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Abstract. The exact order-preserving matching problem is to find all
the substrings of a text T which have the same length and relative order
as a pattern P . Like string maching, order-preserving matching can be
generalized by allowing the match to be approximate. In approximate
order-preserving matching two strings match if they have the same rela-
tive order after removing up to k elements in the same positions in both
strings. In this paper we present practical solutions for this problem.
The methods are based on filtration, and one of them is the first sublin-
ear solution on average. We show by practical experiments that the new
solutions are fast and efficient.

1 Introduction

The exact string matching problem consists in finding all the occurrences of a
pattern string P of length m in a text string T of length n. A recent variant
of this problem is the so called order-preserving matching problem [16,14,1,4,3].
In order-preserving matching, the task is to locate all the substrings of T which
have the same length and relative order as P . This problem has applications
in time series studies such as in the analysis of development of share prices in
a stock market. Formally, two strings u and v over an ordered alphabet are
order-isomorphic if they have the same length and ui ≤ uj ⇔ vi ≤ vj , for
any 1 ≤ i, j ≤ |u|. The term relative order refers to the numerical order of
the numbers in the string. In P = (3, 13, 5, 8, 21), the number 3 is the smallest
number in the pattern, 5 is the second smallest, 8 is the third smallest num-
ber and so on. Therefore, the relative order of P is 1, 4, 2, 3, 5. For instance, if
T = (6, 10, 55, 36, 45, 66, 6, 21, 28, 15, 36), then it can be observed that P and the
substring of T starting at location 2 are order-isomorphic.

There exist various solutions for the exact order-preserving matching prob-
lem. Kubica et al. [16], Belazzougui et al. [1] and Kim et al. [14] presented
generalizations of the Knuth–Morris–Pratt algorithm [15] which solve the prob-
lem in O(n + m log m) time, where m is the length of P and n is the length
of T . Belazzougui et al. also presented a sublinear algorithm which runs in
O( n log m

m log log m ) optimal time in the average case. Cho et al. [4] introduced a differ-
ent sublinear solution based on a generalization of the Boyer–Moore–Horspool
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algorithm [11]. Independently, Chhabra and Tarhio [3] presented another sublin-
ear solution based on filtration, which was proved to be faster than the previous
solutions in practice. Recently, Crochemore et al. [5] presented a generalization
of the suffix tree to the order-preserving case.

A natural generalization of the string matching problem can be obtained by
allowing the matching to be approximate, so as to search for the substrings of
the text T which are similar to the pattern P . One classical instance of this
kind is the string matching with k mismatches problem, where the task is to
find all the substrings of T that are at Hamming distance at most k from P , i.e.,
that match P with at most k mismatches. With respect to applications of order-
preserving matching, approximate search seems more meaningful than exact
search. Recently, Gawrychowski and Uznanski proposed a generalization of the
order-preserving matching problem to the approximate case [7]. In this model,
two strings are k-isomorphic if they have the same relative order after removing
up to k elements in the same positions in both strings. In the previous example,
for k = 1, we get two matches, at location 2 and 7. The algorithm presented by
Gawrychowski and Uznanski [7] runs in O(n(log log m + k log log k)) time and
it is the only existing solution for this problem to the best of our knowledge.
The idea in their method is to quickly filter out positions in T which are non-
matching by comparing signatures of the pattern and of the text substrings. As
also acknowledged by the authors, this algorithm is rather theoretical and has
not been implemented to date.

In this paper, we introduce two practical solutions for the approximate order-
preserving matching problem, also based on filtration. Their worst-case time
complexities are O(nm(�m/w� + log m)) and O(n(�m/w� log log w + m log m)),
respectively, where w is the word size in bits, and the former is the first sublinear
solution on average. We also present experimental results which show that the
filtering is effective and the algorithms are considerably faster than the naive one
where all the first n − m + 1 text positions are match candidates to be verified.

The paper is organized as follows. Section 2 contains the preliminaries,
Section 3 outlines the previous solution for approximate order-preserving match-
ing, Section 4 introduces our solutions based on filtration, Section 5 contains an
analysis of the first solution, Section 6 presents the results of practical experi-
ments, and Section 7 concludes the article.

