Monitoring Electronic Exams

Ali Kassem!® | Ylies Falcone?, and Pascal Lafourcade®

! Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
Ali.Kassem@imag.fr
2 Univ. Grenoble Alpes, Inria, LIG, F-38000 Grenoble, France
Ylies.Falcone@imag.fr
3 Clermont Univ., Univ. d’Auvergne, LIMOS, Clermont-Ferrand, France
Pascal.Lafourcade@Qudamail.fr

Abstract. Universities and other educational organizations are adopt-
ing computer-based assessment tools (herein called e-exams) to reach
larger and ubiquitous audiences. While this makes examination tests
more accessible, it exposes them to unprecedented threats not only from
candidates but also from authorities, which organize exams and deliver
marks. Thus, e-exams must be checked to detect potential irregularities.
In this paper, we propose several monitors, expressed as Quantified Event
Automata (QEA), to monitor the main properties of e-exams. Then, we
implement the monitors using MarQ, a recent Java tool designed to sup-
port QEAs. Finally, we apply our monitors to logged data from real
e-exams conducted by Université Joseph Fourier at pharmacy faculty,
as a part of Epreuves Classantes Nationales informatisées, a pioneering
project which aims to realize all french medicine exams electronically by
2016. Our monitors found discrepancies between the specification and
the implementation.

1 Introduction

Electronic exams, also known as e-exams, are computer-based systems employed
to assess the skills, or the knowledge of candidates. Running e-exams promises
to be easier than running traditional pencil-and-paper exams, and cheaper on
the long term. E-exams are deployed easily, and they are flexible in where and
when exams can be set; their test sessions are open to a very large public of
candidates and, if the implementation allows automatic marking, their results
are immediately available.

We do not want to argue about the actual benefits of e-exams in promot-
ing and supporting education, but as a matter of facts, their use has consid-
erably raised (and will likely continue to raise). Nowadays, several universities,
such as MIT, Stanford, and Berkeley, just to cite a few, have began to offer
university courses remotely using the Massive Open Online Course platforms
(e.g., Coursera! and edX?) which offer e-exams. Even in a less ambitious and

! Www.coursera.org.
2 www.edx.org.
© Springer International Publishing Switzerland 2015

E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 118-135, 2015.
DOI: 10.1007/978-3-319-23820-3_8

www.coursera.org
www.edx.org

Monitoring Electronic Exams 119

more traditional setting, universities start adopting e-exams to replace tradi-
tional exams, especially in the case of multiple-choice questions and short open
answers. For example, pharmacy exams at Université Joseph Fourier (UJF) have
been organized electronically using tablet computers since 2014 [1]. Since several
french medicine exams are multiple-choice tests, the French government plans
to realize all medicine exams electronically by 2016.% Other institutions, such as
ETS*, CISCO?, and Microsoft®, have for long already adopted their own plat-
forms to run, generally in qualified centers, electronic tests required to obtain
their program certificates.

This migration towards information technology is changing considerably the
proceeding of exams, but the approach in coping with their security still focuses
only on preventing candidates from cheating with invigilated tests. Wherever it
is not possible to have human invigilators, a software running on the student
computer is used, e.g., ProctorU”. However, such measures are insufficient, as
the trustworthiness and the reliability of exams are today threatened not only
by candidates. Indeed, threats and errors may come from the use of information
technology, as well as, from bribed examiners and dishonest exam authorities
which are willing to tamper with exams as recent scandals have shown. For
example, in the Atlanta scandal, school authorities colluded in changing student
marks to improve their institution’s rankings and get more public funds [2]. The
BBC revealed another scandal where ETS was shown to be vulnerable to a fraud
perpetrated by official invigilators in collusion with the candidates who were
there to get their visas: the invigilators dictated the correct answers during the
test [3].

To address these problems, e-exams must be checked for the presence/absence
of irregularities and provide evidence about the fairness and the correctness of
their grading procedures. Assumptions on the honesty of authorities are not jus-
tifiable anymore. Verification should be welcomed by authorities since verifying
e-exams provides transparency and then public trust. E-exams offer the possi-
bility to have extensive data logs, which can provide grounds for the verification
and checking process, however, the requirements to be satisfied by e-exams have
to be clearly defined and formalized before.

Contributions. To the best of our knowledge, this paper proposes the
first formalization of e-exams properties, using Quantified Event Automata
(QEASs) [4,5], and their off-line runtime verification on actual logs. Our con-
tributions are as follows. First, we define an event-based model of e-exams that
is suitable for monitoring purposes. Moreover, we formalize eight fundamental
properties as QEAs: no unregistered candidate try to participate in the exam by
submitting an answer; answers are accepted only from registered candidates; all

3 The project is called E‘preuves Classantes Nationales informatisées, see www.
side-sante.org.

www.etsglobal.org.

WWW.cisco.com.

www.microsoft.com/learning/en-us/default.aspx.

WWWw.proctoru.com.

4

N O«

www.side-sante.org
www.side-sante.org
www.etsglobal.org
www.cisco.com
www.microsoft.com/learning/en-us/default.aspx
www.proctoru.com

120 A. Kassem et al.

accepted answers are submitted by candidates, and for each question at most
one answer is accepted per candidate; all candidates answer the questions in the
required order; answers are accepted only during the examination time; another
variant of the latter that offers flexibility in the beginning and the duration of
the exam; all answers are marked correctly; and the correct mark is assigned to
each candidate. Our formalization also allows us for some properties to detect the
cause of the potential failures and the party responsible for them. Note, formaliz-
ing the above properties entailed to add features to QEAs. Then, we implement
the monitors using MarQ® [6], a Java tool designed to support QEA specifi-
cation language. Finally, we perform off-line monitoring, based on the avail-
able data logs, for an e-exam organized by UJF; and reveal both students that
violate the requirements, and discrepancies between the specification and the
implementation.

