by CALL
and RET without modifications. Additionally, the PUSH and POP instructions can
be used to store frame pointers on the CS, in contrast to data on the DS.

Note that frame pointers are often omitted in LLVM due to the exten-
sive use of FPO as a default compiler optimization. If no frame pointers are
saved on the CS, we store only an 8-byte return address per stack frame, unless
-enable-legacy-stack-alignment is set. If this flag is set, the return address is
followed by an 8-byte dummy value, i.e., regardless of whether FPO is enabled or
not, we then store 16-byte stack frames on the CS. The reason are compatibility
issues with calls into legacy libraries that require stack frames to be aligned to
16-byte boundaries. Additionally, some machine instructions may operate more
performant on 16-byte aligned stack frames.

3.2 The Data-Stack

Unlike the CS, the DS must be allocated and handled explicitly by SCADS with
further modifications in the build and linking process. To store regular data on
the DS at runtime, the DS must first be allocated (before the main function is
invoked) and then subsequent access to local variables, parameters, and buffers
can be redirected to the DS.

In terms of memory efficiency and performance, an important requirement
for the DS is to grow automatically just as the CS. To implement an automat-
ically growing stack, kernel support is preferable such that erroneous access to
an unmapped page below the stack pointer yields the allocation of that page.
On UNIX based operating systems, the system call mmap usually provides this
possibility: In Linux, the flag MAP GROWSDOWN can be passed on to mmap to allo-
cate growing stacks, whereas MAP STACK can be passed on in FreeBSD for that
purpose. Note that stacks are generally not shrinking automatically, neither with
SCADS nor on common computer systems. If a growing stack hits the system-
wide stack limit, e.g., due to recursion with large stack-based buffers, the stack
stays this size until the process is quit. There is no concept for automatic stack
deallocation in modern operating systems.

The code we execute in LLVM to allocate the DS under Linux is illustrated in
Listing 3. As a result of this allocation, we receive an anonymous, non-executable
memory section between the CS and the heap with the initial size of one page,
including read- and write-privileges. The MAP GROWSDOWN flag allows the DS to
grow in size on a per-page basis, managed by the kernel just like the CS. If
the reallocation encompasses more than one page at once, e.g., due to buffers
greater than 4096 bytes, the reallocation step must be split up into single pages
at compiler-level.
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Listing 3. Allocation of the DS by means of the system call mmap under Linux.

int control_stack_address = 0;

void *data_stack_address = (void*)(((long

long)&control_stack_address) - ((long long)DATA_STACK_OFFSET));

const int MMAP_PROT = PROT_READ | PROT_WRITE;

const int MMAP_FLAGS = MAP_PRIVATE | MAP_ANONYMOUS | MAP_GROWSDOWN;

const int INITIAL_STACK_SIZE = PAGE_SIZE;

const int fd = -1;

const int offset = 0;

void *data_stack_ptr = invoke_mmap_syscall(data_stack_address,

INITIAL_STACK_SIZE, MMAP_PROT, MMAP_FLAGS, fd, offset);

As the DS is bound to a memory section which is not allocated automatically
by the kernel at load time, ASLR has no influence on the positioning of the DS
base address. As a consequence, although ASLR is enabled, the offset between
the CS and the DS would remain constant without further modifications on
the compiler or linker level. An attacker could in some scenarios misuse this
information to write into the CS, and to eventually modify the control flow.
Therefore, we preset the base address of the DS to lie 8 ∗StackSizeLimit below
the CS, where StackSizeLimit is usually 8 MB, and then randomize the 24
least-significant bits of the base address, as shown in Eqs. 1 and 2:

BaseDS,static = BaseCS + 8 ∗ StackSizeLimit (1)

BaseDS,final = BaseDS,static + RandomEntropy ∈ [−223, 223 − 1] (2)

This computation prevents the DS from overlapping with the CS, as well as
from lying immediately below the CS, because with a StackSizeLimit of 8 MB,
Eq. (1) leads to a static base address of the DS which is 64 MB below the CS.
By randomizing the least-significant 24 bits of that address in Eq. (2), the DS is
relocated to at most 48 MB below the CS. Basically, the randomization can be
improved by selecting more than 24 bits randomly in future, but then further
load time checks would be required to ensure that the DS does not collide with
memory sections allocated by the runtime linker for dynamically linked libraries.
By randomizing only the least-significant 24 bits, this circumstance is ruled out
on 64-bit systems. Additionally, we have to align the DS to 16-byte boundaries,
such that only 20 bits of the DS address space are effectively randomized. This
might raise the question whether brute force attacks on the address space layout
can successfully be thwarted. For 32-bit processes, however, the kernel imple-
mentation of ASLR randomizes exactly 20 bits of stack addresses, as well, and
that turned out to be sufficient in many scenarios.

3.3 Build and Linking Process

As outlined in the last section, the DS is not automatically created by the OS
at load time but must be allocated by a process on its own at an early stage
of its runtime. One possibility to achieve this is to hard-code the initialization
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phase of SCADS into the LLVM compiler such that the DS allocation is placed
into each program before the main function is invoked. However, we decided
not to integrate the initialization phase of SCADS into the compiler, as it does
not fall in the area of responsibility of a compiler but of a linker. Therefore, we
encapsulated the initialization phase as a separate object file that is bound to a
program at link time.

Listing 4. Command line for the build and linking process of SCADS.

clang -emit-llvm -S -o <intermediate_name> <source_name>

llc -march=x86-64 -num-stacks=2 -o <asm_name> <intermediate_name>

clang -Xlinker --wrap=main -o <binary_name> <asm_name> init_module.o

In Listing 4, an exemplary command line is shown that builds and links
a binary with SCADS. The initialization module init module.o comprises a
function called wrap main. By passing the flags -Xlinker --wrap=main to
the LLVM linker, every call to the main function is replaced with a call to the
function wrap main. To invoke the original entry point, wrap main calls the
main function after the initialization phase is finished. For the future, we plan
to patch the LLVM linker in a way that it automatically binds the initialization
module to binaries, i.e., without the need to manually pass on all configuration
parameters of SCADS.

Note that when wrap main is entered, the runtime environment consists of
only a single stack that was allocated by the OS. The command line arguments
of a program, i.e., the argc and argv parameters for main, are therefore initially
written to the single stack rather than the DS. As a consequence, the argc and
argv parameters must be migrated to the DS during the initialization phase,
because we classify all command-line arguments and parameters as regular data.
Hence, after the allocation of the DS is finished, the command-line arguments
are migrated to the DS and finally the argc variable and the argv pointer are
restored to the registers EDI and RSI to comply with the System V AMD64
calling convention [21] for main.

4 Evaluation of SCADS

We now present an evaluation of SCADS regarding its security (Sect. 4.1), its
performance and efficiency (Sect. 4.2), and finally its compatibility (Sect. 4.3).

4.1 Security

Classic binary exploits that write beyond the boundaries of a buffer to manipu-
late the return address are predestinated to fail with SCADS, because buffers are
located on the DS while return addresses are located on the CS. Consequently,
instead of modifying return addresses, buffer errors can only corrupt regular data
on the DS until they reach the unallocated area between the DS and CS, which
leads a program to terminate.
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Although this explains SCADS’ immunity against the most simple type of
buffer overflow exploits, the task of giving a more substantial line of reasoning
for the security of SCADS is difficult. We do not seek to verify the security
of SCADS in a formal manner, but focus on known exploitation techniques and
compare the security of SCADS with that of other protection mechanisms. Recall
that SCADS was not designed as a stand-alone protection mechanism but to
collaborate with established OS- and hardware-level protections like ASLR and
NX. The motivation to deploy SCADS in addition to ASLR and NX is mainly
the known exploitation technique of Return-Oriented Programming (ROP) which
often defeats ASLR and NX in practice today.

Contrary to ASLR and NX, the StackGuard protection is competing with
SCADS, not only because it is a compiler-level extensions, but also because it
is largely incompatible with SCADS. While StackGuard and SCADS can be
combined with ASLR and NX, a combination of both techniques seems rather
pointless. Either a canary is placed in front of a return address (StackGuard), or
the return address is moved to a separated stack (SCADS), but combining both
measures does not add much security.

To understand the security benefit of SCADS, recall that SCADS is the
first protection mechanism that prevents return addresses from being overwrit-
ten. Previous solutions either complicate the launching of shellcode (ASLR and
NX) or verify the integrity of a return address after it has been overwritten
(StackGuard). As indicated in Sect. 2.1, SCADS protects implicit control flow
information, particularly return addresses and frame pointers, but no function
pointers that were explicitly introduced by the programmer. Comparing this
“weakness” of SCADS with StackGuard, however, StackGuard does not place
a canary in front of each function pointer either. Hence, also with StackGuard,
only implicit control information is protected.

In our experiments, we were able to produce examples for both scenarios: C
programs that can be exploited in spite of StackGuard but not with SCADS,
and the other way round. For example, SCADS can be more secure than Stack-
Guard with respect to vulnerabilities that give an attacker random write access
to relative stack addresses. There are many exploits in combination with such
vulnerabilities, which are also entitled as indirect pointer overwrites [22]. On the
other hand, StackGuard can be more secure than SCADS when explicit function
pointers get overwritten which are lying in older stack frames than the vulnera-
ble buffer. With SCADS, the control flow could be redirected to point to another
predefined function, whereas with StackGuard, the canary of the current stack
frame would be violated, leading to a termination of the program.

The strength of SCADS is that it prevents exploits relying on a chain of ROP
gadgets placed at the top of the stack which is referred by RSP. With SCADS, it
is not easily possible to place a chain of ROP gadgets near to the RSP, but only
near to the RBP, i.e., on the DS. The RSP is implicitly used by RET instructions
and hence, the position of the RSP is one of the essential parts of ROP exploits.
To bypass this obstacle, an attacker would have to redirect the RSP to the DS,
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or any other data page that holds user input, in a controlled manner. This is,
however, assumed to be difficult for practical vulnerabilities.

4.2 Performance and Memory Efficiency

As seen in the last section, the security of SCADS is on par with that of Stack-
Guard. The advantages of SCADS in comparison to StackGuard only turn out
when it comes to performance. We can say that the performance overhead of
SCADS is mainly static, due to the extended initialization phase, while Stack-
Guard shows a dynamic runtime overhead, due to extended function epilogues.
More precisely, StackGuard involves extra operations to verify the integrity of
a canary at the end of each subroutine call, while SCADS involves a constant
number of additional operations during its initialization phase.

In the following, we present detailed performance results for a recursive imple-
mentation of the Fibonacci sequence. The Fibonacci programs, which are similar
to the implementations in Listing 5 and 6 in the appendix, were compiled with
four different compiler settings: Clang, Clang/SCADS, GCC, and GCC/Stack-
Guard, each with FPO enabled. An analysis of the number of assembler instruc-
tions yields that both Clang and GCC generate 24 instructions per recursive
subroutine call. Interestingly, the Clang/SCADS configuration generates exactly
24 instructions, too, whereas the GCC/StackGuard configuration generates 30
instructions. In other words, the number of instructions that are executed per
subroutine call increases by 20 % for Fibonacci when comparing StackGuard and
SCADS.

Fig. 3. Number of instructions for the recursive computation of a Fibonacci number.
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This effect is illustrated in Fig. 3, showing the overall number of executed
instructions per Fibonacci number. As we expected, SCADS initially executes
more instructions than the other variants because of the initial allocation of
the DS. Later on, approximately at the tenth Fibonacci number, the impact of
StackGuard’s canary management outruns SCADS in terms of executed machine
instructions. From there on, the slope of the StackGuard curve rises significantly
faster in comparison to the SCADS curve, which stays close to the plain GCC
and Clang curves.

Of course, the number of executed instructions is closely related to the exe-
cution time of a program, as shown in Fig. 4. It can also be seen that the Stack-
Guard curve departs significantly from the curves that represent SCADS, GCC
and Clang. For the 52nd Fibonacci number, for example, the program compiled
with StackGuard is up to 80 s slower than the other variants. In contrast to this,
the static overhead caused by the initialization phase of SCADS is not visible
in Fig. 4 as it lies in the range of microseconds (that cannot even be measured
reliably due to noise issues).

Fig. 4. Execution times of a program that computes the Fibonacci sequence recursively.

With respect to memory efficiency, StackGuard adds an additional canary to
each stack frame, whereas SCADS does not add extra values on the CS or DS.
However, talking about memory efficiency we must differentiate between allo-
cated memory and actually used memory. As both the CS and the DS are initially
allocated with the size of one page, SCADS “wastes” at most one page compared
to StackGuard.
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4.3 Compatibility

Another important topic that must be discussed when talking about a new pro-
tection measure is its compatibility to legacy code. First of all, software packages
must be recompiled to gain security from SCADS, and inline assembly state-
ments must possibly be adapted manually, especially if they make use of the
stack or base pointer. However, StackGuard suffers from the exactly same limi-
tations, i.e., StackGuard also requires the recompilation of software packages and
is not fully compatible with all inline assembly statements. For both SCADS and
StackGuard, functions that were written entirely in assembly language cannot
be protected by an automated recompilation.

It is not unlikely that solutions like StackGuard and StackShield were favored
over the separation of control flow information from data due to compatibility
concerns in the past. As modern software generally has a high amount of depen-
dencies on various libraries, which are possibly closed source, it is a desirable
property for a compiler extension to preserve binary compatibility with existing
code.

The compatibility with existing binary code was one of the most critical chal-
lenges during the development phase of SCADS. Basically, we focused on three
types of incompatibilities: First, SCADS was incompatible to legacy functions
that require a 16-byte alignment of the CS. We solved this issue by introducing
the Clang flag -enable-legacy-stack-alignment that aligns the CS to a 16-
byte boundary. Second, SCADS was incompatible to legacy functions that take
a SCADS function as a call-back parameter. We solved this issue by introduc-
ing the Clang flag -enable-legacy-callback-compat that stores a backup of
the RBP before SCADS functions are called from legacy code. When a SCADS
function returns, the RBP is recovered and then the legacy function can proceed.

Table 1. The System V AMD64 ABI in comparison to the SCADS calling convention.
If FPO is used, parameters are referenced by RSP and RBP rather than RBP and R15.

AMD64 RDI RSI RDX RCX R8 R9 RBP+16 RBP+24 ..

SCADS RDI RSI RDX RCX R8 R9 R15 R15+8 ..

Third, SCADS is not compatible with legacy functions that take more than
six parameters, because the new memory layout and register occupation of
SCADS alters the calling convention. Legacy functions which are consistent with
the System V AMD64 ABI [21] store the first six parameters in registers, and
all remaining parameters are placed onto the stack and referenced by the base
pointer RBP, as shown in Table 1. But within the runtime environment of SCADS,
RBP is not a base pointer but a stack pointer to the DS and parameters are ref-
erenced by R15, as shown in Table 1. This causes the offsets of parameters to be
different in SCADS and legacy code and eventually results in undefined behavior
of combined programs.
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This restriction can be counteracted in several ways. First of all, functions
with more than six parameters are rarely used in C and for the remaining func-
tions, wrapper functions can be implemented. To this end, we could loosen the
security definition of SCADS and pass on parameters to legacy code via the
CS rather than the DS. Another way is to provide as many libraries natively in
SCADS as possible. We successfully compiled the entire BSD LibC with SCADS
under FreeBSD and plan to port other libraries soon. Note that this is a practi-
cal way under FreeBSD but not under Linux, because FreeBSD is moving from
GCC to LLVM as its default compiler, such that FreeBSD packages can eas-
ily be recompiled with LLVM/Clang. Under Linux, however, most packages are
written in a GCC-specific C dialect that fails to compile with LLVM/Clang.

5 Conclusions and Future Work

Buffer overflows are binary vulnerabilities, which are caused by missing range
checks on buffer boundaries, and are still an inherent problem of widely used pro-
gramming languages like C. In the recent past, exploitation techniques like ROP
have impressively shown that OS- and hardware-level protections like ASLR and
NX are often insufficient and must be combined with further protections. In this
paper, we have presented SCADS (Separated Control- and Data-Stacks), which
introduces the separation of regular data from implicit control flow data on two
stacks. Return addresses and frame pointers are stored on the Control-Stack
(CS), while regular data, including buffers, are stored on the Data-Stack (DS).

In comparison to other compiler-level extensions, especially StackGuard,
SCADS shows effectively no runtime overhead but introduces only a short ini-
tialization phase. Both SCADS and StackGuard protect return addresses as well
as saved frame pointers without support from the OS or hardware, but require C
programs to be recompiled to benefit from this protection. The level of security
reached by SCADS is on par with that of StackGuard. The most severe limi-
tation of SCADS is currently its compatibility to legacy code libraries. As we
changed the AMD64 calling conventions from the seventh parameter onwards,
legacy functions with more than six parameters cannot be called. This could
be solved either by passing parameters on the CS rather than the DS, or by
recompiling an entire UNIX distribution like FreeBSD with SCADS.

Today, SCADS is compatible with the latest x86 architecture, namely
AMD64, as well as UNIX based OSes like Linux and FreeBSD. However, support
from the OS- and hardware-level could assist the approach of SCADS in future,
e.g., by letting the OS loader automatically allocate two stacks per process at
load time, possibly growing downward. Furthermore, any store to and retrieval
from the DS is currently implemented by SUB/MOV and MOV/ADD, because using
PUSH/POP results in an access to the CS. Although this does not involve a perfor-
mance drawback with today’s compilers, future hardware could be extended to
support a second stack natively, e.g., by a second RSP with dedicated PUSH/POP
instructions.
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A Appendix

Listing 5. Recursive Fibonacci com-
piled with plain Clang (FPO disabled).

<fib>:

0: push %rbp

1: mov %rsp,%rbp

4: sub $0x20,%rsp

8: mov %edi,-0xc(%rbp)

b: cmpl $0x0,-0xc(%rbp)

f: jne <fib+0x1b>

11: movq $0x0,-0x8(%rbp)

19: jmp <fib+0x52>

1b: cmpl $0x1,-0xc(%rbp)

1f: jne <fib+0x2b>

21: movq $0x1,-0x8(%rbp)

29: jmp <fib+0x52>

2b: mov -0xc(%rbp),%eax

2e: sub $0x1,%eax

31: mov %eax,%edi

33: callq <fib>

38: mov -0xc(%rbp),%edi

3b: sub $0x2,%edi

3e: mov %rax,-0x18(%rbp)

42: callq <fib>

47: mov -0x18(%rbp),%rcx

4b: add %rax,%rcx

4e: mov %rcx,-0x8(%rbp)

52: mov -0x8(%rbp),%rax

56: add $0x20,%rsp

5a: pop %rbp

5b: retq

Listing 6. Fibonacci implementation
compiled with SCADS (FPO disabled).

<fib>:

0: push %r15

2: mov %rbp,%r15

5: sub $0x20,%rbp

9: mov %edi,-0x14(%r15)

d: cmpl $0x0,-0x14(%r15)

12: jne <fib+0x1e>

14: movq $0x0,-0x10(%r15)

1c: jmp <fib+0x58>

1e: cmpl $0x1,-0x14(%r15)

23: jne <fib+0x2f>

25: movq $0x1,-0x10(%r15)

2d: jmp <fib+0x58>

2f: mov -0x14(%r15),%eax

33: sub $0x1,%eax

36: mov %eax,%edi

38: callq <fib>

3d: mov -0x14(%r15),%edi

41: sub $0x2,%edi

44: mov %rax,-0x20(%r15)

48: callq <fib>

4d: mov -0x20(%r15),%rcx

51: add %rax,%rcx

54: mov %rcx,-0x10(%r15)

58: mov -0x10(%r15),%rax

5c: add $0x20,%rbp

60: pop %r15

62: retq
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Abstract. The full Perfect Forward Secrecy (PFS) is an important secu-
rity property for Authenticated Key Exchange (AKE) protocols. Unfor-
tunately, Krawczyk has claimed that any one-round implicitly authenti-
cated key exchange protocol could not achieve full PFS but only weak
PFS. Although some solutions are proposed in the literature, their pro-
tocols maintain secure only in the cases of additional authentication and
a constrained adversary. In this paper, we investigate the question of
whether tamper-proof hardware can circumvent the full PFS deficiency
of one-round implicitly authenticated key exchange protocols. We answer
this question in the affirmative by formally proving that the most effi-
cient one-round implicitly authenticated key exchange protocol, HMQV,
achieves full PFS under the physical assumption of regarding the exis-
tence of tamper-proof hardware.

Keywords: Authenticated Key Exchange · Full PFS · Tamper-Proof
hardware · Physical assumption · HMQV · CK model

1 Introduction

Diffie and Hellman gave the first key exchange protocol in their seminal paper
[9]. Key exchange protocols allow two entities to establish a shared secret session
key via public communication. In order to provide the authentication of enti-
ties’ identities, authenticated key exchange (AKE) was proposed. AKE not only
allows two entities to compute a shared session key but also ensures the authen-
ticity of the entities. In this paper, we focus on a kind of AKE protocol put
forth by Matsumoto [23] which needs only the basic Diffie-Hellman exchanges,
yet it provides authentication by combining the ephemeral keys and long-term
keys in the derivation of the session key. As this kind of protocol achieves high
performance both in communication (only the basic Diffie-Hellman exchanges
are needed) and computation (needs no explicit signature authentication), it is
widely studied and many protocols are proposed [16,19–22,25,29,32–34].

The full PFS is a desirable property for AKE protocols. It ensures that the
expired session keys established before the compromise of the long-term key
cannot be recovered even if the adversary is active during the session estab-
lishment. However, Krawczyk showed in his well-known protocol HMQV [19]
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 343–361, 2015.
DOI: 10.1007/978-3-319-23829-6 24
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that any one-round (or two-message) implicitly authenticated key exchange pro-
tocol could not achieve the full PFS property, and gave an explicit attack on
such protocols. He claimed that implicitly authenticated protocols could only
achieve weak PFS: “any session key established without the active intervention
of the attacker (except for eavesdropping the communication) is guaranteed to
be irrecoverable by the attacker once the session key is erased from memory”.
Boyd and Gonzalez [2] further proved that if the adversary is allowed to reveal
the ephemeral keys then no one-round AKE protocols can achieve full PFS.
In the following we show the reason why one-round implicitly authenticated
key exchange protocols cannot achieve full PFS by analyzing the HMQV [19]
protocol.

HMQV originates from the MQV protocol [22], and is one of the most efficient
one-round implicitly authenticated key exchange protocols. It achieves almost
the strongest security requirements for AKE, i.e., provable security in the CK
model, resistance to the key-compromise impersonation attacks and weak PFS
property. Krawczyk formally proves its security in the CK model [3]. However,
in scenarios where the ephemeral keys are not protected, the validation of the
ephemeral public key must be performed explicitly, which costs one exponenti-
ation, or the protocol would be vulnerable to small subgroup attacks [24].

The HMQV protocol is depicted in Fig. 1. It involves two entities Â and B̂,
with respective secret keys a and b and public keys A = ga and B = gb. First,
entities Â and B̂ randomly select ephemeral private keys x and y and exchange
the ephemeral public keys X and Y . Then both entities compute a session key
K as H(g(x+da)(y+eb)) where d = H1(X, B̂), e = H1(Y, Â) and H, H1 are hash
functions.

We review the attack on full PFS of HMQV in the following. An adversary
M randomly chooses a secret key x and sends the public key X = gx to B̂
masquerading as Â. Then B̂ will choose a random secret key y, send Y = gy to Â
which is captured by M, and compute the session key K = H((XAd)y+eb). Once
the session key expires at B̂, and is removed from memory, M corrupts Â and
obtains the private key a. M now can compute the session key K by computing
H((Y Be)x+da) which contradicts the full PFS property. The above attack on
HMQV can be easily applied to all the one-round implicitly authenticated key
exchange protocols. So it seems impossible to achieve full PFS for such protocols.

Â B̂

X = gx
X−−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−−−− Y = gy

K =
H((Y Be)x+da)

K =
H((XAd)y+eb)

MQV: d = 2l + (Xmod2l), e = 2l + (Y mod2l), l = |q|/2
HMQV: d = H1(X, B̂), e = H1(Y, Â)

Fig. 1. The MQV and HMQV protocol
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1.1 Related Work and Contributions

Related Work. The tamper-proof hardware token stores sensitive data such as
cryptographic keys and protected objects in its shielded memory and provides
users of the token its cryptographic functionalities through secure API such
as PKCS#11 [28]. The tamper-proof feature of the token and the secure API
protect sensitive data in the hardware from being revealed in plaintext off the
token. Moreover, tamper-proof hardware associates every protected object with
an authorization, and only users possessing the correct authorization can make
use of the functionality of the object. So even if the adversary corrupts some
object by compromising the authorization, it only gets the black-box access to
the object through the secure API but not the plaintext.

The idea of using secure hardware to achieve stronger security properties is
not entirely new, and a number of works based on tamper-proof hardware have
been proposed. Katz [17] first formalizes tamper-proof hardware in the univer-
sal composability (UC) framework and proves that such physical assumptions
suffice to circumvent the impossibility result of secure computation of general
functionalities without an honest majority. Some following papers [4,8,26] give
further investigation. Goldwasser et al. [11] introduce the concept of one-time
programs, in which they make use of very simple hardware tokens to ensure that
a program is used only once. Goyal et al. [13] consider the general question of
basing secure computation on hardware tokens, and show some impossible cryp-
tographic tasks in the “plain” model become feasible if the entities are allowed to
generate and exchange tamper-proof hardware tokens. Dagdelen et al. [7] present
an efficient protocol for password-based authenticated key exchange based on the
weak model of one-time memory tokens [11]. Kolesnikov [18] proposes a truly
efficient String Oblivious Transfer (OT) technique relying on resettable (actu-
ally, stateless) tamper-proof tokens. [12,15] focus on the possibilities of efficient
Zero-Knowledge PCPs and unconditional two-prover Zero-Knowledge proofs for
NP on stateless tamper-proof hardware tokens respectively.

Our Contributions. In this paper we extend the idea of improving the security
of cryptography protocols using tamper-proof hardware to modern AKE proto-
cols. We first design the API of tamper-proof hardware for the HMQV protocol,
then in our formal analysis we model the black-box manner of the tamper-proof
hardware API as an oracle, i.e., instead of getting the plaintext of the private
key, the adversary gets an API oracle after compromising the long-term key.
Under the assumption of the existence of tamper-proof hardware, we formally
prove that the HMQV protocol achieves the full PFS property in the CK model.
Although it seems a bit trivial by using a tamper-proof hardware to achieve full
PFS. Evidently it is not such a trivial task and a challenging work, given the
state-of-the-art nature and highly intensive study of HMQV.

Another advantage of our design of the tamper-proof hardware API is that
our HMQV design can resist small subgroup attacks even if entities don’t perform
the validation of ephemeral public keys. So the total computation cost of our
HMQV per entity is only 2.5 exponentiations.
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1.2 Organization

Section 2 gives a brief description of the CK model. Section 3 summarizes the
current one-round AKE protocols achieving full PFS, presents their limitations,
and gives a detailed comparison with our HMQV protocol. Section 4 designs the
API of tamper-proof hardware for HMQV, explains why our design resists small
group attacks even if ephemeral public keys are not validated, and gives a formal
description of HMQV. Section 5 formally proves the security of HMQV in the
CK model and shows that it achieves full PFS with the help of tamper-proof
hardware. Section 6 concludes our work and gives our future work.

2 Security Model for AKE

We outline the CK model for key exchange protocols on which all the analysis
work in this paper is based. In the CK model, AKE runs in a network of inter-
connected entities and each entity has a long-term key and a certificate (issued
by a certification authority (CA)) that binds the public key with the identity
of that entity. An entity can be activated to run an instance of the protocol
called a session. Within a session an entity can be activated to initiate the ses-
sion or to respond to an incoming message. As a result of these activations, the
entity creates and maintains a session state, generates outgoing messages, and
eventually completes the session by outputting a session key and erasing the
session state. A session can be associated with its holder or owner (the entity
at which the session exists), a peer (the entity with which the session key is
intended to be established), and a session identifier. The session identifier is a
4-tuple (Â, B̂, out, in) where Â is the identity of the owner of the session, B̂ the
peer, out the outgoing messages from Â in the session, and in the incoming mes-
sages from B̂. In the case of the one-round implicitly authenticated key exchange
protocols, this results in an identifier of the form (Â, B̂,X, Y ) where X is the
outgoing DH value and Y the incoming DH value. The session (B̂, Â, Y,X) (if
it exists) is said to be matching to session (Â, B̂,X, Y ).

2.1 Attack Model

The AKE experiment involves multiple honest entities and an adversary M
connected via an unauthenticated network. The adversary is modeled as a prob-
abilistic Turing machine and has full control of the communications between
entities. M can intercept and modify messages sent over the network. M also
schedules all session activations and session-message delivery. In addition, in
order to model potential disclosure of secret information, the adversary is allowed
to access secret information via the following queries:

– SessionStateReveal(s): M queries directly at session s while still incom-
plete and learns the session state for s. This query allows the adversary to
obtain all states stored on the untrusted host, such as the values returned
by the API of tamper-proof hardware and all the information computed on
the host.
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– SessionKeyReveal(s): M obtains the session key for the session s.
– Corruption(P̂ ): In the “plain” CK model (In this paper we use the term

“plain model” to denote the model that has no tamper-proof hardware
assumption), this query allows M to learn the plaintext of the long-term
private key of entity P̂ . In the tamper-proof hardware model, M cannot learn
anything about the plaintext of the private key but gets the black-box access
to the private key as the hardware is completely tamper-proof. In other words,
this query allows M to obtain an API oracle of the private key.

– Expiry(s): This query deletes the session key and any related session state
of session s. While it has no output, expiry is of major importance in defining
full PFS.

– Test(s): Pick b
R←− 0, 1. If b = 1, provide M the session key; otherwise provide

M with a value r randomly chosen from the probability distribution of session
keys. This query can only be issued to a session that is “clean”. We say that a
completed session is “clean” if this session as well as its matching session (if it
exists) is not subject to any of the first 3 queries above (SessionStateReveal,
SessionKeyReveal, Corruption). A session is called exposed if M performs any
one of the first 3 queries to this session.

The security is defined based on a game played by M, in which M is allowed
to activate sessions and perform Corruption, SessionStateReveal, SessionKeyRe-
veal and Expiry queries. At some time, M performs the Test query to a clean
session of its choice and gets the value returned by Test. After that, M con-
tinues the experiment, but is not allowed to expose the test session nor any
entities involved in the test session. However, in order to model full PFS we
allow the adversary to corrupt the owner of the test session and the peer entity
after the session has expired. Eventually M outputs a bit b′ as its guess, then
halts. M wins the game if b′ = b. The adversary with above capabilities is called
a KE-adversary. We give the formal definition of security in the following.

Definition 1. An AKE protocol Π is called secure if the following properties
hold for any KE-adversary M defined above:

1. When two uncorrupted entities complete matching sessions, they output the
same session key, and

2. The probability that M guesses the bit b (i.e., outputs b′ = b) from the Test
query correctly is no more than 1/2 plus a negligible fraction.

3 Current Limitations and Comparisons

In this section, we summarize all the one-round AKE protocols achieving full
PFS as far as we know, and present their limitations. At last we compare these
protocols with our HMQV protocol with hardware assumption.

3.1 Current AKE Achieving Full PFS and Their Limitations

Many one-round protocols with full PFS [2,5,6,10,14,16,35] have been proposed
especially after Krawczyk pointed out the full PFS deficiency of one-round pro-
tocols, although many of them are not implicitly authenticated as they need to
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Â(A = ga) B̂(B = gb)

X = gx
X, Y←−−−−−−−−−−−→ Y = gy

sid = X||Y
sk=H(Â||B̂||sid||gxy||gab)

Fig. 2. The T S2 protocol

explicitly authenticate the transmitted messages to prevent the adversary from
injecting self-constructed messages.

The protocol T S2 of Jeong, Katz and Lee [16] and the mOT protocol of
Gennaro et al. [10] are typical efficient one-round authenticated key exchange
protocols. Take T S2 for example, any two parties willing to establish a shared
session key between them first exchange their ephemeral values, and then derive
the session key by combing the ephemeral values and the long-term keys. Figure 2
illustrates the generic protocol messages and session key computation of T S2.
However, models used in the security proofs of T S2 and mOT do not allow any
ephemeral values and intermediate information to be revealed. We can see that
if the adversary is allowed to reveal the ephemeral keys then T S2 can’t achieve
full PFS as Boyd and Gonzalez have analyzed in [2]. What’s worse, we find
that if the adversary is allowed to reveal the intermediate information gab then
the T S2 protocol is completely insecure: the adversary transmits an ephemeral
key X ′ = gx

′
generated by himself to entity Â or B̂ and then computes the

session key K ′ = H(Â||B̂||sid||Y x′ ||gab), in another word, the adversary is able
to impersonate Â (or B̂) to B̂ (or Â) indefinitely. Authors of the mOT protocol
[10] point out that mOT “is not resistant to the disclosure of the ephemeral
Diffie-Hellman values or the unhashed session key”: if the adversary is allowed
to reveal the ephemeral keys the adversary can immediately obtain the sender’s
long-term private key, and if the adversary is allowed to reveal the unhashed
session key the adversary can carry a malleability attack. As no state information
is allowed to disclose, the security models used in T S2 and mOT are similar to
the Bellare-Rogaway model [1], which is weaker than the popular CK or eCK
model. At a practical level, the ephemeral key must be protected with the same
security as the long-term private keys and all the intermediate computation must
be performed in tamper-proof device. Thus, such protocols are not efficient for
tamper-proof hardware whose physical resources might be very limited.

After the proposal of T S2 and mOT protocols, many one-round protocols
with full PFS and proved secure in strong models (such as CK and eCK models)
are proposed [2,5,6,14,35]. Here we only give a detail analysis of the limitations
of the protocol presented by Cremers [6]1, and our analysis can be applied to
other protocols easily as their mechanisms used to provide full PFS are similar.
1 Actually [2,6] give compilers that transmit a one-round protocol into a protocol with

full PFS property, and here we analyze the transformations of the NAXOS protocol
which are presented as typical examples in their papers.
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Protocol [6] is a variant of the NAXOS protocol [20], and is showed in Fig. 3.
The first limitation is that the security model used in the analysis disallows
the adversary to reveal the ephemeral keys of all the sessions whose output
messages are the same as the input messages of the test session, i.e. the session
under attack. Such limitation exists in the models of other protocols: [2] disallows
the adversary to get any state information of the peer to the test session, and
[14] disallows the adversary of the eCK model to reveal any ephemeral keys,
and [35] disallows the adversary to reveal any session state information between
the owner and the peer of the test session. These constraints indeed help the
above protocols achieve full PFS in their security models, but they prevent their
models from capturing the attacks launched by a “clever” active adversary who
would always replay messages of such sessions whose ephemeral keys or state
information he has already obtained, i.e., such adversary would first corrupt the
ephemeral key or the session state of some session and then replay the corrupted
messages to some entities. The second limitation of protocol [6] is that each
entity needs to authenticate the exchanged messages (such as the signatures in
Fig. 3) using an extra signature key (such as (skÂ, pkÂ) of Â in Fig. 3), which
adds a signature computation to each entity. Boyd and Gonzalez claimed [2] is
more efficient as they use a MAC instead of a signature, but the computation of
the secret key used in the MAC costs an exponentiation. Huang’s protocol [14]
doesn’t use an additional signature key, but the authentication of the ephemeral
key is performed by the long-term key and it doesn’t work over arbitrary groups
as it requires a decisional Diffie-Helleman (DDH) oracle.

Â B̂

(a,A), (skÂ, pkÂ) (b,B), (skB̂ , pkB̂)

rÂ, X = gH1(rÂ,a)

X,Signsk
Â

(X[,B̂])

−−−−−−−−−−−−→
rB̂ , Y = gH1(rB̂ ,b)

Y,Signsk
B̂

(Y [,Â])

←−−−−−−−−−−−−
KÂ = H2(Y

a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂)

KB̂ = H2(A
H1(rB̂ ,b), Xb, XH1(rB̂ ,b), Â, B̂)

Fig. 3. The variant of NAXOS

From above we conclude that current solutions on the full PFS deficiency of
one-round AKE protocols are not perfect: they maintain protocol security and
full PFS only in weak security models or in strong models while the capabili-
ties of the adversary is constrained and the exchanged messages are explicitly
authenticated by signature or MAC.

3.2 Comparisons

Our HMQV protocol with hardware assumption only disallows the adversary
to reveal the sensitive information stored and computed in the tamper-proof
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Table 1. Protocol Comparisons

Protocol Efficiency Validation Communication Assumption

T S2 [16] 3 Y 2|P| CDH, RO

T S3 [16] 3 Y 2|P| + 2 |MAC| CDH

mOT [10] 2 Y 2|N| RSA, KEA1, RO

Boyd11 [2] 5 Y 2|P| + 2 |MAC| GDH, RO

Cremers11 [5] 3 + 1 Sign Y 2|P| + 2 |Sign| GDH, RO

Cremers12 [6] 4 + 1 Sign Y 2|P| + 2 |Sign| GDH, RO

Huang11 [14] 3 + 1 DDH Y 4|P| GDH, RO

Yoneyama12 [35] 8 + 2 Pair N 10|P| DDH, DBDH, q-SDH

Our HMQV 2.5 N 2|P| GDH, Physical, RO

In the Efficiency column, the numbers denote the exponentiations, and Sign
denotes the computation of a signature, and DDH denotes the computation of
querying a DDH oracle, and Pair denotes the paring computation. In the Commu-
nication column, |P| denotes the size of a group element, and |N| denotes the size of
an RSA key, and |MAC| denotes the size of a MAC, and |Sign| denotes the size of
a signature. The CDH, RSA, KEA1, DDH, GDH, DBDH and q-SDH stand for the
Computational Diffie-Hellman, RSA, Knowledge of Exponent, Decisional Diffie-
Hellman, Gap-DDH, Decisional Bilinear Diffie-Hellman, q-strong Diffie-Hellman
assumptions respectively, and RO is short for the random oracle model.

hardware, and other information such as results returned by the hardware API,
is allowed to be revealed to the adversary in our security analysis. In Table 1
we compare our HMQV with other one-round AKE protocols achieving full
PFS in terms of the efficiency, necessity of validation of the ephemeral public
keys, communication, and the underlying hardness assumptions. Table 1 shows
that our HMQV protocol is almost the most efficient both in computation and
communication (except for the mOT protocol in the efficiency, but mOT only
works for RSA groups whose exponentiation computation is more expensive).

4 API Design and Protocol Description

In this section, we introduce the design of tamper-proof hardware API for the
HMQV protocol, explain why no adversaries can mount small group attacks even
if the validation of ephemeral public keys is eliminated, and then give a formal
description of the protocol.

4.1 API Design and the Resistance to Small Group Attacks

Tamper-proof hardware stores the long-term private key of its owner, and pro-
vides its owner two functionalities through the API: (1) generating an ephemeral
key, and (2) generating the unhashed shared secret based on the long-term keys
and the ephemeral keys. Figure 4 depicts the API, and we now give a detailed
description:
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TPH:(A = ga)

Entity Â
x,X = gx

X−−−→
d = H1(X, B̂), e = H1(Y, Â)

B̂,Y←−−−
Z = (Y Be)x+da, delete x

Z−−−→

Fig. 4. The API of Tamper-Proof hardware

1. When entity Â wishes to establish a session key with entity B̂, it first calls
the API of its tamper-proof hardware to get an ephemeral public key X = gx.
The ephemeral private key x is stored in the hardware, and the public key X
will be used to exchange with B̂.

2. After receiving the ephemeral key Y from entity B̂, Â transmits (B̂, Y ) to its
tamper-proof hardware through the API, and the hardware will perform the
following steps:
(a) Compute d = H1(X, B̂) and e = H1(Y, Â) where H1 is a hash function.

d and e are of length |p|/2 where |p| is the bit length of the group order.
(b) Compute the unhashed shared secret Z = (Y Be)x+da, delete x, then

return Z to Â.

After receiving Z from its tamper-proof hardware, Â can compute the session
key shared with B̂ by hashing Z. The details will be introduced in Sect. 4.2.

Resistance to Small Group Attacks. As Menezes [24] has shown that if the
ephemeral private key is allowed to be exposed to the adversary in the session
state query, key exchange protocols are vulnerable to small subgroup attacks,
which allow the adversary to recover long-term private keys. For the details of
small subgroup attacks, please refer to [24]. So in our design of tamper-proof
hardware API for HMQV, ephemeral keys are generated by the tamper-proof
hardware and ephemeral private keys are physically protected. As the generation
of ephemeral keys doesn’t require any information of the peer entity, ephemeral
keys can be generated off-line (when tamper-proof hardware is ideal). Thus,
putting the generation of ephemeral keys into tamper-proof hardware doesn’t
affect the efficiency of HMQV in practice. To demonstrate that our design is
practical, we study ephemeral key generation of the Trusted Platform Module
(TPM) version 2.0 [30] (although TPM 2.0 is not a tamper-proof hardware, it is
a popular hardware security token). We find that TPM 2.0 designs an efficient
way to generate ephemeral keys with the following features:

– have the number of bits equal to the security strength of the signing key;
– not be known outside of the TPM; and
– only be used once.

Users can invoke the TPM2 EC Ephemeral() [31] command to generate an
ephemeral key. So we claim that protecting ephemeral private keys by tamper-
proof hardware is practical.
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4.2 Formal Description of HMQV

Figure 5 gives an informal description of HMQV, and the computation performed
by tamper-proof hardware is boxed by rectangles. We formally describe HMQV
by giving the following three session activations.

Â : (A = ga) B̂ : (B = gb)

x,X = gx
X,Y→−−← y, Y = gy

d = H1(X, B̂) e = H1(Y, Â)

Z1 = (Y Be)x+da, delete x Z2 = (XAd)y+eb, delete y

K1 = H(Z1) K2 = H(Z2)

Fig. 5. The HMQV protocol

1. Initiate(Â, B̂): Â calls the API of its tamper-proof hardware to generate an
ephemeral key X, creates a local session of the protocol which it identifies as
(the incomplete) session (Â, B̂,X), and outputs X as its outgoing message.

2. Respond(B̂, Â,X): After receiving X, B̂ performs the following steps:
(a) Call the API of its tamper-proof hardware to get an ephemeral key Y ,

output Y as its outgoing message.
(b) Transmit (Â,X) to its tamper-proof hardware and get Z2 = (XAd)y+eb

through the API where y is the private part of Y and d = H1(X, B̂),
e = H1(Y, Â).

(c) Compute the session key K2 = H(Z2) and complete the session with
identifier (B̂, Â, Y,X).

3. Complete(Â, B̂,X, Y ): Â checks that it has an open session with identifier
(Â, B̂,X), then performs the following steps:
(a) Transmit (B̂, Y ) to its tamper-proof hardware and get Z1 = (Y Be)x+da

through the API where x is the private part of X and d = H1(X, B̂),
e = H1(Y, Â).

(b) Compute the session key K1 = H(Z1) and complete the session with
identifier (Â, B̂,X, Y ).

It is straightforward to verify that the two entities compute the same shared
secret Z = Z1 = Z2 and the same session key K = K1 = K2.

5 Security Proof of HMQV with Tamper-Proof Hardware

We first describe the GDH (Gap Diffie-Hellman) assumption, then prove our
HMQV protocol is secure and achieves the full PFS property in the CK model
under the GDH assumption.
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Definition 2 (GDH Assumption). Let G be a cyclic group generated by
an element g whose order is p. We say that a decision algorithm DDH is a
Decisional Diffie-Hellman (DDH) Oracle for a group G and generator g if on
input a triple (X,Y,Z), for X,Y ∈ G, oracle DDH outputs 1 if and only if
Z=CDH(X,Y ). We say that G satisfies the GDH assumption if no feasible algo-
rithm exists to solve the CDH problem, even when the algorithm is provided with
a DDH-oracle for G.

API Oracle. We treat the API of tamper-proof hardware as an oracle O who
generates ephemeral keys and unhashed shared secrets. The adversary would be
given the black-box access to O if it performs the Corruption query to the entity.

Session State. In order to simulate the tamper-proof feature of the hardware,
we specify that a session state stores the results returned by the API, i.e., the
unhashed shared secret Z. Information stored in the hardware is not included in
the session state, for example, ephemeral private keys.

Theorem 1. Under the GDH assumption, the HMQV protocol, with hash func-
tions H and H1 modeled as random oracles, is a secure key exchange protocol in
the CK model described in Sect. 2.

The proof of the above theorem follows from the definition of secure key
exchange protocols outlined in Sect. 2 and the following two lemmas.

Lemma 1. If two entities Â, B̂ complete matching sessions, then their session
keys are the same.

Lemma 2. Under the GDH assumption, there is no feasible adversary that suc-
ceeds in distinguishing the session key of an unexposed session with non-negligible
probability.

Lemma 1 follows immediately from the definition of matching sessions. That
is, if Â completes session (Â, B̂,X, Y ) and B̂ completes the matching session
(B̂, Â, Y,X) then Â computes its session key as H(Z1) while B̂ computes the
same key as H(Z2) where Z1 = Z2.

The rest section proves Lemma 2. Let M be any adversary against our
HMQV protocol. We observe that since the session key of the test session is
computed as K = H(Z) for Z, the adversary M has only two ways to distin-
guish K from a random value:

1. Forging attack. At some point M queries H on the same Z as the unhashed
shared secret of the test session.

2. Key-replication attack. M succeeds in forcing the establishment of another
session that has the same session key as the test session.

For simplicity of analysis we will consider the above two forms of attacks
separately. We will show that if either of the attacks succeeds with non-negligible
probability then there exists an efficient solver S against the GDH problem.
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5.1 Infeasibility of Forging Attacks

Consider a successful run of M, and let (Â, B̂,X0, Y0) denote the test session
for which M outputs a correct guess for the Z value of the test session. By the
convention on session identifiers, we know that the test session is held by Â, and
its peer is B̂, X0 was output by Â, and Y0 was the incoming message to Â. The
generation of the Y0 can fall under one of the following three cases:

1. Y0 was generated by B̂ in a session matching the test session, i.e., in session
(B̂, Â, Y0,X0).

2. Y0 was never output by B̂ as its outgoing value in any of the sessions activated
at B̂, or B̂ did output Y0 as its outgoing value for some session s but it
never completed the session key of s (B̂ was invoked to execute the Initiate
activation of s but was never activated with Complete activation).

3. Y0 was generated at B̂ during a non-matching session (B̂, Â∗, Y0,X
∗) with

Â∗ �= Â or X∗ �= X0.

Since we assume that M succeeds in the forging attack with non-negligible
probability then there at least one of the cases that happens with non-negligible
probability in the successful run of M. For each of the cases we build a solver S
against the GDH problem. We assume that M operates in an environment that
involves at most n entities and each entity participates in at most k sessions.

Solver S for case 1. In this case S takes as input a pair (X0, Y0) ∈ G2, creates
an AKE experiment which includes n entities, and is given access to a DDH
oracle DDH. S assigns the n entities random static key pairs, then randomly
selects two integers i, j ∈ [1, ..., k] and two honest entities Â and B̂. S runs
HMQV under the control of M who schedules all session activations and makes
queries as follows:

1. Initiate(P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. However,
if the session being created is the i-th session at Â (or the j-th session at B̂),
S checks whether P̂2 is B̂ (or Â). If so, S sets the ephemeral public key to be
X0 (or Y0) from the input of S. Otherwise, S aborts.

2. Respond(P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol.
However, if the session being created is the i-th session at Â (or the j-th
session at B̂), S checks whether Y = Y0 (or Y = X0). If so, S sets the
ephemeral public key to be X0 (or Y0), and completes the session without
computing a session key. Otherwise, S aborts.

3. Complete(P̂1, P̂2,X, Y ): P̂1 executes the Complete() activation of the pro-
tocol. However, if the session being created is the i-th session at Â (or the
j-th session at B̂), S checks whether it has an open session with identifier
(Â, B̂,X0) (or (B̂, Â, Y0)) and Y = Y0 (or Y = X0). If so, S completes the
session without computing a session key. Otherwise, S aborts.

4. SessionStateReveal(s): S returns to M the unhashed shared secrete Z. How-
ever, if s is the i-th session at Â (or the j-th session at B̂), S aborts.

5. SessionKeyReveal(s): S returns to M the session key of s. If s is the i-th
session at Â (or the j-th session at B̂), S aborts.
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6. Corruption(P̂ ): S gives M the API oracle OP̂ of P̂ and state information for
current sessions and session keys at P̂ . From the moment of corruption M
takes full control over P̂ with the help of OP̂ . If M tries to corrupt Â (or B̂)
when the i-th session at Â (or the j-th session at B̂) is not expired, S aborts.

7. Expiry(s): S deletes the session key and any related session state of s.
8. H1(·): S simulates a random oracle in the usual way.
9. H(Z) for some Z proceeds as follows:

– If DDH(X0A
d, Y0B

e) = 1 for Z where d = H1(X0, B̂) and e = H1(Y0, Â),
then S aborts M and is successful by outputting:

CDH(X0, Y0) = ZX−eb
0 Y −da

0 g−deab.

– S simulates a random oracle in the usual way.

Proof. The probability that M selects the i-th session of Â and the j-th session
of B̂ as the test session and its matching session is at least 2

(nk)2 . Suppose that

this is indeed the case, M is not allowed to corrupt Â before its i-th session is
expired and B̂ before its j-th session is expired, make SessionStateReveal and
SessionKeyReveal queries to the two special sessions, so S doesn’t abort in Step
1, 2, 3, 4, 5, 6. So S perfectly simulates M’s environment except with negligible
probability. Therefore if M wins the forging attack, then the success probability
of S is bounded by:

Pr(S) ≥ 2
(ns)2

Pr(M).��

Solver S for Case 2. In this case S takes input a pair (X0, B) ∈ G2, randomly
selects one entity B̂ from the honest entities and sets the public key of B̂ to be
B. All the other entities compute their keys normally. Furthermore, S randomly
selects an integer i ∈ [1, ..., k]. The simulation for M’s environment proceeds as
follows:

1. Initiate(P̂1, P̂2): With the exception of B̂ (whose behavior we explain below)
P̂1 executes the Initiate() activation of the protocol. However, if the session
being created is the i-th session at Â, S checks whether P̂2 is B̂. If so, S sets
the ephemeral public key to be X0 from the input of S. Otherwise, S aborts.

2. Respond(P̂1, P̂2, Y ): With the exception of B̂ (whose behavior we explain
below) P̂1 executes the Respond() activation of the protocol. However, if the
session being created is the i-th session at Â, S checks whether P̂2 is B̂. If
so, S sets the ephemeral key to be X0 and doesn’t compute the session key.
Else, S aborts.

3. Complete(P̂1, P̂2,X, Y ): With the exception of B̂ (whose behavior we explain
below) P̂1 executes the Complete() activation of the protocol. However, if
the session is the i-th session at Â, S checks whether it has an open session
with identifier (Â, B̂,X0) and Y = Y0. If so, S completes the session without
computing a session key. Otherwise, S aborts.

4. S creates an API oracle OB̂ for B̂ as follows:



356 Q. Zhang et al.

(a) When invoked to generate an ephemeral key for a session with P̂ , OB̂

chooses s, e ∈ Zq randomly, let Y = gs/Be, define H1(Y, P̂ ) = e, and
returns Y as the ephemeral public key.

(b) When invoked to compute the unhashed shared secret based on the input
(P̂ ,X), OB̂ returns Z = (XP d)s where d = H1(X, B̂).

S simulates all the session activations at B̂ for M with the help of OB̂ .
5. SessionStateReveal(s): S returns to M the unhashed shared secret Z

returned by the API oracle. However, if s is the i-th session at Â, S aborts.
6. SessionKeyReveal(s): S returns to M the session key of s. If s is the i-th

session at Â, S aborts.
7. Corruption(P̂ ): S gives M the API oracle OP̂ of P̂ and state information

for current sessions and session keys at P̂ . From the moment of corruption
M takes full control over P̂ with the help of OP̂ . If M tries to corrupt Â or
B̂ when the i-th session at Â is not expired, S aborts.

8. Expiry(s): S deletes the session key and any related session state of s.
9. H1(·): S simulates a random oracle in the usual way.

10. H(Z) for some Z proceeds as follows:
– If DDH(X0A

d, Y0B
e) = 1 for Z where d = H1(X0, B̂) and e = H1(Y0, Â),

then S aborts M and is successful by outputting:

Z(Y0B
e)−da = gx0y0gex0b

– S simulates a random oracle in the usual way.

Proof. The probability that M selects the i-th session of Â and the peer of
the test session is B̂ is at least 1

n2k . Suppose that this is indeed the case, M
is not allowed to corrupt Â and B̂ before Â’s i-th session is expired, make
SessionStateReveal and SessionKeyReveal queries to the i-th session of Â, so S
doesn’t abort in Step 1, 2, 3, 5, 6, 7. So S simulates M’s environment perfectly
except with negligible probability.

If M wins the forging attack, it computes the unhashed shared secret Z of
the test session (Â, B̂,X0, Y0). Note that without the knowledge of the private
key y0 of Y0, S is unable to compute CDH(X0, B). Following the Forking Lemma
[27] approach, S runs M on the same input and the same coin flips but with
carefully modified answers to the H1 queries. Note that M must have queried
H1(Y0, Â) in its first run, because otherwise M would be unable to compute Z
of the test session. For the second run of M, S responds to H1(Y0, Â) with a
value e′ �= e selected uniformly at random. If M succeeds in the second run, S
computes

Z ′(Y0B
e′

)−da = gx0y0ge
′x0b

and thereafter obtains

CDH(X0, B) = (
Z

Z ′ )
1

e−e′ B−da.
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The forking is at the expense of introducing a wider gap in the reduction. The
success probability of S, excluding negligible terms, is

Pr(S) ≥ C

n2k
Pr(M)

where C is a constant arising from the use of the Forking Lemma. ��
Solver S for case 3. In this case S takes input a pair (X0, Y0) ∈ G2. All
the entities compute their keys normally. Furthermore, S randomly selects two
integers i, j ∈ [1, ..., k]. The simulation for M’s environment proceeds as follows:

1. Initiate(P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. If the
session being created is the i-th session at Â, S checks whether P̂2 is B̂. If
so, S sets the ephemeral public key to be X0 from the input of S. Otherwise,
S aborts. If the session being created is the j-th session at B̂, S sets the
ephemeral public key to be Y0 from the input of S.

2. Respond(P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol. If
the session being created is the i-th session at Â, S checks whether P̂2 is B̂ and
Y = Y0. If so, S sets the ephemeral public key to be X0, and completes the
session without computing a session key. Otherwise, S aborts. If the session
being created is the j-th session at B̂, S sets the ephemeral public key to be
Y0, then checks whether Y is generated by an oracle OP̂ :
(a) If so, then OP̂ must compute y and Y = gy during its run. S computes

s = y + dp2 where d = H1(Y, B̂), and returns Z = (Y0B
e)s where e =

H1(Y0, P̂2) as the return of OB̂ , computes the session key K = H(Z), and
completes the session with identifier (B̂, P̂2, Y0, Y ).

(b) Else, then OP̂ randomly chooses an value Z as the return of OB̂ , computes
the session key K = H(Z), and completes the session with identifier
(B̂, P̂2, Y0, Y ).

3. Complete(P̂1, P̂2,X, Y ): P̂1 executes the Complete() activation of the proto-
col. However, if the session being created is the i-th session at Â, S checks
whether it has an open session with identifier (Â, B̂,X0) and Y = Y0. If so, S
completes the session without computing a session key. Otherwise, S aborts.
If the session is the j-th session at B̂, S checks whether it has an open session
with identifier (B̂, P̂2, Y ) and X = Y0. If fails, S aborts, else S checks whether
Y is generated by some oracle OP̂ :
(a) If so, then OP̂ must compute y and Y = gy during its run. S computes

s = y + ep2 where e = H1(Y, B̂), and returns Z = (Y0B
d)s where d =

H1(Y0, P̂2) as the return of OB̂ , computes the session key K = H(Z), and
completes the session with identifier (B̂, P̂2, Y0, Y ).

(b) Else, then OP̂ randomly chooses an value Z as the return of OB̂ , computes
the session key K = H(Z), and completes the session with identifier
(B̂, P̂2, Y0, Y ).

4. SessionStateReveal(s): S returns to M the unhashed shared secrete Z. How-
ever, if s is the i-th session at Â, S aborts.
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5. SessionKeyReveal(s): S returns to M the session key of s. If s is the i-th
session at Â, S aborts.

6. Corruption(P̂ ): S gives M the API oracle OP̂ of P̂ and state information for
current sessions and session keys at P̂ . From the moment of corruption M
takes full control over P̂ with the help of OP̂ . If M tries to corrupt Â or B̂

when the i-th session at Â is not expired, S aborts.
7. Expiry(s): S deletes the session key and any related session state of s.
8. H1(·): S simulates a random oracle in the usual way.
9. H(Z) for some Z proceeds as follows:

– If DDH(X0A
d, Y0B

e) = 1 for Z where d = H1(X0, B̂) and e = H1(Y0, Â),
then S aborts M and is successful by outputting:

CDH(X0, Y0) = ZX−eb
0 Y −da

0 g−deab.

– S simulates a random oracle in the usual way.

Proof. The probability that M selects the i-th session of Â and the peer of the
test session is B̂ and Y0 is generated at the j-th session at B̂ is at least 1

n2k2 . Sup-
pose that this is indeed the case, M is not allowed to corrupt Â and B̂ before Â’s
i-th session is expired, make SessionStateReveal and SessionKeyReveal queries
to the i-th session of Â, so S doesn’t abort in Step 1, 2, 3, 4, 5, 6. So S simulates
M’s environment perfectly except with negligible probability. Therefore if M
wins the forging attack, then the success probability of S is bounded by:

Pr(S) ≥ 1
n2s2

Pr(M). ��

5.2 Infeasibility of Key-Replication Attacks

By using the GDH solver S above, we prove that the key-replication attacks
are infeasible against HMQV by showing that such a successful adversary would
break the GDH assumption.

Proof. Assume that M is successful in a key-replication attack against the test
session s = (Â, B̂,X0, Y0). Namely, M succeeds in establishing a session s′ =
(Â′, B̂′,X ′, Y ′) which has the same key as the test session, and this session is
different than (Â, B̂,X0, Y0) and (B̂, Â, Y0,X0). This means the unhashed shared
secret of s and s′ are same (except of a negligible probability of collision in H).

Consider the GDH solver S built above for the three cases. In all the three
cases, S provides M (except the test session and its matching session) with
the Z values of all exposed sessions. Therefore, if M is able to succeed in a
key-replication attack then it can query the session s′ (which M is allowed to
expose) and obtains the Z of s′ which equals Z of s. But this means that M
is able to find the Z of s without exposing s or its matching session, namely,
M can launch the forging attacks. But as we showed, in this case S succeeds in
breaking the GDH assumption. ��

This completes the proof of Lemma 2. Together with Lemma 1, we complete
the proof of Theorem 1.
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6 Conclusion and Future Work

We discuss the full PFS property for one-round implicitly authenticated key
exchange protocols in this paper. Many works have showed that no one-round
implicitly authenticated protocols can achieve full PFS, and neither the HMQV
protocol. Although many solutions are proposed, they lose high performance
both in communication and computation as they need to explicitly authenti-
cate the exchanged messages. These solutions also have some limitations in the
capabilities of the adversary.

We propose the idea of using tamper-proof hardware to improve the secu-
rity of AKE protocols, and show that it is possible to achieve full PFS for the
one-round implicitly authenticated key exchange protocols under the tamper-
proof hardware assumption by formally analyzing the HMQV protocol in the
CK model. Another advantage of our design of the tamper-proof hardware API
for HMQV is that HMQV implemented by our design resists small group attacks
even if entities don’t perform the validation of ephemeral public keys.

It’s interesting to investigate whether the tamper-proof hardware assumption
can improve the security of other implicitly authenticated key exchange proto-
cols. Moreover, we see that all exponentiation computations of HMQV must
be performed in the hardware token, so an investigation of designing protocols
requiring less computation in the hardware token could be done in the future.
Another interesting work is to analyze the key exchange protocols (SM2 key
exchange and MQV) in the TPM 2.0 by taking into account the protection pro-
vided by the TPM hardware. Zhao et al. [36] analyze the SM2 key exchange, and
the security analysis of MQV considering the physical assumption of the TPM
can be done in the future.
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Abstract. In this paper we find that a random sequence is expected to
obey a new interesting distribution, and the coefficient of variation of this
distribution approximates the value of golden section ratio, the dif-
ference between these two numbers is only 0.000797. As this interesting
property, this newfound distribution is derived from Coupon Collector’s
Problem and founded by the uniformity of frequency. Based on this dis-
tribution a new method is proposed to evaluate the randomness of a given
sequence. Through the new method, the binary and decimal expansions
of e, π,

√
2,

√
3 and the bits generated by Matlab are concluded to be

random. These sequences can pass NIST tests and also pass our test. At
the same time, we test some sequences generated by a physical random
number generator WNG8. However, these sequences can pass the NIST
tests but cannot pass our test. In particular, the new test is easy to be
implemented, very fast and thus well suited for practical applications.
We hope this test method could be a supplement of other test methods.

Keywords: Randomness tests · Cryptography · Golden section ratio ·
Coefficient of variation

1 Introduction

The random sequence is very important and it serves two common purposes
[1–4]. One is that most encryption algorithms require a source of random data,
even some symmetric ciphers (where the secret is shared), either to generate
new private/public key pairs, for session keys, for padding, or for other reasons
[5]. For instance, if the random number is not well selected, the secure system
based on RSA is not secure anymore [6]. Another important usage of random
number is that random number generators (“RNGs”) are basic tools of stochastic
modeling. If the bad random is used in simulation, it will ruin a simulation.
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At present there are many test suites to evaluate the randomness of binary
bit sequences, such as Diehard Crypt-XS [7] and NIST test suites [8]. Typically,
the test method usually defines a test statistic whose theoretical distribution
is known, and the randomness property of a given sequence can be evaluated
by hypothesis testing. Because there are so many tests for judging whether a
sequence is random or not, usually the test result is part of the picture of the
randomness [9].

In this paper we construct a new randomness test method based on Coupon
Collector’s Problem. The main inspiration of this paper comes from the martin-
gale betting system [10]. The martingale betting system has a long and interest-
ing history. Suppose that a gambler is betting on red to turn up in roulette, in
which the probability of hitting either red or black is close to 50 %. Every time
the gambler wins, bets 1 dollar next time. Every time the gambler loses, doubles
the previous bet. In this betting system, the gambler will always win, because
the gambler is sure that the red must turn up in some time.

In the old martingale betting system, there are only two states. In this paper,
we define a new martingale betting system, and in the new betting system, there
are ten states. The frequency of each state’s occurrence is the same. In this new
betting system, when the gambler gathers all ten states, he will win the game. We
find an interesting random variable in this new betting system and the coefficient
of variation(CV) [11] of it approximates the value of golden section ratio [12]
and the difference between these two numbers is only 0.000797.

Based on this similar Coupon Collector’s Problem, we construct a new ran-
domness test method, name the newfound test Traversal Sequence Test (TST)
and calculate the theoretical distribution of this random variable, then use the
chi-square test [13] which is of great importance in testing whether observed data
fits a given probability distribution to decide the randomness of the sequences.
At the same time, the proposed test is easy to be implemented, very fast and
thus well suited for practical applications. We hope this test method could be a
supplement of the other test methods.