2 Preliminaries

Let Σ be a finite alphabet of symbols and let Σ∗ be the set of strings over Σ.
Given a string x, we denote by |x| the length of x and by xi or x[i] the i-th symbol
of x, for 1 ≤ i ≤ |x|. The concatenation of two strings x and y is denoted by xy.
Given two strings x and y, y is a substring of x if there are indices 1 ≤ i, j ≤ |x|
such that y = xi . . . xj . We denote by xr = x|x|x|x|−1 . . . x1 the reverse of the
string x. Given a string x and a permutation π of {1, 2, . . . , |x|} we denote by
π(x) the string xπ(1)xπ(2) . . . xπ(|x|).

Given two strings x and y of length m, the Hamming distance between x and
y is dh(x, y) = |{1 ≤ i ≤ m | xi �= yi}|, and the matching statistics M(x, y) is an
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array of |x| integers where M(x, y)[i] denotes the length of the longest substring
of x starting at position i that exactly matches a substring of y. A factorization
of a string x is a sequence F1, F2, . . . , Fr of strings such that x = F1F2 . . . Fr.

The RAM model is assumed, with words of size w in bits. We use some
bitwise operations following the standard notation as in C language: &, |, ∧, ∼,
�, 	 for and, or, xor, not, left shift and right shift, respectively.

Problem definition. Two strings u and v over Σ are order-isomorphic with k
mismatches [7] or k-isomorphic, written u ≈k v, if they have the same length
and there exists a subset K of {1, 2, . . . , |u|} of size k at most, such that

ui ≤ uj ⇔ vi ≤ vj for i, j ∈ {1, 2, . . . , |u|} \ K .

The order-preserving pattern matching with k mismatches problem is to locate
all the substrings of a text T which are k-isomorphic with a pattern P .

3 Previous Solution

This section describes the previous solution formulated for the approximate
order-preserving matching problem. The method was proposed by Gawrychowski
and Uznanski [7] and is based on the signature of a sequence. The signature
S(a1, . . . , am) of sequence (a1, . . . , am) is (1 − pred(1), . . . ,m − pred(m)) where
pred(i) is the position where the predecessor of ai occurs in the sequence. Its
computation takes O(m log log m) time by sorting. The key result is that if
(a1, . . . , am) ≈k (b1, . . . , bm) then the Hamming distance between S(a1, . . . , am)
and S(b1, . . . , bm) is at most 3k. The algorithm iterates over each substring
(Ti, . . . , Ti+m−1) in the text T , determining its signature S(Ti, . . . , Ti+m−1) in
O(log log m) time per position. For each position i, it checks if the Hamming
distance between S(Ti, . . . , Ti+m−1) and S(P1, . . . , Pm) is greater than 3k. This
step can be done in O(k + log log m) time. If the test is true, the position is dis-
carded. Otherwise, the algorithm checks if (Ti, . . . , Ti+m−1) ≈k (P1, . . . , Pm) by
reducing the problem to the one of computing a heaviest increasing subsequence
spanning at most 3(k + 1) elements. This step can be assessed in O(k log log k)
time. Therefore, the total time complexity is O(n(log log m + k log log k)).

4 Our Solutions

Given a string u, we denote by φ(u) the binary string of length |u| − 1 such
that φ(u)i is equal to 1, if ui < ui+1, and to 0 otherwise. The function φ is a
linear approximation of the order for fast filtration. Observe that any position
2 ≤ i < |u| in u covers two positions in φ(u), i − 1 and i. Let u and v be two
strings and consider the mismatches between the strings φ(u) and φ(v). Each
mismatch position i identifies a different relative order, in u and v, between the
adjacent symbols at positions i and i + 1.

As the following Lemma shows, if u ≈k v, then the Hamming distance
between φ(u) and φ(v) is at most 2k:
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Lemma 1. For any two strings u and v such that u ≈k v, dh(φ(u), φ(v)) ≤ 2k.

