
Robust Online Monitoring
of Signal Temporal Logic

Jyotirmoy V. Deshmukh1(B), Alexandre Donzé2, Shromona Ghosh2,
Xiaoqing Jin1(B), Garvit Juniwal2, and Sanjit A. Seshia2

1 Toyota Technical Center, Gardena, CA, USA
{jyotirmoy.deshmukh,xiaoqing.jin}@tema.toyota.com
2 University of California Berkeley, Berkeley, CA, USA

{donze,shromona.ghosh,garvitjuniwal,sseshia}@eecs.berkeley.edu

Abstract. Requirements of cyberphysical systems (CPS) can be rigor-
ously specified using Signal Temporal Logic (STL). STL comes equipped
with semantics that are able to quantify how robustly a given signal sat-
isfies an STL property. In a setting where signal values over the entire
time horizon of interest are available, efficient algorithms for offline com-
putation of the robust satisfaction value have been proposed. Only a few
methods exist for the online setting, i.e., where only a partial signal trace
is available and rest of the signal becomes available in increments (such
as in a real system or during numerical simulations). In this paper, we
formalize the semantics for robust online monitoring of partial signals
using the notion of robust satisfaction intervals (RoSIs). We propose an
efficient algorithm to compute the RoSI and demonstrate its usage on
two real-world case studies from the automotive domain and massively-
online CPS education. As online algorithms permit early termination
when the satisfaction or violation of a property is found, we show that
savings in computationally expensive simulations far outweigh any over-
heads incurred by the online approach.

1 Introduction

Embedded software designers typically validate designs by inspecting concrete
observations of system behavior. For instance, in the model-based development
(MBD) paradigm, designers use numerical simulation tools to obtain traces from
models of systems. An important problem is to efficiently test whether some
logical property ϕ holds for a given simulation trace. It is increasingly common
[2,3,11,14–16,18] to specify such properties using a real-time temporal logic
such as Signal Temporal Logic (STL) [9] or Metric Temporal Logic (MTL) [12].
An offline monitoring approach involves performing an a posteriori analysis on
complete simulation traces (i.e., traces starting at time 0, and lasting till a user-
specified time horizon T ). Theoretical and practical results for offline monitoring
[7,9,12,20] focus on the efficiency of monitoring as a function of the length of
the trace, and the size of the formula representing the property ϕ.

There are a number of situations where offline monitoring is unsuitable. Con-
sider the case where the monitor is to be deployed in an actual system to detect
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erroneous behavior. As embedded software is typically resource constrained,
offline monitoring is impractical as it requires storing the entire observed trace.
In a simulation tool that uses numerical techniques to compute system behav-
iors, obtaining even one signal trace may require several minutes or even hours.
If we wish to monitor a property over the simulation, it is usually sensible to
stop the simulation once the satisfaction or violation of the property is detected.
Such situations demand an online monitoring algorithm, which has markedly
different requirements. In particular, a good online monitoring algorithm must:
(1) be able to generate intermediate estimates of property satisfaction based on
partial signals, (2) use minimal amount of data storage, and (3) be able to run
fast enough in a real-time setting.

Most works on online monitoring algorithms for logics such as Linear Tempo-
ral Logic (LTL) or Metric Temporal Logic (MTL) have focussed on the Boolean
satisfaction of properties by partial signals [10,13,21]. Recent work shows that
by assigning quantitative semantics to real-time logics such as MTL and STL,
problems such as bug-finding, parameter synthesis, and robustness analysis can
be solved using powerful off-the-shelf optimization tools [1,6]. The quantitative
semantics define a function mapping a property ϕ and a trace x(t) to a real
number, known as the robust satisfaction value. A large positive value suggests
that x(t) easily satisfies ϕ, a positive value near zero suggests that x(t) is close to
violating ϕ, and a negative value indicates a violation of ϕ. While the recursive
definitions of quantitative semantics naturally define offline monitoring algo-
rithms to compute robust satisfaction values [7,9,12], there is limited work on
an online monitoring algorithm to do the same [5].

The theoretical challenge of online monitoring lies in the definition of a prac-
tical quantitative semantics for a temporal logic formula over a partial signal,
i.e., a signal trace with incomplete data which may not yet validate or invalidate
ϕ. Past work [10] has identified three views for the satisfaction of a LTL prop-
erty ϕ over a partial trace τ : (1) a weak view where τ satisfies ϕ if there is some
suffix τ ′ such that τ.τ ′ satisfies ϕ, (2) a strong view where τ does not satisfy ϕ
if there is some suffix τ ′ such that τ.τ ′ does not satisfy ϕ and (3) a neutral view
when the satisfaction is defined using a truncated semantics of LTL restricted
to finite paths. In [13], the authors extend the truncated semantics to MTL. In
[5], the authors introduce the notion of a predictor, which works as an oracle to
complete a partial trace and provide an estimated satisfaction value. In general,
such a value cannot be formally trusted as long as the data is incomplete.