In order to evaluate our test method, we evaluate the randomness of the
binary and decimal expansions of e, π,

√
2,

√
3, log2 and random binary sequences

from Matlab by our method and NIST test suite respectively. Compared with
the reports of NIST tests, our method can also give right decision. At the same
time, we also test some sequences which can not pass the NIST tests and our test
gives the same decision as NIST does. In particular, we evaluate some sequences
generated by WNG8 which is physical random number generator, and these
sequences can pass NIST tests but can not pass our test. For these reasons, we
hope our method can be a supplement of the present test suites.

The main contributions in our paper:

1. Compared with the existing test statistics, the coefficient of variation of the
newfound test statistic based on Coupon Collector’s Problem approximates
the value of golden section ratio and the difference between these two num-
bers is only 0.000797.

2. Based on our newfound random variable, we proposed a new randomness
test method, which can be a supplement of the present test suites.
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2 The Design of Our Statistical Test

In the old martingale betting system, there are only two states. In our new
martingale betting system, there are ten states, the frequency of each state’s
occurrence is the same. Consider the following situation: there is a long decimal
sequence, such as 349850236674190871239046975306869 · · · · · · , and we define a
new random variable X, X is the number of the elements needed traversing from
‘0’ to ‘9’. In this new betting system, when the gambler gathers all ten numbers,
he will win the game. In the above string of decimal numbers, for the first time
to finish traversing from ‘0’ to ‘9’, it needs this small segment ‘3498502366741’,
so x1 = 13; for the second time to traverse from ‘0’ to ‘9’, it needs the next small
segment ‘90871239046975’, so x2 = 14; and so on, we can get x3, x4, · · ·, xn, · · ·.

Based on the random variable defined above, there comes a question:
What is the probability distribution of the random variable X?
In the old martingale betting system, the distribution of this random vari-

able is obviously Geometric Distribution [14]. The next subsections will give the
process that how to calculate the probability of the new random variable in our
new martingale betting system.

2.1 The Preliminary to Calculate the Probability

There is a question for putting the balls into the boxes. In this question, we have
ten boxes without serial numbers and k balls, and the probability for every ball
into any a box is 1/10. When we put the kth ball into one box, each box at least
has one ball at that moment. In other word, when we put the (k − 1)th ball into
one box, only one of the boxes has no balls. So there is how many kinds of such
combination.

Stirling number [15] can easily give the number of such combination. Stirling
number S(P,K) denotes the number of the combination to put P elements into
K nonempty sets. Therefore, with the help of Stirling number, the number of
the combination for k balls is S(k − 1, 9).

2.2 To Calculate the Probability

If all the ten boxes have serial numbers from ‘0’ to ‘9’, what is the number of
the combination that when the kth ball is put into one box, every box has just
at least one ball at that moment? Because of the Stirling number, the number
of combination is 10! ∗ S(k − 1, 9). Now this question that k balls are put into
ten boxes is similar to the above question that k numbers are traversed from ‘0’
to ‘9’. So, P(X = k) = 10! ∗ S(k − 1, 9)/10k = 9! ∗ S(k − 1, 9)/10k−1. In order
to calculate the probability for k � 10, substitute the Stirling number’s formula
into P(X = k). The Stirling number is calculated by the formula (1):

S(n, k) = (1/k!) ∗ (
k∑

j=0

(−1)k−j(kj )j
n) (1)
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Fig. 1. The probability distribution for the traversal from ‘0’ to ‘9’

Then we can calculate the P(X = k):

P (X = k) = 9! ∗ S(k − 1, 9)/10k−1 (2)

By the formula (1) and (2),

P (X = k) = 9! ∗ 1/9! ∗ (
9∑

j=0

(−1)9−j(9j ) ∗ jk−1)/10k−1 (3)

= (
9∑

j=0

(−1)9−j(9j ) ∗ jk−1)/10k−1 (4)

Suppose i = 9 − j,

P (X = k) =
9∑

i=0

(−1)i(9i ) ∗ ((9 − i)/10)k−1 (5)

Through the formula (5), we can calculate the probability distribution and
Fig. 1 shows the probability distribution for the traversal from ‘0’ to ‘9’.

2.3 The Newfound CV Closes to Golden Section Ratio

The expectation of the random variable X which is the number of the elements
needed traversing from ‘0’ to ‘9’ can be calculated by the formula (6):
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E(X) =
∞∑

k=10

k ∗
9∑

i=0

(−1)i(9i ) ∗ ((9 − i)/10)k−1 (6)

Although we get the probability distribution for the random variable X, we
can not easily calculate the expectation and standard deviation of X. However,
we can divide one traversal from ‘0’ to ‘9’ into ten parts. The first part is the first
time to get one element a0 from ‘0’ to ‘9’, and the probability P0 for this event
is 1. The second part is the first time to get one element a1 which is not equal to
a0, and the probability P1 for this event is 9/10. The same method for the other
parts. The 10th part is the first to get one element a9 which is not equal to any
element among a0, a1, · · · · · · , a8, and the probability P9 for this event is 1/10.
Based on the above description, since these ten parts are independent geomet-
ric distribution, the expectation of each part is Ei = 1/Pi and the variance is
Vari = (1 − Pi)/P 2

i . According to the additivity of independent events’ proba-
bility, we can calculate the E(X) and Var(X) by the formula (7)–(9):

Pi = (10 − i)/10 (7)

E(X) =
9∑

i=0

Ei =
9∑

i=0

1/Pi = 29.2897 (8)

V ar(X) =
9∑

i=0

V ari =
9∑

i=0

(1 − Pi)/P 2
i = 125.6871 (9)

A random variable – the coefficient of variation [11] measures the variability
of a series of numbers independently of the unit of measurement used for these
numbers. The coefficient of variation eliminates the unit of measurement of the
standard deviation of a series of numbers by dividing it by the mean of these
numbers. In the above test for the traversal from ‘0’ to ‘9’, we can calculate the
CV by the formula (10):

CV = σ(X)/E(X) = V ar(X)1/2/E(X) = 0.38276 (10)

The golden section ratio is 0.38196601 and the computed CV of the traversal
test for decimal numbers is 0.38276363. The difference between the golden section
ratio and the computed CV is 0.00079762. It is attractive that the CV of the
random variable is so close to the golden section ratio.

2.4 One Example for Traveral Test

Here we take π as an example and the test traverses from ‘0’ to ‘9’.

π = 3.1415926535897932384626433832795028841971693 · · · · · ·
Begin the test with the part after the decimal point. It needs ‘14159265358979

323846264338327950’ for the first time to finish one traveral from ‘0’ to ‘9’ and
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the number of decimal elements is 32. It needs ‘288419716939937510’ for the sec-
ond time to finish one traveral from ‘0’ to ‘9’ and the number of decimal numbers
is 18. Then we finish 10000 traverals from ‘0’ to ‘9’ and we can get the statisti-
cal histogram for the number of decimal numbers needed to finish one traveral.
Figure 2 shows the comparison of the theoretical probability distribution and the
statistical probability distribution.

Fig. 2. The comparison of the theoretical probability distribution and the statistical
probability distribution

Through the theoretical probability distribution and the statistical proba-
bility distribution, we can calculate the chi-square for the test to evaluate the
randomness of the sequence as follows:

n denotes the number of traverals, ppi denotes the probability that it needs i
elements to finish one traversal and fi denotes the number of times that it needs
i elements to finish one traveral in the n traverals.

if n ∗ ppi < 5, we can calculate one part of the chi-square as follow:

χ2
1 = (

∑

{i|n∗ppi<5}
ppi ∗ n −

∑

{i|n∗ppi<5}
fi)2/(

∑

{i|n∗ppi<5}
ppi ∗ n) = 0.8893 (11)

if n ∗ ppi ≥ 5, we can calculate the other part of the chi-square as follow:

χ2
2 =

∑

{i|n∗ppi≥5}
(ppi ∗ n − fi)2/(ppi ∗ n) = 67.2301 (12)
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Then calculate the chi-square χ2 by adding up χ2
1 and χ2

2.

χ2 = χ2
1 + χ2

2 = 68.1194 (13)

Then compute P value = igamc(N/2, χ2/2) = igamc(64/2, 68.1194/2) =
0.3390. We select the significance level α = 0.01. If the computed P value is less
than 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.5 Traversal Sequence Test

This section describes the procedure of the proposed test — Traversal Sequence
Test (TST). In [3], A Statistical Test Suite for Random and Pseudorandom Num-
ber Generators for Cryptographic Applications (Revised: April 2010) consists of
15 tests and mentions that there are an infinite number of possible statistical
tests and each of them is applied in a necessary condition for the randomness in
probabilistic terms. Namely, no specific finite set of tests is deemed “complete”.
For example, among the NIST tests, the frequency (monibit) test focuses on the
proportion of zeros and ones for the entire sequence; the frequency test within a
block determines whether the number of ones is approximately m/2 in a m-bit
block. In order to test the randomness of a sequence, these are necessary but
not sufficient.

Here is a sequence n = 10000 as follows:

0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1, 0, 1

The sequence has 5000 ones and 5000 zeros. However, the sequence is obvi-
ously non-random, but the frequency test and the frequency within a block test
(in which the length of the test block is even) would accept the sequence.

The focus of the TST is the proportion of the number of the needed element
for one traversal. The purpose of this test is to determine whether the frequency
of the traversal is similar with the theoretical probability distribution. The TST
is suitable for many bases. For a bit sequence, the traversal can be from ‘0’ to
‘2m’ and m can be 1, 2, · · ·, 7, 8, · · ·. The TST also can be applied for the decimal
sequence and the traversal is from ‘0’ to ‘9’. The test process can be summarized
as follows:

• Step 1: For a given bit sequence, the length is n and select the radix 2m for
the traversal from ‘0’ to ‘2m’.

• Step 2: Based on the radix selected in step 1, finish one thousand traversals
and record the value of the random variable X which is the number of the
needed elements for each traversal.

• Step 3: Analyze statistical result from step 2 to get the statistical distribution
for the traversal test.

• Step 4: According to the statistical distribution of the random variable X,
apply the chi-square test to compute P value.

• Step 5: Decide the significance level α to determine whether to accept the
sequence based on the P value.
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3 The Simulation Results

The proposed test (TST) was applied to different series of numbers (π, e,
√

2,√
3, log2, some which are generated by WNG8, some which are generated by the

random function of Matlab2012a, some which are the result of SHA-256, some
other series which are concluded to be random by the NIST tests and some which
are concluded to be non-random).

π, e,
√

2,
√

3, log2 and the sequences are generated by WNG8 are concluded to
be random by the NIST tests. Table 1 shows that the result of the NIST tests for
the binary expansion of π, e,

√
2. Meanwhile, WNG8 and the result of Hash-256 are

also concluded to be random by the NIST tests. Sequence A is a bit sequence with
the probability 48% of ‘0’ and 52% of ‘1’ and sequence B is a periodic sequence.
Seq. A and Seq. B are both concluded to be non-random by the NIST tests.

3.1 The General TST Test

In the TST, based on the binary sequences of the above series, do traversal tests
in different bases. Regard 1000 traversals as one test and do one thousand times
in total for each base. Then record P value which is computed in each test. If in
any radix a sequence is concluded to be non-random, conclude this sequence non-
random. Table 2 records the number of the computed P value which is greater
than 0.01 in 1000 tests for each radix, and it shows that the TST test can
distinguish these random and non-random sequences well.

3.2 The TST Test for Simple Periodic Sequence

The traversal sequence test is based on the normality of the sequence. However,
the TST test can distinguish simple-constructed periodic sequences. Generally, π
is considered to be a random sequence, so construct the simple periodic sequences

Table 1. The result of NIST for the binary expansion of some entities

Statistical test π e
√

2 WNG8 Hash-256 Seq.A Seq.B

Frequency 1.000 0.989 0.989 0.993 0.986 0.000 0.921

BlockFrequency 0.989 1.000 0.989 0.997 0.989 0.000 0.968

CumulativeSums (forward) 0.989 0.989 0.989 0.993 0.985 0.000 0.928

CumulativeSums (backward) 1.000 0.989 1.000 0.990 0.987 0.000 0.928

Runs 0.978 1.000 1.000 0.987 0.987 0.000 0.926

LongestRuns 1.000 0.989 0.989 0.991 0.990 0.000 0.801

Rank 0.978 1.000 0.989 0.989 0.995 0.988 0.993

FFT 0.956 0.967 1.000 0.984 0.985 0.128 0.000

ApproximateEntropy 1.000 0.989 0.989 0.988 0.993 0.000 0.000

Serial (∇1) 1.000 0.989 1.000 0.989 0.992 0.000 0.000

Serial (∇2) 1.000 0.989 0.989 0.989 0.991 0.981 0.000
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Table 2. The number of the computed P value which is greater than 0.01

Statistical test Radix = 21 Radix = 22 Radix = 23 Radix = 24

π 995 996 985 990

e 990 993 990 996√
2 993 992 990 990√
3 989 987 990 991

log2 993 997 995 993

One sequence from WNG8 999 994 991 991

One sequence from WNG8 993 986 992 992

Random sequence from Matlab 990 992 994 991

Random sequence from Matlab 997 994 992 991

One non-random sequence (Seq.A) 970 914 673 201

Table 3. The computed P value of periodic sequences

Statistical test The length of
the sequence

Radix = 21 Radix = 22 Radix = 23 Radix = 24

The constructed
sequence 1 512000

2.2328e-12 1.3609e-20 0.0044 1.4128e-41

Sequence 1 from π
512000

0.6862 0.9936 0.8445 0.9532

The constructed
sequence 2

1024000 1.0888e-25 1.6914e-52 6.7067e-15 1.7901e-127

Sequence 2 from π 1024000 0.7721 0.8013 0.8117 0.8664

The constructed
sequence 3

1536000 8.9484e-42 6.0224e-93 2.3053e-30 5.5521e-235

Sequence 3 from π 1536000 0.8546 0.8652 0.9048 0.2797

based on some segments of π. Consider the constructed sequence 1 consisting
of 102400 random bit string which is one segment of π and repeated 5 times,
the constructed sequence 2 consisting of 102400 random bits which are copied
from π and repeated 10 times and the constructed sequence 3 consisting of
102400 random bit string which is one segment of π and repeated 15 times.
Meanwhile, get three referential sequences from π, then apply the TST test to
these sequences. Table 3 shows the computed P values and the result indicates
that these constructed sequence is non-random and the TST test can discover
the periodicity in sequences.

3.3 The Large Sample TST Test

On the observation of the above TST tests, the sample size for one test is not so
large. Here consider some large sample data and the sample data is 800 million
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Table 4. The result of thest large sample data

Statistical test Radix=21 Radix=22 Radix=23 Radix=24 Radix=25 Radix=26

π 0.5514 0.8637 0.1637 0.329 0.1402 0.9334

e 0.8007 0.5293 0.6132 0.4867 0.2054 0.3358√
2 0.9156 0.2361 0.5448 0.8475 0.5290 0.8608√
3 0.3393 0.7141 0.8947 0.6648 0.4416 0.1803

log2 0.6930 0.2128 0.9143 0.6373 0.3637 0.8688

One sequence
from linear
shift register
generator

0.1928 4.8312e-11 0.1389 0.2490 0.0798 0.0652

Sequence 1 from
WNG8

0.7607 0.5343 0.5387 9.6747e-06 8.7977e-08 0.9162

Sequence 2 from
WNG8

0.1347 0.5297 0.9111 9.4943e-08 1.5921e-04 0.2702

Sequence 3 from
WNG8

0.2674 0.9789 0.0941 0.0767 0.0070 0.8107

Sequence 4 from
WNG8

0.5532 0.9311 0.0116 2.0995e-14 0.2988 4.5243e-04

Sequence 5 from
WNG8

0.3597 0.4902 0.9273 5.5788e-06 0.4842 0.1365

Result 1 of
SHA-256

0.4599 0.5631 0.0133 0.9423 0.5207 0.968

Result 2 of
SHA-256

0.7785 0.3862 0.8919 0.8775 0.4998 0.1264

Sequence 1 from
Matlab

0.5669 0.5542 0.0230 0.2175 0.9939 0.4087

Sequence 2 from
Matlab

0.8980 0.4024 0.8892 0.7337 0.8179 0.7217

Sequence 3 from
Matlab

0.3928 0.7429 0.5018 0.1946 0.8881 0.9147

Sequence 4 from
Matlab

0.2219 0.6064 0.5295 0.8075 0.6041 0.3401

Sequence 5 from
Matlab

0.7840 0.7269 0.6235 0.4041 0.7974 0.2971

bits. In this section, the large samples contain one sequence which is from lin-
ear shift register generator, five sequences which are generated by WNG8, two
sequences which are the results of SHA-256, five sequences that are generated
by the random function of Matlab2012a and other sequences that are from π, e,√

2,
√

3, log 2.
Table 4 records the computed P value of these sequences in each base. From

the result of Table 4, when the sample size is large, π, e,
√

2,
√

3, log 2 are still
concluded to be random, the result of SHA-256 and the sequences generated
by matlab are also concluded to be random. However, to the sequence from



372 Q. Zhang et al.

Table 5. The computed P value for the random variable CV

Name π e
√

2
√

3

P value 0.5952 0.8715 0.8858 0.6784

Name Periodic
sequence 1

Periodic
sequence 2

Periodic sequence 3 Periodic sequence 4

P value 4.3679e-90 4.1967e-20 1.9650e-04 1.9788e-05

WNG8 in some radix the sequence is non-random, so the large sample TST
test can distinguish some non-randomness of the sequences from WNG8. To the
sequence from linear shift register generator, in the radix of 22 it is concluded
to be non-random.

3.4 The Simulation of the Random Variable CV

In the above section, we notice that the theoretical value of random variable CV
for decimal sequences is extremely close to the Golden Section Ratio. Then in
this section, we will apply the T test [16] to distinguish sequences’ randomness.
Here these sequences are decimal and the length of each test block is 90000. For
each sequence, calculate 100 CVs. The calculated CV is conformed to normal
distribution with the mean is the theoretical value of CV. We can assume that
the calculated CVs have the mean which is the theoretical value of CV and the
variance δ2 which is unknown. Then calculate the statistical variable t by the
formula (14), where X is the mean of the calculated CVs, CV0 is the theoretical
value of CV, S is the standard deviation of these CVs and n is the number of
these CVs.

t = (X − CV0)/(S/
√

n) ∼ t(n − 1) (14)

Then through the computed t, make use of the ttest function in Matlab
to get the P value. Table 5 shows that the P value of the decimal sequences
for π, e,

√
2,

√
3 and some periodic sequences whose periods are 48000, 120000,

240000, 480000. The result indicates that the random variable CV can efficiently
distinguish the non-random sequences.

4 Conclusion

In this paper, we propose a new randomness test method. First, we calculate the
probability distribution for the number to traversal the binary sequence from
different bases. Then apply chi-square test to evaluate the randomness of the
binary sequences. An amazing discovery of this paper is that we find that the
Coefficient of Variation of the test statistic defined in this paper approaches
the value of golden section ratio and the difference between these two number is
only about 0.000797. As the test result shown, our new test method can find that
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some physical random number generator is not so good as the pseudorandom,
such as the binary expansions of e, π,

√
2,

√
3 etc. We hope that our new test

method can be a supplement of the existing test suites.
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Abstract. With searchable encryption, a data user is able to perform
meaningful search on encrypted data stored in the public cloud without
revealing data privacy. Besides handling simple queries (e.g., keyword
queries), complex search functions, such as multi-dimensional (conjunc-
tive) range queries, have also been studied in several approaches to pro-
vide search functionalities over multi-dimensional data. However, current
works supporting multi-dimensional range queries either only achieve lin-
ear search complexity or reveal additional private information to the pub-
lic cloud. In this paper, we propose a tree-based symmetric-key search-
able encryption to support multi-dimensional range queries on encrypted
data. Besides protecting data privacy, our proposed scheme is able to
achieve faster-than-linear search, query privacy and single-dimensional
privacy simultaneously compared to previous solutions. More specifically,
we formally define the security of our proposed scheme, prove that it is
selectively secure, and demonstrate its faster-than-linear efficiency with
experiments over a real-world dataset.

Keywords: Multi-dimensional range search · Encrypted data

1 Introduction

With the low-priced data storage and computation services offered by cloud
providers, people outsource their large-scale data to the cloud to reduce their
cost spending on local devices. While enjoying data services in the public cloud,
the leakage of private data has always been one of the major concerns to users
[21]. Using traditional encryption on the client side, such as the example of
implementing AES-256 (on the client side) in a cloud data storage application
named Wuala [1], people can preserve their private data, even from the public
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cloud. However, the implementation of traditional encryption on the client side
will prevent clients to utilize and compute their cloud data efficiently.

For instance, a client using Wuala has no way to operate meaningful search
on its encrypted cloud data, unless it first retrieves/syncs all the data from the
cloud side and decrypts those ciphertexts. This process is resource-consuming to
a client, especially for medical data or financial data with large-scale data size.
The client will need to face the same awkward and painful situation when it
simply encrypts data with traditional encryption on the client side, and stores
those ciphertexts in Google Drive or Amazon S3. Of course, sharing the secret
key with the cloud, which is equivalent to traditional encryption on the cloud
side (e.g., Dropbox), is another option to conduct search on outsourced data,
but that will totally reveal confidential data to the public cloud.

To enable users to search their encrypted cloud data without retrieving
the entire data or revealing private data to the public cloud, the techniques
of searchable encryption were proposed. Most of the current works [5,7,8,10,
12,14,15,17,24,26,27,30] focus on supporting simple search functions, such as
keyword queries. However, they are not suitable for handling complex search
operations, such as multi-dimensional range queries, on encrypted data in real
datasets, where plain data are generally presented with numerical values in mul-
tiple dimensions.

Some previous schemes or the extensions of them [6,23] can support multi-
dimensional range queries, but the search complexity of these schemes is linearly
increasing with the number of data records in a dataset. Moving a step forward,
several schemes [18,31] proposed to utilize multi-dimensional tree structures,
such as kd-trees [4] and R-trees [13], to achieve faster-than-linear search regard-
ing to the total number of data records. However, as pointed out in [28], these
solutions reveal single-dimensional privacy to the cloud, which simply allows the
public cloud to reveal additional privacy by performing range search in every
single dimension correctly and independently while only granted with a search
token of a multi-dimensional range query. To protect this privacy leakage while
still maintaining faster-than-linear search, Wang et al. [28] recently designed a
tree-based public-key multi-dimensional range searchable encryption based on
Hidden Vector Encryption [6] and R-trees. Unfortunately, as a trade-off, this
scheme inherently loses query privacy (i.e., the public cloud learns the content
of the queries submitted by the client) due to its public-key-based design [22].

In this paper, to overcome the limitations and enhance users’ privacy in pre-
vious solutions, we design Elm1, a tree-based symmetric-key multi-dimensional
range searchable encryption. With this proposed scheme, a data owner is able
to index its data records with an R-tree, encrypt all the nodes/data in the tree,
and outsource the encrypted tree to the public cloud. The public cloud is able
to correctly perform multi-dimensional range search on encrypted data without
1 We name it Elm because it is a tree-based solution and it can enhance users’ privacy

for multi-dimensional range queries. For the ease of description, when we mention
a scheme is faster-than-linear in the rest of this paper, it indicates that the search
complexity of it is faster-than-linear with regard to the number of data records.
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revealing query privacy, data privacy or single-dimensional privacy. The main
contributions of this paper are summarized as follows:

1. We formally describe the definition of a tree-based symmetric-key multi-
dimensional range searchable encryption, and present the formal security of
it in terms of query privacy, data privacy and single-dimensional privacy.

2. Besides preserving data privacy, our scheme achieves faster-than-linear search,
query privacy and single-dimensional privacy simultaneously compared to pre-
vious solutions (as shown in Table 1). Specifically, we leverage a symmetric-
key predicate encryption [22] (denoted as SSW in this paper) to encrypt all
the nodes in an R-tree, so that the public cloud is able to still follow the
original search algorithm (i.e., the one in the plaintext domain) of an R-tree
by testing corresponding geometric relations on encrypted data.

3. We prove our scheme is selectively secure and demonstrate its efficiency on
a real dataset. Moreover, compared to [28], our scheme can securely support
dynamic data of an R-tree for some simple cases due to the enhancement of
query privacy.

Note that the use of an R-tree in this paper is two-fold: (1) it achieves faster-than-
linear search; (2) it is more suitable for maintaining single-dimensional privacy
compared to other multi-dimensional tree structures (further explanations about
this privacy issue with different tree structures can be found in [28]).

Table 1. Comparison among Different Solutions.

[18] [31] [28] [23] [6] Ours

Faster-than-linear Search
√ √ √ × × √

Query Privacy
√ √ × × × √

Single-Dimensional Privacy × × √ √ √ √

2 Related Work

Keyword Search. Song et al. [24] proposed the first symmetric-key searchable
encryption. Golle et al. [12] designed a scheme for processing conjunctive key-
word queries. Curtmola et al. [10] rigorously defined and discussed the security of
searchable symmetric encryption for keyword queries, and also studied the multi-
user setting. Kamara et al. [14,15] and Stefanov et al. [26] presented keyword
search over dynamic encrypted data. Sun et al. [27] designed a multi-keyword
search scheme, which can support similarity-based ranking on encrypted data.
Cash et al. [8] recently proposed a sublinear searchable encryption to support
conjunctive keyword search and boolean keyword search, and they further stud-
ied the dynamic version of their work in [7].

Keyword search on encrypted data have also been studied in the public-key
setting. Boneh et al. [5] designed the first public-key encryption with keyword
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search (PEKS). Abdalla et al. [3] further studied the connections between anony-
mous Identity-Based Encryption and PEKS. Lai et al. [17] proposed a public-
key searchable encryption to perform expressive keyword queries. However, these
works discussed above mainly focus on keyword search, which is not sufficient
to handle multi-dimensional range queries on encrypted data.

More recently, a scheme [33] with data interoperability has been proposed to
flexibly enable a set of SQL queries (including keyword search, range search, etc.)
on encrypted data. Unfortunately, it fails to achieve faster-than-linear search or
preserve single-dimensional privacy for multi-dimensional range queries. On the
other hand, Pappas et al. [20] introduced a scheme (named Blind Seer) to flexibly
support arbitrary boolean queries with sublinear search by using Bloom-Filter-
based tree structure. However, a large amount of client-server interactions are
required to finish the entire search process (essentially, one round of client-server
interaction is needed to make search decision at each node in the tree).

Range Search. Boneh et al. [6] designed a general public-key approach to
support comparison queries, subset queries and range queries on encrypted data
by leveraging Hidden Vector Encryption (HVE). Shi et al. [23] studied a public-
key scheme, which can improve the search complexity of each data record to
O(w log T ) compared to O(wT ) in [6]. Unfortunately, these two approaches are
public-key-based, which fail to provide query privacy [22].

Lu [18] proposed a logarithmic range search scheme on encrypted data, named
LSED, by utilizing segment trees, predicate encryption (i.e., SSW [22]) and B+

trees. The extension of it, denoted as LSED+, can support multi-dimensional
range queries by replacing B+ trees with kd-trees in their design. However,
as pointed out by the author himself, this extension reveals single-dimensional
privacy. Wang et al. [31] presented a scheme for performing multi-dimensional
range queries with the use of R-trees and Asymmetric Scalar-product Preserving
Encryption [32]. Unfortunately, this scheme leaks single-dimensional privacy and
lacks the formal security definition.

Recently, Wang et al. [28] designed a tree-based public-key MDRSE based on
HVE and multi-dimensional tree structures (i.e., R-trees). This scheme is able to
achieve faster-than-linear search. More importantly, the authors explained that
some similar tree structures, such as kd-trees and range-trees, are inherently
not able to achieve single-dimensional privacy. However, since it is a public-key
scheme, it loses query privacy as well for the same reason as [6,23].

3 Preliminaries

Predicate Encryption. Predicate encryption is able to test whether plain data
(e.g., u) satisfies a predicate (i.e., f(u) = 1 or f(u) = 0) without revealing plain
data. SSW [22] is a symmetric-key predicate encryption and is able to support
inner product queries. Specifically, data is described as a vector u and a predicate
can be denoted as a vector v, and the evaluation on encrypted data reveals
f(u) = 1 iff v ◦ u = 0, where v ◦ u =

∑n
i=1 vi · ui denotes the inner product of

these two vectors. Besides protecting data privacy, SSW can also preserve query
privacy. The details of SSW are presented in Fig. 1.
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• Setup(1λ, T ): Given a security parameter λ and T , output a secret key SK.
• Enc(SK,u): Given SK and a plaintext x ∈ U , where u = (u1, ..., uT ) and U is the

plaintext space, output a ciphertext C.
• GenToken(SK,v): Given SK and a query v ∈ V, where v = (v1, ..., vT ) and V is

the query space, output a token TK.
• Query(TK, C): Given TK and C, output 1 iff v ◦ u = 0 and 0 otherwise.
Correctness: SSW is correct, for all λ, all u ∈ U , all v ∈ V, all SK ← Setup(1λ, T ),
all C ← Enc(SK,u), all TK ← GenToken(SK,v),

– If v ◦ u = 0, Query(TK, C) = 1;
– If v ◦ u = 0, Pr[Query(TK, C) = 0] ≥ 1 − negl(λ);

where negl(λ) is a negligible function in λ.

Fig. 1. Details of SSW.

R-trees. R-trees are height-balanced tree structures to index data with multi-
ple dimensions. It can improve the search efficiency of range queries on multi-
dimensional data. An example of an R-tree in two dimensions can be found in
Fig. 3. The essential idea of indexing data in an R-tree is to group nearby ele-
ments (points or hyper-rectangles) on the same level and include them into a
minimal bounding hyper-rectangle in a higher-level of the tree. Every leaf node
in an R-tree represents a point, and every non-leaf node describes a bound-
ing hyper-rectangle. Clearly, the root node of an R-tree is the largest bounding
hyper-rectangle that covers all the elements.

With this structure, the search of range queries in an R-tree can be effi-
ciently conducted from the root node by recursively checking geometric relations,
including whether two hyper-rectangles (a non-leaf node and a query) intersect
or whether a point (a leaf node) is inside a hyper-rectangle (a query). Specifi-
cally, for each non-leaf node, if it interacts with the query, continue to search its
child nodes; otherwise, stop search on this path. For each leaf node, if it is inside
the query, return this node; otherwise, do not return.

4 Problem Statement

System Model. In the system model of a searchable encryption, we have two
entities, a data owner and the cloud server (which are illustrated in Fig. 2). A
data owner outsources its data (i.e., a large set of data records) to the cloud
server in order to save local storage cost. In addition, this data owner still would
like to use its outsourced data correctly and efficiently. Specifically, in the study
of this paper, that means this data owner should be able to retrieve the correct
results of its data from the cloud server for each multi-dimensional range query.
The cloud server is considered as an honest-but-curious party. It means the cloud
server is believed to be able to provide reliable services, but it may be curious
about the content of data records stored in the cloud and the content of queries
submitted by the data owner. In order to preserve users’ privacy, data and queries
are in an encrypted form in the cloud.
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Fig. 2. The system model includes a data owner and the cloud server.

Definitions. We first briefly present some basic definitions for data in
multiple dimensions, which will be frequently used in the rest of this paper.

• Lattice: Let Δ = (T1, ..., Tw), where Ti is the upper bound in the i-th dimen-
sion and 1 ≤ i ≤ w. A lattice LΔ is defined as LΔ = [T1] × · · · × [Tw], where
[Ti] = {1, ..., Ti}.

• Point : A point X in LΔ is defined as X = (x1, ..., xw), where xi is a value
in the i-th dimension, xi ∈ [Ti], ∀i ∈ [1, w].

• Hyper-Rectangle: A hyper-rectangle HR in LΔ is defined as HR= (R1, ...,
Rw), where Ri is a range in the i-th dimension, Ri ⊆ [1, Ti], ∀i ∈ [1, w].

Considering the preceding system model, a data record is essentially a point and
a multi-dimensional range query is actually a hyper-rectangle.

We now introduce the formal definition of a symmetric-key Multi-Dimensional
Range Searchable Encryption (MDRSE). In addition, we leverage a tree struc-
ture Γ (more specifically, an R-tree in the design of this paper), which is able
to index data records and improve the search complexity of multi-dimensional
range queries. Compared to the recent work [28], which is also a tree-based
solution supporting multi-dimensional range search, the major difference of our
scheme is that it is a symmetric-key approach while the previous one is a public-
key scheme. This change from a public-key design to a symmetric-key one will
enhance query privacy, which will be further discussed later.

Definition 1(Symmetric-Key Multi-Dimensional Range Searchable
Encryption). A tree-based symmetric-key MDRSE is a tuple of five polynomial-
time algorithms Π = (GenKey, BuildTree, Enc, GenToken, Search) such that:

– SK ← GenKey(1λ,Δ): is a probabilistic key generation algorithm that is run by
the data owner to setup the scheme. It takes as input a security parameter λ
and Δ = (T1, ..., Tw), and outputs a secret key SK.

– Γ ← BuildTree(D): is a deterministic algorithm run by the data owner to
build a multi-dimensional tree to index data records. It takes as input n data
records D = {D1, ...,Dn}, where each data record Di = (di,1, ..., di,w) is essen-
tially a point in LΔ, and outputs a multi-dimensional tree Γ = {D1, ...,Dn,
N1, ..., Nm,P}, where Di is a leaf node, for 1 ≤ i ≤ n, and Nj is a non-leaf
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node, for 1 ≤ j ≤ m, and P is the set of pointers covering all the parent-child
relations in tree Γ .

– Γ ∗ ← Enc(SK, Γ ): is a probabilistic algorithm run by the data owner to encrypt
a multi-dimensional tree. It takes as input a secret key SK, multi-dimensional
tree Γ , and outputs an encrypted multi-dimensional tree Γ ∗ = {C1, ..., Cn,
E1, ..., Em,P}, where Ci is an encrypted leaf node, for 1 ≤ i ≤ n, Ej is an
encrypted non-leaf node, , for 1 ≤ j ≤ m, and P is the set of pointers covering
all the parent-child relations in tree Γ ∗.

– TK ← GenToken(SK, Q): is a probabilistic algorithm run by the data owner to
generate a search token for a given range query. It takes as input a secret key
SK and a range query (i.e., a hyper-rectangle) Q, and outputs a search token
TK.

– I ← Search(Γ ∗, TK): is a deterministic algorithm run by the server to search
over an encrypted multi-dimensional tree. It takes as input an encrypted multi-
dimensional tree Γ ∗ and a search token TK, and outputs a set I of identifiers
(memory locations of data records in the cloud server), where Ii ∈ I, if data
record Di ∈ Q.

D1

D2
D3

D4

N1

N2

N3 N3

N2N1

D1 D2 D3 D4 C1 C2 C3 C4

E1 E2

E3

Data records D = {D1, D2, D3, D4} Tree Γ Tree Γ∗

BuildTree(D) Enc(SK,Γ)

Fig. 3. A set of data records is indexed by a tree Γ , and is further encrypted into an
encrypted tree Γ ∗ where Γ � Γ ∗.

In the above tree-based scheme, we describe a tree (also its encrypted version)
with a set of nodes and a set of pointers covering all the parent-child relations in
the tree. During encryption, the algorithm only encrypts every node (including
every leaf node Di and every non-leaf node Nj) in tree Γ while keeping all
the pointers (i.e., P) unchanged. It means although the nodes are denoted with
ciphertexts in the encrypted tree Γ ∗, the graph structures of the original tree Γ
and its encrypted version Γ ∗ are isomorphic, which is denoted as Γ � Γ ∗. An
example of the encryption on a tree is described in Fig. 3.

Informally, we say that the encryption algorithm in our scheme encrypts
nodes only (in order to protect data privacy), but does not change the tree
structure (so faster-than-linear search can still be functional). The encryption
on nodes will be carried by multiple instances (i.e., one instance for each node)
of predicate encryption (i.e. SSW [22] presented in Sect. 3).

Correctness. We say that the above tree-based symmetric-key MDRSE is correct
if for all λ ∈ N, all SK output by GenKey(1λ,Δ), all Di ∈ LΔ, all Γ output
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by BuildTree(D), all Γ ∗ output by Enc(SK, Γ ), all Q ⊆ LΔ, all TK output by
GenToken(SK, Q), for any i ∈ [1, n]

– If Di ∈ Q, then Search(Γ ∗, TK) = I, where Ii ∈ I;
– If Di /∈ Q, then Pr[Search(Γ ∗, TK) = I, where Ii /∈ I] ≥ 1 − negl(λ);

where negl(λ) denotes a negligible function in λ.
Informally, the correctness of the searchable encryption described above means

that it will definitely return the identifier of a data record if this data record
indeed satisfies a given query; on the other hand, it will return the identifier with
a negligible probability if this data record actually fails to match a given query.

5 Security Definitions

In this section, we first capture all the possible privacy leakage with a leakage
function, and then we formally define the security of a tree-based symmetric-key
MDRSE based on this leakage function.

Leakage Function. A leakage function includes all the privacy leakage in
a searchable encryption. The leakage function in a tree-based symmetric-key
MDRSE introduced by a set of data records D, its tree structure Γ and a query
Q can be described as L(D, Γ,Q), which includes

– Size Pattern : the cloud server learns the number of data records n in the
dataset, the size of each dimension |Ti|, and the number of queries submitted
by the data owner.

– Access Pattern : the cloud server reveals the identifiers of data records that
are returned for each submitted query.

– Search Pattern : the cloud server learns if the same data record is retrieved
by two different queries.

– Path Pattern : the cloud server learns how exactly the search algorithm tra-
verses from the root node to the matched leaf nodes for each given query, i.e.,
the identifiers of all the nodes in the paths traversed by the search of each
given query.

Note that most of the searchable encryption schemes do not protect size pattern,
access pattern or search pattern. Path pattern is recently introduced in [20,28]
and defined specifically for tree-based solutions, because the original definition
of access pattern is not sufficient to capture all the privacy leakage in some tree
structures. Essentially, it is a special type of access pattern in trees [20]. The
leakage of path pattern in a tree-based MDRSE is actually not hard to explain.
Since the encryption algorithm does not modify the structure of a tree (see Fig. 3
again), which makes the cloud server easily reveals path pattern.

Theoretically speaking, the use of Oblivious RAMs [11,25] can preserve access
pattern and search pattern from the cloud server. Unfortunately, compared to
searchable encryption, the efficiency of Oblivious RAMs is still a major concern.
How to particularly preserve the privacy defined in the above leakage function
is out of scope of this paper.
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Query Privacy. The main security objective of a tree-based symmetric-key
MDRSE in this paper is to achieve query privacy, data privacy and single-
dimensional privacy. Each of these three privacy can be rigorously defined in
a selective manner [22]. We start with query privacy first. Informally, selective
query privacy means by submitting two multi-dimensional range queries Q0 and
Q1, a computationally bounded adversary is able to adaptively issue a number of
ciphertext queries and token queries restricted by Q0, Q1 and leakage function
L. However, it is not able to distinguish this two range queries.

Definition 2 (Selective Query Privacy). Let Π = (GenKey, BuildTree, Enc,
GenToken, Search) be a tree-based symmetric-key MDRSE scheme over lattice
LΔ, λ ∈ N be the security parameter:

– Init: The adversary A submits two range queries Q0 and Q1 to the challenger,
where Q0, Q1 ⊆ LΔ.

– Setup: The challenger runs GenKey(1λ,Δ) to generate a secret key SK, and
it keeps SK private.

– Phase 1: The adversary A adaptively requests a number of queries, where
each query is one of the two following types:
– Ciphertext Query: On the jth ciphertext query, the adversary A outputs

a tree Γj = BuildTree(Dj), where Dj is a set of data records described
as Dj = (Dj,1, ...,Dj,n). The challenger responses with an encrypted tree
Γ ∗

j = Enc(SK, Γj), where Dj is subjected to the two following restrictions:
1. L(Dj , Γj , Q0) = L(Dj , Γj , Q1);
2. And for 1 ≤ i ≤ n, either (Dj,i ∈ Q0) ∧ (Dj,i ∈ Q1), or (Dj,i /∈

Q0) ∧ (Dj,i /∈ Q1).
– Token Query: On the jth token query, the adversary A outputs a range

query Q′
j, where Q′

j ⊆ LΔ. The challenger responds with a search token
TK′

j = GenToken(SK, Q′
j).

– Challenge: With Q0, Q1 selected in Init, the challenger flips a coin b ∈ {0, 1}
and returns TKb = GenToken(SK, Qb) to the adversary.

– Phase 2: The adversary A continues to adaptively request a number of queries,
which are still subjected to the same restrictions in Phase 1.

– Guess: The adversary takes a guess b′ of b.

The advantage of adversary A in the above selective query security game is
defined as AdvSQP

Π,A (1λ,Δ). We say that scheme Π is selectively query secure
if for all polynomial time adversaries have at most negligible advantage

AdvSQP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2| ≤ negl(λ).

where negl(λ) denotes a negligible function in λ.

Since our scheme is symmetric-key-based, the challenger in the security game
is able to response to the adversary with two types of queries, including cipher-
text queries and token queries. While the recent work [28] only needs to consider
token queries in its security game, because it is public-key-based, where the
adversary possesses the encryption key and is allowed to obtain any ciphertexts
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by itself (i.e., the selection of data records for encryption has no restrictions
compared to the ciphertext queries in Phase 1 of the above security game). In
fact, as indicated in [22], this kind of ability that the adversary is capable of in
the security game makes public-key solutions eventually reveal query privacy.

Data Privacy. Similarly like query privacy, data privacy can also be defined
in a selective security game between the adversary and challenger. Informally,
selective data privacy indicates by submitting two datasets D0 and D1, a compu-
tationally bounded adversary is able to adaptively issue a number of ciphertext
queries and token queries restricted by D0, D1 and leakage function L. However,
it is not able to distinguish this two datasets.

Definition 3 (Selective Data Privacy). Let Π = (GenKey, BuildTree, Enc,
GenToken, Search) be a tree-based symmetric-key MDRSE scheme over lattice
LΔ, λ ∈ N be the security parameter:

– Init: The adversary A submits two data record sets D0 and D1 with the same
length and isomorphic tree structure Γ0 � Γ1, where D0 = {D0,1, ....,D0,n},
D1 = {D1,1, ....,D1,n}, D0,i, D1,i ∈ LΔ, for 1 ≤ i ≤ n, Γ0 = BuildTree(D0)
and Γ1 = BuildTree(D1).

– Setup: The challenger runs GenKey(1λ,Δ) to generate a secret key SK, and
it keeps SK private.

– Phase 1: The adversary A adaptively requests a number of queries, where
each query is one of the two following types:
– Ciphertext Query: On the jth ciphertext query, the adversary A outputs

a tree Γ ′
j = BuildTree(D′

j), where D′
j is a set of data records described

as D′
j = (D′

j,1, ...,D
′
j,n). The challenger responses with an encrypted tree

Γ ′
j
∗ = Enc(SK, Γ ′

j).
– Token Query: On the jth token query, the adversary A outputs a range

query Qj, where Qj ⊆ LΔ. The challenger responds with a search token
TKj = GenToken(SK, Qj), where Qj is subjected to the two following
restrictions:
1. L(D0, Γ0, Qj) = L(D1, Γ1, Qj);
2. And for 1 ≤ i ≤ n, either (D0,i ∈ Qj) ∧ (D1,i ∈ Qj), or (D0,i /∈

Qj) ∧ (D1,i /∈ Qj).
– Challenge: With D0, D1 selected in Init, the challenger flips a coin b ∈

{0, 1} and returns Γ ∗
b = Enc(SK, Γb) to the adversary.

– Phase 2: The adversary A continues to adaptively request a number of queries,
which are still subjected to the same restrictions in Phase 1.

– Guess: The adversary takes a guess b′ of b.

The advantage of adversary A in the above selective data privacy game is defined
as AdvSDP

Π,A (1λ,Δ). We say that scheme Π is selectively data secure if for all
polynomial time adversaries have at most negligible advantage

AdvSDP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2| ≤ negl(λ).

where negl(λ) denotes a negligible function in λ.
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Single-Dimensional Privacy. Now let us define the last piece of privacy (i.e.,
single-dimensional privacy) in our design. Informally, single-dimensional pri-
vacy means given a search token of multi-dimensional range query Q, a com-
putationally bounded adversary is not able to independently obtain the exact
search results for any single-dimensional query Qk, for 1 ≤ k ≤ n, where Qk

denotes the single-dimensional query of Q in the k-th dimension. For instance,
if Q = ([30, 40] ∧ [400, 700]), then Q1 = [30, 40] and Q2 = [400, 700].

In fact, we can actually capture an adversary’s capability for attacking single-
dimensional privacy consistently in the preceding selective security games we
presented. Since we have both selective query security game and selective data
security game, we need to particularly capture single-dimensional privacy for
each of them. For the selective single-dimensional query security game, it is
the same as the selective query security game in Definition 2 except that it has
an additional third restriction for responding ciphertext queries, which can be
rigorously defined as follows:

– Ciphertext Query: the description is the same as in Definition 2 with:
1. L(Dj , Γj , Q0) = L(Dj , Γj , Q1);
2. And for 1 ≤ i ≤ n, either (Dj,i ∈ Q0) ∧ (Dj,i ∈ Q1), or (Dj,i /∈ Q0) ∧

(Dj,i /∈ Q1);
3. And if (Dj,i /∈ Q0)∧(Dj,i /∈ Q1), for some i ∈ [1, n], there exists some k ∈

[1, w], such that (Dj,i ∈ Qk
0) ∧ (Dj,i /∈ Qk

1) or (Dj,i /∈ Qk
0) ∧ (Dj,i ∈ Qk

1).

The advantage of adversary A is AdvSSDQP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2|.

Correspondingly, we can also define the selective single-dimensional data
security game, which has an additional third restriction for responding token
queries compared to Definition 3:

– Token Query: the description is the same as in Definition 3 with :
1. L(D0, Γ0, Qj) = L(D1, Γ1, Qj);
2. And for 1 ≤ i ≤ n, either (D0,i ∈ Qj) ∧ (D1,i ∈ Qj), or (D0,i /∈ Qj) ∧

(D1,i /∈ Qj);
3. And if (D0,i /∈ Qj)∧(D1,i /∈ Qj), for some i ∈ [1, n], there exists some k ∈

[1, w], such that (D0,i ∈ Qk
j ) ∧ (D1,i /∈ Qk

j ) or (D0,i /∈ Qk
j ) ∧ (D1,i ∈ Qk

j ).

The advantage of adversary A is AdvSSDDP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2|.

We say that scheme Π is selectively single-dimensional secure if the advan-
tages of any polynomial time adversary in both of the two preceding selective
single-dimensional security games are at most negligible:

AdvSSDQP
Π,A (1λ,Δ) ≤ negl(λ), AdvSSDDP

Π,A (1λ,Δ) ≤ negl(λ).

If we compare the additional third restriction with the second one in each cor-
responding game, we can observe that it is actually a redundant one considering
the existence of the second restriction. It indicates that an adversary will not
obtain additional advantages compared to previous security games in Definitions
2 and 3. Therefore, we have
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Lemma 1. If scheme Π is selectively query secure in Definition 2 and selectively
data secure in Definition 3, it is also selectively single-dimensional secure.

Note that some scheme [18] could also achieve selectively query and data
secure, but with stronger restrictions (e.g., for 1 ≤ i ≤ n and 1 ≤ k ≤ w,
either (D0,i ∈ Qk

j ) ∧ (D1,i ∈ Qk
j ), or (D0,i /∈ Qk

j ) ∧ (D1,i /∈ Qk
j )), which inher-

ently prevent it from achieving single-dimensional privacy [28]. That is why we
emphasized with “in Definition 2” and “in Definition 3” in the above lemma.

6 Tree-Based Symmetric-Key MDRSE

Overview. The essential idea of our design is to utilize predicate encryption
(more specifically, SSW [22]) to verify geometric relations, including whether a
point is inside a hyper-rectangle and whether two hyper-rectangles intersect. As
a result, a data owner can encrypt the nodes (i.e., points or hyper-rectangles)
in an R-tree, then the cloud server can still operate the search algorithm of an
R-tree correctly and privately in the ciphertext domain.

6.1 Geometric Relations on Encrypted Data

A ppoint Is Inside a Hyper-rectangle. Previous work [18] has proved that
by using SSW, a primitive named Range Predicate Encryption can be built to
verify whether a value d is inside a single dimension range R, where the output
will be 1 iff d ∈ R. Specifically,

– RPE.Setup(1λ, T ): Given security parameter λ and T , output secret key SK by running
SSW.Setup(1λ, T ).

– RPE.Enc(SK, d): Given SK and a value d, where d ∈ [1, T ], output ciphertext C by
running SSW.Enc(SK,u), where u = (u1, ..., uT ) and

ui = 1, if i = d; ui = 0, otherwise.

– RPE.GenToken(SK, R): Given SK and a range R = [xl, xr], where R ⊆ [1, T ], output
token TK by running SSW.GenToken(SK, v), where v = (v1, ..., vT ) and

vi = 0, if i ∈ [xl, xr]; vi = 1, otherwise.

– RPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff u ◦ v = 0 and output 0 otherwise.

Based on this range predicate encryption, we can extend it into the multi-
dimension in this paper and construct a Point Predicate Encryption to verify
whether a point D is inside a hyper-rectangle HR, where the output will be 1
iff D ∈ HR. The correctness of this extension from the single dimension into
the multi-dimension follows a simple geometric fact that if a point is inside a
hyper-rectangle, then the value of this point in every dimension will be inside
the range of the corresponding single dimension, and vise versa:

D ∈ HR ⇔ {dk ∈ Rk}, for every k ∈ [1, w],
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where D = (d1, ..., dw) and HR = (R1, ...,Rw). The details of this point predi-
cate encryption2 are presented as follows with an example in Fig. 4:

– PPE.Setup(1λ, Δ): Given security parameter λ and Δ = {T1, ..., Tw}, output secret
key SK by running SSW.Setup(1λ, wT ).

– PPE.Enc(SK, D): Given SK and a point D = (d1, ..., dw), where D ∈ LΔ, output
ciphertext C by running SSW.Enc(SK,u), where u = (u1, ..., uwT ) and for 1 ≤ k ≤ w,{

ui = 1, if i = dk + (k − 1)T ;
ui = 0, otherwise.

– PPE.GenToken(SK,HR): Given SK and a hyper-rectangle HR = (R1, ...,Rw), where
HR ⊆ LΔ and Rk = [xk,l, xk,r], for 1 ≤ k ≤ w, output token TK by running
SSW.GenToken(SK, v), where v = (v1, ..., vwT ) and for 1 ≤ k ≤ w,{

vi = 0, if i ∈ [xk,l + (k − 1)T, xk,r + (k − 1)T ];
vi = 1, otherwise.

– PPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff u ◦ v = 0 and output 0 otherwise.

D1 = (2, 5)

D2 = (4, 3)

Q = [3, 5] ∧ [2, 4]

uuu1 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

uuu2 = (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0)

vvv = (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1)

wT = 2 × 6 = 12

Fig. 4. An example of point predicate encryption with w = 2 and T = 6, where D1 /∈ Q
due to vvv ◦ uuu1 
= 0; D2 ∈ Q due to vvv ◦ uuu2 = 0.

Two Hyper-rectangles Intersect. We can also verify whether two hyper-
rectangles intersect on encrypted data by using SSW. Similar as the preceding
geometric relation, we can first start with the simplest case (i.e., the case in the
single dimension) by deciding whether two ranges intersect. Specifically, we can
build a Range Intersection Predicate Encryption, where the output is 1 iff two
ranges intersect (i.e., R ∩ R′ = ∅). The correctness in testing the intersection
of two ranges is based on the following equivalent geometric relation:

R ∩ R′ = ∅ ⇔
{

xl ∈ [1, x′
r];

xr ∈ [x′
l, T ] ⇔

{
xl ∈ [1, x′

r];
(xr + T ) ∈ [x′

l + T, 2T ]

where R = [xl, xr] and R′ = [x′
l, x

′
r]. The description in the third column above

is trivial from the one in the middle column, but it will help readers follow
the details of the following algorithms more easily. The details of the range
intersection predicate encryption are as below:
2 For the ease of description, we assume each dimension has the same size (i.e., Tk = T ,

for every k ∈ [1, w]) in the following algorithms..
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– RIPE.Setup(1λ, T ): Given security parameter λ and T , output secret key SK by run-
ning SSW.Setup(1λ, 2T ).

– RIPE.Enc(SK,R): Given SK and a range R = [xl, xr], where R ⊆ [1, T ], output
ciphertext C by running SSW.Enc(SK,u), where u = (u1, ..., u2T ) and{

ui = 1, if i = xl or i = xr + T ;
ui = 0, otherwise.

– RIPE.GenToken(SK,R′): Given SK and a range R′ = [x′
l, x

′
r], where R′ ⊆ [1, T ],

output token TK by running SSW.GenToken(SK, v), where v = (v1, ..., v2T ) and{
vi = 0, if i ∈ [1, x′

r] or i ∈ [x′
l + T, 2T ]

vi = 1, otherwise.

– RIPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff uuu ◦ vvv = 0 and output 0 otherwise.

With this range intersection predicate encryption, we can further extend it
into the multi-dimension case to design a Hyper-rectangle Intersection Predicate
Encryption, which can test whether two hyper-rectangles intersect on encrypted
data. The correctness of this extension also follows a simple geometric fact that
if a hyper-rectangle intersects with another hyper-rectangle, then the range of the
first hyper-rectangle in every dimension intersects the corresponding range of
the second hyper-rectangle, and visa versa:

HR ∩ HR′ = ∅ ⇔ {Rk ∩ R′
k = ∅} ⇔

{
xk,l ∈ [1, x′

k,r],
xk,r ∈ [x′

k,l, T ]

for every k ∈ [1, n], where HR = (R1, ...,Rn), HR′ = (R′
1, ...,R

′
n), Rk =

[xk,l, xk,r] and R′
k = [x′

k,l, x
′
k,r]. The details of this hyper-rectangle intersection

predicate encryption are presented as below:

– HIPE.Setup(1λ, Δ): Given security parameter λ and Δ = (T1, ..., Tw), output secret
key SK by running SSW.Setup(1λ, 2wT ).

– HIPE.Enc(SK,HR): Given SK and a hyper-rectangle HR = (R1, ...,Rw), where
HR ⊆ LΔ and Rk = [xk,l, xk,r], for 1 ≤ k ≤ w, output ciphertext C by running
SSW.Enc(SK,u), where u = (u1, ..., u2wT ) and for 1 ≤ k ≤ w,{

ui = 1, if i = xk,l + (2k − 2)T or i = xk,r + (2k − 1)T ;
ui = 0, otherwise.

– HIPE.GenToken(SK,HR′): Given SK and a hyper-rectangle HR′ = (R′
1, ...,R

′
w),

where HR′ ⊆ LΔ and R′
k = [x′

k,l, x
′
k,r], for 1 ≤ k ≤ w, output token TK by running

SSW.GenToken(SK, v), where v = (v1, ..., v2wT ) and for 1 ≤ k ≤ w,⎧⎨
⎩

vi = 0, if i ∈ [1 + (2k − 2)T, x′
k,r + (2k − 2)T ]

or i ∈ [x′
l + (2k − 1)T, 2kT ];

vi = 1, otherwise.

– HIPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff u ◦ v = 0 and output 0 otherwise.

Since these predicate encryptions presented above are the extensions of SSW,
the security of them can be easily proved based on the security of SSW.
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6.2 Elm: Full Scheme

With R-trees and the preceding predicate encryptions (extended from SSW), we
build Elm, a tree-based symmetric-key MDRSE. Basically, our scheme follows
the definition we described in Sect. 4. A data owner will first generate a secret
key in GenKey and build an R-tree based on its data records in BuildTree. Then,
the data owner encrypts all the nodes in the R-tree in Enc and outsources the
encrypted tree to the cloud. Specifically, each leaf node is encrypted with point
predicate encryption and each non-leaf node is encrypted with hyper-rectangle
intersection predicate encryption.

Given a multi-dimensional range query, the data owner is able to compute
a search token in GenToken. Each search token contains two sub-tokens: one
(i.e., TKleaf ) is for testing whether a leaf node is inside the multi-dimensional
range query, and another one (i.e., TKnleaf ) is for checking whether a non-leaf
node intersects with the multi-dimensional range query. Finally, the cloud server
returns the identifiers of all the matched results to the data owner by running
Search. The details of Elm are presented as follows.

• GenKey(1λ, Δ): Given a security parameter λ and Δ = (T1, ..., Tw), the data
owner computes a secret key SKSKSK = {SKleaf , SKnleaf}, where

SKleaf ← PPE.Setup(1λ, Δ), SKnleaf ← HIPE.Setup(1λ, Δ).

• BuildTree(D): Given a set of data records D = (D1, ..., Dn), where Di =
(di,1, ..., di,w), for 1 ≤ i ≤ w, the data owners builds an R-tree Γ =
{D1, ..., Dn, N1, ..., Nm,P}, where Di is a leaf node, for 1 ≤ i ≤ n, Nj is a
non-leaf node, for 1 ≤ j ≤ m, and P is a set of pointers covering all the parent-
child relations in tree Γ .

• Enc(SKSKSK, Γ ): Given SKSKSK and Γ , the data owner encrypts every leaf node and every
non-leaf node respectively:

Ci ← PPE.Enc(SKleaf , Di), for 1 ≤ i ≤ n;
Ej ← HIPE.Enc(SKnleaf , Nj), for 1 ≤ j ≤ m.

Then, the data owner generates and outsources the encrypted R-tree Γ ∗ =
{C1, ..., Cn, E1, ..., Em,P}, to the cloud server, where Ci is an encrypted leaf
node, for 1 ≤ i ≤ n, Ej is an encrypted non-leaf node, for 1 ≤ j ≤ m.

• GenToken(SKSKSK, Q): Given SKSKSK and a multi-dimensional range query Q, the data
owner computes a token TKTKTK = {TKleaf , TKnleaf}, where

TKleaf ← PPE.GenToken(SKleaf , Q), TKnleaf ← HIPE.GenToken(SKnleaf , Q).

• Search(Γ ∗,TKTKTK): Given Γ ∗ and TKTKTK = (TKleaf , TKnleaf ), the cloud server searches
as follows by starting from the root node of tree Γ ∗:

– If it is non-leaf node Ej , Flagnleaf = HIPE.Query(TKnleaf , Ej). If Flagnleaf = 1,
continues to search the child nodes of this non-leaf node based on P; otherwise,
stops searching the child nodes.

– If it is leaf node Ci, Flagleaf = PPE.Query(TKleaf , Ci). If Flagleaf = 1, returns
the identifier Ii of this leaf node; otherwise, does not return the identifier.

Finally, the cloud server returns a set I of identifiers, where Ii ∈ I, if Di ∈ Q.
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Correctness. Since the search process in an encrypted R-tree is actually several
search paths from the root node to several matched leaf nodes, the correctness of
it depends on the correctness at each node in these paths. Informally, because the
cloud server is able to correctly test the geometric relation at each node based
on the correctness of SSW, which is the building block, the entire search process
in Elm is correct. Due to the space limitation, detailed explanations about the
correctness of Elm are presented in our technical report [29].

Efficiency. Since the search algorithm in Elm exactly follows the original search
algorithm of an R-tree in the plaintext domain, the complexity of the search
algorithm in Elm is faster-than-linear regarding to the number of data records n.
Based on the complexity of SSW in [22], our design introduces O(wT ) overhead
in secret key size, O(wT ) overhead in encryption time, ciphertext size and search
time at each node, and O(wT ) overhead in token size and token generation time
for each given query, where w is the number of dimensions and T is the size of
each dimension.

Security Analysis. We now analyze the security of Elm, including query pri-
vacy, data privacy and single-dimensional privacy.

Theorem 1(Selective Query Privacy). Elm is selectively query secure, if SSW
is selectively query secure.

Proof. From the high-level, the proof of this theorem can be analyzed with two
aspects. First, because Elm is essentially a scheme with multiple instances of
SSW (i.e., one instance per node in the tree) and SSW is a probabilistic encryp-
tion with selective query security, therefore, Elm is selectively query secure
(according to the claim in Chap. 3 in [16] that any probabilistic symmetric-key
encryption scheme that is secure under chosen-plaintext attacks automatically
implies the multiple encryption of it is secure under chosen-plaintext attacks).

Second, the inherent leakage of path pattern in R-trees, which we used in Elm,
do not reveal additional information based on what we defined in Definition 2
(according to recent observation [28], compared to R-trees, the inherent leakage
of path pattern in other similar trees, such as kd-trees and range trees, inevitably
reveal additional information, particularly in single dimensions, which will fail to
satisfy the restrictions in Definition 2). Due to the space limitation, the detailed
proof of this selective query privacy of Elm following Definition 2 can be found
in [29].

Theorem 2(Selective Data Privacy). Elm is selectively data secure, if SSW is
selectively data secure.

Proof. The selective data privacy of Elm can be proved in a similar way as in
Theorem 1. See details in our technical report [29].

Theorem 3(Single-Dimensional Privacy). Elm is selectively single-dimensional
secure, if Elm is selectively query secure in Theorem 1 and selectively data secure
in Theorem 3.

Proof. Based on Lemma 1 in Sect. 5.
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6.3 Dynamic Data

As we mentioned at the beginning of this paper, another benefit from enhancing
query privacy compared to [28] is that, our scheme is able to support dynamic
data in an encrypted R-tree without revealing updated data records. More specif-
ically, in order to update a data record (either add a new one or delete an existing
one) in an R-tree, the data owner needs to first submit an update query (based
on the content of this updated data record) to locate which part of the tree
should be updated accordingly. Without protecting query privacy in [28], the
cloud server will directly learn the updated data record through this update
query, which is clearly not secure for dynamic data. While with our scheme,
we can still securely decide which part of the tree should be updated without
revealing the updated data record. Basically, we can achieve this objective by still
leveraging an extension of SSW similarly as the preceding use of point predicate
encryption in the design of Elm. Due to space limitations, how to particularly
support dynamic operations, including insert, delete and modify, over encrypted
data are presented in our technical report [29].

Unfortunately, so far, secure update in Elm can only work with some simple
cases, where assuming one update operation only introduces one node update
in the tree. The reason is that the cases with updates at several nodes in an R-
tree could be more complicated and challenging on encrypted data (more details
about update algorithms of R-trees in the plaintext domain can be found in [19]).
For example, in some cases, one update may need to “split” one bounding box (a
non-leaf node) into two new ones while the splitting process requires evaluation
and comparison of distances among data/nodes. Considering our scheme cannot
compute or compare distance on encrypted data, Elm cannot directly support
this splitting process for complicated update. Of course, this type of computation
and comparison of distances on encrypted data can be evaluated with additional
use of other cryptographic approaches, such as Asymmetric Scalar-product Pre-
serving Encryption used in k-nearest neighbor search [32] or Secure Two-Party
Computation with two non-colluding servers [9]. However, the naive combina-
tion of these methods with Elm will make the entire scheme more complicated
and cumbersome. More importantly, computation and comparison of distances,
especially in a tree, will reveal much more additional privacy to the public cloud
compared to the current privacy leakage defined in the leakage function, which
needs to be rigorously defined and studied in the future.

7 Performance

In this section, we evaluate the performance of Elm, especially the search per-
formance. We use Pairing-Based Cryptography (PBC) Library to simulate the
cost on cryptographic operations in the following experiments. We test them in
Ubuntu 12.04 with Intel Core i5 3.30 GHz Processor and 2 GB Memory.