Outline. In Sect. 2, we define the events and a protocol for e-exams. We spec-
ify the properties and propose the corresponding monitors in Sect. 3. Then, in
Sect. 4, we analyze two actual e-exams organized by UJF. We discuss related
work in Sect. 5. Finally, we conclude in Sect. 6. An extended version of this
paper is available as [7].

2 An Event-Based Model of E-exams

We define an e-exzam execution (or e-exam run) by a finite sequence of events,
called trace. Such event-based modelling of e-exam runs is appropriate for moni-
toring actual events of the system. In this section, we specify the parties and the
phases involved in e-exams. Then, we define the events related to an e-exam run.
Note, the e-exam model introduced in this section refines the one proposed in [8].

2.1 Overview of an E-exam Protocol

An exam involves at least two roles: the candidate and the exam authority. An
exam authority can have several sub-roles: the registrar registers candidates; the
question committee prepares the questions; the invigilator supervises the exam,
collects the answers, and dispatches them for marking; the examiner corrects
the answers and marks them; the notification committee delivers the marking.
Generally, exams run in four phases: (1) Registration, when the exam is set up
and candidates enrol; (2) Ezamination, when candidates answer the questions,
submit them to the authority, and have them officially accepted; (3) Marking,
when the answers are marked; (4) Notification, when the grades are notified to
the candidates. Usually, each phase ends before the next one begins.

2.2 Events Involved in an E-exam
Events flag important steps in the execution of the exam. We consider parametric
events of the form e(py,...,p,), where e is the event name, and p;,...,p, is

8 www.github.com/selig/qea.

www.github.com/selig/qea

Monitoring Electronic Exams 121

the list of symbolic parameters that take some data values at runtime. We define
the following events that are assumed to be recorded during the exam or built
from data logs.

— Event register(i) is emitted when candidate i registers to the exam.

— Event get(i, q) is emitted when candidate 7 gets question gq.

— Event change(i, g, a) is emitted when candidate i changes on his computer the
answer field of question ¢ to a.

— Event submit (i, g, a) is emitted when candidate i submits answer a to question q.

— Event accept(i, ¢, a) is emitted when the exam authority receives and accepts
answer a to question ¢ from candidate i.

— Event corrAns(q, a) is emitted when the authority specifies a as a correct
answer to question ¢. Note that more than one answer can be correct for a
given question.

— Event marked(i, q, a,b) is emitted when the answer a from candidate ¢ to
question ¢ is scored with b. In our properties we assume that the score b
ranges over {0,1} (1 for correct answer and 0 for wrong answer), however
other scores can be considered.

— Event assign(i, m) is emitted when mark m is assigned to candidate i. We
assume that the mark of a candidate is the sum of all the scores assigned to his
answers. However, more complex functions can be considered (e.g., weighted
scores).

— Event begin(i) is emitted when candidate i begins the examination phase.

— Event end(7) is emitted when candidate ¢ ends the examination phase. The
candidate terminates the exam himself, e.g., after answering all questions
before the end of the exam duration.

In general, all events are time stamped, however we parameterize them with
time only when it is relevant for the considered property. Moreover, we may omit
some parameters from the events when they are not relevant to the property. For
instance, we may use submit(i) when candidate ¢ submits an answer regardless
of his answer. We also use marked(q, a, b) instead of marked(i, q, a, b) to capture
anonymous marking.

3 Properties of E-exams

In this section, we define eight properties that aim at ensuring e-exams correct-
ness. They mainly ensure that only registered candidates can take the exam,
all accepted answers are submitted by the candidates, all answers are accepted
during the exam duration, and all marks are correctly computed and assigned
to the corresponding candidates. Note that in case of failure, two of the proper-
ties report all the individuals that violate the requirement of the property. This
notion of reporting can be applied to all other properties (see [7]).

Each property represents a different e-exam requirement and can be moni-
tored independently. An exam run may satisfy one property and fail on another
one, which narrows the possible source of potential failures and allows us to
deliver a detailed report about the satisfied and unsatisfied properties.

122 A. Kassem et al.

Quantified Event Automata (QEAs). We express properties as QEAs [4,5].
We present QEAs at an abstract level using intuitive terminology and refer to [4]
for a formal presentation. A QEA consists of a list of quantified variables together
with an event automaton. An event automaton is a finite-state machine with
transitions labeled by parametric events, where parameters are instantiated with
data-values at runtime. Transitions may also include guards and assignments to
variables. Note, not all variables need to be quantified. Unquantified variables
are left free, and they can be manipulated through assignments and updated
during the processing of the trace. Moreover, new free variables can be introduced
while processing the trace. We extend the initial definition of QEAs in [4] by
(i) allowing variable declaration and initialization before reading the trace, and
(ii) introducing the notion of global variable shared among all event automaton
instances. Note, we use global variables in our case study presented in Sect. 4.2
and in the extended version of this paper. Global variables are mainly needed in
QEAs to keep track and report data at the end of monitoring. Such QEAs may
also require some manipulation of the quantified variables which is not currently
supported by MarQ. Thus, we could not implement them and hence omitted
them from the paper. The shaded states are final (accepting) states, while white
states are failure states. Square states are closed to failure, i.e., if no transition
can be taken, then there is a transition to an implicit failure state. Circular states

are closed to self (skip) states, i.e., if no transition can be taken, then there is an
implicit self-looping transition. We use the notation % to write guards
and assignments on transitions: := for variable declaration then assignment, :=
for assignment, and = for equality test. A QEA formally defines a language (i.e.,

a set of traces) over instantiated parametric events.