Proof. Suppose by contradiction that dh(φ(u), φ(v)) > 2k and let K be a subset
of {1, 2, . . . , |u|} satisfying the definition of order-isomorphism with k mismatches
for u and v. Observe that for any position i such that φ(u)i �= φ(v)i we have
K ∩ {i, i + 1} �= ∅, as ui < ui+1 and vi ≥ vi+1 or vice versa. Hence, |K| > k,
contradicting the hypothesis. ��
For example, if u = (4, 1, 2, 3) and v = (4, 5, 2, 3) we have u ≈1 v, φ(u) = (0, 1, 1),
φ(v) = (1, 0, 1), and dh(φ(u), φ(v)) = 2. The following Lemma defines a distance
measure do, based on the Hamming distance, which satisfies do(φ(u), φ(v)) ≤ k:

Lemma 2. Given two strings x and y of the same length, let z0, z1, . . . , z|x| be
integers such that z0 = 0 and

zi =

{
1 if xi �= yi ∧ zi−1 = 0
0 otherwise

for i = 1, . . . , |x|, and let also H(x, y) = {i : zi = 1}. Then, for any two strings
u and v such that u ≈k v, do(φ(u), φ(v)) = |H(φ(u), φ(v))| ≤ k.

Proof. Suppose by contradiction that |H(φ(u), φ(v))| > k and let K be a subset
of {1, 2, . . . , |u|} satisfying the definition of order-isomorphism with k mismatches
for u and v. Observe that for any position i ∈ H(φ(u), φ(v)) we have K ∩ {i, i +
1} �= ∅ and H(φ(u), φ(v)) ∩ {i − 1, i + 1} = ∅. Hence, |K| > k, contradicting the
hypothesis. ��
Informally, the set H(x, y) is the largest subset of the mismatch positions between
x and y such that no two positions are consecutive. Therefore, for any two strings u
and v, there is no overlap between the positions in u and v covered by any two mis-
matches in H(φ(u), φ(v)). Our solution for approximate order-preserving match-
ing consists of two parts: filtration and verification. First the text is filtered with an
algorithm so as to locate all the potential matching locations and then the match
candidates are verified using a checking routine. Lemma 2 gives a necessary con-
dition for two strings to be k-isomorphic. The idea is to use it in the first phase to
quickly filter out non-matching positions in T .

Filtration. For filtration, the consecutive numbers in the pattern P are compared
pairwise in the preprocessing phase and transformed into the binary string φ(P )
where a 1 bit means the successive element is greater than the current one and a 0
bit means the opposite. Thereafter, in the search phase, an algorithm is applied to
filter the text T and find all the positions i in T such that do(φ(Ti,m), φ(P )) ≤ k,
where Ti,m = TiTi+1 . . . Ti+m−1 is the substring of T of length m starting at
position i. The substrings Ti,m are encoded into the binary string φ(Ti,m) online
in the same way as the pattern. The algorithm determines approximate matches
of the transformed pattern φ(P ) in the similarly transformed text φ(T ). As these
approximate matches are just the match candidates, they need to be verified
using a checking routine.
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Verification. For verification, we use the reduction, by Gawrychowski and
Uznanski, of the problem of k-isomorphism to the one of computing an heav-
iest increasing subsequence (Lemma 8, [6]). To compute the heaviest increas-
ing subsequence, we use the algorithm of Jacobson and Vo [13], which runs in
O(m log m) time for a sequence of length m. If we use a sorting algorithm with
O(m log m) worst-case time complexity, the total time complexity of the veri-
fication is also O(m log m). In theory, the time complexity can be reduced to
O(m log log m) by using Han’s sorting algorithm [9] and plugging a data struc-
ture which supports predecessor search in O(log log m) time, such as van Emde
Boas trees, in Jacobson and Vo’s algorithm. Observe that in the simpler case
where there are no repeated elements in u and v, deciding whether u ≈k v can
be reduced to computing the longest increasing subsequence of π(v), where π is
a sorting permutation of u.

We propose two filtration algorithms, which build on ideas from two algo-
rithms for string matching with k mismatches, namely approximate SBNDM [10]
and the GGF algorithm [8], respectively.

The first filtration algorithm, named AOPF1, is based on the following
Lemma, which is a generalization of the method used by approximate SBNDM
and first proposed by Chang and Lawler [2]:

Lemma 3. Given two strings x and y of the same length, let F1g1F2g2 . . . Frgr

be the factorization of x such that |Fi| = M(x, y)[1+
∑i−1

j=1 |Fjgj |], i.e., Fi ∈ Σ∗

is the longest substring of x starting at position 1 +
∑i−1

j=1 |Fjgj | that matches a
substring of y, |gi| = 2, for 1 ≤ i < r, and |gr| ≤ 2. Then r − 1 ≤ do(x, y).