The layout of the paper is as follows: In Sect. 3, we present robust interval
semantics for an STL property ϕ on a partial signal (with data available till
time ti, denoted x[0,i]) that unifies the different semantic views of real-time
logics on truncated paths. Informally, we define a function that maps x[0,i] and
ϕ to the robust satisfaction interval (RoSI) (�, υ), with the interpretation that
for any suffix x[ti+1,tN ], � is the greatest lower bound on the robust satisfaction
value of xN , and υ is the corresponding lowest upper bound. There is a natural
correspondence between the RoSI and three-valued semantics: (1) ϕ is violated
according to the weak view iff υ is negative, and is satisfied otherwise; (2) ϕ is
satisfied according to the strong view iff � is positive, and violated otherwise;
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and (3) a neutral semantics, e.g., based on some predictor, can be defined when
� < 0 < υ, i.e., when there exist suffixes that can violate or satisfy ϕ.

In Sect. 4, we present an efficient online algorithm to compute the RoSI for a
bounded-time-horizon STL formula by extending the offline algorithm of [7]. In
spite of being online, the extension imposes minimal runtime overhead. It works
in a fashion similar to incremental Boolean monitoring of STL implemented in
the tool AMT [21]. In Sect. 5, we present algorithms that can perform online
monitoring of commonly-used unbounded time-horizon formulas using only a
bounded amount of memory.

Finally, we present experimental results on two large-scale case studies:
(i) industrial-scale Simulink models from the automotive domain in Sect. 6, and
(ii) an automatic grading system used in a massive online education initiative on
CPS [17]. Since the online algorithm can abort simulation as soon as the satisfac-
tion of the property is determined, we see a consistent 10 %–20 % savings in sim-
ulation time (which is typically several hours) in a majority of experiments, with
negligible overhead (<1 %). In general, our results indicate that the benefits of our
online monitoring algorithm over the offline approach far outweigh any overheads.

2 Background

Interval Arithmetic. We now review interval arithmetic. An interval I is a
convex subset of R. A singular interval [a, a] contains exactly one point. Inter-
vals (a, a), [a, a), (a, a], and ∅ denote empty intervals. We enumerate interval
operations below assuming open intervals. Similar operations can be defined for
closed, open-closed, and closed-open intervals.

1. −I1 = (−b1,−a1)
2. c + I1 = (c + a1, c + b1)

3. I1 ⊕ I2 = (a1 + a2, b1 + b2)
4. min(I1, I2) = (min(a1, a2),min(b1, b2))

5. I1 ∩ I2 =
{

∅ if min(b1, b2) < max(a1, a2)
(max(a1, a2),min(b1, b2)) otherwise.

(2.1)

Definition 1 (Signal). A time domain T is a finite or infinite set of time
instants such that T ⊆ R

≥0 with 0 ∈ T . A signal x is a function from T to X .
Given a time domain T , a partial signal is any signal defined on a time domain
T ′ ⊆ T .

Note that X can be any set, but it is usual to assume some subset of R
n.

Simulation frameworks typically provide signal values at discrete time instants,
usually this is a by-product of using a numerical technique to solve the dif-
ferential equations in the underlying system. These discrete-time solutions are
assumed to be sampled versions of the actual signal, which can be reconstructed
using some form of interpolation. In this paper, we assume constant interpo-
lation to reconstruct the signal x(t), i.e., given a sequence of time-value pairs
(t0,x0), . . . , (tn,xn), for all t ∈ [t0, tn), we define x(t) = xi if t ∈ [ti, ti+1), and
x(tn) = xn. Further, let Tn ⊆ T represent the finite subset of time instants at
which the signal values are given.



58 J.V. Deshmukh et al.

Signal Temporal Logic. We use Signal Temporal Logic (STL) [9] to analyze
time-varying behaviors of signals. We now present its syntax and semantics.
A signal predicate μ is a formula of the form f(x) > 0, where x is a variable
that takes values from X , and f is a function from X to R. For a given f , let
finf denote infx∈X f(x), i.e., the greatest lower bound of f over X . Similarly, let
fsup = supx∈X f(x). The syntax of an STL formula ϕ is defined in Eq. (2.2).
Note that � and ♦ can be defined in terms of the U operator, but we include
them for convenience.

ϕ::=μ | ¬ϕ | ϕ ∧ ϕ | �(u,v)ϕ | ♦(u,v)ϕ | ϕU(u,v)ϕ (2.2)

Quantitative semantics for timed-temporal logics have been proposed for STL
in [9]; we include the definition below. In the usual Boolean sense of satisfaction,
a signal x satisfies ϕ at a time τ iff the robust satisfaction value ρ(ϕ,x, τ) ≥ 0.

Definition 2 (Robust Satisfaction Value). We first define a function ρ
mapping an STL formula ϕ, the signal x, and a time τ ∈ T as follows:

ρ (f(x) > 0,x, τ) = f(x(τ))
ρ (¬ϕ,x, τ) = −ρ(ϕ,x, τ)
ρ (ϕ1 ∧ ϕ2,x, τ) = min (ρ(ϕ1,x, τ), ρ(ϕ2,x, τ))
ρ (�Iϕ,x, τ) = inft∈τ+I ρ(ϕ,x, t)
ρ (♦Iϕ,x, τ) = supt∈τ+I ρ(ϕ,x, t)

ρ (ϕ1UIϕ2,x, τ) = sup
t2∈τ+I

min
(

ρ(ϕ2,x, t2), inf
t1∈(τ,t2)

ρ(ϕ1,x, t1)
)

(2.3)
The robust satisfaction value of a given signal x w.r.t. a given formula ϕ is then
defined as ρ(ϕ,x, 0).