Correct Exam run. An exam run satisfies a property if the resulting trace is
accepted by the corresponding QEA. A correct exam run satisfies all the proper-
ties. We assume that an input trace contains events related to a single exam run.
To reason about traces with events from more than one exam run, the events
have to be parameterized with an exam run identifier, which has to be added to
the list of quantified variables.

Candidate Registration. The first property is Candidate Registration, which
states that only already registered candidates can submit answers to the exam.
An exam run satisfies Candidate Registration if, for every candidate i, event
submit (i) is preceded by event register(i). A violation of Candidate Registration
does not reveal a weakness in the exam system (as long as the answers submitted
from unregistered candidates are not accepted by the authority). However, it
allows us to detect if a candidate tries to fake the system, which is helpful to be
aware of spoofing attacks.

Definition 1. (Candidate Registration). Property Candidate Registration
is defined by the QFEA depicted in Fig. 1 with alphabet Ycr = {register(i),
submit(i)}.

The input alphabet Ycr for Candidate Registration contains only the events
register(i) and submit(i), so any other event in the trace is ignored. The QEA for

Monitoring Electronic Exams 123

Vi Initially: T : = register (1) r=rory
¢1]

l accept(i, q, a) F::A[{i“_’q’a)}
IZI register (i) : @ 2
[i¢1]

register (1) T=I0(i} accept (i, q, a) F=FU{(i,q,a)}

Fig.1. QEA for Candidate Fig. 2. QEA for Candidate Eligibility
Registration

Candidate Registration has two accepting states, and one quantified variable .
Note, the empty trace is accepted by the QEA. State (1) is a square state, so an
event submit(i) that is not preceded by event register(i) leads to a failure. An
event register(i) in state (1) leads to state (2) which is a skipping (circular) state,
so after event register(i) any sequence of events is accepted. The quantification
V7 means that the property must hold for all values that ¢ takes in the trace, i.e.,
the values obtained when matching the symbolic events in the specification with
concrete events in the trace. For instance, let us consider the following trace:
register (i).submit(ig).submit(i;).register(ig). To decide whether it is accepted
or not, the trace is sliced based on the values that can match i, resulting in the
two slices: i +— iy: register(iy).submit(iy), and i — ig: submit(ig).register(iz).

Then, each slice is checked against the event automata instantiated with the
appropriate values for i. The slice associated to i1 is accepted as it reaches the
final state (2), while the slice associated to i2 does not reach a final state since
event submit(ig) leads from state (1) to an implicit failure state. Therefore, the
whole trace is not accepted by the QEA. Note, we omit parameters ¢ and a from
event submit(i, g, a) since only the fact that a candidate ¢ submits an answer is
significant for the property, regardless of the question he is answering, and the
answer he submitted.

Candidate Eligibility. Property Candidate Eligibility states that no answer is
accepted from an unregistered candidate. Candidate Eligibility can be modeled
by a QEA similar to that of Candidate Registration depicted in Fig.1, except
that event submit(i, g, a) has to be replaced by accept(i,q,a) in the related
alphabet. However, we formalize Candidate Eligibility in a way that, in addition
to checking the main requirement, it reports all the candidates that violate
the requirement, i.e., those that are unregistered but some answers are accepted
from them. Note, Candidate Registration can also modeled similarly by replacing
accept(i, q, a) with submit(i, q, a).

Definition 2. (Candidate Eligibility). Property Candidate Eligibility is
defined by the QEA depicted in Fig. 2 with alphabet Ycg = {register(i),
accept(i, q,a)}.

The QEA of Candidate Eligibility has three free variables I, F, and 4, and no
quantified variables. Instead of being instantiated for each candidate i, the

124 A. Kassem et al.

QEA of Candidate FEligibility collects all the registered candidates in set I,
so that any occurrence of event accept(i,q,a) at state (1) with ¢ ¢ I fires
a transition to the failure state (2). Such a transition results in the failure
of the property since all transitions from state (2) are self-looping transi-
tions. Set F' is used to collect all the unregistered candidates that submit-
ted an answer. Note, variable I is pre-declared and initialized to @. Trace
register (i).accept(iz, qp, ag).accept(iy, qo, az).register(ig) is not accepted by
Candidate Eligibility, and results in F' = {(ig, go, a2)}. Note, reporting the can-
didates that violates the requirements requires to monitor until the end of the
trace.

Answer Authentication. Property Answer Authentication states that all
accepted answers are submitted by candidates. Moreover, for every question,
exactly one answer is accepted from each candidate that submitted at least one
answer to that question.

Definition 3. (Answer Authentication). Property Answer Authentica-
tion is defined by the QEA depicted in Fig. 3 with alphabet Xapn =
{submit(i, q, a), accept(i, q, a)}.