Proof. Let si = |F1g1 . . . Fi−1gi−1Fi|+1 be the position of symbol gi[1] in x, for
1 ≤ i < r. For a given si, let j be a position in the interval [si − |Fi|, si] such
that xj �= yj . Observe that such a position always exists, because Figi[1] is not a
substring of y. Then, we have that either zj = 1 or zj−1 = 1. In the latter case,
observe that j − 1 > si−1, for i > 1, since |gi−1| = 2 and si − |Fi| = si−1 + 2.
Hence, for each si we can find a distinct integer j such that zj = 1. ��
Informally, the idea is to factorize x into substrings of y which cannot be extended
to the right and are separated by 2-grams (pairs of symbols). Let m̂ = |φ(P )|.
The AOPF1 algorithm slides a window of size m̂ along T , starting at position
1. For a given position i in T , the algorithm scans the substring φ(Ti,m) from
right to left and computes the factors Fj of φ(P )r until either it has found k +2
factors or it has scanned the whole substring. In the former case, by Lemma 3,
the position is skipped. Otherwise the algorithm performs an additional filtration
step, namely it computes H(ψ(π(Ti,m)), ψ(π(P ))), where ψ(u) is the the string
of length |u| − 1 such that

ψ(u)i =

⎧⎪⎨
⎪⎩

1 if ui < ui+1

2 if ui = ui+1

0 otherwise

and π is a sorting permutation of P , computed in the preprocessing phase. The
position is then verified only if |H(ψ(π(Ti,m)), ψ(π(P )))| ≤ k. Indeed, Lemma 2
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can be easily proved to hold also when using ψ(π(u)) and ψ(π(v)) in place of φ(u)
and φ(v) (observe that, if u ≈k v, then π(u) ≈k π(v)). We permute the strings
with π so as to obtain a permutation of P where repeated elements are clustered,
which allows us to perform a finer filtering using the ψ function. Note that, in
principle, this additional filtration works with any permutation and ordering of
repeated elements. For example, if u = (4, 1, 2, 4), v = (4, 5, 2, 3) and π is the
sorting permutation of u 2, 3, 1, 4, we have π(u) = (1, 2, 4, 4), π(v) = (5, 2, 4, 3),
ψ(π(u)) = (1, 1, 2), ψ(π(v)) = (0, 1, 0). Note that do(ψ(π(u)), ψ(π(v))) = 2,
while do(φ(u), φ(v)) = do(ψ(u), ψ(v)) = 1, as φ(u) = ψ(u) = (0, 1, 1) and φ(v) =
ψ(v) = (1, 0, 1).

The factors Fj are computed using the nondeterministic factor automaton of
φ(P )r, which is simulated using a modified version of the bit-parallel SBNDM
algorithm [17,19]. The SBNDM algorithm is a slightly faster version of BNDM
(Backward Nondeterministic DAWG Matching) [18] without bookkeeping of pre-
fixes. The next scanned position is then i + (m̂ − l) + 1, where l is the length
of the longest suffix of φ(Ti,m) with at most k + 1 factors. The worst-case time
complexity of this algorithm is O(nm(�m/w� + log m)).

The second filtration algorithm, named AOPF2, is based on the following
Lemma:

Lemma 4. Given two strings x and y of the same length, let Bp = {j : j mod
2 = p ∧ xj �= yj} and

H ′(x, y) = B0 ∪ B1 \ ({j − 1 : j ∈ B0} ∪ {j + 1 : j ∈ B0})

Then |H ′(x, y)| ≤ do(x, y).

Proof. Let i ∈ H ′(x, y). Observe that, by definition, either i is even or xi−1 =
yi−1. Indeed, if i − 1 is even and xi−1 �= yi−1 then i ∈ {j + 1 : j ∈ B0} and
i /∈ H ′(x, y). Since xi �= yi, we have zi = 1 or zi−1 = 1. If zi−1 = 1 then i must
be even and therefore i − 1 ∈ {j − 1 : j ∈ B0} and i − 1 /∈ H ′(x, y). Hence, for
each i ∈ H ′(x, y) we can find a distinct integer j such that zj = 1. ��
Informally, the set H ′(x, y) is the subset of the mismatch positions between
x and y such that for each even position we exclude the two adjacent (odd)
positions. For example, if u = (4, 1, 2, 3) and v = (4, 5, 3, 2) we have u ≈2 v,
φ(u) = (0, 1, 1), φ(v) = (1, 0, 0), H(φ(u), φ(v)) = {1, 3}, H ′(φ(u), φ(v)) = {2}.
In the preprocessing, the AOPF2 algorithm computes the bit-vector X of m̂ bits
such that the i-th bit is set to 1 if Pi < Pi+1 and to 0 otherwise. In other words
X is the bit-vector encoding of φ(P ). The algorithm then scans the text from left
to right and maintains the bit-vector encoding Y of φ(Ti,m), for i = 1, . . . , |T |.
For a given position i in T , the bit-vector encodings of B0 and B1 are computed
as (X ∧ Y ) & 01 . . . 01 and (X ∧ Y ) & 10 . . . 10, respectively. Then, we have
that the bit-vector encoding of H ′(φ(P ), φ(Ti,m)) is equal to