We first evaluate the search time at a leaf node or a non-leaf node in Figs. 5
and 6. As we discussed before, the complexity at each node is O(wT ). Clearly,
the search time over encrypted data at a leaf node or a non-leaf node is linearly
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increasing with the number of dimensions w or the size of each dimension T .
According to the details of SSW [22], the dominating cryptographic operations
at each node in the evaluation are pairing operations. The average time of eval-
uating one pairing operation (tested on super-singular curve y2 = x3 + x with
preprocessing in PBC) in our experiments is around 2.28 milliseconds.

Next, we demonstrate the search efficiency of our scheme is indeed faster-
than-linear regarding to the number of data records n. To do this, we have a basic
scheme, which only encrypts every data record with point predicate encryption
in Sect. 6 (imaging an incomplete version of Elm without any non-leaf nodes),
and compare its search efficiency with Elm. Since there is no non-leaf nodes in
the basic scheme to index data, the search algorithm of this basic scheme has
to check every encrypted data record one-by-one (i.e., linear complexity). To
simulate the performance of Elm, we run the search code of an R-tree in the
plaintext domain with multiple random queries, but we sleep the search process
at each node in the tree for a certain time, which is equivalent to the computation
time for evaluating the corresponding geometric relation on encrypted data.

The comparison of this basic scheme and Elm is tested based on a part of a
real-world dataset (U.S. census 1990 [2]) and is presented in Fig. 7 and Table 2.
We can see from the table and Fig. 7 that Elm is much faster than the basic one
for handing multi-dimensional range queries. Specifically, when n = 100, 000,
the basic solution requires 46, 056 s while Elm only needs 4, 236 s in average to
operate search on encrypted data.
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Fig. 5. Impact of w on search time (millisecond) at each node with T = 50.
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Fig. 6. Impact of T on search time (millisecond) at each node with w = 2.

We can also see that, in order to protect users’ privacy, the performance of
Elm on encrypted data is around 2× 105 times slower than the one in plaintext.
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Fig. 7. Impact of n on search time (kilosecond) with w = 2 and T = 50.

Since Elm has the same complexity (regarding to the number of data records n)
as an R-tree in the plaintext domain, this performance gap is mainly introduced
by the O(wT ) pairing operations on each node. One of our future work is to
study how to minimize this gap via lightweight primitives without relying on
pairing operations while still preserving a same or similar level of privacy.

Table 2. Average Search Time when w = 2 and T = 50.

n Basic (second) Elm (second) R-tree in Plaintext (millisecond)

1,000 461 71 0.37

10,000 4,606 515 2.34

100,000 46,056 4,236 18.42

8 Conclusion and Future Work

We design a tree-based symmetric-key MDRSE in this paper to achieve faster-
than-linear search, data privacy, query privacy and single-dimensional privacy
for multi-dimensional range queries on encrypted data. We demonstrate the secu-
rity and efficiency of the proposed scheme through rigorous analyses and experi-
ments. For our future work, we will focus on achieving secure fully dynamic data
operations in a tree-based multi-dimensional searchable encryption.
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Abstract. A hardware implementation of novel hash generator, namely LDHG,
is proposed in this paper which is based on a spatiotemporal chaos algorithm.
The proposed hash generator includes a spatiotemporal chaos algorithm
computing module, message input/output port, data cache and hash code gen-
eration module. The hardware design process, security and performance eval-
uation are presented. Using the message authorization in smart grid as an
application example, experimental results show that the proposed hash generator
is irreversible, sensitive to the message and chaos parameters. It can efficiently
defend the attack of invasion and forgery and the hardware area overhead is
relatively low.

Keywords: Spatiotemporal chaos � Hash function � Hardware implementation

1 Introduction

Information security becomes increasing challenge due to the large scale attacks.
Cryptographic hash function has been used in various information security field, e.g.
digital signatures, message authentications and data corruption detections [1], which
takes an arbitrary block of message and outputs a fixed-size value. The typical hash
function, namely MD4 algorithm, was proposed in [2]; after that, various message-
digest algorithms have been proposed, e.g. MD5 [3], SHA-0, SHA-1, PIPEMD-160,
Whirlpool [4] and Whirlwind [5]. However, due to the fact that they are constructed by
arithmetical operations or multi-round iterations of ciphers, their security have been
compromised under various attacks (e.g. the proposed collisions attacks in the
approaches of [6, 7]). Therefore, researchers have looked to develop more secure and
efficient hash functions. Because chaos has cryptography characteristics (i.e. random-
like and ergodicity) and is extremely sensitive to initial conditions and system
parameters, chaos theory has been employed to construct the hash functions.

Recently, various hash functions using chaotic maps, chaotic neural networks and
parallel construction methods have been proposed. For example, a generalized
Henon-based hash function was constructed in [8]; one-way hash functions based on
hyper-chaotic cellular neural network and unified chaotic system were proposed in [9]
and [10] respectively. Although these approaches improve the system security, how-
ever, the algorithms are not efficient due to the serial computing [11]. In order to
overcome this weakness, a parallel hash function construction based on chaotic neural
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network was proposed in [11]. Another approach of [12] analyzed the security per-
formance of [11] and found that it is compromised by weak keys and forgery attacks;
therefore proposed a method to improve its security. Based on the outcomes of [11,
12], some novel parallel hash functions were also proposed, e.g. [13] and [14] are based
on spatiotemporal chaotic system and chaotic neural network.

The traditional chaotic systems are designed based on analogue circuits [15].
However, analogue circuits have the weaknesses of easily system parameters mismatch.
Therefore the approaches of [16, 17] and [18] use digital systems to design the chaotic
systems. This paper will also employ the digital system design method for the chaotic
system implementation. In our previous work of [19], a parallel hash construction
method, namely LD scheme, was proposed which is based on spatiotemporal chaos. In
this paper, the LD scheme will be employed to implement a hash generator (i.e. LDHG)
for message authorization. The LD scheme and message authorization process are
outlined in Sect. 2. Section 3 presents the hardware implementation of the proposed hash
generator and experimental results of a case study using in the smart grid will be given in
Sect. 4. Section 5 provides the conclusion and highlights the future work.

2 LD Scheme

2.1 Spatiotemporal Chaos System

LD scheme [19] uses spatiotemporal chaos as the compress function for hash codes
generation. The spatiotemporal chaos function is given by (1), where the parameter
e 2 ð0; 1Þ and l 2 ð3:5699456; 4Þ. LD scheme is a system with discrete-time and
discrete-space but its state value is continous which is in the range of (0,1). Its output is
distributed in all the space; therefore it is suitable for cryptography.

xnþ1 ið Þ ¼ 1� eð Þf xn ið Þð Þ þ 0:5e½f xn i� 1ð Þð Þ þ f ðxnðiþ 1ÞÞ�
f xn ið Þð Þ ¼ lxnðiÞð1� xn ið ÞÞ

(
ð1Þ

2.2 One-Way Hash Function and Contrunction Method

The basic purpose of one-way hash function is to compress an input message string
with an arbitrary length into a hash value with a fixed length, and its mathematical
expression is H ¼ H Mð Þ ¼ P

i
hðMiÞ, where h denotes a compression function, Mi is

the corresponding block messages. Σ usually denotes a nonlinear combination. The
message can be divided to several blocks where the message length in each block is
determined by compression function h. Then the separated message blocks can be
processed in parallel to get their respective output values. Finally all the values are
mixed to obtain a final hash value. As the spatiotemporal chaotic system has a stronger
2D spatiotemporal complexity and mixture, therefore it is suitable for constructing a
hash function.
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3 Hardware Implementation of LDHG

Based on the construction method of hash function, the hardware implementation of
LDHG is presented in this section. The implementation procedure is presented in detail
and a case study in the smart grid is also given.

3.1 Hash Coding System Structure

The LDHG system structure is presented in Fig. 1. It receives the message from a
message input port and outputs the hash code via hash code output port. The message
input is the communication interface which is connected to other processors (such as
mirco-processors). The LDHG system includes the following modules - data prepro-
cessing, packet check, FIFO, hash code output and spatiotemporal chaos computing
(including two sub-modules, data computing core and single module computing
module). The functions of the first three modules are presented as follows: (a) the data
preprocessing module converts the received packets (byte stream of 8-bit width) to a
uniform format. Because the communication protocol varies, the packets of different
protocols are converted to the standard format for the following modules processing;
(b) the packet check module checks the received packet and outputs the packet length.
The packet length varies for different packet; however, the coupled map lattice length is
constant. Therefore, if the packets length is shorter than the length of lattice then the
packet will be filled to be the full length. The output packets are forwarded to the next
module for processing and (c) the FIFO module saves the received packets tempo-
rarily. The output of FIFO is connected to the spatiotemporal chaos computing module
and triggers it to start the chaos function computing to generate the chaos sequences.
The data preprocessing, packet check and FIFO modules complete the packets format,
check and temporary save, and then send the standard packets sequentially to the next
module – spatiotemporal chaos computing module.

After received the packets, the spatiotemporal chaos computing module judges the
length of packets, distributes the packets to different message blocks and then send the
packets to the chaos system where every state value will be generated. After several
times of interactions, the state value will be obtained and processed in order to generate
the hash code. The hash codes of all the message blocks will be calclulated together to

Data
preprocessing

Packet check

Spatiotemporal Chaos computing 
module

Single module 
computing module

Data computing 
core

Hash code 
output

Message input

Hash code output

FIFO

LDHG structure

Fig. 1. Hash coding system structure
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generate the final hash code. The chaos computing of multiple blocks can be executed
in a parallel or serial manner. For the parallel computing procedure, after all the
received block packets are ready, they are sent to the computing modules simulta-
neously to generate the hash codes. The separated hash codes will be further calculated
to get the final hash code. However, for the serial computing procedure, the hash code
of each block is calculated sequentially and the final hash code is generated using the
previous results of separated blocks. The main advantage of parallel computing is the
high speed computing however its area overhead is a little high. The main advantage of
serial computing is that the area overhead is relative low, but its computing speed is
slow. The strategy selection can be made based on application field. However, no
matter using parallel or serial computing procedure, for the message hash code gen-
eration, the main function is the computing in a single block. Therefore, the single
block computing unit is the core module of the LDHG system.

The single block computing unit receives one block packets and generates the cor-
responding hash code. The input packet data (8-bit width integer) is scaled to the initial
value (float point) of chaos function. After calculation of n times iteration, the final
hash code (16 bytes) is generated, which is a combined value of the final chaos states.
Based on the spatiotemporal chaos equation in (1), a large storage space is required if
n and i is great. For example, if n = 1000, i = 64 and the data type is single float, the
required space is 1000*64*32 bits = 2.048*106 bits. It introduces a significant hard-
ware cost. However, it should be noted that the calculation of xnþ1ðiÞ is only related to
xnði� 1Þ, xnðiÞ and xnðiþ 1Þ. Therefore, the storage space can be minimized to 2 lines
only, i.e. 2*64*32 bits = 4096 bits, which decreases the storage space efficiently.
Therefore, the required storage space is 2*i*data_width, where i is coupled map lattice
and data_width is the width of corresponding data type.

The working flow of the single block computing unit is presented in Fig. 2. The
initial state of the unit is ‘S1. Idle’. If the data present is valid, the state will be changed
to ‘S2. Read the data to line #0’ where the initial parameters of chaos function are set.
Then the state changes to ‘S3. Calculate Line #1’ where the data in line #1 are
generated based on the value of line #0. After finished calculation, the state will be
changed to ‘S4. Move line #1 to #0’ where the data in line #1 will be moved to line #0
to be the initial value of next round calculation. If the calculation of total n round is

S1

S2

S3 S4

S5

reset C1 State No. and name:
  S1: Idle
  S2: Read the data to Line #0
  S3: Calculate Line #1 (LD)
  S4: Move Line #1 to #0
  S5: Generate Hash value

Conditions:
  C1: Data_present = 0
  C2: Data_present = 1
  C3: Finished = 0
  C4: Finished = 1
  C5: All the lines calculation are not finished
  C6: All the lines calculation are finished

C2

C4 C6

C3

C3
C5

C4

Fig. 2. The single block computing unit procedure
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completed, the state will be changed to ‘S5. Generate Hash value’; then the hash code
of this block packet is generated. During this process, the chaos calculation in the state
S4 is completed by core computing module.

The core computing module receives the data of xnði� 1Þ, xnðiÞ and xnðiþ 1Þ and
outputs the xnþ1ðiÞ, see (1). In order to use a simplified chaos function equation,
equation (1) can be simplified to xnþ1 ið Þ ¼ 3:591xn ið Þ � 3:591x2n ið Þþ 0:1995xn
i� 1ð Þ � 0:1995x2n i� 1ð Þ þ 0:1995xn iþ 1ð Þ � 0:1995x2nðiþ 1Þ, where e ¼ 0:1; l ¼
3:99. A parallel computing structure in Fig. 3 is used to process the input data of
xnði� 1Þ, xnðiÞ and xnðiþ 1Þ simultaneously. The calculation is divided to 5 stages. In
the stage 1, six multipliers calculate simultaneously which can complete the multi-
plication operation of six pairs of decimals. Stage 2 and 3 complete the multiplication
and subtraction operation of three pairs of decimals. The results are generated after
calculating in the addition operation of stage 4 and 5. However, it should be noted that
not all the operations run simultaneously. For example, the input of xnði� 1Þ has two
multipliers in the stage 1 and one multiplier in stage 2. However, the input of multiplier
in stage 2 is the outputs of stage 1. Therefore, the multiplier of stage 2 can use the
multiplier of stage 1 in a time division multiplexing manner. Similarly, the adders and
subtracters of stage 3, 4 and 5 (i.e. A3, A4, A5) can use the same physical adder. Note
that the physical adder and substracter can be switched by an input signal control.
Therefore, the required hardware resources is decreased from 9 multipliers, 3 adders
and 2 subtracters to 6 multipliers, 3 adders which reduces the hardware area overhead
efficiently.

4 Performance Analysis

In this section, the LDHG is evaluated in a case study of the smart grid application.
The LDHG can be used for the data encryption/decryption and the message authen-
tication between the server and data collector. The data collector is the communication
bridge between the server and the power meters. It collects the data from the power
meters and forwards the data to the server. The communication between the server and
data collector needs to be secure; therefore the message authentication is used to

0.1995
0.1995

3.591
3.591

0.1995
0.1995

)1(ixn

)(ixn

)1(ixn

)(1 ixn
M1

M2

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

A3

A4 A5

Fig. 3. The core computing unit structure
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guarantee the communication be legal. The main processor of the data collector is an
ARM microcontroller. The software works under the Linux 2.6.30 operation system.
The data collector can run for a long time reliably and communicates with other devices
promptly. The performance analysis of the LDHG is based on the smart grid appli-
cation and the data collector platform.

4.1 Security Performance Analysis

(1). Plaintext sensitivity analysis: If a hash function algorithm can generate the hash
values which changes more than 50 % when the plaintext has a small change, then
this algorithm is sensitive to the plaintext. In order to evaluate the plaintext
sensitivity of the proposed scheme, a data set is used for the testing - C1 is the
original message and C2-C6 is the modified message which only has small
change. The message of C1 is a real data using in the smart grid which is the
communication data of ‘server reads the power meter directly’.

C1 (original): 0x68, 0xa6, 0x00, 0xa6, 0x00, 0x68, 0x4b, 0x01, 0x44, 0x01,
0x00, 0x8a, 0x10, 0x68, 0x00, 0x00, 0x01, 0x01, 0x1f, 0x00, 0x20, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x10, 0x90, 0x00, 0x00, 0x16; C2: the 1st byte of C1 is
changed from 0x68 to 0x69; C3: the 5th byte of C1 is changed from 0x00 to 0x01;
C4: the 11th byte of C1 is changed from 0x00 to 0x01; C5: the 21st byte of C1 is
changed from 0x20 to 0x21; C6: the final byte of C1 is changed from 0x16 to
0x17. The message data of C1-C6 are sent to the LDHG. The corresponding hash
values are - C1: 617bac8899c6 9cd84d0a4245d3d96ade; C2: 7959ae52f700c-
ce1cda681d6302e2f4b; C3: 707a6a8ef7 3416cad064be8c4d7842b4; C4: f9c632
ae74dbba95165d679eb1b805aa; C5: e5ba60de cd55989ec22b7416a5d36817; C6:
cffeca6786258baa443b8ed0274fc9b2.

It can be seen that the hash code changes hugely when the plaintext has a little
change. For example, the hash code of C3 is absolutely different to the original C1
but the plaintext of C3 and C1 only have one bit difference. Therefore, the
plaintext sensitivity of the proposed hash coding system is very strong which
makes it suitable for the message authentication.

(2). Parameters sensitivity analysis: The hash coding system should be not only
sensitive to the plaintext, but also to the chaos function parameters. In order to
evaluate the proposed scheme, the experimental parameters are defined as follows.
K1:e ¼ 0:1 and l ¼ 3:99; K2:e ¼ 0:1000001 and l ¼ 3:99; K3:e ¼ 0:1 and
l ¼ 3:9900001. The same message data is sent to the LDHG. The corresponding
hash codes are presented as follows. K1: 617bac8899c69cd84d0a4245d3d96ade;
K2: 991b8ec75cc0a208c80ebe091bfd91f8; K3: c34822e298ad70251c1bbe04172
c6364. It can be seen that the hash code has a huge change when the parameter
has a slight change, e.g. e has a slight change of 10�7, i.e. from 0.1 to 0.1000001.
Therefore the proposed hash coding system is also sensitive to the key.

(3). Security analysis of diffusion and confusion: Diffusion and confusion are two
essential design metrics for hash functions. Hash functions requires the message

400 Y. Luo et al.



to diffuse its effects into the entire hash space, which means that the correction
between message and the corresponding hash code should be as small as possible.
The following statistics are used to evaluate the security of hash function. The

mean changed bit number, namely �B, is defined as �B ¼ 1
N

PN
i¼1

Bi, where N is the

number of statistics data set, Bi is the number of changed bits at time i. The mean
changed probability P is defines as P ¼ �B=HL� 100%, where HL is the length of
hash codes. The standard variance of the changed bit number ΔB, is defined as

DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðN � 1Þ�PN

i¼1
ðBi � �BÞ2

s
and the standard variance ΔP, is defined as

DP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðN � 1Þ�PN

i¼1
ðBi=HL� PÞ2

s
� 100%. The analysis of diffusion and

confusion are performed for the change of message and chaos function parame-
ters, respectively. The results are presented in Table 1. It can be seen that when the
message has one bit changed or the chaos function parameter has a little change, �B
is *60, P is 47 % and ΔB and ΔP are very small. The ideal values of �B and P are
64 and 50 %, respectively [20]. The results in this paper are closed the ideal values
which indicate that the proposed work has a good diffusion and confusion
capabilities.

4.2 Computing Speed and Area Overhead

In this section, two aspects of the proposed hash generator are analyzed – computing
speed and area overhead. The experimental environment is defined as follows. The
parameters of chaos function are set by e ¼ 0:1, l ¼ 3:99. The parameter i is equal to
64 according to the message length in the smart grid application. However, for
parameter n, if it is greater, then the required iteration calculation is larger, the system
nonlinear dynamic behavior is more complex and the generated hash codes are more
secure. The parameter n will be chosen from 20 to 200 for evaluation.

(1). The computing speed of different platforms: the experimental environment of
server is set as follows – Intel Core i7-2600 3.4 GHz processor, 4 G ram, 500 G
hard disk, Redhat Linux enterprise 4 operating system, Gcc 3.4.3 compiler. The
arm microcontroller is Atmel AT91SAM9G45 device, 400 MHz, 256 M ram,
Linux 2.6.30 operating system. The LDHG uses Altera Cyclone IV E
EP4CE115F29C7 device and the system clock frequency is 100 MHz. Figure 4

Table 1. Statistics of changed hash codes

Message Parameter Average
�B 60.4 59 59.7
P(%) 47.187 46.094 46.641
ΔB 7.469 4.243 5.586
ΔP(%) 5.835 3.314 4.575
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presents the required time of hash code generation on different platforms. It can be
seen that for all the platforms the required time increases if iteration time (i.e.
parameter n) increases. When n is between 20 and 200, the required time of server
is between 0.013 and 0.127 ms. This time period is short and server can meet the
time requirement of frequent message authorization. However, the required time
of LDHG is 0.034 * 6.124 ms and arm microcontroller is 5.267 * 53.198 ms.
According to the research outcome of [21], the chaos system is independent when
n > 35 and is secure. In this paper, n is set to be 40; then the required time of
LDHG is 0.618 ms and arm device is 10.961 ms. The latter is *16x greater than
the former. And if n continues to increase, the required time of arm increases more
sharply than LDHG. For example, if n = 200, the arm requires 53.198 ms which is
much larger than the LDHG, i.e. 6.125 ms.

From the required time comparisons, it can be seen that the server can
complete the calculation in a short time and meet the time requirement for highly
frequent message. However, the calculation time of arm microcontroller is much
greater than the proposed hash generator, especially when the iteration time n is
large. Therefore, the proposed hash generator is more suitable than arm micro-
controller when there are highly frequent message to be authorized; however lots
of industrial applications have this requirement, such as smart grid.

(2). The area overhead of the proposed hash generator: for the hardware implemen-
tation of LDHG, one PLL module is used and several DSP modules, FIFO are
instantiated. All the modules are design separately and connected together in the
top design. The area overhead is relatively low; only 14 % logic elements
(16,251/114,480 = 14 %) are used. A FPGA implementation of traditional MD5
algorithm was proposed in [22] based on a Xilinx Virtex V1000FG680 device,
where the area overhead (slices) of the full-loop-unrolled is 38 % (4763/12288 =
38 %). However, the security of MD5 has been compromised [6, 7].

From the computing speed comparison of different platforms, it can be seen
that the proposed LDHG has a quick computing speed, generates hash code in a
short time and is suitable for frequent message authorization. In the meantime, the
area overhead of hash coding module is low which is suitable for hardware
implementation.

Fig. 4. The required time comparison on different processors
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5 Conclusions

This paper proposed a hash generator based on spatiotemporal chaos systems,
including the principal of chaos system, the hardware implementation and experimental
results. The performances of computation speed and area overhead are evaluated. It has
been applied for smart grid system and the results showed that it can complete frequent
message authorization quickly and efficiently enhance the security of communication
data. This paper is a beneficial exploration using nonlinear chaos system to implement
a hash function and apply to the message authorization in smart grid application. The
future work includes the design of chaotic cryptographic system for image and video
secure transmission and data encryption mechanism.
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Abstract. Privacy protection has become a crucial issue in the informa-
tion era. In recent years, many protocols have been developed to accom-
plish computational tasks collaboratively without revealing the partic-
ipants’ private data. However, developing protocols for each individual
application would not be practical. The more natural and efficient app-
roach would be utilizing basic protocols as building blocks for the con-
struction of complex protocol.

In this paper, we proposed the concept of t-certified protocols, which
are protocols that are secure when t parties are under the influence of
a semi-honest adversary. A composition theorem is given to specify the
conditions for secure composition of t-certified protocols, and a frame-
work for constructing complex protocols is developed.

We have adopted an information theoretical approach, and believe
that it will be a viable alternative to the classic simulator approach,
which is based on the concept of indistinguishability between the ideal
model and the real model.

Keywords: Privacy-preserving computation · Secure multiparty
computation · Protocol composition

1 Introduction

With the advancements in network and storage technology, massive databases
are distributed all over the Internet, and methods for performing collaborative
computational tasks between these databases while retaining privacy has gained
a great deal of attention in recent years.

The concept of secure two-party computation was proposed by Yao [1] and
extended to the multi-party case by Goldreich et al. [2]. It was shown that the
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 405–423, 2015.
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secure computation of general computable functions is theoretically possible, and
protocols for computing fundamental operations has also been proposed, such
as Yao’s garbled circuit [2]. Currently, the most adopted approach for comput-
ing complex functions is by combining several secure protocols together, but the
composition of protocols was shown to be not necessarily secure [3]. Methods
for secure composition of protocols have been proposed and extensively inves-
tigated [4–8]. One example is the Protocol Composition Logic (PCL), which is
a logic-based method. The PCL can be applied to prove security properties of
network protocols [9], supporting compositional reasoning on both parallel and
sequential composition of protocols [10]. Although these methods provides a for-
mal foundation for the security verification of the composition of protocols, the
process is rather complex, and hard to apply in practice.

In this paper, we will focus on sequential composition [11], which is the
scenario where each new execution begins immediately after the previous one
terminates. We proposed the concept of t-certified protocols, which are proto-
cols that are information theoretically secure against a semi-honest adversary
[12,25] whom controls t parties in an n-party secure computation, where t < n.
We have identified a set of preconditions and a general method for the secure
composition of t-certified protocols. This allows us to develop a framework for
constructing secure protocols for computing complex functions by utilizing t-
certified protocols as building blocks.

Our framework is under the assumption of sequential composition, and can
simplify the complex task of security verification significantly. An information
theoretical approach has been adopted in the development of our framework,
and we believe it will be a viable alternative to the classic simulator approach,
which is based on the concept of indistinguishability between the ideal model
and the real model.

In Sect. 2, we will describe the proposed framework for privacy-preserving
collaborative computation protocols. We will give a demonstration to our frame-
work in Sect. 3, and some concluding remarks in Sect. 4.

2 A Composition Framework

In this section, we propose a composition framework for secure multi-party com-
putation protocols. First, we consider a set of definitions and basic properties
in information theory. Then, we present an information theory paradigm and
composition model.

2.1 Definitions

We use the following widely accepted definitions throughout the paper.

Definition 1. Random variables X, Y , and Z are said to form a Markov chain,
denoted by X → Y → Z, if the conditional distribution of Z only depends on Y
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and is conditionally independent of X. Specifically, X, Y , and Z form a Markov
chain if the joint probability can be written as

Pr(X,Y,Z) = Pr(X) Pr(Y |X) Pr(Z|Y ).

That is, the random variables X, Y , and Z are said to form a Markov chain if
and only if X and Z are conditionally independent given Y .

When protocols are developed, it is inevitable that participants will keep
records of historical data that they could use to their advantage. In the simula-
tion paradigm, the historical data is taken into consideration and modelled as
auxiliary inputs. Because in Markov chain, given the current state, knowledge
of the previous states is irrelevant for predicting the subsequent states. Markov
property plays a crucial role in our information-theoretical paradigm preventing
history from interfering with current execution after protocol composition.

Definition 2 (Functionality). An n-ary functionality F (x1, . . . , xn) �→
(y1, . . . , yn) is a function that maps n inputs to n outputs stochastically, whereas
ordinary functions that map inputs to outputs uniquely are deemed deterministic
functionalities.[12]

Functionalities are randomized extensions of ordinary functions. A function-
ality F may be regarded as a probability distribution over functions such that
F equals the function fi with probability P (i). There are two steps in evaluat-
ing F (x1, . . . , xn): tossing coins to decide an index i, and then evaluating the
function fi(x1, . . . , xn).

Definition 3. A protocol Π realizes the n-ary functionality F (x1, . . . , xn) �→
(y1, . . . , yn) if n parties follow the steps in Π such that party i inputs xi and
receives yi at the end of the execution.

Privacy and correctness are two fundamental requirements in multi-party
computation research. The privacy requirement stipulates that only necessary
information should be revealed, while the correctness requirement ensures the
accuracy of the protocol outputs. In the remainder of this paper, a protocol that
realizes a functionality is described as theoretically correct instead of computa-
tionally indistinguishable.

Definition 4 (Information-Theoretically Secure Protocol). Let Π be a
multi-party protocol, xi be the private input of party i, and X be the collection
of all the private inputs, i.e. X = (x1, . . . , xn). Party i’s view during an execution
of Π with input X, denoted by viewΠ

i (X), is (xi, ri,mi), where ri is the internal
coin tosses, and mi represents all the received messages. The protocol is said to
be information-theoretically secure if party i does not have more information
about X after the execution than before it; that is,

I(X;viewΠ
i (X)) = I(X;xi), i = 1, . . . , n,
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where I(A;B) is the mutual information shared by random variables A and
B [13].

Therefore, no information about the secret inputs held by the participants
are revealed by their local view after executing a function, which is realized by a
information-theoretically secure protocol. Hence, we can assure that the privacy
of these participants are preserved.

2.2 Preliminary Theory

Because of the finite nature of real-world applications, numbers are often consid-
ered in finite fields, denoted by GF (p), where p is a large enough prime. When
designing a secure protocol, it is intuitive to add a random number in order to
hide secrets. The following lemmas demonstrate that, in a finite field, the addi-
tion of random numbers is intuitively appealing and also protects private data
completely from the perspective of information theory. This masking property
is very helpful in protocol design and security analysis.

Lemma 1. Let X and R be random variables defined on GF (p). If R is uni-
formly distributed and independent of X, then (X +R) follows a uniform distri-
bution over GF (p).

Proof. In a finite field, both negation and the addition of a constant are bijective
operations. Specifically, the sequence (i0, i1, . . . , i(p1)), for all i ∈ GF (p), is a
permutation of (0, 1, . . . , p − 1). As a result, we have

Pr(X + R = i)

=
∑

k
Pr(X = k,R = i − k)

=
∑

k
Pr(X = k) · Pr(R = i − k|X = k)

=
∑

k
Pr(X = k) · Pr(R = i − k)

=
∑

k
Pr(X = k) · 1

p
=

1
p
,

which proves the lemma.

Moreover, in a finite field, an independent uniform random variable R is so
powerful that, no matter how the random variable X is distributed, (X + R)
will follow a uniform distribution whose entropy (uncertainty) is maximal.

Lemma 2. Let X and R be random variables defined on GF (p), and let Y be
a random variable defined on another field. If R is uniformly distributed and
independent of the joint distribution (X,Y ), (X + R) is independent of Y .
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Proof. From the proof of Lemma1, we know that, for i ∈ GF (p), the conditional
probability is

Pr(X + R = i|Y )

=
∑

k
Pr(X = k,R = i − k|Y )

=
∑

k
Pr(X = k|Y ) · Pr(R = i − k|X = k, Y )

=
∑

k
Pr(X = k|Y ) · Pr(R = i − k)

=
∑

k
Pr(X = k|Y ) · 1

p
=

1
p

= Pr(X + R = i),

which proves the independence of (X + R) and Y .

Lemmas 1 and 2 state that the masked variable (X +R) is maximally uncer-
tain and disconnected from Y . From the perspective of protocol design, adding
independent random numbers to outgoing messages guarantees the security
of the message, and ensures that the messages do not reveal other private
information.

Lemma 3. Let X1, . . . , Xn, and R be random variables defined on GF (p). If R
follows a uniform distribution and is independent of (X1, . . . , Xn), then we have
Pr(X1|X2, . . . , Xn−1,Xn + R) = Pr(X1|X2, . . . , Xn−1).

Proof. Based on the assumption that R is independent of (X1, . . . , Xn) and
Lemma 2, we know that Xn + R is independent of (X1, . . . , Xn−1).

Finally, we generalize the idea of masked variables and present one of the
most useful results in the following theorem:

Theorem 1. Let X1,. . ., Xn, and R be random variables defined on GF (p), and
let Y1, . . . , Ym are arbitrary functions of X1, . . . , Xn. If R is uniformly distributed
and independent of (X1, . . . , Xn), we have1

I(Y1;Y2, . . . , Ym−1, Ym + R) = I(Y1;Y2, . . . , Ym−1)

In addition, Pr(Y1|Y2, . . . , Ym−1, Ym + R) = Pr(Y1|Y2, . . . , Ym−1); i.e.,
H(Y1|Y2, . . . , Ym−1, Ym + R) = H(Y1|Y2, . . . , Ym−1).

Proof. Since R is uniformly distributed and independent of (X1, . . . , Xn), by
definition and the above lemmas, we have

I(X1, . . . , Xn;R) = 0
⇒I(Y1, . . . , Ym−1, Ym;R) = 0
⇒I(Y1, . . . , Ym−1;Ym + R) = 0 (Lemma 2)
⇒I(Y2, . . . , Ym−1;Ym + R) = 0.

1 Occasionally, Ym could be an empty function so that the following equation also
holds:

I(Y1; Y2, . . . , Ym−1, R) = I(Y1; Y2, . . . , Ym−1).
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Moreover, the above results show that

I(Y1;Ym + R|Y2, . . . , Ym−1)
=I(Y1, . . . , Ym−1;Ym + R) − I(Y2, . . . , Ym−1;Ym + R) = 0.

Therefore, we conclude that

I(Y1;Y2, . . . Ym−1, Ym + R)
=I(Y1;Y2, . . . , Ym−1) + I(Y1;Ym + R|Y2, . . . , Ym−1)
=I(Y1;Y2, . . . , Ym−1)

Finally, it is known that if R is independent of (X1, . . . , Xn), then it is also
independent of (Y1, . . . , Ym). By combining this result with Lemma 3, we have
Pr(Y1|Y2, . . . , Ym−1, Ym+R) = Pr(Y1|Y2, . . . , Ym−1), which completes the proof.

Eliminating redundancy helps us analyse the security of multi-party protocols,
especially when there is a great deal of unnecessary information, and the redun-
dancy includes the outputs of a function under the presence of the inputs. Fur-
thermore, Theorem 1 states that information masked by independent, uniform
random variables is also redundant and can be removed.

2.3 An Information-Theoretical Paradigm

Most studies use the simulator paradigm is to prove the security of protocols.
Specifically, a simulator generates an adversary’s view in the ideal model that
is indistinguishable from the adversary’s view in the real model [12]. Canetti
proposed a widely accepted design methodology for secure protocols [11]. The
steps are as follows:

1. Design a “high-level” protocol for the given functionality under the assump-
tion that some primitive functionalities can be computed securely.

2. Design secure primitive protocols to realize the primitive functionalities.
3. Construct a composite protocol that realizes the given functionality by incor-

porating the primitive protocols as subroutines into the “high-level” protocol.

The composite protocol is only provably secure when the high-level protocol
and the primitive protocols are provably secure in the hybrid model and the
real model respectively. The methodology is elegant and allows us to design a
large-scale protocol in a recursive manner as follows. When a primitive protocol
is proved to be secure as the boundary condition in the recursion, each proof of
the security of a high-level protocol that results in a secure composite protocol
can be used as another secure primitive to construct a “higher-level” protocol.

To measure security, our approach uses information theory instead of indis-
tinguishability. Next, we define an adversary’s ability and propose a definition
of protocol security.

Definition 5. An adversary is t-limited if it can select up to t parties to control.
In addition, as an adversary starts to control a party, it can learn the view of
this party has until now.
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Definition 6. Let Π be an n-party protocol that realizes an n-ary functionality
f(x1, . . . , xn) �→ (y1, . . . , yn) and let X be the distribution of all parties’ private
inputs, i.e., X = (x1, . . . , xn). The view of party i during an execution of Π
with input X, denoted by viewΠ

i (X), is (xi, ri,mi, yi), where ri is the inter-
nal coin tosses, and mi is the received messages. The protocol is said to be t-
certificated if it is secure against a t-limited semi-honest adversary. Specifically,
the protocol must satisfy the following criteria.

C1. The internal coin tosses ri are generated independently.
C2. The protocol operations depend solely on the inputs and internal coin tosses;

that is, (m1, . . . ,mn, y1, . . . , yn) is a function of (X, r1, . . . , rn).
C3. The adversary does not gain information about X with every possible col-

lusion; that is, for all I ⊂ {1, . . . , n}, and |I| ≤ t,

I(X;viewΠ
I (X)) = I(X;XI),

where XI and viewΠ
I (X) denote the joint inputs and views of collusive

parties.

C3 describes protocol security in terms of information theory. C1 and C2
may appear to be unnecessary as they are implied when designing protocols
in the stand alone model. However, they are crucial because they ensure the
security of the designed protocols. Note that Definition 6 is feasible for Canetti’s
method, but with a slight modification. Specifically, if there is no communi-
cation between the participants in a high-level protocol, our main theorem
(Theorem 2) claims that the certification against a t-limited adversary is closed
under composition; that is, a protocol composed of t-certificated primitive pro-
tocols remains t-certificated. The closure property reduces the effort required to
design a large-scale system. Once the primitive protocols are proved to be cer-
tificated, the resulting composite protocol is provably certificated without extra
burdens. This allows protocol designers to focus on developing more efficient
high-level protocols.

2.4 Composition Model

Before presenting our main theorem, we formally define the composition model.
Recall that the model is actually a composite protocol constructed by Canetti’s
methodology with the condition that no communication is allowed in the high-
level protocol.

Let Π be an m-round n-party protocol constructed by the modified method-
ology, and let X = (x1, . . . , xn). Then, protocol Π can be modelled as follows.

1. Party i starts with private input xi and sets z0i ← xi.
2. Party i sets viewΠ,0

i (X) ← (xi, z
0
i ).

3. Initialize the round number: l ← 1.
4. Repeat while l ≤ m:

(a) Party i sets xl
i ← zl−1

i .
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(b) A subset of the parties, kl parties, collaboratively execute a certificated
protocol ρl so that

– Party i, who participates in ρl, receives random coin tosses rl
i, com-

municated messages ml
i, and the protocol output yl

i.
– Party j, who does not participate in ρl, sets rl

j ← ml
j ← yl

j ← xl
j .

(c) Party i locally produces independent coin tosses sl
i, and sets zl

i to be a
function of own knowledge, i.e. zl

i ← f l
i (view

Π,l−1
i (X), xl

i, r
l
i,m

l
i, y

l
i, s

l
i).

(d) Party i sets

viewΠ,l
i (X) = (viewΠ,l−1

i (X), xl
i, r

l
i,m

l
i, y

l
i, s

l
i, z

l
i).

(e) l ← l + 1.
5. Party i sets yi ← zm

i as the output and halts.

Round l Round l 1Round l 1

Fig. 1. A summary of the l-th round of protocol Π

Figure 1 summarizes round l. The x-axis represents the time line from left
(round l−1) to right (round l+1). Party i participates in the certificated protocol
ρl, but party j does not. In the execution of ρl, party i has random coin tosses
rl
i, received message ml

i, and the output yl
i. In addition, si and sj are locally

generated coin tosses; while zi and zj are, respectively, functions of party i’s
knowledge and party j’s knowledge up to round l. Recall that communication is
only allowed in the execution of ρl.

It makes sense to model party j, who does not participate in ρl, by assigning
rl
j , ml

j , and yl
j to xl

j . Party j is not allowed to communicate with other parties
in round l; thus, his actions can be modelled by local random coin tosses, sl

j ,
and private computation, zl

j .

Theorem 2 (Sequential Composition Theorem). Given secure channels,
if the primitive protocols ρl are t-certificated, then the composite protocol Π is
t-certificated.

Proof. First, we outline the proof and show that the theorem is sound when
t = 1. The proof is divided into three steps.

1. Address a crucial Markov property introduced by the composition model and
the proposed security definition.
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2. Normalize the kl-party 1-certificated protocol, ρl, to derive another n-party
1-certificated protocol, φl.

3. Prove by mathematical induction that n-party 1-certification is closed under
the proposed composition model.

In our information-theoretical paradigm, the Markovity discussed in Lemma4
is crucial because it acts as a bridge between primitive protocols. Next, by regard-
ing an adversary who colludes with t parties, we can generalize the closure prop-
erty from 1-certification to t-certification.

For simplicity, let X l
ρ, Rl

ρ, M l
ρ, and Y l

ρ denote the joint distribution of all
parties’ inputs, coin tosses, received messages, and outputs in the execution of
ρl. Similarly, let viewΠ,l(X) be the joint distribution of the views of all parties
in round l of protocol Π.

Lemma 4. The joint historical information and outputs of the current round
are conditionally independent given the input of the current round. That is,
viewΠ,l−1(X), xl

i, and (rl
i,m

l
i, y

l
i) form a Markov chain, for l = 1, . . . , m.

Proof. For party i, who participates in ρl, we know that

I(viewΠ,l−1(X);Rl
ρ,M

l
ρ, Y

l
ρ |X l

ρ)

=I(viewΠ,l−1(X);Rl
ρ|X l

ρ) + I(viewΠ,l−1(X);M l
ρ, Y

l
ρ |X l

ρ, R
l
ρ) (C2)

=I(viewΠ,l−1(X);Rl
ρ|X l

ρ) = 0.

Note that because Rl
ρ is generated independently in ρl after viewΠ,l−1(X) and

X l
ρ have been computed, it must be independent of (viewΠ,l−1(X),X l

ρ). From
the above result, we know that I(viewΠ,l−1(X); rl

i,m
l
i, y

l
i|X l

ρ) = 0. In addition,

I(viewΠ,l−1(X); rl
i,m

l
i, y

l
i|X l

ρ)

=I(viewΠ,l−1(X); rl
i,m

l
i, y

l
i|xl

i,X
l
ρ) (xl

i is part of X l
ρ)

=I(viewΠ,l−1(X),X l
ρ; r

l
i,m

l
i, y

l
i|xl

i) − I(X l
ρ; r

l
i,m

l
i, y

l
i|xl

i)

=I(viewΠ,l−1(X),X l
ρ; r

l
i,m

l
i, y

l
i|xl

i) (C3)

⇒I(viewΠ,l−1(X); rl
i,m

l
i, y

l
i|xl

i) = 0.

For party j, who does not participate in ρl, we prove the Markov property
as follows:

I(viewΠ,l−1(X); rl
j ,m

l
j , y

l
j |xl

j)

=I(viewΠ,l−1(X);xl
j |xl

j) = 0. (xl
j = rl

j = ml
j = yl

j)

Lemma 5. Step (4b) in the composition model normalizes the kl-party
1-certificated protocol ρl into an n-party 1-certificated protocol φl.

Proof. Let φl be an extension of ρl that is executed collaboratively by all parties
instead of the original kl parties. For simplicity, let X l

φ, Rl
φ, M l

φ, and Y l
φ denote,
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respectively, the inputs, coin tosses, messages, and outputs of all participants in
the execution of φl. We have to prove that φl satisfies the following conditions
of Definition 6:

[C1] By the assumption that ρl is a certificated protocol, we know that Rl
ρ is

generated independently. In addition, Rl
φ = Rl

ρ, φl satisfies this condition.
[C2] As ρl is assumed to be 1-certificated, there exists a function fρ such that

fρ(X l
ρ, R

l
ρ) = (M l

ρ, Y
l
ρ). It is trivial to construct a function fφ that exploits

fρ as a subroutine and outputs yl
j = xl

j for party j, who does not participate
in ρl.

[C3] Given I(X l
ρ;view

ρl

i (X l
ρ)) = I(X l

ρ;xi), we need to prove that I(X l
φ;viewφl

i

(X l
φ)) = I(X l

φ;xi), for i = 1, . . . , n. For party i, who participates in ρl, it
holds that

I(X l
φ;viewφl

i (X l
φ)) =I(X l

φ;xl
i, r

l
i,m

l
i, y

l
i)

=I(X l
φ;xl

i) + I(X l
φ; rl

i,m
l
i, y

l
i|xl

i)

=I(X l
φ;xl

i). (Lemma 4)

Because xl
i = zl−1

i ⊂ viewΠ,l−1(X), we know that X l
φ = (xl

1, . . . , x
l
n) must

be a subset of viewΠ,l−1(X); we can apply Lemma 4 to this proof.
For party j, who does not participate in ρl, we have

I(X l
φ;viewφl

j (X l
φ)) =I(X l

φ;xl
j , r

l
j ,m

l
j , y

l
j)

=I(X l
φ;xl

j). (xl
j = rl

j = ml
j = yl

j)

Lemma 6. The n-party protocol Π comprised of n-party 1-certificated protocols
φ1, . . . , φm is also 1-certificated.

Proof. (C1) and (C2) will be proved under the assumption of semi-honest adver-
saries, and (C3) will be proved by mathematical induction. Initially,

I(X;viewΠ,0
i (X)) = I(X;xi, z

0
i ) = I(X;xi). (xi = z0i )

Next, we consider round l,

I(X;viewΠ,l
i (X))

=I(X;viewΠ,l−1
i (X), xl

i, r
l
i,m

l
i, y

l
i, s

l
i, z

l
i)

=I(X;viewΠ,l−1
i (X), xl

i, r
l
i,m

l
i, y

l
i, s

l
i)

=I(X;viewΠ,l−1
i (X), xl

i, r
l
i,m

l
i, y

l
i) (Theorem 1)

=I(X;viewΠ,l−1
i (X)) + I(X;xl

i, r
l
i,m

l
i, y

l
i|viewΠ,l−1

i (X)).
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The following result,

I(X;xl
i, r

l
i,m

l
i, y

l
i|viewΠ,l−1

i (X))

=I(X; rl
i,m

l
i, y

l
i|viewΠ,l−1

i (X), xl
i) (xl

i ∈ viewΠ,l−1
i (X))

=I(X,viewΠ,l−1
i (X); rl

i,m
l
i, y

l
i|xl

i) − I(viewΠ,l−1
i (X); rl

i,m
l
i, y

l
i|xl

i)

=0, (X,viewΠ,l−1
i (X) ⊂ viewΠ,l−1(X), Lemma 4)

shows that
I(X;viewΠ,l

i (X)) = I(X;viewΠ,l−1
i (X)).

In other words, given that Π is 1-certificated in round l − 1, we know that it is
1-certificated in round l. The mathematical induction completes the proof.

Before presenting the last lemma, we have to construct a new protocol ωl.
Recall that we convert the kl-party protocol ρl into an n-party protocol φl in
Lemma 5 by assuming that parties that do not participate in ρl take part in φl

and only output their inputs. Here, we construct the protocol ωl from protocol
φl and a collusion set C whose size is at most t. All collusive parties C in
protocol φl are regarded as a single adversary A in protocol ωl; that is, φl is an
n-party protocol, whereas ωl is an (n − |C| + 1)-party protocol. If protocol φl

can be certificated against every set C, protocol ωl can be certificated against
the corresponding party A; thus, the protocol comprised of ωl is 1-certificated
because of Lemmas 5 and 6. As a result, the protocol Π comprised of φl is
certificated against C, and is therefore t-certificated.

Lemma 7. If the protocol ρl in the composition model is t-certificated, the pro-
tocol φl is also t-certificated.

Proof. Recall that φl is an extension of ρl derived by increasing the number of
participants from kl to n. For semi-honest adversaries, conditions (C1) and (C2)
are trivial, so we focus on (C3). From the assumption that ρl is t-certificated,
we know that

I(X l
ρ;view

ρl

S ) = I(X l
ρ;XS),∀S ∈ {1, . . . , n}, |S| ≤ t.

Next, for every subset C ∈ {1, . . . , n}, |C| ≤ t, there are three possible
relations between the collusive parties and the participants in ρl, denoted by P .
Specifically, the collusive parties C may be part of, disjoint from, or overlap with
P . We consider each scenario below.

1. (C ∩ P = ∅) In this case, the parties in C do not participate in ρl and only
output their input during the execution of protocol φl. Trivially, condition
(C3) holds that

I(X l
φ;viewφl

C ) = I(X l
φ;X l

C).

2. (C ⊂ P ) Because every collusive party participates in ρl, condition (C3) in
this case is guaranteed by the t-certification of protocol ρl.
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3. (C∩P �= ∅) In this case, some of the collusive parties participate in ρl. Again,
the Markov property described in Lemma4 is demonstrated here:

I(X l
φ;viewφl

C )

=I(X l
φ;X l

C−P ,viewφl

C∩P )

=I(X l
φ;X l

C−P ,X l
C∩P , Rl

C∩P ,M l
C∩P , Y l

C∩P )

=I(X l
φ;X l

C , Rl
C∩P ) + I(X l

φ;M l
C∩P , Y l

C∩P |X l
C , Rl

C∩P )

=I(X l
φ;X l

C , Rl
C∩P ) (C2)

=I(X l
φ;X l

C). (C1)

In all the above scenarios, protocol φl is certificated against every collusive
set whose size is at most t; thus, it is t-certificated.

Lemmas 5, 6 and 7 complete the proof of Theorem 2.

3 Demonstration

In this section, we give a two-party integer comparison protocol as an example
of the application of our framework. The comparison problem, also known as
Yaos millionaire problem [14], has been studied in many literatures [15–21]. The
primitive building blocks and the comparison protocol are adopted from [22]. We
will show that these protocols are 1-certificated. We will first introduce primitive
building blocks, and then construct the integer comparison protocol.

All protocols presented here are based on additive secret sharing over ZN .
That is, a secret value x is split into n shares x1, x2, . . . , xn ∈ ZN to n parties,
such that x =

∑n
i=1 xi, and any n − 1 subset {xi1 , . . . , xin−1} is uniformly dis-

tributed. The original secret can only be recovered, if and only if all the shares
are combined together.

3.1 Primitive Building Blocks

The secure protocols presented in this section are based on the secure Scalar-
Product protocol, which is defined as

Definition 7 (Scalar Product). Party 1 and Party 2want to collaboratively
compute the scalar product of their private input vectors X = (x1, . . . , xd) and
Y = (y1, . . . , yd). That is, they want to execute the secure protocol

((x1, . . . , xd), (y1, . . . , yd)) �→ (z1, z2),

such that

z1 + z2 =

⎡

⎢
⎣

x1

...
xd

⎤

⎥
⎦

T ⎡

⎢
⎣

y1
...
yd

⎤

⎥
⎦ =

∑d

i=1
xi · yi
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where xi, yi, z1, z2 ∈ Zn. Additionally, + and · are the modular addition and the
modular multiplication in Zn.

The implementation of scalar product protocols can be found in [23,24]. The spe-
cific implementation of the scalar product protocol that we have adopted, runs
with a commodity party C, which is assumed to be semi-honest. The commodity
party C will not collude with the two parties, nor will it participate directly in
the computation of the protocol. It essentially acts only as a random variable
generator for the two parties.

protocol Scalar Product

1. C generates two 1 × n random matrix Ra, Rb.
2. Let ra + rb = Ra · RT

b . C sends Ra and ra to Party 1, and Rb and rb

to Party 2.
3. Party 1 compute X ′ = X + Ra, and Party 2 computes Y ′ = Y + Rb.
4. Party 1 sends X ′ to Party 2, and Party 2 sends Y ′ to Party 1.
5. Party 2 generates a random value z2 as its output, and computes s = X ′ ·

XT + rb − z2.
6. Party 2 sends s to Party 1.
7. Party 1 computes its output z1 = s − (Ra · X ′T ) + ra.

Each party in this scalar product protocol can not get any information about
the other parties’ private input from the messages that are exchanged between
them, and the output he or she produces [24]. Therefore, this protocol is 1-
certificated because it satisfies the three conditions we list in Definition 6.

Before presenting the secure comparison protocol, we will first introduce two
protocols, Zn-to-Z2 and Z2-to-Zn, performs conversions between Zn sharing and
bitwise Z2 sharing.

Definition 8 (Zn-to-Z2). Party 1 and Party 2 additively share a number in Zn,
and they want to securely convert the Zn sharing into bitwise Z2 sharing. More
specifically, Party 1 and Party 2want to collaboratively execute the secure protocol

(x1, x2) �→ ((y0
1 , . . . , y

k
1 ), (y0

2 , . . . , y
k
2 )),

such that
(ykyk−1 · · · y1y0)2 = x1 + x2

where x1, x2 ∈ Zn, yl
1, y

l
2 ∈ Z2, and yl = yl

1 + yl
2 (mod 2).

To convert from Zn sharing to bitwise Z2 sharing, we emulate the carry ripple
adder with binary Scalar-product protocol, whose n = 2. Let x1 = (xk

1 · · · x0
1)2,

x2 = (xk
2 · · · x0

2)2, and the adder operates as the following long addition:

ck+1 ck · · · c1 c0

xk
1 · · · x1

1 x0
1

+) xk
2 · · · x1

2 x0
2

yk · · · y1 y0
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where c0 = 0 and cl+1 = clxl
1 + clxl

2 + xl
1x

l
2 (mod 2) are the carry bits; yl =

cl + xl
1 + xl

2 (mod 2) is the l-th summation bit. Next, we present the Zn-to-Z2

protocol as follows:

protocol Zn-to-Z2 (n = 2k+1)

1. Party i locally sets c0i = 0, and y0
i = x0

i , i = 1, 2.
2. For l = 0, . . . , k − 1, repeat Step 2a to Step 2b.2

(a) Party 1 and Party 2 collaboratively execute the binary Scalar-product
protocol

((cl
1, x

l
1, x

l
1), (x

l
2, c

l
2, x

l
2)) �→ (zl

1, z
l
2),

such that

zl
1 + zl

2 (mod 2) =

⎡

⎣
cl
1

xl
1

xl
1

⎤

⎦

⎡

⎣
xl
2

cl
2

xl
2

⎤

⎦

T

(mod 2)

(b) For j = 1, 2, Party j computes

cl+1
j =cl

jx
l
j + zl

j (mod 2)

yl+1
j =xl+1

j + cl+1
j (mod 2)

The Zn-to-Z2 protocol is 1-certificated. The parties run step 1 locally without
communication. Therefore, the only step we need to examine is step 2. In Step
2, the two parties collaboratively execute the scalar product protocol.

Let yi = (y0
i , y1

i , . . . , yi
k) and ci = (c0i , c

1
i , . . . , c

i
k+1), for i ∈ {1, 2}. This

protocol can be reformulated using the composition model proposed in Sect. 2.4
as follows.

protocol Zn-to-Z2 (n = 2k+1, reformulated using composition model)

1. Party i locally sets c0i = 0, and y0
i = x0

i , for i = 1, 2.
2. Party i sets z0i ← (xi, c

0
i , y

0
i ), for i = 1, 2.

3. Party i sets viewΠ,0
i (X) ← (x0

i , z
0
i ), for i = 1, 2.

4. For l = 0, . . . , k − 1, repeat the following steps
(a) Party 1 and Party 2 collaboratively execute the binary Scalar-product

protocol
((cl

1, x
l
1, x

l
1), (x

l
2, c

l
2, x

l
2)) �→ (zl

1, z
l
2), such that

zl
1 + zl

2 (mod 2) =

⎡

⎣
cl
1

xl
1

xl
1

⎤

⎦

⎡

⎣
xl
2

cl
2

xl
2

⎤

⎦

T

(mod 2),

and receives random coin tosses rl
i, communicated messages ml

i.

2 Since n = 2k+1, the overflow bit ck+1 is discarded.
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(b) For j = 1, 2, Party j computes the output of the current step ol
i =

(cl+1
j , yl+1

j ) as:

cl+1
j =cl

jx
l
j + zl

j (mod 2)

yl+1
j =xl+1

j + cl+1
j (mod 2)

(c) Party i locally produces independent coin tosses sl
i, and sets

zl
i = f l

i (view
Π,l−1
i (X), xi, r

l
i,m

l
i, o

l
i, s

l
i)

= (xi, c
l
i, y

l
i),

for i = 1, 2.
(d) Party i sets

viewΠ,l
i (X) = (viewΠ,l−1

i (X), xl
i, r

l
i,m

l
i, o

l
i, s

l
i, z

l
i)

5. Party i outputs yi and halts.

Therefore, the protocol Zn-to-Z2 is 1-certificated.

Definition 9 (Z2-to-Zn). Party 1 and Party 2 bitwise, additively share a num-
ber in Z2, and they want to securely convert the bitwise Z2 sharing into the
Zn sharing. More specifically, Party 1 and Party 2want to execute the secure
protocol ((x0

1, . . . , x
k
1), (x

0
2, . . . , x

k
2)) �→ (y1, y2), such that

y1 + y2 = (xkxk−1 · · · x1x0)2

where xl
1, x

l
2 ∈ Z2, y1, y2 ∈ Zn, and xl = xl

1 + xl
2 (mod 2).

According to the above requirement, the outputs can be rewritten as the
following function:

y1 + y2 =
∑k

l=0
xl · 2l =

∑k

l=0
(xl

1 + xl
2 mod 2) · 2l

=
∑k

l=0
(xl

1 + xl
2 − 2xl

1x
l
2) · 2l

=
∑k

l=0
xl
1 · 2l +

∑k

l=0
xl
2 · 2l −

∑k

l=0
xl
1x

l
2 · 2l+1

In the above function, we divide the computation into two parts. One is locally
computable (

∑
xl
1 · 2l and

∑
xl
2 · 2l), and the other needs the scalar product

protocol (
∑

xl
1x

l
2 · 2l+1).

protocol Z2-to-Zn (n = 2k+1)

1. Party 1 and Party 2 execute the Scalar-product protocol

((x0
1, . . . , x

k
1), (2x0

2, . . . , 2
k+1xk

2)) �→ (t1, t2),

such that

t1 + t2 =

⎡

⎢
⎣

x0
1
...

xk
1

⎤

⎥
⎦

T ⎡

⎢
⎣

2 · x0
2

...
2k+1 · xk

2

⎤

⎥
⎦
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2. Party j computes yj =
∑k

l=0 xl
j · 2k − tj , for j = 1, 2.

Protocol Z2-to-Zn is rather simple than Zn-to-Z2. It uses the scalar product
protocol for only one time, while Z2-to-Zn calls the scalar product protocol for
k times. We can find that the Z2-to-Zn protocol reduces the function Z2-to-
Zn to the scalar product that is implemented using the 1-certificated protocol.
Therefore, the Z2-to-Zn protocol is 1-certificated.

3.2 The Integer Comparison Protocol

The comparison protocol proposed in [22] compares two values v1 and v2 by
computing the most significant bit of (v1 − v2). According to the binary system
on modern computers, if the most significant bit of (v1 − v2) is 1, (v1 − v2) is a
negative number inferring that v1 is less than v2. Therefore, the comparison is
defined as

Definition 10 (Comparison). Party 1 and Party 2 additively share a number
in Zn, and they want to know whether the number is positive or negative. As
a result, Party 1 and Party 2want to collaboratively execute the secure protocol
(x1, x2) �→ (y1, y2), such that

y1 + y2 =
{

1 if x1 + x2 < 0,
0 otherwise.

That is, one party sets x1 to v1 and another party sets x2 to −v2. Then
they can compare v1 and v2 according to the above definition. The comparison
protocol checks whether the most significant bit of the shared number is 1 as
follows.

protocol Comparison

1. Party 1 and Party 2 collaboratively execute the Zn-to-Z2 protocol (x1, x2) �→
((b01, . . . , b

k
1), (b

0
2, . . . , b

k
2)), such that bi = bi

1 + bi
2 (mod 2), and (bk · · · b0)2 =

x1 + x2.
2. Party 1 and Party 2 collaboratively execute the Z2-to-Zn protocol (bk

1 , b
k
2) �→

(y1, y2), such that y1 + y2 = (bk)2 and bk = bk
1 + bk

2 (mod 2).

We can also formulate this protocol using the composition model given in
Sect. 2.4 as follows.

protocol Comparison (reformulated using composition model)

1. Party i starts with private input xi and sets z0i ← xi, for i = 1, 2.
2. Party i sets viewΠ,0

i (X) ← (xi, z
0
i ), for i = 1, 2.

3. Party 1 and Party 2 collaboratively execute the Zn-to-Z2 protocol (x1, x2) �→
((b01, . . . , b

k
1), (b

0
2, . . . , b

k
2)), such that bi = bi

1 + bi
2 (mod 2), and (bk · · · b0)2 =

x1 +x2. Party i receives random coin tosses r1i , communicated messages ml
i,

and the protocol output o1i = (b0i , . . . , b
k
i ).
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4. Party i locally produces independent coin tosses s1i , and sets z1i to be a
function of own knowledge, i.e.

z1i = f1
i (viewΠ,0

i (X), x1
i , r

1
i ,m1

i , o
1
i , s

1
i )

= bi,

for i = 1, 2.
5. Party i sets

viewΠ,1
i (X) = (viewΠ,0

i (X), x0
i , r

0
i ,m0

i , o
0
i , s

0
i , z

0
i ),

for i = 1, 2.
6. Party i sets the new private input as bk

i , for i = 1, 2.
7. Party 1 and Party 2 collaboratively execute the Z2-to-Zn protocol (bk

1 , b
k
2) �→

(y1, y2), such that y1 +y2 = (bk)2 and bk = bk
1 + bk

2 (mod 2). Party i receives
random coin tosses r2i , communicated messages m2

i , and the protocol output
o2i = yi.

8. Party i locally produces independent coin tosses s2i , and sets z2i to be a
function of own knowledge, i.e.

z2i = f2
i (viewΠ,1

i (X), x2
i , r

2
i ,m2

i , o
2
i , s

2
i )

= yi,

for i = 1, 2.
9. Party i sets

viewΠ,2
i (X) = (viewΠ,1

i (X), x1
i , r

1
i ,m1

i , o
1
i , s

1
i , z

1
i ),

for i = 1, 2.
10. Party i sets z2i as the output and halts, for i = 1, 2.

Therefore, by Theorem2, we know the comparison protocol is 1-certificated.

4 Concluding Remarks

In this paper, we proposed a composition theorem for secure multi-party com-
putation by adopting an information theoretical approach. The theorem can be
used to develop a framework for constructing application protocols with primi-
tive building blocks. Any existing secure protocols can serve as building blocks
in our framework, as long as they satisfy the necessary conditions.

The security of the derived protocol is guaranteed as long as the precondi-
tions of the composition theorem are satisfied. Our proposed method provides
a significant simplification to the process of verifying the security of the derived
composite protocols, which may be quite complex if other available verification
methods are applied. We have demonstrated the practicality and effectiveness of
our framework by applying it to verify the security of an existing protocol.
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In real applications, although perfect privacy would be ideal, sometimes “ade-
quate” privacy is acceptable. When secure multi-party computation is utilized
in the public sector, privacy must be compromised sometimes in order to accom-
modate other important social values. To exploit the enormous amounts of now
widely available high quality data, a balance must be found between ensur-
ing adequate privacy protection and the efficient execution of computational
tasks [26]. Therefore, quantifying the amount of privacy preserved by the pro-
tocols is not only essential for exploring the trade-off between privacy and com-
plexity, but also allows practitioners to determine if the achieved privacy level
is adequate.

The information theoretical approach is a strong candidate for quantifying
the amount of information preserved or revealed by a protocol [24]. Therefore,
we expect to extend our framework to accommodate further mechanism for
balancing privacy and performance.
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Abstract. Recently, there is a great attention on the smartphones
security and privacy due to their increasing number of users and wide
range of apps. Mobile operating systems such as Android, provide mech-
anisms for data protection by restricting the communication between
apps within the device. However, malicious apps can still overcome such
restrictions via various means such as exploiting the software vulnera-
bility in systems or using covert channels for data transferring. In this
paper, we aim to systematically analyze various resources available on
Android for the possible use of covert channels between two malicious
apps. From our systematized analysis, we identify two new hardware
resources, namely battery and phone call, that can also be used as covert
channels. We also find new features to enrich the existing approaches for
better covert channel such as using the audio volume and screen bright-
ness. Our experimental results show that high throughput data transmis-
sion can be achieved using these resources for the covert channel attacks.

Keywords: Android · Covert Channel · Mobile Security

1 Introduction

Smartphone users today install multiple apps that provide personalized services
and easy access of users’ personal information including credit card, medical
records, phone contacts, insurance card, etc. Data security of these sensitive
information has become a critical concern to these users. Android operating
system (OS) inherits the Linux security infrastructure where apps are installed
and executed within its individual virtual environment or sandbox [4]. The OS
uses security policy based permission model to control the access to the shared
resources, and an app has to seek the explicit permissions to access them during
the installation time.

