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Preface

From humble beginnings as a regional meeting focused on string algorithms (under the
auspices of WSP: South American Workshop on String Processing), the International
Symposium on String Processing and Information Retrieval (SPIRE) has, in the last
two decades, developed into a vibrant conference at the broad nexus of algorithms and
data structures for sequences and graphs, data compression, databases, data mining, and
information retrieval.

This volume contains the papers presented at SPIRE 2015, the 22nd International
Symposium on String Processing and Information Retrieval, held from August 31 to
September 2, 2015 in London, UK, in the Great Hall of King’s College London’s
Strand Campus. There were 90 submissions. Each submission was reviewed by at least
3, and on average 3.1, Program Committee members. The committee decided to accept
34 papers. The program also included 3 invited talks.

The main conference, which spanned the three days during 1–3 September, featured
keynote talks by Aristides Gionis (Aalto Univeristy, Finland), Mounia Lalmas (Yahoo!
Labs London, UK), and Rajeev Raman (University of Leicester, UK), together with
presentations by authors of the 33 accepted papers. The 10th Workshop on Com-
pression, Text, and Algorithms (WCTA 2015) was then held on September 4, the day
immediately after the main conference, as has become a recent tradition. WCTA was
coordinated this year by Travis Gagie and Tatiana Starikovskaya, and featured a
keynote talk from Richard Durbin of the Wellcome Trust Sanger Institute, UK.

We take this opportunity to thank King’s College London for its generous spon-
sorship of SPIRE this year. Our deep thanks also go to all the members of this year’s
Program Committee and additional reviewers, for the prompt, thorough reviewing and
vibrant discussion that made our job as chairs easy. We thank the SPIRE Steering
Committee, for giving us the opportunity to host this wonderful community of
researchers in London, and finally, the Local Organizing Committee (led by Solon
Pissis), for their efforts to ensure that the whole week ran smoothly, and that a relaxed
and inspiring time was had by all.

July 2015 Costas S. Iliopoulos
Simon J. Puglisi
Emine Yilmaz
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Computational Problems in Mining
Urban Data

Aristides Gionis

Department of Computer Science, Aalto University

With the fast growth of smart devices and sensor networks, large amounts of data
are collected recording location, activity, and mobility of people living in urban
environments. Additionally, data generated on location-aware social media
provide rich information about places where people spend their time (shopping
malls, café s, parks, etc). The availability of this type of data provides novel
opportunities for developing methods for extracting interesting patterns, detect-
ing trends, modelling people’s behaviour, and eventually building intelligent
systems that improve the interaction of citizens with their cities and help them to
utilize better the available resources. In this talk we will review recent work in the
area of mining urban data. We formulate and discuss computational problems
motivated by applications in detecting events, mining trajectories, finding similar
neighbourhoods, and recommending locations.



A Journey into Evaluation: From Retrieval
Effectiveness to User Engagement

Mounia Lalmas

Yahoo! Labs London

Building retrieval systems that return results to users that satisfy their information
need is one thing; Information Retrieval has a long history in evaluating how
effective retrieval systems are. Building a retrieval system that not only returns
good results to users, but does so in a way that users will want to use that system
again is something more challenging; a positive search experience has been
shown to lead to users engaging long-term with the retrieval system. In this talk, I
will review state-of-the-art evaluation approaches for search, with respect to
retrieval effectiveness but also user satisfaction. I will then focus on those
approaches aiming at evaluating user engagement, and describe current works in
this area within and outside the search realm. The talk will end with the proposal
of a framework incorporating effectiveness evaluation into user engagement in
search. An important component of this framework is to consider both within-
and across-search session measurement.



Encodings = (Data Structures) - (Data)

Rajeev Raman

Department of Computer Science, University of Leicester

Driven by the increasing need to analyze and search for complex patterns in very
large data sets, the area of compressed and succinct data structures has grown
rapidly in the last 10-15 years. Such data structures have very low memory
requirements, allowing them to fit into the main memory of a computer, which in
turn avoids expensive computation on hard disks.

This talk will focus on a sub-topic that has become popular recently:
encoding “the data structure” itself. Some data structuring problems involve
supporting queries on data, but the queries that need to be supported do not allow
the original data to be deduced from the queries. This presents opportunities to
obtain space savings even when the data is incompressible, by pre-processing the
data, extracting only the information needed to answer the queries, and then
deleting the data. The minimum information needed to answer the queries is
called the effective entropy of the problem: precisely determining the effective
entropy can involve interesting combinatorics.
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Faster Exact Search Using Document Clustering

Jonathan Dimond and Peter Sanders(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
sanders@kit.edu

Abstract. We show how full-text search based on inverted indices
can be accelerated by clustering the documents without losing results
(SeCluD – Search with Clustered Documents). We develop a fast mul-
tilevel clustering algorithm that uses query cost of conjunctive queries as
an objective function. Depending on the inputs we get up to four times
faster than non-clustered search. The resulting clusters are also useful
for data compression and for distributing the work over many machines.

1 Introduction

Full-text search is one of the enabling techniques of the information society
since it is needed for all kinds of search engines. The approach most used in
practice uses inverted indices: Consider a set D of n documents. Each document
contains a set of terms from a dictionary T . The index stores for each term
t ∈ T a posting list of document IDs where it occurs. A typical query asks
for documents containing a set of two or more terms. This query can then be
answered by intersecting the corresponding posting lists. Unfortunately, for large
inputs, the lists become huge incurring substantial energy consumption for full-
text search. For example, for web search, thousands of machines can be involved
in answering a single query. What helps is that two sorted sequences of document
IDs can be intersected in time linear in the size of the smaller list [12].

The starting point for this paper was the observation that we can boost the
impact of such advanced set intersection algorithms by distributing the docu-
ments to clusters where terms are distributed as nonuniformly as possible. Lets
consider a simple example to illustrate this effect. Suppose we want to know all
documents that contain both term a and term b. Assume we have four clusters
with the following number of occurrences of a and b.

Cluster #a #b min
1 2 000 10 000 2 000
2 10 000 1 000 1 000
3 40 000 1 000 1 000
4 1 000 25 000 1 000
Σ 53 000 37 000 5 000

Counting min(x, y) steps of the algo-
rithm from [12] for intersecting lists of size
x and y respectively, we get a total of 5 000
steps for performing the intersection in all
clusters whereas we get 37 000 steps for
intersecting the posting lists in an unclus-
tered scenario – more than a factor five
difference. More generally, for conjunctive
queries where the number of term occurrences in the clusters is not too highly
correlated, we expect improved performance from clustering. The main purpose
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-23826-5 1



2 J. Dimond and P. Sanders

of this paper is to get a first idea how much this approach could help in practice.
After introducing basic concepts in Section 2, we formalize this idea in Section 3
and develop an efficient clustering algorithm for the resulting objective func-
tion. This algorithm is based on the well known K-Means principle but uses a
fast multilevel scheme for initialization that may be of independent interest. In
Section 5 we evaluate our approach using large real world instances. Section 6
discusses the results and possible future work.

More Related Work

This paper is based on the diploma thesis of Jonathan Dimond [4], see also the
TR [5]. Clustering has been previously proposed for accelerating full-text search,
e.g., [8, Section 7.1.6] following the clustering hypothesis [14] – documents that
are relevant to a query tend to be more similar to each other than documents
that are not relevant. Documents similar to each other are clustered together.
Queries are then executed via collection selection. Document clusters considered
irrelevant are disregarded and only clusters relevant to the query are used for
searching. Although this yields good scores in standard information retrieval
benchmarks, such an approach may lead to unexpected results in practice since
unsupervised learning techniques such as document clustering are notoriously
unreliable. In many commercial applications one even wants – at least as a
first step – a complete and well defined set of results. For example, in SAP
HANA [6,13] the default mode of full-text search to is to find all documents
matching a query. One reason is that the full text query is often only one of
several filtering criteria in a complex SQL query. Further speedup techniques not
based on document clustering have also been considered including geographical
tiering [2], static index pruning [9] and dynamic index pruning [11]. However, all
these techniques improve efficiency by disregarding parts of the index.

2 Preliminaries

Let D = {d1, . . . , dn} denote the set of documents. Furthermore, let T =
{t1, . . . , tm} denote the set of terms occurring in D. Given a desired num-
ber of clusters k, we want to partition the documents into a set of cluster
C = {c1, . . . , ck} such that the expected query time is small.

3 Clustering Based Search

3.1 Developing an Objective Function

Of course, query costs depend on the query algorithm and the distribution of
queries. In order to come to an easy to handle objective function, we make some
assumptions and simplifications here that arguably lead to little loss in precision.

First of all, we focus on exact conjunctive queries involving exactly two terms.
Exact conjunctive queries with more than two terms are covered insofar as it
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is usually a good idea to first intersect the lists for the two most rare terms
and often this takes most of the query time. We ignore ranking in this paper
for simplicity and because some applications require computing the full set of
answers, for example in a relational database context where further filtering may
throw away most of the results later.

In our implementation, we assume a two-level query algorithm that first
inspects an inverted index where each cluster is viewed as one document and
then inspects each cluster containing any document with the search terms. See
[4] for details. To simplify the exposition, in this section, we assume that the
query cost is the sum of the per cluster query costs. Let Φ(x, y) denote the cost
for intersecting two lists of length x and y respectively. For the Lookup algorithm
from [12] we can approximate Φ(x, y) = min(x, y). For a particular query (t, u)
we then get cost

ΨC(t, u):=
k∑

i=1

Φ(ni(t), ni(u))

where ni(t) is the number of documents in cluster i of clustering C containing
term t. When the clustering C is clear from the context, we omit the subscript
‘C’. If we know the distribution of queries, we can now compute the expected
cost of a query:

ψ:= E[Ψ ]:=
∑

{t,u}∈(T2)
P [(t, u)] Ψ(t, u) (1)

where P [(t, u)] denotes the probability of observing query (t, u). Unfortunately,
it is unrealistic to assume that we know the probability of all queries so that we
need an approximation. We thus only assume that we know the probability of
each query term. These probabilities can be estimated from a query log or (less
accurately) using statistics on the frequency of the terms in the document collec-
tion itself. If we now also assume that terms in a query are chosen independently,
we get

ψ =
∑

{t,u}∈(T2)
P [t]P [u]Ψ(t, u) . (2)

3.2 The Clustering Algorithm

Our starting point is an adaptation of the well known K-means algorithm to our
problem: In each iteration of the algorithm, each document d is added to the clus-
ter where it “fits” best. In order to decide what the best fit is for objective func-
tion ψ from Equation (2) we only have to decide how ψ changes when d is added.
Hence, let δ+j (d) denote the change in ψ when document d is added to cluster j.
Similarly, let δ+j (t) denote the change in ψ when a document is added to cluster
j that contains only the single term t. We have δ+j (d) =

∑
t∈d δ+j (t). Adding

a single term t to cluster j only affects a summand P [t]P [u] min(nj(t), nj(u))
of φ if nj(t) < nj(u). In that case, min(nj(t), nj(u)) increases by one. Hence,
δ+j (t) = P [t]

∑
u�=t,nj(t)<nj(u)

P [u]. δ+j (t) can be approximated in constant time



4 J. Dimond and P. Sanders

using a lookup table that only has to be recomputed after each iteration. Hence,
δ+j (d) =

∑
t∈d δ+j (t) can be computed in time linear in the document size. Com-

puting this lookup table itself can be done by sorting the terms occurring in
cluster j by nj(t) and then computing a prefix sum over that array. Assuming
that the term frequencies are polynomial in the number of terms occurring in a
cluster, sorting can be done in linear time. Overall, one iteration of the K-means
algorithm then takes time (and space) O(kN) where N =

∑
d∈D |d| the total

size of the corpus.

Refinements

The basic clustering algorithm defined above is already quite fast. However a
number of additional improvements are critical to scale to really large inputs.

Multilevel Initialization. K-Means algorithms converge much faster if the initial
solution is already of high quality. We use a multilevel initialization that may be
of independent interest also in other applications. For a scaling factor ε < 1, we
take a sample of size max(k, ε|D|) of the documents, cluster it recursively into
k clusters (which is trivial for the base case |D| = k) and then run the K-means
algorithm. The K-means algorithm can lead to oscillations in the clustering that
are particularly pronounced when the clusters are small. When D becomes small,
we therefore switch to an algorithm that updates the objective function after
every assignment of a document.

TopDown Clustering. Since the running time of the K-Means algorithm grows
at least linearly with the number of clusters k, we use a hierarchical clustering
algorithms that recursively splits the documents: Subproblems with s > |D|/k
documents are split into min(χ, sk/|D|) pieces where the splitting factor χ is a
tuning parameter. This way we obtain between k and 2k clusters. An important
side effect is that this approach balances cluster sizes.

Ignoring Infrequent Terms. Most search time is spent on queries involving long
posting lists, i.e., frequent terms. Hence, the rare terms hardly contribute to
the overall cost of queries. Therefore, we can ignore rare terms while evaluating
the objective function without significantly affecting overall performance. This
greatly accelerate the clustering algorithm and simplifies its parallelization.

Parallelization. We use shared memory parallelization. A massively parallel dis-
tributed memory implementation is also easy as long as we can afford to store
word frequency statistics for each cluster and each frequent term on each node of
the system – simply assign a subset of the documents to each node. In connection
with the above optimizations on TopDown clustering and ignoring infrequent
terms, this seems quite realistic even for huge document collections.
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3.3 Query Algorithms

As already explained, we focus on conjunctive queries involving two terms. The
most direct way to use the clustering is to run the query on each cluster. When
the number of clusters k is large, a possible improvement is to build a cluster
index listing for each term which clusters contain documents with this term. A
query (t, u) will then first intersect the list corresponding to t and u in the cluster
index. The query is then only forwarded to the clusters containing both t and u.
Note that a cluster index can be viewed as an inverted index for a corpus with
k documents where each document is the concatenation of all the documents in
a cluster.

We can also use the clustering to reorder the documents: The j-th document
in cluster i gets document id j+

∑
�<i |c�|. Beyond this reordering, the clustering

is ignored – we use the single-cluster Lookup algorithm. The motivation for this
is the observation in [12] that a nonuniform distribution of document IDs in the
posting lists accelerates the set intersection. Renumbering makes the distribution
less uniform and thus may accelerate the search.

4 Implementation Details

We have made a prototypical implementation using about 4 000 lines of Haskell
and 2 000 lines of C where all the time critical parts – clustering and query – are
implemented in C. We use OpenMP for parallelization1. We switch to document
grained updates of the objective function once |D| < 100k. The default shrink
factor for the multilevel initialization is ε = 0.1. The K-means algorithm repeats
as long as the objective function value improves by at least 1 %. The splitting
factor for hierarchical clustering is set to χ = 8. Only the TC = 100 000 most
frequent terms are used for clustering. The Lookup algorithm [12] uses bucket
size 16 (8 for the cluster index). This seems a good tradeoff between space and
speed requirements.

5 Experiments

All experiments were done on a machine with two octa-core Intel Sandy Bridge
Xeon E5-2670 processors with 2.6GHz and 64 GB RAM (i.e., 16 cores and 32
hardware threads). The operating system was SuSE Linux Enterprise Server 11
(kernel version 3.0.42). The compilers used were GHC 7.6.2 and GCC 4.7.2 with
optimization level -O3. Clustering is run in parallel. Queries are run sequentially.
For the source code refer to https://github.com/jdimond/diplomarbeit.

Table 1 gives the text corpora used for our benchmarks. GOV2 [3] is one
of the standard benchmarks used in the literature. GOV2s is the same corpus
but each sentence is used as one document. The sentences were extracted using
the Stanford NLP library [7]. This emulates a corpus with many very small

1 Source are here: https://www.github.com/jdimond/diplomarbeit

https://github.com/jdimond/diplomarbeit
https://www.github.com/jdimond/diplomarbeit
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Table 1. Dataset Statistics

GOV2 GOV2s Wikipedia pagenstecher.de

Documents 25 205 179 631 975 969 6 096 279 786 474
Terms 38 562 580 25 221 691 12 295 297 573 725
Terms / Document 652.22 18.19 230.54 35.70

Input size (raw) 396.74 GB 396.74 GB 12.37 GB 175.14 MB
Inverted Index size 16.25 GB 32.83 GB 3.09 GB 89.8 MB

Table 2. Query Log Statistics

AOL Wikipedia pagenstecher.de

Queries 29 077 553 11 000 000 13 230
Distinct Terms 1 501 946 1 067 091 981

documents as you may find it in corporate databases and a situation where you
are looking for terms occurring together in the same sentence. Wikipedia is the
plain text contained in the articles in the English Wikipedia in May 3, 2013.
Pagenstecher.de contains user posts from a German online community for car
tuning. This corpus was selected because we have an authentic query log for it.

Further query logs used are shown in Table 2. The AOL log contains the two
term queries from [10]. We use this log as semi-realistic input for our GOV2 and
GOV2s test collections. For the Wikipedia corpus, we generate a synthetic log:
for each article reference, we add all pairs of terms in the title of the referenced
article to the log. The query logs are split randomly into a set used for clustering
and one used for evaluation. Figure 1 shows the distribution of term frequencies
in these logs. We can see that all of them, including the synthetic Wikipedia log,
show a Zipf-like distribution of term frequencies.

AOL Wikipedia Pagenstecher
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Fig. 1. Probability of a term appearing in a query as a function of its rank on a log-log
scale. A sample of 100 terms with exponentially growing ranks is plotted.
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Fig. 2. Speedups for different number of clusters (flat clustering).
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Fig. 3. Speedups for different number of clusters (TopDown clustering).
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Fig. 6. Clustering times [s] for flat (left) and TopDown (right) clustering for 10 inde-
pendent trials.

Our main concern are speedups over the single cluster case. We distinguish
the “theoretical” speedup ST predicted by the function ψ from Equation (2), the
speedup SC obtained using the cluster index from Section 3.3, and the speedup
SR using the reordering algorithm from Section 3.3. Figures 2 and 3 compare
these values for varying number k of clusters. Most of the time, ST overestimates
the speedup but it seems strongly correlated with the actual behavior – which is
all we need for making it a useful objective function for the clustering algorithm.
Generally, increasing the number of clusters helps to increase speedup. However,
for the Wikipedia instance using the cluster index, the speedup decreases for
k > 500 – it is clear that eventually, overheads for the additional indirection
start to show. A surprise is that the reordering algorithm achieves much better
performance than the cluster index. Overall, we achieve speedups between 1.3
and 4 which is not overwhelming but certainly significant and possibly useful.
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The Pagenstecher instance seems very different from the others – it achieves
much higher speedups and it is the only one where the theoretical speedup is
smaller than the practical speedups. This may simply be due to its relatively
small size or specialized topic but it is also the only one with truly realistic
query logs. If it turns out that this is the reason for the performance difference,
we might hope for larger speedups also for large instances. Figure 4 gives some
reason for optimism here since it indicates that speedups may actually increase
with growing number of documents.

Figure 5 indicates that the flat clustering algorithm gives slightly better
speedups than the TopDown algorithm. However, for the values of k that give
good speedup, we do not really have a choice – Figure 6 shows that the running
time of the flat clustering algorithms grows superlinearly with the number of
clusters k – apparently, the algorithm converges more slowly for large k. The
TopDown algorithm is orders of magnitude faster than the flat algorithm. Indeed,
our clustering algorithm needs much less time than the time for parsing and
indexing the documents. Hence, the preprocessing overhead is not a big issue.

Usually, preprocessing techniques also come with a penalty for storing the
preprocessed information. However, in our case the contrary is true – clustering
allows better compression of the posting lists, see [4,5] for details.

It might be argued that it is risky that our objective function is tied to
a particular intersection algorithm. To assess this risk we have evaluated the
theoretical speedup for a different cost function that assumes a comparison based
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Fig. 7. Speedups for GOV2 with varying TC for k = 2 500.
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intersection algorithm with running time Φ(x, y) = x log y
x for x > y (e.g., [1]).

Experiments in [4,5] indicate that this gives very similar results – indeed, the
theoretical speedups are even higher than for the lookup algorithm even though
min(x, y) was used as the objective function for clustering.

In Figure 7 we investigate how the number of terms (TC) we use for clustering
influences speedup. All three speedup measure show that even the 10 000 most
frequent terms would be enough for the GOV2 input. This is good news since this
allows faster clustering algorithm. In particular, a massively parallel clustering
algorithm can probably afford to replicate all lookup tables over all processors.

6 Conclusions

We have demonstrated that document clustering can significantly accelerate con-
junctive queries while still giving exact results. Using a multilevel hierarchical
clustering algorithm we were able to do high quality clustering even faster than
the time needed for parsing and indexing the documents. Our approach of tailor-
ing the objective function for clustering to the actual performance of the query
algorithm might also be useful in other situations like clustering for inexact
search or in order to compress data.

Several ideas suggest themselves for further improving the results. Since the
approach is most useful for big inputs, scaling to even bigger corpora is interest-
ing. This seems feasible since a massively parallel implementation is relatively
easy. We have not done so yet since it naturally requires a lot of resources.

Equally interesting are efforts to increase the quality of the clustering. Cur-
rently, we only look at the impact of adding documents to a cluster. However, for
small clusters (e.g., during initialization) it also matters how removing a docu-
ment from a cluster affects query performance. We believe that our lookup-table
approach can take this into account without big performance penalties. Com-
promises between the pure round based K-means algorithm and the variant with
document-wise updates seem possible which might improve convergence speed
and overall quality. Further tuning of the TopDown algorithm seems promis-
ing. Probably one wants to use larger splitting factors at least at the top of the
recursion tree in order to improve quality.

Since using the clustering for reordering posting lists was very successful, this
should also be considered more closely. In particular, we would like to have a
more symmetric version of the lookup algorithm for list intersection. Currently,
the algorithm traverses the shorter list while making lookups in the longer list.
Actually, we would like to have a more adaptive algorithm that scans the list
which is more dense at the current position. For example, when a lookup finds an
empty bucket, we might switch to the other list. It is quite clear that clustering
for reordering should (recursively) go all the way down to clusters consisting
only of a few documents. To make this efficient, we need to dynamize our cutoffs
– we only want to consider terms frequent in the remaining documents.

Last but not least, we have to investigate what happens for other types of
queries. Perhaps most interesting are top-K queries where we are only interested
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in the most relevant results using some scoring function. Once more, we want to
exploit the information inherent in the clustering to gain performance but the
clustering must not influence the result. The hope might be that if a cluster c
contains only few documents with a query term t then often c will contain even
less relevant documents with term t so that only a fraction of t’s posting list
actually needs to be considered.
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Abstract. Let T be a text of length n on an alphabet Σ of size σ, and
let H0 be the zero-order empirical entropy of T . We show that the LZ77
factorization of T can be computed in nH0 + o(n log σ) + O(σ log n) bits
of working space with an online algorithm running in O(n log n) time.
Previous space-efficient online solutions either work in compact space
and O(n log n) time, or in succinct space and O(n log3 n) time.

Keywords: Lempel-Ziv · Compression · BWT

1 Introduction and Related Work

Let T = a1a2...an−1$ be a length-n text on an alphabet Σ of size σ, with $ ∈ Σ
being a symbol appearing only at the end of T (in this work we will implicitly
assume that the input text ends with $). The Lempel-Ziv factorization—LZ77
for brevity—of T [18] is a sequence

Z = 〈pos1, len1, c1〉...〈posi, leni, ci〉...〈posz, lenz, cz〉
where 0 ≤ posi, leni < n, ci ∈ Σ for i = 1, ..., z, and:

1. T = ω1c1...ωzcz, with ωi = ε if leni = 0 and ωi = T [posi, ..., posi + leni − 1]
otherwise.

2. For any i = 1, ..., z with leni > 0, it follows that posi <
∑i−1

j=1(lenj + 1).
3. For any i = 1, ..., z, ωi must be the longest prefix of ωici...ωzcz that occurs

in a previous position of T .

The Lempel-Ziv factorization is an important tool in text compression, being
its size z closely related with the number of repetitions in the processed string.
Moreover, by augmenting it with additional (light) structures, one can obtain
fast and high-order compressed full-text indexes [9,12]. Structures based on LZ77
have been shown to be competitive in terms of space on repetitive text collections
with respect to BWT-based self indexes [9], and a careful combination of the
two techniques stands at the basis of some of the most time-and-space efficient
repetition-aware indexes [1].
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 13–20, 2015.
DOI: 10.1007/978-3-319-23826-5 2
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The Lempel-Ziv factorization can be computed in linear time and O(n log n)
bits of working space by using suffix trees or suffix arrays [2,3,7]. Recent results—
building up on the FM index [4] data structure—reduced space to compact
(O(n log σ) bits), while retaining linear running time [13]. The best space bound
to date is achieved by the algorithm discussed in [8], which builds the LZ77 fac-
torization of the text in O(n log1+ε n) time (ε > 0) and n(Hk+2)+o(n log σ) bits
of space (although the O(n) term prevents space from being fully compressed).

A line on this research is focused on the online computation of the LZ
factorization. Okanohara et al. [14] showed that this task can be carried out
in O(n log3 n) time using only (1 + o(1))n log σ + O(n) bits of working space.
Starikovskaya in [16] reduced the running time to O(n log2 n), while slightly
increasing the working space to O(n log σ) bits. Finally, Yamamoto et al. in [17]
obtained O(n log n) running time within O(n log σ) bits of working space by
using Directed Acyclic Word Graphs (DAWGs).

In this paper, we improve upon the space of all the above discussed solutions
by describing an online algorithm that computes the LZ77 factorization of a
length-n string in O(n log n) time using only nH0 + o(n log σ) + O(σ log n) bits
of working space, H0 being the empirical zero-order entropy of the input text.
If one is interested in computing only the phrase boundaries, then running time
can be improved to O (n log n/ log log n). Our basic structure is a dynamic FM
index over the reversed text, updated by inserting T -characters from the first to
the last.

2 Notation

With T -, L- and F -positions we will denote positions on the text T and on the L
(last) and F (first) column of the BWT matrix, respectively. Indices start from
0, and we will assume that the text length n and the alphabet Σ = {0, ..., σ −1}
are known beforehand. The only restriction we pose on the alphabet size is
σ ≤ n (which is always true after a re-mapping of the symbols). BWT (T )
will denote the Burrows-Wheeler transform of string T , and, when clear from
the context, we will refer to it simply as BWT . With 〈l, r〉 we will denote the
right-open BWT interval [l, r). BWT.F (c), c ∈ Σ, will denote the starting F -
position of the block corresponding to character c in the BWT matrix. Letting
W ∈ Σ∗, the interval of W will be the interval [l, r) of rows prefixed by W in
the BWT matrix (r = l if W does not occur in T ). Letting S be a dynamic
string representation on the alphabet Σ, S[i] will indicate the i-th character of
S, S.rank(c, i), c ∈ Σ, 0 ≤ i ≤ |S| the number of characters equal to c in S
before position i excluded, and S.insert(c, i), c ∈ Σ, 0 ≤ i ≤ |S| the insertion of
a character c in S at position i.

3 Fast Online LZ-Factorization in Compressed Space

Our result builds upon a recent insight by Navarro and Nekrich on the optimal
representation of dynamic strings [11]: there exists a data structure that permits
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to represent a sequence S[0, n − 1] over an alphabet Σ = {0, ..., σ − 1} in nH0 +
o(n log σ) + O(σ log n) bits of space and that supports queries (access, rank,
select) and updates (insertions and deletions) in O(log n/ log log n) time. The
bound is worst-case for the queries and amortized for the updates.

We use the optimal sequence representation of Navarro and Nekrich to build
a dynamic FM index taking nH0 + o(n log σ) + O(σ log n) bits of space that
supports (amortized) O(log n/ log log n)-time left-extension of the text with
an arbitrary character, O(log n/ log log n)-time LF function computation, and
O(log2 n/ log σ)-time locate. Our algorithm scans the text from its first to last
character, building the dynamic FM index of the reversed text. At each step
(i.e. text character), we (1) update the BWT interval of the current LZ phrase
and (2) insert a new text character in the index. Each time the BWT interval
becomes empty, we have reached the end of the current LZ phrase and we use a
locate query to compute the LZ-factor.

3.1 Dynamic FM Index

The principal component of our dynamic FM index is a dynamic BWT. There is
a simple and well-known algorithm that permits to update the Burrows-Wheeler
transform BWT (S) of a sequence S = s1s2...su−1#, # /∈ Σ being a character 1

lexicographically smaller than all s ∈ Σ, by left-extending S with a character c ∈
Σ (see, for example, section 10.3 of [11]). Letting j be such that BWT (S)[j] = #
and r = BWT (S).rank(c, j), we update BWT (S) by:

1) BWT (S)[j] ← c and
2) BWT (S).insert(#, BWT (S).F (c) + r).

Let TR denote the reversed text. In our algorithm, we index the sequence
S = TR#. By using the dynamic sequence representation of [11], we can build
BWT (TR#) online in overall O(n log n/ log log n) time and nH0 + o(n log σ) +
O(σ log n) bits of space by inserting characters in the order #, T [0], ..., T [n − 1]
with the above procedure. In the following paragraphs, we will denote with BWT
the Burrow-Wheeler transform of the current suffix of S = TR#.

The second ingredient we need in order to compute the LZ77 factorization of
T is a dynamic suffix array sampling to support fast locate. The main challenge
is to add such functionality without asymptotically increasing space usage. Let
γ > 0 be the sample rate, and m = �n/γ� be the number of stored suffix array
pointers. To this end, we employ two structures:

1. A compressed dynamic bitvector B to mark with a “1” sampled F -positions.
2. A dynamic sequence representation SA[0,m− 1] over the alphabet [0, n− 1]

taking compact space (O(m log n) bits) and supporting O(log n)-time access
and insert operations.

1 Note that we use two different terminator symbols—$ ∈ Σ and # /∈ Σ—to mark the
end of the forward (LZ77 algorithm) and reverse (BWT algorithm) text, respectively.
Our algorithm will therefore work on texts of the form #W$, W ∈ Σ∗.
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We use a sample rate of γ = logσ n log log n. For component (1), we use
again the dynamic sequence representation of Navarro and Nekrich. We remind
the reader that the size of a zero-order compressed bitvector B′ with b bits set
is nH0(B′) ≤ b log(n/b) + b log e. Since B has m = �n/γ� = � n

logσ n log log n� bits
set, it follows easily that B takes overall nH0(B) + o(n) + O(log n) = o(n) bits
of space.

For component (2), we use a simple balanced tree (e.g. a red-black tree or a
B-tree with constant fanout) where we store suffix array samples in the leafs and
we augment each internal node with the size of the corresponding subtree. Access
and insert in position i are then implemented by descending the tree according to
the subtree-size counters, accessing/inserting the suffix array pointer in the leafs,
and (in the case of insert) updating O(log m) subtree-size counters. The tree
takes overall O(m log n) = o(n log σ) bits of space, and access/insert operations
take O(log m) = O(log n) time. Structures B and SA take overall o(n log σ) bits
of space.

Implementing Extend. With BWT.extend(c) ∈ {0, ..., |BWT |}, c ∈ Σ∪{#},
we will denote the function that:

1. updates the BWT of the current S suffix by left-extending it with a new
character c

2. updates the suffix array samples, and
3. returns the L-position of character # after the left-extension has taken place.

To avoid updating the already inserted suffix array pointers at each text exten-
sion, in structure SA we enumerate S-positions starting from the last. In this
sense, S[n] = # corresponds to SA-position 0, and S[0] corresponds to SA-
position n (remember that |S| = |TR#| = n + 1). Suppose we have built the
structures for the length-(i − 1) suffix of S and that we want to left-extend
it with the new character S[n − i + 1]. Let j be such that BWT [j] = #,
r = BWT.rank(S[n − i + 1], j), and k = BWT.F (S[n − i + 1]) + r. Opera-
tion BWT.extend(S[n − i + 1]) is implemented as follows:

1. We update BWT with the new text character S[n − i + 1] as described at
the beginning of this section.

2. If i mod γ = 0, then we insert a new suffix array pointer in SA and mark
with a “1” the corresponding F -position in B: SA.insert(i−1, B.rank(1, k))
and B.insert(1, k).

3. Otherwise (i mod γ 
= 0), we mark with a “0” the new suffix F -position in
B: B.insert(0, k).

Step (1) takes O(log n/ log log n) amortized time. The insertion of a bit in B
takes O(log n/ log log n) time, and the insertion of a suffix array pointer in SA
takes O(log n) time. Since we update SA every logσ n log log n left-extensions,
extend takes overall O(log n/ log log n) amortized time.
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Implementing Locate. Let BWT be the Burrows-Wheeler transform of the
current S suffix. Operation BWT.locate(i) returns the S-position (enumerated
from right to left) corresponding to the F -position i. We implement this oper-
ation as usual, i.e. by backward-navigating the current S suffix until a sampled
F -position or the first suffix position is found:

1. If i is such that BWT [i] =′ #′, then we return |BWT | − 1.
2. Otherwise:

(a) If B[i] = 1, then we return SA[B.rank(1, i)].
(b) If B[i] = 0, then we return BWT.locate(i′)−1, where i′ = BWT.F (c)+

BWT.rank(c, i) and c = BWT [i].

Since we use a sample rate of logσ n log log n and access and rank operations on
BWT take O(log n/ log log n) time, after O(log2 n/ log σ) time we find a marked
F -position. Then, extracting the suffix array pointer from structure SA takes
O(log n) time. Since we assume σ ≤ n, locate takes overall O(log2 n/ log σ) time.

Implementing LF Function. With BWT.LF (〈l, r〉, c), 0 ≤ l < |BWT |, 0 ≤
r ≤ |BWT |, c ∈ Σ ∪{#}, we will denote function LF applied to BWT intervals:
if 〈l, r〉 is the interval of a string W ∈ Σ∗ in BWT , then BWT.LF (〈l, r〉, c)
returns the interval 〈l′, r′〉 of cW in BWT . LF requires a constant number of
rank and access operations on BWT , so it takes overall O(log n/ log log n) time.

3.2 Main Algorithm

The extension step of our algorithm is described in Algorithm 1. The algorithm
takes as input one T character c, and outputs either the LZ factor ended by c or
nothing if c does not end a factor. In Algorithm 1, variables BWT (the dynamic
BWT described in section 3.1), 〈l, r〉 (right-open BWT interval of the current
phrase), len (length of the current phrase), and i (L-position of character #)
are global, and are initialized at the beginning as BWT ←′ #′, 〈l, r〉 ← 〈0, 1〉,
len ← 0, and i ← 0.

First of all, in line 1 we perform one backward-search step using function
LF. The new BWT interval 〈l′, r′〉 is nonempty if and only if the current phrase
Wc, W ∈ Σ∗, does appear previously in the text. If this is the case (lines 16-19),
then we increment the current phrase length (line 17), left-extend the current S
suffix (line 18), and update the BWT interval of cWR (line 19) by incrementing
its right bound r′. This step is always needed since in line 18 the new S suffix
(prefixed by cWR) falls inside the closed interval [l′, r′].

Otherwise, if Wc does not occur previously and len = |W | > 0 (lines 2-
8), then Wc is a new LZ factor and interval 〈l, r〉 holds all occurrences of WR

seen until now in the reversed text. Notice, however, that 〈l, r〉 holds also the
current occurrence of WR (i.e. i ∈ [l, r)) in addition to at least one previous
occurrence (i.e. r − l ≥ 2). We must therefore be careful to output a previous
occurrence of WR: in lines 4-8 we locate either l or r−1, depending on which one
is different than i. Moreover, we must subtract len from the located text position
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since locate returns an occurrence of WR in the reversed text, and position 0 is
reserved for the terminator character #. After locating the occurrence, we can
extend the BWT with character c (line 12), reset the BWT interval to the full
range 〈0, |BWT |〉 (line 13), reset phrase length to zero (line 14), and return the
factor.

The last case to consider is when Wc does not occur previously and len =
|W | = 0 (lines 9 and 10). Then, this is the first occurrence of c in the text and
we simply output a factor 〈null, 0, c〉 after extending the BWT with character c
and resetting the global variables as described above (lines 13-14).

Algorithm 1. add character(c)
input : Character c ∈ Σ (right-extending current T prefix)
output: A factor 〈pos, len, c〉 if c ends a factor. Nothing otherwise.

1 〈l′, r′〉 ← BWT.LF (〈l, r〉, c); /* backward search step */

2 if l′ ≥ r′ then

3 if len > 0 then
4 if i = l then
5 occ ← r − 1;

6 else
7 occ ← l;

8 P ← BWT.locate(occ) − len; /* locate a previous occurrence */

9 else
10 P ← null; /* first occurrence of c */

11 L ← len; /* length of current phrase (c excluded) */

12 BWT.extend(c); /* insert character c in the BWT */

13 〈l, r〉 ← 〈0, |BWT |〉; /* reset interval */

14 len ← 0; /* reset phrase length */

15 return 〈P, L, c〉; /* return LZ factor */

16 else
17 len ← len + 1; /* increase current phrase length */

18 i ← BWT.extend(c); /* insert character c in the BWT */

19 〈l, r〉 ← 〈l′, r′ + 1〉; /* new suffix falls inside [l′, r′) */

From the analysis carried out in section 3.1 it is clear that, excluding
locate, all steps in Algorithm 1 take (amortized) O(log n/ log log n) time. Notice
that we call locate once per phrase. It is known that the number z of LZ77
phrases satisfies z ∈ O(n/ logσ n) [10]. Since the cost of a single locate query is
O(log2 n/ log σ), in Algorithm 1 locate takes O(log n) amortized time. We can
state our final result:
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Theorem 1. Let T ∈ Σn. By calling Algorithm 1 on T [0], ..., T [n − 1], we build
the LZ77 factorization of T online in nH0+o(n log σ)+O(σ log n) bits of working
space and O(n log n) time.

Notice that, if we wish to compute only the LZ phrase boundaries, then we do
not need locate, and the LZ factorization can be built using a simplified version
of Algorithm 1 in O(n log n/ log log n) time.

4 Conclusions

In this paper, we presented an online algorithm for computing the LZ77 fac-
torization of a text in nH0 + o(n log σ) + O(σ log n) bits of working space and
O(n log n) time. To our knowledge, ours is the first solution of this problem
reaching fully compressed working space. Moreover, we obtain this result while
being as fast as the fastest online LZ77-construction algorithms described in
literature.

Solving this task in small space is of great importance in areas such as LZ-
based self-indexing, where computing the LZ77 parse of the text is a spatial
bottleneck during index construction. Ideally, it would be desirable being able to
solve the problem in O(z) words of working space (result easily reachable with
LZ78), considering that for repetitive text collections z can be exponentially
smaller than n. One first improvement over our approach could be to obtain
high-order compressed space, e.g. by using techniques similar to those employed
in [6,11,15]. However, this strategy would still not perform well over highly
repetitive text collections—being Hk not sensitive to long repetitions—and being
entropy-based techniques usually affected by an o(n) spatial term that could
be exponentially larger than z. Alternatively, one could consider using a run-
length compressed BWT. Yet, this approach would also require a more sparse
SA sampling, which in the most efficient implementations [1,5] is based on the
LZ parse itself.
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Abstract. The Swap-Insert Correction distance from a string S of
length n to another string L of length m ≥ n on the alphabet [1..d]
is the minimum number of insertions, and swaps of pairs of adjacent
symbols, converting S into L. Contrarily to other correction distances,
computing it is NP-Hard in the size d of the alphabet. We describe an
algorithm computing this distance in time within O(d2nmgd−1), where
there are nα occurrences of α in S, mα occurrences of α in L, and where
g = maxα∈[1..d] min{nα, mα−nα} measures the difficulty of the instance.
The difficulty g is bounded by above by various terms, such as the length
of the shortest string S, and by the maximum number of occurrences of
a single character in S. The latter bound yields a running time within
O(d(n+m)+(d/(d−1)d−2) ·nd(m−n)) in the worst case over instances
of fixed lengths n and m for S and L, which further simplifies to within
O(nd(m − n) + m) when d is fixed, the state of the art for this problem.
This illustrates how, in many cases, the correction distance between two
strings can be easier to compute than in the worst case scenario.

Keywords: Adaptive · Dynamic programming · Edit distance · Insert ·
Swap

1 Introduction

Given two strings S and L on the alphabet Σ = [1..d] and a list of correction
operations on strings, the String-to-String Correction distance is the min-
imum number of operations required to transform the string S into the string L.
Introduced in 1974 by Wagner and Fischer [7], this concept has many appli-
cations, from suggesting corrections for typing mistakes, to decomposing the
changes between two consecutive versions into a minimum number of correction
steps, for example within a control version system.
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Each distinct set of correction operators yields a distinct correction distance
on strings. For instance, Wagner and Fischer [7] showed that for the three fol-
lowing operations, the insertion of a symbol at some arbitrary position, the
deletion of a symbol at some arbitrary position, and the substitution of
a symbol at some arbitrary position, there is a dynamic program solving this
problem in time within O(nm) when S is of length n and L of length m. Sim-
ilar complexity results, all polynomial, hold for many other different subsets of
the natural correction operators, with one striking exception: Wagner [6] proved
the NP-hardness of the Swap-Insert Correction distance, denoted δ(S,L)
through this paper, i.e. the correction distance when restricted to the operators
insertion and swap (or, by symmetry, to the operators deletion and swap).

The Swap-Insert Correction distance’s difficulty attracted special inter-
est, with two results of importance: Abu-Khzam et al. [1] described an algorithm
computing δ(S,L) in time within O(1.6181δ(S,L)m), and Meister [4] described
an algorithm computing δ(S,L) in time polynomial in the input size when S and
L are strings on a finite alphabet.

The complexity of Meister’s result [4], polynomial in m of degree 2d + 1, is a
very pessimistic approximation of the computational complexity of the distance.
At one extreme, the Swap-Insert Correction distance between two strings
which are very similar (e.g. only a finite number of symbols need to be swapped
or inserted) can be computed in time linear in n and d. At the other extreme, the
Swap-Insert Correction distance of strings which are completely different
(e.g. their effective alphabets are disjoint) can also be computed in linear time
(it is then close to n+m). Even when S and L are quite different, δ(S,L) can be
“easy” to compute: when mostly swaps are involved to transform S into L (i.e.
S and L are almost of the same length), and when mostly insertions are involved
to transform S into L (i.e. many symbols present in L are absent from S).

Hypothesis: We consider whether the Swap-Insert Correction distance
δ(S,L) can be computed in time polynomial in the length of the input strings
for a constant alphabet size, while still taking advantage of cases such as those
described above, where the distance δ(S,L) can be computed much faster.

Our Results: After a short review of previous results and techniques in
Section 2, we present such an algorithm in Section 3, in four steps: the intu-
ition behind the algorithm in Section 3.1, the formal description of the dynamic
program in Section 3.2, and the formal analysis of its complexity in Section 3.3.
In the latter, we define the local imbalance gα = min{nα,mα − nα} for each
symbol α ∈ Σ, summarized by the global imbalance measure g = maxα∈Σ gα,
and prove that our algorithm runs in time within O(d2gd−1nm) in the worst
case over instances where d, n,m and g are fixed.

We discuss in Section 4 some implied results, and some questions left open.
Additional details are deferred to the full version [2].
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2 Background

In 1974, motivated by the problem of correcting typing and transmission errors,
Wagner and Fischer [7] introduced the String-to-String Correction prob-
lem, which is to compute the minimum number of corrections required to change
the source string S into the target string L. They considered the following oper-
ators: the insertion of a symbol at some arbitrary position, the deletion of a
symbol at some arbitrary position, and the substitution of a symbol at some
arbitrary position. They described a dynamic program solving this problem in
time within O(nm) when S is of length n and L of length m. The worst case
among instances of fixed input size n + m is when n = m/2, which yields a
complexity within O(n2).

In 1975, Lowrance and Wagner [8] extended the String-to-String Cor-
rection distance to the cases where one considers not only the insertion,
deletion, and substitution operators, but also the swap operator, which
exchanges the positions of two contiguous symbols. Not counting the identity,
fifteen different variants arise when considering any given subset of those four
correction operators. Thirteen of those variants can be computed in polynomial
time [6–8]. The two remaining distances, the computation of the Swap-Insert
Correction distance and its symmetric the Swap-Delete Correction dis-
tance, are equivalent by symmetry, and are NP-hard to compute [6], hence our
interest. All our results on the computation of the Swap-Insert Correction
distance from S to L directly imply the same results on the computation of the
Swap-Delete Correction distance from L to S.

In 2013, Spreen [5] observed that Wagner’s NP-hardness proof [6] was based
on unbounded alphabet sizes (i.e. the Swap-Insert Correction problem is
NP-hard when the size d of the alphabet is part of the input), and suggested
that this problem might be tractable for fixed alphabet sizes. He described some
polynomial-time algorithms for various special cases when the alphabet is binary,
and some more general properties.

In 2014, Meister [4] extended Spreen’s work [5] to an algorithm computing
the Swap-Insert Correction distance from a string S of length n to another
string L of length m on any fixed alphabet size d ≥ 2, in time polynomial
in n and m. The algorithm is explicitly based on finding an injective function
ϕ : [1..n] → [1..m] such that ϕ(i) = j if and only if S[i] = L[j], and the total
number of crossings is minimized. Two positions i < i′ of S define a crossing if
and only if ϕ(i) > ϕ(i′). Such a number of crossings equals the number of swaps,
and the number of insertions is always equal to m − n. Meister proved that the
time complexity of this algorithm is equal to (m + 1)2d+1 · (n + 1)2 times some
function polynomial in n and m.

3 Algorithm

We describe the intuition behind our algorithm in Section 3.1, the high level
description of the dynamic program in Section 3.2, and the formal analysis of
its complexity in Section 3.3.
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3.1 High Level Description

The algorithm runs through S and L from left to right, building a mapping
from the characters of S to a subset of the characters of L, using the fact that,
for each distinct character, the mapping function on positions is monotone. The
Dynamic Programming matrix has size n1 × · · · × nd < nd.

For every string X ∈ {S,L}, let X[i] denote the i-th symbol of X from left to
right (i ∈ [1..|X|]), and X[i..j] denote the substring of X from the i-th symbol to
the j-th symbol (1 ≤ i ≤ j ≤ |X|). For every 1 ≤ j < i ≤ n, let X[i..j] denote the
empty string. Given any symbol α ∈ Σ, let rank(X, i, α) denote the number of
occurrences of the symbol α in the substring X[1..i], and select(X, k, α) denote
the value j ∈ [1..|X|] such that the k-th occurrence of α in X is precisely at
position j, if j exists. If j does not exist, then select(X, k, α) is null.

The algorithm runs through S and L simultaneously from left to right, skip-
ping positions where the current symbol of S equals the current symbol of L, and
otherwise branching out between two options to correct the current symbol of
S: inserting a symbol equal to the current symbol of L in the current position of
S, or moving (by applying many swaps) the first symbol of the part not scanned
of S equal to the current symbol of L, to the current position in S.

More formally, the computation of δ(S,L) can be reduced to the application
of four rules:

– if S is empty: We just return the length |L| of L, since insertions are the
only possible operations to perform in S.

– if some α ∈ Σ appears more times in S than in L: We return +∞,
since delete operations are not allowed to make S and L match.

– if S and L are not empty, S[1] = L[1]: We return δ(S[2..|S|], L[2..|L|]).
– if S and L are not empty, S[1] �= L[1]: We compute two distances: the

distance dins = 1 + δ(S,L[2..|L|]) corresponding to an insertion of the
symbol L[1] at the first position of S, and the distance dswaps = (r − 1) +
δ(S′, L[2..|L|]) corresponding to perform r − 1 swaps to bring to the first
position of S the first symbol of S equal to L[1]. In this case, r denotes the
position of such a symbol, and S′ the string resulting from S by removing
that symbol. We then return min{dins, dswaps}.

There can be several overlapping subproblems in the recursive definition of
δ(S,L) described above, which calls for dynamic programming [3] and memo-
ization. In any call δ(S′, L′) in the recursive computation of δ(S,L), the string
L′ is always a substring L[j..|J |] for some j ∈ [1..|J |], and can thus be replaced
by such an index j, but this is not always the case for the string S′. Observe
that S′ is a substring S[i..|S|] for some i ∈ [1..|S|] with (eventually) some sym-
bols removed. Furthermore, if for some symbol α ∈ Σ precisely cα symbols α of
S[i..|S|] have been removed, then those symbols are precisely the first cα sym-
bols α from left to right. We can then represent S′ by the index i and a counter
cα for each symbol α ∈ Σ of how many symbols α of S[i..|S|] are removed (i.e.
ignored). In the above fourth rule, the position r is equivalent to the position of
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the (cL[1] + 1)-th occurrence of the symbol L[1] in S[i..|S|]. To quickly compute
r, the functions rank and select will be used.

Let W =
∏d

α=1[0..nα] denote the domain of such vectors of counters, where
for any c = (c1, c2, . . . , cd) ∈ W, cα denotes the counter for α ∈ Σ. Using
the ideas described above, the algorithm recursively computes the extension
DIST (i, j, c) of δ(S,L), defined for each i ∈ [1..n + 1], j ∈ [1..m + 1], and
c = (c1, c2, . . . , cd) ∈ W, as the value of δ(S[i..n]c, L[j..m]), where S[i..n]c is the
string obtained from S[i..n] by removing (i.e. ignoring) for each α ∈ Σ the first
cα occurrences of α from left to right.

Given this definition, δ(S,L) = DIST (1, 1, 0), where 0 denotes the vector
(0, . . . , 0) ∈ W. Given i, j, and c, DIST (i, j, c) < +∞ if and only if for each
symbol α ∈ Σ the number of considered (i.e. not removed or ignored) α symbols
in S[i..n] is at most the number of α symbols in L[j..m]. That is, count(S, i, α)−
cα ≤ count(L, j, α) for all α ∈ Σ, where count(X, i, α) = rank(X, |X|, α) −
rank(|X|, i − 1, α) is the number of symbols α in the string X[i..|X|]. In the
following, we show how to compute DIST (i, j, c) recursively for every i, j, and
c. For a given α ∈ Σ, let wα ∈ W be the vector whose components are all equal
to zero except the α-th component that is equal to 1.

3.2 Recursive Computation of DIST (i, j, c)

We will use the following observation which considers the swap operations per-
formed in the optimal transformation from a short string S of length n to a
larger string L of length m.

Observation 1 ([1,5]). The swap operations used in any optimal solution sat-
isfy the following properties: two equal symbols cannot be swapped; each symbol is
always swapped in the same direction in the string; and if some symbol is moved
from some position to another by performing swaps operations, then no symbol
equal to it can be inserted afterwards between these two positions.

The following lemma deals with the basic case where S[i..n] and L[j..m] start
with the same symbol, i.e. S[i] = L[j]. When the beginnings of both strings are
the same, matching those two symbols seems like an obvious choice in order to
minimize the distance, but one must be careful to check first if the first symbol
from S[i..n] has not been scheduled to be “swapped” to an earlier position, in
which case it must be ignored and skipped:

Lemma 1. Given two strings S and L over the alphabet Σ, for any positions
i ∈ [1..n] in S and j ∈ [1..m] in L, for any vector of counters c = (c1, . . . , cd) ∈ W

and for any symbol α ∈ Σ,

S[i] = L[j] = α
cα = 0

}
=⇒ DIST (i, j, c) = DIST (i + 1, j + 1, c).

Proof. Given strings X,Y in the alphabet Σ, and an integer k, Abu-Khzam et
al. [1, Corollary1] proved that if X[1] = Y [1], then:

δ(X,Y ) ≤ k if and only if δ(X[2..|X|], Y [2..|Y |]) ≤ k.
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Given that one option to transform X into Y with the minimum number of
operations is to transform X[2..|X|] into Y [2..|Y |] with the minimum number of
operations (matching X[1] with Y [1]), we have:

δ(X,Y ) ≤ δ(X[2..|X|], Y [2..|Y |]).
By selecting k = δ(X,Y ), we obtain the equality

δ(X,Y ) = δ(X[2..|X|], Y [2..|Y |]).
Then, since the symbol α = S[i] must be considered (because cα = 0), and
S[i] = L[j], we can apply the above statement for X = S[i..n]c and Y = L[j..m]
to obtain the next equalities:

DIST (i, j, c) = δ(X,Y ) = δ(X[2..|X|], Y [2..|Y |]) = DIST (i + 1, j + 1, c).

The result thus follows. 	

The second simplest case is when the first available symbol of S[i..n] is already

matched (through swaps) to a symbol from L[1..j − 1]. The following lemma
shows how to simply skip such a symbol:

Lemma 2. Given S and L over the alphabet Σ, for any positions i ∈ [1..n] in
S and j ∈ [1..m] in L, and for any vector of counters c = (c1, . . . , cd) ∈ W and
for any symbol α ∈ Σ,

S[i] = α
cα > 0

}
=⇒ DIST (i, j, c) = DIST (i + 1, j, c − wα).

Proof. Since cα > 0, the first cα symbols α of S[i..n] have been ignored, thus
S[i] is ignored. Then, DIST (i, j, c) must be equal to DIST (i+1, j, c−wα), case
in which cα − 1 symbols α of S[i + 1..n] are ignored. 	


The most important case is when the first symbols of S[i..n] and L[j..m]
do not match: the minimum “path” from S to L can then start either by an
insertion or a swap operation.

Lemma 3. Given S and L over the alphabet Σ, for any positions i ∈ [1..n]
in S and j ∈ [1..m] in L, and for any vector of counters c = (c1, . . . , cd) ∈
W, note α, β ∈ Σ the symbols α = S[i] and β = L[j], r the position r =
select(S, rank(S, i, β)+ cβ +1, β) in S of the (cβ +1)-th symbol β of S[i..n], and
Δ the number

∑d
θ=1 min{cθ, rank(S, r, θ)− rank(S, i− 1, θ)} of symbols ignored

in S[i..r].
If α �= β and cα = 0, then DIST (i, j, c) = min{dins, dswaps}, where

dins =
{

DIST (i, j + 1, c) + 1 if cβ = 0
+∞ if cβ > 0

and

dswaps =
{

(r − i) − Δ + DIST (i, j + 1, c + wβ) if r �= 0
+∞ if r = 0.
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Proof. Let S′[1..n′] = S[i..n]c. Given that α �= β and cα = 0, there are two
possibilities for DIST (i, j, c): (1) transform S′[1..n′] into L[j + 1..m] with the
minimum number of operations, and after that insert a symbol β at the first
position of the resulting S′[1..n′]; or (2) swap the first symbol β in S′[2..n′] from
left to right from its current position r′ to the position 1 performing r′−1 swaps,
and then transform the resulting S′[2..n′] into L[j + 1..m] with the minimum
number of operations. Observe that option (1) can be performed if and only if
there is no symbol β ignored in S[i..n] (see Observation 1). If this is the case,
then DIST (i, j, c) = DIST (i, j + 1, c) + 1. Option (2) can be used if and only if
there is a non-ignored symbol β in S[i..n], where the first one from left to right
is precisely at position r = select(S, rank(S, i, β) + cβ + 1, β). In such a case
r′ = (r − i + 1) − Δ, where Δ =

∑d
θ=1 min{cθ, rank(S, r, θ) − rank(S, i − 1, θ)}

is the total number of ignored symbols in the string S[i..r]. Hence, the number
of swaps counts to r′ − 1 = (r − i) − Δ. Then, the correctness of dins, dswaps,
and the result follow. 	


The next two lemmas deal with the cases where one string is completely
processed. When L has been completely processed, either the remaining symbols
in S have all previously been matched via swaps and the distance equals zero,
or there is no sequence of operations correcting S into L:

Lemma 4. Given S and L over the alphabet Σ, for any positions i ∈ [1..n + 1]
in S and j ∈ [1..m] in L, for any vector of counters c = (c1, . . . , cd) ∈ W,

DIST (i,m + 1, c) =
{

0 if c1 + . . . + cd = n − i + 1 and
+∞ otherwise.

Proof. Note that DIST (i,m + 1, c) is the minimum number of operations to
transform the string S[i..n] into the empty string L[m + 1..m]. This number is
null if and only if all the n − i + 1 symbols of S[i..n] have been ignored, that is,
c1 + . . . + cd = n − i + 1. If not all the symbols have been ignored, then such a
transformation does not exist and DIST (i,m + 1, c) = +∞. 	


When S has been completely processed, there are only insertions left to per-
form: the distance can be computed in constant time, and the list of corrections
in linear time.

Lemma 5. Given S and L over the alphabet Σ, for any position j ∈ [1..m + 1]
in L, and for any vector of counters c = (c1, . . . , cd) ∈ W,

DIST (n + 1, j, c) =
{

m − j + 1 if c = 0 and
+∞ otherwise.

Proof. Note that DIST (i,m + 1, c) is the minimum number of operations to
transform the empty string S[n + 1..n] into the string L[j..m]. If c = 0, then
DIST (n+1, j, c) < +∞ and the transformation consists of only insertions which
are m − j + 1. If c �= 0, then DIST (n + 1, j, c) = +∞. 	
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Algorithm DIST (i, j, c = (c1, . . . , cd))
1. if DIST (i, j, c) = +∞ then
2. return +∞
3. else if i = n + 1 then
4. (* insertions *)
5. return m − j + 1
6. else if j = m + 1 then
7. (* skip all symbols since they were ignored *)
8. return 0
9. else
10. α ← S[i], β ← L[j]
11. if cα > 0 then
12. (* skip S[i], it was ignored *)
13. return DIST (i + 1, j, c − wα)
14. else if α = β then
15. (* S[i] and L[j] match *)
16. return DIST (i + 1, j + 1, c)
17. else
18. dins ← +∞, dswaps ← +∞
19. if cβ = 0 then
20. (* insert a β at index i *)
21. dins ← 1 + DIST (i, j + 1, c)
22. r ← select(S, rank(S, i, β) + cβ + 1, β)
23. if r �= null then
24. Δ ←∑d

θ=1 min{cθ, rank(S, r, θ) − rank(S, i − 1, θ)}
25. (* swaps *)
26. dswaps ← (r − i) − Δ + DIST (i, j + 1, c + wβ)
27. return min{dins, dswaps}

Fig. 1. Informal algorithm to compute DIST (i, j, c): Lemma 4 and Lemma 5 guarantee
the correctness of lines 1 to 8; Lemma 2 guarantees the correctness of lines 11 to 13;
Lemma 1 guarantees the correctness of lines 14 to 16; and Lemma 3 guarantees the
correctness of lines 18 to 27.

3.3 Complexity Analysis

Combining Lemmas 1 to 5, the value of DIST (1, 1, 0) can be computed recur-
sively, as shown in the algorithm of Figure 1. We analyze the formal complexity
of this algorithm in Theorem 1, in the finest model that we can define, taking
into account the relation for each symbol α ∈ Σ between the number nα of
occurrences of α in S and the number mα of occurrences of α in L.

Theorem 1. Given two strings S and L over the alphabet Σ, for each symbol
α ∈ Σ, note nα the number of occurrences of α in S and mα the number of
occurrences of m in L, their sums n = n1 + · · · + nd and m = m1 + · · · + md,
and gα = min{nα,mα −nα} a measure of how far nα is from mα/2. There is an
algorithm computing the Swap-Insert Correction distance δ(S,L) in time
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within O(d + m) if S and L have no symbol in common, and otherwise in time
within

O

⎛

⎝d(n + m) + d2n ·
d∑

α=1

(mα − gα) ·
∏

α∈Σ+

(gα + 1)

⎞

⎠ ,

where Σ+ = {α ∈ Σ : gα > 0} if gα = 0 for any α ∈ Σ, and Σ+ = Σ \
{arg minα∈Σ gα} otherwise.

Proof. Observe first that there is a reordering of Σ = [1..d] such that 0 <
g1 ≤ g2 ≤ · · · ≤ gs and gs+1 = gs+2 = · · · = gd for some index s ∈ [0..d],
and we assume such an ordering from now on. Note also that given any string
X ∈ {S,L}, a simple 2-dimensional array using space within O(d · |X|) can be
computed in time within O(d · |X|), to support the queries rank(X, i, α) and
select(X, k, α) in constant time for all values of i ∈ [1..n], k ∈ [1..|X|], and
α ∈ Σ.

The case where the two strings S and L have no symbol in common is easy:
the distance is then +∞. The algorithm detects this case by testing if gα = 0
for all α ∈ Σ, in time within O(d + m).

Consider the algorithm of Figure 1, and let i ∈ [1..n], j ∈ [1..m], and c =
(c1, . . . , cd) be parameters such that DIST (i, j, c) < +∞.

At least one of the c1, . . . , cd is equal to zero: in the first entry DIST (1, 1, 0)
all the counters c1, c2, . . . , cd are equal to zero, and any counter is incremented
only at line 26, in which another counter must be equal to zero because of the
lines 11 and 14.

The number of insertions counted in line 21, in previous calls to the func-
tion DIST in the recursion path from DIST (1, 1, 0) to DIST (i, j, c), is equal
to j − i − (c1 + · · · + cd). Let tα denote the number of such insertions for the
symbol α ∈ Σ. Then, we have

j = i + (c1 + · · · + cd) + (t1 + · · · + td),

and for all α ∈ Σ, cα ≤ nα, tα ≤ mα − nα, and

cα + tα = rank(L, j − 1, α) − rank(S, i − 1, α).

Using the above observations, we encode all entries DIST (i, j, c), for i, j and
c such that DIST (i, j, c) < +∞, into the following table T of s + 2 ≤ d + 2
dimensions. If we have s = d, then

T [p, i, k, r1, . . . , rd−1] = DIST (i, j, c = (c1, . . . , cd)),

where

cp = 0,

(r1, . . . , rd−1) = (x1, . . . , xp−1, xp+1, . . . , xd)

xα =
{

cα if nα ≤ mα − nα

tα if mα − nα < nα
for every α ∈ Σ, and

k = (c1 + · · · + cd) + (t1 + · · · + td) − (r1 + · · · + rd−1).
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Furthermore, given any combination of values i, j, c1, . . . , cd we can switch to
the values p, i, k, r1, . . . , rd−1, and vice versa, in time within O(d). Otherwise, if
s < d, then

T [i, k, r1, . . . , rs] = DIST (i, j, c = (c1, . . . , cd)),

where (r1, . . . , rs) = (x1, . . . , xs). Again, given the values i, j, c1, . . . , cd we can
switch to the values i, k, r1, . . . , rs, and vice versa, in O(d) time.

Since p ∈ [1..d], i ∈ [1..n + 1], k ∈ [0..
∑d

α=1(mα − gα)], and rα ∈ [0..gα] for
every α, the table T can be as large as d× (n+1)× (1+

∑d
α=1(mα −gα))× (g2 +

1)×· · ·× (gd +1) if s = d, and as large as (n+1)× (1+
∑d

α=1(mα −gα))× (g1 +
1)×· · ·×(gs +1) if 0 < s < d. For s = 0, no table is needed. The running time of
this new algorithm includes the O(d(n + m)) = O(dm) time for processing each
of S and L for rank and select, and the time to compute DIST (1, 1, 0) which
is within O(d) times n + m plus the number of cells of the table T . If s = d, the
time to compute DIST (1, 1, 0) is within

O

(
d(n + m) + d2n ·

d∑

α=1

(mα − gα) · (g2 + 1) · · · · · (gd + 1)

)
.

Otherwise, if 0 ≤ s < d, the time to compute DIST (1, 1, 0) is within

O

(
d(n + m) + dn ·

d∑

α=1

(mα − gα) · (g1 + 1) · · · · · (gs + 1)

)
.

The result follows by noting that: if s = d, then Σ+ = {2, . . . , d}. Otherwise, if
s < d, then Σ+ = {1, . . . , s}. 	


The result above, about the complexity in the worst case over instances with
d, n1, . . . , nd, m1, . . . , md fixed, implies results in less precise models, such as in
the worst case over instances for d, n,m fixed:

Corollary 1. Given two strings S and L over the alphabet Σ, of respective
sizes n and m, the algorithm analyzed in Theorem 1 computes the Swap-Insert
Correction distance δ(S,L) in time within

O

(
d(n + m) + d2n(m − n)

(
n

d − 1
+ 1

)d−1
)

,

which is within O
(
n + m + nd(m − n)

)
for alphabets of fixed size d; and within

O

(
d(n + m) + d2n2

(
m − n

d − 1
+ 1

)d−1
)

,

which is within O
(
n + m + n2(m − n)d−1

)
for alphabets of fixed size d.
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4 Discussion

The exact running time of our algorithm is within

O

⎛

⎝d(n + m) + d2n ·
d∑

α=1

(mα − gα) ·
∏

α∈Σ+

(gα + 1)

⎞

⎠ ,

where nα and mα are the respective number of occurrences of symbol α ∈ [1..d] in
S and L respectively; where the vector formed by the values gα = min{nα,mα −
nα} measures the distance between (n1, . . . , nσ) and (m1, . . . , mσ); and where
Σ+ = {α ∈ Σ : gα > 0} if gα = 0 for any α ∈ Σ, and Σ+ = Σ \{arg minα∈Σ gα}
otherwise.

Summarizing the disequilibrium between the frequency distributions of the
symbols in the two strings via the measure g = maxα∈Σ gα ≤ n, this yields a
complexity within O(d2nmgd−1), which is polynomial in n and m, and exponen-
tial only in d of base g. Since this disequilibrium g is smaller than the length n
of the smallest string S, this implies a worst case complexity within O(d2mnd)
over instances formed by strings of lengths n and m over an alphabet of size d,
a result matching the state of the art [4] for this problem.

4.1 Implicit Results

The result from Theorem 1 implies the following additional results:

Weighted Operators: Wagner and Fisher [7] considered variants where the
cost cins of an insertion and the cost cswap of an swap are distinct. In the
Swap-Insert Correction problem, there are always n − m insertions,
and always δ(S,L) − n + m swaps, which implies the optimality of the algo-
rithm we described in such variants.

Implied Improvements When Only Swaps Are Needed: Abu-Khzam et
al. [1] mention an algorithm computing the Swap String-to-String Cor-
rection distance (i.e. only swaps are allowed) in time within O(n2). This is
a particular case of the Swap-Insert Correction distance, which happens
exactly when the two strings are of the same size n = m (and no insertion
is neither required nor allowed). In this particular case, our algorithm yields
a solution running in time within O(dm), hence improving on Abu-Khzam
et al.’s solution [1].

Effective Alphabet: Let d′ be the effective alphabet of the instance, i.e. the
number of symbols α of Σ = [1..d] such that the number of occurrences of
α in S is a constant fraction of the number of occurrences of α in L (i.e.
nα ∈ Θ(mα)). Our result implies that the real difficulty is d′ rather than d,
i.e. that even for a large alphabet size d the distance can still be computed
in reasonable time if d′ is finite.
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4.2 Perspectives

Those results suggest various directions for future research:

Further Improvements of the Algorithm: our algorithm can be improved
further using a lazy evaluation of the min operator on line 27, so that
the computation in the second branch of the execution stops any time the
computed distance becomes larger than the distance computed in the first
branch. This would save time in practice, but it would not improve the worst-
case complexity in our analysis, in which both branches are fully explored:
one would require a finer measure of difficulty to express how such a modi-
fication could improve the complexity of the algorithm

Further Improvements of the Analysis: The complexity of Abu-Khzam et
al.’s algorithm [1], sensitive to the distance from S to L, is an orthogonal
result to ours. An algorithm simulating both their algorithm and ours in
parallel yields a solution adaptive to both measures, but an algorithm using
both techniques in synergy would outperform both on some instances, while
never performing worse on other instances.

Adaptivity for other Existing Distances: Can other String-to-String
Correction distances be computed faster when the number of occurrences
of symbols in both strings are similar for most symbols? Edit distances such
as when only insertions or only deletions are allowed are linear anyway, but
more complex combinations require further studies.

Acknowledgement. The authors would like to thank the anonymous referees of
SPIRE 2015 for insightful comments.
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Abstract. Many useful xml transformations can be formulated through
deterministic top-down tree transducers. If transducers process parts of
the input repeatedly or in non-document order, then they cannot be real-
ized over the xml stream with constant or even depth-bounded memory.
We show that by enriching streams by forward references both in the
input and in the output, every such transformation can be compiled into
a stream processor with a space consumption depending only on the
transducer and the depth of the xml document. References allow to pro-
duce DAG-compressed output that is guaranteed to be linear in the size
of the input (up to the space required for labels). Our model is designed
so that without decompression, the output may again serve as the input
of a subsequent transducer.

1 Introduction

In many scenarios data arrives in a stream, e.g., sensor readings, news feeds, or
large data that cannot fit in memory. If the streamed data is tree structured, such
as xml, further challenges arise because documents have nesting-depth as well as
width. One basic question is, which tree transformations can be computed with
constant memory, i.e., memory only depending on the transformation but not on
the size of the input stream. It turns out that even very simple transformations
cannot be realized with constant memory, e.g., the transformation that removes
all subtrees with a certain root label from a document adhering to a non-recursive
dtd (see [11]). Therefore we consider a milder restriction: a tree transformation
is left-depth-bounded memory (ldbm), if it can be computed with memory only
depending on the transformation and on the left-depth of the input tree. Similar
to the ordinary depth, the left-depth of a ranked tree is defined as the maximal
length of a path from the root to a leaf, with the difference that edges from
nodes to their right-most (last) child are not counted. Thus, monadic trees have
left-depth 0, ordinary lists have left-depth 1, and the left-depth of the binary
tree representation of an xml document corresponds to the nesting-depth of the
document. This is practically relevant since most xml documents are of small
nesting-depth.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-23826-5 4
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There are two fundamental limitations of ldbm tree translations:

– subtrees must be transformed in the order they arrive;
– subtrees may not be transformed multiple times (“copied”).

To see this, consider first the transformation that flips the order of two lists:
on input root(l1, l2) it outputs root(l2, l1), where l1, l2 are arbitrary lists. The
translation is not ldbm because l1 must be stored in memory. For the same
reason, the translation from root(l1) to root(l1, l1) is not ldbm. Translations
that flip or copy, frequently appear in practice. In this paper we enrich streams
by forward references. A forward reference is a pointer to a later position in the
stream. It is given by a label which is defined later in the stream. Labels are
considered as abstract data objects (of size “1”) that can only be created and
compared for equality; we represent them by natural numbers. A valid output
for the flip of root(l1, l2) is this output stream with references:

root(ref 1, ref 2) 2: l1 1: l2.

The translation generating this output can be performed in ldbm. Similarly, the
copy of the list l1 can be produced in ldbm by outputting root(ref 1, ref 1) 1 :
l1, corresponding to a dag-compressed representation of the corresponding tree.
A stream processor takes as input an enriched stream (i.e., a serialization of a dag)
and produces as output an enriched stream. Thus, the initial input may be any
dag representing the tree. Note that the minimal dag of typical xml documents
has only 10% of the edges of the original tree [1]. We show: (1) Any determin-
istic top-down tree transducer (dtop) can be transformed into an ldbm stream
processor. The memory and the number of references in the output is bounded by
the depth of the input, the transducer, and the number of references in the input.
Thus, it is independent of the length m of the input stream. The size of the out-
put is in O(m), even if the dtop produces exponentially many copies. (2) For the
same model, the generation of reference chains can be avoided, at the expense of
introducing sets of labels. The cardinality of those sets is bounded by the maxi-
mal sharing in the input and the maximal number of visits of input nodes by the
transducer. Our experimental results are summarized at the end of the paper.

Related Work. We are not aware of works that consider tree streams with
references. Filiot, Gauwin, Reynier, and Servais [2] show that two large subclasses
of visibly pushdown transducers (vpts) can be streamed with memory only
depending on the height of the unranked input tree and on the transducer. For
one class, the memory depends exponentially on the height of the input and
for the other class it depends quadratically on the input height. The expressive
power of vpts is incomparable to that of dtops, but includes linear size increase
dtop translations. They also show that it is decidable for a given vpt, whether
or not it can be streamed with height bounded memory.

There are several best-effort implementations of tree transformations that use
“as little memory as possible”, but do not give guarantees. Most notably, Michael
Kay’s saxon system streams xslt transformations in a best-effort approach.
Michael Kay is also the editor of the W3C working draft on xslt 3.0; the primary
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purpose of that draft is to change the language in order to enable streamed
processing. Note that only very restricted transformations can be formulated
through the stream primitives of xslt 3.0. For XQuery there are several best-
effort systems, e.g., Raindrop [13], gcx [5], and xtisp [3]. Note that xtisp
is based on a more general transducers than dtops; they do not give memory
guarantees, but show that their system performs on par with the state-of-the art
XQuery streaming engine gcx.

2 Streams with References

An xml document is modeled as a ranked tree, in which the last child of a node
represents the next sibling. For instance, if the content of an element consists
of three lists, then the element is represented by a node of rank four. In this
way, a ranked tree transducer can change the order of the content. See [6] where
such encodings are called “dtd-based”. For the rest of of the paper (except the
Appendix) the details of the encoding are not relevant. A ranked alphabet is a
finite set Σ of symbols each equipped with a non-negative integer called its rank.
The rank of a symbol σ determines the number of children of nodes labeled by σ.
We write σ(k) to denote that σ has rank k. Let Lab be an infinite set of labels. We
require that the set Lab is equipped with a method new(), which, given a current
active set of labels L ⊆ Lab, returns a symbol in Lab − L. Ref-trees t (over Σ
with forward references over Lab), sequences s of definitions, and streams p are
defined by the following grammar:

t ::= a (t1, . . . , tk) | ref l
s ::= ε | L : t s
p ::= t s

where a ∈ Σ is of rank k ≥ 0, l ∈ Lab, L ⊆ Lab with L �= ∅, and, if ref l
occurs in s then L : t occurs in s to the right for some t and L with l ∈ L. The
size of a ref-tree t, a sequence s, or a stream p counts the number of occurring
symbols (ignoring the meta-symbols brackets, commas or colons; cf. Section 3)
where a reference ref l counts for one and a label set L counts for the cardinality
of L. The size function is denoted by | . |. A tree (over Σ) is a ref-tree t without
occurrences of ref l and of L : t s. We denote by SΣ the set of streams (with
forward references over Lab) and by TΣ the set of all trees (over Σ). Textually,
label sets will be written as lists, i.e., without set delimiters. For Σ = {a(2), b(2)},
the following

a(ref 1, a(ref 2, ref 1)) 1 :b(ref 2, ref 2) 2:e

is a stream in SΣ . This stream represents the tree a(b(e, e), a(e, b(e, e))). Formally,
for a stream p = t s we define decode(p) = dec t(t, dec s(s, ∅)). The function dec s
computes a partial function E : Lab → TΣ , while dec t computes a tree in TΣ :

dec t(ref l, E) = E(l)
dec t(a(t1, . . . , tk), E) = a(dec t(t1, E), . . . , dec t(tk, E))
dec s(ε, E) = E
dec s(L : t s, E) = dec s(s,E) ⊕ {l 	→ dec t(t, dec s(s,E)) | l ∈ L}
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where the operation ⊕ updates the partial function in the first argument accord-
ing to the argument-value pairs provided in the second argument.

Left-Depth. The structure of an xml document corresponds to a well-balanced
sequence of opening and closing tags. Checking well-balancedness of a sequence of
tags can be done with memory proportional to the nesting-depth of the sequence:
for each opening tag we push its name onto a stack, and for each closing tag
we pop the matching name (or report an error). In our ranked tree encodings
of xml structures, the last child represents the next sibling of the original node.
Therefore, the left-depth corresponds to the nesting-depth of the xml structure.
For a stream p = t s we define ldepth(p) = max{ldepth t(t), ldepth s(s)}, where:

ldepth t(ref l) = 1
ldepth t(a(t1, . . . , tk)) = max{1+ldepth t(t1), . . . , 1+ldepth t(tk−1), ldepth t(tk)}
ldepth s(ε) = 0
ldepth s(L : t s) = max{ldepth t(t), ldepth s(s)}.

3 Top-Down Tree Transducer to Stream Processor
Translation

Top-down tree transducers generalize (top-down) tree automata by producing
output. They were invented in the 1970’s as formal models for linguistics and
compilers, and have recently been applied to xml [9,8,10,7]. Formally, a top-
down tree transducer is a tuple M = (Q,Σ,Δ, q0, R) where Q is a finite set of
states, Σ and Δ are ranked alphabets of input and output symbols, q0 ∈ Q is
the initial state, and R is a finite set of rules of the form q(a(x1, . . . , xk)) → t,
where a is an input symbol of rank k and t is generated by this grammar:

t ::= q(xi) | b(t1, . . . , tm)

for q ∈ Q, i ∈ {1, 2, . . . , k}, and b ∈ Δ of rank m ≥ 0. If for each q ∈ Q and
a ∈ Σ there is at most one rule in R of the form q(a(x1, . . . , xk)) → t, then M
is a deterministic top-down tree transducer (dtop); in this case t is denoted by
rhs(q, a). Let M be a dtop, q ∈ Q, a ∈ Σ, and t1, . . . , tk ∈ TΣ . The q-translation
[[q]] is the function from TΣ to TΔ defined recursively as: [[q]](a(t1, . . . , tk)) =
rhs(q, a)[q′(xi) ← [[q′]](ti) | q′ ∈ Q, i ∈ {1, . . . , k}]. For leaf labels d1, . . . , dn and
trees s1, . . . , sn, [dj ← sj | 1 ≤ j ≤ n] denotes the tree substitution of replacing
each occurrence of dj (with 1 ≤ j ≤ n) by the tree sj . The translation [[M ]] of
M is defined as [[q0]].

As an example, let Σ = Δ = {root(2), a(2), e(0)}. The dtop with states
q0, q and rules q0(root(x1, x2)) → root(q(x2), q(x1)) and q(a(x1, x2)) →
a(q(x1), q(x2)), and q(e) → e realizes the flip transformation of the Introduc-
tion: it translates root(t1, t2) into root(t2, t1), where t1, t2 are trees over a(2) and
e(0). If we replace the first rule of this transducer by the rule q0(root(x1)) →
root(q(x1), q(x1)), then input trees root(t) are translated to root(t, t) for trees t
over a(2) and e(0).
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For giving correctness proofs of our constructions later, we now extend the par-
tial functions [[q]] of the dtop from trees to ref-trees possibly containing references
to labels l ∈ Lab by defining [[q]](ref l) = 〈q, l〉 for new output symbols 〈q, l〉. The
following is a basic substitution lemma; it states that if a dtop translates a ref-tree
with labels, then placing the translation [[q]](E(l)) wherever l is visited by state q,
yields the same tree as running the dtop over the decoded reference-less input tree.
The lemma can be proved by induction on the size of t.

Lemma 1. Let t be a ref-tree. Assume that L is the set of labels referenced in t,
and that N is the set of all pairs 〈q′, l〉 occurring in [[q]](t). Furthermore, assume
that E : L → TΣ. Then [[q]](dec t(t, E)) is defined iff [[q′]](E(l)) is defined for all
〈q′, l〉 ∈ N , where [[q]](dec t(t, E)) = [[q]](t)[〈q′, l〉 ← [[q′]](E(l)) | 〈q′, l〉 ∈ N ]. �

The Translation. Note that, due to the ranks of symbols a ∈ Σ, brackets and
commas in streams are redundant. In the following, we therefore ignore these,
when it comes to parsing or outputting ref-trees and streams. A stream processor
S thus can be considered as a string transducer S = (conf, Σ̄,�, init,Final) where
conf is a (possibly infinite) set of configurations, init and Final are the initial
configuration and the set of final configurations, Σ̄ is the set of characters or
tokens in the input or output, and �: conf × (Σ̄ ∪ {ε}) → conf × Σ̄∗ is a partial
function describing the one-step transitions of the processor. For the processor
to operate deterministically, we demand that � (q, a) is undefined for every
a ∈ Σ̄ whenever � (q, ε) is defined. As usual, the function � is written infix.
The relation � is extended from symbols to strings and output strings as third
component by defining (q, aw, o) � (q′, w, o o′) whenever (q, a) � (q′, o′) is a
transition of M and o, w are strings. Now assume that we are given a dtop
M = (Q,Σ,Δ, q0, R). We construct the stream processor SM which is meant to
traverse an input stream p with decode(p) = t ∈ TΣ , and produce an output
stream p′ with decode(p′) = [[M ]](t). The set Σ̄ of tokens of the stream processor
SM consists of the alphabets Σ and Δ extended by tokens ref l with l ∈ Lab,
and L : with L a finite subset of Lab. The configurations of the stream processor
are of the following form:

conf ⊆ (lmap × stack × Lab) ∪ {init}
lmap ⊆ (Q × Lab) → 2Lab

stack ⊆ local∗

local ⊆ Q → 2Lab.

Thus, a configuration of the stream processor either equals the initial configura-
tion init, or consists of the following components:

– A mapping lmap which records for each state q of the dtop and label l in
the input, the set of labels in the output stream which refer to a representa-
tion of the output for the corresponding subtree translated in state q of M .
According to this usage, each label may occur at most once in any of the
sets lmap(q, l).
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– A stack of local configurations from local where each such local configuration
φ provides for each state q of M the set of output labels whose definition is
meant to be the output of the current part of the input for state q of M .

– A local configuration φ from local is a mapping from states of M to (possibly
empty) sets of output labels;

– The next fresh label to be used in the output stream. For convenience in our
implementation we assume labels to be natural numbers (starting from 0).

The transition relation of SM is denoted �M . In the following, we use the
convention that we only list nontrivial argument-value pairs of a mapping, i.e.,
where the value is different from ∅. The empty stack is denoted by []. Ini-
tially (from configuration init), a first label l0 ∈ Lab is produced. According
to our convention, l0 = 0. Then a reference to 0 is outputted, and a configura-
tion is created in which the initial state q0 maps to 0: (init, ε) �M ((∅, {q0 	→
{0}}, 1), ref 0). For the next cases we consider a configuration c = (λ, σ, l′),
where λ : (Q × Lab) → 2Lab, σ ∈ (Q → 2Lab)∗, and l′ ∈ Lab. Assume that the
next symbol in the input stream is a constructor a ∈ Σ, and σ = φ :: σ′ where
φ = {q1 	→ L1, . . . , qr 	→ Lr} for non-empty sets Lj ⊆ Lab, and r ≥ 0. Further-
more assume that qj(a(x1, . . . , xk)) → tj ∈ R for j = 1, . . . , r; note that if
any such rule does not exists, then � is correctly undefined (because the dtop
blocks and does not produce output). Then we consider a set L of fresh labels
containing one distinct label lq′,i for every q′(xi) occurring in any of the tj . For
i = 1, . . . , k, let φi denote the mapping φi = {q′ 	→ {lq′,i} | lq′,i ∈ L}. Let t′j be
the ref-tree obtained from tj by replacing q′(xi) with ref lq′,i. Then

(c, a) �M (c′, L1 : t′1 . . . Lr : t′r) where c′ = (λ, φ1 :: . . . :: φk :: σ′, l′ + |L|).

Note that in the specific case where φ has been empty, i.e., the current ref-tree
is not required for the prospected output, then m = 0 and the produced output
string is ε where L = ∅ and c′ = (λ, ∅k:: σ′, l′).

Now assume that the next token in the input is a reference ref l to some
label l where φ = {q1 	→ L1, . . . , qr 	→ Lr}. Then we define a mapping λ′ by
λ′(q′, l) = {l′j} for a new distinct label l′j if q′ = qj for some j with λ(qj , l) = ∅,
and otherwise λ′(q′, l) = λ(q′, l). Thus, new labels are created for every pair
(qj , l) with j = 1, . . . , r, which has not yet been defined in λ. Assume that the
number of these new labels is m. Now let select denote a (partial) function which
selects one label from each nonempty set of labels, and define l′j = select(λ′(qj , l))
for j = 1, . . . , r. Then

(c, ref l) �M (c′, L1 : ref l′1 . . . Lr : ref l′r) where c′ = (λ′, σ′, l′ + m).

This means we redirect the references as provided by φ to the new references
as introduced in λ′. Again, if φ is the empty set, the empty output string is
produced while c′ = (λ, σ′, l′).

Finally, assume that the next token in the input is a label set L followed
by : indicating a definition. Then new mappings φ′ and λ′ are constructed by
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φ′(q′) =
⋃{λ(q′, l) | l ∈ L} and λ′ is obtained from λ by setting the values for

(q′, l), l ∈ L, to ∅. With that, the transition is

(c, L :) �M (c′, ε) where c′ = (λ′, φ′ :: σ, l′).

Note that if none of the l ∈ L has ever been referred to, then λ(q, l) is the
empty set for every q. This implies that the mapping φ′ is the empty mapping
as well. Consequently, the stream processor will ignore the rest of the definition
of the l ∈ L, i.e., the subsequent ref-tree in the stream. The stream processor
terminates in configurations (∅, [], l′).

Reference Reuse. The implementation so far referred to fresh labels whenever
new labels are required. Labels therefore are unique throughout whole streams.
This can cause a blow-up in the bit size of the output by a logarithmic factor. We
reduce the number of distinct labels by reference reuse. If the same label l occurs
several times, a reference ref l simply refers to the next occurrence of l to the right.
In this way, only as many labels are required as have already been referred to but
have not yet been defined. Technically, these consist of all labels which are men-
tioned either in the current stack σ or in one of the output sets of the global map-
ping λ of the current configuration. Let L(σ, λ) denote this set. Then the next
new label can be generated without referring to a counter which is passed around.
Instead, it can be chosen as the smallest natural number not contained in L(σ, λ).
Fresh labels are possibly introduced when processing an input tag a or a reference
ref l in the input. On the other hand, a label l′ for the output goes out of scope as
soon as some set L′ : is produced with l′ ∈ L′. The label l′ may be used as a fresh
label already in the sub-stream succeeding the colon.

Theorem 1. Every dtop M can be compiled into a stream processor SM such
that for every stream p and input document t with decode(p) = t the following
holds:

1. If [[M ]](t) is undefined then so is SM (p). If [[M ]](t) = t′ then SM (p) = p′ for
some stream p′ with decode(p′) = t′.

2. The depth of the stack of SM when processing the input stream p is bounded
by l = (k − 1) · (ldepth(p) + 1),

3. The size |p′| of the output stream p′ is bounded by n · d · |p|.
4. The maximal number of distinct labels used by SM is bounded by c ·n · (l+r).
5. The cardinality of label sets L occurring in the output is at most max{1, c}.

Here k is the maximal rank of an input symbol occurring in p, n is the number of
states of M , d is the maximal size of right-hand sides of the rules of M , r is the
number of distinct labels in the input stream, and c is the maximal cardinality
of label sets in the input.

Since each output token carries at most one set of labels, the total number of
occurrences of labels in the output is bounded by c ·n ·d · |p|, for an input stream
p. Therefore, the total bit length of the output stream generated by a given
stream processor is in O(m · log(m)) if m is the bit length of the input stream
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— even if the dtop is unboundedly copying and thus may produce output trees
of size exponential in the input tree. This even holds for the stream processor
without reuse of labels. In case of label reuse, the total number of labels to be
stored in any configuration is bounded by the number of the labels stored in
the stack plus the number of labels stored in the mapping λ, i.e., proportional
to c · n · (l + r). Therefore, the bit length of the output can more precisely be
bounded by O(m · log(l + r)) if sets of labels in the input stream (and thus also
in the output stream) are assumed to have constant size. Likewise, the maximal
memory consumption in bits used by the stream processor can be bounded by
O((l + r) · log(l + r)).

The correctness of the stream processor SM in Theorem 1 with respect to the
dtop M follows from Lemma 3. For simplicity, we only consider in these lemmas
the vanilla version of SM where always fresh labels are created. The proof of
Lemma 3 uses Lemma 2 which can be proved by structural induction on t (using
Lemma 1).

When we refer to input (resp. output) ref-trees, sequences of definitions, or
streams, we mean ref-trees (etc) “over Σ (resp. Δ) with forward references over
Lab”.

Lemma 2. Let λ ⊆ Q × Lab → 2Lab, φ = {q1 	→ L1, . . . , qr 	→ Lr}, σ ⊆ (Q →
2Lab)∗, l1 denote a label exceeding all labels in λ, φ, σ, s a sequence of definitions,
and o an output string. Then the following two statements for every ref-tree t
are equivalent:

1. [[qj ]](t) is defined for all j ∈ {1, . . . , r};
2. ((λ, φ::σ, l1), t s, o) �∗

M ((λ ∪ λ2, σ, l2), s, o o2) for an output sequence of defi-
nitions o′, l2 ∈ Lab and some mapping λ2 such that
(a) All labels l′ in the image of λ2 are fresh, i.e., l1 ≤ l′ < l2;
(b) For all q′ ∈ Q, l ∈ Lab, λ2(q′, l) has cardinality at most 1;
(c) λ2(q′, l) �= ∅ iff λ(q′, l) = ∅ and 〈q′, l〉 occurs in [[qj ]](t) for some j.
(d) Let E(l′) = 〈q′, l〉 whenever l′ ∈ λ2(q′, l). Then for every j ∈ {1, . . . , r}

and l ∈ Lj, dec ts(o′, E)(l) = [[qj ]](t).

Lemma 3. Let s be an input sequence of definitions, E = dec ts(s, ∅), o an
output string, λ ⊆ Q × Lab → 2Lab, and l1 a label exceeding all lables occurring
in the image of λ. Let N denote the set of pairs 〈q, l〉 where λ(q, l) �= ∅. Then
the following two statements are equivalent:

1. [[q]](E(l)) is defined for all 〈q, l〉 ∈ N ;
2. ((λ, [], l1), s, o) �∗

M ((∅, [], l2), ε, o o′) for some output sequence of defini-
tions o′ and l2 ∈ Lab where for all 〈q, l〉 ∈ N , [[q]](E(l)) = dec ts(o′, ∅)(l′) for
all l′ ∈ λ(q, l).

Proof. Let c = (λ, [], l1). We proceed by structural induction on the sequence
of definitions s. If s = ε, then the assertion is vacuously true (because N = ∅).
Now assume that s = L : t s′. Let L̄ denote the set of labels l defined in s where
λ(q′, l) �= ∅ for some q′ ∈ Q. Let L̄1 = L̄∩L where L̄′ are the labels in L̄ defined
in s′.
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If L̄1 = ∅, then λ(q′, l) = ∅ for all q′ ∈ Q and l ∈ L. By the definition of �M ,
(c, L : t s′, o) �M (c′, t s′, o) where c′ = (λ, ∅ :: [], l1). According to the definition
of �M , only the empty mapping ∅ is pushed and popped for each symbol of
the ref-tree t until we arrive at s′ with empty stack. Accordingly, (c′, t s′, o) �∗

M

((λ, [], l1), s′, o). Since by induction hypothesis ((λ, [], l1), s′, o) �∗
M ((∅, [], l2), o o′),

the assertion follows.
Now assume that L̄1 �= ∅, and consider the mapping φ(q′) =

⋃{λ(q′, l) | l ∈
L}, which we write as usual φ = {q1 	→ L1, . . . , qr 	→ Lr}. Assume that [[q]](E(l))
is defined for all 〈q, l〉 ∈ N , in particular those where l ∈ L.

Let λ1 be obtained from λ by removing all entries for l ∈ L. Then by Lemma 2,
there is a mapping λ2, an output sequence o1 of definitions, and a next label l2
with the following properties:

1. ((λ1, φ::[], l1), ts′, o) �∗
M ((λ1 ∪ λ2, [], l2), s′, o o1)

2. λ2(q′, l) �= ∅ iff λ1(q′, l) = ∅ and 〈q′, l〉 occurs in [[qj ]](t) for some j.
3. Let E1(l′) = 〈q′, l〉 whenever l′ ∈ λ2(q′, l). Then for every j and l ∈ Lj ,

dec ts(o1, E1)(l) = [[qj ]](t).

Now let λ′ = λ1 ∪ λ2. By induction hypothesis for s′ and λ′,
((λ′, [], l2), s′, o o1) �∗

M ((∅, [], l3), o o1 o2). for some o2 and l3 where

[[q′]](E(l′)) = dec ts(o2, ∅)(l′′)

for all l′′ ∈ λ′(q′, l′). Therefore, we have:

((λ, [], l1), s, o) �M ((λ1, φ :: [], l1), t s′, o) �∗
M ((λ′, [], l2), s′, o o1)

�∗
M ((∅, [], l3, o o1 o2)

where for l ∈ L̄1, and l′ ∈ λ(q, l),

[[q]](E(l)) = [[q]](t)[〈q′, l′′〉 ← dec ts(o2, ∅)(lq′,l′′)]
= decode(o1, dec ts(o2, ∅))(l′)
= decode(o1 o2, ∅)(l′)

while for l ∈ L̄′, the assertion follows by induction hypothesis for s′. This proves
the first direction. The reverse direction follows analogously. �

Altogether, we thus have shown that the stream processor SM when applied to
the stream representation of a tree t, produces a stream representation of the
output tree returned by M for t.

Avoiding Reference Chains. The disadvantage of the construction so far
is that it may abundantly generate references which themselves may point to
references. In particular, this is the case if the dtop has erasing rules, i.e., rules
whose right-hand sides do not produce any output nodes but consist of recursive
calls only.
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Example 1. Consider the dtop with the following rules

q0(f(x1, x2)) → q1(x1) q1(f(x1, x2)) → q0(x2)
q0(⊥) → a q1(⊥) → b

where q0 is the initial state. The corresponding stream processor translates the
input stream f(ref l1,⊥) l1 : f(⊥, ref l2) l2 : ⊥ into the stream ref 0 0 : ref 1 1 :
ref 2 2:a. �

In order to avoid such chains of references, we modify the rules for construc-
tor applications and references as follows. Assume that a ∈ Σ and σ = φ :: σ′

with φ = {q1 	→ L1, . . . , qr 	→ Lr}. Furthermore, assume that for j = 1, . . . , r,
qj(a(x1, . . . , xk)) → ζj . Then we consider the set Ni the set of all states q′ ∈ Q
with the following two properties:

– q′(xi) occurs as a proper subterm in any of the ζj ;
– q′(xi) is different from any of the ζj .

For i = 1, . . . , k, let φi denote the mapping defined by φi(q′) = {lq′,i} if q′ ∈ Ni,
and otherwise φi(q′) =

⋃{Lj | ζj = q′(xi)}, where the lq′,i are fresh labels. Let
j1, . . . , jm be the subsequence of the j′ where ζj produces output nodes, i.e., is not
just equal to some recursive call q′(xi′). For j′ ∈ {j1, . . . , jm}, let ζ ′

j′ be obtained
from ζj′ by replacing q′(xi) with ref l′q′,i for some l′q′,i = select(φi(q′)). Then

o′ = Lj1 :ζ ′
j1 . . . Ljm :ζ ′

jm and c′ = (λ, φ1 :: . . . :: φk :: σ′).

A second modification takes place for processing references in the input. Let
ref l be a reference in the input and σ = φ :: σ′ where φ = {q1 	→ L1, . . . , qr 	→
Lr}. We define a mapping λ′ by λ′(qj , l) = λ(qj , l) ∪ Lj for j = 1, . . . , r and
λ′(q′, l′) = λ(q′, l′) otherwise. Thus, no new labels are created at all. Also, no
output is produced, λ is updated to λ′, and σ is popped to σ′, i.e., c′ = (λ′, σ′).

Example 2. Consider again the dtop from Example 1 together with the input
stream f(ref l1,⊥) l1 : f(⊥, ref l2) l2 : ⊥. Then no new label is ever introduced.
Instead, the output is given by ref 0 0:a(⊥,⊥). �

In the previous example, the output stream without reference chains is much
simpler than the original output stream. In some cases, though, sets of labels in
the output stream grow considerably.

Example 3. Consider the following dtop with states q, q′:

q(a(x1, x2)) → b(q(x2), q′(x2)) q′(a(x1, x2)) → q′(x2)
q(⊥) → c(⊥,⊥) q′(⊥) → d(⊥,⊥)

Assume that q is the initial state. The input stream a(⊥, a(⊥, a(⊥,⊥))) is trans-
lated to ref 0 0 : b(ref 1, ref 2) 1 : b(ref 3, ref 4) 3 : b(ref 5, ref 6) 5 : c(⊥⊥) 2, 4, 6 :
d(⊥,⊥) Thus, the labels for the erasing calls of state q′ all are collected into one
label set. �
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A second source for the growing of label sets may be sharing present in the input
stream.

Example 4. Consider the following dtop with the single state q implementing
the identity by these two rules: q(a(x1, x2)) → a(q(x1), q(x2)) and q(⊥) → ⊥.
Consider the input stream a(ref l1, a(ref l1, a(ref l2,⊥))) l2 : ref l1 l1 :⊥ containing
four occurrences of references to the same node. This input stream is translated
into the output stream

ref 0 0:a(ref 1, ref 2) 2:a(ref 3, ref 4) 4:a(ref 5, ref 6) 6:⊥ 1, 3, 5:⊥
This means that all labels introduced for the occurrences of the references
ref l1, ref l2 are collected into one label set. �

In fact, these two mechanisms are the only reasons how large sets of labels in
the output set may be accumulated. We have:

Theorem 2. For a dtop M , a streaming processor S′
M can be constructed with the

following properties: (1) The output stream does not contain chains of references
even if such subexpressions occur in the input stream. (2) The cardinality of any
label set in the output is bounded by a · b, where a is the maximal sharing in the
input, and b is the number of visits of M to nodes in the tree unfolding of the input.

Hereby, the maximal sharing of a stream p is the maximal number of occurrences
of references ref l all of which directly or indirectly point to the same subtree.
The maximal number of visits to subtrees of the input, on the other hand, is the
maximal number of occurrences of leaves 〈q, l〉 in the output produced by M for
any input tree which contains a single reference ref l.

Example 5. Consider the dtop implementing the identity from Example 4, now
together with the input stream a(ref l1, a(ref l1, a(ref l1,⊥))) l1 : ⊥ which
contains three occurrences of references to the same leaf with label l1. This
input stream is translated into ref 0 0 : a(ref 1, ref 2) 2 : a(ref 3, ref 4) 4 :
a(ref 5, ref 6) 6 : ⊥ 1, 3, 5 : ⊥. This means that all labels introduced for the
occurrences of the reference ref l1 are collected into one label set. �

Experiments. We implemented a prototype of our stream processor in C++,
using the Xerces-C++ parser version 3.1.1. One experiment is to filter out certain
subtrees (e.g., all article- or all book-subtrees) from a Dblp bibliography XML
file. This is done in different ways: (a) produce only the article-subtrees, (b)
produce the original document together with the list of all article-subtrees, and
(c) produce with each article a list of all following articles. Here inlining makes a
huge difference, essentially halving the output size for (a) and (b). Since (c) is of
quadratic size increase, the output documents with references are dramatically
smaller than output documents without references.

Another experiment recursively flips first and second subtree; here we observe
that the space overhead caused by references is a factor between two and three,
and, if references are reused and inlining is applied, this factor goes down to
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between 1.2 and 1.7. The importance of reference chain removal can be seen when
applying the flip transformation several times in sequence: no extra overhead
is incurred, while without chain removal an increasing amounts of overhead is
produced.

For all experiments we ran, even when running many transducers in sequence,
we have never seen a larger space overhead than a factor three. The memory
consumption of the our processor is minuscule throughout all experiments, at
about 5% of the memory usage used by the xml parser.

4 Conclusion

Through the enhancement of xml streams by forward references, the large and
natural class of deterministic top-down tree transformations can be realized with
bounded memory. The memory only depends on the depth of the xml document
(corresponding to the ldepth of the tree encoding), the number of distinct refer-
ences in the input, and the transducer.

The choice of dtops as class of tree transformations, and forward references
as way of achieving ldbm, may seem rather ad hoc. Let us explain why these
two choices are not only natural, but also (in a certain sense) maximal. Our
decisions are directed by the two desires (1) never to produce garbage (label
definitions that are not referenced), and (2) to be compositional, i.e., the output
of one processor can serve as input to another processor. A priori, we do not
have a preference with respect to forward or backward references. In fact, even
allowing both types of references is a viable choice. It is not difficult to see that
for realizing the translation of a dtop, the output either may be represented by
means of forward references as suggested so far, or alternatively by means of
backward references. For instance, for the flip of two lists we can as well produce
this stream with backward references, 1 : l1 2 : l2 0 : root(ref 2, ref 1) where the
label 0 represents the root of the output tree. But with such a representation,
are we compositional? Consider a second dtop which translates root(l1, l2) into
the tree root(l′1, l2) where l′1 contains only every odd element of the list l1. Let
τodd denote this translation. Taking as input the stream displayed above, how
can this transformation be realized? This cannot be done with ldbm, because
each element of l1 must be kept in memory (until we know where in the input
relative to the root it appears). If on the other hand, garbage is allowed, then
ldbm is possible by producing both translations l1 and l′1, and later inserting a
reference to the correct one (leaving the other as garbage).

Proposition 1. The dtop translation τodd cannot be realized in ldbm over
streams with backward references (unless garbage is allowed).

We conclude that backward references in the input must be ruled out, if
we want to handle arbitrary dtops. On the other hand, can we handle larger
classes of transformations than dtops, by using forward references only (and no
garbage)? Clearly, the addition of regular look-ahead is not possible: in some
cases, it would require the generation of garbage for similar reasons as above.
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Let us review the two other important generalizations of dtops: (1) determin-
istic top-down tree-to-string (dts) transducers, and (2) left-to-right attribute
grammars (lr-ag), seen as tree transducers. lr-ags have been used in the con-
text of xml streaming [4] and already Bochman [12] showed that all attribute
values of an LR-AG can be computed in one left-to-right pass through the input
tree. Accordingly, lr-ags seem a natural candidate in our context. Is it always
possible for an lr-ag to produce with ldbm output streams with forward refer-
ences? As an example, consider the transformation which reverses a list, given
as binary tree, i.e., which translates trees r(a1(⊥, a2(⊥ . . . an(⊥,⊥) . . . )),⊥) into
r(an(⊥, an−1(⊥ . . . a1(⊥,⊥) . . . )),⊥). This translation τreverse can be realized by
an lr-ag: it uses one inherited attribute to compute the reverse of the ai-path.
This translation can also be realized by a simple dts transducer using two states.
It should be clear that this translation cannot be realized in ldbm using forward
references alone. Therefore, we have:

Proposition 2. τreverse cannot be realized in ldbm on streams with forward ref-
erences.