B0 | B1 & ∼((B0 � 1) | (B0 	 1)) .

The size of H ′(φ(P ), φ(Ti,m)) is computed using the sideways addition opera-
tion sa on each word of the resulting bit-vector. Given a word X, the sideways
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AOPF1(P, T, k)
1. m̂ ← |P | − 1

2. B[0] ← B[1] ← 0m̂

3. E ← 1m̂

4. for i ← 1 to m̂ do
5. c ← 0
6. if Pi < Pi+1 then c ← 1
7. B[c] ← B[c] | (1 � (i − 1))
8. i ← m̂ + 1
9. while i ≤ |T | do
10. (e, j, D) ← (0, 0, E)
11. while e ≤ k and j < m̂ do
12. j ← j + 1
13. c ← 0
14. if Ti−j < Ti−j+1 then c ← 1
15. D ← (D 	 1) & B[c]

16. if D = 0m̂ then
17. (e, j, D) ← (e + 1, j + 1, E)
18. if j ≥ m̂ and e ≤ k then psi-filter(P, T, i)
19. i ← i + (m̂ − min(j, m̂)) + 1

AOPF2(P, T, k)
1. m̂ ← |P | − 1

2. X ← Y ← 0m̂

3. C[0] ← C[1] ← 0m̂

4. for i ← 1 to m̂ do
5. j ← i mod 2
6. C[j] ← C[j] | (1 � (i − 1))
7. if Pi < Pi+1 then
8. X ← X | (1 � (i − 1))
9. if Ti < Ti+1 then
10. Y ← Y | (1 � (i − 1))
11. for i ← m̂ to |T | − 1 do
12. if Ti < Ti+1 then
13. Y ← Y | (1 � (m̂ − 1))
14. B0 ← (X ∧ Y ) & C[0]
15. B1 ← (X ∧ Y ) & C[1]
16. W ← (B0 � 1) | (B0 	 1)
17. e ← sa(B0 | B1 & ∼ W )
18. if e ≤ k then verify(P, T, i)
19. Y ← Y 	 1

Fig. 1. The AOPF1 and AOPF2 algorithms for the approximate order-preserving
matching problem.

addition of X returns the number of bits set in X. This operation can be com-
puted in O(log log w) time in the word-RAM model [20] and is also available
as a POPCNT instruction in recent processors of the x86 family. The worst-
case time complexity of this algorithm is O(n(�m/w� log log w + m log m)). The
space complexity of both algorithms is O(�m/w�). The pseudocode of the two
algorithms is shown in Fig. 1. The psi-filter procedure called in AOPF1 at line
18 performs the additional filtration step based on the ψ function and calls the
verification procedure, if necessary.

5 Analysis

In this section we analyze the average-case running time of the AOPF1 algo-
rithm, and show that it is sublinear on average if k is not too large. Suppose
that T is a uniformly random string over an alphabet Σ of size σ. The string
φ(T ) is not uniformly random in general as Pr[φ(T )i = 1] = (σ + 1)/(2σ) and
Pr[φ(T )i = 0] = (σ − 1)/(2σ). We make the simplifying assumption that either
all the symbols of T are distinct, in which case the distribution becomes uniform,
or that the alphabet is large enough so that the distribution is arbitrarily close
to uniform. Assume that k < m/(logσ m+O(1)) and let Xj be the random vari-
able corresponding to the length of factor Fj . By the “Main Lemma” of Chang
and Lawler [2] we obtain that

1. the probability Pr[X1 +X2 + . . .+Xk+1 ≥ m] of a verification using Lemma
3 is less than 1/m3;

2. E[Xj ] < logσ m + 3;
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Table 1. Execution times of the algorithms (in 10 of milliseconds) for Dow Jones data
and Helsinki temperature data.