The QEA of Answer Authentication fails if an unsubmitted answer is accepted.
A candidate can submit more than one answer to the same question, but exactly
one answer has to be accepted. Note, any answer among the submitted answers
can be accepted. However, the QEA can be updated to allow only the acceptance
of the last submitted answers by replacing set A with a variable, which acts as
a placeholder for the last submitted answer. If no answer is accepted after at
least one answer has been submitted, the QEA ends in the failure state (2), while
acceptance of an answer leads to the accepting state (3). A candidate can submit
after having accepted an answer from him to that question. However, if more than
one answer is accepted, an implicit transition from state (3) to a failure state is
fired. Trace submit(iys, qo, a;).submit(is, qp, az).accept(is, qo, ag) — where candi-
date i; submits two answers a; and ag to question gy, then only az is accepted —
is accepted by Answer Authentication. While the traces accept(is, g, a), where an
unsubmitted answer is accepted from i;, and submit(is, q, a;). submit(is, q, az).
accept(iy, q,a;).accept(iy, ¢, ag), where two answers to the same question are
accepted from same candidate, are not accepted.

Answer Authentication can be further split into three different properties
which allow us to precisely know whether, for a certain question, an unsubmit-
ted answer is accepted, no answer is accepted from a candidate that submitted

Vi,Yq submit (i, q, a) T=ATTaT

submit (i, q, a) mra—‘accept(i,) [acA]
)

submit (1, q, a

Fig. 3. QEA for Answer Authentication

Monitoring Electronic Exams 125

an answer, or more than one answer is accepted from the same candidate. For
instance, updating the QEA depicted in Fig.3 by getting rid of state (3), con-
verting state (2) into an accepting state, and adding a self loop transition on
state (2) labeled by accept(i, g, a) [9€A] Lesults in a QEA that fails only when
an unsubmitted answer is accepted (see [7] for more details).

Question Ordering. The previous properties formalize the main requirements
that are usually needed concerning answer submission and acceptance. How-
ever, additional requirements might be needed. For example, candidates may be
required to answer questions in a certain order: a candidate should not get a
question before validating his answer to the previous question. This is ensured
by Question Ordering.

Definition 4. (Question Ordering). Let q4,...,q, be n questions such that
the order ord(qy) of qi is k. Property Question Ordering is defined by the QEA
depicted in Fig. 4 with alphabet Xqo = {get(i, q), accept(i, q)}.

Vi, Initially ¢ : =1 get(i, q) [ord(g)<(]
accept(i, q) %

get (i, q) Lrta=d

) [ord(g)<c]

get(i, q

Fig. 4. QEA for Question Ordering

The QEA of Question Ordering fails if a candidate gets (or an answer is accepted
from him for) a higher order question before his answer to the current question
is accepted. Note, Question Ordering also allows only one accepted answer per
question. Otherwise, there is no meaning for the order as the candidate can re-
submit answers latter when he gets all the questions.

Exam availability. An e-exam must allow candidates to take the exam only
during the examination phase. FExam Awvailability states that questions are
obtained, and answers are submitted and accepted only during the examina-
tion time.

Definition 5. (Exam Availability). Let to be the starting instant, and t;
be the ending instant of the exam. Property Exam Availability is defined
by the QEA depicted in Fig.5 with alphabet Ygp = {get(i,t), change(i,t),
submit(i, t), accept(i, t)}.

The QEA of Exam Awailability checks that all the events in Y'ga are emitted
between ty and t;. It also collects all the candidates that violates the require-
ments in a set F. Note, any other event can be added to Xga if required.

126 A. Kassem et al.

eali t) Zrir || Vi accept (i, 1) [B=ISA i)
. [to>tVvi>ts] .. <t<ts .
é EEA(Z7 t) 4”F::‘{i}7/ 6 é begm(z, t) [tft;%fttz] Iﬂ_l end(z)
1 2 1 | 2 | I 3 |
Fig. 5. QEA for Exam Availability Fig. 6. QEA for Exam Awvailability with
Flexibility

Exam availability with flexibility. Some exams offer flexibility to the can-
didates, so that a candidate is free to choose the beginning time within a cer-
tain specified period. To capture that, we define Exam Availability with Flexibility
which states that no answer can be accepted from a candidate before he begins the
exam, after he terminates the exam, after the end of his exam duration, or after
the end of the specified period. The beginning time of the exam may differ from
one candidate to another, but in any case it has to be within a certain specified
period. The exam duration may also differ between candidates. For example, an
extended duration may be offered to certain candidates with disabilities.

Definition 6. (Exam Availability With Flexibility). Let t; and ty respec-
tively be the starting and the ending time instants of the allowed period, and
let dur(i) be the exam duration for candidate i. Property Exam Availabil-
ity with Flexibility is defined by the QEA depicted in Fig. 6 with alphabet
YA = {begin(i, t), end (1), accept(i, t)}.

Ezxam Availability with Flexibility also requires that, for each candidate 1,
there is only one event begin(i,t) per exam. Hence, it fails if event begin ()
is emitted more than once. A candidate can begin his exam at any time
t, such that ¢; <, < t,. Note, no answer can be accepted from a candi-
date after then ending time ¢y of the period, if the duration of the candi-
date is not finished yet. Assume that ¢; = 0, tz = 1,000, dur(i;) = 90,
and dur(iz) = 60. Then, trace begin(is, 0).accept(is, 24).begin(iz, 26).accept
(ig, 62).accept(is, 90) is accepted. While, trace accept(is, 5).begin (i;,20) and
trace begin (i, 0).accept(iz, 91) are not accepted since in the first one an answer
is accepted from candidate i; before he begins the exam, and in the second one
an answer is accepted after the exam duration expires.