Propositions 1 and 2 imply that ldbm streaming can neither be extended
from dtops to dts transducers nor to LR-AGs without introducing backward
references and thus loosing composability with dtops.
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Abstract. The task of measuring the dependence between terms is com-
putationally expensive for IR systems which have to deal with large and
sparse datasets. The current approaches to mining frequent term sets are
based on the enumeration of the term sets found in a set of documents
and on monotonicity, the latter being the property that a term set is
frequent only if all its subsets are frequent as implemented by Apriori.
However, the computational time can be very large. An alternative app-
roach is to store the dataset in a FPT and to visit and prune the tree
in a recursive way as implemented by FPGrowth. However, the storage
space can still be very large. We introduce the BWI as a conceptual
enhancement of monotonicity to predict with certainty when an itemset
is frequent and when it is infrequent. We describe the empirical valida-
tion that the BWI can significantly reduce both the computational time
of Apriori and the storage space of pattern tree-based algorithms such
as FPGrowth. The empirical validation has been performed using some
runs produced by IR systems from the TIPSTER test collection.

1 Introduction

In Information Retrieval (IR), term dependence has been difficult to implement
because of the high computational cost needed for finding the term correlation
based on the co-occurrence within query logs and collections of documents or
other textual units such as passages or queries. When term dependence is needed,
the standard approach to detecting frequent term sets is based on the Frequent
Itemset (FI) mining algorithms. In FI mining, a database of transactions is
scanned and the most frequent subsets of items (i.e. itemsets) are mined; a
transaction is a set of items. FI mining is a major task of association analysis
since high frequency is a signal that an itemset is not occurring by chance [1].
The application of FI mining to IR can be straightforward since documents are
transactions, words are items and term sets are itemsets.

The main drawback of this approach to detecting frequent term sets is the
exponential size of the number of candidate term sets which have to be extracted
from a set of documents. In IR the number of items can be very large, the
datasets can be very sparse (i.e. there are many more items than transactions
and transactions tend to include different items) and then finding discriminative
terms by mining FI may be affected by high computational cost which may not
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 46–53, 2015.
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acceptable especially when the system has to react in very short time or the
space for storing final or intermediate results is limited.

Many approaches to FI mining are based on monotonicity: an itemset is
frequent only if each subset of the itemset is frequent. The standard algorithm
that implements monotonicity is Apriori [2]. Despite the significant contribution
of monotonicity to the reduction of the computational time, the latter can still
be high especially. One of the fastest algorithms for dense datasets is based on
Frequent Pattern (FP) Trees (FPTs) and is known as FPGrowth [3]. Apriori is
slower than FPGrowth which however consumes more storage space [1].

We have addressed the problem of FI mining using the Bell-Wigner Inequality
(BWI) (see [4,5]). This inequality provides additional bounds to the principle of
monotonicity which state that the frequency of a term set belongs to a range such
that it is possible to certainly state that an itemset is frequent if the minimum
of the range is above a minimum support threshold or that an itemset cannot
be frequent if the maximum of the range is below the threshold.

2 Methodology

This work enhances monotonicity by using the BWI defined as follows. Let
Ω = {ω1, . . . , ωN} be a transaction database. Let X be an itemset which deter-
mines the set, ΩX , of transactions containing X. The function p1···m gives the
probability that a randomly selected transaction contains X1 ∪ · · · ∪ Xm.

p123 ≥ l(w) = max{0,−p1 + p12 + p13,−p2 + p12 + p23,−p3 + p13 + p23} (1)
p123 ≤ u(w) = min{p12, p13, p23, 1 − (p1 + p2 + p3 − p12 − p13 − p23)} (2)

The bounds (1) and (2) of the BWI are exploited in this work to decide whether
an itemset is definitely frequent, definitely infrequent or possibly frequent.

– An itemset X is defined as definitely frequent when it is certain that the num-
ber of transactions which include X is not below a given minimum support
threshold without passing the transaction database.

– An itemset X is defined as definitely infrequent when it is certain that the
number of transactions which include X is below a given minimum support
threshold without passing the transaction database and despite the fact that
every its subset is frequent.

– An itemset X is possibly frequent in the sense of Apriori, that is, every its
subset is frequent, but it can be stated as definitely frequent or infrequent
only if the transaction database is passed.

The BWI can be used to predict with certainty whether p123 will be below a
given minimum support μ, thus without scanning the transaction database. In
this way, it is possible to predict with certainty whether X1 ∪ X2 ∪ X3 is either
frequent or infrequent, or if it might be frequent, the latter being the only case
that needs additional computation using Apriori.
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3 Validation

Predicting Terms. In this section we report on the use of BWI-Apriori for min-
ing frequent terms from a collection of documents. We concentrate on itemsets
consisting of three words since the terms of no more than three words are very
common in IR.

We found that a large proportion of itemsets (i.e. three-word terms) can be
definitely declared as either frequent or infrequent and can be removed from the
set of possible FIs, thus significantly improving the efficiency of Apriori.

Suppose the event X1∪X2∪X3 is under scrutiny to decide whether it is worth
consideration where Xi is the i-th term. The difference between the lower bound
(1) and the upper bound (2) is a measure of the prediction error of p123 because
the smaller the difference the better BWI-Apriori is able to decide whether an
itemset is definitely frequent or definitely infrequent. The smaller the difference
the higher the accuracy. Indeed, if the difference were null, p123 would necessarily
coincide with the bounds. We have thus defined the error of prediction of p123
for a given term w as u(w) − l(w). Note that this error measure is between 0
and 1 because the bounds are probabilities.

The evaluation was performed on the TIPSTER document collection (discs 4
and 5) and the TREC 6, 7, and 8 topic sets. The set of documents that have been
used to mine terms are the most successful runs submitted to three editions of
TREC.1 It was therefore assumed that the user was interacting with the “best”
search engines available at that time.The adoption of these runs allowed the experi-
mental results of this paper to be replicated and considered quite general and “inde-
pendent” of the ranking function adopted by the IR system behind each run.

For each run, the 1,000 most frequent keywords and the 1,000 most frequent
word pairs were computed; this selection was based on a heuristic yet reasonable
assumption, that is, the content of the document set was best represented by the
most frequent keywords, thus speeding up data processing. The three-word terms
that are predicted by BWI have been ranked by increasing error; for example, the
probability p123 of term “kong public security” mined from the topic set 301-350
has error 0.003 since u(kong public security) − l(kong public security) = 0.003.
In the case of topic 301 and of run “anu6alo1”, 20 terms have an error not greater
than 0.001 and there are 10 terms which are predicted without error.

As for the distribution of error values computed for all the topics and runs, the
minimum was zero, the first quartile was 0.009, the median was 0.013, the mean
was 0.017, the third quartile was 0.020 and the maximum was 0.342. The results
suggest that 25% of the set of 3-word terms have been predicted with an error not
greater than 0.009, half of the 3-word terms have been predicted with an error not
greater than 0.013 and that only 25% of these terms have been predicted with an

1 The run tags were T3D1N0, acsys8aln2, anu6alo1, att98atdc, att99atde, bbn1,
Brkly21, Brkly22, Brkly26, city6al, CL99SDopt2, Cor6A3cll, Cor7A3rrf, Flab8as,
Flab8atd2, Flab8atdn, Flab8ax, fub99td, ibmg97b, ibms99a, INQ502, mds602,
mds98td, Mercure1, MITSLStd, ok7ax, ok8amxc, pir9Attd, pirc7Aa, pirc8Aa2,
tno7exp1, tno8d3.
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(a) tno7exp1 / time (b) tno7exp1 / space

(c) 8manexT3D1N0 / time (d) 8manexT3D1N0 / space

(e) brkly22 / time (f) brkly22 / space

Fig. 1. Execution time and space of Apriori, BWI-Apriori and FPGrowth. The values
of the x-axis are support values.

error greater than 0.020. Similar results were found for individual topic sets and
the related runs, but cannot be reported for space reasons.

Sometimes the generated terms do not conform to grammatical rules. How-
ever, short queries are often bags-of-words that cannot be arranged in correct
grammatical forms because of their small size or inscrutable user intents. More-
over, the generated terms look strange and do not match our expectations. How-
ever, it was found that these strange terms discriminate relevant documents
better than grammatically correct terms [6].

It would then be possible to exploit l(w) or u(w) to predict the probability of
w’s without computing p123. Suppose it has to be decided whether w = “alter-
native development government” should be added to the query originated from
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topic 301. The fraction of documents that have already been retrieved is exactly
estimated by l(w) = u(w). If a threshold μ has been given so that the query will
be expanded only if the fraction of documents is greater than μ, l(w) can be com-
pared with μ instead of counting the documents that actually include the term.

Computational Cost. Fig. 1 shows the total execution time and space for Apri-
ori, FPGrowth and BWI-Apriori for datasets obtained from the runs brkly22,
tno7exp1 and 8manexT3D1N0;2 the execution time was calculated as follows. For
each topic, the document list of the run was expanded with the document texts
to obtain a transaction-like database where each transaction is implemented by
a document and the items correspond to the words. Stopwords were removed
and the keywords were not stemmed but downcased. FPGrowth, Apriori and
BWI-Apriori were performed for each transaction-like database and execution
time was recorded for each support value and for each operation. Finally, the
execution time was summed over the topics for each support value; therefore,
the total time should be divided by 50 to obtain the average time per topic. In
particular, time refers to the amount of processor time used since the invocation
of the calling process, measured in the number of clocks and divided by the
number of clocks per second which is defined as one million according to the
“ISO C90” standard of the Unix operating system. Space was measured using
the /proc/self/statm Unix file.

The results reported in these figures suggest that, for a significant subset of
support values: (i) BWI-Apriori is as time efficient as FPGrowth and much more
space efficient than FPGrowth; (ii) BWI-Apriori is much more time efficient than
Apriori and as space efficient as Apriori.

4 Related Work

Despite years of research efforts in achieving efficiency, “the most focused and
extensively studied topic in frequent pattern mining is perhaps scalable mining
methods” [7]. The foundational issue of the problem of mining all FIs is the
intrinsic exponential computational cost. This issue is independent of the algo-
rithm since any algorithm aiming at mining itemsets is likely to incur high costs
due to the exponential number of candidate FIs to be examined [8]. Indeed,
this paper aims to address this issue. Improvements of Apriori were proposed
in [9], [10], and [11]. In contrast, this paper aims to address the problem at
the conceptual level by defining additional, more precise bounds. Efficient data
structures such as the FPT [3] can also be used when the transaction database
is dense. When the database is sparse, an FPT may explode and exhausts mem-
ory. FPGrowth performs better on artificial datasets whereas Apriori performs
sufficiently well on all datasets [12], and in particular on sparse datasets. To
deal with these issues, some enhancements of FPGrowth have been proposed
in [13], [14], [15] and [16]. In IR, FI mining has been applied to indexing and
retrieving documents[17]. Variations on the theme were discussed in [18] and [19].
2 We cannot include further plots for the space reasons.
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Another use of FI mining in IR was investigated in query expansion and sug-
gestion and reported in [20], [21], [22]. The BWI can be utilised to enhance
the previous approaches to finding term sets. Other approaches to dealing with
terms that discriminate the relevant documents are based on recording word
position information in documents. However, processing (or even storage) lists
including word position should be avoided whenever possible [23] since position
information has been shown to have little effect on retrieval accuracy on average
[24]. The use of the BWI in this paper indeed allows us to avoid the recording
of word position.

5 Concluding Remarks

In this paper we have validated the hypothesis that the BWI can successfully be
utilised to reduce the computational time of Apriori, thus making the computa-
tion of term sets for IR purposes less expensive and more feasible. We focussed
on efficiency of term set mining since effectiveness was addressed in the pre-
vious, related work. BWI-Apriori is still competitive with FPGrowth in time
and space when the datasets are derived from the runs of an IR system. While
FPGrowth demands much more space than BWI-Apriori, BWI-Apriori is only
slightly slower when the minimum support is not very low. This result opens
up the use of FI and makes some inefficient algorithms designed for indexing,
retrieval and query expansion and suggestion useable by IR systems.

The BWI is not an ad-hoc data structure, a programming solution, or a code
optimisation. It is on the contrary a conceptual enhancement of Apriori which
would require an efficient implementation to manifest its own potential more
than manifested in this paper. Some research work was done in order to achieve
efficiency in mining FIs from large transaction databases by using ad-hoc data
structures and specific programming solutions. These data structures and pro-
gramming solutions could considerably reduce the execution time of FI mining
implementations to an extent that it is possible to find efficient implementations
of naive mining algorithms that can run faster than inefficient implementations
of BWI-Apriori.

In this work we concentrated on three words since this is the most frequent
case other than the case of two words [25], [26], [27], [28], [29], [30], [31], [32].
The extension of the validation to the event of term sets of more than three
words would require the use of inequalities defined for four or more events.
Some inequalities similar to the BWI were defined, however, the number of these
inequalities is of exponential order and deciding whether an event satisfies all
the inequalities of any dimension is NP-complete [4].

The empirical validation has shown that the number of itemsets that can
certainly be declared either as frequent or as infrequent is high, thus reducing
the computational time by 50%-70% or higher in some cases. What this empirical
validation did not tell is the reason why this number is high. In fact, the main aim
of this paper has been to show that the BWI is an efficient means for reducing
the computational time of Apriori which is notoriously very high. The theoretical
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explanation is left to future work. What we may at present suggest is that the
efficiency of the BWI and in particular of the frequency of the operations might
be due to the distributional properties of the transaction databases and that
these properties are quite general since the reduction of the computational time
of Apriori has been strong with different datasets.

FPGrowth has been an approach to FI mining alternative to Apriori and it is
currently utilized whenever datasets are dense; in this event, the resulting FPT
is a compact representation of the transaction database and memory swapping
is reduced if not eliminated, thus decreasing computational time by orders of
magnitude. In fact, a compact FPT can be entirely stored in the main memory
and FI mining is fast until the main memory becomes scarse and swapping
becomes a necessity. Unfortunately, FPGrowth suffers from sparse datasets such
as those used in IR, the resulting FPT may be huge and the algorithm can require
more storage space than Apriori and than BWI-Apriori. The incorporation of
the BWI in FPGrowth may be an interesting venue for the next research works.
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Abstract. We present a series of algorithms identifying efficiently the
factors of a word that neither start nor end with squares (called, accord-
ingly, prefix-suffix-square free factors). A series of closely related algo-
rithmic problems are discussed.

1 Introduction

The prefix duplication (for short, PD), suffix duplication (SD), and prefix-suffix
duplication (PSD) are formal operations on words that were introduced in [1]
following a biological motivation. Essentially, by suffix duplication, from a word
w one can derive any word wx where x is a suffix of w; that is, suffixes of w
are duplicated. Prefix duplication is the symmetric operation: in this case, one
duplicates prefixes of w. Finally, the prefix-suffix duplication is a combination of
the previous two operations: by it, one can duplicate either a suffix or a prefix
of the initial word. As it is the case in the study of many word operations, the
authors of [1] were mainly interested in the properties of the words generated by
iteratively applying these operations to an initial word or set of words.

The basic motivation of introducing these operations was to mathematically
model a special type of duplications in DNA sequences, that appear only at the
ends of these sequences, also known as telomeres. Generally, telomeres consist of
tandem repeats of a small number of nucleotides and their role is to stabilise the
linear chromosomal DNA molecule [2,3]; the loss of telomeric repeat sequences
may result in chromosome fusion and lead to chromosome instability [4]. Another
motivation would be to model the process of generating long terminal repeats
(LTRs): identical sequences of DNA that repeat hundreds or thousands of times at
either end of some specific DNA sequence. Such sequences are used, for instance,
by viruses to insert their genetic material into the host genomes.

According to this motivation, it seems natural to investigate the problem of
efficiently detecting the existence of repetitive structures occurring at both ends
of some sequence. For instance, words that do not end or start with repetitions
may model DNA sequences that went through some degenerative process that
destroyed the terminal repeats, affecting their stability or functionalities. How-
ever, while our paper draws its motivation from biology, it essentially approaches
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these concepts from a purely (and somehow oversimplified) mathematical point
of view. So, moving away from the biological motivation, words that do not
start nor end with repetitions seem to be interesting from a combinatorial point
of view, as well. Indeed, repetitions-free words (i.e., words that do not contain
consecutive occurrences of the same factors) are central in combinatorics on
words, stringology, and their applications (see, e.g., [5,6]); words that do not
have repetitive prefixes or suffixes model a weaker, but strongly related, notion.

In this paper we address a series or questions related to the simplest repetitive
structure that may occur in a word: squares. We say that a word is suffix-square
free (respectively, prefix-square free or prefix-suffix-square free) if that word does
not end (respectively, start, or both start and end) with two consecutive occur-
rences of a factor. Alternatively, these are the words that cannot be obtained
from shorter factors by the SD−operation (respectively, PD , or PSD).

We show how the following tasks can be performed efficiently, for an input
word w of length n. First, we show how w can be processed in linear time so
that we can answer in constant time queries asking whether the factors of w are
suffix-square free, prefix-square free, or prefix-suffix-square free. Then, we give
an algorithm that outputs in O(n + |S|) the set S of all factors of w which are
prefix-suffix-square free (respectively, suffix-square free or prefix-square free);
computing the size of S (without enumerating all its elements) can be done
in O(n log n). Note that, for square-free words (see [5]) of length n we have
|S| ∈ Θ(n2), so there are indeed cases in which we can compute |S| faster than
just going through its elements. Finally, the longest prefix-suffix square free
factor of a word can be obtained in O(n) time.

In [1] a series of language theoretic and algorithmic results related to the
iterated PSD and SD were given; clearly, all the results stated for SD hold
canonically for PD . Interesting to us, in [1] the authors gave algorithms deciding
in O(n log n) and, respectively, O(n2 log n) time, for two given words, whether
the longer one (whose length was n) can be generated from the shorter one by
iterated SD , respectively, PSD . These algorithms can be adapted to compute
within the same time complexity bounds, respectively, all the SD-irreducible
roots of a word or all its PSD-irreducible roots. These are suffix-square free
(respectively, prefix-suffix-square free) factors of a word that can generate it by
iterated SD , respectively, PSD operations. Intuitively, these are the factors of a
word containing its core information: on one hand, the rest of the word consists
only in repetitions of parts of these factors, and on the other hand, they cannot
be further reduced by eliminating repeated information from their ends, as they
do not end with any repetition. It is not trivial to see how many irreducible
roots a word may have, but we give examples of words of length n having Θ(n)
SD-irreducible roots and, respectively, words with Θ(n2) PSD-irreducible roots;
so our algorithms finding all these roots are only a log n-factor slower than what
one could expect in the worst case. However, finding only one (not all) SD or
one PSD−irreducible root of a given word takes linear time.

We conclude this paper by addressing a series of related problems. Essentially,
detecting a SD-irreducible root of some word w is equivalent to asking whether
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there is a (non-trivial) factorisation of that word into k > 1 factors w = s1 · · · sk

such that si is a suffix of s1 · · · si−1 for i > 1; that is, for all i > 1, we have the
square s2i centred on the position that follows immediately after s1 · · · si−1, and
s1 is suffix-square free. This factorisation, as well as the similar factorisations
derived from the detection of PD or PSD−roots of a word, seems to be strongly
connected to the square-structure of w. So, we further discuss other factorisations
also strongly related to the way squares and, more general, repetitions occur in
the factored words. Namely, we address the problem of factoring a word into
squares, or into periodicities of exponent at least 2, or in such a way that the
number of square factors of the factorisation is maximum, compared to any other
possible factorisation of that word.

It seems important to us to stress that, in fact, all our results are about
understanding the way squares occur in a word. Either we discuss about prefix
or suffix-square free factors of a word or about various factorisations of a word, in
fact we gather information on the occurrences of squares inside the given word:
sometimes we are interested in avoiding these occurrences (i.e., finding words
that do not start or end with such an occurrence), while sometimes we want to
use them to factor that word. Thus, it is no surprise that our main tool is a
lemma showing how one can compute in linear time the shortest square starting
(respectively, ending) at each position of the input word. This result was settled
in [7], but only for inputs over constant size alphabets. In [8] the result was shown
for integer alphabets, using a proof based on a data-structure (see [9]) designed
to maintain efficiently a family of disjoint sets under union and find operations
(however, the proof was not published in the conference version of the paper [8]).
Here, we give a new proof of this result based on a Lempel-Ziv-like factorisation
of the input word and a series of combinatorial remarks on the structure of this
factorisation. A similar approach was used in [10,11] to find efficiently all the
periodicities of a word (easily leading to an algorithm testing in linear time the
existence of squares in words), and in [12] to compute, also in linear time, all
local periods of a word; the details of our algorithm are, however, quite different.

2 Preliminaries

§ Basic Facts. Let Σ be a finite alphabet; Σ∗ denotes the set of all finite
words over Σ. The length of a word w ∈ Σ∗ is denoted by |w|. The empty word
is denoted by ε. A word u ∈ Σ∗ is a factor of v ∈ Σ∗ if v = xuy, for some
x, y ∈ Σ∗; we say that u is a prefix of v, if x = ε, and a suffix of v, if y = ε. We
denote by w[i] the symbol occurring at position i in w, and by w[i..j] the factor
of w starting at position i and ending at position j, consisting of the catenation
of the symbols w[i], w[i + 1], . . . , w[j], where 1 ≤ i ≤ j ≤ n; we define w[i..j] = ε
if i > j. A range [i, j] in a word w is the set of positions {i, i + 1, . . . , j} of w.

The powers of a word w are defined recursively by w0 = ε and wn = wwn−1

for n ≥ 1. A repetition w2 is called square; the centre of the square w2 is the
first position of the second factor w of the square. If w cannot be expressed as a
nontrivial power (i.e., w is not a repetition) of another word, then w is primitive.
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A period of a word w over Σ is a positive integer p such that w[i] = w[j] for all
i and j with i ≡ j (mod p). Let per(w) be the smallest period of w. A run is a
word w with per(w) ≤ |w|

2 which cannot be extended to the left or right to get
a word with the same period p, i.e., i = 1 or w[i − 1] �= w[i + p − 1], and j = |w|
or w[j + 1] �= w[j − p + 1].

Let w ∈ Σ∗ be a word. The s-factorisation of w is defined as follows (see
[10]). We factorise w = u1 · · · ur if the following hold for all i ≥ 1:

– If a letter a occurs in w immediately after u1 · · · ui−1 and a did not appear
in u1 · · · ui−1 then ui = a

– Otherwise, ui is the longest word such that u1 · · · ui−1ui is a prefix of w and
ui occurs at least once in u1 · · · ui−1.

§ Square Duplication Operations. The prefix, suffix, and prefix-suffix dupli-
cation operations were defined in [1]. Given a word w ∈ Σ∗, we have:

• prefix duplication: PD(w) = {xw | w = xw′ for some x ∈ Σ+}.
• suffix duplication: SD(w) = {wx | w = w′x for some x ∈ Σ+}.
• prefix-suffix duplication: PSD(w) = PD(w) ∪ SD(w).

A word w is called SD-irreducible (respectively, PD-irreducible) if w /∈
SD(w′) (respectively, w /∈ PD(w′)) for any factor w′ of w; a word w is PSD-
irreducible if it is both SD- and PD-irreducible. Alternatively, an SD-irreducible
(respectively, PD-irreducible) word is called suffix-square free word (respectively,
prefix-square free). PSD-irreducible words are called prefix-suffix-square free.

We further define, for Θ ∈ {PD ,SD ,PSD}, its iteration:
Θ0

k(x) = {x}, Θn+1
k (x) = Θn

k (x) ∪ Θk(Θn
k (x)), for n ≥ 0, Θ∗

k(x) =
⋃

n≥0

Θn
k (x).

For a word w and Θ ∈ {PD ,SD ,PSD}, its factor w[i..j] is a Θ-irreducible
root of w if w ∈ Θ∗(w[i..j]) and w[i..j] is Θ-irreducible.

§ Algorithmic Prerequisites. The computational model we use to design and
analyse our algorithms is the standard unit-cost RAM (Random Access Machine)
with logarithmic word size, which is generally used in the analysis of algorithms.
In the upcoming algorithmic problems, we assume that the words we process are
sequences of integers (called letters, for simplicity). In general, if the input word
has length n, we assume its letters are in {1, . . . , n}, so each letter fits in a single
memory-word. This is a common assumption in stringology (see, e.g., [13]).

For a word u, |u| = n, over Σ ⊆ {1, . . . , n} we build in O(n) time its suffix
array, as well as LCP -data structures, allowing us to retrieve in constant time
the length of the longest common prefix of any two suffixes u[i..n] and u[j..n]
of u, denoted LCPu(i, j) (the subscript u is omitted when there is no danger of
confusion). See, e.g., [6,13], and the references therein.

We also use the fact that the number of runs of a word is linear and their list
(with a run w[i..j] represented as the triple (i, j, per(w[i..j])) can be computed
in linear time in the RAM with logarithmic word size model (see [11]). The
exponent of a run w[i..j] occurring in w is defined as j−i+1

per(w[i..j]) ; in [11] it is
shown that the sum of the exponents of runs in a word of length n is O(n).



58 M. Dumitran et al.

Note also that the s-factorisation of a word w can be computed in linear time
when w is from an integer alphabet (see, e.g., [14]).

We also recall the range minimum query data structure (see [15]). Given an
array of n integers T [·], we can produce in O(n) time several data-structures
for this array, allowing us to answer in constant time to queries RMQ(i, j)
and posRMQ(i, j), asking for the minimum value and, respectively, its position
among T [i], T [i + 1], . . . , T [j].

§ Main Technical Tool. We conclude the Preliminaries section with our main
technical lemma, used throughout the paper. For a word w of length n we define
the array left [·] as follows: for 1 ≤ i ≤ n, left [i] = max{j | w[j..i] is a square}.

Lemma 1. Given a word w we can compute in linear time the array left [·].
Proof. In fact, on left [j] starts the shortest square ending at position j of w.

Before describing our algorithm, we note that if x2 and y2 are two squares
ending on position j of w, and 3�

2 ≥ |y| > |x| ≥ � for some � > 0, then there
exists a square u2 with |u| ≤ �

2 also ending at position j. Indeed, y = ux for
some word u with |u| ≤ �

2 . As xx is a suffix of yy and 2|x| ≥ |y|, we get that
u is a suffix of (the first) x. It follows that u is also a suffix of y. Consequently,
uy = uux is a suffix of y2. However, as |u| ≤ �

2 , we get that x2 is longer than
uy = uux, so uu is also a suffix of (both occurrences of) x. This shows our claim.

Moving now to the algorithm, we first compute the s-factorisation of the
input word w = u1 · · · uk, using the tools from [14]. During this computation of
the s-factorisation we also get for each i ≤ k the position �i where ui occurs in
u1 · · · ui−1; let also ki = |u1 · · · ui−1| + 1 be the starting position of ui, for all i.

We compute separately, for each i from 1 to k, considered in increasing order,
the values left [j] for each position j of the factor ui. In the following, we explain
how these values are computed for some fixed i; our approach ensures that when
considering ui we already know left [j′] for every position j′ of u1 · · · ui−1.

First, note that if x2 is a square ending on position j of ui then the centre
of this square occurs inside ui−1ui. Otherwise, ui−1 was not correctly chosen: in
that case, a longer factor starting on position ki−1 would be w[ki−1..j], a suffix of
the second x factor of the square. Hence, |x| ≤ |ui−1ui| and there are three cases
to be analysed: the shortest square ending on position j might be completely
contained in ui, centred in ui but starting in ui−1, or centred in ui−1.

We begin with the simplest case: if the shortest square ending on position j
of ui is completely contained in ui then it should be equal to the shortest square
ending at position �i +(j−ki) (that is, the shortest factor ending on the position
corresponding to j from the previous occurrence of ui inside u1 · · · ui−1). So, in
the first step of our algorithm, we just check for every position j of ui if the
shortest square ending on �i +(j −ki) is short enough to be contained in ui, and,
if yes, we decide that the respective square occurs again as the shortest square
ending at j.

Secondly, we detect for each position j of ui the shortest square x2 ending
on j, starting in ui−1 and whose centre is in ui; clearly, |x| ≤ |ui|. Following the
strategy of [10], we detect for each possible length � of x a range of ui where the
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centre of x2 may occur. Basically, for each �, we compute the longest common
prefix ui[1..b�] of ui[1..�] and ui[�+1..|ui|] and the longest common suffix ui[a�..�]
of ui−1 and ui[1..�]; the range we look for is [a�, b�]. Now, the range where a square
x2 as above may end is obtained by intersecting [a� + �−1, b� + �−1] with ui; in
this way, we obtain a new range [c�, d�] where the squares of length � may end.
As b� ≤ �, we have d� ≤ b� + � − 1 < 2�.

So, for each possible length � of x (i.e., 1 ≤ � ≤ |xi|) we now have a range
[c�, d�] where a square x2 may end inside ui; each range was computed using a
constant number of longest common prefix queries, so in constant time. Now we
just have to report for each position j of ui which is the minimum � such that j
is in the range [c�, d�]. To do this, we report for each k ≥ 0 the positions where
a square x2 with (3/2)k ≤ |x| ≤ (3/2)k+1 ends, and we did not find so far a
shorter square ending at that position. Clearly, for � with (3/2)k ≤ � ≤ (3/2)k+1

we have d� ≤ ki +2 · (3/2)k+1. So, we can sort the ends of the ranges [c�, d�] with
(3/2)k ≤ � ≤ (3/2)k+1 in O((3/2)k+1) time. This allows us to find in O((3/2)k+1)
time the positions of ui contained in exactly one range [c�, d�] (all these positions
are in the prefix of length 2 · (3/2)k+1 of ui). For each such position j we store
the value � such that j ∈ [c�, d�]; we conclude that a square xx with |x| = � ends
on j, and, if we did not already find a shorter square ending on that position,
we store this square as the shortest one we found so far that ends on j. By the
claim shown at the beginning of this proof, if a position is contained in at least
two ranges [c�, d�] and [c�′ , d�′ ] with (3/2)k ≤ � ≤ �′ ≤ (3/2)k+1, then there
exists a square with root of length at most (3/2)k

2 ending at that position, so we
do not have to worry about it: we should have already found the shorter square
occurring at there (note that this square might be completely contained in ui).

Consequently, processing all the ranges [c�, d�] with (3/2)k ≤ � ≤ (3/2)k+1

takes O((3/2)k+1) time. Now, we iterate this process for all k ≤ log3/2 |ui|, and,
alongside the analysis of the first case, obtain for each position j the shortest
square ending there that either starts in ui+1 but it is centred in ui or is com-
pletely contained in ui. The total time is O

(∑
k≤log3/2 |ui| (3/2)k+1

)
= O(|ui|).

Finally, we look for the shortest squares ending in ui that are centred in ui−1;
the length of such squares may go up to |ui−1ui|. The analysis is very similar to
the one of the second case, when we searched for squares centred in ui, starting
in ui−1. In O(|ui−1ui|) time we find, for all � ≤ |ui−1ui| the ranges where the
centres of squares x2 ending in ui, with |x| = �, occur in ui−1. This gives the
ranges of ui where such squares end. Now, using the same ideas as above, we
detect, in O(|ui−1| + |ui|) time, the shortest square ending at each position
where we did not already find a shortest square. Putting together the results of
the three analysed cases, we get for each position j of ui the value left [j].

In conclusion, the time needed to compute for all i from 1 to k the values
left [j] for every position j of the factors ui is O(

∑
1≤i≤k |ui−1ui|) = O(n). 	


Clearly, the same algorithm can be used on the mirror image of w to obtain
right [·] defined as follows: for 1 ≤ i ≤ n, right [i] = min{j | w[i..j] is a square}.
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3 Prefix/Suffix-Square Free Words

The previous lemma allows us to answer efficiently queries asking whether the
factors of a given word are or not prefix-square free, or suffix-square free, or
prefix-suffix-square free.

Theorem 1. Given a word w of length n, we can construct in O(n) data struc-
tures allowing us to answer in constant time the following three types of queries
(for all 1 ≤ i ≤ j ≤ n): qp(i, j): ”is w[i..j] prefix-square free?”; qs(i, j): ”is
w[i..j] suffix-square free?”; qps(i, j): ”is w[i..j] prefix-suffix-square free?”.

Proof. We construct the arrays left and right . Then we can answer a query
qp(i, j) positively if right [i] > j (the shortest square that starts at i ends after j);
otherwise, we answer it negatively. Similarly, a query qs(i, j) returns true if and
only if left [j] < i (the shortest square that ends at j starts before i). Finally,
qps(i, j) is answered positively if and only if both qs(i, j) and qp(i, j) are true. 	


However, this lemma does not enable us to enumerate the prefix-suffix-square
free factors efficiently. The following theorem shows how this can be done.

Theorem 2. Given a word w of length n, we can find the set S of prefix-suffix-
square free factors of w in O(n + |S|) time.

Proof. The idea is to find separately, for each i ≤ n, all the prefix-suffix-square
free factors w[i..j]. This can be done as follows. We first construct the arrays
left [·] and right [·] for the word w, and define data-structures allowing us to answer
in constant time range minimum queries for left [·]. Let RMQ(j1, j2) denote the
minimum value occurring in the range between j1 and j2; this is, in fact, the
rightmost starting position of a square x2 that ends on a position between j1
and j2. Let posRMQ(j1, j2) denote the position where RMQ(j1, j2) occurs (in
case of equality, we take the rightmost such position); this position is the ending
position of the aforementioned square x2.

Let us now fix some i ≤ n. We note that if w[i..j] is prefix-square free then j <
right [i] (or w[i..right [i]] would be a square prefix). So, we only consider the values
between i + 1 and right [i] − 1 as possible ending positions of prefix-suffix-square
free words starting on i. The procedure detecting these words works recursively.
In a call of the procedure, we find the prefix-suffix-square free words starting on
i and ending somewhere between two positions j1 and j2; initially, j1 = i + 1
and j2 = right [i] − 1, and j1 and j2 are always between i + 1 and right [i] − 1.

So, let us explain how our search is conducted for a pair of positions (j1, j2),
where j1 < j2. We compute RMQ(j1, j2) and posRMQ(j1, j2). If RMQ(j1, j2) < i
and posRMQ(j1, j2) = j then clearly the shortest square ending on j starts
before i, and the shortest square starting on i ends after j, so w[i..j] is prefix-
suffix-square free; in this case we run the procedure for the two new pairs
(j1, posRMQ(j1, j2) − 1) and (posRMQ(j1, j2) + 1, j2). The other case is when
RMQ(j1, j2) ≥ i. Then the shortest square ending on any position j between j1
and j2 ends after i, so none of the words w[i..j] is suffix-square free; thus, we
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stop the procedure. A call of the recursive procedure for a pair (j1, j2) where j1
is not strictly smaller than j2 does not do anything.

It is straightforward that, for some i ≤ n, we obtain in this manner all the
positions j < right [i] such that w[i..j] is suffix-square free. But these are, in fact,
all the positions j ≤ n such that w[i..j] is prefix-suffix-square free. We iterate
this algorithm for all i, and obtain all prefix-suffix-square free factors of w.

To evaluate the total time complexity of this algorithm, let us again fix i
and see how much time we spend to detect the prefix-suffix-square free words
starting on i. Each call of the recursive procedure either returns a valid position
j and calls the procedure for two new pairs (defining disjoint ranges), or stops
the search in the range defined by the pairs for which it was called. So, the calls
of this procedure can be pictured as a binary tree with |Si| internal nodes, where
Si = {j | w[i..j] is prefix-suffix-square free}. Thus, we have, in total O(|Si|) calls.
With the help of the data structures we constructed, each call of the procedure
can be executed in constant time. Thus, the time needed to compute Si is O(|Si|).
Now, adding this up for all possible i, we get that the set S of prefix-suffix-square
free factors of w can be computed in O(n + |S|) time (including the time used
to construct left , right and RMQ-structures for left). 	

Remark 1. The suffix-square-free (resp., prefix-square-free) factors of a word can
be detected easier. That is, w[i..j] is suffix-square (resp., prefix-square) free iff
i > left [j] (resp., j < right [i]). So, we can output the suffix-square-free (resp.,
prefix-square-free) factors of w in O(n + |S|) time, where S is the solution set.

It is not hard to construct words with a high number of prefix-suffix-square-
free factors. E.g., take any finite prefix w of a right-infinite square-free word
w (see [5]). Then w does not contain squares, so all its factors are prefix-suffix-
square free and the size of the set of prefix-suffix-square free factors of w is Θ(n2).
However, the size of S can be computed without enumerating all its elements.
The main idea is that, for a position j of the input word w, we need to report as
many squares w[i..j] as there are positions i greater than left [j] and less or equal
to j such that right [i] > j. This can be done efficiently using segment trees [16].

Theorem 3. Given a word w of length n, we can compute the number of prefix-
suffix-square free factors of w in O(n log n) time.

We conclude this section by showing that the longest prefix-suffix-square
free factor w[i..j] (i.e., the longest element of the set S from Theorem 2) can be
computed in linear time, so without enumerating all the elements of S.

Theorem 4. Given a word w of length n, we can find its longest prefix-suffix-
square free factor in O(n) time.

Proof. We first construct the arrays left [·] and right [·] for the input word w.
Moreover, this time we produce a range minimum query structure for the
array left [·]. Let RMQ(j1, j2) denote the minimum value occurring in the range
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between j1 and j2 and posRMQ(j1, j2) denote the position where RMQ(j1, j2)
occurs (in case of equality, we take the rightmost such position).

The main idea of our algorithm is the following. We go through the positions
of the word w, and try to maintain the rightmost position j where a prefix-
suffix-square free factor starting on one of the positions already considered may
end. Initially, before considering the first position of the word, we have j = 0.
Let us assume that we reached the point where we consider position i, and the
factor w[i′..j′] with i′ < i is the prefix-suffix-square free factor that ends on the
rightmost position among all the prefix-suffix-square free factors that start on
positions less than i. We want to see whether we can construct a factor w[i..j]
with j > j′ and j < right [i] (so that the factor w[i..j] is prefix-square free); if
yes, we want to find the largest such j. First, such a position j exists if and
only if RMQ(j′ + 1, right [i] − 1) < i; then j = posRMQ(j′ + 1, right [i] − 1).
Indeed, if RMQ(j′ + 1, right [i] − 1) < i then there is some position j such that
j′ < j < right [i] and the shortest square ending on j starts before i; this means
that w[i..j] is both prefix and suffix-square free, and it also ends after j′, so it is
the kind of factor we were looking for. Now, we try to maximise j. For this we set
j′ = j and repeat the procedure above: check if RMQ(j′+1, right [i]−1) < i and,
if yes, set j = posRMQ(j′+1, right [i]−1). We keep repeating this procedure until
if RMQ(j′ + 1, right [i] − 1) ≥ i or j′ + 1 = right [i]. After the procedure cannot
be repeated anymore, we have the rightmost position j where a prefix-suffix-
square free factor w[i′..j] with i′ ≤ i may end. Clearly, before considering the
next position i+1 and repeating the entire process above, we have also obtained
the longest prefix-suffix-square free factor starting on one of the positions less or
equal to i: if this factor starts on i′ and is w[i′..j′] then it was exactly the factor
ending on the rightmost position produced by our algorithm when the position
i′ was considered as a potential starting position of the prefix-suffix-square free
factor with the rightmost ending position. We then repeat the whole process for
i + 1, and so on, until each position of the word was considered.

By the explanations given above, it is clear that this process correctly identi-
fies the longest prefix-suffix-square free factor of w. The time complexity is O(n).
Indeed, the time used to process each i is proportional to the number of RMQ
and posRMQ queries we perform during this processing. However, each position
of w can be the answer to at most one such posRMQ-query (when some new
RMQ and posRMQ queries are asked, they are asked for a range strictly to the
right of the position that was the answer of the previous posRMQ-query). So,
in total (for all i) we only ask O(n) queries, and each is answered in constant
time. Consequently, the total running time of our algorithm is linear. 	


4 Duplication and Related Factorisation Problems

The previous section explains how PD-, SD-, PSD-irreducible factors of a word
can be efficiently identified. However, it seems interesting to us whether this
helps us identify the PD ,SD , or PSD-irreducible roots of w.

Let us discuss first the case of the PSD operation. First, the ideas of [1] can be
used to identify in O(n2 log n) all the factors w[i..j] of a given word w of length n
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such that w ∈ PSD∗(w[i..j]). Indeed, if w ∈ PSD∗(w[i..j]) and t2 is a primitively
rooted square starting on i (respectively, ending on j) and |t2| ≤ j − i + 1, then
w ∈ PSD∗(w[i + |t|..j]) (respectively, w ∈ PSD∗(w[i..j − |t|])). So, we can use
a dynamic programming approach to find the roots of w, going from the longer
to the shorter ones. This approach can be implemented in O(n2 log n) time as
for each position i of w there are O(log n) primitively rooted squares starting
and ending at i, and we can produce the lists of such squares for all positions in
O(n log n) time [17]. This strategy also provides the irreducible roots: from the
factors w[i..j] we just computed, so with w ∈ PSD∗(w[i..j]), we keep those for
which qps(i, j) returns true (i.e., left [j] < i and right [i] > j).

However, it is clear that the most time consuming step in the above strategy
is finding all the factors from which w is generated. If that step could be imple-
mented more efficiently than O(n2 log n), then the whole process would take less
time (as with O(n) preprocessing, we can test in O(1) time each root of w to
see whether it is irreducible).

Similarly, detecting all the PD or SD-irreducible roots of w takes O(n log n)
time (we can use the same strategy, but this time we only need to analyse suffixes
or, respectively, prefixes of the word). Again, the most time consuming step is
finding the roots of w, not testing which of them are irreducible.

On the other hand, finding only one PD ,SD , or PSD-irreducible root can be
done in linear time. We only give the proof for PSD .

Theorem 5. Given a word w of length n, we can find one PSD-irreducible root
of w in O(n) time.

Proof. Let w0 = w. We construct a sequence (wi)i≥0 such that wi ∈ PSD(wi+1).
Assume that wi has a square suffix and let t2 be the shortest square suffix of
wi. Then let wi+1 = wi[1..|wi| − |t|]. If wi does not end with a square, but it
has a square prefix, let t2 the shortest square prefix of wi. Then let wi+1 =
wi[|t| + 1..|wi|]. If wi is prefix-suffix-square free, then we stop: we reached an
irreducible root of w. Using the arrays left and right defined in the last section,
we can implement this strategy in linear time. 	

Remark 2. Given a word w of length n, we can find an SD-irreducible (respec-
tively, PD-irreducible) root of w in O(n) time. We just use the same procedure,
but only extend our sequence as long as the current word is not suffix-square
free (respectively, prefix-square free).

Example 1. We define a family of words (wn)n∈IN such that wn has Θ(|wn|)
SD-irreducible roots. Let w1 = aabbab; this word is SD-irreducible. Then define
wi = wi−1wi−1bb for i ≥ 2. The length of wi is 2i+2 − 2 for all i ≥ 1. Note
that w2 has the SD-irreducible root w1 and let R2 = {w1}. Now, for i ≥ 3, wi

has at least the SD-irreducible roots Ri = Ri−1 ∪ {wi−1r | r ∈ Ri−1}. So wi

has, indeed, at least |Ri| ≥ |wi|
16 irreducible roots. Further, it is not hard to see

that w′R
i wi, where w′

i is obtained from wi by replacing a by c and b by d, has
Θ(|w′R

i wi|2) PSD-irreducible roots. Indeed, if r1 and r2 are SD-irreducible roots
of wi, then r′R

1 r2 is a PSD-irreducible root of w′R
i wi (where r′

1 is obtained from
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r1 by replacing a by c and b by d). So the words of the family (w′R
n wn)n∈IN are

such that w′R
n wn has Θ(|w′R

n wn|2) PSD-irreducible roots.

Essentially, deciding for a word w the existence of a SD-irreducible root is
equivalent to asking whether we can factor w in k > 1 factors w = s1 · · · sk such
that si is a suffix of s1 . . . si−1, for 1 < i ≤ k, and s1 is suffix-square free. It is
not hard to see that such a factorisation is deeply related to the square-structure
of w: the square s2i occurs centred at the border between the factors si−1 and si

of the factorisation, for all i > 1. So, it seems natural to us to also investigate
other factorisations that can be easily linked to the square-structure, or, more
generally, to the repetitions-structure, of the word.

To this end, the first question we ask is how to test whether a word can be
factored into squares. If such a factorisation exists, then one where every factor is
a primitively rooted square also exists. As the list of O(log n) primitively rooted
squares ending at each position of a word of length n can be obtained in total
time O(n log n), we can easily obtain within the same complexity a factorisation
of w in primitively rooted squares by dynamic programming.

Theorem 6. Given a word w of length n, we can find (if it exists) in O(n log n)
time a factorisation w = s1 · · · sk of w, such that si is a square for all 1 ≤ i ≤ k.

While we were not able to find in linear time a factorisation of a word into
squares, we can find in linear time a factorisation of w that contains as many
squares as possible. In fact, there exists such a factorisation where all the square
factors are the shortest squares occurring at their respective position. The fac-
torisation can be obtained in linear time by dynamic programming, using the
left [·] array constructed in the previous section.

Theorem 7. Given a word w, we can find (if it exists) in linear time a factori-
sation w = s1 · · · sk of w, such that, for any other factorisation = s′

1 · · · s′
p we

have |{i | 1 ≤ i ≤ k, si is a square}| ≥ |{i | 1 ≤ i ≤ p, s′
i is a square}|.

Another extension of the factorisation into squares of a word, that can still
be solved in linear time, is to decide whether a given word can be factored into
k factors w = s1 · · · sk, such that per(si) ≤ |si|

2 for all i; in such a factorisation,
each si is a run (not necessarily maximal). The main idea in finding such a
factorisation is that if w[1..i] is a prefix of w that can be factored in runs, and
w[i′..j′] is a maximal run of period p containing i + 1 and with i + 2p ≤ j′, then
all the factors w[1..k] with i+2p ≤ k ≤ j′ can also be factored in runs. Using an
interval union-find data-structure ([9]) to maintain the positions i incrementally
discovered during the execution of our algorithm such that w[1..i] can be factored
into runs we obtain in linear time a factorisation of w in runs.

Theorem 8. Given a word w, we can find (if it exists) in linear time a factori-
sation w = s1 · · · sk of w, such that per(si) ≤ |si|

2 for all 1 ≤ i ≤ k.
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5 Conclusions

This paper introduced the concept of prefix-suffix-square free word, and several
initial results on this concept were obtained. While the algorithms identifying
all prefix-suffix-square free factors of a word or the longest such factor run in
linear (optimal) time, it seems interesting to see whether counting these factors
can also be done in linear time; our solution runs in O(n log n) time.

The notion of prefix-suffix-square free word is strongly related to the notion
of irreducible root of a word w.r.t. the operations of prefix/suffix-duplication.
It seems interesting to us to see whether we can detect the SD-irreducible
roots (resp., PSD-irreducible roots) of a word faster than O(n log n) (resp.,
O(n2 log n)) time. We showed here how to find in linear time one (non-specific)
PSD-irreducible root of a word; how about finding the longest or shortest root?

Several questions related to possible factorisations of a word were addressed
at the end of our paper. To this end, an interesting open problem is whether one
can factorise a word in square factors in linear time.
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Abstract. The importance of temporal information (TI) is increasing
in several Information Retrieval (IR) tasks. CHAVE, available from Lin-
guateca’s site, is the only ad hoc IR test collection with Portuguese
texts. So, the research question of this work is whether this collection
is sufficiently rich to be used in Temporal IR evaluation. The obtained
answer was yes. By the analysis of the CHAVE collection, we verified
that 22% of the topics and 86% of the documents have at least one
chronon. 49% of topics are time-sensitive. Analyzing the relation of topi-
cs with documents, relevant documents of time-sensitive topics converge
to a specific date(s), while the non-relevant ones are dispersed along the
timeline. Finally, we used a peak dates strategy as a time-aware query
expansion (QE) process. Experiments showed effectiveness improvements
for time-sensitive queries.

1 Introduction

The recency of information contained in a document, or the time periods of the
events reported is a significant aspect in assessment of its quality, importance
and relevance. Several IR tasks can benefit by incorporating the TI.

The focus of this work is the use of TI in ad hoc IR tasks. In particular, we are
interested in the usability of a given test collection for the evaluation of a time-
aware IR system. Such collection includes three components: documents, topics
and relevance judgements (RJs). As our research work uses Portuguese texts, and
CHAVE1 is the only test collection available, the result of such evaluation is very
important for our experimental work. TimeBankPT[1] is a temporal annotated
Portuguese Collection, but intended for natural language processing.

Supposing that Chave is suitable for temporal ad hoc IR research, we must
answer the following questions: 1) Are there a significant percentage of time-
sensitive topics? 2) Are there enough temporal information in the content of
the majority of documents? 3) Does the usage of time-aware retrieval strategies
improve the effectiveness results for time-sensitive topics?

1 Accessible in Linguateca’s site http://www.linguateca.pt/

c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 67–74, 2015.
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The structure of the document is the following: the Chave test collection and
its overall temporal statistics (extracted using temporal preprocessing described
in the same section) are presented in Section 2; TI of documents and segments is
summarized in Section 3; Section 4 synthesizes the TI of topics and establishes
the relationship with their RDs and non-RDs; Section 5 compares the effective-
ness results of a time-aware strategy (peak dates for QE) and two baselines (one
with QE and another without); Section 6 discusses the overall results and some
further work directions.

2 The CHAVE Collection

The CHAVE collection, created by Linguateca[2], is composed of full-text articles
from two major daily Portuguese and Brazilian newspapers, namely the PUB-
LICO and the Folha de Sao Paulo, with complete editions of 1994 and 1995.
The texts are written in two variants of Portuguese language, from Portugal and
Brazil. This collection has a total of 574768 documents, 4682363 sentences, and
90646837 words from which 866702 are distinct.

For the purpose of this work, the suitable resources are the ones available
for the ad hoc IR track. All the resources are in TREC [3] format. Documents
and topics are annotated in SGML. All the CHAVE topics were judged. 4 topics
(C216, C220,C227, and C240) do not have any RD. On average, each topic has
41.7 RDs for 378.3 non-RDs.

Collection Temporal Preprocessing
The CHAVE collection was preprocessed to obtain the statistics required for
this temporal analysis. A key requirement for our research work is the temporal
segmentation of texts, to establish temporal relationships between words which
are used for automatic QE [4,5]. We developed a testbed software for Portuguese
text processing, composed for Annotator, Resolver and Temporal Segmentator.
The testbed is fully described in [6].

Our temporal approach considers not only the publication date of each news,
but also all the temporal expressions included in its content. However, the most
important are the ones that can be mapped into chronons, once they can be
used later in IR tasks. Some temporal expressions are too vague and can not
be transformed into a chronon. Chronons are normalized dates with a certain
granularity (year, month, day or hour) and a mark on a timeline [7].

The source documents are processed by the Annotator which identifies the
temporal expressions and assigns to them a classification. Then, the Resolver nor-
malizes the annotated temporal expressions transforming them into chronons.
Finally, the documents are temporally segmented. For this purpose, the docu-
ments are modeled as a chronologic narrative of events. The objective of seg-
mentation is to detect temporal discontinuities in the text and split it into tem-
porally coherent pieces. Each segment is labeled with the chronons that occur
on its contents.
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Note that the results presented here are subject to an error for two main
reasons: first, our testbed system does not have an effectiveness of 100%, as we
explained in [6]; second, the original documents have also some typo errors2.

Temporal Statistics of Collection
The temporal scope of CHAVE is from year 94AD to 2577, though their doc-
uments are dated in [1994-01-01; 1995-12-31]. TI was found in the content of
about 90% of documents, but as this information is not all resolved, the per-
centage of documents with at least one chronon is lower (about 86%). A total of
869051 chronons (only 12796 distinct), were obtained from the 1022846 temporal
expressions that were annotated. Note that these two values do not have a direct
correspondence. There are some temporal expressions without any chronon, and
others with two chronons (”1992-93” has two chronons: 1992-XX-XX and 1993-
XX-XX).

DATE was the classification given to about 90% of the temporal expressions.
For example, 1995-09-XX is associated to the timeline with month granularity.
We observed that the chronons are distributed by four timelines: hour (7.74%),
day (49.3%), month (13.89%), and year (29.07%). So, the temporal specificity3

of CHAVE is day, as expected, since documents are news of daily newspapers.

3 Documents and Segments

The results show that about 54% of the documents have at least 1 chronon
and a maximum of 4 chronons. The number of chronons variates from 0 to 228.
14.16% has 0 chronons; 17.46% has 1 chronon; 15.,5% has 2 chronons; 11.88%
has 3 chronons; 9.27% has 4 chronons; 12.49% has 5-6 chronons; 9.80% has 7-9
chronons; 4.47% has 10-12 chronons; and 4.99% has 13-228 chronons.

The higher temporal richness is shared by two documents, each one with
228 chronons, the maximum number of chronons per document. Although day
is the predominant temporal specificity (about 47% of the documents), there is
also a considerable number of documents (about 40%) with year as the most
representative time granularity. Month and hour are also temporal specificity of
10.26% and 2.62% documents. The 6 chronons that have an occurrence in more
documents are very close to the publication date of the documents: 1990-XX-XX
with 7220 documents; 1991-XX-XX, 8119; 1992-XX-XX, 10566; 1993-XX-XX,
16185; 1994-XX-XX, 21515; and 1995-XX-XX, 14662.

As temporal segmentation is important for our work, some related statistics
were included here. The number of temporal segments per document closely
follows the number of chronons of a document, as foreseen, since the chronons
give an indication about the number of temporal discontinuities per document.
Thus, the average number of temporal segments per document is about 6 with
a median value of 5 and a range from 1 to 388.

2 For instance, ‘March of 9160’ instead of ‘March of 1960’.
3 Most frequent timeline[7].
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It was not possible to carry out any temporal segmentation in 29847 doc-
uments (about 14%), as these documents do not have any chronon. Such doc-
uments have a single temporal segment. The number of temporal segments in
the collection is 1255416, with an average of about 69 words and 1 chronons per
segment. The number of words and distinct words is very close, which means
that in most segments, there are a few repeated words.

Summarizing, the segments has a maximum of 29 chronons, 4202 words and
1305 distinct words; in terms of minimum they have 0 crhonon, 1 word and 1
distinct word; the average are 1 chronon, 68.64 words and 53.67 words; and for
median 1 chronon, 34 words and 33 distinct words.

4 Topics and Their Relevant Documents

The topics of CHAVE are divided into three groups: TG1(C201-C250),
TG2(C251-C300), and TG3(C301-C350).Almost all the temporal expressions in
the text of the topics could be mapped into chronons, since these expressions
were classified as DATE, having explicit temporal references. TG1 has 24 tem-
poral expressions and 22 chronons; its temporal specificity is year and it has
explicit TI in 14 topics. TG2 has only one topic with TI but there is not any
chronon, since the only temporal expression Nos dias de hoje4. has a classifica-
tion of GENERIC, which means that this TI cannot be used as explicit TI. TG3
has 25 temporal expressions and 26 chronons; its temporal specificity is year and
it has 18 topics with explicit TI.

We verified that only 32 of the 150 topics (21.3%) have explicit TI. Almost
all these topics aim to obtain documents referencing to events that occur during
the time period of the collection (1994-1995), only considering the publication
date of the documents. More precisely, the TI of 13 topics of TG1 and 17 topics
of TG3 reference dates in that time period. References outside that time period
exist only in C339 (December 1993) and C221 (year of 2002).

We also analyzed the relationship between the chronons of the topic and the
ones found in their RDs. For each topic, we computed the number of distinct
chronons of their RDs that are equal when they are mapped into the same
timeline of the topic’s chronons. The number of distinct chronons of the RDs
which represents a date before or after the date of the topic is also computed.
Considering only topics with explicit TI, it was selected a set with 7 with month
granularity and 13 with year granularity. For each date of the topic, RDs with
dates before, equal and after were counted. The result of counting was: 10 of
the topics (50 %) have a higher number of RD with equal dates; 4 (20 %) have
higher number of RD with later dates; and 6 topics (30 %) have a higher number
of RD with before dates.

We also computed the maximum, minimum, average and median values of
chronons (distinct chronons) in RDs per topic in the three topic groups. TG1
has maximum 842 (243), minimum 1(1), average 84.67 (39,11) and median 37.50

4 Nowadays, in English



Temporal Analysis of CHAVE Collection 71

(20.00). TG2 has maximum 1863(612), minimum 12(8), average 350.02 (154.46)
and median 246.50 (145.50). TG3 has maximum 2226(543), minimum 8(8), ave-
rage 372.13 (130.20) and median 241.50 (104.50).

In general, the topics of TG1 have less RDs than the topics of other groups.
So, it is normal that the topics of this group also have less chronons. How-
ever, the three groups of topics have approximately the same percentage of dis-
tinct chronons. We can notice that the distinct chronons are around 30% of all
chronons for each group of topics. TG1 has 35%, TG2 has 33% and TG3 has
27% of distinct chronons.

The chronons extracted from topics with explicit TI can be placed in the
year timeline (Ty) and month timeline (Tm), namely, 1995-XX-XX, 1994-XX-
XX, and 2002-XX-XX in Ty, and 1993-12-XX, 1994-02-XX, 1994-09-XX, 1994-
11-XX, 1995-05-XX, 1995-10-XX, and 1995-11-XX in Tm. In conclusion, only
8 of 322 chronons5 have representation in timeline Tm; the others are not so
specific, having only the year.

We verified that there are also temporal references of about 60% of topics
in the RDs of the topic. Note that the content of the RDs has more temporal
references to present or past events than future events. In general, the temporal
references, both in topic text and content of RDs, are in the interval of date
publication of the CHAVE documents.

Analysis Per Topic
In order to know the temporal scope of each topic, we determined the frequency
per chronon of RDs and non-RDs. For simplicity, the chronons represented only
in a timeline with hours granularity (Th) were not considered in this analysis.

The temporal sensitivity of topics was also evaluated by the analysis of the
TI in RDs and non-RDs. A topic is time-sensitive when the temporal references,
represented as chronons, of their RDs converge to a date or a time period. TG1
has 16 time-insensitive topics and 34 time-sensitive topics, from which 1 have
explicit TI. TG2 has 15 with implicit TI and 35 time-insensitive topics. TG3
has 18 topics with explicit TI, 7 with implicit TI and 25 time-insensitive topics.
In conclusion, the time-sensitive topics are well represented in two of the topics
groups, namely 68% and 50% of topics of TG1 and TG3, respectively. TG2 only
contains 30% of time-sensitive topics. Due to space constraints, we only present
the analysis of three topics, each one with a different classification: C222 (explicit
TI), C254 (implicit TI) and C310 (time-insensitive).

The topic C222 has explicit TI namely 1995-05-XX. In RD set, we can observe
that almost all chronons are in the period of time defined by the topic. The
chronons with higher frequency of RDs are 1995-05-08 and 1995-05-09. Con-
sidering only the 10 chronons with higher frequency for non-RD, 1995-XX-XX
is the one with more occurrences. However, these documents are scattered along
the timeline. We verified that 100% of the RDs have at least one reference to
May 1995, while only about 25% of the non-RDs have the same reference.

5 The chronon 1955-05-XX occurs twice.
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Although topic C254 does not have explicit TI, the chronons of RDs converge
to a date. The temporal references of both RDs and non-RDs present the same
tendency of the topic C222. In other words, the RDs converge to a date unlike
non-RDs. In topic C254, about 85% of the 129 RDs have a reference to January
1995, whilst only 25% of the 181 non-RDs have a reference to this date and their
chronons are scattered along the timeline, such as topic C222.

A similar analysis was done for topic C310. The chronons in both document
sets (RDs and non-RDs) are distributed along the all timeline. Since there is
not a concentration of RDs around a date, we conclude that this topic is not
time-sensitive. The chronons which occur in most documents are 1994-XX-XX
(in 20% of non-RDs) and 1993-XX-XX (in 10% of RDs).

5 Experiments with Temporal Query Expansion

To answer the last question (see third paragraph of Section 1), we used a stra-
tegy based on peak dates to modify the QE algorithm. Documents without
an occurrence in a peak date are removed from the set of the pseudo-relevant
documents (set R) to the original query q0. If there are no peaks, R remains
unchanged. The date of publication and chronons extracted from the documents
content of the set R are considered for computing of peak dates. First, the number
of documents for each date is determined. It is assumed a normal distribution of
documents across dates. Subsequently, the peaks are selected based on an outlier
detection criterion, as the one defined by Chauvenet [8].

This evaluationused 100CHAVEtopics,C251-C350, considering their title and
their description for automatic query generation.The topicsweremanually divided
according to their time sensitivity. Therefore, we performed experiments using 3
topic sets, namely 60 time-insensitive queries, 40 time-sensitive queries (with 22
implicit and 18 explicit temporal information) and 18 temporal explicit queries.
With this last set, we performed 2 experiment: one that does not consider the TI
expressed in the text of the query and another considering it. In the last case, all
dates not contained in the query date are not considered for computing peak dates.

For the implementation, we modified the Terrier search-engine software pack-
age [9] to include temporal pre-processing of the documents and topics and we
used the peak dates strategy on the QE procedures.

The retrieval was performed using TF-IDF, considering only the top 1000
documents of the results set. The results obtained were used as the baseline
noQE. In all the experiments, the queries were expanded with 10 terms of the
top 3 retrieved documents. The terms weight was computed by the Bo1 model’s
formula[10]. We also report a run with the Bo1 model as the stronger baseline,
named as Bo1QE. For each run we present Precision at top 10 and 15 docu-
ments (P@10 and P@15), MAP, Robustness[11] compared with noQE (Rob1),
and with Bo1QE(Rob2). Ii and Qi are the number of queries for which the effec-
tiveness increases or decreases, respectively. Table 1 shows the results compari-
son between the strategy based on peak dates (PeakDates) and baselines (noQE,
Bo1QE). We verified that the evaluated strategy achieved a better effectiveness
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Table 1. Results using CHAVE for time sensitive and insensitive queries

MAP P@10 P@15 Rob1 I1;Q1 Rob2 I2;Q2

40 time-sensitive queries

noQE40 0.358 0.458 0.410
BolQE40 0.387 0.473 0.430 0.500 29 ;9
PeakDates 0.402 0.493 0.455 0.500 29;9 0.075 18 ; 15

18 queries with explicit temp. information without query dates

noQE18 0.431 0.444 0.411
BolQE18 0.441 0.472 0.430 0.333 11;5
PeakDates 0.463 0.494 0.448 0.333 11;5 0.333 9;3

18 queries with explicit temp. information with query dates

noQE18 0.431 0.444 0.411
BolQE18 0.441 0.472 0.430 0.333 11;15
PeakDates 0.451 0.494 0.452 0.389 12;5 0.000 7;7

60 time-insensitive queries

noQE60 0.302 0.502 0.457
BolQE60 0.344 0.515 0.498 0.333 40;20
PeakDates 0.341 0.513 0.488 0.483 44;15 -0.067 25;29

than the baselines when using time-sensitive queries. MAP, Precision@10 and
Precision@15 were increased from 2% to 6%, when compared with the baseline
BolQE. Robustness is also better in time-insensitive queries (more 4 queries than
Bo1QE).

6 Conclusions

This paper uses some statistical measures for temporal characterization of
CHAVE, a Portuguese text collection. About 22% of the topics and 86% of
the documents have at least one chronon. The temporal references of documents
and topics are around the time period of their publication date [1994-1995].
Three groups of topics were identified: time-sensitive with explicit temporal TI,
time-sensitive without explicit TI and time-insensitive. Almost half of the topics
are time-sensitive. For each one of these types, it was analyzed the distribution
of the dates in RDs and non-RDs along timelines.The results obtained show that
the RDs of the time-sensitive topics converge to a specific date, as opposed to
the non-RDs which are dispersed along the timeline. These results are similar
to those obtained by previous studies [12]. The set of obtained results confirms
the usability of the CHAVE test collection for temporal ad hoc IR research.
Furthermore a peak dates strategy was used on QE to increase the retrieval
effectiveness, presenting auspicious results. With temporal segmentation of do-
cuments, the goal is to establish a direct relationship between words and time.
Due to excessive processing costs, this issue is a topic for further work. Equally
important is the comparison of several outlier detection criteria for peak dates.
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Abstract. This paper investigates an approach for estimating the effec-
tiveness of any IR system. The approach is based on the idea that a set
of documents retrieved for a specific query is highly relevant if there are
only a small number of predominant topics in the retrieved documents.
The proposed approach is to determine the topic probability distribu-
tion of each document offline, using Latent Dirichlet Allocation. Then,
for a retrieved set of documents, a set of probability distribution shape
descriptors, namely the skewness and the kurtosis, are used to compute
a score based on the shape of the cumulative topic distribution of the
respective set of documents. The proposed model is termed DeShaTo,
which is short for Describing the Shape of cumulative Topic distribu-
tions. In this work, DeShaTo is used to rank retrieval systems without
relevance judgments. In most cases, the empirical results are better than
the state of the art approach. Compared to other approaches, DeShaTo
works independently for each system. Therefore, it remains reliable even
when there are less systems to be ranked by relevance.

Keywords: Information retrieval · Topic modeling · LDA · Document
topic distribution · Skewness · Kurtosis · Ranking retrieval systems

1 Introduction

Automatically estimating the effectiveness of any information retrieval system is
one of the most important tasks in information retrieval (IR). An approach that
could solve this task with a high degree of accuracy would have a broad range
of applications including selective IR, selective query expansion [4,15], ranking
retrieval systems without relevance judgments [9,12,13], query difficulty pre-
diction [3,11], to name only a few. Being able to understand and distinguish
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the behavior of a highly effective IR system from a poorly effective one (on a
per query basis) is the key in solving the task of estimating IR effectiveness.
Intuitively, a highly effective system should return a set of documents in which
there are only one or a few predominant topics1 (related to the query), while an
average or poorly performing system will return documents from various topics,
since not all the documents will be relevant for the given query. In other words,
more topics indicate that the given query is more ambiguous from the point of
view of an IR system. Interestingly, this hypothesis represents the cornerstone
of the clarity score [3], but there are many other aspects of relevance that are
ignored by this supposition. Nevertheless, the same hypothesis is explored into
a different direction in this work. More precisely, the current work proposes an
approach that can potentially be used for estimating the relevance level of any
IR system. Latent Dirichlet Allocation (LDA) [2] is employed to model the top-
ics within a document collection offline. Then, by describing the shape of the
cumulative topic distribution generated by the top documents retrieved by an
IR system for a given query, it can be easily determined if the behavior of the
respective system resembles the behavior of a highly or rather poorly effective
system. Therefore, the proposed approach is termed DeShaTo, which is short for
Describing the Shape of cumulative Topic distributions. Finally, the proposed
approach computes a score based on a combination of two probability distribu-
tion shape descriptors, namely skewness and kurtosis [5], which are computed
on the cumulative topic distribution of the retrieved documents.

A series of experiments are conducted to validate the underlying hypothesis of
the DeShaTo approach. Relevant document sets are tested against non-relevant
document sets for all the queries available in the TREC Robust Track, Web
Track 2013 and Web Track 2014 collections. In almost 95% of the cases, the
DeShaTo approach is able to identify which set of documents is relevant, proving
that the underlying hypothesis holds in most cases. Next, the DeShaTo score is
averaged on the queries of each data set to produce rankings of the retrieval
systems submitted for the respective TREC tracks. The DeShaTo approach is
compared with a state of the art approach for the task of ranking retrieval
systems without relevance judgments, namely nruns [9], using the Kendall Tau
correlation measure. The results presented in [9] indicate that nruns is more
accurate compared to the previous works [1,12,13]. Therefore, DeShaTo is only
compared with nruns in the experiments. The overall empirical results presented
in this work indicate that the DeShaTo approach is able to obtain a higher
correlation with the true Average Precision (AP) scores.

Unlike most approaches for ranking retrieval systems [10,13], including the
state of the art approach [9], DeShaTo does not require information about other
retrieval systems when dealing with one system. Indeed, nruns [9] is based on

1 Topic represents here the theme of a text, as in topic modeling. In IR evaluation pro-
grams such as TREC, a topic refers to the information need. To avoid any confusion
with the LDA topics, TREC topics are referred to as queries throughout this paper,
therefore query can mean either the information need or to the text submitted to
the search engine.
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sharing information among systems to produce a set of pseudo-relevant docu-
ments for each query, while DeShaTo works independently for each system and
thus, it can produce accurate results when there are less systems to be ranked.
Some approaches, such as [8], require human assessments, while DeShaTo does
not involve human effort. Another distinctive trait of DeShaTo is the employ-
ment of topic modeling for ranking retrieval systems. Moreover, DeShaTo is a
general approach with high potential for other applications such as query diffi-
culty prediction, selective query expansion and selective IR.

The rest of the paper is organized as follows. The DeShaTo approach is
presented in Section 2. The validation and the experiments are described in
Section 3. The final remarks are drawn in Section 4.

2 Describing the Shape of Cumulative Topic Distributions

The DeShaTo approach is based on the hypothesis that if there are more predom-
inant topics that emerge in the set of documents retrieved for a given query, then
the system effectiveness for the respective query is lower. On the other hand, if
there are less predominant topics in the set of documents, then it means that
the system is highly effective. Naturally, the topic distributions of the retrieved
documents have to be computed in order to determine the effectiveness level of
the IR system. In this work, Latent Dirichlet Allocation based on Gibbs sam-
pling [2] is employed to compute the topic distributions of the documents, but
other topic modeling approaches could possibly work equally well or even bet-
ter [6]. Nevertheless, it is worth mentioning that LDA has successfully been used
in different contexts in IR [7,14].

Although DeShaTo is a post-retrieval approach, the topic distribution can
be computed offline, right after indexing the documents, in order to reduce the
online processing time. If LDA is carried out offline, the topic distributions can
be immediately retrieved along with the documents when necessary.

In order to obtain a unique representation from all the topic distributions
associated to the top retrieved documents for a query, the distributions have to
be somehow combined into a single distribution. Instead of choosing only one way
of cumulating the topic distributions, three alternative ways are simultaneously
employed, namely, the component-wise sum, the component-wise minimum, and
the component-wise product, respectively. It is important to note that the three
cumulative distributions have to be normalized, such that they all remain proba-
bility distributions (the sum of all the components is 1). The sum, the minimum
and the product produce slightly different cumulative distributions and using
them all together provides useful information for the next step. The relevant
documents set contains only one or two predominant topics, while the non-
relevant documents produce a mixture of predominant topics. What remains to
be done from this point on is to find a way of comprising this difference in a
measure or score. More formally, the next step is to find a robust approach to
describe the shape of the cumulative topic distributions. The proposed approach
uses two probability distribution shape descriptors, namely skewness and kur-
tosis [5]. More common statistics such as the mean or the standard deviation
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have also been tested out, but they have been found to be less informative. In
probability theory and statistics, skewness is a measure of the asymmetry of the
probability distribution of a real-valued random variable about its mean. The
skewness can be computed as the third central moment of the input probabil-
ity distribution, divided by the cube of its standard deviation. In a similar way
to the skewness, kurtosis is a descriptor of the shape of a probability distribu-
tion. More precisely, the kurtosis quantifies the peakness (width of peak) of the
probability distribution of a real-valued random variable. The kurtosis can be
computed as the fourth central moment of the probability distribution, divided
by fourth power of its standard deviation.

High values of skewness and kurtosis indicate that the topic distribution
is characterized by a small number of predominant topics, while low values of
these statistics indicate that there are more (or even no) predominant topics.
Therefore, the two statistics reflect exactly what is required to determine if
the system behavior is good or poor with respect to a given query. Finally,
the skewness and the kurtosis are embedded in the DeShaTo score that can be
computed using the following closed form equation:

score = k(S) + s(S) + k(M) + s(M) + k(P ) + s(P ), (1)

where k and s are two functions that return the kurtosis and the skewness of
a probability distribution given as parameter, and S, M and P are the cumu-
lative topic distributions obtained by computing the sum, the minimum and
the product of the topic distributions corresponding to the retrieved documents.
The probability distribution shape descriptors are combined in a very natural
straightforward manner in Equation (1). By trying various combination schemes,
a more efficient way of combining these descriptors can supposedly be found. For
instance, a weighted sum could probably work better in practice, if the weights
are learned on some training data. However, adding more parameters to DeShaTo
is not necessarily desirable. Proposing alternative combination schemes will be
properly addressed in future work.

3 Experiments

3.1 Data Sets Description

The TREC collections2 that are being used in the experiments are presented
next. They contain a set of information need statements, the document set and
the relevance judgments for each query. The experiments are conducted on pre-
cisely three data sets, namely Robust, TREC Web Track 2013 and TREC Web
Track 2014.

The results provided by participants are termed runs. TREC evaluates the
runs using various effectiveness measures. The participant runs can thus be
ranked according to one of these measures, such as the Mean Average Preci-
sion (MAP) over queries. In the experiments, all the queries along with all the
2 http://mitpress.mit.edu/catalog/item/default.asp?ttype=2\&tid=10667

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10667
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Table 1. A summary of the data sets used for the task of ranking retrieval systems
without relevance judgments.

Data Set Query IDs # Queries # Systems

Robust 301 − 450, 601 − 700 249 110

Web Track 2013 201 − 250 50 61

Web Track 2014 251 − 300 50 30

Table 2. Accuracy of the DeShaTo score for correctly identifying the set of relevant
documents tested against a set of non-relevant documents. The number of LDA topics
is 100.

Data Set # Queries # Correct Predictions Accuracy

Robust 249 231 92.77%

Web Track 2013 50 50 100%

Web Track 2014 50 50 100%

Overall 349 331 94.84%

participant runs from Robust, Web Track 2013 and Web Track 2014 are used
to rank retrieval systems without relevance judgments. A summary of the data
used in the experiments is given in Table 1.

The DeShaTo approach is compared with a state of the art approach, namely
nruns [9], using the Kendall Tau correlation measure, as in [9]. To reduce the
offline processing time of DeShaTo, only the documents retrieved in the partici-
pant runs where included in the topic modeling process.

3.2 Empirical Validation of the Hypothesis

To validate the underlying hypothesis of DeShaTo, a simple procedure has been
designed as described next. For each query in the three collections, a set of 30
relevant documents is produced by randomly sampling the documents. Likewise,
another set of 30 non-relevant documents is produced for each query. For each
query, 20 draws were made to randomly select the documents within the relevant
and the non-relevant sets, in order to reduce the result of chance. Remarkably,
the results of different trials are consistent with each other.

The cornerstone hypothesis of this work can be validated if it can identify,
with a high degree of accuracy, which is the set of relevant documents only by
using the DeShaTo score proposed in Equation (1). As such, the DeShaTo score
was put to the test and the results are presented in Table 2. The DeShaTo score
seems to be able to make good predictions in most of the cases. Indeed, there
are only 18 queries from the Robust collection for which the score associated to
the non-relevant document set is higher than the score associated to the relevant
document set. The accuracy goes up to 100% for the Web Track 2013 and 2014
data sets. Overall, the accuracy of the DeShaTo approach is 94.84%. Although
not perfect, this result offers some empirical proof that the underlying hypothesis
of DeShaTo works well enough in practice.
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Table 3. Kendall Tau correlation between the ground truth ranking according to the
MAP@30 measure and the systems ranking determined by the DeShaTo score. The
best correlation per data set is highlighted in bold.

Data Set 50 Topics 100 Topics 250 Topics

Robust 0.4286 0.3524 0.3143

Web Track 2014 0.1190 0.1905 0.3048

3.3 Parameter Tuning

The DeShaTo approach is based on the topics modeled by LDA, but the number
of topics could influence the accuracy of the proposed approach. Wei and Croft
also observed that the number of topics affects the retrieval performance [14].
Therefore, the number of topics is tuned on the Robust and the Web Track
2014 data sets through a validation procedure. Since the documents from the
Web Track 2013 and 2014 data sets are from ClueWeb12, the number of topics
validated on Web Track 2014 is also used on the Web Track 2013 collection.
From each data set, 10% of the queries and 15 systems are chosen at regular
interval. More precisely, one in every 10 queries are used for validation. One in
every 7 systems are used for the Robust data set, while for the Web Track 2014,
one in every two systems are used for validation. The amount of observations
(#queries × #systems) used for validation is deliberately chosen such that it
is significantly smaller than the total amount of data, in order to prevent any
kind of overfitting. Only 1.37% of the Robust data is used for validation. In a
similar manner, 1.65% of the Web Track 2013 and 2014 data is used for tuning
the number of topics.

The validation procedure aims to choose between using 50, 100 or 250 topics
by evaluating the Kendall Tau correlation between the systems ranking deter-
mined by the DeShaTo score and the ground truth ranking determined by the
Average Precision of the top 30 retrieved documents per run, namely AP@30.
Actually, to produce the rankings, the score of each system has to be averaged
over all the validation queries. Thus, the ground truth rankings are given by
the Mean Average Precision of the top 30 documents, namely MAP@30. An
interesting remark is that very similar results are obtained using the top 10 or
the top 100 retrieved documents, but since nruns [9] was evaluated using the top
30 documents, the results presented in Table 3 and throughout this paper are
also based on the top 30 documents per run. According to the best Kendall Tau
correlations reported in Table 3, 50 topics will be used when LDA is carried out
on the Robust documents. On the other hand, 250 topics will be used when LDA
is carried out on the Web Track 2013 and 2014 documents. This difference can
probably be explained by the type of documents that constitute the collections.
The documents within the Robust collection are quite homogeneous since they
are extracted from newspapers, while the documents within ClueWeb12 are web
documents. In the latter collection, documents are much more heterogeneous
and may contain topics that are not related to the document content such as
links to the home page, menu buttons and so on.
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Table 4. Kendall Tau correlation between the ground truth ranking according to the
MAP@30 measure and the systems ranking determined by the DeShaTo score, on one
hand, and the systems ranking produced by nruns, on the other. The best correlation
per data set is highlighted in bold.

Data Set nruns [9] DeShaTo

Robust 0.6195 0.6112

Web Track 2013 0.1005 0.2306

Web Track 2014 0.4529 0.4966

3.4 Ranking Retrieval Systems Results

The DeShaTo score is compared with nruns [9] for the task of ranking retrieval sys-
tems without relevant judgements and the results are presented in Table 4. The
values given in Table 4 represent the Kendall Tau correlations between the ground
truth ranking given by the MAP@30 values and the systems ranking determined
by the DeShaTo score, on one hand, and by nruns, on the other hand. It is impor-
tant to mention that the correlation reported for nruns in this paper (0.6195) is
lower than the correlation reported in [9] (0.640). The difference comes from the
fact that here the correlation is based on 249 queries from 2004 and 2005, instead
of only the 150 queries from 2004. Furthermore, the correlation is here computed
with respect to the MAP@30 score instead of the MAP score as in [9], which is
actually more fair, since the predictions are made on the top 30 documents per
query. Compared to nruns, the DeShaTo score gives a higher correlation for the
Web Track 2013 and 2014 participant runs, while it produces only a slightly lower
correlation for the Robust runs. This could be explained by the fact that nruns
becomes unreliable for a small set of runs, because it leverages the information
from multiple systems to produce a good set of pseudo-relevant documents. Web
Track 2013 and 2014 have considerably less participants than Robust, and the
nruns approach is less accurate on the Web Track 2013 and 2014 data sets. Unlike
nruns, the DeShaTo approach relies solely on the results of a system to compute
its score, which seems to be an advantage for the newer TREC collections. The
overall results seem to indicate that DeShaTo is better than nruns.

4 Conclusion

This paper presented an approach that is able to distinguish between a highly
effective IR system and a less effective IR system for some queries. The proposed
approach is based onDescribing the Shape of cumulativeTopic distributions mod-
eled by LDA, hence the name DeShaTo. A set of experiments have been conducted
in order to validate the underlying hypothesis of DeShaTo in practice. More-
over, another set of experiments have been conducted to compare DeShaTo with
nruns [9] for the task of ranking retrieval systems without relevance judgments.
The results indicate that DeShaTo gives a higher correlation with the MAP@30
score in most cases, most likely because its accuracy does not depend on the num-
ber of systems used. The described approach does not take into account the query
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text itself, but this will be covered in future work by analyzing the topic distribu-
tion of the query in relation to the document distributions.

References

1. Aslam, J.A., Savell, R.: On the effectiveness of evaluating retrieval systems in the
absence of relevance judgments. In: Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion Retrieval,
pp. 361–362 (2003)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

3. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 299–306 (2002)

4. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: A framework for selective query
expansion. In: Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management, pp. 236–237 (2004)

5. Groeneveld, R.A., Meeden, G.: Measuring Skewness and Kurtosis. Journal of the
Royal Statistical Society. Series D (The Statistician) 33(4), 391–399 (1984)

6. Mimno, D.M., McCallum, A.: Topic models conditioned on arbitrary features with
Dirichlet-multinomial regression. In: Proceedings of the 24th Conference in Uncer-
tainty in Artificial Intelligence, pp. 411–418 (2008)

7. Park, L.A.F., Ramamohanarao, K.: The sensitivity of latent Dirichlet allocation for
information retrieval. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
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Abstract. Recently, several attempts have been made to extend the
internal memory suffix array (SA) construction algorithm SA-IS to
the external memory model, e.g., eSAIS, EM-SA-DS and DSA-IS. While
the developed programs for these algorithms achieve remarkable perfor-
mance in terms of I/O complexity and speed, their designs are quite
complex and their disk requirements remain rather heavy. Currently, the
core algorithmic part of each of these programs consists of thousands of
lines in C++, and the average peak disk requirement is over 20n bytes for
an input string of size n < 240. We re-investigate the problem of induced
sorting suffixes in external memory and propose a new algorithm SAIS-
PQ (SAIS with Priority Queue) and its enhanced alternative SAIS-PQ+.
Using the library STXXL, the core algorithmic parts of SAIS-PQ and
SAIS-PQ+ are coded in around 800 and 1600 lines in C++, respectively.
The time and space performance of these two programs are evaluated in
comparison with eSAIS that is also implemented using STXXL. In our
experiment, eSAIS runs the fastest for the input strings not larger than
16 GiB, but it is slower than SAIS-PQ+ for the only two input strings
of 32 and 48.44 GiB. For the average peak disk requirements, eSAIS and
SAIS-PQ+ are around 23n and 15n bytes, respectively.

Keywords: Suffix array · Sorting algorithm · External memory

1 Introduction

During the past two decades, a plethora of suffix array construction algorithms
(SACAs) have been proposed [11]. Most of SACAs assume that the input string
T is completely stored in the internal memory, so that the characters of T can be
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randomly accessed for constructing the suffix array (SA). To meet the demand
for building a big SA, a number of external memory SACAs have been proposed,
such as DC3 [2], bwt-disk [5], SAscan [6], eSAIS [1], EM-SA-DS [9] and DSA-
IS [8]. Among them, the last 3 algorithms commonly adopt the induced sorting
principle of the internal memory algorithm SA-IS [10], and achieve better time
and space results than the others in the conducted experimental studies.

A key operation in the process of induced sorting suffixes is to access the
preceding character of a sorted suffix. This can be easily done if T is completely
stored in the internal memory, but becomes difficult when T is stored in the
external memory. In the latter case, random accesses to T must be avoided as
most as possible for high I/O efficiency, which recently has been attempted by
different methods in eSAIS [1], EM-SA-DS [9] and DSA-IS [8]. Specifically, the
former two split variable-size LMS-substrings (defined in Section 2) into fixed size
tuples, and restore the characters of an LMS-substring on the fly, by retrieving
its tuples one by one that is guaranteed to be available in the internal memory
when it is needed. However, the latter divides T into blocks, compute the SA
of each block in the internal memory one by one, then merge all of them in the
external memory to produce the final SA.

While eSAIS, EM-SA-DS and DSA-IS have already achieved remarkable per-
formance in terms of speed and I/O complexity, they are still facing of at least
two drawbacks: (1) In their current implementations in C++, the core algorith-
mic part of each is coded in thousands of lines, this makes it challenging to
be revised for a specific application. (2) The space requirement remains rather
heavy, e.g., the average peak disk requirement is over 20n bytes for n < 240.
To overcome these drawbacks, we re-investigate the problem of induced sort-
ing suffixes in external memory and propose a new algorithm SAIS-PQ (SAIS
with Priority Queue) and its enhanced alternative SAIS-PQ+. Using the library
STXXL [3,4], the core algorithmic parts of SAIS-PQ and SAIS-PQ+ are coded
in around 800 and 1600 lines in C++, respectively. The time and space per-
formance of these two programs are evaluated in comparison with eSAIS that
is also implemented using STXXL. In our experiment, eSAIS runs the fastest
for the input strings not larger than 16 GiB, but it is slower than SAIS-PQ+
for the only two input strings of 32 and 48.44 GiB. For the average peak disk
requirements, eSAIS and SAIS-PQ+ are around 23n and 15n bytes, respectively.

The other sections are organized as follows. Section 2 gives the preliminaries,
Section 3 the algorithms, Section 4 the performance evaluation experiments and
Section 5 the conclusions.

2 Preliminaries

Consider an input string T = T [0]T [1] . . . T [n − 1] of n symbols over an ordered
alphabet Σ

⋃{$}. The first n − 1 symbols are from Σ and T [n − 1] = $ is the
sentinel which is lexicographically smaller than any character in Σ. Let T [i, j]
denote the substring of T running from T [i] to T [j], a suffix suf(T, i) = T [i, n−1]
is a substring that starts at position i and ends at position n − 1. The following
definitions and notations are used for presentation convenience.
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– Suffix array (SA) and inverse suffix array (ISA). The suffix array SA[0, n−1]
of T is a permutation of integers in [0, n) such that suf(T, SA[0]) <
suf(T, SA[1]) . . . < suf(T, SA[n − 1]) are in increasing lexicographical order.
The inverse suffix array of T is ISA, where ISA[SA[i]] = i for all i ∈ [0, n).

– S-type, L-type, LMS character. For i ∈ [0, n), T [i] is S-type, if (1) i = n − 1,
or (2) T [i] < T [i+1], or (3) T [i] = T [i+1] and T [i+1] is S-type; otherwise,
T [i] is L-type. Moreover, T [i] is an LMS (left most S-type) character, if T [i] is
S-type and T [i− 1] is L-type. The first character is never an LMS character.

– S-type, L-type, LMS suffix/substring. For i ∈ [0, n), suf(T, i) is an S-type,
L-type or LMS suffix, if its heading character T [i] is S-type, L-type or LMS,
respectively. For 0 ≤ i ≤ j < n, T [i, j] is an LMS substring, if T [i] and T [j]
are LMS and there is no other LMS character in T [i, j]. Given T [i, j] is an
LMS substring and k ∈ [i, j), T [k, j] is an S- or L-type substring if T [k] is
S- or L-type, respectively.

– Bucket in SA. The suffixes of an identical heading character occupy a con-
tiguous interval in SA, where L- and S-type suffixes are gathered to the left
and right sides of the interval, respectively. We split SA into one or multiple
buckets. For example, for one character c ∈ Σ

⋃{$}, bucket(c) contains the
suffixes starting with character c.

– Preceding character. For i ∈ [1, n − 1], the preceding character T [i − 1] of
T [i] or suf(T, i) is denoted by prec(T, i).

2.1 Preceding Cache Item and Preceding Cache Array

The difficulty for induced sorting suffixes in external memory is to obtain the pre-
ceding character of a sorted suffix without a random access to T in the external
memory. To overcome this difficulty, we introduce to the design of our algorithm
the following two data structures:

– Preceding cache item (PCI). For p ∈ [1, n − 1], if p = n − 1 or T [p] �=
T [p + 1], then the PCI of T [p] is a tuple 〈c0, p, t, c1, h〉, where c0 = T [p],
c1 = T [p − h − 1], t is the L/S-type of T [p] and h ≥ 0 is the maximum
integer such that the character(s) in T [p − h, p] are identical and different
from T [p − h − 1]. The PCI of T [p] is also referred as the PCI of suf(T, p).

– Preceding cache array (PCA). Stably sort all PCI 〈c0, p, t, c1, h〉 by 〈c0, p〉,
the sorting result is an array called the preceding cache array (PCA) of T ,
denoted by PCA(T ).

It should be mentioned that, the PCI tuple is different from the tuples defined
in eSAIS. In particular, h is essentially different from the “repetition count” in
eSAIS. Using PCA, the method for retrieving the preceding character of a sorted
suffix is straightforward. In principle, for each sorted suffix suf(T, p), we know
its 〈c0, p〉 and use it as the sorting key to find in PCA(T ) the PCI of the same
key for sorting the preceding suffix suf(T, p − 1). There is no need to divide an
LMS-substring into a number of fixed-size tuples as required for eSAIS, yielding
the simple design of our algorithm.
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2.2 Priority Queue in STXXL

STXXL is a C++ template library that implements a set of containers and
algorithms capable of processing massive data in external memory. The priority
queue (PQ) in STXXL has been successfully applied to implement the algo-
rithm eSAIS for inducing the suffix and LCP (longest common prefix) arrays in
external memory. The PQ can function as a minimum or maximum heap, where
the top element has the minimum or maximum priority, respectively. Similar
to eSAIS, our algorithm also uses a number of PQs as the underlying data
structures for induced sorting both suffixes and LMS-substrings. For this sake,
we call it SAIS-PQ (SAIS with PQ). In SAIS-PQ, by using PCA and PQ, the
same induced sorting method is applied to sort both substrings and suffixes for
reducing problem and inducing solution. This is similar to the internal memory
algorithm SA-IS. As a result, the design of SAIS-PQ is simple and natural to be
implemented. Moreover, the I/O, time and space complexities of SAIS-PQ are
amortized by using a PQ to sort O(n) integers.

3 The Algorithms

3.1 Algorithmic Framework

The algorithmic framework of SAIS-PQ is shown in Algorithm 1, and each step
is explained below.

PQ L or PQ S are two PQs with each element being a tuple 〈c0, t, r, p〉,
where c0 is the head character of suf(T, p), t the type of suf(T, p): 0 for L-type
and 1 for S-type, r the rank of suf(T, p).

The reduction phase of lines 4-7 computes the reduced string T1 from T .
First, it puts all the LMS suffixes into PQ S with the sorting key as 〈c0, 1, 0, p〉.
Then, it scans the elements of PQ S in their ascending order to sort all the
L-substrings into PQ L, and scans PQ L to sort all the LMS-substrings into
PQ S. In this step, when an LMS-substring is sorted, its name is also computed
by our new naming algorithm given in Section 3.3. The names of all the sorted
LMS-substrings are then sorted back to their positional order in T to produce
the reduced string T1.

The recursion phase of lines 10-14 calls recursion if each character in T1 is
not yet unique, or else directly computes SA1 by sorting each suffix in T1 by its
head character. Given SA1, line 15 computes ISA1 by sorting each i by SA1[i],
this can be easily done by an integer sorter in STXXL.

Given ISA1, the induction phase of lines 18-20 computes SA from SA1. First,
each LMS-suffix of T is put into PQ S with r in 〈c0, t, r, p〉 being its rank given
by ISA1. Then, the elements of PQ S are scanned in their ascending order to
sort all the L-suffixes into PQ L, and scans PQ L to sort all the S-suffixes into
PQ S. Finally, SA is generated by scanning PQ L and PQ S once.
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3.2 Retrieving a Preceding Character

Given PCA(T ), it is simply an integer sorting task for retrieving the preceding
character of a sorted suffix. Due to the similarity between the processes of sort-
ing L- and S-suffixes, we explain the method for sorting L-suffixes only. When
scanning PQ S to sort all the L-suffixes, we scan the suffixes in PQ S bucket by
bucket, i.e. each L-suffix in a bucket is popped up and pushed into a temporary
PQ tmp with the sorting key as the position index of the suffix in T . As a result,
the suffixes in tmp are sorted in the same order as their PCIs in PCA(T ), and
we can sequentially retrieve from PCA(T ) the PCI for each suffix in tmp.

Algorithm 1. The algorithmic framework of SAIS-PQ
1 SAIS-PQ(T )
2 begin
3 /* Reduction */
4 create tuple 〈c0, 1, 0, p〉 for each LMS-suffix and put it into PQ S;
5 scan PQ S to sort and name each L-substring into PQ L;
6 scan PQ L to sort and name each S-substring;
7 sort all the LMS-substring’s names by the substring positions in T to get a

reduced string T1;
8

9 /* Recursion */
10 if each character in T1 is unique then
11 directly compute SA1 from T1;

12 else
13 compute SA1 by SAIS-PQ(T1);
14 end
15 compute ISA1 from SA1;
16

17 /* Induction */
18 create tuple 〈c0, 1, r, p〉 for each LMS-suffix and put it into PQ S;
19 scan PQ S to sort each L-suffix into PQ L;
20 scan PQ L to get SA;
21 return SA;

22 end

3.3 Naming Substrings

In order to reduce T to T1, naming all the sorted LMS-substrings is required. In
the existing algorithms such as eSAIS, EM-SA-DS and DSA-IS, this job is done
after all the LMS-substrings have been sorted, by retrieving and comparing the
substrings in their lexicographical order in different ways. However, SAIS-PQ
integrates this job into the process of induced sorting substrings, i.e. sorting and
naming of a substring are done simultaneously. This will not only improve the
algorithm’s performance, but also simplify the algorithm’s design.



88 W.J. Liu et al.

An LMS prefix [10], denoted by pref(T, i), is defined as T [i, j], i < j, satisfying
that T [j] is LMS and none in T [i + 1, j − 1] are. Furthermore, the LMS prefix is
called L- or S-prefix if its first character is L- or S-type, respectively.

As what is done in the internal memory algorithm SA-IS, we sort all the
LMS-substrings of T by reusing the space of SA to sort all the LMS prefixes.
The computation of the name for each LMS-substring is coupled into the process
for induced sorting all the substrings. For this purpose, we introduce a naming
tuple 〈c0, r0, r1〉 to each LMS prefix in SA[i], where c0 = T [SA[i]], and r0 and
r1 are used to record the names of the prefix pref(T, SA[i]) and its succeeding
prefix pref(T, SA[i] + 1), respectively.

Our naming algorithm given in Algorithm 2 is designed from the following
observation:

Observation 1. For i �= j, pref(T, i) = pref(T, j) if and only if T [i] = T [j] and
pref(T, i + 1) = pref(T, j + 1).

Algorithm 2. Algorithm for naming the LMS prefixes
(1) Set r = 0. Increase i from 0 to n − 1 to scan SA from left to right to sort all the

L-prefixes, and do the following for each scanned prefix in SA[i]:

(a) If pref(T, SA[i]) is L- or LMS-type, then: (1) set r = i if the tuple 〈c0, r1〉 for the
prefix in SA[i] is not equal to that in SA[i − 1]; (2) set r0 for the prefix in SA[i]
as r.

(b) If pref(T, SA[i] − 1) is L-type and sorted into SA[i1], i1 > i, then set r1 for the
prefix in SA[i1] as r0 for the prefix in SA[i].

(2) Set r = n − 1. Decrease i from n - 1 to 0 to scan SA from right to left to sort all the
S-prefixes, and do the following for each scanned prefix in SA[i]:

(a) If pref(T, SA[i]) is S-type, then: (1) set r = i if the tuple 〈c0, r1〉 for the prefix in
SA[i] is not equal to that in SA[i+ 1]; (2) set r0 for the prefix in SA[i] as r.

(b) If pref(T, SA[i] − 1) is S-type and sorted into SA[i1], i1 < i, then set r1 for the
prefix in SA[i1] as r0 for the prefix in SA[i].

The overall process of induced sorting LMS-substrings consists of two pro-
cesses for sorting L- or S-prefixes, respectively. The naming methods used in
these processes are given by Steps (1) and (2), respectively. In the processes for
induced sorting L- or S-prefixes, when we are scanning a sorted prefix in SA[i],
the name of this prefix is computed by comparing 〈c0, r1〉 in its naming tuple
〈c0, r0, r1〉 with that of the prefixes in SA[i − 1] or SA[i + 1] for induced sorting
L- or S-prefixes, respectively; then the name is stored in r0 of the naming tuple
of this prefix, and further recorded in r1 of the naming tuple of the preceding
prefix pref(T, SA[i] − 1) for later use.

The correctness of this naming algorithm is established on Observation 1. In
both steps, r1 in the naming tuple of pref(T, SA[i] − 1) is used to record r0 in
the naming tuple of pref(T, SA[i]), i.e. the name of pref(T, SA[i]). In step (1),
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r is used to record the name of the currently largest scanned L-prefix, which
is initialized as 0 and increasingly set as i when SA[i] stores a larger L-prefix
than all the scanned L-prefixes by so far. Analogously, in step (2), r is used to
record the name of the currently smallest scanned S-prefix, which is initialized
as n − 1 and decreasingly set as i when SA[i] stores a smaller S-prefix than all
the scanned S-prefixes by so far.

3.4 Further Improvements

The implementation of SAIS-PQ using STXXL is natural and simple, but its
time and space performance needs to be further enhanced. We improve SAIS-
PQ to be SAIS-PQ+ mainly by the following trick. In a PCI for suf(T, p), if
T [p] �= T [p−1] and T [p−1] �= T [p−2], then h is reused to store T [p−2]. Hence,
the PCI for suf(T, p − 1) is not needed to be included in PCA(T ) and its space
is saved.

Table 1. Input files, n in Gi, 1 byte per character.

Name n ‖Σ‖ Description
proteins 1.10 27 Swissprot database, at http://pizzachili.dcc.uchile.cl/

texts.html
uniprot 2.42 96 UniProt Knowledgebase release 4.0, at http://www.

uniprot.org/news/2005/02/01/release.
genome 2.86 6 Human genome data used in [2], at http://algo2.iti.kit.

edu/dementiev/esuffix/instances.shtml.
guten 3.05 256 Gutenberg collection used in [2], at http://algo2.iti.kit.

edu/dementiev/esuffix/instances.shtml.
random2 4.00 256 A concatenation of two copies of a string with characters

randomly selected from [0, 255], with a maximum LCP
of 2.0 GiB. The exact size of this file is 232 − 2 bytes.

genome2 5.72 6 A concatenation of two copies of the corpus “genome,”
with a maximum LCP of 2.86 GiB.

enwiki8g 8 256 The 8GiB prefix of enwiki1503.
guten1209 22.44 256 Gutenberg collection used in [1], at http://algo2.

iti.kit.edu/bingmann/esais-corpus/gutenberg-201209.
24090588160.xz.

enwiki1503 48.44 256 A dump of “enwiki-20150304-pages-articles-xml.bz2” for
the English Wikipedia, at http://meta.wikimedia.org/
wiki/Data dump torrents#enwiki.

4 Performance Evaluation

An experimental study has been conducted to evaluate the time and space per-
formance of SAIS-PQ, its enhanced alternative SAIS-PQ+ and eSAIS [1], where

http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
http://www.uniprot.org/news/2005/02/01/release
http://www.uniprot.org/news/2005/02/01/release
http://algo2.iti.kit.edu/dementiev/esuffix/instances.shtml
http://algo2.iti.kit.edu/dementiev/esuffix/instances.shtml
http://algo2.iti.kit.edu/dementiev/esuffix/instances.shtml
http://algo2.iti.kit.edu/dementiev/esuffix/instances.shtml
http://algo2.iti.kit.edu/bingmann/esais-corpus/gutenberg-201209.24090588160.xz
http://algo2.iti.kit.edu/bingmann/esais-corpus/gutenberg-201209.24090588160.xz
http://algo2.iti.kit.edu/bingmann/esais-corpus/gutenberg-201209.24090588160.xz
http://meta.wikimedia.org/wiki/Data_dump_torrents#enwiki
http://meta.wikimedia.org/wiki/Data_dump_torrents#enwiki
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Fig. 1. Construction times, I/O volumes and peak disk usages for the first 7 input data
in Table 1.

the files listed in Table 1 of different sizes and alphabets are used as the input
strings. The program for eSAIS is downloaded from its project website1, and
that for SAIS-PQ and SAIS-PQ+ were codes by ourselves. The machine in use
has the configuration as: 1 CPU (Intel(R) Core(TM) i3 3.07 GHz), 4 GiB RAM
(1333 MHz DDR3), 1 Disk (1.8 TiB, 7200 rpm, SATA2) and Linux (Ubuntu
11.04). In this disk, around 170 GiB is already occupied, i.e. the free space is
around 1.6 TiB. Each program is set to use at most 3 GiB RAM and 40-bit
integers. The performance metrics are the mean running time in microseconds
per character (μs/ch), mean I/O volume and peak disk usage in bytes per char-
acter (bytes/ch). The time of each program on an input file is a mean of 2 runs
to absorb fluctuations. All these 3 performance metrics were collected using the
statistics functions provided by STXXL, in a way similar to that in the pro-
gram for eSAIS. To be consistent with the results reported by the program
of eSAIS, the peak disk usage does not include the input string. To take into
account the input string, n bytes should be added to the maximum disk alloca-
tion recorded by STXXL, this translates to adding 1 byte to the peak disk usage
results reported here.