3 Robust Interval Semantics

We assume finite time-horizon T for signals. Further, we assume that the signal
is obtained by applying constant interpolation to a sampled signal defined over
time-instants {t0, t1, . . . , tN}, such that tN = T and ∀i : ti < ti+1. In the online
monitoring context, at any time ti, only the partial signal over time instants
{t0, . . . , ti} is available, and the rest of the signal becomes available in discrete
time increments. We define new semantics for STL formulas over partial signals
using intervals. A robust satisfaction interval (RoSI) includes all possible robust
satisfaction values corresponding to the suffixes of the partial signal. In this
section, we formalize the recursive definitions for RoSI of an STL formula with
respect to a partial signal, and next we will discuss an efficient algorithm to
compute and maintain these intervals.

Definition 3 (Prefix, Completions). Let {t0, . . ., ti} be a finite set of time
instants such that ti ≤ T , and let x[0,i] be a partial signal over the time domain
[t0, ti]. We say that x[0,i] is a prefix of a signal x if for all t ≤ ti, x(t) = x[0,i](t).
The set of completions of a partial signal x[0,i] (denoted by C(x[0,i])) is defined
as the set {x | x[0,i] is a prefix of x}.
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Definition 4 (Robust Satisfaction Interval (RoSI)). The robust satisfac-
tion interval of an STL formula ϕ on a partial signal x[0,i] at a time τ ∈ [t0, ti]
is an interval I s.t.:

inf(I) = inf
x∈C(x[0,i])

ρ(ϕ,x, τ) and sup(I) = sup
x∈C(x[0,i])

ρ(ϕ,x, τ)

Definition 5. We define a recursive function [ρ] that maps a given formula ϕ,
a partial signal x[0,i] and a time τ ∈ T to an interval [ρ](ϕ,x[0,i], τ).

[ρ]
(
f(x[0,i]) > 0,x[0,i], τ

)
=

{
[f(x[0,i](τ)), f(x[0,i](τ))] τ ∈ [t0, ti]

[finf , fsup] otherwise.

[ρ]
(
¬ϕ,x[0,i], τ

)
= −[ρ](ϕ,x[0,i], τ)

[ρ]
(
ϕ1 ∧ ϕ2,x[0,i], τ

)
= min([ρ](ϕ1,x[0,i], τ), [ρ](ϕ2,x[0,i], τ))

[ρ]
(
�Iϕ,x[0,i], τ

)
= inft∈τ+I

(
[ρ](ϕ,x[0,i], t)

)
[ρ]

(
♦Iϕ,x[0,i], τ

)
= supt∈τ+I

(
[ρ](ϕ,x[0,i], t)

)

[ρ]
(
ϕ1UIϕ2,x[0,i], τ

)
= sup

t2∈τ+I
min

⎛
⎝ [ρ](ϕ2,x[0,i], t2),

inf
t1∈(τ,t2)

[ρ](ϕ1,x[0,i], t1))

⎞
⎠

(3.1)

It can be shown that the RoSI of a signal x w.r.t. an STL formula ϕ is equal
to [ρ](ϕ,x, 0); we defer the proof to the full version [4].

4 Online Algorithm

Donzé et al. [7] present an offline algorithm for monitoring STL formulas over
(piecewise) linearly interpolated signals. A näıve implementation of an online
algorithm is as follows: at time ti, use a modification of the offline monitoring
algorithm to recursively compute the robust satisfaction intervals as defined by
Definition 5 to the signal x[0,i]. We observe that such a procedure does many
repeated computations that can be avoided by maintaining the results of inter-
mediate computations. Furthermore, the näıve procedure requires storing the
signal values over the entire time horizon, which makes it memory-intensive. In
this section, we present the main technical contribution of this paper: an online
algorithm that is memory-efficient and avoids repeated computations.

As in the offline monitoring algorithm in [7], an essential ingredient of the
online algorithm is Lemire’s running maximum filter algorithm [19]. The problem
this algorithm addresses is the following: given a sequence of values a1, . . . , an,
find the maxima over windows of size w, i.e., for all j, find maxi∈[j,j+w) ai (sim-
ilarly, for finding the corresponding minima). We briefly review an extension
of Lemire’s algorithm over piecewise-constant signals with variable time steps,
given as Algorithm 1. The main observation in Lemire’s algorithm is that it is
sufficient to maintain a descending (resp. ascending) monotonic edge (denoted
F in Algorithm 1) to compute the sliding maxima (resp. minima), in order to
achieve an optimal procedure (measured in terms of the number of comparisons
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Algorithm 1. SlidingMax((t0,x0), . . . , (tN ,xN ), [a, b]).
Output: Sliding maximum y(t) over times in [t0, tN ]

1 F : = {0} // F is the set of times representing the monotonic edge

2 i : = 0 ; s, t : = t0 − b
3 while t + a < tN do
4 if F �= ∅ then t : = min(tmin(F) − a, ti+1 − b)
5 else t : = ti+1 − b
6 if t = ti+1 − b then
7 while xi+1 ≥ xmax(F) ∧ F �= ∅ do
8 F: = F − max(F)
9 F: = F ∪ {i + 1}, i : = i + 1

10 else // Slide window to the right

11 if s > t0 then y(s) : = xmin(F)

12 else y(t0) : = xmin(F)

13 F: = F − min(F), s : = t

between elements). The descending edge satisfies the property that if i ∈ F, then
ti ∈ t+[a, b], and for all tj > ti in t+I, x(tj) < x(ti). Lines 8 and 9 incrementally
update the edge when a new point is encountered that is still within the t+[a, b]
window, and lines 11–13 correspond to the case where the window is slid right
as a result of updating the t. These lines then providing the sliding maximum
over t + [a, b] at the t from which the window was advanced.