Dow Jones
k = 1

m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 21.5 26.2 16.9 22.8 24.4
10 4.1 10.1 6.2 11.8 90.8
15 1.7 5.1 3.0 3.9 172.2
20 1.0 2.6 2.8 2.9 270.3
25 0.7 1.7 2.8 2.9 374.0
30 0.6 1.0 2.8 2.6 473.9
50 0.3 0.5 2.8 2.5 1069.5

k = 2
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 30.3 34.3 28.9 31.6 27.4
10 28.9 36.0 31.3 54.1 96.5
15 9.7 21.7 7.3 19.4 172.0
20 3.8 19.6 3.3 5.5 261.5
25 2.0 11.9 3.0 3.2 372.3
30 1.4 6.1 3.1 2.7 465.8
50 0.6 1.5 3.1 2.7 1048.9

k = 3
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 32.3 35.4 30.8 32.0 28.0
10 88.4 96.3 80.6 95.7 98.9
15 31.0 34.2 31.7 76.3 174.4
20 18.2 30.7 7.9 26.8 266.5
25 8.1 32.6 3.6 7.5 380.6
30 3.8 27.7 3.0 3.1 454.2
50 1.1 4.5 3.0 2.7 963.2

Helsinki Temperatures
k = 1

m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 12.8 13.4 9.5 11.3 13.1
10 2.1 4.9 3.5 5.8 47.0
15 0.9 2.5 1.7 1.8 84.2
20 0.5 1.3 1.5 1.4 129.8
25 0.3 0.8 1.5 1.4 182.9
30 0.2 0.5 1.4 1.2 233.1
50 0.1 0.2 1.4 1.2 522.6

k = 2
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 16.8 17.3 15.6 15.7 13.1
10 14.9 16.8 16.2 27.5 46.7
15 5.0 10.4 3.8 9.8 84.0
20 2.0 9.7 1.7 2.9 129.8
25 1.0 6.0 1.6 1.5 182.8
30 0.6 2.8 1.4 1.3 225.2
50 0.2 0.7 1.5 1.2 503.0

k = 3
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 17.2 17.5 15.7 16.1 13.0
10 46.1 47.9 41.2 48.2 39.6
15 14.5 15.5 16.1 38.6 70.5
20 9.2 14.9 3.9 13.7 108.4
25 4.2 16.5 1.8 3.8 152.2
30 1.7 12.7 1.4 1.4 226.5
50 0.5 2.1 1.4 1.2 507.5

since skipping two symbols instead of one between each factor Fj does not
invalidate the assumption that the variables Xj are independent and identi-
cally distributed. By (1), the total verification time is thus O((n/m3)m log m).
Instead, by (2), it follows that the average number of symbols scanned in a sin-
gle window and the average shift length are equal to (k + 1)(logσ m + 3) and
m − (k + 1)(logσ m + 3), respectively. From this we obtain that the average fil-
tering time is O((n/m)k logσ m) for the aformentioned choice of k. Hence, the
running time of both phases is sublinear on average.

6 Experiments

We tested AOPF1 and AOPF2 against the following algorithms:

– AOPF1b: the filtration method based on the Hamming distance using
Approximate SBNDM;

– AOPF2b: the filtration method based on the Hamming distance using the
GGF algorithm;

– naive: the naive method where all the text positions are checked.

Note that the AOPF1b and AOPF2b algorithms must use 2k as bound on
the number of mismatches. In the AOPF1b algorithm we employ the same
additional filtration step used in AOPF1.
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Fig. 2. Plot of the execution times of the algorithms for Dow Jones data with k = 1
(left) and k = 2 (right).

The tests were run in 64-bit mode on Intel 2.70 GHz i7 processor with 16
GB of memory running Ubuntu 12.10. All the algorithms were implemented in
C and run in the testing framework of Hume and Sunday [12].