To see the effects of alphabet and LCP, Fig. 1 shows the experiment results
for the first 7 corpora. For each corpus, both the construction times and the I/O

1 http://panthema.net/2012/1119-eSAIS-Inducing-Suffix-and-LCP-Arrays-in-
External-Memory/.

http://panthema.net/2012/1119-eSAIS-Inducing-Suffix-and-LCP-Arrays-in-
External-Memory/
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Fig. 2. Construction times, I/O volumes and peak disk usages for the prefixes in GiB
of “enwiki1503” and “guten1209”.

volumes of SAIS-PQ and SAIS-PQ+ is about twice as that for eSAIS. However,
SAIS-PQ+ is more space-efficient. The peak disk usage of SAIS-PQ+ is only
about 15 bytes/ch, which is around 2/3 (i.e. 15/23=0.65) of that for eSAIS.
For each performance metrics, all the 3 programs vary in a similar trend. The
alphabet size has positive influences on the time and I/O volume results, e.g.,
the construction times for “guten”, “random2” and “enwiki8g” are larger than
that for the bioinformatics datasets of smaller alphabets. The LCP causes no
significant variations on the times and I/O volumes, as observed from the results
on “genome” and “genome2”. The peak disk usages randomly vary for differ-
ent datasets without a predictable trend, indicating that it is independent of
alphabet and LCP.
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To investigate the scalability, Fig. 2 shows the experiment results on the pre-
fixes of “enwiki1503” and “guten1209”. The best peak disk usages are always
achieved by SAIS-PQ+, which remains stable as about 15 bytes per character.
The peak disk usages of eSAIS remains around 23 bytes per character for pre-
fixes not more than 16 GiB, but jumps to 27 bytes for the 32 GiB prefix of
“enwiki1503”. Compared to the other two, SAIS-PQ is much slower and hence
was not run on the prefixes of “enwiki1503” beyond 16 GiB. We also ran SAIS-
PQ+ on “enwiki1503” and got the performance similar to SAIS-PQ+ on the 32
GiB prefix of “enwiki1503”. However, we failed to run eSAIS on “enwiki1503”
due to insufficient disk space. For each prefix, the best I/O volume is always
achieved by eSAIS, which is less than half of that for both SAIS-PQ and SAIS-
PQ+. Correspondingly, eSAIS runs the fastest for the prefixes from 1 to 8 GiB,
in a running time less than half of that for the other two. However, for the
longer prefixes, the time gaps between eSAIS and SAIS-PQ+ are shrinked. For
the 16 GiB prefix of “guten1209”, the time gap is around 2/3 of that for the 8
GiB prefix. For the 16 GiB prefix of “enwiki1503”, the time of eSAIS shoots up,
but that for SAIS-PQ+ still increases smoothly at a stable rate, and the time
gap between eSAIS and SAIS-PQ+ becomes negligible. For the 32 GiB prefix of
“enwiki1503”, the time ratio between eSAIS and SAIS-PQ+ is about 10:7, i.e.
eSAIS is overtaken by SAIS-PQ+ in this case. At this point, however, the I/O
volume of eSAIS keeps about half of that of SAIS-PQ+. This indicates that in
this case, instead of the I/O volume, some other factors in eSAIS become time
consuming and the speed bottleneck. To investigate the reason, we conduct an
experiment as follows.

Table 2. Times and I/O volumes in the reduction and induction phases of eSAIS and
SAIS-PQ+.

Corpus Algorithm
Time (in Seconds) I/O volume (in GiB)

Reduction Induction Total Reduction Induction Total

enwiki4g
eSAIS 3458 9168 12626 139 588 727

SAIS-PQ+ 12086 15605 27691 753 880 1633

enwiki32g
eSAIS 29038 325418 354456 1081 6651 7732

SAIS-PQ+ 127713 113870 241583 7538 7115 14653

Table 2 shows the times and I/O volumes for the reduction and induction
phases of eSAIS and SAIS-PQ+ on the 4 and 32 GiB prefixes of “enwiki1503”,
i.e. “enwiki4g” and “enwiki32g”. In the reduction phase, for both input files, the
times and I/O volumes of eSAIS are far better than that of SAIS-PQ+, i.e., the
time and I/O volume ratios between two algorithms are about 1:4. This is due
to the different approaches for sorting LMS-substrings in the reduction phase.
Specifically, eSAIS calls the in-place radix sort [7] for ASCII strings and gcc-4.4
STL’s version of introsort for larger data types (i.e. 40-bit integers), while SAIS-
PQ+ employs the induced sorting method. In the induction phase, for both
input files, the I/O volumes for both algorithms are quite close while eSAIS
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is better, because both algorithms sort the suffixes using the induced sorting
principle in two different ways. However, the better I/O volumes of eSAIS do
not guarantee faster speeds. For example, eSAIS runs faster than SAIS-PQ+ for
“enwiki4g”, but slower than SAIS-PQ+ for “enwiki32g”. This indicates that the
time performance of the induced sorting method used by SAIS-PQ+ might be
more stable for our experimental platform.

5 Conclusions

We present in this paper an algorithm SAIS-PQ and its enhanced alternative
SAIS-PQ+ to extend the internal memory algorithm SA-IS to the external mem-
ory model. This algorithm is natural and simple to be implemented using the
STXXL library, and its I/O, time and space complexities are amortized by using
a PQ to sort O(n) integers. In our programs for SAIS-PQ and SAIS-PQ+ used
in the experiments of this paper, the core algorithmic parts are composed of
around 800 and 1600 lines in C++, respectively. Such programs are feasible
and flexible to be revised for a specific application in practice. Another distinct
advantage of the proposed algorithm is that it is more space efficient compared
to the existing external algorithms using the induced sorting principle, i.e. the
peak disk usage for SAIS-PQ+ is only about 15 bytes per character for n < 240.
This makes it a competitive candidate for applications where the disk space is a
main concern. The I/O volumes of both SAIS-PQ and SAIS-PQ+ are quite large
and constitute the speed bottlenecks. We are currently seeking ways to overcome
this problem. Meanwhile, we are also employing the techniques developed in this
work to optimize the design and implementation of the DSA-IS algorithm [8] for
more promising time and space performance.
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Abstract. We consider a family of strings called closed strings and a
related array of Longest Closed Factors (LCF). We show that the recon-
struction of a string from its LCF array is easier than the construc-
tion and verification of this array. Moreover, the reconstructed string is
unique. We improve also the time of construction/verification, reducing it
from O(n logn/ log log n) (the best previously known) to O(n

√
logn). We

use connections between the LCF array and the longest previous/next
factor arrays.

1 Introduction

A closed string is a string with a proper (possibly empty) factor that occurs
in the string as a prefix and as a suffix, but not elsewhere. For example, a,
abaab, and ababababa are closed strings (with the corresponding factors ε, ab,
and abababa), whereas abaca and abc are not. Closed strings were first defined
by Fici in [8] and since then have found applications, mostly in the field of
combinatorics on words. Closed prefixes of Sturmian words were studied in [10].
A relation between closed factors and palindromic factors of a string was studied
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J. Radoszewski and T. Waleń—Supported by the Polish Ministry of Science
and Higher Education under the ‘Iuventus Plus’ program in 2015-2016 grant no
0392/IP3/2015/73.
J. Radoszewski—Receives financial support of Foundation for Polish Science.
W. Rytter—Supported by the Polish National Science Center, grant no 2014/13/
B/ST6/00770.

c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 95–102, 2015.
DOI: 10.1007/978-3-319-23826-5 10



96 H. Bannai et al.

in [3]. The first algorithmic study of closed factors and closed factorizations was
presented in [2].

The longest closed factor array (LCF array) of a string X stores for every
suffix of X the length of its longest closed prefix. It was introduced in [2] in
connection with closed factorizations of a string. In [2] an O(n log n/ log log n)-
time algorithm for computing this array for a string of length n was presented.
Here we consider the problem of reconstructing a string from its LCF array.

We show that a (correct) LCF array corresponds to exactly one string, up
to a permutation of the alphabet. We present an O(n)-time randomized and an
O(n min(log |Σ|, log log n+ log2 log |Σ|

log log log |Σ| ))-time deterministic algorithm for recon-
structing such a string if it exists. Here Σ is the alphabet of the string. Finally
we present an O(n

√
log n)-time construction algorithm for LCF array which

improves the algorithm of [2]. We use it for verification of the LCF array,
that is, for checking if it corresponds to any string. As a by-product we obtain
O(n

√
log n)-time computation of the so-called closest (rightmost) Longest Pre-

vious Factor array. The complexity of the LCF construction algorithm depends
on the assumption of a linearly sortable alphabet of the input string.

2 Preliminaries

Let X be a string of length n composed of characters X[1], . . . , X[n]. We
denote |X| = n. By X[i..j] we denote a factor of X consisting of the letters
X[i], . . . , X[j]. A factor is called a prefix (suffix) of X if i = 1 (j = n respec-
tively). A factor is called proper if i > 1 or j < n. If i > j then the factor is
assumed to be the empty string ε. A border of X is a factor of X that occurs as
a prefix and as a suffix of X. By border(X) we denote the length of the longest
proper border of X.

The string X is called closed if it has a proper border that does not occur
elsewhere in X. In particular, every single-letter string is closed. It is easy to
see that a string is closed if and only if its longest proper border does not occur
elsewhere in X. The longest closed factor array of X is an array LCF [1..n] such
that LCF [i] is the length of the longest prefix of X[i..n] that is closed. We denote
by lcf [i] the factor X[i..i + LCF [i] − 1].

The longest next factor array of X is an array LNF [1..n] such that LNF [i]
is the length of the longest prefix of X[i..n] that is a factor of X[i + 1..n]. We
denote by lnf [i] the factor X[i..i + LNF [i] − 1].

Example 1. X = abaabababbabbb has the following LCF and LNF arrays:

position i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X[i] a b a a b a b a b b a b b b

LCF [i] 6 5 2 6 5 4 7 6 5 3 1 3 2 1
LNF [i] 3 2 1 4 3 2 4 3 2 1 0 2 1 0

Here the lcf [ ] array is as follows: [abaaba, baaba, aa, ababab, babab, abab,
babbabb, abbabb, bbabb, bab, a, bbb, bb, b].
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LCF [i]

LNF [i]
next[i]

i

Fig. 1. Illustration of LCF , LNF and next arrays. Here LCF [i] = |lcf [i]| is the length
of the longest closed factor starting at position i and LNF [i] = |lnf [i]| is the length of
the longest factor starting at position i that occurs to the right of position i.

3 Reconstruction Algorithm

In this section we show efficient reconstruction of a string from its LCF array.
It is based on uniqueness of the output.

3.1 Uniqueness of Reconstruction

The following fact shows a correspondence between longest closed factors and
longest next factors. We denote next [i] = i + LCF [i] − LNF [i]; see Fig. 1.

Lemma 2. The longest proper border of lcf [i] is lnf [i].

Proof. Let � = border(lcf [i]) and t = i + LCF [i] − � (t > i). X[i..i + � − 1]
occurs also at the position t in X. Therefore, by the definition of the longest
next factor, � ≤ LNF [i]. We will show that � = LNF [i]. Assume to the contrary
that � < LNF [i]. Let j be the first position greater than i where lnf [i] occurs in
X. Consider the factor Y = X[i..j + LNF [i] − 1].

Claim. Y is closed.

Proof. Y has a border lnf [i]. Moreover, it is its longest border, as any longer
border would imply a next factor longer than lnf [i]. By the definition of j, the
string lnf [i] occurs exactly twice in Y . Hence, Y is a closed factor of X. ��
Claim. |Y | > LCF [i].

Proof. We have |Y | = j +LNF [i]− i and LCF [i] = t+ �− i. By the assumption,
LNF [i] > �. The longest proper border of lcf [i] is a prefix of lnf [i] and so occurs
at position j. If j < t, then this would mean the third occurrence within lcf [i],
which is impossible. Hence, j ≥ t. Consequently, |Y | > LCF [i]. ��
We conclude that Y is a closed factor longer than lcf [i], a contradiction. ��

We proceed with the first algorithm for recovering a string X from its LCF
array. The algorithm is simple for positions i where LCF [i] = 1.

Fact 3. The number of distinct letters of X equals the number of 1-entries in its
LCF array. Moreover, each i such that LCF [i] = 1 corresponds to the rightmost
occurrence of one of the letters in X.
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If LCF [i] > 1 then X[i] can be recovered from one of following positions in
X using the function below.

Algorithm ComputeSingleSymbol(i)
Input: X[i + 1..n], LCF [i..n]
Output: X[i]
bord := border(X[i + 1..i + LCF [i] − 1]);
X[i] := X[i + LCF [i] − 1 − bord ];

In the correctness proof of the function we use the following auxiliary lemma.

Lemma 4. If LCF [i] > 1 then border(X[i + 1..i + LCF [i] − 1]) = LNF [i] − 1.

Proof. Let S = X[i + 1..i + LNF [i] − 1] and T = X[i + 1..i + LCF [i] − 1].
By Lemma 2, lnf [i] is a border of lcf [i]. Hence, S is a border of T . Assume
to the contrary that T has a longer proper border S′. Then lnf [i] = X[i]S
is a suffix of S′, as it is a suffix of T . Hence, lnf [i] occurs also at position
i+1+ |S′| −LNF [i] < i+LCF [i]−LNF [i] = next [i], which contradicts the fact
that lcf [i] is closed. ��
Lemma 5. Assume LCF [i] > 1. Then the function ComputeSingleSymbol cor-
rectly computes X[i].

Proof. By Lemma 4, we have bord = LNF [i] − 1. Consequently, next [i] = i +
LCF [i] − 1 − bord , which yields the correctness of the function. ��
Fact 3 and Lemma 5 show that a string can be restored from its LCF array.

Theorem 6. If there exists a string with the given LCF array then it is uniquely
determined up to permutation of the corresponding alphabet.

Proof. For each position i such that LCF [i] = 1 we introduce a unique letter
X[i]. For each of the remaining positions, X[i] can be determined from the
following letters using function ComputeSingleSymbol. ��
The algorithm of Theorem 6 is not efficient yet. In the following section we
introduce an additional combinatorial fact and algorithmic tools that make the
solution efficient.

3.2 Efficient Reconstruction

In the reconstruction algorithm we compute the string X together with the
corresponding LNF array. We use the following crucial fact.

Lemma 7. For every 1 ≤ i < n, LNF [i] ≤ LNF [i + 1] + 1.
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Proof. Assume to the contrary that for some i, LNF [i] > LNF [i + 1] + 1. Recall
that lnf [i] occurs at position next [i] in X. This concludes that the string Y =
X[i + 1..i + LNF [i] − 1] of length LNF [i] − 1 > LNF [i + 1] occurs at position
next [i] + 1 > i + 1. This contradicts the definition of LNF [i + 1]. ��

In the pseudocode of algorithm Reconstruction we use Lemma 7 on top of
the reconstruction algorithm from the previous section, based on function Com-
puteSingleSymbol. The alphabet of the reconstructed string is {1, 2, . . .}.

Algorithm Reconstruction
Input: LCF [1..n] array
Output: the corresponding string X[1..n]
bord := 0;
for i := n downto 1 do

{ Invariant: If i < n then bord = LNF [i + 1]. }
if LCF [i] = 1 then

X[i] := NewLetter();
bord := 0; { LNF [i] = 0 }

else

{ Efficient implementation of ComputeSingleSymbol(i) }
while X[i + 1..i + bord ] �= X[i + LCF [i] − bord ..i + LCF [i] − 1] do

{ bord > border(X[i + 1..i + LCF [i] − 1]) }
bord := bord − 1;

X[i] := X[i + LCF [i] − 1 − bord ];
bord := bord + 1; { LNF [i] = bord }

return X;

Clearly, the total number of steps of the while-loop in the algorithm Recon-
struction is at most n. Hence, the time complexity of the algorithm depends on
how fast we can check equality of two factors of a string, with the letters of the
string being appended on-line from right to left.

Theorem 8. A string of length n over alphabet Σ can be reconstructed from
its longest closed factor array with an O(n)-time randomized algorithm or an
O(n min(log |Σ|, log log n + log2 log |Σ|

log log log |Σ| ))-time deterministic algorithm.

Proof. For the randomized algorithm, we use Karp-Rabin fingerprinting (see e.g.
[6]) to check equality of factors of the string given on-line in O(1) time.

For the deterministic algorithm, we use one of the incremental suffix tree
constructions. The first one is the algorithm by Blumer et al. [4] which computes
suffix trees for growing suffixes of the string in O(n log |Σ|) total time. The
other comes from a recent paper by Fischer and Gawrychowski [9], where the
authors show how to update the suffix tree in O(log log n + log2 log |Σ|

log log log |Σ| ) time
after prepending a character (see Corollary 4 and Theorem 5 in [9]). Finally,
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given a suffix tree, determining equality of factors reduces to LCA-computation.
This can be done, however, with O(1) overhead using LCA queries for a dynamic
tree; see [5]. ��

Theorem 8 provides an efficient reconstruction algorithm from the LCF array
only if the corresponding string exists. Otherwise the reconstruction algorithm
may fail or reconstruct a string which does not have the given LCF array. In
the latter case it suffices to construct its LCF array and check if it matches the
input LCF array. We deal with this case in the following section.

4 LCF Array Computation and Verification

A successor of an integer x in a set X is defined as succ(x,X) = min{y ∈
X : y > x}. For an integer array A[1..n], a range successor query consists in
computing succ(x, {A[i], . . . , A[j]}) for any 1 ≤ i ≤ j ≤ n. Babenko et al. ([1],
Section 2.5) show the following result:

Lemma 9 ([1]). A collection of q range successor queries in an array of length
n can be answered offline in O((n + q)

√
log n) time.

As shown in [2], computation of the LCF array reduces to O(n) range suc-
cessor queries in the suffix array of the string. Hence, we can use Lemma 9 to
improve the running time of both LCF array computation and verification.

lnf [i]

. . . . . .

SUF [p..q]

Fig. 2. Illustration of the formula next [i] = succ(i,SUF [p..q]). To compute next [i], we
need to find the first occurrence of lnf [i] after the position i.

Theorem 10.
(a) The LCF array of a string can be computed in O(n

√
log n) time.

(b) Verification of LCF array can be done in O(n
√

log n) randomized time or
O(n(

√
log n + log2 log |Σ|

log log log |Σ| )) deterministic time.
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Proof. For the start, recall that a suffix tree of a string (that is, a compact trie of
its suffixes) over a linearly-sortable alphabet can be constructed in O(n) time [6].

We reformulate the algorithm of [2]. Recall that LCF [i] = LNF [i]+next [i]−i.
The LNF array, together with the nodes of the suffix tree corresponding to lnf [i],
can be computed in O(n) time; see Lemma 6 in [2]. Let SUF [p..q] be the sequence
of leaves in the suffix tree corresponding to the subtree corresponding to lnf [i].
Then next [i] = succ(i, {SUF [p], . . . ,SUF [q]}); see Fig. 2.

Thus Lemma 9 implies an O(n
√

log n)-time algorithm for computing LCF
array. Part (b) follows from part (a) and Theorem 8. ��

5 Final Remarks

For a string X of length n, the longest previous factor (LPF ) array and the clos-
est longest previous factor (prev) array are defined as follows. For i = 1, . . . , n,
LPF [i] is the maximum � such that X[j..j + � − 1] = X[i..i + � − 1], for
some j < i. For i = 1, . . . , n, prev [i] is the maximum j < i such that
X[j..j + LPF [i] − 1] = X[i..i + LPF [i] − 1]. Note that the LPF array is not
the same as the LNF array of the reversed string.

The LPF array can be computed in O(n) time [7]. Using exactly the same
approach as in Section 4 but with range predecessors instead of range successors,
we obtain the following result:

Theorem 11. The closest longest previous factor array prev of a string of
length n can be computed in O(n

√
log n) time.

Our Theorem 6 provides an example of a unique reconstruction of a string
from its closed factors. Another example is Theorem 9 in [10], which states that
every (finite or infinite) Sturmian word is uniquely determined, up to isomor-
phisms of the alphabet, by its sequence of open and closed prefixes. Both results
are quite independent (none follows from the other).
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Abstract. RDF has become a standard format to describe resources in
the Semantic Web and other scenarios. RDF data is composed of triples
(subject, predicate, object), referring respectively to a resource, a prop-
erty of that resource, and the value of such property. Compact storage
schemes allow fitting larger datasets in main memory for faster process-
ing. On the other hand, supporting efficient SPARQL queries on RDF
datasets requires index data structures to accompany the data, which
hampers compactness. As done for text collections, we introduce a self-
index for RDF data, which combines the data and its index in a single
representation that takes less space than the raw triples and efficiently
supports basic SPARQL queries. Our storage format, RDFCSA, builds
on compressed suffix arrays. Although there exist more compact repre-
sentations of RDF data, RDFCSA uses about half of the space of the raw
data (and replaces it) and displays much more robust and predictable
query times around 1–2 microseconds per retrieved triple. RDFCSA is 3
orders of magnitude faster than representations like MonetDB or RDF-
3X, while using the same space as the former and 6 times less space than
the latter. It is also faster than the more compact representations on
most queries, in some cases by 2 orders of magnitude.

1 Introduction

The amount of data publicly available on the Web has been growing steadily over
the years. Many valuable resources are included in this gigantic repository, but
in many cases they are underutilized because of the lack of a common storage
format that allows those resources be automatically identified and accessed. The
Web of Data is an effort to structure the data published by resource providers in
a way that it can be discovered and used under a standard protocol in automatic
form. The Web of Data builds on the principles of the Semantic Web [9].

The Resource Description Framework (RDF) [19] provides a simple and pow-
erful way to structure and link data. It uses triples (subject, predicate, object) to
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model knowledge, in such a way that a value (object) for a property (predicate)
of a given resource (subject) is represented. The adoption of RDF by the W3C
as the recommended format to publish information [1] has boosted the growth
of RDF repositories and RDF management systems that make up the basis of
the current Web of Data. Those systems not only store the RDF data, but they
also support queries on it via the SPARQL query language [23].

The increasing interest in the management of RDF repositories (also called
RDF stores) is witnessed by the various storage schemes proposed in recent years,
which go from those based on relational databases [25] to native solutions such as
BITMAT [6], RDF-3X [22], HEXASTORE [26], MonetDB [2], or WaterFowl [12].
As the RDF repositories grow in size, scalability issues challenge the use of RDF
storage schemes [18]. A recent work (K2Triples) [4] succeeded at reducing both
the space usage of previous techniques and their performance to answer basic
SPARQL queries: the so-called basic graph patterns that make up the primitive
SPARQL operations and the algorithms for merge and join.

In this paper we introduce another storage scheme we call RDFCSA. It is
based on Sadakane’s Compressed Suffix Array (CSA) [24], which can represent
a text collection in compressed space while supporting pattern searches on it.
We modify the CSA so as to index a set of triples in a way that all the basic
graph patterns of SPARQL boil down to pattern searches on the modified CSA.
The result is a representation that uses about twice the space of K2Triples, but
it is faster in most queries, up to 2 orders of magnitude in some cases, which
include the most common ones in real-life SPARQL queries [5]. Compared to
other representations, RDFCSA uses about the same space as MonetDB and 6
times less than RDF-3X, and it is 3 orders of magnitude faster than both.

2 Basic Concepts

2.1 State of the Art: K2Triples

A RDF dataset can be seen as a set R of triples (s, p, o) where s, p, and o
are respectively a subject, a predicate, and an object. It can also be seen as a
connected graph where subjects and objects are nodes that are connected via
arcs labeled by a given predicate [19]. Figure 1 shows an example with (not
really) fictitious data about the SPIRE conference and some attendants. In the
left part, we show the source triples and the underlying RDF graph.

K2Triples [4] tackles the scalability problem of RDF datasets by focusing in
reducing their space usage. The authors used two main areas:

(a) Reducing the size of the representation of the strings in the triples through
a compressed string dictionary [20,6,14]. Each original triple is then repre-
sented by a triple of integer ids provided by the dictionary. The right part
of Figure 1 depicts the dictionary organization used, and the final set of
id-based triples.

(b) Representing the id-based triples in a compact (and indexed) way. The fact
that the number of predicates (np) in a RDF dataset is typically very small
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is exploited by K2Triples, which resorts to vertical partitioning [3]: for each
predicate, it stores the subjects that are connected to each object. Each such
binary relation is generally sparse, so it is represented with a compact k2-tree
data structure [10], which performs well on those relations. The k2-tree of
each predicate can efficiently list the subjects related to a given object or the
objects related to a given subject.

Simple graph patterns are the most basic SPARQL queries. They are triples
where each component can be fully specified as a string (S, P , or O) or left
unspecified or “unbounded” (?S, ?P , or ?O). Such a pattern matches all triples
where the specified strings match. For example, in Figure 1, pattern (?S, attends,
SPIRE) returns the 3rd, 4th and 5th triples listed on “Original RDF Triples”.

Due to the vertical partitioning of K2Triples, patterns with a fixed predicate,
that is, (S, P,O), (?S, P,O), (S, P, ?O), and (?S, P, ?O), can be efficiently solved
within a unique k2-tree, whereas patterns with unbounded predicate ((S, ?P,O),
(?S, ?P,O), (S, ?P, ?O), and (?S, ?P, ?O)) would involve accessing all the np

k2-trees. The K2Triples structure partially overcomes this issue by adding two
auxiliary indexes, SP and OP , that respectively keep which subjects (s) or objects
(o) occur in a triple related to each predicate p. Indexes SP and OP yield large
speedups, while typically costing 20%–30% further space.

K2Triples is shown to improve the space of the best state-of-the-art alterna-
tives by a factor of 1.5–12, whereas it matches or outperforms them all in simple
graph patterns [4].

2.2 Compressed Suffix Arrays

Given a string S[1, n] over alphabet Σ = [1, σ], the suffix array A[1, n] is a
permutation of [n] so that S[A[i], n] is the ith lexicographically smallest suffix
in S. Thus the range of suffixes starting with a search pattern α[1,m] (i.e., the
occurrences of α in S) can be binary searched in A in time O(m log n).

Sadakane’s CSA [24] represents S and A using two structures (plus others
that we ignore in this paper). The first is a bitmap D[1, n], where the 1s mark
the first suffixes starting with each distinct symbol in A (i.e., D[i] = 1 iff i = 1
or S[A[i]] �= S[A[i − 1]]). The second CSA structure is the array Ψ [1, n], where

Fig. 1. Example of RDF graph and dictionary encoding in K2Triples. SO entries in
the Dictionary represent terms that act as both subjects and objects in some triples.
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Ψ [i] = A−1[(A[i] mod n) + 1]. That is, if A[i] = j points to the suffix S[j, n],
then A[Ψ [i]] = j + 1 points to the next text suffix, S[j + 1, n].

In this paper we assume that every symbol in Σ appears at least once in S.
Then S[A[i]] = rank1(D, i), where rank1(D, i) is the number of 1s in D[1, i].
Moreover, S[A[i]+1] = S[A[Ψ [i]]] = rank1(D,Ψ [i]), and in general S[A[i]+ j] =
rank1(D,Ψ j [i]). Operation rank can be solved in constant time after building
an o(n)-bit structure on D [11]. Therefore, D and Ψ are sufficient to extract any
string S[A[i], A[i]+m−1] in time O(m). As a result, the binary search on A can
be simulated on D and Ψ in the same O(m log n) time, and the first � symbols
of any matching suffix can be extracted in O(�) time as well. Array Ψ can be
stored in nH0(S)+O(n log H0(S)) ≤ n log σ+O(n log log σ) bits while supporting
constant-time access, where H0(S) is the zero-order empirical entropy of S [24].
Array Ψ is compressible because it is formed by σ increasing subsequences, which
can be differentially encoded using δ-codes. By giving special codes to the runs of
consecutive 1s in the differences, the space gets closer to higher-order entropies
of S [21]. Sampled Ψ values at regular intervals yield fast random access to Ψ .

Our RDFCSA is based on the integer-based CSA (iCSA)1 [13], which is a
variant Sadakane’s CSA that is optimized for large (integer-valued) alphabets.
The iCSA reaches the best compression when using truncated Huffman coding
of differences and run lengths.

3 RDFCSA: A Compressed Suffix Array for RDF

An RDF collection is a set R of triples (s, p, o) where s, p, and o are respectively
a subject, a predicate, and an object. We use the same dictionary encoding as
in previous work [4] so that from now on the triple components s, p, and o are
regarded as integer ids in the ranges s ∈ [1, ns], p ∈ [1, np], and o ∈ [1, no].

3.1 Structure

The first step to build our RDFCSA is to create an ordered list with the n triples
from R, and regarding it as a sequence Sid[1, 3n] with 3n elements. Since the
order is not relevant in a set of triples, we sort them by object, then by predicate
and finally by subject. We obtain a sequence of integers Sid[1, 3n] = 〈s1, p1, o1,
s2, p2, o2, . . . , sn, pn, on〉.

To have disjoint subalphabets Σs, Σp, and Σo for the ns subjects, the np

predicates, and the no objects, we set an array gaps[0, 2] = [0, ns, ns + np] and
convert sequence Sid[1, 3n] to S[1, 3n], where S[i] = Sid[i]+gaps[(i−1) mod 3]).
Sequence S ranges over alphabet Σ = [1, ns + np + no], where values [1, ns] are
reserved to subjects, [ns + 1, ns + np] to predicates, and the rest to objects. We
can obviously recover the original triples from S. Then, we build an iCSA on S.

Due to our alphabet mapping, every subject is smaller than every predicate,
and this in turn is smaller than every object. Then, the suffix array A of S will

1 http://vios.dc.fi.udc.es/indexing/wsi/

http://vios.dc.fi.udc.es/indexing/wsi/
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have three ranges: As = A[1, n], Ap = A[n + 1, 2n] and Ao = A[2n + 1, 3n]
where each range points to suffixes starting with a subject, a predicate, or an
object, respectively. Array Ψ also has three separate ranges. Entries in Ψ [1, n] will
contain values in the range [n+1, 2n] (corresponding to the range of predicates).
Entries in Ψ [n + 1, 2n] will contain values in the range [2n + 1, 3n] (of objects).
Finally, entries in Ψ [2n+1, 3n] will contain values in the range [1, n] (of subjects).

In a regular CSA, if A[i], for i ∈ [2n + 1, 3n], points to the object (third
component) of the kth triple of S (i.e., A[i] = 3k), then j = Ψ [i] will indicate the
position such that A[j] points to the subject (first component) of the (k + 1)th
triple in S (i.e., A[j] = 3k +1). This is the key feature that allows traversing the
string S virtually using Ψ .

For our purposes, it is more useful that Ψ cycles around the components of
the same triple, instead of advancing to the next one. The RDFCSA modifies
array Ψ so that values in Ψ [2n + 1, 3n] point not to the subject of the next triple
in S, but to the subject of the same triple. Given the way we have sorted the
triples in S, it turns out that A[i] = 3(i − 1) + 1, and therefore all we have to
do to make Ψ cycle through the same triples is to set Ψ [i] ← Ψ [i] − 1 for all
i ∈ [2n + 1, 3n] (or Ψ [i] ← n if Ψ [i] = 1).

With this modified Ψ we can start at the position A[i] pointing to any place
inside a triple (s, p, o) and recover the triple by successive applications of Ψ .
For example, if A[i] points to p, then p = rank1(D, i), o = rank1(D,Ψ [i]), and
s = rank1(D,Ψ [Ψ [i]]). If we take Ψ once more we return to i = Ψ [Ψ [Ψ [i]]]. In
particular, we can retrieve the kth triple of S by starting the process from A[i],
which we know points to the subject because i ∈ [1, n]. This property will also
allow us reduce any simple graph pattern query to the search for a short pattern
in S using the CSA, and then extract the contents of the resulting triples.

Figure 2 shows the final structure of a RDFCSA created over the ten triples
included in Figure 1. In this case we have n = 10, ns = 5, np = 6, and no = 5.
The first of the sorted set of source triples is Sid[1, 3] = (1, 2, 5), the second is
Sid[4, 6], and so on. By adding gaps[0, 2] to the triples in Sid we obtain S[1, 30].
We show the suffix array A built on S and the structures D and Ψ that make
up the RDFCSA (Ψ is already modified from the original array, Ψorig, to cycle
through each triple). We mark the boundaries of the three ranges [1, 10],[11, 20],
and [21, 30]. We verify that entries in A[1, 10] point to positions in S[3k + 1],

Fig. 2. Structures involved in the creation of a RDFCSA for the graph in Figure 1.



108 N.R. Brisaboa et al.

those in A[11, 20] to S[3k + 2], and those in A[21, 30] to S[3k]. For example,
(rank1(D, 1), rank1(D,Ψ [1]), rank1(D,Ψ [Ψ [1]]) = (1, 7, 16) recovers the triple in
S[1, 3]. Also, the third source triple Sid[7, 9] can be recovered by doing Sid[7, 9] =
(S[7] − gaps[0], S[8] − gaps[1], S[9] − gaps[2]).

In the RDFCSA, the modified array Ψ is represented as in the iCSA [13].
Bitvector D uses a fast rank structure that uses 0.375n bits, also as in the iCSA.
We will also need operation select1(D, j), which finds the position of the jth 1
in D. It is implemented by a binary search on the rank directories.

We note that enforcing the property Ψ3[i] = i on our RDFCSA is analogous
to the more general permuterm index [17]. They index a set of strings as if they
were circular, so that patterns of the form α∗β can be found by searching for the
substring β$α, where $ is the string terminator. However, the permuterm index
is built on an FM-index [15], which on large alphabets like our [1, ns +np +no] is
implemented on a wavelet tree [16]. This implementation poses a time overhead
factor O(log(ns + np + no)) for the operation equivalent to computing Ψ , which
renders the FM-index inferior to the CSA on large alphabets [13]. We checked
this by using the best iSSA variant from [13] to represent sequence S. We tuned
iSSA to use the same space as RDFCSA (around 60% the size of S regarded as
32-bit integers). Query time to solve (S, P,O) patterns was around 2.5−4 times
slower than in RDFCSA. Newer alternatives to wavelet trees on large alphabets
are only slightly better when implementing FM-indexes [8]. This is why we opt
for implementing the technique on top of the iCSA for the case of RDF triples.

3.2 Supporting Basic Graph Pattern Queries in RDFCSA

Searching for triple patterns is the base to support more complex SPARQL
queries on an RDF store. We first show how the 8 primitive operations (S, P,O),
(?S, P,O), (S, ?P,O),(S, P, ?O),(?S, ?P,O),(S, ?P, ?O), (?S, P, ?O), (?S, ?P, ?O)
can be solved on RDFCSA. Then we discuss some RDF-specific optimizations.

The pattern (?S, ?P, ?O) is treated differently because it retrieves all the
triples in the dataset (thus it is not really useful as a query). If needed, it can be
solved by retrieving every ith triples as described above. The other 7 patterns
will be solved by an initial search followed by a traversal to recover the contents
of the matching triples.

Binary iCSA Search for Triple Patterns: As explained, the iCSA can run
a binary search for the range A[l, r] pointing to the suffixes that start with any
pattern α[1,m], so that α appears in S at positions A[i] for i ∈ [l, r]. Then, it
can use Ψ to recover the symbols S[A[i], ∗] for any such i.

In our case, we can solve query (S, P,O) by searching for α[1, 3] = SPO,
thus determining if it exists in the dataset (l = r) or not (l > r). Further, we
can solve queries (S, P, ?O) and (?S, P,O) by searching for α[1, 2] = SP and
α[1, 2] = PO, respectively. Because Ψ cycles over the triples, we can retrieve the
resulting triples in either case, starting from each i ∈ [l, r]. Further, we can also
solve queries (S, ?P,O) by searching for α[1, 2] = OS, since Ψ regards the triples
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as circular strings. When only S, P , or O are specified, we must simply search
for α[1, 1] = S, α[1, 1] = P , or α[1, 1] = O. We give an example of each case:

– (S, P,O): We set α[1, 3] = [S + gaps[0], P + gaps[1], O + gaps[2]], and obtain
the range [l, r] with the iCSA binary search. If l = r then (S, P,O) is in the
set, otherwise it is not.

– (S, ?P,O): We set α[1, 2] = [O + gaps[2], S + gaps[0]], and find the interval
[l, r] with the iCSA. The number of answers is r − l + 1. For each i ∈ [l, r],
we return the triple (S, rank1(D,Ψ [Ψ [i]]) − gaps[1], O).

– (?S, P, ?O): We set α[1, 1] = [P +gaps[1]], and find the interval [l, r] with the
iCSA (note that this does not require binary search on Ψ : l = select1(D,α[1])
and r = select1(D,α[1] + 1) − 1). The number of answers is r − l + 1 and
for each i ∈ [l, r], the triple (rank1(D,Ψ [Ψ [i]]) − gaps[0], P, rank1(D,Ψ [i]) −
gaps[2]) is recovered.

By using binary search on the iCSA, all the triple pattern queries cost O(r−
l + log n), where r − l + 1 is the number of occurrences retrieved. In practice,
the compression of Ψ introduces important space/time tradeoffs. If the number
of triples retrieved is large, the cost of the binary search is negligible. However,
it becomes relevant when only one or a few triples are recovered (e.g., no triple
recovering is needed for pattern (S, P,O)).

Our first optimization on the original iCSA aims at improving the accesses
to Ψ needed to retrieve the triples. Once [l, r] is determined, we always have to
compute Ψ [i] and Ψ [Ψ [i]] for all i ∈ [l, r] (except on the pattern (S, P,O)). We
have sped up the access to a range Ψ [l, r] by sequentially decompressing that
range of Ψ . Therefore, we only need to access once the sample preceding Ψ [l]
and reach position l; all the subsequent values are immediately decoded. This is
especially fast if we are inside a run of consecutive values of Ψ . The remaining
accesses to Ψ are random and are not be improved.

The other optimizations aim at decreasing the cost of the binary
search for [l, r]. Two alternatives strategies, D-select+forward-check and D-
select+backward-check, are discussed below.

D-select+forward-check Strategy: During the binary search, the compar-
ison between α and S[A[i], n] might be decided with the first integer compari-
son. Obtaining S[A[i]] = rank1(D, i) does not require the application of Ψ . At
some moment, however, we start having S[A[i]] = α[1] and must compute Ψ to
compare α[2] with rank1(D,Ψ [i]). This isolated access to Ψ can be expensive.
Instead, we can proceed as follows. Consider the triple pattern (S, P,O). We
first find the intervals Rs = [lS+gaps[0], rS+gaps[0]], Rp = [lP+gaps[1], rP+gaps[1]],
and Ro = [lO+gaps[2], rO+gaps[2]]. These are computed with select on D: lc =
select1(D, c) and rc = select1(D, c + 1) − 1. Since Ψ is increasing within those
intervals, for each i in Rs we can check if Ψ [i] ∈ Rp. The values i that do not
pass this check can be discarded. For those that do, we still have to check if
Ψ [Ψ [i]] ∈ Ro, in which case we report an occurrence of the searched triple.

Figure 3 (left) illustrates this scenario, where Rs = [10, 12], Rp = [200, 300],
and Rs = [600, 601]. Neither Ψ [10] nor Ψ [12] map into range [200, 300], only
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Fig. 3. D-select+forward-check (left) and D-select+backward-search (right) strategies
for pattern (S, P,O) = (8, 4, 261).

Ψ [11] does. In addition Ψ [Ψ [11]] maps into the range [600, 601] corresponding to
object 261. Hence, we report an occurrence of the triple (8, 4, 261).

Computing all the values Ψ [Rs] is much cheaper than computing |Rs| isolated
values of Ψ , because of the differential compression of Ψ . In general, there are
more objects than subjects, and many more subjects than predicates. Thus, we
expect that |Ro| < |Rs| 	 |Rp|. If the interval Rs is small enough, this technique
may be faster than a standard binary search. Since our Ψ is cyclic, we can start
the checking process in interval Rs, Rp, or Ro, so we start from the shortest one.

This procedure is not only applicable to pattern (S, P,O). If we have one
unbounded term, we obtain the intervals Rx and Ry corresponding to the bounded
terms x and y. Then, we use the same procedure to check whether after applying
Ψ to the positions i in the starting interval Rx we fall into Ry or not. For pattern
(?S, P,O) we set x = P , y = O; for pattern (S, ?P,O) we set x = O, y = S; and
for pattern (S, P, ?O) we set x = S, y = P . Finally, recall that patterns with only
one bounded element are directly solved using select on D.

D-select+backward-check Strategy: Note those i in Rs that pass the check
in the previous strategy form a subinterval of Rs, thus we can use binary search
to find its limits instead of verifying every i ∈ Rs one by one. The best way to
proceed is known as the backward-search strategy [24]. We show how it can be
carried out when searching for pattern (S, P,O). We start in interval Ro = [lo, ro],
and since Ψ is increasing within interval Rp = [lp, rp], we binary search the limits
of the subinterval Rpo = [lpo, rpo] ⊆ Rp such that Ψ [i] ∈ Ro for all i ∈ Rpo. If the
subinterval is empty, no match exists. Otherwise, we repeat the same process to
find the limits of the subinterval Rspo = [lspo, rspo] ⊆ Rs that contain the entries
i ∈ Rs such that Ψ [i] ∈ Rpo. The final answer is [l, r] = Rspo.

In Figure 3 (right) we can see that starting in range Ro = [600, 601], when
we binary search the interval Ψ [200, 300] for the values that map into range
[600, 601], only the entry Ψ [231] remains. Therefore, we obtain the subinterval
Rpo = [231, 231]. Now, we binary search the range Ψ [10, 12] for the range that
maps to 231 and find that Ψ [11] = 231. Then the final interval is Rspo = [11, 11].

This strategy is also applicable to patterns (S, P, ?O), (S, ?P,O), (?S, P,O).
In the first case we find the subinterval Rsp ⊆ Rs that maps via Ψ inside Rp. In
the second, the subinterval Ros ⊆ Ro. In the third, the subinterval Rpo ⊆ Rp.
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4 Experimental Evaluation

Our experiments ran on an Amd Phenom-X4-955@3.2GHz CPU, with 8GB
DDR2 RAM. The operating system was Ubuntu 12.04 (kernel 3.2.0-31-generic)
and the compiler used was gcc 4.6.3 (option -O9). We measure elapsed times.

We evaluated the space/time performance of RDFCSA over Dbpedia2, “the
nucleus for a Web of Data” [7]. The size of this dataset is around 34GB, contain-
ing 232,542,405 triples (2,790,508,860 bytes when regarded as 32-bit integers).
The number of different subjects, predicates, and objects is 18,425,128; 39,672;
and 65,200,769; respectively. We compared RDFCSA with K2Triples, MonetDB,
and RDF-3X. The recent WaterFowl [12] was not included. Yet, since it reports
space 10 times smaller than RDF-3X and similar times [12], we expect it would
obtain worse query times than K2Triples (see comparison with RDF-3X below)
and similar space. Other systems do not run over a dataset of this size [4].

Figure 4 shows the space/time tradeoff of these RDF representations. For
K2Triples we show two points, corresponding to K2Triples and K2Triples+
[4] (the latter includes the indexes SP and OP that speed up searches with
unbounded predicate, see Section 2.1) and we used the tuning recommended by
the authors. In the case of RDFCSA, the lines connect four points that cor-
respond to sampling Ψ every tΨ values: tΨ ∈ {16, 32, 64, 256}. MonetDB and
RDF-3X store the index on disk; we measure the space they use to operate in
memory, and run them in warm state, as in previous work [4].

Results clearly show that K2Triples (and even K2Triples+) use less space
than RDFCSA (around a half in the case of K2Triples). Still, RDFCSA uses
around half of the space of a raw representation of the triples (and can reproduce
them, apart from supporting searches). This is about the same main memory
space used by MonetDB, and 6 times less than RDF-3X.

On the other hand, RDFCSA obtains much more stable times than K2Triples,
below 1–2 μsec per occurrence in all cases with a reasonable sampling. RDFCSA
is in all cases at least 3 orders of magnitude faster than MonetDB and RDF-3X
(the only exception is pattern (?S, P, ?O), where RDF-3X is only twice as slow).

K2Triples still obtains the best time for (S, P,O) patterns, as it only needs
to accesses the single cell (S,O) of the k2-tree associated to the predicate P ,
and this is very fast on the k2-tree. Instead, this is the worst case for RDFCSA,
which must search for a pattern of length 3 and return at most one occurrence.

We can also see that, even though the performance of K2Triples is very poor
when solving (S, ?P,O) queries, the indexes SP and OP included in K2Triples+
help solve (S, ?P,O) queries very efficiently. This is because they discard many
of the np k2-trees that should be accessed otherwise. Only those predicates P
that are related to subject S and also with object O must be considered.

On the remaining queries RDFCSA is typically faster than K2Triples and
K2Triples+. In particular, for (S, P, ?O), (S, ?P, ?O), and (?S, ?P,O), RDFCSA
is up to 2 orders of magnitude faster. The first two of these are the most common
queries in real-life SPARQL queries, according to an empirical study [5]. In the

2 http://downloads.dbpedia.org/3.5.1/

http://downloads.dbpedia.org/3.5.1/
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Fig. 4. Space/time tradeoff on the primitive SPARQL queries. Space is measured
as the percentage of the size of the (in-memory) indexes with respect to the size
of the source RDF triples represented as a sequence of 32-bit integers (the dictio-
nary size is not considered here). Query time is the average (in µsec per occurrence)
over 500 triple pattern queries of each type obtained from K2Triples authors web-
site, http://dataweb.infor.uva.es/queries-k2triples.tgz. Note the logscale in the
main plots; the zooms use linear scale.
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case of (?S, P, ?O) and (?S, P,O), RDFCSA outperforms K2Triples+ only when
the denser samplings are used.

With respect to the optimizations discussed in Section 3, we can see that D-
select+forward-check (RDFCSA-f in the plots) outperforms D-select+backward-
check (RDFCSA-b in the plots) in all the triple patterns with one or no
unbounded terms (with the exception of (?S, P,O), where it performs very badly
because it must sequentially traverse the generally long interval Rp). Except
on the pattern (S, P,O), however, the improvement is not significant, and D-
select+backward-check should be preferred for its more stable and guaranteed
performance (of course, we can decide which strategy to use depending on the
predicted performance, which can be easily estimated from the sizes of the inter-
vals Rs, Rp, and Ro). In most cases (for example in (S, P,O)), those two strate-
gies reduce the time of the regular iCSA binary search to a half or less. In other
patterns, such as in (S, ?P,O) those optimizations are the key to match (and even
outperform) the performance of K2Triples+. Finally, in queries (?S, ?P,O) and
(S, ?P, ?O) we can see the slight advantage obtained by performing two select
operations instead of running the plain binary search with patterns of length 1
(for this experiment, the binary search strategy did not use that speedup).

5 Conclusions and Future Work

We have introduced RDFCSA, a competitive structure to self-index RDF data.
It builds on an adaptation of the compressed suffix array of Sadakane [24], which
is modified to index the RDF triples as cyclic strings, and then various domain-
specific optimizations are studied on top of it.

RDFCSA uses about half the space required by the raw data and replaces
it. It offers stable and predictable times to solve basic graph patterns (on which
more sophisticated SPARQL queries are built), around 1–2 μsec per retrieved
triple. Compared to literature standards, RDFCSA uses 6 times less space and
runs most queries about 1000 times faster than RDF-3X. It uses about the same
space as MonetDB, but this is even slower than RDF-3X. There are represen-
tations using around half the space of RDFCSA [4], their performance is less
robust, being up to two orders of magnitude slower than RDFCSA, especially
on the queries that appear most often in real applications.

Of course, RDFCSA handles only basic SPARQL queries, whereas RDF-
3X and MonetDB are much more complete. Still, we believe this kernel can be
extended to a wider functionality without sacrificing space and taking advantage
of its speed when implementing more complex operations. We plan to start by
extending RDFCSA functionality to handle the join and merge operations of
SPARQL. As for the kernel functionality itself, we plan to further study the
compressibility of the modified Ψ array (improvements considered in previous
work [13] were already tried without success) and faster search algorithms for
the particular case of triple patterns.
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4. Álvarez-Garćıa, S., Brisaboa, N., Fernández, J., Mart́ınez-Prieto, M., Navarro, G.:

Compressed vertical partitioning for efficient RDF management. Knowledge and
Information Systems (2014) (to appear) preprint at www.dcc.uchile.cl/gnavarro/
ps/kais14.pdf

5. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An
empirical study of real-world SPARQL queries. CoRR abs/1103.5043 (2011).
http://arxiv.org/abs/1103.5043

6. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix “bit” loaded: A scalable
lightweight join query processor for RDF data. In: Proc. WWW, pp. 41–50 (2010)

7. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
A Nucleus for a Web of Open Data. In: Aberer, K., et al. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

8. Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. Algorithmica 69(1), 232–268 (2014)

9. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American
Magazine (2001)

10. Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of Web graphs with
extended functionality. Inf. Syst. 39(1), 152–174 (2014)

11. Clark, D.: Compact PAT Trees. Ph.D. thesis, U. of Waterloo, Canada (1996)
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Abstract. Computing an optimal chain of fragments is a classical prob-
lem in string algorithms, with important applications in computational
biology. There exist two efficient dynamic programming algorithms solv-
ing this problem, based on different principles. In the present note, we
show how it is possible to combine the principles of two of these algo-
rithms in order to design a hybrid dynamic programming algorithm that
combines the advantages of both algorithms.

1 Introduction

Sequence alignment is a fundamental task in bioinformatics, requiring very
efficient algorithms, with subquadratic time complexity. One of the successful
approaches is based on the technique of chaining fragments. Its principle is to first
detect and score highly conserved factors, the fragments (also called anchors or
fragments), then to compute a maximal score subset of fragments that are colin-
ear and non-overlapping in both considered sequences, called an optimal chain.
This optimal chain is then used as the backbone of a full alignment. Due to its
applications, especially in computational biology, this problem has received a lot
of attention from the algorithmic community [1,4,5,8–11]. We are interested in the
problem of computing the score of an optimal chain of fragment from a given set
of k fragments, for two sequences t and u of respective lengths n and m. This prob-
lem can be solved in O(k + n × m) time by using a simple dynamic programming
(DP) algorithm (see [9] for example). However, in practical applications, the num-
ber k of fragments can be subquadratic, which motivated the design of algorithms
whose complexity depends only of k and can run in O(k log k) worst-case time
(see [5,8,10,12]). The later algorithms, known as Line Sweep (LS) algorithms, rely
on geometric properties of the problem, where fragments can be seen as rectan-
gles in the quarter plane, and geometric data structures that allow to retrieve and
update efficiently (i.e. in logarithmic time) optimal subchains (see [12] for exam-
ple). This raises the natural question of deciding which algorithm to use when
comparing two sequences t and u. In particular, it can happen that the density
of fragments differs depending on the location of the fragments in the considered
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 116–123, 2015.
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sequences, due for example to the presence of repeats. In such cases, it might then
be more efficient to rely on the DP algorithm in regions with high fragment den-
sity, while in regions of lower fragment density, the LS algorithm would be more
efficient. This motivates the theoretical question we consider, that asks to design
an efficient algorithm that relies on the classical DP principle when the density of
fragments is high and switches to the LS principle when processing parts of the
sequences with a low density of fragments. We show that this can be achieved, and
we describe such a hybrid DP/LS algorithm for computing the score of an optimal
chain of fragments between two sequences. Our algorithm achieves a theoretical
complexity that is as good as both the DP and LS algorithm, i.e. that for any
instance, our algorithm performs as at least as well, in terms of theoretical worst-
case asymptotic time complexity, as both the DP and the LS algorithm. We refer
the reader to [2] for an extended version of this abstract, including a more detailed
analysis of our algorithm.

2 Preliminaries

Preliminary Definitions and Problem Statement. Let t and u be two sequences,
of respective lengths n and m. We assume that positions index in sequences
start at 0, so t[0] is the first symbol in t and t[n − 1] its last symbol. By t[i, j]
we denote the substring of t composed of symbols in positions i, i + 1, . . . , j.
A fragment is a factor which is common, possibly up to small variations, to
t and u. Formally, a fragment s is defined by 5 elements (s.�, s.r, s.t, s.b, s.s):
the first four fields indicate that the corresponding substrings are t[s.�, s.r] and
u[s.b, s.t], while the field s.s is a score associated to the fragment. We call borders
of s the coordinates (s.�, s.b) and (s.r, s.t). As usual in chaining problems, we
see fragments as rectangles in the quarter plane, where the x-axis corresponds
to t and the y-axis to u: s.�, s.r, s.b and s.t denote the left and right position
of s over t and the bottom and top position of s over u (s.� ≤ s.r and s.b ≤ s.t).

Let S denote a set of k fragments for t and u. A chain is a set of fragments
{s1, . . . , s�} such that si.r < si+1.� and si.t < si+1.b for i = 1, . . . , �−1; the score
of a chain is the sum

∑�
i=1 si.s of scores of the fragments it contains. A chain

is optimal if there is no chain with a higher score. The problem we consider in
the present work is to compute the score of an optimal chain, denoted by MCS
(Maximum Chaining Score).

The Dynamic Programming (DP) and Line Sweep (LS) Algorithms. A first app-
roach to compute the MCS is a dynamic programming (DP) algorithm where the
MCS between prefixes t[0, i] and u[0, j] is computed as the maximum between (1)
the MCS between t[0, i−1] and u[0, j], (2) the MCS between t[0, i] and u[0, j−1]
and (3) the scores of the best chain that ends with a fragment s such that s.r = i
and s.t = j. Following classical DP methods, this algorithm can be implemented
using a single column that is updated along t positions incrementally, and has
a time complexity of O(k + n × m) as it fills a matrix of size n × m and each
fragment requires a constant time treatment. We refer to [2] for the pseudocode
of this algorithm.
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A second algorithm relies on a geometric approach, and is known as the Line
Sweep (LS) algorithm. We call a locally optimal chain (LOC) a chain C that
ends with a fragment s such that, for all chains C ′ that ends with a fragment
s′ with s′.r ≤ s.r, if s′.t < s.t, then the score of C ′ is at most the score of
C. The LS algorithm considers fragments borders according to their fields s.l
and s.r (positions along t) sorted increasingly (in case of equality, fragments
are processed by increasing order of their right position); during this process, a
data structure A (typically an AVL or RB-tree, see [12] for a discussion on such
data structures.) stores the scores of all LOC built so far, so that, at the end
of the algorithm, the MCS can be retrieved from A in constant time. During
the LS algorithm, when the left position of a fragment s if reached, we compute
the chain of highest score that ends on s by looking in A for the highest LOC
below s.b. When the right position of s is reached, if its associated best chain
previously computed is a LOC, its score is inserted into A and scores of LOC
ending at highest position but smaller or equal score are removed from A. The
time complexity of the LS algorithm is O(k log k) (see [2] and references there
for a more detailed presentation of the LS algorithm). It can be reduced to
O(k log log k) if borders are sorted [12], but, for the sake of generality, we do not
assume this here.

3 An Hybrid Algorithm

An instance of the chaining problem is said to be compact, if each position of t and
each position of u contains at least one border. If an instance is not compact, then
there exists a unique compact instance obtained by removing from t and from u
all positions that do not contain a fragment border, leading to sequences t′ and u′,
and updating the fragments borders according to the sequences t′ and u′, leading
to a set S ′ of fragments. We denote by (t′, u′,S ′) the compact instance corre-
sponding to (t, u,S), and m′ and n′ the lengths of t′ and u′. The compact instance
(t′, u′,S ′) can be computed in time O (k + min(k log(k),m) + min(k log(k), n))
and space O(k + n + m), and from now, we assume that the compact instance
has been computed and that it is the considered instance.

The border density Kp of a position p of t is the number of fragment borders
(i.e. number of fragments extremities) located in t[p]. Our algorithm considers
fragments in the same order than in the LS algorithmbut processes the fragments
whose border in t′ is in position i using either the DP approach if the density of
fragments at t′[i] is high, or the LS approach otherwise. Hence, the key require-
ment will be that (1) when using the DP approach, the previous column of the
DP table is available, (2) when using the LS approach, a data structure with
similar properties than the geometric data structure used in the LS algorithm is
available.

We introduce now a data structure B that ensures that the above require-
ments are satisfied. The data structure B is essentially an array of m′ entries
augmented with a balanced binary search tree. Formally:
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– We consider an array B of m′ entries, such that B[i] contains chaining scores,
and satisfies the following invariant: if s is the last processed fragment, for
every i = 1, . . . , s.r, B[i] ≥ B[i − 1].

– We augment this array with a balanced binary search tree C whose leaves
are the entries of B and whose internal nodes are labelled in order to satisfy
the following invariant: a node x is labelled by the maximum of the labels
of its right child and left child.

The data structure B will be used to answer the following queries: given
0 ≤ p ≤ m′, find the optimal score of a partial chain whose last fragment s
satisfies s.t ≤ p. This principle is very similar to solutions recently proposed for
handling dynamic minimum range query requests [3].

We describe now how we implement this data structure using an array. Let
b be the smallest integer such that m′ ≤ 2b. We encode B into an array of size
2b+1, whose prefix of length m′ − 1 contains the labels of the internal nodes of
the binary tree C (so each cell contains a label and the indexes to two other cells,
corresponding respectively to the left child and right child), ordered in breadth-
first order, while the entries of B are stored in the suffix of length m′ of the array
(see figure 1). From now, we identify nodes of the binary tree and cells of the
array, that we denote by B.

Fig. 1. Example of the implementation of the data structure B with an array.

Using this implementation, for a given node of the binary search tree, say
encoded by the cell in position x in B (called node x from now), we can quickly
obtain the position, in the array, of its left child, of its right child, but also of its
parent (if B[x] is not the root) and of its rightmost descendant, defined as the
unique node reached by a maximal path of edges to right children, starting at x
edges to a left (resp. right) child. Indeed, it is straightforward to verify that, the
constraint of ordering the nodes of the binary tree in the array according to a
breadth-first order implies that, for node x, if y is the largest integer such that
2y ≤ x + 1 and z = x − 2y + 1, then:

– if x ≥ 2b − 1, x is a leaf;
– leftChild(x) = 2y+1 − 1 + 2 ∗ z if x is not a leaf;
– rightChild(x) = 2y+1 − 1 + 2 ∗ z + 1 if x is not a leaf;
– parent(x) = −1 if x = 0 (x is the root), and 2y−1 − 1 + | z

2 | if x �= 0;
– rightmostChild(x) = 2b − 1 + (z + 1)2b−z − 1.

Implementing the DP and LS Algorithms with the Hybrid Data Structure. It is
then easy to implement the DP algorithm using the data structure B, by using
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B as the current column of the DP table (i.e. if the currently processed position
of t′ is i, B[j] is the score of the best partial chain included in the rectangle
defined by (0, 0) and (i, j)), without updating the internal nodes of the binary
search tree C. To implement the LS algorithm, the key points are (1) to be able
to update efficiently the data structure B, when a fragment s has been processed
and (2) to be able to find the best score of a partial chain ending up at a position
in u′ strictly below p. Updating B can be done through the function setScore
below, with parameters p = s.t and score = S[s], while the second task can be
achieved by the function getBestScore described below.

Algorithm 1. Set a chaining score for a position p.

1 setScore(B, p, score) :

2 index = 2b − 1 + p // start from leaf corresponding to p
3 while index! = −1 && B[index] < score
4 B[index] = score
5 index = parent(index)

Algorithm 2. Retrieve the best chaining score for partial chains ending strictly
below position p.

1 getBestScore(B, p) :

2 let b be the smallest integer s.t. m′ ≤ 2b

3 maxScore = 0
4 currentNode = 0 // the root node

5 indexOfP = 2b − 1 + p
6 while rightmostChild(currentNode) > indexOfP
7 left = leftChild(currentNode)
8 if rightmostChild(left) >= indexOfP // move left
9 ncurrentNode = left

10 else // move right
11 maxScore = max(maxScore, B[left])
12 currentNode = rightChild(currentNode)
13 return max(maxScore, B[currentNode])

If all updates of B are done using the function setScore, then the two
required invariants on B are satisfied. The time complexity of both setScore
and getBestScore is in O(log(m′)), due to the fact that the binary tree is bal-
anced. We can then implement the LS algorithm on compact instances using the
data structure B, with worst-case time complexity O(k log m′).

LS/DP Update with the Hybrid Data Structure. In an hybrid algorithm that
relies on the data structure B, when the algorithm switches approaches (from
DP to LS, or LS to DP), the data structure B is assumed to be consistent for
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the current approach, and needs to be updated to become consistent for the
next approach. So when switching from DP (say position i − 1, i = 1, . . . n′) to
LS (position i), we assume that B[j] (j = 0, . . . , m′ − 1) is the optimal score
of a partial chain in the rectangle defined by (0, 0) and (i − 1, j), and we want
to update B in such a way that the label of any internal node x of the binary
tree is the maximum of both its children. As B are the leaves of the binary tree,
this update can be done during a post-order traversal of the binary tree, so in
time O(m′). When switching from LS to DP (say to use the DP approach on
position i while the LS approach was used on position i−1), we assume that for
every leaf B[j] of the binary tree corresponding to a position at most i − 1, the
value in B[j] is the optimal score of a partial chain whose last fragment ends in
position i − 1; this follows immediately from the way labels of the leaves of the
binary tree are inserted by the setScore function. To update B, we want that in
fact B[j] is the optimal score of a partial chain in the whose last fragment ends
in position at most i − 1. So the update function needs only to give to B[j] the
value max0≤j′≤j B[j′], which can again be done in time O(m′). It follows that
updating the data structure B from DP to LS or LS to DP can be done in time
O(m′). We denote by update the function performing this update.

Deciding Between LS and DP Using the Fragment Density. Before we can finally
introduce our algorithm, we need to address the key point of how to decide which
paradigm (DP or LS) to use when processing the fragments having a border in
the current position of t, say c. Let Kc be the number of fragments s such that
s.� = c or s.r = c. Using the DP approach, the cost of updating B (i.e. to
compute the column c of the DP table) is O(m′ + Kc). With the LS approach,
the cost of updating B is in O(Kc log m′). So, if Kc > m′

log m′−1 , the asymptotic
cost of the DP approach is better than the asymptotic cost of the LS approach,
while it is the converse if Kc ≤ m′

log m′−1 . So, prior to processing fragments, for
each position i in t (i = 0, . . . , m′ − 1), we record in an array C if fragments
borders in position i are processed using the DP approach (C[i] contains DP)
or the LS approach (C[i] contains LS). This last observation leads to our main
result, Algorithm 3 below.

Time and Space Complexity. In terms of space complexity, the algorithm, we
avoid to use O(k+n′×m′) space for storing the fragments borders in n′×m′ lists
(structure L of the DP algorithm) by using two lists: L1[i] stores all fragments
borders in position i of t′, while L2[j] stores all fragments borders in position i
of t′ and j of u′, and is computed from L[1]. So the total space requirement is
in O(k + m′ + n′).

We now establish the time complexity of this algorithm. If the current posi-
tion i of t is tagged as DP, the cost for updating the column is O(m′ + Ki),
including the cost of setting up L2 from L1, that is proportional to the number
of fragments borders in the current position (line 14–24). If C[i] is LS, the cost
for computing chains scores on this position is O(Ki log m′) (line 25– 28). Thus,
if we call P 1 the set of positions on t where we use the DP approach, P 2 the set
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Algorithm 3. A hybrid algorithm for the fragment chaining problem.

1 compute the compact instance (t′, u′, S ′)
2 L1: an array of n′ × 2 linked lists
3 C: an binary array of size n′

4 foreach s in S ′ do
5 if C[s.r] is DP then front insert (s, end, s.t) into L1[s.r][1]
6 else front insert (s, end) into L1[s.r][0]
7 if C[s.�] is DP then front insert (s, begin, s.b) into L1[s.�][1]
8 else front insert (s, begin) into L1[s.�][0]
9 B: a binary tree for m′ leafs (all nodes are set to zero)

10 B: refers to the m′ leaves of B
11 S: an array of integer of size k
12 for i from 0 to n′ do
13 if C[i] �= C[i − 1] then update(B)
14 if C[i] is DP
15 L2: an array of m′ linked lists
16 for each (s, t, j) in L1[i][1] do front insert (s, t) into L2[j]
17 left = 0, leftDown = 0
18 for j from 0 to m′ do
19 maxC = 0
20 foreach (s, type) in L2[j] do
21 if type is begin then S[s] = s.s + leftDown
22 if type is end and S[s] > maxC then maxC = S[s]
23 leftDown = left, left = B[j]
24 B[j] = max(B[j], B[j − 1], maxC)
25 else // C[i] is LS
26 foreach (s, type) in L1[i][0] do
27 if type is begin then S[s] = s.s + getBestScore(B, s.b)
28 if type is end then setScore(B, s.t, S[s])
29 if C[n′ − 1] is direct then return B[m′ − 1]
30 else return value of the root of B

of positions on t where we use the LS approach and P = P 1 ∪ P 2, the time for
the whole loop at line 12 is

O

⎛

⎝
∑

p∈P 1

(m′ + Kp) +
∑

p∈P 2

Kp log m′

⎞

⎠

We have |P 1| + |P 2| = n′, ∀p ∈ P 1 : Kp > m′
log m′−1 and ∀p ∈ P 2 : Kp ≤ m′

log m′−1 .
Moreover, updating the data structure B from LS to DP or DP to LS (line
13) is done at most one more time then the size of P 1, so the total cost of
this operation is O

(∑
p∈P 1 m′

)
, and can thus be integrated, asymptotically,

to the cost of processing the positions in P 1. This results in a worst-case time
complexity
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O

⎛

⎝k + min(k log k,m) + min(k log k, n) +
∑

p∈P 1

(m′ + Kp) + log m′ ∑

p∈P 2

Kp

⎞

⎠ .
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Abstract. A string x = uvu with both u, v being non-empty is called
a gapped repeat with period p = |uv|, and is denoted by pair (x, p). If
p ≤ α(|x| − p) with α > 1, then (x, p) is called an α-gapped repeat. An
occurrence [i, i+|x|−1] of an α-gapped repeat (x, p) in a string w is called
a maximal α-gapped repeat of w, if it cannot be extended either to the
left or to the right in w with the same period p. Kolpakov et al. (CPM
2014) showed that, given a string of length n over a constant alphabet,
all the occurrences of maximal α-gapped repeats in the string can be
computed in O(α2n+occ) time, where occ is the number of occurrences.
In this paper, we propose a faster O(αn + occ)-time algorithm to solve
this problem, improving the result of Kolpakov et al. by a factor of α.

1 Introduction

Finding repetitive substrings in a string has been a central task in stringology,
with various applications e.g., in bioinformatics [8]. A simplest form of a repet-
itive string is a tandem repeat (a.k.a. square): A string x is called a tandem
repeat if x = uu with some non-empty string u. Gusfield and Stoye [9] proposed
an O(n + t) time algorithm to compute all t occurrences of tandem repeats in a
given string of length n over a constant alphabet.

A natural generalization of tandem repeats is to allow some gap between the
two repeats. A string x is called a gapped repeat if x = uvu with some non-empty
strings u and v. The leftmost and rightmost occurrences of u in x are called the
right and left copies of the gapped repeat, while v is called the gap. The period
of a gapped repeat uvu is the length |uv| of uv. Notice that a string w can
correspond to gapped repeats with different periods, for instance, abababa is a
gapped repeat with period 4 taking u = aba and v = b, while it is also a gapped
repeat with period 6 taking u = a and v = babab. To distinguish them, a
gapped repeat x with period p will be denoted by a pair (x, p). An occurrence of
a gapped repeat (x, p) in a string w is called maximal, if it cannot be extended
either to the left or to the right preserving the period p. Gusfield [8] showed how
to compute all y occurrences of maximal gapped repeats with unbounded gap
length in a string of length n in O(n + y) time. Since there is no restriction on
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 124–136, 2015.
DOI: 10.1007/978-3-319-23826-5 13
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the length of the gaps, his algorithm may output gapped repeats of which the
left and the right copies are far apart in the string. Several attempts to bound
the gap length have been introduced in literature. Kolpakov and Kucherov [11]
described how to compute all f occurrences of maximal gapped repeats with fixed
gap length d in O(n log d+ f) time. Brodal et al. [4] proposed an O(n log n+ r)-
time algorithm to compute all r occurrences of gapped repeats with gap length
in a fixed range.

We study the following problem: Given a string w of length n over a constant
alphabet and a real α > 1, compute all maximal gapped repeats (x, p) in w
which satisfy p ≤ α(|x| − p). Namely, we would like to compute all occurrences
of maximal gapped repeats of which the period is bounded by the length of the
copies multiplied by α. These repeats are called maximal α-gapped repeats of w.
Kolpakov et al. [10] presented an algorithm to compute all occ occurrences of
maximal α-gapped repeats in w in O(α2n+occ) time and O(n+occ) space. They
also showed that occ = O(α2n), so the occ term in the above time complexity
can be omitted (It is open whether the O(α2n) bound for occ is tight or not.).

In this paper, we present a faster O(αn + occ)-time algorithm for finding all
occ occurrences of maximal α-gapped repeats, improving the result of Kolpakov
et al. by a factor of α. The space complexity of our algorithm is O(n+occ). Our
algorithm uses ideas similar to the algorithm of Badkobeh et al. [1], which com-
putes gapped repeats of maximum exponents from a given overlap-free string.
In more detail, we first compute a variant of the Lempel-Ziv 77 factorization
(LZ77) [15] of the input string w, and construct the directed acyclic word graph
(DAWG) [3] of a specific substring induced from each LZ77 factor. To achieve the
O(αn + occ) bound, our algorithm utilizes combinatorial properties of DAWGs,
together with non-trivial uses of several other data structures.

2 Preliminaries

Strings. Let Σ be an alphabet of size σ. An element of Σ∗ is called a string.
The length of a string w is denoted by |w|. The empty string ε is a string of
length 0. For a string w = xyz, x, y and z are called a prefix, substring, and
suffix of w, respectively. The set of substrings of w is denoted by Substr(w). The
i-th character of a string w is denoted by w[i], for any 1 ≤ i ≤ |w|. For a string
w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that
begins at position i and ends at position j. For convenience, let w[i..j] = ε when
i > j. Let wR denote the reversed string of w, namely, wR = w[|w|] · · · w[1].

A string x = uvu with non-empty strings u, v is called a gapped repeat with
period p = |uv|, and is denoted by pair (x, p). The leftmost and rightmost occur-
rences of u in x are respectively called the left and right copies of u of the gapped
repeat, and v is called the gap of the gapped repeat. If p ≤ α(|x|−p) with a real
α > 1, then (x, p) is called an α-gapped repeat. An occurrence [k..k + |x| − 1] of
an α-gapped repeat (x, p) in string w is denoted by triplet (k, k + |x| − 1, p). An
α-gapped repeat (k, k + |x| − 1, p) is called a maximal α-gapped repeat of w, if
it can be extended neither to the left nor to the right in w with the same period
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p. More formally, an α-gapped repeat (k, k + |x| − 1, p) is a maximal α-gapped
repeat if (1) w[k−1] �= w[k+p−1] or k = 1, and (2) w[k+ |x|−p] �= w[k+ |x|] or
k + |x| − 1 = |w|. For any string w, let MGRα(w) denote the set of all maximal
α-gapped repeats in w.

In this paper, we deal with the following problem.

Problem 1. Given a string w of length n and a real α > 1, compute the set
MGRα(w) of all maximal α-gapped repeats in w.

Tools. Here we list a number of data structures and algorithms which will be
used as components of our efficient algorithm to solve Problem 1.

The Lempel-Ziv 77 factorization without self-references [15] of a string w,
denoted LZ (w), is a factorization f1, . . . , fm of w s.t. w = f1 · · · fm, f1 = w[1],
and for each 2 ≤ i ≤ m, fi is the longest prefix of w[|f1 · · · fi−1|+1..|w|] such that
fi ∈ Substr(w[1..|f1 · · · fi−1|])∪Σ. Given a string w of length n, we can compute
LZ (w) in O(n log σ) time with O(n) space, e.g., by the algorithm of [13].

The directed acyclic word graph (DAWG) [3] of a string z, denoted DAWG(z),
is the smallest partial DFA that accepts all suffixes of z. A more formal presenta-
tion of DAWG(z) follows: For strings z, x, let Endposz(x) = {j | x = z[i..j], 1 ≤
i ≤ j ≤ n}. For strings x, y, denote x ≡z y iff Endposz(x) = Endposz(y). We
denote the equivalence class of string x w.r.t. ≡z by [x]z. When clear from the
context, we abbreviate the above notations as Endpos, ≡ and [x], respectively.
Note that for any two elements in [x]z with x ∈ Substr(z), one is a suffix of the
other. For x ∈ Substr(z), we denote by long([x]z) the longest member of [x]z.
Then, the set Vz of nodes and the set Ez of edges of DAWG(z) are defined by

Vz = {[x] | x ∈ Substr(z)} and
Ez = {([x], a, [xa]) | x, xa ∈ Substr(z), a ∈ Σ, x �≡ xa}.

Define the set Sz of labeled reversed edges on Vz, called suffix links, by

Sz = {([bx], b, [x]) | x, bx ∈ Substr(z), b ∈ Σ, x = long([x])}.

For a suffix link ([bx], b, [x]) ∈ Sz, we write slink([bx]) = [x]. Note that for
any node of DAWG(z) except for the source, it has exactly one out-going suffix
link, while it can have at most σ in-coming suffix links.

Let $ be a special character which appears only at the beginning of a string.
For convenience, we consider the 0-based index for the positions of any string $z
starting with $. Namely, letting z′ = $z, z′[0] = $ and z′[i] = z[i] for 1 ≤ i ≤ |z|.
On this assumption, Endposz(x) = Endpos$z(x) holds for any x ∈ Substr(z).
Now consider DAWG($z) = (V$z, E$z). Then, it is known that the suffix link
tree (V$z, S$z) is isomorphic to the edge-reversed suffix tree [14] of the reversed
string zR$. More precisely, in our definition of S$z, each edge label is truncated to
the first character of the corresponding edge label of the edge-reversed suffix tree,
as this is enough for our purposes. We denote this tree (V$z, S$z) by STree(zR$).
For 1 ≤ i ≤ |z|, a leaf of STree(zR$) stores integer i iff it represents z[1..i]R$.
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Fig. 1. (Left) DAWG($z) with z = abcab and its suffix links. The solid forward arcs
represent the edges of DAWG($z), while the broken reversed arcs represent the suffix
links. A node numbered i corresponds to the prefix of z ending at position i. (Right)
STree(zR$) with zR$ = bacba$. Note that STree(zR$) is isomorphic to the suffix link
tree induced from DAWG($z). Each suffix link of DAWG($z) is labeled with the first
character of the label of the corresponding suffix tree edge, which is underlined.

The leaf representing $ stores 0. This duality of these data structures is essential
to the efficiency of our algorithm to be presented. See Fig. 1 for examples of
DAWG($z), the suffix links S$z, and STree(zR$).

Blumer et al. [3] showed that for any string z, the number of nodes, edges,
and suffix links of DAWG($z) are O(|z|), independent of the alphabet size σ.
They also showed that DAWG($z) together with STree(zR$) can be constructed
in O(|z| log σ) time and O(|z|) space.

For any node [x] of DAWG($z), let pos([x]) denote the ending position of the
rightmost occurrence of x in z, i.e., pos([x]) = maxEndpos(x). We can compute
pos([x]) for all nodes [x] in O(|z|) time, by a standard traversal on STree(zR$).

Lemma 1 ([6,5]). For a string z, assume we have DAWG($z) together with the
suffix links. Given a query string s, then for each 1 ≤ j ≤ |s|, we can compute, in
amortized O(log σ) time, the longest suffix of s[1..j] which belongs to Substr(z)
and its rightmost occurrence in z.

Let A be the sequence of leaves of STree(zR$) obtained by a standard depth-
first traversal of STree(zR$). If the out-going edges of each node of STree(zR$)
are sorted in the lexicographical order of their labels, then A coincides with the
suffix array [12] of zR$, denoted by SAzR$. For any node y of STree(zR$), let
�(y) and r(y) be the position of the leftmost and rightmost leaves of the subtree
rooted at y in the sequence A. In other words, [�(y), r(y)] is the range on SAzR$

such that for any �(y) ≤ i ≤ r(y), long(y)R is a prefix of z[1..SAzR$[i]]
R$.

Consider a rooted tree T where each node is either marked or unmarked. A
nearest marked ancestor (NMA) query on T is to answer the nearest marked
ancestor of a given node. Gabow and Tarjan [7] showed that for a given static
rooted tree T where all nodes are initially marked, there exists a data structure
for NMA queries on T which requires space linear in the size of T , and supports
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the following operations and queries in amortized constant time: (1) Unmark a
given marked node. (2) Return the nearest marked ancestor for a given node.

A range maximum query (RMQ) on an integer array is to answer the position
which stores the maximum value in a query range. We can preprocess a given
integer array in linear time so that each RMQ can be answered in O(1) time [2].

Let A be an integer array. Given a range [i, j] on A and threshold value τ , let
rtqA(i, j, τ) be a range threshold query to return all values in A[i..j] which are
equal to or larger than τ , in any order. Using RMQs recursively, rtqA(i, j, τ)
can be answered in a total of O(k + 1) time, where k is the number of values to
output. We abbreviate rtqA(i, j, τ) by rtq(i, j, τ) when clear from the context.

3 O(α2n + occ)-time Algorithm by Kolpakov et al.

In this section, we briefly describe the framework of the algorithm of Kolpakov
et al. [10] which solves Problem 1 of computing MGRα(w) in O(α2n+occ) time.

For a string w, let LZ (w) = f1, . . . , fm. For each 1 ≤ i ≤ m, let FMGRα(i) be
the set of maximal α-gapped repeats in w which starts in f1 · · · fi−1 and ends in
fi, i.e., those that cross the boundary between fi−1 and fi. Also, let SMGRα(i)
be the set of maximal α-gapped repeats in w which are completely contained in
fi. Let b1 = 1, and for each 2 ≤ i ≤ m let bi = |f1 · · · fi−1| + 1, i.e., bi is the
beginning position of fi in w. More formally, we have

FMGRα(i) = {(k, j, p) ∈ MGRα(w) | k < bi ≤ j < bi+1},

SMGRα(i) = {(k, j, p) ∈ MGRα(w) | bi ≤ k < j < bi+1}.

It is clear that FMGRα(i) and SMGRα(i) are disjoint sets, and

MGRα(w) =
⋃

1≤i≤m

(FMGRα(i) ∪ SMGRα(i)) .

FMGRα(i) can further be divided into the following disjoint sets:

FMGRrgt
α (i) = {(k, j, p) ∈ FMGRα(i) | k + p − 1 < bi},

FMGRmid
α (i) = {(k, j, p) ∈ FMGRα(i) | j − p + 1 < bi ≤ k + p − 1},

FMGRlft
α (i) = {(k, j, p) ∈ FMGRα(i) | bi ≤ j − p + 1}.

Note that j − p + 1 and k + p − 1 are the beginning and ending positions of
the gap of the maximal α-gapped repeat (k, j, p) in w, respectively. Hence,
the right copy w[k + p..j] of each element of FMGRrgt

α (i) covers or touches
the boundary between fi−1 and fi, the gap w[j − p + 1..k + p − 1] of each
element of FMGRmid

α (i) completely covers the boundary between fi−1 and fi,
and the left copy w[1..j − p] of each element of FMGRlft

α (i) covers or touches
the boundary between fi−1 and fi. See also Fig. 2 for these notations. Let
FMGRrgt

α (w) =
⋃

1≤i≤m FMGRrgt
α (i), FMGRmid

α (w) =
⋃

1≤i≤m FMGRmid
α (i),

and FMGRlft
α (w) =

⋃
1≤i≤m FMGRlft

α (i).
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Fig. 2. Illustration for SMGRα(i), FMGRrgt
α (i), FMGRmid

α (i), and FMGRlft
α (i).

Lemma 2 (Kolpakov et al. [10]). Given a string w of length n over a constant
alphabet and a real α > 1, we can compute FMGRrgt

α (w) in O(n) time with
O(n) space, FMGRmid

α (w) in O(α2n + occmid) time with O(n + occmid) space,
FMGRlft

α (w) in O(αn) time with O(n) space, and SMGRα(w) in O(n+occs) time
with O(n+occs) space, where occmid = |FMGRmid

α (w)| and occs = |SMGRα(w)|.
As can be seen in Lemma 2, the bottleneck of the algorithm of Kolpakov

et al. [10] is their O(α2n+occmid)-time solution for computing FMGRmid
α (w). In

the next section, we propose a more efficient algorithm to compute FMGRmid
α (w),

which runs in O(αn + occmid) time for a string over a constant alphabet. Our
approach is significantly different from the one given by Kolpakov et al. [10].

4 Computing FMGRmid
α (w) in O(αn + occmid) Time

In this section, we present how to compute FMGRmid
α (w) in O(αn+occmid) time

and O(n + occmid) space when σ is constant, where occmid = |FMGRmid
α (w)|.

Assume we have computed LZ (w) = f1, . . . , fm. Our algorithm consists of
m steps, and we compute FMGRmid

α (i) in increasing order of i. In so doing, we
use the following lemma, which is immediate by the definition of FMGRmid

α (i).

Lemma 3. For any (k, j, p) ∈ FMGRmid
α (i), bi − α(|fi| − 1) < k < bi.

For each position bi ≤ j ≤ bi+1−1 in w, let j′ be the relative position for j in
fi, namely, j′ = j − bi +1. The basic strategy of our algorithm is to compute, for
each position j′ in fi, the maximal α-gapped repeats ending at position j′ in fi.
In so doing, we first compute the right copies of the maximal α-gapped repeats
ending at position j′ in fi, and the left copies of the gapped repeats to the left of
the boundary between fi−1 and fi. We store the maximal α-gapped repeats of
w in a table L of length n, such that L[k] stores a list of the maximal α-gapped
repeats starting at position k in w, sorted in increasing order of lengths.

By Lemma 3, at each step i of the algorithm it suffices to search substring
w[max{1, bi−α(|fi|−1)}..bi−1] for the left copies. Let zi = w[max{1, bi−α(|fi|−
1)}..bi − 1], and di the beginning position of zi in w. We process j′ = 2, . . . , |fi|
in increasing order (we do not need to consider j′ = 1 since the right copy of
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any element of FMGRmid
α (i) does not touch the boundary). Let u be a suffix of

fi[2..j′] which has an occurrence in zi. For any occurrence [k, k + |u| − 1] of u
in w with di ≤ k ≤ bi − 1, let k′ be the beginning position of the corresponding
occurrence of u in zi, namely, k′ = k − di + 1.

Lemma 4. For any 2 ≤ j′ ≤ |fi|, let u0 be the longest suffix of fi[1..j′] which
also occurs in zi. (k, j, j − k − |u| + 1) ∈ FMGRmid

α (i) if and only if

(1) (a) u = u0, w[k..k + |u| − 1] = u, and u0 �= fi[1..j′], or
(b) u is a proper suffix of u0, w[k..k + |u| − 1] = u, u = long([u]zi

), and
w[k − 1] �= w[j − |u|],

(2) w[k + |u|] �= w[j + 1], and
(3) |zi| − k′ + j′ − |u| + 1 ≤ α|u|.
Proof. (⇒) First, we show Properties (1)-(a) and (1)-(b). Let e = w[k − 1] if
k > 1, and for convenience let e = # if k = 1, where # is a special character
which does not appear in w. Also, let a = w[j −|u|]. Since (k, j, j −k −|u|+1) ∈
FMGRmid

α (i), e �= a. If no occurrences of u in zi are immediately preceded by
a, then u is the longest suffix u0 of fi[1..j′] which also occurs in zi. Also, by the
definition of FMGRmid

α (i), u0 �= fi[1..j′]. Hence Property (1)-(a) holds in this
case. If some occurrence of u in zi is immediately preceded by a, then u is a
proper suffix of u0. It holds that u = long([u]zi

), since otherwise u cannot be
the left/right copies of a maximal gapped repeat. Since (k, j, j − k − |u| + 1) is a
maximal gapped repeat, w[k − 1] �= w[j − |u|] = a. Hence Property (1)-(b) holds
in this case. Property (2) is due to the right-maximality of maximal gapped
repeats, and Property (3) is due to the constraints to α-gapped repeats.

(⇐) By definition, k′ + |u|−1 ∈ Endposzi
(u). Due to Property (1), w[k−1] =

zi[k′ − 1] �= fi[j′ − |u|] = w[j − |u|]. In addition, due to Property (2) we have
w[k + |u|] �= w[j + 1], and thus (k, j, j − k − |u| + 1) is a maximal gapped
repeat. By Property (3), |zi| − k′ + j′ − |u| + 1 = j − k − |u| + 1 ≤ α|u|. Hence,
(k, j, j − k − |u| + 1) ∈ FMGRmid

α (i). 	

By Property (3) of Lemma 4, given a candidate u for the right copy of gapped

repeats ending at position j′ in fi, we can limit the beginning position k′ of the
left copies in zi by k′ ≥ j′ + |zi| − (α + 1)|u|. In what follows, we denote this
threshold j′ + |zi| − (α + 1)|u| by τ(j′, u).

At each step i, we construct DAWG($zi) together with the suffix links S$zi

(or equivalently STree(zi
R$)), where $ is a special marker which does not appear

in zi. We also build SAzi
R$ enhanced with the RMQ data structure.

Sections 4.1 and 4.2 show how to compute maximal α-gapped repeats which
begin at position k′ > 1 in zi (or k > di in w). Section 4.3, shows how to find
maximal α-gapped repeats beginning at position k′ = 1 in zi (or k = di in w).

4.1 When Copies are the Longest Suffix u0 w.r.t. j′

By Property (1)-(a) of Lemma 4, we can start with the longest suffix u0 of
fi[1..j′] which is also a substring of zi. It follows from Lemma 1 that, for each
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j′ = 2, . . . , |fi| in increasing order, we can compute u0 in amortized O(log σ)
time using DAWG($zi). The algorithm of Lemma 1 also gives us the locus of
the node [u0] in DAWG($zi). If u0 = fi[1..j′], we proceed to proper suffixes of
u0 (see Section 4.2). In the rest of this subsection, we assume that u0 �= fi[1..j′].

If pos([u0]) − |u0| + 1 < τ(j′, u0), then we immediately know that there are
no maximal α-gapped repeats which end at position j′ in fi and have u0 as the
left and right copies. Otherwise (if pos([u0]) − |u0| + 1 ≥ τ(j′, u0)), let k (> di)
be any beginning position of u0 in zi with k ≥ τ(j′, u0). By Property (2) of
Lemma 4, (k, j, j −k −|u0|+1) ∈ FMGRmid

α (i) only if node [u0] has an outgoing
edge labeled with some character c �= b = w[j + 1]. For each c ∈ Σ \ {b}, we go
to the child [u0c] of [u0] with out-going edge labeled by c, if it exists. We then
perform range threshold query rtq(�([u0c]), r([u0c]), τ(j′, u0) + |u0|) on SAzR$.
Now, any answer h returned by the range threshold query is the ending position
of the left copy u0 of a maximal α-gapped repeat ending at position j′ in fi.
Namely, letting k = h − |u0| + 1, we have (k, j, j − k − |u0| + 1) ∈ FMGRmid

α (i).
Overall, it takes O(σ + s) total time to compute the maximal α-gapped

repeats which have u0 as their left and right copies and end at position j′ in fi,
where s is the number of the such maximal α-gapped repeats.

4.2 When u is a Proper Suffix of the Longest Suffix u0 w.r.t. j′

Basic Algorithm. Due to Property (1)-(b) of Lemma 4, we consider proper
suffixes of u0 as candidates of left/right copies of maximal α-gapped repeats.
Let b = w[j + 1] as in Section 4.1. For each c ∈ Σ \ {b}, let [u1c], . . . , [utc] be
the sequence of nodes of DAWG($zi), where u1 is the longest proper suffix of u0

such that u1c �≡$zi
u0c and u1c ∈ Substr(zi), ug+1 is the longest proper suffix

of ug such that slink([ugc]) = [ug+1c] for each 1 ≤ g ≤ t − 1, and [utc] = [c].
Namely, [u1c], . . . , [utc] is the sequence of nodes in the suffix link path from [u1c]
to [c], and uhc is the longest element of [uhc] for all 1 ≤ h ≤ t.

After processing u0 with the algorithm of Section 4.1, for each c ∈ Σ \{b} we
move to node [u1c] (we will later describe how to efficiently move there from [u0]).
Let q1 be the non-empty string such that q1u1 = u0, and let a1 = q1[|q1|]. Since
u1c is a proper suffix of u0c and u1c �≡$zi

u0c, Endpos$zi
(u0c) ⊂ Endpos$zi

(u1c).
Also, for any r′ ∈ Endpos$zi

(u1c) − Endpos$zi
(u0c), zi[r′ − |u1| − 1] �= q1[|q1|].

Hence, any k′ = r′−|u1|+1 which satisfies Property (3) of Lemma 4 is the begin-
ning position of the left copy of a maximal α-gapped repeat ending at position j′.
To compute such occurrences, let e1 be the label of any reversed suffix link from
node [u1c]. We move from [u1c] to [e1u1c] by traversing the reversed suffix link.
We then perform a range threshold query rtq(�([e1u1c]), r([e1u1c]), τ(j′, u1) +
|u1|) on SAzi

R$. Let h be any answer returned by the above queries for all
reversed suffix links from [u1c]. Then, h is the ending position of the left copy u1

of a maximal α-gapped repeat which ends at position j′ in fi, and is immediately
followed by c. Thus, letting k = h − |u1| + 1, we have (k, j, j − k − |u1| + 1) ∈
FMGRmid

α (i). After processing node [u1c] as above, we proceed to the next node
[u2c] = slink([u1c]) in the suffix link path, and process it in an analogous way
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(exchanging u2 with u3, and u1 with u2). We continue this until we reach the
last node [utc] in the suffix link path w.r.t. character c. By conducting the above
procedure for all characters c ∈ Σ \ {b}, we obtain the subset of FMGRmid

α (i)
which end at position j′ in fi, and hence we can compute FMGRmid

α (i) by using
the above algorithm for positions j′ = 2, . . . , |fi| in fi.

The algorithm described above correctly computes FMGRmid
α (i), however, it

is inefficient: For each position j′ in fi and for each character c ∈ Σ \ {b}, we
traverse O(n) reversed suffix links. Thus, it takes a total of O(σn2) time.

Speeding up the Algorithm. To obtain an O(αn+occmid)-time solution (for
a constant alphabet), we need to consider the following points:

1. Given node [u0] for each j′ in fi, how can we find the first node [u1c] in the
suffix link path w.r.t. character c ∈ Σ \ {b}, where b = w[j + 1]?

2. How can we bound the number of nodes to process in the suffix link path,
by the number of maximal α-gapped repeats to output?

Fig. 3. DAWG($abb) augmented with the
shortcut links, which are depicted by the dou-
ble arcs. The shortcut links for nodes [ε], [a],
and [b] are omitted as they are never used in
the algorithm.

Firstly, we consider Point 1. If
node [u0] has an out-going edge
labeled by c, then we can easily
obtain node [u1c] in O(log σ) time,
by moving from [u0] to [u0c] by
the edge ([u0], c, [u0c]) and then
moving to node [u1c] by the suffix
link of [u0c]. To deal with the case
where node [u0] does not have an
out-going edge labeled by c, we pre-
process DAWG($zi) as follows: For
each node [x] of DAWG($zi) and
each character c ∈ Σ, we precom-
pute the longest proper suffix sc of
xc such that sc �≡ xc and sc is a substring of zi, and we create a shortcut
link ([x], c, [sc]). See also Fig. 3 for examples of shortcut links. We can conduct
this preprocessing in a total of O(σ|zi|) time for all characters in Σ, based on
a standard depth-first traversal on the suffix link tree of DAWG($zi), namely
STree(zi

R$), as follows: During the traversal, we maintain a table F of size σ.
Assume that we just have arrived at a node [y] in the tree during the traversal.
Also, assume that for each c ∈ Σ, F [c] stores all descendants [r] of [y] in the tree
which do not have an out-going DAWG edge labeled by c. Now, if [y] has an out-
going DAWG edge labeled by c, then we create shortcut links ([r], c, [yc]) from
all nodes [r] stored in F [c], and we delete all the nodes in F [c]. We also create
shortcut link ([y], c, [yc]). Otherwise (if [y] does not have an out-going DAWG
edge labeled by c), node [y] is added to F [c]. We then continue the traversal on
the tree. For all characters c and all nodes [y] in the tree, we can check whether
node [y] has an out-going DAWG edge labeled with c in a total of O(σ|zi|) time.
For each character c ∈ Σ, each node is inserted to F [c] at most once, and once it



A Faster Algorithm for Computing Maximal α-gapped Repeats 133

is deleted from F [c], it will never be re-inserted to F [c]. Hence, the preprocessing
takes a total of O(σ|zi|) time for all characters and nodes. The resulting data
structure with the shortcut links occupy O(σ|zi|) space.

Secondly, we consider Point 2. Notice that some node in the suffix link path
[u1c], . . . , [utc] may not be associated to any occurrence of maximal α-gapped
repeats ending at position j′ in fi. The basic algorithm performs at most σ − 1
range threshold queries at every node in the suffix link path. Thus, for each
j′, the basic algorithm takes a total of O(σt + γj′) time, where γj′ denotes the
number of maximal α-gapped repeats which have one of u1, . . . , ut as left/right
copies and end at position j′ in fi. Note that the σt term in the above complexity
comes from the range threshold queries with no answers. Since t = O(j′), if we
simply run the basic algorithm for all 1 ≤ j′ ≤ |fi|, then it will take at least
O(σ|fi|2) = O(σn2) time in the worst case.

To bound the number of nodes we process in the suffix link path traversal,
we use the following monotonicity of α-gapped repeats.

Lemma 5. For any 1 ≤ j′ < l′ ≤ |fi|, assume a string u is a suffix of both
fi[2..j′] and fi[2..l′]. Then τ(j′, u) < τ(l′, u).

e2 e2’

e3’e3

e4’e4

a4

3

4

a5

2 2

3 3 3 3

4 4 4 4

a3
a2

Fig. 4. Illustration for a traversal of the suffix link
path [u1c], . . . , [utc], where eg, e′

g �= ag for 1 < g ≤
t, C([u2c]) = {[e′

2u2c]}, C([u3c]) = ∅, C([u4c]) =
{[e4u4c], [e

′
4u4c]}. The checked nodes are the marked

nodes in the suffix link path. Since [u1c] is marked, we
move up to [u2c] and perform a range threshold query
on the range corresponding to [e′

2u2c] ∈ C([u2c]).
Then we perform an NMA query on [u1c] and obtain
its NMA [u3c]. We then move up to [u4c] and perform
range threshold queries on the two ranges correspond-
ing to [e4u4c], [e

′
4u4c] ∈ C([u4c]).

Let [u1c], . . . , [utc] be the
sequence of nodes in the suf-
fix link path, where each ug

is a candidate of the left and
right copies of maximal α-
gapped repeats which end
at position j′ in fi and are
immediately followed by c.
By Lemma 5 and Property
(3) of Lemma 4, if (k, j, j −
k − |ug| + 1) is not an α-
gapped repeat, then for any
l > j, (k, l, l − k − |ug| +
1) cannot be an α-gapped
repeat, either. A node [x] is
said to be alive at position j′

if pos([x]) ≥ τ(j′, x)+|x|−1,
and is said to be dead other-
wise (if pos([x]) < τ(j′, x) +
|x| − 1). At each node [x]
we maintain the set C([x]) of
suffix tree children of [x] s.t. [ax] ∈ C([x]) with a ∈ Σ iff node [ax] is alive. The
sets C([x]) for all nodes [x] can be maintained in O(|zi| log σ) time and O(|zi|)
working space for all positions j′ = 2, . . . , |fi|. Based on the sets C’s above,
we build the nearest marked ancestor (NMA) data structure by Gabow and
Tarjan [7] on STree(zi

R). Initially, all nodes of STree(zi
R) are marked. A node

[x] will be unmarked, when all siblings of [x] in STree(zi
R) become dead as j′
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increases. Now we perform NMA queries on the suffix link path [u1c], . . . , [utc].
At each node [ugc] returned by an NMA query in the suffix link path, we first
move up to its suffix tree parent [ug+1c] in the path. We then access each suffix
tree child [eg+1ug+1c] ∈ C([ug+1c]) of [ug+1c], and perform a range threshold
query on the range on SAzi

R$ which corresponds to [eg+1ug+1c]. Hence, the
total time cost for traversing the suffix link paths is bounded by the number of
outputs. See also Fig. 4 for illustration of the above procedure.

4.3 Finding Maximal α-gapped Repeats Starting at k = di

Consider a gapped repeat beginning at the first position of zi, i.e., k = di (or
k′ = 1). The left-maximality of such a gapped repeat cannot be checked locally
in zifi, and hence it has to be checked globally in w. Observe that such a gapped
repeat can be found only if u = fi[2..|fi|] or zi = w[1..|f1 · · · fi−1|]. In the latter
case, the gapped repeat is always left-maximal. In the former case when the latter
does not hold, then we simply compare the two characters w[bi] and w[di −1]. If
they are equal, then the gapped repeat (di, bi+1−1, bi−di) = (di, bi+1−1, |zi|+1)
is not left-maximal, and if they are not equal, then it is left-maximal.

4.4 Complexity Analysis of Our Algorithm

Lemma 6. Given a string w of length n and a real α > 1, we can compute
FMGRmid

α (w) in O(σαn + occmid) time and O(σn + occmid) working space.

Proof. We first show the space complexity. We can compute LZ (w) = f1, . . . , fm

using O(n) space. At each step i, we use DAWG($zi), STree(zi
R$), SAzi

R$, the
NMA data structure, and the RMQ data structure which require O(|zi|) = O(n)
total space. The shortcut links on DAWG($zi) require O(σ|zi|) = O(σn) space.
As soon as step i has finished, we can discard all of them and will construct
these data structures for the next step i + 1. During all the steps, we maintain
a table L to store outputs, which requires O(n + occmid) space. Thus the total
space complexity for these data structures is O(σn + occmid) for all steps.

Let us analyze the preprocessing time. LZ (w) can be computed in O(n log σ)
time. At each step i of the algorithm, we spend O(|zi| log σ) time to build
DAWG($zi) and STree(zi

R$), and O(σ|zi|) time to compute the shortcut links
on DAWG($zi). The RMQ data structure can be constructed in O(|zi|) time. For
all nodes [x] of DAWG($zi), it takes O(|zi|) total time to precompute the small-
est position j′ at which node [x] becomes dead. Hence, the total preprocessing
time for all steps is O(

∑m
i=1 σ|zi|) = O(σα

∑m
i=1 |fi|) = O(σαn).

Now we analyze the running time of the algorithm for each step i. On the
NMA data structure, each node is unmarked at most once, and due to Lemma 5
any unmarked node will never be marked again. Since it takes O(1) time to find
the nearest marked ancestor of any given node, and since each occurrence of
maximal α-gapped repeats can be obtained in O(1) time, the total time cost for
traversing the suffix link paths is O(occmid(i)). What remains is how to store the
outputs into the table L. For each 1 ≤ k ≤ n, we need the elements stored in L[k]
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to be sorted in increasing order of their lengths. This is important to compute
maximal α-gapped repeats that belong to SMGRα(w) in O(n) total time (The
elements of SMGRα(i) that are completely contained in fi are computed by
copying maximal α-gapped repeats from a previous occurrence of fi. See [10]
for details). Since we compute maximal α-gapped repeats in increasing order of
their ending positions j, for each 1 ≤ k ≤ n we can easily store the maximal
α-gapped repeats starting at position k into L[k] in decreasing order of their
lengths, in time linear in the number of elements in L[k]. Thus this part of the
algorithm takes O(occmid) total time.

Overall, the algorithm requires O(σαn + occmid) time and O(σn + occmid)
working space. This completes the proof. 	


The main result of this paper follows from Lemmas 2 and 6.

Theorem 1. Given a string w of length n over a constant alphabet and a real
α > 1, we can compute the set MGRα(w) of all maximal α-gapped repeats in
w in O(αn + occ) time and O(n + occ) space, where occ = |MGRα(w)| is the
number of occurrences of maximal α-gapped repeats in w.
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Abstract. Information retrieval evaluation heavily relies on human
effort to assess the relevance of result documents. Recent years have seen
efforts and good progress to reduce the human effort and thus lower the
cost of evaluation. Selective labeling strategies carefully choose a sub-
set of result documents to label, for instance, based on their aggregate
rank in results; strategies to mitigate incomplete labels seek to make up
for missing labels, for instance, predicting them using machine learning
methods. How different strategies interact, though, is unknown.

In this work, we study the interaction of several state-of-the-art
strategies for selective labeling and incomplete label mitigation on four
years of TREC Web Track data (2011–2014). Moreover, we propose
and evaluate MaxRep as a novel selective labeling strategy, which has
been designed so as to select effective training data for missing label
prediction.

1 Introduction

Evaluation in information retrieval often relies on the Cranfield paradigm [10].
To establish the relative performance of several information retrieval systems,
one agrees on a set of information needs (called topics), which are representative
of the target workload. Each of these information needs is then formulated as a
keyword query, and results are obtained from each of the information retrieval
systems under comparison. Following that, human assessors label retrieved result
documents with regard to their relevance. Finally, based on the collected labels,
a retrieval effectiveness measure such as mean-average precision (MAP) or nor-
malized discounted cumulative gain (nDCG) is computed to establish a relative
order of the compared information retrieval systems according to their retrieval
performance.

Manual labeling is laborious and costly, in particular when the number of
topics and/or the number of compared systems is large. As a reaction, recent
years have seen a fair amount of research that seeks to reduce the cost of informa-
tion retrieval evaluation. Selective labeling, as a first direction, chooses a subset
of returned result documents to label. Among the simplest strategies, depth-k
pooling [16,17] only collects labels for documents returned in the top-k result
of any of the compared systems. More sophisticated strategies leverage knowl-
edge about the retrieval effectiveness measure used, for instance, Carterette and
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 137–148, 2015.
DOI: 10.1007/978-3-319-23826-5 14
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Allan [7] who label only documents with a potential effect on the relative order
of any two systems. While cutting costs, selective labeling leads to result docu-
ments whose relevance label is not known. Such incomplete labels can also arise
for other reasons, for example, when evaluating a novel information retrieval sys-
tem that did not contribute to the original pool of result documents. Mitigating
incomplete labels, as a second direction, seeks principled ways to make up for
missing relevance assessments. The default of dealing with them is to assume that
result documents are irrelevant if they have not been labeled. While this may
appear pessimistic at first glance, it is not unreasonable given that most docu-
ments will be irrelevant to any specific information need. Alternative approaches
have come up with novel effectiveness measures [3], removed documents without
known label from consideration [15], and made use of machine learning methods
to predict missing labels [4].

Contributions. What has received some prior attention but has not been fully
explored, though, is how the different strategies for selective labeling and incom-
plete label mitigation interact with each other. As a first contribution of this
paper we thus examine the interaction of state-of-the-art selective labeling and
incomplete label mitigation strategies on four years of TREC Web Track data
(2011–2014). The performance of different combinations is studied both in terms
of approximating MAP scores (in terms of root mean square error) as well as
system rankings (in terms of Kendall’s τ). Also, strategies for selective labeling
have typically been designed with no consideration of how incomplete labels are
dealt with later on. Hence, as a second contribution, inspired by recent work
in machine learning [19] and the cluster hypothesis [14], we propose MaxRep
as a novel selective labeling strategy. MaxRep selects documents to label so
as to maximize their representativeness of the pool of result documents, thus
yielding effective training data for label prediction. MaxRep is formulated as
an optimization problem, which permits efficient approximation.