We first focus on the fragment of STL where each temporal operator is scoped
by a time-interval I, where sup(I) is finite. The algorithm for online monitoring
maintains the syntax tree of the formula ϕ to be monitored in memory, and
augments the tree with some book-keeping information. First, we formalize some
notation. For a given formula ϕ, let Tϕ represent the syntax tree of ϕ, and let
root(Tϕ) denote the root of the tree. Each node in the syntax tree (other than
a leaf node) corresponds to an STL operator ¬,∨,∧,�I or ♦I .1 We will use HI

to denote any temporal operator bounded by interval I. For a given node v, let
op(v) denote the operator for that node. For any node v in Tϕ (except the root
node), let parent(v) denote the unique parent of v.

Algorithm 2 is a dynamic programming algorithm operating on the syntax
tree of the given STL formula, i.e., computation of the RoSI of a formula com-
bines the RoSIs for its constituent sub-formulas in a bottom-up fashion. As
computing the RoSI at a node v requires the RoSIs at the child-nodes, this com-
putation has to be delayed till the RoSIs at the children of v in a certain time-
interval are available. We call this time-interval the time horizon of v (denoted
hor(v)), and define it recursively in Eq. (4.1).

hor(v) =

⎧⎨
⎩

[0] if v = root(Tϕ)
I ⊕ hor(parent(v)) if v �= root(Tϕ) and op(parent(v)) = HI

hor(parent(v)) otherwise.
(4.1)

We illustrate the working of the algorithm using a small example then give
a brief sketch of the various steps in the algorithm.
1 We omit the case of UI here for lack of space, although the rewriting approach of

[7] can be adapted here and is implemented in our tool.
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Example 1. For the formula2 in (4.2), we show Tϕ and hor(v) for each v in Tϕ

in Fig. 1.
ϕ � �[0,a]

(
¬(y > 0) ∨ ♦[b,c](x > 0)

)
(4.2)

Fig. 1. Syntax tree Tϕ for ϕ (given in (4.2)) with each node v annotated with hor(v)

The algorithm augments each node v of Tϕ with a double-ended queue,
that we denote worklist[v]. Let ψ be the subformula denoted by the tree rooted
at v. For the partial signal x[0,i], the algorithm maintains in worklist[v], the
RoSI [ρ](ψ,x[0,i], t) for each t ∈ hor(v) ∩ [t0, ti]. We denote by worklist[v](t) the
entry corresponding to time t in worklist[v]. When a new data-point xi+1 corre-
sponding to the time ti+1 is available, the monitoring procedure updates each
[ρ](ψ,x[0,i], t) in worklist[v] to [ρ](ψ,x[0,i+1], t).

Fig. 2. These plots show the signals x(t) and y(t). Each signal begins at time t0 = 0,
and we consider three partial signals: x[0,3] (black + blue), and x[0,4] (x[0,3] + green),
and x[0,5] (x[0,4] + red) (Color figure online).

In Fig. 3, we give an example of a run of the algorithm. We assume that the
algorithm starts in a state where it has processed the partial signal x[0,2], and
show the effect of receiving data at time-points t3, t4 and t5. The figure shows
the states of the worklists at each node of Tϕ at these times when monitoring
the STL formula ϕ presented in Eq. (4.2). Each row in the table adjacent to a
node shows the state of the worklist after the algorithm processes the value at
the time indicated in the first column (Fig. 3).

The first row of the table shows the snapshot of the worklists at time t2.
Observe that in the worklists for the subformula y > 0, ¬y > 0, because a < b,
2 We remark that ϕ is equivalent to �[0,a]

(
(y > 0) =⇒ ♦[b,c](x > 0)

)
, which is a

common formula used to express a timed causal relation between two signals.
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Fig. 3. We show a snapshot of the worklist[v] maintained by the algorithm for four
different (incremental) partial traces of the signals x(t) and y(t). Each row indicates
the state of worklist[v] at the time indicated in the first column. An entry marked --
indicates that the corresponding element did not exist in worklist[v] at that time. Each
colored entry indicates that the entry was affected by availability of a signal fragment
of the corresponding color (Color figure online).

the data required to compute the RoSI at t0, t1 and the time a, is available,
and hence each of the RoSIs is singular. On the other hand, for the subformula
x > 0, the time horizon is [b, a + c], and no signal value is available at any time
in this interval. Thus, at time t2, all elements of worklist[vx>0] are (xinf ,xsup)
corresponding to the greatest lower bound and lowest upper bound on x.