Event submit is not included
in Yga, thus an answer sub-

corrAns(¢, @) z=a07ay

. . . b=1 A
mission outside the exam time marked(q, a,b) [e=tosed)]
is not considered as an irreg- 2
ularity if the answer is not
[b=1<acA]

accepted by the authority. How- marked(q, a,b)
ever, again other events (e.g.,
get and submit) can be consid-
ered. In such a case, the QEA in Fig. 7. QEA for Marking Correctness

Fig. 6 has to be edited by looping over state (2) with any added event.

Vg, A : =0

Monitoring Electronic Exams 127

Marking correctness. The last two properties state that each candidate should
get the correct mark, the one computed correctly from his answers. Marking
Correctness states that all answers are marked correctly. In the QEA of Marking
Correctness, the correct answers for the considered question are collected in a
set A (self loop over state (1)).

Definition 7. (Marking Correctness). Property Marking Correctness is
defined by the QEA depicted in Fig. 7 with alphabet Xyvic = {corrdAns(q, a),
marked}(q, a, b)}.

In state (1), once an answer to the considered question is marked correctly, a
transition to state (3) is fired, otherwise if an answer is marked in a wrong way
a transition to an implicit failure state occurs. In state (3), the property fails
either if an answer is marked in a wrong way, or if an event corrAns(q,a) is
encountered as this means that certain answers are marked before all the cor-
rect answers are set.

Mark integrity. Property Mark Integrity states that all accepted answers are
marked, and that exactly one mark is assigned to each candidate, the one
attributed to his answers. Mark Integrity together with Marking Correctness,
guarantee that each candidate participated in the exam gets the correct mark
corresponding to his answers. The QEA of Mark Integrity collects, for each can-
didate, the submitted answers in a set A.

Definition 8. (Mark Integrity). Property Mark Integrity is defined by the
QFA depicted in Fig. 8 with alphabet X\1 = {accept(i, q, a), marked(q, a, b),
assign(i, m)}.

For each accepted answer, the QEA accumulates the corresponding score b
in the sum s. If the accepted answers are not marked, the property fails (failure
state (2)). If the candidate is not assigned a mark or assigned a wrong mark the
property fails (failure state (3)). Once the the correct mark is assigned to the
candidate, if another mark is assigned or any other answer is accepted from him,
the property fails (square state (4)).

4 Case Study: UJF E-exam

In June 2014, the pharmacy faculty at UJF organized a first e-exam, as a part
of Epreuves Classantes Nationales informatisées project which aims to realize
all medicine exams electronically by 2016. The project is lead by UJF and the
e-exam software is developed by the company THEIA? specialized in e-formation
platforms. This software is currently used by 39 french universities. Since then,
1,047 e-exams have been organized and 147,686 students have used the e-exam
software.

9 www.theia.fr.

www.theia.fr

128 A. Kassem et al.

marked(q, a, b) accept(i, q, a) A=AU{(q,a)}

accept (i, q, a) =rrav
4'%} {(q,a)} 9

marked(q, a, b) g,0)24]

,a)EA
marked(q, a, b) A::A[\(g(q?f)}g =3

assign(i, m)
%}

[m=sANA=0]

)

marked(q, a, b) marked(q, a, b) (&-2EA
accept(i, q, a) T=ATT@ D)}
. ,a)EA
Vi ma’rked(qa a, b) A::A\EL((qq/,(z))e};]s::erb

Fig. 8. QEA for Mark Integrity

We validate our framework by verifying two real e-exams passed with this
system. All the logs received from the e-exam organizer are anonymized; never-
theless we were not authorized to disclose them. We use MarQ'° [6] (Monitoring
At Runtime with QEA) to model the QEAs and perform the verification. We
provide a description for this system that we call UJF e-exzam'!, then we present
the results of our analysis.

4.1 Exam Description

Registration. The candidates have to register two weeks before the examina-
tion time. Each candidate receives a username/password to authenticate at the
examination.

Examination. The exam takes place in a supervised room. Each student han-
dled a previously-calibrated tablet to pass the exam. The internet access is con-
trolled: only IP addresses within an certain range are allowed to access the exam
server. A candidate starts by logging in using his username/password. Then, he
chooses one of the available exams by entering the exam code, which is provided
at the examination time by the invigilator supervising the room. Once the cor-
rect code is entered, the exam starts and the first question is displayed. The
pedagogical exam conditions mention that the candidates have to answer the

10 https://github.com/selig/qea.

' We have also designed an event-based behavioral model of the e-exam phases that
is not reported in this paper for space reasons. The description was obtained and
validated through discussions with the engineers at THEIA.

https://github.com/selig/qea

Monitoring Electronic Exams 129

questions in a fixed order and cannot get to the next question before answering
the current one. A candidate can change the answer as many times as he wants
before validating, but once he validates, then he cannot go back and change
any of the previously validated answers. Note, all candidates have to answer
the same questions in the same order. A question might be a one-choice ques-
tion, multiple-choice question, open short-text question, or script-concordance
question.

Marking. After the end of the examination phase, the grading process starts.
For each question, all the answers provided by the candidates are collected.
Then, each answer is evaluated anonymously by an examiner to 0 if it is wrong,
0 < s < 1if it is partially correct, or 1 if it is correct. An example of a partially-
correct answer is when a candidate provides only one of the two correct answers
for a multiple-choice question. The professor specifies the correct answer(s) and
the scores to attribute to correct and partially-correct answers, as well, as the
potential penalty. After evaluating all the provided answers for all questions, the
total mark for each candidate is calculated as the summation of all the scores
attributed to his answers.