Organization. The rest of this paper is organized as follows. Section 2 recaps
existing strategies for selective labeling and incomplete label mitigation and puts
our work in context. Section 3 puts forward our novel selective labeling strategy
MaxRep. Our extensive experimental study is the subject of Section 4. Finally,
in Section 5 we draw conclusions.

2 Technical Background and Related Work

In this section, we provide the technical background for our work by reviewing
existing strategies for selective labeling and incomplete label mitigation. More-
over, we put our proposed MaxRep method in context with existing work.

2.1 Selective Labeling

Several efforts have looked into how, to reduce human effort and hence cost, only
a subset of returned documents can be labeled, while still producing a reliable
relative ranking of multiple information retrieval systems:
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Pooling strategies merge the results returned by different systems to form a
pool of result documents to be labeled by human assessors. The most common
strategy, depth-k pooling as used by TREC, considers only documents that are
returned within the top-k of any system. Cormack et al. [11], as an alterna-
tive, propose move-to-front pooling (MTF) as an iterative pooling procedure,
requiring continued human effort, which systematically prioritizes documents
returned by systems that have already returned relevant documents. Vu and
Gallinari [17] make use of machine learning for pooling. Using documents from
the top-5 pool as training data, they employ learning-to-rank methods to esti-
mate the relevance of yet-unlabeled documents. Documents more likely to be
relevant are then labeled with higher priority. Features, in their case, encode the
rank at which the document was returned by different systems. Their approach
thus requires two rounds of human interaction to label (i) documents in the top-5
pool as training data and (ii) a number of the remaining documents.

Aslam et al. [2] devise a biased sampling strategy that yields an unbiased
estimator of MAP. A more practical sampling strategy with good empirical per-
formance is described by Aslam and Pavlu [1]. The key idea here is to introduce a
sampling distribution, so that documents ranked highly by many system, which
are therefore expected to be relevant, are selected more often. The probability
of selecting the document at rank r from a result list of length n is defined as

P [r] ≈ 1
2n

log
n

r
.

These per-system probabilities are aggregated, corresponding to choosing a sys-
tem at uniform random, and documents are selected using stratified sampling.

Carterette et al. [7] propose the minimal test collection (MTC) method. For
a specific retrieval effectiveness measure (e.g., MAP or nDCG), MTC iteratively
selects discriminative documents to label until the relative order of systems has
been determined. Requiring continued human interaction at every step, like MTF
pooling described above, it is an active procedure.

Unlike all of the aforementioned strategies, which only take ranking informa-
tion into account, our novel method MaxRep also considers document contents.
Inspired by Yu et al. [19] and designed with label prediction in mind, MaxRep
aims at selecting a representative set of documents from the pool of result doc-
uments to yield effective training data.

2.2 Incomplete Label Mitigation

Labels can be incomplete for different reasons, for instance, since they were
collected only selectively or because the evaluated information retrieval system
is novel and did not contribute to the initial result pool. Different strategies have
been proposed as remedies:

As already mentioned above, a common way to deal with missing relevance
labels, which is also used in TREC, is to assume that those documents are
irrelevant. Given that most documents are irrelevant anyway for any specific
information need, this can also be interpreted as label prediction with a simple
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majority classifier. More elaborate label prediction methods will be discussed
below. Sakai [15], as an alternative, proposes to remove documents without
known labels from consideration yielding condensed result lists. Both aforemen-
tioned incomplete label mitigation strategies are agnostic to the retrieval effec-
tiveness measure used.

In contrast, Buckley and Voorhees [3] propose bpref as an alternative retrieval
effectiveness measure mimicking mean-average precision (MAP). With R as the
number of labeled relevant documents, it is defined as

bpref =
1
R

∑

r

(
1 − | labeled irrelevant above rank r |

R

)
,

and the term in parenthesis can be interpreted as an estimator of precision at
rank r. In their experiments, bpref proved robust and exhibited high rank corre-
lation with MAP. However, in terms of numerical value, bpref may deviate from
MAP if many labels are missing. Yilmaz and Aslman [18] describe two alter-
natives, based on sampling theory, that are closer to MAP. The first, induced
average precision (indAP), removes documents with unknown label from con-
sideration and can be seen as an application of the condensed list approach [15]
to MAP. The second, inferred average precision (infAP), relies on the following
improved estimator of precision at rank r

E[precision at r] =
1
r

+
(r − 1)

r

( | labeled above rank r |
r − 1

· | labeled relevant |
| labeled |

)
,

which also takes into account what fraction of documents has been labeled.
Another family of strategies uses machine learning methods to predict miss-

ing relevance labels. Carterette and Allan [6] use regularized logistic regression
to predict the relevance of documents. Building on the cluster hypothesis [14],
document features encode tf.idf -based cosine similarity with documents whose
labels are known. Büttcher et al. [4], to the same end, explore two approaches,
namely a simple classifier based on statistical language models and a support
vector machine (SVM). For the latter, document features are tf.idf -weights for
the 10 6 most common terms in the document collection. Given the good perfor-
mance of the SVM-based label prediction in their experiments, we use this as
one of the incomplete label mitigation strategies in our experiments.

3 Selecting Representative Documents to Label

We now describe MaxRep, our novel strategy for selective labeling. In contrast
to existing strategies, MaxRep not only considers ranking information but also
takes into account document contents. Intuitively, it aims at selecting a subset of
documents that is representative, in particular of those documents expected to
be relevant. MaxRep thus harvests effective training data for label prediction,
since documents are representative of the overall pool of result documents, and
it also makes up for the inherent bias against relevant documents.
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Let D denote the pool of result documents for a specific topic. Our objective
is to select a k-subset L ⊆ D that best represents the pool of result documents.
Intuitively, if two documents have similar contents, there is no need to label
both of them, since their labels tend to be identical. We let sim(di, dj) ∈ [0, 1]
denote a measure of content similarity between documents di and dj . Further,
we let rel(di) ∈ [0, 1] denote a measure of expected relevance of document di

Our concrete implementation uses the cosine similarity between tf .idf -based
document vectors as a measure of document content similarity. More precisely,
with tf (v, d) as the term frequency of term v in document d, df (v) as its docu-
ment frequency, and n as the total number of documents in the collection, the
feature weight for term v in document vector d is

d(v) = tf (v, d) log
n

df (v)
,

and we measure the similarity between documents di and dj as

sim(di, dj) =
di · dj

‖di‖ ‖dj‖
which ranges in [0, 1] given that we only have non-negative feature weights. As
in Büttcher et al. [4] our implementation only considers the 10 6 most frequent
terms from the document collection. Moreover, in order to reduce noise, we
ignore similarities below 0.8, setting them to zero, when choosing representative
documents. As a measure of expected relevance our concrete implementation
uses the probability according to the sampling distribution also used in Aslam
and Pavlu [1] and described in Section 2.

We measure the representativeness of a document set L as

f(L) =
∑

di∈D
rel(di) max

dj∈L
(sim(di, dj)) . (1)

This formulation rewards document sets that cover all documents from D that
are expected to be relevant by including at least one similar document.

Building on this, we cast selecting the set of k most representative result
documents into the following optimization problem

argmax
L

f(L) s.t. |L| = k

It turns out that the above optimization problem permits efficient approxi-
mation thanks to the submodularity of its objective function, which we state in
the following lemma.

Lemma 1 (Submodularity). Equation 1 defines a submodular function.
Given two document sets L and L′ with L ⊆ L′ and a document d ∈ D, then

f(L ∪ {d}) − f(L) ≥ f(L′ ∪ {d}) − f(L′) .
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Proof (of Lemma 1). We can rewrite for X ∈ {L,L′}

f(X ∪ {d}) − f(X ) =
∑

di∈D
rel(di) max

(
0, sim(di, d) − max

dj∈X
sim(di, dj)

)
.

Now,
L ⊆ L′ ⇒ ∀ di ∈ D : max

dj∈L
sim(di, dj) ≤ max

dj∈L′
sim(di, dj)

⇒ f(L ∪ {d}) − f(L) ≥ f(L′ ∪ {d}) − f(L′) .

��
Having established the submodularity of our objective function, we can make

use of the result by Nemhauser et al. [12] and greedily build up the set of repre-
sentative documents L. More precisely, starting from L0 = ∅, in the i-th iteration
we include the document from D\Li−1 that maximizes f(Li), and finally report
Lk as a result. This greedy algorithm gives a (1 − 1

e )-approximation [12], guar-
anteeing the performance of the proposed greedy algorithm.

4 Experimental Evaluation

In this section, we describe our experimental evaluation. We report on the per-
formance of different combinations of strategies for selective labeling, including
MaxRep as the one proposed in this work, and incomplete label mitigation.
This is done on four years’ worth of participant data from the TREC Web Track
(2011–2014), and we investigate how well combinations can approximate the sys-
tem ranking, in terms of Kendall’s τ , but also how well they can approximate
MAP scores, in terms of root mean square error (RMSE).

4.1 Datasets

Our experiments are based on the ClueWeb091 and ClueWeb122 document
collections. Queries and relevance labels are taken from the adhoc task of the
TREC Web Track (2011–2014). This leaves us with a total of 200 queries (50
per year) and their corresponding relevance labels. We also obtained the runs
submitted by participants of the TREC Web Track. There are 62 runs for 2011,
48 runs for 2012, 61 runs for 2013, and 42 runs for 2014. For each submitted run
we consider the top-20 search results returned. In 2013 a subset of 21 queries
was only labeled up to depth 10. For those queries we apply the condensed list
approach, that is, for each system we consider the 20 highest-ranked labeled
documents as its result.

1 http://www.lemurproject.org/clueweb09.php/
2 http://www.lemurproject.org/clueweb12.php/

http://www.lemurproject.org/clueweb09.php/
http://www.lemurproject.org/clueweb12.php/
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4.2 Methods

We consider the following non-active strategies for selective labeling :

– uniform random sampling, as described by Buckley and Voorhees [3], we
give the method an advantage by sampling retrospectively from relevant and
irrelevant documents (we report averages based on 30 repetitions);

– incremental pooling, as described by Carterette [5,7], we select documents
according to the best rank assigned by any system and break ties according
to the average rank across all systems;

– statAP, as described by Aslam and Pavlu [1], with additional judgments
obtained from pooling (we report averages based on 30 repetitions);

– our method MaxRep as described in Section 3.

To mitigate incomplete labels, we consider the following strategies:

– trec-map treats documents with unknown label as irrelevant;
– bpref [3] separates the labeled non-relevant documents from unlabeled doc-

uments;
– indAP [18] regards missing labels as non-existing
– infAP [18] relies on an improved estimator of precision at rank r
– statAP [1] computes AP with adjustments by inclusion probability from

the document sampling phase
– predict-map, SVM-based label prediction approach [4], which we imple-

mented using the scikit-learn [13] toolkit.

This gives us a total of 21 combinations to investigate. Given that statAP
as a strategy for mitigating incomplete labels requiring inclusion probabilities
as an input from selective labeling, we only compute statAP when labels have
been selected with statAP itself.

4.3 Approximation of System Ranking and MAP Scores

Our first experiment studies how well different strategies can approximate the
system ranking in terms of Kendall’s τ and how well they can approximate the
MAP scores of individual systems. To this end, we select a varying percentage,
from 1% up to 95%, to label using the different strategies. Figure 1 shows the
Kendall’s τ value obtained for different selective labeling strategies on each of the
four years (2011–2014) considered. Comparing the different incomplete label mit-
igation strategies, we observe that predict-map, the SVM-based label prediction
approach, consistently achieves good performance, regardless of how documents
to label are selected. In most plots, with as little as 20% of labeled documents,
predict-map thus achieves a Kendall’s τ value above 0.9, which indicates that
the obtained system ranking is practically indistinguishable from the ground
truth. Using trec-map and assuming that documents without known labels are
irrelevant, totally mixing the labeled non-relevant and unlabeled documents, at
the other extreme, performs worst in most plots. Not surprisingly, this is most
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pronounced when using our selective labeling strategy MaxRep. Figure 2 plots
the corresponding root mean square error (RMSE), measuring how well the dif-
ferent combinations approximate MAP scores of individual systems. Predicting
missing labels using predict-map again achieves the best result by yielding lowest
approximation errors. The highest approximation errors are almost consistently
seen for bpref, which is not surprising given that, as described in Section 2, it is
different from MAP.
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Fig. 3. Percentage of labeled documents required to achieve a Kendall’s τ correlation
above 0.9 when using label prediction.

4.4 Selective Labeling under Label Prediction

Given the good performance of label prediction in the previous experiment,
we now investigate which selective labeling strategy performs best with it. To
this end, in Figure 3, we plot the percentages of documents that need to be
labeled, with different selective labeling strategies, when using predict-map for
label prediction to achieve a Kendall’s τ score above 0.9.

As can be seen, our selective labeling strategy MaxRep performs best across
all four years under consideration. It thus consistently requires the lowest per-
centage of documents to be labeled to achieve a system ranking that is practically
indistinguishable from the ground truth. Its relative advantage is clearest for the
years 2011 and 2012 for which MaxRep requires as little as 30− 35% of labeled
documents. Also in this experiment, uniform random sampling performs worst,
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typically requiring more than 60% of labeled documents to achieve a Kendall’s
τ value above the threshold. Additionally, we conduct paired two-tailed t-test
between different baselines w.r.t. our method for these least percentage of labels
required to get over 0.9 correlation, and our method outperform the uniform
random sampling and incremental pooling at 95% significant level (p-value=.008
and .032), meanwhile outperform the statAP at 90% level (p-value=.063).

As for comparison on RMSE, from Figure 2, we can see that our method is
comparable to other methods in terms of approximating MAP scores. However,
no clear winner is observed among different selective labeling methods when
combined with mitigation through label prediction.

5 Conclusion

Low-cost evaluation has been an active area of research within information
retrieval for the past decade. In this work, we have investigated how differ-
ent strategies for selective labeling and mitigating incomplete labels interact. To
this end, we conducted a large-scale experimental evaluation on ClueWeb09/12
with participant data from the adhoc task of TREC Web Track 2011–2014. We
found that label prediction is a robust and viable strategy to mitigate incomplete
labels, as long as at least 20% of documents have been labeled as training data.
Moreover, with label prediction in mind, we proposed a novel strategy MaxRep
for selective labeling. In contrast to existing strategies, it considers both ranking
information and document contents and seeks to select a representative subset
of documents to label. Our experiments confirmed that MaxRep is beneficial
and outperforms other strategies when label prediction is used.

As part of our ongoing research, we investigate how strategies for selective
labeling and incomplete label mitigation can be adapted for retrieval effectiveness
measures such as α-nDCG [9] and ERR-IA [8] that capture novelty & diversity.
Moreover, we study the reusability of this semi-automatically generated labeled
collection, examining the reliability in evaluating systems without contributing
to the initial document collection.

References

1. Aslam, J.A., Pavlu, V.: A practical sampling strategy for efficient retrieval evalu-
ation. Report (May 2007)

2. Aslam, J.A., Pavlu, V., Yilmaz, E.: A statistical method for system evaluation
using incomplete judgments. In: SIGIR, pp. 541–548 (2006)

3. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
SIGIR, pp. 25–32 (2004)
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Abstract. Motivated by the problem of storing coloured de Bruijn
graphs, we show how, if we can already support fast select queries on
one string, then we can store a little extra information and support fairly
fast select queries on a similar string.

1 Introduction

Many compressed data structures for strings rely on three fundamental queries:
access, rank and select. The query S.access(i) on a string S returns its ith char-
acter; the query S.ranka(i) returns the number of occurrences of character a in
the prefix of S of length i; and the query S.selecta(j) returns the position of the
jth leftmost occurrence of a in S. Suppose we have a data structure support-
ing these queries on a string S1 and we want another data structure supporting
them on a similar string S2. It is not difficult to store S2 in small space and sup-
port access to it via access to S1. For example, we can find a longest common
subsequence of S1 and S2, store two bitvectors with 1s marking their charac-
ters not in that subsequence, and store the characters marked in S2. The total
number of 1s in the two bitvectors is at most twice the standard edit distance d
between S1 and S2 (i.e., the number of single-character insertions, deletions and
substitutions needed to change one into the other) so we can store them in O(d)
space and support rank and select on them using O(log log(|S1| + |S2|)) time
using a sparse-bitvector implementation [6]. To access S2[i], we check whether
it appears in the common subsequence: if so, we use rank and select queries on
the bitvectors to find the corresponding character in S1, which we access; if not,
we find S2[i]’s rank among characters marked in S2 and look it up.

Last year, when describing their relative FM-index data structure, Belaz-
zougui et al. [1] showed how to store O(d) extra words and support any rank
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query on S2 using O(log log(|S1| + |S2|)) time on top of a rank query on S1. In
this paper we show how to store O(d) extra words and support any select query
on S2 using O(log log(|S1| + |S2|)) time on top of a select query on S1. We call
this relative select and we expect it to be useful when storing compressed data
structures for navigating in coloured de Bruijn graphs [8].

Belazzougui et al. were interested in saving space when storing FM-indexes [5]
for many genomes from the same species. An FM-index for a genome is essen-
tially just a data structure supporting access and rank on the Burrows-Wheeler
Transform [4] (BWT) of that genome. The BWT sorts the characters of a string
into the lexicographic order of the suffixes that immediately follow them. The
edit distance between two genomes from the same species tends to be small rel-
ative to their lengths and in practice the edit distance between their BWTs also
tends to be small. Therefore, if we store the FM-index for one genome normally,
we can use Belazzougui et al.’s result to save space when storing FM-indexes for
other genomes from the same species (at the cost of higher query times).

It is possible to support nearly all the functionality of an FM-index with-
out using select queries on the underlying BWT, so Belazzougui et al. did not
consider relative select. When the FM-index is used in a compressed suffix tree,
however, select queries are needed for computing suffix links and for certain
other operations. Our interest in relative select comes from Bowe et al.’s [3] (see
also [2]) compressed representation of de Bruijn graphs — which is based on
something like an FM-index and uses select queries to find nodes’ predecessors,
and which we call the BOSS representation for the authors’ initials — and the
possibility of extending it to coloured de Bruijn graphs. Our plan for future work
is to view a coloured de Bruijn graph as a union of normal de Bruijn graphs, and
relatively compress the BOSS representations of those graphs. Due to space con-
straints, we provide a brief summary of the BOSS representation and coloured
de Bruijn graphs as an appendix. In Section 2 we describe how we implement
relative select, and in Section 3 we show experimentally that our implementation
is practical. For simplicity and because we are interested mainly in working with
DNA, we assume throughout that the size of the alphabet is constant, and we
work in the word-RAM model with Ω(log(|S1| + |S2|))-bit words.

2 Design

Although our implementation of relative select is made up of steps that are
individually very simple, the overall effect might be confusing. To mitigate this,
we break our presentation into pieces: first, we consider the case when S2 is a
subsequence of S1; then, we consider the case when S2 is a supersequence of S1;
and finally, we combine our solutions for these special cases to obtain a general
solution. We close this section with a small example.

Lemma 1. Given a select data structure for a string S1, and a subsequence S2

of S1, we can store O(|S1| − |S2|) extra words and support any select query on
S2 using O(log log |S1|) time on top of a select query on S1.
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Proof. We store a bitvector B[1..|S1|] with 1s marking the characters of S1

that do not appear in S2. For each distinct character x, we store a bitvector
Bx[1..occ(x, S1)], where occ(x, S1) is the number of occurrences of x in S1, with
1s marking the occurrences of x in S1 that do not appear in S2. We use the
same sparse-bitvector implementation as in Section 1, so this takes a total of
O(|S1| − |S2|) extra words and lets us compute

S2.selectx(i) = B.rank0(S1.selectx(Bx.select0(i)))

using O(log log |S1|) time on top of a select query on S1. To see why this equal-
ity holds, consider that Bx.select0(i) returns the rank in S1 of the ith x that
appears in S2; S1.selectx(Bx.select0(i)) returns the position of that x in S1; and
B.rank0(S1.selectx(Bx.select0(i))) returns the position of that x in S2. ��
Lemma 2. Given a select data structure for a string S1, and a supersequence
S2 of S1, we can store O(|S2| − |S1|) extra words and support any select query
on S2 using O(log log |S2|) time on top of a select query on S1.

Proof. We store a bitvector B[1..|S2|] with 1s marking the characters of S2 that
do not appear in S1, and a select data structure for the subsequence D of S2

consisting of those marked characters. For each distinct character x, we store a
bitvector Bx[1..occ(x, S2)] with 1s marking the occurrences of x in S2 that do
not appear in S1. We use a sparse-bitvector implementation again, so this takes
a total of O(|S2| − |S1|) extra words and lets us compute

S2.selectx(i) =
{
B.select0(S1.selectx(Bx.rank0(i))) if Bx[i] = 0,
B.select1(D.selectx(Bx.rank1(i))) if Bx[i] = 1.

using O(log log |S2|) time on top of a select query on S1. To see why this
equality holds, suppose the ith x in S2 also appears in S1, so Bx[i] = 0. Con-
sider that Bx.rank0(i) returns the rank of that x in S1; S1.selectx(Bx.rank0(i))
returns the position of that x in S1; and B.select0(S1.selectx(Bx.rank0(i)))
returns the position of that x in S2. Now suppose the ith x in S2 does not
appear in S1, so Bx[i] = 1. Consider that Bx.rank1(i) returns the rank of
that x in D; D.selectx(Bx.rank1(i)) returns the position of that x in D; and
B.select1(D.selectx(Bx.rank1(i))) returns the position of that x in S2. ��
Theorem 1. Given a select data structure for a string S1, and another string
S2, we can store O(d) extra words, where d is the edit distance between S1 and
S2, and support any select query on S2 using O(log log(|S1| + |S2|)) time on top
of a select query on S1.

Proof. Consider a sequence of d single-character insertions, deletions and sub-
stitutions that turns S1 into S2. Let C be the common subsequence of S1 and
S2 consisting of characters left unchanged by these d edits (or a longer common
subsequence if we can find one). By Lemma 1, we can store O(d) extra words
and support any select query on C using O(log log |S1|) time on top of a select
query on S1. By Lemma 2, we can then store O(d) extra words and support
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any select query on S2 using O(log log |S2|) time on top of a select query on C.
Therefore, we can store O(d) extra words on top of the select data structure for
S1 and support any select query on S2 using O(log log(|S1| + |S2|)) time on top
of a select query on S1. ��

For example, consider the strings S1 = TCTGCGTAAAAGGTGC and S2 =
TGCTCGTAAAACGCG (the BWTs of GCACTTAGAGGTCAGT and GCACTA-
GACGTCAGT, respectively, from the running example in Belazzougui et al.’s
paper). Their edit distance is 5 and their longest common subsequence is
C = TCTCGTAAAAGG. If we already have a select data structure for S1 and we
want one for S2, we first add support for relative select on C by the bitvectors
B,BA, . . . , BT, shown below; then we add support for relative select on S2 by
storing bitvectors B′, B′

A, . . . , B
′
T, also shown below, and a select data structure

for D = GCC. We note that if we have a relative FM-index for S2 with respect
to S1, then it already includes B, B′ and D.

B[1..16] = 0001000000010101 B′[1..15] = 010000000001010

BA[1..4] = 0000 B′
A[1..4] = 0000

BC[1..3] = 001 B′
C[1..4] = 0011

BG[1..5] = 10100 B′
G[1..4] = 1000

BT[1..4] = 0001 B′
T[1..3] = 000

To compute S2.selectC(4), for instance, we check B′
C[4] and see it is 1, meaning

the fourth C in S2 does not appear in C. Since B′
C.rank1(4) = 2, it is the second

C in D. Since D.selectC(2) = 3, it is the third character in D. Finally, since
B′

1.select1(3) = 14, it is the 14th character in S2, meaning S2.selectC(4) = 14.
To compute S2.selectG(3), we check B′

G[3] and see it is 0, meaning the third
G in S2 also appears in C. Since B′

G.rank0(3) = 2, it is the second G in C. Since

C.selectG(2) = B.rank0(S1.selectG(BG.select0(2))) = 11 ,

it is the 11th character in C. Finally, since B′
1.select0(11) = 13, it is the 13th

character in S2, meaning S2.selectG(3) = 13.

3 Experiments

We augmented our implementation of the Relative FM-index with the new select
structure.1 The implementation is written in C++ and based on the Succinct
Data Structures Library 2.0 [6]. We used g++ version 4.8.1 to compile the code,
and ran the experiments on a system with two 16-core AMD Opteron 6378
processors and Linux kernel 2.6.32. We used a single core for the query tests.

As our reference sequence, we used the 1000 Genomes Project’s version of the
GRCh37 human reference genome, both with (3.096 Gbp) and without (3.036
Gbp) chromosome Y. For a target sequence, we chose the maternal haplotypes
of the 1000 Genomes Project’s individual NA12878 (3.036 Gbp) [11]. We built

1 https://github.com/jltsiren/relative-fm

https://github.com/jltsiren/relative-fm
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Table 1. Average query times for 100 million random LF and Ψ queries on NA12878
stored relative to the human reference genome, with and without chromosome Y.

FM-index Relative FM-index +Relative Select
ChrY space LF Ψ space LF Ψ total space Ψ

yes 1090 MB 0.55 s 1.22 s 218 MB 3.95 s 48.0 s 382 MB 6.11 s
no 1090 MB 0.55 s 1.11 s 181 MB 3.84 s 44.8 s 331 MB 6.12 s

a plain FM-index for the reference sequences and the target sequence, as well
as relative FM-indexes for the target sequence relative to both references and
with and without structures for relative select; the lengths of the common subse-
quences used were 2.992 Gbp and 2.991 Gbp, respectively. In all cases, we used
plain bitvectors in the wavelet trees and entropy-compressed bitvectors [10] for
marking the common subsequences.

To test the performance of relative select, we ran 100 million random
Ψ(i) = BWT.selectc(i − C[c]) queries on the BWT of the target sequence,
using a plain FM-index and Relative FM-indexes with and without relative
select. (Character c is the ith character in the BWT in sorted order, while
C[c] is the number of occurrences of characters smaller than c in the BWT.)
The implementation of Ψ in the Relative FM-index without relative select was
based on binary searching with rank queries. As a comparison, we also ran
LF(i) = C[BWT[i]] + BWT.rankBWT[i](i) queries. Table 1 shows the results: the
relative FM-indexes without relative select are each about a fifth the size of the
normal FM-indexes but rank queries are about seven times slower and select
queries are about forty times slower; the relative FM-indexes with relative select
are about a third the size of the normal FM-indexes but select queries are only
about five times slower (rank queries are unaffected).
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A de Bruijn Graphs

In biology, the (edge-centric) kth-order de Bruijn graph for a set of strings (e.g.,
DNA reads) is the graph whose nodes are those strings’ k-mers (substrings of
length k), with a directed edge (u, v) from u to v if at least one of the strings
contains a substring of length k+1 with u as a prefix and v as a suffix. We label
(u, v) with the last character of v. Almost all state-of-the-art DNA assemblers
build contigs via Eulerian assembly [7,9] on de Bruijn graphs, making their
space- and time-efficient representation an important problem in bioinformatics.

Bowe et al. add certain dummy nodes and edges, sort the edges into the right-
to-left lexicographic order of the nodes they leave, and take the last column of the
matrix whose rows are the edges in sorted order (or, equivalently, take the last
character in each edge). The result is like a BWT in which edges correspond to
characters and nodes correspond to the substrings containing all their out-edges’
characters. For example, for the string TACGTCGACGACT and k = 3, Bowe et al.
derive the edge-BWT TCCGTGGATAA$C. (This example is from [2].) With some
auxiliary data structures, we can use rank and select queries on this edge-BWT
to navigate forward and backward in the graph.

For the two strings TACGTCGACGACT and TACGACGCGACT and k = 3, the
de Bruijn graph is 2 nodes larger than the graphs for strings separately. If we
store whether each edge occurs in the first string, the second string, or both, then
the result is a coloured de Bruijn graph. Coloured de Bruijn graphs were intro-
duced by Iqbal et al. [8] for detecting variations between individuals’ genomes,
and are now also used in other areas of genomics. We can view the coloured de
Bruijn graph as the union of each graph consisting of edges of the same colour.
In a future paper we will show how to combine the BOSS representations of the
individual de Bruijn graphs to obtain a representation of the coloured de Bruijn
graph, and also how to relatively compress the auxiliary data structures for the
BOSS representations of the individual graphs.

We can use Belazzougui et al.’s result to relatively compress the edge-BWTs of
the individual graphs while still supporting rank over them. For example, the edge-
BWTs for TACGTCGACGACT and TACGACGCGACT with k = 3 are TCCGTG-
GATAA$C and TCCGTGGACAA$, respectively. They are so close — edit distance
2 — because most of the strings’ 4-tuples are common to both and, thus, most of
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their de Bruijn graphs’ edges are common to both. We note that, for reasonable
values of k, most of the (k+1)-mers in genomes from the same species should also
be common to most of the genomes. In this paper we showed how to support rela-
tive select on similar strings, which we will eventually need to navigate backward
across edges in our representation of coloured de Bruijn graphs.



Temporal Query Classification
at Different Granularities

Dhruv Gupta1,2(B) and Klaus Berberich1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany

{dhgupta,kberberi}@mpi-inf.mpg.de

Abstract. In this work, we consider the problem of classifying time-
sensitive queries at different temporal granularities (day, month, and
year). Our approach involves performing Bayesian analysis on time inter-
vals of interest obtained from pseudo-relevant documents. Based on the
Bayesian analysis we derive several effective features which are used to
train a supervised machine learning algorithm for classification. We eval-
uate our method on a large temporal query workload to show that we
can determine the temporal class of a query with high precision.

1 Introduction

Information needs conveyed in a time-sensitive query can only be served properly
if the temporal class associated with it can be determined. Determining the
temporal class of a query is an important stepping stone to larger components
in a time-sensitive information retrieval system. For instance, selection of an
appropriate retrieval model or deciding whether to diversify documents along
time. Existing work in this direction has only relied on publication dates while
ignoring temporal expressions in document contents. Temporal expressions allow
us to analyze events in web collections which may not have reliable publication
dates associated with them. This alleviates the problem of being restricted to
the time period covered by the publication dates of the document collection.
Analyzing the temporal class based on temporal expressions is challenging as (i)
they are highly uncertain (e.g. early 1990’s, during last century) and (ii)
are present at multiple granularities (e.g., day, month, and year).

Determining the temporal class of a query has been studied before in
approaches given in [2,5,6]. The approaches proposed in [2,6] however have
three major problems. First, all approaches only use publication dates for a
given a timestamped document collection. This may serve the purpose well
for time-sensitive queries concerning only current events covered in the news.
But it may be inadequate for queries covering historic events. Second, prior
approaches ignore the fact that events described in a query may be periodic
(e.g., summer olympics or nobel prize physics) or they may be aperiodic
(e.g., economic depression). Third, temporal ambiguity is considered only at
a single level of granularity. However temporal ambiguity may vary according to

c© Springer International Publishing Switzerland 2015
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granularity. Consider, as a concrete example, the query summer olympics tokyo
athletics. Relying only on publication dates this query would be incorrectly
classified as temporally unambiguous; whereas it is temporally ambiguous at day
granularity. Such an information need would be best served if these shortcomings
can be overcome.

Hypothesis. By addressing the aforementioned problems we hypothesize we can
improve upon the classification of time-sensitive queries containing: (i) historical
events & entities; (ii) periodic events; and (iii) temporal ambiguity at a particular
granularity.

We build on our earlier work [4] which suggests interesting time intervals
using temporal expressions. For classifying queries we identify multiple features
from Bayesian analysis of the time intervals of interest. We show the effectiveness
of our proposed approach over prior work on a large testbed of time-sensitive
queries.

Contributions made in this work are: (i) temporal class taxonomy tak-
ing into account multiple granularities and (a)periodicity of events (Section 4);
(ii) determining time intervals as intents for temporally ambiguous queries
(Section 5); (iii) effective features that outperform prior approaches (Section 6);
and (iv) a large test bed of time-sensitive queries collected from previously
available resources such as TREC time-sensitive queries [2], NTCIR Geo-Time
queries [3] and other resources available on the Web (Section 7); which is made
publicly available for future research.

2 Related Work

In this section, we describe the prior work in our context. Our work largely
tries to overcome the shortcomings of work presented in [6]. The work by Jones
and Diaz [6] describes a taxonomy of temporal classes for time-sensitive queries.
They discuss various features derived from the distribution of document pub-
lication dates. Examples of these features are temporal clarity, kurtosis, and
auto-correlation. We extend their taxonomy in our work to accomodate tempo-
ral ambiguity at different granularities, as well as (a)periodicity of events.

More recent efforts in the direction of temporal query classification have been
described in works by Joho et al. [5] and Kanhabua et al. [7]. The Temporalia
project described by Joho et al. [5] considers temporal query classification with
a novel temporal taxonomy. The temporal classes they target are qualitatively
labeled as past, recency and future. This has two major caveats. First, the quali-
tative classes leave room for ambiguity in temporal intents. For example, for nba
playoffs last week the temporal class can either be past or recent. Second,
quantitatively no information can be discerned about the exact time intervals
the temporal class refers to. Both these problems are addressed in our work.

Detecting seasonality and periodicity associated with web-queries has also
been explored by Kanhabua et al. [7]. They propose to use features acquired
from web-query logs. Additionally, akin to existing approaches, they rely on
features derived from signal processing on time series of publication dates from an
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external document collection. These may not be adequate to detect the temporal
class at different granularities, as shown in our experiments.

3 Preliminaries

We now introduce the notation used throughout the paper and the approach for
identifying time intervals of interest.

Notation. Consider a document collection D. Each document d ∈ D consists of
a bag of keywords dtext and a bag of temporal expressions dtime. We let |dtext|
and |dtime| denote the cardinalities of these bags. A temporal expression is a four-
tuple, T = 〈bl, bu, el, eu〉. Each component of T is drawn from a time domain T
(usually N). A temporal expression T may refer to any time interval [b, e] ∈ T ×T
with bl ≤ b ≤ bu, el ≤ e ≤ eu, and b ≤ e. We treat temporal expressions as a
set of time intervals and let |T | denote the number of time intervals that T may
refer to.

Time Intervals of Interest to the given keyword query q are identified
using the approach proposed in [4]. In a nutshell, with R as the set of pseudo-
relevant documents, the approach assigns the probability:

P ( [b, e] | q ) =
∑

d∈R

P ( [b, e] | d )P ( d | q ),

to time interval [b, e]. The first probability is estimated as

P ( [b, e] | dtime ) =
1

|dtime|
∑

T∈dtime

1([b, e] ∈ T )
|T | ,

following [1]. The second probability is estimated from the query likelihoods
P (q|d) under a unigram language model with Dirichlet smoothing, that is:

P ( d | q ) =
P ( q | d )∑

d′∈R P ( q | d′ )
.

4 Temporal Class Taxonomy

We propose a new taxonomy taking into account additional classes for periodic-
ity, aperiodicity, and multiple granularities (day, month, and year). It builds on
the existing taxonomy proposed by Jones and Diaz [6]. The taxonomy, depicted
in Figure 1, is arrived at by noting the observations explained in this section.

Atemporal queries as per [6] are time-invariant in nature. Thus, an atemporal
query at year granularity also implies that it is atemporal at a finer level of
granularity (day and month) and vice-versa.

Temporally unambiguous queries are those with a unique time interval of
interest associated with them. If a given query is identified to be unambiguous
at day granularity then it will also be unambiguous at any coarser granularity.
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For instance, an unambiguous query at day level concorde crash is also unam-
biguous at year level. However, this does not imply that an unambiguous query
at year level may necessarily be unambiguous at month or day level.

Temporally ambiguous queries are those which may have multiple time inter-
vals of interest associated with them. Ambiguity associated with a query may lie
at different granularities. A temporally ambiguous query at a finer granularity
may be unambiguous at coarser granularity. However, we make the distinction
that a query ambiguous at any granularity be deemed temporally ambiguous at
that level of granularity. For example the query summer olympics 2000 rowing
is temporally ambiguous at day level granularity. Another aspect that we inves-
tigate is the (a)periodicity of keyword queries. For example the query summer
olympics should be classified as a periodic temporally ambiguous query. Recur-
ring events, such as tropical storms, which may not have fixed periodicity are
classified as aperiodic. In this work, we limit ourselves to (a)periodicity at year
level. However, approach described next is equally applicable to (a)periodicity
at month and day granularity.

Temporal (TX)

Ambiguous (TA)

Year (TAy)

Periodic (TAyp) Aperiodic (TAya)

Month (TAm) Day (TAd)

Unambiguous (TU)

Atemporal (AT)

Fig. 1. Temporal class taxonomy with (a)periodicity and multiple granularity

5 Bayesian Analysis

To determine the temporal class of the keyword query q we first obtain the
probability distribution of time intervals of interest at all three temporal gran-
ularities P ([b, e]|q). We consider time intervals of size equal to the granularity
under consideration (e.g., for year granularity [b, e] spans one year). We smooth
P ([b, e]|q) with time intervals from the entire document collection D, in order to
avoid the zero-probability problem:

P̂ ([b, e]|q) = λ · P ([b, e]|q) + (1 − λ) · P ([b, e]|D),

where,

P ([b, e]|D) =
1

|Dtime|
∑

T∈Dtime

1([b, e] ∈ T )
|T | .
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Detecting Multiple Modes. The distribution P̂ ([b, e]|q) is next analyzed
for multi-modality. For this we utilize a Bayesian Mixture Model fitted using
reversible jump Markov chain Monte Carlo (MCMC) procedure outlined by Xu
et al. [11]. The approach fits an unknown probability distribution by approxi-
mating it as mixture of Gaussian distributions. Utilizing this approach has the
advantage of performing both model selection and model fitting at the same
time. That is, we do not need to know the number of components in the mixture
apriori. The mixture model is described as follows:

P̂ ([b, e]|q) =
k∑

i=1

wi · N (μi, σi),

such that
∑k

i wi = 1; μi and σi characterize the mean and standard deviation of
the normal distribution N (μi, σi). To assess confidence of our hypothesis whether
P̂ ([b, e]|q) is multi-modal, we take Bayes factor as an objective. Bayes factor is
the ratio of the posterior to prior odds. If the Bayes factor exceeds 100, we
consider the hypothesis, that the probability distribution under observation has
multiple modes, correct.

The time intervals with the means μi of the components of the mixture model
are the temporal categories (Si

[b,e]) of q:

S = 〈S1
[b,e], S

2
[b,e], . . . , S

k
[b,e]〉.

6 Feature Design

After having determined the number of modes and the temporal categories from
the probability distribution P̂ ([b, e]|q), we need to identify the temporal class of
the keyword query. This is done by deriving features from the mixture model.
The features encoded are: (i) modality, (ii) fuzzy feature, and (iii) p-value of
randomness test. Next, we discuss the motivation behind the features.

Modality feature describes the number of modes identified by the Bayesian
Mixture Model. The intuition is if P̂ ([b, e]|q) is unimodal (|S| = 1), then the
temporal class should be temporally unambiguous. If the probability distribution
P̂ ([b, e]|q) is multi-modal (|S| > 1), then it should be temporally ambiguous.

Fuzzy Feature. To analyze the temporally ambiguous query for periodicity we
use the concept of fuzzy numbers. Fuzzy logic is used here to account for outlier
cases in periodic events e.g. for summer olympics anomalous years would be
[1936, 1936] and [1948, 1948]. Specifically, we capture the membership value of
the time lags between the time intervals associated with different modes against
a fuzzy number around the mean of the time lags (Φ̂).

We first identify the time lags between ordered set temporal categories Φ:

Φi
[b,e] = 〈t|t ∈ Si+1

[b,e] − Si
[b,e]〉 with, Φ̂ =

∑n
i=1 Φi

[b,e]

n
.
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Difference between intervals is calculated element-wise. Next we construct a
triangular fuzzy number with Φ̂ whose membership function is given by:

μ(x) =

{
1

1+x2 if x �= Φ̂

1 if x = Φ̂

The motivation is: if μ(x) �= 0 ∀x ∈ Φ, then issued query is a periodic query with
period approximately equal to that of Φ̂. Otherwise if ∃x ∈ Φ for which μ(x) = 0
then query could potentially be aperiodic.

Randomness Test. For atemporal queries we check P̂ ([b, e]|q) for randomness.
For this we perform a a two-tailed runs up and down test for randomness [10] on
time lags. We next note the p-value of this test as a feature. This feature thus
captures if the time lags are randomly generated or not.

For a given query, we construct the feature vector at day, month, and year
granularity. The feature data is then subsequently used for classification via a
decision tree.

7 Experimental Evaluation

7.1 Datasets

Document Collection used was The New York Times Annotated 1 corpus.
Temporal annotations for it were obtained from the authors of [1]; they used
TARSQI [9]. TARSQI is able to identify both explicit and implicit temporal
expressions in text.

Queries. The challenging aspect of evaluating our approach was compiling
a list of queries for temporally ambiguous class at different granularities. To
this end we use various previously published resources [4], TREC time-sensitive
queries [2], NTCIR Geo-Time queries [3], and also manually compiled some of
them from the Web. Table 1 summarizes the query workload. This dataset is
publicly available with an accompanying description of how it was compiled at:

http://resources.mpi-inf.mpg.de/dhgupta/data/spire2015

Table 1. Query set sizes for our evaluation setup

Set Id Description Size

TX
TA

TAy
TAyp Periodic and ambiguous at year 113
TAya Aperiodic and ambiguous at year 118

TAm Ambiguous at month 64
TAd Ambiguous at day 74
TU Unambiguous 142

AT Atemporal 154

1 http://www.catalog.ldc.upenn.edu/LDC2008T19

http://resources.mpi-inf.mpg.de/dhgupta/data/spire2015
http://www.catalog.ldc.upenn.edu/LDC2008T19
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Baseline. We use the approach proposed by Jones and Diaz [6] as a baseline. We
selected the best-performing temporal features from [6] to build the baseline clas-
sifier. Temporal features considered were: first order autocorrelation, kurtosis, and
features derived from a burst model. We consider these features at year level granu-
larity for time intervals of interest. Since, we are considering time intervals of inter-
est generated by the approach in [4]; we take into account temporal expressions and
publication dates at year granularity for the baseline also.

7.2 Setup

We discus various aspects related to the experimental setup next.

Parameters. For identifying time intervals of interest we considered top-50
(|R| = 50) pseudo-relevant documents. The mixing parameter for smoothing
the distribution was set to λ = 0.70. For modality assessment we performed
reversible jump MCMC procedure with 2,200 iterations with initial 200 burn-in
iterations.

Implementation. All methods for feature extraction were implemented in R,
a statistical programming language. Procedure for reversible MCMC sampling
was obtained from [11], also in R. The decision tree classifier based on the CART
algorithm was utilized from the R package, rpart [8]. The generative model for
time intervals of interest was programmed in Java.

Measures. For a classification task we report the standard measures for com-
paring performances – Precision, Recall and F1. Statistical significance of our
results is reported with the p-value calculated using McNemar’s test. We also
show an unweighted κ statistic for the classifiers. The κ statistic measures the
agreement between the observed accuracy to the expected accuracy by chance.
Higher value of κ indicates better discrimination between different classes.

7.3 Experimental Results

Below we report the results for each temporal class. In order to accurately gauge
the performance we also report the confusion matrix for our classifier. Training
and test set were constructed by sampling without replacement. Train and test
set split was 80% to 20% of the combined query workload (665 queries). Baseline
(B) and proposed approach (A) were trained on different random samples.

Discussion. For the temporally ambiguous class we can classify very accurately
at all levels of granularity. For the atemporal case we can also discern the class
with high precision. However, it is relatively difficult to identify temporally unam-
biguous queries. Another class that is hard to detect is aperiodic. Compared to
the baseline our approach performs better in all classes.

Failure Analysis. There were two classes for which our approach didn’t perform
well: (i) temporally unambiguous and (ii) aperiodic.

Temporally unambiguous may not have been classified precisely due to
pseudo-relevance feedback. In pseudo-relevant documents it is inevitable to not



Temporal Query Classification at Different Granularities 163

True Class

P
r
e
d
ic
t
e
d

C
la
s
s TAyp TAya TAm TAd TU AT

TAyp 6 4 0 2 5 4
TAya 2 6 1 5 0 5
TAm 4 7 6 1 3 4
TAd 3 2 0 4 1 1
TU 6 4 1 1 6 5
AT 2 7 4 4 3 13

(a) Baseline (B)

True Class

P
r
e
d
ic
t
e
d

C
la
s
s TAyp TAya TAm TAd TU AT

TAyp 14 0 0 0 0 0
TAya 0 6 0 0 5 0
TAm 0 0 12 1 0 0
TAd 1 1 0 20 0 3
TU 5 10 2 1 14 4
AT 1 1 3 0 3 26

(b) Proposed approach (A)

Fig. 2. Confusion matrix for decision tree

Table 2. Statistics by class for decision trees: baseline (B) and proposed approach (A)

Statistics by Class

Precision | Recall | F1

Class B A B A B A

TX 0.81 0.92 0.79 0.92 0.80 0.92
TA 0.70 0.87 0.64 0.71 0.67 0.78
TAy 0.45 0.80 0.34 0.51 0.39 0.62
TAyp 0.29 1.00 0.26 0.67 0.27 0.80
TAya 0.32 0.55 0.20 0.33 0.24 0.41

TAm 0.24 0.92 0.50 0.71 0.32 0.80
TAd 0.36 0.80 0.22 0.91 0.28 0.85

TU 0.26 0.39 0.33 0.64 0.29 0.48
AT 0.38 0.76 0.41 0.79 0.39 0.78

Macroaverage 0.31 0.74 0.32 0.67 0.30 0.69

p-value 4.5e-2 2.2e-16
κ-value 0.16 0.62

consider other related events, which act as noise, for the keyword query in the dis-
tribution of time intervals. Some misclassified example queries are : chernobyl
soviet union and president nixon associated press orlando.

Aperiodic queries were mostly misclassified as unambiguous. Most of the
queries in the aperiodic query set comprise of famous personalities. Thus, the
errors can be due to a very specific events in the corpus linked to the entity. Mis-
classified examples from this category are george bush jnr, madrid bombing,
muhammad ali, and ronald reagan.

8 Conclusion and Future Work

We have proposed how to solve the problem of temporal query classification
at multiple levels of granularity. Additionally, we can predict the periodicity of
events with very high accuracy. We inspect both content temporal expressions
as well as publication dates of pseudo-relevant documents given only a keyword
query. Our approach considers features based on Bayesian analysis of the time
intervals of interest. Experiments indicate that heuristics identified by us are able
to predict the temporal class for ambiguous queries really well. In contrast, for
unambiguous and aperiodic queries it is difficult to classify the class by looking
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at the pseudo-relevant documents. All in all, our classifier achieves the target of
temporal query classification with good accuracy.

As part of our ongoing work; we are investigating how to incorporate the
temporal categories (Si

[b,e]) of given keyword query for diversifying search results
along time. As part of our future work; we plan to carry out an end to end
evaluation of retrieval effectiveness when considering disambiguated temporal
categories.
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Abstract. The Sorting by Prefix Reversals problem consists in
sorting the elements of a given permutation π with a minimum num-
ber of prefix reversals, i.e. reversals that always imply the leftmost ele-
ment of π. A natural extension of this problem is to consider strings (in
which any letter may appear several times) rather than permutations. In
strings, three different types of problems arise: grouping (starting from a
string S, transform it so that all identical letters are consecutive), sorting
(a constrained version of grouping, in which the target string must be
lexicographically ordered) and rearranging (given two strings S and T ,
transform S into T ). In this paper, we study these three problems, under
an algorithmic viewpoint, in the setting where two operations (rather
than one) are allowed: namely, prefix and suffix reversals - where a suf-
fix reversal must always imply the rightmost element of the string. We
first give elements of comparison between the “prefix reversals only” case
and our case. The algorithmic results we obtain on these three problems
depend on the size k of the alphabet on which the strings are built. In
particular, we show that the grouping problem is in P for k ∈ [2; 4] and
when n − k = O(1), where n is the length of the string. We also show
that the grouping problem admits a PTAS for any constant k, and is
2-approximable for any k. Concerning sorting, it is in P for k ∈ [2; 3],
admits a PTAS for constant k, and is NP-hard for k = n. Finally, con-
cerning the rearranging problem, we show that it is NP-hard, both for
k = O(1) and k = n. We also show that the three problems are FPT
when the parameter is the maximum number of blocks over the source
and target strings.

1 Introduction and Notations

A usual task in comparative genomics consists in comparing pairs of genomes,
in order to define how (dis)similar they are. A genome is usually modeled as a
permutation π or a string S, and the pairwise comparison of genomes is usually
done by computing a distance between them. Such a distance is generally defined
based on so-called “rearrangements”, which are large scale operations involving
contiguous segments of π (resp. S). The most famous example of such rearrange-
ments is reversals (see e.g. [3,8]), which take a contiguous segment of π (resp.
S), reverse its order, and reincorporate this new segment at the same location.

Supported by GRIOTE project, funded by Région Pays de la Loire
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C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 165–176, 2015.
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More generally, given a set S of possible rearrangements, the distance between
two permutations π and π′ (resp. two strings S and T ) is defined as the mini-
mum number of operations from S that are required to obtain π′ starting from π
(resp. to obtain T starting from S). Many studies are concerned with the special
case where |S| = 1, i.e. only one type of rearrangement is authorized. There is
a very abundant literature on the subject, and we refer the reader to [6] for a
rather recent survey on the topic. In this paper, our object of study is strings, a
generalization of permutations, in which any letter may occur several times. The
set of rearrangements we authorize here is composed of two operations: prefix
reversals, which necessarily involve the first letter of the string, and suffix rever-
sals, in which the last letter of the string must be involved. When dealing with
strings, three types of problems are usually considered: grouping (starting from
a string S, transform it so that all identical letters are consecutive), sorting (a
constrained version of grouping, in which the target string must be lexicograph-
ically ordered) and rearranging (given two strings S and T , transform S into T ).
In this paper, we study these three problems, under an algorithmic viewpoint.

Terminology and Basic Properties. Throughout the paper, and otherwise stated,
any string S is a sequence of letters built on an alphabet Σ of cardinality k, and
is of length n. Any string S is said to be fully k-ary if each letter of Σ =
{0, 1 . . . k − 1} appears at least once in S. A letter l in S is said to be lonely
whenever it appears only once in S, and abundant otherwise. When k = n, i.e. in
the special case of permutations, the identity string is denoted Idn.Two strings
S and T are said to be compatible if they contain the same multiset of letters.
If S is the concatenation of two strings S1 and S2, it is denoted S = S1.S2,
or S1S2 if clear from the context. If S is the concatenation of p occurrences
of the same string s, this will be denoted S = sp. For any 1 ≤ i ≤ j ≤ n,
S[i..j] denotes the substring of S starting at position i and ending at position
j. A block in S is a maximal substring in which all letters are equal. Let b(S)
be the number of blocks in S. Given two compatible strings S and T , we let
bmax = max{b(S), b(T )}. Given two integers 1 ≤ i ≤ j ≤ n, a reversal ρ(i, j)
of a string S is the operation that reverses S[i..j] and reincorporates it at the
same location, i.e. S = s1s2 . . . si−1sisi+1 . . . sj−1sjsj+1 . . . sn is transformed into
S′ = s1s2 . . . si−1sjsj−1 . . . si+1sisj+1 . . . sn. For readability, the substring S[i..j]
to be reversed will often be underlined, as shown in the above example. If a string
S is totally reversed, i.e. the reversal is ρ(1, n), then we will denote the result as
S. A prefix reversal (resp. suffix reversal) is a reversal ρ(1, j) (resp. ρ(i, n)), i.e.
the first (resp. last) letter of S is involved in the reversal. We may use the terms
p-reversal (resp. s-reversal) to denote a reversal that is prefix (resp. suffix).

We say that a fully k-ary string S is grouped if it contains exactly k blocks,
i.e. if, for any letter l in Σ, all occurrences of l are consecutive. We say that
S is sorted if S is grouped, and if S is lexicographically ordered. Given two
compatible strings S and T , and given a set S of possible operations on strings,
the distance between S and T is defined as the minimum number of operations
from S that are required to obtain T , starting from S. In this paper, the two
operations we allow are prefix reversals and suffix reversals. We are now ready
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to formally describe the three problems we are interested in, in their decision
version.

Grouping Strings by Prefix and Suffix Reversals (GPSR)
Instance: A string S, an integer r
Question: Is there a sequence of at most r p- and s-reversals that trans-
forms S into a grouped string T?

Sorting Strings by Prefix and Suffix Reversals (SPSR)
Instance: A string S, an integer r
Question: Is there a sequence of at most r p- and s-reversals that trans-
forms S into a sorted string T?

Rearranging Strings by Prefix and Suffix Reversals (RPSR)
Instance: Two compatible strings S and T , an integer r
Question: Is there a sequence of at most r p- and s-reversals that trans-
forms S into T?

Given a string S, the least integer r for which the answer to GPSR is positive
is called the grouping distance, and is denoted dgPS(S). Similarly, the sorting
and rearranging distances are denoted dsPS(S) and drPS(S, T ). Note that when
k = n (i.e. strings are in fact permutations), the grouping problem is trivial (S is
already grouped), while the sorting and rearranging problems are equivalent (up
to a relabeling of the input permutations). Note also that when dealing with the
grouping (resp. sorting) problem, it is easy to show, by contradiction, that there
always exist an optimal grouping (resp. sorting) algorithm for S that never cuts
a block (otherwise, a more efficient algorithm would exist). Thus, the length of
the blocks is irrelevant, and we can always assume that each block of S is of
length 1 - we call such a string a normalized string. Consequently, any (prefix or
suffix) reversal that makes two identical letters consecutive reduces the length
of a normalized string by 1, and such a reversal is called a 1-flip. A reversal that
is not a 1-flip is called a 0-flip.

Known results. Comparing pairs of strings by means of their rearrangement
distance has mostly been studied in the case where only one type of operation
is allowed, such as reversals [2,5,12], transpositions [5,12] or translocations [4].
When prefix reversals only are allowed, the main results are the following: first,
the grouping problem is polynomial when k = 2 and k = 3, and admits a
PTAS for constant k ≥ 4 [9]. Concerning sorting, the problem is polynomial
for k = 2 [4], and admits a PTAS for constant k ≥ 4 [9]. Finally, concerning
the rearrangement problem, it is NP-hard even for k = 2 [9] (and even for more
constrained inputs [2]), it admits a PTAS for dense instances (which are instances
for which the distance is cn with c = O(1) [12]), and it is FPT in bmax [2]. When
both prefix and suffix operations are permitted, recent works have either focused
on the case of permutations [10,11], or on the case of transreversals on small-size
alphabets (k = 2 and k = 3) [13].
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Table 1. Our algorithmic results concerning problems GPSR, SPSR and RPSR.

|Σ| Grouping Sorting Rearranging

2 in P NP-hard

3 in P NP-hard

4 in P PTAS NP-hard

O(1) PTAS PTAS NP-hard

n − c, with c = O(1) in P

n in P NP-hard NP-hard

any 2 ≤ k ≤ n 2-approx. / FPT FPT FPT

Our Results. In this paper, we study the three problems GPSR, SPSR and
RPSR, under an algorithmic viewpoint. The main algorithmic results we have
obtained are summarized in Table 1. Due to space constraints, most proofs are
omitted and deferred to the full version of this paper.

2 A Detour by Prefix Reversals

In this section, our main goal is to compare the prefix distance to the prefix/suffix
distance for grouping, sorting and rearranging. Let dgP (S) (resp. dsP (S), drP (S, T ))
denote the grouping (resp. sorting, rearranging) distance when only prefix rever-
sals are allowed. First, note that for any string S, any grouping/sorting/rearran-
ging algorithm that uses only p-reversals is also a valid grouping algorithm using
p- and s-reversals, thus, trivially, d∗

PS(S) ≤ d∗
P (S), for any ∗ ∈ {g, s, r}. Notice

also that any s-reversal can be realized by at most 3 p-reversals, which directly
yields d∗

P (S) ≤ 3d∗
PS(S) for any ∗ ∈ {g, s, r}. However, we can improve this

upper bound, as shown below.

Proposition 1. For any strings S and T , (i) dgPS(S) ≤ dgP (S) ≤ 2dgPS(S),
(ii) dsPS(S) ≤ dsP (S) ≤ 2dsPS(S)+1, (iii) drPS(S, T ) ≤ drP (S, T ) ≤ 2drPS(S, T )+1.

Another natural question that emerges is whether there exist examples of
strings for which the prefix and prefix/suffix distances significantly differ. Below,
we answer this question positively for sorting in permutations (Theorem 1), and
for rearranging in strings built on constant-size alphabets (Theorem 3).

Theorem 1. For infinitely many values of n, there exist a permutation π of
length n such that dsP (π) − dsPS(π) = Ω(n).

Proof. Take n = 6q, and consider the following permutation π = s0 s1 . . . sq−1,
where si = 6i + 2 6i + 1 6i + 4 6i + 3 6i + 6 6i + 5, 0 ≤ i ≤ q − 1. Notice that
here, Σ = {1, 2 . . . 6q}. We will show that dsP (π) ≥ n

2 + n
12 , while dsPS(π) ≤ n

2 +1,
which proves that dsP (π) − dsPS(π) = Ω(n).
In order to show that dsPS(π) ≤ n

2 +1, let us distinguish two cases, depending on
the parity of q. First, when q is even, we claim that π can be sorted by repeating
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n
4 times the following two types of reversals: a p-reversal of length n−2 followed
by an s-reversal of length n − 2. Indeed, it can be shown by induction that for
any 1 ≤ i ≤ n

4 , after the i-th s-reversal has been applied, the first 4i elements
of the current permutation are sorted in increasing order, from n − 4i + 1 to n.
Thus, when i = n

4 , the permutation is in fact Idn, and exactly n
2 reversals have

been used. When q is odd, the reversals sequence is slightly different: first, repeat
n−2
4 times the following two reversals: a p-reversal of length n−2 followed by an

s-reversal of length n − 2. Then, apply two final reversals: a p-reversal of length
n − 2, and a p-reversal of length n. As for the previous case, it can be shown
by induction that, for any 1 ≤ i ≤ n+2

4 , after the i-th p-reversal of length n − 2
has been applied, the last 4i − 2 elements of the current permutation are sorted
in decreasing order, from n to n − 4i + 3. Thus, when i = n

4 , the permutation
is in fact Idn, which is then totally reversed to obtain Idn. Moreover, exactly
(n−2)+(n+2)

4 + 1 = n
2 + 1 reversals have been used.

Now let us prove dsP (π) ≥ n
2 + n

12 . We say that a breakpoint occurs in π
whenever |πi+1−πi| �= 1, 1 ≤ i ≤ n, where we artificially assume that πn+1 = n+
1. Consider an optimal sequence of p-reversals that sorts π, and let us distinguish
between efficient p-reversals, which strictly reduce the number of breakpoints,
and wastes, which do not. Hence, we have dsP (π) = e + w, where e (resp. w)
denotes the number of efficient p-reversals (resp. wastes) in an optimal solution.
Since π contains n

2 breakpoints, we necessarily have e ≥ n
2 . The rest of the proof

is then dedicated to proving w ≥ n
12 . For this, for each substring si, 0 ≤ i ≤ q−1,

let the breaking p-reversal for si (denoted br(i)) be the last p-reversal before
which si or si existed, and does not exist anymore afterwards. Let us sort the
br(i)s in their order of appearance. We thus obtain a string of strictly positive
integers (a0, a1 . . . at−1), where aj is the rank of the j-th breaking p-reversal.
We first note that this string contains exactly t = q elements, since there are q
strings to break, and at most one string can be broken by a p-reversal. We will
now prove that w ≥ n

12 , by showing that it takes at least one waste to break two
strings of the form si or si. Consider any integer j ≤ q−1, and let s be the string
for which the aj-th p-reversal is breaking. Let us first suppose s = si (the case
s = si is similar and leads to the same conclusion) . Let π0 be the permutation
before the aj-th p-reversal takes place. Then π0 = X.si.Y . If X is empty, then
π0 = si.Y , and any breaking p-reversal for si is a waste. Otherwise, the only
breaking p-reversal for si that is not a waste can occur if X = (6i + 7).X ′, and
we obtain π′

0 = 6i + 3 6i + 4 6i + 1 6i + 2.X ′.6i + 7 6i + 6 6i + 5.Y . But then
any p-reversal that follows is necessarily a waste - however, this reversal may be
breaking for another string sl. We thus have w ≥ q

2 = n
12 , which allows us to

conclude that dsP (π) ≥ n
2 + n

12 . ��
Since rearranging and sorting are equivalent when we deal with permutations,

we have the following corollary.

Corollary 1. For infinitely many values of n, there exist permutations π and
π′, of length n, such that drP (π, π′) − drPS(π, π′) = Ω(n).
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The following result, which is helpful in the remainder of the paper, is an exten-
sion of [9] (Theorem 10) to p- and s-reversals and to constant-size alphabets.

Theorem 2. For any pair of compatible strings S and T built on Σ, and for
any constant k ≥ 2, there exist a pair of compatible strings S′ and T ′ built on
Σ′, such that drP (S′, T ′) = drP (S, T ), drPS(S′, T ′) = drPS(S, T ) and |Σ′| = k.

Putting together Theorem 2 and Corollary 1 above, we have the following
result, which shows that rearranging by p- and s-reversals may be much more
efficient than by p-reversals only, when dealing with constant-size alphabets.

Theorem 3. For infinitely many values of n, and for any k = O(1), there exist
pairs (S, T ) of compatible fully k-ary strings of length n such that drP (S, T ) −
drPS(S, T ) = Ω(n

1
3 ).

3 Grouping Strings by Prefix and Suffix Reversals

This section describes our results concerning the GPSR problem. We begin by
general bounds, before proving that GPSR is polynomial for any k ∈ [2; 4]. Here,
n denotes the length of the normalized version of the considered string.

Proposition 2. For any k ≥ 3, and for any fully k-ary string S of length n,
n − k ≤ dg

PS(S) ≤ min{n − 3, 2(n − k)}.
Proof. Let S be a normalized fully k-ary string S of length n. First, it is easy to
see that for any k ≥ 2, dgPS(S) ≥ n−k. Indeed, after S is grouped, its normalized
string will be of length k. Since any reversal decreases the length of the string
by at most 1, we conclude that it takes at least n−k reversals to group S. Now,
let us show that dgPS(S) ≤ min{n − 3, 2(n − k)} for any k ≥ 3. Let us first show
that dgPS(S) ≤ n − 3. For this, we apply the following algorithm, that we call
Ag

PS(S): while the last letter l of S is abundant, perform an s-reversal (which is
in fact a 1-flip) to group l with another occurrence of it. Suppose we have made
n − k′ such reversals; we then end up with a string of length k ≤ k′ ≤ n, but
whose last letter is lonely. This last letter will then be ignored, and we will group
the first k′ − 1 letters, using only p-reversals. By Lemma 2 of [9], we know that
(k′ −1)−2 reversals suffice to group this string by p-reversals. Thus, altogether,
our grouping algorithm uses no more than (n − k′) + (k′ − 3) = n − 3 reversals.
Now let us prove that dgPS(S) ≤ 2n−2k. Let A′g

PS(S) be the following algorithm.
Let a (resp. b) be the first (resp. last) letter in S. If a or b is abundant in S, then
there exist a 1-flip which groups two occurrences of a (or b), so we apply that
reversal. Otherwise, if there exist an abundant letter c in S, we apply a 0-flip that
brings c either at the first or last position in the string. We iterate this process
while there exist abundant letters in the string. When the algorithm stops, the
string is grouped, and in its normalized version, is of length k. It is not hard to
see that our algorithm uses exactly n − k 1-flips. Moreover, since each 0-flip is
necessarily followed by a 1-flip, and since the last reversal is necessarily a 1-flip,
we conclude that the number of 0-flips cannot exceed the number of 1-flips, that
is n − k. Altogether, our A′g

PS(S) uses no more than 2(n − k) reversals. ��
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Proposition 3. For any fully binary string S of length n, dgPS(S) = n − 2, and
the GPSR problem is in P.

Theorem 4. For any fully ternary string S of length n, dgPS(S) = n − 3 and
the GPSR problem is in P.

We know that n − 4 ≤ dgPS(S) ≤ n − 3 for any fully quaternary string S
of length n (just invoke Proposition 2 with k = 4). Our goal here is to find a
polynomial-time algorithm that determines dgPS(S) for any such string, and that
provides an optimal grouping scenario. To do so, we divide the set of all fully
quaternary strings into two classes: bad strings which need a 0-flip to be grouped
(leading to dgPS(S) = n − 3) and good strings that can be grouped using only
1-flips (leading to dgPS(S) = n − 4).

In the following, let Σ = {x, y, z, t}. A H-string is defined to be any fully
quaternary string of length n having a lonely letter at one of its extremities.
Thus, a H-string is of the form S′.x (resp. x.S′) where S′ is a fully ternary string
of length n−1 defined on Σ′ = Σ−{x}. Since an s-reversal on a H-string of type
S′.x is necessary a 0-flip, we can use the results from [9] concerning the grouping
distance of fully ternary strings if only p-reversals are allowed. Actually, H-string
stands for “Hurkens-string”, in reference to the first author in [9]. For the case
x.S′, we can symmetrically apply the same results by inverting the roles of p-
and s-reversals.

Definition 1. Let S be a fully quaternary string. S is said to be a bad string if
it belongs to one of the following categories:

1. alternating strings in which a letter x appears every two positions, i.e. strings
of the form x({y, z, t}x)a, ({y, z, t}x)a, (x{y, z, t})a, {y, z, t}(x{y, z, t})b with
a ≥ 3 and b ≥ 2.

2. semi-alternating strings which are not alternating strings and for which
any 1-flip leads to an alternating string. They have the following form:
y(xz)axty(xz)bxt with a, b ≥ 0 and a + b ≥ 1.

3. H-strings of the form T.x and x.T , where T is a bad string according Defi-
nition 1 in [9].

4. Y1 = tzxyzxt, Y2 = yxztyzxt, Y3 = tzyzxyzxzt.

Any other fully quaternary string is said to be good.

Lemma 1. For any fully quaternary bad string S of length n, dgPS(S) = n − 3.

Lemma 2. For any fully quaternary good string S of length n, dgPS(S) = n−4.

Putting together Lemmas 1 and 2, we get the following result.

Theorem 5. The GPSR problem is in P for k = 4, and there is an O(n3)
algorithm that provides an optimal grouping scenario for S.

We end this section with three algorithmic results concerning more general
values of k: when k = O(1) (Theorem 6), when n − k = O(1) (Proposition 4),
and for any value of k (Theorem 7).
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Theorem 6. The GPSR problem admits a PTAS for any fully k-ary string
with k ≥ 5 and k = O(1).

Proposition 4. The GPSR problem is in P for any string such that n−k = O(1).

Proof. Suppose k = n − c with c = O(1). By Proposition 2, we know that
dgPS(S) ≤ min{n−3, 2(n−k)}, that is dgPS(S) ≤ 2c. Thus, consider the following
algorithm: starting from S, branch on all the possible p- and s-reversals, up to
a distance of 2c, while stopping to explore a branch as soon as the string is
grouped. Then, return the smallest number of reversals that have been found,
for reaching a grouped string, starting from S. Note that, starting from any string
of length n, there are at most 2n−3 different possible reversals: n−2 of each kind
(prefix or suffix), and reversing the whole string. Thus, exploring all the possible
reversals up to a distance of 2c cannot create more than (2n − 3)2c strings. By
Proposition 2, we know that the optimal solution lies within this research space.
Besides, since c = O(1), the number of generated strings is polynomial, and
consequently so is our algorithm. ��
Theorem 7. For any 2 ≤ k ≤ n, GPSR is 2-approximable.

Proof. Algorithm A′g
PS , described in proof of Proposition 2, runs in O(n2), since

it uses at most 2(n − k) reversals and each reversal can be done in linear time.
Let us write OPT g

PS(S) the minimum number of reversals needed to group S,
and a′(S) the number of reversals used by A′g

PS . We know from Proposition 2
that OPT g

PS(S) ≥ n− k ≥ a′(S)
2 . Hence, A′g

PS is an approximation algorithm for
GPSR, whose ratio is 2. ��

4 Sorting Strings by Prefix and Suffix Reversals

In this section, we describe our results concerning the SPSR problem. Here, n
is the length of the considered string which has been normalized. First note that
for any fully k-ary string S of length n, dsPS(S) ≥ dgPS(S). Since dgPS(S) ≥ n−k
by Proposition 2, we obtain the following result.

Proposition 5. For any k ≥ 2, and for any fully k-ary string S of length n,
dsPS(S) ≥ n − k.

Proposition 6. For any fully binary string S of length n, dsPS(S) = n − 2.

Proposition 7. For any fully ternary string S of length n ≥ 4, dsPS(S) ≤ n−2.

Propositions 5 and 7 show that when k = 3, n − 3 ≤ dsPS(S) ≤ n − 2 for
any fully ternary string S. In the following, we will show that there exist a
polynomial-time algorithm that determines dsPS(S) for any fully ternary string
S, and provides an optimal sorting scenario. Because the lower and upper bounds
differ by one, determining dsPS(S) consists in deciding whether S can be sorted
using 1-flips only (leading to dsPS(S) = n− 3), or whether one 0-flip is necessary
(leading to dsPS(S) = n − 2).
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Table 2. Bad strings of length n ≥ 9 for the SPSR problem with k = 3.

n = 2p + 1 is odd n = 2p is even

Type Form Type Form Type Form

1 {1, 2}(0{1, 2})p 1 (0{1, 2})p 2 (2{0, 1})p

2 {0, 1}(2{0, 1})p 3 ({0, 1}2)p 4 ({1, 2}0)p

3 (0{1, 2})p0 5 0(12)p−10 6 1(02)p−11

4 2({0, 1}2)p 7 1(20)p−11 8 2(01)p−12

5 2(10)p 9 2(10)p−11 10 (12)p−110

6 (21)p0

Note that for n ≤ 10, by exhaustive search, it is possible to determine which
strings of length n need n − 3 reversals to be sorted, and which ones need
n − 2 reversals. Moreover, for each of them, an optimal sorting scenario can be
provided. Now suppose n ≥ 9, and let Table 2 describe a set of strings that we
call bad strings.

Our goal is to show that, for any n ≥ 9, the bad strings we have listed are the
only ones having sorting distance n − 2. First, for n = 9 and n = 10, it is easy
to verify that this is the case. We show the following lemma, which, combined
with the base cases (n = 9 and n = 10) discussed above, shows that all the bad
strings have sorting distance n − 2.

Lemma 3. Let n ≥ 11, and let S be a bad string of length n. Any 1-flip on S
leads to a bad string S′.

Because of Lemma 3 above and the base cases n = 9 and n = 10 previously
discussed, an easy induction follows, which proves that any bad string has sorting
distance n − 2. It now remains to show that no other string is bad. Let us call
good any string which is not bad. We have the following lemma.

Lemma 4. Let n ≥ 11, and let S be a good string. If a 1-flip transforms S into
a bad string S′, then there exist another 1-flip that transforms S into a good
string S′′.

Again, by induction, and based on Lemma 4, we conclude that any good
string can be sorted by 1-flips only, and thus its sorting distance is n − 3. The
only bad strings being the ones listed above, we have the following theorem.

Theorem 8. Let S be a fully ternary string of length n. If S is bad, then
ds
PS(S) = n − 2, while if S is good, then dsPS(S) = n − 3. Hence, the SPSR

problem is in P for k = 3. Moreover, there is an O(n3) algorithm that provides
an optimal sorting scenario for S.

Proposition 8. For any fully quaternary stringS of lengthn ≥ 4, dsPS(S) ≤ n−1.

Theorem 9. The SPSR problem admits a PTAS for any fully k-ary string with
k ≥ 4 and k = O(1).
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5 Rearranging Strings by Prefix and Suffix Reversals

In this section, we describe our results concerning the RPSR problem. We start
with the case where n = k, i.e. the case of permutations.

Theorem 10. The RPSR problem is NP-hard for permutations.

Proof. This result is obtained by a reduction from Sorting by Prefix Rever-
sals in permutations, which has been proved to be NP-hard in [1]. More pre-
cisely, it is proved that it is NP-hard to decide whether a permutation π can be
sorted using exactly db(π) prefix reversals, where db(π) is the number of break-
points in π. Note that db(π) is a lower bound on the number of p-reversals to
sort π, since the number of breakpoints decreases by at most one each time
a p-reversal is applied, and since db(Idn) = 0. For any input permutation π of
Sorting by Prefix Reversals, supposing π is built over the integers 1, 2 . . . n,
we create the permutation π′ = π.(n + 1).(n + 2). We now claim that π can be
sorted using db(π) p-reversals iff π′ can be sorted using db(π) p- and s-reversals.

(⇒) Clearly, if π can be sorted using db(π) p-reversals, this is also a valid
scenario for p- and s-reversals, that also sorts π′.

(⇐) Suppose π′ can be sorted using db(π) p- and s-reversals. Because db(π′) =
db(π), it can easily be seen that (i) no p-reversal ρp involves (n + 1) nor (n + 2)
(otherwise, ρp would not decrease the number of breakpoints) and (ii) no s-
reversal ρs is applied (otherwise, and because of (i), ρs would not decrease the
number of breakpoints either). Hence, the sorting scenario for π′ is also a valid
p-reversals scenario for π, and it uses no more than db(π) p-reversals. ��

A straightforward consequence of the above theorem is that the SPSR is
also NP-hard, since sorting and rearranging are equivalent when we deal with
permutations.

Corollary 2. The SPSR problem is NP-hard for permutations.

Combining Theorem 10 with Theorem 2, we get the following corollary.

Corollary 3. The RPSR problem is NP-hard, even for strings built on
constant-size alphabets.

In the binary case, however, we are able to prove a stronger result: RPSR
problem is NP-hard, even when all 0-blocks are of length 1 in S.

Theorem 11. The RPSR problem is NP-hard, even for binary strings in which
all 0-blocks are of length 1 in S.

Proof. The reduction is from the NP-hard Partition problem [7]. Partition
is a decision problem whose input is a multiset A = {a1, a2 . . . aq} of positive
integers, with

∑
ai∈A ai = 2N . The question is whether it is possible to partition

A into A1 and A2 such that
∑

ai∈A1
ai =

∑
aj∈A2

aj = N . For any instance
A = {a1, a2 . . . aq} of Partition, we construct two binary strings S and T as
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follows: S = 01a101a201 . . . 01aq0, and T = 1N0q+11N . Now we claim that there
is a positive solution for Partition iff drPS(S, T ) = 2q − 2.

(⇒) First, suppose there exist a partition A1, A2 of A such that
∑

ai∈A1
ai =∑

aj∈A2
= N . Suppose |A1| = x1 and |A2| = x2, thus x1+x2 = q. Then, starting

from S, using two p-reversals, we can merge two blocks whose lengths are from
A1. We can iterate this process to merge a third block, etc. until the x1 blocks
of lengths corresponding to A1 are merged. It thus takes 2(x1 − 1) p-reversals
to obtain one block of 1s of length N , x2 blocks of 1s corresponding to the
lengths in A2, the string beginning and ending with 0. After another 2(x2 − 1)
p-reversals, we end up with S′ = 0l1N0m1N0n, with l + m + n = q + 1. It then
takes 2 reversals (a suffix and a prefix) to obtain T = 1N0q+11N . Thus, a total
of 2(x1 − 1)+2(x2 − 1)+2 = 2q − 2 reversals suffice to rearrange S into T , since
x1 + x2 = q.

(⇐) Suppose that the answer to Partition is negative. This implies that,
when rearranging from S to T , there will be at least one reversal which increases
the number of blocks of 1s - let us call such a reversal a breaking reversal.
However, S contains b(S) = 2q + 1 blocks, while T contains b(T ) = 3 blocks.
Since in one reversal, at most two blocks can be merged, necessarily at least
b(S) − b(T ) = 2q − 2 merging reversals are necessary. Thus, counting merging
and breaking reversals together, we conclude that drPS(S, T ) ≥ 2q − 1. ��
Theorem 12. The RPSR problem is FPT, when parameterized by bmax.

Theorem 12 above is adapted from [2]. Note also that it is valid regardless of
the size of the alphabet. Another consequence is the following corollary; indeed,
grouping and sorting are special cases of rearranging, in which the target string
has k = |Σ| ≤ bmax blocks with bmax = b(S).

Corollary 4. The GPSR and SPSR problems are FPT, when parameterized
by b(S).

6 Conclusion and Open Questions

In this paper, we have studied the three problems GPSR, SPSR and RPSR
under an algorithmic viewpoint, and have provided a number of results, espe-
cially focused either on small-size alphabets (k = O(1)) and big alphabets
(k = n, i.e. permutations). Some questions remain open, and we would like
to end this paper by listing a few of them: first, is there a significant difference
between the prefix and the prefix/suffix distance for the grouping problem? Sec-
ond, what is the complexity of GPSR? Concerning the size of the alphabet,
what can be said about SPSR and RPSR when n − k = O(1)? Can we prove
that GPSR and SPSR are in P for k = O(1)? Finally, we note that the variant
where strings are signed could also be studied.
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Abstract. The exact order-preserving matching problem is to find all
the substrings of a text T which have the same length and relative order
as a pattern P . Like string maching, order-preserving matching can be
generalized by allowing the match to be approximate. In approximate
order-preserving matching two strings match if they have the same rela-
tive order after removing up to k elements in the same positions in both
strings. In this paper we present practical solutions for this problem.
The methods are based on filtration, and one of them is the first sublin-
ear solution on average. We show by practical experiments that the new
solutions are fast and efficient.

1 Introduction

The exact string matching problem consists in finding all the occurrences of a
pattern string P of length m in a text string T of length n. A recent variant
of this problem is the so called order-preserving matching problem [16,14,1,4,3].
In order-preserving matching, the task is to locate all the substrings of T which
have the same length and relative order as P . This problem has applications
in time series studies such as in the analysis of development of share prices in
a stock market. Formally, two strings u and v over an ordered alphabet are
order-isomorphic if they have the same length and ui ≤ uj ⇔ vi ≤ vj , for
any 1 ≤ i, j ≤ |u|. The term relative order refers to the numerical order of
the numbers in the string. In P = (3, 13, 5, 8, 21), the number 3 is the smallest
number in the pattern, 5 is the second smallest, 8 is the third smallest num-
ber and so on. Therefore, the relative order of P is 1, 4, 2, 3, 5. For instance, if
T = (6, 10, 55, 36, 45, 66, 6, 21, 28, 15, 36), then it can be observed that P and the
substring of T starting at location 2 are order-isomorphic.

There exist various solutions for the exact order-preserving matching prob-
lem. Kubica et al. [16], Belazzougui et al. [1] and Kim et al. [14] presented
generalizations of the Knuth–Morris–Pratt algorithm [15] which solve the prob-
lem in O(n + m log m) time, where m is the length of P and n is the length
of T . Belazzougui et al. also presented a sublinear algorithm which runs in
O( n log m

m log log m ) optimal time in the average case. Cho et al. [4] introduced a differ-
ent sublinear solution based on a generalization of the Boyer–Moore–Horspool
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C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 177–187, 2015.
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algorithm [11]. Independently, Chhabra and Tarhio [3] presented another sublin-
ear solution based on filtration, which was proved to be faster than the previous
solutions in practice. Recently, Crochemore et al. [5] presented a generalization
of the suffix tree to the order-preserving case.

A natural generalization of the string matching problem can be obtained by
allowing the matching to be approximate, so as to search for the substrings of
the text T which are similar to the pattern P . One classical instance of this
kind is the string matching with k mismatches problem, where the task is to
find all the substrings of T that are at Hamming distance at most k from P , i.e.,
that match P with at most k mismatches. With respect to applications of order-
preserving matching, approximate search seems more meaningful than exact
search. Recently, Gawrychowski and Uznanski proposed a generalization of the
order-preserving matching problem to the approximate case [7]. In this model,
two strings are k-isomorphic if they have the same relative order after removing
up to k elements in the same positions in both strings. In the previous example,
for k = 1, we get two matches, at location 2 and 7. The algorithm presented by
Gawrychowski and Uznanski [7] runs in O(n(log log m + k log log k)) time and
it is the only existing solution for this problem to the best of our knowledge.
The idea in their method is to quickly filter out positions in T which are non-
matching by comparing signatures of the pattern and of the text substrings. As
also acknowledged by the authors, this algorithm is rather theoretical and has
not been implemented to date.

In this paper, we introduce two practical solutions for the approximate order-
preserving matching problem, also based on filtration. Their worst-case time
complexities are O(nm(�m/w� + log m)) and O(n(�m/w� log log w + m log m)),
respectively, where w is the word size in bits, and the former is the first sublinear
solution on average. We also present experimental results which show that the
filtering is effective and the algorithms are considerably faster than the naive one
where all the first n − m + 1 text positions are match candidates to be verified.

The paper is organized as follows. Section 2 contains the preliminaries,
Section 3 outlines the previous solution for approximate order-preserving match-
ing, Section 4 introduces our solutions based on filtration, Section 5 contains an
analysis of the first solution, Section 6 presents the results of practical experi-
ments, and Section 7 concludes the article.

2 Preliminaries

Let Σ be a finite alphabet of symbols and let Σ∗ be the set of strings over Σ.
Given a string x, we denote by |x| the length of x and by xi or x[i] the i-th symbol
of x, for 1 ≤ i ≤ |x|. The concatenation of two strings x and y is denoted by xy.
Given two strings x and y, y is a substring of x if there are indices 1 ≤ i, j ≤ |x|
such that y = xi . . . xj . We denote by xr = x|x|x|x|−1 . . . x1 the reverse of the
string x. Given a string x and a permutation π of {1, 2, . . . , |x|} we denote by
π(x) the string xπ(1)xπ(2) . . . xπ(|x|).

Given two strings x and y of length m, the Hamming distance between x and
y is dh(x, y) = |{1 ≤ i ≤ m | xi �= yi}|, and the matching statistics M(x, y) is an
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array of |x| integers where M(x, y)[i] denotes the length of the longest substring
of x starting at position i that exactly matches a substring of y. A factorization
of a string x is a sequence F1, F2, . . . , Fr of strings such that x = F1F2 . . . Fr.

The RAM model is assumed, with words of size w in bits. We use some
bitwise operations following the standard notation as in C language: &, |, ∧, ∼,
�, 	 for and, or, xor, not, left shift and right shift, respectively.

Problem definition. Two strings u and v over Σ are order-isomorphic with k
mismatches [7] or k-isomorphic, written u ≈k v, if they have the same length
and there exists a subset K of {1, 2, . . . , |u|} of size k at most, such that

ui ≤ uj ⇔ vi ≤ vj for i, j ∈ {1, 2, . . . , |u|} \ K .

The order-preserving pattern matching with k mismatches problem is to locate
all the substrings of a text T which are k-isomorphic with a pattern P .

3 Previous Solution

This section describes the previous solution formulated for the approximate
order-preserving matching problem. The method was proposed by Gawrychowski
and Uznanski [7] and is based on the signature of a sequence. The signature
S(a1, . . . , am) of sequence (a1, . . . , am) is (1 − pred(1), . . . ,m − pred(m)) where
pred(i) is the position where the predecessor of ai occurs in the sequence. Its
computation takes O(m log log m) time by sorting. The key result is that if
(a1, . . . , am) ≈k (b1, . . . , bm) then the Hamming distance between S(a1, . . . , am)
and S(b1, . . . , bm) is at most 3k. The algorithm iterates over each substring
(Ti, . . . , Ti+m−1) in the text T , determining its signature S(Ti, . . . , Ti+m−1) in
O(log log m) time per position. For each position i, it checks if the Hamming
distance between S(Ti, . . . , Ti+m−1) and S(P1, . . . , Pm) is greater than 3k. This
step can be done in O(k + log log m) time. If the test is true, the position is dis-
carded. Otherwise, the algorithm checks if (Ti, . . . , Ti+m−1) ≈k (P1, . . . , Pm) by
reducing the problem to the one of computing a heaviest increasing subsequence
spanning at most 3(k + 1) elements. This step can be assessed in O(k log log k)
time. Therefore, the total time complexity is O(n(log log m + k log log k)).

4 Our Solutions

Given a string u, we denote by φ(u) the binary string of length |u| − 1 such
that φ(u)i is equal to 1, if ui < ui+1, and to 0 otherwise. The function φ is a
linear approximation of the order for fast filtration. Observe that any position
2 ≤ i < |u| in u covers two positions in φ(u), i − 1 and i. Let u and v be two
strings and consider the mismatches between the strings φ(u) and φ(v). Each
mismatch position i identifies a different relative order, in u and v, between the
adjacent symbols at positions i and i + 1.

As the following Lemma shows, if u ≈k v, then the Hamming distance
between φ(u) and φ(v) is at most 2k:
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Lemma 1. For any two strings u and v such that u ≈k v, dh(φ(u), φ(v)) ≤ 2k.

Proof. Suppose by contradiction that dh(φ(u), φ(v)) > 2k and let K be a subset
of {1, 2, . . . , |u|} satisfying the definition of order-isomorphism with k mismatches
for u and v. Observe that for any position i such that φ(u)i �= φ(v)i we have
K ∩ {i, i + 1} �= ∅, as ui < ui+1 and vi ≥ vi+1 or vice versa. Hence, |K| > k,
contradicting the hypothesis. ��
For example, if u = (4, 1, 2, 3) and v = (4, 5, 2, 3) we have u ≈1 v, φ(u) = (0, 1, 1),
φ(v) = (1, 0, 1), and dh(φ(u), φ(v)) = 2. The following Lemma defines a distance
measure do, based on the Hamming distance, which satisfies do(φ(u), φ(v)) ≤ k:

Lemma 2. Given two strings x and y of the same length, let z0, z1, . . . , z|x| be
integers such that z0 = 0 and

zi =

{
1 if xi �= yi ∧ zi−1 = 0
0 otherwise

for i = 1, . . . , |x|, and let also H(x, y) = {i : zi = 1}. Then, for any two strings
u and v such that u ≈k v, do(φ(u), φ(v)) = |H(φ(u), φ(v))| ≤ k.

Proof. Suppose by contradiction that |H(φ(u), φ(v))| > k and let K be a subset
of {1, 2, . . . , |u|} satisfying the definition of order-isomorphism with k mismatches
for u and v. Observe that for any position i ∈ H(φ(u), φ(v)) we have K ∩ {i, i +
1} �= ∅ and H(φ(u), φ(v)) ∩ {i − 1, i + 1} = ∅. Hence, |K| > k, contradicting the
hypothesis. ��
Informally, the set H(x, y) is the largest subset of the mismatch positions between
x and y such that no two positions are consecutive. Therefore, for any two strings u
and v, there is no overlap between the positions in u and v covered by any two mis-
matches in H(φ(u), φ(v)). Our solution for approximate order-preserving match-
ing consists of two parts: filtration and verification. First the text is filtered with an
algorithm so as to locate all the potential matching locations and then the match
candidates are verified using a checking routine. Lemma 2 gives a necessary con-
dition for two strings to be k-isomorphic. The idea is to use it in the first phase to
quickly filter out non-matching positions in T .

Filtration. For filtration, the consecutive numbers in the pattern P are compared
pairwise in the preprocessing phase and transformed into the binary string φ(P )
where a 1 bit means the successive element is greater than the current one and a 0
bit means the opposite. Thereafter, in the search phase, an algorithm is applied to
filter the text T and find all the positions i in T such that do(φ(Ti,m), φ(P )) ≤ k,
where Ti,m = TiTi+1 . . . Ti+m−1 is the substring of T of length m starting at
position i. The substrings Ti,m are encoded into the binary string φ(Ti,m) online
in the same way as the pattern. The algorithm determines approximate matches
of the transformed pattern φ(P ) in the similarly transformed text φ(T ). As these
approximate matches are just the match candidates, they need to be verified
using a checking routine.
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Verification. For verification, we use the reduction, by Gawrychowski and
Uznanski, of the problem of k-isomorphism to the one of computing an heav-
iest increasing subsequence (Lemma 8, [6]). To compute the heaviest increas-
ing subsequence, we use the algorithm of Jacobson and Vo [13], which runs in
O(m log m) time for a sequence of length m. If we use a sorting algorithm with
O(m log m) worst-case time complexity, the total time complexity of the veri-
fication is also O(m log m). In theory, the time complexity can be reduced to
O(m log log m) by using Han’s sorting algorithm [9] and plugging a data struc-
ture which supports predecessor search in O(log log m) time, such as van Emde
Boas trees, in Jacobson and Vo’s algorithm. Observe that in the simpler case
where there are no repeated elements in u and v, deciding whether u ≈k v can
be reduced to computing the longest increasing subsequence of π(v), where π is
a sorting permutation of u.

We propose two filtration algorithms, which build on ideas from two algo-
rithms for string matching with k mismatches, namely approximate SBNDM [10]
and the GGF algorithm [8], respectively.

The first filtration algorithm, named AOPF1, is based on the following
Lemma, which is a generalization of the method used by approximate SBNDM
and first proposed by Chang and Lawler [2]:

Lemma 3. Given two strings x and y of the same length, let F1g1F2g2 . . . Frgr

be the factorization of x such that |Fi| = M(x, y)[1+
∑i−1

j=1 |Fjgj |], i.e., Fi ∈ Σ∗

is the longest substring of x starting at position 1 +
∑i−1

j=1 |Fjgj | that matches a
substring of y, |gi| = 2, for 1 ≤ i < r, and |gr| ≤ 2. Then r − 1 ≤ do(x, y).

Proof. Let si = |F1g1 . . . Fi−1gi−1Fi|+1 be the position of symbol gi[1] in x, for
1 ≤ i < r. For a given si, let j be a position in the interval [si − |Fi|, si] such
that xj �= yj . Observe that such a position always exists, because Figi[1] is not a
substring of y. Then, we have that either zj = 1 or zj−1 = 1. In the latter case,
observe that j − 1 > si−1, for i > 1, since |gi−1| = 2 and si − |Fi| = si−1 + 2.
Hence, for each si we can find a distinct integer j such that zj = 1. ��
Informally, the idea is to factorize x into substrings of y which cannot be extended
to the right and are separated by 2-grams (pairs of symbols). Let m̂ = |φ(P )|.
The AOPF1 algorithm slides a window of size m̂ along T , starting at position
1. For a given position i in T , the algorithm scans the substring φ(Ti,m) from
right to left and computes the factors Fj of φ(P )r until either it has found k +2
factors or it has scanned the whole substring. In the former case, by Lemma 3,
the position is skipped. Otherwise the algorithm performs an additional filtration
step, namely it computes H(ψ(π(Ti,m)), ψ(π(P ))), where ψ(u) is the the string
of length |u| − 1 such that

ψ(u)i =

⎧
⎪⎨

⎪⎩

1 if ui < ui+1

2 if ui = ui+1

0 otherwise

and π is a sorting permutation of P , computed in the preprocessing phase. The
position is then verified only if |H(ψ(π(Ti,m)), ψ(π(P )))| ≤ k. Indeed, Lemma 2
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can be easily proved to hold also when using ψ(π(u)) and ψ(π(v)) in place of φ(u)
and φ(v) (observe that, if u ≈k v, then π(u) ≈k π(v)). We permute the strings
with π so as to obtain a permutation of P where repeated elements are clustered,
which allows us to perform a finer filtering using the ψ function. Note that, in
principle, this additional filtration works with any permutation and ordering of
repeated elements. For example, if u = (4, 1, 2, 4), v = (4, 5, 2, 3) and π is the
sorting permutation of u 2, 3, 1, 4, we have π(u) = (1, 2, 4, 4), π(v) = (5, 2, 4, 3),
ψ(π(u)) = (1, 1, 2), ψ(π(v)) = (0, 1, 0). Note that do(ψ(π(u)), ψ(π(v))) = 2,
while do(φ(u), φ(v)) = do(ψ(u), ψ(v)) = 1, as φ(u) = ψ(u) = (0, 1, 1) and φ(v) =
ψ(v) = (1, 0, 1).

The factors Fj are computed using the nondeterministic factor automaton of
φ(P )r, which is simulated using a modified version of the bit-parallel SBNDM
algorithm [17,19]. The SBNDM algorithm is a slightly faster version of BNDM
(Backward Nondeterministic DAWG Matching) [18] without bookkeeping of pre-
fixes. The next scanned position is then i + (m̂ − l) + 1, where l is the length
of the longest suffix of φ(Ti,m) with at most k + 1 factors. The worst-case time
complexity of this algorithm is O(nm(�m/w� + log m)).

The second filtration algorithm, named AOPF2, is based on the following
Lemma:

Lemma 4. Given two strings x and y of the same length, let Bp = {j : j mod
2 = p ∧ xj �= yj} and

H ′(x, y) = B0 ∪ B1 \ ({j − 1 : j ∈ B0} ∪ {j + 1 : j ∈ B0})

Then |H ′(x, y)| ≤ do(x, y).

Proof. Let i ∈ H ′(x, y). Observe that, by definition, either i is even or xi−1 =
yi−1. Indeed, if i − 1 is even and xi−1 �= yi−1 then i ∈ {j + 1 : j ∈ B0} and
i /∈ H ′(x, y). Since xi �= yi, we have zi = 1 or zi−1 = 1. If zi−1 = 1 then i must
be even and therefore i − 1 ∈ {j − 1 : j ∈ B0} and i − 1 /∈ H ′(x, y). Hence, for
each i ∈ H ′(x, y) we can find a distinct integer j such that zj = 1. ��
Informally, the set H ′(x, y) is the subset of the mismatch positions between
x and y such that for each even position we exclude the two adjacent (odd)
positions. For example, if u = (4, 1, 2, 3) and v = (4, 5, 3, 2) we have u ≈2 v,
φ(u) = (0, 1, 1), φ(v) = (1, 0, 0), H(φ(u), φ(v)) = {1, 3}, H ′(φ(u), φ(v)) = {2}.
In the preprocessing, the AOPF2 algorithm computes the bit-vector X of m̂ bits
such that the i-th bit is set to 1 if Pi < Pi+1 and to 0 otherwise. In other words
X is the bit-vector encoding of φ(P ). The algorithm then scans the text from left
to right and maintains the bit-vector encoding Y of φ(Ti,m), for i = 1, . . . , |T |.
For a given position i in T , the bit-vector encodings of B0 and B1 are computed
as (X ∧ Y ) & 01 . . . 01 and (X ∧ Y ) & 10 . . . 10, respectively. Then, we have
that the bit-vector encoding of H ′(φ(P ), φ(Ti,m)) is equal to

B0 | B1 & ∼((B0 � 1) | (B0 	 1)) .

The size of H ′(φ(P ), φ(Ti,m)) is computed using the sideways addition opera-
tion sa on each word of the resulting bit-vector. Given a word X, the sideways
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AOPF1(P, T, k)
1. m̂ ← |P | − 1

2. B[0] ← B[1] ← 0m̂

3. E ← 1m̂

4. for i ← 1 to m̂ do
5. c ← 0
6. if Pi < Pi+1 then c ← 1
7. B[c] ← B[c] | (1 � (i − 1))
8. i ← m̂ + 1
9. while i ≤ |T | do
10. (e, j, D) ← (0, 0, E)
11. while e ≤ k and j < m̂ do
12. j ← j + 1
13. c ← 0
14. if Ti−j < Ti−j+1 then c ← 1
15. D ← (D 	 1) & B[c]

16. if D = 0m̂ then
17. (e, j, D) ← (e + 1, j + 1, E)
18. if j ≥ m̂ and e ≤ k then psi-filter(P, T, i)
19. i ← i + (m̂ − min(j, m̂)) + 1

AOPF2(P, T, k)
1. m̂ ← |P | − 1

2. X ← Y ← 0m̂

3. C[0] ← C[1] ← 0m̂

4. for i ← 1 to m̂ do
5. j ← i mod 2
6. C[j] ← C[j] | (1 � (i − 1))
7. if Pi < Pi+1 then
8. X ← X | (1 � (i − 1))
9. if Ti < Ti+1 then
10. Y ← Y | (1 � (i − 1))
11. for i ← m̂ to |T | − 1 do
12. if Ti < Ti+1 then
13. Y ← Y | (1 � (m̂ − 1))
14. B0 ← (X ∧ Y ) & C[0]
15. B1 ← (X ∧ Y ) & C[1]
16. W ← (B0 � 1) | (B0 	 1)
17. e ← sa(B0 | B1 & ∼ W )
18. if e ≤ k then verify(P, T, i)
19. Y ← Y 	 1

Fig. 1. The AOPF1 and AOPF2 algorithms for the approximate order-preserving
matching problem.

addition of X returns the number of bits set in X. This operation can be com-
puted in O(log log w) time in the word-RAM model [20] and is also available
as a POPCNT instruction in recent processors of the x86 family. The worst-
case time complexity of this algorithm is O(n(�m/w� log log w + m log m)). The
space complexity of both algorithms is O(�m/w�). The pseudocode of the two
algorithms is shown in Fig. 1. The psi-filter procedure called in AOPF1 at line
18 performs the additional filtration step based on the ψ function and calls the
verification procedure, if necessary.

5 Analysis

In this section we analyze the average-case running time of the AOPF1 algo-
rithm, and show that it is sublinear on average if k is not too large. Suppose
that T is a uniformly random string over an alphabet Σ of size σ. The string
φ(T ) is not uniformly random in general as Pr[φ(T )i = 1] = (σ + 1)/(2σ) and
Pr[φ(T )i = 0] = (σ − 1)/(2σ). We make the simplifying assumption that either
all the symbols of T are distinct, in which case the distribution becomes uniform,
or that the alphabet is large enough so that the distribution is arbitrarily close
to uniform. Assume that k < m/(logσ m+O(1)) and let Xj be the random vari-
able corresponding to the length of factor Fj . By the “Main Lemma” of Chang
and Lawler [2] we obtain that

1. the probability Pr[X1 +X2 + . . .+Xk+1 ≥ m] of a verification using Lemma
3 is less than 1/m3;

2. E[Xj ] < logσ m + 3;
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Table 1. Execution times of the algorithms (in 10 of milliseconds) for Dow Jones data
and Helsinki temperature data.

Dow Jones
k = 1

m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 21.5 26.2 16.9 22.8 24.4
10 4.1 10.1 6.2 11.8 90.8
15 1.7 5.1 3.0 3.9 172.2
20 1.0 2.6 2.8 2.9 270.3
25 0.7 1.7 2.8 2.9 374.0
30 0.6 1.0 2.8 2.6 473.9
50 0.3 0.5 2.8 2.5 1069.5

k = 2
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 30.3 34.3 28.9 31.6 27.4
10 28.9 36.0 31.3 54.1 96.5
15 9.7 21.7 7.3 19.4 172.0
20 3.8 19.6 3.3 5.5 261.5
25 2.0 11.9 3.0 3.2 372.3
30 1.4 6.1 3.1 2.7 465.8
50 0.6 1.5 3.1 2.7 1048.9

k = 3
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 32.3 35.4 30.8 32.0 28.0
10 88.4 96.3 80.6 95.7 98.9
15 31.0 34.2 31.7 76.3 174.4
20 18.2 30.7 7.9 26.8 266.5
25 8.1 32.6 3.6 7.5 380.6
30 3.8 27.7 3.0 3.1 454.2
50 1.1 4.5 3.0 2.7 963.2

Helsinki Temperatures
k = 1

m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 12.8 13.4 9.5 11.3 13.1
10 2.1 4.9 3.5 5.8 47.0
15 0.9 2.5 1.7 1.8 84.2
20 0.5 1.3 1.5 1.4 129.8
25 0.3 0.8 1.5 1.4 182.9
30 0.2 0.5 1.4 1.2 233.1
50 0.1 0.2 1.4 1.2 522.6

k = 2
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 16.8 17.3 15.6 15.7 13.1
10 14.9 16.8 16.2 27.5 46.7
15 5.0 10.4 3.8 9.8 84.0
20 2.0 9.7 1.7 2.9 129.8
25 1.0 6.0 1.6 1.5 182.8
30 0.6 2.8 1.4 1.3 225.2
50 0.2 0.7 1.5 1.2 503.0

k = 3
m AOPF1 AOPF1b AOPF2 AOPF2b naive

5 17.2 17.5 15.7 16.1 13.0
10 46.1 47.9 41.2 48.2 39.6
15 14.5 15.5 16.1 38.6 70.5
20 9.2 14.9 3.9 13.7 108.4
25 4.2 16.5 1.8 3.8 152.2
30 1.7 12.7 1.4 1.4 226.5
50 0.5 2.1 1.4 1.2 507.5

since skipping two symbols instead of one between each factor Fj does not
invalidate the assumption that the variables Xj are independent and identi-
cally distributed. By (1), the total verification time is thus O((n/m3)m log m).
Instead, by (2), it follows that the average number of symbols scanned in a sin-
gle window and the average shift length are equal to (k + 1)(logσ m + 3) and
m − (k + 1)(logσ m + 3), respectively. From this we obtain that the average fil-
tering time is O((n/m)k logσ m) for the aformentioned choice of k. Hence, the
running time of both phases is sublinear on average.

6 Experiments

We tested AOPF1 and AOPF2 against the following algorithms:

– AOPF1b: the filtration method based on the Hamming distance using
Approximate SBNDM;

– AOPF2b: the filtration method based on the Hamming distance using the
GGF algorithm;

– naive: the naive method where all the text positions are checked.

Note that the AOPF1b and AOPF2b algorithms must use 2k as bound on
the number of mismatches. In the AOPF1b algorithm we employ the same
additional filtration step used in AOPF1.
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Fig. 2. Plot of the execution times of the algorithms for Dow Jones data with k = 1
(left) and k = 2 (right).

The tests were run in 64-bit mode on Intel 2.70 GHz i7 processor with 16
GB of memory running Ubuntu 12.10. All the algorithms were implemented in
C and run in the testing framework of Hume and Sunday [12].