To compute the values of ♦[b,c](x > 0) at any time t, we take the max. over
values from times t+b to t+c. As the time horizon for the node corresponding to
♦[b,c](x > 0) is [0, a], t ranges over [0, a]. In other words, we wish to perform the
sliding max. over the interval [0+b, a+c], with a window of length c−b. We can
use Algorithm 1 for this purpose. One caveat is that we need to store separate
monotonic edges for the upper and lower bounds of the RoSIs. The algorithm
then proceeds upward on the syntax tree, only updating the worklist of a node
when there is an update to the worklists of its children.

The second row in each table is the effect of obtaining a new time point
(at time t3) for both signals. Note that this does not affect worklist[vy>0] or
worklist[v¬y>0], as all RoSIs are already singular, but does update the RoSI values
for the node vx>0. The algorithm then invokes Algorithm1 on worklist[vx>0] to
update worklist[v♦[b,c](x>0)]. Note that in the invocation on the second row (corre-
sponding to time t3), there is an additional value in the worklist, at time t3. This
leads Algorithm 1 to produce a new value of SlidingMax (worklist[vx>0], [b, c]) (t3−
b), which is then inserted in worklist[v♦[b,c]x>0]. This leads to additional points
appearing in worklists at the ancestors of this node.

Finally, we remark that the run of this algorithm shows that at time t4, the
RoSI for the formula ϕ is [−2,−2], which yields a negative upper bound, showing
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Algorithm 2. updateWorkList(vψ, ti+1, xi+1)
// vψ is a node in the syntax tree, (ti+1,xi+1) is a new timepoint

1 switch ψ do
2 case f(x) > 0
3 if ti+1 ∈ hor(vψ) then
4 worklist[vψ](ti+1) : = [f(xi+1), f(xi+1)]

5 case ¬ϕ
6 updateWorkList(vϕ, ti+1 ,xi+1) ;
7 worklist[vψ] : = −worklist[vϕ]

8 case ϕ1 ∧ ϕ2

9 updateWorkList(vϕ1 , ti+1, xi+1) ;
10 updateWorkList(vϕ2 , ti+1, xi+1) ;
11 worklist[vψ] : = min(worklist[vϕ1 ],worklist[vϕ2 ])

12 case �Iϕ
13 updateWorkList(vϕ, ti+1 , xi+1) ;
14 worklist[vψ] : = SlidingMax(worklist[vϕ], I)

that the formula is not satisfied irrespective of the suffixes of x and y. In other
words, the satisfaction of ϕ is known before we have all the data required by
hor(ϕ).

Algorithm 2 is essentially a procedure that recursively visits each node in the
syntax tree Tϕ of the STL formula ϕ that we wish to monitor. Line 4 corresponds
to the base case of the recursion, i.e. when the algorithm visits a leaf of Tϕ or
an atomic predicate of the form f(x) > 0. Here, the algorithm inserts the pair
(ti+1,xi+1) in worklist[vf(x)>0] if ti+1 lies inside hor(vf(x)>0). In other words, it
only tracks a value if it is useful for computing the RoSI of some ancestor node.

For a node corresponding to a Boolean operation, the algorithm first updates
the worklists at the children, and then uses them to update the worklist at the
node. If the current node represents ¬ϕ (Line 5), the algorithm flips the sign of
each entry in worklist[vϕ]; this operation is denoted as −worklist[vϕ]. Consider
the case where the current node vψ is a conjunction ϕ1 ∧ ϕ2. The sequence of
upper bounds and the sequence of lower bounds of the entries in worklist[vϕ1 ]
and worklist[vϕ1 ] can be each thought of as a piecewise-constant signal (likewise
for worklist[vϕ2 ]). In Line 11, the algorithm computes a pointwise-minimum over
piecewise-constant signals representing the upper and lower bounds of the RoSIs
of its arguments. Note that if for i = 1, 2, if worklist[vϕi

] has Ni entries, then
the pointwise-min would have to be performed at most N1 + N2 distinct time-
points. Thus, worklist[vϕ1∧ϕ2 ] has at most N1+N2 entries. A similar phenomenon
can be seen in Fig. 3, where computing a max over the worklists of v♦[b,c](x>0)

and v¬(y>0) leads to an increase in the number of entries in the worklist of the
disjunction.

For nodes corresponding to temporal operators, e.g., ♦Iϕ, the algorithm first
updates worklist[vϕ]. It then applies Algorithm 1 to compute the sliding max-
imum over worklist[vϕ]. Note that if worklist[vϕ] contains N entries, so does
worklist[v♦Iϕ].
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A further optimization can be implemented on top of this basic scheme. For
a node v corresponding to the subformula HIϕ, the first few entries of worklist[v]
(say up to time u) could become singular intervals once the required RoSIs for
worklist[vϕ] are available. The optimization is to only compute SlidingMax over
worklist[vϕ] starting from u + inf(I). We omit the pseudo-code for brevity.