Notification. The marks are notified to the candidates. A candidate can consult
his submission, obtain the correct answer and his score for each question.

4.2 Analysis

We analyzed two exams: Exam 1 involves 233 candidates and contains 42 ques-
tions for a duration of 1h35. Exam 2 involves 90 candidates, contains 36 questions
for a duration of 5h20. The resulting traces for these exams are respectively of
size 1.85 MB and 215 KB and contain 40,875 and 4,641 events. The result of
our analysis together with the time required for MarQ to analyze the whole
trace on a standard PC (AMD A10-5745M-Quad-Core 2.1 GHz, 8 GB RAM),
are summed up in Tablel. (v') means satisfied, (x) means not satisfied, and
[1] indicates the number of violations. Only four of the eight general proper-
ties presented in Sect. 3 were compatible with UJF E-exam. We considered five
additional and specific properties for the UJF e-exam.

Property Candidate Registration was satisfied, that is, no unregistered can-
didate submits an answer. Candidate FEligibility is also satisfied. We note that,
in MarQ tool the Candidate Eligibility monitor stops monitoring as soon as a
transition to state (2) is made since there is no path to success from state (2).
Thus, only the first candidate that violates the property is reported. In order to
report all such candidates, we had to add an artificial transition from state (2)
to an accepting state that could never be taken. Then, monitoring after reaching
state (2) remains possible. Moreover, the current implementation of MarQ does
not support sets of tuples. Consequently, we could only collect the identities i
in a set F' instead of the tuples (¢, ¢, a).

Answer Authentication was violated only in Exam 1. We reported the vio-
lation to the e-exam’s developers. The violation actually revealed a discrepancy
between the initial specification and the current features of the e-exam software:

130 A. Kassem et al.

a candidate can submit the same answer several times and this answer remains
accepted. Consequently, an event accept can appear twice but only with the same
answer. To confirm that the failure of Answer Authentication is only due to the
acceptance of a same answer twice, we updated property Answer Authentica-
tion and its QEA presented in Fig. 3 by storing the accepted answer in a variable
a,, and adding a self loop transition on state (3) labeled by accept(i, q, a) la=a]
We refer to this new weaker property as Answer Authentication®, which differs
from Answer Authentication by allowing the acceptance of the same answer
again; but it still forbids the acceptance of a different answer. We found out that
Answer Authentication™ is satisfied, which confirms the claim about the possi-
bility of accepting the same answer twice. After diagnosing the source of failure,
we defined property Answer Authentication Reporting presented in Fig. 9, which
fails if more than one answer (identical or not) is accepted from the same can-
didate to the same question. At the same time, it collects all such candidates
in a set F. Answer Authentication Reporting is defined by the QEA depicted in
Fig. 9 with the input alphabet X'aar = {accept(i, ¢, a)}. The analysis of Answer
Authentication Reporting shows that, for Exam 1, there is only one candidate
such that more than one answer are accepted from him to the same question.
The multiple answers that are accepted for the same question are supposed to
be equal since Answer Authentication® is satisfied. Note that MarQ currently
does not support global variables, so for Answer Authentication Reporting, a set
is required for each question. Note for Exam 1, Answer Authentication required
less monitoring time than Answer Authentication™ and Answer Authentication
Reporting as the monitor for Answer Authentication stops monitoring as soon
as it finds a violation.

Global: F' : =) V ; 4
oba 0vq accept(, @) 71 ié]{ T accept(i, q, a) %
accept(i, q, a =T ;k accept (i, q, a) }Zi?j}
1 2

[1€ A]

accept(i, 4, a) 7=pomy

Fig. 9. QEA for Answer Authentication Reporting

Furthermore, UJF exam has a requirement stating that after acceptance the
writing field is “blocked” and the candidate cannot change it anymore. Actually,
in UJF exam when a candidate writes a potential answer in the writing field the
server stores it directly, and once the candidate validates the question the last
stored answer is accepted. As Answer Authentication shows, several answers can
still be accepted after the first acceptance, then the ability of changing the answer
in the writing field could result in an acceptance of a different answer. For this
purpose, we defined property Answer Editing that states that a candidate cannot

Monitoring Electronic Exams 131

change the answer after acceptance. Answer Editing is defined by the QEA

depicted in Fig. 10 with the input alphabet Xag = {change(i, q), accept(i, ¢, a)}.
Note, we allowed the accep-

tance of the same answer to Vi, Vq

avoid the bug found by Answer

Authentication. Our analysis

showed that Answer Edztmg accept Z q7av)
was violated in Exam 2: at — 2

least one student was able to
change the content of the writ-
ing field after having his answer
accepted.

Concerning Question Ordering the developers did not log anything related
to the event get(i, q). However, we defined Question Ordering* which fails if a
candidate changes the writing field of a future question before an answer for
the current question is accepted. Question Ordering™ is defined by the QEA
depicted in Fig. 11 with the input alphabet Xqor = {change(i, ¢), accept(i, ¢)}.
The idea is that if a candidate changes the answer field of a question, he must
have received the question previously. Moreover, we allow submitting the same
answer twice, and also changing the previous accepted answers to avoid the two
bugs previously found. Note, UJF exam requires the candidate to validate the
question even if he left it blank, thus we also allow acceptance for the current
question before changing its field (self loop above state (2)). The analysis showed
that Question Ordering* was violated in both exams.