An attacker interested in obtaining user’s private data must circumvent the
security policies that prevent the illegal access. In Android, covert channels can
be used by malicious apps for such an attack. A covert channel is a medium
through which two entities communicate without using conventional methods

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 427–435, 2015.
DOI: 10.1007/978-3-319-23829-6 29
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(e.g., intents). In particular, an app having access to user’s private data can
transfer it to another app within the same device, or to an external server using
these non-conventional channels. This data transfer can be oblivious to an end
user. It has been generally accepted that a covert channel of bandwidth>100 bps
would pose a significant threat to data security in a system [15]. Therefore, the
existence of large bandwidth covert channels pose a high risk of storing user’s
private data on a mobile device.

Since shared resources are typically used as a medium for covert channel com-
munication between two entities. Shared resource attributes which provide apps
the ability to read, store and modify data, can be exploited by malicious apps
to execute a communication protocol for data transfer. As such, it is imperative
to identify these possible communications and mitigate their threats. The threat
model considered in this paper involves a malicious app (App A or Encoder)
having access to user’s private data, transfers the information to another app
(App B or Decoder) on the same device which does not have access to this data,
using a covert channel.

In this paper, we systematically analyze the properties of various shared
resources on an Android system and evaluate their use as possible covert channels
for establishing communications between two malicious apps installed on the
same device. Specifically, by using a shared resource matrix approach [12] to
inspect each shared resource attribute that satisfies covert channel properties,
we discover new storage and timing covert channels, which have not been studied
before. In particular, we show that the use of battery and phone call frequency
as timing channels and the use of phone call log as storage channels are realistic
threats. In addition, we enumerate other shared resources shown in existing
studies such as audio and screen to find new features and observations which
can be used to develop a better covert channel. Our experimental results show
that these channels can have sufficiently high throughput and cannot be ignored.

2 Background and Related Work

Covert channels can be classified as timing or storage channels. In a timing
channel, information between two colluding apps is transmitted using shared
resources having no storage capability (e.g., CPU) for a specific period of time.
The encoding and decoding of information is performed with precise time syn-
chronization between the two apps. In contrast, a storage channel involves the
use of shared resources having storage capability (e.g., file system). This enables
asynchronous encoding and decoding of the information.

Identification of covert channel on a system is known to be a hard prob-
lem [13]. There have been multiple studies that identify various shared resources
supporting covert communication in Android such as the network channel [5].
A recent study involves the design of a real world malware app that uses audio
and system settings as covert channels [17]. A survey of various covert chan-
nels [14] demonstrate possible timing and storage channels. However, none of the
existing work has performed a systematic study on all shared resources and their
properties in an Android system.
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Table 1. Overview of the shared components between apps, and the possible use of
covert channel attack. (Symbol denotes a covert channel is possible and have been
studied, the covert channel attack has not been studied yet)

In order to perform a systematized analysis of shared resource properties that
can support covert channels, we identify attributes that satisfy covert channel
properties [2] of each possible resources that are enumerated in Table 1. These
resources are classified as application level, OS level and hardware level based
on their attribute properties [14]. Previous studies have already identified many
shared resources that could form a covert channel, which is also summarized
in the table. We can observe that the hardware such as Battery and Phone
component have not been studied before to form a covert channel (indicated
by ), and the goal of this work is to find them out and demonstrate their
feasibilities.

3 Analysis Overview

In this section, we describe how we identify the shared resources (using a shared
resource matrix [12]), and inspect each of them to form a covert channel between
colluding apps within a device. In general, a shared resource that can be used
to form a covert channel needs to satisfy at least the following capability:

– Ability for apps to read from a resource.
– Ability for apps to write to a resource.
– Ability for apps to turn on (or off ) a resource.
– Ability for an app to lock a resource, in which case other apps cannot access

the same resource simultaneously.

To enumerate each shared hardware resource and check their properties, we
have created a shared resource matrix shown in Table 2. Note that hardware
resources are inherently shared by various apps in a device (because of multi-
plexing). For each resource that have the above capabilities (indicated by a
on both read and write, lock, or on/off property), we check whether we can form
a covert channel based on the following properties:
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– Both the sending and receiving processes must have access to the same
attribute of a shared object.

– The sending process must be able to modify the attribute of a shared object
in the case of storage channel, or they must have access to a time reference,
such as a real-time clock, a timer or the ordering of events in the case of a
timing channel.

– The receiving process must be able to reference that attribute of the shared
object.

– The sending process must be able to control the detection time by the receiving
process, for a change in attribute value.

– A mechanism for initiating both processes, and properly sequencing their
respective accesses to the shared resources, must exist.

Table 2. A Shared Resource Matrix on Android. (Symbol denotes satisfying the
covert channel property; indicates not; denotes the covert channel attack we
enriched, and denotes the brand new covert channel we identified.)

As shown in Table 1, we find 11 out of 12 resources listed that satisfy covert
channel properties, and these resources include such as Battery, Screen, Audio
and Phone. Among them, resources such as CPU, Memory, Sensors, Vibrator,
Camera, Bluetooth and Network have already been identified in earlier work.
Hence, we do not consider them for our analysis. Interestingly, we do find two
new covert channels (denoted by ), namely Battery and Phone Calls (details
in Sect. 4). Also, for the two previously studied covert channels (denoted by ),
we enrich them by using attributes not specified in these studies (details in
Sect. 5).

4 Discovery of New Covert Channels

With our systematized analysis, we have identified two new covert channels:
Battery and Phone Call. In this section, we present the details of our discovery.

Battery. Mobile devices typically have a Lithium-ion battery, with limited
charge capacity. Parallel use of multiple resources discharges the battery at dif-
ferent rates depending on the component used. This property can be exploited
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for encoding of information to form a covert channel. Specifically, the Battery
Manager API provides a broadcast intent [8] informing an app (with intent fil-
ter registered with ACTION BATTERY CHANGED) about every 1 % change in the
battery charge level. A malicious app can perform a binary encoding of desired
information by running parallel operations on combination of resources such as
CPU and screen brightness, to achieve a predetermined discharge rate. A decoder
estimates the discharge rate for an exact time period using the broadcast intent,
thereby forming a covert channel.

Phone Call. Apps with CALL PHONE permission can make a phone call using
an intent with ACTION CALL, and end the call using a Java reflection method
involving the ITelephony interface. This ability to make phone calls can also
be exploited to form covert channels. More specifically, there could be two such
channels.

– Phone Call Frequency Channel : Apps can place phone calls at a predeter-
mined frequency to encode binary values. Colluding app having READ PHONE-
STATE permission can synchronously measure the call frequency by register-
ing a receiver to a broadcast intent from TelephonyManager API informing
of a change in call state [11]. Since both colluding apps require exact time
synchronization, this is a timing channel.

– Phone Call Log Channel : Apps can dial an integer value encoding a desired
information in the URI attribute of the phone call intent. The dialed number
is stored in a call log content provider, which can be read by a decoder with
READ CALL LOG permission. The information stored is determined by checking
the latest dialed number from the call log [9]. Since the dialed number is stored
in the call log as an ASCII string, the length of the number can be arbitrarily
large. The two colluding apps do not require exact time synchronization since
this is a storage channel.

5 Enrichment of Existing Covert Channels

We reported in Table 2 that there are also existing efforts (e.g.,[6,14,17]) on using
resources such as screen and audio for covert channels. While existing work did
show their feasibility, in this section we would like to concretize and enrich them
on how we would like to exploit them in the covert channel attacks.

Screen. Screen resource attribute such as system settings can be set by apps
as shown in [14,17]. Here, we analyze a specific attribute namely SCREEN BRIG-
HTNESS system settings parameter, which is not specifically mentioned in early
studies. Screen brightness can be changed to an appropriate integer value in the
range of 0 to 255 by an app accessing system settings [10], if the SCREEN BRIGHT-
NESS MODE parameter is set to 0. A decoder can read the encoded integer value
which may represent a desired information.

Audio (Volume). Prior efforts (e.g., [14,17]) identified the audio channel using
system settings and APIs involving the volume attribute. Here, we provide new
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insights regarding the use of multiple API components forming a volume based
covert channel. The AudioManager API provides multiple stream volume com-
ponents including STREAM ALARM, STREAM DTMF, STREAM MUSIC, STREAM NOTIFI-
CATION, STREAM RING, STREAM SYSTEM and STREAM VOICE CALL [7]. Similar to
system settings, apps can set integer values on each component representing a
volume level, using setStreamVolume method. This property can be exploited
for encoding desired information using a combination of volume components. A
range of integer values allowed for each component can be obtained using the
getStreamMaxVolume method.

6 A Covert Channel Protocol

In this section, we briefly describe the design and implementation of a com-
munication protocol we developed to enable covert communication between two
malicious apps using channels in Sects. 4 and 5. More details about this protocol
can be found in our technical report [3].

Major challenges in using shared resources as covert channels include noise
due to external factors such as parallel app execution or end user interaction,
scheduling uncertainty, and bandwidth limitation. We can overcome these chal-
lenges by designing a synchronization protocol [17] to enable sequential ordering
of data transfer events between the two colluding apps. In particular, noise due
to uncertainty in scheduling of encoding and decoding operations occurs due to
parallel execution of the two colluding apps. Synchronization of these parallel
processes can be performed by a clocking mechanism that schedules execution of
one operation at a time from the encoder or the decoder, thereby reducing the
noise. Further, limitations due to external factors can be overcome to a certain
extent by simple checks for protocol disruptions such as unexpected change in
channel value. Finally, bandwidth limitation can be addressed by splitting the
desired information into binary strings of appropriate length. For example, an
integer value ≤ 255 corresponds to a binary string of length 8 bits. This integer
can be encoded using the Screen channel (called a data channel) whose sup-
ported range is 0 to 255. If the desired data (binary string) is of length greater
than 8 bits, the data is split into multiple chunks, each of length 8 bits. These
chunks are then transmitted over the screen channel sequentially by converting
the binary value into a corresponding integer.

The two colluding apps initialize using a single bit channel (also called sync
bit) to begin data transfer. In case of a storage channel, encoder sets the sync
bit to 1 after encoding a data chunk on a channel, and waits for a response from
the decoder before encoding the next chunk. The decoder responds by flips this
sync bit to 0 after successfully reading the data channel. Conversely, the sync
bit indicates start and end of encoding in a timing channel, which is used by the
decoder to exactly synchronize with the encoder.

Implementation of covert timing channels requires the evaluation of different
thresholds representing 0 and 1. We empirically determine the thresholds for
Phone Call Frequency channel (number of calls that can be placed per second)
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and Battery channel (amount of battery discharge percent is achieved by parallel
use of different components) using our test phone [3]. In the case of Battery
channel, we performed a parallel execution including CPU, Screen Brightness,
Cellular network, Vibrator, GPS data, and Phone component to determine the
threshold values. More details on how we get these threshold values can be found
in our technical report.

7 Evaluation and Discussion

We now present our experimental results on the covert channels we have ana-
lyzed. Evaluation of each channel was performed on a Samsung Galaxy S phone
running Android version 4.2.2.

Table 3. Protocol statistics with Throughput : Ratio of Input Length and Time Taken

Covert Channel
Supported Range Input

Length
L (bits)

Time
Taken
T (sec)

Throughput
L/T
(bps)

Integer
Range

Binary
Length

Phone Call Log - 2.3M (max) 2.3M (max) 67.3 34175.3

Phone Call Frequency 0 - 1 1 10 16.05 0.623

Screen 0 - 255 8 525 0.828 634.05

Audio
(Volume)

DTMF (D)
Music (M)
Alarm (A)

Notification (N)

D (0 - 15)
M (0 - 15)
A (0 - 7)
N (0 - 7)

D = 4
M = 4
A = 3
N = 3

Total = 14

525 1.6 328.125

Battery 0 - 1 1 5 1515.15 0.0033

Experiments involve data transfer of a random binary string of certain length
(given under Input Length column in Table 3), from an encoder to a decoder using
each covert channel mentioned in Sects. 4 and 5. As mentioned in Sect. 6, the
binary string is divided into data chucks of appropriate size (given under Binary
Length column in Table 3) for each channel.

The table shows the throughput obtained in our experiments on each chan-
nel, averaged over 10 experiments with different randomly selected input binary
string. We performed various experiments using the Phone Call Log channel with
multiple input lengths. We observed a near-linear increase in transfer time with
exponential increase in input length for this channel (more details are presented
in [3]). Therefore, the highest throughput of 34.17 kbps (= 2.3M

67.3 ) was obtained
by transferring 2.3M bits in 67.3 secs after encoder and decoder initialization.
However, we observed a decrease in responsiveness of answering a query to the
call log content provider with increase in input length. This negatively affected
the throughput beyond the input length of 2.3M bits on our test phone. Such
a behavior may be due to memory limitations of the call log content provider



434 S. Chandra et al.

query mechanism. Further, we obtain a higher throughput on the Screen and
Volume channel than previously reported in [14] and [6] respectively. This is
primary due to the use of higher bandwidth attribute(s) to form the channels.
Additionally, the table shows a lower throughput on the Volume channel which
uses 14 bits, compared to the Screen channel which uses only 8 bits. This is
due to slower response time of AudioManager API, and larger time required to
set and read multiple attributes in the Volume channel as compared to a single
attribute in the Screen channel.

On the other hand, a low throughput obtained using the Phone Call Fre-
quency channel can also be attributed to low bandwidth, and intent scheduling
uncertainty. Phone calls are placed using an intent which contains the number
dialed, as explained in Sect. 4. During the experiments, we found that these
intents are not scheduled at a desired frequency by the intent handler. This
may be due to interference from multiple process calls generated for handling
each intent. Finally, in case of the Battery channel, a faster battery discharge is
required to obtain higher throughput. However, the table shows an extremely low
throughput. Our empirical threshold estimation considered a bandwidth margin
beyond the average battery discharge rate due to normal device operation. On
an average, it took at least 5 mins to achieve such a discharge rate for encoding a
single bit. This can be attributed to the difficulty of an app to drain the battery
using different resources on a device since these resources are typically designed
to consume minimal power.

One possible way to reduce the bandwidth of the Phone Call Log channel is
to limit the string length of each record stored in the call log. A limitation of the
channel over the phone component is that its usage cannot be made oblivious to
an end user. The user can easily detect a phone call being made, or review the
phone call log for dialed numbers. We leave the evaluation of channel obfuscation
to avoid detection, for future work.

8 Conclusion

We have presented a systematic study of the shared resources available to an
app on an Android phone and evaluated their possibility of support of a covert
channel. In particular, we analyze various shared hardware resources that can
be potentially exploited to transfer data maliciously between two apps on the
same device. Our analysis yields two novel types of covert channel attacks that
involves the battery and the phone component. We also design a communication
protocol that can be used to achieve high throughput among the shared resources
we inspected, and overcome the limitations in data transmission by using a
synchronization mechanism between two colluding apps. Our study shows that
a high throughput, greater than 30kbps, can be achieved with the use of phone
component as a covert channel.
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Abstract. The appearance of the Android platform and its popularity
has resulted in a sharp rise in the number of reported vulnerabilities and
consequently in the number of mobile threats. Leveraging openness of
Android app markets and the lack of security testing, malware authors
commonly plagiarize Android applications (e.g., through code reuse and
repackaging) boosting the amount of malware on the markets and con-
sequently the infection rate.

In this paper, we present DroidKin, a robust approach for the detec-
tion of Android apps similarity. Based on a set of characteristics derived
from binary and meta data accompanying it, DroidKin is able to detect
similarity among applications under various levels of obfuscation. Droid-
Kin performs analysis pinpointing similarities between applications and
identifying their relationships. We validated our approach on a set of
manually prepared Android applications and evaluated it with datasets
made available by three recent studies: The Android Malware Genome
project, Drebin, DroidAnalytics. This data sets showed that several rela-
tions exists between the samples. Finally, we performed a large-scale
study of over 8,000 Android applications from Google play and Virus
Total service.

Keywords: Android · Malware · Similarity

1 Introduction

An appearance of a new Android platform and its popularity has resulted in
a sharp rise in the number of reported vulnerabilities and consequently in the
number of threats. This unprecedented growth has swiftly attracted an attention
of a security community resulting in a number of security solutions for malware
detection, response and analysis.

The lack of suitable datasets has quickly proved to be the major hindrance for
research efforts in the field. To remedy the situation a number of studies ventured
to generate several malware data sets [13,16,36], some of which quickly became
benchmarks for malware analysis and evaluation.

There are generally two criteria that are considered for inclusion of a malware
sample into a data set: uniqueness of a sample and its ability to represent a
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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family of interest. Traditionally cryptographic hash values have served as unique
identifiers (i.e., fingerprints) of malware samples. MD5 and SHA have been the
most common hash functions usually employed for this purpose. In spite of
their wide spread implementation, the use of hash values has been seen as very
restrictive mostly due to its inability to allow insignificant sample modifications.
Such modifications often come from application of various obfuscation techniques
varying from simple repackaging to encryption that change the form of a malware
sample (i.e., binary) while retaining the same functionality.

Detection of mobile app repackaging, as well as general detection malware
apps have been extensively studied in the last several years. RiskRanger [20],
DroidRanger [37], Drebin [7], DroidScope [31] are among general detection meth-
ods that are able to pinpoint malicious behavior either through a dynamic analy-
sis of app’s run-time behavior or through its static analysis. Although many of
these methods offer good accuracy and scalability, all of them focus on producing
a binary output generally indicating whether an app is benign or not. Several
studies gave a deeper insight into possibly malicious apps introducing methods
for detecting repackaged applications [22,35]. Similarly to the general detection
techniques, these methods are designed to indicate whether an app is repackaged
or not.

Unfortunately, these methods are not sufficient for comprehensive evaluation
and study of mobile malware for several reasons. Evaluating classification accu-
racy of any malware detection method requires a clear understanding of the data,
i.e., samples’ distribution across families, diversity of samples, their uniqueness
and existence of duplications. Such transparent view of data is essential for accu-
rate assessment of the method’s performance. For example, this allows to under-
stand whether current method performance is due to the majority of samples
being descendants of the same original instance and essentially being identical in
nature or it reflects method’s true detection ability in a real world environment.

The ability to prepare such data set for evaluation requires the existence of
suitable lightweight methods equipped with means to give a multidimensional
view of sample’s maliciousness. Most of the existing methods, however, do not
indicate the reasoning behind their decisions, and similarly do not identify the
relations between malicious apps [7]. They also employ sophisticated heuris-
tics incurring run-time overhead [37] or requiring hand-crafted detection pat-
terns [20], thus confining method’s application to a certain (not always available)
deployment environment.

In this paper, we develop a lightweight approach to identify Android apps
similarity and infer their relationship to each other. More specifically, the pro-
posed approach called DroidKin allows us to detect the existence of similarity
between apps and understanding its nature, i.e., how and why the apps are
related. This assessment is based on a static analysis of a set of characteristics
gathered from application’s package. To avoid pair-wise analysis of all apps, our
approach employs a filtering stage that guides the similarity assessment process
to only a subset of related applications. This efficiency enables a deeper analysis
of selected apps providing more insight into their similarity relationships.
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We validate our approach on a set of manually prepared Android applications.
We further evaluate it with datasets made available by three recent studies:
The Android Malware Genome project, Drebin, DroidAnalytics and performed
a large-scale study of over 8,000 Android application from Google market and
Virus Total repository.

The rest of the paper discusses the related works in Sect. 2, presents the
details of the proposed approach in Sect. 4, and validation and evaluation results
in Sects. 5 and 6. Section 8 concludes the paper.

2 Related Work

The past decade has been marked with extensive research in the area of mobile
security. A broad study looking at a variety of mobile technologies (e.g., GSM,
Bluetooth), their vulnerabilities, attacks, and the corresponding detection
approaches was conducted by Polla et al. [23]. More focused studies survey-
ing characteristics of mobile malware were offered by Alzahrani et al. [6], Felt
et al. [16] and Zhou and Jiang [36].

With the recent burst of research interest in the area of Android device
security, there have been a number studies focusing on mobile malware detec-
tion. These studies include detection of privacy violations during apps’ runtime
(TaintDroid [14], MockDroid [9], VetDroid [32]), unsafe permission usage [8,12,
15,27,29] and security policy violations [24,28]. All these techniques are designed
for detection of specific violations that deem an app to be abnormal and poten-
tially malicious. As such they are unsuitable for more general analysis of mobile
apps for their uniqueness (e.g., detection of legitimate repackaged apps or mali-
cious apps not requesting suspicious permissions).

There were a number of general studies offering methods for malicious app
detection. These methods can be broadly divided into those focused on the
detection prior to app installation (e.g., market analysis) and those that monitor
app behavior directly on a mobile device.

Among the studies in the first group are RiskRanger [20], DroidRanger [37],
DroidScope [31] that dynamically monitor mobile apps behavior in an isolated
environment collecting detailed information that might indicate maliciousness of
a sample. Similarly, DroidMat [30] and DroidAPIMiner [5] looked at identifica-
tion of malicious apps using machine leaning techniques. Since these techniques
are computationally expensive for a resource-constraint environment of a mobile
platform, they are mostly intended for an offline detection. A number of stud-
ies introduced lightweight approaches to malware detection to be applied on a
mobile device directly, among them is Drebin [7]. This approach employs static
analysis in combination with machine learning to detect suspicious patterns in
app behavior. Although Drebin aims to provide explainable results, it is able to
give insight into malware uniqueness.

With a recent wave of cloned applications, a number of studies looked at the
problem of apps similarity in mobile apps. A general overview of plagiarized apps
was given by Gibler et al. [19]. The majority of the existing methods look at the
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content of .dex files for app comparison. Juxtapp [21] evaluates code similar-
ity based k-grams opcodes extracted from selected packages of the disassembled
.dex file. The generated k-grams are hashed before they undergo a clustering pro-
cedure that groups similar apps together. Similarly, DroidMOSS [35] evaluates
app similarity based of fuzzy hashes constructed based on a series of opcodes.
Aside from opcodes other methods can be employed to fingerprint mobile apps.
For example, AnDarwin [10], DNADroid [11], and PiggyApp [34] employ Pro-
gram Dependance Graphs (PDG) that represent dependencies between code
statements/packages. Potharaju et al. [26] computes fingerprints using several
methods based on Abstract Syntax Tree (AST).

3 Background

An Android app is written in Java language and compiled into a .dex file that
can be run by Dalvik virtual machine on an Android platform. The apps are
packaged in an .apk file containing the executable .dex file; manifest.xml file
that describes the content of the package including the permissions information;
native code (optional) in form of executable or libraries that usually is called
from the .dex file; the file with a digital certificate authenticating an author;
and the resources that the app uses (e.g., image files, sounds). Each .apk file
is annotated with additional information, so called meta-data, such as the app
creation date and time, version, size, etc.

While the majority of the existing approaches are focusing their analysis on
the .dex file, there are a number of other factors that need to be considered.

First of all, the digital certification plays an important role in Android apps.
This is the only mechanism developed to attest the ownership of an app. The
certificates are self-signed, i.e., no certificate authority (CA) is required. While
the mechanism was originally meant to tie an author to an app, allowing a
legitimate owner to issue new apps and update older versions under the same
key, several problems have quickly surfaced. Through our preliminary analysis of
Android markets, we discovered that the authors (both legitimate and malicious)
tend to generate a new pair of private/public keys for each application. The value
of the self-certification is also undermined through an extensive use of public
keys made available for debugging purposes. Although these days the official
Google play market bans apps signed with these keys, other markets do not seem
to enforce this policy. Finally, the recently discovered master key vulnerability
opened a new window allowing attackers to inject malware into legitimate apps
without invalidating a digital certification [17]. These weaknesses challenge the
legitimacy of using digital certificates for app authorship identification. In this
light some of the methods designed to rely on the existence of the original app
(determined based on the certification) for detection of plagiarized applications
(e.g., [35]) require readjustment.

Another practice that have been gaining popularity in mobile apps is the use
of external code, i.e., an additional code that is loaded and executed at runtime
of an app [25]. This mechanism allows for the use of legitimate applications to
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load malicious functionality without requiring any modifications to the existing
legitimate code. As such the original bytecode remains intact allowing the app to
evade detection. Poeplau et al. [25] defined several techniques to load external
code on a device: with the help of class loaders that enable the extraction of
classes from files in arbitrary locations, through the package context that allows
for the access of resources of other apps, through the use of native code, with
the help of runtime method exec that gives access to a system shell, and through
less stealthy installation of additional .apk files requested by a main .apk file.

Obfuscation. Although code obfuscation prevails in desktop malware, mobile
malware obfuscation is gaining popularity in mobile devices. Potharaju et al. [26]
have defined two obfuscation levels: basic Level-1 obfuscation that includes
renaming and removal of unused identifiers (e.g., class, variable, methods), and
the more advanced Level-2 obfuscation that includes insertion of junk code.

Until now though the most common obfuscation method applied in practice
was Level-1 [26]. Obfuscation gained popularity partially due to the wide spread
of repackaged applications, as it allows effective prevention of piggybacking mali-
cious payload into original apps [36]. In this work we experiment with various
obfuscation methods and their impact on app similarity detection.

4 Approach Design

The architecture of our system is in many respects dictated by the nature of
work. Under the broader umbrella of similarity detection, we are focusing on
detecting the presence of similarity and understanding its nature, i.e., how and
why the apps are related. As such the proposed system encompasses three steps:
feature extraction, similarity assessment and relationship analysis (Fig. 1).

For each app requiring similarity analysis, the system derives relevant features
and forms vectors that serve as a basis in the similarity assessment. Based on
these feature vectors, potential candidates that might have some relations to a
given app are identified and scored. Once the similarity is established, the nature
of the relations between apps is derived as a combination of computed scores and
participating features. Note that due to a diversity of obfuscating techniques for
different apps different features may contribute to the presence and the extend

Fig. 1. The architecture of DroidKin
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of similarity. As a result the last step mainly focuses on examining all possible
relations between similar apps prioritizing them based on the type of features
involved.

4.1 Features

We extracted the following features that serve as unique characteristics of a given
app:

– Meta-information that accompanies each .apk file (META-INF directory) and
characterizes its content. These features can be broadly divided into two
groups: descriptive features that include certificate serial number, the hash
value (md5) for the .apk container and a .dex file (md5), and a list of internal
files’ names with corresponding hash values (md5); and numerical features
such as a number of internal .apk, .zip, java, .jar, images, libraries and binary
files found within a container .apk file; size of .apk and .dex files; number of
files in .apk file.

– N-grams characterizing the .dex file. In the literature, malware analysis is
typically conducted at bytecode and opcode levels. Opcodes are generally
beneficial in representing low-level semantics of the code. Since extracting
opcodes alone might abstract specific details describing a program control
transfer or an arithmetical operation, opcodes are often enhanced with the
corresponding operands. Bytecode is seen as the complete representation of
the code at low-level. As such we experimented with opcode n-gram (with and
without operands) and with bytecode n-grams.

The extracted features are abstracted in a feature vector composed of two
parts corresponding to meta-information features and n-grams respectively.

4.2 Similarity Assessment

The similarity between apps is assessed in two stages: filtering stage and the
similarity scoring stage.

Filtering. The primary goal of the filtering process is to reduce the number of
comparisons necessary to find the relationships between the analyzed app and
the apps which information is already stored in a database. Filtering is mostly
based on meta-data features guiding the analysis process to a reduced set of apps
which require similarity scoring. The flow of this process is presented in Fig. 2.

Similarity Scoring. Once the set of potentially related apps is identified, the pair-
wise similarity between a given app and this set is calculated using a variation
of a similarity measure, called Simplified Profile Intersection (SPI) proposed
by [18]. The metric was proposed for evaluation of source code author profiles
often limited in size and thus unable to offer a reliable estimate for distance
metrics based on frequency analysis. Given Simplified Profiles SPi and SPj for
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Fig. 2. Filtering process

authors i and j, the similarity distance, called Similarity Profile Intersection
SPI is the size of intersection between these profiles. Formally, the normalized
SPI is given as follows:

SPI =
|SPi

⋂
SPj |

max(|SPi|, |SPj |) (1)

In other words, the similarity between two apps is defined by the amount of
commonalties existing in their profiles. Thus, the larger the size of intersection,
the more similar two apps are.

In our context, we compute a normalized similarity distance between two
apps using the descriptive meta features, SPIf and the n-grams, SPIng. The
similarity between meta features is computed separately for hashes SPIfh and
file names SPIfn using formula (1). The resulting values are then combined
(with a preference to similarity of files’ content) as follows

SPIf = 60 × SPIfh + 40 × SPIfn (2)

Similarity profile intersection based on the n-gram vectors, SPIngn, is also
calculated using formula (1). In this case, SP is represented by an n-gram
frequency vector of an app. To generate these frequency vectors, each app is dis-
assembled/processed to extract unique opcodes, opcode/operand pairs or byte-
code. Let Op represent this sequence of opcodes, then SP = (fm)1≤m≤k, where
fm is the frequency (i.e., the number of occurrences) of opcode (or opcode/
operand pair, bytecode) om ∈ Op.

The resulting SPIf and SPIng values are used to establish a relationship
between a pair of apps.
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4.3 Relationships

One of the goals of this study is to give deeper insight into the nature of apps
similarity. To abstract the details while providing a better sense of related apps,
we introduce the following definitions that outline relations between apps (in
decreasing order of closeness):

– Twins: are the apps with almost identical content, but different hash of .apk
file. Typically these are repackaged applications. The difference in packaging
time or a lack of alignment results in different hash value.

– Siblings: have identical .dex file, but as opposed to twins they only have some
of resource files in common (not all of them). This scenario is common for
piggybacked apps that retain the same original code while adding malicious
functionality, for instance, by loading external code through resources.

– False siblings: are sibling apps that do not have many resources in common.
– Step siblings: are even more distant from the twins. These apps share the

majority of the .dex file and the majority of the resources indicating that
although the content is likely to be plagiarized the app introduces additional
functionality.

– False stepsiblings: are the apps that appear to be step siblings, but do not
share many of the resources.

– Cousins: are defined as distant relatives that do not share common content
with .dex file, they however, employ the majority of same resources.

The exact relationship between two apps is derived via a filtering process and
analysis of similarity values SPIf and SPIng. Through our preliminary exper-
iments, we identified several similarity thresholds that maintain high accuracy
while causing no false positives (Table 1).

Table 1. Relationships’ thresholds.

Twins: SPIng = 100% and SPIf > 95%
Siblings: SPIng = 100% and SPIf > 60%
False Siblings: SPIng = 100% and SPIf < 60%
Step siblings: SPIng > 60% and SPIf > 60%
False step siblings: SPIng > 60% and SPIf < 60%
Cousins: SPIng < 60% and SPIf > 60%

5 Validation

The lack of comprehensive datasets has been repeatedly emphasized as a signifi-
cant problem. Although several datasets were generated, the selection of samples
was mostly done on the basis of hash uniqueness. As a result, none of these exist-
ing sets can serve as a ‘ground truth’ data for our experimentation purposes. To
ensure a comprehensive evaluation of the proposed approach, we constructed a
validation dataset with known relations between apps.
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5.1 Data

For the validation dataset 72 unique Android apps were selected from differ-
ent sources. We manually selected one sample from each family of the Android
Malware Genome Project dataset [36], eight samples from the Android Malware
Virus Share package [2], nine samples from the Virus Total [3] and five sam-
ples from the official Google Play market. Their uniqueness was verified through
VirusTotal labeling and confirmed manually.

To investigate the impact of obfuscation on similarity detection, this set of
unique apps underwent the following transformations:

Modification of .dex file:

– Repackaging. Using apk tool, we unpack the .apk file, to the smali presentation
of the .dex file, then repackage the content back into an .apk file without
modifying the content. This transformation alters the timestamp of all files
and produces a new .dex file which results in step sibling relation between the
original and repackaged version of the app.

– Rerepackaging. Using the same apk tool, we unpack the already repackaged
file to the smali representation, and repackaged again. Similar to repackaging
this transformation produces step sibling relations.

– String url modifications. Common well known urls such as google.com,
bing.com, yahoo.com were kept intact, while the rest of the urls were replaced
with randomly generated strings. Such modification changes the content of
the .dex file producing step siblings.

– Junk code insertion. Using the apk tool, we unpack the .apk file to its smali
representation of the .dex file, then we modify the code adding junk random
code at the beginning of every public method. The junk code was designed to
not do anything, and therefore did not change the functionality of the app.
This transformation only affected the final .dex file, and therefore is expected
to produce step sibling or cousin relationships with the original app.

No modification of .dex file:

– File alignment to 4 and 8 bytes. zipalign utility [4] is commonly used to opti-
mize the application package, aligning uncompressed data to the specified
number of bytes. Although such alignment preserves both the functionality
and the content of the internal files, it alters the hash of the .apk container
file. Since alignment is a common process in Android app development, for
this transformation we employ repackaged apps rather than the originals that
are likely to be already aligned. We expect this transformation to produce
step sibling of the original app (4-byte alignment) and a twin version (8-byte
alignment).

– Icon change. Using the aapt tool [1], we replace the original icon.png. The
only alteration this transformation introduces is the change of the image file
and its timestamp. Thus we consider two versions: a pure image file change
(that results in a twin app) and file replacement followed by a repackaging of
the original app that produces a step sibling.
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– Junk files’ addition. Throughout our preliminary experiments we noticed the
presence of otherwise identical apps with different configuration files. Although
not identical, such apps have high similarity. As such using the aapt tool [1], we
recreate this scenario by adding to an original app package randomly selected
from other unrelated samples configuration or database files. This process
does not require repackaging, thus if by chance a file with the same name is
present in the original app, it will be updated to a new version with different
content. This transformation is expected to result in twin or sibling relations
with the original app.

The final set of 792 samples included original 72 apps, their altered versions
transformed using the methods described above and their combinations. The
resulting apps were randomly signed. This signing process resulted in updated
timestamps and author information in meta-data1.

5.2 Feature Assessment

The selection of the optimal size n has been the subject of many studies. The
inherit trade-off in choosing the size of ngrams is between the accuracy of detec-
tion and the size of frequency vector which ultimately affects the performance
of the approach. As such, for a given integer n, the number of components of a
program’s FV is equal to the nth power of the instruction set of the platform
or to the nth power of the number of distinct opcodes within the program, if we
ignore those opcodes which do not occur in the program.

To determine the optimal size of ngrams, we experimented with n ranging
from 2 to 8. Figure 3 shows the performance of our approach measured as sim-
ilarity detection accuracy for various parameters. For feature assessment only,
similarity detection accuracy was estimated based on n-gram analysis of .dex
files, i.e., two apps were labeled as similar if the similarity of their n-grams have
exceeded a threshold of 60 % (although we experimented with stricter thresholds,
this value provided the best overall result).

As the results show, the best performance was achieved with 2-gram opcodes.
We also experimented with various amounts of the most frequent n-grams in the
range from 100 to 5000 value comparing that performance with the effect of
retaining all available n-grams. Since 2-gram opcodes’ accuracy varied insignifi-
cantly (between 99.8 % and 99.6 %) for all size of frequency vectors, we chose to
employ a more memory-efficient variant: 100 most frequent bigrams.

5.3 Validation Results

The results of experiments with the validation data set are presented in Table 2a
and b. As the results show DroidKin mostly confirmed the presence of expected
relations in the data. Out of 72 apps, 14 were found to carry the same digital
certificate. On the surface this might suggest that all these apps came from the
1 The dataset can be requested at http://www.iscx.ca/android-data-set.

http://www.iscx.ca/android-data-set
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Fig. 3. Similarity accuracy detection for various parameters

Table 2. The similarity results for Droidkin validation dataset.

(a) Original base set.

Total apps 72 100.00%
No. of unique certificates 58 80.55%
Twins 0 0.00%
Siblings 0 0.00%
False siblings 0 0.00%
Step-siblings 0 0.00%
Cousins 2 2.50%
False step-siblings 0 0.00%

(b) Complete set with transformed apps.

Total apps 792 100.00%
No. of unique certificates 185 23.35%
Twins 168 21.21%
Siblings 167 21.09%
False siblings 46 5.81%
Step-siblings 575 72.70%
Cousins 22 2.78%
False step-siblings 177 22.35%

same author. However, upon manual inspection it was revealed that all of them
used public keys made available for debugging purposes. Two apps were found
to be cousins indicating that they share a large portion of resource files. A closer
look showed that apps in these two cases came from the same categories and
therefore share approximately 40 % of code and employ identical image files.
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Among the introduced transformations, 73 apps were found to be unrelated,
which means 72 original apps were detected correctly and one app was falsely
labeled as unrelated. This false negative appeared from the original app with
the smallest code size that was significantly altered with an insertion of junk
code. The rest of the apps showed close relations with the corresponding original
samples. No false relationships to original samples that did not serve as a basis
in transformations were detected.

Table 3. The similarity results.

(a) The Malware Genome dataset.

Total apps 1260 100.00%
No. of unique certificates 134 10.63%
Representative apps 879 69.76%
Unique apps 379 29.61%
Unique apps with unique
certificates

86 6.72%

Twins 290 23.02%
Siblings 91 7.22%
False Siblings 2 0.16%
Step-siblings 584 45.63%
Cousins 607 47.42%
False step-siblings 117 9.14%

(b) Drebin dataset.

Total apps 5560 100.00%
No. of unique certificates 963 17.32%
Representative apps 3549 63.83%
Unique apps 1441 25.92%
Unique apps with unique
certificates

681 12.25%

Twins 519 9.33%
Siblings 1332 23.96%
False Siblings 136 2.45%
Step-siblings 2365 42.54%
Cousins 2214 39.82%
False step-siblings 1386 24.93%

6 Experimentation

To further evaluate the performance of the proposed approach we employed three
datasets made available by the recent studies: The Malware Genome project [36],
Drebin [7], DroidAnalytics [33], and we performed a large-scale study of 5,066
Android applications retrieved from Google Play market and 3,116 .apk files
retrieved from Virus Total.

The results of similarity analysis are given in Tables 3a, b, and 4a. Among
the analyzed apps, only 30 % are unique apps, i.e., apps that do not exhibit
any ties to the rest of the apps. It should be noted that a large portion of them
is signed by repetitive keys, indicating that the majority of malware apps come
from the same authors.

Among discovered relationships, a significant percent of relatives (30–36 %)
constitute twins and siblings/false siblings, i.e., apps with identical .dex files.
This is an important issue for an evaluation of malware detection methods, as in
essence these samples are repetitive and can be recognized with the same set of
features. The example of distribution of samples within these categories is shown
in Table 4b. Although DroidKin is not designed to detected malware apps, this
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Table 4. The similarity results.

(a) Droidanalytics dataset

Total apps 2044 100.00%
No. of unique certificates 232 11.35%
Representative apps 1173 57.39%
Unique apps 773 37.82%
Unique apps with unique
certificates

229 11.20%

Twins 545 26.66%
Siblings 211 10.32%
False Siblings 0 0.00%
Step-siblings 960 46.97%
Cousins 703 34.39%
False step-siblings 172 8.41%

(b) Top families in twins/siblings categories
(Drebin dataset).

Count Malware family
Twins
10 GinMaster
11 Geinimi
13 Adrd
17 FakeInstaller
27 SendPay
41 Kmin
79 DroidKungFu
90 FakeDoc
166 BaseBridge
Siblings
10 Boxer
20 Kmin
33 Imlog
34 BaseBridge
38 DroidKungFu
402 Opfake
704 FakeInstaller

result shows its ability to reliably group apps based on their content and link
them to known malware.

While close relations between samples within one family are expected, cross
ties raise many questions. As such, close examination of relations within the
Malware Genome data set revealed 197 apps (15.63 %) that showed relationships
with other families in addition to close ties within the family. Among them only
15 apps (1.19 %) had relationships only with other families. Although this might
be a result of mislabeling, manual inspection revealed a simple code reuse.

Similarly, in the Drebin dataset, we found 249 (4.47 %) apps related to other
families as well as their own, and 62 apps (1.11 %) with exclusive ties to other
families. For example, Anserbot was found to be a cousin of BaseBridge apps
(i.e., share the majority of resources), while BaseBridge samples did not exhibit
any similarity to the other families.

Based on the analysis of the discovered relationships, we believe that the
original sets can be reduced to a smaller set of representative apps that are
sufficient to infer the existing similarity among the apps. For example, Drebin
data set (5560 apps) can be effectively represented by a set of 3549 apps, which
offers a significant reduction and consequently efficiency in analysis.

Using Drebin results as a base, we analyzed a set of apps retrieved from the
Google play market and Virus Total. The results are presented in Table 5. While
the apps detected in Google market were found to be related to adware, the
majority of samples from VirusTotal (155 out of 206) are relatives of LinuxLotoor
exploit.
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Table 5. DroidKin similarity analysis.

No. of apps Relations

5066 Google Play market

2 Step siblings

9 False step siblings

(7 different malware labels)

3166 VirusTotal

206 Relations found

(18 different malware labels)

6.1 Performance

The experiments were conducted on an Intel Core i7 @3.40 Ghz and 16 GB of
RAM. The processing of one application through the initial stage of features
extraction on average took only a few milisec. The most ’expensive’ parts of
analysis are the filtering stage, wich determined a set of candidate apps and
similarity scoring of related apps. For example, the complete processing of one
unique app (including scoring of 1165 related apps) took 2.57 s. In total process-
ing of 1280 apps from the Malware Genome data set took 29 min, processing the
Drebin dataset (5560 apps) took 64 min, and DroidAnalytics’ data took 10 min.

While the performance of DroidKin at these stages highly depends on the
amount of feature vectors stored in the database and the uniqueness of a given
app, we provide a relative analysis of the number of pair-wise similarity scoring
performed on The Malware Genome project’ and Drebin data sets. As Fig. 4
shows, the largest number of similarity calculations performed for related apps
was roughly 600 in Malware Genome data set and 1200 in Drebin dataset, which
is considerably less than it would be required for exhaustive pair-wise compar-
isons.

Fig. 4. The run-time performance of DroidKin
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In the previous experiments, we performed a single thread analysis, but for
the large-scale experiment, we employed in parallel seven threads to speed up
the computations, resulting in less than 2.5 h to completely process all apps.

7 Limitations

Although DroidKin is mainly designed to provide an insight for researchers on
relations between various apps and guide them through selection and analysis
of samples for further study, it showed good detection capabilities. Relying on
the analysis of relations between samples, DroidKin effectively groups similar
samples without requiring ‘expensive’ training or predefined detection patterns.
This functionality can be enhanced by attributing a group of related apps to
specific malware by providing a set of malware samples.

Since DroidKin leverages the application’s content, the quality of analysis
depends on the size of app. While small code and resource alterations are mag-
nified through the similarity assessment, major changes remain hidden behind
a small app size. This is mainly attributed to parasite injections, when benign
applications are equipped with a payload in a form of extra classes or files that
is in proportion constitute a large chunk of an app’s code.

8 Conclusion

With the popularity of the Android platform, the amount of research studies on
Android security is rapidly increasing. The value of a study is often dictated by
the quality of data employed for the experiments. In this context understanding
of relationships behind a diverse set of malware samples becomes an essential
step.

In this work we presented DroidKin, a tool for assessing the similarity of
Android applications. As opposed to the previous approaches, DroidKin offers
deeper insight into app relations, indicating the presence of potential similarity
and describing how and why the apps are related. In summary, our experimental
results showed:

– DroidKin is effective in identifying similarity among apps: as our experiments
show DroidKin is able to pinpoint the existing relations correctly introducing
a very small misclassification error (1 false positive and 1 false negative).

– Although it is not designed for malware detection, DroidKin can be potentially
leveraged to indicate malicious apps through the analysis of relatives of known
malware samples.

– DroidKin is efficient : as opposed to the existing techniques DroidKin can
incrementally process apps without training period or predefined detection
patterns.

– DroidKin is robust : with only 64 min to process 5560 apps DroidKin presents
a good alternative for malware detection tools (e.g., Drebin requires 1 day to
process 100,000 apps).
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Abstract. Recently, the security problem of Android applications has been
increasingly prominent. In this paper, we propose a novel approach to detect
malicious behaviors in loosely-coupled repackaged Android apps. We extract
and modify the FCG of an app based on its loosely-coupled property, and divide
it into several sub-graphs to identify primary module and its related modules. In
each remaining sub-graph, API calls are added and sensitive API paths are
extracted for dynamic instrumentation on top of APIMonitor. The experiments
are conducted with 438 malwares and 1529 apps from two third-party Android
markets. Through manual verification, we confirm 5 kinds of malwares in 16
apps detected by our approach. And the detection rate of collected malwares
reaches 99.77 %. The reduction rate of monitored functions reaches 42.95 %
with 98.79 % of malicious functions being successfully saved. The time spent
on static and dynamic analysis is 74.9 s and 16.0 s on average.

Keywords: Android security � Malicious behaviors � Payloads filtering �
Dynamic instrumentation

1 Introduction

The development and popularity of Android mobile system is extremely rapid in recent
years due to its open-source nature and the popularity of its app markets. However,
malwares against Android devices has been increasingly rampant at the same time. The
huge damage caused by Android malwares should never be tolerated. The Symantec
Security Report [3] shows the security risks on Android app markets in the first half of
2013 and points out that the volume of malwares has reached almost 275,000 in June
2013 and its 2013 Annual Report indicates Android system is the number one target for
malware.

For this end, it is imperative to design a precise and efficient approach to detect
malicious behaviors in Android apps. We propose HunterDroid, an efficient and
accurate system for detecting malicious behaviors in repackaged Android applications
based on following key assumptions. Firstly, most malicious payloads are unnaturally
added to legitimate apps so, they are usually loosely coupled with legitimate modules.
Secondly, primary module of a legitimate app can be identified for it generally consists
of activities decorated with certain APIs to enhance user interactions.
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To evaluate the effectiveness of our approach, we conduct experiments with 438
malwares from Zhou [5] and 1529 apps from two third-party Android markets in
China. Through manual verification, we confirm that 5 different kinds of malwares in
16 apps have been detected by our approach. Besides, the detection rate of collected
malwares reaches 99.77 %. And the accuracy of primary module identification reached
94.14 %, 98.79 % of function nodes in malicious payloads are saved, and we reduce the
number of function nodes to be monitored during instrumentation by 42.95 %. As for
performance, the execution time caused in static analysis phase and dynamic instru-
mentation phase is 74.9 and 16.0 s on average respectively, which is reasonably
negligible for an offline analysis tool.

In this paper, we make the following major contributions.

• We propose a novel payloads filtering scheme to detect malicious behaviors trig-
gered by malicious payloads in repackaged Android apps.

• We instrument our samples on top of APIMonitor to cover complete sensitive API
paths in malicious payloads.

• We implement a prototype system, HunterDroid, and conduct extensive experi-
ments to evaluate its effectiveness and accuracy with 438 real-world malwares and
1529 apps from two third-party Android markets. And we confirm 5 kinds of
malwares in 16 samples.

The rest of the paper is organized as follows. In Sect. 2 we describe our motivation
and the overall architecture of our prototype system. In Sect. 3 we give detailed system
design. After that, we present our evaluation results in Sect. 4. And we discuss the
limitations and further work of our system in Sect. 5. Then we present the related work
in Sect. 6 and finally we conclude in Sect. 7.

2 Motivation and Overall Architecture

As Zhou et al. indicates 86 % of their collected malware samples are repackaged
versions of legitimate applications by adding malicious payloads, our system is
designed to be an automated tool combined with static and dynamic analysis
approaches to identify malicious behaviors in repackaged Android apps.

2.1 Motivation

There are three major analysis approaches to detect malicious behaviors in Android
apps: static analysis, dynamic analysis and the combination of static analysis and
dynamic analysis.

Static analysis focuses on finding certain malicious patterns based on pre-defined
signatures. If pre-defined signatures are not complete, it is difficult to discover
new-born malwares. Therefore, we propose to identify legitimate payloads in an app
and analyze the remaining payloads further, so we need to distinguish legitimate
payloads from non-legitimate payloads.

As for dynamic analysis, it is common to instrument Android system or app
samples and then execute samples to analyze runtime behaviors. Google offers several
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useful testing and debugging tools for monitoring and automatic execution like
Monkeyrunner, Monkey, Logcat, there are still some problems to solve. For example,
though Logcat is designed for recording runtime logs, it is hard for analysts to quickly
recognize malicious behaviors from massive logs without setting proper filtering rules.
Therefore, we think it is time-saving to filter unrelated function calls during static
analysis before instrumentation.

2.2 Overall Architecture

Our prototype system, HunterDroid, detects malicious behaviors in repackaged
Android apps in four steps, and the overall architecture is shown in Fig. 1.

Preparation. We obtain FCG with the help of Androguard and modify it based on the
loosely-coupled property in repackaged Android apps.

Sensitive API Path Extraction. We obtain sub-graphs in FCG by DFS and identify
the primary module based on that most legitimate apps consist of activities that invoke
its decoration APIs for user interactions. As for its related modules, they are filtered by
computing the correlation values between them and the primary module. Finally we
add API calls to each remaining module and extract sensitive API paths.

Instrumentation and Repackaging. This step is on top of APIMonitor, the major
extension focuses on instrumenting sensitive API paths that contain both API nodes
and self-defined function nodes rather than merely API nodes.

Dynamic Detection and Log Analysis. Each instrumented and repackaged appli-
cation is executed by Monkeyrunner which is feed with an automatically built script
based on distinct application manifest file.

3 System Design

In this section, we present detailed system design, including the modification of ori-
ginal FCG, sensitive API paths extraction, instrumentation and repackaging, and
dynamic detection.

Fig. 1. Overall Architecture of HunterDroid
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3.1 Modification of Original FCG

Though legitimate payloads and malicious payloads are loosely-coupled, they may be
linked by few edges. Meanwhile, app developers tend to arrange package hierarchy
according to the functions of different classes and malicious payloads often contain
packages with relatively unrelated names. Based on these facts, we design a tactics to
divide loosely-coupled sub-graphs into separated parts, as is shown in formula 1, where
X and Y represent the function node set in a package, Edge(X, Y) represents the set that
contains edge starts with X and ends with Y, pkg_sim(X, Y) is simply defined as
follows. For instance, the similarity of “android.content” and “android.net.http” is
1/min(2,3) = 0.5, 2 and 3 represent the level number of “android.content” and “android.
net.http”, and 1 is the shared “android”. We remove edges across X and Y if their CV
value is less than T.

A proper threshold T should be able to separate the primary module and malicious
modules without producing too many modules. By counting the number of separated
modules with different thresholds, we find this tactics works well when T is 0.3.

CV X,Yð Þ ¼ max
Edge X,Yð Þj j

Yj j ;
Edge Y,Xð Þj j

Xj j
� �

� P ð1Þ

3.2 Sensitive API Path Extraction

Definition 1. A sensitive API path is a call path in FCG that starts from a function
node that is never called by any other function node and ends with an API that could be
used maliciously.

Firstly, we formally define sensitive API path as Definition 1 and identify the
primary module based on the following assumption: legitimate apps tend to enhance
user interaction with activity decoration API which is presented in Definition 2, while
malicious payloads tend to hide their behaviors by few or even no user interactions.
Therefore, we build a list containing activity decoration APIs. By ranking the occur-
rences of these APIs in each module we identify the primary module.

Definition 2. An activity decoration API is a member method of an activity whose
function is to modify the appearance of this activity by setting views.

Then we compute the correlation value between remaining modules and primary
module by counting the elements belonging to primary class set occur in other mod-
ules. If exist, these modules are treated as related modules and filtered as well. Finally,
we extend the remaining modules with APIs and extract sensitive API paths. Figure 2
depicts the whole payloads filtering process in static analysis.

3.3 Instrumentation and Repackaging

Samples are instrumented and repackaged based on APIMonitor, which is a promising
tool by instrumenting an app with a user-defined API list and an android database. The
major extension can be divided into following two aspects.
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Firstly, we notice that some sensitive APIs are widely used among all kinds of
payloads. As APIMonitor does not consider where and how a sensitive API is invoked
during instrumentation, we replace the API list with our sensitive API path file, only
APIs invoked in remaining payloads are instrumented.

Secondly, we instrument self-defined functions to better understand the malicious
working mechanism. However, the way APIMonitor instruments functions is to replace
the original method with an exterior stub method in a newly-defined stub class, so we
need to change the access type of original methods from private to public to ensure
correct instrumentation.

3.4 Dynamic Detection

Our dynamic detection is executed by a distinct component-based python script for
each sample, which enumerates all activities, receivers and services as well as their
intent-filter information declared in manifest file.

In the script, Monkeyrunner starts activities with “android.intent.action.MAIN”
first. Then it starts all remaining components by sending various fake events such as
SMS_RECEIVED, BATTERY_CHANGED and BOOT_COMPLETED according to
their own intent-filters. Each activity is exercised randomly by Monkey with user
inputs and events. Finally, runtime logs are saved for further manual analysis.

4 Evaluation

In this section, we present our evaluation on the effectiveness and accuracy of Hun-
terDroid. All experiments are conducted on an Intel Core machine with a four-core
CPU 3.40 GHz CPU and 24 GB memory. a real Android device (HTC T329T with OS

Fig. 2. The whole payloads filtering algorithm

458 L. Zhang et al.



version 4.1.1) is used to conduct dynamic detection. We first evaluate its effectiveness
and accuracy in recognizing malicious payloads. Next, we measure the time perfor-
mance of HunterDroid. Finally, we present its detection results.

4.1 Evaluation

The malware dataset consists of 438 malwares from Zhou [4] and 1529 samples
crawled from two third-party Android markets in July 2013, we name them Eoe and
Mumayi respectively.

To evaluate the accuracy of identifying primary modules, we manually verify each
sample in Malware and 200 apps randomly sampled from Eoe and Mumayi. Our result
shows 18 out of 638 samples are not correctly identified. So the accuracy of identifying
primary module is 94.14 %.

Next, we evaluate the effects of our filtering payloads scheme, we define FN as the
percentage of malicious function nodes in filtered function nodes and FP as the per-
centage of legitimate function nodes in monitored function nodes. Our experiment
results show that the FN of Malware reaches as low as 1.21 %, i.e. 98.79 % of
malicious function nodes are correctly saved for instrumentation. And the detection rate
of malwares reached 99.77 %, there is only one sample from DroidKungFu3 is not
detected for its malicious payloads is incorrectly labeled as primary module. As for FP,
it reaches 18.22 %, as there are lots of callback nodes, which will not be instrumented
anyway, so the real FP is lower.

In terms of effectiveness, we calculate the reduction rate of function node number,
call edge and sub-graph after payload filtering process. Figure 3 depicts the difference
between number of function nodes before and after filtering payloads process for all
samples. The average reduction rate of function nodes is 42.95 %, which means almost
half of function nodes are filtered before being instrumented.

In order to evaluate the performance of our system, we record the execution time of
static filtering scheme and dynamic instrumentation for each app. The time cost in
filtering process is 74.9 s on average, and the average time for instrumentation is 16.0 s.
Therefore, the total time to get a newly instrumented app is around 91 s on average,
which is reasonably acceptable for an offline tool. As for detection results, by

Fig. 3. The reduction rate of function nodes for all families or categories, x axis is the family id
or category id, y axis is the number of function node
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inspecting the saved logs, we manually confirm 5 kinds of malwares in 16 apps, which
further indicates the effectiveness of HunterDroid.

5 Discussion and Future Work

In this work, we focus on identifying malicious payloads in repackaged Android
applications and our prototype system HunterDroid demonstrates some promising
results. Now we discuss some limitations and improvements in future work.

Due to the incomplete list of decoration APIs, there are about 5 % apps that we
cannot identify their primary modules. So in the future work, we will extend the
decoration API list with APIs provided by other classes related to user interaction, like
classes in “android.view”.

In addition, we resort to manually analyzing logs to discover malicious behaviors.
As the log files are well-formatted in the future work, we will resort to some clustering
and classification algorithms to better understand malicious behaviors in Android apps.

6 Related Work

HunterDroid is an approach to detect malicious behaviors in repackaged Android apps.
In the field of Android malware detection, approaches can be divided into three aspects:
dynamic detection, static detection and a combination of static and dynamic
approaches.

Dynamic detection approach tracks the sensitive behaviors at runtime by instru-
menting app code or Android system [1]. Enck et al. [7] proposed a dynamic taint
tracking analysis system to track multiple sources of sensitive data and analyze at
runtime within Android virtualized execution environment. Zhang [2] et al. imple-
mented VetDroid for reconstructing sensitive behaviors from a permission usage
perspective.

On the other hand, static detection approaches mainly focus on identifying the pos-
sible malicious behaviors with the help of reachability analysis and program slicing [1].
Grace et al. [11] developed RiskRanker aimed at root exploits detection, permission
analysis and data-flow analysis. Crussel et al. [8] proposed AnDarwin to detect similar
Android applications based on semantic information of app codes.

As for Approaches combined with static analysis and dynamic detection, Yang
et al. [1] proposed AppIntent to identify whether data transmission is by user intention
or not by building and executing GUI manipulation sequences generated by
event-space constraint graph. Zheng et al. [19] proposed SmartDroid to reveal UI-based
event trigger condition based on function call graph and activity switch paths.

Our approach belongs to the third aspect. It takes the loosely-coupled property of
repackaged apps into account to extract malicious payloads in form of sensitive API
paths before instrumentation. Compared with RiskRanker [10] and DroidRanger [9],
we pay attention to the features legitimate apps share commonly and treat the
remaining payloads as suspicious rather than detecting malwares by pre-defining
malicious symptoms. In comparison with Andarwin [8] and Peng [4], our focus is to

460 L. Zhang et al.



detect malicious behaviors rather than cluster static features or calculate risk scores, and
leave users to make decision.

7 Conclusion

In this paper, we present HunterDroid, a system for detecting malicious behaviors in
repackaged Android applications. Based on our key assumptions that added payloads
are mostly loosely-coupled with original codes and legitimate apps are commonly well
decorated to enhance user interactions, we propose an efficient payload filtering scheme
to locate malicious payloads for dynamic instrumentation. We have implemented a
prototype HunterDoid and evaluated its effectiveness and accuracy with 438 real-world
malwares and 1529 apps from third-party markets. Our experiments successfully verify
5 kinds of malwares in 16 apps in the wild detected by HunterDroid. And the detection
rate of our malware dataset reaches 99.77 %. The reduction rate of monitored functions
reaches 42.95 % with 98.79 % of malicious functions being successfully saved. The
static analysis only takes 74.9 s and 16.0 s for instrumentation for each app on average.
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Abstract. Software Defined Networking (SDN) provides a new network
solution by decoupling control plane and data plane from the closed
and proprietary implementations of traditional network devices. With
its promisingly advanced architecture, SDN represents the future devel-
opment trend of network. In its typical structure, collaborative interac-
tion between one controller and multiple switches forms a centralized
network topology. As playing a key role in this network architecture, the
controller in SDN is very vulnerable to single point of failure. What is
worse, the emergence of Blind DDoS attack against SDN’s special struc-
ture increases its risks. To address this challenge, we introduce a Moving
Target Defense(MTD) system to defend Blind DDoS attack. The app-
roach adopts a multi-controller pool to solve the saturation problem, and
it can dynamically shift controllers connecting to switches according to
the density of flood flow. By randomly delaying the scanning packets
and filtering the flood with route-map, this MTD system can effectively
resist the Blind DDoS attack and protect the availability and reliability
of SDN.

Keywords: Blind DDoS attack · Software defined networking · Moving
target defense

1 Introduction

The core idea of software defined networking (SDN) [1] is to abstract and decou-
ple control plane and data forwarding plane, making network management and
expansion more flexible [6,8]. The structure of SDN is divided into centralized
controller and forwarding device (e.g. switch). The controller is responsible for
management, control and configuration of network devices using standard proto-
col such as OpenFlow [2,3]. It also issues flow rules generated thereof to switches
through secure channel. Switches maintain flow table and forward network data
according to flow rules. Switches receive querying instructions sent by the con-
troller to report the network state. The OpenFlow technology is currently one
of successful implementation under the SDN conception. In addition, Protocol
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Oblivious Forwarding (POF) [25] architecture put forward by Huawei is also a
material implementation of SDN idea.

In whatever implementation of SDN, the controller always plays the core
function in SDN system and is the most vulnerable part and the weakest link
in the whole SDN system security chains. Single point of failure is a very com-
mon security threat to centralized model controller [7]. It may be induced by a
number of factors including physical damage, communication line failure, and
a variety of attacks. SDN controller is an assembly of control surfaces. There
are many instructions between the controller and switches. In case the switch
receives initial packets, it will forward these packets to the controller. In a com-
plex network environment, either bandwidth resource or computing resource of
the controller may turn out to be bottleneck of the SDN system. Especially in
OF ONLY mode, switches are heavily dependent on the controller, so the entire
network will be paralyzed when the controller is in breakdown.

Besides the above-mentioned shortcomings, SDN controller is also vulnerable
to DDoS attacks. Traditionally, an attacker may directly launch DDoS attack
on any network host on condition that the attacker has detected its IP address
[26]. When it comes to SDN, there is an extra way to launch DDoS attack.
The attacker sends a large number of packets to the switch that cannot be
processed, which all will be forwarded to the controller by the switch according to
OpenFlow protocol. When packets from multiple switches flood to the controller,
the controller’s processing competence will degrade. More seriously, denial of
service will occur as a result. For this kind of attack, the attacker needs not know
the IP address of the controller. In other words, the attacker can launch DDoS
blindly. Thus it is a specific new DDoS attack on SDN architecture and we call
it Blind DDoS. As composed a closed system with the controller and switches,
SDN can avoid Direct DDoS attack by hiding information of its topology. This
paper focuses on Blind DDoS attack and its defense.

In order to solve the above mentioned problem, this paper proposes a multi-
ple controllers security method based on Moving Target Defense (MTD), which
adopts a strategy to run a number of dynamically extensible controllers in SDN
architecture. Even in the scanning stage, the packets’ response time will also be
changed dynamically by MTD strategy. The remaining sections of this paper
is organized as the followings: Sect. 2 is an analysis of the principles of Blind
DDoS attack including its generation process, harms and characteristics; Sect. 3
presents a novel MTD model as well as a multi-controller MTD system based
on this model. In Sect. 4, the MTD defense approach is tested and evaluated. In
Sect. 5, we will talk about the limitations of our approach and give the recom-
mendations to improve them in the future works. Section 6 provides a compar-
ative analysis between this paper and related researches. In the last section, a
summary of this paper is presented.

2 Blind DDoS Attack

Taking OpenFlow for example, SDN switch forwards packets in accordance with
flow table rules, where the fresh packet or abnormal packet that cannot be
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processed in the flow table will be sent to the controller. In this sense, there
is no need for an attacker to catch the IP address or location of the controller
through scanning before launching an attack. Since as long as the attacker sends
some specific attack packets and abnormal packets to SDN networks, all switches
will automatically forward these packets to their controller.

Comparing with traditional DDoS attacks [5] which need to exploit victim
host’s IP addresses at first, this kind of DDoS on SDN controller is blind. So
we define it as Blind DDoS attack. Paralysis of the controller as a result of data
flow eruption sent to SDN network marks successful implementation of a Blind
DDoS attack. Figure 1 gives the general view of Blind DDoS attack.

Fig. 1. Blind DDoS attack on SDN controller

Every flow entry in the flow table of a switch contains three items, i.e.
rule, action and stats. The attacker can make a new or abnormal packet from
carefully selected IP, Port, MAC etc. and then send it to the switch. Generally,
there is no rule in the switch matching the fresh packet sent for the first time.
The packet will be uploaded to the controller, and then controller will broadcast
this packet’s information to all network interfaces to find it’s route. Once getting
the route, the controller will issue corresponding rules to the switch’ flow table.
Otherwise, the controller will make a rule to switches to drop these packets.
This whole response process will take a long time. Then the attacker will send
a group of packets with the same information for a second time to the switch, if
the response time is much shorter than that of the first time, the network can
be determined to be SDN architecture. An attacker may launch Blind DDoS
directly on the network which claims to be SDN network architecture or which
the attacker has already known is SDN system by scanning (Fig. 1).