We performed the tests on two sequences of real data: the Dow Jones index
and the Helsinki temperatures time series. The Dow Jones data contains 15, 248
integers corresponding to the daily values of the stock index in the years 1950–
2011 and the Helsinki temperature data contains 6, 818 integers representing the
daily mean temperatures in Fahrenheit (multiplied by ten) in Helsinki in the
years 1995–2005. For each sequence we generated sets of 200 patterns, randomly
extracted from the text, of fixed length m ∈ {5, 10, 15, 20, 25, 30, 50}. Table 1
shows the average execution times, over 99 repeated runs, of the algorithms for
Dow Jones data and Helsinki temperature data in 10 of milliseconds for k ∈
{1, 2, 3}. In addition, a graph of the times for the Dow Jones data and k = 1, 2
(with logarithmic scale on the y axis) is shown in Fig 2. All the algorithms use
the verification method described in Sect. 3.

From the results, we observe that i) AOPF1 and AOPF2 are significantly
faster than the naive method, except for the cases m = 5 and also m = 10
for k = 3 where they are either faster or comparable; ii) AOPF1 is always
faster than AOPF1b; iii) AOPF2 is either faster or comparable to AOPF2b.
Consider the cases where the algorithms provide a significant speedup over the
naive method, namely m ≥ 10 for k = 1, 2 and m ≥ 15 for k = 3. For k = 1,
AOPF1 is the fastest algorithm, while for higher values of k either AOPF1
or AOPF2 is the fastest depending on the value of m. In particular, there is a
region of m, {15, 20} for k = 2 and {20, 25, 30} for k = 3, where AOPF2 obtains
the best running time. Note that the execution time of the naive algorithm is
proportional to m, as it verifies all the positions. In the case of AOPF1 and
AOPF2, the execution time drops notably after a threshold value for m which
depends on k. In particular, for k = 1 the threshold value for m is 5 while
for k = 2, 3 it is 10. The AOPF1b and AOPF2b also shows this behaviour,
although the drop in the running time is not as significant. Note that although
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the filtration phase of AOPF2 is linear, the total time of AOPF2 decreases with
a fixed k when m grows. This is due to the fact that the verification probability
and the verification time decrease on average when m grows.

7 Concluding Remarks

In this paper we have presented two practical solutions, based on filtration, for
the recently introduced approximate order-preserving matching problem. Both
algorithms are effective in practice, as shown by experimental evaluation, and
one of them is the first sublinear solution on average, provided that the number
of errors is not too large.
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S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving incomplete suffix
trees and order-preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E.
(eds.) SPIRE 2013. LNCS, vol. 8214, pp. 84–95. Springer, Heidelberg (2013)

6. Gawrychowski, P., Uznanski, P.: Order-preserving pattern matching with k
mismatches. CoRR, abs/1309.6453 (2013)
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Abstract. In this paper, we present a memory efficient index for storing
a large set of DNA sequencing reads. The index allows us to quickly
retrieve the set of reads containing a certain query k-mer. Instead of the
usual approach of treating each read as a separate string, we take an
advantage of significant overlap between reads and compress the data by
aligning the reads to an approximate superstring constructed specifically
for this purpose in combination with several succint data structures.

1 Introduction

The second generation sequencing technologies (such as Illumina) allow us to
investigate DNA and RNA sequences at a previously unseen scale. A single
sequencing run can produce vast amounts of sequencing reads of lengths 100–
150bp that need to be processed by using efficient data structures and algo-
rithms. In our work, we propose a new data structure, called CR-index, for read
indexing without the reference genome. Our method improves on previously
proposed compressed Gk-arrays [Välimäki and Rivals, 2013] by exploiting the
internal structure of typical read collections.

Commonly applied first step in processing Illumina reads is to find (possi-
bly approximate) occurrences of these reads in a reference genome. This task,
also called read mapping, is often dependent on sophisticated indexes of the
reference genome, such as uni-directional or bi-directional FM-index (see e.g.
Langmead and Salzberg [2012]). After the reads are aligned to the reference
genome, we can answer common queries, such as which or how many reads over-
lap a particular genomic position. These queries find many applications, includ-
ing variant calling in population genetic analysis, locating transciption factor
binding sites, assessing duplication structure of the genome, differential gene
expression, and many more.

However, in many cases the reference genome is unknown or incomplete. In
such cases, one would still want to preprocess large collections of reads so that
similar queries can be processed efficiently. In particular, Philippe et al. [2011]
introduced a problem of read indexing, where the task is to build an index which
can be queried for all reads that contain a particular k-mer as a substring (max-
imum k is given beforehand). Their data structure, called Gk-array, is based on
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 188–198, 2015.
DOI: 10.1007/978-3-319-23826-5 19
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efficient indexing of a concatenation of all reads in the collection, and can answer
these queries in O(k log n + |Q|) time, where n is the size of the read collection,
and |Q| is the number of reads in the answer. Recently, Välimäki and Rivals
[2013] introduced compressed Gk-arrays, which decrease the memory use signif-
icantly by using compressed suffix arrays [Grossi et al., 2003]. These indexing
structures find use in many practical applications involving read clustering, k-
mer counting, and similarity search.

Our particular interest lies in de novo genome assembly based on maxi-
mum likelihood (GAML), which was introduced recently by Boža et al. [2014].
This method uses a likelihood score based on a simple probabilistic model of
the sequencing process and attempts to find the highest likelihood assembly by
simulated annealing. To this end, likelihoods of many candidate assemblies are
evaluated with respect to several read collections. Here, reference-based index is
impractical, since the reference genome changes in every iteration of the algo-
rithm and realigning all reads to the new reference would be impractically slow.
However, in each iteration, the assembly is modified only in a few places, and
thus only a limited number of reads need to be realigned, as long as they can be
located quickly without reference to a particular assembly. Thus read indexing
with Gk-arrays can be used to focus realignment to those reads that overlap
boundaries where the assembly has changed.

In our work, we build on the idea of compressed Gk-arrays, but instead of
relying on the entropy-based compression of the whole read collection, we exploit
the fact that the reads are likely random substrings of some unknown string,
sampled at a high coverage. This assumption, quite reasonable for our intended
application, as well as many other applications in bioinformatics, allows us to
design a data structure that is much more memory efficient than compressed
Gk-arrays as we demonstrate in the experimental evaluation.

2 CR-Index Overview

Our goal is to build a memory efficient data structure that can identify all
reads from a given collection R = (r1, r2, . . . , rn) containing a query k-mer x.
Previously, this problem was treated as a standard pattern matching problem of
finding x within string T = r1$1r2$2 . . . $n−1rn$n [Philippe et al., 2011].

These approaches were optimized for collections that consist of randomly
generated strings. Yet, in many applications, the collection contains reads that
have large overlaps, and there can even be many identical reads. Our approach
is targeted at read collections that are randomly selected short substrings of a
given template, sampled to high coverage, with only a few differences compared
to the template (e.g., Illumina reads from a given genome at 50× coverage and
1% error rate).

The main idea of our new data structure, which we call CR-index, is to
use a guide superstring G, which contains all reads ri from the collection R
as substrings. The guide superstring is supplemented by additional structures
allowing identification of IDs of all reads that align to a particular position in G.



190 V. Boža et al.

The guide superstring will be generally much shorter than the concatenation of
all reads and since representation of this string accounts for most of the memory
used in the previous indexing structures, it will be possible to reduce the memory
footprint significantly on real data.

It may seem that the genome from which the reads originated may be the
ideal guide superstring. At the same time, often we want to use CR-index to
support the task of genome assembly from reads, so requiring a guide superstring
as a prerequisite may seem somewhat circular. However, we do not require a guide
string that would be a plausible interpretation of the read collection. Obtaining a
plausible genome assembly means resolving sequence repeats correctly (including
correct number of repeats and their organization) and joining as many contigs
as possible into larger scaffolds, which is a very difficult task. In contrast, the
guide string is only required to satisfy the above technical definition; it is allowed
to be very fragmented, and the best guide strings will be over-collapsed, with
each repeat included only once. Such guide strings can be easily obtained even
through the simplest de Bruijn graph approaches or by simple approximation
algorithms for building the shortest superstring.

However, there is a problem with errors contained in the reads. Any read
that has been changed compared to the original template will likely not align to
the original template and thus the guide string would have to be significantly
enlarged to also include all the reads with errors. To avoid unnecessary enlarge-
ment of the guide string, we will relax our definition as follows:

Definition 1 (k-guide Superstring). For a given read collection R and number
k, a k-guide superstring is a string G such that for each read r ∈ R there exists a
substring of G or a reverse complement of a substring of G, denoted sr, such that
any two differences between sr and r are located more than k bases apart.

Note that in this work we allow only substitutions as differences between
r and sr. This relaxed definition however complicates the query algorithm, as
illustrated in Fig. 1. For a given query k-mer x, we search the guide string for
all strings at Hamming distance at most one from x and from the reverse com-
plement of x. This bound on Hamming distance is sufficient, because differences
between r and sr are more than k bases apart, and thus the query will overlap
at most one difference between the guide string and the target read. After recov-
ering all potential matching reads, we verify that each of them actually contains
the original query x as a substring.

Even though this search algorithm is somewhat complicated due to the
relaxed definition of the k-guide superstring, we gain significant improvements
in memory. For example on E. coli dataset, we were able to construct exact
superstring of length 224 Mbp and k-guide string of length 108 Mbp.

3 Representing k-guide Superstring and Auxiliary Data
Structures

As shown in Fig. 2, the CR-index consists of three main parts. The first part
represents the k-guide superstring G and allows fast exact pattern matching.
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Fig. 1. Overview of the algorithm for answering CR-index query.

Read 0 ACCGTAATCA

Read 1 GTACTCAAAG

Read 2 CTGAAAGTTC

Superstring G ACCGTACTCAAAGTTC

Read positions 0: 0; 1: 3; 2: 6

Read substitutions (0,6): A, (3,2): G

Fig. 2. Overview of the CR-index for three input reads shown at the top.

The second part represents the starting positions of individual reads in G and
allows us to quickly locate reads covering a given region in G. Finally, the last
part lists differences between the reads and the guide superstring, and allows us
to quickly verify if a read matches our query k-mer x.

To implement the CR-index, we use succint data structures from the SDSL
library [Gog et al., 2014]. In particular, the guide superstring is represented using
FM-index [Ferragina and Manzini, 2000], which allows efficient exact pattern
matching while maintaining a small memory footprint (linear in the length of
the superstring). FM-index consists of a wavelet tree, which contains a BWT-
transformed superstring G, and samples from suffix and inverse suffix arrays
for G. The sampling rate influences memory usage and query time; a higher
sampling rate results in faster queries but requires more memory.

The other two parts of the data structure are described in more
details below, but both use sparse bit vectors represented as SDarrays
[Okanohara and Sadakane, 2007]. In this representation, a bit vector of length n
with m bits set to one occupies m lg n

m + 2m + o(m) bits of memory. The rank
query (retrieving the number of bits set to 1 in a prefix of the vector of length
i) works in O(log n

m + log4 m/ log n) time and the select query (retrieving the
position of i-th bit set to 1) works in O(log4 m/ log n) time.

Representation of reads starting at a given position. After locating a particular
k-mer occurrence in the guide superstring G, we need to recover all reads that
overlap this occurrence. First, assume that at most one read starts at each posi-
tion of G. We will construct a bitvector Pb containing 1 at each position where
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Read starts Pb 1001001000000000

Read IDs Pr 0 1 2

Reverse complements Pc F F F

Fig. 3. Data structures needed to locate reads starting at a particular position.

Pb 1010100

Pr 0 3 1

Lb 11000

Lr 4 2

Fig. 4. Two reads ACG with IDs 0, 4 start at position 0, one read GTT with ID 3 starts
at position 2, and and two reads TAA with IDs 1, 2 start at position 4. We omit arrays
Pc and Lc for simplicity.

a read starts. This bitvector will be stored in an SDarray, and thus support fast
rank and select queries. The read IDs will be stored in array Pr sorted by their
position in the superstring. Finally, Pc is a bitvector indicating a strand of the
read in the superstring. Fig. 3 demonstrates the use of these arrays. We can find
the read located at position p by first checking whether Pb[p] = 1 and then using
rank query to find the position of the read in Pr and Pc.

To accomodate multiple reads at the same position, we store reads mapping
to the same position in a linked list. Our implementation of the linked lists is
optimized for the case when most lists have length only one, which is usually the
case unless the coverage is very high. The first item of each linked list is stored
in arrays Pb, Pr, and Pc as before. To store the rest of the linked lists, we use
a bitvector Lb which contains one at position r if read with ID r has successor
in the linked list. Note that the length of Lb is the same as the total number of
reads. We enhance this array to support rank queries. Read IDs of the remaining
reads (not present in Pr) are in array Lr and their strand information is in bit
vector Lc. Fig. 4 illustrates these structures.

Reads are ordered in Lr and Lc by the ID of their predecessor so that we can
use the following algorithm to retrieve all reads starting at position p. We first
use arrays Pb and Pr to find index i of the read which is the head of the linked
list. The remaining reads are found as follows:

while L_b[i] == 1:
rank = L_b.rank(i)
output L_r[rank], L_c[rank]
i = L_r[rank]

We store Pr and Lr as ordinary integer vectors with �lg(n − 1)� + 1 per
integer. In total they take n(�lg(n − 1)� + 1) + O(lg n) bits. Arrays Pc and Lc
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Bitvector Db 0000001000 0000000000 0010000000

Original bases Ds A G

Fig. 5. Representation of differences between the read and the guide.

are standard bitvectors and take n+O(lg n) bits in total. Vectors Pb and Lb are
sparse, and thus represented as SDarrays.

Differences between the guide and the read. Since not all reads map to the guide
string exactly, we need to be able to recover the differences between a particular
read and the guide superstring. Let � be the length of one read and n be the
number of all reads. Bitvector Db of length n� will for each read and each position
in the read store zero, if the read is identical to the guide at that particular
position, or one otherwise. Vector Ds will store the differences corresponding to
1s in bitvector Db. We can use rank and select queries to recover a particular
difference. Fig. 5 illustrates the arrays. We can store the array Ds in 2d+O(lg d)
memory, where d is the total number of differences between the reads and the
guide. Db is a sparse bitvector represented by SDarrays.

Querying CR-index. The algorithm for querying the index follows the outline
explained in Section 2. More specifically, given k-mer x we obtain the reads
containing x using the following steps:

1. Construct reverse complement xR of x and the set Q of all k-mers with
Hamming distance of at most one from x or xR.

2. For each q ∈ Q, find the set P of its positions in G using the FM index.
3. For each p ∈ P , find the set R of reads containing k-mer starting at p. This

is achieved by retrieving the reads starting at positions p−�+k, . . . , p, where
� is the length of a read.

4. For each r ∈ R: If q = x or q = xR check if r does not contain any sub-
stitutions in the interval corresponding to q. Otherwise check if r contains
exactly one substitution which is the same as the difference between q and
x (xR). Output the read, if it passes the test.

In the FM index, we search for O(k) string from Q, each search taking time
O(k). If this search finds m matching positions in total, we spend O(m) time to
recover these positions. Let r be the number of reads overlapping these matches,
s the length of G, t the total length of reads, and d the total number of differences.
Extracting each read involves a constant number of rank and select queries in
arrays Pb and Lb, which takes O(r lg s

r + lg4 r/ lg s) time. Extracting relevant
differences takes one rank query in array Db, which in total takes O(r lg d

t +
lg4 d/ lg t).

In our algorithms, we search the data structure for all k-mers from Q. How-
ever, if we search for q ∈ Q which differs from x or xR by a particular substi-
tution, we may find no matches, because this particular substitution does not
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occur in any read in the set. In real data, usually only few substitutions lead to a
matching read. To reduce the number of useless queries, we implement a simple
filter based on Bloom filters [Bloom, 1970]. In particular, we use a Bloom filter
to store all k-mers from all reads that differ from their corresponding k-mers
in G. For every substituion on a read compared to the superstring we thus store
k strings. Before querying FM-index for occurrences of q, we first test whether
the substitution in q compared to the query k-mer x or xR is hashed in the
Bloom filter.

4 Finding the k-guide Superstring

Our goal is to find as short k-guide superstring as possible for a given collection
of reads R. This problem is a generalization of a well-known shortest superstring
problem, which is NP-hard [Gallant et al., 1980]. In our work, we will use a
heuristics based on commonly used sequence assembly tools in the following
three steps:

1. Read correction. First, we identify the reads containing low-frequency
substrings. Unique/low-frequency substrings would unnecessarily inflate the
size of the guide string, and we attempt to remove these low-frequency sub-
strings by introducing a small number of substitutions. Various formulations
of such read correction problem have been studied in the context of sequence
assemblers [Kelley et al., 2010]. We use the read correction algorithm from
SGA [Simpson and Durbin, 2012], but we only accept the substitutions that
are at least k bases apart (if SGA proposes substitutions that are too close,
we greedily chose a subset satisfying our criterion).

2. Finding read overlaps. Again, this is a well studied problem in the context
of sequence assembly. We use SGA overlapping algorithm with standard
settings.

3. Construction of the superstring. The easiest approach would be to use
a well-known greedy approximation shortest superstring algorithm, which
repeatedly merges two strings with the largest overlap [Blum et al., 1994].
In practice, we have found that the guide construction can be speeded up by
doing assembly first and only perform the greedy merge as a finishing step
to incorporate reads that were not successfuly included in the assembly.
Various modifications are possible. For example, using a simple string con-
catenation in the finishing step leads typically to about 25% inflation in the
string length compared to the greedy merging.

In our experiments we found that our construction efficiently compressed
around 90% of reads (those present in the assembly) and modestly compresses
the remaining erroneous reads.

5 Experiments

We compare the performance of our data structure with compressed Gk-arrays
[Välimäki and Rivals, 2013] on two datasets. The first data set is the set of 151bp
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Fig. 6. Comparison of memory usage of CR-index and compressed Gk-arrays on the
E. coli dataset with increasing coverage.

Illumina reads from E. coli strain MG1655 (genome length 4.7 Mbp, 184× cov-
erage after removal of low-quality reads, 0.75% error rate) [Illumina, 2015]. The
second data set is a set of 101bp Illumina reads from human chromosome 14
(sequence length 107 Mbp, 23× coverage, 1.5% error rate) from Genome Assem-
bly Gold-Standard Evaluations (library 1; Salzberg et al. [2012]). In addition,
we also use error-free reads of length 151bp simulated from the E. coli genome
with coverage up to 50×. In all experiments, we have used query length k = 15.

First, we were interested in the guide string length and memory use when
dealing with error-free reads from the E. coli genome. With increasing number
of reads, the size of the guide string stayed almost the same (4.7 Mbp). The
overall memory grew linearly with the number of reads, and at 50× coverage,
the whole data structure required only 8.8 MB, or 5.9 bytes per read.

The situation is more complicated in the case of real reads containing errors
(see Fig. 6). Memory usage of the CR-index still grows approximately linearly
with the coverage, and the slope is much lower than for the compressed Gk-
arrays. Whereas the length of the superstring is 6.9 Mbp at coverage 2.5 (1.7
times smaller than total length of reads), the size increases with the coverage up
to 108 Mbp at coverage 184, which is 8× smaller than the length of all reads con-
catenated. The increase in length is due to the presence of reads with errors that
are less than k positions apart, and consequently cannot be easily integrated into
a smaller superstring. The largest dataset is represented in 142.4 MB of memory,
of which 71% is taken by the FM index, 15% is taken by read positions, less than
2% is required to represent the substitutions in reads, and approximately 12%
is taken by the Bloom filter.

Compressed Gk-array queries are faster at small coverage, but the relative
differences become insignificant at higher coverage (Fig. 7).



196 V. Boža et al.

Fig. 7. Comparison of query time of CR-index and compressed Gk-arrays on the E.
coli dataset with increasing coverage.

Fig. 8. Comparison of query time and memory usage of CR-index and compressed
Gk-arrays on the E. coli dataset with coverage 50 for varying suffix array sampling
rates.

On the human chromosome 14 (23× coverage of 107 Mbp sequence, 1.5%
error rate), the CR-index requires only 571 MB of memory, while Gk-arrays
require ≈ 1.7 GB. On the other hand, a typical query takes 214 ms in CR-index,
or roughly 3× longer than in Gk-arrays (71 ms). We believe that this is due to
higher error rate in the data which may cause the Bloom filter to filter out fewer
queries.

Both CR-index and compressed Gk-arrays use sampling of the suffix array.
This allows time vs. memory tradeoff, since by sampling more values, we get a
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better running time at the expense of higher memory usage. Figure 8 shows this
tradeoff at coverage 50 in the E. coli dataset. CR-index is much less sensitive
to sampling parameters than compressed Gk-arrays. This is due to compressed
superstring representation which results in a smaller FM-index and a smaller
number of hits in FM-index during the search.

6 Conclusion

We have presented a new compressed data structure, called CR-index, for index-
ing short sequencing reads. CR-index has a significantly smaller memory foot-
print than Gk-arrays [Philippe et al., 2011; Välimäki and Rivals, 2013] and still
maintains a reasonable query time.

Our data structure directly supports queries for reads that contain a particu-
lar k-mer and for all occurrences of the k-mer in these reads (queries Q1 and Q3
in Välimäki and Rivals [2013]). In this work, we did not implement other queries
supported by compressed Gk-arrays. In particular, while the number of reads
and the number of occurrences in reads (queries Q2 and Q4) can also be easily
recovered, an efficient implementation is more difficult. We could count the reads
overlapping a given position in the guide string by rank queries, however these
counts will also include reads that mismatch the guide string and these would
need to be excluded, requiring additional operations proportional to the number
of matching reads. In contrast, after locating the k-mer, compressed Gk-arrays
can count the number of occurrences in constant time. Mismatches between the
guide string and the reads also do not leave much space for non-trivial imple-
mentations of queries Q5-Q7 which require exactly one occurrence of the k-mer
in a read. Perhaps additional auxiliary data structures would help to implement
these queries in a more reasonable time.

In our work, we used standard algorithms for read correction and sequence
assembly to construct the guide string. Yet, it may be possible to do better by
developing more specialized algorithms, perhaps based on coding theory.

In our intended application, the same read is likely to be “fished-out” through
many k-mer queries, and thus it may be argued that there should be an exact
match of at least one k-mer without necessity to consider neighbourhoods to
account for mismatches between the guide string and the reads.
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Abstract. Many practical algorithms for sequence alignment, genome
assembly and other tasks represent a sequence as a set of k-mers. Here, we
address the problems of estimating genome size and sequencing coverage
from sequencing reads, without the need for sequence assembly. Our
estimates are based on a histogram of k-mer abundance in the input set
of sequencing reads and on probabilistic modeling of distribution of k-mer
abundance based on parameters related to the coverage, error rate and
repeat structure of the genome. Our method provides reliable estimates
even at coverage as low as 0.5 or at error rates as high as 10%.

1 Introduction

Two decades ago, sequencing even a short bacterial genome constituted a large
project, potentially involving a collaboration of multiple research groups, its exe-
cution limited to several large sequencing centers. New sequencing technologies
allow such a task to be accomplished even by a small research group at a rea-
sonable cost. Often the biggest hurdle in this process is the lack of appropriate
bioinformatics tools for various analyses of the obtained sequencing data.

In this paper, we provide a new method for estimating the size of the
sequenced genome, which is one of the fundamental questions related to genome
sequencing. Ideally, the result of genome sequencing would contain a complete
sequence of each chromosome, and thus the size would be immediately apparent.
However, sequencing technologies provide only short reads, and it is difficult, or
often even impossible, to reconstruct the entire original sequence from such data
due to sequence repeats and sequencing errors. The result of genome sequenc-
ing is thus typically a set of shorter sequences, contigs, which represent parts
of chromosomes. A sequence repeat with multiple copies in the genome may be
collapsed to a single copy, and some parts of the genome might be missing alto-
gether. Therefore, even for a draft assembly, it is necessary to compensate for
these issues when estimating total genome size.

For example, the panda genome was the first mammalian genome sequenced
by the next-generation sequencing technologies [Li et al., 2010]. The authors

c© Springer International Publishing Switzerland 2015
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have assembled around 2.3Gb of sequence to contigs and scaffolds, but using
several methods, they estimate the genome size to be around 2.4Gb.

In our work, we concentrate on estimating the genome size directly from
sequencing reads, without using the draft genome assembly. This approach has
several advantages. Our method can produce size estimate faster, because we
avoid a computationally intensive assembly process. By directly modeling the
sequencing process, we avoid additional biases introduced by genome assemblers.
Finally, as we show in our experiments, our approach can be also used on smaller
set of reads that do not provide sufficient genome coverage for the assembly.

Genome size is closely related to the genome coverage, which is the average
number of sequencing reads covering a single position of the genome. If one of these
two quantities is known, the other can be easily computed because their product
should be equal to the sum of the lengths of all reads (assuming that the fraction
of reads corresponding to various artefacts unrelated to the genome is negligible).
When planning a sequencing experiment, one needs an approximate genome size to
determine the amount of data necessary to reach the desired sequence quality. Our
method can be used already on preliminary data at a lower coverage to estimate
the genome size and thus plan the overall experiment.

Similarly to the previous approaches to this problem [Li and Waterman,
2003; Williams et al., 2013], we start by counting the occurrences of all
strings of a fixed length k (k-mers) in the set of all sequencing reads.
There are several tools for counting k-mer frequencies efficiently [Kurtz et al.,
2008; Marçais and Kingsford, 2011; Melsted and Pritchard, 2011; Zhang et al.,
2014]. These tools are based on advanced text indexing, such as FM index
[Ferragina and Manzini, 2000] or on hashing techniques, such as Bloom filters
[Bloom, 1970]. We use only a summary statistics, called the k-mer abundance
spectrum, which is a histogram containing for each j the number of distinct
k-mers with exactly j occurrences in the data.

Approaches based on k-mer frequencies in a set of reads were previously used
for several bioinformatics tasks, for example, to separate individual genomes
when sequencing a metagenomic mixture of different microbes isolated from a
certain environment [Wang et al., 2012; Wu and Ye, 2011] and to correct errors
in sequencing reads prior to the assembly [Kelley et al., 2010; Pevzner et al.,
2001].

Closely related to our work, methods of Li and Waterman [2003] and
Williams et al. [2013] estimate the genome coverage from k-mer abundance spec-
tra based on probabilistic models of the repeat content of a genome, but these
authors do not explicitly consider sequencing errors in their models. However,
even a small error rate may have a substantial impact on abundance spectra.
Consider reads of length 100 with 1% error rate. The expected number of errors
per read is then 1. If we consider k = 21, a single error may overlap 21 out of 80
k-mers. Thus, in this (rather typical) scenario, we may expect that up to 26% of
k-mers will be erroneous, creating much more low-abundance k-mers than would
be expected if there were no errors.
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Williams et al. [2013] deal with this problem by removing low-abundance
k-mers from the spectrum. We argue, that in doing so, they decrease the power
of their models to estimate the genome size at low coverage and high error
rates. In particular, our experiments show that their method generally does
not work at coverage less than 10× and for error rates greater than 3%. Yet, by
including a simple error model in our probabilistic model, we were able to tolerate
coverage as low as 0.5× or error rates as high as 10%. Thus, we convincingly
demonstrate that by explicit error modeling, we are able to significantly enlarge
the application domain, particularly to the cases, where filtering or correcting
erroneous reads will simply not work due to lack of data to build a consensus.

2 Models and Algorithms

Let us assume that we have a fixed value of k and an observed k-mer abundance
spectrum W = w1, w2, . . . , wm, where wj is the number of k-mers that occur in
the input set of reads exactly j times, and m is the highest observed abundance.

In this section, we present several probabilistic models which represent a
simplified version of the process that leads to the observed abundance spectrum.
Table 1 shows the overview of the models and their parameters. Each model
gives a formula for computing the likelihood L(W |θ) of observing spectrum W
given model parameters θ, which always include the true genome coverage c.
Then we try to estimate parameters θ that maximize this likelihood, and use
the obtained coverage c as our estimate. Genome size is estimated by dividing
the total amount of sequencing data by c.

Table 1. Overview of the models, their features and parameters. Parameters in paren-
theses are derived from other parameters.

Model Features Parameters θ

EF error-free reads real coverage c
(read border effects) (k-mer coverage ck)

SE simple errors real coverage c
(abundance 1 only) error rate ε

(erroneous k-mer prob. α)
(effective k-mer coverage c′)

E full error model real coverage c
(higher abundances) error rate ε

(expected abundance of k-mers w/ s errors λs)
(probability k-mer has s errors αs)

RE repeats and errors real coverage c
error rate ε
repeat distribution parameters q1, q2, q
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Model EF: error free. In this simplest model, we assume that the genome does
not contain any exact sequence repeats of length k or more and that there are no
sequencing errors. Subsequent models will relax these assumptions, while using
a similar overall modelling approach.

Recall that coverage c is the average number of reads covering a single base of
the genome. However, when we look at a k-mer starting at a particular position,
not all reads covering its start will cover its entire length. Therefore, if all reads
have length r, the average coverage of a given k-mer will be only ck = c(r − k +
1)/r. Our models will work with ck, and subsequently use this relationship to
obtain c.

Aside from this correction, our models do not take into account reads and
rather consider sequencing data simply as a collection of k-mers. More pre-
cisely, we assume that the observed abundance of each k-mer is sampled uni-
formly independently from some distribution so that the probability of observ-
ing abundance j is pj . Then the log-likelihood of observing spectrum W is
log L(W |θ) =

∑m
j=1 wj log pj .

In the EF model, we assume that the abundance of each k-mer in the genome
is sampled from the Poisson distribution with mean ck. It is important to note,
however, that this random abundance is zero for some k-mers, and consequently
we will never observe them in the spectrum. As a result, the probability pj of
observing abundance j among k-mers represented in the spectrum is

pj = f(j; ck) =
cj
ke−ck

j!(1 − e−ck)

This distribution is called truncated Poisson. In effect, we renormalize proba-
bilities of the Poisson distribution with mean ck by 1/(1 − e−ck) which is the
probability of obtaining a value greater than zero in the Poisson distribution.

Model SE: simple errors. Our remaining models consider sequencing errors. We
assume that during sequencing, each base is read correctly with probability (1−ε)
and with probability ε/3 it is substituted with one of the other three bases. We
do not consider any sequence-specific error biases, nor do we explicitly model
indels, although their influence on the k-mer abundance spectra would be to
some extent similar to substitutions.

In the SE model, we assume that if a k-mer contains a sequencing error,
it will always have abundance 1. The model is a mixture of two distributions.
With probability α, a given k-mer contains an error and is thus assigned abun-
dance one. With probability (1 − α), it is generated from the truncated Poisson
distribution with mean c′. Thus, in this model, p1 = (1 − α)f(1; c′) + α and
pj = (1 − α)f(j; c′) for j > 1. Let γ = (1 − ε)k be the probability that a
sequenced k-mer contains no errors. Coverage c′ is set to γck where ck is the
ideal k-mer coverage from the EF model. Parameter α is related to γ, but while
γ is the probability that a single sequenced k-mer contains no errors, 1 − α is
proportion of error-free k-mers among all unique k-mers obtained by sequencing.
A single k-mer in the genome gives rise to around c′ error-free sequenced k-mers
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which together account for a single unique k-mer in our histogram. In contrast,
under the assumptions of our model, each bad k-mer is unique. We will use the
following simple formula to relate α to γ, and thus to ε: α = (1−γ)/(1−γ+γ/c′).

For inference, we seek parameters c and ε such that when converted to c′ and
α, they maximize the likelihood of observed data W . As we describe below, we
use a simple approximate parameter inference method in this model as a starting
point for more complex models.

Model E: full error model. The previous model was based on the assumption that
all errors produce k-mers with abundance one. As the coverage increases, the
same error may happen multiple times, and as a result, errors will contribute also
to k-mers with higher abundance, which we cover in the more complex model E.
Let us consider k-mer x and another k-mer y, which is in Hamming distance s
from x. The probability of obtaining k-mer y as a result of sequencing k-mer x is
εs(1 − ε)k−s3−s, assuming that all substitutions are equally likely. If the source
k-mer x is read ck times in expectation, the expected number of times we obtain
as a result k-mer y is λs = εs(1− ε)k−s3−sck. The actual number of occurrences
of y we then again model by the Poisson distribution with mean λs. Note that
parameter λs will be close to zero for higher values of s, and consequently, we
will never observe most of k-mers y as a result of sequencing x.

We will assume that each unique k-mer y from the histogram resulted only
from one source k-mer x. In other words, two different source k-mers never result
in the same erroneous k-mer, nor do we obtain a different source k-mer as a result
of errors while reading k-mer x. As before, we will assume that each observed
k-mer is generated from a mixture of different probability distributions, but this
time the mixture will have k +1 components, one for each Hamming distance s.
Component s will have weight αs, and it will correspond to a truncated Poisson
distribution with parameter λs, thus the overall probability of observing a k-mer
with abundance j will be

pj =
k∑

s=0

αsf(j;λs),

where f is the probability mass function of the truncated Poisson distribution,
as in the previous models.

To relate weights αs to the basic parameters of our model (c and ε), we
first estimate ns, which is the expected number of observed unique k-mers with
Hamming distance s from their respective source k-mers. If the genome contains
n different source k-mers, each can give rise to

(
k
s

)
3s different k-mers with s

errors and the probability of observing such a k-mer with abundance at least
one is 1 − e−λs . Therefore, we get

ns = n

(
k

s

)
3s(1 − e−λs).

Mixture weights αs are then computed by renormalizing ns by their sum; the
unknown parameter n conveniently cancels out.
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Model RE: model with repeats and errors. In this model, we assume that a given
k-mer can occur in the genome more than once. Let βo be the fraction of k-
mers with o occurrences in the genome. The overall probability distribution is
again a mixture distribution pj =

∑∞
o=1 βopo,j , where po,j is the probability

of abundance j for a k-mer with o occurrences. This probability is computed
according to the E model, only coverage ck is replaced with o · ck, because the
k-mer is now o times more likely to be covered by a randomly placed read.

Related works [Li and Waterman, 2003; Williams et al., 2013] concentrate
on accurate modelling of repeats, with mixture coefficients βo being arbitrary
values estimated from the data for small values of o. According to the authors
of these studies, such an approach requires a relatively high coverage; ideally we
would observe each multiple of ck as a separate peak in the abundance spectrum,
and the height of this peek would allow us to estimate βo. However, at a small
coverage, such peaks are difficult to distinguish, and therefore we instead model
proportions βo by the geometric distribution, which in our experience works well
for higher values of o. We use three parameters q1, q2 and q such that β1 = q1,
β2 = (1−q1)q2, and βo = (1−q1)(1−q2)q(1−q)o−3 for o ≥ 3. Our RE model thus
uses previously introduced parameters c and ε, as well as three new parameters
q1, q2 and q. The model of course also depends on the known values of r and k.

Optimization of model parameters. To estimate the coverage and the genome
size, we start from a set of sequencing reads and compute the k-mer abundance
spectrum using Jellyfish [Marçais and Kingsford, 2011]. Our algorithm then uses
the spectrum to obtain the maximum likelihood estimates of model parameters.

We use k = 21 in all our experiments, as previously suggested by
Williams et al. [2013]. Note that our models do not explicitly account for the
reverse strand. However, k-mer counting tools generally add together counts for
a k-mer and its reverse complement, and as a result, we may assume that each k-
mer counted in the spectrum corresponds to a k-mer on the forward strand of the
target DNA. Since we use an odd value of k, no k-mer is a reverse complement
of itself.

Our parameter optimization routine proceeds in three steps. First, we use
a heuristic approach based on the SE model to obtain the initial estimate of
the parameter values. In the second step, we improve these estimates by the
standard L-BFGS-B optimization algorithm [Zhu et al., 1997] as implemented
in the Python’s SciPy library. As we did not provide the optimization with
the gradient function, the algorithm often fails to find a good local maximum.
Thus, in the third step, we continue with a grid search to further improve these
estimates. The second and the third steps use the E or RE models.

To obtain the initial parameter estimates, we use a heuristic based on the SE
model which assumes that all k-mers with abundance at least two are correct.
We start by computing the mean observed abundance c′′ among these k-mers:

c′′ =

∑m
j=2 j · wj∑m

j=2 wj
.
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We would like to use c′′ as an estimate of parameter c′ for the Poisson distri-
bution governing the abundance of error-free k-mers. However, c′′ overestimates
c′, because we have not used correct k-mers with abundance of one or zero to
compute the mean. We can relate c′ and c′′ by observing that c′′ should converge
to the mean of the Poisson distribution with parameter c′ and values 0 and 1
truncated:

c′′ =
c′ − c′e−c′

1 − e−c′ − c′e−c′ = g(c′).

We compute c′ as inverse of g(c′) using the Newton method.
To compute ck from c′, we need to estimate α, the proportion of k-mers with

errors among all observed unique k-mers. Let n2 be the number of unique k-mers
with abundance two or higher. We estimate the number of correct k-mers with
abundance one and zero (denoted by n1 and n0) using the following formulas:

n1 =
n2c

′e−c′

1 − e−c′ − c′e−c′ ,

n0 =
n2e

−c′

1 − e−c′ − c′e−c′ .

Now we can estimate the number of erroneous k-mers as ne = w1 − n1, and
compute the parameters α and γ as follows:

α =
ne

n0 +
∑m

i=1 wi
,

γ =
c′(α − 1)

αc′ − α − c′ .

Finally, we get initial estimates of c and ε using the formulas from the SE model:

c =
ckr

r − k + 1
=

c′r
γ(r − k + 1)

,

ε = 1 − γ
1
k .

If there is not enough data for this estimate, we simply set c = 1 and ε = 0.5 as
the initial value. For optimization of the RE model, we also need initial values
for parameters q1, q2 and q, which we simply set all to 1/2.

To deal with cases when the L-BFGS-B algorithm fails to find a local maxi-
mum, we use a simple iterative grid search to further improve the model param-
eters. This algorithm maintains a current parameter estimate θ = (x1, . . . , x�).
In each iteration, it evaluates log likelihood at the grid points of a small grid
around current θ and selects the estimate with the highest likelihood for the
next iteration.

We use a fixed grid of size G = 3 with variable step S. To construct the grid,
we first select a set of values for each parameter xi separately as Ri = {Sdxi |
d ∈ {−G, . . . ,−1} ∪ {1, . . . , G}}. The grid is then simply the Cartesian product
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R = R1 × R2 × · · · × R�. In the E model, θ = {c, ε}, and thus the full grid size
is 36. In the RE model, θ = {c, ε, q1, q2, q}, and the grid size is 7776.

If the log likelihood improves by less than one in a single iteration, we decrease
step S. We finish the optimization when the log likelihood does not improve and
the step is at most 1.001. In spite of its simplicity, the algorithm usually finds
good parameters, as demonstrated in the next section.

To avoid numerical overflows and to speed up the computation, we omit some
small terms from the likelihood function. First, we trim the input spectrum at
j = 100. In our datasets, more than 99.999% of the spectrum was in the first 100
positions. Next, we consider only up to 8 errors per k-mer, as the probability
of higher error counts was negligible for error rates in our dataset. In the RE
model, we also consider only values of o for which βo ≥ 10−8.

3 Experimental Evaluation

In our first set of experiments, we have evaluated our software CovEst on ran-
domly generated genomes of length 1 Mbp with uniform base frequencies. Reads
were generated at uniformly selected locations in the genome and errors in reads
were generated with the same error probability at each position. In Fig. 1, we
see the predicted coverage from the E model for inputs with various levels of
genome coverage and error rates. As the coverage increases, CovEst estimates
become very close to the true values. In the error-free data, we obtain reasonable
estimates even at coverage 0.1, and for high coverage (≥ 10), we tolerate even
10% error rate.

We compare these results with the estimates from the KmerSpectrumAna-
lyzer (KSA) by Williams et al. [2013]. They concentrate on modeling repeats;
errors are handled simply by ignoring k-mers with abundance lower than some
threshold �. Authors do not recommend KSA for coverage below 10. For coverage
30 and 50, we have used their default value � = 10; for lower values of coverage
c, we use � = c/2. All other values were left at default settings. As we can see
in Fig. 1, their estimates are in general farther from the true value. For lower
coverage, their software crashed. Note also that we have computed the KSA
coverage by dividing the total amount of sequencing data by the KSA estimate
of the genome size. KSA also provides an estimate of sequence coverage, but
these values are generally very low; perhaps they represent parameter c′ of our
SE model which measures the expected coverage of an entire k-mer by error-free
portions of reads.

Overall this experiment demonstrates that the CovEst E model gives reliable
coverage estimates at a broad range of parameters and works reliably even for
very low coverage values, where methods based on discarding k-mers with low
abundance do not work. Precise estimates of genome coverage automatically
translate to precise estimates of genome size, as the genome size is simply the
total amount of data divided by the coverage. For example at 1% error and 1×
coverage, our five replicates yield genome size estimates between 0.95Mb and
1.15Mb with mean 1.04Mb, which is very close to the true value of 1 Mbp. Error
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Fig. 1. Comparison of genome coverage estimates obtained by the CovEst E model
(black circles) and KSA (red squares) on random genomes with various coverage levels
and error rates. Columns in each plot correspond to eight different coverage levels; y-
axis shows the ratio of predicted and real coverage on the logarithmic scale. Estimates
more than a factor of two away from the real value are shown at the top or bottom
of the plot. For each combination of parameters, we show five replicates. KSA did not
produce answers for some inputs.

rate estimates are also generally very accurate; for inputs with coverage at least
2 and non-zero error rate, we have always obtained error rate estimates within
10% of the true value.

We have also run the RE model on some of these random inputs, to see
whether it can detect the absence of repeats. Again, the coverage estimates were
quite accurate; for coverage at least 2 and error at most 5%, we have obtained
values within 5% of the true answer. Estimated proportion of k-mers with one
occurrence in the genome (parameter q1 of the RE model) was in all these cases
estimated to be more than 99%.

The simpler SE model provides reasonable coverage estimates at medium cov-
erage (for coverage between 2 and 10 and error at most 5% we obtain estimates
within 15% of the correct value). However, as expected, it does not work well
for high coverage where the assumption that all error k-mers have abundance
one is no longer reasonable. For example, at 30× coverage and error rate 5%,
the coverage estimates range around 18 and the estimated error rate is around
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Table 2. Comparison of E. coli genome size estimates (true value 4.64 Mbp) provided
by CovEst and KSA at various genome coverage values. Estimates are given in Mbp.
KSA does not run at low coverage.

Method c = 0.5 c = 1 c = 2 c = 4 c = 10 c = 30 c = 50

CovEst RE 4.16 4.70 4.58 4.63 4.71 4.69 4.68
KSA N/A N/A N/A 6.03 4.61 4.59 4.58

62%. This clearly demonstrates that the more accurate error model E is in fact
needed for high coverage data sets.

In contrast to our simulated data, real genomes may contain various exact
or approximate repeats, and real sequencing reads may contain various biases in
coverage and error rates based on the local sequence properties. To explore the
influence of these factors on our models, we have used a set of 151bp long Illumina
reads from the genome of E. coli strain MG1655 (genome length 4.64 Mbp)
[Illumina, 2015]. We have sampled random subsets of these reads at various
coverage values, and compared the RE model and KSA. The resulting genome
size estimates are shown in Table 2. As we can see, CovEst provides useful
estimates of the genome size even at c = 1, whereas KSA works reliably only for
c ≥ 10.

4 Conclusion

In this paper, we provide a new method for genome size estimation from raw
sequencing reads. Our method is based on a compact representation of these
reads in the form of k-mer abundance spectrum. Compared to previous methods,
we combine a model of sequence repeats with a model of sequencing errors, which
significantly shape the k-mer spectrum. According to our knowledge, this is the
first method that can provide reasonable estimates of genome sizes from the
data at 1× genome coverage or less; previous works [e.g. Williams et al., 2013]
required genome coverage in excess of 10× in order to provide reliable estimates.
Low coverage sequencing data arise in the study of very large plant genomes
[e.g. Sveinsson et al., 2013] or due to pooling and barcoding multiple samples
to save costs. Tools for reliable analysis of such data may allow cost-efficient
sampling of a greater number of genomes than would be possible with standard
high-coverage data sets.

Our models can be further improved by considering additional real-world
phenomena, such as dependence of coverage and error rate on GC content and
other sequence features. We also currently do not consider polymorphism; k-
mers covering heterozygous loci would come in two forms, each at coverage
c/2, which could be easily captured by our model, at the cost of adding another
parameter characterizing the overall heterozygosity. We also plan to improve the
optimization algorithms used in CovEst to improve the accuracy and decrease
the running time.
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Abstract. Stemming is the process of reducing inflected words to their
root form, the stem. Search engines use stemming algorithms to conflate
words in the same stem, reducing index size and improving recall. Suffix
stripping is a strategy used by stemming algorithms to reduce words to
stems by processing suffix rules suitable to address the constraints of
each language. For Portuguese stemming, the RSLP was the first suffix
stripping algorithm proposed in literature, and it is still widely used in
commercial and open source search engines. Typically, the RSLP algo-
rithm uses a list-based approach to process rules for suffix stripping. In
this article, we introduce two suffix stripping approaches for Portuguese
stemming. Particularly, we propose the hash-based and the automata-
based approach, and we assess their efficiency by contrasting them with
the state-of-the-art list-based approach. Complexity analysis shows that
the automata-based approach is more efficient in time. In addition, exper-
iments on two datasets attest the efficiency of our approaches. In par-
ticular, the hash-based and the automata-based approaches outperform
the list-based approach, with reduction of up to 65.28% and 86.48% in
stemming time, respectively.

1 Introduction

The Web comprises over 30 trillion uniquely addressable documents. Recently,
the leading commercial search engine reported the processing of more than 3.3
billion user queries each day [4]. The massive-scale nature of the Web demands
efficient tools to manage, retrieve and filter information [2]. In this environment,
time and retrieval performance are critical for search engines to provide an effec-
tive search experience to their users.

Typically, search engines use stemming to reduce inflected words to their
stem, i.e., the portion of the original word that remains after affixes removal [2].
For instance, the word “connect” is the stem of the words “connected”, “con-
necting”, “connection” and “connections”. Stemming document corpus reduces
the vocabulary size and hence, the time to process queries. In addition, query
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 210–221, 2015.
DOI: 10.1007/978-3-319-23826-5 21
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reformulation by stemming increases the match between the query and relevant
documents in the corpus, ultimately improving the recall. Due to the increasing
size of the Web and the increasing query traffic on search engines, a particularly
challenging information retrieval problem is the development of effective stem-
ming approaches. For Portuguese stemming, the RSLP [7] is an effective algo-
rithm widely used in commercial and open source search engines. For instance,
Lucene1 uses the RSLP list-based approach for suffix stripping.

In this article, we propose two suffix stripping approaches for Portuguese
stemming, the hash-based and the automata-based approaches. Additionally,
we assess their efficiency by contrasting them with the state-of-the-art list-based
approach [7]. In particular, the list-based approach compares word suffixes to a
well defined list of suffix rules, iteratively reducing the word. At the end, the
reduction performed by the last rule in the list produces the stem. However,
usually only a few suffix rules need to be processed to reduce a word. From this
observation, we propose the hash-based approach, which breaks the single big
list of suffix rules in small ones, deciding which list should be processed based on
the word suffixes, thus reducing the number of suffix rules to check. In addition,
we also propose the automata-based approach which uses a deterministic finite
automata (DFA) to iteratively check word suffixes to decide when to perform a
reduction or not, avoiding unnecessary suffix rules checking.

Complexity analysis shows that the time complexity is constant for the
automata-based approach, sub-linear for the hash-based approach, and linear
for the list-based approach, considering the number of suffix rules to process.
Additionally, the space complexity is constant for the automata-based approach
and linear for the hash-based and list-based approaches. However, in addition
to store the list of suffix rules, the hash-based approach stores a hash table to
distribute the suffix rules of the list by word suffixes, thus consuming more space
than the list-based approach.

Experiments using two datasets attest the efficiency of our approaches. The
hash-based and the automata-based approaches outperform the list-based app-
roach baseline with reduction of up to 65.28% and 86.48% in stemming time,
respectively. The key contributions of this article can be summarised as follows:

– We propose two suffix stripping approaches for Portuguese stemming. The
proposed approaches are simple and can be adapted to handle other lan-
guages, such as English and Spanish.

– We provide complexity analysis for the list-based approach baseline and
our approaches, highlighting the differences in space and time complexity
between them;

– We thoroughly evaluate our approaches contrasting them with the state-of-
the-art baseline from literature [7].

The remainder of this article is organised as follows: Section 2 reviews the
related literature on stemming algorithms. Section 3 describes our suffix strip-
ping approaches for Portuguese stemming, as well as the baseline, presenting

1 http://lucene.apache.org.

http://lucene.apache.org
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their complexity analysis. Section 4 describes the setup and results of the exper-
imental evaluation of our approaches. Finally, Section 5 provides a summary
of the contributions and the conclusions made throughout the other sections,
presenting directions for future research.

2 Related Work

Stemming algorithms use four strategies to produce the stem for a word: table
lookup, successor variety, n-grams, and affix removal [2]. The table lookup strat-
egy performs a simple lookup of the word in a table to retrieve its stem. Despite
simple, this strategy is strongly dependent on the language vocabulary. The
sucessor variety is a complex strategy, which identifies morpheme boundaries
within the language organization to produce the stem. The n-grams strategy
is more a word clustering procedure than a stemming strategy, since it simply
identifies bigrams and trigrams in the text. The affix removal strategy removes
or replaces affixes of the word, following well defined affix rules for the language.
In particular, the affix removal strategy is simple, intuitive, effective, and less
dependent on the language vocabulary. Mostly, it includes suffix stripping.

For Portuguese, there are three suffix stripping algorithms reported in liter-
ature, an adapted version of the Porter stemmer for the English language [8],
and two others specifically designed for the Portuguese language: the RSLP [7],
and the STEMBR [1]. The Portuguese Porter stemmer is a translation of the
English version for Portuguese, resulting in the absence of key reductions, such
as feminine and degree. The STEMBR algorithm processes a set of rules for
suffix removal in a specific order, defined from statistical analysis on a corpus of
documents, with a balanced word distribution for a language. The performance
of the algorithm depends on the quality of the corpus.

The RSLP was the first suffix stripping algorithm for Portuguese stemming.
It processes a set of well defined suffix rules using an exception list to address
language irregularities, ultimately providing an effective word reduction [6]. Dif-
ferent from STEMBR, the RSLP algorithm does not need to define an order to
process the suffix rules from a corpus of documents. In addition, its set of suffix
rules includes feminine and degree reduction. Thus, given the effectiveness and
simplicity of the RSLP algorithm, the suffix stripping approaches we investigate
in this article are based on it. The complexity analysis of the RSLP algorithm [3]
shows that the time complexity, in the worst case, can be expressed by

n ∗ W ∗
R∑

i=1

(Si ∗ Ei) (1)

where n is the number of processed words, W is the size, in characters, of the
longest word, R is the number of suffix rules, Si is the size, in characters, of the
suffix rule i, and Ei is the size of the exceptions list of i. Considering that lookups
in the exceptions list are performed in constant time, the time complexity to
reduce a word j can be expressed by:
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Wj ∗
R∑

i=1

Si (2)

From the Equation 2, we observe that the number of suffix rules that should
be compared to the word suffix to perform reductions, in the worst case, is R,
i.e., all the suffix rules should be compared to conclude that no reduction should
be performed. In this case, the complexity is O(WjR), or simply O(Wj), if we
consider R constant. The point is that the value of R significantly impacts in
time, since the greater the R, the greater the number of comparisons between
characters in the suffix rules and word suffix must be performed. From this
observation, in the next section we present three different approaches to perform
suffix stripping, one corresponding to the list-based approach [3], and the other
two corresponding to our proposed approaches, which improve the efficiency by
reducing the amount of processed rules, i.e., the value of R.

3 Suffix Stripping Approaches

The RSLP algorithm is composed by eight steps, of which six are word reductions
based on suffix stripping, i.e., removing or replacing a piece of the word, the
suffix. Figure 1 presents the steps of the RSLP stemming algorithm.

Fig. 1. The steps of the RSLP stemming algorithm for Portuguese

From Figure 1, we observe that suffix stripping are performed from step 1 to 6.
The challenge in suffix stripping is not only to decide performing word reductions,
but mostly avoid unnecessary decisions. In particular, reducing decisions are
made by comparing word suffixes to suffix rules, where each rule is represented
as a tuple composed by: i) the suffix to be replaced or removed from the word;
ii) the minimum size of the word to perform the reduction; iii) the new suffix
in case of replacement, or empty in case of removal, and; iv) the exceptions list,
i.e., the list of words that should supposed be reduced by the rule, but should
not be reduced.
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Sometimes, there are more than one suffix rule for the same reduction. This
occurs when one suffix is contained in another, e.g., for plural reduction in the
word “mares”, the suffix “s” is contained in the suffix “es”. In this case, the suffix
stripping approach should perform only the reduction related to the longest
suffix [7]. Considering the aforementioned example, only the “es” suffix should
be removed from the word, reducing it from “mares” to “mar”.

3.1 The List-Based Approach

The list-based approach provides a single list of suffix rules to iteratively compare
suffixes, one by one, to the word suffix and decides reducing the word or not.
Figure 2 presents an example of a list of suffix rules for Portuguese. The complete
list of suffix rules is presented by Orengo and Huyck [7].

Fig. 2. Example of a list of suffix rules for Portuguese

For each suffix rule in the list, the list-based approach first checks if the suffix
of the rule matches the word suffix. Second, it checks if the word is not in the
exceptions list of the suffix rule. Third, it checks if the size of the resulting word
is larger than or equal the minimum word size stated in suffix rule. Finally, it
performs the word reduction, removing the word suffix or replacing it by the
new suffix in the rule.

3.2 The Hash-Based Approach

The hash-based approach provides a hash table, where each hash entry is com-
posed by a character key, and a pointer to a list of suffix rules. Figure 3 presents
an example of a hash table with hash entries pointing to lists of suffix rules.

Fig. 3. Example of the data structure for the hash-based approach

From the word to be reduced, the hash-based approach takes the last char-
acter to lookup the hash table and, in case of a negative lookup no reduction
is performed. In case of a positive lookup, the list of suffix rules pointed by the
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hash entry is recovered, and the approach iteratively compares the suffix rules,
one by one, to the suffix of the remaining part of the word, i.e., the original word
without the last character. The suffix rules comparisons performs likewise the
list-based approach.

For example, considering to reduce the word “linguiç” using the hash table
from Figure 3, there is a positive lookup for the last character “ç” of the word
in the hash table. In this case, the list of suffix rules pointed to the hash entry
“ç” is checked. For the first suffix rule, the suffix “alizaç” does not match the
suffix of “linguiç”, as well as for the second suffix rule. However, for the third
suffix rule, “iç” matches the suffix of “linguiç” and, as “linguiç” is not in the
exceptions list of the rule and its size is larger than 3, the reduction is performed,
reducing “linguiç” to “lingu”.

Different from the list-based approach which performs comparisons using all
suffix rules, the hash-based approach only performs comparisons using a short list
of suffix rules. However, for plural, feminine and degree reductions in Portuguese,
the hash-based approach performs likewise the list-based approach, since the
hash key entries are composed by only one character, i.e., “s” for plural, “a”
for feminine, and “o” for degree. Thus the hash table has only one hash entry
pointing to the same list of suffix rules of the list-based approach.

3.3 The Automata-Based Approach

Different from list-based and hash-based approaches that use lists of suffix rules
and perform a significantly number of comparisons between rules and word suf-
fixes, the automata-based approach uses a deterministic finite automata (DFA)
to reduce the number of comparisons to the minimum. Figure 4 presents an
example of a DFA used in noun reductions for words ending in “ç”.

3 4z

8

5 6l 7

1 2ç

a

i

$
i

$
a

Fig. 4. Example of a DFA used by the automata-based approach

Note that, both word and suffix processing are performed backwards, so we
must read the DFA starting by one of the accepting states (states 3, 5, 7 or 8 in
Figure 4) and walk until the first state. For instance, if we start in the fifth state
and walk until the first state we have the suffix “izaç”. In the DFA, it is possible
to check if there is a suffix inside another one just checking if an accepting state
has a transition to another state. Different from the list-based and hash-based
approaches, where suffix rules with larger suffixes must be checked first to avoid
wrong reductions, in the automata-based approach the rules with the shorter
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suffix are checked first. Particularly, we use backtracking to insure the reduction
by the longest possible suffix in a way that, if it is impossible to perform the
transition for another state just reading a valid character, and there is a state
which accepts part of the processed word, a transition to such accepting state
is performed. For instance, consider the suffix “aç” (third state), where a suffix
satisfying one rule was already found, but it is possible to perform a transition
to another state with the character “z”, i.e., an attempt to reduce with a longer
suffix rule. If the transition to the third state is performed and it is impossible
to reach the fourth state, by the backtracking condition, the transition to the
third state is performed with the immediate accepting order, so there is no need
to perform any character processing. Such accepting order is represented in the
DFA with the symbol $ on transitions.

For performance, we consider that there is no need of the transition for the
accepting state when there is no backtracking condition for it, e.g., states 7 and 8
in the Figure 4, making possible to perform the reduction at the state that checks
the possible transition. So, the state 2 can perform the reduction right after it
checks if a transition to state 8 is possible. Thus, we reduce the number of states
in the DFA. In addition, we remove the $ transitions, performing rules checking
in the states which performs the backtracking. For instance, rules checking can
be performed at the states 4 and 6 in Figure 4, reducing the number of DFA
transitions. Note that, the automata-based approach performs better when the
difference between the size of the suffix rule and the word suffix is larger, resulting
in a DFA with few possible state transitions.

3.4 Complexity Analysis

In this section, we present the complexity analysis for the list-based, hash-based
and automata-based approaches. In particular, we present the worst case for
each approach in terms of space and time. For time complexity, we consider the
number of suffix rules that must be processed to reduce (or not) a word, i.e., R in
Equation 2. For space complexity, we consider the memory required to store the
data structure, i.e., the suffix rules and the hash entries. Orengo and Huyck [7]
present the suffix rules used for Portuguese stemming.

The list-based approach compares n suffix rules, one by one, to the word
suffix to decide whether a reduction should be performed. The worst case occurs
when no reduction is performed and all the suffix rules are compared to the
word suffix. Thus, the time complexity is linear. Moreover, the largest value of
n occurs in the verb reduction, where n = 89.

The hash-based approach compares m � n suffix rules, one by one, to the
word suffix to decide whether a reduction should be performed. Particularly, the
last character of the word is used to lookup the suitable hash entry pointing to
the list of suffix rules to be compared.The worst case occurs when the hash entry
points to the longest list of rules, comparing the term with all rules of this list.
Thus, the time complexity is sub-linear. The largest value of m occurs in the
verb reduction, where the hash entry for words ending in “o” has m = 25 rules.



Assessing the Efficiency of Suffix Stripping Approaches 217

The automata-based approach uses DFA to process the word backwards, and
after each character comparison, the suitable reduction is performed by process-
ing a very small number of suffix rules. The worst case occurs by checking the
biggest path of the automata to compare m = 4 suffix rules for verb reduction.
Thus, the time complexity is nearly constant.

The three approaches load all the n suffix rules into memory to use them
when necessary, so the space complexity is linear for them. However, while the
list-based approach requires space to store n suffix rules in memory, the hash-
based approach requires an extra space to store the hash structure, i.e., the entry
key and a pointer to the list of rules, and the automata-based approach stores
the suffix rules as part of the source code.

4 Experiments

To validate our suffix stripping approaches, we contrast them with a state-of-
the-art baseline on two different datasets. Particularly, in this section we answer
the following research questions:

1. How efficient are the proposed approaches for suffix stripping?
2. How the proposed approaches perform in each step of suffix stripping?

4.1 Experimental Setup

To assess the efficiency of our suffix stripping approaches, we use the RSLP and
WBR99 datasets. The RSLP dataset has been used to validate the effectiveness
of Portuguese stemming algorithms [7]. It provides 198 Portuguese words into five
categories: noun, verb, plural, feminine, degree (augmentative and diminutive).
Table 1 presents the words distribution and the average word size (number of
characters) by category in the RSLP dataset. The last column of the Table 1
shows the total number of words and the average word size for the entire dataset.

The WBR992 is a standard dataset used in information retrieval [9,10].
Indeed, it comprises different collections with almost 6 millions Web pages,
crawled from the Brazilian Web (the .br domain). In our experiments, we use
six different collections from the WBR99, with a vocabulary of more than 206
millions words, excluding numbers and large strings (more than 50 characters).
Table 2 presents the number of words and the average word size by collection.
The last row in Table 2 shows the total of words and the mean average word
size.

Table 1. Words distribution and average sizes by category in the RSLP dataset

Noun Verb Plural Feminine Degree ALL

# of words 64 90 11 15 18 198

Avg. size 4.22 3.55 2.64 3.00 4.94 3.67

2 Available at http://www.linguateca.pt/Repositorio/WBR-99.

http://www.linguateca.pt/Repositorio/WBR- 99
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Table 2. Words distribution and average sizes by WBR99 collection

Collection # of words Avg. word size

AmostRA-NILC 103,874 7.71

CETEMPúblico 201,658,990 9.23

Museu da Pessoa 1,518,881 8.06

ReLi 160,481 7.67

Tycho Brahe 471,504 7.53

Vercial 2,894,625 8.00

ALL 206,808,355 8.03

We contrast the efficiency of our hash-based approach (RSLP-HBA),
described in Section 3.2, and automata-based approach (RSLP-ABA), described
in Section 3.3, with the state-of-the-art list-based approach baseline (RSLP-
LBA), described in Section 3.1. We report efficiency in terms of stemming time,
i.e., the average elapsed time in microseconds (µs) for stemming a word, ignoring
the time to load the suffix rules and hash entries in memory. The experimen-
tal results are averages on 10 trials and significance is verified with a two-tailed
paired t-test [5], with the symbol � (�) denoting a significant increase (decrease)
at the p < 0.01 level, and the symbol • denoting no significant difference.

The experiments were carried out on a computer running a Linux kernel
version 3.16, with a 64-bit Intel Core i3 2.13 GHz processor, 3 GB of main
memory and one SATA II disk of 320 GB. The approaches were implemented
using the C++ language.

4.2 Experimental Results

In this section, we present the results of the experiments we have carried out
to evaluate our suffix stripping approaches. In particular, we address the two
research questions stated previously, contrasting the efficiency of our approaches
with the baseline.

Overall Performance. In this section, we address our first research question,
by assessing the overall efficiency of our approaches on WBR99 collections. To
this end, Table 3 shows the efficiency, in terms of stemming time, of each pro-
posed approach and the baseline. Particularly, the percentage improvement com-
pared to the baseline is shown. In addition, a first significance symbol denotes
whether the improvements are statistically significant. For the RSLP-ABA, a
second such symbol denotes significance with respect to RSLP-HBA. The best
value in each column is highlighted in bold.

From Table 3, we observe that the RSLP-ABA significantly improves upon
the RSLP-HBA and the RSLP-LBA baseline in all collections. In particular, the
gains are up to 86.48%. Additionally, we also observe that RSLP-HBA outper-
forms the baseline in all collections with gains of up to 65.28%. Recalling our
first research question, these observations attest the efficiency of our approaches
for suffix stripping.
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Table 3. Stemming time (µs) for suffix stripping on WBR99 collections

Collection RSLP-LBA RSLP-HBA RSLP-ABA

AmostRA-NILC 1.37346 0.57674 (58.00%) � 0.20779 (84.87%) ��
CETEMPúblico 0.03657 0.01338 (63.41%) � 0.00504 (86.21%) ��
Museu da Pessoa 0.23419 0.09632 (58.87%) � 0.03729 (84.07%) ��
ReLi 0.75644 0.31680 (58.11%) � 0.12272 (83.77%) ��
Tycho Brahe 0.53799 0.19651 (63.47%) � 0.07759 (85.57%) ��
Vercial 0.18901 0.06561 (65.28%) � 0.02555 (86.48%) ��
All 0.52128 0.21090 (59.54%) � 0.07933 (84.78%) ��

Performance by Category. In this section, we address our second research
question, by assessing the efficiency of our approaches in different categories:
noun, verb, plural, feminine, and degree. The aforementioned categories are the
same categories in the RSLP dataset presented in Section 4.1, and also corre-
sponds to the suffix stripping steps described in Section 3, except for the step 4,
which is not considered, since the adverb reduction has only one suffix rule.

To this end, Table 4 shows the efficiency by category, in terms of stemming
time, of each proposed approach and the baseline. Particularly, the percentage
improvement compared to the baseline is shown. In addition, a first significance
symbol denotes whether the improvements are statistically significant. For the
RSLP-ABA, a second such symbol denotes significance with respect to RSLP-
HBA. The best value in each column is highlighted in bold.

Table 4. Stemming time (µs) for suffix stripping by category on the RSLP dataset

Category (Step) RSLP-LBA RSLP-HBA RSLP-ABA

Noun 2.20733 1.07529 (51.28%) � 0.46008 (79.15%) ��
Verb 3.63152 1.54178 (57.54%) � 0.68953 (81.01%) ��
Plural 0.16546 0.16546 (00.00%) • 0.21505 (-29.97%) ��
Feminine 0.28770 0.28770 (00.00%) • 0.20967 (27.12%) ��
Degree 0.22786 0.22786 (00.00%) • 0.18010 (19.64%) ��

From Table 4, we observe that for all categories, except plural, the RSLP-
ABA significantly improves upon the RSLP-HBA and the RSLP-LBA baseline.
In particular, the gains are up to 81.01%. Additionally, we also observe that
RSLP-HBA outperforms the baseline for noun and verb with gains of up to
57.54%. Note that, for plural, feminine and degree, the RSLP-LBA and RSLP-
HBA performs equally, since the suffix used to distribute suffix rules by hash
entries, for each one of these categories, are composed by only one character,
i.e., “s” for plural, “a” for feminine, and “o” for degree. Thus the hash table has
only one hash entry pointing to the same list of suffix rules of the RSLP-LBA.

As mentioned is Section 3.3, the RSLP-ABA performs better when the dif-
ference between the size of the suffix rule and the word suffix is larger, resulting
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in a DFA with few possibilities of state transitions. From Table 4, we observe
that RSLP-ABA presents greater gains for noun and verb than for feminine and
degree. This performance gap occurs because for noun and verb, the difference
between the size of the suffix rule and the word suffix is larger than for feminine
and degree. Moreover, for plural, where the suffix rule and the word suffix have
the same size, the RSLP-ABA uses a compact DFA with several possibilities of
state transitions, resulting on the only case reported in Table 4 in which RSLP-
LBA outperforms RSLP-ABA. Note that, plural reduction occurs in 10.60% of
the total amount of reductions performed in our experiments. In summary, the
RSLP-ABA outperforms the RSLP-LBA baseline for all categories, except plu-
ral. In addition, RSLP-HBA outperforms the RSLP-LBA baseline for noun and
verb and presents the same performance for plural, feminine and degree. Recall-
ing our second research question, these observations attest the efficiency of our
approaches in each step of suffix stripping.

5 Conclusion

In this article we introduce two novel suffix stripping approaches for Portuguese
stemming, the hash-based and the automata-based approaches. We also assess
the efficiency of these approaches contrasting them with a state-of-the-art base-
line from the literature, the list-based approach. Particularly, the list-based and
hash-based approaches iteratively process lists of suffix rules to reduce a word
to a stem. However, the list-based approach uses a single list of suffix rules while
the hash-based approach uses multiple lists of rules grouped by word suffixes
of the language. Different from the other two approaches, the automata-based
approach uses a DFA to iteratively compare suffix characters to decide when
to perform (or not) a reduction, avoiding unnecessary suffix rules processing,
frequent in the other two approaches.

The proposed approaches are simple, effective and can be adapted to work
with different languages, such as English and Spanish. In addition, the com-
plexity analysis shows that the list-based approach presents linear complexity
both in space and time on the number of suffix rules to process, while the hash-
based approach presents linear complexity in space and sub-linear complexity in
time, and the automata-based approach presents linear complexity in space and
constant complexity in time. Moreover, we thoroughly evaluated the approaches
using the RSLP and WBR99 datasets. The results of this evaluation attest the
efficiency of the automata-based approach, with gains of up to 86.48% in stem-
ming time over the baseline. By breaking down our analysis by categories, we
demonstrated the robustness of the automata-based approach to perform reduc-
tions on noun, verb, feminine and degree words, with gains of up to 81.01% in
stemming time.

For future work, we plan to deploy and assess the efficiency of a distributed
version of the proposed approaches. Another plan is to adapt the proposed
approaches to work with other languages.
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Abstract. Detecting all the strings that occur in a text more frequently
or less frequently than expected according to an IID or a Markov model
is a basic problem in string mining, yet current algorithms are based on
data structures that are either space-inefficient or incur large slowdowns,
and current implementations cannot scale to genomes or metagenomes
in practice. In this paper we engineer an algorithm based on the suffix
tree of a string to use just a small data structure built on the Burrows-
Wheeler transform, and a stack of O(σ2 log2 n) bits, where n is the length
of the string and σ is the size of the alphabet. The size of the stack is
o(n) except for very large values of σ. We further improve the algorithm
by removing its time dependency on σ, by reporting only a subset of the
maximal repeats and of the minimal rare words of the string, and by
detecting and scoring candidate under-represented strings that do not
occur in the string. Our algorithms are practical and work directly on
the BWT, thus they can be immediately applied to a number of existing
datasets that are available in this form, returning this string mining
problem to a manageable scale.

1 Introduction

Detecting all the patterns of a string whose number of occurrences matches some
notion of statistical surprise is a fundamental requirement of the post-genome
era, in which textual datasets grow faster than the ability to understand them,
and in which over- and under-representation with respect to a statistical model
is often an indicator of structure or function. The sheer volume of the available
datasets makes even simple models of patterns and simple measures of statistical
surprise useful in practice, if their detection scales to extremely long strings
in reasonable time and space. In this paper we focus on the simplest possible
model of a pattern – a string W , of any length, that occurs without mismatches
fT (W ) times in a text T of length n – and we consider measures of statistical
surprise that score W according to the expected number E[fT (W )] and to the
variance V[fT (W )] of the number of its occurrences in a random text of length |T |
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(see e.g. [1] and references therein). We assume that the random source is a given
Markov chain, and for concreteness we set its order to zero, since this simple case
already captures the computational structure of the problem [2]. Moreover, we
focus on computing V[fT (W )], since computing expectations with respect to a
Markov chain of order zero is trivial (see e.g. [3]).

V[fT (W )] enjoys the remarkable property that its computation can be carried
out by iterating over all the proper borders of W , i.e. over all the nonempty
substrings of W shorter than W that are at the same time prefix and suffix of
W : see [3] for a detailed derivation. To make the paper self-contained, here we
just recall that V[fT (W )] can be computed in constant time from the functions
φ(W ) and γ(W ) defined below:

φ(W ) =
∑

b∈B(W )

(n − 2|W | + b + 1) · π(W [b..|W | − 1])

γ(W ) =
∑

b∈B(W )

π(W [b..|W | − 1])

where strings are indexed from zero, π(W ) =
∏|W |−1

i=0 P[Wi], Wi is the ith char-
acter of string W , P[c] is the probability of character c according to the given
zero-order Markov chain, and B(W ) is the set of all border lengths of W . Remov-
ing the components of V[fT (W )] that depend on borders can cause large relative
errors in practice [2], so we focus on the exact computation of V[fT (W )]. It is
well known that borders have a recursive structure, in the sense that the set
of borders of W consists of the longest border V of W , and of all the borders
of V . This observation enables one to map the computation of V[fT (W )] for a
given W onto the Morris-Pratt algorithm [17], thus achieving time O(|W |) in
the worst case [3]. Specifically:

φ(W ) = δ(W ) · (
φ(B) − 2(|W | − |B|)γ(B) + n − 2|W | + |B| + 1

)

γ(W ) = δ(W ) · (
1 + γ(B)

)

where B is the longest border of W , and δ(W ) = π(W [|B|..|W | − 1]). In prac-
tice, however, we are interested in extracting from a string T all its substrings
W , of any length, such that a user-specified measure of surprise computed on
E[fT (W )] and V[fT (W )] is, say, greater than a threshold. Even though comput-
ing V[fT (W )] takes O(|W |) time for a given W , enumerating and scoring in this
way all substrings of a text T of length n takes O(n2) time.

Luckily, a number of statistical scores z(W ) enjoy the additional property
that z(XWY ) ≥ z(W ) if fT (XWY ) = fT (W ), where X and Y are strings [1].
Consider then a set A of substrings of T such that all substrings in the set have
the same number of occurrences, and consider the partial order � on A such that
V � W iff W = XV Y for (possibly empty) strings X and Y . If we display to the
user just the maximal elements of A with respect to �, we guarantee that every
over-represented string W ∈ A that we do not output is a substring of a string
XWY ∈ A in the output which has at least the same score. Symmetrically, if
we display just the minimal elements of A with respect to �, we guarantee that
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every under-represented string XWY ∈ A that we do not output is a superstring
of a string W ∈ A in the output which has at most the same score. A possible
choice for A is the set of all substrings that start at exactly the same positions
in T : this class has a unique maximal element, which corresponds to a node of
the suffix tree of T , and a unique minimal element, which corresponds to the
right extension by a single character of a node of the suffix tree of T . Since the
number of all such classes is O(|T |), and since all such classes are connected to
one another by a trie, known as the suffix-link tree, it is possible to devise an
algorithm that computes V[fT (W )] for all the maximal and minimal elements
of all such classes, in a total amount of time that grows linearly in |T | [2].

In this paper we engineer the algorithm described in [2] to use as its sub-
strate the Burrows-Wheeler transform of T , rather than space-inefficient data
structures like the (truncated) suffix tree of T , or space-efficient simulations of
the suffix tree with O(logε n) slowdown, like compressed suffix trees (see e.g. [11]
and references therein). We also observe that the time complexity of the algo-
rithm described in [2] depends on the cardinality of the alphabet, and we remove
this dependency. Moreover, we adapt the algorithm to work on the smallest pos-
sible set of equivalence classes, thus reducing time and output size in practice.
Assuming an alphabet of size σ ∈ o(

√
n/ log n), we can thus perform all the com-

putations described in [2] in O(n) time and in o(n + λ
√

n) bits of space, given
the BWT of T and few additional data structures [7], where λ is the length of a
longest repeat of T . For statistical reasons, the maximum length of a string to be
reported is often O(logσ n), thus our algorithm uses effectively o(n) bits of space
in addition to the input. Concatenating this setup to the BWT construction
algorithm described in [5], we can discover all the over- and under-represented
substrings of T , directly from T itself, in randomized O(n) time and in O(n log σ)
bits of space in addition to T itself. Finally, we extend the algorithm in [2] to
consider potentially under-represented strings that do not occur in T , thus pro-
viding for the first time a way to score and rank the minimal absent words
of T .

2 Preliminaries

2.1 Strings

Let Σ = [1..σ] be an integer alphabet, let # = 0 be a separator not in Σ, let
T = [1..σ]n−1# be a string, and let ε be the empty string. For reasons that
will become clear in Section 2.2, we assume σ ∈ o(

√
n/ log n) throughout the

paper. We denote by fT (W ) the number of (possibly overlapping) occurrences
of a string W in the circular version of T . A repeat W is a string that satisfies
fT (W ) > 1. We denote by Σ�

T (W ) the set of characters {a ∈ [0..σ] : fT (aW ) > 0}
and by Σr

T (W ) the set of characters {b ∈ [0..σ] : fT (Wb) > 0}. A repeat W
is right-maximal (respectively, left-maximal) iff |Σr

T (W )| > 1 (respectively, iff
|Σ�

T (W )| > 1). It is well known that T can have at most n − 1 right-maximal
substrings and at most n − 1 left-maximal substrings. A maximal repeat of T is
a repeat that is both left- and right-maximal. Clearly a maximal repeat W of
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T satisfies fT (aW ) < fT (W ) and fT (Wb) < fT (W ) for any characters a and
b in Σ. A repeat is supermaximal if it is not a proper substring of any other
repeat. A minimal rare word of T is a string W that satisfies fT (W ) < fT (V )
for every proper substring V of W . Clearly W must have the form aXb, where
a and b are characters and X is a maximal repeat of T . If fT (W ) > 0, then aX
is a right-maximal substring of T and Xb is a left-maximal substring of T . If
fT (W ) = 0, then aX (respectively, Xb) must occur in T , but it is not necessarily
right-maximal (respectively, left-maximal). A minimal rare word of T that does
not occur in T is called minimal absent word (see e.g. [8,12] and references
therein): the total number of such strings can be Θ(σn) [9]. A minimal rare
word of T that occurs exactly once in T is called minimal unique substring (see
e.g. [14] and references therein). It is clear that the total number of minimal rare
words of T that occur at least once in T is O(n).

String V �= ε is a proper border of string W if W = V X and W = Y V for
nonempty strings X and Y . A string W can have zero, one, or multiple proper
borders: we denote by bord(W ) the length of the longest border of W . Each
border of W is followed by a character when it occurs as a prefix, and it is
preceded by a character when it occurs as a suffix: we use a|W to denote the
length of the longest border of W that is preceded by character a when it occurs
as a suffix, and we use W |a to denote the length of the longest border of W that is
followed by character a when it occurs as a prefix. Clearly both a|W and W |a can
be zero. We denote by B(W ) the set of lengths of all borders of W , by Br(W ) the
set of pairs {(a, a|W ) : a ∈ σ, a|W �= 0}, and by B�(W ) the set of pairs {(a,W |a) :
a ∈ σ,W |a �= 0}. It is well known that B(W ) = {bord(W )} ∪ B(V ), where V is
the longest border of W : see e.g. [10] and references therein. In this paper we will
also use leftW to denote an array of size |Σr

T (W )|, indexed by the characters in
Σr

T (W ) in lexicographic order, such that leftW [c] = W |c. Similarly, we will use
rightW to denote an array of size |Σ�

T (W )|, indexed by the characters in Σ�
T (W )

in lexicographic order, such that rightW [c] = c|W . Set B(W ) determines all
possible ways in which W can overlap with itself: specifically, the maximum
possible number of occurrences of W in a string of length n is f∗(W,n) =
�(n − |W | + 1)/period(W )	, where period(W ) = |W | − bord(W ). When fT (W )
needs to be compared to fT ′(W ), where |T ′| �= |T |, it is customary to divide
fT (W ) by f∗(W, |T |). It is easy to see that the longest border of a random
string of length n generated by an IID source is expected to tend to a constant
as n tends to infinity.

For reasons of space we assume the reader to be familiar with the notion of
suffix tree STT of a string T , which we do not define here. We denote by �(v)
the string label of a node v in a suffix tree. It is well known that a substring
W of T is right-maximal iff W = �(v) for some internal node v of STT . We
assume the reader to be familiar with the notion of suffix link connecting a node
v with �(v) = aW for some a ∈ [0..σ] to a node w with �(w) = W : we say
that w = suffixLink(v) in this case. Here we just recall that suffix links and
internal nodes of STT form a tree, called the suffix-link tree of T and denoted
by SLTT , and that inverting the direction of all suffix links yields the so-called
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explicit Weiner links. Given an internal node v and a symbol a ∈ [0..σ], it might
happen that string a�(v) does occur in T , but that it is not right-maximal, i.e.
it is not the label of any internal node of STT : all such left extensions of internal
nodes that end in the middle of an edge are called implicit Weiner links. An
internal node v of STT can have more than one outgoing Weiner link, and all
such Weiner links have distinct labels: in this case, �(v) is a maximal repeat. It is
known that the number of suffix links (or, equivalently, of explicit Weiner links)
is upper-bounded by 2n − 2, and that the number of implicit Weiner links can
be upper-bounded by 2n − 2 as well.

If V is a nonempty proper border of W , then Σ�
T (W ) ⊆ Σ�

T (V ) and Σr
T (W ) ⊆

Σr
T (V ). Thus, if W is right-maximal (respectively, left-maximal) then V is right-

maximal (respectively, left-maximal); if W is a maximal repeat, then V is a
maximal repeat; and if W = aX where a ∈ Σ and X is a maximal repeat, then
V = aY where Y is a maximal repeat1.

2.2 Enumerating Maximal Repeats and Minimal Rare Words

For reasons of space we assume the reader to be familiar with the notion and
uses of the Burrows-Wheeler transform of T , including the C array, the rank
function, and backward searching. In this paper we use BWTT to denote the
BWT of T , we use range(W ) = [sp(W )..ep(W )] to denote the lexicographic
interval of a string W in a BWT that is implicit from the context, and we use
Σi,j to denote the set of distinct characters that occur inside interval [i..j] of a
string that is implicit from the context. We also denote by rangeDistinct(i, j)
the function that returns the set of tuples {(c, rank(c, pc), rank(c, qc)) : c ∈ Σi,j},
in any order, where pc and qc are the first and the last occurrence of character
c inside interval [i..j], respectively. Here we focus on a specific application of
BWTT : enumerating all the right-maximal substrings of T , or equivalently all
the internal nodes of STT . In particular, we use the algorithm described in [5]
(Section 4.1), which we sketch here for completeness.

Given a substring W of T , let b1 < b2 < · · · < bk be the sorted sequence of
all the distinct characters in Σr

T (W ), and let a1, a2, . . . , ah be the sequence of
all the characters in Σ�

T (W ), not necessarily sorted. Assume that we represent
a substring W of T as a pair repr(W ) = (chars[1..k], first[1..k + 1]), where
chars[i] = bi, range(Wbi) = [first[i]..first[i+1]−1] for i ∈ [1..k], and function
range() refers to BWTT . Note that range(W ) = [first[1]..first[k + 1] − 1],
since it coincides with the concatenation of the intervals of the right exten-
sions of W in lexicographic order. If W is not right-maximal, array chars in
repr(W ) has length one. Given a data structure that supports rangeDistinct
queries on BWTT , and given the C array of T , there is an algorithm that con-
verts repr(W ) into the sequence a1, . . . , ah and into the corresponding sequence
1 Thus, maximal repeats connected by longest border relationships form a tree rooted

at the empty string: the path from the root to a maximal repeat lists all its bor-
ders, and the internal nodes of this tree cannot be supermaximal repeats. Similarly,
longest border relationships and strings aW (respectively, Wa) where W is a maxi-
mal repeat, form a tree rooted at the empty string.
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repr(a1W ), . . . , repr(ahW ), in O(de) time and O(σ2 log n) bits of space in
addition to the input and the output [5], where d is the time taken by the
rangeDistinct operation per element in its output, and e is the number of dis-
tinct strings aiWbj that occur in the circular version of T , where i ∈ [1..h] and
j ∈ [1..k]. We encapsulate this algorithm into a function that we call extendLeft.

If aiW is right-maximal, i.e. if array chars in repr(aiW ) has length greater
than one, we push pair (repr(aiW ), |W |+1) onto a stack S. In the next iteration
we pop the representation of a string from the stack and we repeat the process,
until the stack becomes empty. This process is equivalent to following all the
explicit Weiner links from the node v of STT with �(v) = W , not necessarily in
lexicographic order. Thus, running the algorithm from a stack initialized with
repr(ε) is equivalent to performing a depth-first preorder traversal of the suffix-
link tree of T (but with an arbitrary exploration order on the children of each
node), which guarantees to enumerate all the right-maximal substrings of T .
Every operation performed by the algorithm can be charged to a distinct node
or Weiner link of STT , thus the algorithm runs in O(nd) time. We keep the
depth of the stack to O(log n) rather than to O(n) by using the folklore trick of
pushing at every iteration the pair (repr(aiW ), |aiW |) with largest range(aiW )
first (see e.g. [13]). Every suffix-link tree level in the stack contains at most σ
pairs, and each pair takes at most σ log n bits of space, thus the total space
used by the stack is O(σ2 log2 n) bits. The following theorem follows from our
assumption that σ ∈ o(

√
n/ log n):

Theorem 1 ([5]). Let T ∈ [1..σ]n−1# be a string. Given a data structure
that supports rangeDistinct queries on BWTT , we can enumerate all the
right-maximal substrings W of T , and for each of them we can return |W |,
repr(W ), the sequence a1, a2, . . . , ah of all characters in Σ�

T (W ) (not necessar-
ily sorted), and the sequence repr(a1W ), . . . , repr(ahW ), in O(nd) time and in
O(σ2 log2 n) = o(n) bits of space in addition to the input and the output, where
d is the time taken by the rangeDistinct operation per element in its output.

Theorem 1 does not specify the order in which the right-maximal substrings
must be enumerated, nor the order in which the left extensions of a right-maximal
substring must be returned. The algorithm we just described can be adapted to
return all the maximal repeats of T , within the same bounds, by outputting
a right-maximal string W iff |rangeDistinct(sp(W ), ep(W ))| > 1. Computing
the minimal rare words that occur in T is also easy:

Lemma 1. Let T ∈ [1..σ]n−1# be a string. Given a data structure that supports
rangeDistinct queries on BWTT , we can enumerate all the minimal rare words
W of T that occur at least once in T , and for each of them we can return |W | and
range(W ), in O(nd) time and in O(σ2 log2 n) = o(n) bits of space in addition
to the input and the output, where d is the time taken by the rangeDistinct
operation per element in its output.

Proof. We use a technique similar to the one described in [6]. Specifically, we
adapt Theorem 1 to iterate over all maximal repeats of T , and we allocate a
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temporary array freq[0..σ], indexed by all characters in the alphabet. After
having enumerated a maximal repeat W , we scan repr(W ), we compute the
number of occurrences of every right extension Wb of W using array first,
and we write fT (Wb) in freq[b]. Then, for every i ∈ [1..h], we check whether
repr(aiW ) contains more than one character: if this is the case, then fT (aiW ) >
fT (aiWb) for every b ∈ [0..σ]. Thus, we scan repr(aiW ) and for every b in its
array chars we check whether fT (aiWb) < fT (Wb), by accessing freq[b]. If this
is the case, then aiWb is a minimal rare word, and its interval in BWTT can be
derived in constant time from the array first of repr(aiW ). At the end of this
process, we reset array freq to its initial state by scanning repr(W ) again. �

Minimal rare words that do not occur in T can be enumerated using a slight
variation of Lemma 1, as described in [6]:

Lemma 2 ([6]). Let T ∈ [1..σ]n−1# be a string. Given a data structure that
supports rangeDistinct queries on BWTT , we can enumerate all the minimal
rare words aWb of T that do not occur in T , where a and b are characters and
W ∈ [1..σ]∗, and for each of them we can return a, b, |W |, and range(W ), in
O(nd + occ) time and in O(σ2 log2 n) = o(n) bits of space in addition to the
input and the output, where d is the time taken by the rangeDistinct operation
per element in its output, and occ is the output size.

For reasons of space, we assume throughout the paper that d is the time per
element in the output of a rangeDistinct data structure that is implicit from
the context.

3 Computing the Border of all Right-Maximal Substrings

As mentioned in the introduction, computing the exact variance of the number
of occurrences of a string W in a random text of length n can be mapped to the
computation of the longest border of all suffixes of W [3], and thus takes O(|W |)
time using the Morris-Pratt algorithm [17]. To compute the longest border of all
right-maximal substrings of a text T , as well as of all substrings Wb of T such
that b ∈ [0..σ] and W is right-maximal, in overall linear time on |T |, we need
the following algorithm described in [2], which we sketch here for completeness:

Theorem 2 ([2]). Let T ∈ [1..σ]n be a string. There is an algorithm that com-
putes bord(W ) for all right-maximal substrings W of T , and for all substrings
W = V b of T where b ∈ [1..σ] and V is right-maximal, in O(n) words of space.
The running time of this algorithm is linear in n and depends on σ.

Proof sketch. We build the suffix tree STT of T , and we assume that every node
v of STT stores sets Σ�

T (�(v)) and Σr
T (�(v)) as lexicographically sorted lists. We

perform a depth-first traversal of the suffix-link tree of T , and we store in each
node v with label �(v) = W the arrays rightW and leftW described in Section
2.1: recall that rightW (respectively, leftW ) is indexed by all characters a ∈
Σ�

T (W ) (respectively, b ∈ Σr
T (W )), and it stores value a|W at position rightW [a]
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(respectively, value W |b at position leftW [b]). Clearly, if rightW [a] > 0, then
bord(aW ) = rightW [a] + 1. If rightW [a] = 0, then bord(aW ) is either one
(if a matches the last character of W ) or zero. Once we know bord(aW ), we
compute array rightaW by exploiting the identity B(aW ) = {bord(aW )}∪B(V ),
where V is the longest border of aW (see Section 2.1): specifically, for every
character c ∈ Σ�

T (aW ), we know that c belongs also to Σ�
T (V ), thus we set

rightaW [c] = rightV [c] if c �= d, and we set rightaW [d] = bord(aW ), where
d is the character that precedes the suffix of aW of length bord(aW ). Since we
know that every character c ∈ Σr

T (aW ) also belongs to Σr
T (V ), we can compute

array leftaW from leftV in the same way.
Every cell of every array rightW can be charged to a (possibly implicit)

Weiner link of STT , and every cell of every array leftW can be charged to an
edge of STT , thus the algorithm uses O(n) words of space overall in addition
to STT . However, copying rightaW [c] from rightV [c], where V is the longest
border of aW (respectively, leftaW [c] from leftV [c]) requires retrieving c from
the list of left extensions (respectively, right extensions) of V , or merging such
list with the corresponding list of aW , which introduces a dependency on σ. �

A dependency on σ can be problematic in data mining applications, where
the alphabet could be the result of a dense discretization of a continuous range
(see e.g. [15,16] and references therein). To make Theorem 2 independent of σ,
we start from generalizing the algorithm described in [18] to a trie, counting
return arcs that do not point to the root:

Lemma 3. Let T = (V,E, σ) be a trie on alphabet [1..σ], let �(v) = �(ek) ·
�(ek−1) · · · · · �(e1) be the label of a node v ∈ V that is reachable from the root
with path e1, e2, . . . , ek, where ei ∈ E for all i ∈ [1..k], and let a|v = w ∈ V :
�(w) = a|�(v). The set of return arcs E′ = {(v, a|v) : v ∈ V, a ∈ [1..σ], a|v �= ∅}
satisfies |E′| ≤ 2|V |.
Proof. We say that a return arc (v, a|v) ∈ E′ is of type 1 if there is an edge
e = (v, w) ∈ E with �(e) = a , and we say that it is of type 2 otherwise. The
total number of type-1 return arcs is at most |V |, thus we focus on type-2 return
arcs. Let A = �(v) and let B = A[1..a|�(v)]. We charge a type-2 return arc
(v, a|v) to the vertex w that satisfies A = B · �(w). Assume that two distinct
type-2 return arcs (u1, v1), (u2, v2) are charged to the same vertex w. Clearly it
must be u1 �= u2. If u1 and u2 do not lie on the same path of T , then w must be
the lowest common ancestor of u1 and u2, or one of its ancestors (excluding the
root). Let W be the label of the path from w to the lowest common ancestor of
u1 and u2: clearly �(u1) = X1 ·a·W ·�(w) and �(u2) = X2 ·b·W ·�(w), where a and
b are distinct characters and X1 and X2 are strings of the same length, but at the
same time it must be X1 ·a ·W = X2 ·b ·W , a contradiction. Assume thus that u1

and u2 lie on the same path of T : without loss of generality, let u1 be an ancestor
of u2. Further assume that there is an edge e = (u1, v) ∈ E with �(e) = a. Then it
must be that �(u1) = Y1·�(w) = X1·b·Y1 and �(u2) = Y2·a·Y1·�(w) = X2·Y2·a·Y1

and a �= b, but at the same time it must be that a ·Y1 = b ·Y1, a contradiction. �
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Lemma 4. Let T ∈ [1..σ]n be a string. There is an algorithm that computes
bord(W ) for all right-maximal substrings W of T in O(n) time and words of
space.

Proof. We proceed as in Theorem 2, but at every node v of STT with �(v) =
W , we store set Br(W ), sorted in lexicographic order, rather than rightW .
Recall that Br(W ) is the set of pairs {(a, a|W ) : a ∈ [1..σ], a|W �= 0}, i.e.
a representation of the return arcs of Lemma 3. At every node v we merge
Br(W ) with the lexicographically sorted list of characters in Σ�

T (W ), setting
bord(aW ) = a|W (which might be zero) for every left extension aW . Once we
know bord(aW ), we build Br(aW ) by copying the entire Br(V ), where V is the
longest border of aW , and by updating or inserting pair (d, d|aW ) using a linear
scan of Br(V ), where d is the character that precedes the suffix of aW of length
bord(aW ). This process touches every return arc of Lemma 3 a constant number
of times. �

Lemma 4 can be clearly applied to any trie T of size n on an alphabet of
size σ, in which every node stores its children in lexicographic order: the space
used by such algorithm in addition to the trie is O(min{n, λσ}), where λ is the
length of a longest path in T . However, Lemma 3 does not generalize to radix
trees, thus we cannot use it to bound the construction time of left arrays in
Theorem 2. To achieve this, it suffices to replace left arrays with suitable stacks:

Lemma 5. Let T ∈ [1..σ]n be a string. There is an algorithm that computes
bord(W ) for all right-maximal substrings W of T , and for all substrings W = V b
of T where b ∈ [0..σ] and V is right-maximal, in O(n) time and words of space.

Proof. We run the algorithm in Lemma 4, keeping σ stacks S1, S2, . . . , Sσ.
Assume that, when we visit the node v of STT with �(v) = W , the top of stack
Sb for all b ∈ Σr

T (V ) stores value W |b (which might be zero). Assume that, in
the depth-first traversal of the suffix-link tree of T , we choose to visit the node w
with �(w) = aW next: then, we iterate over all characters b ∈ Σr

T (aW ), we com-
pute aW |b by accessing position bord(aW ) of stack Sb, and we push aW |b on Sb.
This works since, if aW can be extended to the right by character b, then every
suffix of aW can be extended to the right with character b as well. This process
takes overall O(n) time, and the size of all stacks S1, . . . , Sσ is O(min{n, λσ}),
where λ is the length of a longest repeat of T , since every element in every stack
can be charged to an edge of STT . �

The information stored by Lemma 5 is enough to compute in O(n) time and
space the longest border of all minimal rare words that occur at least once in T .
Adapting Lemma 5 to compute the longest border of all minimal absent words
of T is also easy:

Lemma 6. Let T ∈ [1..σ]n be a string. There is an algorithm that computes
bord(W ) for all minimal absent words W of T in O(n + occ) time and words of
space, where occ is the size of the output.
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Proof. We proceed as in Lemma 5, but when we visit the node v of STT with
�(v) = aW for some a ∈ [1..σ], we assume that the top of stack Sb for all
b ∈ Σr

T (W ) stores value aW |b (which might be zero). Assume that, in the depth-
first traversal of the suffix-link tree of T , we choose to visit the node w with
�(w) = caW next: then, we iterate over all characters b ∈ Σr

T (aW ), we compute
caW |b by accessing position bord(caW ) of stack Sb, and we push caW |b on Sb.
This works since, if aW can be extended to the right by character b, then the
proper suffix of the longest border of caW can be extended to the right with
character b as well. Every element in every stack can be charged either to an
edge of STT or to a minimal absent word of T , thus the size of all stacks is
O(min{n + occ, λσ}), where λ is the length of a longest repeat of T . �

4 Detecting Unusual Words in Small Space

As mentioned in the introduction, in order to compute the exact variance of
a substring W of a string T , we just need to compute functions φ(W ) and
γ(W ). Specifically, we just need to compute such functions on all right-maximal
substrings of T , and on all substrings Wa of T such that W is right-maximal [2].
Since φ(W ) and γ(W ) can be computed from φ(V ) and γ(V ), where V is the
longest border of W , it is easy to see that we can adapt Lemma 5 as follows.
When we visit the node v of STT with �(v) = W , we store φ(W ) and γ(W ), and
the top of stack Sb for all b ∈ Σr

T (W ) stores the following values (which might
be zero) in addition to W |b:
Fb(|W |) = Db(|W |) · (Fb(W |b) − 2(|W | − W |b) · Gb(W |b) + |T | − 2|W | + W |b)

Gb(|W |) = Db(|W |) · (1 + Gb(W |b))

where Db(|W |) = π
(
W [W |b + 1..|W | − 1]

) · P[b]. Note that such values are
computed recursively. We derive π

(
W [W |b + 1..|W | − 1]

)
by keeping an addi-

tional stack that stores π(V ) for every suffix V of W . The entire process can be
implemented using just a data structure that supports rangeDistinct queries on
BWTT , by implementing Lemma 5 on top of the iterator described in Theorem 1:

Theorem 3. Let T ∈ [1..σ]n−1# be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTT , we can compute φ(W ) and γ(W ) for
all right-maximal substrings W of T , and for all substrings W = V b of T such
that b ∈ [1..σ] and V is right-maximal, in O(nd) time and in o(n + λ

√
n) bits

of space in addition to the input and the output, where d is the time taken by
the rangeDistinct operation per element in its output and λ is the length of a
longest repeat of T .

Proof. Recall that the iterator of Theorem 1 returns, for every right-maximal
substring W of T , the set of all its right extensions in lexicographic order, but
the set of all its left extensions in arbitrary order. To implement Lemma 5 in this
case, we just need a temporary array buffer[1..σ] of σ log n bits that is initialized
to all zeros at the beginning of the traversal. When the iterator visits substring
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W , we scan Br(W ) and we set buffer[a] = a|W for all (a, a|W ) ∈ Br(W ).
Then, for every left extension ai of W provided by the iterator, we compute
bord(aiW ) by accessing buffer[ai], and we proceed as in Lemma 5. Once we
have finished processing substring W , we reset buffer to its previous state by
setting buffer[a] = 0 for all (a, a|W ) ∈ Br(W ). The claimed space complexity
comes from Theorem 1 and from our assumption that σ ∈ o(

√
n/ log n). �

For statistical reasons only substrings of length O(logσ n) are candidates for
being over- or under-represented [1], so the space complexity of Theorem 3 is
effectively o(n), every surprising substring can be encoded in a constant number
of machine words, and thus it can be printed in constant time2. The technique
described in Theorem 3 can be used to apply Lemma 4 to tries whose nodes
do not store the list of their children in lexicographic order. Moreover, it is
easy to adapt Theorem 3 to output all candidate over- and under-represented
substrings whose statistical score matches a user-specified criterion, by keeping
an additional stack of characters of size λ log σ and by exploiting the fact that
the iterator in Theorem 1 returns the length of every substring it visits.

Reducing the number of patterns displayed by a data mining algorithm is
key for making it useful in practice. According to the monotonicity of the scores
described in Section 1, we can limit the search for over-represented (respectively,
under-represented) substrings to maximal repeats (respectively, to minimal rare
words): this observation was already implicit in [1], and Theorem 3 can be easily
adapted to consider only such candidates. Moreover, in a practical implementa-
tion we can compute and store φ(W ) and γ(W ) just for maximal repeats, since
the longest border of a maximal repeat is itself a maximal repeat. We can also
avoid storing numbers Fb(|W |), Gb(|W |) and W |b for all b ∈ Σr

T (W ) on the
stacks of Lemma 5, whenever W is a right-maximal substring of T that cannot
be written as aV for a character a and a maximal repeat V . Within the working
space budget of Theorem 3, but in time O(nd + occ), we can also compute the
border and the statistical scores of all occ minimal absent words of T , by adapt-
ing Lemma 6 to work on Theorem 1: such strings are the only strings that do
not occur in T which could be under-represented in T , however they were not
reported in previous works [1,2]. The ability to assign a statistical score to mini-
mal absent words could be useful also in other contexts, for example in choosing
which minimal absent words should be displayed to the user, since their total
number is Θ(nσ) in the worst case.

Acknowledgments. We thank Alberto Apostolico for illuminating the details of the
algorithms in [2], and Stefano Lonardi for providing the source code of the implemen-
tation described in [4].

2 We assume the word RAM model of computation with words of size Ω(log n) bits,
in which all standard operations including multiplication have unit cost.
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Abstract. A compressed suffix tree usually consists of three compo-
nents: a compressed suffix array, a compressed LCP-array, and a succinct
representation of the suffix tree topology. There are parallel algorithms
that construct the suffix array and the LCP-array, but none for the
third component. In this paper, we present parallel algorithms on shared
memory architectures that construct the enhanced balanced parentheses
representation (BPR). The enhanced BPR is an implicit succinct rep-
resentation of the suffix tree topology, which supports all navigational
operations on the suffix tree. It can also be used to efficiently construct
the BPS, an explicit succinct representation of the suffix tree topology.

1 Introduction

A suffix tree (ST) for a string S of length n is a compact trie storing all the suf-
fixes of S, i.e., the concatenation of the edge labels on the path from the root to
leaf i exactly spells out the i-th suffix of S; see Fig. 1 for an example. The ST is
one of the most important data structures in string processing, with applications
in other fields like bioinformatics or information retrieval. The drawback of STs
is their huge space consumption: even carefully engineered implementations take
up to 20 bytes per character. Suffix arrays reduce the space to about 4 bytes per
character, but they do not support navigational operations such as suffix links.
With the help of additional arrays, it is possible to support such operations, but
this again results in a large memory requirement. In the last decade, research in
that area therefore focused on compressed suffix trees (CSTs). A CST consists of
three components: a compressed suffix array [10], a compressed LCP-array [15]
and a succinct representation of the suffix tree topology. Sadakane [16] intro-
duced the first CST representation that included a succinct representation of
the tree topology and supported full suffix tree functionality. He used the tradi-
tional explicit representation, a balanced sequence of parentheses (BPS) that can
be obtained by a depth-first traversal of the suffix tree [9]. It has been shown that
the BPS can be constructed in O(n) time using O(n) bits of working space [5], but
these algorithms are quite complex and involve large big-O-constants. Therefore,
they are not used in existing implementations. Ohlebusch et al. [11–13] derive
the tree topology implicitly from intervals in the LCP-array. They showed how to
construct a so-called enhanced BPR from the Super-Cartesian tree of the LCP-
array. This data structure has size 3n + o(n) bits and supports all navigational
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 234–245, 2015.
DOI: 10.1007/978-3-319-23826-5 23
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Fig. 1. Left: suffix tree for S = mississippi$ (an annotation �-[i..j] within a node
shows the corresponding LCP-interval, i.e., � is the string-depth of the node and [i..j]
is the corresponding interval). Right: suffix- and LCP-array.

operations on the suffix tree; see [11,12] for the algorithms that implement these
navigational operations and their time complexities. We will recall in Section 3
that the enhanced BPR of the LCP-array can be constructed without knowing
the Super-Cartesian tree itself. To the best of our knowledge, we here present
the first parallel algorithms that construct a succinct representation of the suffix
tree topology, namely the enhanced BPR. Gog [4, p.121] observed that the fastest
way to construct the BPS goes as follows: first construct the enhanced BPR and
then use it to traverse the (virtual) suffix tree in a depth-first manner. It is plau-
sible that the same approach will work best for parallel implementations, but we
did not investigate this yet.