5 Monitoring Untimed Formulas

If the STL formula being monitored has untimed (i.e. infinite-horizon) temporal
operators, a direct application of Algorithm2 requires every node in the sub-
tree rooted at the untimed operator to have a time horizon that is unbounded,
or in other words, the algorithm would have to keep track of every value over
arbitrarily long intervals. For a large class of formulae (shown in Theorem1), we
can perform robust online monitoring using only a constant amount of memory.
The question whether an arbitrary STL formula outside of the fragment stated
thus far can be monitored using constant memory remains an open problem. We
now show how constant memory monitoring can be performed for the first set of
formulae. In what follows, we assume that the subformulae ϕ and ψ are atomic
predicates of the form f(x) > 0. Also, as we assume that signals are obtained by
constant interpolation over a finite number of time-points, there is only a finite
collection of values of f(x) for any atomic predicate. Thus, we replace inf and
sup in the definitions of [ρ] by min and max respectively.

First, we introduce some equivalences over intervals a, b, c that we use in the
theorem and the proof to follow:

min(max(a, b),max(a, c)) = max(a,min(b, c)) (5.1)
min(a,max(b, c)) = max(min(a, b),min(a, c)) (5.2)
max(max(a, b), c) = max(a, b, c) (5.3)
min(max(a, b), a) = a (5.4)

Theorem 1. For each of the following formulae, where ϕ and ψ are atomic
predicates of the form f(x)>0, we can monitor interval robustness in an online
fashion using constant memory: (1) �ϕ, ♦ϕ, (2) ϕUψ, (3) �(ϕ∨♦ψ), ♦(ϕ∧�ψ),
(4) �♦ϕ, ♦�ϕ, and (5) ♦(ϕ ∧ ♦ψ), �(ϕ ∨ �ψ).

Proof. We consider each of the five cases of the theorem in turn. The proof strat-
egy is to show that if a constant memory buffer has been used to monitor up to
n samples, then receiving an additional sample does not require the memory to
grow. In what follows, we use the following short-hand notation:

pi ≡ [ρ](f(x)>0,x[0,n+1], ti) qi ≡ [ρ](g(x)>0,x[0,n+1], ti) (5.5)

Note that if i ∈ [0, n], then pi is the same over the partial signal x[0,n], i.e.,
pi = [ρ](f(x)>0,x[0,n], ti) (and respectively for qi). We will use this equivalence
in several of the steps in what follows.
(1) �ϕ, where ϕ ≡ f(x) > 0. Observe the following:

[ρ](ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

pi = min
(

min
i∈[0,n]

pi, pn+1

)
(5.6)
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In the final expression above, observe that the first entry does not contain any
pn+1 terms, i.e., it can be computed using the data points x1, . . . ,xn in the par-
tial signal x[0,n] itself. Thus, for all n, if we maintain the one interval representing
the min of the first n values of f(x) as a summary, then we can compute the
interval robustness of �(f(x) > 0) over x[0,n+1] with the additional data xn+1

available at tn+1. Note for the dual formula ♦(f(x) > 0), a similar result holds
with min substituted by max.
(2) ϕUψ, where ϕ ≡ f(x)>0, and ψ ≡ g(x)>0. Observe the following:

[ρ](ϕUψ,x[0,n+1], 0) = max
i∈[0,n+1]

min(qi, min
j∈[0,i]

pj) (5.7)

We can rewrite the RHS of Eq. (5.7) to get:

max

(
max

i∈[0,n]
min

(
qi, min

j∈[0,i]
pj

)
, min

(
min

j∈[0,n]
pj , pn+1, qn+1

))
(5.8)

Let Un and Mn respectively denote the first and second underlined terms in the
above expression. Note that for any n, Un and Mn can be computed only using
data x1, . . . ,xn. Consider the recurrences Mn+1 = min(Mn, pn+1, qn+1) and
Un+1 = max(Un,Mn+1); we can observe that to compute Mn+1 and Un+1, we
only need Mn, Un, and xn+1. Furthermore, Un+1 is the desired interval robust-
ness value over the partial signal x[0,n+1]. Thus storing and iteratively updating
the two interval-values Un and Mn is enough to monitor the given formula.
(3) �(ϕ ∨ ♦ψ), where ϕ ≡ f(x)>0, and ψ ≡ g(x)>0. Observe the following:

[ρ](�(ϕ ∨ ♦ψ),x[0,n+1], 0) = min
i∈[0,n+1]

max
(

pi, max
j∈[i,n+1]

qj

)

= min
i∈[0,n+1]

max
(

pi, max
j∈[i,n]

qj , qn+1

) (5.9)

Repeatedly applying the equivalence (5.1) to the outer min in (5.9) we get:

max
(

qn+1, min
i∈[0,n+1]

max
(

pi, max
j∈[i,n]

qj

))
(5.10)

The inner min simplifies to:

max

(
qn+1,min

(
pn+1, min

i∈[0,n]

(
max

(
pi, max

j∈[i,n]
qj

))))
(5.11)

Let Tn denote the underlined term; note that we do not require any data at time
tn+1 to compute it. Using the recurrence Tn+1 = max (qn+1,min (pn+1, Tn)), we
can obtain the desired interval robustness value. The memory required is that
for storing the one interval value Tn. A similar result can be established for the
dual formula ♦(f(x)>0 ∧ �(g(x)>0)).
(4) �♦(ϕ), where ϕ ≡ f(x)>0. Observe the following:

[ρ](�♦(ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

max
j∈[i,n+1]

pj (5.12)

Rewriting the outer min operator and the inner max more explicitly, we get:

min

(
min

i∈[0,n]
max

(
max

j∈[i,n]
pj , pn+1

)
, pn+1

)
(5.13)
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Repeatedly using (5.1) to simplify the above underlined term we get:

min
(

max
(

pn+1, min
i∈[0,n]

max
j∈[i,n]

pj

)
, pn+1

)
= pn+1. (5.14)

The simplification to pn+1, follows from (5.4). Thus, to monitor �♦(f(x)>
0), we do not need to store any information, as the interval robustness simply
evaluates to that of the predicate f(x)>0 at time tn+1. A similar result can be
obtained for the dual formula ♦�(f(x)>0).
(5) ♦(ϕ ∧ ♦(ψ)), where ϕ ≡ f(x)>0 ψ ≡ ♦(g(x)>0)). Observe the following:

[ρ](♦(ϕ ∧ ♦(ψ)),x[0,n+1], 0) = max
i∈[0,n+1]

(
min

(
pi, max

j∈[i,n+1]
qj

))
(5.15)

We can rewrite the RHS of Eq. (5.15) as the first expression below. Applying the
equivalence in (5.2) and (5.3) to the expression on the left, we get the expression
on the right.

max

⎛
⎜⎝

min (p0,max (q0, . . . , qn+1))
· · ·
min (pn,max (qn, qn+1))
min (pn+1, qn+1)

⎞
⎟⎠ = max

⎛
⎜⎝

min(p0, q0), . . . ,min(p0, qn+1),
· · ·
min(pn, qn),min(pn, qn+1),
min(pn+1, qn+1)

⎞
⎟⎠

(5.16)
Grouping terms containing qn+1 together and applying the equivalence in (5.2)
we get:

max

⎛
⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎝

min(p0, q0),min(p0, q1), . . . ,min(p0, qn),
min(p1, q1), . . . ,min(p1, qn),
· · ·
min(pn, qn)

⎞
⎟⎠ ,

min(qn+1,max(p0, p1, . . . , pn)),
min(pn+1, qn+1)

⎞
⎟⎟⎟⎟⎟⎠

(5.17)

Observe that the first argument to the outermost max can be computed using
only x1, . . . ,xn. Suppose we denote this term Tn. Also note that in the second
argument, the inner max (underlined) can be computed using only x1, . . . ,xn.
Let us denote this term by Mn. We now have a recurrence relations:

Mn+1 = max(Mn, pn+1), (5.18)
Tn+1 = max(Tn,min(qn+1,Mn),min(qn+1, pn+1)), (5.19)

where T0 = min(p0, q0) and M0 = p0. Thus, the desired interval robustness can
be computed using only two values stored in Tn and Mn. The dual result holds
for the formula �(ϕ ∨ �(ψ)).

Remarks on extending the above result: The result in Theorem 1 can be gen-
eralized to allow ϕ and ψ that are not atomic predicates, under following two
conditions:

1. Bounded horizon subformulae condition: For each formula, the subformulae
ϕ and ψ have a bounded time-horizon, i.e., hor(ϕ) and hor(ψ) are closed
intervals.

2. Smallest step-size condition: Consecutive time-points in the signal are at least
Δ seconds apart, for some finite Δ, which is known a priori.
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We defer the proof of the general case to the full version of the paper [4],
but remark that the proof techniques are very similar. Let w denote the least
upper bound of the time horizon for all subformulae of a given untimed formula.
At any time tn, additional book-keeping is required to store partial information
for time-points in the range [tn − w, tn]. By the step-size condition there can be
at most � w

Δ� time-points in this range. This is then used to show that constant
memory proportional to � w

Δ� is sufficient to monitor such an untimed formula
(with bounded-horizon subformulae).

6 Experimental Results

We implemented Algorithm 2 as a stand-alone tool that can be plugged in loop
with any black-box simulator and evaluated it using two practical real-world
applications. We considered the following criteria: (1) On an average, what frac-
tion of simulation time can be saved by online monitoring? (2) How much over-
head does online monitoring add, and how does it compare to a näıve implemen-
tation that at each step recomputes everything using an offline algorithm?

Diesel Engine Model (DEM). The first case study is an industrial-sized
Simulink R©model of a prototype airpath system in a diesel engine. The closed-
loop model consists of a plant model describing the airpath dynamics, and a
controller implementing a proprietary control scheme. The model has more than
3000 blocks, with more than 20 lookup tables approximating high-dimensional
nonlinear functions. Due to the significant model complexity, the speed of sim-
ulation is about 5 times slower, i.e., simulating 1 s of operation takes 5 s in
Simulink R©. As it is important to simulate this model over a long time-horizon
to characterize the airpath behavior over extended periods of time, savings in
simulation-time by early detection of requirement violations is very beneficial.
We selected two parameterized safety requirements after discussions with the
control designers, (shown in Eqs. (6.1) and (6.2)). Due to proprietary concerns,
we suppress the actual values of the parameters used in the requirements.