Blind DDoS attack is a serious threat to the security of SDN. On the one
hand, a great quantity of attack data flow may cause the flow table of the
switch to be full of rubbish rules, resulting in performance degradation or flow
table entries overflow. On the other hand, Blind DDoS attack will cause network
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Fig. 2. Flow entry structure in SDN switch [2]

paralysis by causing the controller work improperly. Traditional network security
methods provide no effective defense against this kind of attacks. Therefore, it
needs development of new defense method to reduce its threat to SDN.

3 Moving Target Defense Method Against Blind DDoS

Existing defense systems including Firewall, IDS, IPS, WAF etc. all adopt static
passive defense technologies, as a result, they are unable to provide dynamic
security defense effectively against unknown or instantaneous attacks on the
network. Most defense systems are devoted to pursue perfect detection and to
prevent all attacks. However, it is clearly not rational because there are endless
zero-day vulnerability like Openssl′ Heartbleed on April 9, 2014. Therefore,
network security researchers are actively exploring new security model [17–19],
in pursuit of steady balance between security and defense costs. Moving target
defense is one of these achievements which is completely different from previous
Detection-based network security model.

3.1 Concept of MTD

As a fresh kind of defense, moving target defense does not seek to establish a
perfect system to fight against all attacks. In practice, the idea of moving target
defense is constantly diversing or changing the target to reduce the chances
of vulnerability exposure, which will increase the attack difficulty and costs of
the attacker. In essence, moving target defense technology realizes protection of
objects by moving them.

In information attack and defense scenarios, the moving target defense sys-
tem consists of method, channel, data and other resources. In [24], attack surface
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is defined by means of formal description and used as the main reference for mod-
eling of moving target defense. Attack surface is made up of method, channel,
data and other resources that may be exploited by the attackers. Attack sur-
face’s features include IP address, ports, identity of the host, program language
and data, etc. A moving target defense can be modeled using an attack sur-
face together with different shifting strategies. Moving target defense may be
divided into defenses at network layer [20], application layer, software layer [21],
system layer and other layers corresponding to layers of the attack surface fea-
tures. When automatically shifting the system’s attack surface by changing one
or more features, the target becomes unpredictable for the attackers. Constant
changing attributes will increase attack difficulty and costs for the attackers. It
will effectively reduce the chances of vulnerability exposure as well as the chances
of being attacked and increase flexibility of the system.

However, attack surface only describes static properties of the target system,
while fails to define or describe how the attack surface shift, the space of each
property to shift or the shift frequency. It neither takes the overall characteristics
of target system nor confederates the attackers. Thus, current MTD model based
on attack surface is far from perfect.

3.2 A Novel MTD Model

Mandhata et al. [24] proposed a concept of system attack surface and gave its
formal definition as the followings.

Definition 1. The environment of system s, Es =< U,D, T >, wherein U is
the user, D is data storage and T is systems other than s in the set of global
system S, i.e., T = S/{s}.
Definition 2. As a specified system s and its environment Es, the system’s
attack surface of s includes <MEs , CEs , IEs >, wherein MEs is a set of inlets
and outlets of the system s, CEs is a set of channels of system s and IEs is a
set of untrusted data entry of system s.

According to the definition of system attack surface, reduction in the number
of features of attack surfaces can enhance the security of system s. In a MTD sys-
tem based on attack surface in the premise of keeping system service unchanged,
the number of features is not reduced, rather, attack surface is shifted. Elements
in every feature set in system attack surface are replaced so as to increase the
difficulty for the attackers to guess the properties of these elements being used,
consequently making it difficult for them to implement attacks.

In essence, moving target defense makes it difficult for the attackers to launch
attacks exploiting the attack surfaces by means of constantly changing them.
Therefore, randomization of the features’ elements or attack surface shifting
strategy is the key point of moving target defense model building. Hoverer, the
MTD model built by shifting attack surfaces of the system has many defects,
including mainly the following aspects:
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(A). Although system attack surfaces have defined three sets, i.e. M, C, I, etc.,
and each set contains a plurality of elements, alternative variables for each ele-
ment are not given, namely the shifting space for elements are not defined.
(B). The shift frequencies for each set or element are not specified for attack
surface shifting strategy.
(C). The type of system s is not considered, though s may be a fully open
system (such as web service), fully closed system (such as hosts in IPSec VPN)
or a semi-open and semi-closed hybrid system.
(D). The attacker’s actions and policies are not considered.

To solve the above problems, this paper presents a novel MTD model, which is
the basis for design of SDN defense system against Blind DDoS attack proposed
in the following parts of this paper.

Definition 3. We propose a novel MTD model which has 3 tuple,
The New MTD: < S<N,R,T>, A<Ga>,D<Gd,Fd> >, wherein,

S<N,R,T> is a target system, A<Ga> is an attacker, D<Gd,Fd> is a defender;
N = {n1, n2, ..., ni}is the attack surface of system S,while ni is the elements

of attack surface;
R = {r(n1), r(n2), ..., r(ni)} is shift space for the elements ni;
T = {O,C,H} is three types of a system, where O represents full open system,

C represents fully closed system and H represents semi-open and semi-closed
hybrid system. l Ga = {ga(1), ga(2), ..., ga(i)}is a set of attack strategies of A;

Gd = {gd(1), gd(2), ..., gd(i)}is a set of defend strategies of D;
F d = {fd(1), fd(2), ..., fd(i)|fd(i) → gd(i)}is the shift frequency of every

strategy;

Below is a case study of MTD Model, taking defense against Blind DDoS
attack on SDN for an example.

SDN is a semi-open and semi-closed hybrid system, where the switch is open
to the attacker and the user, and the controller is closed and invisible to the
attacker and the network user.

For a closed system, legitimate users may access it by authorization and
authentication, thus shift frequency for features of MTD model in it are not

Table 1. MTD Model in SDN

Feature Values

N · {n1=direct I/O with switch, n1 = indirect I/O with controller}
R · {r(n1)=packets received by switch, r(n2) = available IP of controller}
T · {H|(Attacker − Switch) → Open, (Attacker − Controller) → Closed}
Ga · {ga(1)=SDN-Scan, ga(2) = Blind-Flood}
Gd · {gd(1)=randomly delay packets, gd(2) = randomly select controller}
F d · {fd(1), fd(2)|fd(1) → gd(1), fd(2) → gd(2)}
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required to be too high, rather, it is proper as long as it can prevent force attacks.
In an open system, as a large number of legitimate users and attackers mixed
together are hard to be distinguished or granted authorization, and there is a
possibility of distributed force guess in a short period, the elements of the attack
surface has to shift every interaction. In a semi-open and semi-closed hybrid
system as SDN, the two principles of closed system and open system mentioned
above should be applied together. In a SDN system, the switch is open for an
attacker while the controller is closed. When the attacker tries to launch a scan-
ning attack based on response time difference, the switch may randomly delay
the transmission and feedback time of the packets which match the flow table
rules to achieve MTD, confusing information received by the attacker. Packet-
delaying operation requires applying on each packet (e.g. fd(1) in Table 1). For
the purpose of defending Blind DDoS attacks, as the controllers are closed, their
shift frequencies (e.g. fd(2) in Table 1) are not required to be too high, whereas
the shift space shall be large enough to prevent statistical attacks.

3.3 Implementation

MTD system proposed herein comprises the following components: a controller-
pool consists of a number of controllers, MTD strategy manager, Flood-Filtering
equipment based on route-map rules and SDN switches. Its architecture figure
is as Fig. 3.

The controller-pool maintains multiple controllers, which can be physical
machines or virtual machines. One controller which working as online is set to
master model and all other controllers which working as offline are set to equal
model. Generally, only one controller is online while other controllers are offline.
In case the controller online has detected the number of packets which can not
be routed beyond the default threshold, it will notify MTD strategy manager to
start a number of controllers from offline to online.

MTD strategy manager is responsible for monitoring online controller’s band-
width and load. When alarming of the controller is trigged by Blind DDoS attack
data flow, MTD strategy manager will shift multiple offline controllers to online
status and assign appropriate IP addresses to them. And MTD strategy can
change the controller’s role between master and equal by sending Role−Change
messages to the switch. The controller initially online will issue to the switches
a series of configuration instructions for defense of attacks. When Blind DDoS
attacks stop, the number of online controllers should be drop.

MTD strategy manager will send two instruction to switches when there
is Blind DDoS attack. One defense configuration instruction received by the
switches is setting last rule in the flow table as default so as to forward all pack-
ets which do not match flow table rules to Flood-Filtering equipment rather
than report them to the controller. We adopt Bloom Filter [28] method in
Flood-Filtering equipment to improve the matching speed. The other defense
configuration instruction is to randomly select a new controller for communica-
tion by sending Role-Change messages to the switch.
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Fig. 3. The architecture of MTD

In addition to filtering common protocol vulnerability attacks, Flood-Filtering
equipment also maintains all network’s routing information and verify the valid-
ity of packets’ destination IP to filter malicious forged packets of Blind DDoS
attack. MTD strategy will continue to update the route-map rules from the
controllers online and the route-map rules will be maintained for a long time.

4 Experiment and Evaluation

In the experiment, we adopt OpenvSwitch serveing as the switch, Floodlight
[14] as SDN controller and PC with route-map matching software as Flood-
Filtering device, all of which installed on X86 Pc with Intel(R) Core(TM)2 Duo
CPU 2.40 Ghz, 2 GB RAM memory and CentOS 6.3. A windows server2003 with
Apache Tomcat is used as a web service. IXIA equipment is used for generation
of attack data flow and background flow. MTD manager is applied on controllers
(Fig. 4).

Blind DDoS attack simulation is divided into two stages, where at the first
stage, the attacker launches scanning attacks on network to confirm whether it is
a SDN and at the second stage, the attacker sends flood packets of Blind DDoS
to a SDN system.
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Fig. 4. Examination topology

4.1 Attack Stage I

Here we define FirstPacket and LastPacket which will be used in follow sec-
tions. In SDN, first several packets can not be routed by swithes because there
are no rules to match these fresh packets. So the response time will be longer
than the following packets. In our experiment, the number of these ping packets
ranges from 1 to 9, with median 5. We use FirstPacket to stand for one of
these initial packets and LastPacket to stand for one of following packets. The
response time of FirstPacket is t1 and that of LastPacket is t2.

At the stage of scanning attack, whether it is a SDN network is mainly judged
by the time difference between the network’s response times to the packet sent
for the first time t1 and the same kind packet sent for the second time t2.
In traditional Network, t1 is nearly equals to t2 as showing in Table 2. But in

Table 2. Scan packets response time in traditional network (ms)

No 1 2 3 4 5 6 7 8 9 10 11 12

FirstPacket 0.989 0.975 1.04 1.054 0.868 0.861 1.017 1.019 1.06 1.07 1.023 0.908

LastPacket 0.982 1.025 0.654 1.08 0.703 1.281 0.804 0.948 0.953 1.019 0.671 1.018

Table 3. Scan packets response time in SDN (ms)

No 1 2 3 4 5 6 7 8 9 10 11 12

FirstPacket 4.46 5.67 5.86 4.05 4.05 3.57 4.05 3.52 4.17 4.08 3.9 3.77

LastPacket 1.069 1.17 1.015 0.771 1.04 0.959 0.804 0.984 0.957 1.083 0.995 1.02
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Fig. 5. Scan attacks

SDN, there are huge differences of the response time between FirstPacket and
LastPacket as showing in Table 3.

Figure 5 shows the Scan Attacks result with slow rate of ping to the host of
web service. For the purpose of combating scanning attack, MTD manager will
make up a MTD Random Delay strategy (strategy gd(1) in Table 1.) according
to the test results, the controller will deliver that strategy to the switch for
the latter to randomly prolongs t2 for a period time when processing packets
matched with the flow table rules, so that (t1 − t2) will approach 0.

We define Dt as the response time difference of FirstPacket and LastPacket:

Dt =
{
dt(i)|dt(i) = t1(i) − t2(i), i > 0} (1)

It can be easily proved that Dt has relation with both the SDN structure and
the enter point, regardless of the client. So we give the MTD strategy of d1 in
MTD model showing in Table 1 with randomly delay packet as T2:

T2 =
{
t′2(i)|t′2(i) = t2(i) + Random[Min(Dt),Max(Dt)], i > 0} (2)

Figure 6 shows that the response times of packets were confused by the switch
with MTD randomly delay strategy. So it will be hard to make a difference
between SDN response time and traditional network response time.

4.2 Attack Stage II

In our simulation experiment, DDoS attack flow is generated by IXIA. Provided
that attack flow stays unchanged, the effect of DDoS attacks is correlated with
the following two factors, i.e. size of the data packet and randomness of the
destination IP. As shown in the first figure, the effects on performance of tar-
get host’s CPU by attacks through TCP Flood, UDP Flood, ICMP Flood and
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Fig. 6. Packets with MTD randomly delay

Flood without protocol in the same flow size and packet length are just slightly
different. For the same kind of protocol, under constant attack flow, experiments
with data packets in 64 Bytes and 1024 Bytes at the same rate 800 Mbps show
that data packets in smaller size are more hazardous to target host than those
in bigger size (Fig. 7).

If destination IP address of the attack data packet is matched with rules in
the flow entry of the switch, the attack flow will not be sent to the controller;
consequently, Blind DDoS attack will be ineffective. The following figure shows
the data packets received by the controller in conditions of Destination IP and
Random Destination IP DDoS attacks with packet size 1024 Bytes (Fig. 7).

In this experiment, the attack packets are generated by IXIA with randomly
target IP and with the packet size of 64 Bytes to strengthen the attack effect.
Assume that in IXIA simulation the attack flow sent to four switches respectively
are A1, A2, A3 and A4, and attack flow rate is 200 Mbps×4 (e.g. A1 = A2 =
A3 = A4 = 200 Mbps). Without MTD defense, there is only one single controller
at work and the total attack flow it receives is A1 + A2 + A3 + A4, which will
increase the controller’s CPU occupancy rate and degrade its performance. If
MTD defense is initiated, the controller will give flow lead order to the switch
for the latter to forward unmatched flow to Flood Filtering equipment and at
the same time, notify the switches to randomly select a new controller (strategy
gd(2) in Table 1.). At the beginning, there will be a time window for Flood Fil-
tering equipment collecting route-info from controllers to make route-map. Only
the hash of network address, not host address, will be used in route-map hash
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Fig. 7. Flood with different protocol

Fig. 8. DDoS flood to controller with static/random destination IP

table. When filtering the flood, the equipment just matches network address’
hash in route-map. In this case, average data flow the controller receives will
be decreased. According to statistical theory, the average attack flow for per
controller will be Fa, where D is the attack flow the Flood Filtering Equipment
drops.

Fa =
1
n

(
n∑

i=1

Ai − D) (3)

In ideal conditions, if Flood-Filtering equipment can filter most of the attack
flood, Fa is nearly equal to 0. Even if D is 0, which means Flood-Filtering
equipment is not working, the value of Fa will be much smaller than that in the
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case of single controller, which proves that MTD defense can effectively resist
the harm of Blind DDoS attacks.

Figure 9 shows that Blind DDoS attack can destroy a single controller and
increase its CPU occupancy rate to a very high value. And with MTD system,
the number of controllers will increase and the packets received by one controller
will decrease.

The experiment shows that MTD in SDN can effectively alleviate the damage
to the controllers and switches caused by Blind DDoS attacks.

4.3 Security Analysis

This paper defines SDN as an open-closed hybrid system, which provides an
important basis for the construction of an appropriate Moving Target Defense
model defending Blind DDoS attack. The core idea of this defense model is to
build a security defense system without detection, which can reduce risks of
Blind DDoS in three attack kill chains, e.g. Reconnaissance, Attack Launch
and Persistence.

Anti-Reconnaissance. Scanning plays an important role in the implementa-
tion of Blind DDoS attack. First, scanning can help identify whether the target
network is SDN since Blind DDoS attack are only effective to SDN. Second, in
order to make Blind DDoS attack more effective, scanning detection can be used
to determine the range of random destination IP to make sure that its chance
to match the flow entry is minimal.

Fig. 9. MTD against blind DDoS attack
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If the attacker wants to get useful information in reconnaissance, he should
be able to distinguish the response times of First-Packet and Last-Packet. As
moving target defense Randomly Delay strategy is adopted in our approach,
the response times in scanning attacks will be indistinguishable. Since in our
solution the Randomly Delay strategy is applied to every scanning packet, the
One − Time Padding method can be used to make a completely randomized
sequence and the response time of two packets is statistically indistinguishable.
In this way, it can effectively resist the effects of scanning attacks and play an
active role in defending subsequent Blind DDoS flood.

Anti-Attack Launch. The MTD architecture proposed by this paper adopts a
multi-controller pool, where the switch can shift the controllers randomly in the
event of Blind DDoS attack. On the one hand, multi-controller can effectively
alleviate the pressure of Blind DDoS attack on single controller; on the other
hand, mobility of multi-controller will also increase the difficulty for the attacker
to launch attacks directly on the controller, thus improves its security. Since the
network between controller and switches is closed to attackers, there are enough
IPv4 or IPv6 addresses for controllers. So the entropy of shifting IP space is big
enough.

In addition to multi-controller strategy, this paper also presents a lightweight
flood flow filtering method based on route map. Previous analysis shows that
Blind DDoS attack is a special means of attack which requires the attacker to
construct non-existent or random destination IP address in order to achieve best
attack effects. In this paper, we gather the history record of routing tables on the
controller as the basis of flood filtering, which is able to filter a large proportion
of Blind DDoS attack quickly.

Anti-Persistence. Although there is little possibility for Blind DDoS attacks
to install additional back-doors or access channels to keep persistence to the
controller, it’s not sure whether other kinds of attacks can do that, such as
Blind Injection attacks or Buffer Overflow attacks. Besides anti-Blind DDoS,
our MTD model with multi-controller can also reduce the persistence risks of
Blind Injection attacks or Buffer Overflow attacks by randomly changing and
refreshing controllers.

5 Discussion and Future Works

The above analysis demonstrates two key steps by which the attacker launches
Blind DDoS attack on SDN controller, where the first one is scanning detection
and the second one is sending of a large number of packets in abnormal struc-
ture, or attack packets with randomly destination IP address. In this paper, we
construct a defense model and system based on MTD to cope with the Blind
DDoS attack in SDN environment.

However, there are some limitations in this approach. On the one hand, in
order to resist the scanning SDN attack, a method of random packet transmission
delay is adopted, which will affect the normal data transfer performance. On the



Defending Blind DDoS Attack on SDN Based on Moving Target Defense 477

other hand, Flood-Filtering equipment filters attack flow based on the history
of routing information which requires prolonged keeping of routing tables, but
how to synchronize route tables in multi controllers is not considered herein.
By default, each controller will regenerate its own routing tables after shifted to
online mode. This may produce false negatives because the routing tables may
have expired.

To the first problem, we will research on sampling-delay method focusing
on the high-speed, large volume of data transmission, while maintaining the
low-speed transmission delay to every packet.

In order to solve the problem of false negatives to attacks, we will optimize
the updating mechanism of route table to reduce the possibility of attacks by
the attacker availing expired route tables. And another available scheme we can
adopt is to replace simple route querying with SOM [27] and we also plan to
adopt data mining methods to realize more accurate attack data stream filtering.

In spite that the model of randomly shifted controllers pool proposed in this
paper is able to solve the problems of time delay and false negatives to attacks,
it also has some limitations for it can only be used in Openflow1.3 and later
versions. How to realize synchronization of multi controllers non-dependent on
OpenFlow protocol version is worthy of further study.

6 Related Research

Although OpenFlow Specification White Paper [3] has proposed muti-controller
since version 1.3, its application is still not clearly defined. OpenFlow classifies
controllers into three kinds: master, slave and equal. However, as the config-
uration of mutli-controller is static and unable to be dynamically expanded,
its security is at stake. To solve this problem, we give our approach using con-
trollers pool instead of a single controller. Shin et al. [13] addresses the saturation
challenge by the SYN Cookie. At low-rate [15,16] of TCP DDoS attack, SYN
Cookie is a useful method to prevent flooding attack in SDN. But this approach
will take an expensive computing resource in switch. When attack flow becomes
very intensive, the switch’s performance will slow down until it cannot work any
longer. In our solution, we use MTD to select controllers randomly, so the flow
in switch can just do matching action as usual without being interrupted. SYN
flood [10,11] is just one type of those DDoS attacks. Any other flood, such as
UDP flood, ICMP flood, etc., also can destroy SDN controller. Our defense sys-
tem can resist more kinds of network protocol used by Blind DDoS attack. The
literature [4] presented a method of identifying SDN architecture by comparing
the system’s response times to the same packets sent for two times in succes-
sion. Where it is a SDN network, DDoS attacks may be launched to consume
resources of its control surfaces and forwarding surfaces.

Dixit et al. [22] proposed a solution named flexible distributed controller,
which can dynamically increase or reduce the number of controllers by moni-
toring the load of controllers. Jafarian et al. [23] adopted OpenFlow to realize
moving target defense. It differs from this paper in that, the object it defended is
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the host in SDN, while that of this paper is SDN controller. In paper [13], SYN
Cookie was adopted and the state of part SYN was represented by the switch to
reduce the impact of DDoS attacks. The defect of this method lies in that it is
just effective against SYN flood DDoS attacks and this solution requires changes
in the switches’ software programs and hardware programs, which is both costly
and scarcely extensible. Shin et al. [13] also proposed a MTD method to defend
brute force scanning. It can confuses the responding information to scanning
attacks and can increase difficulty to attackers. Whereas, it is ineffective to Blind
DDoS attacks and it is also ineffective to low rate scanning attack on SDN. The
Crossfire attack [9] is not Blind because it require know and carefully select the
links to the victims before launching attack.

The above literatures conduct researches on securities of hosts or controller
in SDN [12] from the perspectives of applying SDN to security or vice versa. Our
approach differs obviously from these methods in that we fist focus on defending
Blind DDoS attacks based on MTD without detection.

7 Conclusion

SDN is new network architecture with immature technology and plenty of secu-
rity risks. The security of SDN has become a focus of study in the field of
network security. As controller is the core of SDN, SDN architecture with a
single controller are vulnerable to performance bottlenecks and single point of
failure. In this paper, we first propose the concept of Blind DDoS attack which
is one of new threats to SDN. Then we analyze in details the principle of Blind
DDoS attack, attack simulation and its harm, and proposed an attack defense
method based on moving target defense. It proposes a novel MTD model to ren-
der the defender more effective and efficient. This method is advantageous as it
adopted multi-controller, which is dynamically extensible with changes in attack
flow. By randomly changing the packets delay in the switches, our approach can
resist scanning attacks. Experiment and security argumentation demonstrate
that this method is convenient to implement and can effectively defend Blind
DDoS attack.
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Abstract. The prevalence of smartphone makes it more important in
people’s business and personal life which also helps it to be a target of the
malware. In this paper, we introduce a new kind of attack called Func-
tion Escalation Attack which obtains functions locally or remotely. We
present three threat models: Steganography, Collusion Attack and Code
Abusing. A vulnerability in Android filesystem which is used in code
abusing threat model is exposed as well. Three proof-of-concept mali-
cious apps are implemented for each threat model. They could bypass
static analysis and dynamic analysis. The result shows that function esca-
lation attack could successfully perform malicious tasks such as taking
pictures, recording audio and so on.

Keywords: Android security · Dynamic code loading · Function
escalation attack · Vulnerability

1 Introduction

Modern smartphone is ubiquitous nowadays. It allows users to install apps from
online application(abbr. app) markets to enforce the smartphone’s capabilities.
As a result, it plays an important part in people’s business and personal life
which helps it to be a target of the malware writers.

This work focuses on the Android platform which is one of the most popular
mobile operating systems. Android OS is a permission-based framework that
each app must apply for necessary permissions to process its action. Furthermore,
according to the OS, each app is an individual user which means they can’t
access each other’s resources without appropriate permissions. However, this
framework is vulnerable to confused deputy and collusion attacks, etc. Although
several tools have been proposed to solve these problems, such as TaintDroid [1],
XmanDroid [2], CHEX [3], SCANDAL [4] etc. these tools are just mitigating the
damage and they can’t provide an absolute solution for these attacks.

In this paper, we demonstrate a new kind of attack which could bypass the
static and dynamic analysis for the apps. We name it Function Escalation Attack.
Function Escalation Attack is a kind of attack that malware application doesn’t
have any malicious behavior at first, but it could obtain these behaviors locally

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 481–497, 2015.
DOI: 10.1007/978-3-319-23829-6 33
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or remotely after being installed. Function Escalation Attack includes update-
attack studied in [5]. Update-attack gains behaviors remotely. Once installed,
the malicious app would trick the user to download the newest version from the
Internet and to install the newest one. In fact, the newest version has the mali-
cious codes. For Android, the newest version could be an intact APK or DEX
file or the library in *.so file, malformed file like .mp3 or something leveraging
the vulnerabilities in the system. However, this method could be prevented by
the Internet stream monitor [5]. In addition, Google has banned self-updating
Android apps in Google Market [6]. Each app could only be updated via Google.
This means that Google would review the updating parts to prohibit the afore-
mentioned attacks.

The attack depicted in this paper uses little Internet stream or none. Attack-
ers can release a benign-looking application without any harmful functions origi-
nally using this method. After being installed the app could acquire the functions
locally and perform malicious tasks.

The key idea behind this kind of attack is that, instead of obtaining the
vicious parts from the Internet, the malware can gain these from the resource
files, the APK files of the collusion evil apps or the benign apps with the use of
a vulnerability in Android. The vulnerability would be described in Sect. 3.3.

Our work consists of three threat models of function escalation attack:
Steganography, Collusion Attack and Code Abusing. We have implemented three
proof-of-concept malicious apps for each threat model. The result showed that
we could successfully gain the functions from other benign apps and perform
malicious tasks, such as taking pictures and recording audio. In summary, the
contributions of this paper are the following:

– We propose a new kind of attack called function escalation attack with three
threat models that the original app has no malicious functions in it but could
get the functions after being installed with the use of little Internet stream or
none.

– We are the first to reveal this vulnerability in Android that the bad policies
used in Android file system leads to that the APK files are exposed which
could be successfully abused.

– Three proof-of-concept apps are implemented on mobile devices running
Android. Defense methods are discussed.

The paper is organized as follows. Section 2 gives background on Android
security model. Java class loader and reflection are also described there. Section 3
presents the design and implementation of these three threat models. In Sect. 4,
two case studies are presented. Section 5 discusses the improvement of our attack
and the countermeasures against this attack. Section 6 presents related work. The
conclusion is in Sect. 7.

2 Background

Android is a mobile platform which implements the software stack on Linux.
This stack includes applications, application framework and libraries from top
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to bottom. Android application are written in Java and C/C++. Android has
its own Java virtual machine called Dalvik VM and each app runs within its
own Dalvik VM instance. In this section, Android security model and Java class
loader mechanism in Android are introduced. Java reflection is also depicted.

2.1 Android Security

In the following we briefly introduce the core security mechanisms of Android: (a)
Sandbox (b) Application permissions (c) Application sign and (d) File system
permissions. More details can be found in [7,8].

Sandbox: The data and code execution of each application in Android system
is isolated from each other which means that an app runs in its own sandbox,
including its native code. So if one app is exploited, the attacker could just be
inside the app’s sandbox without any damage to other apps. According to the
OS level, each app is a standalone user with a unique UID(User ID) that has
limited permissions. By default, apps cannot interact with each other without
proper permissions. Furthermore, two applications’ sandboxes could be merged
together only under the harsh condition that they have the shareUID in the
manifest XML file and the same signature. Beyond that, applications cannot
access others’ data and code.

Application Permissions: An Android application could only access a limited
system resources. If an app wants more resources, it has to request more permis-
sions. Permissions have four levels: normal, dangerous, signature and signature-
or-system. Details could be referred in [9].

Application Sign: Each application should be signed by the developers with
their self-certified key. This mechanism doesn’t provide any protection against
malware apps but can hold the developers’ identity. As mentioned above, appli-
cations should have the same signature to be put into the same sandbox with
the same UID.

File System Permissions: Android is a Linux-based system, so it has the
same file system permissions as Linux, that a user can’t access other users’
files casually. Generally speaking, a file has three permission types (Read, Write
and Execute) for a user, a group and other users. This kind of access policy
is discretionary access control (DAC). Android has been reinforced by SELinux
which provides mandatory access control policy (MAC) since version 4.3.

2.2 Java Class Loader and Reflection

Java Class Loader: A class loader is an object that is responsible for loading
classes. In Android, there are two main classes for this purpose: DexClassLoader
and PathClassLoader.
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DexClassLoader can load classes from JAR and APK files containing a
classes.dex entry. When initializing a DexClassLoader instance, developers must
specify the file names. Besides, the path of the optimized DEX file, namely
ODEX file, should be specified. For the sake of security, the ODEX file’s output
path ought to be a private space that cannot be overwritten by other apps [10].

PathClassLoader is slightly different from DexClassLoader for it just operates
on a list of files and directories in the local file system and cannot attempt to
load classes from the network. Android employs this class loader for the system
class loader and for its application class loaders.

Java Reflection: Java reflection makes Java programs so flexible that they
don’t need to know the names of the classes, methods etc. at compile time. It
can be used for observing and modifying program execution at runtime. When
Java program uses Java reflection, it is hard for the static program analysis tool
to get the semantics of this program. Namely it is an important open problem
in Android.

2.3 APK File Format and Android Parsing Method

Android application package file (APK) is the package file format used to dis-
tribute and install application software and middleware onto Google’s Android
operating system [11]. This kind of file format is actually Zip file format. There-
fore, it shares the same characteristics as Zip file format. Figure 1 depict APK
file format.

Fig. 1. APK file format

According to Android’s parsing methods, APK file’s central directory is firstly
acquired. After the central directory is extracted from the file, each file entry’s
offset is parsed subsequently. Thus, the file entry is obtained according to the
offset in the central directory. In other words, this offset could be modified and
some other things could be inserted between two file entries.
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2.4 Lua

Lua, a powerful, fast, lightweight, embeddable scripting language, has been
used in many industrial applications, with emphasis on embedded systems and
games [12]. Lua is the fastest language in the realm of interpreted scripting lan-
guages according to several benchmarks. Lua is a powerful but simple language
which provides meta-mechanisms for implementing features, instead of a host of
features directly in the language. Lua’s interpreter is always small.

LuaJ is a Lua interpreter based on the 5.2.x version of Lua implemented in
Java [13]. Contrasting with other Lua interpreters implemented in Java, LuaJ
shows a better performance. Besides, LuaJ is small-size and less than 400KB
after being compiled.

3 Design and Implementation

Before introducing the design and implementation of the three threat models,
we first discuss the overview of function escalation attack. Then three threat
models would be depicted. Each model has its own characteristics with different
techniques. The limitation of the three threat models is given at the end of this
section.

3.1 Overview

The key point of function escalation attack is how to obtain the functions which
are not in the app originally after the app has been installed in the Android
system. The high level idea of our attack is very intuitive. The malicious codes
that a malware could gain could only come from two ways, namely itself or other
apps. The other apps could be collusive or benign. Therefore, our three threat
models of function escalation attack are the three ways to acquire functions.
Figure 2 depicts the relationship of three threat models and function escalation
attack.

3.2 Steganography

Steganography is a technique of hiding confidential information within any
media [14]. In this scenario, the malicious code could be stored into the media
files such as pictures and audios. Specifically, PNG and Zip files are used to
illustrate this method in Android.

PNG, short for Portable Network Graphics, is a raster graphics file for-
mat that supports lossless data compression. Details could be found in RFC
2083 [15]. A PNG file’s magic number is ‘89504E470D0A1A0A’ followed by
chunks. A chunk includes four parts: length (four bytes), chunk type/name
(four bytes), chunk data (length bytes) and CRC (cyclic redundancy code/check-
sum; four bytes). The picture viewer would ignore the chunks that fail to meet
the specification. In this way, the malicious codes could be inserted there and
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Fig. 2. Overview of function escalation attack

Fig. 3. Insert malicious code into PNG file

extracted after the app is installed. Figure 3 illustrates the PNG file structure
where the malicious code could be placed.

Zip is an archive file format. As depicted in Sect. 2.3, Zip file could be inserted
into anything between file entries. After that, the offset in central directory
should be modified to fit the changes. Figure 4 shows the result of the process.

In Android system, apps often put the media files into the asset directory
which is easy to access. In order to achieve a better performance, malicious code’s
extracting function is implemented in the native code in a *.so file. When the app
has been installed, the code would be extracted into the app’s private directories
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Fig. 4. Insert malicious code into Zip file

at a proper time. Some more covert measures can be done: (a) Partition an entire
APK file into small parts. (b) Use stream cipher to encrypt the divided binary
parts to make them look like the carrier’s content.

After being installed into the system, the small parts would be extracted
from the PNG files, decrypted and assembled together in the app’s own private
directory.

3.3 Collusion Attack

Collusion attack means that except malicious app A, there is also a malicious
app B which provides the resources that app A needs. The resources could be
B’s codes or B’s media files where the malicious code is hidden. Moreover, app
A and app B can store different parts of the malicious code that even if some
malicious code has been analyzed, the other parts are also hidden. So the whole
picture is unbeknown. As app B can expose anything it has to shared place such
as SD card, this kind of attack is easier to realize but harder to detect. Figure 5
shows this process.

We implement two apps, namely app A and app B, serving as the invoking
app and the collusion app respectively. After being installed into the system, app
A would scan the system to find app B. If B is not found, A would do nothing
but recommend app B to the user. If B has been installed, A would look for
the unique directory in the SD card which stores the binary file extracted from
B. Having found the binary file, A copies the file into its own directory, deletes
the directory and sends an intent to B to tell it that A has acquired the binary
file. Then B would never extract the binary file again. The above mentioned
method uses file system as a kind of covert channel. More details about overt
and covert channel could be found in [16]. To be more elusive, we also separate
the binary file into several parts and store them in app A and B. After obtaining
the different parts in B, A would firstly assemble the binary file as above.
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Fig. 5. Collusion attack

3.4 Code Abusing

As mentioned in Sect. 1, Android has a vulnerability that could be used to carry
out an attack. The vulnerability is inappropriate access permission in the file
system. The directory “/system” could be read by anyone. In addition to that,
although the directory “/data/app” could be read by no one, the APK files in
this directory could be accessed by anyone. This inappropriate policy could be
abused. Any app could load the APK file and invoke the methods without any
restrictions.

To be more malicious, little Internet stream is needed. After being installed,
the malicious app could firstly gather the installed apps’ information and then
send them to the server. The information of one app consists of three parts:
the app’s name, version and APK hash value. The three parts are used for the
server to gain the exact app packages. After having obtained the app package, the
server would analyze it and then extract the methods that could be invoked by
the malicious app. Then the server implements the invoking Lua script and sends
it back to the malicious app in the target Android system. At present, the scripts
are all implemented manually. The malicious app has a Lua interpreter, i.e. LuaJ,
which executes all the scripts from the server. The details are illustrated in Fig. 6.

Reverse Engineering. After acquiring the exact target app APK file, the
server needs to analyze it to gain the invoking methods. Although the reverse
engineering of the Android application is a mature technique, how to locate the
target function path is a problem. At present, our methods are all manual: (a)
Use android-apktool [17], a tool for reverse engineering Android APK files, to
decompile the apps. (b) Use dexdeps [18], a tool that could dump a list of fields
and methods that a DEX file uses but does not define. (c) Locate the exact
methods and fields in the app’s smali source file with the permissions from the
AndroidManifest.xml file and the list of fields and methods gained by dexdeps.
(d) The last step is empirical, i.e. locate the function paths.
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Fig. 6. (a) Obtain the app’s three parts and send them to the sever; (b) The server
pushes the Lua script; (c) Invoke the target app’s methods

Lua and LuaJ. LuaJ is a small Lua interpreter implemented in Java. The
malicious app contains a modified LuaJ. As the original LuaJ cannot use Java
reflection to invoke the arbitrary APK file, it should be modified to have this
ability. The architecture of the invoking framework is depicted in Fig. 7. Listing 1
is a short example of the Lua script for the malicious app to invoke the target
APK file.

Listing 1. Lua Script example to invoke the target app’s methods to gain the contact

1 −− initiate context
2 luaContext = context:getApplicationContext()
3
4 −− bind class loader
5 classLoader = luajava.bindClass(‘‘ java.lang.ClassLoader’’)
6 cl = classLoader:getSystemClassLoader()
7
8 −− initiate the arguments
9 libpath = ‘‘/data/data/com.baidu.netdist/lib’’

10 dexpath = ‘‘/data/app/com.baidu.netdisk−2.apk’’
11 dexoutputpath = ‘‘/data/data/com.example.caochen/app dex’’
12 cr = luaContext:getContentResolver()
13
14 −− create an instance of DexClassLoader
15 dcl = luajava.newInstance(‘‘dalvik.system.DexClassLoader’’,dexpath,

dexoutputpath,libpath,cl)
16 −− load target class
17 readClass = dcl:loadClass (‘‘ com.baidu.pimcontact.contact.dao.contact.read

.ContactReadDao’’)
18 −− create an instance of class ContactReadDao
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19 objRead = luajava.new(readClass,cr)
20 −− get all the IDs of the contact
21 idList = objRead:getAllRawId()
22 −− get the contact list
23 contactList = objRead:getInfoByIds(idList)
24
25 contactClass = dcl:loadClass (‘‘ com.baidu.pimcontact.contact.bean.

contacts.Contact’’)
26 objcontact = luajava.new(contactClass)
27
28 −− get a piece of contact information
29 res = objcontact:build(contactList:get(1))
30
31 return res

Fig. 7. Architecture of the invoking framework

3.5 Limitation

Function escalation attacks heavily depends on Java Class Loader and Java
Reflection. Therefore, the limitation of Java Class Loader and Java Reflection
influences the attack. For example, DexClassLoader and PathClassLoader should
be used in Android API level 14 and above, i.e., Android 4.0 and above. It
imposes restriction on usable range of function escalation attack. However, the
devices of Android 4.0 and above occupy the most market share [19].

Steganography’s limitation is the host’s size. As the PNG picture is not
often large, the size of hidden code is restricted. As for the Zip file, there is no
limitation.
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Collusion attack needs two or more apps to be installed in the system, which
is usually hard to achieve in practice.

In theory, the third threat model could leverage any codes in the target
app. However, if the target app contains some hard-coded values in the target
methods, this threat model can do nothing. For example, BaiduMap [20], one
of the most popular map applications in China, has the permission to send
SMS. But the destination number is hard-coded. So it could not be abused to
send SMS.

Furthermore, code obfuscation techniques may increase the difficulty of ana-
lyzing apps. Moving key algorithms or secrets into native code also has the
similar effect.

4 Case Study

In this section, we depict two case studies. The first one is to take a picture
through YouDao dictionary application [21] which is the most popular dictio-
nary app in China. The second one is to eavesdrop through YouDao cloud note
application [22] which is the most popular note app in China.

4.1 Photograph

The version of YouDao dictionary app is 4.2.2 which was the newest as we wrote
this paper. This app has the function of optical character recognition (OCR).
So it has the permission to take pictures, i.e. Camera. Hence, what we want to
get from it is its camera function. We firstly analyze this app and get the target
class “CameraManager” that should be loaded. Then the starting and stopping
path is shown in Fig. 8. The starting path is the list of methods that should be
reflected to take a photo. The stopping path is the list of methods that should
be reflected to stop the camera.

In the proof-of-concept malicious app, we just take a picture when the sur-
faceview is first created. So We invoke method takePhoto() in surfaceCreated of
SurfaceHolder.Callback.

4.2 Eavesdrop

The version of YouDao cloud note app is 3.5.0 which was the newest as we
wrote this paper. This app could make the audio part of the notes, so it has
the function of recording audio. We firstly analyze this app and get the target
class “YNoteRecorder” that should be loaded. This app uses native code to
enhance its audio record, so its native code should be loaded together. To our
surprise, the native code in the directory “/data/data/(apps name)/lib” could
be read by everyone. This makes it easier to invoke the target app without
extracting the library from its APK file first. In this case, we use its static
method “loadLibSuccess” to ensure the success of loading the native code. Then
starting path is as follows: YNoteRecorder() =⇒ start(). The stopping path is
as follows: stopRecord().
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Fig. 8. Staring and stopping path of taking photo

5 Discussion

5.1 Improvement to the Attack

We believe the attack could be improved by the following measures.

Performance. As we analyzed lots of apps, we found that some apps could not
be invoked appropriately. For example, BaiduMap [20] put its SMS destination
number in hard code and a new number cannot be put in. So if the malware app
could copy the target app out, modify the target binary app and then load the
modified app, the performance would be better.

Universality. The attack we implemented in this paper just leverages the third-
part apps as Android puts third-party apps’ DEX file into the APK file. However,
native apps’ DEX files are outside its APK file and have been optimized to
ODEX files. If the malware app could translate the ODEX files into DEX files
and put them back into their APK files, function escalation attack would have
a wider use.

Stealthiness. The attack could bypass static analysis as Java reflection is an
open problem for it. At present, function escalation attack uses covert channel
to translate privacy or secret data to bypass some dynamic analysis. However,
when using dynamic analysis against it, the attack could be weak at the stealth of
gaining data. To further reduce detectability, the attack could take advantage of
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anti-detection techniques to detect the environment. If the malware has detected
that the environment is not the common environment in a mobile device, it would
not perform malicious tasks.

5.2 Defense

The main focus of this attack is how to gain function to archive malicious behav-
ior. In this section, several security extensions for Android are discussed. These
include dynamic analysis, static analysis and system enforcement. The last are
our proposed methods.

Kirin is an extension to Androids application installer [23,24]. It checks apps
permissions at install-time and denies the app that has the permission set violat-
ing a given system policy. As the malware app just invokes other apps function,
the permissions used to do the function should be applied first. Kirin more or
less could detect the permission violating. However, function escalation attack
could use covert channel without applying any permissions violating policies.

TaintDroid is an information flow tracking system which tracks sensitive data
in Android against privacy leakage [1]. It utilizes dynamic taint analysis within
Dalvik VM interpreter. TaintDroid mainly addresses the data flows, whereas
tracking the control flow will likely result in much higher performance penalties.
As a result, taintdroid cannot detect some behavior of this kind of attack.

VetDroid is a dynamic analysis platform for reconstructing sensitive behav-
iors in Android apps from a novel permission use perspective [25]. It combined
dynamically tracing of the permission requests for resources usage by applica-
tions, with tracking sensitive operations on the granted resources (using taint
tracking). This combination enables researchers to understand how applications
utilize the permissions to access sensitive system resources. Our attack must
apply for the permissions to perform the malicious tasks. However, VetDroid
is an off-line analysis platform. If the malicious could detect the environment
and does nothing vicious in the virtual machine, VetDroid cannot figure out
whether the app is malicious. Namely, the malware pretends to be benign when
the environment is abnormal.

CHEX is a static analysis method to automatically vet Android apps for com-
ponent hijacking vulnerabilities such as permission leakage, unauthorized data
access, intent spoofing, and etc. [3]. As we have described above, function esca-
lation attack is a kind of attack gaining functions dynamically. Static analysis
method could find nothing from the originally app.

SELinux on Android is used to apply control policies. It helps to control
access to application data and system logs, reduce the effects of malicious soft-
ware, and protect users from potential flaws in code on mobile devices [26].
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SELinux is reinforced in Android from 4.3. However, as Android 4.4 has been
released, we find that the file system permission vulnerability still exists. This
means our function escalation attack could be carried out in this newest Android
version.

Our Method: If the APK files’ access policy is changed so that others couldn’t
read them, all the resources and assets would not be accessed by the system.
Namely that’s not an option. As described above, function escalation attack
heavily depends on Java reflection. Thus, the class loader such as DexClass-
Loader and PathClassLoader is crucial. So, our method is to monitor the class
loader and to get the loaded codes in the real mobile devices. The acquired
codes would be pushed into the server to be analyzed and the user could know
the result from the server. This method depends on network heavily. However,
it could detect all the loading process and nested class loading.

6 Related Work

Reflection in Android. [27] and [28] have introduced a malware app in the
wild which uses reflection in its code. This app dynamically loads its child pack-
age ‘anserveb.db’ from the assets directory which is actually an external mali-
cious package. It is like our first threat model that hiding malicious codes in
the resource files. [29] analyzed unsafe and malicious dynamic code loading in
Android applications. It gave a kind of attack that loaded the malicious code
from the internet which could be prevented by [5] and is not in our scope. It
systematically analyzed the security implications of the ability to load additional
code in Android. However, it missed our attack.

Privilege-Escalation Attack. Android, a permission-based framework, is
shown to be vulnerable to application-level privilege escalation attacks [30–32]. A
malicious app could escalate granted permissions and bypass restrictions imposed
by its sandboxes. Our attack does not escalate the malware’s permissions at run-
time but obtain functions dynamically.

Component Hijacking. Android’s apps are component-based. Component
hijacking let an unauthorized app read and write data originally inside other apps
through their components [3]. This attack is similar with our attack. However,
our attack doesn’t depend on whether the target app’s component is exposed.

Sensor-Based Attack. Soundcomber [32], Accessory [33], TapLogger [34] and
PlaceRainder [35] are all sensor-based malware applications. Soundcomber is a
trojan with few and innocuous permissions, that can extract a small amount of
targeted private information from the audio sensor of the phone. It could steal
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sensitive data such as credit card and PIN number from both tone-and speech-
based interaction with phone menu systems using targeted profiles for context-
aware analysis. Accessory is password inference application using accelerometers.
This app has two collection modes: areas and character. After collecting the
accelerometer data, the app would do some data analysis which infers password
in the end. TapLogger is a trojan application inferring a user’s tap input to
a smartphone with its integrated motion sensors. This trojan application must
learn the motion change pattern of tap events when the user is interacting with
it. Then it could infer the user’s sensitive inputs with the pattern. PlaceRainder
is a trojan application through completely opportunistic use of the camera that
the attacker could reconstruct rick three-dimensional models of the smartphone
owner’s personal indoor spaces. Our function escalation attack do not use sensor
necessarily to archive malicious behavior. However, it could leverage the sensor-
based apps to improve the attack.

Control Flow Change. JekyII on iOS [36] is a malware application on iOS
which could defeat Apple’s mandatory app review and code signing mechanisms.
The key idea of it is to make the apps remotely exploitable and subsequently
introduce malicious control flows by rearranging signed code. Our function esca-
lation attack is also changing control flow by invoking the dynamic loading classes
which could bypass the static analysis for the app.

7 Conclusion

This paper introduces a new kind of attack – Function Escalation Attack in
Android. A malicious application doesn’t have any malicious behavior at first,
but it could obtain these behaviors locally or remotely after being installed.
Three detailed threat models are presented: Steganography, Collusion Attack
and Code Abusing. Steganography is a technique of hiding confidential infor-
mation within the malware self. Collusion attack means that except malicious
app A, there is also a malicious app B which provides the resources that app
A needs. Code abusing leverage a vulnerability in Android that the APK files
could be accessed by anyone, which means their codes and resources can be used
by Java reflection. Defense methods, such as dynamic analysis, static analysis
and system enforcement, are discussed. A new defense method is also proposed.
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Abstract. The relevance of malicious software targeting mobile devices
has been increasing in recent years. Smartphones, tablet computers or
embedded devices in general represent one of the most spread comput-
ing platform worldwide and an unsecure usage can cause unprecedented
damage to private users, companies and public institutions. To help in
identifying malicious software on mobile platforms, we propose RAM-
SES, an approach based on the static content stored as strings within an
application. First we extract the contents of strings, transforming appli-
cations into documents, then using information retrieval techniques, we
select the most relevant features based on frequency metrics, and finally
we classify applications using machine learning algorithms relying on
such features. We evaluate our methods using real datasets of Android
applications and show promising results for detection.

Keywords: Android · Malware · Static analysis · Detection · Security

1 Introduction

The Android Operating System (OS) officially released in November 2007 is pre-
dicted to represent between 60 % and 70 % of smartphone operating systems in
20161. It is also the main target of mobile threats for several reasons. Firstly,
its growth provides a vast set of potential victims. Secondly, restriction and ver-
ification on published applications in the official market (Google Play Store)
are limited and malicious applications have so still been published recently2.
Finally, many third party markets are prone to store malware. Therefore, detect-
ing Android malicious applications is of paramount importance. In this paper,
1 http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#
phone-shipments, accessed on 04/30/2014.

2 https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-
google-play/, accessed on 04/30/2014.
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RAMSES relies solely on considering constant strings, which are extracted from
the java code. Intuitively, malicious applications can differ from benign applica-
tions as they are performing different actions, like for instance accessing specific
system files or connecting to uncommon remote services. It has been shown that
communication channels used by popular applications (Facebook, Dropbox, etc.)
can be misused using specific forged connection strings (URLs) [11]. Once strings
are extracted, information retrieval methods are leveraged to compute metrics
to a selected set of meaningful strings. Moreover, a widely abused feature consist
in using the Reflexion API which allows the developer to call a method in spec-
ifying the name of the function as a String argument. We have also observed
that accessing certain files is specific of a malware as highlighted in Sect. 3.

The rest of the paper is organized as follows: Sect. 2 review the basics of
Android applications and related work. Section 3 explains the string based met-
rics which are used as input of decision algorithms in Sect. 4. Section 5 focuses
on the evaluation. Section 6 discusses the method by highlighting the positive
aspects and some limitations. Finally, Sect. 7 concludes the paper.

2 Background and Related Work

Android applications are coded in Java which are then compiled (class files)
and converted by dx to Dalvik executable files (dex files). The Dalvik Virtual
Machine (DVM for short) is then responsible for executing the bytecode on
mobile devices similarly to the common Java Virtual Machine (JVM) on a com-
puter. From a security perspective, each Android application is assigned to a
set of permissions which is defined by the developer and has to be granted by
the user when installing it. These can be abused in malicious applications since
many users do not understand properly them, as discussed in [4].

According to several anti-virus vendors3,4, the proportion of malicious appli-
cations for Android platform represents between 79 % to 99 % of reported mal-
icous applications among all the mobile platforms. The authors in [13] char-
acterize malware according how malicious payload is stored: either stored in
the application itself or remotely deployed upon a unwanted user interaction.
Complementary, malicious applications differ from their activations (bootstrap-
ping events). A common practice for malicious applications is to escalate the
privileges or to disrupt the proper functioning of the OS, to control the device
remotely by an attacker. A dataset of 1260 malicious applications is introduced in
[13]. Considering malware detection, Our approach differs from Andromaly [10]
which uses a dynamic approach by extracting features during execution (CPU
and Memory usage among others). Batyuk et al. used code disassembly to look
at malicious API use in [1]. A similar approach based on Permissions and Con-
trol Flow Graphs (CFG) is presented in [8]. Walldroid [6] aims at monitoring
3 http://thehackernews.com/2013/03/google-f-secure-can-say-that-anything.html
accessed on 04/30/2014.

4 http://www.securelist.com/en/analysis/204792255/Kaspersky Security Bulletin
2012 The overall statistics for 2012 accessed on 04/30/2014.

http://thehackernews.com/2013/03/google-f-secure-can-say-that-anything.html
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
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and then blocking communications with malicious servers. A close approach to
ours is [9] which also extracts strings but for application categorization (gaming,
multimedia, etc.). On the contrary, RiskRanker [5] opted for a static approach
aiming at extracting features from CFG to establish a risk score to a given appli-
cation. Hence, to the best of our knowledge, we are the first to propose a static
approach solely relying on string based metrics to identify Android malware.

3 Metrics

While a plethora of operands are available in Dalvik bytecode, only two of them
caught our attention to characterize an Android application as strings:

– const-string vAA, string@BBBB
– const-string/jumbo vAA, string@BBBBBBBB

string@ is the string index in a constant string pool and vAA is the destination
register where the string will be loaded. The string index can be coded on two
or four Bytes, this explains why there are two variants of this operand.

Because, we use strings to characterize applications, an application is repre-
sented as a document. We define formally a document as a list of Term. In this
paper we will consider Term and String as equivalent. This extraction process
is symbolized by the function StringV ariables which returns the list of terms
of an application:

StringV ariables : Application → List(String) (1)

Formally, this corresponds to a multiset, i.e. a set where the same element can
appear multiple times. Assuming the application ai, the corresponding document
is a multiset of m terms:

dai
= {t1, . . . , tm} � ∀ti, tj : ti �= tj (2)

From a set A = {a0, . . . , an}, containing n Applications, we define DA as a
multiset of all documents:

DA := {dai
: ∀ai ∈ A} (3)

For sake of clarity, we illustrate such definitions with a simple example. Sup-
posing a set A of two applications, each of them with three Term

A = {a1, a2}
StringV ariables(a1) = da1 =

[“system/etc”, “AndroidSDK”, “utf − 8”] (4)
StringV ariables(App2) = da2 =

[“phone”, “AndroidSDK”, “system.data.void”]
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So the outcome of transforming set A into a multiset of documents DA is:

DA = {
[“system/etc”, “AndroidSDK”, “utf − 8”], (5)
[“phone”, “AndroidSDK”, “system.data.void”]

}

3.1 Information Retrieval

For sake of clarity, all applications are now considered as documents. For extract-
ing relevant features, we derive common metrics for documents and terms [7].
Assuming a term t and a document d ∈ Da, the term frequency (tf ) of t is
defined as:

tf : Term × Document → �

tf(t,d) =
| {ti ∈ d : ti = t} |

|d|
(6)

It is important to note that we are using multisets and so the numerator repre-
sents the number of times the term t occurs in the list of terms retrieved from
ai. For complexity reason, the idea is to select a subset of representative terms.
Therefore, the rare terms are weighted stronger by using the inverse document
frequency (idf ) measure of the term t which is computed over a collection of
documents D:

idf : Term × {Document} → �

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d|
(7)

Finally, we obtain the weighted frequency also called term frequency-inverse
document frequency (tfidf ):

tfidf : Term × Document × {Document} → �
tfidf(t, d,D) = tf(t, d) × idf(t,D)

(8)

3.2 Most Relevant Terms

In theory, extracting all terms of all applications, and computing tf and tfidf
can be used to construct a complete set of features. However, this represents a
large number of terms which then entails a large overhead for further analysis.
In this paper, we extract the most relevant ones formalized as Topfk(a), which,
given an application a, returns the k’s-terms with the highest scores for a given
f (tf or tfidf ). For example, the corresponding recursive definition using tf is:
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Toptfk : Document → {Term}

Toptf1 (d) :=
{

t : max
t∈d

tf(t, d)
}

Toptfk (d) :=
{

t : max
t∈d

tf(t, d)
}

∪ Toptfk−1(d\{t})

(9)

In the last line of Eq. (9), the expression d\{t} implies removing all the occur-
rences of the term t from the document d. As expected, Toptfk is a set of terms
(not a multiset). By analogy, Toptfidfk is defined similarly but the collection of
documents is also taken as an input for evaluating idf :

Toptfidfk : Document × {Document} → {Term}

Toptfidf1 (d,D) =
{

t : max
t∈d

tfidf(t, d,D)
}

Toptfidfk (d,D) =
{

t : max
t∈d

tfidf(t, d,D)
}

∪ Toptfidfk−1 (d\{t})

(10)

Based on Eqs. (9) and (10), we retrieve the relevant by considering each term
that is present in any Topfk for a given set of documents D:

TopTermsfk : {Document} → {Term}
TopTermsfk(D) :=

⋃

diinD

Topfk(di) (11)

We obtain the two following sets TopTermstfk (D) and TopTermstfidfk (D).

4 Detection

Using the previous, we propose a scoring approach and a classifier based on
machine learning to detect maclware. The assumptions are identical:

– a set of B known benign applications represented as documents B =
{b0, . . . , bB}

– a set of M known malicious applications represented as documents M =
{m0, . . . , bM}

– a set of U applications to be classified by our approach as benign or malware:
U = {u0, . . . , uM}

4.1 Scoring

The scoring approach runs in two steps. The learning procedure extracts the most
relevant terms of benign and malicious applications using Eq. (11) and computes
associated metrics (tf or tfidf ). The testing stage looks for each of them in an
application to classify, ui ∈ U . For each term t belonging to TopTermstfk (B) and
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appearing in ui, the frequency of t is computed and added up over all documents
in B which so results in a score. The same is applied to M . Formally, the Score
function returns a numerical value from a given document and a collection of
documents:

Scoretfk : Document × {Document} → �

Scoretfk (q,D) :=
∑

t∈terms

∑

d∈D

tf(t, d)
|D|

where terms = {t : t ∈ q ∧ t ∈ TopTermstfk (D)}

(12)

Similarly, this can be also calculated with tfidf, Scoretfidfk (q,D), assuming
either B or M for calculating tfidf in the second line. Assuming a metric f ∈
tf, tfidf , ui is marked as malicious if Scorefk(ui,M) > Scorefk(ui, B), benign
otherwise.

4.2 Machine Learning

Due the nature of the addressed problem, using machine learning seems appro-
priate. We consider a single metric (tf or tfidf) and the associated selected terms
(TopTermstfk (D) and TopTermstfidfk (D)) to construct the feature set. There-
fore, for each application, we compute respectively either tf or tfidf of these
terms. While D represents a common dataset mixing malicious and benign appli-
cations, each instance is so labeled with a type of application during training
and the testing stage has to predict it.

Some machine learning algorithms have been selected such that major types
of approach are represented and also based on preliminary experiments: deci-
sion tree classifiers (Random Forest), rule-based approaches (JRip, PART ) and
function-based methods (SGD, LibLINEAR [12]).

5 Evaluation

In this section, only results based on tfidf are presented since tf results in an
accuracy at least lower than 20 points compared to tfidf. Except when mentioned,
k is set to 10. In addition, a 10 fold cross validation methodology has been
employed.

Our evaluation employs the malware dataset from [13] This dataset is a
recompilation of 1200 hand collected malware samples.

The market applications has been done by crawling and automatically
retrieving applications about 25000 Google Android Market, supposed to be
benign. We randomly sampled a subset to match the Malware dataset size.
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5.1 Metric Analysis

As a preliminary experiment, our metrics are evaluated without being used for
classification. We compute TopTermstfk (D) for both the malware dataset (D =
M) and the benign application (D = B) with k = 100. In addition, we compute
the intersection of top sets over all the couples of application of a given dataset
defined as:

ComTerms(D) =
⋃

di,dj∀di∈D,dj∈D,di!=dj

Toptfk (di)
⋂

Toptfk (dj)} (13)

The constructed set represents all the words which are potential candidates to
be representative of a specific type of applications (malicious or benign) because
being at least shared between two of them. We derive the following facts:

|TopTermstf100(M)| |TopTermstf100(B)| |ComTermstf100(M)| |ComTermstf100(B)|
3538 9671 102 945

Such results highlight that selected terms by our method are helpful to char-
acterize the type of applications. In particular, the top sets of malicious appli-
cations is highly smaller than for normal applications, even if the size of each
dataset is equal. Considering the number of shared terms between at least two
applications, the number is drastically decreased for both datasets but in differ-
ent orders of magnitude. For benign applications, the number is divided by about
ten while it is divided by more than 30 % for malware. On the first hand, this
means that malicious applications could be characterized by a smaller number
of strings. On the other hand, it is representative of the frequent use of common
strings in normal applications.

5.2 Scoring

The scoring approach computes two scores for each tested application: one based
on malicious applications, Scorefk(ui,M), one based on benign applications,
Scorefk(ui, B), both with k = 10. As shown in Table 1, there exist applications
(malware). However, the separation is not always evident as highlighted by an
accuracy around 65 %.

Table 1. Scoring classifier performance (TF-IDF) in percentage

Type Bening Malware

Scorefk(ui, B) > Scorefk(ui,M) 65 24

Scorefk(ui, B) < Scorefk(ui,M) 30 69

Scorefk(ui, B) = Scorefk(ui,M) 5 7
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(a) True Positive Rate (b) False Positive Rate

Fig. 1. Malware identification results (TF-IDF)

5.3 Machine Learning

As more advanced techniques, machine learning methods are expected to be
more accurate. We have first assessed the value of k for good classification
performances since k controls the number of terms (classification features) in
TopTermstfk (D) and TopTermstfidfk (D). So, it is highly important to reduce
the number of features and so k in order to limit the overhead of the classifi-
cation algorithm. True and false positive rates (TPR and FPR) are shown in
Fig. 1 when k varies. This highlights the viability of classifying classification
using only embedded strings. In particular, Random Forest [2] is the best clas-
sifier with the highest TPR with the lowest FPR. Naturally, when more terms
are used (increasing k), the performances are better but having k higher than
10 does not improve results significantly whereas k = 10 provides good results
with TPR = 0.97 and FPR = 0.025.

6 Discussion

Our method solely relies on strings easily extracted from applications. How-
ever, in case of armed malware or applications having encrypted or packed code
and data, this would limit its practicability. Nevertheless, most of application
markets dont accept these applications. It is also possible to imagine a mal-
ware developer including unused strings or dead code sections, in particular to
add strings which are usually present in benign applications. A solution will
be to consider only a malicious dataset during the training and apply one-class
classification. Furthermore, code deobfuscation is an unresolved problem by the
community, even assuming encrypted strings [3]. Such a technique could be used
as a preprocessing step of our method. Another option for the attacker is to
divide the malware into multiple programs. Even if it is not well widespread yet,
our method can easily cope with such an issue by merging the set of strings of
multiple applications.
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7 Conclusion

RAMSES is able to characterize Android malware based on constant strings of
the Dalvik bytecode and information retrieval techniques. Its main advantage is
that it can be used as a statical analysis tool without having to run suspicious
or untrusted applications. However, the proposed work could also be envisioned
as a first analysis to pre-select applications which need an in-depth analysis.
As a future work, we will move towards a collaborative approach based on user
feedback.

Acknowledgement. The Authors would like to thank the National Research Fund
of Luxembourg (FNR) for providing financial support trought CORE 2010 MOVE
Project.
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Abstract. With the rapid development of Android devices, mobile mal-
ware in Android becomes more prevalent. Therefore, it is rather impor-
tant to develop an effective model for malware detection. Permissions,
system calls, and control flow graphs have been proved to be important
features in detection. In this paper, we utilize both static and dynamic
strategies with a text classification method, TMSVM, to identify the
mobile malware in these three aspects. At first, features have to be
selected. Since the sum of control flow graphs is very large, Chi-Square
method is used to get the key graphs. Then features are transformed
into vectors and TMSVM is subsequently applied to get the classifi-
cation result. In the static method, we firstly analyze permissions and
control flow graphs respectively and then think of the combination of
them. In the dynamic method, the system calls are considered. At last,
based on the results of the static method and dynamic method, a hybrid
classification model of three layers classification is proposed. Compared
with the other methods, our method increases the TPR and decreases
the FPR.

Keywords: Mobile malware · TMSVM · Dynamic analysis · Static
analysis · Permission · Control flow graph · System call

1 Introduction

With the mobile device becoming more and more popular, the malware enjoyed
a prevalence in the market, especially in the Android market. With the special
policy of Google Android Market, every developer has to declare permissions to
get access to the important resources [1]. Hence, permissions have become an
important factor to identify whether an application is malicious [2]. However,
many developers may have bad habits that they would tend to announce more
permissions than they need. Thus only using the permissions is not enough to
identify the application’s behaviors. So we think of two more factors: Control
Flow Graphs(CFGs) and system calls of the applications. Control flow graphs
have been proved to be a very prominent feature in detecting the malware [3].
Nevertheless, the control flow graphs may neglect the semantic meaning of every
program. The extra factor, the system call, could make up for this drawback.