2 Preliminaries and Related Work

In the following, S is a string of length n. Let Si denote the i-th suffix of S.
The suffix array SA specifies the lexicographic order of the suffixes of S. It
is defined by SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 1 for an example.
A suffix array can be constructed in linear time; see e.g. the overview arti-
cle [14]. Several parallel algorithms for suffix array construction exist (both
on shared and distributed memory); see [2,17] and the references therein. The
LCP-array stores the lengths of the longest common prefixes of lexicograph-
ically adjacent suffixes: LCP[1] = −1 = LCP[n + 1] and for 2 ≤ i ≤ n,
LCP[i] = max{k ≥ 0 | SSA[i] and SSA[i−1] share a prefix of length k}; see Fig. 1
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for an example. Given the suffix array, the LCP-array can be computed in lin-
ear time. Deo and Keely [2] first described a parallel implementation of a linear
time LCP-array construction algorithm. Shun [17] presents several parallel algo-
rithms on shared memory architectures that construct the LCP-array. He comes
to the conclusions that the fastest algorithm is the parallel implementation of
the Φ-algorithm [7] and that it is best to construct the suffix- and LCP-array in
separate phases. Shun and Blelloch [18] describe “a linear work, linear space, and
O(log2 n) time parallel algorithm for constructing a Cartesian tree and a multi-
way Cartesian tree.” Their result is not directly comparable to ours because we
construct a succinct representation of the suffix tree topology without building
the tree itself.

In this paper, we will use the parallel random-access machine (PRAM) model
of parallel computation [6], where work W refers to the number of operations
performed by an algorithm and time T refers to the number of time steps required
by an algorithm. We will assume that the model supports concurrent reads and
concurrent writes (CRCW PRAM). If the number of processors available is p,
then by Brent’s work-time scheduling principle [6], the total running time will
be O(W/p + T ). We will make use of the following basic parallel primitive:
Prefix sum takes a sequence A of length n, an associative binary operator ⊕,
and an identity element id so that id ⊕ a = a for all a, and returns the sequence
(id, id⊕A[1], id⊕A[1]⊕A[2], . . . , id⊕A[1]⊕A[2]⊕ · · ·⊕A[n]). It requires O(n)
work and O(log n) time; see [6] for details.

3 Sequential Construction of the Enhanced BPR

As in [12], we introduce the enhanced BPR by means of the Super-Cartesian tree
of the LCP-array. The latter is defined as follows.

Definition 1. Let A[l..r] be an array of elements of a totally ordered set (M,≤)
and suppose that the minima of A[l..r] appear at positions p1 < p2 < · · · < pk
for some k ≥ 1. The Super-Cartesian tree Csup(A[l..r]) of A[l..r] is recursively
constructed as follows:

– If l > r, then Csup(A[l..r]) is the empty tree.
– Otherwise create k nodes v1, v2, . . . , vk, label each vj with pj, and for each

j with 1 < j ≤ k the node vj is the right sibling of node vj−1 (in Fig. 2,
node vj−1 is connected with vj by a horizontal edge). Node v1 is the root of
Csup(A[l..r]). Recursively construct C1 = Csup(A[l..p1−1]), C2 = Csup(A[p1+
1..p2 −1]), . . . , Ck+1 = Csup(A[pk +1..r]). For each j with 1 ≤ j < k, the left
child of vj is the root of Cj. The left and right children of vk are the roots of
Ck and Ck+1, respectively.

Fig. 2 depicts the Super-Cartesian tree of the LCP-array from Fig. 1. Ohle-
busch and Gog [13] showed that the Super-Cartesian tree of the LCP-array can
be represented by a sequence of balanced parentheses, called BPR (an acronym
for balanced parentheses representation), and they gave a construction algorithm
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Fig. 2. The Super-Cartesian tree of the LCP-array from Fig. 1.

Fig. 3. Enhanced BPR of the Super-Cartesian tree of Fig. 2. The first row shows the
bit string B and the second row depicts the BPR. The third row is only for illustrative
purposes: The opening parentheses are numbered consecutively and a closing paren-
thesis has the number of its matching opening parenthesis. The last row shows the
positions of the parentheses in the BPR.

that is solely based on the LCP-array. However, the sequence BPR lacks some
information, as the cases “right child” and “right sibling” are treated in the same
fashion, and the LCP-array itself is required to compensate for this. Ohlebusch
et al. [12] compensate for the lack of information by enhancing the BPR with a
bit string B. A closing parentheses (in the BPR) corresponding to a node that is
a right sibling is marked with a 0, otherwise it is marked with a 1. The construc-
tion of the enhanced BPR of the Super-Cartesian tree of the LCP-array starts at
the root of the tree and proceeds as follows (see Fig. 3 for an example):

1. Write the balanced parentheses sequence of the left child.
2. Write an opening parenthesis.
3. Write the balanced parentheses sequence of the right child/sibling.
4. Write a closing parenthesis. If the node under consideration is a right sibling,

append 0 to B; otherwise append 1 to B.

The enhanced BPR of the LCP-array is a 3n-bits representation because there
are 2n + 2 parentheses and the bit string B has length n + 1 (the LCP-array of
the string S has size n+1). Hence it uses 3n+ o(n) bits to support navigational
operations on the suffix tree. Fischer [3] showed that 2.54n+o(n) bits are enough
for this task, but he did not provide an implementation of his data structure.

As already noted in [12], the enhanced BPR can be constructed without know-
ing the Super-Cartesian tree itself; see Algorithm 1. There, the array BPR is
initialized with ones (an opening parenthesis is represented by ’0’, whereas a
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Algorithm 1. Construction of the enhanced BPR based on the LCP-array.
input : LCP-array

1 initialize a bit array BPR of size 2n + 2 with ones
2 initialize a bit array B of size n + 1 with ones
3 push(1) � LCP[1] = −1
4 BPR[1] ← 0 � write ’(’
5 j ← 2
6 k ← 1
7 for i ← 2 to n + 1 do
8 while LCP[i] < LCP[top()] do
9 last ← pop()

10 j ← j + 1 � implicitly write ’)’
11 if LCP[last ] = LCP[top()] then
12 B [k ] ← 0

13 k ← k + 1

14 push(i)
15 BPR[j ] ← 0 � write ’(’
16 j ← j + 1

17 B [n] ← 0 � write 01 for LCP[1] and LCP[n + 1]
return : the arrays BPR and B

closing parenthesis is represented by ’1’), and Algorithm 1 computes only the
opening parentheses in the BPR. Similarly, the array B is initialized with ones
and Algorithm 1 computes only the zero-entries in B.

For later purposes, we note that Algorithm 1 keeps the following invariants.
Immediately after index i, 2 ≤ i ≤ n + 1, was pushed onto the stack, the stack
contents i1, . . . , im satisfies the following properties:

1. 1 = i1 < i2 < · · · < im = i
2. LCP[i1] ≤ LCP[i2] ≤ · · · ≤ LCP[im]
3. for all q with 2 ≤ q ≤ m and for all p with iq−1 < p < iq: LCP[p] > LCP[iq]

4 Parallel Construction of the Enhanced BPR

The parallelization of Algorithm 1 requires the knowledge at which position an
opening parenthesis (and a bit in the array B) must be written. By construction
i − 1 opening parentheses appear before the i-th opening parenthesis. So the
i-th opening parenthesis appears at position i − 1 + c(i) + 1, where c(i) is the
number of closing parentheses before the i-th opening parenthesis. Obviously,
c(i) depends on the values in LCP[1..i−1]. Let dist[i] be the number of elements
on the stack immediately before i is pushed onto the stack. To put it differ-
ently, dist[i] is the number of elements on the stack below i immediately after i
was pushed onto the stack. Since c(i) equals the number of elements that have
been removed cumulatively from the stack before i is pushed onto it, we have
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Fig. 4. The LCP-array from Fig. 1 and the corresponding arrays NSV, PSEV, and dist.

c(i) = i − 1 − dist[i]. So the task is to compute the array dist in parallel, and
we will show next how to do this.

The all nearest smaller values (ANSV) problem is defined as follows: for each
element in a sequence of numbers, find the closest smaller element to the left of
it and the closest smaller element to the right of it. Berkman et al. [1] showed
that ANSVs can be computed in O(n) work and O(log log n) time on the CRCW
PRAM. In other words, the arrays PSV (previous smaller value) and NSV (next
smaller value), which are defined as follows for all i with 2 ≤ i ≤ n

PSV[i] = max{j | 1 ≤ j < i and LCP[j] < LCP[i]}
NSV[i] = min{j | i < j ≤ n + 1 and LCP[j] < LCP[i]}

can be computed in O(n) work and O(log log n) time on the CRCW PRAM.
The method from [1] can be modified so that it computes the arrays PSEV and
NSV instead of the arrays PSV and NSV, where PSEV is defined for all i with
2 ≤ i ≤ n + 1 by

PSEV[i] = max{j | 1 ≤ j < i and LCP[j] ≤ LCP[i]}
Fig. 4 shows an example (an entry ⊥ means that the value is undefined).

In Algorithm 1, suppose that the stack contents is 1 = i1, i2, . . . , im−1, im = i
immediately after index i was pushed onto the stack. It is not difficult to see
that the invariants maintained by that algorithm (see end of Section 3) imply
that PSEV[iq] = iq−1 for all q with 2 ≤ q ≤ m. (We shall say that there is a
PSEV-pointer from iq to iq−1.) In other words, dist[i] equals the number of PSEV-
pointers that must be followed until the index 1 is reached (since LCP[1] = −1,
all paths of PSEV-pointers end at index 1). Formally, for all i with 1 ≤ i ≤ n+1,
we have

dist[i] =
{

0 if i = 1
1 + dist[PSEV[i]] otherwise

Using a copy of the array PSEV, Algorithm 2 calculates the array dist by “pointer
jumping”. It uses O(n log n) work and O(log n) time, but there is a parallel
algorithm that requires only O(n) work and O(log n) time for the same task; see
[6, Section 3.1.2] for details.

Algorithm 3 calculates the enhanced BPR in parallel. It is easy to see that
it uses O(n) work and O(1) time, but its correctness is not so obvious. In the
following, let i( denote the i-th opening parenthesis and let )i denote the closing
parenthesis that matches it; cf. Fig. 3. As mentioned above, i( must be placed
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Algorithm 2. Parallel computation of the distance array.
input : a copy of the PSEV-array

1 create an integer array dist of size n + 1
2 foreach index i with 2 ≤ i ≤ n + 1 do in parallel
3 dist [i ] ← 1 � initialize dist with ones

4 dist [1] ← 0
5 while there is an index i with PSEV[i ] �= ⊥ do
6 foreach index i with PSEV[i ] �= ⊥ do in parallel
7 dist [i ] ← dist [i ] + dist [PSEV[i ]]
8 PSEV[i ] ← PSEV[PSEV[i ]]

return : the dist array

Algorithm 3. Parallel computation of the arrays BPR and B.
input : LCP,PSEV,NSV and dist

1 initialize a bit array BPR of size 2n + 2 with ones (in parallel)
2 initialize a bit array B of size n + 1 with ones (in parallel)
3 foreach index i with 1 ≤ i ≤ n + 1 do in parallel
4 BPR[2i − 1 − dist [i ]] ← 0 � write ’(’

5 foreach index i with 2 ≤ i ≤ n do in parallel
6 if LCP[i ] = LCP[PSEV[i ]] then
7 B [NSV[i ] − 1 − dist [i ]] ← 0

8 B [n] ← 0 � write 01 for LCP[1] and LCP[n + 1]
return : the arrays BPR and B

at position i − 1 + c(i) + 1 in the BPR. Since c(i) = i − 1 − dist[i], i( must be
written at position 2i − 1 − dist[i] and Algorithm 3 does this on line 4. To show
that the assignment on line 7 in Algorithm 3 is correct, we have to prove that
)i is the �-th closing parenthesis in the BPR, where � = NSV[i] − 1 − dist[i]. In
Algorithm 1, the parenthesis )i is (implicitly) written when the index q = NSV[i]
is reached. We know that there are c(i) = i−1−dist[i] closing parentheses before
i(. Additionally, all q−i−1 opening parentheses between i( and q( must be closed,
before )i is written. Therefore, there are c(i)+q−i−1 = i−1−dist[i]+NSV[i]−
i−1 = NSV[i]−dist[i]−2 closing parentheses before )i. Hence )i must be written
at the next position � = NSV[i]−1−dist[i]. Consequently, Algorithm 3 correctly
calculates the enhanced BPR.

To summarize, the enhanced BPR can be calculated using O(n) work and
O(log n) time on a CRCW PRAM.

5 A Heuristic Parallel Algorithm

In this section, we describe an algorithm that works very well in practice. To
obtain a good load balance, we divide the subarray LCP[1..n] into p blocks of size
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�n/p� (in fact, the last block may be smaller). Ideally, each processor is assigned
to one block and computes the corresponding enhanced BPR. This, however, is
only possible if the contents of the stack at the beginning of each block is known
in advance. To achieve this, we use a threshold t and modify the start and end
positions of the blocks as follows. For each original block k, say LCP[sk..ek],
define �k = min{LCP[i] | sk ≤ i ≤ ek} and

startpos[k] =
{

min{i | sk ≤ i ≤ ek and LCP[i] = �k} if �k < t
0 otherwise

Suppose for a moment that �k < t for all k. In this case, we obtain p mod-
ified blocks: the k-th block starts at position startpos[k] and ends at position
startpos[k+1]−1. Note that the first block starts at position 1 because LCP[1] =
−1 and the last block ends at position n+1 if we define startpos[p+1] = n+2.
For the LCP-array of Fig. 4 and p = 3, the original blocks are LCP[1..4], LCP[5..8],
and LCP[9..12]. In our example, for t = 2 we have startpos[1..4] = [1, 6, 9, 14]
and hence the modified blocks are LCP[1..5], LCP[6..8], and LCP[9..13]. Each pro-
cessor can sequentially compute the enhanced BPR of its block by Algorithm 1,
provided that the stack contents is known immediately before startpos[k] is
pushed onto it. As we shall see, this can be achieved by combining the con-
tents of local stacks: the contents of stack[k], the local stack for block k, can be
obtained by an application of Algorithm 1 to LCP[startpos[k]..startpos[k+1]−1].
In contrast to Algorithm 1, a stack now contains LCP-values instead of indices
(i.e., LCP[i] instead of i). Moreover, it stores only LCP-values that are strictly
smaller than the threshold t. Thus, it can be represented by an array of size t+1,
where the array index corresponds to an LCP-value � and the value at the index
is the number of occurrences of � on the stack. Let us illustrate this with our
running example. Since t = 2, stack[1] is the array [1, 1, 2], where the �-th entry
is the number of occurrences of the LCP-value � − 2 on the stack. For instance,
stack[1][1] = 1 is the number of occurrences of the LCP-value −1 on the stack,
and stack[1] represents the stack with the elements −1, 0, 1, 1 (from bottom to
top). The LCP-value 4 does not appear on top of the stack because 2 = t < 4.
Similarly, we obtain stack[2] = [0, 2, 1]. Lines 7-15 of Algorithm 4 compute the
array startpos and the local stacks.

To combine local stacks, we define a binary operator ⊕ on stacks. For two
stacks A and B, where mB = min{i | 1 ≤ i ≤ t+1 and B[i] �= 0}, let C = A⊕B
for all i with 1 ≤ i ≤ t + 1 be defined by

C[i] =

⎧
⎨

⎩

A[i] if i < mB

A[i] + B[i] if i = mB

B[i] if i > mB

For example stack[1] ⊕ stack[2] = [1, 1, 2] ⊕ [0, 2, 1] = [1, 3, 1]. It can be
shown that ⊕ is associative and the empty stack id = [0, . . . , 0] is the iden-
tity element with respect to ⊕ (where mid = t + 2). Moreover, if we would
apply the modified version of Algorithm 1 (in which the stack contains LCP-
values that are strictly smaller than t) to the k first blocks of the LCP-array
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Algorithm 4. Computation of startpos and stack with p processors.
input : LCP-array

1 blocksize ← �n/p�
2 t ← 2 log(n)
3 create an array stack of size p consisting of pointers
4 foreach k with 1 ≤ k ≤ p do in parallel
5 stack [k ] ← new array of size t + 1, initialized with zeros

6 create an array startpos of size p + 1, initialized with zeros
7 foreach k with 1 ≤ k ≤ p do in parallel
8 s ← 1 + (k − 1)blocksize
9 e ← min{s + blocksize − 1,n}

10 � ← t − 1
11 for i ← e down to s do
12 if LCP[i ] ≤ � then
13 � ← LCP[i ]
14 stack [k ][� + 2] ← stack [k ][� + 2] + 1
15 startpos[k ] ← i

16 j ← 2
17 for k ← 2 to p do
18 if startpos[k ] �= 0 then
19 startpos[j ] ← startpos[k ]
20 stack [j ] ← stack [k ]
21 for � ← 1 to LCP[startpos[j ]] + 2 do
22 stack [j ][�] ← stack [j ][�] + stack [j − 1][�]

23 j ← j + 1

24 p ← j − 1
25 startpos[p + 1] ← n + 2

return : the arrays startpos and stack .

(i.e., to LCP[1..startpos[k + 1] − 1]), then the stack contents would be id ⊕
stack[1]⊕stack[2]⊕· · ·⊕stack[k] (use induction to prove this). The prefix sums
(id, id⊕stack[1], id⊕stack[1]⊕stack[2], . . . , id⊕stack[1]⊕stack[2]⊕· · ·⊕stack[p])
can be computed in parallel, requiring O(p) work and O(log p) time. In prac-
tice, however, a sequential computation is faster; for an implementation see lines
17-23 of Algorithm 4. When Algorithm 4 returns the arrays startpos and stack,
stack[k] represents the stack contents after the modified version of Algorithm
1 was applied to LCP[1..startpos[k + 1] − 1]. Consequently, the enhanced BPR
can be computed in parallel: each of the p processors is assigned to one block
and applies the sequential Algorithm 1 to it. Processor 1 can apply that algo-
rithm to the first block without modification. Processor k, 2 ≤ k ≤ p, must
use the stack stack[k − 1] from which all elements that are strictly smaller than
LCP[startpos[k]] must be removed, because this is the correct stack contents
immediately before LCP[startpos[k]] is pushed onto it. Because stacks are rep-
resented by arrays, one can avoid the removal of elements from stack[k − 1]
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by just taking those components of stack[k − 1][�] into account that satisfy
� ≤ LCP[startpos[k]]+2 (recall that the first two components of stack[k −1] are
the number of occurrences of −1 and 0, respectively). Let us denote the result-
ing stack by stackk. If processor k wants to apply the sequential Algorithm 1,
it must not only start with stackk but it must also know at which position
the first opening parenthesis in the BPR and the first bit in B (correspond-
ing to block k) must be written. Recall from Section 4 that the i-th opening
parenthesis i( must be written at position 2i − 1 − dist[i], where dist[i] is the
number of elements on the stack immediately before LCP[i] is pushed onto it.
Moreover, i − 1 − dist[i] closing parentheses appear before i(. For block k, it
follows that the first opening parenthesis in the BPR must be written at position
2 startpos[k]− 1− size(stackk), and startpos[k]− size(stackk) is the position of
the first bit in B. In our example, since LCP[startpos[3]] = LCP[9] = 0, we just
consider the first two components of stack[2] = [1, 3, 1] (at this point in time,
stack[2] contains the result of stack[1]⊕stack[2]). Thus, stack3 contains the ele-
ments −1, 0, 0, 0 (from bottom to top). For block 3, the first opening parenthesis
in the BPR appears at position 2 · 9 − 1 − 4 = 13 and the first bit in B appears
at position 9 − 4 = 5.

Algorithm 4 depends on the threshold t: the smaller t the faster the stacks
can be combined. However, t should not be too small: �k < t should hold for
each original block k because otherwise we cannot compute the correct stack
contents for any position in the block. In this case, the block must be combined
with its preceding block; see lines 17-23 of Algorithm 4. For t = 2 log n, this did
never happen for real-life data (see next section), but there are cases in which
this cannot be avoided. The worst case for Algorithm 4 are LCP-arrays in which
the values are strictly increasing (or decreasing), for instance the LCP-array of
the string S = An (the character A repeated n times). In the worst case �k < t
holds only for block k = 1, so all original blocks must be combined into one big
block and the algorithm therefore takes time O(n).

6 Implementation and Experimental Results

Our implementation of the algorithm described in Section 4, called PA-theo,
uses Julian Shun’s [19] implementation of the O(n log n) work and O(log n) time
ANSV algorithm of Berkman et al. [1] to compute the arrays PSEV and NSV in
parallel. (We could not find an implementation of the O(n) work and O(log log n)
time ANSV algorithm—a much more complicated algorithm.) A direct imple-
mentation of Algorithm 2 turned out to be very slow, so we used the following
alternative algorithm: For p processors, it divides the dist-array into p blocks of
size �n/p�. For each block k, it computes M [k]—the last index i in the block so
that PSEV[i] points out of the block. For all j in between M [k] and the end of
the block, the path of PSEV-pointers starting from PSEV[j] must end at M [k].
Thus local distances (distances relative to M [k]) can be computed for all indices
to the right of M [k]. Now it is possible to compute the correct distances for all
M [k] based on the following observation: If PSEV[M [k]] points into a block k′,
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Table 1. The first column describes the input file, while the second column shows the
algorithm. The remaining columns show the run-times in seconds (average of ten runs)
for an increasing number of processors (specified in the first row).

file algorithm 1 2 4 8 16 20

An Seq 4.34 - - - - -
σ = 1 PA-theo 11.30 10.68 6.65 4.90 3.56 3.57

n = 400 MB PA-heur 10.02 9.97 9.77 9.84 9.77 9.79

para Seq 6.48 - - - - -
σ = 5 PA-theo 19.51 14.45 8.75 5.89 4.27 4.44

n = 409 MB PA-heur 12.16 8.39 4.89 2.59 1.62 1.65

einstein Seq 7.10 - - - - -
σ = 139 PA-theo 21.18 15.88 9.06 6.33 4.62 4.54

n = 445 MB PA-heur 13.25 7.05 3.98 2.69 1.91 1.66

sources Seq 3.10 - - - - -
σ = 230 PA-theo 9.37 8.11 4.70 3.16 2.53 2.32

n = 200 MB PA-heur 5.65 3.17 1.77 1.51 1.02 0.95

english Seq 31.69 - - - - -
σ = 238 PA-theo 125.79 76.30 46.03 33.23 26.69 25.98

n = 2107 MB PA-heur 53.36 27.44 14.86 12.46 7.37 6.11

human genome Seq 42.76 - - - - -
σ = 5 PA-theo 216.21 107.81 68.81 50.14 40.39 39.63

n = 2945 MB PA-heur 80.05 53.42 31.70 16.92 9.48 8.83

mouse genome Seq 38.55 - - - - -
σ = 5 PA-theo 160.57 94.36 60.58 41.70 32.46 32.60

n = 2599 MB PA-heur 71.40 48.47 29.08 15.33 7.63 7.55

i.e., j′ = PSEV[M [k]] belongs to block k′, then M [k′] ≤ j′ must hold. Given the
distances for all M [k], the dist-array can then be calculated.

In what follows, our implementation of the sequential Algorithm 1 will be
called Seq, while the algorithm described in Section 5 will be called PA-heur.
The threshold parameter t = 2 log n in PA-heur was chosen because Léonard
et al. [8] studied the distribution of the average LCP-value when the size of the
text grows and empirically showed that it follows a logarithmic function, not
only for random texts, but also for very different types of texts: several DNA
sequences of various repetitiveness and natural language texts.

The experiments were conducted on a 64 bit Ubuntu 14.04.1 LTS (Kernel 3.13)
system equipped with two ten-core Intel Xeon processors E5-2680v2 with 2.8 GHz
and 128GB of RAM. All programs were compiled with the same options using g++
(version 4.8.2). We tested our programs on four files from the Pizza&Chili corpus
(http://pizzachili.dcc.uchile.cl): sources and english from the text collection as well
as para and einstein from the repetitive corpus. Furthermore we used the human
genome (hg38) and the mouse genome (mm10) from https://genome.ucsc.edu and
removed all characters /∈ {A, C, G, T, N}.

The experimental results show that PA-theo—although it is the best in
theory—does not perform well in practice. As expected, PA-heur performs badly

http://pizzachili.dcc.uchile.cl
https://genome.ucsc.edu
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on its worst-case input An because it has to do most of the work with only one
processor. On real-world data, however, PA-heur performs and scales quite well:
with three processors it is already faster than Seq and with 20 processors it is
roughly about 5 times faster than Seq on the large files.
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Abstract. A substring of a string is unbordered if its only border is the
empty string. The study of unbordered substrings goes back to the paper
of Ehrenfeucht and Silberger [Discr. Math 26 (1979)]. The main focus of
their and subsequent papers was to elucidate the relationship between
the longest unbordered substring and the minimal period of strings. In
this paper, we consider the algorithmic problem of computing the longest
unbordered substring of a string. The problem was introduced recently
by G. Kucherov et al. [CPM (2015)], where the authors showed that the
average-case running time of the simple, border-array based algorithm
can be bounded by O(max{n, n2/σ4}) for σ being the size of the alpha-
bet. (The worst-case running time remained O(n2).) Here we propose
two algorithms, both presenting substantial theoretical improvements to
the result of [11]. The first algorithm has O(n log n) average-case running
time and O(n2) worst-case running time, and the second algorithm has
O(n1.5) worst-case running time.

1 Introduction

A proper prefix of a string that is simultaneously its suffix is called a border. If
the only border of a substring is the empty string, then this substring is called
unbordered. The study of unbordered substrings commenced in the 1979 paper of
Ehrenfeucht and Silberger [6]. The main focus of [6] and of subsequent papers [1,
4,8] was to clarify the relationship between the maximal length of an unbordered
substring of a string and its periodicity. As a result of this line of research, it
was shown that in order to guarantee the equality between the maximal length
of an unbordered substring and the minimal period, either the former should
be smaller than 3/7 of the string length, or the latter should be smaller than
1/2 of the string length, where both bounds are tight. In this work, we focus
on the computational problem that can be considered complementary to the
previous study: Given a string T of length n, compute its unbordered substring
of maximal length.
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It is well-known that the minimal period can be easily computed on O(n)
time by a variant of the Knuth-Morris-Pratt algorithm [12]. Note that if a string
is periodic, i.e. its minimal period is at most half of the string length, then a
longest unbordered substring can be found as an unbordered conjugate of string’s
root (which is a substring of minimal period length). This computation can be
done in O(n) time as well [5].

However, this approach is not applicable in the general case. It can be easily
seen that an unbordered substring cannot be longer than the minimal period
of the string (as any substring longer than the period has a border). For most
strings, the maximal length of an unbordered substring, and consequently their
minimal period, are large. (More formally, it was shown recently that the aver-
age maximal length of an unbordered substring of a string of length n is at
least (1 − 8/σ4) n for alphabets of size σ [11].) In this case, it is no longer
possible to exploit the relation between unbordered substrings and the minimal
period. A straightforward way to compute the longest unbordered substring is
to compute the border array of each suffix of the string [12]. This algorithm has
quadratic worst-case running time, and no better worst-case bound has been
obtained, to the best of our knowledge. In [12], it was shown that the average-
case running time of this algorithm is O(max{n, n2/σ4}). The average-case time
complexity captures the ‘typical’ running time of the algorithm, rather than the
running time on most hard problem instances [13]. Other problems on strings
studied under this model include pattern matching, edit distance, suffix trees,
and more (see e.g. [9]).

We give two algorithms for computing an unbordered substring of the max-
imal length: algorithm A and algorithm B. Both algorithms have O(n) space
complexity. The worst-case running time of algorithm A is O(n2) – the same
as of the simple, border-array based algorithm. However, its average-case time
complexity, i.e. the time complexity averaged over all input strings of length n,
is O(n log n) which provides a considerable improvement to the bound of [11].
For algorithm B, we show an O(n1.5) worst-case time bound. To our knowledge,
this is the first sub-quadratic worst-case bound for this problem. We assume
the word-RAM model of computation with Ω(log n)-bit words and an integer
alphabet of polynomial size in n.

Both algorithms distinguish between two types of substrings that have a non-
empty border: those having a ‘short’ border (shorter than a threshold τ) and
those having only ‘long’ borders (longer than τ). For each position j, there are
only τ possible short borders, which allows to identify the substrings T [i..j] that
have short borders quickly. On the other hand, we will show that the number of
substrings T [i..j] that have only long borders is small, which will also make it
possible to identify them quickly.

2 Preliminaries

Let Σ be a finite alphabet. The elements of Σ are letters. A finite ordered
sequence of letters (possibly empty) is called a string. Letters in a string are
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numbered starting from 1, that is, a string T of length n consists of letters
T [1], T [2], . . . , T [n]. The length n of T is denoted by |T |. For 1 ≤ i ≤ j ≤ n,
T [i..j] is a substring of T with endpoints i and j. A substring T [1..j] is called a
prefix of T , and a substring T [i..n] is called a suffix of T . A prefix (or a suffix)
of T different from T is called proper.

2.1 Borders and Periods

If a proper prefix of a string is simultaneously its suffix, then it is called a border.
A string is called unbordered if the only border it has is the empty string. We
define the border array B of T to contain the lengths of the longest borders of all
prefixes of T , i.e. B[i] is the length of the longest border of T [1..i], i = 1..n. The
last entry in the border array, B[n], contains the length of the longest border
of T . It is well-known that the border array and therefore the longest border of
T can be computed in O(n) time and space [12].

We remark that the border array construction algorithm immediately gives
an O(n2)-time algorithm for computing the longest unbordered substring of T :
It suffices to build the border arrays of all suffixes of T . Then the longest unbor-
dered substring starting at position i will correspond to the rightmost entry in
the border array of T [i..n] containing zero.

A period of T is a positive integer π such that for all i, 1 ≤ i ≤ n − π,
T [i] = T [i + π]. The smallest of all periods of T is called the minimal period
of T . The minimal period of T is equal to n − B[n], and hence can be computed
in O(n) time. Note that if T is unbordered, then its smallest period is equal to
its length. Note also that a border of a border of a string is again a border of
that string, and that the shortest border is unbordered.

We will also exploit the Periodicity lemma:

Lemma 1. If a string T has periods ρ and γ such that ρ + γ ≤ |T |, then T has
period gcd(ρ, γ), the greatest common divisor of ρ and γ.

Finally, we will make use of the shortest border array B′ of T which is defined
to contain the lengths of the shortest borders of all prefixes of T . That is, for each
i = 1..n, B′[i] is the length of the shortest non-empty border of T [1..i] if T [1..i]
has a non-empty border, and zero otherwise. It is not difficult to see that the
shortest border array of T can be computed in linear time. It suffices to run the
standard border array construction algorithm, then if B[i] is the longest border
of T [1..i], the shortest border of T [1..i] equals B′[B[i]] and can be computed
in O(1) time.

2.2 Suffix Trees and Auxiliary Data Structures

The (generalized) suffix tree of a set S of strings is a compacted trie of suffixes
of the strings in S, where the suffixes of the i-th string are appended with a
special letter $i that does not belong to the alphabet Σ [14]. In this paper, we
will consider the suffix trees for the following sets of strings:
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– a singleton set containing T ,
– a singleton set containing the reverse of T ,
– a two-element set consisting of T and some substring S of T .

We assume that we know string depths of all branching nodes. The string
depth of a node is the length of the string formed by the labels from the root
to that node. We also assume that we have access to the corresponding suffix
array for each suffix tree. The j-th entry in the suffix array gives the position i of
the start of the j-th largest suffix in lexicographical order. We assume that each
entry in the suffix array holds a pointer to the corresponding leaf in the suffix
tree and vice versa. Furthermore we assume each internal node in the suffix tree
holds a pointer to the leftmost and rightmost leaves in each subtree. We remark
that the suffix array is not strictly required to achieve the claimed bounds in
either algorithm but it will simplify the explanation.

As is relatively standard, we augment each tree with the lowest common
ancestor (LCA) and the range minimum query (RMQ) data structures [2]. The
RMQ data structure is built on top of the suffix array for the corresponding
tree. We omit the definitions as these data structures are used only indirectly
via Lemmas 2 and 3 below. On alphabets of size |T |O(1) all suffix trees, as well
as the suffix arrays, the LCA and the RMQ data structures, can be constructed
in O(|T |) time and occupy O(|T |) space [2,7]. Augmented in this way, the suffix
trees become a very powerful tool:

Lemma 2. Using the augmented suffix trees/arrays of T and the reverse of T ,
the following queries can be answered in O(1) time:

1. Given endpoints of two substrings S1 and S2 of T , decide whether S1 = S2,
2. Given an interval in the suffix array of T find the suffix in the interval with

the smallest starting position,
3. Given endpoints of two substrings S1, S2 of T , compute the longest common

suffix of S1 and S2,
4. Given endpoints of two substrings S1, S2 of T compute the largest integer

α and the longest suffix S of S1 such that SSα
1 is a suffix of S2. Here Sα

1

denotes the string formed by α repetitions of S1.

Lemma 3. Using the suffix tree of T and the suffix tree of T and some sub-
string S of T , the following queries can be answered in O(|T |) time:

1. Retrieve all suffixes of T that are not prefixes of other suffixes of T , sorted
in lexicographic order,

2. For each suffix T [i..n] of T , compute the length of its longest prefix Pi that
occurs in S and the first position of such an occurrence.

Lemmas 2 and 3 are proved using standard suffix tree algorithms, perhaps
with the only exception of Query 4 of Lemma 2. We answer this query in the
following way. First, we find the longest common suffix of S1 and S2 (Query 3 of
Lemma 2). If its length is smaller than |S1|, we set α to zero and S to the suffix.
Otherwise, S1 is a suffix of S2. Let S2 = T [i..j]. Then SSα−1

1 is equal to the
longest common suffix of T [i..j] and T [1..j − |S1| + 1] and can be found in O(1)
time by one more Query 3 of Lemma 2.
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3 Algorithm A
In this section we describe algorithm A, which has O(n2) worst-case time com-
plexity and O(n log n) average-case time complexity. Recall from the introduc-
tion, that both our algorithms set a threshold to distinguish between short and
long borders. For algorithm A, we set the threshold, τ to 6 log n1. That is, a non-
empty border is short if its length is smaller than 6 log n, and long otherwise.
We start with the following lemma which says that strings containing substrings
with long borders are very rare. We can therefore afford to process them less
efficiently and still achieve a good average-case time complexity.

Lemma 4. Consider a random string T of length n with i.i.d. distribution of
letters over a non-unary alphabet. The probability that T contains a substring
with a long border is smaller than 1

n .

Proof. If T contains a substring with a long border, then there is a substring
T [i..j] with a border of length 6 log n and consequently T contains a pair of equal
substrings of length 6 log n. Furthermore, either these two equal substrings do
not overlap, or they can be shortened to produce two non-overlapping substrings
of length 3 log n, or the length of T [i..j] is at most 9 log n. In the last case, the
minimal period of T [i..j] is at most 9 log n − 6 log n = 3 log n, and the prefix of
length 3 log n of T [i..j] and a substring of the same length starting with the next
full repetition of the period do not overlap. So in all the cases, there exist two
non-overlapping equal substrings of length 3 log n.

Now we will show that the probability of a random string to have two non-
overlapping equal substrings of length 3 log n is small. Consider any two such
substrings. Since they do not overlap and their letters are chosen uniformly and
independently, the probability of the substrings being equal is at most 1/n3

(recall that the alphabet cardinality is at least 2). Since there are at most n2

pairs of substrings of length 3 log n, by the union bound the probability of at
least one such pair being equal is at most 1/n. ��

The string, T contains a substring with a long border if and only if the suffix
tree of T contains a branching node with string depth at least 6 log n. We can
check whether this is true in O(n) time. If it is, we run the simple O(n2)-time
algorithm to compute the longest unbordered substring. We can now proceed
under the assumption that T contains no substring with a long border.

Algorithm A considers each position in the string T in turn and determines
the largest unbordered substring that ends at that position. Consider an arbi-
trary position j and a substring T [i..j]. If T [i..j] has a border, the border must be
short and hence equal to one of T [j −6 log n+1..j], T [j −6 log n+2..j], . . . , T [j].
Remember that our objective is to compute the smallest position i such that
T [i..j] is unbordered. It follows that we need to compute the smallest position i
with no occurrence of T [j − 6 log n + 1..j], T [j − 6 log n + 2..j], . . . , T [j].

1 We assume the logarithm base to be 2 throughout the paper.



Computing the Longest Unbordered Substring 251

Occurrences of any substring of T form an interval in the suffix array. This
property is immediate from the lexicographical ordering. The positions where
none of these substrings occur correspond exactly to the complement of these
O(log n) intervals. It therefore follows that these ‘complementary’ positions also
form O(log n) disjoint intervals in the suffix array. We can find these ‘comple-
mentary’ intervals by sorting the original intervals. The smallest position i where
none of these substrings occur is the minimum position in any of the complemen-
tary intervals. We can compute the minimum in O(log n) time by performing
Query 2 on each of the intervals in O(1) time and reporting the minimum.

To find the intervals efficiently, we use the following lemma to retrieve the
locus (the node labelled by the substring) of each substring T [j − 6 log n +
1..j], T [j − 6 log n + 2..j], . . . , T [j] in the suffix tree of T in constant time per
substring. If the substring occurs only implicitly in the suffix tree, the locus is
the node at the deeper end of the edge where the substring ends. We can then
determine the suffix array interval corresponding to a locus in O(1) time by
following the pointers to the leftmost and rightmost leaves in the subtree rooted
at the locus and then following the pointers to the corresponding suffix array
locations.

Lemma 5. The suffix tree of T can be preprocessed in O(n log n) time and O(n)
space, so that the locus of any T [j−
..j] such that 0 ≤ 
 < 6 log n can be retrieved
in constant time.

Proof. For every leaf corresponding to a suffix T [i..n] we store a bitvector of
length 6 log n, where the 
-th bit is set to 1 iff the leaf has an ancestor at string
depth 0 ≤ 
 < 6 log n. The bitvectors can be constructed in O(n log n) time in a
straightforward manner and occupy O(n) (words of) space.

For each bitvector we build the rank/select data structure [10]. The data
structures can be built in O(n log n) time, occupy O(n) (words of) space, and
allow to compute the number m of 1 in a prefix of a bitvector of given length 

and to find the m-th 1 in a bitvector O(1) time.

Next, we augment the suffix tree with the level ancestor data structure in
O(n) time and space that given an integer d and a node allows to compute the
node’s ancestor of (node) depth d in O(1) time [3].

To retrieve the locus of T [j − 
..j] we use the rank/select data structure of
the bitvector stored for T [j − 
..n] to compute the number m of ancestors of the
corresponding leaf of string depths less than 
 in constant time. The locus of
T [j − 
..j] is the ancestor of the leaf of depth d = m + 1, and can be retrieved
in O(1) time. ��

To sort the intervals efficiently, we build the suffix tree (and the suffix array)
of the string Tj = T [j−6 log n+1..j]. This gives us the lexicographical ordering of
the substrings T [j−6 log n+1..j], T [j−6 log n+2..j], . . . , T [j]. We can use this to
sort the corresponding intervals as follows. First we remove any substring T [j −

1+1..j] which has another substring T [j−
2+1..j] as a prefix. This cannot affect
correctness as the interval in the suffix array for T corresponding to occurrences
of T [j − 
1 + 1..j] is completely contained within the interval corresponding to
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T [j − 
2 + 1..j]. These substrings can be removed in O(log n) time by applying
Query 1 of Lemma 3. Finally, the key observation is that the remaining intervals
do not intersect and the order of the remaining intervals within the suffix array
of T corresponds to the lexicographical order of the corresponding substrings.
This gives the desired O(log n) time to compute the longest unbordered substring
ending at a single position j.

Theorem 1. The worst-case time complexity of algorithm A is O(n2) and the
average-case time complexity is O(n log n). The space complexity of the algorithm
is O(n).

Proof. It is easy to see the bounds on the worst-case time complexity and the
space complexity of the algorithm. We now show the average-case time com-
plexity. If t is the running time in the case when there are no long borders (i.e.
no branching nodes of string depth ≥ 6 log n in the suffix tree of T ), then by
Lemma 4 the average-case time complexity is bounded by O( 1

n · n2) + 1 · t =
O(n) + t.

It remains to show that t = O(n log n). We start by building the suffix tree
of T and preprocessing it according to Lemma 5 in O(n log n) time. Then, for
each j = 1..n we build the suffix array and suffix tree of Tj and retrieve its suffixes
that are not prefixes of other suffixes in O(log n) time. For each of the retrieved
suffixes we compute the interval of its occurrences. We then sort these intervals
and take the complement of the intervals in O(log n) time. The complement is a
union of at most 6 log n disjoint intervals and we compute the minimum in these
intervals in O(log n) time. The claim follows. ��

We remark that in the case of large alphabets (of size nΩ(1)) it is impossible
to use the algorithm [7] to build the suffix trees of substrings T [j −6 log n+1..j]
in linear time. To overcome this technicality, we apply the following alphabet
reduction trick prior to constructing the trees. We partition T into O(n) blocks
of length 12 log n with overlaps of 6 log n positions. We sort letters in each block
and for each letter T [i] store its rank in the block. Each T [j − 6 log n + 1..j]
belongs to at least one of the blocks. To construct its suffix tree, we consider one
of the blocks containing it and replace all letters with their ranks in the block.
This reduces the size of the alphabet to O(log n) and makes it possible to use
the algorithm [7]. The alphabet reduction trick takes O(n log n) extra time and
does not affect the time complexity of the algorithm.

4 Algorithm B
In this section we describe algorithm B, which has O(n1.5) worst-case time com-
plexity. As in Algorithm A, we set a threshold to distinguish between short
and long borders. For algorithm B, we set the threshold, τ to

√
n. That is, a

non-empty border is short if its length is smaller than
√

n, and long otherwise.
First note that we can compute the longest unbordered substring of length

at most 4
√

n in O(n1.5) time by computing the border array of each substring
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of length 4
√

n. From now on, we are only interested in unbordered substrings
of length at least 4

√
n. The algorithm will consist of

√
n stages. At stage k

it computes the longest unbordered substring that ends in an interval Jk =
[k

√
n + 1, (k + 1)

√
n]. Let F i

k, i = 1..(k − 3)
√

n, be the set substrings of T that
start at position i and end in Jk. The algorithm considers each i = 1..(k − 3)

√
n

in order and either says that there is no unbordered substring in F i
k or retrieves

a substring T [i..j] ∈ F i
k. We guarantee that T [i..j] does not have short borders.

Furthermore, if there are unbordered substrings in F i
k, we guarantee that T [i..j]

is the longest of them. We refer to T [i..j] as the candidate. After retrieving the
candidate T [i..j], the algorithm checks if it is unbordered. If it is, the algorithm
updates the maximal length of unbordered substrings.

4.1 Candidates

Let Pi be the longest prefix of T [i..n] that occurs in Tk = T [(k − 1)
√

n + 1..(k +
1)

√
n]. If T [i..j] ∈ F i

k has a short border, then this border is a prefix of Pi.
Moreover, if 
 is the position of an occurrence of Pi in Tk and 
+|Pi|−1 < j, then
T [
..j] has a non-empty border of length at most |Pi|. This simple observation
will allow us to differentiate between substrings with short borders and without
those. We explain the technical details below.

Preprocessing. We start by constructing the suffix tree for two strings T and Tk.
With its help we compute, for each i = 1..(k−3)

√
n, the length and the position

of an occurrence of the longest prefix Pi of T [i..n] that occurs in Tk (Query 2 of
Lemma 3).

Consider all conjugates T [
..(k + 1)
√

n]] $ T [(k − 1)
√

n + 1..
 − 1] of Tk$,
where $ is a letter that does not belong to the main alphabet. We compute the
shortest border array for each of the conjugates in O(n) time in total. Obviously,
values in the arrays are bounded by 2

√
n. We sort each array in O(

√
n) time using

bucket sort. Overall, it takes O(n) space and time. For r ∈ [k
√

n+1, (k+1)
√

n] let

S�,r =

{
T [
..r], if r > 
;
T [
..(k + 1)

√
n] $ T [(k − 1)

√
n + 1..r], if r < 
.

We define rp
� to be the largest position in Jk \ [
, 
 + p − 1] such that S�,rp

�

is either unbordered or has the shortest border of length at least p + 1. For a
fixed 
, all values rp

� can be computed in O(
√

n) time by scanning the (sorted)
shortest border array for T [
..(k + 1)

√
n]] $ T [(k − 1)

√
n + 1..
 − 1].

Computing Candidates. Below we fix i and show how to compute the candidate
in F i

k. If Pi is the empty string, T [i..(k + 1)
√

n] is the longest, unbordered sub-
string in F i

k and we return it as the candidate. Otherwise, let 
 be the position
of an occurrence of Pi in Tk and let p = |Pi|.
Lemma 6. If rp

� is not defined, then F i
k contains no unbordered substrings.
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Proof. It suffices to show that T [i..j] ends with a prefix of Pi for all j ∈ Jk. If
j ∈ [
, 
 + p − 1], the claim is obvious. Consider now j ∈ Jk \ [
, 
 + p − 1]. We
know that S�,j has a border of length in [1, p], which means that S�,j ends with
a prefix of Pi. Since S�,j is a suffix of T [i..j], we obtain that T [i..j] also ends
with a prefix of Pi. ��

If the condition of the lemma is satisfied, the algorithm says that F i
k contains

no unbordered substrings. Otherwise, let j = rp
� . Note that |S�,j | ≥ p + 1 by

definition.

Lemma 7. T [i..j] does not have a short border.

Proof. The proof is by contradiction. Suppose that T [i..j] has a short border B.
As B is a prefix of T [i..n] and occurs in Tk, it must be a prefix of Pi (not
necessarily proper). Consequently, S�,j starts with B and ends with B. Hence,
B is a border of S�,j of length |B| ∈ [1, p], which contradicts the definition
of j. ��
Lemma 8. If F i

k contains unbordered substrings, then T [i..j] is the longest of
them.

Proof. Let us first show that if a substring T [i..j′] ∈ F i
k is unbordered, then

S�,j′ is either unbordered or has the shortest non-empty border of length at
least p + 1. Suppose that the shortest non-empty border of S�,j′ has length in
[1, p]. This border is a prefix of Pi, i.e. S�,j′ ends with a prefix of Pi. Consequently,
T [i..j′] is not unbordered as it starts with Pi and ends with the prefix of Pi, a
contradiction.

It follows that all unbordered substrings in F i
k have length at most |T [i..j]|.

It remains to show that if T [i..j] has a long border, then all shorter substrings
in F i

k have a non-empty border. As T [i..j] has a long border, for some b ≥ √
n

we have T [i..i + b − 1] = T [j − b + 1..j]. It follows that for all j′ ∈ [k
√

n + 1, j]
we have T [i..i+ b+ j − j′ − 1] = T [j − b+1..j′], i.e. all substrings T [i..j′] shorter
than T [i..j] have a non-empty border. ��

The algorithm retrieves the candidate T [i..j] in O(1) time. The last two lem-
mas guarantee that T [i..j] does not have short borders and if there are unbor-
dered substrings in F i

k, then T [i..j] is the longest of them. It remains to check if
T [i..j] is unbordered. As it has no short borders, it suffices to check if it has a
long border.

4.2 Long Border Check

Let Sj be the shortest suffix of T [1..j] such that its minimal period is larger than√
n/2. We will show that every long border of T [i..j] ends with an occurrence of

Sj . During the long border check we will scan over a sorted list of occurrences
of Sj to determine if one of them induces a long border of T [i..j].
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Preprocessing. Let Sj be the shortest suffix of T [1..j] such that its minimal
period is larger than

√
n/2. If there is no such suffix, Sj is undefined.

Lemma 9. If T [i..j] is unbordered or has only long borders, then Sj is defined
and all long borders of T [i..j] (if any) end with an occurrence of Sj.

Proof. If T [i..j] is unbordered, then its shortest period is equal to its length
which is larger than

√
n. This shows that Sj is defined.

If T [i..j] has only long borders, then consider the shortest of them. Since the
shortest border is always unbordered, its shortest period is equal to its length
which is larger than

√
n. This implies that Sj can only be shorter than this

shortest long border. Thus, Sj is a suffix of the shortest long border, and therefore
a suffix of any long border. ��
Lemma 10. For any j there are at most 2

√
n occurrences of Sj in T .

Proof. Since the minimal period of Sj is larger than
√

n/2, any two occurrences
of Sj are at least

√
n/2 positions apart. ��

Lemma 11. Any two occurrences of suffixes Sj1 �= Sj2 have distinct right end-
points.

Proof. Assume the opposite. Let |Sj1 | > |Sj2 |. By the definition, Sj1 is the
shortest suffix of T [1..j1] such that its minimal period at least

√
n/2. As Sj1

and Sj2 have occurrences with equal right endpoints, Sj2 is a suffix of Sj1 , and,
as a corollary, of T [1..j1]. But, Sj2 is shorter than Sj1 and its minimal period is
larger than

√
n/2. A contradiction. ��

The algorithm will make use of sorted lists of occurrences of distinct suf-
fixes Sj . From above it follows that the length of one list is at most 2

√
n, whereas

the total length of the lists is at most n. We compute the lists in the following way.
Suppose that each Sj is replaced with an integer uj ∈ [1, 2n] so that Sj1 �= Sj2

implies uj1 �= uj2 . We create an array of 2n empty lists and scan positions of
T from the left to the right. For each j = 1..n we add position j to the list uj .
Thus, we can compute the lists in O(n) time. We now describe the replacement
procedure.

Lemma 12. Given j, the length of Sj can be computed in O(
√

n) time.

Proof. We start by computing the minimal periods of suffixes T [j − √
n +

1..j], T [j − √
n + 2..j], . . . , T [j]. This can be done by constructing the border

array B of the reverse of T [j −√
n+1..j] in O(

√
n) time: The minimal period of

T [j − 
..j] will be equal to 
 − B[
]. If the minimal period π of T [j − √
n + 1..j]

is at least
√

n/2, then Sj is one of the suffixes and we already know it. Suppose
that π ≤ √

n/2. Let T [k..j] be the longest suffix of T [1..j] such that its minimal
period equals π. We can compute T [k..j] in constant time (Query 4 of Lemma 2).
We claim that the minimal period γ of T [k − 1..j] is larger than

√
n/2. Indeed,

T [k..j], as a suffix of T [k − 1..j], is periodic with period γ. If γ ≤ √
n/2, we have

π + γ ≤ √
n ≤ T [k..j]. By the Periodicity lemma, T [k..j] is periodic with period

gcd(π, γ). Because of the minimality of π, γ must be a multiple of π. It follows
that T [k − 1..j] has period π, which contradicts the definition of T [k..j]. ��
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For each j = 1..n we compute the length of Sj . We then build the suffix
tree of the reverse of T . The suffix tree contains at most 2n nodes which we
enumerate from 1 to 2n. As we know, each position can be the right endpoint
of an occurrence of at most one Sj . This suggests the following algorithm. We
consider the leaves of the tree from left to the right. Let the current leaf be
labeled by T [j]T [j − 1] . . . T [1]. We follow the path from the leaf to the root to
find the highest branching node of string depth ≥ |Sj |. Leaves in the subtree
of this node will correspond to the positions j′ such that Sj′ = Sj . We replace
all Sj′ in the subtree with the order number of the node and proceed to the
leftmost suffix outside the subtree. The replacement procedure takes O(n) time
overall.

The Check. Throughout stage k we maintain, for all j ∈ Jk, a pointer to the last
position in the list of uj that has been explored by the algorithm. A long border
(if any) of the candidate substring T [i..j] must be induced by an occurrence of
Sj in the interval [i, j]. The algorithm explores occurrences in the list of Sj in
turn starting from the one it stopped at. For each occurrence p ≥ i the algorithm
compares substrings F1 = T [i..p+ |Sj |−1] and F2 = T [j−|F1|+1..j] (Query 1 of
Lemma 2). If they are equal, T [i..j] has a long border. Otherwise, the algorithm
proceeds to the next occurrence in the list. If no occurrence in the list induces a
long border, T [i..j] is unbordered.

4.3 Pseudocode and the Bounds

To summarize, we give pseudocode of stage k of algorithm B. Preprocessing for
long border checks (computation of suffixes Sj and their lists) is done before the
first stage (not shown).

Algorithm 1. Stage k of Algorithm B.

1: Build the suffix tree of T and Tk = T [(k − 1)
√

n + 1..(k + 1)
√

n]
2: for i = 1..n do
3: Compute the longest prefix Pi of T [i..n] that occurs in Tk

4: for � = (k − 1)
√

n + 1..(k + 1)
√

n do
5: Compute the shortest border array of T [�..(k + 1)

√
n] $ T [(k − 1)

√
n + 1..� − 1]

6: Sort the array
7: Compute the values rp

�

8: for i = 1..(k − 3)
√

n do
9: � ← position of an occurrence of Pi in Tk

10: j ← r
|Pi|
�

11: if T [i..j] does not have a long border then
12: Update LongestUnbordered

Theorem 2. The worst-case time complexity of algorithm B is O(n1.5). The
space complexity of the algorithm is O(n).
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Proof. It suffices to show that one stage of the algorithm takes O(n) time. Pre-
processing takes O(n) time. For each position i = 1..n we spend constant time
plus the time needed for the long border check. The total amount of time needed
for the long border checks is linear in total length of the lists, which is at most n,
as we never check an occurrence in a list twice for any position of T . ��
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Abstract. Although several grammar-based self-indexes have been pro-
posed thus far, their applicability is limited to offline settings where whole
input texts are prepared, thus requiring to rebuild index structures for
given additional inputs, which is often the case in the big data era. In
this paper, we present the first online self-indexed grammar compression
named OESP-index that can gradually build the index structure by read-
ing input characters one-by-one. Such a property is another advantage
which enables saving a working space for construction, because we do
not need to store input texts in memory. We experimentally test OESP-
index on the ability to build index structures and search query texts, and
we show OESP-index’s efficiency, especially space-efficiency for building
index structures.

1 Introduction

Text collections including many repetitions, so called highly repetitive texts, have
become common. Version controlled software stores a large amount of documents
with small differences. The current sequencing technology enables us to read
individual genomes quickly and economically, which generates large databases
of thousands of human genomes [3]. The genetic difference between individual
human genomes is said to be approximately 0.1 percent, thus making the collec-
tion highly repetitive. There is therefore a strong need for developing powerful
methods to store and process repetitive text collections on a large-scale.

Self-indexes aim at representing a collection of texts in a compressed format
that supports the random access to any position and also provides query searches
on the collection. Although grammar-based self-indexes are especially effective
for processing highly repetitive texts and several grammar-based self-indexes
have been proposed [1,2,5,6,15] (See Table 1), their applicability is limited to
offline cases where all the text collections are given in advance, thus requiring to
rebuild indexes when additional texts are given. Evenworse, they need to store
whole input texts in memory for constructing indexes, which requires a large
amount of working space. The problem is especially serious when we process
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PRESTO program
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Table 1. Comparison with offline methods. Construction time, search time and extrac-
tion time are presented in big O notation that is omitted for space limitations. N is
the length of text, m is the length of query pattern, n is the number of variables in
a grammar, σ is alphabet size, h is the height of the parse tree of the straight line
program, z is the number of phrases in LZ77, d is the length of nesting in LZ77, occ is
the number of occurrences of query pattern in a text, occq is the number of candidate
appearances of query patterns, lg∗ is the iterated logarithm, and α ∈ (0, 1] is a load
factor for a hash table. lg stands for log2.

Working space(bits) Index size(bits) Algorithm

LZ-index[14] O(N) z lg N + 5z lg N Offline
−z lg z + o(N) + O(z)

Gagie et al.[5] O(N) 2n lg n + O(z lg N Offline
+z lg z lg lg z)

SLP-index[1,2] O(N) n lg N + O(n lg n) Offline

ESP-index[19] O(N) n lg N + n lg n Offline
+2n + o(n lg n)

OESP-index n lg N + O((n + σ) lg(n + σ)) n lg N + O((n + σ) lg(n + σ)) Online

Construction time Search time Extraction time

LZ-index [14] N lg σ m2d + (m + occ) lg z md

Gagie et al. [5] N m2 + (m + occ) lg lg N m + lg lg N

SLP-index [1,2] N m2 + h(m + occ) lg n (m + h) lg n

ESP-index [19] 1
α

N lg∗N expected lg lg n(m + occq lg m lg N) lg∗N lg lg n(m + lg N)

OESP-index 1
α

N lg(n + σ) lg∗N lg(n + σ)(m
α

+ occq(lg N + lg m lg∗N)) lg(n + σ)(m + lg N)
expected expected

massive collections of highly repetitive texts, which is ubiquitous in the big data
era. An open challenge is to develop an online self-indexed grammar compression
not only with a small working space for a large input but also with a functionality
of updating data structures for building self-indexes from new additional texts.

Edit-sensitive parsing (ESP) [4] is an efficient parsing algorithm originally
developed for approximately computing edit distances with moves between texts.
ESP builds from a given text a parse tree that guarantees upper bounds of pars-
ing discrepancies between different appearances of the same subtext. Maruyama
et al. [11] presented a grammar-based self index called ESP-index on the notion
of ESP and Takabatake et al. [19] improved ESP-index for fast query searches
by using GMR’s rank/select operations for general alphabet [7]. Unlike other
grammar-based self-indexes, they perform top-down searches for finding candi-
date appearances of a query text on the data structure by leveraging the upper
bounds of parsing discrepancies in ESP. However, their applicability is limited
to offline cases.

In this paper, we present an online self-indexed grammar compression named
OESP-index for building a self-index by reading input characters one-by-one.
As far as we know, OESP-index is the first method for building grammar-based
self-indexes in an online manner. OESP-index is built on the notion of ESP and
its data structures are constructed by leveraging the idea behind fully-online
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LCA (FOLCA) [12,13], an efficient online grammar compression that builds a
context-free grammar (CFG) from an input text and encodes it into a succinct
representation. We present a novel query search and random access algorithms
for OESP-index and discuss their efficiency.

Experiments were performed on retrieving query texts from a benchmark
collection of highly repetitive texts. The performance comparison with other
algorithms demonstrates OESP-index’s superiority.

2 Preliminaries

2.1 Basic Notations

Let Σ be a finite alphabet and σ = |Σ|. The length of string S is denoted by |S|.
The set of all strings over et Σ is denoted by Σ∗. The set of all strings of length
k is denoted by Σk. We assume a recursively enumerable set X of variables
with Σ ∩ X = ∅. S[i] and S[i, j] denote the i-th symbol of string S and the
substring from S[i] to S[j], respectively. lg stands for log2. Let lg(1) u = lg u,
lg(i+1) u = lg lg(i) u, and lg∗u = min{i | lg(i) u ≤ 1}. Practically lg∗u = O(1)
since lg∗u ≤ 5 for u ≤ 265536.

2.2 Straight-Line Program (SLP)

A context-free grammar (CFG) in Chomsky normal form is a quadruple
G = (Σ,V,D,Xs) where V is a finite subset of X , D is a finite subset of
V × (V ∪ Σ)2 and Xs ∈ V is the start symbol. An element in D is called
production rule. A variable in V is called nonterminal symbol. val(Xi) denotes
the string derived from Xi ∈ V . For X1,X2, ...,Xk ∈ V , let val(X1,X2, ...,Xk) =
val(X1)val(X2)...val(Xk). A grammar compression of S is a CFG that derives
S and only S. The size of a CFG is the number of variables, i.e., |V | and let
n = |V |.

The parse tree of G is a rooted ordered binary tree such that (i) internal
nodes are labeled by variables in V and (ii) leaves are labeled by symbols in
Σ, i.e., the label sequence in leaves is equal to input string S. In a parse tree,
any internal node Z corresponds to a production rule Z → XY and has a left
child with label X and a right child with label Y . A partial parse tree [18] is
an ordered tree formed by traversing the parsing tree in a depth-first manner
and pruning out all descendants under every node of variables appearing no less
than twice.

Straight-line program (SLP) [10] is defined as a grammar compression over
Σ∪V and its production rules are in the form of Xk → XiXj where Xk,Xi,Xj ∈
Σ ∪ V and 1 ≤ i, j < k ≤ n + σ.

2.3 Phrase Dictionary and Reverse Dictionary

A phrase dictionary is a data structure for directly accessing a digram XiXj

from a given Xk if Xk → XiXj ∈ D. It is typically implemented by an array
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(Ⅰ) Parse tree for a post-order SLP (Ⅱ) Post order partial parse tree
     (POPPT) 
     (i) Succinct representation 

of POPPT(Ⅱ)

    B:0010101011
     

(ii)  Hash table for the reverse 
      dictionary of the POSLP
      The hash table is stored 
       in main memory. 
      
      
     

(iii) Wavelet tree indexing 
      a symbol sequence at 
      leaves in the POPPT
     
   L:abb X

1
X

2

       
     

  (Ⅲ) Self-index structure

(iv) Array named length
      array storing lengths of 
      strings derived by 
      non-terminal symbols
          X1X2X3X4

      R: 2  3 5  8

Fig. 1. Example of parse tree, post order partial parse tree and self-index structure.
The self-index structure consists of four data structures which are directly built from
the parse tree.

requiring 2n log (n + σ) bits for storing n production rules. A reverse dictionary
D−1 is a mapping from a digram to an associated variable. D−1(XY ) returns
the variable Z if Z → XY ∈ D; otherwise, it creates a new variable Z ′ /∈ V and
returns Z ′.

2.4 Succinct Data Structures

We use the fully indexable dictionary (FID) for indexing bit strings. Our method
represents CFGs using a rank/select dictionary, a succinct data structure for a
bit string B [9] supporting the following queries: rankc(B, i) returns the number
of occurrences of c ∈ {0, 1} in B[0, i]; selectc(B, i) returns the position of the i-th
occurrence of c ∈ {0, 1} in B; access(B, i) returns i-th bit in B. Data structures
with |B| + o(|B|) bit storage to achieve O(1) time rank and select queries [17]
have been presented.

For online grammar compression, we adopt the dynamic range min/max tree
(DRMMT) [16] for online construction of parse tree. We can obtain parent(B, i),
the parent of node i of DRMMT B in O( lg n

lg lg n ) time where n is the number of
nodes of the tree. We consider the wavelet tree (WT) [8], an extension of FID
for general alphabet. A WT is a data structure for a string over finite alphabets,
and it can compute the rank and select queries on a string S over Σ∗ in O(log σ)
time and using |S| log σ(1 + o(1)) bits.

3 Edit Sensitive Parsing (ESP) and Fully-Online LCA
(FOLCA)

We review the ESP algorithm [4] and its online variant named FOLCA [13] in
this section. The original ESP is an offline algorithm and builds a parse tree
named ESP-tree from a given string. ESP-trees are complete, balanced binary
trees each subtree of which is 2-tree in the form of X → AB or 2-2-tree in the
form of X → AY and Y → BC. The algorithm partitions a string S into non-
overlapping substrings S1S2 · · · S� each of which belongs to one of three substring
types. Type1 is a substring of a repeated symbol, i.e., ak for a ∈ Σ and k > 1;
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Push back 

Fig. 2. Example of dynamic wavelet tree. L is the leaf label of POPPT; Code is the
integer representation of L; Bi is the bit vector representing elements in code; Only Ai

at each node is stored.

type2 is a substring longer than 2 lg∗ |S| not including type1 substrings; type3
is a substring that is neither type1 nor type2.

The parsing algorithm parses each substring Si according to three substring
types. For type1 and type3 substrings, the algorithm performs the left aligned
parsing as follows. If |Si| is even, the algorithm builds a 2-tree from Si[2j −1, 2j]
for each j ∈ {1, 2, ..., |Si|/2}; Otherwise, the algorithm builds a 2-tree from
Si[2j − 1, 2j] for each j ∈ {1, 2, ..., �(|Si| − 3)/2	}, and it builds a 2-2-tree from
the last trigram Si[|Si| − 2, |Si|]. For type2 substrings, the algorithm further
partitions substring Si into short substrings of length two or three by using an
efficient string partitioning procedure named alphabet reduction [4], and it builds
2-trees for substrings of length two and 2-2-trees for substrings of length three.
The parsing algorithm generates a new shorter string S′ of length from |S|/3 to
|S|/2, and it parses S′. The above process iterates on the new sequence until its
length is one.

FOLCA is an online algorithm that builds ESP-tree as a post-order partial
parse tree (POPPT) using the parsing rule in the ESP algorithm from a given
string in an online manner. A POPPT and the post-order SLP (POSLP) corre-
sponding to a POPPT are defined as follows.

Definition 1 (POPPT and POSLP [13]). A POPPT is a partial parse tree
whose internal nodes have post-order variables. A POSLP is an SLP whose par-
tial parse tree is a POPPT.

Figure 1-(I) and -(II) show an example of parse tree and POPPT.
Since FOLCA builds POPPT using the rules in the ESP algorithm, it can

exploit advantages existing in both SLP and ESP-tree. Given a string S, FOLCA
builds the POPPT of height O(lg |S|) in O(|S| lg∗ |S|) time. FOLCA’s worst-
case approximation ratio to the smallest CFG is O(lg∗ |S|). OESP-index directly
encodes FOLCA’S POPPT into a succinct representation and build an index
structure in an online manner for fast query searches and substring extractions,
which is explaned in the next section.

4 Index Structure of OESP-Index

OESP-index’s succinct representation consists of four data structures: (i) B :
succinct tree of POPPT, (ii) H : hash table (iii) L : non-negative integer array
indexed by wavelet tree and (iv) R : non-negative integer array.
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Succinct tree of POPPT B is a bit string made by traversing POPPT in
post-order, and putting ‘0’ if a node is a leaf and ‘1’ otherwise. The last bit ‘1’ in
B represents a virtual node and B is indexed by the DRMMT [16]. The succinct
tree supports the following three operations: parent(B, i) return the parent node
of a node i; left child(B, i) returns the left child of a node i; right child(B, i)
returns the right child of a node i; They are computed in O(lg n/(lg lg n)) time.
The space for our succinct tree is at most 2n + o(n) bits.

A reverse dictionary H : (V ∪Σ)×(V ∪Σ) → V is implemented by a chaining
hash table. Let α be a constant called a load factor. The hash table has αn entries
and each entry stores a list of integers i representing the left hand side of a rule
Xi → XjXk. The size of the data structure is αn lg(n+σ) bits for the hash table
and n lg (n + σ) bits for the lists. Thus, the total size is n(1+α) lg (n + σ)) bits.
The access time is expected O(1/α) time.

Non-negative integer array L stores symbols at leaves from the leftmost leaf to
the rightmost leaf in the POPPT. L is indexed by dynamic wavelet tree (DWT)
that is presented in the next subsection. Each element of non-negative integer
array R is the length of the string derived from a variable, i.e., |val(Xi)| for
Xi ∈ V . The size of R is n lg |S| bits. Figure 1-(III)-(iv) shows an example of
data structures.

4.1 Dynamic Wavelet Tree (DWT)

Our DWT is a wavelet tree supporting a operation of adding an element to
the tail of a sequence. Such a operation is called a pushback that is necessary
for implementing DWT. A wavelet tree for sequence L over range of alphabet
and variables [1..(n + σ)] can be recursively described over sub-range [a..b] ⊆
[1..(n+σ)]. A wavelet tree over range [a..b] is a binary balanced tree with b−a+1
leaves. If a = b, the tree is just a leaf labeled a. Otherwise it has an internal root
node that represents L. The root has a bitstring Aroot[1, |S|] defined as follows:
if L[i] ≤ (a + b)/2 then Aroot[i] = 0, else Aroot[i] = 1. We define L0[1, �0] as
the subsequence of L formed by the symbols c ≤ (a + b)/2, and L1[1, �1] as the
subsequence of L formed by the symbols c > (a + b)/2. Then, the left child of
the root is a wavelet tree for L0[1, �0] over range [a..�(a + b)/2	] and the right
child of the root is a wavelet tree for L1[1, �1] over range [1 + �(a + b)/2	..b].

Implementing WTs without pointers uses a small space of n lg(n + σ) +
o(n lg(n + σ)) bits, but supporting the pushback operation is difficult. Thus,
we implement DWTs using pointers where the binary tree is explicitly repre-
sented. When a new symbol exceeding the representation ability of the current
binary tree in DWT is added to DWT, DWT adds new nodes to the binary
tree, resulting in increasing the height of the tree. The space of DWT uses
(3n + 2σ) lg(n + σ) + o(n lg(n + σ)) bits. Figure 2 shows an example of DWT.

4.2 Complexity for Building OESP-Index

Theorem 1. The size of OESP-index is n lg |S| + O((n + σ) lg(n + σ)) bits.
The construction time is O( 1

α |S| lg(n + σ) lg∗|S|) and the memory consumption
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Algorithm 1. NextCore on implicit parse tree POPPT(B,L)
1: v: the leftmost occurrence node of maximal core, p: empty stack
2: function NextCore(v, p)
3: if v �= root then
4: if v is the left child of parent(B, v) then �
5: p.push(left)
6: else
7: p.push(right)
8: end if
9: NextCore(parent(B, v), p)
10: i ← 1
11: p.pop()
12: while (u = selectv(L, i)) �= NULL do � (u, p): the next occurrence on explicit tree
13: if u is left child of parent(B, u) then
14: p.push(left)
15: else
16: p.push(right)
17: end if
18: NextCore(parent(B, u), p)
19: p.pop()
20: i ← i + 1
21: end while
22: end if
23: end function

is the same as the index size, where S is an input string, n is the number of
variables, α is a load factor of the hash table, and we assume the size of alphabet
is constant. The update time for the next input symbol is O( 1

α lg(n + σ) lg∗|S|).
Proof. The size of the length array R is n lg |S| bits for n variables. The size of
B is 2n + o(n) bits and the size of L and H are O((n + σ) lg(n + σ)) bits each.
We can access Z = H(XY ) in O(1/α) time for a load factor α ∈ (0, 1]. The
alphabet reduction is iterated at most lg∗ |S| times for each symbol. The time
to get the parent and left/right children of a node in the partial parse tree is
O(lg(n + σ)) using the rank/select over the DWT for L. Thus, the construction
time of the parse tree is O( 1

α |S| lg(n + σ) lg∗|S|). Analogously, the update time
is clear.

4.3 Query Search and Substring Extraction

For a node v of a parse tree of the string S ∈ Σ∗, and yield(v1 · · · vk) =
yield(v1) · · · yield(vk). Label(v) denotes the label of v and Label(v1 · · · vk) =
Label(v1) · · · Label(vk). If Label(v) = X, yield(X) is identical to yield(v).
lca(u, v) is the lowest common ancestor of u, v. For a pattern P ∈ Σ∗, nodes
{v1, . . . , vk} such that yield(v1 · · · vk) = P are called embedding nodes of P . For
embedding nodes {v1, . . . , vk}, string Q = Label(v1 · · · vk) is called an evidence
of pattern P . Since the trivial evidence Q identical to P always exists, the notion
of evidence is well-defined. In addition, for embedding nodes {v1, . . . , vk}, a node
z such that z = lca(v1, vk) is called an occurrence node of P

The next theorem tells that we can find shorter evidence depending on |P |.
Theorem 2. ( [11]) There exists an evidence Q = Q1 · · · Qt of P such that each
Qi is a maximal repetition or a symbol and t = O(lg |P | lg∗|S|).
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The time to find the evidence Q of pattern P is bounded by the construction
time of the parsing tree of P . In our data structure of OESP, the time to find
the evidence Q is estimated as follows.

Theorem 3. The time to find Q is O( 1
α |P | lg(n + σ) lg∗|S|).

Proof. This bound is clear by Theorem 1.

Let us consider the simple case that |Qi| = 1 for any i. In this case, Q
contains no repetition such that Q = q1 · · · qt ∈ Σt. A symbol qk is called a
maximal core if |yield(qk)| ≥ |yield(qi)| for any i. For an internal node v of the
parse tree T of S with Label(v) = qk, an ancestor z of v is the occurrence node
of P iff all q1, . . . , qk−1 and qk+1, . . . , qt can be embedded around v. Moreover,
any occurrence node of P is restricted by the case Label(v) = qk. For the general
case Qi = a� (� ≥ 2), i.e., Qi is a repetition, we can reduce the embedding of
a� to the embedding of a string AB · · · C of length at most O(lg �) such that
yield(AB · · · C) = a�. Thus, the embedding of type1 string is easier than others,
and then, without loss of generality, we can assume |Qi| = 1 for any i.

The remaining task of the search problem is the random access to all occur-
rences of the maximal core qk over the POPPT, the pruned parse tree. By the
definition of POPPT, the internal node with rank k is the leftmost occurrence
of the symbol qk itself. In the previous indexes [11,19], a next occurrence of qk

is obtained using a data structure based on the renaming variables in a lexico-
graphic order. This data structure is not, however, dynamically constructable.
Therefore, we develop the search algorithm NextCore (Algorithm 1) for the
OESP-index.

The NextCore visits all occurrences of the maximal core on the parse tree
T using its implicit POPPT T ′. When NextCore receives a candidate node v
containing a maximal core q as its descendant, it computes the pair (u, p) where
u is the next occurrence of v in T ′ and p is the path from u to q. Thus, (u, p)
indicates the occurrence of q in the explicit parse tree. We show the correctness
of this algorithm and its complexity.

Lemma 1. The Nextcore find any occurrence of the maximal core exactly
once. The amortized time to find a next occurrence is O( lg n lg |S|

lg lg n ).

Proof. Let T be the parse tree and T ′ be the POPPT (B,L). By the definition
of T ′, any internal node x of B is the variable itself, i.e., Label(x) = x. For the
maximal core q, let v1 > v2 > · · · > vk be the post-order of its occurrences in T .
We show that the algorithm finds any vi as (u, p) by induction on i. Given q,
the internal node q of B represents the leftmost occurrence of q itself. Then,
for the base case i = 1, the occurrence is obtained v1 as (q, p) with |p| = 0.
Assume the induction hypothesis on some i. Since the node vi+1 was pruned
in T ′, let u be the leaf of T ′ corresponding to the root of the pruned maximal
subtree containing vi+1. For Label(u) = u′, there is the leftmost occurrence of
u′ as an internal node of B. The subtree on the node u′ contains an occurrence
of q because the two subtrees on u and u′ in T are identical each other. Let p be
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Table 2. Index size in mega bytes(MB).

OESP-index ESP-index SLP-index LZ-index FM-index

einstein 22.84 1.76 2.28 177.02 942.85
cere 364.92 27.40 45.74 438.05 806.52

the path from u′ to v′ for some v′ ∈ {v1, . . . , vi}. By the induction hypothesis,
the algorithm finds v′ as (u′, p). Then, vi+1 can be also found as (u, p). On the
other hand, any (u, p) is unique, then the algorithm finds any occurrence of q
exactly once. For the time complexity, the number of executed select operations
is bounded by the number of different (u, p) that is O(occq log |S|) where occq is
the number of occurrences of q. Each select operation on L and parent operation
on B take O(lg(n+σ)) and O( lg n

lg lg n ) time, respectively. Therefore, the total time

is O(occq(lg(n + σ) + lg n lg |S|
lg lg n )) = O(occq(

lg n lg |S|
lg lg n )) and the amortized time to

find a next occurrence of q is O( lg n lg |S|
lg lg n ).

Theorem 4. The counting/locating time of pattern and extraction time are
O(lg(n + σ)( |P |

α + occq(lg |S| + lg |P | lg∗|S|))) and O(lg(n + σ)(|P | + lg |S|)),
respectively, where P is a query pattern and occq is the number of occurrences
of the maximal core of P in the parse tree.

Proof. Since we can get the length of the substring encoded by any variable in
O(1) time, the locating time is same as the counting time. Given the pattern P ,
as previously shown, the evidence Q of P is found in O( 1

α |P | lg(n + σ) lg∗|S|)
time. For each occurrence of a maximal core, we can check if the sequence of
symbols of length O(lg |P | lg∗ |S|) is embedded around the core in O(lg(n +
σ)(lg |S| + lg |P | lg∗ |S|)) time. Therefore, by Lemma 1, the total counting time
of pattern is

O (
|P |
α

lg(n + σ) lg∗|S| + occq lg(n + σ)(lg |S| + lg |P | lg∗|S|) + occq
lg n lg |S|

lg lg n
)

= O(lg(n + σ)(
|P |
α

+ occq(lg |S| + lg |P | lg∗|S|))).

On the other hand, for any S[i, j] of length m, we can find S[i] in O(lg |S|) time
and visit all leaves in S[i, j] in O(|P |) time because the parsing tree is balanced.
This follows the extraction time.

5 Experiments

We evaluated the actual performance of OESP-index for real data1. The environ-
ment is Intel(R) Core(TM)i7-2620M CPU(2.7GHz) machine with 16GB memory.

1 http://pizzachili.dcc.uchile.cl/repcorpus/real/

http://pizzachili.dcc.uchile.cl/repcorpus/real/
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Fig. 3. Working memory of each method in megabytes for einstein(left) and cere(right).
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Table 3. Working memory of dictionary D consisting of the bit string B and the
dynamic wavelet tree L for einstein and cere.

Size of text(MB) 50 100 150 200 250 300 350 400 all

einstein B(MB) 0.04 0.07 0.07 0.07 0.14 0.14 0.14 0.14 0.14
L(MB) 5.06 6.63 7.84 8.99 10.88 12.23 13.38 14.37 15.14

cere B(MB) 1.10 1.10 1.10 2.20 2.20 2.20 2.20 2.20 2.20
L(MB) 102.34 131.58 164.05 179.90 199.08 216.87 225.70 235.62 245.81

We use einstein.en.txt (einstein, 446 MB) and cere (cere, 440 MB), where einstein
is highly repetitive.

Compared self-indexes are offline version of ESP-index (ESP-index)[19], other
grammar-based self-index (SLP-index)[1,2], LZ-based index (LZ-index)2, and
BWT-based self-index (FM-index)3. Figure 3 shows the required working mem-
ory (MB) in response to an increase of input string. For the offline algorithms,
the working memory is evaluated for each static data with the indicated size.
Figure 4 is the breakdown of required memory by the data structures of OESP-
index: dictionary D, length array R, and hash table H. Besides, Table 3 is the
breakdown of D by the bit string B and the wavelet tree L.

Table 4.3 shows the size of indexes of all methods. The size of OESP-index
is smaller than LZ-index and FM-index but larger than ESP-index and SLP-
index. The increase of index size arise from DWT. Reducing this data size is an
important future work.

The memory consumption of OESP-index is smallest for both type of data.
The required memory of OESP-index is 2.5%(einstein) and 40%(cere) of offline
ESP-index. The space efficiency of OESP-index comes down when the data is
not large and not highly repetitive (Figure 4 (right)). Especially, L represented
by the dynamic wavelet tree (DWT) consumes a large space (Table 3) arising
from the pointer and the reservation space of bit string in DWT.

Figure 5 shows the construction time. OESP-index is slowest for both data
in all methods. OESP-index is 57.1 times (einstein) and 58.1 times (cere) slower
than ESP-index because the original one can use GMR [7], a faster wavelet tree
algorithm but not available in the online version.

Figure 6 shows the search time. Here the search time means the locating time
since the counting time is almost same to the locating time. We note that the
result of SLP-index is not shown because it could not work for this data. The
range of the length of query pattern is [10, 1000]. The locating time of OESP-
index is slowest in both data in all query length. OESP-index is 163.2 times
(cere) and 24.9 times (einstein) slower than ESP-index.

6 Conclusion

We have presented OESP-index, an online self-indexed grammar compression.
OESP-index is the first method for building grammar-based self-indexes in an
2 http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index1
3 https://code.google.com/p/fmindex-plus-plus/

http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index1
https://code.google.com/p/fmindex-plus-plus/
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online manner. Experimental results demonstrated OESP-index’s potential for
processing a large collection of highly repetitive texts. Future work is to make
OESP-index scalable to massive collections of the same type, which is required
in the big data era.
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5. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)
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Abstract. For an undirected tree with n edges labelled by single let-
ters, we consider its substrings, which are labels of the simple paths
between pairs of nodes. We prove that there are O(n1.5) different palin-
dromic substrings. This solves an open problem of Brlek, Lafrenière and
Provençal (DLT 2015), who gave a matching lower-bound construction.
Hence, we settle the tight bound of Θ(n1.5) for the maximum palindromic
complexity of trees. For standard strings, i.e., for paths, the palindromic
complexity is n + 1.

1 Introduction

Regularities in words are extensively studied in combinatorics and text algo-
rithms. One of the basic type of such structures are palindromes: words which
are the same when read in both directions. The palindromic complexity of a
word is the number of distinct palindromic substrings in the word. An elegant
argument shows that the palindromic complexity of a word of length n does
not exceed n + 1 [5], which is already attained by a unary word an. Therefore
the problem of palindromic complexity for words is completely settled, and the
natural next step is to generalize it to trees.

In this paper we consider the palindromic complexity of undirected trees with
edges labelled by single letters. We define substrings of such a tree as the labels
of simple paths between arbitrary two nodes. Each label is the concatenation of
the labels of all edges on the path. Fig. 1 illustrates palindromic substrings in a
sample tree. Note that palindromes in a word of length n naturally correspond
to palindromic substrings in a path of n edges.
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The study of the palindromic complexity of trees was recently initiated by
Brlek, Lafrenière and Provençal [3], who constructed a family of trees with n
edges containing Θ(n1.5) distinct palindromic substrings. They conjectured that
there are no trees with asymptotically larger palindromic complexity and proved
this claim for a restricted case of trees in which the label of every path consists
of up to 4 blocks (runs) of equal letters.

Our Result. We show that the number of distinct palindromic substrings in a
tree with n edges is O(n1.5). This bound is tight by the construction given in [3];
hence we completely settle the maximum palindromic complexity for trees.

Related Work. Palindromic complexity of words was studied in various aspects.
This includes algorithms determining the complexity [7], bounds on the aver-
age complexity [1] or generalizations to circular words [9]. Finite and infinite
palindrome-rich words received particularly high attention; see e.g. [2,5,6]. This
class contains, for example, all episturmian and thus all Sturmian words [5].

In the setting of labelled trees other kinds of regularities were also studied.
It has been shown that a tree with n edges contains O(n4/3) distinct squares [4]
and O(n log n) distinct cubes [8]. The former bound is known to be tight. Inter-
estingly, the lower bound construction resembles that for palindromes [3].
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Fig. 1. To the left: an example undirected tree with 9 nontrivial palindromic substrings
bcb, bccb, aca, cbc, caac, cc, cbcbc, aa, acaaca. To the right: deterministic double tree
obtained after rooting the tree at r, merging both subtrees connected to r with edges
labelled by c, and duplicating the resulting tree.

2 Preliminaries

A word w is a sequence of characters w[1], w[2], . . . , w[|w|] ∈ Σ, often denoted
w[1..|w|]. A substring of w is any word of the form w[i..j], and if i = 1 (j = |w|)
it is called a prefix (suffix). A period of w is any integer p, 1 ≤ p ≤ |w|, such that
w[i] = w[i+p] for i = 1, 2, . . . , |w|−p. The shortest period of w, denoted per(w),
is the smallest such p. The following fact is a straightforward consequence of the
periodicity lemma.
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Fact 1. Suppose a word v is a substring of a longer word u which has a period
p ≤ 1

2 |v|. Then per(u) = per(v).

A palindrome is a word w such that w = wR, where wR denotes the reverse of
w. We have the following connection between periods and palindromes.

Fact 2. Suppose a palindrome v is a suffix of a longer palindrome u. Then v is
a prefix of u and thus |u| − |v| is a period of u and of v.

Define a double tree D = (T�, Tr, r) as a labelled tree consisting of two trees
T� and Tr sharing a common root r but otherwise disjoint. The edges of T� and
Tr are directed to and from r, respectively. The size of D is defined as |D| =
|T�|+ |Tr|. For any u, v ∈ D, we use val(u, v) to denote the sequence of the labels
of edges on the path from u to v. A substring of D is a word val(u, v) such that
u ∈ T� and v ∈ Tr. Also, let d(u, v) = |val(u, v)| and per(u, v) = per(val(u, v)).

We consider only deterministic double trees, meaning that all the edges out-
going from a node have distinct labels, and similarly all the edges incoming into
a node have distinct labels. An example of such a double tree is shown in Fig. 1.
Symmetry of palindromic substrings val(u, v), where u ∈ T�, v ∈ Tr gives a nat-
ural pairing of nodes on the path from u to v, where u is paired with v (and,
if the path consists of an odd number of nodes, the central node is paired with
itself). For any two paired nodes u′, v′ on such path, val(u′, v′) is a palindrome;
if one of these two nodes is the root of the tree, we call the path from u′ to v′

the central part of the palindrome. Note that the central part is fully contained
within T� or Tr. By symmetry of the counting problem (up to edge reversal in
a double tree), we focus on palindromes admitting an occurrence whose central
part lies in T�, or equivalently, occurring as val(u, v) with d(u, r) ≥ d(r, v).

3 Palindromes in Spine-Trees

A spine-tree is a deterministic double tree with a distinguished path, called spine,
joining vertices s� ∈ T� and sr ∈ Tr. Additionally, we insist that this path cannot
be extended preserving the period p = per(s�, sr). A palindromic substring is
induced by such a spine-tree if its central part is a fragment of the spine of length
at least p; see Fig. 2 for an example.

For a node u of the spine-tree let s(u) denote the nearest node of the spine (if
u is already on the spine, then u = s(u)). Since the spine-tree is deterministic,
it satisfies the following property.

Fact 3. For any induced palindrome val(u, v), the path val(s(u), s(v)) is an
inclusion-maximal fragment of val(u, v) admitting period p.

Lemma 4. There are up to n
√

n distinct palindromic substrings induced by a
spine-tree of size n.

Proof. Define the label L(u) for a node u ∈ T� as the prefix of val(u, sr) of length
d(u, s(u)) + p. Similarly, the label L(v) of a node v ∈ Tr is the reversed suffix
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s� srr

u v

s(u) s(v)

center of val(u, v)

︷ ︸︸ ︷

L
(u
)

L
(v
)

central part of val(u, v)

Fig. 2. A spine-tree, whose spine is the path from s� to sr, with an induced palindrome
val(u, v). Observe that L(u) = L(v) is a prefix of the palindrome. Note that d(s(u), r) ≥
p but d(r, s(v)) might be smaller than p.

of val(s�, v) of length p + d(s(v), v). We leave the label undefined if val(u, sr) or
val(s�, v) is not sufficiently long, i.e., if d(s(u), sr) < p or d(s�, s(v)) < p.

Consider a palindrome val(u, v) induced by the spine-tree. Fact 3 implies that
val(s(u), s(v)) is a maximal fragment of val(u, v) with period p. Since the central
part of the palindrome is of length at least p and lies within this fragment, the
fragment must be symmetric, i.e., we must have d(u, s(u)) = d(s(v), v), and the
labels of both u and v are defined. Consequently, |L(u)| = |L(v)| and actually
the labels L(u) and L(v) are equal. Hence, to bound the number of distinct
palindromes, we group together nodes with the same labels. Let VL be the set
of vertices of T� ∪ Tr with label L. We have the following claim.

Claim. For any label L, there are at most min(|VL|2, n) distinct palindromes
with endpoints in VL.

Proof. Consider all distinct induced palindromes val(u, v) such that L(u) =
L(v) = L. A substring is uniquely determined by the endpoints of its occur-
rence, so |VL|2 is an upper bound on the number of these palindromes. We claim
that every such palindrome is also uniquely determined by its length, which
immediately gives the upper bound of n. Indeed d(u, s(u)) = d(s(v), v) = |L|−p
and val(s(u), s(v)) has period p, so if the length is known, val(s(u), s(v)) can be
recovered from its prefix of length p, i.e., the suffix of L of length p. ��
The sets VL are disjoint, so by the above claim and using the inequality
min(x, y) ≤ √

xy the number of distinct palindromes induced by the spine-tree
is at most:

∑

L

min(|VL|2, n) ≤
∑

L

√
|VL|2 · n ≤ √

n ·
∑

L

|VL| ≤ n1.5. ��

4 Palindromes in General Deterministic Double Trees

Consider a node u ∈ T� and all distinct palindromes P1, . . . , Pk with an occur-
rence starting at u. Observe that their central parts C1, . . . , Ck have distinct
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lengths: indeed, |Pi| = 2d(u, r) − |Ci| and d(u, r) ≥ 1
2 |Pi|, so val(u, r) and |Ci|

determines the whole palindrome Pi. Hence, we can order these palindromes so
that |C1| > . . . > |Ck|, (i.e., |P1| < . . . < |Pk|).

Palindromes P4
√

n+1, . . . , Pk−2
√

n are called middle palindromes. There are
O(

√
n) remaining palindromes for fixed u and O(n1.5) in total, so we can focus

on counting middle palindromes. We start with the following characterization.

Lemma 5. Consider middle palindromes P4
√

n+1, P4
√

n+2, . . . , Pk−2
√

n starting
at node u. Central parts of these palindromes satisfy |Ci| ≥ 2

√
n and per(Ci) ≤

1
2

√
n. Moreover, for each Pi extending the central part Ci by 2

√
n characters in

each direction preserves the shortest period.

Proof. Since we excluded the 2
√

n palindromes with the shortest central parts,
the middle palindromes clearly have central parts of length at least 2

√
n.

First, let us prove that per(C2
√

n) ≤ 1
2

√
n. By Fact 2, |Cj |−|Cj+1| is a period

of Cj for 1 ≤ j ≤ 2
√

n. Since
∑2

√
n

j=1 (|Cj | − |Cj+1|) < |C1| ≤ n, for some j we
have per(Cj) ≤ |Cj | − |Cj+1| ≤ 1

2

√
n. Moreover, C2

√
n is a suffix of Cj , so the

claim follows.
For i > 4

√
n, in particular if Pi is a middle palindrome, Ci is a suffix

of C2
√

n. Hence, Fact 1 implies that per(Ci) = per(C2
√

n). Moreover, |Ci| ≤
|C2

√
n|+2

√
n− i < |C2

√
n|−2

√
n, so extending Ci by 2

√
n characters to the left

preserves the period. By symmetry of Pi, extension to the right also preserves the
period. ��

r

2
√

n 2
√

n

s
s� sr

Fig. 3. A spine-tree constructed for a vertex s in a deterministic double tree. Note that
we do not attach subtrees at distance less than 2

√
n from the root.

Let us choose any s ∈ T� such that d(s, r) = 2
√

n and per(s, r) ≤ 1
2

√
n. Then,

extend the period of val(s, r) to the left and to the right as far as possible, arriving
at nodes s� and sr, respectively. We create a spine-tree with spine corresponding
to the path from s� to sr as shown on Fig. 3. We attach to the spine all subtrees
hanging off the original path at distance at least 2

√
n from the root. In other

words, a vertex u ∈ T� which does not belong the spine is added to the spine-tree
if d(s(u), r) ≥ 2

√
n and a vertex v ∈ Tr — if d(r, s(v)) ≥ 2

√
n. If d(r, sr) < 2

√
n

this leaves no subtrees hanging in Tr so we do not create any spine-tree for s.
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Now consider a middle palindrome. By Lemma 5 its central part satisfies
|C| ≥ 2

√
n and per(C) ≤ 1

2

√
n. Moreover, by Fact 1 we have per(C) = per(s, r)

for the unique node s ∈ T� at distance 2
√

n from the root within C. Consequently,
C lies on the spine of the spine-tree created for s and u belongs to a subtree
attached to the spine. Additionally, since C can be extended by 2

√
n characters

in each direction preserving the period, the other endpoint v must also belong
to such a subtree in Tr (that is, we have d(r, s(v)) ≥ 2

√
n). Hence, any of the

middle palindromic substrings is induced by some spine-tree.
The spine-trees are not disjoint, but nevertheless their total size is small.

Lemma 6. The sizes n1, . . . , nk of the created spine-trees satisfy
∑

i ni ≤ 2n.

Proof. We claim that at least ni − 2
√

n nodes of the i-th spine-tree are disjoint
from all the other spine-trees. Let ci be the node on the spine of the i-th spine-
tree such that d(ci, r) =

√
n and similarly let si satisfy d(si, r) = 2

√
n. Recall

that per(si, r) ≤ 1
2

√
n. Thus, by Fact 1 per(si, r) = per(ci, r). Since the tree is

deterministic, ci uniquely determines si and hence the whole spine-tree. Thus,
the nodes ci are all distinct and so are their predecessors on the spines and all
attached subtrees. A similar argument shows that all nodes di on the spine of
the i-th spine-tree such that d(r, di) =

√
n are also all distinct. Therefore, we

proved
∑

i ni −2
√

n ≤ n. Each spine-tree has at least 4
√

n vertices on the spine,
so this yields ni ≥ 4

√
n and thus we obtain

∑
i ni ≤ 2

∑
i(ni − 2

√
n) ≤ 2n. ��

By Lemma 4, the number of palindromes induced by the i-th spine-tree
is at most n1.5

i . Accounting the O(n1.5) palindromes which do not occur as
middle palindromes, we have O(n1.5)+

∑
i n1.5

i ≤ O(n1.5)+
∑

i ni
√

n = O(n1.5)
palindromes in total.

Lemma 7. Every deterministic double tree of size n has O(n1.5) distinct palin-
dromic substrings.

5 Main Result

To derive the final theorem, we follow the approach from [4]. We use the folklore
fact that every tree T on n edges contains a centroid node r such that every
component of T \ {r} is of size at most n

2 . We separately count palindromic
substrings corresponding to the paths going through the centroid r and paths
fully contained in a single component of T \ {r}. To bound the former, we root
T at r directing all the edges so that they point towards the root, and then
determinize the resulting tree by gluing together two children of the same node
whenever their edges have the same label. Finally, we create a deterministic
double tree by duplicating the tree and changing the directions of the edges in
the second copy.

It is easy to see that for any simple path from u to v going through r in the
original tree we can find u′ ∈ T� and v′ ∈ Tr such that val(u, v) = val(u′, v′).
Hence, the number of distinct palindromic substrings corresponding to such
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paths, by Lemma 7, is O(n1.5). Finally, we obtain the following recurrence for
pal(n), the maximum number of palindromes in a tree with n edges:

pal(n) = O(n1.5) + max

{
∑

i

pal(ni) : ∀i ni ≤ n
2 ∧

∑

i

ni < n

}

which solves to pal(n) = O(n1.5).

Theorem 8. A tree with n edges contains O(n1.5) distinct palindromic sub-
strings.
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Abstract. In [3], a short and elegant proof was presented showing that
a word of length n contains at most n − 3 runs. Here we show, using
the same technique and a computer search, that the number of runs in
a binary word of length n is at most 22

23
n < 0.957n.

Keywords: Runs · Lyndon words · Combinatorics on words

1 Introduction

Repetitions in words are one of the most basic and well studied characteristics of
words, with various theoretical and practical applications (see [6,20,21] for sur-
veys). The most notable notion of repetitions would be runs [12] (a.k.a. maximal
periodicities [15] or maximal repetitions [13]) as runs can capture all periodic
sub-intervals in a word compactly.

The research on the possible (maximal) number ρ(n) of runs in a word of
length n dates back at least to [13], where they showed that ρ(n) = O(n). Since
then, there were two types of efforts: finding words rich of runs [9,14,16,19],
and proving an upper bound (exact coefficient) of ρ(n) [3–5,7,10,11,17,18]. For
upper bounds, an (at least psychologically) important barrier was the question
whether the number of runs can be larger than the length of the word, and the
negative answer was known as “the runs conjecture”. The barrier was broken,
turning the conjecture into a theorem, by a remarkably simple and computer-
free proof in [3]. The proof is based on the characterization of runs by Lyndon
words established in [4]. Note that before [4], the approach to get upper bounds
was completely different, and the bound ρ(n) < 1.029n in [7] required a heavy
use of computer search.

Although the conjecture was solved, the quest continues towards the optimal
value of limn→∞(ρ(n)/n), which is known to exist [10]. In this paper we show
how to lower the upper bound by adding again some computer backing to the
technique that led to the proof of the Runs Theorem in [3]. We show that the
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number of runs in a binary word of length n is at most 22
23n < 0.957n. The bound

we provide is obviously not optimal. Our paper is therefore just another step in
the extensive effort to understand the behaviour of runs. For the more detailed
description of the history of the problem, see for example [3,7].

2 Runs and Lyndon Roots

For any word u, an integer p with 1 ≤ p ≤ |u| is said to be a period of u if
u[i] = u[i+p] for all 1 ≤ i ≤ |u|−p. Especially, the smallest period of u is called
the period of u. A prefix v of u that is also a suffix of u is said to be a border
of u. The empty word and u are trivial borders of u. We call u unbordered if
there is no border other than trivial ones.

Given a word w, we say that an interval [i..j] with 1 ≤ i ≤ j ≤ |w| is period-
maximal in w if w[i..j] has no extension in w with the same period. That is, if
1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ |w| is such that w[i..j] and w[i′..j′] have the same period,
then i = i′ and j = j′. A period-maximal interval is said to be left-open if i = 1,
otherwise it is right-closed. Similarly, a period-maximal interval is right-open or
left-closed depending on whether or not j = |w|. If 1 < i and j < |w|, the interval
is said to be closed. A period-maximal interval is a run if its length is at least
double of the period p of w[i..j], that is j − i + 1 ≥ 2p.

We shall work with the two-letter alphabet {0, 1}, which allows two lexico-
graphic orders: ≺0 is defined by 0 ≺0 1, and ≺1 by 1 ≺1 0. We shall write
ā = 1 − a.

Remark 1. Our paper is restricted to the binary alphabet. Although some claims
can be easily extended to arbitrary alphabet size, we do not do so for sake of
simplicity, since the computer search is performed for the binary case anyway.
For a result on more letters, see for example [8]. Note that it is an open question
of interest whether binary words attain ρ(n) although it is believed so (see for
example [2]).

A word v is said to be a Lyndon word with respect to some order ≺ if and
only if w ≺ u for any nonempty proper suffix u of w. In particular, Lyndon
words are unbordered. We say that a Lyndon word v is a Lyndon root of w if v
is a factor of w and |v| is the period of w.

A right-closed period-maximal interval [i..j] of w is said to be a-broken in w,
if a = w[j + 1]. We will also say, a bit imprecisely, that the period of w[i..j] is
broken by a.

Let ρ(n, 2) denote the maximal number of runs in a binary word of length n.
The basic idea of [3] is to associate an a-broken run r = [i..j] with the set

Λ(r) of intervals corresponding to the Lyndon root of r with respect to the order
a ≺ ā, excluding from Λ(r), if necessary, the interval starting at the beginning
of r. This definition has to be completed to cover also runs that are not broken,
that is, right-open runs. For those runs, the set Λ(r) can be defined as consisting
of Lyndon roots with respect to both orders. In [3], the case of unbroken runs is
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solved by appending a special symbol $ to the end of w, which is equivalent to
arbitrarily choosing one of the orders (the order 0 ≺ 1 in their case).

Let Beg(S) denote the set of starting positions of intervals in the set S, and
let B(r) = Beg(Λ(r)) for any run r. Note that B(r) is nonempty if r is a run.
The crucial fact, implying instantaneously that there are at most |w|−1 runs, is
that B(r) and B(r′) are disjoint for r �= r′. At no cost, it is possible to make this
basic tool a bit stronger. For sake of clarity, let us first give a formal definition.

Definition 1. Let w be a binary word. Let s = [i..j] be a period-maximal interval
in w with period p. Then Λ(s) denotes the set of all intervals [i′..j′] of length
p such that i < i′ ≤ j′ ≤ j and w[i′..j′] is a Lyndon word with respect to
an order ≺ satisfying the following condition: if j < |w| and [i..j] is a-broken
in w, then a ≺ ā (the condition being empty if [i..j] is not broken). Also, let
B(s) = Beg(Λ(s)).

Example 1. Take a word w = 1110101101 of length 10. For a period-maximal
interval s1 = [1..3] with period 1, Λ(s1) = {[2..2], [3..3]}. For a period-maximal
interval s2 = [3..7] with period 2, Λ(s2) = {[5..6]}. For a period-maximal interval
s3 = [5..10] with period 3, Λ(s3) = {[6..8], [7..9]}. Note that w[6..8] = 011 and
w[7..9] = 110 are Lyndon words w.r.t. ≺0 and ≺1, respectively. For a period-
maximal interval s4 = [2..10] with period 5, Λ(s4) = {[4..8]}.

The following lemma is now stronger than the binary case of the correspond-
ing [3, Lemma 8] in two ways. First, it applies also to period-maximal intervals
that are not runs, and second, as noted above, Λ(r) is defined more generously
for unbroken runs. The proof, however, is the same.

Lemma 1. Let s and t be two distinct period-maximal intervals in w. Then
B(s) and B(t) are disjoint.

Proof. Let s = [is..js] and t = [it..jt]. Suppose that k ∈ B(s) ∩ B(t), and let
[k..ms] ∈ Λ(s) and [k..mt] ∈ Λ(t). If ms = mt, then s and t have the same period
and s = t. We can therefore, w.l.o.g., suppose that ms < mt. Then w[k..js] has
a smaller period than the unbordered w[k..mt], which implies that js < mt.
Therefore s is a-broken with a = w[js + 1].