We performed the tests on two sequences of real data: the Dow Jones index
and the Helsinki temperatures time series. The Dow Jones data contains 15, 248
integers corresponding to the daily values of the stock index in the years 1950–
2011 and the Helsinki temperature data contains 6, 818 integers representing the
daily mean temperatures in Fahrenheit (multiplied by ten) in Helsinki in the
years 1995–2005. For each sequence we generated sets of 200 patterns, randomly
extracted from the text, of fixed length m ∈ {5, 10, 15, 20, 25, 30, 50}. Table 1
shows the average execution times, over 99 repeated runs, of the algorithms for
Dow Jones data and Helsinki temperature data in 10 of milliseconds for k ∈
{1, 2, 3}. In addition, a graph of the times for the Dow Jones data and k = 1, 2
(with logarithmic scale on the y axis) is shown in Fig 2. All the algorithms use
the verification method described in Sect. 3.

From the results, we observe that i) AOPF1 and AOPF2 are significantly
faster than the naive method, except for the cases m = 5 and also m = 10
for k = 3 where they are either faster or comparable; ii) AOPF1 is always
faster than AOPF1b; iii) AOPF2 is either faster or comparable to AOPF2b.
Consider the cases where the algorithms provide a significant speedup over the
naive method, namely m ≥ 10 for k = 1, 2 and m ≥ 15 for k = 3. For k = 1,
AOPF1 is the fastest algorithm, while for higher values of k either AOPF1
or AOPF2 is the fastest depending on the value of m. In particular, there is a
region of m, {15, 20} for k = 2 and {20, 25, 30} for k = 3, where AOPF2 obtains
the best running time. Note that the execution time of the naive algorithm is
proportional to m, as it verifies all the positions. In the case of AOPF1 and
AOPF2, the execution time drops notably after a threshold value for m which
depends on k. In particular, for k = 1 the threshold value for m is 5 while
for k = 2, 3 it is 10. The AOPF1b and AOPF2b also shows this behaviour,
although the drop in the running time is not as significant. Note that although
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the filtration phase of AOPF2 is linear, the total time of AOPF2 decreases with
a fixed k when m grows. This is due to the fact that the verification probability
and the verification time decrease on average when m grows.

7 Concluding Remarks

In this paper we have presented two practical solutions, based on filtration, for
the recently introduced approximate order-preserving matching problem. Both
algorithms are effective in practice, as shown by experimental evaluation, and
one of them is the first sublinear solution on average, provided that the number
of errors is not too large.
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7. Gawrychowski, P., Uznański, P.: Order-preserving pattern matching with k
mismatches. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014.
LNCS, vol. 8486, pp. 130–139. Springer, Heidelberg (2014)

8. Giaquinta, E., Grabowski, S., Fredriksson, K.: Approximate pattern matching with
k-mismatches in packed text. Inf. Process. Lett. 113(19–21), 693–697 (2013)

9. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. J. Algorithms
50(1), 96–105 (2004)

10. Hirvola, T., Tarhio, J.: Approximate online matching of circular strings. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 315–325.
Springer, Heidelberg (2014)

11. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exper. 10(6),
501–506 (1980)

12. Hume, A., Sunday, D.: Fast string searching. Softw. Pract. Exper. 21(11),
1221–1248 (1991)

13. Jacobson, G., Vo, K.: Heaviest increasing/common subsequence problems. In:
Proceedings of the Combinatorial Pattern Matching, Third Annual Symposium,
CPM 1992, Tucson, Arizona, USA, April 29–May 1, pp. 52–66 (1992)



Filtration Algorithms for Approximate Order-Preserving Matching 187

14. Kim, J., Eades, P., Fleischer, R., Hong, S., Iliopoulos, C.S., Park, K., Puglisi, S.J.,
Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79 (2014)

15. Knuth Jr., D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

16. Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear
time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013)

17. Navarro, G.: Nr-grep: a fast and flexible pattern-matching tool. Softw. Pract.
Exper. 31(13), 1265–1312 (2001)

18. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining
bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics
5, 4 (2000)

19. Peltola, H., Tarhio, J.: Alternative algorithms for bit-parallel string matching. In:
Proceedings of the String Processing and Information Retrieval, 10th International
Symposium, SPIRE 2003, Manaus, Brazil, October 8–10, pp. 80–94 (2003)

20. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008)


	Filtration Algorithms for Approximate Order-Preserving Matching
	1 Introduction
	2 Preliminaries
	3 Previous Solution
	4 Our Solutions
	5 Analysis
	6 Experiments
	7 Concluding Remarks