In this paper, we distinguish the malware from the benign applications in
three terms: permissions, control flow graphs, and system calls. We use both
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 507–516, 2015.
DOI: 10.1007/978-3-319-23829-6 35
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the static analysis and dynamic analysis method to obtain a hybrid multi-layer
classification model. In our work, the basic classification model is the Support
Vector Machine and the elementary classification method is the text classification
method. The text classification method we use is TMSVM, which can be got
from https://code.google.com/p/tmsvm/. In the static method, we first do the
classification with only permissions or control flow graphs, and then do the
classifications with the combination of them. In the dynamic method, the system
calls of one application during its execution become the detection feature. After
analyzing the results of the dynamic method and the static method, a hybrid
multi-layer classification model is proposed. In this hybrid multi-layer model,
applications would be classified by three classifiers chosen from the dynamic
analysis experiment and the static analysis experiments. The detection result of
this model is much better than the result of SCSDroid [4] and Peirvavian [5].

The major contributions of this paper can be summarised as follows:

1. We use TMSVM to do the malware classification. Different with the ordinary
SVM model, TMSVM could automatically choose the best kernel trick to
build the SVM model for different datasets.

2. We identify the malware in all the three features: permissions, system calls,
and control flow graphs. Researchers have analyzed the features respectively,
but the combination of these features has not been used for malware detection.

3. We examine the role of control flow graphs in detecting malware. However,
control flow graphs were only used in identifying the malware variants before.

4. We propose a hybrid multi-layer classification model. Compared with the
result of the one layer classification, the hybrid multi-layer classification
increases the TPR and decreases the FPR.

2 Related Work

For malware detection, it’s important to get detailed knowledge of application’s
characteristics. Static analysis and dynamic analysis of software are the two com-
mon practices recently [6]. In static analysis, various binary forensic techniques
are used, and applications don’t need to be executed. However, in dynamic analy-
sis, it involves running an application in a controlled environment and monitoring
its behavior. Both of the two analysis strategies have advantages and disadvan-
tages [7], and many approaches using both of the two methods exist.

The principal skill of the static analysis is identifying the malicious code by
unpacking the samples and looking into the result codes [8,9]. Static analysis is
also used for detecting vulnerabilities or information leakages of the applications
[10–13]. For example, Lu et al. [14] split Android apps by the component entry
points and used static analysis method to detect the Android apps for component
hijacking vulnerabilities. Felt et al. [15] created the Stowaway system to make
a map between the API set and the permissions to detect the over-privileged
attack. Many researchers work on distracting the distinguishing features and
utilizing the similarity distance to identify the malware [16].

https://code.google.com/p/tmsvm/
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The static analysis is convenient and fast, while it could not achieve the
real time detection of malware [17]. The dynamic detection could address this
issue. The CrowDroid system [18] collected the kernel system call to detect the
malware in the form of Trojan horses. Authors in [19] logged the activity of all
applications and used the signature matching approach to detect the personal
information leakage. Enck et al. [20] proposed TaintDroid, an efficient, system-
wide dynamic taint tracking and analyzing system capable of simultaneously
tracking multiple sources of sensitive data.

The dynamic analysis also has a few flaws. The execution paths covered by
the dynamic method are limited, making it difficult to fully cover all the running
condition of malware, which would influence the detection precision. Thus many
researchers try to find a way to combine both the dynamic method and the static
method [21]. In [22], the author first decompiled the Android applications to find
the suspicious model, then run the apps in AAsandbox. Finally, they analyzed
the logs to find malware.

3 Background

Android is an open-source operating system built on Linux kernel. The secu-
rity scheme of Android has its unique characters. Android protects the user
data and the system resources by providing an isolation from other applications.
Softwares run in the application sandbox. For additional capabilities not pro-
vided by the basic sandbox, applications need to declare the permissions they
require. Users have to grant or deny all the requested permissions at a block
before the application is installed. Control flow graphs in computer science is
a visual representation of all paths the computer program can take during its
execution. In this paper, we use the string form of control flow graphs defined
in [3]. The process of Android is divided into user space and kernel space. The
system call is the fundamental interface between an application and the operat-
ing system’s kernel. Most operations interacting with the system require the use
of system calls.

4 The Proposed Hybrid Model

We use the static and dynamic methods to detect whether an application is
malware. TMSVM is employed in this paper to do the classifications. It is a
text mining model which can choose a best SVM model in LIBSVM for different
datasets. In TMSVM, we choose term frequency to calculate the weight of each
feature vector. The malware dataset in this paper is from [23], including 1260
malware samples and the benign dataset, containing 1280 applications, is down-
loaded from the Google Play. The training set of the classifiers contains half of
the malware dataset and half of the benign dataset. Accordingly, the test set
contains the other half of them.
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4.1 Static Analysis

In static analysis, the different roles of permissions and control flow graphs
in identifying malware have been tested. Firstly, permissions and control flow
graphs are set as the feature separately, and then combined by different weights.

Permission Analysis. Aapt is supplied by Google in Android SDK and can be
used to dissemble the apk file and get its permission set. Before using TMSVM,
the permission set would be turned into a numerical vector according to the
index of every permission. The index of one permission is its index in the stan-
dard permission set which contains all the official 134 permissions in Android
4.3. Then with the training dataset, we could get a best SVM classifier using
TMSVM. Test dataset would be classified with this classifier. The last row in
Table 1 gives the result of the permission classification, since in this experiment,
the weight of the permission is 1 in the static hybrid model.

Control Flow Graph Analysis. Androguard is used to get control flow graphs
of every application. As the sum of control flow graphs of one application is large
and the string format of a CFG can be very long, each CFG is firstly mapped
into an integer value using Blizzard hash method. Since the Chi-square method
has been proved to be an efficient feature selection method in text mining field
[24], we use it to abstract the important control flow graphs. The first row in
Table 1 shows the classification result with CFG.

The Static Hybrid Analysis. For further research, permissions and con-
trol flow graphs are joined together to form the application’s detection feature.
TMSVM use term frequency to calculate each application’s frequency vector.
Putting permissions and control flow graphs together directly is unfair for per-
missions, since each permission could appear at most once, while, control flow
graphs can be repeated, and the sum of the permissions each application declares
is much less than the sum of its control flow graphs. Hence, we need to repeat
permissions enough times to make it achieve the weight we set below in the
joined vector. According to the term frequency method, the repeated times R
should satisfy the equation below.

R ∗ P

X
=

C

1 − X
. (1)

where, X is the weight of permissions we set in the joined vector, P is the
permission’s sum in one application, and C is the sum of its control flow graphs.
In this experiment, the weights of the permission in the combined vector range
from 1/8 to 7/8 to do the comparison. Therefore, the weights of control flow
graph range from 7/8 to 1/8. The TPR and FPR of different weights are shown
in Table 1.
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Table 1. Static Hybrid Classification Result

Weights of Permissions TPR FPR

0 0.973 0.05

0.125 0.973 0.030

0.25 0.975 0.038

0.375 0.962 0.038

0.5 0.959 0.022

0.625 0.957 0.013

0.75 0.965 0.038

0.875 0.964 0.028

1 0.958 0.021

4.2 Dynamic Analysis

In the dynamic experiment, every application runs in a real Android device,
meanwhile, the system calls of every application are tracked. Monkey is used
to randomly generate 1000 events for every application, including almost all the
different kinds of events. Due to objective reasons, some application’s system call
has not yet been obtained. In the malware dataset, there are 1179 applications
been tracked, and in the benign dataset, there are 1188 applications been tracked.

Similarly with permissions, the system call set would also be transformed
into a digital vector according to the index of every system call in the standard
system call vector. The standard system call vector contains all the 185 system
calls in Android System 4.0.4. We calculate each application’s frequency vector
in both benign and malware dataset of the training set to obtain the average
frequency vector for each dataset. Compared the two average frequency vector in
Fig. 1, we find out that the average system call frequency vectors are dramatically
different. Table 2 shows the FPR and TPR of the system call classification.

4.3 Hybrid Multi-Layer Model

The architecture of the hybrid multi-layer classification model is shown in Fig. 2,
which is composed of three steps classification. All the classifiers are obtained
in the experiments above in the training phase.As shown before, the system call
classification could identify the malware with the relatively low FPR. In order
to get low FPR, once the application is identified as malware in the system call
classification, the hybrid multi-layer classification model. If the application is
recognized as a benign application in the system call classification, it will be
sent to the static hybrid classification model with the permission’s weight being
1/8 which is represented as static hybrid classification in Fig. 2. In the second
step, if an application is labeled as a benign application, the result is considered
as its classification result in the hybrid multi-layer classification model. At the
same time, the application classified as malware will be sent to the permission
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Fig. 1. System call frequency

Fig. 2. The hybrid multi-layer classification model

classification. At last, its classification result in the third step will be its final
result in the hybrid multi-layer classification model.

5 Experiment Result and Discussion

In Fig. 3 we report the results related to the one-step classifiers and the two-step
classifiers. The one-step classifiers represent the static hybrid classifications that
have been introduced above in Sect. 4.1. It is shown that among all the one step
classification models, the static hybrid model with the permission’s weight, 5/8,
gets the best result. This classification is called Static/0.625. In the two-step
classifications, the first step classification is the system call classifier and the
second step is the static classifications with different permission weights. Among
all the two-step classification models, the ideal result could be got if the second
classification is the permission classification. Two-Step/1 is used to represent the
best two steps classification.
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Fig. 3. Static Result of Different Classifications

Table 2. Result of Different Classification Model

Classification Model TPR FPR F-score

Static/0 0.973 0.05 0.962

Static/0.625 0.957 0.013 0.972

Static/1 0.958 0.021 0.969

Dynamic 0.901 0.018 0.939

Two-step/1 0.997 0.037 0.982

Hybrid 0.989 0.017 0.986

SCSDroid [4] 0.96 0.02 0.941

Peirvavian [5] 0.941 0.025 0.945

Table 2 compares the result of different classification models. These mod-
els are the control flow graph classification(Static/0), the best static hybrid
classification(Static/0.625), the permission classification(Static/1), the system
call classification(Dynamic), the best two steps classification(Two-step/1), the
hybrid multi-layer classification(Hybrid), SCSDroid [4],and Peirvavian [5]. As
shown in Table 2, the hybrid multi-layer classification model increases the TPR
as well as decreases the FPR, leading to the best F-score result of all the above
methods. Comparing the results in Table 2 and Fig. 3, it can be seen that,
all the one step classifications have a much better result than SCSDroid and
Peirvavian. From Table 2, it shows that, the combination of permissions and
control flow graphs is more accurate than the combination of permissions and
API calls [5]. Taking the permissions, system calls and control flow graphs into
account, it can be concluded that the permission is a more effective feature to
identify the malware than the two other features.
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6 Conclusion and Future Work

In this paper, permissions and control flow graphs are used as static analysis
of the detection. We also do the dynamic analysis by means of system calls.
According to the static analysis result, it can be drawn a conclusion that the
combination of permissions and CFGs could improve the malware detection rate.
Based on the static method and the dynamic method, we propose a hybrid multi-
layer classification model which could increase the TPR and decrease the FPR.
Compared with SCSDroid and Peirvavian, our results are much better. But the
structure of the hybrid multi-layer model still needs some theoretical evidences.
Meanwhile, some improvements are also required for the classification by system
calls. A malicious application could be identified if it has suspicious actions in
the form of system call sequences, which could be a research focus in the mobile
malware detection in the future.
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Abstract. The digital works, as a particular commodity in the trading process,
which faces with difficulties in counting, content providers can not accurately
obtain the actual sales data and even more cannot guarantee the integrity of
trading data. This paper presents a trading data management model with a
trusted third party of copyright protection. The trusted third-party management
platform hedge the uploaded data from authority party and seller party to
facilitate to supervise the trading, and effectively resolve credibility and
non-repudiation of trading, and then providing the basis proof for the trading
count to resolve disputes, at the same time, it make these invisible digital
products can be measured. For this reason, it can protect the legitimate interests
of publishers and copyright owner.

Keywords: Trading of digital works � Trusted counting � Integrality �
Non-repudiation � Supervision

1 Introduction

With the development of computer networks, e-commerce has become an indispens-
able part of our life. Nowadays, digital products have been traded as commodities. It
provides the final readers with a variety of reading ways.

Digital works is different from traditional e-commerce. Due to the digital works are
virtual goods, so it is difficult to count, content providers cannot guarantee the integrity
of trading data. So how to make trading of digital works become a trusted data that
must be addressed immediately.

This paper gave a credible regulatory model of Trading Data Management Platform
which is based on the analysis of the traditional trading process, this credible
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supervision platform will hedge the trading data and authorization data to record the
whole data that would be an important proof when trading disputes occurs, so it can
effectively solve disputes to protect the legitimate interests of publishers and copyright
holders.

2 Related Work

At present, publishers generally do not directly deal with the trading. But in domestic,
the content vendors rarely settled with publishers directly, the credible settlement
mechanism has not been established between the content vendors and publishers. In
[1], it describes the basic concepts of digital copyright protection technology and
system architecture. The basic principles of Digital Rights Management (DRM) tech-
nology was presented in [2], the author analyzes the application at home and abroad. So
the standardization of digital works transaction data, fair trade agreement [3, 4] is
important to achieve fairness and secure transactions. The certification and authoriza-
tion management protocol of credible digital products based on PKI technology
security were proposed in [5], which not only achieved the authentication among
content providers, digital entity and CA, but security and authentication mechanisms of
CA is failed. Similarly the literature [6] also analyzed the problem of illegal copying
and spread of digital content works and its solutions, but the system security and
concurrency there are still some flaws.

3 Credible Regulatory Mechanism of Trading Data
Management Platform

3.1 Credible Regulatory Model of Trading Data Management Platform

For digital works, it is not easy to count in the process of trading, lacking of super-
vision. This paper presents a credible regulatory model in Fig. 1. Sellers and authority
party will upload the Right Permission Request data (RPR) and the Right Permission
data (RP) to the Trading Data Management Platform to record. When the event of
copyright disputes occurs, regulatory authorities can obtain information to arbitrate the
disputes. In the trading process, if one party uploaded the data to management platform
earlier than other party, and then the management platform will ensure to cache the
data. Three parties separately embedded trusted counter among the sales system, the
authorization system and Trading Data Management Platform, but the counter that
embedded in the sales system and authorization system cannot communicate with each
other. Sales (authorized) counter is responsible for generating the RPR (Right Per-
mission Request) or RP (Right Permission data) back to sales (authorization) system,
while the data is uploaded to the platform to record. The platform is responsible for
receiving data from the credible counter to decrypt and verify data or other process,
then return the testing results to the sender, and upload the legal trading data to the data
matching central to match, last store these data in the corresponding background
database.
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3.2 Data Upload Protocol

In the process of trading digital works, the premise of purchasing digital works is that
consumers have obtained sales permission. Therefore, in order to ensure the integrity,
confidentiality and non-repudiation of permission, and the trading metering data is
authentic certification and auditable, so the following data upload protocol is designed.
The agreement involves the buyers, sellers, authority party, trusted third party that
the Trading Data Management Platform and CA. The data upload protocol is shown
in Fig. 2:
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Fig. 1. Credible regulatory model of trading data management platform, it contains three parties,
sales system, authorization system and trusted third party.

Fig. 2. Data upload protocol process
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The data upload protocol during in selling process of digital works is shown in
Fig. 2: The procedure described specifically as below:
Step1: A buyer C confirmed the intention to generate purchase orders and send to

the seller S.
Step2: After S receives the order, the authority party P asks whether the digital

work may sell.
Step3: P sends the seller S’s recent sales data to a trusted third party T.
Step4: T queries sales S’s recent transaction record, and return to P.
Step5: P can analysis the results returned by T to determine whether sales.
Step6: S processes the basic trade data Ms to Hash, S_RPR_HASH = HASH (Ms,

R, Ns), signature processing S_RPR_SIG = ESKs (S_RPR_HASH), after
the encryption process MES = EKS ({Ms, R, Ns, S_RPR_SIG}) generated
sales request data.

Step7: S send the unencrypted data to P, Mus = {Ms, R, Ns, S_RPR_SIG}.
Step8: S sends the encrypted request data MES to T as a record.
Step9: P gains CA’s public key certificate the validity of the content of S certificate;

further verify the S’s signature S_RPR_SIG.
Step10: P processes the basic authorization data MP, and generates a random

number NP to structure authorization data, including {MP, NS, NP}. Then
hash processing P_RP_HASH = HASH ({MP, NS, NP}), signature
P_RP_SIG = ESKp (P_RP_HASH), encryption MPE = Ekp ({MP, NS,
NP, P_RP_SIG}) to generate authorization data.

Step11: P sends unencrypted RP data to S, Mup = {MP, NS, NP, P_RP_SIG}.
Step12: P sends encrypted request permission data MPE to T for the record.
Step13: S verifies the authorization data.
Step14: S will return authorize data to the C.

3.3 Data Hedge

During the trading process, the sales party and authority party were authorized to
upload sales data and authorization data to platform. After platform receiving sales data
and authorization data, hedging processing and storing the data to the corresponding
database. Detailed field contrast shown in Fig. 3:

Fig. 3. Data hedging
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4 Conclusion

The development of computer network lead to the progress of electronic commerce,
such as digital works, however, the special electronic commodity trading faces the
reliable counting problems. We present a regulatory model of copyright protection with
a trusted third party and use the digital signatures, encryption data of trading process.
So we can ensure the transactions and other important data are not tampered, guarantee
the transaction data is trusted and reliable, For this reason, copyright legitimate interests
of the owner have been fully protected.
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Abstract. To avoid improper responses against attacks, current sys-
tems rely on Attack Likelihood metric. Referring to NIST, Attack Like-
lihood considers: the attack’s complexity, the attackers’ motivation, and
potential responses. Previous work on Likelihood assessment are lim-
ited to individual attacks, missing thereby coordination and concurrency
aspects between attackers. Moreover, they do not fulfill all NIST factors.
Hence, we propose in this paper a new framework to properly assess the
Likelihood of Individual, Coordinated, and Concurrent Attack Scenarios
(LICCAS). We are first based on a coordination aware-Game Theoric
approach to derive an Attack Likelihood equation. Then, we propose
an algorithm to assess the Scenario Likelihood of each attack scenario,
considering the concurrency between attackers. We finally experiment
LICCAS on a VoIP use case to demonstrate its relevance.

Keywords: Attack likelihood · Risk · Game Theory · Coordinated
attacks · Concurrent attacks

1 Introduction

With the evolution of attack tools, information systems are frequently targeted
by simultaneous attacks that can be independent, concurrent or even coordi-
nated. Coordinated attacks can cause deterioration in system’s performance,
induce great damage to physical assets, and reach attack goals faster by dis-
tributing the charge between collaborating attackers. Therefore, solutions to
model and forecast attack scenarios where attackers may coordinate or may be
concurrent were proposed [1,2]. However, in order to avoid launching improper
responses against predicted attacks, systems should first perform Attack Like-
lihood (AL) assessment. Referring to the National Institute of Standards and
Technology (NIST), a proper AL assessment should consider: (1) the existence
of responses against the attack, (2) the nature of the vulnerability, and (3) the
attacker motivation. Several works have been undertaken to assess the AL [3–6],
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but they all suffer several limitations: they do not consider an AL aware of the
potential coordination or the concurrency that may exists between attackers,
and none of them fulfills the three above mentioned NIST factors. To fill in
those gaps, we propose a new framework to assess the Likelihood of Individual,
Coordinated and Concurrent Attack Scenarios.

In order to take into account the possibility of being stopped by the response
system in the decision process of the attacker, thereby fulfilling factor (1), our
framework computes a probability of attacking strategy p∗, based on a game
theoretic framework. Game Theory offers the possibility to calculate the proba-
bility of playing strategy considering not only the interests of a player, but also
those of the opponent. Existing models that analyze the behavior of an attacker
and a system as a game, consider that payoffs are common knowledge. However,
it is impossible for an attacker to have a complete knowledge of the real damage
that he/she can cause to the system, and of the real cost of a reaction launched
by the system against him/her. And vice versa, the system can not exactly know
the reward that an attacker can get when he/she succeeds a certain attack, nei-
ther how much this attack will cost the attacker. Hence, to properly compute
p∗, we propose a coordination-aware estimation of each player’s payoffs from
the standpoint of its opponent, based on the National Vulnerability Database
(NVD)1. The attacker’s motivation and the nature of the vulnerability (fac-
tors (2) and (3)) are considered by defining a Return On Attack Investment
(ROAI). ROAI represents the effort/cost that an attacker invests to accomplish
its attack, compared to the gain earned once the attack is successfully executed.
Our framework also includes a new algorithm LSS (Likelihoods of Simultane-
ous Scenarios), to consider the interaction between concurrent attackers. Based
on a Simultaneous Attacks Graph (SAG) [2] containing predicted scenarios for
simultaneous attacks, and our AL equation, LSS calculates the likelihood of each
attack scenario, including ones blocked due to concurrency with other attackers.

The paper is organized as follows: In Sect. 2, we propose our game model to
calculate p∗, and then we define ROAI, to finally propose an AL equation. In
Sect. 3, we propose LSS algorithm. Finally, Sect. 4 concludes our work.

2 Attack Likelihood Assessment Based on Game Theory

The most appropriate game model, in our case, is a two-players nonzero-sum, and
non-cooperative game. First, the attack entity’s gain is not always equal to the
system’s loss. Second, coordinated attackers do not attack each others. There-
fore, we consider a two-players game model for each couple of attack entity on one
side and the defending system on the other side. An attack entity can be either
a single attacker, or a Group of Coordinated Attackers (GCA). We represent our
game with two 2 × 2 matrices: the first (Table 1) represents the attacker-centric
payoffs, and the second (Table 2) represents the defending system-centric payoffs.
Contrarily to other existing work, we think that payoffs can not be considered as
common knowledge for both players. Hence, each player-centric payoffs should
1 http://nvd.nist.gov/cvss.cfm.
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Table 1. ES(Mattacker).

React Not React

Attack -ES(Attack Cost) ES(Reward) -
ES(Attack Cost)

Not
Attack

Hacker: 0

Vandal:
ES(DR Cost)

0

Table 2. EA(MSystem).

React Not React

Attack -EA(DR Cost) -EA(Impact)

Not
Attack

-EA(DR Cost) 0

be estimated from its opponent’s standpoint. Let EA(x) and ES(x) be the esti-
mations of the term x respectively from an attacker standpoint and a system
standpoint.

As demonstrated in [4], there is no pure strategy NE for such a game. There-
fore, as in [3], we extend the analysis by considering mixed strategies of players
defined as probability distributions on the space of their pure strategies. Let
p and 1 − p (resp. q and 1 − q) be the probabilities for strategies Attack and
Not Attack (resp. React and Not React) of the attack entity (resp. the system).
The pair (p∗; q∗) is said to constitute a NE solution to our game if the payoffs of
both attack entity and the defending system are optimum. Hence, the following
payoff functions of both players must be maximized:

ES(PayoffAttackEntity) = [p� (1 − p�)] × ES(Mattacker) × [q� (1 − q�)]T ;
EA(PayoffSystem) = [p� (1 − p�)] × EA(Msystem) × [q� (1 − q�)]T ;

The solution to the set of inequalities derived from the payoff functions con-
stitutes the unique NE of the game. The following probability of Attack strategy
p∗ can be derived from these inequalities.

p∗ =
EA(DR Cost)
EA(Impact)

; (1)

Notice that, p∗ depends on: (1) the investment cost of the system in the
detection and response process, and (2) the impact of the attack on the system.
This result can be interpreted as follows: it is more likely for an attack entity to
choose to attack, if she estimates that the detection and response process cost for
the system is very high. Additionally, the lower is the impact on the system, the
higher is the probability of attacking, because responding to this attack would
not be a priority for a system threatened by simultaneous attacks.

An attack entity is more likely to perform the attack that brings the highest
return on its investment. In other words, the likelihood of executing an attack
depends on the effort (Attack Cost) that an attack entity invest to accomplish
it, compared to the Reward earned once the attack succeeds. We, thus, define a
Return on Attack Investment ROAI (see Eq. 2).
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ROAI =
ES(Reward) − ES(Attack Cost)

ES(maxReward) + ES(maxAttack Cost)
(2)

Finally, we define AL, in Eq. 3, as the product of ROAI and p∗.

AL =
ES(Reward) − ES(Attack Cost)

ES(maxReward) + ES(maxAttack Cost)
× EA(DR Cost)

EA(Impact)
(3)

In order to leverage an estimation for each term in AL equation, we are based
on NVD. This latter supports the Common Vulnerability Scoring System which
provides an open framework for communicating characteristics IT vulnerabilities
(e.g. impact, exploitability and the existing responses related to an attack).

In order to consider the collaboration between attackers in our framework,
some of these terms are expressed regarding the number of attackers partici-
pating in an attack. For instance, ES(Attack Cost(a)) depends on three fac-
tors: (1) The difficulty in exploiting attack a, Exploitability(a) which can be
extracted from CVSS. (2) The number of coordinated attackers | GCA | per-
forming a. We note that the higher is | GCA |, the shortest is the time needed
to achieve a, and the less is the effort made by every attacker. And (3) the effort
in terms of required Number of Atomic Actions (ANA) to succeed attack a. For
instance, in a vertical port scanning, ANA is equal to the half of the number
of well known ports in a machine. For 1024 ports, we estimate that in average,
with 512 scanned ports, attackers can find opened ports in which they are inter-
ested. Thus, ES(Attack Cost(a)), that we propose in Eq. 4 should increase when
Exploitability(a) or ANA(a) grows, and should decrease when | GCA | grows.

ES(Attack Cost(a)) =
1

Exploitability(a)
× ANA(a)

| GCA(a) | ; (4)

3 Scenario Likelihoods (SL) of Simultaneous Attacks

In order to efficiently assess the SL of an attack scenario, we define a number of
claims describing SL evolution, considering the interaction with other simulta-
neously ongoing scenarios.

Claim 1. If an attack scenario Si blocks another simultaneous one Sj from
continuing its scenario, then both scenarios should have the same SL.

As explained in [2], simultaneous attackers may be concurrent, and thus,
block each others. In such a case, the probability of having scenario Sj blocked
is equal to that of having Si executed until the end.

Claim 2. A scenario containing time breaks (No Operations) should have a
lower likelihood than the same one without breaks.

Claim 3. The SL increases when the attack entity gets closer to its goal.

To fulfill this claim, we calculate the SL as the product of ALs of the actions
(attacks or No Operations) composing the scenario (see Proposition 1) .
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Proposition 1. If SK = {a1, a2, . . . , an} is a scenario of n actions, ALi is the
AL of ai, and SLk is the SL of Sk, then SLk = AL1 × AL2 × . . . × ALn.

Suppose that one SAGi predicted the following sequence for an attack
entity A: Si

K = {a1, a2, a3, a4}. Suppose that after a time duration T suffi-
cient for attackers to progress in their scenarios, we regenerate another set of
attack graphs, and one of them predicts the following sequence for A: Si+T

K =
{a2, a3, a4}. This means that during T , A has executed the first attack a1 of the
sequence predicted in SAGi. If SLi

k is the SL of Si
K , SLi+T

K is the SL of Si+T
K , and

AL1 is the AL of a1, then applying Proposition 1, we have SLi
K = AL1×SLi+T

K .
Referring to Eq. 3, AL is always smaller than one (AL1 ≤ 1). Thus, Si+T

K ≥ Si
K .

Consequently, Proposition 1 fulfills Claim 3.
In order to compute SLs taking into account all the above mentioned claims,

we propose LSS algorithm. LSS takes all the attacks scenarios figuring in a given
attack graph SAG, to generate a SL for each scenario. LSS proceeds as follow-
ing: First, it starts by calculating the AL for each attack, applying Eq. 3. Then,
it computes likelihoods for No operations, fulfilling by this Claim2. Finally, it
applies Proposition 1 to computes the SL of each scenario, taking into consider-
ation blocked scenarios and fulfilling by this Claims 1 and 3.

4 Conclusion and Future Work

We proposed a new framework to assess the likelihood of simultaneous attack
scenarios considering the factors defined by NIST. Being able to model the pos-
sibility of reaction by the response system, in the decision of the attacker, Game
Theory provides the most adequate framework to propose an Attack Likelihood
AL equation. This latter considers the number of collaborating attackers, mak-
ing our model able to consider coordinated attacks. Moreover, our framework
includes an algorithm that computes the likelihood of a whole attack scenario,
considering the concurrency with other simultaneous scenarios. Due to our work,
systems can prioritize the most likely attack scenarios and properly react against
them. As a future work, we intend to leverage means to properly estimate each
term in our AL equation, and apply our framework on a VoIP use case.
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Abstract. To detect domains used by botnet and generated by algorithms, a
new technique is proposed to analyze the query difference between algorith-
mically generated domain and legal domain based on a fact that every domain
name in the domain group generated by one botnet has similar live time and
query style. We look for suspicious domains in DNS traffic, and use change
distance to verify these suspicious domains used by botnet. Then we tried to
describe botnet change rate and change scope using domain change distance.
Through deploying our system at operators’ RDNS, experiments were carried to
validate the effectiveness of detection method. The experiment result shows that
the method can detect algorithmically generated domains used by botnet.

Keywords: Botnet � DNS � Algorithmically generated domains � Domain-flux

1 Introduction

Botnet consists of many compromised hosts, and realizes control of zombie host
through the command and control channel [1]. Utilizing Botnet, an attacker can carry
out a series of malicious activities [2]. In order to bypass the security system inspection,
to improve their survival ability and to prolong live time, DNS is used for organization
and control in many Botnets. In recent years a large number of malwares add domain
algorithmically generate technique to their command and control module, such as
Conficker [3], Kraken [4, 5], Torpig [6], Srizbi and Bobax.

In this paper, we proposed a method to detect DGA-botnet by analyzing and
comparing the difference of domain query characteristics between malicious algorith-
mically generated domain and legitimate domain. Then we calculate the changing
speed of related domain sets to describe and demonstrate botnets changes in the view
of DNS.
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2 Related Works

Domain algorithmically generating technique become an emerging trend for botnet. In
the early stage researchers often use reverse engineering on the botnet executable code
analysis.

Brett Stone-Gross et algot the domain generation algorithm after they have a deep
reverse analysis of tropig sample [6].

Reverse engineering technique can accurately understand the domain generation
algorithm although the entire analysis needs a lot of time、resources and the support of a
sample library. [7] propose a method to detect malicious domain name inDNS traffic. They
found algorithmically generated domain names had obvious difference with legitimate
domain names in the distribution of the characters. KL distance, edit distance and Jaccard
indexwere used with machine learningmethods to filter algorithmically generated domain.
Antonakakis et al. from Damballa used no existing domain traffic to detect randomly
generated domain [8]. They believed that in a botnet, each bot would produce consistent
DNS traffic. So they used classification and clustering method for data processing.

In previous studies, most of them used classification or clustering algorithm to
handle domain traffic and identified generated domain for malicious behavior. Decision
trees, Bayesian and K-nearest neighbor were mainly employed. Bayesian Classification
in malicious domain filtering is widely used as it is relatively simple, easy to implement
and its satisfying classification performance [9]. [10] use Naive Bayes and k-nearest
neighbor to classify the training data and concluded that k-nearest neighbor can achieve
better classification results. The methods mentioned above rely on known domain data
sets or samples, and the detection coverage is infected by training data.

The domain request from bot have a time and space continuity stability, so we can
detect domain based on domain query behavior from bot.

3 Dga Detection

3.1 DGA Detection Based on Domain Query Pattern

Compared with normal domain traffic, DNS traffic generated by botnet account for a
small proportion of the entire DNS traffic. Therefore, whitelist was used to reduce the
raw traffic size. Algorithm generated domain names used by each bot in one botnet has
similar query behavior. We cluster domain names by domain prefix and parsed IP.
Then we look for this similar live pattern to each group. Since the domain name
generation techniques are widely used, so we differentiate the normal use from mali-
cious use relying on data set changes in domain records.

According to the time sequence, with a fixed period of time, the domain flow was
divided into several time cycles. For a given time period T, we extract all domain
names to one set indicated by D ¼ fd1; d2; . . .; dng, Pi is parsed IP set for di. Two
domain generated by one algorithm will meet the following two characteristics:
PREðdiÞ ¼ PREðdiÞ and Pi\Pj 6¼ U.

The automatic generated domain names need to follow the basic domain name
conventions which is admitted by domain service providers. So two domains generated
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by one botnet may have the same top domain. A major objective of generated domain
is for the resource location, so the different domain name will point to the same set of
parsed IPs.

We can use graph to describe the relationship between domain names. Each node in
the graph stands for a domain name, and when two domain names meet the condition
Pi\Pj 6¼ U, two nodes have an undirected edge. If two domains have higher coinci-
dence of resolved IP set, it indicates that they associate with each other more closely.
The distance function between domain names is defined as follows:

uðdi; djÞ ¼ Pi[Pj

Pi\Pj
ð1Þ

The smaller the value of uðdi; djÞ is, the closer the association between domain
names is. Based on conditions mentioned above, cluster domains to one group in every
time cycle. Finally each group contains at least one member.

Used in one botnet, the live time of every domain name accounted for only a part of
the whole life cycle of the botnet. When the life cycle of one domain name is passed,
there will be no bot using it although we can still get resolutions about this domain
name. As for a domain, the first time that it appeared in system is t1, and last time that it
was queried is t2, then the live span of this domain name observed by our detection
system is Dt ¼ t1� t2. For a domain group, calculating live span for all members
could get domain active set T ¼ fDt1;Dt2; . . .;Dtng. The use pattern of domain in
botnet determines the set T is a single peak data collection, and the mode of set can be
seen as single domain use cycle in the botnet. Calculating the proportion of members
that equal to mode value, the higher the proportion is, the more suspicious this domain
group is. We use this to filter out suspicious domain group. Given a domain group, let
the mode of set T be m, its suspicious degree calculation function is defined as follows:

QðDÞ ¼ countðmÞ
Pn

1
countðDtiÞ

� b ð2Þ

By setting different threshold b, we can get suspicious domain name set.

3.2 Domain Records Change Analysis

Botnets and normal network have a great difference between the uses of domain names.
For a legitimate domain, the number of sub domains is relatively fixed, and in a long
time period, the resources that Domain name pointed to are relatively stable, so the
access of user to the domain name will not appear larger fluctuation. Compared to
botnet generated domains, legitimate domains have less change in the domain mount
and resolution data collection.

Let D ¼ fd1; d2; . . .; dng represent a domain set that contains n domain, and P ¼
fip1; ip2; . . .; ipng contains all resolution IPs for D. Given that the domain set botnet used
at t1 was Dt1. From t1 to t2, the change in domain set was Dt2\Dt1. jDj is the number of
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domain set D. The bigger the value of jDj and jPj is, the greater size botnet have. So the
botnet change varies from different time using domain data can expressed as:

jDt2\Dt1j
jDt1[Dt2j

As the use of domain technique is not limited to domain algorithmically generate, it
can also use IP-flux and domain-flux simultaneously. Therefore, in considering the
entire botnet domain data changes, domain resolution collection should be counted. In
addition, changes in the collection are also associated with the time, the same mem-
bership changes take different time reflect different change in speed. In summary, the
function describes botnet change from t1 to t2 is:

Vðt1; t2Þ ¼
jPt2\Pt1j
jPt1[Pt2j þ

jDt2\Dt1j
jDt1[Dt2j

t2� t1
ð3Þ

When greater the value of V, then faster botnet changes with the domain data.

4 Result Analysis

By using function defined above and adjusting the threshold b, we got different domain
list. Then external databases like dnsbl and rbls were used for further confirmation.
Some domains were appeared one week later in other malware domain lists. When the
threshold is set to 0.9 and above, the false positives dropped to about 5 %.

Based on above output and according to the specified time period (default one day)
we extract domain resolution and calculate V. For a legitimate domain, due to its
relatively stable network business, the V value in each time segment will be close to
zero. While the V value of botnet fluctuate around one constant over a period of time.

Figure 1 show the V of one malicious domain me7ns4.com.

Fig. 1. the V value of me7ns4.com
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Adjust V value to filter the domain name, when V is 0.05 or above, the system
output is stable.

5 Conclusions

In this paper, we propose a methodology to detect DGA-based botnet, and use distance
function to observe filtered domain. Compared to previous works, our approach does
not rely on external resources such as known malware domain names and can get some
lists earlier than others. But compared to the methods that Antonakakis used, our
approach can not accurately group all domains into one set used in one botnet, which
needs to be improved in the next step work.
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Abstract. Along with the rapid development of Internet, accessibility
has become one of the most basic and important requirements for Inter-
net service. Service resource, the knowledge that can help users get access
to the service finally, is the focus of accessibility confrontation between
the adversary and Internet services. Most of current resource distrib-
ution strategies adopt the “many access points” design and limit the
number of service resources distributed to any user. However, current
design is vulnerable to enumeration attack where an adversary can enu-
merate many service resources under the disguise of many pseudonyms
(Sybil identities). To mitigate this challenge, an adaptive resource dis-
tribution strategy based on trust management is proposed in this paper.
Under this strategy, user’s trust is adjusted according to his behavior.
Both client puzzle and the resources assigned to the user are dynamically
generated according to his trust value. Simulation result indicates that,
this strategy can distinguish honest users from adversary Sybils, thus
increasing the difficulty for an attacker to enumerate service resources
while ensuring access to service for honest users.

Keywords: Service accessibility · Resource · Trust management ·
Resource distribution · Sybil attack

1 Introduction

Along with the rapid development of Internet, cyber space has become a new
competition field between users, business competitors, or even countries. There-
fore, we need to extend the concept of service accessibility, the “ability to access”
and benefit from some system, to Internet field, trying to improve users’ ability
of accessing Internet service under restricted Internet environment. In practice,
attacks and defense methods aiming at service accessibility can be found from
various areas in both academic and industrial fields. With the help of a DPI
system, an adversary can identify its target based on communication relations,
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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communication contents or even communication behaviors between users and
Internet services. Once the targets are identified, the adversary can prevent users
from accessing them with the help of many effective methods [2]. As for the ser-
vice provider, proxy is the primary and widely adopted method to fight against
this process. To relieve the threats of these new technologies, the adversary has
shifted their target from Internet services to the proxy systems.

The accessibility confrontation between the adversary and proxy provider
can be viewed as a competition for service resources — the adversary aims to
identify them while Internet services try to protect them from being discovered
by the adversary. The term “resource” here refers to the knowledge that can
help users get access to the service finally, such as IP address, proxy, URL,
etc. Though various distribution restrictions [3,6,7] are adopted in the design of
proxy systems, these is still a challenging problem in the resource distribution
process: the service should make it easy for users to learn enough knowledges
while preventing adversaries from enumerating them in the same way. This paper
presents an adaptive resource distribution strategy to conquer this challenge.
This strategy consists of two component: (i) the trust manage system adjusts
users’ trust values according to their different behavior modes; (ii) the adaptive
resource distribution strategy can assign resources to users and adversary Sybils
dynamically according to their trust values. Experiments show the effectiveness
of this strategy in improving service accessibility under enumeration attacks.

2 Problem Statement and Accessibility Metric

Most real-world systems assign resources to users with some restrictions and
principles. For example, anonymous communication systems like Tor [4], JAP
[1] and covert communication systems like Infranet [5] have a trusted resource
management center. All resources in the system are assigned to users by the
centralized distributor with a few restrictions. We summarized the resource dis-
tribution problem under enumeration attacks as shown in Fig. 1. There are two
types of players: a distributor, who acts as a trusted center that knows the com-
plete list of resources and distributes resources to users; users, who request and
get resources form the distributor. Each user plays the role of either an honest
user or an adversary Sybil. Compared with the honest users, adversary Sybils
tend to attack resources they got rather than using them.

The interaction between the system and users contains two phases: (i)
Resource Distribution. Users send resource request to the distributor and
obtain a few resources from it. We use R = {r1, r2, · · · } to denote all resource
in the system. Ri = {ri1 , ri2 , · · · , riω

} is the resource set ui gets from the dis-
tributor. ω is a distribution parameter, representing for the number of resources
distributed to each user. (ii) Using or Attacking. After obtaining resources
from the distributor, an honest user will utilize these resources while the adver-
sary will attack them and make them unreachable. As a result, the resource in
the system can be divided into two classes: reachable resources and unreach-
able resources. Unreachable resources is resources that have been discovered and
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Centralized Resource Distribution Strategy

Resources

Utilize
Attack

Resource 
Update

Adversary Sybil

Circumvention proxy infrastructure (the distributor)

Honest User

Unreachable Resource Reachable Resource

Fig. 1. Resource distribution under enumeration attack

blocked by the adversary. Only reachable resources can help users get access to
the service.

Accessibility is the ability to get access to the service. Actually, an honest user
ui’s availability of accessing the system depends on the reachability of resources
he gets from the distributor. Let Pri

to denote the probability that there exists
at least one reachable resource in Ri. Then, from the perspective of the honest
user ui, accessibility of the infrastructure can be given by (1).

Acc(ui) = 1 −
ω∏

j=1

(1 − Prij
), rij

∈ Ri (1)

From the equation we can observe that, accessibility improvement and
enumeration-resistance is two conflicting goals for resource distribution strate-
gies that treat honest users the same way with Sybils.

3 Adaptive Resource Distribution on Trust Management

3.1 Strategy Overview

To tackle the challenges presented above, we presented an adaptive resource
distribution strategy based on trust management in Fig. 2. As shown in the
figure, this strategy consists of two components:

– Trust Management. Trust management is the basis of the proposed adaptive
resource distribution strategy. It assigns a trust value to each user and update
this value dynamically according to that user’s behaviors.

– Adaptive Resource Distribution. The adaptive resource distribution compo-
nent assigns different resource to different users according to their trust values.

Trust Management. Trust management component consists of two basic func-
tions: trust initialization and trust update. The initial trust value of the new user
is determined by the trust values of users who invite him. And trust management
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Resources

Utilize
Attack

Resource
Update

Adversary Sybil

Distributor

Honest User

Unreachable Resource Reachable Resource

Behavior
Analysis

Adaptive Resource Distribution
Trust Management

Fig. 2. Adaptive resource distribution strategy based on trust management

component also updates their trust values according to users’ behaviors. It can
distinguish honest users from Sybils by their trust values, i.e., the trust values
of honest users should be higher than that of attacker pseudonyms,

Adaptive Client Puzzle. The ultimate goal of adaptive client puzzle is to
justify the price of resource request: providing honest users an easy puzzle while
giving attacker Sybil a hard one.

Adaptive Resource Selection. The possibility of a user receiving reachable
resources is positively correlated with its trust, thus limiting adversary’s enu-
meration attack while ensure accessibility for honest users.

Fig. 3. Comparing traditional resource distribution and adaptive resource distribution
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4 Accessibility Evaluation

We simulated the proposed adaptive resource distribution strategy as well as a
classic traditional resource distribution strategy. The service is supposed to have
been running for a long time before adopting our strategy. We set the adversary
Sybil percentage to be 10 %, i.e., 10 % of users in this system is adversary Sybils,
leaving 90 % to be honest. Figure 3 compares the traditional resource distribu-
tion strategy with adaptive resource distribution from the aspect of accessibility.
When using a random resource distribution strategy, the probability of receiv-
ing reachable resource is the same for both honest users and adversary Sybils.
However, under the adaptive resource distribution strategy, honest user can get
a higher accessibility than adversary Sybils. Furthermore, the accessibility of
honest users under the proposed strategy is higher than that under traditional
distribution strategy; and the accessibility from Sybil’s view under the proposed
strategy is much lower than that under random resource distribution strategy.
Figure 3 validated the effectiveness of the proposed strategy: it can improve ser-
vice accessibility for honest users while relieving adversary’s enumeration attack.

5 Conclusion and Future Work

Based on the analysis of traditional resource distribution strategies, this paper
proposed a model and formalization of the resource distribution problem. In
order to further improve accessibility, an adaptive resource distribution strategy
based on trust management is proposed. Simulation results show the effectiveness
and wide applicability of this strategy in improving the accessibility of Internet
services under enumeration attacks.
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1. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: a system for anonymous and
unobservable internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

2. Deibert, R.: Access denied: The practice and policy of global internet filtering. The
MIT Press (2008)

3. Dingledine, R., Mathewson, N.: Design of a blocking-resistant anonymity system.
Technical report (2006)

4. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th conference on USENIX Security Symposium,
vol. 13, pp. 21–21. USENIX Association (2004)



540 J. Shi et al.

5. Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., Karger, D.: Infranet:
Circumventing web censorship and surveillance. In: Proceedings of the 11th
USENIX Security Symposium, pp. 247–262. USENIX Association, Berkeley (2002)

6. Feamster, N., Balazinska, M., Wang, W., Balakrishnan, H., Karger, D.R.: Thwart-
ing web censorship with untrusted messenger discovery. In: Dingledine, R. (ed.)
PET 2003. LNCS, vol. 2760, pp. 125–140. Springer, Heidelberg (2003)
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Abstract. The growth of malicious applications poses a great threat to the
Android platform. In order to detect Android malware, this paper proposes a
hybrid detection method based on permission. Firstly, applications are detected
according to their permissions so that benign and malicious applications can be
discriminated. Secondly, suspicious applications are run in order to collect the
function calls related to sensitive permissions. Then suspicious applications are
represented in a vector space model and their feature vectors are calculated by
TF-IDF algorithm. Finally, the detection of suspicious applications is completed
via security detection techniques adopting Euclidean distance and cosine simi-
larity. At the end of this paper, an experiment including 982 samples is used as
an empirical validation. The result shows that our method has a true positive rate
at 91.2 % and a false positive rate at 2.1 %.

Keywords: Android � Hybrid detection � Euclidean distance � Cosine
similarity

1 Introduction

Android has become one of the most popular mobile platforms since it was released.
With several hundred thousands of applications, it provides kinds of functionality to
its users. Unfortunately, smartphones running Android are increasingly targeted by
attackers and infected with malicious software. According to a study of F-Secure lab,
the species of Android malware increased by 144 % from 2012 to 2013. This statistic
shows that there is a need to do research for Android malware detection.

In this paper, a permission based hybrid detection method is proposed to detect
Android malware. The method performs permission detection at first. Then suspicious
applications are executed to obtain function calls related to sensitive permissions.
Finally, applications are represented algebraically and security detection is employed to
determine the security type of suspicious applications.
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2 Methodology

To systematically detect malicious applications in Android markets, this paper pro-
poses a hybrid detection method for Android malware which is shown in Fig. 1.

Permission Detection. If applications want to accomplish some tasks in Android, they
have to explicitly request permissions. Thus, rules of permission can be employed for
detection to discriminate benign and malicious applications.

All sensitive permissions are divided into 12 sets according to their classes. They
can be represented by perSeti 1� i� 12ð Þ. perSet13 and perSeti represent the set of
permissions with a protection level of Normal and SignatureOrSystem, respectively.

Rules of permission detection can be given as following: If AppPer \ perSet13 ¼
AppPer, it can be judged as benign application. If AppPer \ perSet14 6¼ £, it can be
judged as malicious application. If AppPer \ perSeti 6¼ £; ð1� i� 12Þ, it applies the
sensitive permissions of the ith class and can be judged as suspicious application.

The Collection of Runtime Function Calls. Suspicious applications need behavior
tracking to complete their detection. In order to collect as many function calls as
possible, monkeyrunner is used to run an automated start-to-finish test of applications.
Then, function calls are filtered to reserve the function calls related to sensitive per-
missions. To relate functions with permissions, the method introduced by Felt et al. [1]
is used.

Application Vectorization. Let ε := {f1, f2, f3, …, fn} be the set of function calls of
application and fi(1 ≤ i ≤ n) stands for the ith function of application, therefore every
application can be represented by a set ε. Let C is the set of ε and stands for the set of all
suspicious applications.

Define wi,j as the times of function fi appearing in application εj. If fi is not present in
εj, wi,j = 0. Therefore, an application εj can be represented as the vector εj = {w1,j, w2,j,
w3,j, …, wn,j}.

To represent a function collection, VSM (vector space model) is employed. The
(i, j)th element illustrates the value of fi in application εj and is nonnegative.

permission 

detection

security 

detection

application 

vectorization

decompilation
permission 

of apps 

Android 
apps

the 
collection 
of runtime 
function

calls

permission sets    
of Android 

malicious apps
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malicious apps 
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Fig. 1. The framework of hybrid detection
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To obtain the feature vectors of applications, TF-IDF algorithm is adopted to
calculate the weight of every function in applications. Thus, as for the function fi in
application εj, weightði; jÞ is defined as:

weightði; jÞ ¼ tfi;j � idfi:

where tfi;j represents the frequency of fi in application ej and idfi represents inverse term
frequency of fi in set C.

Security Detection Techniques. After application vectorization, applications can be
represented as points in the feature space. When an application is being inspected, it is
represented in the feature space and then compared with the points of benign and
malicious applications. To this end, we use Euclidean distance and Cosine similarity as
the distance measures. In order to obtain a final distance and give a result of security
detection, three rules of calculating distance are employed. They are the mean distance,
the max distance and the min distance.

3 Evaluation Measures

Let nben!ben be the number of benign samples classified as benign and nben!mal be the
number of misclassified benign samples. nmal!ben and nmal!mal are defined similarly.
Thus, the FPR and TPR (false and true positive rate) are given by:

FPR ¼ nben!mal

nben!ben þ nben!mal
ð1Þ

TPR ¼ nmal!mal

nmal!ben þ nmal!mal
ð2Þ

4 Empirical Validation

An experiment is done to improve the effectiveness of the detection method. This
section gives the data set and the results.

Data Set. The experiment employs a data set including 982 samples collected from
Google Play, third-part markets and AMGP (Android Malware Genome Project).
Every sample is inspected by F-Secure, Kaspersky, McAfee and Symantec. Table 1
shows the statistic result of data set.

Table 1. The statistic of experiment samples.

Source Number of samples Number of malware Percentage of malware

Google Play 552 0 0 %
Third-part markets 232 51 22.0 %
AMGP 198 198 100 %
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The Validation of Permission Detection. After permission detection, the samples of
data set are separated into three groups. Table 2 shows the number and percentage of
samples in different groups.

The Validation of Behavior Detection. Three-fold cross validation is used for
detecting of suspicious samples. Meanwhile, the experiment selects 10, 15 and 20
behaviors as the standard of classification. The result is shown in Tables 3 and 4.

5 Related Work

A large body of research has been done to analyze and detect Android malware.
Malware analysis focuses on the study of vulnerability in Android application. For
example, Woodpecker [2] search for capability leaks of Android application. Comdroid
[3] analyze the vulnerability in inner-app communication in Android applications.
While malware detection puts emphasis on detecting the security type of applications.
For example, TaintDroid [4], Crowdroid [5] and DroidRanger [6] are methods that can
monitor the behavior of applications at runtime. Although very effective in identifying

Table 2. The result of permission detection.

Application type Number of samples Percentage

Benign software 156 15.9 %
Suspicious software 784 79.8 %
Malicious software 42 4.3 %

Table 3. Results for the different combination measures using Euclidean distance.

Comb. 10 behavior
features

15 behavior
features

20 behavior
features

TPR FPR TPR FPR TPR FPR

Max length 0.703 0.226 0.754 0.214 0.756 0.198
Mean length 0.809 0.168 0.854 0.132 0.857 0.124
Min length 0.712 0.243 0.762 0.200 0.760 0.188

Table 4. Results for the different combination measures using cosine similarity.

Comb. 10 behavior
features

15 behavior
features

20 behavior
features

TPR FPR TPR FPR TPR FPR

Max length 0.778 0.194 0.828 0.168 0.832 0.124
Mean length 0.873 0.061 0.912 0.029 0.912 0.021
Min length 0.812 0.114 0.873 0.097 0.876 0.081
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malicious activity, they suffer from a significant overhead. However, methods such as
Stowaway [7] usually induce only a small runtime overload. While these approaches
are efficient, they mainly build on manually crafted detection patterns which are often
not available for new malware instances.

6 Conclusion

Comparing the result of different combination measures, the result obtained by using
cosine similarity and average length is the best of all. In particular, the best result has an
accuracy of 95.8 %, with an FPR of 2.1 % and TPR of 91.2 %.

Future work is oriented in two main directions. The algorithm we used actually
only weights the importance of one function based on its frequency of appearance. This
may leads to FPR in some degree, other algorithms should be used to achieve a better
result. Second, other distance measurements and combination rules could be tested.
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Abstract. Content Centric Networking (CCN) is a recently proposed internet
paradigm that is based on content abstraction rather than host abstraction. People
nowadays are interested in content and it does not matter from which locations
they get the required content. Content requesting node has to make sure while
receiving content from content publisher that whether the publisher and its
content is trustable or not. To validate the authenticity of content on each node,
an effective security scheme should be developed. In this paper we propose a
content security scheme for CCN. We analyzed the performance of proposed
scheme using ccnSim simulator and its security validation using AVISPA tool.

Keywords: Authentication � Content security � Validation

1 Introduction

Content Centric Networking (CCN) is proposed by Van Jacobson and his team [1].
CCN is built on the fact that today’s networking is more oriented towards contents
rather than hosts. It is the key reason for a radical revision of the current internet
architecture (TCP/IP), named hosts to named data. Content by itself can be addressed,
routed and secured over the network; making the revision a necessity for effective
networking.

In the proposed scheme, each small network has its own unique identity which
distinguishes it from other networks over the internet. The rest of the paper is organized
as follows. In Sect. 2, we provide some related work followed by our proposed content
security scheme in Sect. 3. Section 4 evaluates the performance of the proposed scheme
using ccnSim simulator. In Sect. 5, we validate the security of the proposed scheme
using AVISPA tool and Sect. 6 concludes the paper.

2 Related Work

Recent research work in cryptography is based on PKI [3]. In [2], Smetters proposed
the use of PKI for CCN. In this approach each node has a pair of private key and public
key. Public keys are used to encrypt data and private keys are used for decryption. For a
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recipient to validate the authenticity, it has to get services from a Certification
Authority (CA).

Identity based Public Key Generator (ID-PKG) [4] was proposed by Khalili and
Katz for ad-hoc mobile networks. They eliminate the need of services of third party for
certification and utilize the user identity for generating its public key. The scheme
imposes several problems when used are: (1) How do the nodes identify the PKG.
(2) How to update master secret key of system.

Identity based Public Key Cryptography (ID-PKC) is proposed by Deng [5] for
cryptographic management and certification. However performance of this scheme is
poor in case of compromise on any of key generating nodes.

Key Management Scheme (KMS) for CCN [6] is proposed by Sarmad and Thai-
bault. The major problem with this scheme is overhead. For each chunk of content;
keys are evaluated and distributed over the network leading to large key shares,
bandwidth and memory management issues.

3 Proposed Scheme

The existing key management schemes are ill suited for securing the content in CCN
due to its content abstraction because locations do not matter. Hence the content needs
to be secured, not the path over which the content travels.

3.1 Network Architecture and Deployment

Since internet is a combination of many small sized networks, we consider each
network being handled by its own Network Manager (NM) which is a powerful node to
look for all management and security related issues of network. Each of the networks is
assigned a unique Network Identity (NI) through which that network is distinguished
from other networks over the internet.

Initially all the nodes who want to join the network sent a joining request to a
network manager. After receiving joining requests, network manager sends back Secret
Key (SK) parameters, Network Identity (NI), a unique node Identity (ID) and Security
Algorithm (SA) to each joining node. All these parameters are assigned to each node
offline. Secret key parameters are used by node to generate its asymmetric key i.e. a
pair of public and private key. Network identity is for distinguishing this network from
other networks over the internet. Node identity is to make a node distinguished from
other nodes in the network and security algorithm is used for defining how to calculate
signatures, components of data packet, role of intermediate nodes and final content
requesting node on receiving a data packet.

3.2 Network Security Management

After network is deployed, the node publishing the content will calculate two types of
signatures as shown in Fig. 1. Signature1 (Sig1) is for ensuring validity of content as it
moves between the intermediate nodes while Signature2 (Sig2) is for ensuring the
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validity as well as provenance of the content by the final content requesting node. The
first one named Signature1 will be validated on each intermediate node till the content
reaches the actual content requesting node. The second one named Signature2 will be
validated only by the final node that actually generated the interest request for content.
Signature2 can also be validated by intermediate node if it wants to store a copy of that
content for future use. By validating Signature2 a node can built its trust on content
publisher because identity of the publisher is part of Signature2. The publisher pub-
lishing the content will calculate M = f (Content) where f is a standard one-way hash
function. After then Sig2 by g (M, ID, NI) where g is an arbitrary function. Finally it
will calculate Sig1 by encrypting (M, Sig2, NI) by the public key of the node from
which it received the request for the content.

M ¼ f Contentð Þ ð1Þ

Sig2 ¼ g M; ID; NIð Þ ð2Þ

Sig1 ¼ M; Sig2; NIð Þ Kp ð3Þ

The data packet sent back is composed of (Content, Sig1, Sig2, ID) and each
intermediate node on receiving the packet will validate Sig1 (decrypt using its private
key) to ensure validity of content and once ensured it will again encrypt (M, Sig2, NI)
by the public key of the node from which it received the request for the content. The
process of validating Sig1 (decrypting using its private key) and again encrypting it by
the public key of adjacent nodes continues till the actual content requesting node has
reached. When the actual content requesting node has received the packet, it will
validate Sig1 by its private key and after then it will validate Sig2 by g (M, ID, NI).
Since Sig2 contain the publisher ID as part of it; hence correct authentication of Sig2

Fig. 1. Signature Types

548 F. Khan et al.



builds trust on the publisher by content seeker. Figure 1 shows node D when publishing
content will calculate both signatures and send those signatures along with content in
packet. Node C and node B are intermediate nodes hence they will validate Signature1
using their private key and re-encrypt using adjacent nodes public key. Node A which
is actual content requesting node will validate both signatures for ensuring trust on
publisher and validity of content.

3.3 Intruder/Attacker Scenario

An attacker has only the knowledge of public keys of the nodes to which it is directly
connected in the network. An attacker node on receiving the packet has three options.
First one is forwarding the packet directly to content seeker node; content seeker will
be unable to validate Sig1 because Sig1 was encrypted using public key of attacker by
publisher node, hence content seeker node will discard the packet. The second option
of attacker node is to evaluate Sig1 using content seeker Public key; which it fail to
because it do not have Network Identity (NI) and Security Algorithm (SA), hence
content seeker will fail to authenticate the Sig1 and will discard the packet. The last
option will be modifying the packets which leads to failure of authentication of both the
signatures hence packet is discarded.

4 Performance Analysis

In this section we show the analysis of our proposed scheme using ccnSim simulator
[7]. We have modified the behavior of node ‘1’ in Abilene topology as an attacker
node. When node ‘1’ receives a packet for node ‘0’ it modifies the packet contents.
Node ‘0’ sends an interest request for content. The corresponding data packet to Node
‘0’ can be delivered only from two paths either form Node ‘10’ or from Node ‘1’. The
packets sent by node ‘0’ are discarded by node ‘1’. Table 1 shows the results.

5 Security Validation

To validate the security of proposed scheme; we have implemented our proposed
scheme in AVISPA tool to check its strength against attackers who act as man in the
middle and act maliciously on the data in order to modify the data. We checked out its
security using OFMC (On the fly model checker) and CL-Atse (Constrained Logic
Based Attack Searcher) [8]. OFMC builds an infinite tree based on the protocol analysis
problem and uses number of techniques to represent the state space. CL-Atse provides

Table 1. CCNSim Results

Total Packets Received
By Node ‘0’

Total Packets sent by
Attacker Node ‘1’

Malicious Packets
Detected by Node ‘0’

Attackers
Success

40384 3187 3187 0
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translation of the security protocol into a set of constraints to find attacks on protocols.
The results are shown in the Table 2.

6 Conclusion

Our proposed scheme proves effectively with respect to all schemes discussed in
Sect. 2. Main features we took into consideration are: (1) Effective memory manage-
ment i.e. the nodes in the network will have to remember only the public keys of
adjacent nodes in the network. (2) Eliminated centralized certification authority.
(3) Trust establishment between content seeker and content publisher. (4) Ensuring
validity of content at intermediate nodes and also at final content requesting node.
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Abstract. Nowadays, the problems of food safety are more and more serious.
This paper focuses on network topic detection of food safety problems, which is
difficult because of several reasons, such as various description of a same
problem and sparseness of the data. In this paper, a novel method based on
Single-pass in LDA space is proposed to detect the food safety problems from
various sources, such as microblog and news reports. The experiments show that
the method could detect food safety topics efficiently. The F-measure value
of clustering almost increases from 56.03 % to 87.21 %, compared with
Single-Pass based on traditional VSM. In addition, experiments about the
influence of similarity parameter to models’ performance demonstrate that our
method has a better robustness.

Keywords: Food safety � Topic detection � LDA space � Single-Pass

1 Introduction

Unfortunately, food safety incidents occur frequently, such as the inferior milk powder,
the Sudan red events, etc. To effectively detect such topics about food safety from the
vast number of Internet data is difficult for several reasons. One reason is that some-
times, people discuss the same problem with different descriptions. For example,
“Melamine incidents” and “Sanlu milk powder incidents” are in fact the same topic, but
the two descriptions have big difference on the vocabulary level. Another reason is
sparseness of the data. The data from Microblog and BBS is relatively short while the
length of traditional news is long. As the amount of data rises, the sparseness of short
texts representation will become more and more serious.

This paper explores an approach aimed to detect food safety topics effectively. In
Sect. 2 we briefly introduces the Latent Dirichlet Allocation (LDA) and Single-Pass.
Section 3 presents the modeling of topic detection of food safety problems in this paper.
Section 4 describes experiments. Finally, Sect. 5 concludes the paper.
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2 Related Work

Topic detection is a task of the Topic Detection and Tracking (TDT), which defined to
automatically detect new topics in the news stream and associating incoming stories
with topics created so far [1]. There are two main representation models: Vector Space
Model (VSM) based on feature terms and semantic topic model [2].

In VSM, the representative algorithm Single-Pass [3] is a widely used method for
topic detection, which is based on the VSM space. In Single-Pass, each document is
mapped as a feature term vector and will be calculated the similarity between the
existing topics. Single-Pass is easy to understand but the loss of semantic is serious.
LDA [4] is a generative model that allows sets of observations to be explained
by unobserved groups that explain why some parts of the data are similar. LDA steers a
new direction about semantic topic modeling in natural language processing. But it
does not work well for topic detection.

3 Our Modal: SPLDAs

The traditional Single-Pass in the VSM is based on the feature terms. However, the
feature selection and weighting is difficult and there is no authoritative method.
Besides, if the number of food safety data is larger, the dimension of document vector
will be higher. What’s worse, VSM model may lead to the loss of semantic. In order to
detect topics of food safety effectively, the semantic information should be analyzed.
Meanwhile the difficulties in VSM ought to be solved or avoided. A method:
Single-Pass in LDA space (noted as SPLDAs) is proposed in this paper. SPLDAs is
based on the LDA space. As a result the feature term selection is avoided and the
semantic information is warranted. Besides with the improving of the data size, the
dimension of the vector space is fixed according to the number of latent topics.

SPLDAs can divided into two phrases, the mapping of food safety data sets to LDA
space and the processing of Single-pass in LDA space, which is given as Fig. 1.