ϕovershoot (p1) = �[a,b](x < c) (6.1)
ϕtransient(p2) = �[a,b](|x| > c =⇒ (♦[0,d]|x| < e)) (6.2)

Property ϕovershoot with parameters p1 = (a, b, c) specifies that in the interval
[a, b], the overshoot on the signalx should remain below a certain threshold c. Prop-
erty ϕtransient with parameters p2 = (a, b, c, d, e) is a specification on the settling
time of the signal x. It specifies that in the time interval [a, b] if at some time t, |x|
exceeds c then it settles to a small region (|x| < e) before t + d. In Table 1, we con-
sider three different valuations ν1, ν2, ν3 for p1 in the requirement ϕovershoot (p1),
and two different valuations ν4, ν5 for p2 in the requirement ϕtransient(p2).

The main reason for the better performance of the online algorithm is that
simulations are time-consuming for this model. The online algorithm can ter-
minate a simulation earlier (either because it detected a violation or obtained
a concrete robust satisfaction interval), thus obtaining significant savings. For
ϕovershoot (ν3), we choose the parameter values for a and b such that the online
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Table 1. Experimental results on DEM.

Requirement Num. traces Early termination Simulation time (h)

Offline Online

ϕovershoot(ν1) 1000 801 33.3803 26.1643

ϕovershoot(ν2) 1000 239 33.3805 30.5923

ϕovershoot(ν3) 1000 0 33.3808 33.4369

ϕtransient(ν4) 1000 595 33.3822 27.0405

ϕtransient(ν5) 1000 417 33.3823 30.6134

Table 2. Evaluation of online monitoring for CPSGrader.

STL test bench Num. Early Sim. time (mins) Overhead (s)

traces termination Offline Online Näıve Algorithm 2

avoid front 1776 466 296 258 553 9

avoid left 1778 471 296 246 1347 30

avoid right 1778 583 296 226 1355 30

hill climb1 1777 19 395 394 919 11

hill climb2 1556 176 259 238 423 7

hill climb3 1556 124 259 248 397 7

filter 1451 78 242 236 336 6

keep bump 1775 468 296 240 1.2 × 104 268

what hill 1556 71 259 253 1.9 × 104 1.5 × 103

algorithm has to process the entire signal trace, and is thus unable to terminate
earlier. Here we see that the total overhead (in terms of runtime) incurred by
the extra book-keeping by Algorithm2 is negligible (about 0.1 %).

CPSGrader. CPSGrader [8,17] is a publicly-available automatic grading and
feedback generation tool for online virtual labs in cyber-physical systems. It
employs temporal logic based testers to check for common fault patterns in stu-
dent solutions for lab assignments. CPSGrader uses the National Instruments
Robotics Environment Simulator to generate traces from student solutions and
monitors STL properties (each corresponding to a particular faulty behavior) on
them. In the published version of CPSGrader [17], this is done in an offline fash-
ion by first running the complete simulation until a pre-defined cut-off and then
monitoring the STL properties on offline traces. At a step-size of 5 ms, simulating
6 s. of real-world operation of the system takes 1 s. for the simulator. When stu-
dents use CPSGrader for active feedback generation and debugging, simulation
constitutes the major chunk of the application response time. Online monitoring
helps in reducing the response time by avoiding unnecessary simulations, giving
the students feedback as soon as faulty behavior is detected.

We evaluated Algorithm 2 on the signals and STL properties used in CPS-
Grader [8,17]. These signal traces result from running actual student submissions
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on a battery of tests such as failure to avoid obstacles in front, failure to re-orient
after obstacle avoidance, failure to reach the target region (top of a hill), failure
to detect the hill, and failure to use a correct filter in order to climb a hill. For
lack of space, we refer the reader to [17] for further details. As an illustrative
example, consider keep bump property in Eq. 6.3:

ϕkeep bump = ♦[0,60]�[0,5] (bump right(t) ∨ bump left(t)) (6.3)

The keep bump formula checks whether when the bump signal is activated (i.e.,
the robot bumps into an obstacle either from the left or the right), the con-
troller keeps moving forward for some time instead of driving back in order to
avoid the obstacle. For each STL property, Table 2 compares the total simula-
tion time needed for both the online and offline approaches, summed over all
traces. For the offline approach, a suitable simulation cut-off time of 60 sec.
is chosen. At a step-size of 5 ms, each trace is roughly of length 1000. For the
online algorithm, simulation terminates before this cut-off if the truth value of
the property becomes known, otherwise it terminates at the cut-off. Table 2 also
shows the monitoring overhead incurred by a näıve online algorithm that per-
forms complete recomputation at every step against the overhead incurred by
Algorithm 2. Table 2 demonstrates that online monitoring ends up saving up to
24 % simulation time (>10 % in a majority of cases). The monitoring overhead
of Algorithm 2 is negligible (<1 %) as compared to the simulation time and it is
less than the overhead of the näıve online approach consistently by a factor of
40x to 80x.

7 Conclusions and Future Work

We have defined robust interval semantics for Signal Temporal Logic formulas
over partial signal traces. The robust satisfaction interval (RoSI) of a partial
signal contains the robust satisfaction value of any possible suffix of the given
partial signal. We present an online algorithm to compute RoSI for a large class of
STL formulas. Generalizations to full STL and considering signal traces defined
by piecewise linear interpolation over given discrete-time points are important
directions for future work.
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