Since a breaks the period of w[k..js], we have w[ms+1..js+1] ≺a w[k..js+1].
Since both w[ms+1..js+1] and w[k..js+1] are factors of w[k..jt], we deduce that
w[k..mt] is Lyndon w.r.t. ≺ā. Note that w[k..jt] contains both letters. Therefore
w[k] = ā, and the ≺a-minimality of w[k..ms] implies that w[is..js] ∈ ā+. The
definition of Λ(s) yields is < k and it < k, which leads to a contradiction with
≺ā-minimality of w[k..mt].

Example 2. It is worth noting that the appearance of ā+ in the previous proof
is significant, and it is the place where we use the prohibition of the very first
position of a run. Without this condition, Lemma 1 would not hold. Consider
the word 1101011 and position 2, which is the starting point of the Lyndon root
1 of the run 11 and the starting point of the Lyndon root 10 of 10101, the latter
being excluded by the prohibition.
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Lemma 1 implies that for each position k there is at most one period-maximal
interval s such that k ∈ B(s). Such an s can be found using the following rules.

Lemma 2. Let k > 1 be a position of w such that w[k] = a and w[k − 1..|w|] �=
āa+. Then k ∈ B(s) where s = [i..j] is the period-maximal extension of

– [k..k], if w[k] = w[k − 1];
– [k..k′], where w[k..k′] is the longest Lyndon word with respect to ≺a starting

at the position k, otherwise.

Proof. If w[k] = w[k−1], then s is a run with period one containing the position
k with i < k. Hence, k ∈ B(s) immediately follows from Definition 1.

Let w[k−1] = ā, and let w[k..k′] be the longest Lyndon word with respect to
≺a starting at the position k. From w[k..|w|] �= a+, it is easy to see that k′ �= k
and w[k′] = ā, which implies i < k. If s is right-open, we are done: k ∈ B(s)
since the condition on ≺ is empty (see Definition 1). It remains to show that s
is a-broken if it is broken. Assume to the contrary that s is ā-broken. We show
that w[k..j + 1] is a Lyndon word with respect to ≺a. Let p denote the length
of the Lyndon word w[k..k′], that is, p = k′ − k + 1. Let first k < h ≤ k′.
Since w[k..k′] is a Lyndon word with respect to ≺a, we have w[k..k′] ≺a w[h..k′],
and thus also w[k..j + 1] ≺a w[h..j + 1]. Let now k′ < h ≤ j + 1. As above,
w[k..k′] ≺a w[h − p + 1..h] ≺a w[h − p + 1..j + 1]. (Which covers also the
possibility w[k..k′] = w[h − p + 1..h].) Also w[h − p + 1..j + 1] ≺a w[h..j + 1],
since w[h..j + 1] = w[h..j]ā and w[h..j]a is a prefix of w[h − p + 1..j + 1].
Therefore, w[k..j + 1] is a Lyndon word, which contradicts that w[k..k′] is the
longest Lyndon word starting at the position k.

Note that for the position k with w[k − 1..|w|] = āa+, there is no period-
maximal interval s with k ∈ B(s). An algorithm computing for all positions the
longest Lyndon words starting there is discussed in [3, Section 4.1].

3 Idle Positions

In order to make explicit the relation between runs and positions, we associate
with a run r the position max B(r) and say that such a position is charged
(by r). We repeat that the Runs Theorem was proved in [3] by pointing out that
charging is an injective mapping, which is a corollary of Lemma 1. This also
yields an obvious strategy for further lowering the upper bound on the number
of runs. One has to find positions that are not charged in an arbitrary word.
We shall call such positions idle. Equivalently, we want to identify a position i
satisfying either of the following two conditions.

1. i is not contained in B(r) for any run, or
2. i is in B(r) \ {max B(r)} for some run r.
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3.1 Idle Positions that are Resistant to Extensions

In order to be able to estimate the number of idle positions locally, we are
interested in idle positions that remain idle in any extension of w. One obvious
fact is that closed period-maximal intervals are not affected by extensions. For
example, the third position in the word 1010011 remains idle for any extensions.
That is because the period three of 1001 is broken by 1, and the period-maximal
extension of 1001 is s = [2..6] that is closed, but s is not a run, and Definition 1
and Lemma 1 yield that the position is idle.

Also, it is easy to see that runs r with |B(r)| > 1 that are right-closed preserve
this property in any extension. However, we have to be careful with right-open
runs since some positions in B(r) may disappear when the run r gets broken by
a right-extension. To clarify this case, let Λa(r) denote the set of Lyndon roots
in Λ(r) that are Lyndon words with respect to ≺a, and let Ba(r) = Beg(Λa(r)).
Note that Ba(r) = Bā(r) if and only if r is a run with period one. Now we
consider the set D(w) of idle positions k in a word w falling into one of the
following cases:

(a) k ∈ B(s), where s is a closed period-maximal interval that is not a run.
(b) k ∈ (Ba(r) \ {max Ba(r)}), where r is an a-broken run.
(c) k ∈ (Ba(r) \ {max Ba(r)}), where r is a right-open run and a is chosen such

that min Ba(r) ≥ min Bā(r) (a ∈ {0, 1} is arbitrary if its period is 1).

By D(w) we intend to say that, for any k ∈ D(w), the position |u| + k in uwv is
idle for any extensions u and v. The only exception is the case (c) in which the
position |u| + k may not be idle if r is ā-broken in the extension. But even in
this case we have that at least one of the positions |u|+k and |u|+k − g of uwv
is idle, where g = min Ba(r)−min Bā(r). Therefore the number of idle positions
does not decrease for any extensions. This is formulated in the following claim.

Claim 1. Let w, u and v be arbitrary binary words. Then
∣∣∣D(uwv) ∩ [|u| + 2..|uw| − 1]

∣∣∣ ≥ |D(w)|.

Proof. We examine k ∈ D(w) of each case:

– For Case (a). Since s = [i..j] is closed, we have a closed period-maximal
interval s′ = [|u| + i..|u| + j] in uwv. Since s′ is not a run, |u| + k is in
D(uwv).

– For Case (b). Since r = [i..j] is an a-broken run, we have an a-broken run
r′ = [i′..|u| + j] with i′ ≤ |u| + i in uwv. Since any Lyndon root in Λ(r)
appears in Λ(r′) (with shift |u|), |u| + k is in D(uwv).

– For Case (c). Let r = [i..|w|] be a right-open run in w. We have a run
r′ = [i′..j′] with i′ ≤ |u| + i and |uw| ≤ j′ in uwv. Note that k − g ∈ Bā(r),
where g = min Ba(r) − min Bā(r).

• If r′ is still open or a-broken, any Lyndon root in Λa(r) appears in Λa(r′)
(with shift |u|), and hence, |u| + k is in D(uwv).
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• If r′ is ā-broken, any Lyndon root in Λā(r) appears in Λā(r′) (with shift
|u|), and hence, |u| + k − g is in D(uwv).

We have described an injective map from D(w) to D(uwv) ∩ [|u| + 1..|uw|]. The
map always assigns, for some a and some r, a position k in [1..|w|] ∩ Ba(r) to
the position k + |u|. Note that 1 /∈ D(w) since 1 is not in B(s) for any s. Also,
|w| /∈ D(w) follows from the definition of D(w). This completes the proof.

This yields the following lemma:

Lemma 3. If |D(w)| ≥ d for any binary word w of length m, then

lim
n→∞

(
ρ(n, 2)

n

)
≤ m − 2 − d

m − 2
.

Proof. Let y = ay1y2 · · · be an infinite binary word, where a is a letter, and
|yi| = m − 2 for each i. By Claim 1, each interval corresponding to a factor yi in
y contains at least d idle positions. The statement follows.

3.2 Idle Positions that are Resistant to Left Extensions

We further identify positions that remain idle when we consider “only” left
extensions, which only comes into play in Section 5 to estimate the number of
idle positions in a suffix of a word. Formally, for any word w we define the set
D′(w) of idle positions k in w falling into one of the following cases:

(A) k ∈ max B(s), where s is a left-closed period-maximal interval that is not
a run.

(B) k ∈ (B(s) \ {max B(s)}), where s is a period-maximal interval (which is
possibly a run).

(C) w[k − 1..|w|] = āa+ holds.

Note that D(w) ⊆ D′(w). Since we do not consider right-extensions, we can
show the following claim, which is a bit stronger than Claim 1 for D.

Claim 2. Let w and u be arbitrary binary words. For any k ∈ D′(w), |u| + k ∈
D′(uw).

Proof. We examine k ∈ D′(w) of each case:

– For Case (A). Since s = [i..j] is left-closed, we have a left-closed period-
maximal interval s′ = [|u| + i..|u| + j] in uw. Since s′ is not a run, |u| + k is
in D′(uw).

– For Case (B). Let s = [i..j]. We have a period-maximal interval s′ = [i′..|u|+
j] with i′ ≤ |u| + i in uw. Since any Lyndon root in Λ(s) appears in Λ(s′)
(with shift |u|), |u| + k is in D′(uw).

– For Case (C). Since āa+ stays in a suffix of uw, |u| + k is in D′(uw).

Considering that 1 /∈ D′(w), we get:

Claim 3. Let w and u be arbitrary binary words. Then
∣∣∣D′(uw) ∩ [|u| + 2..|uw|]

∣∣∣ ≥ |D′(w)|.



Beyond the Runs Theorem 283

Algorithm 1. Computing md.
Input: A positive integer d.
Output: Return md.

1 m ← 0; // Let m be a global variable.

2 Extend(0);
3 return m;

procedure Extend(w);
1 if |w| > m then m ← |w|;
2 compute D(w);
3 if |D(w)| ≥ d then return
4 foreach a ∈ {0, 1} do
5 Extend(wa);

4 Computer Search

Given a positive integer d, Algorithm 1 computes the minimum integer md such
that |D(w)| ≥ d for any binary word w of length md. The algorithm traverses
words by appending characters to the right. If |D(w)| ≥ d, we stop the extension
since |D(wv)| ≥ d for any word v.

If we already know the value md′ for some d′ < d, then the following pruning
of the search space can be employed: If |D(w) ∩ [1..m − md′ + 1]| ≥ d − d′,
then we stop the extension. That is because for any word z of length md′ , D(z)
contains at least d′ positions (and 1 /∈ D(z)), and hence, for any word v of length
m− |w|, D(wv) contains at least d− d′ positions in [1..m−md′ +1] and at least
d′ positions in [m−md′ +2..m]. Namely, D(wv) contains at least d− d′ + d′ = d
positions, and hence, any right extension of the current w cannot lead to an
update of m.

Furthermore, we employ the following optimization trick: Since our pruning
method works more effectively as m becomes larger (during the traversal), it
would be beneficial that we explore some promising words and enlarge m to
some extent before starting an exhaustive search. For example, it is likely that
a longest word wd−1 obtained for d − 1 can be extended by one or more for d.
Based on this idea, at the very beginning of the computation of md, we explore
the words having a prefix of wd−1 of length |wd−1| − c, where c is a parameter
(non-negative integer) set to explore some “neighbors” of wd−1.

By computing md and using Lemma 3, we obtained upper bounds for

lim
n→∞(ρ(n, 2)/n)

given in Table 1. It also shows approximate time (in seconds) required to compute
md using the naive approach, and using the described pruning method with
parameter c = 100. 1 The experiments were conducted on a machine with a
1 Since the times for d = 19, 20 were obtained by an older (slower) version of the
program, they are not straightforwardly comparable with others.
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Table 1. Upper bounds of limn→∞(ρ(n, 2)/n).

d md limn→∞(ρ(n, 2)/n) md − md−1 naive (s) pruning (s)

1 63 0.98360655737. . . 63 0 0
2 96 0.97872340425. . . 33 0 0
3 126 0.97580645161. . . 30 8 0
4 150 0.97297297297. . . 24 135 1
5 172 0.97058823529. . . 22 1905 5
6 194 0.96875 22 23 199 15
7 216 0.96728971962. . . 22 258 552 45
8 237 0.96595744680. . . 21 2 652 099 122
9 258 0.96484375 21 286

10 274 0.96323529411. . . 16 1 451
11 295 0.96245733788. . . 21 2 750
12 314 0.96153846153. . . 19 6 773
13 332 0.96060606060. . . 18 18 717
14 351 0.95988538681. . . 19 38 869
15 369 0.95912806539. . . 18 94 733
16 388 0.95854922279. . . 19 177 540
17 407 0.95802469135. . . 19 321 412
18 425 0.95744680851. . . 18 689 423
19 444 0.95701357466. . . 19 1 654 611
20 462 0.95652173913. . . 18 6 583 840

3.40GHz Intel Core i5-4670 CPU with 6144KB L2 cache and 16GB Memory
running Linux (Ubuntu 12.04, 64bit). The program was compiled using g++
4.6.4 with -O3 option for optimization.

5 Upper Bound for Finite Words

We now prove that we can omit the limit in the bounds in Table 1. That is, we
verify that, for any d ≤ 20, ρ(n, 2)/n ≤ (md − 2 − d)/(md − 2) does hold for any
n.

Let y be a finite word and let p1, p2, . . . , p� be the list of idle positions of y.
Note that p1 = 1. For a given d we define

sk = sk(y, d) := [p(k−1)d+1..pkd+1 − 1] for k = 1, 2, . . . , 	�/d
 − 1,

sk = sk(y, d) := [p(k−1)d+1..|y|] for k = 	�/d
 .

In other words, we make a disjoint decomposition of the interval [1..|y|] into
subintervals sk such that each sk starts with an idle position of y, and each sk,
except maybe the last one, contains exactly d idle positions.

We first claim that all intervals sk, k < 	�/d
, have length at most md − 2.
Suppose that the length of some sk = [i..j] is at least md − 1 and consider
the word y[i..j + 1] of length md. By the definition of md and by Claim 1, the
cardinality of D(y) ∩ [i + 1..j] is at least d which means that [i..j] contains at
least d + 1 idle positions, a contradiction.
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It remains to count idle positions in the tail of the word y, that is, in the
interval s��/d�. By an argument similar to the one above, one can see that the
length of the interval is at most md − 1. Let z denote the suffix in question, that
is, z = y[p(��/d�−1)d+1..|y|]. Since we only have to consider left-extensions of z,
we now use D′(z) to estimate the number of idle positions. Since 1 /∈ D′(z) and
the first position of s��/d� is idle in y, our goal is to show

|z| − |D′(z)| − 1
|z| <

md − 2 − d

md − 2
. (∗)

Let d = 20. Then the right hand of (∗) is 22/23. We first note that (x−1)/x <
22/23 for each x < 23. Therefore, we can assume |z| ≥ 23.

A simple computer search verified that |D′(w)| ≥ 3 for any word w with
|w| ≥ 13, which means there are at least 3 idle positions in the last 12 positions
of w that are resistant to left extensions. Now, let z = z1z2 with |z2| = 12. If
mi − 1 ≤ |z1| < mi+1 − 1 (where m0 := 0), then z has at least i idle positions in
[2..|z1|] by Claim 1, and hence, |D′(z)| ≥ i + 3. Using the results in Table 1, a
direct calculation yields that, for each i = 0, 1, . . . , 19, if mi−1 ≤ |z1| < mi+1−1,
then

|z| − |D′(z)| − 1
|z| ≤ (mi+1 − 2 + 12) − i − 3 − 1

mi+1 − 2 + 12
<

22
23

.

Therefore we get the following result.

ρ(n, 2)/n <
22
23

= 0.9565217391304347826086 .

6 Conclusion

Search for words with high number of runs in the literature yields words with
approximately 0.944n runs, where n = |w|, see [1,14,16,19]. Therefore, the opti-
mal multiplicative constant is somewhere between 0.944 and 0.957. The lower
bound corresponds to words where on average about every 18th position is idle.
This seems to fit very well with the eventual distances between md−1 and md in
Table 1. It is therefore reasonable to expect that the optimal density of runs is
close to the lower bound, maybe around 1 − 1/18.5 ≈ 0.946.
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Abstract. Sampling (evenly) the suffixes from the suffix array is an
old idea trading the pattern search time for reduced index space. A few
years ago Claude et al. showed an alphabet sampling scheme allowing for
more efficient pattern searches compared to the sparse suffix array, for
long enough patterns. A drawback of their approach is the requirement
that sought patterns need to contain at least one character from the cho-
sen subalphabet. In this work we propose an alternative suffix sampling
approach with only a minimum pattern length as a requirement, which
seems more convenient in practice. Experiments show that our algorithm
achieves competitive time-space tradeoffs on most standard benchmark
data. As a side result, we show that n′ arbitrarily selected suffixes from
a text of length n, where n′ < n, over an integer alphabet, can be sorted
in O(n) time using O(n′) words of space.

1 Introduction

Full-text indexes built over a text of length n can roughly be divided into two
categories: those requiring at least n log2 n bits and the more compact ones.
Classical representatives of the first group are the suffix tree and the suffix array.
Succinct solutions, often employing the Burrows–Wheeler transform and other
ingenious mechanisms (compressed rank/select data structures, wavelet trees,
etc.), are object of vivid interest in theoretical computer science [19], but their
practical performance does not quite deliver; in particular, the locate query is
significantly slower than with the suffix array [8,10,20].

A very simple, yet rather practical alternative to both compressed indexes
and the standard suffix array is the sparse suffix array (SpaSA) [16]. This data
structure stores only the suffixes at regular positions, namely those being a
multiple of q (q > 1 is a construction-time parameter). The main drawback of
SpaSA is that instead of one (binary) search over the plain SA it has to perform
q searches, in q − 1 cases of which followed by verification of the omitted prefix
against the text. If, for example, the pattern P [1 . . . 6] is tomcat and q = 4, we
need to search for tomcat, omcat, mcat and cat, and 3 of these 4 searches will
be followed by verification. Obviously, the pattern length must be at least q and
this approach generally works better for longer patterns.

The sampled suffix array (SamSA) by Claude et al. [3] is an ingenious alter-
native to SpaSA. They choose a subset of the alphabet and build a sorted array
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 287–298, 2015.
DOI: 10.1007/978-3-319-23826-5 28
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over only those suffixes which start with a symbol from the chosen subalpha-
bet. The search starts with finding the first (leftmost) sampled symbol of the
pattern, let us say at position j, and then the pattern suffix P [j . . . m] is sought
in the sampled suffix array with standard means. After that, each occurrence of
the pattern suffix must be verified in the text with the previous j − 1 symbols.
A great advantage of SamSA over SpaSA is that it performs only one binary
search. On the other hand, a problem is that the pattern must contain at least
one symbol from the sampled subalphabet. It was shown however that a care-
ful selection of the subalphabet allows for leaving out over 80% suffixes and still
almost preserving the pattern search speed for the standard array, if the patterns
are long (50–100).

An idea most similar to ours was presented more than a decade ago by
Crescenzi et al. [4,5] and was called text sparsification via local maxima. Using
local maxima, that is, symbols in text which are lexicographically not smaller
than the symbol just before them and lexicographically greater than the next sym-
bol, has been recognized even earlier as a useful technique in string matching and
dynamic data structures, for problems like indexing dynamic texts [1], maintain-
ing dynamic sequences under equality tests [18] or parallel construction of suffix
trees [22]. Crescenzi et al., like us, build a suffix array on sampled suffixes, yet in
their experiments (only on DNA) the index compression by factor about 3 requires
patterns of length at least about 150 (otherwise at least a small number of matches
are lost). Our solution does not suffer a similar limitation, that is, the minimum
pattern lengths with practical parameter settings are much smaller.

We use the standard notation throughout the paper. The pattern P [1 . . . m]
is sought over the text T [1 . . . n]. Both strings are composed of symbols from a
common integer alphabet Σ = {1, . . . , σ}. The suffix array SA[1 . . . n] built for
the text T is a permutation of the indexes 1, 2, . . . , n such that T [SA[i] . . . n] ≺
T [SA[i + 1] . . . n] for all 1 ≤ i < n, where the “≺” relation is the lexicographical
order. All logarithms are in base 2.

2 Our Algorithm

2.1 The Idea

Our goal is to combine the benefits of the sparse suffix array (searching any
patterns of length at least the sampling parameter q) and the sampled suffix
array (one binary search).

The actual problem may be stated as follows. For each substring T [i . . . i +
q − 1], 1 ≤ i ≤ n − q + 1, for some fixed q > 1 we apply a deterministic
function f selecting a substring T [i′ . . . i′ + p − 1], i ≤ i′ ≤ i + q − p, where
1 ≤ p ≤ q is also chosen beforehand and f(T [i . . . i + q − 1]) depends only on
the string T [i . . . i + q − 1], not on the value of i. By f being deterministic we
understand that for any two substrings of T , s1 and s2, of length q, if s1 = s2,
then f(s1) = f(s2). We want to have the sequence of starting positions i′ of the
selected substrings minimized. Note it cannot be less than (n−q+1)/(q−p+1).
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While we don’t know the optimal solution for this problem, the so-called
minimizers seem to be a feasible heuristic. The idea of minimizers was proposed
in 2004 by Roberts et al. [21] and seemingly first overlooked in the bioinformatics
(or string matching) community, only to be revived in the last years [2,6,11,17,
23]. The minimizer for a sequence s of length r is the lexicographically smallest of
its all (r−p+1) p-grams (or p-mers, in the term commonly used in computational
biology); usually it is assumed that p � r. For a simple example, note that
two DNA sequencing reads with a large overlap are likely to share the same
minimizer, so they can be clustered together. That is, the smallest p-mer may
be the identifier of the bucket into which the read is then dispatched.

Coming back to our algorithm: in the construction phase, we pass a sliding
window of length q over T and calculate the lexicographically smallest substring
of length p in each window (i.e., its minimizer). Ties are resolved in favor of the
leftmost of the smallest substrings. The positions of minimizers are start positions
of the sampled suffixes, which are then lexicographically sorted, like for a standard
suffix array. The values of q and p, p ≤ q, are construction-time parameters.

In the actual construction, we build a standard suffix array and in extra
pass over the sorted suffix indexes copy the sampled ones into a new array. This
requires an extra bit array of size n for storing the sampled suffixes and in total
may take O(n) time and O(n) words of space.

The search is simple: in the prefix P [1 . . . q] of the pattern its minimizer is
first found, at some position 1 ≤ j ≤ q − p + 1, and then we binary search
the pattern suffix P [j . . . m], verifying each tentative match with its truncated
(j − 1)-symbol prefix in the text.

Note that any other pattern window P [i . . . i + q − 1], 2 ≤ i ≤ m − q + 1,
could be chosen to find its minimizer and continue the search over the sampled
suffix array, but using no such window can result in a narrower range of suffixes
to verify than the one obtained from the pattern prefix. This is because for any
non-empty string s with occs occurrences in text T , we have occs ≥ occxs, where
xs is the concatenation of a non-empty string x and string s.

We dub our algorithm the sampled suffix array with minimizers (SamSAMi).

2.2 Parameter Selection

There are two free parameters in SamSAMi, the window length q and the min-
imizer length p, p ≤ q. Naturally, the case of p = q is trivial (all suffixes sam-
pled, i.e. the standard suffix array obtained). For a settled p choosing a larger q
has a major benefit: the expected number of selected suffixes diminishes, which
reduces the space for the structure. On the other hand, it has two disadvantages:
q is also the minimum pattern length, which excludes searches for shorter pat-
terns, and for a given pattern length m ≥ q the average length of its sought suffix
P [j . . . m] decreases, which implies more occurrence verifications. Note also, that
in the worst case the number of selected suffixes is n − q + 1, as this happens for
text T = aa . . . a.

For a settled q the optimal choice of p is not easy; too small value (e.g., 1)
may result in frequent changes of the minimizer, especially for a small alphabet,
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but on the other hand its too large value has the same effect, since a minimizer
can be unchanged over at most q − p + 1 successive windows. Yet, the pattern
suffix to be sought has in the worst case exactly p symbols, which may suggest
that p should not be very small. Table 1 shows the fraction of suffixes sampled
for a given (q, p) pair and four 50 MB Pizza & Chili datasets.

Table 1. The percentage of suffixes that are sampled using the idea of minimizers with
the parameters q and p

q p dna50 english50 proteins50 xml50

4 1 46.1 39.7 40.5 45.8
4 2 55.2 51.0 51.0 54.1

5 1 40.9 32.3 34.0 39.3
5 2 44.9 39.9 40.8 45.9

6 1 37.6 27.7 29.4 32.5
6 2 38.0 32.3 34.1 39.3

8 1 33.7 22.1 23.2 22.0
8 2 29.5 23.8 25.5 26.6

10 1 31.8 19.3 19.4 17.1
10 2 24.5 18.5 20.5 18.5
10 3 25.8 20.8 22.7 21.9

12 1 30.7 17.9 16.8 13.7
12 2 21.2 15.4 17.1 15.1
12 3 21.4 16.8 18.6 17.0

16 1 29.7 16.4 13.7 11.0
16 2 17.1 12.0 12.9 11.3
16 3 16.1 12.6 13.7 11.9

24 2 13.3 8.4 8.7 7.1
24 3 11.1 8.7 9.0 7.4

32 2 11.7 6.5 6.6 5.1
32 3 8.7 6.7 6.7 5.4

40 2 10.8 5.3 5.3 4.2
40 3 7.3 5.4 5.3 4.3

64 2 9.8 2.9 3.4 3.1
64 3 5.4 3.0 3.3 2.6
64 4 4.4 3.1 3.4 2.7

80 2 9.6 1.9 2.7 2.9
80 3 4.8 1.8 2.7 2.2
80 4 3.7 1.9 2.7 2.2

2.3 Faster Verification with Previous Minimizer Position

For some texts and large value of q the number of verifications on the pattern
prefix symbols tends to be large. Worse, each such verification requires a lookup
to the text with a likely cache miss. We propose a simple idea reducing the
references to the text.

To this end, we add an extra 4 bits to each SamSAMi offset. They store the
distance to the previous sampled minimizer in the text. In other words, the list
of distances corresponds to the differences between successive SamSAMi offsets
in text order. For the first sampled minimizer in the text and any case where the
difference exceeds 15 (i.e., could not fit 4 bits), we use the value 0. To give an exam-
ple, if the sampled text positions are: 3, 10, 12, 15, 20, then the list of differences
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is: 0, 7, 2, 3, 5. In our application the extra 4 bits are kept in the 4 most significant
bits of the offset, which restricts the 32-bit offset usage to texts up to 256 MB.

In the search phase, we start with finding the minimizer for P [1 . . . q], at some
position 1 ≤ � ≤ q − p + 1, and for each corresponding suffix from the index we
read the distance to the previous minimizer in the text. If its position is aligned
in front of the pattern, or the read 4 bits hold the value 0, we cannot draw
any conclusion and follow with a standard verification. If however the previous
minimizer falls into the area of the (aligned) pattern, in some cases we can
conclude that the previous � − 1 symbols from the text do not match the � − 1
long prefix of the pattern. Let us present an example. Let P = ctgccact, q = 5,
p = 2. The minimizer in the q long prefix of P is cc, starting at position P [4].
Assume that P is aligned with a match in T . If we shift the text window left
by 1 symbol and consider its minimizer, it may be either ct (corresponding to
P [1 . . . 2]), or ?c, where ? is an unknown symbol aligned just before the pattern
and c aligned with P [1], if ?c happens to be lexicographically smaller than ct. If,
however, the distance written on the 4 bits associated with the suffix ccact...
of T is 1 or 2, we know that we have a mismatch on the pattern prefix and the
verification is over (without looking up the text), since neither gc or tg cannot
be the previous minimizer. Finally, if the read value is either 0 or at least 4, we
cannot make use of this information and invoke a standard verification.

2.4 Faster Verification with Text Symbol Sketches

In this subsection we present another heuristic idea to reduce the number of
verifications. The solution is to keep with each sampled suffix some rudimentary
information about its preceding symbols in the text. More precisely, if we denote
the SamSAMi structure with SA′ and SA′[beg], . . . , SA′[end] is the found range
of offsets to be verified, for each SA′[i], beg ≤ i ≤ end, we keep a sketch (hash
value) of k bits for each of the u symbols: T [SA′[i] − u], . . . , T [SA′[i] − 1] (with
a proviso for the rare case when SA′[i] − u < 1). We set k = 2 and u = 8 and
as the hash function we used the mapping of the symbol’s byte value to a value
from {0, 1, 2, 3} dictated by its “most discriminating” pair of successive bits. For
example, as the four DNA symbols, A, C, G and T, have byte values of 65, 67, 71
and 84, respectively, for a text being a genomic sequence we take their second and
third lowest bits, which are respectively 00, 01, 11 and 10. The actual criterion

is such that minimizes
4∑

h=1

(n/4 − |{T [j] : j ∈ {1, . . . , n} ∧ hash(T [j]) = h}|).
In the search phase, if the minimizer for P [1 . . . q] is at some position 1 ≤ � ≤

q − p + 1, we compare the sketches for P [max(� − u, 1) . . . � − 1] and T [SA′[i] −
min(u, �−1) . . . SA′[i]−1], and only if they are equal we refer to the “full” string
comparison reading symbols from T . Thanks to storing the sketches together
with the sampled offsets, in many (negative) cases we avoid extra cache misses,
which are almost certain to happen when the verification needs to read symbols
from the text. This is especially important for short patterns, when the expected
range of candidate matches is large. Note that the extra space we need is 2 · 8n′

bits, i.e., 2n′ bytes. Of course, if q < 8 we can decrease u e.g. to 4.
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2.5 SamSAMi-hash

In [12] we showed how to augment the standard suffix array with a hash table
(HT), to start the binary search from a much more narrow interval. The start
and end position in the suffix array for each range of suffixes having a common
prefix of length k was inserted into the HT, with the hash function calculated for
the prefix string. The same function was applied to the pattern’s prefix and after
a HT lookup the binary search was continued with reduced number of steps. The
mechanism requires m ≥ k. To estimate the space needed by the extra table, the
reader may to look at Table 2 in [12] presenting the number of distinct q-grams
in five 200 MB datasets from the Pizza & Chili corpus. For example for english
the number of distinct 8-grams is 20.8M, which is about 10% of the text length.
This needs to be multiplied by 6.67 in our implementation (open addressing with
linear probing and 90% load, and 6 bytes per entry, in a dense variant which
uses 4 bytes for the left interval boundary and 2 bytes for the corresponding
right boundary [13]), which results in less than 0.67n bytes overhead.

We can adapt this idea to SamSAMi. Again, the hashed keys will be k-long
prefixes, yet now each of the sampled suffixes starts with some minimizer (or its
prefix). We can thus expect a smaller overhead. Its exact value for a particular
dataset depends on three parameters, k, q and p. Note however that now the
pattern length m must be at least max(q − p + k, q).

3 Sparse Suffix Sorting in O(n) Time and O(n′) Space

In this section we solve the well-known problem of sorting n′ suffixes arbitrarily
chosen from a text T of length n in O(n) time using O(n′) extra space. Our algo-
rithm is deterministic and works for an integer alphabet of size σ = nO(1). The
best known solutions for this problem are two randomized algorithms given by I
et al. [15]: a Monte Carlo algorithm running in O(n) time and using O(n′ log n′)
space and a Las Vegas one with O(n log n′) time and O(n′) space.

We make use of the Ferragina and Fischer [7] technique, devised for sorting
word-based suffixes, and a lemma from a recent work of Fischer et al. [9].

Lemma 1 ([9]) . One can lexicographically sort strings P1, . . . , Pn′ of total
length n in O(n + σε) time using O(n′) space, for any ε > 0.

We present our procedure in the five following steps.

1. The input text T is (conceptually) partitioned into n′ consecutive strings Pi,
1 ≤ i ≤ n′, where each string is accompanied with its start position in T ,
stored in the array I as I[i]. The strings Pi, together with their i indices,
are lexicographically sorted using Lemma 1. Note that the O(n + σε) time
remains O(n) for σ = nO(1), with a properly chosen constant ε > 0.

2. After the sort, we scan over the strings and assign to them bucket labels. To
this end, the first (lexicographically smallest) string gets label 1, and if the
jth sorted string, j > 1, is equal to the (j − 1)th string, it belongs to the
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Fig. 1. Pattern search time (count query). All times are averages over 500K random
patterns of length 10. The patterns were extracted from the texts. Times are given in
microseconds. The index space is a multiple of the text size, including the text.

bucket of its predecessor, otherwise the bucket label is incremented by one
and the jth string is assigned to a new bucket. Additionally, we create an
array B[1 . . . n′], setting B[i] = k, where k is the bucket number to which
the current string is sent and i is the index assigned to the string in step 1.
These operations thake O(n) time.

3. In O(n′) time we construct a new text T ′ of length n′, using the formula
T ′[i] = B[i], 1 ≤ i ≤ n′.

4. We sort the suffixes of T ′ in O(n′) time and using O(n′) space, using any
linear-time suffix sorting algorithm; as a result the suffix array SA for T ′ is
obtained.

5. Finally, in O(n′) time we create the word suffix array A from SA, scanning it
from left to right and writing the corresponding suffix to A: A[i] = I[SA[i]].

The last three steps are analogous to the final steps in the Ferragina and Fis-
cher [7] algorithm. We point out, however, that the first step of their algorithm,
sorting the sampled suffixes according to their first word only, is performed with
the MSD radix sort, which splits buckets of suffixes recursively. As the number
of resulting buckets is n′ (being the number of space-separated words in the
text in their scenario), collecting them from a bucket array of size σ may be a
bottleneck if σ = ω(1). Using Lemma 1 allows to overcome this limitation.



294 S. Grabowski and M. Raniszewski

Fig. 2. Pattern search time (count query). All times are averages over 500K random
patterns of length 20. The patterns were extracted from the texts. Times are given in
microseconds. The index space is a multiple of the text size, including the text.

As Lemma 1 does not require string terminators, the described procedure also
works for an arbitrarily sampled set of n′ suffixes. We thus obtain the following
theorem.

Theorem 2. Any set of n′ suffixes of a string of length n over an alphabet of
size σ = nO(1) can be sorted in O(n) time using O(n′) words of space.

4 Experimental Results

We have implemented three variants of the SamSAMi index: the basic one
(denoted as SamSAMi on the plots), the one with reduced verifications due to stor-
ing previous minimizer positions (SamSAMi2) and the one combining SamSAMi2
with the sketches from Sect. 2.4, denoted as SamSAMi3. These algorithms are
additionally tested in a variant augmented with a hash table, in its dense ver-
sion (with the -hd suffix in the name); only the variant SamSAMi3-hd is not
shown on the charts as it was not competitive. We compared them against the
sparse suffix array (SpaSA), in our implementation, and the sampled suffix array
(SamSA) [3], using the code provided by its authors.
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Fig. 3. Pattern search time (count query). All times are averages over 500K random
patterns of length 50. The patterns were extracted from the texts. Times are given in
microseconds. The index space is a multiple of the text size, including the text.

All experiments were run on a computer with an Intel i7-4930K 3.4 GHz CPU,
equipped with 64 GB of DDR3 RAM and running Ubuntu 14.04 LTS 64-bit. All
codes were written in C++ and compiled with g++ 4.8.2 with -O3 option.

Pattern searches were run for m ∈ {10, 20, 50, 100}, and for each dataset and
pattern length 500,000 randomly extracted patterns from the text were used.
Figs 1–4 present average search times with respect to varying parameters. For
SpaSA we changed its parameter k from 1 (which corresponds to the plain suffix
array) to 8. For SamSAMi we varied q from {4, 5, 6, 8, 10, 12, 16, 24, 32, 40, 64, 80}
setting the most appropriate p (up to 3 or 4) to obtain the smallest index,
according to the statistics from Table 1. Obviously, q was limited for m < 100;
up to 6 for m = 10, up to 16 for m = 20, and up to 40 for m = 50.

We note that SamSAMi is rather competitive against the sparse suffix array,
with two exceptions: short patterns (m = 10) and the XML dataset (for m = 10
and m = 20). In most cases, SamSAMi is also competitive against the sampled
suffix array, especially when aggressive suffix sampling is applied. (For a honest
comparison one should also notice that our implementation uses 32-bit suffix
indexes while the Claude et al. scheme was tested with �log2 n	 bits per index,
which is 26 bits for the used datasets.)
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Fig. 4. Pattern search time (count query). All times are averages over 500K random
patterns of length 100. The patterns were extracted from the texts. Times are given in
microseconds. The index space is a multiple of the text size, including the text.

Unfortunately, the variant with reduced verifications (SamSAMi2) is not sig-
nificantly faster than the original one, only in rare cases, with a large value of
the used q, the search time can be approximately halved. Also SamSAMi3 is com-
petitive with other SamSAMi variants only on the English and DNA datasets
for m = 10. SamSAMi-hd, on the other hand, can be an attractive alternative,
similarly as SA-hash used as a replacement of the plain SA [12].

5 Conclusions and Future Work

We presented a simple suffix sampling scheme making it possible to search for
patterns effectively. The resulting data structure, called a sampled suffix array
with minimizers (SamSAMi), achieves interesting time-space tradeoffs; for exam-
ple, on English50 dataset the search for patterns of length 50 is still over 10%
faster than with a plain suffix array when only 5.3% of the suffixes are retained.

Additionally, based on previous works we show that the well-known problem
of sorting n′ arbitrarily chosen suffixes for a text of length n can be solved in
O(n) time and O(n′) words of space. This poses an immediate question if building
the SamSAMi structure can also be done in O(n) time and O(n′) space, which
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requires finding the minimizers efficiently, in constant amortized time over a
window of size q sliding over the text.

In practice we can assume that the minimizer length, p, is a (small) constant
and the solution is trivial. It is however more interesting to consider the case of
an arbitrary p. Note there exists a related problem of finding the minimizer in a
static sequence (i.e., a pattern prefix), as it is required at the beginning of the
pattern search.

For the latter problem variant, we may use a rather theoretical option involv-
ing linear-time suffix sorting. To this end, we first remap the pattern prefix alpha-
bet to (at most) {0, 1, . . . , q −1}, in O(q log q) time, using a balanced BST. Next
we build a suffix array over the remapped string, using a linear-time suffix sort-
ing algorithm, and finally scan over the sorted list of suffixes until the first suffix
of length at least p is found. The total time is O(q log q). The well-known trick
of dividing the window into subwindows of size 2p− 1 with (p− 1)-long overlaps
improves the time to O(q log p). The remapping may be done even faster, using
the fastest deterministic integer sort by Han [14], to obtain O(q log log p) overall
time. Still, it is possible to get the optimal O(n) and O(q) times, respectively,
for these two variants, as was pointed out to us by Pawe�l Gawrychowski. The
idea will be presented in the full version of the paper.
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Abstract. The Longest Common Prefix (LCP) array is a data structure
commonly used in combination with the Suffix Array. However, in some
settings we are interested in the LCP values per se since they provide
useful information on the repetitiveness of the underlying sequence.

Since sequences can contain alterations, which can be either malicious
(plagiarism attempts) or pseudo-random (as in sequencing experiments),
when using LCP values to measure repetitiveness it makes sense to allow
for a small number of errors. In this paper we formalize this notion by
considering the longest common prefix in the presence of mismatches. In
particular, we propose an algorithm that computes, for each text suffix,
the length of its longest prefix that occurs elsewhere in the text with
at most one mismatch. For a sequence of length n our algorithm uses
Θ(n log n) bits and runs in O(nLave log n/ log log n) time where Lave is
the average LCP of the input sequence. Although Lave is Θ(n) in the
worst case, recent analyses of real world data show that it usually grows
logarithmically with the input size. We then describe and analyse a sec-
ond algorithm that uses a greedy strategy to reduce the amount of com-
putation and that can be turned into an even faster algorithm if allow
an additive one-sided error.

Finally, we consider the related problem of computing the 1-
mappability of a sequence. In this problem we are asked to compute,
for each length-m substring of the input sequence, the number of other
substrings which are at Hamming distance one. For this problem we pro-
pose an algorithm that takes O(mn log n/ log log n) time using Θ(n log n)
bits of space.

1 Introduction

The longest-common-prefix (LCP) array [20] stores the lengths of the longest-
common-prefix between two lexicographically adjacent suffixes of a given
sequence. The LCP array has been mostly used to speedup algorithms based on
the Suffix Array: it is well known that combining a (compressed) Suffix Array
with a (compressed) LCP array we get a data structure as powerful as the Suf-
fix Tree [13] using considerably less space. This application motivates the many
recent results on the construction and storage of the LCP array [3,5,9,12,16].

However, there are problems in which we are interested in the LCP values
per se, that is, without reference to the Suffix Array. Indeed, LCP values give
us important information on the repetitiveness of the underlying text and they
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 299–310, 2015.
DOI: 10.1007/978-3-319-23826-5 29



300 G. Manzini

are useful for the analysis of both natural language texts (e.g. plagiarism detec-
tion [17]) and biosequences (e.g. the mappability problem discussed in Section 6).

It is also well known that sequences can contain alterations which can be mali-
cious (computer viruses or plagiarism attempts), due to natural causes (DNA
replication) or instrumental errors (sequencing experiments). It is therefore inter-
esting to analyze the LCP values when errors are allowed in the sequence. In
this context it is natural to define the longest common prefix with k mismatches.
Informally, given a sequence t[0..n], the LCP with k mismatches of the suffix
t[i..n] is the length of the longest prefix of t[i..n] that appears elsewhere in t
with up to k mismatches (see formal definition in Section 2).

When we enter in the realm of inexact matches even simple problems are
extremely challenging so in this paper we consider the problem of computing
the longest common prefix with a single mismatch. In Section 4 we describe a
simple algorithm for this problem that uses O(n log n) bits of space and runs
in O(nLave log n/ log log n) time, where Lave is the average LCP (without mis-
matches!) of the input sequence. Although in the worst case Lave = Θ(n) the
extensive experimental analysis in [19] shows that for real world data, including
both natural language and biosequences, Lave usually grows as Θ(log n) so we
can expect our algorithm to be usable also for large collections.

In Section 5 we show how to improve our basic algorithm using a
greedy strategy. Although the greedy strategy provably reduces the overall
amount of computation, in some pathological cases the running time is still
O(nLave log n/ log log n). An additional feature of the greedy algorithm is that
we can reduce its worst case running time by a factor q at the cost of an additive
one-sided error of at most q (see Lemma 7).

Finally, in Section 6 we show how our techniques can be applied to the prob-
lem of determining the mappability of a genomic region (see [8] and references
therein). Given a sequence t and a parameter m, the k-mappability problem
consists in determining, for each length-m substring α of t, the number of sub-
strings of t which are at Hamming distance at most k from α. The mappability
information plays an important role in NGS data analysis but for k > 0 the bioin-
formatics community still relies on heuristic tools (see discussion in Section 6).
We propose an algorithm for the computation of the 1-mappability that runs in
O(mn log n/ log log n) times using O(n log n) bits of space.

2 Notation and Problem Definition

Throughout we consider a string t = t[0..n] = t[0]t[1] . . . t[n] of n + 1 symbols
drawn from a constant ordered alphabet Σ. We implicitly assume that t has
an additional “end-of-string” character t[n + 1] = $ which is distinct from and
lexicographically smaller than all the other characters in Σ.

For i = 0, . . . , n we write t[i..n] to denote the suffix of t of length n − i + 1,
that is t[i..n] = t[i]t[i + 1] · · · t[n]. For convenience we will frequently refer to
suffix t[i..n] simply as “suffix i”. Similarly, we write t[0..i] to denote the prefix
of t of length i + 1. We write t[i..j] to represent the substring t[i]t[i + 1] · · · t[j]
of t that starts at position i and ends at position j.
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The suffix array of t is an array SA[0..n] which contains a permutation of
the integers 0..n such that t[SA[0]..n] < t[SA[1]..n] < · · · < t[SA[n]..n]. In other
words, SA[j] = i iff t[i..n] is the jth suffix of t in ascending lexicographical order.
Similarly, we define the prefix array of t as the array PA[0..n] which contains
a permutation of the integers 0..n such that PA[j] = i iff t[0..i] is the jth prefix
of t in ascending lexicographical (right-to-left) order.

The lcp array LCP = LCP[0..n] is an array defined by t and SA. Let
lcp(y, z) denote the length of the longest common prefix of strings y and z. For
every j ∈ 1..n,

LCP[j] = lcp(t[SA[j]..n], t[SA[j − 1]..n]),

that is, LCP[j] is the length of the longest common prefix of suffixes SA[j] and
SA[j − 1]. LCP[0] is undefined. The permuted lcp array [15,22,25], denoted
by PLCP[0..n − 1], has the same contents as LCP but in different order. Let
i− (resp. i+) denote the starting position of the lexicographic predecessor (resp.
successor) of t[i..n]. For i = 0, . . . , n we define

PLCP[i] = LCP[SA−1[i]] = lcp(t[i..n], t[i−..n]),

that is, PLCP[i] is the length of the longest common prefix between t[i..n] and
its lexicographic predecessor. Since in this paper we are interested in LCP values
per se, without reference to the suffix array, we will mostly consider LCP values
in this alternative ordering.

For any k ≥ 0 we define lcpk(y, z) as the largest � ≥ 0 such that y[0..� − 1]
and z[0..� − 1] exist and are at Hamming distance ≤ k, that is, differ by at
most k mismatches. We define the permuted lcp array with k mismatches
—PLCPk[0..n]— as follows. For i = 0, . . . , n

PLCPk[i] = max
j=0..n−1, j �=i

lcpk(t[i..n], t[j..n]). (1)

Note that, although lcp0(y, z) = lcp(y, z), it is PLCP0[i] ≥ PLCP[i] since for
PLCP0 we consider both the lexicographic predecessor and successor, that is,
PLCP0[i] = max(lcp(t[i..n], t[i−..n], lcp(t[i..n], t[i+..n]).

Let E[i] = i + PLCP0[i] − 1. By definition of PLCP0 the substring t[i..E[i]]
occurs at least twice in t, while t[i..E[i] + 1] occurs only once. Hence, the prefix
of t[i..n] defining PLCP0[i] ends in position E[i]. With a little abuse of notation
we say that E[i] is the ending point of PLCP0[i].

In this paper we consider the problem of computing the array PLCP1, that
is, for i = 0..n we want to find the longest prefix of t[i..n] that appears elsewhere
in t with at most one mismatch. Clearly it is PLCP1[i] ≥ PLCP0[i] + 1 since
we can simply place the mismatch in position E[i] + 1, but PLCP1[i] can be
much greater than PLCP0[i]. For example for t = a2bn−2 it is PLCP0[0] = 1 and
PLCP1[i] = n − 1.

3 Auxiliary Data Structures

In this section we describe some auxiliary data structures used in the paper. To
keep the description of our algorithms simple, we are very liberal in the use of
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these data structures. With a careful implementation of our algorithms some of
the auxiliary data structures can be discarded or replaced by some alternatives
taking less space (see for example the discussion at the end of Section 4). We
do not account for the time for the construction of the auxiliary data structures
since it is dominated by the time complexity of our algorithms.

One of the basic data structures used in the literature to handle searches in
t[0..n] with one mismatch is the two-dimensional grid [0..n] × [0..n] containing
a point in position (i, k) iff there exists a text position t[j] such that t[0..j −
1] is the i-th smallest lexicographic prefix and t[j + 1..n] is the k-th largest
lexicographic suffix, i.e., PA[i] = j − 1 and SA[k] = j + 1. This data structure
was introduced more than fifteen years ago [1] but is still widely used [7,14].
Using this two-dimensional grid, problems involving single mismatches (or gaps)
can be solved via orthogonal range queries (or related operations, see [4] and
references therein). Note there are other, more space consuming, approaches to
indexing with mismatches that can be used to solve the problems considered in
this paper with different time/space tradeoffs (see [11] and references therein).

For our convenience, we represent the above two-dimensional grid with an
array. Formally for j = 0, . . . , n we define the arrays PA*[0..n] and SA*[0..n] as

PA*[PA−1[j − 1]] = SA−1[j + 1], (2)
SA*[SA−1[j + 1]] = PA−1[j − 1]. (3)

Note that PA*[i] is the rank in the suffix array of the suffix that starts two
positions after the end of the prefix that has rank i in the prefix array (that is,
SA[PA*[i]] − PA[i] = 2). A symmetric interpretation holds for SA*.

For the arrays PA* and SA* we build the O(n log n) bits data struc-
tures described in [2] to support the rangeNext and rangePrev queries in
O(log n/ log log n) time. Recall that given an array A[0..n] on the domain
[0..n], rangeNext(A, i, j, v) (resp. rangePrev(A, i, j, v)) returns the smallest (resp.
largest) element in A[i..j] larger (resp. smaller) than v.

Symmetrically to the LCP array we define the longest common suffix
array LCS such that LCS[j] is the longest common suffix of the prefixes PA[j]
and PA[j − 1]. We assume we have a O(n log n) bits representation of the
LCP and LCS arrays supporting the prevLess, nextLess and RMQ queries in
O(log n/ log log n) time (see for example [2,10]). Given an array A[0..n] on the
domain [0..n], prevLess(A, i, v) (resp. nextLess(A, i, v)) returns the rightmost ele-
ment in A[0..i] (resp. leftmost element in A[i..n]) that is smaller than v, while
RMQ(A, i, j) returns the smallest element in A[i..j].

Definition 1. Given a text t[0..n] and indices 0 ≤ i ≤ j ≤ k ≤ n we write

〈t[i..j − 1]∗t[j + 1..k] ⊆ t〉

if the substring t[i..k] appears elsewhere in t with possibly a mismatch in position
j. Stated more formally, we require that there exists δ 	= 0 with −i ≤ δ ≤ n − k
such that t[i..j − 1] = t[i + δ..j − 1 + δ] and t[j + 1..k] = t[j + 1 + δ..k + δ]. 
�
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Lemma 1. There exists a O(n log n) bits data structure such that given a sub-
string t[i..j − 1] we can find in O(log n/ log log n) time the largest k such that
〈t[i..j − 1]∗t[j + 1..k] ⊆ t〉.
Proof. Given the index j − 1 we retrive the position pj = PA−1[j − 1] of the
prefix array containing the prefix t[0..j − 1]. Then, with a prevLess and nextLess
query on the LCS array we find the range [a, b] of prefix array entries that have
a common prefix of at least j − i with t[i..j − 1]; these are all the prefixes of t
that ends with the substring t[i..j − 1].

Let sj = SA−1[j + 1] denote the position in SA of suffix t[j + 1..n], and let

s+j = min(rangeNext(PA*, a, pj − 1, sj), rangeNext(PA*, pj + 1, b, sj)),

s−
j = max(rangePrev(PA*, a, pj − 1, sj), rangePrev(PA*, pj + 1, b, sj))

By construction s+j is the smaller value in PA*[a..b] larger than sj , and s−
j is

the larger value smaller than sj (note PA*[pj ] = sj). Hence, among all suffixes
preceded by the substring t[i..j −1]∗, with ∗ an arbitrary character, t[SA[s+j ]..n]
(resp. t[SA[s−

j ]..n]) is the one immediately following (resp. preceding) suffix t[j+
1..n] in the lexicographic order. The desired value k is therefore given by

k = j + max(RMQ(LCP, s−
j , sj),RMQ(LCP, sj + 1, s+j )). (4)

since RMQ(LCP, i, j) is the length of the longest common prefix between suffixes
t[SA[i]..n] and t[SA[j]..n]. 
�

Reversing the roles of the suffix array and prefix array and using SA* instead
of PA* we get

Lemma 2. There exists a O(n log n) bits data structure such that given a sub-
string t[j + 1..k] we can find in O(log n/ log log n) time the smallest i such that
〈t[i..j − 1]∗t[j + 1..k] ⊆ t〉. 
�

4 A Simple Algorithm for Computing PLCP1

In this section we describe a simple algorithm for computing the array PLCP1.
Our starting point is the following characterization of PLCP1[i]. Recall that
E[i] = i+PLCP0[i]−1 is the endpoint of PLCP0[i] in the sense that the longest
prefix of t[i..n] that appears elsewhere in t ends in position E[i]. If E[i] = n − 1
then PLCP1[i] = PLCP0[i] + 1 since the best we can do is to add a mismatch in
position E[i]+1. In the general case when E[i] < n−1, we observe that computing
PLCP1[i] is equivalent to computing the largest k such that the substring t[i..k]
appears with one mismatch somewhere else in t. Notice that the mismatch must
appear in a position j with i ≤ j ≤ E[i] + 1, since if it were j > E[i] + 1 we
would have a second mismatch in E[i] + 1. Putting these observations together,
to obtain PLCP1[i] we need to compute for j = i, i + 1, . . . , E[i] + 1 the largest
k such that 〈t[i..j − 1]∗t[j + 1..k] ⊆ t〉. This simple strategy is implemented in
the loop of Lines 3–5 in the algorithm in Fig. 4.
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1: for i = 0 to n do
2: ei ← E[i] + 1
3: for j = i to E[i] + 1 do
4: find the largest k such that 〈t[i..j − 1]∗t[j + 1..k] ⊆ t〉
5: ei ← max(ei, k)
6: PLCP1[i] ← ei − i + 1

Fig. 1. Simple algorithm for computing the PLCP1 array.

Theorem 3. Let �i = PLCP0[i], and let Lave = (
∑n

i=0 �i)/n denote the aver-
age LCP of the text t. The algorithm in Fig. 4 computes the PLCP1 array in
O(nLave log n/ log log n) time using O(n log n) bits of space.

Proof. The loop of Lines 3–5 executes E[i]+1−i = PLCP0[i] iterations in which
at Line 4 we compute the value k in O(log n/ log log n) time using Lemma 1.
Summing over all positions i we get the desired time bound.

To prove the space bound, in addition to the O(n log n) bits data structures
of Lemma 1 the algorithm only need the values E[i]. Since it is PLCP0[i] ≥
PLCP0[i − 1] − 1 using the representation of [23] (and constant time binary
select) we can store the PLCP0 array in 2n+o(n) bits and have a constant time
access to PLCP0[i] and hence to E[i] = i + PLCP0[i] − 1. 
�

As already discussed in the introduction, in the worst case it is Lave =
Θ(n) but the extensive empirical analysis in [19] suggests that in real world
applications Lave grows as Θ(log n).

Note that the actual implementation of the above algorithm does not need
all the data structures described in Section 3. Using a bidirectional compressed
index [18,24] we can maintain in O(1) amortized time the values PA−1[j − 1],
SA−1[j + 1] and the ranges of PA rows prefixed by t[i..j − 1] that are needed in
Lemma 1. With additional O(n log log n) bits we can support O(log n/ log log n)
time RMQ queries on the LCP values required by (4). The only data structure
for which we apparently need to use Θ(n log n) bits is the array PA* with the
support for the rangeNext and rangePrev operations in O(log n/ log log n) time.

5 A Greedy Algorithm for PLCP1

The algorithm in the previous section computes each entry of the PLCP1 array
independently. It is natural to try to improve it by considering simultaneously
many PLCP1 entries. To this end, instead of considering for each position i the
location of all possible mismatches influencing PLCP1[i], we loop only once over
all possible mismatch positions j and we update (an estimate of) all PLCP1[i]
values that can be influenced by a mismatch in position j.

Let w(j) be the smallest index such that E[w(j)] + 1 ≥ j. As we observed in
the previous section a mismatch in position j can influence the values PLCP1[i]
for w(j) ≤ i ≤ j. Hence, for any given j we should compute for i = w(j), . . . , j
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1: for i = 0 to n do // Init ei values
2: ei ← E[i] + 1
3: for j = 0 to n do // Loop on all possible mismatch positions
4: g ← j
5: while g ≤ E[j + 1] do

� such that 〈t[�..j − 1]∗t[j + 1..g] ⊆ t〉
h such that 〈t[�..j − 1]∗t[j + 1..h] ⊆ t〉

8: e� ← max(e�, h)
9: g ← h + 1
10: for i = 1 to n do // Compute endpoints
11: ei = max(ei, ei−1)
12: for i = 0 to n do // Compute PLCP1 values

6: find the smallest
7: find the largest

13: PLCP1[i] = ei − i + 1

Fig. 2. Greedy algorithm for computing the PLCP1 array.

the largest k
(j)
i such that 〈t[i..j − 1]∗t[j + 1..k

(j)
i ] ⊆ t〉. From these values the

PLCP1 array can be obtained by the same reasoning as in the previous section.

Lemma 4. For i = 0, . . . , n it is

PLCP1[i] =
(

max
i≤j≤E[i]+1

k
(j)
i

)
− i + 1. (5)

Proof. The maximum in (5) coincides with the largest k such that t[i..k] appears
elsewhere in t with one mismatch. 
�

The greedy algorithm in Fig. 5 is based on Lemma 4. It maintains the values
e0, . . . , en−1 such that ei is always a lower bound of the maximum in (5), and
at the end (Lines 10–12) it outputs the PLCP1 array. To prove the correctness
of the algorithm we need to analyze its crucial part, that is, the while loop at
Lines 5–9. Consider a fixed mismatch position j, with 0 ≤ j ≤ n. As before we
define1 w to be the smallest index such that E[w] + 1 ≥ j. For w ≤ i ≤ j let ki

denote the largest value such that 〈t[i..j − 1]∗t[j + 1..ki] ⊆ t〉. It is immediate
to see that the sequence of values ki’s is non decreasing, that is:

kw ≤ kw+1 ≤ · · · ≤ kj . (6)

In addition, it is kj = E[j + 1], since t[j..j − 1] is the empty string hence kj is
the largest index for which t[j +1..k] appears elsewhere in t and this is E[j +1].

To completely determine the sequence (6) it suffices to know the indices vi

and the values kvi
where the sequence is strictly increasing. Formally, we define

v1, . . . , vd such that w = v1 < v2 < · · · < vd ≤ j and for i = 1, . . . , d − 1

kvi
= kvi+1 = · · · = kvi+1−1 < kvi+1 (7)

and
1 To simplify the notation we drop the superscript j from w(j) and k

(j)
i .
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kvd
= kvd+1 = · · · = kj = E[j + 1].

Clearly, knowing the pairs (v1, kv1), . . . , (vd, kvd
), is equivalent to knowing the

whole sequence kw, kw+1, . . . , kj . The following lemma shows that the while loop
in the greedy algorithm of Fig. 5 computes precisely these pairs .

Lemma 5. For all j, the while loop at Lines 5–9 of the greedy algorithm com-
putes the pairs (v1, kv1), . . . , (vd, kvd

) in the sense that the pair of values (�, h)
computed at Lines 6–7 at the i-th iteration of the loop coincides with (vi, kvi

).

Proof. Let us denote by (�i, hi) the pair of values computed at Lines 6 and 7
during the i-th iteration of the while loop. To prove the lemma it suffices to
show that the values �i’s coincide with the vi’s since for each i both hi and kvi

are then defined as the largest k such that 〈t[vi..j − 1]∗t[j + 1..k] ⊆ t〉.
At the first iteration it is g = j so t[j + 1..g] is the empty string and at

Line 6 we compute �1 as the smallest index such that the substring t[�1..j − 1]
appears somewhere else in t. This clearly coincides with the smallest w such that
E[w] = j −1 so �1 = v1 as claimed. At iteration i+1, the value �i+1 is such that
〈t[�i+1..j−1]∗t[j+1..hi+1] ⊆ t〉. Hence at Line 7 we find hi+1 = k�i+1 such that

k�i+1 ≥ hi + 1 > hi = kvi
.

By (7) we know that �i+1 ≥ vi+1, but since by construction �i+1 is the smallest
integer with that property it must be �i+1 = vi+1.

Finally, let s + 1 denote the iteration at which we exit from the while loop
since g + 1 = hs + 1 > E[j + 1]. Since 〈t[�s..j − 1]∗t[j + 1..hs] ⊆ t〉 the substring
t[j + 1..hs] appear elsewhere in t which implies hs ≤ E[j + 1]. We conclude that
hs = E[j + 1] = kvd

as claimed. 
�
We call the algorithm in Fig. 5 “greedy” since at each iteration the while loop

finds the longest substring with the desired property. As a result it only computes
the values where the sequence (6) is strictly increasing. The next theorem shows
that the algorithm uses these values to correctly compute PLCP1.

Theorem 6. The greedy algorithm correctly computes the PLCP1 array in time
O(nLave log n/ log log n) using O(n log n) bits of space.

Proof. To show the correctness of the algorithm, we prove that after the loop of
Lines 10–11 each value ei contains the maximum in (5). Assume the maximum is
achieved for j = j̃. If the value k

(j̃)
i is among the one computed in the while loop

there is nothing to prove. Otherwise we know that at iteration j̃ the algorithm
will store the value k

(j̃)
i in a variable eh with h < i, so at the end of the while loop

we will have eh ≥ k
(j̃)
i . Hence, after the loop of Lines 10–11 we have ei ≥ k

(j̃)
i .

To see that it is indeed ei = k
(j̃)
i , it suffices to notice that at Line 11 we never

store in ei a value larger than PLCP1[i] + i − 1 since for every j 〈t[i − 1..j − 1]∗
t[j + 1..ei−1] ⊆ t〉 implies 〈t[i..j − 1]∗t[j + 1..ei−1] ⊆ t〉.
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We now analyze the running time. The most expensive part of the algorithm
is clearly the nested while loop. For j = 0, . . . , n − 1, the while loop computes
the values

kv1 < kv2 < · · · < kvd−1 < kvd
. (8)

Since kv1 ≥ j + 1 and kvd
= E[j + 1], the number of iterations is bounded by

E[j + 1] − j = PLCP0[j + 1]. Since each iteration takes O(log n/ log log n) time,
summing over j gives the desired time bound.

The space bound follows from the fact that we only use data structures
described in Section 3 which overall take O(n log n) bits. 
�

The greedy algorithm has the same asymptotic worst case running time than
the simpler algorithm in Section 4. However, its actual performances depend
on the effectiveness of the greedy strategy in computing only a subset of the
sequence (6) instead of the whole sequence that has size PLCP0[j +1]. From the
above proof we see that if the while loop never computes more than dmax values,
then the overall running would be bounded by O(ndmax log n/ log log n).

Unfortunately the following example shows that in the worst case the greedy
strategy is not effective and the while loop computes O(PLCP0[j + 1]) values.
Consider the string t = a3mbma2mca2m. When the mismatch is in position j =
6m (so t[j] = c) at the first iteration of the while loop we have �1 = 4m,
h1 = 7m since t[4m..7m] = a2mcam−1 appears with one mismatch in t[0..3m].
At the second iteration we have �2 = 4m+1,h2 = 7m+1 since t[4m+1..7m+1] =
a2m−1cam appears with one mismatch in t[0..3m]. Similarly, at the i-th iteration
it is �i = 4m + i − 1, hi = 7m + i − 1, and there are m = (PLCP0[j + 1])/2
iterations overall.

We conclude this section observing that the greedy algorithm can be trans-
formed into an approximation algorithm with a one-sided additive error.

Lemma 7. If in the algorithm of Fig. 5 we replace Line 9 with g ← h + q, the
resulting algorithm runs in O((nLave/q) log n/ log log n) time and the resulting
array PLCP′

1 is such that for all i PLCP1[i] − q < PLCP′
1[i] ≤ PLCP1[i].

Proof. The time bound follows observing that the number of iterations of the
while loop is now bounded by PLCP0[j+1]/q . To prove the error bound observe
that by setting g ← h + q the while loop will only compute a subset of the
sequence (8). The crucial point is that if kvr

is computed then the algorithm will
not compute the values kvi

such that kvr
< kvi

< kvr
+ q but it will certainly

compute the smallest kvi
such that ki ≥ kvr

+ q. In other words, the algorithm
will only skip a value kvs

if a previous value kvr
with kvs

− kvr
< d was not

skipped. Hence, if a variable e� is not updated with a value kvs
, because kvs

was
not computed, we know that there exists �′ < � such that when the loop of Lines
10–11 begins it is e�′ ≥ kvr

. At the end of the loop we will have e� ≥ kvr
> kvs

−d
and the thesis follows. 
�
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6 Computation of 1-mappability

Given a text t and a parameter m, the mappability problem consists in determin-
ing, for each length-m substring of t, the number of times this substring appears
in t. Formally, for i = 0..n − m let FQm

0 [i] denote the number of occurrences in
t of the substring t[i..i + m − 1]. The mappability at position i is defined as the
reciprocal of FQm

0 [i].
Mappability is an important information in the analysis of Next Generation

Sequencing data. In a NGS experiment reads of length m deriving from regions
with FQm

0 [i] = 1 (high mappability) will likely be aligned in a single position
of the reference, while reads deriving from regions with low mappability will be
more problematic since they will align in multiple locations of the reference. In
quantitative studies, for example of binding affinity in ChIP-Seq experiments,
the mappability of the reference is a critical normalization factor (see [8] and
references therein).

The array FQm
0 can be easily computed with a single scan of the LCP and

suffix arrays. However, because of sequencing errors and individual variations,
NGS tools usually allow for a small number of mismatches. It is therefore impor-
tant to measure the so called k-mappability, that is the number of substrings
which are at Hamming distance k from any given length-m substring of t. When
working at the scale of mammalian genomes this is a non trivial problem: the
best available tool [8] takes hours or days to compute the exact mappability of
the Human genome using 8 cores (there is also a faster variant that computes
a reasonable approximation of the true mappability). Not surprisingly, the run-
ning time of the algorithm in [8] heavily depends on the parameters m and k.
Since the algorithm is based on an exhaustive matching tool [21], for a given
number of mismatches the running time increases when the length of the region
m decreases. Indeed, for smaller m the number of substrings at Hamming dis-
tance k from a given string increases and so does the overall running time. In
this section we show how to compute the 1-mappability in O(mn log n/ log log n)
time. The interest of this approach is that it is efficient for small m and therefore
could be a starting point for the development of a tool complementary to [8].

For a given substring length m, let FQm
1 [i] denote the number of sub-

strings of t which are at Hamming distance at most 1 from t[i..i + m − 1].
Formally, the 1-mappability at position i is defined as the reciprocal of FQm

1 [i].
To compute a single value FQm

1 [i] we consider separately the m possible posi-
tions for the mismatch. For j = i, . . . , i + m − 1 we compute the value
Occ(t[i..j − 1]∗ t[j + 1..i + m − 1]), that is, the number of occurrences in t of
the strings of the form t[i..j − 1] ∗ t[j + 1..i + m − 1] where ∗ stands for an
arbitrary character. The resulting algorithm is shown in Figure 3, where we also
take care of the fact that among the Occ(t[i..j − 1]∗t[j + 1..i + m − 1]) occur-
rences there are also the FQm

0 [i] occurrences of substrings which are equal to
t[i..i + m − 1].

The key to the efficient computation of Occ(t[i..j − 1]∗ t[j + 1..i + m − 1])
is the following result, originally stated in [6, Lemma 6] in terms of orthogonal
range search, and here rephrased in terms of simple arrays.
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m
0 with a scan of the LCP array

2: for i = 0 to n − m do
m
1 [i] ← FQm

0 [i] // account for substrings at distance 0
4: for j = i to i + m − 1 do
5: // account for substrings with a mismatch in position j

1: Compute FQ

3: FQ

6: FQm
1 [i] += Occ(t[i..j − 1]∗t[j + 1..i + m − 1]) − FQm

0 [i]

Fig. 3. Algorithm for computing the FQm
1 array.

Lemma 8. We can represent an array S[0..n] of elements in [0..n] in n log n +
o(n) bits so that given a range [a..b] of positions and a range [c..d] of values we
can compute in O(log n/ log log n) time the number of entries in S[a..b] whose
values are in the range [c..d]. 
�
Theorem 9. The algorithm in Fig. 3 computes FQm

1 in O(mn log n/ log log n)
time using O(n log n) bits of space.

Proof. Line 1 takes O(n) time. We show that each iteration of the loop at Lines
2–6 takes O(m log n/ log log n) time assuming that we represent the array PA*
defined in (2) using Lemma 8.

For any position i, with a bidirectional compressed index [18,24] we compute
in overall O(m) time the ranges [a0, b0], . . . , [am−1, bm−1] such that [ak, bk] is the
range of prefix array entries containing the prefixes ending with t[i..i + k − 1].
Similarly we compute the ranges [c0, d0], . . . , [cm−1, dm−1] such that [ck, dk] is
the range of suffix array entries containing the suffixes starting with t[i + k +
1..i + m − 1]. To complete the proof it suffices to show that for j = 0, . . . , m − 1
the Occ(t[i..j − 1]∗ t[j + 1..i + m − 1]) coincides with the number of entries in
PA*[aj−i..bj−i] which are in the range [cj−i..dj−i]. Indeed, we have PA*[x] = y
with aj−i ≤ x ≤ bj−i and cj−i ≤ y ≤ dj − i iff the prefix t[0..PA[x]] ends with
t[i..j − 1] and the suffix t[PA[x] + 2..n] starts with t[j + 1..n]. Hence there is a
bijection between the substrings of the form t[i..j −1]∗ t[j +1..i+m−1] and the
entries in PA*[aj−i..bj−i] which are in the range [cj−i..dj−i]; to count the former
we simply count the latter in O(log n/ log log n) time using Lemma 8. 
�
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Abstract. This paper describes and evaluates the use of Geographi-
cal Knowledge Re-Ranking, Linguistic Processing, and Query Expansion
techniques to improve Geographical Information Retrieval effectiveness.
Geographical Knowledge Re-Ranking is performed with Geographical
Gazetteers and conservative Toponym Disambiguation techniques that
boost the ranking of the geographically relevant documents retrieved
by standard state-of-the-art Information Retrieval algorithms. Linguis-
tic Processing is performed in two ways: 1) Part-of-Speech tagging and
Named Entity Recognition and Classification are applied to analyze the
text collections and topics to detect toponyms, 2) Stemming (Porter’s
algorithm) and Lemmatization are also applied in combination with
default stopwords filtering. The Query Expansion methods tested are the
Bose-Einstein (Bo1) and Kullback-Leibler term weighting models. The
experiments have been performed with the English Monolingual test col-
lections of the GeoCLEF evaluations (from years 2005, 2006, 2007, and
2008) using the TF-IDF, BM25, and InL2 Information Retrieval algo-
rithms over unprocessed texts as baselines. The experiments have been
performed with each GeoCLEF test collection (25 topics per evaluation)
separately and with the fusion of all these collections (100 topics). The
results of evaluating separately Geographical Knowledge Re-Ranking,
Linguistic Processing (lemmatization, stemming, and the combination
of both), and Query Expansion with the fusion of all the topics show
that all these processes improve the Mean Average Precision (MAP) and
RPrecision effectiveness measures in all the experiments and show statis-
tical significance over the baselines in most of them. The best results in
MAP and RPrecision are obtained with the InL2 algorithm using the fol-
lowing techniques: Geographical Knowledge Re-Ranking, Lemmatization
with Stemming, and Kullback-Leibler Query Expansion. Some configu-
rations with Geographical Knowledge Re-Ranking, Linguistic Processing
and Query Expansion have improved the MAP of the best official results
at GeoCLEF evaluations of 2005, 2006, and 2007.
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1 Introduction

Geographical Information Retrieval (GIR) is the task of retrieving a set of rele-
vant documents given a user query need with geographical restrictions expressed
in natural language (e.g. “Shark attacks in California”). Geographical queries
are normally defined by a triplet < theme, spatial relationship, location > [7].
As an example, the previous query will be treated in the following way: 1) a
theme (“shark attacks”), 2) a location (“California), 3) a spatial relationship
(“in”) between the theme and the location. Current state-of-the-art Informa-
tion Retrieval (IR)) algorithms treat geographical terms from queries as simple
textual tokens without having into account its geographical meaning and the pos-
sible geographical restrictions that these terms can imply. As an example, the
previous example of geographical query could led to find documents that mention
“shark attacks” in California by matching only the geographical token “Califor-
nia” with all the indexed documents. In this way the IR system will not return or
will return without enough ranking documents that could report “shark attacks”
in places of California but not mentioning California (e.g. “Shark attacks in Santa
Barbara”). Theoretically, the treatment and automatic understanding of geo-
graphical terms appearing in user queries and indexed documents from IR sys-
tems (and major search engines) should provide an improvement of the results by
retrieving documents that match the geographical restrictions in the query. The
system and the experiments presented in this paper are focused to evaluate how
to treat effectively these geographical restrictions in the queries using existing
Geographical Knowledge Bases in combination with some conservative Toponym
Disambiguation Heuristics. Two kind of of geographical terms are detected and
disambiguated in topics and collections: 1) toponyms, 2) geographical feature
types. These kind of terms are used in a Geographical Knowledge Re-Reranking
process that boosts the ranking of the geographically relevant documents. In
addition Linguistic Processing and Query Expansion are also investigated for
GIR. This system was initially designed for the GeoCLEF 2007 evaluation in
which achieved the best MAP using the TF-IDF algorithm [4].

The GeoCLEF test collections [9] have been used to evaluate the topics. The
GeoCLEF GIR evaluation forum took place during 4 years (1 as a pilot task)
between 2005 and 2008 in the framework of the CLEF conferences1. The test col-
lections are composed of 100 topics (25 topics per year). The GeoCLEF English
document collection consists of 169,477 documents composed by stories from
the British newspaper The Glasgow Herald (1995) and the American newspaper
Los Angeles Times (1994). In [10] the different kind of geographical topics at
GeoCLEF GIR evaluations are reported:

– Feature types with non-geographic restrictions (e.g. rivers with vineyards).
– Feature type with geographical place restriction (e.g. cities in Germany).
– Thematic subject associated to a toponym (e.g. independence of Quebec).
– Topics with a non-geographic subject that is a complex function of place

(e.g., European football cup matches).
1 http://www.clef-initiative.eu

http://www.clef-initiative.eu
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<title>Whisky making in the Scottlsh Islands</title>
<desc> To be relevant, a document must describe a whisky made, or
a whisky distillery located, on a Scottish island.</desc>
<narr> Relevant islands are Islay, Skye, Orkney, Arran, Jura, Mull.;
Relevant whiskys are Arran Single Malt; Highland Park Single Malt; Scapa;
Isle of Jura; Talisker; Tobermory; Ledaig; Ardbeg; Bowmore; Bruichladdich;
Bunnahabhain; Caol Ila; Kilchoman;Lagavulin; Laphroaig </narr>

Fig. 1. Example of a topic of the GeoCLEF 2007 edition.

– Vague topics (e.g., Sub-Saharan Africa).
– Geographical relations among toponyms (e.g., Oil and gas extraction found

between the UK and the Continent)
– Geographical relations among events (e.g., F1 circuits where Ayrton Senna

competed in 1994).
– Relations between events in specific toponyms (e.g., Casualties in fights in

Nagorno- Karabakh).

2 Related Work

GIR systems have very specific issues due to its restricted domain (geography)
specificity. Some of these issues have been detailed in the GIR literature [6]:

– geographical names detection (e.g. detecting “Washington” as a possible
place name and disambiguate it as a location instead a geo-political entity
or a person.)

– spatial natural language qualifiers detection (e.g. north, south of, near, close
by,. . . )

– toponyms disambiguation (e.g. Paris, Texas (USA) vs Paris (France))
– vague place names detection and interpretation. (e.g. Scottish Trossachs,

Midlands,. . . )
– thematic and geospatial indexing and retrieval.

Approaches at GIR used different strategies to perform: 1) stand-alone prob-
abilistic models [8], 2) combination of textual and geographical search [11], 3)
filtering or reranking the documents with geographical knowledge [13], 4) geo-
graphical query expansion [3] [16], and 5) machine learning for re-ranking [10].
Berkeley 2 group participating at GeoCLEF 2005 used a logistic regression algo-
rithm with the following features: stopwords filtering, Stemming (English Mus-
cat stemmer) and blind feedback with the 30 top-ranked terms from the top
20 ranked documents [8]. Their system achieved the highest result with a MAP
of 0.3936 in a run that used the spatial tags included in the topics. Martins
et al. [11] presented a GIR sytem at GeoCLEF 2006 that used a geographical
ontology of about 12,654 concepts, that include place names, feature types, rela-
tionships among places, demographics data, ocurrence statistics of toponyms
in corpora, spatial coordinates and bounding boxes. They used this ontology
combined with a graph-ranking approach to detect scope of documents and top-
ics and a relevance ranking that combined BM25 and a geographical similarity
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function for scopes. Their approach did not outperform the baseline with BM25
and manual expansion (that achieved the best MAP at GeoCLEF2006 with
0.3034). Wang and Neumann [16] applied and approach that, besides including
geographical knowledge, also included knowledge of natural and human events
mined from Wikipedia. They use Query Expansion with ontologies both for
events and geographic terms. Their system achieved the best MAP at Geo-
CLEF2008 with a 0.3037 with a run with manual work and a MAP of 0.2924
in an automatic run. Buscaldi and Rosso [3] applied the GeoCLEF (2005-2008)
topics to test diversity in GIR. They reformulated queries using the meronyms of
the places contained in the original queries (using only the title field), with the
help of a geographical ontology. They reported that a theoretical improvement
is possible. Perea-Ortega et al. [13] using the GeoCLEF data showed that in
each evaluation a re-ranking based on the combination of geographical similar-
ity and textual similarity outperforms the baseline (textual based IR). They used
POS tagging (TreeTager), stopwords filtering and Snowball Stemmer to process
a thematic index of the collection. A geographical index was built with Geo-
NER to recognize geographical entities. The textual index uses the stemmed
and stopwords filtered text and the geographical entities in its original word
form. They applied Lemur2, Terrier3 and Lucene4 for the IR process. Lemur
was applied with BM25 with Pseudo Relevance Feedback, Lucene with BM25
and Query Expansion, and Terrier with InL2 and Bo1 (Query Expansion). Their
best results were obtained with Terrier InL2 and QE (Bo1) combined with geo-
graphical re-ranking with competive (above the average of participants and close
to the top ranked) MAP values of 0.3874 (GeoCLEF 2005). 0.2733 (GeoCLEF
2006), 0.2600 (GeoCLEF 2007), 0.2973 (GeoCLEF 2008).

3 System Description

The system is composed of two main phases: 1) Textual and Geographical Index-
ing, 2) Geographical Information Retrieval. The IR software used in both index-
ing and retrieval phases is Terrier (version 4.0) [12]. We used the TF-IDF. BM25,
and InL2 IR algorithms implemented in the Terrier IR engine. Stopwords filter-
ing is applied by our system using the stopwords list provided in the Terrier IR
engine. The baseline system uses all the terms from the topics. This means that
no separation between thematic and geographical terms and themes or events is
performed by the textual search.

3.1 Textual and Geographical Indexing

We pre-processed the English document collections: Glasgow Herald 1995
(GH95) and Los Angeles Times 1994 (LAT94) with linguistic processing tools

2 www.lemurproject.org/
3 http://www.terrier.org
4 http://lucene.apache.org

www.lemurproject.org/
http://www.terrier.org
http://lucene.apache.org
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(described in the next subsection) to mark the part-of-speech (POS) tags, lem-
mas and Named Entities (NE). After this process the collection is analyzed
with a Geographical Knowledge Base and conservative Toponym Disambigua-
tion heuristics (both components are described in the next sub-section). This
information was used to built two types of indexes:

– Geographical Index. This is a custom-build index that contains the geo-
graphical information of the documents. For each toponym in the document
(detected with the NE detector) the feature type, GeoKB ontology informa-
tion and coordinates are stored in the index. Even if the place is ambiguous
all the possible geographical referents are indexed.

– Textual Indexes. These are Terrier based indexes that store the original or
the linguistically processed information of the document. Note that in all
these indexes geographical entities (toponyms) have been indexed without
linguistic processing with exception of the stemmed indexes. The following
indexes have been created: 1) original index with word forms, 2) lemmatized
index, 3) stemmed index (using the Porter Stemmer, and 4) lemmatized and
stemmed index (the Porter Stemmer applied over the lemmatized content).

3.2 Geographical Information Retrieval

The retrieval system has four phases performed sequentially: 1) a Linguistic and
Geographical Processing of the topics, 2) a textual Document Retrieval with
Terrier, 3) a Geographical Document Retrieval with Geographical Knowledge
Bases (GKBs), and 4) a Geographical Re-Ranking phase.

Linguistic and Geographical Knowledge Processing of the Topics. The
goal of this phase is to extract all the relevant keywords (with its analysis) from
the topics. These keywords are then used by the Textual and Geographical Doc-
ument Retrieval phases. The Topic Analysis phase has two main sub-phases: a
Linguistic Analysis and a Geographical Analysis. The Linguistic Analysis sub-
phase extracts lexico-semantic and syntactic information using the following set
of Natural Language Processing (NLP) tools: 1) TnT an statistical POS tag-
ger [2], 2) WordNet lemmatizer (version 2.0), 3) A Maximum Entropy based
Named Entities Recognizer and Classifier (NERC) trained with the CONLL-
2003 shared task English data set, 4) a list of demonyms relationships for each
country (e.g. Japanese - Japan). The Geographical Analysis is applied to the
Named Entities from the Title and Description and Narrative tags of the topics
that have been classified as LOCATION or ORGANIZATION by the NERC
module. This analysis uses a Geographical Knowledge Base that has two main
components: 1) a Geographical Thesaurus, 2) Feature type thesaurus. The Geo-
graphical Thesaurus has been built joining four gazetteers that contain entries
with places and their geographical class, coordinates, part-of relationships and
other information:
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1. NGA GEOnet Names Server (GNS)5: a gazetteer covering worldwide exclud-
ing the United States and Antarctica, with 5.3 million entries.

2. Geographic Names Information System (GNIS)6, contains 2.0 million entries
about geographic features of the United States and its territories. We used
a subset of 39,906 entries of the most important geographical names.

3. GeoWorldMap7 World Gazetteer: a gazetteer with 40,594 entries of the most
important countries, regions, and cities of the world.

4. World Gazetteer8: a gazetteer with 171,021 entries of towns, administrative
divisions and agglomerations with their features and current population.
From this gazetteer we added only the 29,924 cities with more than 5,000
unhabitants.

Each one of these gazetteers has a different set of classes that have been mapped
to the ADL Feature Type Thesaurus (ADLFTT) with a resulting set of 575
geographical types. The ADL Feature Type Thesaurus is a hierarchical collection
of geographical terms used to type named geographic places in English [5]. Our
GNIS mapping is similar to the one exposed by Hill [5]. The following Toponym
Disambiguation heuristics are applied using the information from the GeoKB:

– H1. Hierarchical ranked ontology of feature types. The ranked hierarchy of the
feature types ontology is applied when a toponym can refer to several kinds
of feature types (e.g. Africa (the continent) vs Africa, Mexico). The following
list of ordered priorities for the different feature types is used: 1) continent,
2) subcontinent (e.g. South America), 3) country capital, 4) country, 5) first
order administrative divisions (e.g. states), 6) sea, 7) summit, 8) river, 9)
county, 10) important city , 11) other place (can include less important
cities and other types).

– H2. Important places are disambiguated excluding other places with the same
name. GeoWorldMap and Word Gazetteer have priority to disambiguate
places because contain less but important places compared with GNIS and
GNS.

– H3. Treatment of toponym vs person name type of Geo/Non-Geo ambiguity
when the toponym has the lowest priority (11). A list of common first and
last names is used to filter out Named Entities erroneously recognized as
toponyms.

– H4. Small places are not taken into account (only for USA). Due to the high
amount of places in the GNIS gazetteer, only a small part of its data is used
(the US concise gazetteer).

– H5. Lowest priority toponyms are not disambiguated. Toponyms with the
lowest priority in the hierarchy are not disambiguated and all the possible
geographical referents are taken into account in the collection processing and
indexing, and the topic analisys phases.

5 NGA GNS. http://geonames.nga.mil/gns/html/namefiles.html
6 GNIS. http://geonames.usgs.gov/domestic/download data.htm
7 Geobytes Inc.: Geoworldmap database. http://www.geobytes.com/
8 World Gazetteer is not available from its original site. But a copy can be found in

this link. http://biit.cs.ut.ee/biodc/dataen.zip

http://geonames.nga.mil/gns/html/namefiles.html
http://geonames.usgs.gov/domestic/download_data.htm
http://www.geobytes.com/
http://biit.cs.ut.ee/biodc/dataen.zip
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These processes are applied to the topics but have been applied also to the
entire document collection before indexing. The GeoKB and the Toponym Dis-
ambiguation processes take into account the part-of relationships of the toponyms
detected and are used in the retrieval and indexing process (e.g. the toponym
“United States” is indexed as America@North America@United States). Geo-
graphical coordinates (point-based) for each toponym are also included in the
index with exception to the continent and subcontinent feature types. The fea-
ture types of each toponym disambiguated is also detected and stored (e.g
the toponym “United States” will have the following feature type associated
administrative areas@political areas@countries).

TextualDocumentRetrieval. The textual IRphase is performed retrieving the
top 10,000 documents related to the topic using the TF-IDF, BM25 or InL2 algo-
rithms. The default stopwords in English of the IR engine Terrier are used. This
phase can perform Stemming (Porter’s algorithm) and automatic Query Expan-
sion (QE) using two state-of-the art Query Expansion models based on Divergence
From Randomness: Bose-Einstein 1 (Bo1) and Kullback-Leibler (KL) [1]. This
pseudo-relevance feedback option extracts the 40 most informative terms from the
10 top-returned documents in first-pass retrieval as the expanded query terms.

Geographical Document Retrieval. Our Geographical Knowledge Base is
used to retrieve geographically relevant documents using the following types
of geographical terms from GIR queries: 1) toponyms (e.g. places names such
as “United States”), 2) feature types (e.g. “cities”, “countries”). The GeoKB
uses a search method over toponyms and feature types that allows to retrieve
all the documents that have a token that matches totally or partially the
toponyms or the feature types. As an example for the case of toponyms, the
keyword America@Northern America@United States will retrieve U.S. places like
Los Angeles, CA, USA and Baltimore, MD, USA (see Table 1). In addition, each
geographical feature type in the query can be expanded using a set of feature
type synonyns and related words that has been manually extracted from the
GNIS feature types.

Geographical Knowledge Re-Ranking. This component re-ranks the doc-
uments retrieved by Terrier using the set of geographically relevant documents

Table 1. Example of full and partial disambiguation.

toponym disambiguation (full or partial)

administrative areas@populated places@cities
Los Angeles America@Northern America@United States@California@Los Angeles

administrative areas@@populated places@cities
Baltimore America@Northern America@Canada@Ontario@Baltimore

America@Northern America@United States@Maryland@Baltimore
America@Northern America@United States@Ohio@Baltimore
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detected by the Geographical Document Retrieval module and returns a set
of 1,000 documents. First, the top-scored documents retrieved by Terrier that
appear in the document set retrieved by the Geographical Document Retrieval
module are selected. Then, if the set of selected documents is less than 1,000,
the top-scored documents retrieved by Terrier that not appear in the document
set of Geographically Relevant documents are used to complete the retrieved set
(changing its ranking and score).

4 Experiments

Several experiments with the full collection of GeoCLEF9 (100 topics) have been
designed to evaluate the relative impact of different features (alone and in com-
bination among them) in GIR over some state-of-the-art effectiveness measures.
These experiments will be evaluated with the binary relevance assessments col-
lected with pooling during the GeoCLEF forums (see Table 2 for details about
the relevance assesments).

Table 2. Relevance assesment information about GeoCLEF evaluations

2005 2006 2007 2008

#topics 25 25 25 25
#relevant documents 1,028 378 650 747
#judged documents 14,546 17,964 15,637 14,528
#considered documents 18,000 18,000 18,000 18,000

The baselines to compare are the IR algorithms TF-IDF, BM25, and InL2
with word forms in the indexed collection and the set of queries (topics). These
experiments have been performed with three possible uses of the topics meta-
data: a) title (T), b) title and description (TD), c) title, description and narrative
(TDN) . Several experiments have been performed with the full GeoCLEF col-
lection (100 topics) to evaluate the following system components alone or in
combination: 1) Linguistic Processing features evaluated in isolation or in com-
bination: a) Lemmatization, b) Stemming, c) Lemmatization + stemming, 2)
Automatic Query Expansion: the Bose-Einstein (Bo1) and Kullback-Leibler QE
term weighting models, 3) GeoKR, 4) Linguistic Processing with GeoKR, 5) Lin-
guistic Processing, QE and GeoKR combined. The effectiveness measures chosen
to evaluate the full collection experiments have been the following: Mean Average
Precision, R-Precision. MAP computes the arithmetic mean of average precisions
of all topics. The average precision of each topic is the mean of precisions com-
puted at the rank position of each relevant document retrieved. R-Precision is a
measure that computes the arithmetic mean of precision at R documents for each

9 The GeoCLEF test topics, relevance assesments and the official experiments per-
formet at GeoCLEF from 2005 to 2008 can be downloaded at http://direct.dei.
unipd.it/

http://direct.dei.unipd.it/
http://direct.dei.unipd.it/
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topic, being R the number of relevant documents for the topic. Moreover, Pre-
cision at N(5,10,15,20,30,100,200,500,100) plots have been used to show a more
detailed evaluation of the main features in the best system. All these measures
have been applied over the 1,000 top-ranked retrieved documents. Significance
testing has been performed using the following tests: two-tailed t-test [14], and
Fisher’s two-sided paired randomization test [15]. Finally, a set of experiments
has been done with the individual GeoCLEF collections of years 2005, 2006,
2007 and 2008 to compute the performance in MAP of the best configurations
of the full collection. These experiments will be compared with the best run of
each GeoCLEF task.

5 Results

The results of the full GeoCLEF collection experiments are shown in Table
3 and Figure 2. The results of evaluating separately Geographical Knowledge
Re-Ranking, Linguistic Processing (lemmatization, stemming, and the combina-
tion of both), and Query Expansion show that all these processes improve the
Mean Average Precision (MAP) and R-Precision in all the experiments and show
statistical significance over the baselines in most of them (see Table 3). All the
experiments that use only the title (T) field show statistical significance (p-value
< 0.01) in MAP and R-Precision. The experiments with title and description
(TD) obtained statistical significance (p-value < 0.01) in MAP (including R-Prec
statistical significance with the ones that used the TF-IDF). MAP and RPre-
cision also show statistical significance (p-value < 0.01) in all the experiments
that combine Lemmatization with stemming, GeoKB and Query Expansion.
The best results in MAP (0.3116) and R-Precision (0.3142) are obtained with
the InL2 algorithm with Title and Description, and using the following tech-
niques: GeoKR, Lemmatization with Stemming, and Kullback-Leibler Query
Expansion. This configuration and each method tested alone with respect to the
baseline show improvements in Precision at @(5,10,15,20,30,100,200,500,1000)
in the majority of the experiments (see Figure 2). Some configurations with
GeoKR, Linguistic Processing and Query Expansion have improved the MAP
of the best official results at GeoCLEF evaluations of 2005, 2006, and 2007 (see
Table 4). In the evaluation with the GeoCLEF 2008 topics a huge drop in MAP
(with respect to the use of only TD) is found when using the TDN tags. The
textual baseline GeoCLEF 2008 results show a MAP with TDN of 0.1978 which
is significantly lower than with T (0.2517) or TD (0.2448).

The narrative terms of the GeoCLEF 2008 topics do not help to improve the
MAP with respect to the T and TD experiments while the use of TD and T is
not affected. This fact lead us to try experiments using TD for textual retrieval
and TDN for GeoKR. This new configuration with improved the MAP and R-
Precision of the best MAP experiment in Table 3 from 0.3116 to 0.3198 (MAP)
and from 0.3095 to 0.3236 (R-Precision).
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Table 3. Results in MAP and R-Precision with the 100 topics of all GeoCLEF collec-
tions using the Title (T), the Title and Description (TD), and the Title, Description,
and Narrative (TDN) fields of the topics. Results in bold font mark the best results by
field tag for each IR algorithm. Underlined results mark the best ones of each kind of
field tag. Results in dark grey mark the best effectiveness measure among all field types
and IR algorithms. The results marked with * and ** have statistical significance for
t-test and randomization tests with p-values < 0.05 and p-values <0.01 respectively.

MAP RPrec
Configuration T TD TDN T TD TDN

TF-IDF (baseline) 0.1938 0.2238 0.2386 0.2040 0.2335 0.2444

+Stemming (S) 0.2642∗∗ 0.2740∗∗ 0.2742∗∗ 0.2678∗∗ 0.2811∗∗ 0.2707∗

+Lemmatization (L) 0.2333∗∗ 0.2573∗∗ 0.2619∗ 0.2379∗∗ 0.2621∗∗ 0.2630
+L+S 0.2631∗∗ 0.2726∗∗ 0.2728∗∗ 0.2680∗∗ 0.2792∗∗ 0.2712 ∗

+Bo1 0.2372∗∗ 0.2541∗∗ 0.2692∗ 0.2462∗∗ 0.2647∗∗ 0.2644
+KL 0.2339∗∗ 0.2531∗∗ 0.2723∗∗ 0.2430∗∗ 0.2620∗∗ 0.2638

+GeoKB 0.2088∗∗ 0.2307∗∗ 0.2485∗∗ 0.2313∗ 0.2520∗ 0.2553∗∗

+S+Bo1 0.2926∗∗ 0.3007∗∗ 0.2908∗∗ 0.2942∗∗ 0.3030∗∗ 0.2779∗

+L+S+Bo1 0.2869∗∗ 0.2977∗∗ 0.2959∗∗ 0.2865∗∗ 0.2997∗∗ 0.2845∗∗

+L+S+Bo1+GeoKB 0.2899∗∗ 0.2988∗∗ 0.3082∗∗ 0.2957∗∗ 0.3066∗∗ 0.3050∗∗

+L+S+GeoKB 0.2647∗∗ 0.2735∗∗ 0.2833∗∗ 0.2700∗∗ 0.2881∗∗ 0.2877∗

+S+KL 0.2954∗∗ 0.3001∗∗ 0.2906∗∗ 0.2900∗∗ 0.3018∗∗ 0.2780∗

+L+S+KL 0.2893∗∗ 0.2987∗∗ 0.2936∗∗ 0.2836∗∗ 0.2967∗∗ 0.2902∗∗

+L+S+KL+GeoKB 0.2898∗∗ 0.2978∗∗ 0.3066∗∗ 0.2922∗∗ 0.3055∗∗ 0.3092∗∗

BM25 (baseline) 0.1935 0.2237 0.2390 0.2030 0.2360 0.24632

+Stemming (S) 0.2653∗∗ 0.2756∗∗ 0.2748∗∗ 0.2678∗∗ 0.2835∗∗ 0.2767∗∗

+Lemmatization (L) 0.2353∗∗ 0.2589∗∗ 0.2624∗ 0.2383∗∗ 0.2626∗ 0.2655
+L+S 0.2643∗∗ 0.2752∗∗ 0.2744∗∗ 0.2702∗∗ 0.2800∗∗ 0.2755∗∗

+Bo1 0.2384∗∗ 0.2635∗∗ 0.2718∗∗ 0.2405∗∗ 0.2640∗ 0.2650∗

+KL 0.2399∗∗ 0.2676∗∗ 0.2743∗∗ 0.2403∗∗ 0.2709∗∗ 0.2630∗

+GeoKB 0.2086∗∗ 0.2312∗∗ 0.2481∗∗ 0.2320 0.2534∗∗ 0.2571∗∗

+S+Bo1 0.2898∗∗ 0.2997∗∗ 0.2908∗∗ 0.2933∗∗ 0.2962∗∗ 0.2836∗

+L+S+Bo1 0.2854∗∗ 0.2951∗∗ 0.2943∗∗ 0.2850∗∗ 0.2908∗∗ 0.2880∗∗

+L+S+Bo1+GeoKB 0.2906∗∗ 0.2983∗∗ 0.3062∗∗ 0.2995∗∗ 0.3037∗∗ 0.3084∗∗

+L+S+GeoKB 0.2661∗∗ 0.2755∗∗ 0.2826∗∗ 0.2715∗∗ 0.2875∗∗ 0.2943

+S+KL 0.2940∗∗ 0.2991∗∗ 0.2907∗∗ 0.2949∗∗ 0.2986∗∗ 0.2853
+L+S+KL 0.2899∗∗ 0.2962∗∗ 0.2916∗∗ 0.2861∗∗ 0.2930∗∗ 0.2910∗∗

+L+S+KL+GeoKB 0.2939∗∗ 0.3002∗∗ 0.3044∗∗ 0.2993∗∗ 0.3084∗∗ 0.3115 ∗∗

InL2 (baseline) 0.1939 0.2240 0.2387 0.2002 0.2348 0.2466

+Stemming (S) 0.2649∗∗ 0.2745∗∗ 0.2753∗∗ 0.2698∗∗ 0.2829∗∗ 0.2739∗∗

+Lemmatization (L) 0.2370∗∗ 0.2612∗∗ 0.2613 ∗ 0.2406∗∗ 0.2741∗∗ 0.2607
+L+S 0.2646∗∗ 0.2749∗∗ 0.2750∗∗ 0.2705∗∗ 0.2789∗∗ 0.2724∗

+Bo1 0.2388∗∗ 0.2595∗∗ 0.2732∗∗ 0.2469∗∗ 0.2612∗ 0.2682
+KL 0.2384∗∗ 0.2592∗∗ 0.2764∗∗ 0.2454∗∗ 0.2658∗∗ 0.2698∗

+GeoKB 0.2078∗∗ 0.2307∗∗ 0.2478∗∗ 0.2310∗∗ 0.2538∗ 0.2536∗∗

+S+Bo1 0.2969∗∗ 0.3052∗∗ 0.2947∗∗ 0.2948∗∗ 0.2995∗∗ 0.2835∗

+L+S+Bo1 0.2949∗∗ 0.3067∗∗ 0.2967∗∗ 0.2933∗∗ 0.3010∗∗ 0.2884∗∗

+L+S+Bo1+GeoKB 0.2974∗∗ 0.3052∗∗ 0.3092∗∗ 0.3029∗∗ 0.3106∗∗ 0.3060∗∗

+L+S+GeoKB 0.2663∗∗ 0.2745∗∗ 0.2830∗∗ 0.2701∗∗ 0.2875∗∗ 0.2893

+S+KL 0.3001∗∗ 0.3041∗∗ 0.2973∗∗ 0.2948∗∗ 0.3029∗∗ 0.2882∗∗

+L+S+KL 0.2978∗∗ 0.3061∗∗ 0.2987∗∗ 0.2988∗∗ 0.3109∗∗ 0.2904∗∗

+L+S+KL+GeoKB 0.2976∗∗ 0.3047∗∗ 0.3116∗∗ 0.3037∗∗ 0.3142∗∗ 0.3085∗∗
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(c) Precision at N (TDN).

Fig. 2. Precision at N plots of the InL2 IR algorithm with different sets of features and
the GeoCLEF collection (100 topics) using the Title (T), the Title and Description
(TD), and the Title, Description, and Narrative (TDN) field tags of the topics.

Table 4. MAP at 1,000 documents with the best configurations for the full collection
applied to each GeoCLEF Monolingual English task. Includes the best official results
(in MAP) at GeoCLEF evaluations.

Base Configuration MAP
InL2+S+L+GeoKR GeoCLEF 2005 GeoCLEF 2006 GeoCLEF2007 GeoCLEF2008)

best official results 0.3936 [8] 0.3034 [11] 0.2850 [4] 0.3037 [17]

+Bo1(T) 0.3823 0.2573 0.2875 0.2624
+KL(T) 0.3881 0.2555 0.2853 0.2616

+Bo1(TD) 0.3863 0.2797 0.2843 0.2710
+KL(TD) 0.3898 0.2781 0.2809 0.2697

+Bo1(TDN) 0.3921 0.3303 0.2937 0.2208
+KL(TDN) 0.3974 0.3390 0.2924 0.2178
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6 Conclusions

This paper describes and evaluates the use of Geographical Knowledge Re-
Ranking, Linguistic Processing, and Query Expansion techniques to improve
Geographical Information Retrieval effectiveness. The evaluation has been per-
formed with the full GeoCLEF GIR test collections for English, which include
stories from The Glasgow Herald (1995) and the Los Angeles Times (1994) news-
papers and a set of 100 topics. Evaluated separately each one of these methods has
improved the MAP and R-Precision showing statistical significance with respect
to the standard IR baselines TF-IDF, BM25 and InL2 in most of the experiments.
The best results in MAP and R-Precision are obtained with the InL2 algorithm
using the following techniques: Geographical Knowledge Re-Ranking, Lemmati-
zation with Stemming, and Kullback-Leibler Query Expansion. Some configura-
tions with Geographical Knowledge Re-Ranking, Linguistic Processing and Query
Expansion have improved the MAP of the best official results at GeoCLEF eval-
uations of 2005, 2006, and 2007. The Geographical Knowledge Re-Ranking app-
roach presented has its limitations and there is room for improvements, specially
in the Toponym Recognition and Disambiguation processes. Due to the fact that
the Toponym Disambiguation heuristics employed were context independent and
gave more importance to some specific toponyms and feature types it is expected
that the approach could have difficulties with more locally oriented news and texts
in which the disambiguation is more difficult. Further work should be to design
and test context aware heuristics that could adapt to different kind of documents.
Regarding the adaptability of the techniques to other languages, it is expected
that these techniques will work with the same kind of texts but the coverage of
the gazetteer for the new language should be checked. Further work also includes
the change of the NLP and NERC phases for a Geonames Gazetteer lookup of
tokens and evaluate the performance of both methods.
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Abstract. We consider the problem of implementing a dynamic trie
with an emphasis on good practical performance. For a trie with n nodes
with an alphabet of size σ, the information-theoretic lower bound is
n log σ + O(n) bits. The Bonsai data structure [1] supports trie opera-
tions in O(1) expected time (based on assumptions about the behaviour
of hash functions). While its practical speed performance is excellent, its
space usage of (1+ ε)n(log σ +O(log log n)) bits, where ε is any constant
> 0, is not asymptotically optimal. We propose an alternative, m-Bonsai,
that uses (1 + ε)n(log σ + O(1)) bits in expectation, and supports oper-
ations in O(1) expected time (again based on assumptions about the
behaviour of hash functions). We give a heuristic implementation of m-
Bonsai which uses considerably less memory and is slightly faster than
the original Bonsai.

1 Introduction

In this paper, we consider practical approaches to the problem of implementing
a dynamic trie in a highly space-efficient manner. A dynamic trie (also known
as a dynamic cardinal tree [2]) is a rooted tree, where each child of a node is
labelled with a distinct symbol from an alphabet Σ = {0, . . . , σ−1}. We consider
dynamic tries that support the following operations:

create(): Create a new empty tree.
getRoot(): return the root of the current tree.
getChild(v, i): return child node of node v with symbol i, if any (and return

−1 if no such child exists).
addChild(v, i): add new child with symbol i and return the newly created node.
getParent(v): return the parent of node v.