Fig. 1. Single-pass in LDA space
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3.1 Mapping of Data Sets to the LDA Space

The paper uses Gibbs sampling [5] to estimate the parameters in LDA. Firstly our
model defines LDA space as below,

h ¼

p11 p12 . . . p1K
p21 p21 . . . p2K
� � � �
� � � �

pM1 pM2 . . . pMK

2

6
6
6
6
4

3

7
7
7
7
5

θ is a M∗K matrix, where M is the total number of documents, while k is the
number of latent food safety topics. Element pij of the matrix indicates the probability
of the ith document in data set to generate the jth topic.

LDA Space is a new vector space, where the ith document could be viewed as a

vector pi1; pi2; . . .. . .; piKð Þ, which meets the condition
PK

j¼1
pij ¼ 1. The document set is

mapped into the LDA Space after Gibbs sampling.

3.2 Single-Pass Processing in LDA Space

Single-Pass is a widely used method for topic detection, which is based on the VSM
space. Now the idea is used in LDA space. The process of Single-Pass in LDA space is
described as below:

input: a stack {d1, d2, …,dM} in LDA space
Output: a set of clusters {c1,c2 ,…, cs}
1) Pop a vector di in the document stack
2) Compute the similarity between di and each existing 

clusters and find the closest one, noted as Cmax

3) If sim(Cmax, di) > t then
Include di in c

Else
Create a new cluster and add di to it.

4) If the stack is empty, then
Terminal the algorithm.

Else 
Repeat step 1
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4 Experiments

There is no public corpus of food safety problems. In order to evaluate the proposed
method SPLDAs, 15,850 documents of food safety problem including 143 topics, are
manually collected by Web crawler from “Xinhua” website (http://yuqing.news.cn/
spaq.htm), Tencent Microblog (http://t.qq.com/zhangwuji9/), etc.

Based on the F-measure, the paper adopts size-weighted F-measure to evaluate our
proposed method, which combines the precision P and recall R.

To verify the validity of the SPLDAs, we have done two groups of experiments.
One is Single-pass in LDA space and the other is comparative experiments, Single-Pass
on VSM (noted as SP). There are 143 topics included in our corpus. Thus, the number
of detected clusters is expected to be close to 143. After fixing different similarity
threshold t, we only consider the range from 100 to 200 in the experimental analysis.
Table 1 shows the average results of experiments on the different similarity t.

Figure 2 demonstrates that the number of detected clusters relates with the simi-
larity threshold t. The slope of SP is much greater than of SPLADs, which means that a
little change of t would have great influences on the detection result of SP. Thus,
SPLDAs has a better robustness than SP.

Figure 3 below shows that F-measure, R and P of SPLDAs are much higher than
SP with different number of detected clusters. We can conclude from Table 2 that
SPLDAs increase the average F-measure value by about 31 %, compared to SP. And it
is proved that SPLADs is more efficient on topic detection of food safety problems.

Table 1. The average results of experiments on the similarity threshold level.

Method t (frow, to) P R F-measure Number of clusters

SP (0.0058,0.0118) 0.6039 0.5256 0.5603 146
SPLDAs (0.15, 0.54) 0.8662 0.8789 0.8721 149

Fig. 2. Comparison of the number of detected clusters.
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5 Conclusion

Considering the characteristics of rich semantic information and high sparseness in the
food safety data from microblog or news reports, this paper proposes the Single-Pass
Clustering algorithm in LDA space. The method has the advantage of solving the data
sparseness problem and loss of semantic information, compared with the traditional
VSM. According to the experimental results, the combined method could increase the
precision and recall, and finally improve the clustering quality. Future research may
consider and to do the real-time process of large food safety data and the representation
of food safety problems.
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Abstract. In this paper, we propose an automated, scalable, and
dynamic analysis framework incorporating static anti anti-analysis tech-
niques to detect the analysis environment aware Android malware and
Resource Hogger apps. The proposed framework can automatically trig-
ger malicious execution by sending simulated User-Interface (UI) events
and Intent broadcasts. The Proposed approach is scalable and platform
invarient for different Android OS versions.

Keywords: Dynamic Analysis · Environment Reactive Behavior ·
Resource Hogger Apps

1 Introduction

Smartphone stores personal information, thus privacy and security of device is
the prime concern. Android devices control 2/3 market presence among the total
smartphone [4]. Android platform secures apps by: (1) sandboxing app execution
(2) Permissions based access model [2]. Anti-malware apps protects devices, but
cannot detect unseen variants or zero-day malware [11].

In this paper we propose a scalable, dynamic analysis framework to analyze
and detect Android malware, Resource Hoggers and data leaking apps. Privacy
risk apps may leak user information such as smartphone identification number
(IMEI), subscriber identification (IMSI) without user knowledge. We execute
Android apps in an emulated environment enriched with static anti anti-analysis
capability to detect environment reactive malware. Proposed Sandbox monitors
file operations, downloads, suspicious payload installation. Proposed approach
also monitors aggressive app behavior such as contacting URLs and exhausting
network bandwidth.

The paper is organized as follows. Section 2 defines proposed methodology, its
salient features and anti anti-analysis environment. Section 3 covers experimental
setup, analysis and comparison with prominent existing frameworks. Finally,
Sect. 4 concludes this paper with pointers to future work.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 556–560, 2015.
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2 Proposed Methodology

The essence of the proposed dynamic analysis sandbox is its multiple analysis
methods to detect malicious apps as depicted in Fig. 1. When an app is submit-
ted to the Sandbox, clean isolated environment is initialized with a refreshed
Android emulator with clean OS snapshot for a quick start. Android Virtual
Device (AVD) manager [1] allows creation, saving and snapshot restore and load
the emulator. The Sandbox starts the emulator(s) with save-to-snapshot func-
tionality to resemble it as a real device by adding wallpaper, messages, contacts
and setting custom device settings. Each time an app is submitted for analysis,
clean emulator snapshot is loaded.

As shown in Fig. 1, Framework core controls all the components for essential
feature collection, facilitating the AVD loading, and generating analysis reports.
Dalvik Dynamik Instrumentation (DDI) hooking libraries are used to hook var-
ious methods that are helpful in behavior monitoring. Analysis module results
are summarized to predict malicious, resource hogger, potential risk or a benign
app. Proposed sandbox employs DDI to identify resource hoggers and privacy
risk apps.

Features of Proposed Sandbox

The analysis environment sets up static anti anti-analysis features to modify
static emulator properties to resemble it as real device. Proposed Sandbox is
scalable as we employ a transparent functionality without modifying the Android
platform. Resource Hogger App detection is based on anomalous consumption of
CPU, memory or network resource consumption in comparison to benign apps.

Fig. 1. Proposed Dynamic Analysis Approach
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Proposed approach finds a strong link between malware and its resource usage
pattern. App tagging is performed based on its behavior.

Anti anti-analysis Features

Targeted malware families Bgserv and AnserverBot use static anti-analysis tech-
niques to avoid analysis environment detection and bypass the default analy-
sis configuration parameters. Proposed framework generates static anti anti-
analysis environment and resembles the emulated device as real. IMEI, IMSI,
serial number, phone number defaults are modified to resemble real device. Geo-
location properties, system time, e-mail account configuration, wallpaper, images
and audio/video files are added to the standard emulator. These static changes
to the analysis environment correspond to real devices, hence we have been able
to uncover quite a few anti-analysis malware.

Revealing App Behavior with Triggers

Proposed behavioral analysis framework lures the apps and provides them with
required events to force reveal the malicious functionality. Triggers such as
Intents, SMS sent/received, app activation time etc. are important triggers for
malware activation. We find all the Intents needed by the app and generate
them using Android Debug Bridge (ADB) to initiate corresponding component
(i.e., activity, service or broadcast receiver). We generate few implicit Intent(s)
such as SMS SENT or NEW OUTGOING CALL and explicitly generate other Intents.
In case of time triggered actions, AVD system time is set to some future time
with fixed interval(s). Automated user inputs are generated with monkey [1].

Behavioral Analysis. After recording the app actions, we analyze them with
behavioral analysis with logcat results to detect any installations, new process
spawns and SMS sent. We scan the traffic (.pcap) files to analyze malicious
URLs’ or sensitive information leakage. Analysis of system calls relates file and
network related activities. Proposed analysis reports few system calls (bind and
connect) prominently visible among malware apps, hence an app with such calls
is considered risky. Proposed Sandbox marks actions like sending SMS, e-mail(s)
without user consent as covert misuse of existing facilities not seen among nor-
mal apps. Sending private user data such as call logs, contacts, existing SMS
and e-mails, encrypting sensitive user data (contacts, SMS), GPS co-ordinates
activities not visible in normal apps, hence considered grave potential risk.

Dalvik Dynamic Instrumentation (DDI). DDI [6] hooks itself to classes
and methods of Dalvik Virtual Machine (DVM). We use DDI to observe various
runtime strings to detect encrypted malware. Framework Instruments hooks for
SMSManager class to keep track of messages sent by an app and Intent class to
monitor phone calls and e-mails.
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Resource Hoggers or Aggressive Malware Analysis. An app is catego-
rized aggressive when resource usage pattern is anomalous compared to benign
usage. Monitoring memory consumption, network usage (URLs, bandwidth con-
sumed), CPU utilization, battery utilization is useful to detect behavioral anom-
aly. We analyzed the comparative resource usage among a pool of categorized
benign and malware apps and generate experimental threshold to detect anom-
alous resource usage.

3 Experimental Set-Up

Proposed model sets up multiple emulator(s) in parallel. Submitted apps are
concurrently divided among free emulators. The Sandbox loads emulator(s) with
a clean snapshot for quick start. ADB interacts with the emulator(s) for data
collection. Proposed Sandbox utilizes recording tools such as logcat, tcpdump,
monkey, strace and dumpsys [1] and prefers a scalable environment without any
modification to the existing OS.

Aggregated Analysis

Proposed Sandbox has a rich set of multiple analysis techniques capable of pre-
dicting the app behavior. To minimize false positives, malware prediction is
set by the behavioral detection module. Proposed detection model marks an
app malware if malicious behaviors are discovered and are justifiable as purely
malicious. If all three modules cannot find anomaly within monitored app, the
Sandbox declares it as a benign.

Comparison with Existing Works

Droidbox and Taintdroid form base of other existing dynamic frameworks such as
Andrubis, Apps Playground and SmartDroid. Proposed analysis employs Sand-
box as a platform-neutral and scalable analysis environment. A similar approach

Table 1. Comparison of proposed framework with existing works
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to target quite different target has also been adopted in [9]. Table 1 compares
proposed approach with some techniques.

4 Conclusion and Future Work

In this paper, we have proposed a platform neutral, scalable dynamic analysis
framework that uncovers targeted and advanced Android malware, Resource
Hoggers and risky apps equipped with anti anti-analysis capabilities. To the best
of our knowledge, proposed framework for the first time integrates novel features
such as platform neutral, scalability and DDI monitoring. Preliminary results
suggest a corelation between Android malware and heavy resource utilization.
In future, we aim to integrate dynamic anti anti-analysis techniques and perform
large scale app analysis on the as a web based malware app detection framework.
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Abstract. Anonymity systems such as Tor are being blocked by many
countries, as they are increasingly being used to circumvent censorship
systems. As a response, several pluggable transport (proxy) systems have
been developed that obfuscate the first hop of the Tor circuit (i.e., the
connection between the Tor client and the bridge node). In this paper, we
tackle a common challenge faced by all web-based pluggable transports –
the need to perfectly emulate the complexities of a web-browser and web-
server. To that end, we propose a new system called the JumpBox that
readily integrates with existing pluggable transports and avoids emula-
tion by forwarding the HTTP/HTTPS requests through a real browser
and webserver. We evaluate our system using multiple pluggable trans-
ports and demonstrate that it imposes minimal additional overhead.

1 Introduction

Anonymity systems such as Tor are increasingly being used as circumvention
systems to bypass Internet filtering and censorship. However, these systems by
themselves are ill-suited for this purpose as they serve to obfuscate only under-
lying use case of the anonymity system (i.e., Tor) and not the use of anonymity
system itself. Hence, systems such as Tor are repeatedly and often continuously
subject to wholesale blocking attempts, through the use of advanced DPI tech-
nologies, by many countries [4,5,17,19,21].

To address this limitation, the Tor research community has embarked on a
collective effort to develop an assortment of pluggable transports that morph
Tor traffic to make it resemble some other protocol stream. Examples of such
systems include Dust [22], Flash proxy [9], FreeWave [12], Format Transform-
ing Encryption (FTE) proxy [6], Obfsproxy [13], Meek [8], ScrambleSuit [23],
SkypeMorph [18] and StegoTorus [20].

A common requirement shared by many of these pluggable transports (e.g.,
StegoTorus, FTE proxy, Meek) is the need to emulate a browser-based protocol
(e.g., HTTP, HTTPS). Prior research has pointed to this as fundamental limita-
tion affecting these systems [10]. The argument is that browsers and web servers
are complex systems and the only unobservable way to emulate a browser or a
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 563–581, 2015.
DOI: 10.1007/978-3-319-23829-6 44
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web server is to actually be the browser or the web server. We take their sugges-
tion to heart while trying to reconcile the fundamental limitations of developing
systems inside a browser-based environment.

Contributions. We describe a new system framework called JumpBox that
explicitly addresses the HTTP endpoint emulation problem. The JumpBox
framework attempts to strike a balance by implementing two lightweight shims
(i.e., a browser plug-in and web server module) that tunnel traffic between exist-
ing pluggable transport endpoints. This design choice has three important advan-
tages: (i) uses an unmodified browser and web server; (ii) flexibility to develop
applications outside the constraints of a browser environment and (iii) seamless
integration with existing pluggable transports. In addition, we implement an
HTTPS extension to Chrome that improves HTTPS security with the ability to
pin certificates of known HTTP servers.

In the following sections, we first describe related work on pluggable trans-
ports and circumvention systems. Then we describe the design and implementa-
tion of the JumpBox prototype system and the known hosts verification exten-
sion. We then demonstrate system utility by extending three existing pluggable
transports: StegoTorus, Meek and FTE proxy. Our system evaluations demon-
strate the flexibility of the JumpBox design in supporting diverse use cases while
imposing minimal performance overhead. Finally, we conclude by discussing sys-
tem challenges, limitations and future work.

2 Related Work

Here, we provide background information on pluggable transport research and
summarize other related research in the area of blocking resistance.

2.1 Pluggable-Transports Overview

Obfsproxy [13] was the first implementation of a Tor pluggable transport. Unlike
other pluggable transports that attempt to make Tor look like popular benign or
unblockable protocols, Obfsproxy transforms Tor to make it look like an unknown
high-entropy traffic stream. While Obfsproxy scrubs Tor-related content iden-
tifiers, its transformation preserves higher-order statistics such as inter-packet
arrival times and packet sizes.

ScrambleSuit [23] is an extension to Obfsproxy that morphs packet lengths
and inter-arrival times while also providing a new authentication mechanism that
defends against active-probing attacks. However, like Obfsproxy, it also does not
attempt to mimic any specific cover protocol.

Flash proxy [9] uses WebSockets to proxy the traffic between a Tor client
and a Tor bridge through short-term, frequently changing proxies provided by
Internet users who visit volunteer websites helping Flash proxy. The original
Flash proxy did not attempt to mimic another protocol, however, it has recently
been integrated with Obfsproxy.



JumpBox – A Seamless Browser Proxy for Tor Pluggable Transports 565

SkypeMorph [18] intends to make the traffic between a Tor client and a Tor
bridge look like a Skype video call. FreeWave [12] also hides data by modulating
a clients Internet traffic into acoustic signals that are carried over Skype connec-
tions. However, FreeWave’s operation is not bound to a specific VoIP provider
and so it its more resilient to blocking attempts that target a specific VoIP
service.

StegoTorus [20] transforms a Tor stream into a series of short-lived HTTP
connections and implements a client-side request generator and a server-side
response generator. The request generator hides data in cookies, URI and
upstream JSON POST messages. The response generator hides data in down-
stream PDF, SWF, JavaScript and JSON content. StegoTorus makes limited
attempt to accurately mimic the behavior of browser and web server. Thus it is
easily detectable through active probing and man-in-the-middle attacks.

The FTE proxy [6] fools DPI systems into protocol misidentification by ensur-
ing that ciphertexts are formatted to include the telltale protocol fingerprints
that DPI systems look for. Protocol formats are specified as regular expressions
lifted from system source code or automatically learned from network traces. As
we show in our evaluation, HTTP requests generated by FTE proxy are easily
distinguishable from that of normal browser requests.

Meek is a new pluggable transport that leverages the Google App engine as
an unblockable proxy to relay Tor traffic. It wraps Tor transport with an HTTP
header, which is further concealed within a TLS session for obfuscation. Meek
is vulnerable to rogue certificate attacks and its TLS requests are acknowledged
to be distinguishable from that of the Chrome browser [8].

Dust [22] attempts to define a cryptosystem whose output is wholly indis-
tinguishable from randomness and could be theoretically be blocked by protocol
whitelisting techniques. Flash proxies [9] attempt to evade proxy blocking by
recruiting thousands of volunteer proxies available from website visitors making
it infeasible to block them all. However, it makes no attempt to mask the con-
tent of the traffic and is vulnerable to a censor that simply blocks all encrypted
connections. Like Meek, Flash proxies could also benefit from browser-based
HTTPS tunneling and certificate pinning functionality provided by JumpBox.

2.2 Related Circumvention Systems

Telex [24], Decoy Routing [14], and Cirripede [11] take a different approach to
address-filtering resistance: TCP streams are covertly tagged to request that
a router somewhere on the path to the overt destination divert the traffic to
a covert alternate destination. Telex and Decoy Routing place the tag in the
TLS handshake, whereas Cirripede uses the initial sequence numbers of several
TCP connections. As all three system rely on the impenetrability of TLS, these
clients could also use the browser frontend and certificate pinning functionality
provided by JumpBox.

Infranet [7], like StegoTorus and FTE proxy, implements a tunnel protocol for
enabling covert communication channel between its clients and servers, modu-
lated over standard HTTP transactions that are intended to resemble innocuous



566 J. Massar et al.

web browsing. Infranet’s requestor proxy could be interfaced with the JumpBox
daemon for improved HTTP mimicry. Their responder is implemented as an
Apache module much like mod jumpbox. Collage [3] is a scheme for stegano-
graphically hiding messages within postings on sites that host user-generated
content, such as photos, music, and videos. The sheer number of these sites,
their widespread legitimate use, and the variety of types of content that can be
posted make it impractical for the censor to block all such messages. However,
it is suitable only for small messages that do not need to be delivered quickly.
We believe that it could be useful as a rendezvous mechanism for pluggable
transports.

3 Background: Goals and Challenges

3.1 Design Goals

We specify below the key design goals of the JumpBox system:

Goal 1. Be the browser – The system should improve the resiliency of
the pluggable transport against HTTP mimicry attacks discussed below. We
identify ways in which the JumpBox becomes the browser, attacks that we are
still vulnerable to and potential ways to address them.

Goal 2. Extensibility – The system should be designed in a way that
makes it easy to integrate additional capabilities, i.e., without the constraints of
a browser environment.

Goal 3. Seamless integration – The system should be readily integrated,
i.e., without any code changes to existing pluggable transports.

Goal 4. Minimal overhead – The system should impose minimal perfor-
mance overhead to existing pluggable transports.

4 JumpBox System Design

We illustrate the design and the dataflow of a pluggable transport through the
JumpBox architecture in Fig. 1. At the client endpoint, our design introduces
two lightweight shims: a browser plug-in and a broker module. The former is
implemented as a Chrome (or Chromium) browser extension while the latter is a
C-based daemon (jbd). At the server endpoint, we design a web server extension
(i.e., an Apache module called mod jumpbox) that forwards connections to the
pluggable transport server (PTS). In this section we concentrate on the role of
JumpBox as a conduit between a PTC and PTS. In addition, JumpBox serves
several purposes, such as enabling rendezvous services that we describe in Sect. 5.

The JumpBox daemon (jbd) listens on a well-known localhost port for con-
nections from both the PTC and plug-in, which in Chrome can’t open a listen
port, while acting as a bridge that buffers data between the two components.
The plug-in communicates with the jbd using the pull request to GET the next
buffered PTC HTTP request to proxy and POSTs back the response through the
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Fig. 1. Overview of the JumpBox architecture. On the left side is the protocol stack
running the user host and on the right is the protocol stack running at the remote
proxy server. All communications between these two endpoints may be observed by
the censor and uses HTTP or HTTPS. The Tor bridge may be either part of the proxy
server or the Tor network.

Fig. 2. A single unproxied request/reply

Fig. 3. The JumpBox proxied request/reply

push request. Thus the JumpBox system, transforms a single request-response
round trip sequence, as shown in Fig. 2, into a series of three plug-in initiated
XMLHttpRequests [1] directed to the jbd, mod jumpbox, and jbd, respectively,
as depicted in Fig. 3.

4.1 View from the jbd Daemon

The JumpBox C-based daemon (jbd) provides an HTTP/HTTPS interface on
a (local) address and the PTC is simply configured to directs its requests to
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the PTS as if it were located at this address. The jbd daemon forwards such a
request to the plug-in in the form of a response to a plug-in pull request. The
response to the PTC request is synthesized from the corresponding plug-in push
request to the jbd daemon. The pull-push requests form an integral part of the
Jumpbox API which we describe in more detail below.

4.2 View from the Plug-In

From the perspective of the plug-in the communication has three legs:

– [Leg 1 (XHR1):] The plug-in requests the next data block (i.e., HTTP
request) to forward. This is a “GET /pull” request whose response contains
the ordinal PTC request (which can either be an HTTP GET or POST). The
URI, method, and cookie from the original PTC request are stored in unique
jbd header fields. In addition, there is a jbd sequence number field that is
added by jbd. HTTP contents, if any, are forwarded without modification.

– [Leg 2 (XHR2):] The plug-in transforms the result of the first leg into
the actual request sent to the remote mod jumpbox front-end. Here, we only
preserve the URI, cookie and content from the first leg and rely on the host
browser to generate all other aspects of the HTTP request.

– [Leg 3 (XHR3):] The response to the request from the mod jumpbox front-
end is forwarded back to jbd.

Note that legs (1) and (3) are on localhost while (2) is visible over wide-area
network links and so is subject to adversarial scrutiny.

4.3 The JumpBox Plug-In API

The core of the API relevant to the JumpBox’s role as a proxy conduit for the
PTC is centered around the pull and push requests. When the PTC makes a
request to jbd, this request is synthesized into the response to (a presumably
pending) pull request from the plug-in. The response to the plug-in pull request
is the contents of the PTC request together with the following five additional
jbd headers: JB-URI, JB-Method, JB-Content-Type, JB-Cookie, and JB-SeqNo.
A description of these headers is provided in Table 1.

Table 1. Summary of additional headers introduced by jbd when communicating with
the plug-in

Header field Description

JB-URI URI of the original PTC request

JB-Method HTTP method used in the original PTC request

JB-Content-Type Content type of the underlying PTC request

JB-Cookie PTC cookie value

JB-SeqNo Sequence number for jbd book-keeping
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Table 2. Summary of additional headers introduced by the plug-in when responding
back to jbd

Header field Description

JB-HTTPCode Status code of the underlying PTS response

JB-HTTPText HTTP status text of the underlying PTS response

JB-SeqNo Book-keeping sequence no, maintained by jbdthat is preserved by
the plug-in

JB-Set-Cookie Value of any Set-Cookie header received by the plug-in in the
response from mod jumpbox

The plug-in processes such a request by making an XMLHttpRequest to PTS
through the mod jumpbox server, with the method and headers as specified
by the above jbd headers. The PTS response through mod jumpbox to this
synthesized request is then forwarded back to jbd as a push POST request,
again making use of additional jbd headers. In this case the push jbd headers
are JB-HTTPCode, JB-HTTPText, JB-SeqNo, and JB-Set-Cookie (as described
in Table 2).

5 System Implementation

5.1 JumpBox Plug-In Prototype

The JumpBox prototype plug-in is a relatively simple Chrome (or Chromium)
plug-in written entirely in JavaScript (approximately 2,100 LoC). Apart from
the XMLHttpRequest API that it uses to carry out the underlying HTTP
requests, and the usual chromium plug-in infrastructure (chrome.tabs and
localStorage) it uses to present a reasonable UI experience. It also makes use
of two other APIs: the chrome.WebRequest and chrome.browsingData APIs.
The use of chrome.browsingData is to ensure that our browser cache remains
empty. We do not want the browser to cache our requests to the PTS, since
we have no real knowledge of whether the request will look unique to the host-
ing browser. The use of the chrome.WebRequest API requires more explanation
since it is central to the design.

Two design problems were encountered in developing the prototype. First,
the ECMAScript specification [2] provides no mechanism to modify either the
Cookie or Set-Cookie headers of an XMLHttpRequest. Hence, we rely on the
chrome.cookies API to make the transformation, which introduces few addi-
tional complexities. For example, we need to incorporate logic for parsing the
cookies, since the chrome.cookies API exposes them as key-value pairs, not as
raw headers). We also need to protect against possible race conditions if we ever
issued than one XHR to the server at a time, since the browser’s cookie store is
essentially an unprotected global variable.

Second, in POSTs but not GETs Chrome adds a Origin:chrome-extension
header similar to the following:



570 J. Massar et al.

Origin:chrome-extension://mbglkmfnbeigkhacbnmokgfddkecciin

which somewhat defeats the whole purpose of the plug-in, as adversaries could
use this as a signal for filtering. Hence, we use the chrome.webRequest API to
scrub the origin header before the request is sent out to the remote server. We
also use the chrome.webRequest API to convert the intangible cookie related
headers into more tangible ones. Specifically, we convert JB-Cookie headers into
a Cookie header for outbound requests and convert an incoming Set-Cookie into
a JB-Set-Cookie header. Finally, we also add a distinguishing header to the Leg
(1) & (3) XHRs, so that the chrome.webRequest event does not modify them.

5.2 JumpBox Daemon Prototype

The JumpBox daemon (jbd) is implemented in pure C (approximately 3,600
LoC) and exposes a JSON/HTTP-based interface through which both HTTP
clients (PTC) and our JumpBox plug-in communicate. The core functionality is
built around a generic Functions and Utilities library libfutil (approximately
10,000 LoC) which supports a broad range of network functionality including an
HTTP Server engine, a generic network sockets framework and list functions.

Our implementation is optimized for performance and scalability. The HTTP
Server engine is event based and has several worker threads to handle multiple
requests in parallel. When a network read from a client would block the request
is moved back to it’s queue and the read is retried when data becomes available
on the socket.

Internally jbd has three request queues: proxy new, proxy out and api
pull. All API requests are matched to responses using the JB-SeqNo field. The
JB-SeqNo is generated by jbd, and preserved by the plug-in, though of course it
does not appear in the headers sent over the wire to the remote server.

jbd differentiates between a client or Plug-in request by looking for an HTTP
Host: header of localhost:<listen port>. The presence of such a header field
indicates that the request was originated by the Browser plug-in. For jbd an
incoming request from a normal client is a ‘proxy request’, these are stored
in the proxy new list, where they await for the browser plug-in to retrieve
them with the API /pull/ request at which point these requests are moved to
the proxy out list, awaiting an API /push/ which contains the response to the
proxied HTTP request.

The client proxy request is blocking, i.e., the answer only comes back when
the Browser plug-in has performed an API /push/ to return the answer. In an
API request, jbd causes HTTP JB-Set-Cookie: headers to be translated to a
standard Set-Cookie header, this as Chrome/Chromium does not allow setting
of the Set-Cookie header in AJAX requests.

Similarly, to prevent the browser from using and caching the Cookie, we
send out the cookie header as JB-Cookie. The various API requests are
either in jbd main (/pull/, /push/, /acs/, /shutdown/, /launch/ and /) or
in their specific modules (/acs/, /rendezvous/, and /preferences/). This
is ordered this way to allow new code to easily extend jbd. Requesting
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http://localhost:<listen port>/ returns a simple HTML page with status
details, showing the request queue status inside jbd and a variety of statistics.

Finally, the API /launch/ URI allows launching of either Tor or the PTC
along with the parameters that jbd retrieved using rendezvous and ACS (see
below). Processes launched through this API are tracked inside jbd.

The current JumpBox prototype serves several related functions in addi-
tion to its role as an HTTP proxy between the PTC and the PTS. Specifically,
it provides: (i) an implementation of rendezvous based on mod freedom [15];
(ii) an implementation of Address Change Signaling (ACS) [15]. Both of these
features provide representative examples of how the JumpBox can provide binary
services that are unavailable in the JavaScript environment provided by the host-
ing browser. One example is for instance steganographic or other crypto-related
functions that would be slow/hard to implement securely inside a browser, espe-
cially as one can host the key material outside the browser and thus outside the
reach of potentially harmful code.

5.3 Mod jumpbox Prototype

We use a custom Apache2 module (mod jumpbox) to intercept requests to the
PTS process. Our objective is to make the client-facing server as similar to
a normal web server as possible. mod jumpbox installs itself at the head of the
Apache internal module handler list. If mod jumpbox sees an anticipated request,
it forwards details of the request to the appropriate pluggable transport server.

6 HTTPS Known Hosts Verification

In this section, we describe an extension to the JumpBox plug-in that improves
security of HTTPS communications by adding the ability to pin the certificates
of known HTTPS servers.

The JumpBox plug-in uses Asynchronous JavaScript and XML (AJAX)
requests for communication. A normal HTTPS AJAX request is made using
the following Javascript code:

ajax = new XMLHttpRequest();
ajax.onreadystatechange = function () { ... };
ajax.open(’GET’,’https://www.example.org/ajax/’);
ajax.send(null);

This contacts the webserver www.example.org using TLS and makes a GET
/ajax/ HTTP/1.1 request over the TLS connection. The web browser uses the
X.509 certificate chain to verify, based on the root certificates, that the certificate
of the server is valid and that it really is the site we expect to be talking to. In
case an adversary is able to control or otherwise issue a valid certificate for this
site, they would be able to perform a man-in-the-middle (MiTM) attack and
eavesdrop on communications unbeknownst to the browser.

www.example.org
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One solution to this attack is to verify the fingerprints of the TLS certificates
being used. Modern browsers (Chrome, Firefox) do not provide any built-in
mechanisms for performing this check1.

We therefore propose a modification to the XMLHttpRequest object that
allows us to specify a callback that allows us to verify the fingerprints of the
certificates when the certificates are being verified. Additionally we propose that
the HTTP request URL and optional body can be replaced with a ‘innocuous’
request, e.g., GET / HTTP/1.1 that would not be uncommon to be executed by
a standard browser.

The combination of these two modifications allows us to verify the fingerprint
of the certificates involved and if we detect an inconsistency warn the caller of
this code. They can then decide to change the request to an innocuous request.
This allows one to use HTTPS as a covert channel with extra verification, while
not compromising or demonstrating to the attacker that you noticed that the
certificate had an issue by merely dropping the connection without making an
actual request even though one did perform a TLS handshake and certificate
exchange.

Our proposed modification looks as follows:

ajax = new XMLHttpRequest();
ajax.onreadystatechange = function () { ... };
ajax.open(’GET’,’https://www.example.org/ajax/’);
ajax.oncertificatecheck = function () { ... };
ajax.send(null);

The oncertificatecheck() callback has one argument which is a Javascript
object containing the following structure:

{

"cn": "*.example.net",

"serial": "00 A1 A4 94 40 B8 CC E4 29 0E 71 01 2\,C 40 E0 52 9E",

"valid-from": "2013-11-23 00:00:00 UTC",

"valid-till": "2016-11-23 00:59:59 UTC",

"fingerprint":

{

"sha1": "46 B8 FC C4 4D 9F 8D E8 3\,F 89 D2 42 12 CF 58 7F BF 61 02 D8",

"md5": "D5 5F E7 FF 78 05 13 43 83 88 57 23 61 C3 12 A3"

},

"signed-by":

{

"cn": "ca.example.com",

"serial": "1",

"valid-from": "2000-05-30 10:48:38 UTC",

"valid-till": "2020-05-30 10:48:38 UTC",

"fingerprint":

{

1 While Chrome provides limited certificate-pinning ability for selected Google prop-
erties, it is insufficient for our needs as it does not extend to all sites and also does
not have the innocuous request generation capability described below.
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"02 FA F3 E2 91 43 54 68 60 78 57 69 4D F5 E4 5B 68 85 18 68",

"1D 35 54 04 85 78 B0 3\,F 42 42 4D BF 20 73 0\,A 3F",

}

}

}

The structure illustrated above illustrates a certificate with the root certifi-
cate that signed for it. The caller follows the signed-by chain effectively up the
chain verifying if it has the same fingerprints for those certificates. Note that
SSL certificate chains are normally shown from the root down to the signed
certificate. As most users of this modification will know the fingerprint of the
signed certificate and not those of the root certificates, the object is effectively
listed in reverse order making it quicker to find at which level the compromise
likely happened.

For JumpBox, the ACS Bridge list returned by the ACS Redirect Contact
contains the fingerprints of the SSL certificates that will be used for the commu-
nications in the Relay phase. This allows JumpBox to discern between a valid,
but falsely issued SSL certificate. In case of a fingerprint mismatch it will send
an innocuous GET / HTTP/1.1 request and possibly a few follow-up requests.
When the fingerprints matches with the details provided by the ACS protocol,
JumpBox will make the real requests that proxies data. As we have a trusted
HTTPS channel we can opt to not use a transforming PTC, and thus maximize
performance.

In addition to this known hosts validation extension being important for
JumpBox, it is also useful for the anonymous browser (operating without the
JumpBox) in the case that the adversary performs a MiTM attack between the
Tor exit node and the real website. Our modification allows the browser to detect
this attack, send an innocuous request in a similar fashion as JumpBox would
and notify the user that the communications are being tampered with.

7 JumpBox System Evaluation

We conduct a performance evaluation of the JumpBox system against three Tor
pluggable transports: Meek, StegoTorus and FTE proxy. For performance testing
we run 20000 requests using ApacheBench over the following two scenarios: (i)
communication between the WebClient and WebServer through the PTC and
PTS (ii) communication between the WebClient and WebServer through the
PTC, JumpBox and PTS. All tests are performed locally, to exclude any side-
effects of the network. The two scenarios are illustrated below in Figs. 4 and 5.

Fig. 4. Scenario: testing direct PTC
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Fig. 5. Scenario: testing PTC and JumpBox

Note that the typical interface of a PTC and Tor is a SOCKS port, as
ApacheBench does not support SOCKS we additionally use socat to interface
them together. However, most web browsers do support native proxies and thus
provide for SOCKS connections.

Meek normally runs on Google App Engine so that the SSL certificate pre-
sented is that as provided by Google, all traffic is thus SSL verified. The Google
App Engine acts as a very lightweight HTTP Proxy. In our test, the web server
forwards the traffic directly to the Meek Server which allows for simpler and
reproducible testing. Running Meek through JumpBox with the Known Hosts
HTTPS Fingerprint verification allows for a significant advantage in the case an
adversary is able to present a forged certificate (that is fake, but validatable) e.g.,
when they control a root certificate of an authorized CA on the user’s computer.
Using JumpBox enables one to verify the fingerprint of the certificate and send
innocuous HTTP traffic instead of the HTTP-wrapped Tor traffic forwarded by
Meek, which is easily detectable as such.

FTE proxy attempts to hide Tor from standard filters by subjecting them to
protocol misidentification attacks. One of the protocols it mimics is HTTP, but
unfortunately the data it sends and receives does not comply with the HTTP
protocol (missing Host header in the request and missing Content-Length in
the replies are two basic examples of such problems). A standard transparent
HTTP Proxy would thus break the FTE proxy communication. As JumpBox
expects well-formed HTTP, FTE proxy in its current form would not run through
JumpBox. For the tests we have thus added an additional mini proxy that detects
response boundaries based on the “HTTP/1.1 200 OK” which is fixed as output
and inserts Content-Length headers with the correct byte count. In addition,
we correct the Content-Type to application/octet-stream instead of “H” so that
we are sufficiently HTTP compatible to work through the JumpBox. Note that
these are minimal changes, the remaining complexities of the full HTTP protocol
support are handled by JumpBox, though more importantly by the browser and
WebServer module that it uses.

Below we provide an illustration of basic FTE proxy on the wire:

C: GET /GPcoEIlMxXBh...<base64-encoded-bytes>...LoQas HTTP/1.1
S: HTTP/1.1 200 OK
S: Content-Type: H
S:
S: ....<binary bytes>...

Next, we illustrate FTE proxy on the wire through Jumpbox (‘...’ indicates
ommited data):
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C: GET /Id5UdpnNYFB...<base64-encoded-bytes>...160VG HTTP/1.1

C: Host: example.com

C: User-Agent:

C: Connection: keep-alive

C: Accept: text/html,...,application/xml;q=0.9,image/webp,*/*;q=0.8

C: User-Agent: Mozilla/5.0 ... Chrome/34.0.1833.5 Safari/537.36

C: Referer: http://www.example.com/

C: Accept-Encoding: gzip,deflate,sdch

C: Accept-Language: en-US;q=0.8,en;q=0.2,de;q=0.2

S: HTTP/1.1 200 OK

S: Date: Thu, 01 Feb 2013 09:01:28 GMT

S: Server: Apache

S: Accept-Ranges: bytes

S: Content-Length: 2529

S: Keep-Alive: timeout=5, max=100 S: Connection: Keep-Alive

S: Content-Type: application/octets

S: Content-Language: en-GB

S:

S: ....<binary bytes>...

In both experimental setups an adversary will have to do content-analysis to detect
the traffic as non-standard, and hence classify it as either Meek, StegoTorus or FTE
proxy. Jumpbox connections are 100 % HTTP compliant as they originate from a
real browser while the server side is a standard web server. As such fingerprinting
based on protocols becomes as good as impossible. Using a standard browser like
Chromium/Chrome means that all these HTTP Pluggable Transports also gain sup-
port for SPDY, QUIC and other new protocols and methods that the used browser
supports.

In Figs. 6, 7 and 8, we respectively illustrate the response time variation when
directly connecting using the three pluggable transports: Meek, StegoTorus and FTE
proxy. In each case, the graph on the left corresponds to response time variation when
making a single connection at a time and the graph on the right corresponds to making

Fig. 6. Response time variation when connecting directly with Meek using 1 (left) and
10 (right) parallel connections. X-axis is absolute time.
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Fig. 7. Response time variation when connecting directly with StegoTorus using 1
(left) and 10 (right) parallel connections. X-axis is absolute time.

Fig. 8. Response time variation when connecting directly with FTE proxy using 1
(left) and 10 (right) parallel connections. X-axis is absolute time.

10 parallel connections at a time. Next, in Figs. 9, 10 and 11, we respectively illustrate
the response time variation when connecting with the three pluggable transports and
JumpBox.

Our results are quite encouraging. We find that for Meek and StegoTorus the per-
connection overhead is under 15 % (5 ms) and for FTE proxy the per-connection over-
head is about 80 % (20 ms) when we operate with one active connection. Note that
the higher overhead for FTE proxy could likely be due to the extra proxying added
by our mini-proxy to make its requests more HTTP conformant. Interestingly, when
we consider the case with 10 parallel connections, these overheads are further reduced,
although the average latency of each connection increases. Here, the additional over-
head for StegoTorus and Meek is about 10 % (10 ms) while FTE proxy the added
overhead is roughly 35 % (30 ms). Overall, we find these to be quite reasonable and
worth the trade-off in terms of reducing complexity in the pluggable transports and
improved indistinguishability.
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Fig. 9. Response time variation when connecting through the JumpBox and Meek
using 1 (left) and 10 (right) parallel connections. X-axis is absolute time.

Fig. 10. Response time variation when connecting through the JumpBox and Stego-
Torus using 1 (left) and 10 (right) parallel connections. X-axis is absolute time.

Fig. 11. Response time variation when connecting through the JumpBox and FTE
proxy using 1 (left) and 10 (right) parallel connections. X-axis is absolute time.
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8 Challenges, Limitations, and Future Work

There are several challenges involved in emulating browser-based HTTP communi-
cations which adversaries could exploit to distinguish between real clients. JumpBox
addresses some of these detections and relies on the pluggable transport to handle
others. In this section, we make explicit the division of responsibility between the two
components.

8.1 Passive and Active Man-in-the-Middle Attacks

HTTP Header Inconsistencies. The header fields in the HTTP protocol are colon-
separated name value pairs, each terminated by a carriage return and line feed (\r\n),
that are transmitted immediately following the request or response line. It is important
that the ordering and types of various fields in the HTTP header (e.g., Content-Type,
Accept, Content-Length, Host, User-Agent) be consistent with the browser or web
server that one imitates.

Adversaries may use both active and passive techniques to detect inconsistencies
in header parsing between and browser and mimicing agent. By using a real web server
and browser, JumpBox is resilient to such attacks.

HTTP URI Encodings. There are several popular encodings for the URI field in
the HTTP header (e.g., hex encoding, double hex encoding, %u encoding). Adversaries
could employ active man-in-the-middle attacks that leverage these encoding techniques
to disrupt the pluggable transport communications. By using an Apache web server
at the receiver end, JumpBox is able to normalize such transformations, allowing the
pluggable transport server to be agnostic to such encodings.

HTTP Content Encodings. In addition HTTP specifies various content encodings
to improve performance of web downloads. Common encoding techniques include gzip,
chunked-encoding etc. If a pluggable transport client, that mimics HTTP, fails to sup-
port one of these encodings that is supported by the browser it is claiming to be
(through the User-Agent string), this could be detected through an active man-in-the-
middle attack by the adversary that essentially encodes responses back from the web
server. By using a real web server and browser, JumpBox is able to support all encoding
agents claimed by the underlying browser.

Replay Attacks. Adversaries could replay HTTP requests and use variability in
response as a potential means to detect pluggable transports. The current JumpBox
system does not explicitly address this attack and relies on the pluggable transport
to handle such scenarios. Note, pluggable transports such as StegoTorus are currently
stateless and do not handle this. An alternate solution would be to place a caching
HTTP proxy in front of the web server running the mod jumpbox.

Content-Injection Attacks. Adversaries could insert new content into web pages
and identify JumpBox users from the way it reacts to data tampering. JumpBox relies
on the pluggable transport to detect such corruptions and react in a manner that is
non-fingerprintable. For example, StegoTorus has the ability to detect and recover from
data corruption in specific content-types.

Content-Rendering Attacks. The JumpBox systems does not actually render the
HTML content within a browser. Hence, it does not follow links on a page and does
not execute JavaScript content within the browser. There are benign reasons for both
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of these scenarios, caching and disabling JavaScript. Furthermore, not following links
is an explicit design choice that was made for performance reasons. This capability
could be included in the JumpBox with additional performance cost or more optimally
introduced into pluggable transports. The advantage of the latter approach is that each
of the link traversals could actually transport steganographic data.

Timing Attacks. Adversaries could also attempt to distinguish JumpBox using timing
signatures that fingerprint the extra delay introduced by JumpBox at both ends due to
proxying. However, building effective timing attacks at layer 7 is complicated as similar
delays could also be introduced due to webserver or database load, web proxies, load
balancers etc., which are commonplace on the Internet. Studying the vulnerability of
the JumpBox to such attacks is future work.

HTTPS Attacks. Similarly HTTPS is vulnerable to a range of attacks including
rogue certificate attacks, fingerprinting TLS handshake differences [5,8] and imple-
mentation bugs such as HeartBleed [16]. Certificate-pinning and browser emulation
through the JumpBox are attempts to address the first two classes of attacks. Protocol
implementation bugs are out of scope.

8.2 Active Probing Attacks

Unsupported Methods. Adversaries could pro-actively send malformed requests
(e.g., unsupported method types) to Pluggable Transport servers and distinguish them
through differences in the way in which they respond from a legitimate web server. In
the JumpBox scenario, mod jumpbox only forwards GET, HEAD and POST requests
to the pluggable transport. Other method types include unknown methods that are
handled by the default Apache handler, which typically cause a 404 or 405 error.

9 Conclusion

We propose JumpBox as a new HTTP forwarding system for making detection of
HTTP based Tor pluggable transports much harder. JumpBox is implemented as a
set of three components that interpose the communications between the Tor Pluggable
Transport Client (PTC) and the Pluggable Transport Server (PTS): jbd, JumpBox
browser plug-in and the mod jumpbox webserver extension. Together, these compo-
nents facilitate a browser-based and webserver-based interface to pluggable transports
that improves their resilience against many MiTM attacks that exploit differences in
the HTTP implementations of browsers and pluggable transports. We implement sup-
port for HTTP as well as HTTPS transport through the JumpBox and evaluate its
integration with a range of pluggable transports including StegoTorus, FTE proxy and
Meek. Our performance measurements indicate that our prototype system introduces
minimal additional overhead.
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Abstract. Add-on JavaScript originating from users’ inputs to the
browser brings new functionalities such as debugging and entertainment,
however it also leads to a new type of cross-site scripting attack (defined
as add-on XSS by us), which consists of two parts: a snippet of JavaScript
in clear text, and a spamming sentence enticing benign users to input the
previous JavaScript. In this paper, we focus on the most common add-on
XSS, the one caused by browser address bar JavaScript. To measure the
severity, we conduct three experiments: (i) analysis on real-world traces
from two large social networks, (ii) a user study by means of recruiting
Amazon Mechanical Turks [4], and (iii) a Facebook experiment with a
fake account. We believe as the first systematic and scientific study, our
paper can ring a bell for all the browser vendors and shed a light for
future researchers to find an appropriate solution for add-on XSS.

Keywords: Browser address bar · Add-on cross-site scripting ·
User study

1 Introduction

As the cornerstone of Web 2.0, JavaScript contributes greatly to the flexibility
and functionality of all kinds of web pages, but at the same time introduces a
new type of attack - cross-site scripting (XSS) attack. In traditional XSS, mali-
cious JavaScript exploiting a client-side or server-side vulnerability is originating
from the web server, and therefore, in this paper, we call it host XSS attack. At
the same time, there is another type of JavaScript originating from the client
browser, such as browser address bar, browser debugging console, and browser
bookmarks. We define this JavaScript as add-on JavaScript1 and its correspond-
ing XSS attack as add-on XSS attack in this paper. Instead of exploiting a certain
vulnerability, add-on XSS attack utilizes social engineering techniques to entice
a benign user to input a snippet of malicious JavaScript into client browser.
1 Although sharing the keyword “add-on”, add-on JavaScript and browser add-on are

two different concepts.
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Among add-on XSS attacks, malicious add-on JavaScript from browser
address bar is particularly common and thus discussed in this paper. Add-on
XSS attacks from browser address bar usually includes two elements: (i) a sen-
tence using social engineering techniques, plus (ii) “javascript:codes”. To be
more precise, the attack can be considered as a spamming attack plus an XSS.
In the motivating example of Sect. 2.2, the attacker tells users that after he or
she inputs a snippet of JavaScript into browser address bar, he or she can get a
result about whether his or her computer stores porn or not. However, in fact,
the JavaScript code would run and improperly increase the number of replies to
the original post initiator, which contributes greatly to the reputation of that
initiator. We find 5,312 results of such posts at tieba.baidu.com on April 25,
2013. On average, one such post gains 150 replies, i.e., over 70,000 people have
already been tricked to input the string.

To further explore the severity of add-on XSS attack, we conduct three exper-
iments:

– Analysis on Real-world Social Network Traces. We delve into wall
post traces of two large online social networks. For the first trace, we find
58 distinct instances on the wall posts. 75 % of those usages are malicious,
8 % are mischievous tricks, and remaining 17 % are benign usage. Details are
provided in Sect. 3. For another trace, we find 9 distinct instances. 77.8 % of
those usages are malicious, and 22.2 % are benign usage.

– User Study on Amazon Mechanical Turks. We conduct a user study
using SurveyMonkey [21] on Amazon Mechanical Turk [4]. Before the survey,
the survey takers first acknowledge their consent and promise to respond to
all the questions honestly. By removing incomplete survey and survey without
any comments, we find that on average 40 % of the survey respondents are
willing to input our code into address bar.

– Facebook Experiment with a Fake Account. To further illustrate the
severity of this attack, we carry out an experiment by using a fake account on
Facebook. 4.9 % of the fake user’s friends are enticed to the trick after one day
since the status of that user is switched to the attack. The reason for different
deception rates of those two experiments is discussed in Sect. 5.

Add-on XSS is a combination of social engineering and XSS attacks, however,
neither defense of social engineering nor XSS attacks can effectively prevent
add-on XSS attacks. First, there are still no general methods of defending social
engineering attacks except for educating users, and defense systems for online
social network spams have relatively high false negatives (20 % in recent works
[26]). Meanwhile, neither server-side sanitization [22,23,25,29,31,32,35,36,44]
nor client-side sandboxing [30,37,41] used for defending XSS attacks prevent
add-on XSS, because scripts in add-on XSS are input at client-side within the
same execution context as the host scripts.

Therefore, people need to propose defense mechanisms specific to add-on
XSS from either server or browser side. For a server-side add-on XSS defense
mechanism, an attacker can easily evade it by changing the representation of

http://tieba.baidu.com
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add-on XSS as shown in Sect. 3.2 (More Techniques to Increase Compromising
Rate.) and then even asking the user to make changes by social engineering
instructions. Thus, the solution should be on the browser side. On one hand, the
potential severity of this problem has already drawn attentions from some major
browser vendors, which have taken some ad-hoc actions against add-on XSS.
For example, latest Google Chrome on desktop and IE automatically remove
the keyword “JavaScript:” when a string is pasted into the browser address bar,
but cannot stop a user from typing it himself. Our user study (Sect. 4) shows
that 20.3 % of survey takers are still willing to type the keyword “JavaScript:”.
In addition, recent version of Mozilla Firefox disables address bar JavaScript by
default, but there are still legitimate usages of address bar JavaScript, such as
entertainment and debugging, as shown in our measurement study of Sect. 3.

On the other hand, we also find that many other non-trivial browsers, such as
Safari2 [17], mobile version Google Chrome [5], Opera3 [15], Sogou Browser4 [19],
Maxthon5 [14], and android default browser, have not taken any actions in
defending against add-on XSS yet till June 2013, which leaves their users open
to this type of attacks.

In sum, we believe that although previous reporting on the attack has been
found in blogs and other non-reviewed venues [18], as the first systematic and sci-
entific study of this attack, this paper gives readers an insight into this attack and
we hope all browser vendors and all researchers should take actions in defending
against add-on XSS attacks.

Contributions. We are making the following contributions:

– Measuring the Prevalence of Add-on XSS. To the best of our knowledge,
we are the first to investigate this type of attacks among academic community,
and measure the severity of this attack on two major social network traces.
The results show 55 distinct instances that illustrate malicious behavior or
mischievous tricks.

– Exploring the Potential Severity of Add-on XSS. To further prove
the severity of add-on XSS, we conducted two experiments: a user study by
recruiting Amazon Mechanical Turks, and a one-day experiment on Facebook.
The results show that 40 % of valid survey respondents and 5 % of fake user’s
friends could be affected by this attack.

Organization. The paper is organized as follows. Section 2 presents background,
and our motivation. Then, in Sect. 3, we measure the attack in the wild, and then
we conduct a user study in Sect. 4 and a Facebook experiment in Sect. 5. After
that, we discuss some related problems and related works respectively in Sects. 6, 7.
The paper concludes in Sect. 8.
2 Safari is the default web browsers for Mac Users, which “accounted for 62.17 % of

mobile web browsing traffic and 5.43 % of desktop traffic in October 2011, giving a
combined market share of 8.72 %” [7].

3 Opera owns over 270 million users worldwide [2].
4 On June, 2012, the unique users of Sogou Browser are 90 million [20].
5 Maxthon ranked 97 in PCWorlds the 100 Best Products on year 2011 [1].
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2 Overview

We first introduce the background of add-on cross-site scripting, and then give
a motivating example in real-world scenario.

2.1 Background

Browser address bar parses uniform resource identifier (URI), and then directs
the browser to a certain web page. JavaScript, as a URL in browser address bar,
consists of a scheme name - “javascript”, a colon character - “:”, and then a
scheme-specific string - JavaScript code. The same as other add-on JavaScript,
JavaScript from browser address bar is used for the purpose of debugging and
entertainment [10,13]. Moreover, JavaScript in URI is used by many web sites as
<a href = “javascript : callfunc()”> to invoke JavaScript instead of opening
a URI directly.

Fig. 1. Steps to launch an add-on XSS from browser address bar

Although parsing JavaScript as a protocol in URI is rather useful, the direct
input of JavaScript into address bar as a URI is potentially dangerous, because of
the agnostics of normal users, many of whom do not even know the existence of
JavaScript code, and are very likely to be enticed to input malicious JavaScript
code into the address bar.

Samples of add-on XSS from address bar in the wild obey the following
format: spamming sentences + javascript:malicious codes. By reading the spam-
ming sentences, a benign user is attracted to copy and paste malicious JavaScript
code into address bar and the attack tends to be successful. Figure 1 shows the
steps to launch this address bar JavaScript attack:
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– Step One: Posting. Attackers post malicious contents with aforementioned
format into a forum or his wall of social network.

– Step Two: Downloading. Users go to the attacker’s or an infected user’s wall,
and the malicious contents are downloaded into the benign user’s browser.

– Step Three: Reading. The benign user is fooled by the malicious contents
during reading.

– Step Four: Copying and Pasting. The benign user copies and pastes the snip-
pet of JavaScript code posted by the attacker into his browser address bar.

– Step Five: Executing. The malicious JavaScript gets executed and has full
access to the user’s web page.

– Step Six: Requesting. The malicious JavaScript sends requests to the server
and possibly modifies the benign user’s contents.

2.2 A Motivating Example

We show a motivating example in Fig. 2, and for easy understanding and read-
ing, a translation with line break is shown in Fig. 3. We find this example at
tieba.baidu.com, a forum from Baidu that is ranked No. 5 globally based on
Alexa [3]. Tieba gains 13.38 % of total Baidu traffic.

Fig. 2. Screen shot of the motivating example (We show an English translation of this
example in Fig. 3.)

In this example, users are lured to copy and paste a line of JavaScript
code into address bar, because they want to check whether their computer
has porn or not. However, instead of checking porn movies, the snippet of
JavaScript code will display “your computer has porn” 12 times as reply by
calling PostHandler.post, a JavaScript function implemented in Baidu Tieba.
The behavior of the JavaScript code improperly increases the initiator’s ranking
on Baidu Tieba, as tieba.baidu.com ranks people based on the number of replies
following their posts.

By searching “check whether your computer has porn or not” in Chinese
on Google by a JavaScript program, we find 5,312 results on April 25, 2013.

http://tieba.baidu.com
http://tieba.baidu.com
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Fig. 3. Insecure JavaScript code found at tieba.baidu.com. (For easy reading and
understanding, line break is added, and words after JavaScript are translated from
Chinese into English.)

After counting the replies for each post, we find at least over 70,000 people are
deceived to input the snippet of JavaScript code into address bar.

3 Experiment One: Measuring Real-World Attacks

We first introduce our measurement study of attacks in the wild, and then discuss
possible attacks beyond those in the wild.

3.1 Measurement of Attacks in the Wild

We use two online social network traces, namely Facebook and Twitter. The
Facebook trace [27] consists of 187 million wall posts generated by roughly 3.5
million users in total, from January of 2008 to June of 2009. The twitter trace [46]
is crawled from April 2010 to July 2010. The dataset contains 485,721 Twitter
accounts with 14,401,157 tweets.

From the first trace of Facebook, we track the usage of “javascript:” and show
the results in Table 1. 75 % of JavaScript usage in address bar is malicious. Most
of them are directing people to a spamming or malicious web site. 8 % of such
usage is making jokes of the user who inputs those JavaScripts into the address
bar, such as popping up windows all the time, and alerting interesting words.
Some of them can also be potentially dangerous in terms of sending invitations
to all your friends without your knowledge. Another 17 % of such usage is totally
benign, such as making some amazing effect like flying images, and discussion
between people possessing technical skills about writing JavaScript code.

We also study another trace from Twitter as shown in Table 2. We only find 9
distinct instances. The results show that 77.8 % usage of address bar JavaScript
is malicious. The other 22.2 % usage of address bar JavaScript is benign. Among
malicious usage, 71.4 % is including external malicious JavaScript file, and the
other 28.2 % is redirecting current web page to malicious URL. Among benign
usage, all of them are trying to make different visual effects to current user.

http://tieba.baidu.com
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Table 1. Number of distinct address bar JavaScript samples on Facebook

Category Description # of distinct samples

Malicious behavior Redirecting to malicious web site 40

Redirecting to malicious videos 3

Mischievous tricks Sending invitation to all your friends 2

Keep popping up windows 1

Alert some words 2

Benign behavior Zooming images 4

Letting images fly 4

Discussion among technical people 2

Total 58

Table 2. Number of distinct address bar JavaScript samples on Twitter

Category Description # of distinct samples

Malicious behavior Redirecting to malicious web site 2

Including Malicious JavaScript 5

Benign behavior Changing Background Color 1

Altering Textbox Color 1

Total 9

3.2 Discussion: Beyond Attacks in the Wild

In this section, we think beyond attacks in the wild by showing potential more
severe damage an attacker could make and more advanced techniques to increase
the success rate.

More Severe Damages. According to the measurement results in Sect. 3.1,
most of existing add-on XSS attacks from browser address bar are redirecting
users to malicious or spamming web sites. However, based on the experience and
lessons learnt from traditional XSS attacks, add-on XSS could cause more severe
damages, such as stealing confidential information, session fixation attacks, and
browser address bar Javascript worms.

Stealing Confidential Information. Browser address bar JavaScript can be used
to steal confidential information such cookies by accessing document.cookie, and
then send it back to a server, since http-only cookie is still not widely adopted
[47]. A proof-of-concept example is in Fig. 4. Even in the case the cookie is set to
be HTTP-only, the attacker can still steal your information such as age, phone
number and living address stored at social network web site such as Facebook
and Twitter.



Abusing Browser Address Bar for Fun and Profit 589

Fig. 4. Sending cookies through JavaScript in browser address bar

Session Fixation Attack. Without stealing information and thus accessing net-
work, an attacker can also launch malicious behavior through address bar
JavaScripts by session fixation attacks. For example, he can substitute ses-
sion cookie of current web site with his own one by calling document.cookie =
“***”, and thus, the session that a benign user sees is a crafted session belonging
the attacker. In this case, the attacker can redirect the user to his account of
paypal.com and if the user tries to add a credit card to the account, the credit card
number is leaked to the attacker. Another example is shown in Fig. 6, where an
attacker can change the amount of transferred money by address bar JavaScript.

Browser Address Bar JavaScript Worm. Other than infecting one or two users,
a more severe damage is to initiate a JavaScript worm exploiting millions of
people. We first introduce a social engineering worm, and then, show how such
technique can be used for browser address bar JavaScript worms.

The real world worm [8] using spam technique happens at Facebook, where
users are offered a free ticket. In order to receive the free ticket, the user has to
input a token from a Facebook URL. However, the token is a CSRF-proof one,
which is used to post messages on the user’s wall. After obtaining the token, the
attacker can easily post on the benign user’s wall with the free ticket offer again.

Similarly, as shown in Fig. 5, we create a web browser address bar JavaScript
worm, which entices users to input JavaScript into address bar, and then, post
itself on benign user’s wall. Later on, more and more people see the post and
get infected.

More Techniques to Increase Compromising Rate. In this section, we
illustrate two methods, trojan that combines normal functionality with malicious

Fig. 5. A browser address bar JavaScript worm example (Line break is added for
reading, which has to be removed for a real worm.)
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Fig. 6. Modifying user contents by address bar JavaScript

behavior, and several obfuscation techniques, to increase the compromising rate
of malicious address bar JavaScript.

Trojan - Combining with Normal Functionality. Malicious browser address bar
JavaScript can be combined with normal functionality to deceive users. For
example, a malicious script can claim that it can let images fly, and after
inputting codes into address bar, images do fly. However, meantime, the
JavaScript also gets your session cookie and sends back to a malicious server.
The case is even more deceptive than a pure malicious spam, because people do
get fun from the snippet of JavaScript, and further, they are even likely to share
the spam himself to his friend.

Obfuscating JavaScript Code. Since users sometimes judge whether a behav-
ior is benign based on the existence of suspicious URLs, rare characters, etc.,
an attacker can obfuscate those features to fool users. We list several tech-
niques below, including normal obfuscation, importing external scripts, and URL
encoding.

– Normal Obfuscation Techniques. Many existing obfuscation techniques can be
used to obfuscate JavaScript such embedding JavaScript inside eval, encoding
JavaScript by base64, and using arithmetic operations to concatenate strings.

– Importing External Scripts. Since the length of JavaScript in browser address
bar is limited, the address bar JavaScript can include an snippet of external
JavaScript which performs the real actions.

– Using URL Encoding for Obfuscation. Because JavaScript in browser address
bar is first decoded as an URL, %ASC Code can be used to obfuscate
JavaScript. For example, eval can be obfuscated as %65val, a representation
that is hard to be recognized at a first shot.

4 Experiment Two: User Study Using Amazon
Mechanical Turks

In this Section, we conduct a user study to show the effectiveness of the proposed
techniques. proposed in Sect. 3.2. First, the methodology of our user study is
introduced in Sect. 4.1. Then, we present the experimental platform in Sect. 4.2.
In the end, results of user study are presented in Sect. 4.3.
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Fig. 7. A survey question example (The JavaScript in the example is a trojan, which
tries to make all the images in current web page fly in an eclipse and then include a
third-party JavaScript, and additional line breaks are added due to format issue in the
figure.).

4.1 Methodology

We introduce the survey format and two techniques, comparative study and
question randomization, in this survey.

Survey Format. We highly mimic the methodology performed in user study
by Weinberg et al. [43]. To be specific, our user study contains the following
components: a consent form, demographic survey, and real survey questions.

– Consent Form. A user who takes the survey has to acknowledge a consent
form. In the form, we tell him or her that the survey is to obtain people’s
behavior in online social network. He or she agrees to answer questions of the
survey honestly.

– Demographic Survey. Similar to Weinberg et al. [43], we design a demographic
survey. People need to indicate their age, history of computer using, show
knowledge of computer programming, and types of social networks that they
have used before.

– Survey Questions. Figure 7 shows an example of a survey question. First we
describe the scenario, which is a message from your close friend on a social
network. Then the message comes up, which consists of two parts: a paragraph
of spamming words and a snippet of JavaScript code. In the end, we ask
whether he or she will input that line into address bar or not. He has to
choose Yes or No, and input his own opinion about this message into an
optional comment text box.

Comparative Survey. We conduct a comparative survey in this paper. If we
want to know how one parameter influences people’s opinion, we will fix all
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Table 3. Percentage of deceived people according to different factors.

Factor Without the factor With the factor

Obfuscated URL 29.4% 38.4%

Lengthy JavaScript 38.4% 40.4%

Combining with Benign Behavior 37.1% 40.0%

Typing “JavaScript:” and then Pasting Contents 38.2% 20.3%

other parameters only by means of changing that parameter. For example, if
we want to know whether obfuscating URL in JavaScript can lead to different
spamming effect, we will construct two questions with the same spamming words
and JavaScript code but different URLs. One is obfuscated, and the other is not.

Question Sequence Randomization. Since after answering one question he
or she may change his mind when viewing other questions, we randomize the
sequence of questions and only provide one question at a time, i.e., one survey
respondent may see one question at the first place, but another may see the same
question in the end.