[a=a.]

change(i, q) accept(i, q, a)

Fig. 10. QEA for Answer Editing

change(i, q) [O= aceept(i, q) 5= [ord(q)=c]

accept(i, q) 4
accept(i, q) %
1 | 2 |

change (i, q) Lrd@d=<]
) change(i, q) lerdtd=cl change(i, q) terdto=cl
Vi accept(i, q) lerto<d accept (i, q) Lertta=d

Fig.11. QEA for Question Ordering™

Alternatives to Answer Editing and Question Ordering can be defined to
report all the candidates who violate the requirement (see [7]). However, it can-
not be implemented using MarQ as it requires the ability either to manipulate
the quantified variables or to build sets of pairs which are both currently not sup-
ported by MarQ. However, the tool still outputs the first candidate who violates
the property.

Note, the manual check of Question Ordering* showed that some candidates
were able to skip certain questions (after writing an answer) without validating
them, and then validating the following questions.

132 A. Kassem et al.

As we found a violation for Question Ordering*, we defined Acceptance Order
that checks, for each candidate, whether all the accepted answers are accepted
in order, i.e., there should be no answer accepted for a question that is followed
by an accepted answer for a lower order question. Acceptance Order is defined
by the QEA depicted in Fig. 12 with the input alphabet Xao = {accept(i, q, a)}.

Exam Awvailability is also violated in

Exam 2. A candidate was able to change

and submit an answer, which is accepted, accept (i, q) %
after the end of the exam duration. We could

not analyze Ezxam Availability with Flexibil-

ity, since it is not supported by the exam. Vi, c: =1

We also did not consider Marking Correct-
ness, and Mark Integrity properties since the
developers did not log anything concerning
the marking and the notification phase is done by each university and we were
not able to get the logs related to this phase. This shows that universities only
look for cheating candidates, and do not look for internal problems or insider
attacks. We expect the developers of the e-exam software to include logging
features for every phase. Note, we implemented all properties in Mar(Q and vali-
dated them on toy traces as we expect to obtain the actual traces of the marking
phase in the near future.

Fig. 12. QEA for Acceptance Order

Table 1. Results of the off-line monitoring of two e-exams.

Property Exam 1 Exam 2
Result | Time (ms) | Result | Time (ms)

Candidate Registration v 538 v 230
Candidate Eligibility v 517 v 214
Answer Authentication X 310 v 275
Answer Authentication™ v 742 v 223
Answer Authentication Reporting | x[1] | 654 v 265
Answer Editing v 641 X 218
Question Ordering™ X 757 X 389
Acceptance Order v 697 v 294
Ezam Availability v 518 x[1] | 237

5 Related Work and Discussion

To the best of our knowledge, this is the first paper to address the runtime
verification of e-exams. However, a formal framework for checking verifiabil-
ity properties of e-exams based on abstract tests has been proposed by Dreier
et al. in [8]. Note, the proposed tests in [8] need to be instantiated for each exam
depending on its specifications. The authors of [8] have validated their framework

Monitoring Electronic Exams 133

by (i) modeling two exams in the applied m-calculus [9], and then (ii) analyzing
them using ProVerif [10]. More precisely, they proposed a set of individual and
universal properties that allow to verify the correctness of e-exams. The indi-
vidual properties allow the candidate to check himself whether he received the
correct mark that corresponds to his answers. While the universal properties
allow an outsider auditor to check whether only registered candidates partic-
ipate in the exam, all accepted answers are marked correctly, and all marks
are assigned to the corresponding candidates. The universal properties that we
proposed revisit the properties defined in [8]. However, as mentioned before,
this paper is concerned with the monitoring of actual exam executions rather
than operating on the abstract models of the exam specification. Furthermore,
in general, formal verification techniques such as the one in [8] suffer from the
so-called state explosion that may limit the size of systems that can be verified.
Moreover, as formal methods operate on models, they introduce an additional
question concerning the correctness of the abstraction. In contrast, as runtime
verification operates only on the actual event traces, it is less dependent on the
size of the system and, at the same time, does not require as much abstraction.
Our properties can be monitored only by observing the events of trace from an
exam run.

System verification is also addressed in some other related domains e.g., in
auctions [11], and voting [12,13]. Back to e-exams, Dreier et al. also propose
a formal framework, based on m-calculus, to analyze other security properties
such as authentication and privacy [14]. These complementary approaches study
security and not verification, however both aspects are important to develop
such sensitive systems.

All the mentioned related approaches only allow symbolic abstract analysis
of the protocols specifications, mainly looking for potential flaws in the used
cryptographic primitives. What is more, these approaches support neither on-
line nor off-line analysis of the actual logs obtained from system executions.

On the other hand, off-line runtime verification of user-provided specifications
over logs has been addressed in the context of several tools in the runtime verifi-
cation community [15]: Breach for Signal Temporal Logic. RiITHM and StePr for
(variants of) Linear Temporal Logic, LogFire for rule-based systems, and Java-
MOP for various specification formalisms provided as plugins. MarQ [6] is a tool
for monitoring Quantified Event Automata [4,5]. Our choice of using QEA stems
from two reasons. First, QEAs is one of the most expressive specification for-
malism to express monitors. The second reason stems from our interviews of the
engineers who were collaborating with us and responsible for the development of
the e-exam software at UJF. To validate our formalization of the protocol and
the desired properties for e-exams, we presented the existing alternative speci-
fication languages. QEAs turned out to be the specification language that was
most accepted and understood by the engineers. Moreover, MarQ came top in
the 1°¢ international competition on Runtime Verification (2014)'?, showing that
MarQ is one of the most efficient existing monitoring tools for both off-line and

2 http://rv2014.imag.fr/monitoring-competition /results.

http://rv2014.imag.fr/monitoring-competition/results

134 A. Kassem et al.

on-line monitoring. Note, off-line runtime verification was successfully applied to
other case studies, e.g., for monitoring financial transactions with LARVA [16],
and monitoring IT logs with MonPoly [17].