We do not discuss deletions explicitly, but do indicate what is possible with
regards to deletions. A trie is a classic data structure (the name dates back to
1959) and has numerous applications in string processing. A naive implementa-
tion of tries uses pointers. Using this approach, each node in an n-node binary trie
uses 3 pointers for the navigational operations. A popular alternative for larger
alphabets is the ternary search tree (TST) [3], which uses 4 pointers (3 plus a
parent pointer), in addition to the space for a symbol. Other approaches include
the double-array trie (DAT), which uses a minimum of two integers per node,
each of magnitude O(n). Since a pointer must asymptotically use Ω(log n) bits
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 324–336, 2015.
DOI: 10.1007/978-3-319-23826-5 31
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of memory, the asymptotic space bound of TST (or DAT) is O(n(log n + log σ))
bits. However, the information-theoretic space lower bound of n log σ+O(n) bits
(see e.g. [2]) corresponds to one symbol and O(1) bits per node. Clearly, if σ is
small, both TST and DAT are asymptotically non-optimal. In practice, log σ
is a few bits, or one or two bytes at most. An overhead of 4 pointers, or 32n
bytes on today’s machines, makes it impossible to hold tries with even moder-
ately many nodes in main memory. Although tries can be path-compressed by
deleting nodes with just one child and storing paths explicitly, this approach (or
even more elaborate ones like [4]) cannot guarantee a small space bound.

Motivated by this, a number of space-efficient solutions were proposed
[2,5–8], which represent static tries in information-theoretically optimal space,
and support a wide range of operations. A number of asymptotic worst-case
results were given in [9–12]. As our focus is on practical performance, we do not
discuss all previous results in detail and refer the reader to e.g. [11] for a compari-
son. For completeness, we give a summary of some the results of [11,12]. The first
uses almost optimal 2n+n log σ+o(n log σ) bits, and supports trie operations in
O(1) time if σ = polylog(n) and in O(log σ/ log log σ) time otherwise. The second
[12, Theorem2] uses O(n log σ) bits and supports individual dynamic trie opera-
tions in O(log log n) amortized expected time, although finding the longest prefix
of a string in the trie can be done in O(log k/ logσ n + log log n) expected time.
Neither of these has been fully implemented, although a preliminary attempt
(without memory usage measurements) was presented in [13]. Finally, we men-
tion the wavelet trie [14] which is a data structure for a sequence of strings,
and in principle can replace tries in many applications. Although in theory it is
dynamic, we are not aware of any implementation of a dynamic wavelet trie.

Predating most of this work, Darragh et al. [1] proposed the Bonsai data
structure, which uses a different approach to support the above dynamic trie
operations in O(1) expected time (based on assumptions about the behaviour of
hash functions). While its practical speed performance is excellent, we note here
that the asymptotic space usage of the Bonsai data structure is (1 + ε)n(log σ +
O(log log n)) bits, where ε is any constant > 0, which is not asymptotically
optimal due to the addition of O(log log n) term. The additive O(n log log n)
bits term can be significant in many practical applications where the alphabet
size is relatively small, including one involving mining frequent patterns that we
are considering. The Bonsai data structure also has a certain chance of failure:
if it fails then the data structure may need to be rebuilt, and its not clear how
to do this without affecting the space and time complexities.

In this paper, we introduce m-Bonsai1, a variant of Bonsai. Again, based
upon the same assumptions about the behaviour of [1], our variant uses
(1+ε)n(log σ+O(1)) bits of memory in expectation, where ε is any constant > 0,
which is asymptotically optimal, and operations take O(1) expected time. We
give two practical variants of m-Bonsai: m-Bonsai (γ) and m-Bonsai (recursive).
Our implementations and experimental evaluations show that m-Bonsai (recur-
sive) is consistently a bit faster than the original Bonsai and significantly more

1 This could be read as mame-bonsai, a kind of small bonsai plant, or mini-bonsai.
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space-efficient than the original, while m-Bonsai (γ) is even more space efficient
but rather slower. Of course, all Bonsai variants use at least 20 times less space
than TSTs for small alphabets and compare well in terms of speed with TSTs.
We also note that our experiments show that the hash functions used in Bonsai
appear to behave in line with the assumptions about their behaviour. Finally, for
both Bonsai and m-Bonsai, we believe it is relatively easy to remove the (1 + ε)
multiplicative factor from the n log σ term, but since this is not our primary
interest is robust practical performance, we have not pursued this avenue.

The rest of this paper is organized as follows. In Section 2, we talk about the
asymptotics of Bonsai [1] and give a practical analysis. Section 3 summarizes
m-Bonsai approach which is followed by Section 4 the experimental evaluation.

2 Preliminaries

Bit-vectors. Given a bit string x1, . . . , xn, we define the following operations:

select1(x, i): Given an index i, return the location of ith 1 in x.
rank1(x, i): Return the number of 1s upto and including location i in x.

Lemma 1 (Pǎtraşcu [15]). A bit string can be represented in n+O(n/(log n)2)
bits such that select1 and rank1 can be supported in O(1) time.

Asymptotics of Bonsai. We now sketch the Bonsai data structure, focussing
on asymptotics. It uses an array Q of size M to store a tree with n = �αM�
nodes for some 0 < α < 1 (we assume that n and M are known at the start
of the algorithm). We refer to α as the load factor. The Bonsai data structure
refers to nodes via a unique node ID, which is a pair 〈i, j〉 where 0 ≤ i < M
and 0 ≤ j < λ, where λ is an integer parameter that we discuss in greater
detail below. If we wish to add a child w with symbol c ∈ Σ to a node v with
node ID 〈i, j〉, then w’s node ID is obtained as follows: We create the key of w
using the node ID of v, which is a triple 〈i, j, c〉. We evaluate a hash function
h : {0, . . . , M · λ · σ − 1} �→ {0, . . . , M − 1} on the key of w. If i′ = h(〈i, j, c〉),
the node ID of w is 〈i′, j′〉 where j′ ≥ 0 is the lowest integer such that there is
no existing node with a node ID 〈i′, j′〉; i′ is called the initial address of w.

In order to check if a node has a child with symbol c, keys are stored in Q using
open addressing and linear probing2. The space usage of Q is kept low by the use
of quotienting [16]. The hash function has the form h(x) = (ax mod p) mod M
for some prime p > M · λ · σ and multiplier a, 1 ≤ a ≤ p − 1. Q only contains
the quotient value q(x) = �(ax mod p)/M� corresponding to x. Given h(x) and
q(x), it is possible to reconstruct x to check for membership. While checking
for membership for x, one needs to know h(y) for all keys y encountered during
the search, which is not obvious since keys may not be stored at their initial
address due to collisions. The Bonsai approach is to keep all keys with the same
initial address in consecutive locations in Q (this means that keys may be moved
2 A variant, bidirectional probing, is used in [1], but we simplify this to linear probing
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after they have been inserted) and to use two bit-vectors of size M bits to effect
the mapping from a node’s initial address to the position in Q containing its
quotient, for details see [1]. Clearly, being able to search for, and insert keys
allows us to support getChild and addChild ; for getParent(v) note that the key
of v encodes the node ID of its parent.

Asymptotic space usage. In addition to the two bit-vectors of M bits each, the
main space usage of the Bonsai structure is Q. Since a prime p can be found
that is < 2 · M · λ · σ, it follows that the values in Q are at most �log2(2σλ + 1)�
bits. The space usage of Bonsai is therefore M(log σ + log λ + O(1)) bits.

Since the choice of the prime p depends on λ, λ must be fixed in advance.
However, if more than λ keys are hashed to any value in {0, . . . , M −1}, the algo-
rithm is unable to continue3. Thus, λ should be chosen large enough to reduce
the probability of more than λ keys hashing to the same initial address to accept-
able levels. In [1] the authors, assuming the hash function has full independence
and is uniformly random, argue that choosing λ = O(log M/ log log M) reduces
the probability of error to at most M−c for any constant c (choosing asymptot-
ically smaller λ causes the algorithm almost certainly to fail). As the optimal
space usage for an n-node trie on an alphabet of size σ is O(n log σ) bits, the
additive term of O(M log λ) = O(n log log n) makes the space usage of Bonsai
non-optimal for small alphabets.

However, even this choice of λ is not well-justified from a formal perspective,
since the hash function used is quite weak—it is only 2-universal [17]. For 2-
universal hash functions, the maximum number of collisions can only be bounded
to O(

√
n) [18] (note that it is not obvious how to use more robust hash functions,

since quotienting may not be possible). Choosing λ to be this large would make
the space usage of the Bonsai structure asymptotically uninteresting.

Practical Analysis. In practice, we note that choosing λ = 32, and assuming
complete independence in the hash function, the error probability for M up to
264 is about 10−19 for α = 0.8, using the formula in [1]. Choosing λ = 16 as
suggested in [1] suggests a high failure probability for M = 256 and α = 0.8. Also,
in practice, the prime p is not significantly larger than Mλσ [19, Lemma5.1]. The
space usage of the Bonsai structure therefore is taken to be (�log σ� + 7)M bits
for the tree sizes under consideration in this paper.

3 m-Bonsai

3.1 Overview

In our approach, each node again has an associated key that needs to be
searched for in a hash table, again implemented using open addressing with
linear probing and quotienting. However, the ID of a node x in our case is a

3 Particularly for non-constant alphabets, it is not clear how to rebuild the data
structure without an asymptotic penalty.
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number from {0, . . . , M − 1} that refers to the index in Q that contains the
quotient corresponding to x. If a node with ID i has a child with symbol c ∈ Σ,
the child’s key, which is 〈i, c〉, is hashed using a multiplicative hash function
h : {0, . . . , M · σ − 1} �→ {0, . . . , M − 1}, and an initial address i′ is computed.
If i′′ is the smallest index ≥ i′ such that Q[i′′] is vacant, then we store q(x) in
Q[i′′]. Observe that q(x) ≤ �2σ�, so Q takes M log σ + O(M) bits. In addition,
we have a displacement array D, and set D[i′′] = i′′ − i′. From the pair Q[l] and
D[l], we can obtain both the initial hash address of the key stored there and its
quotient, and thus reconstruct the key. The key idea is that in expectation, the
average value in D is small:

Proposition 1. Assuming h is fully independent and uniformly random, the
expected value of

∑M−1
i=0 D[i] after all n = αM nodes have been inserted is ≈

M · α2

2(1−α) .

Proof. The average number of probes, over all keys in the table, made in a
successful search is ≈ 1

2 (1 + 1
1−α ) [16]. Multiplying this by n = αM gives the

total average number of probes. However, the number of probes for a key is
one more than its displacement value. Subtracting αM from the above and
simplifying gives the result.

Thus, encoding D using variable-length encoding could be very beneficial. For
example, coding D in unary would take M +

∑M
i=1 D[i] bits; by Proposition 1,

and plugging in α = 0.8, the expected space usage of D, encoded in unary,
should be about 2.6M bits, which is smaller than the overhead of 7M bits of
the original Bonsai. As shown in Table 1, predictions made using Proposition 1
are generally quite accurate. Table 1 also suggests that encoding each D[i] using
the γ-code, we would come down to about 2.1M bits for the D, for α = 0.8.

Table 1. Average number of bits per entry needed to encode the displacement array
using the unary, γ and Golomb encodings. For the unary encoding, Proposition 1
predicts 1.816̇, 2.6 and 5.05 bits per value. For file details see Table 2.

unary γ Golomb

Load Factor 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Pumsb 1.81 2.58 5.05 1.74 2.11 2.65 2.32 2.69 3.64
Accidents 1.81 2.58 5.06 1.74 2.11 2.69 2.33 2.69 3.91
Webdocs 1.82 2.61 5.05 1.75 2.11 2.70 2.33 2.70 3.92

3.2 Representing the Displacement Array

We now describe how to represent the displacement array. A write-once dynamic
array is a data structure for a sequence of supports the following operations:

create(n): Create an array A of size n with all entries initialized to zero.
set(A, i, v): If A[i] = 0, set A[i] to v (assume 0 < v ≤ n). If A[i] �= 0 then A[i]

is unchanged.
get(A, i): Return A[i].
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The following lemma shows how to implement such a data structure. Note that
the apparently slow running time of set is enough to represent the displacement
array without asymptotic slowdown: setting D[i] = v means that O(v) time has
already been spent in the hash table finding an empty slot for the key.

Lemma 2. A write-once dynamic array A of size n containing non-negative
integers can be represented in space

∑n
i=1 |γ(A[i]+1)|+o(n) bits, supporting get

in O(1) time and set(A, i, v) in O(v) amortized time.

Proof. We divide A into contiguous blocks of size b = (log n)3/2. The i-th block
Bi = A[bi..bi+b−1] will be stored in a contiguous sequence of memory locations.
There will be a pointer pointing to the start of Bi. Let Gi =

∑bi+b−1
j=bi |γ(A[j]+1)|.

We first give a naive representation of a block. All values in a block are
encoded using γ-codes and concatenated into a single bit-string (at least in
essence, see discussion of the get operation below). A set operation is performed
by decoding all the γ-codes in the block, and re-encoding the new sequence
of γ-codes. Since each γ-code is O(log n) bits, or O(1) words, long, it can be
decoded in O(1) time. Decoding and re-encoding an entire block therefore takes
O(b) time, which is also the time for the set operation. A get operation can
be realized in O(1) time using the standard idea of to concatenating the unary
and binary portions of the γ-codes separately into two bit-strings, and to use
select1 operations on the unary bit-string to obtain, in O(1) time, the binary
portion of the i-th γ-code. The space usage of the naive representation is

∑
i Gi+

O((
∑

i Gi)/(log n)2) + (n log n)/b) bits: the second term comes from Lemma 1
and the third accounts for the pointers and any unused space in the “last” word
of a block representation. This adds up to

∑
i Gi + o(n) bits, as required.

Since at most b set operations can be performed on a block, if any value
in a block is set to a value ≥ b2, we can use the Ω(b2) time allowed for this
operation to re-create the block in the naive representation, and also to amortize
the costs of all subsequent set operations on this block. Thus, we assume wlog
that all values in a block are < b2, and hence, that γ-codes in a block are
O(log b) = O(log log n) bits long. We now explain how to deal with this case.
We divide each block into segments of 	 = �c log n/ log log n� values for some
sufficiently small constant c > 0, which are followed by an overflow zone of at
most o = �√log n log log n� bits. Each segment is represented as a bit-string of
concatenated γ-codes. All segments, and their overflow zones, are concatenated
into a single bit-string. The bit-string of the i-th block, also denoted Bi, has
length at most Gi +(b/	) ·o = Gi +O(log n(log log n)2). As we can ensure that a
segment is of size at most (log n)/2 by choosing c small enough, we can decode an
individual γ-code in any segment in O(1) time using table lookup. We can also
support a set operation on a segment in O(1) time, by overwriting the sub-string
of Bi that represents this segment, provided the overflow zone is large enough
to accommodate the new segment.

If the overflow zone is exhausted, the time taken by the set operations that
have taken place in this segment alone is Ω(

√
log n log log n). Since the length

of Bi is at most O(
√

log n log log n) words, when any segment overflows, we
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can simply copy Bi to a new sequence of memory words, and while copying,
use table lookup again to rewrite Bi, ensuring that each segment has an over-
flow zone of exactly o bits following it (note that as each segment is of length
Ω(log n/ log log n) bits and the overflow zones are much smaller, rewriting a col-
lection of segments that fit into O(log n) bits gives a new bit-string which is also
O(log n) bits).

One final component is that for each block, we need to be able to find the
start of individual segments. As the size of a segment and its overflow zone is
an integer of at most O(log log n) bits, and there are only O(

√
log n log log n)

segments in a block, we can store the sizes of the segments in a block in a single
word and perform the appropriate prefix sum operations in O(1) time using table
lookup, thereby also supporting get in O(1) time. This proves Lemma 2.

Theorem 1. For any given integers M and σ and constant 0 < α < 1, there is a
data structure that represents a trie on an alphabet of size σ with n nodes, where
n ≤ αM , using M log σ + O(M) bits of memory in expectation, and supporting
create() in O(M) time, getRoot and getParent in O(1) time, and addChild and
getChild in O(1) expected time. The expected time bounds are based upon the
assumption that the hash function has full randomness and independence.

Proof. Follows directly from Proposition 1 and Lemma 2, and from the obser-
vation that |γ(x + 1)| ≤ x + 2 for all x ≥ 0.

Remark 1. In the Bonsai (and m-Bonsai) approaches, deletion of an internal
node is in general not O(1) time, since the node IDs of all descendants of a node
are dependent on its own node ID. It is possible in m-Bonsai to delete a leaf,
taking care (as in standard linear probing) to indicate that a deleted location
in Q previously contained a value, and extending Lemma 2 to allow a reset(i)
operation, which changes A[i] from its previous value v to 0 in O(v) time.

3.3 Alternate Representation of the Displacement Array

The data structure of Lemma 2 appears to be too complex for implementation,
and a naive approach to representing the displacement array (as in Lemma 2)
may be slow. We therefore propose a practical alternative, which avoids any
explicit use of variable-length coding.

The displacement array is stored as an array D0 of fixed-length entries, with
each entry being Δ0 bits, for some integer parameter Δ0 ≥ 1. All displacement
values ≤ 2Δ0 − 2 are stored as is in D0. If D[i] > 2Δ0 − 2, then we set D0[i] =
2Δ0 − 1, and store the value D′[i] = D[i] − 2Δ0 + 1 as satellite data associated
with the key i in a second hash table.

This second hash table is represented using the original Bonsai representa-
tion, using a value M ′ ∼ α′n′, where n′ is the number of keys stored in the
second hash table, and α′ is the load factor of this secondary hash table. The
satellite data for this second hash table are also stored in an array of size M ′

with fixed-length entries of size Δ1, where Δ1 is again an integer parameter.
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If D′[i] ≤ 2Δ1 −2, it is stored explicitly in the second-level hash table. Yet larger
values of D are stored in a standard hash table. The values of α′, Δ0 and Δ1

are currently chosen experimentally, as described in the next section.
In what follows, we refer to m-Bonsai with the displacement array represented

as γ-codes as m-Bonsai (γ) and the representation discussed here as m-Bonsai
(recursive), respectively.

4 Experimental Evaluation

4.1 Implementation

We implemented m-Bonsai (recursive), m-Bonsai (γ) and Bonsai in C++, and
compared these with Bentley’s C++ TST implementation [3]. The DAT imple-
mentation of [20] was not tested since it apparently uses 32-bit integers, limiting
the maximum trie size to 232 nodes, which is not a limitation for the Bonsai or
TST approaches. The tests of [20] suggest that even with this “shortcut”, the
space usage is only a factor of 3 smaller than TST (albeit it is ∼ 2 times faster).

Both Bonsai implementations used the sdsl-lite library [21]. The origi-
nal Bonsai data structure mainly comprises three sdsl containers: firstly, the
int vector<>, which uses a fixed number of bits for each entry, is used for
the Q array (also in m-Bonsai). In addition, we use two bit vectors that to
distinguish nodes in collision groups as in [1]. In m-Bonsai (γ), D is split into
consecutive blocks of 256 values (initially all zero) each, which are stored as a
concatenation of their γ-codes. We used sdsl’s encode and decode functions to
encode and decode each block for the set and get operations.

The m-Bonsai (recursive) uses an alternative approach for the displacement
array. D0 has fixed length entries of Δ0-bits, thus int vector<> is the ideal
container. If a displacement value is larger than Δ0, we store it as a satellite data
in a Bonsai data structure. The satellite data is stored again in an int vector<>
of Δ1-bit entries. Finally, if the displacement value is even larger, then we use the
standard C++ std::map. In Figure 1, we show how we chose the parameters for
this approach. The three parameters α′,Δ0 and Δ1 are selected given the trade-
off of runtime speed and memory usage. For this example we have α′ = 0.8.
Each line represents a different Δ0 value in bits. The y-axis shows the total bits
required per displacement value and the x-axis shows the choice of Δ1 sizes in
bits. As shown, there is a curve formed where its minimum point is when Δ1 = 7
for any Δ0 values. Δ0 = 3 is the parameter with the lower memory usage. Δ0 = 4
uses relatively more memory and even though Δ0 = 2 is closer to Δ0 = 3 in
terms of memory, it is slower in terms of runtime speed. This happens since less
values are accessed directly from D0 when Δ0 = 2, therefore we chose Δ0 = 3
and Δ1 = 7. Finally, we consider α′ = 0.8 as a good choice to have competitive
runtime speed and at the same time good memory usage.

4.2 Experimental Analysis

The machine used for the experimental analysis is an Intel Pentium 64-bit
machine with 8GB of main memory and a G6950 CPU clocked at 2.80GHz
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Fig. 1. This graph is an example based on Webdocs8 used in m-Bonsai (recursive)
data structure with α = 0.8. The y-axis shows the bits per M in the displacement
array. The x-axis shows parameter Δ1 and each line is based on parameter Δ0.

Table 2. The average bits per node for datasets used for different purposes. In some
cases the TST processes were unable to finish execution due to large memory required.

Datasets Node Number σ m-Bonsai (r) m-Bonsai(γ) Bonsai TST

Pumsb 1125375 7117 20.45 18.91 24 390.87
Accidents 4242318 442 15.65 14.12 19.2 388.26
Webdocs8 63985704 5577 20.45 18.91 24 386.79
Webdocs 231232676 5267657 27.04 30.91 36 385.1

splitPumsb 6702990 5 8.45 6.75 12 383.92
splitAccidents 17183926 5 8.45 6.75 12 387.07
splitWebdocs8 333444484 5 8.45 6.76 12
splitWebdocs 1448707216 5 8.45 6.78 12

SRR034939.fastq 3095560 5 8.45 6.73 12 385.88
SRR034944.fastq 21005059 5 8.45 6.76 12 385.76

SRR034940-1.fastq 1556235309 5 8.45 6.68 12
SRR034945-1.fastq 1728553810 5 8.45 6.68 12

with 3MB L2 cache, running Ubuntu 12.04.5 LTS Linux. All the code was com-
piled using g++ 4.7.3 with optimization level 6. To measure the resident memory
(RES), /proc/self/stat was used. For the speed tests we measured wall clock
time using std::chrono::duration cast.

We use benchmark datasets arising arising in frequent pattern mining [22],
where each “string” is a subset of a large alphabet (up to tens of thousands). In
some frequent pattern mining algorithms such as [23], these strings need to be
traversed in sorted order, which takes a slow O(nσ) time in all Bonsai variants
because they do not support the next-sibling operation. To get around this, we
divide each symbol into 3-bit values, which optimizes the trade-off in runtime
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Table 3. The wall clock time in seconds for the construction of the Trie. Note that
the TST was affected by thrashing in Webdocs and splitWebdocs8.

Datasets m-Bonsai (r) m-Bonsai(γ) Bonsai TST

Pumsb 0.55 5.97 0.86 0.64
Accidents 2.06 21.70 3.12 2.33
Webdocs8 27.03 255.25 35.13 19.38
Webdocs 110.35 886.17 125.06 608.91

splitPumsb 3.30 37.03 5.21 2.29
splitAccidents 7.72 82.95 10.92 5.69
splitWebdocs8 128.88 1287.49 173.25 1862.49
splitWebdocs 626.20 5439.71 832.8

SRR034939.fastq 0.561 9.82 0.74 0.61
SRR034944.fastq 6.041 72.38 6.84 4.39

SRR034940-1.fastq 746.005 5801.6 936.88
SRR034945-1.fastq 851.164 6456.18 1054.43

speed and memory usage. Finally, we used sets of short read genome strings
given in the standard FASTQ format.

Memory Usage: For the memory usage experiments we set α = 0.8 for all Bonsai
data structures. Then, we insert all the strings of each dataset in the trees and
we measure resident memory. Table 2 is showing the average bits per n. It is
obvious that the Bonsai data structure is quite badly affected on datasets with
low σ. By converting the values of Table 2 in scale of bits per M ( as explained in
Section 3.1 n = αM), we prove the practical analysis of Section 2, showing that
Bonsai requires 10M -bits for the FASTQ sequences out of which 7M -bits are
used only to map the nodes in Q array. The m-Bonsai (γ) performance is very
good which needs more than 40% less memory than Bonsai on lower σ datasets.
The m-Bonsai (recursive) is also performing better than Bonsai and it is obvious
that as σ gets lower the recursive approach becomes more efficient by avoiding
the relatively big overhead of Bonsai.

Tree construction (Runtime speed): In Table 3 we show the wall clock time in
seconds for the construction of the Tree. The m-Bonsai (recursive) is proved
to be competitively fast and even faster than TST for some cases like Pumsb
and Accidents. This happens since m-Bonsai (recursive) is able to fit a big part
of data structure in cache memory. However, when both data structures use
more heavily the main memory (Webdocs8), the pointer-based TST is 1.4 times
faster. The Bonsai implementation is consistently slower than TST and m-Bonsai
(recursive). Since the m-Bonsai (recursive) has a write once linear probing app-
roach, when inserting a node in empty location Q[i], we know that D[i] is free
for insertions. Now, if D[i] is supposed to be zero then we don’t even need to
access D as it is already initialised to zeros4. However, Bonsai always needs to
4 Approximately 48% of the nodes have 0 displacement value at α = 0.8.
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Table 4. The wall clock time in nanoseconds per successful search operations.

Datasets m-Bonsai (r) m-Bonsai(γ) Bonsai TST

Pumsb.search 237 1345 358 105
Webdocs8.search 332 1672 608 117

splitWebdocs.search 416 2037 657
SRR034940-1.search 403 1932 658

access at least one more bit-vector to reassure and mark the empty location.
Additionally, in case of collision Bonsai requires to swap elements in Q and one
of the bit-vectors, to make space for the new node at a matching location. Also,
if any satellite data(not included in this experiment) is required, it has to move
to match location as well thus potentially impacting the runtime performance.
Finally, the compact m-Bonsai (γ) is about ten times slower. This is due to the
O(b) time required to access each value as explained in Section 3.1 n = αM .

Successful search runtime speed: For this experiment we designed our own .search
datasets, where we randomly picked 10% of the strings from each dataset. As
shown in Table 4 we selected some datasets from our repository mainly due
to space limit. After the tree construction, we measured the time needed in
nanoseconds per successful search operation. It is obvious that TST is the fastest
approach. However, m-Bonsai (recursive) remains competitive with TST and
consistently faster than Bonsai by at least 1.5 times, whereas m-Bonsai (γ) in
the slowest. Note that there is an increase in runtime speed per search operation
for all Bonsai data structures as the datasets get bigger. However, we can’t prove
this for TST, since it is not able to process the larger datasets.

5 Conclusion

We have demonstrated a new variant of the Bonsai approach to store large tries in
a very space-efficient manner. Not only have we (re)-confirmed that the original
Bonsai approach is very fast and space-efficient on modern architectures, both
m-Bonsai variants we propose are significantly smaller (both asymptotically and
in practice) and and one of them is a bit faster than the original Bonsai. In the
near future we intend to investigate other variants, to give a less ad-hoc approach
to m-Bonsai (recursive), and to compare with other trie implementations.

Neither of our approaches is very close to the information-theoretic lower
bound of (σ log σ − (σ − 1) log(σ − 1))n − O(log(kn)) bits [2]. For example, for
σ = 5, the lower bound is 3.61n bits, while m-Bonsai (γ) takes ∼ 5.6M ∼ 7n bits.
Closing this gap would be an interesting future direction. Another interesting
open question is to obtain a practical compact dynamic trie that has a wider
range of operations, e.g. being able to navigate directly to the sibling of a node.
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Abstract. In search environments where large document collections are
partitioned into smaller subsets (shards), processing the query against
only the relevant shards improves search efficiency. The problem of rank-
ing the shards based on their estimated relevance to the query has been
studied extensively. However, a related important task of identifying how
many of the top ranked relevant shards should be searched for the query,
so as to balance the competing objectives of effectiveness and efficiency,
has not received much attention. This task of shard rank cutoff estimation
is the focus of the presented work. The central premise for the proposed
solution is that the number of top shards searched should be dependent
on – 1. the query, 2. the given ranking of shards, and 3. on the type of
search need being served (precision-oriented versus recall-oriented task).
An array of features that capture these three factors are defined, and
a regression model is induced based on these features to learn a query-
specific shard rank cutoff estimator. An empirical evaluation using two
large datasets demonstrates that the learned shard rank cutoff estima-
tor provides substantial improvement in search efficiency as compared to
strong baselines without degrading search effectiveness.

1 Introduction

To facilitate distributed and parallel query processing, large document collec-
tions are often partitioned into smaller subsets, referred to as shards [1–5].
Search efficiency can be further improved by processing the query against only
a few selected shards that are likely to contain relevant documents [2,4–6]. A
rich line of work, mainly originating in federated search, has extensively investi-
gated the problem of ranking shards based on their estimated relevance to the
query [7–15]1. However, a related research problem of determining how many of
the top ranked shards should be searched for the query has been largely under-
studied (exceptions are [10,16,17]. We refer to this task as that of estimating
the shard rank cutoff in a given ranking of shards for the query.

Most prior work a adopts query-agnostic approach to set the shard rank
cutoff where a preset number of top ranked shards are searched for every query.
However, searching a fixed number of top shards for every query often degrades
1 Prior work in federated search has referred to shards as resources, however, for the

sake of consistency we use the newer term, shards, throughout this paper.
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either the search effectiveness or search efficiency. For instance, the fixed shard
rank cutoff of 1 would lead to poor search effectiveness for more than one fourth
of the queries, and a fixed cutoff of 5 would be excessive for more than half of the
queries for one of the datasets used in this work. Since searching fewer shards
improves efficiency, the optimal cutoff value for a ranking of shards is the smallest
(or earliest) rank which maximizes search effectiveness. This optimal shard rank
cutoff may be different for every query because of the inherent differences in
queries. For instance, a query with a broader information-need requires larger
search budget than one with a focused information-need. The other factor that
directly influences the number of top shards that ought to be searched for a
query is the type of search need – a few top shards might be sufficient for
precision-oriented tasks where effectiveness at early ranks is important, but for
recall-oriented tasks, a higher shard rank cutoff value might be necessary to
optimize effectiveness at deeper ranks.

Based on these observations we hypothesize that a shard rank cutoff estima-
tor that is: (1) optimized for a specific search need, and (2) explicitly models
query and dataset-specific properties, is needed to balance the competing objec-
tives of minimizing search cost and maximizing search effectiveness. To test this
hypothesis we propose a shard rank cutoff estimator (ShRkC) which learns a
regression function based on features that are designed to capture the salient
aspects of the query and the dataset. Also, a separate estimator is learned for
different search needs so as to model the differences in requirements.

The contributions of this work are: first, we formalize the shard rank cut-
off estimation problem, especially as an independent research task from the
shard ranking problem. Second, we propose a novel shard rank cutoff estimator
that leverages three different sources of information to model the quintessential
query and dataset properties. Lastly, the empirical evaluation using some of the
largest datasets demonstrates that the proposed estimator provides the most
cost-effective search setup.

2 Related Work

Although shard ranking has been studied extensively [17–19], the problem of
shard rank cutoff estimation, especially as an independent task, has been inves-
tigated only in few studies. One of the early estimators was proposed as part
of the SUSHI algorithm which also infers shard ranking. For both tasks, SUSHI
uses a data structure called central sample index (CSI), which is a compila-
tion of documents sampled from each shard that serve as representatives of the
complete shard contents. The query is executed against the CSI and the top
50 retrieved documents are used as follows. For each shard represented in these
documents, a curve is fitted using the document scores and rank. Three types
of curves, linear, logarithmic, and exponential are attempted, and the one with
best fit is used to interpolate scores for the top m ranks for each shard. The
interpolated points from all shards are merged into a single ranking, P , and
the scores are aggregated based on their shard membership. The resulting shard
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scores are then used to rank the shards. The number of unique shards present
in the top R documents of the consolidated ranking P is predicted as the shard
rank cutoff for P@R metric. Notice that SUSHI’s prediction for the rank cutoff
takes into consideration both, the query and the metric of interest.

The Rank-S algorithm [16] is similar to SUSHI in that it uses CSI as the
basis for inferring the shard ranking, and also for estimating the shard rank
cutoff value. More specifically, Rank-S algorithm uses the CSI results obtained
for the query to compute a vote that each document assign to its parent shard
as follows: vote(di) = weight(di) ·B−i, where di is the document at rank i in the
CSI results, weight(di) is typically the relevance score assigned to the document
di by the retrieval algorithm, and B is the base of the exponential decay function
used to suppress the votes assigned by documents further down the result list.
The votes are aggregated based on the parent shard of the documents and then
used to rank the shards. The number of unique shards represented until the
rank at which the vote converges to zero is predicted as the shard rank cutoff
value. Although, Rank-S makes query-specific rank cutoff predictions, it cannot
optimize for the metric of interest.

More recently, Markov and Crestani [17] compared some of the popular shard
ranking algorithms, all of which use CSI, and observed that the number of
shards searched for a query is determined by parameter k which is the number
of retrieved CSI documents that are used for ranking the shards. They propose
an unsupervised approach, named adaptive k, for choosing a query-specific value
for k. This approach uses the number of documents retrieved from the CSI that
contain all the query terms, as the value for k. For queries which yield fewer than
three such documents, the documents containing one less query term are used
to set the parameter. Empirical evaluation demonstrates that when applied to a
variant of ReDDE, the adaptive k is as effective as the best performing fixed k
approach. The adaptive k approach although query-specific, it does not adapt to
different search needs (that is, metric of interest). Also, as proposed, the adaptive
k estimator can only work in setups where CSI is available.

Next we describe a widely used and adapted shard ranking algorithm,
ReDDE, that we use in this work as the source of shard ranking. ReDDE uses the
central sample index (CSI) as a proxy for the complete collection (all shards).
ReDDE first executes the user query against the CSI, and assumes that the top
n retrieved documents are relevant (This is the same as parameter k in Markov
and Crestani, 2014). If nR is the number of documents in n that are mapped to
shard R then a score sR for each R is computed as: θR = nR ∗ wR, where the
shard weight wR is the ratio of size of the shard (|R|) and the size of its sample
(|SR|). The shard scores θR are then normalized to obtain a valid probability
distribution which is used to rank the shards. Although, ReDDE provides effec-
tive shard ranking, it does not estimate the number of top shards to search for
a query. The typical approach is to use a fixed cutoff value for all the queries.
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3 Shard Rank Cutoff Prediction (ShRkC)

Shard ranking algorithms, such as, ReDDE [9], infer an ordering of the shards
based on their estimated relevance to the query. Given such a ranking of shards
for a query, our goal is to estimate the minimum number of top shards that
should be searched to maximize effectiveness. More specifically, for each query
q, we predict a metric-dependent shard rank cutoff as follows.

Tmet
q = floor(f(

→
X)) (1)

where: Tmet
q : The optimal shard rank cutoff for query q and metric met.

f : The learned regression function.
→
X: Set of features derived from Sn

q , Rn
q , CSI,

and from collection statistics gathered from all shards, where: Sn
q is n ranked

shards for query q, Rn
q is the corresponding normalized relevance scores for the

shards at ranks 1 to n (Is a valid probability distribution), and CSI is the central
sample index used to infer the shard ranking and the relevance scores for every
query. The set of features,

→
X, used by the the regression function f are described

in Section 4.
Based on preliminary experiments that compared three regression techniques:

linear regression, SVM-regression, and random forest (RF), we choose the RF
algorithm (RF) [20] to learn the regression function f due to its higher perfor-
mance. RF is a type of an ensemble learning approach that combines multiple
decision trees to improve the overall prediction performance. An open-source
R package[21] was employed for the actual implementation of Random Forest.
A separate regression model is learned for every metric of interest. In order to
obtain reliable evaluation of the learned model, 10-fold cross-validation setup
was implemented. Also, in order to account for the variability introduced by the
random factors of the RF algorithm, 10 runs of each experiment were conducted
and the average values are reported in the result tables. The RF algorithm con-
tains two parameters that can be tuned, mtry (the number of features to sample
at each split in the learning process), and ntree (number of trees to fit). For all
the experiments in this work we used the default settings for both the parameters
(mtry: p/3 where p is the total number of features, and ntree: 500). Section 6
explores the effects of parameter tuning on search performance.

Ground Truth: The definition of the ground truth for the shard rank cutoff
prediction task reflects the two-part goal of minimizing the number of shards
searched per query, and maximizing the search effectiveness for each query. Given
a ranking of shards for a query, the optimal cutoff is the smallest rank T at which
the search effectiveness is the maximum it can be for the given shard ranking. The
search effectiveness is quantified by one of the standard IR evaluation metrics.
Thus the ground truth T is defined for each <query, metric> pair.
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4 ShRkC Estimator Features

We use three sources of information to define the features used by the learner: the
ranking of shards for the query, the central sample index (CSI), and the collection
statistics gathered from all the shards. The features were designed with the goal
to model various signals, such as, query difficulty, where the premise is that
harder queries need to search more shards while easy queries don’t.

4.1 Shard Ranking Based Features

The features in this category make use of only two types of inputs: the ranking
of shards produced by an algorithm, such as, ReDDE, for the query (Sn

q ), and
the corresponding shard relevance scores (Rn

q ).

Number of Shards Ranked: This feature simply captures the number of
shards that the shard ranking algorithm was able to order for the query (n).
Queries with fewer ranked shards would indicate less diffusion of relevant docu-
ments across shards, and thus suggest smaller cutoff, T value.

Geometric Distribution Parameter: Queries for which the relevance scores
decay rapidly down the rank suggest smaller cutoff values. Whereas, a flat dis-
tribution of relevance scores indicates larger cutoff value. To capture this trend
we fit a geometric distribution to the ordered set of relevance scores for each
query. The distribution parameter, p, is used as a feature in the regression
function. For parameter estimation the method of moments is used as follows:
p = 1/E(x) = 1/

∑n
i=1 xi · P (xi) = 1/

∑n
i=1 xi · Ri

q, where xi is simply the rank
i, and Ri

q is the normalized relevance score of the shard at rank i.

Entropy: Shannon’s entropy is often used to quantify the information content
of a data source. The entropy of a random variable with uniform distribution is
high, and that with a skewed distribution is low. As such, high entropy can char-
acterize large T value, and vice-versa. We compute the entropy of the variable x
with the probability distribution Rn

q as follows: H(X) = −∑n
i=1 Ri

q · log2(Ri
q).

The entropy value, H(X), is used as a feature for the regression model.

Relative Entropy: For this feature we compare the shard relevance score dis-
tribution with a reference distribution by computing their relative entropy. The
reference distribution is defined as: Y ˜Uniform(1, n),∴ p(y) = 1/n, where n is
the number of shards ranked for the query. The relative entropy is calculated as
follows, and the resulting value is used as a feature for the regression function:

H(X|Y ) =
∑n

i=1 Ri
q · ln

(
Ri

q

p(y)

)

Compared to Reference Distribution: This feature contrasts the shard
relevance score distribution with a reference distribution to identify a cross-
over point. The reference distribution is same as before. The rank i at which
Ri

q <= p(y) is used as a feature for the regression function. We expect the ideal
shard rank cutoff, T value, to be in the neighborhood of the cross-over point.
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Cumulative Moving Average Compared to Reference Distribution:
This feature is an extension of the previous feature where the cumulative mov-
ing average of the shard relevance scores is compared with the reference distri-

bution to locate a cross-over point. f = k if
(∑k

i=1 Ri
q

k <= 2 · p(y)
)

,where k ∈
{1, 2, ..., n}. The cross-over point, f , is used as a feature for the regression func-
tion.

4.2 CSI Based Features

The features in this category use two sources of information: the shard ranking
and relevance scores, and the central sample index (CSI).

Intersection: The number of CSI documents containing all query terms is used
as a feature. This and the next two features model the generality (or the speci-
ficity) of the query terms, and the coverage of the query topic in the CSI.

Union: The number of CSI documents that contain at least one of the query
terms is used as a feature.

Ratio of Intersection and Union: The ratio of the previous two features. If
the ratio is close to 1 then the query terms are strongly related to a particular
topic, indicating a focused information-need.

Average Inverse Document Frequency for CSI: This and the next two
features are inspired by the query performance predictors proposed by He and
Ounis [22]. The average inverse document frequency for CSI is computed as:

AvgIDFCSI(q) = log2
∏m

j=1
(|CSI|/dfqj

CSI)

m , where m is query length, |CSI| is CSI
size in documents, and df

qj
CSI is document frequency in CSI for query term qj .

Standard deviation of CSI-IDFs: The inverse document frequency of a term
is a measure of its discriminatory power. A query consisting of high IDFs terms
needs a different search budget than one where IDFs have high variance, indi-
cating that some are general term while others are on-topic. We compute the
standard deviation of query term IDFs, specific to the CSI, to use as a feature.

Simplified Query Clarity: Query clarity was introduced by Cronen-Townsend
et al. [23] as a measure of query ambiguity. We expect that larger search bud-
get (larger T ) is needed for ambiguous queries because shard ranking is often
more erroneous. The following definition of query clarity is used as a feature:
clarityCSI(q) =

∑m
j=1

qtfj
m · log2 (qtfj/m)

df
qj
CSI/|CSI| , where qtfj is the frequency of term qj

in the query, df
qj
CSI is the document frequency for qj in CSI.

AvgIDFs Compared to Reference Distribution: The subset of CSI docu-
ments that were sampled from the shard at rank i are identified. The IDF for
each query term, specific to this subset, is computed. The average of these IDF
values (avgIDF ) is computed, and this process is repeated for every rank. The
sum of avgIDF across all the ranks is used to define a uniform distribution with
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parameter p =
∑

i avgIDFi

n , as the reference distribution. The rank at which the
corresponding avgIDF value becomes less than or equal to p is used as a feature.

4.3 Collection Statistics Based Features

This category of features use all three sources of information: shard ranking, CSI,
and statistics from all shards. For brevity we refer to all shards as collection.

Average Inverse Document Frequency for Collection: This feature is an
extension of the AvgIDFCSI where the IDF is computed over all the shards.

Standard Deviation of IDFs: This feature is also an adaptation of the earlier
feature that incorporates collection level statistics.

Simplified Query Clarity: This feature is also similar to the earlier feature
but uses collection level statistics.

Query scope: The concept of query scope models the specificity or the gener-
ality of the query, and is used as a feature. scope(q) = − log( |uq|

N ), where |uq| is
the set size of the documents that contain at least one of the query terms, and
N collection size in documents.

Shard Prevalence w.r.t. Collection Prevalence: This feature contrasts the
prevalence of query topic in a shard, with its prevalence in the collection. For
every shard in the given ranking a prevalence score is computed as follows:

prevalenceColl(S[i]) =
∑m

j=1

df
qj
S[i]

df
qj
C

, where S[i] is the shard at rank i ∈ {1, .., n},

df
qj
S[i] is the document frequency of the query term, qj , in shard S[i], and df

qj
C is

the document frequency of qj in the complete collection. The computed scores are
normalized to obtain a valid probability distribution. A reference distribution is
defined by uniformly distributing the normalized prevalence scores, and the rank
at which prevalence(S[i]) becomes less than or equal to the reference distribution
probability is used as a feature.

Spread of Query Topic in the Collection: This feature is similar to the
previous feature with the exception of the denominator in the following formula-

tion: spread(S[i]) =
∑m

j=1

df
qj
S[i]

|C| , where |C| is the size of the collection in terms of
documents. The feature value is the rank at which the normalized spread score
is smaller or equal to the reference distribution’s probability.

Shard Purity: This feature models the purity of a shard, in terms of the query

topic. purity(S[i]) =
∑m

j=1

df
qj
S[i]

|S[i]| , where |S[i]| is the size of the shard at rank i

in terms of documents. A reference distribution is defined by uniformly dividing
the normalized purity scores. The feature is the rank at which the normalized
purity scores becomes less than or equal to the reference distribution probability.
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Table 1. Results for ShRkC and three baseline approaches. Dataset: GOV2. Per-
centage difference w.r.t. ShRkC are in round brackets, and the statistically significant
differences (T-test with p < 0.05) are underlined. Search cost values are in million doc-
uments. Exhaustive search: P@30=0.483 (+5), CRES=3.41 (+543), CLAT=0.31 (+55),
MAP=0.29 (+6), CRES=3.41 (+252), CLAT=0.31 (+48)

Search Cost Search Cost
P@30 CRES CLAT MAP CRES CLAT

ShRkC 0.459 0.53 0.20 0.268 0.97 0.21

Fxd T=1 0.313 (-32) 0.15 (-72) 0.15 (-25) 0.130 (-52) 0.15 (-85) 0.15 (-29)

Fxd T=3 0.440 (-4) 0.42 (-21) 0.19 (-5) 0.220 (-18) 0.42 (-57) 0.19 (-10)

Fxd T=5 0.459 (0) 0.65 (+23) 0.21 (+5) 0.241 (-10) 0.65 (-33) 0.21 (+0)

Fxd T=10 0.473 (+3) 1.15 (+117) 0.22 (+10) 0.269 (+0) 1.15 (+19) 0.22 (+5)

Rank-S 0.467 (+2) 0.74 (+40) 0.21 (+5) 0.256 (+4) 0.74 (-24) 0.21 (+0)

SUSHI 0.411 (-11) 0.66 (+25) 0.19 (-5) 0.222 (-17) 0.81 (-16) 0.19 (-10)

5 Experimental Methodology

Data: Two widely used large document collections, GOV2 (Size: 400GB, No.
of documents: 25 million) and CW09-Eng (Size: 15TB, No. of documents: 503
million), were used for the empirical evaluation of the proposed estimator. Each
dataset was partitioned into topic-based shards using the approach proposed
in Kulkarni and Callan [6]. GOV2 was clustered into 50 shards, and CW09-
Eng into 1000. Thus, on an average each shard contains about half a million
documents, for both the datasets. The evaluation query sets consisting of 150
topics (Avg no. of relevant documents per query: 182 (± 149)) from 2004 and
2005 TREC Terabyte track were used with GOV2, and 200 queries (Avg no. of
relevant documents per query: 107 (± 69)) from the TREC Web tracks 2009
through 2012 were used with CW09-Eng.

Setup: For each dataset, a central sample index (CSI) is created by sampling
0.5% of documents from each shard using simple random sampling. For every
query, the ReDDE algorithm (Section 2), is used to rank the shards based on
their estimated relevance to the query2.

Given this ranking of shards, the ShRkC estimator is used to predict the
shard rank cutoff (T ), the query is run against the top T shards using Indri,
an inference network and language modeling based document retrieval algo-
rithm, and the T search results are merged. We assume that the document
scores assigned at the T shards are comparable, and thus the T result lists can
be merged as is.

EvaluationMetrics: The search effectiveness is quantified using three standard
IR evaluation metrics: P@30, P@100, and MAP. We model the corresponding

2 Any other sample-based shard ranking algorithm can be used instead of ReDDE.



ShRkC: Shard Rank Cutoff Prediction for Selective Search 345

search costs using two metrics proposed by Aly et al. [15]: CRES(q) =∑T
i=1 |Dq

S[i]|+|Dq
CSI | provides an upper bound on the number of documents evalu-

ated for the query q, and the second metric CLAT (q) = max1≤i≤T |Dq
S[i]|+ |Dq

CSI |
quantifies the longest execution path for the query, assuming a distributed query
processing framework. Here |Dq

S[i]| is the number of documents in the shard at rank
i that contain at least one of the query terms, and |Dq

CSI | is the number of docu-
ments in CSI that contain at least one of the query terms. Both these metrics use
the number of documents evaluated as a proxy for query response time, which is
supported by results demonstrated by MacDonald et el. [24] where the number of
documents scored for a query is strongly correlated with the query response time.
The result tables report the average search costs across all the evaluation queries.

Table 2. Results for ShRkC and three baseline approaches. Dataset: CW09-Eng. Per-
centage difference w.r.t. ShRkC are in round brackets, and the statistically significant
differences (T-test with p < 0.05) are underlined. Search cost values are in million
documents. Exhaustive search: P@10=0.106 (-12), CRES=57.61 (+4105), CLAT= 1.00
(+59), MAP=0.062 (+1), CRES=57.61 (+1461), CLAT=1.00 (+32)

Search Cost Search Cost
P@30 CRES CLAT MAP CRES CLAT

ShRkC 0.121 1.37 0.63 0.062 3.69 0.76

Fxd T=1 0.108 (-11) 0.58 (-58) 0.58 (-8) 0.041 (-33) 0.58 (-84) 0.58 (-24)

Fxd T=3 0.115 (-5) 1.55 (+13) 0.66 (+5) 0.054 (-11) 1.55 (-58) 0.66 (-13)

Fxd T=5 0.116 (-4) 2.50 (+82) 0.73 (+16) 0.056 (-8) 2.50 (-32) 0.73 (-4)

Fxd T=10 0.115 (-5) 4.72 (+245) 0.80 (+27) 0.058 (-5) 4.72 (+28) 0.80 (+5)

Rank-S 0.116 (-4) 1.46 (+7) 0.66 (+5) 0.052 (-15) 1.46 (-60) 0.66 (-13)

SUSHI 0.113 (-7) 4.63 (+238) 0.77 (+22) 0.058 (-5) 6.19 (+68) 0.81 (+7)

Baselines: The proposed estimator is compared with three baseline approaches:
fixed rank cutoffs at {1, 3, 5, 10}, Rank-S, and SUSHI. The fixed rank cutoff
approach is both, query- and metric-agnostic. The choice of the cutoff is often
driven by external factors such as the availability of computing resources, or
the system administrator’s knowledge about the dataset. The Rank-S algorithm
provides query-specific estimation of the rank cutoff, but does not optimize for
a particular type of search need (metric). The last baseline, SUSHI, is most
similar to the proposed approach, in that, its estimates are both, query and
metric-specific. Two-fold cross-validation was employed to set the parameters of
the baseline algorithms.

6 Results and Discussion

The results for the two datasets, GOV2 and CW09-Eng, are provided in Tables 1
and 2, respectively. One consistent trend is that the fixed cutoff with small T
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values provide higher search efficiency (lower search costs) than ShRkC, how-
ever, the corresponding search effectiveness is substantially lower than that
with ShRkC. Certain fixed cutoff values provide comparable search effectiveness
to that with ShRkC, however, the corresponding search costs are significantly
higher than those with ShRkC. For example, the Fxd T=5 and ShRkC sup-
port comparable P@30 values for the GOV2 dataset, but the search costs with
the Fxd T=5 are higher (23% and 5%) than with ShRkC. This trend is even
more pronounced for the larger dataset (CW09-Eng). These results support the
hypothesis that the query- and metric-agnostic fixed shard rank cutoff approach
cannot provide the best tradeoff between search effectiveness and efficiency. With
small fixed T values search effectiveness is compromised, and the large fixed T
values waste search effort.

When comparing ShRkC with the stronger baselines, Rank-S and SUSHI,
several trends emerge. For the smaller dataset, GOV2, the Rank-S approach is
able to balance search efficiency and effectiveness for the MAP metric, however,
not for the other two metric (P@30 and P@100). This demonstrates the limita-
tion of this metric-agnostic approach. SUSHI, the approach that is most similar
to ShRkC in its goal of optimizing for both, query and metric, unfortunately
performs poorly across the board, and illustrates the difficulty of balancing the
competing objectives of search effectiveness and efficiency.

The exhaustive search approach, which processes the query against all shards,
is expected to provide the upper bound on search effectiveness. In most cases,
the search effectiveness with exhaustive search is comparable or better than with
ShRkC. The corresponding search costs are naturally higher with exhaustive
search than with any of the other approaches. For the larger dataset, CW09-
Eng, ShRkC even supports higher P@30 value than exhaustive search. This sug-
gests that searching a subset of the shards reduces the non-relevant documents
(false-positives) in the retrieved results. Overall, these results demonstrate the
unique ability of ShRkC to adapt to different definitions of effectiveness as well
as different query requirements, thus providing the most cost-effective search
setup.

Parameter Space of ShRkC: The ShRkC algorithm employs random forests
(RF) algorithm to learn a regression function based on the supplied features.
There are two parameters that need to be set for the RF algorithm. First, mtry :
number of features to sample at each split in the learning process. Second, ntree:
number of trees to fit. For the earlier experiments we used the default settings
for both the parameters (mtry:p/3 where p is the total number of features,
ntree:500). In this section we explore a larger parameter space. We also do the
same for the baselines: fixed T, and Rank-S. In the interest of space we restrict
this investigation to the metric MAP. Figure 1 plots the search effectiveness
versus cost trends with different parameter settings. The corresponding plots
for the GOV2 dataset, which exhibit similar trends, are omitted in the interest
of space. One of the prominent trends is that ShRkC algorithm have much less
variance than the other approaches. This suggests stability and less sensitivity
to the parameter settings in case of ShRkC algorithm. The top left corner of
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Fig. 1. Exploring parameter space of Fixed T, Rank-S, and ShRkC. Fixed T ∈
{1,3,5,10,15,20,25}, Rank-S B ∈ {1.1,..2.0,2.5,3.0,3.5,4.0,5.0,10.0}, and ShRkC mtry
∈ {3,6,9,12,15,18} and ntree ∈ {100, 500, 1000}. All the combinations of the mtry and
ntree values were investigated.

Table 3. Search effectiveness with ShRkC and different feature sets. r: shard ranking
features, csi: CSI features, and coll: collection features. Feature type inclusion is 1,
and exclusion is 0. ∇ indicates statistically significant degradation as compared with
ShRkC (p < 0.05).

ShRkC GOV2 CW09-Eng

P@30 P@100 MAP P@30 P@100 MAP

r=1 csi=1 coll=1 0.453 0.358 0.268 0.121 0.100 0.061

Leave-one-out

r=1 csi=1 coll=0 0.459 0.354 0.269 0.122 0.100 0.061

r=1 csi=0 coll=1 0.451 0.356 0.268 0.115 0.100 0.060

r=0 csi=1 coll=1 0.445 0.359 0.268 0.119 0.100 0.059

Leave-one-in

r=1 csi=0 coll=0 0.464 0.351 ∇0.261 ∇0.112 0.100 ∇0.057

r=0 csi=1 coll=0 ∇0.435 0.350 0.265 0.121 0.098 ∇0.057

r=0 csi=0 coll=1 ∇0.436 0.353 0.264 0.119 0.098 ∇0.058

these plots is the desired region where effectiveness is maximized and the cost
minimized. The ShRkC algorithm’s performance is often the closest to that
region. If the search system’s need is to balance effectiveness and cost then
often ShRkC is the best choice. Better search effectiveness can be obtained with
Rank-S, although at a higher search cost.
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7 Feature Set Ablation

The contribution of each of the three feature types used by the ShRkC algorithm
is investigated here. Table 3 presents the results for the leave-one-out (1Out),
and leave-one-in (1In) feature set analyses. The leave-one-out mode excludes,
and leave-one-in includes one feature type at a time. The all-features-in results
are provided in the first row for reference. The 1Out experiments do not exhibit
any substantial differences from the reference run, indicating that some of the
information encoded in the different feature types is duplicated. The 1In results
however demonstrate that no single feature set is sufficient either. These trends
indicate that the ShRkC algorithm can be easily adapted to work with shard
ranking algorithms such as CORI, and Taily, that do not use CSI. Since collection
based features are correlated with the CSI features, the exclusion of CSI features
should not substantially degrade the search effectiveness.

8 Conclusions

This work studied the problem of shard rank cutoff estimation where the goal is
to identify the minimum number of top ranked shards that should be searched
for the query to maximize search effectiveness. For this task we develop a novel
estimator, named ShRkC, that learns a regression model using a set of features
that we define over three sources of information: the shard ranking, CSI, and
the collection statistics. The results from an empirical evaluation using two large
datasets demonstrate that ShRkC provides competitive search effectiveness while
substantially lowering the search costs, as compared to three strong baselines. Its
ability to adapt to different search needs, and to individual query requirements
makes ShRkC-based search highly cost-effective. Balancing the computational
load on the shard-servers can be a challenge in search environments where pop-
ularity of query topics go through boom-and-burst cycles. Thus a worth-while
future direction would be to develop a shard rank cutoff estimator that incorpo-
rates the current computational load of the top shards in order to mitigate the
load imbalance problem.
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Abstract. The Range LCP problem is to preprocess a string S[1 . . . n],
to enable efficient solutions of the following query: given a range [l, r]
as the input, report maxi,j∈{l,...,r} |LCP(Si, Sj)|. Here LCP(Si, Sj) is the
longest common prefix of the suffixes of S starting at locations i and
j and |LCP(Si, Sj)| is its length. We study a natural extension of this
problem, where the query consists of two ranges. Additionally, we allow
a bounded number (say k ≥ 0) of mismatches in the LCP computation.
Specifically, our task is to report the following when two ranges [�1, r1]
and [�2, r2] comes as input:

max
{�1≤i≤r1,�2≤j≤r2}

|LCPk(Si, Sj)|

Here LCPk(Si, Sj) is the longest prefix of Si and Sj with at most k
mismatches allowed. We show that the queries can be answered in O(k)
time using an O(n2/w) space data structure, where w is the word size.
We also present space efficient data structures for k = 0 and k = 1.
For k = 0, we obtain a linear space data structure with query time
O(
√

n/w logε n), where w is the word size and ε > 0 is an arbitrarily
small constant.

For the case k = 1 we obtain an O(n log n) space data structure with
query time O(

√
n log n).

Finally, we give a reduction from Set Intersection to Range LCP
queries, suggesting that it will be very difficult to improve our upper
bound by more than a factor of O(logε n).

1 Introduction

The Longest Common Prefix (LCP) has been historically an important tool in
Combinatorial Pattern Matching:
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1. The connection between Edit Distance and Longest Common Prefix (LCP)
calculation has been shown and exploited in the classic Landau-Vishkin
paper in 1989 [13]. It was shown in that paper that computing mismatches
and LCPs is sufficient for computing the Edit Distance.

2. The LCP is the main tool in various bioinformatics algorithms for finding
maximal repeats in a genomic sequence.

3. The LCP plays an important role in compression. Its computation is required
in order to compute the Ziv-Lempel compression, for example [15].

Therefore, the LCP has been amply studied and generalized versions of the
problem are of interest. A first natural generalization of the LCP problem is a
“range” version. Such a problem was considered by Cormode and Muthukrish-
nan [6] in the context of data compression. They called it the Interval Longest
Common Prefix (ILCP) Problem. In that version, the maximum LCP between
a given suffix S[p . . . n] and all suffixes in a given interval [l, r], is sought. Cor-
mode and Muthukrishnan provide an algorithm whose preprocessing time is
O(n log2 n log log n), and whose query time is O(log n log log n). This result was
then improved by Keller et al. [12] to O(n log n) preprocessing time and O(log n)
query time. Also see [19] for a recent linear space and O(logε n) query time result.

Another generalization, called Range-LCP (RLCP), was considered by Amir
et al. [1]. They wanted to solve the following problem. Preprocess a string S, of
length n, to enable efficient solutions of the following query:

Given [l, r], 0 < l ≤ r ≤ n, compute maxi,j∈{l,...,r} |LCP(Si, Sj)|, where
LCP(Si, Sj) is the length of the longest common prefix of the suffixes of S start-
ing at locations i and j. Here Si = S[i . . . n], the suffix starting at location i.
They provided a number of algorithms for the problem:

1. Preprocessing Time: O(n), Space: O(n), Query Time: O(|r − l| log log n).
2. Preprocessing Time: no preprocessing, Space: O(|r− l| log |r− l|), Query Time:

O(|r − l| log |r − l|). However, the query just gives the pairs with the longest
LCP, not the LCP itself.

3. Preprocessing Time: O(n log2 n), Space: O(n log1+ε n) for arbitrary small con-
stant ε, Query Time: O(log log n)

Patil et al. [19] improve the above linear space solution by describing a linear
space data structure that enables an O(

√|r − l| logε(|r− l|)) query time, for any
constant ε.

In this paper we study a natural extension of the range LCP problem, where
the query input consists of two ranges and we allow a bounded number of mis-
matches in the LCP computations. The formal definition of the problem is given
below.

Problem 1 (Two-RLCP with k Mismatches (2-RLCPk)) Let LCPk(Si,
Sj) be the longest common prefix of the suffixes of a string S, starting at locations
i and j, with at most k mismatches allowed. The 2-RLCPk problem is to index
S for a fixed k, so as to answer the following query: given two ranges [�1, r1] and
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[�2, r2] as the input, report

max
{�1≤i≤r1,�2≤j≤r2}

|LCPk(Si, Sj)|

Understanding this generalization enhances our understanding of this impor-
tant tool. In addition, this version is motivated by a natural application. McClin-
tock earned the Nobel prize in 1983 for her discovery of DNA sequences that
change or replicate within the genome [18]. These transposons are important for
many reasons, among them the study of diseases and evolution. It is necessary
to be able to find them efficiently [17]. The problem is mitigated by the fact that
there are areas in the genome “suspected” of having such transposons. When we
have two such areas we seek the largest common DNA sequence between these
two areas. This is exactly answered by a case Two Range LCP.

The paper is structured as follows. Section 3 shows an O(k) query time algo-
rithm. Section 4 presents an almost optimal linear space data structure algo-
rithm. Section 5 presents an algorithm for interval longest common prefix with
one mismatch. Section 6 proves the hardness result, suggesting that our result
of Section 4 is within a logarithmic factor of optimal. We conclude with some
open problems.

2 Preliminaries: Suffix Arrays, Trees, LCA, and LCP

In this section we present the background needed to understand the solutions
presented in this paper. The reader familiar with them can skip this subsection.

Definition 1. Let S = S[1 . . . n] be a string over alphabet Σ. Let {S1, . . . , Sn} be
the set of suffixes of S, where Sj = S[j . . . n], j = 1, . . . , n. Let Si1 , . . . , Sin be the
suffixes Sj , j = 1, . . . , n, ordered lexicographically in increasing order. The suffix
array of S is array SA of length n where SA[1] = i1, SA[2] = i2, . . . , SA[�] =
i�, . . . , SA[n] = in.

Theorem 1. [Kärkkäinen and Sanders [10]] For alphabet Σ = {1, . . . , nO(1)}
the suffix array can be constructed in time O(n). For general alphabets it can be
constructed in time O(n log σ), where σ = min(|Σ|, n).

Theorem 2. [Kasai et al. [11]] The suffix array can be preprocessed in time O(n)
to enable constant time Longest Common Prefix (LCP) query computations on
the suffixes.

Definition 2. Let S1, . . . , Sk be strings over alphabet Σ and let $ �∈ Σ. We
assume that every string Si, i = 1, . . . , k, ends with a $ symbol.

An uncompacted trie of strings S1, . . . , Sk is an edge-labeled tree with k leaves.
Every path from the root to a leaf corresponds to a string Si, with the edges labeled
by the symbols of Si. Strings with a common prefix start at the root and follow
the same path of the prefix, and the paths split where the strings differ.
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A compacted trie is a trie where every chain of edges connected by degree-
2 nodes is contracted to a single edge whose label is the concatenation of the
symbols on the edges of the chain.

Let S = S[1 . . . n] be a string over alphabet Σ. Let {S1, . . . , Sn} be the set
of suffixes of S, where Si = S[i . . . n], i = 1, . . . , n. A suffix tree of S is the
compacted trie of the suffixes S1, . . . , Sn.

Theorem 3. [Weiner [20]] For constant size alphabet Σ, the suffix tree of a
length-n string can be constructed in time O(n). For general alphabets it can be
constructed in time O(n log σ), where σ = min(|Σ|, n).

Since we now have our string in a tree data structure, one can exploit tree
properties as they translate to strings. A particularly important property is the
Lowest Common Ancestor (LCA).

Definition 3. Let T be a tree, u, v nodes in T . Node w is the Lowest Common
Ancestor (LCA) of u and v, if w is an ancestor of both u and v, and every other
common ancestor of u and v is also an ancestor of w.

Landau and Vishkin [14] made the crucial observation that the substring
from the root of a suffix tree to the LCA of nodes s and t is the LCP of the
substrings on the paths from the root to nodes s and t. The following theorem
allows us to compute the LCP efficiently using suffix trees.

Theorem 4. [Harel and Tarjan [9]] Given an n node tree, it can be preprocessed
in time O(n) allowing subsequent LCA queries in constant time.

3 Data Structure for General k

In this section we present a solution for the 2-RLCPk problem. We start with a
well-known lemma solved by the kangaroo method, see [8,14].

Lemma 1. Using a suffix tree T of S, we can compute |LCPk(Si, Sj)| for any
i, j and k in O(k) time.

Next we define a useful problem.

Definition 4. The Two-dimensional Range Maximum (2D-RMQ) problem is
that of preprocessing a two-dimensional n × n array A of numbers to enable the
following queries.

Query: given two ranges [�1, r1] and [�2, r2], where 1 ≤ �1 ≤ r1 ≤ n and 1 ≤
�2 ≤ r2 ≤ n, output max{A[i, j] | �1 ≤ i ≤ r1, �2 ≤ j ≤ r2}.
Yuan and Atallah [22] showed an algorithm whereby a linear preprocessing allows
for constant-time queries. Consequently, Algorithm Constant-Time Query (see
Fig. 1) solves the 2-RLCPk problem with O(k) time queries.
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Algorithm Constant-Time Query

Preprocessing:
Preprocess string S for LCP queries.
Construct two-dimensional array A where

A[i, j] =

{
|LCPk(Si, Sj)| if i �= j

0 if i = j

Preprocess array A for range maximum queries.

Query: Given ranges [�1, r1] and [�2, r2].
do a 2D-RMQ of [�1, r1] and [�2, r2] on A and obtain the maximum.

Fig. 1. The constant-time query algorithm

Space: Dominated by O(n2) for array A.
Time: O(n) for the LCP queries preprocessing. Each entry in array A is an LCPk

query, which can be answered in O(k) time, thus O(n2k) time for constructing
array A, and O(n2) time for preprocessing array A for range-maximum queries.
Thus the total preprocessing time is O(n2k). The query time is a range-maximum
query, which is done in constant time.

We will now reduce the space by a factor of w, where w is the length of a
word. Much effort has been made recently in the context of reducing additional
space for various problems. In particular, Brodal et al. [3] showed that the 2D-
RMQ problem can be solved using O(n2) additional bits to the initial input
array. In a later paper, Brodal et al. [2] showed a tradeoff for the additional bits
needed vs. the query time.

In our 2-RLCPk problem, the additional space necessary for the RMQ mech-
anism is t hus O(n2/w). However, the initial array data can be encoded by O(n)
space, since the data of array A is really LCP’s of suffixes of S. As mentioned
in Lemma 1, these LCPs can be computed in O(k) time.

We conclude:

Theorem 5. There exists an O(n2/w) space and O(k) query time data structure
for 2-RLCPk problem.

4 A Space Efficient Framework

In this section we present a framework by which the 2-RLCPk problem can be
reduced to the ILCPk problem, where ILCPk is a generalized version of Interval-
LCP problem.

Problem 2 (Interval-LCP with k Mismatches (ILCPk)) Index a string
S[1 . . . n], so as to answer the following query: given an integer 1 ≤ p ≤ n
and a range [l, r], where 1 ≤ l ≤ r ≤ n, report max{l≤i≤r} |LCPk(Si, Sp)|.
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In the 2D-orthogonal range successor query data structure problem, one is
given a set of n points on an [n]2 grid which need to be preprocessed, to answer
queries that are to return the leftmost point in a rectangle. The ILCP0 problem
can be reduced to a 2D-orthogonal range successor query data structure, see [16].
Therefore, ILCP0 queries can be answered in O(logε n) time using known O(n)
space data structures for the range successor problem. However, we are not aware
of any prior result on ILCPk with k ≥ 1.

4.1 The Framework

We prove the following result in this section.

Lemma 2. If there exists an sk space and tk query time data structure for
ILCPk queries on string S[1 . . . n], then there exists an sk + O( n2

wΔ2 ) space and
O(tk · Δ) query time data structure for 2-RLCPk problem, where Δ is a param-
eter.

Proof. Recall that A is an n × n matrix, where A[i, j] = 0 if i = j and is
|LCPk(Si, Sj)| otherwise. We create a new matrix A′ of size n/Δ×n/Δ as follows:
partition A into horizontal and vertical slabs of size Δ and obtain (n/Δ)2 Δ×Δ
sub-matrixes of A. Then, set A′[i, j] to the maximum element in the sub-matrix
in the i-th horizontal and j-th vertical slab. Specifically,

A′[i, j] = max
1+(i−1)Δ≤a≤iΔ,1+(h−1)Δ≤b≤jΔ

A[a, b]

Our data structure only consists of a 2D-RMQ structure over A′ and the struc-
ture for ILCPk queries. Notice that the value of any entry in A′ can be computed
using Δ number of ILCPk queries. Therefore the total space is sk + O( n2

wΔ2 )
words.

Query Algorithm: Let [l1, r1] and [l2, r2] be the input ranges. Clearly, the query
can be answered using min{r1 − l1 +1, r2 − l2 +1} ILCPk queries. Therefore the
result follows if either r1 − l1 +1 ≤ Δ or r2 − l2 +1 ≤ Δ. If this is not the case, do
the following: partition the range [l1, r1] into [l1, l′1], [l

′
1 +1, r′

1][r
′
1 +1, r1] and the

range [l2, r2] into [l2, l′2], [l
′
2 +1, r′

2][r
′
2 +1, r2], where l′1 = �l1/Δ�Δ, l′2 = �l2/Δ�Δ

and r′
1 = �r1/Δ	Δ, r′

2 = �r2/Δ	Δ. Now the answer to our query is the maximum
among the outputs of the following queries:

a. 2-RLCPk with input ranges [l1, l′1] and [l2, r2].
b. 2-RLCPk with input ranges [r′

1 + 1, r1] and [l2, r2].
c. 2-RLCPk with input ranges [l2, l′2] and [l1, r1].
d. 2-RLCPk with input ranges [r′

2 + 1, r2] and [l1, r1].
e. 2-RLCPk with input ranges [l′1 + 1, r′

1] and [l′2 + 1, r′
2].

Here (a),(b),(c) and (d) can be reduced to O(Δ) number of ILCPk queries as
one of the input ranges is guaranteed to be smaller than Δ. The ranges in (e)
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can be arbitrarily large. However this can also be converted to O(Δ) number
of ILCPk queries as follows: the region in A corresponding to (e), which is an
(r′

1 − l′1) × (r′
2 − l′2) sub-matrix, is equivalent to an (r′

1 − l′1)/Δ × (r′
2 − l′2)/Δ

sub-matrix of A′. The cell containing the maximum element in this sub-matrix
of A′ can be computed in O(1) time using the 2D-RMQ structure. Once that
particular cell of A′ is identified, the corresponding Δ × Δ sub-matrix of A can
also be identified. Notice that the maximum element within this Δ × Δ sub-
matrix of A is our answer and it can be computed using Δ ILCPk queries. In
summary, we can answer an 2-RLCPk query in O(Δ) number of ILCPk queries.
Therefore, query time is O(tk · Δ). �

We are now ready to present our results on 2-RLCPk for k ≥ 1.

Theorem 6. Using an O(n) space data structure, 2-RLCP0 queries can be
answered in time O(

√
n/w logε n), where ε > 0 is an arbitrarily small constant.

Proof. The result follows from Lemma 2 with Δ =
√

n/w and by choosing linear
space and O(logε n) query time structure for ILCP0 queries. �

In Section 6 we show that if one insists on a linear space data structure, the
query result obtained here is likely to be optimal within an O(logε n) factor.

5 Data Structure for ILCP1 Queries

This section is dedicated to proving the following result.

Theorem 7. Using an O(n log n) space structure, we can answer ILCP1 queries
on S[1 . . . n] in O(log2 n) time.

The result is based on the seminal paper by Cole et al. [5] for text indexing with
errors. The central structure is a suffix tree T of S. We use �i to denote the i-th
leftmost leaf of T , path(u) to denote the concatenation of edge labels on that
path from root to node u and size(u) to denote the number of leaves in the
subtree of u. We now briefly describe the heavy path decomposition of the suffix
tree.

Heavy Path and Heavy Path Decomposition: The heavy path of T is
the path starting from the root, where each node v on the path is the child
with the largest subtree (ties broken arbitrary) of its parent. The heavy path
decomposition is the operation where we decompose each off-path subtree of the
heavy path recursively. Therefore, the edges in T will be partitioned into disjoint
heavy paths. Each heavy path leads to a unique leaf node (therefore we have
n heavy paths) and each internal node is on a unique heavy path. We say that
two (arbitrary) paths in a tree intersect if they have a node in common. The
following lemma is well-known and can easily be proven.

Lemma 3. The number of heavy paths intersected by any (arbitrary) root-to-leaf
path is at most log n.
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We shall call a node u heavy if both u and its parent are on the same heavy
path. Otherwise u is light. The root is always light.

Let Hi be the heavy path that leads to leaf �i and Ci be the set of leaves
whose path to root intersect with Hi. We now define a new problem.

Problem 3 An HLCP1 query (p, l, r, i) asks to report 0 if �SA−1[p] /∈ Ci, and
otherwise report max{|LCP1(Sp, path(�j))| | �j ∈ Ci, SA[j] ∈ [l, r]}.

Lemma 4. An ILCP1 query (p, l, r) can be decomposed into O(log n) number
of HLCP1 queries.

Proof. First, using Lemma 3, find the heavy paths Hi1 ,Hi2 , . . . , Hik , where k =
O(log n) that intersect with the root-to-leaf path of the suffix S[p . . . n] in T .
Then, the desired answer is given by the maximum among the answers reported
by HLCP1 queries (p, l, r, ix) for x = 1, 2, . . . , k. The correctness can be argued as
follows: let path(�g) be the suffix that corresponds to our desired answer. Then,
HLCP1 query on the heavy path that intersects with the node LCA(�g, �SA−1[p])
returns our answer and the answers returned by other HLCP1 queries cannot be
more than this. �

We now proceed to describe an O(n log n) space structure for answering HLCP1

queries in O(logε n) time. Combining this with Lemma 4 gives Theorem 7.

5.1 Structures for HLCP1 Queries

The structure for answering HLCP1 queries (p, l, r, i) for a fixed i can be con-
structed as follows:

1. From the set Ci of leaves intersecting with Hi, create a set Zi of 2|Ci| − 1
strings as follows:

Zi = {path(�j) | j ∈ Ci} ∪ {path′(�j) | j ∈ Ci and j �= i}

Here path′(�j) is the string obtained from path(�j) by replacing its character
at position f = 1 + |LCP(�i, �j)| by the f -th character of path(�i). Observe
that |LCP(path(�i), path′(�j))| = |LCP1(path(�i), path(�j))|.

2. We now map each string (i.e., path(�j) or path′(�j)) into a 2D point whose
x-coordinate is the lexicographic rank of the string among all strings in Zi

and y-coordinate is SA[j]. These points are then preprocessed into linear
space data structure for answering orthogonal range successor/predecessor
search queries. We call the structure Di.

3. Whenever p and a range [l, r] are given as input, the structure Di can return
the maximum of the length of the longest common prefix of S[p . . . n] and
any string in Zi using an orthogonal range successor and an predecessor
search queries

4. The size of Di is O(|Ci|) words, therefore the overall space for all Di’s is
O(n log n) words.
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5.2 Query Time

In this section, we show that HLCP1 queries can be answered in O(logε n) time
using an O(n log n) space structure.

Let p and [l, r] be the input parameters to the ILCP1 query, then our task
is the following: among all leaves �j , where SA[j] ∈ [l, r], report the maximum
of |LCP1(path(�j), Sp)|, i.e., report the maximum of |LCP(path(�j), Sp))| after
ignoring the first mismatch, which is at the position 1 + |LCP(path(�j), Sp)|. To
execute this task efficiently, we maintain several data structures, called Di’s and
E(u)’s.

5.3 Structure Di

Let Hi be the heavy path that leads to leaf �i and Ci be the set of leaves, whose
path to root intersects with Hi. Notice that

∑
i |Ci| ≤ 2 log n, as each leaf node

can be a part of at most log n number of Ci’s. For each i ∈ [1, n], we construct
a data structure Di by preprocessing Ci as follows:

1. We preprocess Zi into a data structure, that given p and [l, r] as inputs,
if Sp = path(�SA−1[p]) ∈ Zi, then report the length of the longest common
prefix of Sp and all strings path(�j) or path′(�j) in Zi with SA[j] ∈ [l, r].
The problem can be reduced to orthogonal range successor query over a set
of |Zi| 2D points. Therefore, we maintain a linear space (i.e., O(|Zi|) words)
range successor query data structure with query time O(logε n) and call it
Di.

2. The overall space of all Di is O(n log n) words.

5.4 Structure E(u)

With every internal node u, we associate a data structure E(u) as follows: let Lu

be the set of leaves in the subtree of u, but not in the subtree of the heavy child
v of u. Then, create a set of strings Z(u) = {path′(�j) | �j ∈ Lu}. Here path′(�j)
is same as path(�j) with its character at position f = 1+ |LCP(path(�j), path(v))|
is changed to path(v)[f ]. We preprocess Z(u) into a data structure such that,
given p and [i, j] as queries, if path′(�SA−1[p]) ∈ Z(u), then report the length
of the longest common prefix of path′(�SA−1[p]) and all other strings path′(�j)
in Z(u) with SA[j] ∈ [l, r]. Again, the problem can be educed to orthogonal
range successor query. Hence by maintaining an O(|Z(u)|) space structure (called
E(u)), the query can be answered in O(logε n) time. Notice that the overall size
of all E(u)’s is O(n log n).

5.5 Query Answering

We need to do log n range successor queries, each will require a binary search,
hence the overall query time is O(log2 n).

This concludes the proof of Theorem 7.
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Corollary 1. Using an O(n log n) space data structure, 2-RLCP1 queries can
be answered in time O(

√
n log n).

Proof. By Theorem 7, ILCP1 queries can be answered in O(log2 n) time using
an O(n log n) space structure. By combining this result with Lemma 2 with
Δ =

√
n/ log n, the result can be obtained. �

6 The Hardness Results

Set intersection is believed to be a hard problem. While there are some known
lower bounds on the problem of maintaining a collection of sets under inser-
tion and deletion of elements into individual sets (initialized empty) and set-
intersection queries [7,21], the following problem has eluded a lower bound.

Definition 5. Let S1,S2, . . . be a collection of sets of total cardinality n, The
Set Emptiness Problem (SEP) is defined as follows.
Preprocess the collection of sets such that the following queries can be answered
efficiently.
Query: A set emptiness query (i, j) asks “Is Si ∩ Sj empty ?”.

The best known data structure for answering such queries takes O(n) space
and O(

√
n/w) query time, where w is the word size [4]1. We show that the

2-RLCPk problem is at least as hard as the Set Emptiness problem, even for
k = 0

Theorem 8. The Set Emptiness problem can be solved in the same space and
query time complexity as that of the 2-RCLP0 query problem, if the total cardi-
nality of all sets in the first problem is asymptotically equal to the length of the
string S in the second problem.

Proof. Reduce SEP to the 2-RLCP0 problem as follows. Each set Si is written
as a string of all its elements. By concatenating the strings corresponding to all
Si’s, we construct a string S of length n. The substring corresponding to any
Si can be represented as a range [�i, ri]. A data structure over S for 2-RLCP0

query can answer a set emptiness query (i, j) as follows: return yes, iff 2-RLCP0

on S with input ranges [�i, ri] and [�j , rj ] returns 0. �

As we have seen, the best known linear space result of set emptiness query
requires O(

√
n/w) time, therefore it is unlikely that there exists an O(n)-space

data structure for 2-RLCP0 queries that yields a o(
√

m/w) query time. Conse-
quently, we conclude that the query time in the result in Theorem 6 is likely to
be optimal within an O(logε n) factor.

1 Cohen and Porat achieve space O(n) words and time O(
√

n), but one can easily
reduce the time to O(

√
n/w).
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Abstract. We present a machine learning algorithm to predict how dif-
ficult is a word for a person with dyslexia. To train the algorithm we used
a data set of words labeled as easy or difficult. The algorithm predicts
correctly slightly above 72% of our instances, showing the feasibility of
building such a predictive solution for this problem. The main purpose
of our work is to be able to weight words in order to perform lexical
simplification in texts read by people with dyslexia. Since the main fea-
ture used by the classifier, and the only that is not computed in constant
time, is the number of similar words in a dictionary, we did a study on
the different methods that exist to compute efficiently this feature. This
algorithmic comparison is interesting on its own sake and shows that two
algorithms can solve the problem in less than a second.

1 Introduction

Text can often be complex and difficult to read, especially for people with cog-
nitive impairments or low literacy skills. The complexity of the word is directly
related to its readability and comprehensibility [20]. Readability refers to the
ease a text can be read; and comprehensibility refers to the ease a text can
be understood. Determining word complexity is crucial for text simplification,
that is, a process that reduces the complexity of both wording and structure
in a sentence, while retaining its meaning. Hence, determining word complexity
automatically can be useful for these target populations to read efficiently, such
as on people with autism [9], Down syndrome [23], dyslexia [21], or aphasia [3].

For the reasons above, in this paper we focus on studying the feasibility of
predicting through machine learning if a word is difficult for a person that has
dyslexia. For instance, people with dyslexia read significantly faster when the
text contains more frequent or shorter words [13]. As with other learning dis-
abilities, dyslexia is a lifelong challenge that people are born with. This language
processing disorder can hinder reading and writing. Dyslexia occurs among peo-
ple of all economic and ethnic backgrounds and is estimated that 10% of the
world population have it.

In this paper we show that we can predict complex words with over 72%
accuracy by using machine learning and a small set of features. The main feature
is the number of words in a dictionary at distance one. As this was the only
c© Springer International Publishing Switzerland 2015
C. Iliopoulos et al. (Eds.): SPIRE 2015, LNCS 9309, pp. 362–373, 2015.
DOI: 10.1007/978-3-319-23826-5 34
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feature that took non constant time to compute, we compared four different
algorithms, finding out that a particular case of [11] and a variation of [12] were
the best choices, although only the former achieves constant time search with
respect to the dictionary size.

The rest of this paper is structured as follows. Section 2 gives the background
for our problem. In Section 3 we give the machine learning solution and the
analysis of it. Then, in Section 4 we present the algorithms that we considered
to compute all similar words and the experimental comparison. We end with
some conclusions in Section 5.

2 Background

Word complexity depends on various factors such as its length, frequency or and
semantic ambiguity [20]. Traditional methods to address text complexity relay
in length number of letter such as the Flesch Reading Ease [10] or the Coleman-
Liau index [6]. More recently, readability measures have included other type
of word complexity features. These can take into consideration lexico-semantic
features, such as lexical richness [16]; or psycholinguistics-based lexical features,
such as word concreteness [24]. However, these word complexity measures are
not enough for people with dyslexia because this target group present difficulties
with different kind of words. People with dyslexia have difficulties in recognizing
words that are phonetically and orthographically similar [8,25]. Hence, word
complexity measures that take into account features such as word similarity (or
string similarity), such as Colthearts orthographic neighborhood size metric [7],
could be useful to rank word complexity using machine learning.

Regarding finding similar words, to formalize the problem let us consider the
following notation:
1. Let Σ be a finite alphabet and Σ∗ all the possible words generated by this

alphabet. We use |Σ| to denote the size of the alphabet.
2. Let D ⊆ Σ∗ be a set of words that conform the dictionary.
3. Let P ⊆ Σ∗ be a set of words called the patterns.
4. Let k ∈ N ∪ {0} be the maximum number of errors (distance) allowed.
5. Let d : Σ∗ × Σ∗ → N ∪ {0} be a distance function.

Now we can define our problem as finding all the words t ∈ D such that d(p, t) ≤
k for p ∈ P . In our case P is the set of words labeled as difficult or easy and
D is the dictionary of all possible words. The main approaches to this problem,
called Multiple Pattern Approximate String Matching, are surveyed in Navarro
[17] and Navarro et al. [18].

3 A Machine Learning Solution

3.1 Dataset

Our dataset consisted in 995 Spanish words, 666 of them labeled as difficult words
and 329 as easy. This dataset is small as it requires to convince several dyslexic vol-
unteers to contribute with texts and then that an expert does a subjective assess-
ment of the difficulty level. Nevertheless, the dataset is large enough for the goal of
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Table 1. List of initial features.

Name Description

d1 How many words there are in a dictionary that are at dis-
tance 1 or less of the featured word.

d2 How many words there are in a dictionary that are at dis-
tance 2 or less of the featured word.

vowels How many vowels has the word.

has accent Binary feature. Does any character of the word have an
accent?

[h], [y], [b,v], [b,d], [r,s,l], How many of the characters in brackets does the word have
[m,n,], [s,z,ce,ci,x], for each class? (eight features)
[ca,co,cu,q,k]

[gu], [j,ge,gi], [rr,ll], How many of the strings in brackets does the word have
[ctr, str, sfr, scr, spl, for each class? (four features)
xpl, xpr, xtr, nsp]

word length How many characters does the word have.

vowel ratio Number of vowels divided by word length.

three consonants Binary feature. Does the word have three consecutive con-
sonants?

two vowels Does the word have two vowels in a row?

has [x] Binary feature. Does the word have an ’x’?

alternate Binary feature. Do the characters in the word alternate
between consonants and vowels or not? For example this
feature would be true for vowel and false for consonant.

has [h] Binary feature. Does the word have an ’h’?

has double letter Binary feature. Does the word have two consecutive letters
equal like for example ”ll” or ”rr”?

webhits How many results does Yahoo search return for this word.

has [o] and [u] Binary feature. Does this word have both and ’o’ and a ’u’?

has [ua] Binary feature. Do the characters ’u’ and ’a’ appear con-
secutively in this word?

this study that was to prove that it was possible to predict word difficulty. If feasi-
ble, more resources can be invested to label a larger set of words. On the other hand,
this is the largest dataset of its kind1 and has been described and analyzed in [22].

3.2 Feature Selection

The set of initial features are given in Table 1, where the letters in brackets
are phonologically and orthographically similar, as they are potentially more
challenging for people with dyslexia, plus some characteristics of words. These
features are based on our analysis of the dataset [22].

First of all we did some internal testing to discard or tune the features above.
A big part of them turned out to be irrelevant to our problem according to our
experiments. We consider relevant to stress here that during our internal testing
1 http://grupoweb.upf.es/WRG/resources/DysWebxia/DysList resource.csv.gz

http://grupoweb.upf.es/WRG/resources/DysWebxia/DysList_resource.csv.gz
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Table 2. Most correlated features.

Feature pair(s) Corr. Feature pair Corr.

([h], has h) 0.993 ([m,n,], length) 0.366
(d1,d2) 0.949 ([r,s,l], [rr, ll]) 0.360
([rr, ll], has double letter) 0.908 ([r,s,l], has double letter) 0.345
(vowels, word length) 0.902 (vowels, [r,s,l]) 0.315
([ctr, str, ..], three consonants) 0.716 (vowels, [m,n,]) 0.309
(d2, alternate) 0.524 ([ca,co,cu,q,k], two vowels) 0.305
(vowel percentage, two vowels) 0.512 (d2, [r,s,l]) -0.302
([r,s,l], length) 0.504 (vowels, alternate) -0.377
(vowels, two vowels) 0.469 ([r,s,l], vowel percentage) -0.381
(d1,alternate), ([s,z,ce,ci,x], length) 0.466 (d1,vowels) -0.545
([b,v],[b,d]) 0.465 (d2,vowels) -0.600
([s,z,ce,ci,x], [r,s,l]) 0.461 (d1,word length) -0.602
(vowels, [s,z,ce,ci,x]) 0.393 (d2,word length) -0.661

Table 3. New binary features.

Name Description

[y] > 0 There is any of the characters in brackets in the word?

[b,v] > 1 There is more than 1 of the characters in brackets in the word?

[ge, gi, j] > 0 There is any of the strings in brackets in the word?

[ca,co,cu,q,k] > 0 There is any of the strings in brackets in the word?

[gu] > 0 There is any of the strings in brackets in the word?

we realized that the correlation between the approximate search attributes (d1,
d2) and the easy or difficult labels were working in a different way as we initially
expected. We thought that a word might be more difficult if there were a lot of
words similar to it and easier otherwise. However it turned out to be the other
way around. Our guess here is that difficult words tend to be larger and due to
the nature of the language, larger words tend to have less neighbors at distance
1 or 2, because we have less long words than short words [14].

Afterwards, in order to shrink this set we computed the correlation matrix of
the remaining features to discard those that were not adding information. Table
2 summarizes the most important values of the correlation matrix. We considered
that the correlation between two features was significant if was greater than 0.3
or lower than −0.3. According to this we decided to discard the features d2,
vowels, alternate, [s,z,ce,ci,x], [r,s,l], [m,n,], two vowels, [b,d], [h], [ctr, str, ..] and
[rr,ll]. Based on this analysis, we used the boldfaced features in Table 1 plus the
five revised features shown in Table 3.

3.3 Algorithm and Results

Since most machine learning algorithms are sensible to class unbalance, we had
to do some sampling on our dataset. That is, we built a dataset made of all the
words labeled as easy and as many words labeled as difficult picked at random.
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Table 4. Confusion matrix and performance of the ML algorithm.

Class
Prediction

Difficult Easy Accuracy

Difficult 214 67 0.723
Easy 115 262

Class Recall Precision F-Measure

Difficult 0.762 0.650 0.702

Easy 0.695 0.796 0.742

We also used a standard 10-fold cross-validation as testing method. Since our
dataset is small we aimed for not very complex algorithms that could make the
solution unnecessary sophisticated and thus prone to have overfitting problems.

We tried several approaches and the best result was obtained for Platt’s
sequential minimal optimization (SMO) algorithm for training a support vector
classifier [19]. Indeed, out of 658 instances, 476 were classified correctly giving a
72.34% accuracy. Table 4 gives the complete results and the confusion matrix.
SMO not only classifies the words in the two categories but also gives a value
between 0 and 1 indicating how likely the word is easy/difficult. This is useful
for establishing different degrees of difficulty to perform lexical simplification on
those words that show to be harder.

In Table 5 we present the ranking of our features according to the classical
information gain measure, that evaluates the quality of an attribute by measuring
the information gain with respect to not choosing it. In this table we see that
the ranking position obtained by the features in each of the 10 times we ran
the algorithm (1 means the most important feature and 10 the least important).
Each trial was done in a different test set obtained by sampling our data as
explained earlier. In addition, the last column of the table shows the average
information gain ratio obtained by the feature in 10 trials.

One can see that the first five attributes are more or less stable in the first 5
positions of the ranking while others, like webhits or vowel percentage, are most
of the time mediocre, but for some particular data sets become more relevant.

Also important is the presence of the d1 attribute in top of the ranking list in
all the trials. This, together with the fact that is the only feature that cannot be
obtained in linear time motivated the approximate string matching experimental
comparison of the next section.

4 Finding Similar Words

To measure the similarity between words we use the classical edit distance or
Levenshtein distance [15], that counts the minimum number of insertions, dele-
tions and substitutions required to make two strings equal. This distance can be
easily computed in O(nm) time and space but there are improved algorithms
that can have O(kn/

√|Σ|) average time [4].



Feasibility of Word Difficulty Prediction 367

Table 5. Feature analysis.

Name 1 2 3 4 5 6 7 8 9 10 IG ratio

d1 1 1 1 1 1 1 1 1 1 1 0.144

word length 2 2 2 2 2 2 2 2 2 2 0.100

[ge,gi,j] > 0 3 4 3 3 6 3 4 3 4 4 0.0253

has h 4 3 4 4 4 4 3 5 3 3 0.0248

[y] > 0 5 5 5 5 7 6 5 6 6 5 0.0146

webhits 14 14 14 14 5 5 14 4 5 14 0.00947

[b,v] > 1 6 6 6 9 9 9 12 8 9 7 0.00707

three consonants 8 10 7 6 8 8 6 12 13 8 0.00693

[ca,c0,cu,q,k] > 0 7 11 8 11 11 12 8 7 8 6 0.00628

has ua 10 9 9 10 12 13 7 9 7 9 0.00518

[gu] > 0 12 7 12 7 13 10 9 10 10 11 0.00467

has o and u 9 8 11 8 10 11 10 11 11 13 0.00456

vowel percentage 15 15 15 15 3 15 15 15 15 15 0.00399

has double letter 11 13 10 12 14 7 13 14 14 10 0.00303

has x 13 12 13 13 15 14 11 13 12 12 0.00205

To find similar words we consider the following requirements:
1. Indexed dictionary: As opposed to online search, we assume that our

dictionary of words can be indexed, as this is more efficient if we need to
solve several instances of the problem (large P ).

2. Linearity: We want our structures to be at most linear, both in size and
processing time with respect to the total number of words.

3. Containing the pattern is not enough: As opposed to the sibling prob-
lem of finding all words in the dictionary that after k operations contain the
pattern, we want the words to match exactly the pattern after k operations.

4. Multiple patterns: We want to be able to efficiently find the words in
the dictionary that are similar to a set of patterns. This differentiates our
problem of those that try to find similar words to a single pattern.

4.1 Algorithms

Based on the previous discussion, we consider four different algorithms: a non-
indexed brute force approach as a basic baseline, a multi-pattern search algo-
rithm (partial index), a tree-based metric space search algorithm (full index),
and a trie-based algorithm (full index). Although theoretically there are solu-
tions of O(n logk n) space and O(m + logk n · log log n + #matches) query time
[5], they are still not practical. For example, this solution will need several GB
of space to store just a 10MB word index!

Naive Approach. The naive or brute force approach consists of computing the
distance between each pattern and each word of the text, and for those cases
where the distance is lower than k, output the text word. The complexity is
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obviously O(|P ||D|) distance computations. For this we use two arrays of words,
one containing the patterns and another containing the dictionary.

APATS. Our second technique is the multi pattern approximate string
matching algorithm by Fulwider and Mukherjee [12] called APATS. They apply
bit-parallelism to multi pattern approximate string search and implement and
efficient solution for the case where the pattern is larger than the memory-word
of the machine.

However, the problem solved by APATS is a little bit different from ours in
two aspects. The first one is that they consider that a word of the dictionary is at
distance k from a pattern if with k operations the dictionary word contains the
pattern. So for example, using this metric the words collaboration and soup are
at distance 3 because with three operations you can modify soup to obtain coll
which is contained in collaboration. The second difference is that they consider
the set of patterns as a unity. They output a word from the dictionary as a result
if there is at least a pattern that is at distance k or less from the word, although
they cannot say which is(are) the pattern(s) responsible of that. Despite these
two differences, we consider their solution as an optimistic baseline as can be
easily adapted to our problem.

Burkhard-Keller Tree. The Burkhard-Keller (BK) tree [2] is a tree-based
data structure designed to quickly find near matches between similar objects
in a metric space. In our case the objects are strings and the metric is the
Levenshtein distance.

Consider now that we have a string q and a threshold k and we are interested
on finding strings whose distance from q is less or equal than k. On top of that
suppose we have a test string t at distance d from q. How far from t are the
strings we are looking for? The triangle inequality gives us the answer: they are
in the range [d − k, d + k] from t.

From here, the construction of the BK-Tree is simple. Every node has an
arbitrary number of children, and each edge has a number corresponding to a
possible Levenshtein distance. All the nodes in the subtree labeled with the edge
x are at distance x from the parent node. To build a tree from a set of words,
take any word of the set as the root. Then insert each of the other words one
by one. To insert a word compare it with the root node and obtain the distance
x between the word and the root. If there is no x edge in the root node, create
the subtree having your word as a root. On the other hand, if there is such an
edge, compare your word with the root of the subtree corresponding with the x
edge and proceed recursively.

To query the tree, compute the distance between your term and the root and
recursively query each children numbered between d − k and d + k (inclusive).
If the node you are examining is within d of your search term, return it and
continue the search.
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Although there are other tree-based data structures that are optimized to
reduce the number of distance computations, the potential improvement in our
case is small as the Levenshtein distance is easy to compute.

Trie based NDFA Algorithm. If we represent our dictionary of words in a
trie or digital tree [11], we can find similar words by using a particular case of
efficient searching of regular expressions on a trie by Baeza-Yates and Gonnet
[1]. That is, we simulate the non deterministic finite automata (NDFA) that
finds all possible words at edit distance k to a given query word q over the
trie or equivalently, we simulate the standard dynamic programming algorithm
to compute the edit distance. The algorithm shown below starts traversing all
the children of the root node. If a path exists in the tree where the next letter
coincides with the next letter of our query word, we use it. In addition, we take
any other path paying a penalty of 1 (we subtract one from k). When k becomes
negative in any path, we stop. The algorithm uses the following notation:

1. T [1..i] denotes both the word resulting of following the path from the root to
the actual node (without concatenating the substring stored in that node)
and the actual node itself, and T [i + 1..n] denotes the substring stored in
that node.

2. Similarly, T [1..i + 1] denotes to advance in the tree in one of the children.
Among all the possible children, T [1..i + 1] refers to the successor we are
dealing with in the loop of line 8 (see Algorithm 1). If the node is a compressed
node, i.e., a node with more than one character, we advance in the prefix
inside the node one position. This is why we say that a node has a successor
if either has children or we are not done with the prefix of the node yet.

3. T [i] denotes the i-th character of the string corresponding to the actual node.

Algorithm 1. Find within distance(query[j..n], T[1..i], k)
1: if k < 0 then
2: return
3: end if
4: if T [1..i] is terminal and T [1..i] not visited and d(query[j..n], T [i+1..n]) ≤ k then
5: T [1..i] is visited
6: output T [1..i]
7: end if
8: for all successors of T [1..i] do
9: if query[j] = T[i] then

10: Find within distance(query[j+1..n], T[1..i+1], k)
11: end if
12: Find within distance(query[j+1..n], T[1..i+1], k-1) //substitution
13: Find within distance(query[j..n], T[1..i+1], k-1) //insertion
14: Find within distance(query[j+1..n], T[1..i], k-1) //deletion
15: end for
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Fig. 1. Building time for a lexicographically sorted dictionary.

By a straightforward but tedious proof by induction it can be shown that the
searching cost of this algorithm is in the worst case O((|w|k+1 + k)|Σ|k), that is
O((|w||Σ|)k).

4.2 Experimental Comparison

Now we compare the performance of the algorithms we considered regarding
the time to build the data structure, as well as the time to query the whole set
of patterns. All the experiments shown considers the average of five runs. The
machine used was a 4-core at 3.30 GHz with 4GB of RAM.

We use our own optimized implementations for all the algorithms but
APATS, where we use the code provided by the authors.2

Building Time. We consider three different dictionary sizes: 10,000 words,
100,000 words and 1.2 million words. The results can be seen in Figure 1 and do
not change if we consider a randomly ordered dictionary, as expected.

We can see that the Naive approach and APATS take almost no time to
build their data structures while the Trie requires a few seconds to build the 1.2
million-word index. On the other hand, the BK-Tree is the worst with respect
to scalability.

Querying Time. Figure 2 shows the results of querying 1,000 patterns into
the largest dictionary. We only run experiments for 0, 1, and 2 errors since we
previously found out that the main feature of our machine learning solution was
for 1 error. In addition, in practice having 3 or more errors is quite rare and
adds noise as the proportion of pairs of correct words that are at distance 3 or
more grows fast.

2 The source code can be found in http://www.cs.ucf.edu/∼stephen/pats-apats/

http://www.cs.ucf.edu/~stephen/pats-apats/


Feasibility of Word Difficulty Prediction 371

0 1 2
10−2

100

102

104

106

108

Number of errors

T
im

e
(s
ec
on

ds
)

Naive
Trie
BK

APATS

Fig. 2. Querying time for 1,000 words using a dictionary of 1.2 million words.
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Fig. 3. Querying time for 1,000 words for k = 1 and k = 2 (dashed) using different
dictionary sizes. Naive has the same search time in both cases.

Leaving the naive approach aside, which is clearly unpractical because its pro-
cessing time is several orders of magnitude higher than the other three contestants,
we can see that Trie performs better than BK in all cases except in the exact search
case. This is not surprising because BK has a general purpose being able to per-
form matching and approximate matching in any metric space, not only the one
of strings. Indeed, as we already mentioned, BK tries to minimize the number of
distance computations performed, which is not that relevant for strings as in this
case the distance function is easy to compute (in opposition to other objects such
as images). On the other hand, Trie is an ad hoc method for the case of strings.

With the comparison against APATS, surprisingly enough, the Trie stands
quite well. It is clearly slower when the dictionary is small but as we do exper-
iments with larger dictionaries it improves, specially when looking for words with
at most 2 errors. As we have already explained, the output of the two algorithms is
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different with APATS being less strict in considering when two words are similar.
Nevertheless, Trie is a bit faster to compute d1 in our main dictionary.

In Figure 3 we show how the algorithms behave when searching with k = 1, 2
errors on different dictionary sizes. Here we clearly see how Trie gets closer to
APATS (the optimistic baseline) as the size of the dictionary grows. In fact the
crossing points for k = 1 and k = 2 seems to be around 2 · 106 and 5 · 107,
respectively.

5 Conclusions

We have presented an algorithm to classify words depending on their difficulty
for people with dyslexia. Our algorithm is able to correctly classify more than
70% of the words in our data sets with a precision and recall between 0.65
and 0.8. Hence, we were successful in proving the feasibility of predicting word
difficulty and therefore a larger dataset should be generated.

Added to that, we saw that the number of words at distance 1 was the most
important feature in our solution. Since the feature is not linear and computing
it is quite expensive, we did some research on fast algorithms to perform this
task. As a result of the study we concluded that Trie is a very solid method
being very fast in both, building and processing time.

Future work should study the use of our work to weight words in order to
perform lexical simplification in texts read by people with dyslexia. This could
facilitate their reading by modifying the most difficult words. This not only
improves readability for people with dyslexia, but also for all people.

Moreover, it would be natural to explore the possibility of weighting the edit
distance when looking for the d1 feature. For example, a missing h in a word
might be less important than confusing an o with a u. Also related with the d1
feature, it would be interesting to analyze what happens if we consider another
string metric, for example, the DamerauLevenshtein distance that considers a
transposition of two adjacent characters as a single error. Obviously, this requires
to adapt Trie to this method adding a fourth recursive call in our procedure.
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