4.2 Platform

We use Amazon Mechanical Turk [4], an online market place to recruit people
taking the survey, and SurveyMonkey [21], a free online tool hosting the survey.
After finishing survey on SurveyMonkey, the survey taker has to input a random
string into the text box in the end, which is used to match the one they input
into Amazon Mechanical Turk web site in order to get paid. Meantime, we also
tell the survey takers the purpose to avoid ethics issues, which is also discussed
in Sect. 6.

4.3 Results

We perform a filtering process upon collected results. Then we present the effec-
tiveness of spamming words and other different factors. In the end, we list an
interesting example.

Filtering. In total, we collect 1000 results with distinct Amazon Mechanical
Turk IDs on Survey Monkey. We filter the results by deleting incomplete surveys
and those without any comments. In total, we have 823 valid results, the number
of which is also comparable to user study performed by Weinberg et al. [43].

Spamming Words. Table 5 shows how likely people are deceived according to
different spamming categories. The highest one is family issues, such as a wedding
photo or a newly-born child, because those words are likely to be posted by a
close friend. Free ticket is the one with the lowest deception rate, because people
are used to those types of spams and can easily recognize the trick.
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Table 4. Percentage of
deceived people according
to age

Age Rate

Age <= 24 45.7 %

25 < Age <= 30 39.8 %

30 < Age <= 40 34.4 %

Age > 40 14.0 %

Table 5. Percentage of deceived people
according to different spamming categories.

Category Rate

Magic (like flying images) 38.4 %

Porn related (like sexy girl) 36.3 %

Family issue (like a wedding photo) 52.7 %

Free ticket 29.2 %

Table 6. Percentage of deceived
people according to programming
experiences.

Programming experience Rate

No 33.9 %

Yes, but only a few times 27.6 %

Yes 53.1 %

Table 7. Percentage of deceived
people according to years of using
computers

Years of using computers Rate

Less than 5 years 56.7 %

5 to 10 years 41.1 %

10 to 15 years 28.0 %

15 to 20 years 24.3 %

Effectiveness of Different Obfuscation Techniques. We discuss how differ-
ent obfuscation factors can influence the effectiveness of insecure browser address
bar JavaScript attack.

– Obfuscated URL. As shown in Sect. 3.2, %ASC Code can be used to obfuscate
JavaScript. We obfuscate URL embedded inside JavaScript by %ASC Code.
The first row of Table 3 shows the results. There is a 30 % increase of success
rate, which indicates that people frequently look at those URLs. Moreover,
we find that comments like “the URL looks benign” and “this is a spamming
URL” are very common in our feedbacks.

– Lengthy JavaScript. We think a lengthy and complex JavaScript may reduce
the rate of deceived people. However, as shown in the second row of Table 3,
the rate is almost the same. To the opposite, it is a little bit higher than simple
JavaScript. It might be because lengthy JavaScripts are hard to examine.

– Combining with benign behavior. As shown in the third row of Table 3, com-
bination of benign behavior does increase the rate a little but not too much.

– Adding Keywords “JavaScript:”. Google Chrome strips “JavaScript:” before
pasting into the address bar. Therefore, we conduct a survey about whether
people are willing to input “JavaScript:” into address bar and then paste
JavaScript code. The results in Table 3 show that although the number of
infected users decreases, there are still 20.3 % denoting the group of people
willing to do that.
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Effectiveness of Different User-related Factors. We discuss how different
user-related factors influence the effectiveness of insecure browser address bar
JavaScript attack.

– Programming experiences. Table 6 shows the possibility of people to be deceived
according to their programming experiences. Interestingly, people with a few
programming experiences are those who are unlikely to be deceived. The rea-
son could be that people without knowledge are afraid that they can get
infected, but people with sufficient knowledge are sometimes so confident that
they will not get infected. Actually, we receive several comments in which the
user tries to explain to us the functionality of our program. However, he does
not see our obfuscated malicious behavior, like the one in Fig. 7.

– Years of using computers. Table 7 shows the possibility of people to be deceived
according to their years of using computers. The longer he or she uses com-
puter, the less likely he or she falls into add-on XSS.

– Age. Table 4 shows the possibility of people to be deceived according to their
age. The older he or she is, the less likely he or she trusts spam.

An Interesting Example - A Guy Trying Our Example in the Survey.
A very interesting example is from the comment of one response. The guy says
that “I tried that. But it did not work ...”. It is interesting, because we only
ask the respondent to state whether he or she will follow the instructions in
real world, but not try it. Out of curiosity, the user did try that in his browser.
The respondent cannot make sure that we are benign. From one aspect, it does
strengthen out statement that in real social network, some people are likely to
input a JavaScript line into his browser address bar.

5 Experiment Three: A Fake Facebook Account Test

To further illustrate the severity of this attack, we perform an experiment on
Facebook, in which a snippet of experimental JavaScript with no harmful behav-
ior is posted. Statistics about how many people has been triggered to copy and
paste that JavaScript is collected from a web server.

Experiment Setup. We create a fake female account on Facebook using a
university email address. Most common field, such as age, photo, and history,
are filled with reasonable information. By sending random invitations (mostly
within that university), the account gains 123 valid friends within two weeks.

Experiment Execution. We post a snippet JavaScript similar to the one in
Fig. 7 as the fake account’s status for one day on March, 2012. The description
of the JavaScript says it is a wedding photo animation made by the user’s fiance,
however, in fact, the JavaScript not only makes an animation of a fake wedding
photo but also sends an HTTP request to a web server in the university for
statistics purpose only. In real attack scenario, the behavior could be sending
cookies or posting on the victim’s wall. URL in the JavaScript is obfuscated by
%ASC Code.
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Experiment Results. We execute the experiments for one day, and collected 6
HTTP requests to the web server that is set up in the university. They are from
different IP addresses indicating 6 different users actually fell into the trick. The
deception rate is 4.9 %.

Comparing with User Study in Sect. 4. The deception rate of Facebook
experiments is much lower than 40 % in our user study performed on Amazon
Mechanical Turk. Possible reasons are as follows.

– Not everyone has seen the status message. Only about half of Facebook users
are checking Facebook every day [9]. Even if one has checked Facebook update
that day, he or she may ignore that status message, which is embedded inside
many other updates from many users. The chance that one did see the status
message is much lower than the experiment that is carried out on Amazon
Mechanical Turk, where people are paid to see the message.

– The account is fake and thus no one knows that guy. We create the fake
account only in a few days, and thus no one actually knows the user on
Facebook. For the user study on Amazon Mechanical Turk, we assume the
message is from a close friend of the survey taker.

Although the two aforementioned factors reduce the number of affected users,
we still see almost 5 % deception rate, which is pretty high for a social engineer-
ing attack. Users are currently not well educated and prepared for add-on XSS
attack.

6 Discussion

We discuss several frequently asked questions in this section.

Are the motives of the participants in the user study questionable
so that they do not give truthful answer? No, we present the reasons
in three folds. First, before the study, the participants acknowledge that no
matter what their answer is, they will get paid as long as they finish the survey.
Second, we randomize the sequence of questions and answers so that a participant
cannot choose a fixed answer. Further, we only choose those who fill the optional
comment field, i.e., they do pay more attention to the study. Third, according to
a research study [38], although immediate payoff is a motivation for mechanical
turk works, a considerate amount of workers do enjoy the process during work.

Can we just disable address bar JavaScript and substitute it with
JavaScript from other places, such as browser console? Yes, but the
same vulnerability also exists for JavaScript from other places. For example,
people can use browser console or bookmark to debug server-side JavaScript
and execute add-on JavaScript, but meanwhile, attackers can also entice users
to input malicious JavaScript into browser console or bookmark. By any means,
we have to secure add-on JavaScript, which could be from browser address bar,
browser console or browser bookmarks.
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In addition, browser address bar JavaScript has the following advantages:

– Simplicity. Address bar JavaScript is very simple to use. You can just type
several keywords and launch JavaScript, which requires no complicated meth-
ods, such as launching a JavaScript console.

– Familiarity. Many experienced users are used to adopt address bar JavaScript,
who are reluctant to switch to a new way of debugging [11].

Can we just disable some functionality (like HTTP functionality) of
address bar JavaScript to prevent malicious behavior? A simple idea is to
disable some functionalities such as HTTP requests for address bar JavaScript.
However, this simple fix does not work because address bar XSS attacks may
not involve HTTP communication. For example, we illustrate a session fixation
attack in Fig. 6 of Sect. 3.2 (More Severe Damages.), which does not need any
HTTP connection. For that attack, malicious address bar JavaScript overwrites
document.cookie and then benign JavaScript helps the malicious JavaScript to
send that cookie back to benign server.

Is there any ethics issue in the study? No participant in our study has actu-
ally been attacked; the JavaScripts they input into address bar at most send a
confirmation to our server but no personal information. However, the partici-
pants may have perceived that they were tricked, so we told all the participants
from Amazon mechanical turks that it is a simulation. And we will pop up an
alert (part of the JavaScript) for facebook users to tell them the truth.

7 Related Work

We introduce related work from two aspects: direct solution to the problem, and
solutions to other related problems.

7.1 Direct Solution to the Problem

There are three direct solutions to malicious address bar JavaScript, which are
human censorship, disabling address bar JavaScript, and removing keyword.

Human Censorship - Slow. A web site can hire a human to censor all the
posts and delete those that contain an insecure JavaScript snippet. For example,
this approach is currently adopted by Baidu Tieba. Every forum of Baidu Tieba
employs an administrator with super power to manage and censor that forum.
However, human censorship has the following drawbacks:

– Slow Detection. Reviewing posts by a human is very slow. He or she cannot
work 24 hours to review all the posts, which leads to large delays.

– Over-usage of Super Power. The administrator may possibly over-use his
super power and delete benign and legal posts [16]. It is hard to avoid this
when employing a human to deal with all the posts.
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Disabling Address Bar JavaScript - Dis-functionality of Some Exist-
ing Programs. On browsers with support of NoScript, like Firefox, to disable
JavaScript in browser address bar, a user just needs to go to “about:config” and
set noscript.allowURLBarJS to be false, which is also the default value. However,
we find that there is still many legitimate usage of address bar JavaScript.

– Debugging. Developer can use address bar JavaScript to debug their appli-
cation. For example, there is a JavaScript console [12] working in JavaScript
address bar and bookmarks to help people debug JavaScript application.

– Funny Stuff. As shown in the measurement results of Sect. 3, people may use
address bar JavaScript to show some magic to his or her friends.

We also find some people complaining about the disfunctionality of address
bar JavaScript [11].

Removing JavaScript Keywords Before Pasting - Problems still Exist.
Google chrome removes the prefix “JavaScript:” when any contents are pasted
into browser address bar. However, as shown in our user study of Sect. 4, although
infected number decreases, attackers can still let people type “JavaScript:” into
address bar to trigger the attack.

7.2 Solutions to Other Related Problems

We discuss solutions to other related problem in this section. They are host
cross-site scripting attacks (traditional XSS), online social network spams, and
JavaScript worms.

Fig. 8. Because browser will parse escaped string, escaping does not work for defending
browser address bar XSS.

Cross-site Scripting Defense - Not Working. We classify existing XSS
defense mechanism into two categories: server-side defense with content filtering
and client-side one with restricted JavaScript functionality.

At server-side, existing XSS defense mechanism [22,23,25,29,31,32,35,36,
44] adds a content filter at server side to escape potential dangerous character.
However, escaping potential dangerous character does not prevent the attack,
because although dangerous characters, such as : and ;, are escaped, they are
unescaped by the client browser and displayed to users, as shown in Fig. 8. When
a user copies and pastes that JavaScript, he or she still sees the unescaped
JavaScript.
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At client-side, existing approaches [6,30,37,41] create a sandbox at client
side or enforce similar techniques according to server-side policies to restrict the
execution of client-side JavaScript. However, restricting JavaScript executing at
client-side does not prevent the attack either, because when rendered in client
browser, the JavaScript is rendered as text instead of scripts. Only after users
input those JavaScript into address bar, they are rendered as JavaScript, which
belongs to the top frame, and thus is executed as the privilege of host web
site. Since host web site has its own JavaScript, we cannot disallow JavaScript
globally.

Defense on Online Social Network Spamming - Relatively High False
Negative Rate. Several systems [27,28] are proposed for offline spam filtering.
However, they involve manual works that cannot be deployed for an online sys-
tem. On the other hand, all online systems [26,33,42,46] use machine learning
techniques. However, they have relatively high false negative rate. For exam-
ple, the most recent one has approximately 20 % false negative rate [26]. More-
over, those systems adopting machine learning techniques are not quite attacker
resistent [39].

Defense on JavaScript Worms - Not Working or Slow Detection. There
are many works [24,34,40,45] focusing on detection and prevention of JavaScript
worms. They can prevent JavaScript worms but not information leak like stealing
cookies as illustrated in Sect. 3.2.

For defending JavaScript worms, Spectator [34] and Xu et al. [45] detect
JavaScript worm spreading based on social graph properties. However, they can
only detect the worm when it spreads enough far. Sun et al. [40] detecting
payload of JavaScript worms, but they are not robust to polymorphic worms.

PathCutter [24] isolates third party contents from important content, and
identify different views a request is from. However, for browser address bar
JavaScript, the request is always from the top frame, which means view sep-
aration is broken.

8 Conclusion

Add-on XSS, which combines social engineering technique and cross-site script-
ing, is studies in this paper. An attacker entices people to input a piece of
JavaScript into browser address bar through social engineering, such as spam.
One motivating example in the wild has affected more than 40 thousands people
on tieba.baidu.com. To dig into the problem, we first study a two-month trace
from a major social network, and find 55 distint instances of such attack. Then,
we conduct a user study Amazon Mechanical Turks [4] and find 40 % people
are vulnerable to this attack on average. In the end, we perform a Facebook
experiment with a fake account and 4.9 % of the fake users friends do fall into
the trick. We hope browser vendors should take solutions to fight against such
attacks.

http://tieba.baidu.com
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Abstract. Google Hacking continues to be abused by attackers to find
vulnerable websites on current Internet. Through searching specific terms
of vulnerabilities in search engines, attackers can easily and automati-
cally find a lot of vulnerable websites in a large scale. However, less work
has been done to study the characteristics of vulnerabilities targeted by
Google Hacking (e.g., what kind of vulnerabilities are typically targeted
by Google Hacking? What kind of vulnerabilities usually have a large
victim population? What is the impact of Google Hacking and how easy
to defend against Google Hacking?).

In this paper, we conduct the first quantitative characterization study
of Google Hacking. Starting from 997 Google Dorks used in Google
Hacking, we collect a total of 305,485 potentially vulnerable websites,
and 6,301 verified vulnerable websites. From these vulnerabilities and
potentially vulnerable websites, we study the characteristics of vulnera-
bilities targeted by Google Hacking from different perspectives. We find
that web-related CVE vulnerabilities may not fully reflect the tastes of
Google Hacking. Our results show that only a few specially chosen vul-
nerabilities are exploited in Google Hacking. Specifically, attackers only
target on certain categories of vulnerabilities and prefer vulnerabilities
with high severity score but low attack complexity. Old vulnerabilities
are also preferred in Google Hacking. To defend against the Google Hack-
ing, simply modifying few keywords in web pages can defeat 65.5 % of
Google Hacking attacks.

Keywords: Vulnerability · Google Hacking · Google Dork

1 Introduction

Web and web applications have become a necessary part of our daily lives. Every
day, we interact with a large number of web applications for communication, edu-
cation, and entertainment. Unfortunately, the diversity and complexity of web
implementations make it hard for web developers to build bug-free web appli-
cations. Thus, these bugs/vulnerabilities give attackers a chance to compromise
these benign websites. In [19,22,30], a large number of websites with high repu-
tation were reported to have been exploited by attackers to redirect visitors to
spam websites.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 602–622, 2015.
DOI: 10.1007/978-3-319-23829-6 46
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To effectively find those vulnerable websites, attackers began to explore
search engines as their tools. Google Hacking refers to the practice of searching
elaborate terms in search engines to find vulnerable websites. Based on a study
from [18], 33 % of collected bot queries are searching for vulnerable websites.
Another recent study [20] also showed that most of attackers submitted queries
to search engines to look for vulnerable websites with known vulnerabilities.

There are several benefits for launching Google Hacking attacks: (1) Google
Hacking can help attackers easily and efficiently find a large number of vulner-
able websites with almost zero cost. (2) There exist many exploit toolkits in
underground markets, which can automatically test and exploit those vulnera-
ble websites. Thus, attackers can easily find and compromise those vulnerable
websites in a large scale.

During the past 10 years, a large number of web vulnerabilities have been
discovered, disclosed by researchers and software vendors, and are published
on Common Vulnerabilities and Exposures database (CVE) [1]. This gives a
chance for attackers to easily launch Google Hacking attacks. Attackers can eas-
ily choose their target vulnerabilities and generate corresponding search terms.
Existing work has already conducted comprehensive studies either on a set of
vulnerability databases in terms of the evolution of vulnerabilities, the life cycle
of vulnerabilities, and the risk analysis of vulnerabilities [15,28], or on the char-
acteristics of specific type of vulnerable websites such as search poisoning attacks
[30], HTTP parameter pollution [23]. However, not all of those vulnerabilities
can be exploited in Google Hacking, thus the characteristics of vulnerabilities
targeted in Google Hacking attacks are unfortunately still not clear to us.

In this paper, we conduct a first quantitative study on the Google Hack-
ing attacks. Starting from a set of representative Google Dorks (search terms
that can be used to easily find out websites with corresponding vulnerabilities)
used in Google Hacking, we study the characteristics of Google Hacking targeted
vulnerabilities through analyzing relationship among vulnerabilities targeted by
Google Hacking, known web related vulnerabilities, potentially vulnerable web-
sites (websites that have installed with vulnerable web applications), and victims
(vulnerable websites that have been reported to be compromised).

We collect a large number of representative Google Dorks used in Google
Hacking from a largest online public google hacking database [6], and a large
number of known vulnerabilities from a public vulnerability database CVE [1].
We collect a total of 2,101 Google Dorks used for Google Hacking, 997 of them
can be automatically matched with vulnerabilities in the CVE database. We
further search those Google Dorks in Google and collect 305,485 potentially vul-
nerable websites. To evaluate the quality of these potentially vulnerable websites,
we also collect 21,386 websites that have been successfully compromised through
cross-site scripting attacks in the past from an online public XSS attack data-
base [13]. We then cross check these XSS victim websites that also appear in our
collected potentially vulnerable websites, which we term as victim-vulnerable
websites. We find 6,301 websites belong to victim-vulnerable websites.
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Then we study the characteristics of Google Hacking from four perspec-
tives: targeted vulnerability, vulnerability-victim relationship, attack impact,
and attack robustness.

– For the targeted vulnerability study, we study the difference between vul-
nerabilities in Google Hacking and all known web related vulnerabilities in
the CVE database, we find that the distribution of vulnerability categories
are quite different between the web related CVE vulnerabilities and targeted
vulnerabilities in Google Hacking. Further study shows that vulnerabilities
targeting on SQL injection attacks and the vulnerabilities with high sever-
ity and low attack complexity are frequently exploited in Google Hacking.
Interestingly we also find that most of relatively old vulnerabilities are also
frequently exploited in Google Hacking. In addition, although Google Hack-
ing does target on some certain popular web applications, it also exploits the
vulnerability from a variety of web applications, even for the applications that
only have one vulnerability in CVE database.

– For the vulnerability-victim relationship study, we investigate the key fac-
tor to the different populations of vulnerable websites. We find vulnerable
application itself could be a key factor to different population of vulnerable
websites.

– For attack impact study, we investigate the impact of Google Hacking by eval-
uating the quality and popularity of victims of Google Hacking attacks. Our
results show that both high-reputation and low-reputation websites could be
victims of Google Hacking. For example, 87.6 % of them have page rank higher
than 31. 14 of them are in top 1,000 Alexa ranks. This again indicates that
Google Hacking can be a good way to find high quality vulnerable websites.

– For the attack robustness study, we check the robustness of Google Hacking
attacks. We design a new metric to evaluate the robustness of Google Hacking.
Our results show that 65.5 % of Google Hacking can be easily defeated by
simply modifying few keywords of web pages.

2 Background

2.1 Google Dork

As we know, search engines are designed for efficiently finding information on
Internet. Usually, users simply input search terms (keywords) and search engines
will return relevant websites that contain corresponding information. However,
search engines also support some special operators for relatively complex search-
ing, such as inurl, intitle, and intext. Search queries with these special operators
are called Google Dorks. With the help of Google Dorks, users can easily and
quickly find more accurate search results.

In recent years, Google Dorks have also been abused by attackers to launch
Google Hacking [20]. For example, inurl:“search results.php?browse=1” is a

1 3 is the average PageRank score based on [12].
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Google Dork that can reveal websites with the SoftBiz Dating Script SQL Injec-
tion vulnerability, a vulnerability that allows remote attackers to execute SQL
commands. Figure 1 shows some Google search results of such Google Dork. In
this paper, we also use such Google Dorks as input to find vulnerable websites
targeted by Google Hacking.

Fig. 1. Google Dork search results

2.2 Web Vulnerability

As more and more applications now can be interacted through web interface,
such as online banking, online shopping, and online social networking, remote
attacks on web applications are on the rise due to the large profits and scalabil-
ity. Thus, web related vulnerabilities attract much more attention from attackers
than traditional local exploit software vulnerabilities do. To find all known web
vulnerabilities in the CVE database, we first extract vulnerabilities with “net-
work” as access vector, which are considered to support remote exploit. Among
all remote exploit vulnerabilities, we further extract web related vulnerabilities
by checking keywords in their descriptions. Google Hacking usually targets on the
following certain types of web vulnerabilities. All these four categories represent
more than 90 % of targeted vulnerabilities of Google Hacking in our database.

– SQL Injection [10] is done by injecting strings into database queries to
change the database content or dump the database information such as pass-
words.

– Cross-site scripting(XSS) [4] is done by injecting JavaScript into web
applications to bypass access controls such as the same origin policy.

– Remote Execution [9] allows attackers to run arbitrary code in target
servers to execute their own commands.

– Path Traversal [5] allows attackers to access files that are not intended to
be accessible.
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Fig. 2. Google Hacking

2.3 Google Hacking

Vulnerability databases and existing studies have already published the details of
known vulnerabilities and corresponding exploit methods. However, one impor-
tant question for attackers is how to automatically find vulnerable websites with
those vulnerabilities in a large scale. Google Hacking is one way to exploit search
engines to find vulnerable websites. Figure 2 is a general Google Hacking pro-
cedure. In this attack, attackers first need to choose their target vulnerabilities
and generate corresponding Google Dorks as shown in 1©. Then they can col-
lect potentially vulnerable websites by directly searching Google Dorks in search
engines 2©. In this case, since not all of search results are actual vulnerable
websites, attackers need to further scan and exploit those potentially vulnerable
websites 3©. They can use the exploit methods provided from the vulnerabilities
databases or exploit tools from underground markets to automatically exploit
those vulnerable websites. Since not all of vulnerable websites can be successfully
exploited due to patching or personalized configuration, only the websites that
can be successfully exploited become victims, which can be further abused by
attackers to host spam or steal sensitive information.

In this paper, we conduct a comprehensive study of characteristics of Google
Hacking from the following 4 perspectives. (i) Targeted vulnerability (labeled
1©), e.g., what kind of vulnerabilities are typically targeted by Google Hacking?
(ii) Vulnerability-victim relationship (labelled 2©), e.g., what kind of vulnera-
bilities usually have a large population? (iii) Attack impact (labeled 3©), e.g.,
what is the impact of Google Hacking? (iv) Attack robustness, e.g., how easily to
protect vulnerable websites from being searched out through Google Hacking?

3 Data Collection

In this section, we describe the data sources that we used for our research.

3.1 Vulnerabilities

Common Vulnerability and Exposures Database (CVE) is an online
public vulnerability database, which represents currently publicly known infor-
mation of security vulnerabilities. To gain the knowledge of currently known web
vulnerabilities, we first crawled all CVE vulnerabilities from National Vulnerabil-
ity Database [8], which contains 53,611 CVE vulnerability entries reported from
1999 to 2012. For these CVE vulnerabilities, we crawled their CVE entry IDs
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and associated information such as CVSS scores, vulnerability summaries, and
vendors. We further extracted web related vulnerabilities based on the method
mentioned in Sect. 2. In this way, we collect a total of 26,453 such vulnerabilities.
We denote this dataset as Web CVE in this paper.

3.2 Google Dorks

Google Hacking Database [6] is the largest and most representative online
public exploit database as we know, which contains Google Dorks relating to
known vulnerabilities and threats. These Google Dorks can be used for Google
Hacking to search out vulnerable websites that have corresponding vulnerabil-
ities. Since we try to study Google Dorks that can be used to find vulnerable
websites rather than collect some sensitive information such as password files,
we only crawl the Google Dorks in “Vulnerable Files(60 Google Dorks)”, “Vul-
nerable Servers(71 Google Dorks)”, and “Advisories and Vulnerabilities(1,970
Google Dorks)” directories, which are usually related to certain vulnerabilities.
In this way, we collect a total of 2,101 Google Dorks with associated information
such as the hit number, submit time, and description.

To further understand how these Google Dorks are used to exploit vulnera-
bilities, we automatically match Google Hacking database with CVE database
based on their descriptions. Among these 2,101 Google Dorks, 997 of them have
CVE entries in their descriptions, thus we can automatically match them to
CVE database, and term this dataset as Dork CVE.

3.3 Potentially Vulnerable Websites

To collect vulnerable websites, we searched all the Google Dorks in Google and
recorded all the search results as “potentially vulnerable websites”. These poten-
tially vulnerable websites can be more exactly described as the ones that match
the conditions of specified vulnerabilities (e.g., specific version of specific installed
web applications/scripts). However, at the time of our searching, some of these
websites may have already been patched, cleaned, or security enhanced, thus
no longer exploitable. Thus, it is true that not all of the potentially vulnerable
websites we found are actual vulnerable.

3.4 Victim Websites

XSSed Database [13] is an online public XSS attack database, which contains
websites that have been actually exploited through cross-site scripting attacks
in the past. In this database, attackers have injected malicious JavaScript on
at least one page of each domain. We collect a total of 21,368 unique victim
domains and used these victim domains to evaluate the quality of Google Hack-
ing. We assume that the websites on these domains did not change significantly
from where they were XSSed and the time when they were found in the poten-
tially vulnerable websites. Thus, the websites appeared in the intersection of
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XSSed database and our potentially vulnerable websites should be victims of
Google Hacking. We cross check these victim websites with potentially vulnera-
ble domains, which we term as victim-vulnerable websites. 6,301 websites belong
to victim-vulnerable websites.

Table 1 is a short summary of our collected data.

Table 1. Data summary

Google Dork Dork CVE Web CVE Potentially
vulnerable
webs

Victim webs Victim-
vulnerable
webs

2,101 997 26,453 305,485 21,368 6,301

4 Measurement Methodology and Results

In this section, we study the characteristics of Google Hacking from different
perspectives.

4.1 Targeted Vulnerability Study

As we know, most of Google Dorks used in Google Hacking are generated based
on vulnerabilities. However, not all of web vulnerabilities can be represented in
the form of Google Dorks, and not all of such vulnerabilities are interested to
attackers. In this part, we try to study what kind of vulnerabilities are typically
targeted by Google Hacking through examining the following characteristics of
vulnerabilities.

Attack Categories. To verify if Google Hacking targets on some specific attack
categories, we compare the categories of vulnerabilities targeted by Dork CVE
with categories of all web related vulnerabilities in Web CVE database. We cat-
egorize each type of vulnerability by examining the keywords in their descrip-
tions. Figure 3 shows the category distribution for vulnerabilities in Dork CVE
and Web CVE.

We can see that the categories of vulnerabilities targeted by Google Hacking
are very different with that of web related vulnerabilities in Web CVE. Specifi-
cally, SQL, EXE, XSS, Path account for 92 % Google Hacking targeted vulnera-
bilities while they only contribute 64 % in Web CVE. In addition, SQL injection
vulnerability is exploited by most Google Hacking (57 % in Dork CVE) but
only 12 % in Web CVE, which reflects that most of Google Hacking will lead
to SQL injection attacks. From this perspective, only studying vulnerabilities
in Web CVE can not truly reflect attackers’ interests. We further compare the
trends of vulnerability category in both Google Hacking and Web CVE data-
base. Figure 4 are the trend distribution for vulnerabilities in Dork CVE and
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(a) Google Hacking (b) Web CVE

Fig. 3. Vulnerabilities category distribution

(a) Web CVE (b) Google Hacking

Fig. 4. Vulnerabilities category trends

Web CVE. We can see that by the end of 2010, EXE and XSS vulnerability
became top vulnerability in Web CVE as shown in Fig. 4(a). However, for Google
Hacking, SQL is still the top one vulnerability as shown in Fig. 4(b). In addi-
tion, although the number of XSS vulnerabilities begun to decrease since 2008
in Web CVE, it started increasing in Google Hacking.

To further understand why these vulnerabilities are chosen to be targeted in
Google Hacking, we examine them in terms of the exploit complexity, potential
damage, and the age of these vulnerabilities targeted in Dork CVE. Intuitively
the vulnerabilities reported recently with high damage and low attack complexi-
ties should be good candidates for Google Hacking. We also examine the vendors
of these vulnerabilities to verify if Google Hacking only targets on vulnerabilities
of certain web applications.

Attack Complexity. Ideally attackers prefer vulnerabilities that can be eas-
ily exploited so that they can launch attacks automatically in a large scale. To
study how easily these vulnerabilities can be exploited, we check the complexity
of exploiting these vulnerabilities. We use the feature “Access Complexity” pro-
vided in CVSS [2] to evaluate attack complexity. High access complexity means
that attackers need specialized access conditions to launch attacks while low
access complexity means that it is relatively easy to launch attacks. Figure 5(a)
shows the access complexity distribution.
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(a)Attack complexity distribution (b) Attack severity distribution

Fig. 5. Attack category distribution

We can see that most of vulnerabilities (e.g., SQL, EXE, Path) targeted
by Google Hacking have relatively low access complexities, which means that
attackers can easily launch attacks automatically at scale when they collect vul-
nerable websites. For each category, since the category itself already has low
access complexity (e.g., SQL injection vulnerability is easy to attack), the per-
centage of vulnerabilities with low access complexity in Dork CVE is similar to
vulnerabilities in Web CVE. However, in total, about 80 % of the vulnerabilities
of Dork CVE have low access complexity while only about 55 % of the vulnera-
bilities in Web CVE have. In addition, attack complexity distribution is similar
to the attack category distribution for Dork CVE in Fig. 3, which also reflects
that complexity is a candidate consideration for Google Hacking attacks.

Attack Damage. Ideally attackers prefer vulnerabilities that have huge damage
such as getting the full privilege of a vulnerable website. To study the damage
of these vulnerabilities, we check the attack severity of these vulnerabilities. We
use the feature “CVSS Severity Score” provided in CVE database to evaluate
the damage. Figure 5(b) shows the attack severity distribution.

We can see that most of vulnerabilities targeted by Google Hacking have
high severity levels, which may cause serious damage if these vulnerabilities are
exploited successfully. In total, about 74 % vulnerabilities in Dork CVE have
high severity level while only 47 % vulnerabilities in Web CVE have. In addition,
the attack severity distribution is also similar to attack category distribution for
Dork CVE in Fig. 3. Thus, attack damage is also a good candidate consideration
for Google Hacking attacks.

We further cross check the attack damage and attack complexity of vulner-
abilities, only 2 vulnerabilities (cve-2006-3571 and cve-2010-0971) in Dork CVE
out of 815 such vulnerabilities in Web CVE have low attack damage with high
attack complexity. We then check the details of these two vulnerabilities, both of
them belong to XSS vulnerability and allow remote attackers to inject arbitrary
web scripts, which are essentially severe vulnerabilities.

Vulnerability Age. Older vulnerabilities usually have more mature attack
tools, which can be easily exploited. However, newer vulnerabilities may not
be widely patched so that they may have a large victim population. To further
check whether Google Hacking targets on old vulnerabilities or recent vulnera-
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bilities, we use the metric “Age”, the time difference between the report time of
the vulnerabilities and the submission time of the Google Dorks, to evaluate it.
A vulnerability with a large age means that it is a relatively old vulnerability.
Figure 6 shows the age distribution of vulnerabilities in Dork CVE.

Fig. 6. Age distribution

We can see that most of these Google Dorks target on older vulnerabilities,
only 1 % Google Dorks target on vulnerabilities exposed in the same year. It is
probably because that the techniques exploiting older vulnerabilities are more
mature and most users do not patch their servers on time. Thus they are still
lucrative for criminals [3]. We acknowledge that our results may have some bias
since the submission time of those Google Dorks may not accurately characterize
the attack time. However, the submission time somehow reflects the observation
of such attacks, which can be used to estimate the trend of attackers’ tastes.

Table 2. Variety of vendors and applications

Rank Vendor Application

Dork CVE Web CVE Dork CVE Web CVE

1 joomla (65) joomla (226) joomla (9) wordpress (110)

2 mambo (20) novell (196) cms made simple (5) moodle (105)

3 xoops (12) wordpress (154) mambo (4) php-nuke (102)

4 yourfreeworld (10) drupal (141) kwsphp (4) phpmyadmin (98)

5 wordpress (8) apache (123) adodb lite (3) weblogic server (97)
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Application. Intuitively, famous web applications usually have a large number
of customers, which could be a good target for Google Hacking. To verify if these
Google Dorks are created to target on some specific famous applications/vendors,
we check the variety of applications of these vulnerabilities. There are totally 899
web applications affected by these 997 Dork CVE vulnerabilities, which shows
that Google Hacking could target on a variety of web applications, not limit to
certain applications.

Table 2 shows the top 5 vendors/applications for both Dork CVE and
Web CVE vulnerabilities, the numbers in the bracket shows the number of vul-
nerabilities. For example, there are 65 dorks in Dork CVE targeting on vulnera-
bility of joomla while there are 226 vulnerabilities related to joomla in Web CVE.
Although the application distribution is not strongly consistent between
Dork CVE and Web CVE, we can see that Joomla2 and WordPress appear
top in both Dork CVE and Web CVE. From [18], Joomla and WordPress are
two popular applications that are frequently queried by bots through Google
Hacking.

Fig. 7. Distribution of the number of vulnerabilities for web applications

To further check whether it is because WordPress and Joomla have many
vulnerabilities that lead to be exploited by Google Hacking, we extract all web
applications targeted by Google Hacking and check the number of vulnerabili-
ties in Web CVE for the same application. The high number of vulnerabilities
in Web CVE means that these applications are much more vulnerable and have
a higher chance to be exploited. Figure 7 shows the vulnerability number dis-
tribution of these web applications. Interestingly, we find that more than 50 %
web applications targeted by Google Hacking have only one vulnerability in
Web CVE, which means that the choice of Google Hacking targeted applications
is not strongly correlated with the numbers of vulnerabilities for this application.

Lessons: Most Google Hacking attacks target on certain categories of vulnerabil-
ity (e.g., SQL, XSS, EXE, Path), which usually have high attack damage with low
attack complexity. Thus, launching Google Hacking on them makes it easy for
attackers to compromise vulnerable websites. In addition, most of Google Hack-
ing attacks target on relatively older vulnerabilities, probably because exploita-
2 Joomla is an open source content management system which is estimated to be the

second most used CMS on the Internet after WordPress.
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tion techniques are more mature. Furthermore, both the trend of vulnerabil-
ity category and application distribution of vulnerabilities are quite different
between Dork CVE and Web CVE, and the target applications of Google Hack-
ing are not strongly consistent with their vulnerabilities number. Thus, only
studying the characteristics of Web CVE vulnerabilities may not fully represent
the taste of Google Hacking.

4.2 Vulnerability-Victim Relationship Study

Through searching Dork CVE in Google, we collect a large number of potentially
vulnerable websites. With a large number of potentially vulnerable websites,
we further investigate the relationship between vulnerabilities and potentially
vulnerable websites. As we know, the goal of attackers is trying to find a large
number of possible vulnerable websites through Google Hacking. So what is the
possible cause for a large population of vulnerable websites? To answer this
question, we try to study what kind of characteristics of vulnerabilities may lead
to a large population.

Fig. 8. Potentially vulnerable websites distribution in different vulnerability categories

Attack Category. Intuitively, different attacks targeting on different vulnera-
bilities are likely to have different numbers of potentially vulnerable websites.
To verify if the attack category may lead to different numbers of potentially
vulnerable websites, we compare the distribution of the number of potentially
vulnerable websites among different vulnerability categories. Figure 8 shows the
distribution results.

We can see that all of the four attacks have very similar distribution although
they have quite different vulnerability numbers. We further run T-test [11] to
determine if these distributions are significantly different from each other. T-test
is a statistical hypothesis test that can be used to determine if two sets of data
are significantly different from each other. In our experiment, we chose statistical
significance as 0.05, thus, if the calculated p-value is below 0.05, the null hypoth-
esis is rejected and the two distribution are significantly different. T-test for all
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Table 3. Top 10 vulnerabilities with large number of potentially vulnerable websites

CVE Category # of potentially vulnerable websites

2007-6649 EXE 991

2007-6139 EXE 956

2008-0502 EXE 932

2007-0233 Other 930

2007-0232 EXE 924

2008-5489 SQL 917

2007-1776 SQL 909

2007-6057 EXE 899

2007-5992 SQL 898

2009-0451 SQL 894

pairs of attacks are higher than 0.05, which further demonstrates the four attacks
have very similar distribution. We then check the category of vulnerabilities with
the highest number of potentially vulnerable websites. Table 3 is the Top 10 vul-
nerabilities with a large number of potentially vulnerable websites. We can see
that vulnerabilities in “EXE” category have the highest number of potentially
vulnerable websites. However, it still has a similar population distribution with
vulnerabilities in other categories. Thus, the population of potentially vulnerable
websites does not have a strong correlation with vulnerability categories.

Application. Intuitively, popular/famous applications should have a large pop-
ulation. To verify that whether it is the vulnerable applications that lead to
different numbers of potentially vulnerable websites or not, we compare the
average number of potentially vulnerable websites among different vendors.3

Figure 9 is the cumulative distribution of the average number of potentially
vulnerable websites for different applications. We can see that the overall dis-
tribution is almost linear. Less than 20 % vulnerabilities have the number of
potentially vulnerable websites larger than 600. Table 4 shows the top 5 vendors
with the largest average number of potentially vulnerable websites. Interestingly,
the top vulnerable applications are different in that of Dork CVE and Web CVE
shown in Table 2. However, they are all popular web applications or applications
containing sensitive information. Social networking script is a datecomm social
network web application, which allows remote attackers to execute arbitrary
SQL commands. FrontAcoutning is a web-based accounting system that also
allows remote attackers to execute arbitrary SQL commands, which will lead to
sensitive information exposure. Thus, the popularity of these applications could
be a key cause to the size of potentially vulnerable websites population.
3 We ignore vendors with only 1 vulnerability, because the number of potentially

vulnerable websites of them could be easily oscillated and might not be reliable.
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Fig. 9. Potentially vulnerable websites distribution with vendors

Table 4. Top 5 vendors of potentially vulnerable websites

Vendors Avg. # of potentially vulnerable websites

social networking script 898.5

skadate online dating 718.5

frontaccounting 687

minitwitter 677

minerva 654

Attack Severity. To verify whether different risk levels of vulnerabilities will
lead to different numbers of potentially vulnerable websites, we compare the dis-
tribution of the number of potentially vulnerable websites among vulnerabilities
with different severity levels. Figure 10(a) shows the cumulative distribution of
the population of potentially vulnerable websites for vulnerabilities with differ-
ent risk levels. Since we only have few low-risk vulnerabilities, its distribution
is not continuous. However, both high-risk and medium-risk vulnerabilities have
very similar distributions. Thus, attack severity maybe not be a cause for large
population of potentially vulnerable websites.

Attack Complexity. To verify whether the attack complexity will lead to dif-
ferent numbers of potentially vulnerable websites, we compare the distribution
of the number of potentially vulnerable websites among vulnerabilities with dif-
ferent complexities.

Figure 10(b) shows the cumulative distribution of vulnerabilities with dif-
ferent attack complexities. Although we only have few vulnerabilities with low
attack complexities, their distribution is still very similar to other vulnerabili-
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(a) different risk levels (b) different complexity levels

Fig. 10. Potentially vulnerable websites distribution

Fig. 11. Potentially vulnerable websites distribution with exposure time

ties with high or medium attack complexities. Thus, attack complexity may not
contribute a lot to the population of potentially vulnerable websites.

Exposure Time. To verify if the exposure time of vulnerabilities will lead
to different numbers of potentially vulnerable websites, we compare the distri-
bution among vulnerabilities with different exposure time. Figure 11 shows the
distribution of the average number of potentially vulnerable websites in different
exposure time. We can see that the number of potentially vulnerable websites
does not decrease much along with time, this is possible because people are usu-
ally lazy to patch their systems [3]. The exception of 2005 is because there are
only few vulnerabilities disclosed in 2005, which makes the average number of
potentially vulnerable websites not reliable. Thus, the exposure time seems not
to be a good indicator of large potentially vulnerable website population.

Lessons: Although most Google Hacking attacks target on SQL vulnerability,
Google Hacking targeting on EXE vulnerability usually has a large number of
population. And vulnerable applications could be a key factor accounting for the
different population of vulnerable websites.

4.3 Attack Impact Study

To measure the impacts of Google Hacking, we essentially check the quality and
popularity of those victim-vulnerable websites.
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Fig. 12. Pagerank distribution

Quality. Since the final goal of attackers is trying to compromise benign websites
through Google Hacking, thus the higher quality websites have, the more value
attackers can gain (e.g., website reputation, sensitive information, and a large
number of visitors). PageRank score is widely used by search engines to rank the
importance of websites. A higher PageRank score indicates a better reputation of
the website. To evaluate the overall quality of these victim-vulnerable websites,
we use PageRank score as an indicator of the website quality. Figure 12 shows the
PageRank score distribution. We also compare it with randomly chosen 1,000
domains from the XSSed database (Victim websites).

Table 5. Top 5 Top Level Domains of vulnerable and victim websites

Vulnerable websites Percentage Victim websites Percentage

com 53.91 % com 44.12 %

org 8.68 % org 6.00 %

net 6.49 % net 5.18 %

de 4.15 % de 3.36 %

uk 2.29 % uk 3.17 %

Table 6. Top 5 country of vulnerable and victim websites

Vulnerable websites Percentage Victim websites Percentage

United States 61.09 % United States 46.17 %

Germany 8.43 % Germany 6.78 %

United Kingdom 3.25 % France 5.36 %

France 3.09 % United Kingdom 5.19 %

Netherlands 2.92 % Turkey 3.59 %
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We can see that victim-vulnerable websites have relatively high reputations
compared with victim websites. 87.6 % of victim-vulnerable websites have page
rank scores higher than 3 while only 68.5 % for victim websites. We also cross
check vulnerable and victim-vulnerable websites with Alexa ranks. 14 of them
belong to top 1,000 Alexa ranks. which also reflects that Google Dorks could be
a good way to find high quality vulnerable websites.

Popularity. Those vulnerable and victim-vulnerable websites are widely dis-
tributed over 367 Top Level Domains (TLD) in total. Table 5 presents Top 5
TLDs. We can see that more than half of them hosted in .com domain, which is
also the largest domain [7] on current Internet.

We further check the country code of these websites based on their IP
addresses. The vulnerable websites and victim-vulnerable websites are distrib-
uted over 153 countries. From Table 6, we can see that about 60 % of them are
located in United States, this is possible because our query location is in United
States, thus more local websites are likely returned by search engines.

Lessons: The vulnerable websites of Google Hacking attacks are widely distrib-
uted on current Internet in terms of their popularity and quality, which makes
Google Hacking attacks become a popular way to find vulnerable websites.

4.4 Attack Robustness Study

To defend against Google Hacking attacks, the best way is to patch/fix all the
vulnerabilities, which are usually expensive and impractical. One alternative way
is to prevent attackers from finding those vulnerable websites. To achieve this
goal, we study the structure of Google Dorks. There are totally 6 operators
abused by Google Hacking attacks as shown in Table 7. We define three robust
levels of those dorks based on the cost for defenders to modify their websites’
content to defeat Google Hacking attacks. For example, intext/doublequote oper-
ators try to find keywords in webpages. In this case, administrators can easily
replace these keywords in the content with synonyms or images to avoid being
searched out. Thus, intext and doublequote operators will have lowest robust-
ness. intitle/allintitle operators try to find keywords in the title of webpages.
Although it is easy to replace these keywords in titles, however, these titles usu-
ally reflect the function of these pages which is important for normal operation
usage. Thus, they will have medium robustness. inurl/allinurl operators try to
find certain files/scripts in the web server. These files are usually associated with
other files. Directly modifying these files may lead to dependent errors of other
files. Thus inurl/allinurl will have highest robustness.

We also noticed that some dorks may use multiple operators. Thus, their
robustness should be the minimal level among all operators because modifying
the keywords with minimal robustness level is enough to protect the web server
from being searched out. In this case, 65.5 % of dorks have low robustness and can
be easily defeated by careful website administrators. For example, google dork
“Powered by NovaBoard v1.1.2” tries to find websites with vulnerable appli-
cation NovaBoard installed. In this case, administrator can easily remove such
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Table 7. Google Dork Structure

Operator # of dorks robust level

double quote 610 low

intext 43 low

intitle/allintitle 22 medium

inurl/allinurl 322 High

content in the webpage or replace such information with a picture, which can
successfully evade such attack without leading to any malfunctions.

Lessons: Although Google Hacking is efficient for attackers to find high qual-
ity vulnerable websites, simply modifying the web content of a server can help
administrators defeat more than half (65.5 %) of Google Hacking attacks.

5 Related Work

In this section, we discuss related research from three perspectives.

Large Scale Vulnerability Analysis. Vulnerabilities have been widely studied
by [15,28] in terms of vulnerability evolution, life cycle, vulnerability category,
vulnerability priority analysis, etc. Frei et al. [15] presented a comprehensive
study on the life cycle of general vulnerabilities in terms of the discovery, dis-
closure, exploit and patch time of vulnerabilities on more than 14,000 vulner-
abilities. Their results show that acquiring exploits is always faster than get-
ting patches. Shahzad et al. [28] extended this work by considering vendors and
types of vulnerabilities. Their results supported the previous study and presented
interesting trends on vulnerability patching and exploitation. Scholte et al. [29]
performed an empirical analysis of a large number of web related vulnerabilities.
Their results show that the complexity of XSS and SQL injection exploits has
not been increasing, and many web problems are still simple in nature. Edwards
et al. [14] conducted a study on the vulnerabilities history of various popular
open source software using a static source code analyzer and the entry rate in
CVE database. They demonstrated a correlation between the change in the num-
ber and density of issues and the change in the rate of the discovery of exploitable
bugs for new releases. An analysis of CVSS score has also been conducted by
Scarfone et al. [26], while Fruhwirth et al. [16] and Gallonc [27] attempted to
prioritize the vulnerabilities based on the CVSS framework.

Most of these studies only focus on vulnerabilities themselves. However, the
characteristics of these vulnerabilities themselves can not fully represent the
interests of attackers’. Thus, through studying the Google Hacking, our work
complements existing research by understanding the connections among the vul-
nerabilities with Google Dorks, vulnerable websites, and victim websites.

Studies Using Google Dorks. Moore et al. [24] showed that at least 18 % of
website compromises are triggered by Google dorks. John et al. [20] found that
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some bots explored Google Dorks to find target websites and built an automated
detection tool by generating regular expressions for query dorks. Their results
show that at least 12 % of search results are vulnerable to SQL injection attacks.
Later, John et al. [21] further exploited those malicious query dorks to find
vulnerable websites and built honeypots of these vulnerable web pages to collect
attack patterns. In [25], Pelizzi used Google Dorks from online hacking database
to find seed vulnerable websites and then automatically generate Google Dorks
from these vulnerable websites. Recently, Invernizzi et al. [17] used Google Dorks
to locate more malicious websites by starting from an evil seed set.

Different from existing work using Google Dorks to find more malicious web-
sites, we start form a new angle by studying what kind of vulnerabilities are
usually exploited as Google Dorks and the quality of these Google Dorks.

Large-Scale Victim Websites Analysis. Research [19,22] conducted a study
on search poisoning attacks in terms of detection and measurement. They col-
lected a large number of victim websites compromised by attackers to either redi-
rect user traffic to some malicious websites or host spam directly. Then they also
presented basic measurement of these victim websites. Zhang et al. [30] further
extended their work to automatically find more victim websites, and conducted
a comprehensive measurement of these victim websites in terms of distribution
and quality. Balduzzi et al. [23] presented an automated approach to discover
HTTP parameter pollution vulnerabilities. With their proposed method, they
conducted a large-scale analysis on more than 5,000 popular websites and showed
that 30 % of them have vulnerable parameters and 14 % of them suffer from
HTTP parameter pollution attacks. Unlike these existing work, we focus on the
relationship between victim websites and vulnerable websites rather than victim
websites themselves, and we target on more generic web attacks.

6 Conclusion

In this paper, we have conducted the first quantitative study of Google Hacking.
Through analyzing the relationship among vulnerabilities targeted by Google
Hacking, the general web exploit vulnerabilities in Web CVE, potentially vul-
nerable websites, and victim websites, we conclude that Google Hacking only
targets on a few specially chosen vulnerabilities. Thus existing studies on generic
vulnerabilities in Web CVE may not truly reflect the tastes of Google Hacking.

To defend against Google Hacking attacks, we investigate the robustness
of Google Hacking. Our study shows that most Google Hacking can be easily
defeated through modifying a few web content without leading to any malfunc-
tions.

In our future work, we will perform a deeper study with more data, and
prioritize web vulnerabilities based on the attackers’ tastes.
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Abstract. Almost any malware attack involves data communication between the
infected host and the attacker host/server allowing the latter to remotely control
the infected host. The remote control is achieved through opening different types
of sessions such as remote desktop, webcam video streaming, file transfer, etc. In
this paper, we present a traffic analysis based malware detection technique using
Hidden Markov Model (HMM). The main contribution is that the proposed sys-
tem does not only detect malware infections but also identifies with precision the
type of malicious session opened by the attacker. The empirical analysis shows
that the proposed detection system has a stable identification precision of 90 %
and that it allows to identify between 40 % and 75 % of all malicious sessions in
typical network traffic.

Keywords: Malware detection · Hidden Markov Model (HMM) · Malicious ses-
sions · Traffic analysis

1 Introduction

Malware1 is a significant threat and root cause for many security problems on the Inter-
net, such as spam, distributed denial of service, data theft, or click fraud [1]. Malware
attacks are getting more and more sophisticated. The recent campaign of malware-based
attacks targeting the Middle East is a manifestation of this trend. Several organizations
in the Middle East, in particular in the energy industry, reported infections with sophis-
ticated malware in the few last years [2–5].

Most malware consist of (at least) two fundamental components: a client agent, who
runs on infected hosts, and a control server application, widely known as Command
and Control (C&C) server. Almost any malware-based attack involves a data commu-
nication between the infected host and the attacker. This includes sending control com-
mands, stealing confidential files, opening remote control sessions (simple shell, remote
desktop connection, keylogger session, webcam video communication session, etc.).

1 Malware and Bot will be used interchangeably.
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DOI: 10.1007/978-3-319-23829-6 47
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The proposed work falls into the network-based malware detection techniques. It
deviates from most of existing work in the literature by not relying on the payload/body
of traffic packets. The approach is based on general characteristics of packets such as
size, direction, and delays between successive packets. The approach is inspired by a
large body of work called traffic fingerprinting [6–11] used to attack anonymity pro-
tocols, in particular Tor [12]. A common type of traffic fingerprinting called website
fingerprinting whose aim is to detect websites visited by a victim, showed recently very
promising results (precision of 90 % [11]).

While existing work in the literature focuses only on identifying malware infections,
the main contribution of this paper is to push the network-based malware detection tech-
nique further to recognize with precision the type of communication being carried out
between the infected host and the C&C server (Remote desktop connection, camera
session, keylogging session, etc.). Identifying the type of malicious session with preci-
sion has several applications, in particular in forensics investigations. To the best of our
knowledge, this is the first work in the literature to tackle this problem.

2 Malicious Sessions

Attackers use different types of malware to infect home and business users having
access to internet. The most common types of malware include trojans, spyware, and
worms. Infected machines are typically part of a large network of owned machines
called botnets. The attacker typically uses a Command and Control server (C&C) to
remotely control the zombie machines. The remote control is typically done through
a feature called Remote Administration Tool (RAT). A RAT provides the possibility
to open several types of malicious sessions with an infected machine: initial connec-
tion, remote shell session, remote desktop session, keylogging session,webcam video
streaming session, audio streaming session, chat session, upload/Download file session,
and screenshot session.

3 Overview of the Detection System

The proposed malware detection system is based on network-level signatures. Figure 1
shows an overview of the detection system. The procedure starts by collecting a set of
packet traces corresponding to each malware/malicious session. This can be achieved
by using a host machine as a honeypot2. This machine is configured to attract malware
attacks by automatically opening suspicious files, using unpatched versions of software,
in particular, web browsers, visiting malicious websites, etc. Once an infection occurs,
the next step is to keep observing/logging the network traffic so that to collect several
instances of typical malware sessions (e.g. Download/Upload of files, screen snapshot
transfer, remote shell, etc.). The set of packet trace instances/samples are then used to
learn a network signature model for each type of session. In order to make the approach
applicable even if the malware uses a form of network encryption, network signatures
are only represented in terms of general characteristics of the packets, in particular, the

2 For large scale systems, the honeypot machine can be replaced by a full honeyNet network.
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Fig. 1. Overview of the malware detection system using one honeypot and HMM models

direction of the packet (C&C to infected host or infected host to C&C), the size of the
packet, and time delay between every successive packets, namely, the Inter Packet Time
(IPT). For instance, Fig. 2 shows the packet trace corresponding to the initial handshake
between a freshly infected host and the C&C of a famous Remote Administration Tool
(RAT) malware called proRat [13]. The trace is composed of 8 packets all of which
are simple TCP segments. Given several samples of such session, the next step is to
generate a signature model that captures the pattern of the sequence of sizes and IPTs.
The model used in this work is a Hidden Markov Model (HMM). The outcome of
the learning phase is a database of HMM models, each model capturing the pattern of
an observed malicious session. The database of HMMs can then be used to analyze
the network traffic in order to detect new infections with the same malware and iden-
tify exactly the type of malicious sessions being opened. The detection system can be
deployed according to different scenarios and at different locations in the network (e.g.
Gateway, Router, Intrusion Detection System, Proxy, etc.).

4 HMM Based Signatures

Packet traces corresponding to malicious malware sessions can very well be represented
using Hidden Markov Models (HMMs). HMM is a statistical Markov model especially
known for its application in temporal pattern recognition. HMM has been mainly used
for speech recognition [14] and bioinformatics [15].

Definition 1. A HMM is a tuple (S ,T,O,Q,π) where

– S is a set of N states {s1,s2, . . . ,sN}.
– T : S → Π(S) is a state transition function which maps each state S to a probability

distribution over S . Tsi→s j denotes the probability of transition from si to s j.
– O is a set of M observations {o1,o2, . . . ,oM}.
– Q : S → Π(O) is an observation function. Qo

s denotes the probability of observing
o while in state s.



626 S. Zhioua et al.

Infected Host C&C Server/Attacker

TCP, Size=14, IPT=0 ms

TCP, Size=6, IPT=1440 ms

TCP, Size=11, IPT=20 ms

TCP, Size=13, IPT=242 ms

TCP, Size=13, IPT=160 ms

TCP, Size=35, IPT=0 ms

TCP, Size=13, IPT=139 ms

TCP, Size=14, IPT=0 ms

Fig. 2. Packets Trace of the initial handshake of proRAT malware attack

– π is the initial state distribution, where π(s) denotes the probability of s being the
initial state.

The sequence of exchanged packets between the infected host and the C&C server
in every malicious session can be very well represented using an HMM. For example,
the packet trace in Fig. 2 representing the initial handshake between the infected host
and the C&C can be captured using an HMM with 8 states each corresponding to a
packet in the trace. The observation in every state can be the IPT value. Since the space
of possible IPT values (observations) is continuous, we represent malicious sessions
with a Continuous HMM (CHMM) where every state defines a continuous probability
distribution, in particular a Gaussian (Normal) distribution, over the space of observa-
tions. The HMM corresponding to the trace in Fig. 2 can be defined as follows:

Definition 2. The HMM corresponding to the packet trace in Fig. 2 is a tuple
(S ,T,O,Q,π) such that:

Figure 3 shows the graphical representation of the HMM of Definition 2.
One can note that the states of the HMM as defined in Definition 2 are not hidden

since state 1 is always the first to be visited and the transition function is deterministic.
Hence, one can argue that we could use a simpler Markov model where states are not
hidden. The reasons to choose the HMM model are two fold. First, we need a model
where different observations can be emitted from a single state. Second, HMMs come
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Fig. 3. Graphical representation of HMM of Definition 2

with a well established theory for learning the parameters and computing the probability
of acceptance of a given observations sequence.

All the parameters of the HMM are known (Definition 2) except the parameters
of the Gaussian distributions in every state, namely, the values of the mean (µ) and
variance (σ2). Typically, the observation functions of a HMM are learned based on a
training set of observation sequences. Since the aim of the proposed HMMs is to model
network signatures of malicious sessions, the training sequences should correspond to
valid previously observed malicious sessions.

4.1 Learning the HMM Parameters

Learning HMM parameters based on a set of sequences is one of the basic problems with HMMs.
In his seminal work [14], Rabiner shows how an HMM is trained given a single or multiple obser-
vation sequences. The main idea consists in starting from any HMM model then keep adjusting
the parameters to maximize the probability to accept the observation sequences. Computing the
probability of accepting an observation sequence by an HMM is another basic problem with
HMMs.

Hence, what is required to learn the HMM parameters is a set of packet traces (samples)
corresponding to each type of malicious malware sessions. These packet traces are given as
input to the HMM learning algorithm which returns as output the HMM model. It is impor-
tant to mention that very often, the HMM learning algorithm does not consider all samples in
the training. An initial filtering step is carried out to rule out “noisy” samples. A noisy sam-
ple is a packet trace where the packet sizes do not match the packet sizes of the “majority” of
the other samples. For instance, if most of the samples have the following sequence as packet
sizes: [14,−6,11,13,−13,35,−13,14] (the same as Fig. 2), and one sample of the same set has
a sequence [14,11,11,−6,13,−13,−13]. The latter is considered noisy and is not used for the
training of the HMM model. Notice that negative values are used to distinguish between packets
in different directions: positive value designates a packet going from the infected host to the C&C
while a negative value designates a packet going in the opposite direction (C&C to infected host).

5 Implementation and Experimental Settings

Given a set of packet traces for each type of session, the HMM learning algorithm generates a
set of HMMs. These HMM models are stored in a database. The detection of malware infections
and the exact type of malicious sessions is achieved by scanning network traffic of all hosts in
the private network and trying to identify packet traces accepted by some HMM models. This
process is done in two steps: packet sizes matching and HMM acceptance. The detection system
analyzes the traffic by maintaining a sliding window on the previously observed packets. The
length of the window is equal to hmax representing the number of states of the longest HMM in
the database. The aim of the HMM acceptance step is to make sure that the IPT values of the
current packets in the sliding window exhibit a pattern very similar to the pattern modeled by any
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HMM model in the HMM database. This is achieved looping over all HMMs in the database and
computing the acceptance probability of the sequence of IPTs. A probability larger than a fixed
threshold λ means that the last observed packets correspond to the malicious session associated
with the current HMM.

6 Empirical Analysis

In order to assess the accuracy of our HMM based approach to identify malicious sessions, we
used a set of commonly used malware RATs (Remote Administration Tools). Each RAT supports
a set of sessions. Table 1 shows the list of RATs with the sessions considered in the analysis.
An empty cell in the table indicates that the corresponding RAT-session combination was not
considered in the analysis. The reason is that some combinations did not work when the infected
host is running on a virtual machine3.

Table 1. List of Remote Administration Tools (RATs) with the type of sessions considered in the
empirical analysis.

RAT Name Initial Remote Chat Keylogger Upload Camera Audio Screenshot
Infection Desktop File Streaming Streaming

Beast 2.07 � � � � �
Bifrost 1.2.1 � � � � �
Blacknix 1.1 � � � � � � �
jRAT 3.2.4 � � � � � �
njRAT 0.7 � � � � � � �
Turkojan 4.0 � � � � � �
Dark Comet 5.3 � � � � � �

For each combination malware/session corresponding to a checked cell in Table 1, 10 samples
are collected. Each sample is a sequence of packets captured using Tshark sniffing tool.

The approach used to assess the precision of the proposed detection system is cross-
validation [16]. Our experiment consists in applying a 5-fold cross-validation on the collected
data.

Three well established measures in classification are used, namely, precision, recall and
F-measure. Precision measures the fraction of packet traces identified correctly by the proposed
system as malicious sessions of a certain type. Recall measures the fraction of the total set of
malicious sessions in the traffic that are identified correctly by system.

F1 is a measure that combines both precision and recall.
The first experiment performed consists in applying 5-fold cross-validation on 10 samples

of each malware/session combination. Only HMM models trained using 4 samples or more are
considered. The log likelihood threshold for the HMM acceptance algorithm is fixed to -100.
Figure 4 shows the results of the 5-fold cross-validation. Each of the first 5 histograms shows the
three measure values for each fold. The last histogram is the average of the 5 folds. The average

3 All the experiments were carried out using virtual machines both for the infected host and the
attacker/C&C server.
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Fig. 4. Results of 5-fold cross-validation HMM based detection with 10 samples, a minimum
number of training sequences of 4, and a log likelihood of -100.

precision is more than 85 %. This means that when the detection system identifies a particular
session, there is 85 % chance the identification is correct. The average recall is around 60 %.
This means that 60 % of all sessions in the testing phase have been correctly identified. The F1
measure is around 70 %.

The two remaining experiments performed aim to assess the efficiency of the system to detect
particular malware sessions. Figure 5 shows the precision measures when 5-fold cross-validation
is applied separately on each malware RAT. From the experiment’ result, the detection system
is very efficient in detecting Beast sessions (average recall more than 70 %) while it has hard
time with Blacknix sessions (average recall value less than 30 %). Figure 6 shows the precision
measures when cross-validation is applied separately on each session type. One can notice that
the proposed system is relatively efficient to detect file transfer sessions (average recall of more
than 60 %) but showing lower results for webcam video streaming sessions (average recall of
40 %).
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Fig. 5. Detection efficiency of each malware RAT.
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Fig. 6. Detection efficiency of each session type.

7 Conclusion

This paper presents a network-based malware detection system. Unlike typical network-based
approaches found in the literature, the proposed system does not only detect malware infections
but also identifies with precision the type of malicious session between the infected host and
the attacker/C&C server. Signatures for malicious sessions are represented using HMMs. The
empirical analysis shows that the proposed system has a high average precision (more than 85 %
in almost all the experiment performed) and a good average recall (around 60 %). While the
precision of the approach is stable (more than 85 %), the recall depends significantly on the
quality of the HMM models which in turn depends on the number of packet trace samples used
effectively in the training. For instance, training the HMM models using 7 packet trace samples
yields a recall of 75 %.

Our plan for future work is to improve the filtering step in the HMM training to consider
slightly noisy packet trace samples in the effective HMM training. This will further improve the
efficiency of the detection system. At the implementation side, gathering the training samples
needs to be further automated.
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