6 Conclusions and Future Work

We define an event-based model for e-exams, and formalize several essential
properties as Quantified Event Automata, enriched with global variables and
pre-initialization. Our model handles e-exams that offer flexible independent
beginning time and/or different exam duration for the candidates. We validate
the properties by analyzing real logs from e-exams at UJF. We perform off-line
verification of certain exam runs using the MarQ tool. We find several discrep-
ancies between the specification and the implementation. Analyzing logs of real
e-exams requires only a few seconds on a regular computer. Due to the lack of
logs about the marking and notification phases, we were not able to analyze all
properties. The UJF E-ezam case study clearly demonstrates that the develop-
ers do not think to log these two phases where there is less interaction with the
candidates. However, we believe that monitoring the marking phase is essential
since a successful attempt from a bribed examiner or a cheating student can be
very effective.

Several avenues for future work are opened by this paper. First, we intend to
analyze more existing e-exams: from other universities and the marking phase of
the pharmacy exams at UJF. We encourage universities and educational institu-
tions to incorporate logging features in their e-exam software. Moreover, we plan
to perform on-line verification during live e-exams, and to study to what extent
runtime enforcement (cf [18] for an overview) can be applied during a live e-exam
run. Finally, we plan to study more expressive and quantitative properties that
can detect possible collusion between students through similar answer patterns.

Acknowledgment. The authors would like to thank Frangois Géronimi from THEIA,
Daniel Pagonis from TIMC-IMAG, and Olivier Palombi from LJK for providing us
with a description of e-exam software system, for sharing with us the logs of some
real french e-exams, and for validating and discussing the properties presented in this
paper. The authors also thank Giles Reger for providing us with help on using MarQ.
The authors also would like to thank the “Digital trust” Chair from the University of
Auvergne Foundation for the support provided to conduct this research. This work has
been partly done in the context of the ICT COST Action IC1402 Runtime Verification
beyond Monitoring (ARVI).

References

1. Le Figaro: Etudiants: les examens sur tablettes numériques appellés a se multiplier.
Press release (2015). http://goo.gl/ahxQJD

2. Copeland, L.: School cheating scandal shakes up atlanta. USA TODAY (2013).
http://goo.gl/wGrd0s

http://goo.gl/ahxQJD
http://goo.gl/wGr40s

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Monitoring Electronic Exams 135

Watson, R.: Student visa system fraud exposed in BBC investigation (2014).
http://www.bbc.com/news/uk-26024375

Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68-84.
Springer, Heidelberg (2012)

Reger, G.: Automata based monitoring and mining of execution traces. Ph.D.
thesis, University of Manchester (2014)

Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) ETAPS 2015. LNCS, vol. 9035, pp. 596-610.
Springer, Heidelberg (2015)

Kassem, A., Falcone, Y., Lafourcade, P.: Monitoring electronic exams. Techni-
cal report TR-2015-4, Verimag, Laboratoire d’Informatique de Grenoble Research
Report (2015)

Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., Lenzini, G.: A framework for
analyzing verifiability in traditional and electronic exams. In: Lopez, J., Wu, Y.
(eds.) ISPEC 2015. LNCS, vol. 9065, pp. 514-529. Springer, Heidelberg (2015)
Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001. ACM, New York (2001)

Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW, Cape Breton, Canada, pp. 82-96. IEEE Computer Society (2001)

Dreier, J., Jonker, H., Lafourcade, P.: Defining verifiability in e-auction protocols.
In: 8th ACM Symposium on Information, Computer and Communications Security,
ASTA CCS 2013, pp. 547-552, Hangzhou, China (2013)

Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389-404. Springer, Heidelberg (2010)

Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF, pp. 195-209 (2008)

Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., Lenzini, G., Ryan, P.Y.A.:
Formal analysis of electronic exams. In: SECRYPT 2014 - Proceedings of the
11th International Conference on Security and Cryptography, pp. 101-112, Vienna,
Austria (2014)

Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on
software for runtime verification. In: [19], pp. 1-9

Colombo, C., Pace, G.J.: Fast-forward runtime monitoring — an industrial case
study. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 214-228.
Springer, Heidelberg (2013)

Basin, D.A., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: [19], pp. 31-47

Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, 1., Pace, G., Rosu, G., Sokolsky, O., Tillmann,
N. (eds.) RV 2010. LNCS, vol. 6418, pp. 89-105. Springer, Heidelberg (2010)
Bonakdarpour, B., Smolka, S.A. (eds.): RV 2014. LNCS, vol. 8734. Springer,
Heidelberg (2014)

http://www.bbc.com/news/uk-26024375

	Monitoring Electronic Exams
	1 Introduction
	2 An Event-Based Model of E-exams
	2.1 Overview of an E-exam Protocol
	2.2 Events Involved in an E-exam

	3 Properties of E-exams
	4 Case Study: UJF E-exam
	4.1 Exam Description
	4.2 Analysis

	5 Related Work and Discussion
	6 Conclusions and Future Work
	References

