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Abstract. We present R2U2, a novel framework for runtime monitor-
ing of security properties and diagnosing of security threats on-board
Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hard-
ware, is a real-time, Realizable, Responsive, Unobtrusive Unit for
security threat detection. R2U2 is designed to continuously monitor
inputs from the GPS and the ground control station, sensor readings,
actuator outputs, and flight software status. By simultaneously monitor-
ing and performing statistical reasoning, attack patterns and post-attack
discrepancies in the UAS behavior can be detected. R2U2 uses runtime
observer pairs for linear and metric temporal logics for property monitor-
ing and Bayesian networks for diagnosis of security threats. We discuss
the design and implementation that now enables R2U2 to handle secu-
rity threats and present simulation results of several attack scenarios on
the NASA DragonEye UAS.

1 Introduction

Unmanned Aerial Systems (UAS) are starting to permeate many areas in every-
day life. From toy quadcopters, to industrial aircraft for delivery, crop dust-
ing, public safety, and military operations, UAS of vastly different weight, size,
and complexity are used. Although the hardware technology has significantly
advanced in the past years, there are still considerable issues to be solved before
UAS can be used safely. Perhaps the biggest concern is the integration of UAS
into the national airspace (NAS), where they have to seamlessly blend into the
crowded skies and obey Air Traffic Control commands without endangering other
aircraft or lives and property on the ground [5].

A related topic, which has been vastly neglected so far, is security [24]. All
sensors and software set up to ensure UAS safety are useless if a malicious attack
can cause the UAS to crash, be abducted, or cause severe damage or loss of life.
Often, live video feeds from military UAS are not encrypted, so people on the
ground, with only minimal and off-the-shelf components, could see the same
images as the remote UAS operator [29]. In 2011, Iran allegedly abducted a CIA
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drone by jamming its command link and spoofing its GPS. Instead of returning
to the CIA base, the UAS was directed to land on Iranian territory [6]. Even
large research UAS worth millions of dollars are controlled via unencrypted RF
connections; most UAS communicate over a large number of possible channels
[9], relying on the assumption that “one would have to know the frequencies”1

to send and receive data.
There are multiple reasons for these gaping security holes: most UAS flight

computers are extremely weak with respect to computing power. Thus, on-board
encryption is not possible, especially for larger data volumes as produced, for
example, by on-board cameras [12]. Another reason is that a lot of UAS tech-
nology stems from the Hobby RC area, where security is of low concern. Finally,
security aspects have only played a minor role in FAA regulation to date [7].

On a UAS, there are multiple attack surfaces: the communication link, sen-
sor jamming or spoofing, exploitation of software-related issues, and physical
attacks like catching a UAS in a net. In this paper, we focus on the detection of
communication, sensor, and software-related security threats, but do not elabo-
rate on attack prevention or possible mitigation strategies. Though design-time
verification and validation activities can secure a number of attack surfaces, an
actual attack will, most likely, happen while the UAS is in the air. We therefore
propose the use of dynamic monitoring, threat detection, and security diagnosis.

In order to minimize impact on the flight software and the usually weak flight
computer, R2U2 is implemented using FPGA hardware. This no-overhead imple-
mentation is designed to uphold the FAA requirements of Realizability and
Unobtrusiveness. To our knowledge, there are only two previous embedded
hardware monitoring frameworks capable of analyzing formal properties: P2V
[15] and BusMOP [19,23]. However, P2V is a PSL to Verilog compiler that vio-
lates our Unobtrusiveness requirement by instrumenting software. Like R2U2,
BusMOP can monitor COTS peripherals, achieving zero runtime overhead via
a bus-interface and an implementation on a reconfigurable FPGA. However,
BusMOP violates our Realizability requirement by reporting only property
failures and handling only past-time logics whereas we require early-as-possible
reporting of future-time temporal properties passing and intermediate status
updates. BusMOP also violates Unobtrusiveness by executing arbitrary user-
supplied code on the occurrence of any property violation.

Previously, we developed our on-board monitoring and diagnosis frame-
work R2U2 for system health management of hardware-only components and
developed implementations to detect hardware failures [8,25,27]. We defined
and proved correct our FPGA temporal logic observer encodings [25] and our
Bayesian network (BN) encodings [8], which comprise R2U2’s underlying health
model. We also envisioned a compositional building-block framework for integra-
tion with other diagnosis technologies that also analyzed software components
[27]; in this paper, we follow up on that idea by providing the first implementa-
tion of R2U2 that includes software components.

Here, we extend R2U2 to enable the dynamic monitoring of the flight soft-
ware, the communication stream, and sensor values for indications of a malicious

1 Conversation with an Ikhana/Global Hawk pilot, NASA, 2011.
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attack on the autopilot and, even more importantly, to be able to quickly and
reliably detect post-attack behavior of the UAS. The temporal and probabilistic
health models and their FPGA implementations are suited for fast detection and
diagnosis of attacks and post-attack behavior. The separate FPGA implementa-
tion of a security extension to R2U2 described in this paper is highly resilient to
attacks, being an isolated hardware entity and programmed using VHDL. Javaid
et al. [10] also analyze cybersecurity threats for UAS. They simulated the effects
of attacks that usually ended in a crash, focusing on identifying different exist-
ing attack surfaces and vulnerabilities rather than focusing on runtime detection
or post-attack analysis. TeStID [2], ORCHIDS [21], and MONID [20] are intru-
sion detection systems that use temporal logic to specify attack patterns. These
security monitoring frameworks are targeted at IT systems and infrastructure.
Our contributions include:
– extending R2U2 from monitoring of safety properties of hardware [8,25] to

integrating hardware and software bus traffic monitoring for security threats
thus enabling on-board, real-time detection of attack scenarios and post-attack
behavior;

– detection of attack patterns rather than component failures;
– ensuring monitoring and reasoning are isolated from in-flight attacks; our

FPGA implementation provides a platform for secure and independent mon-
itoring and diagnosis that is not re-programmable in-flight by attackers;

– demonstrating R2U2 via case studies on a real NASA DragonEye UAS; and
– implementing a novel extension of R2U2 that we release to enable others to

reproduce and build upon our work:
http://temporallogic.org/research/RV15.html.

The rest of this paper is structured as follows. Section 2 provides background
information on our UAS platform, the open-source flight software, and the R2U2
framework. Section 3 is devoted to our approach of using temporal logic observers
and BN diagnostic reasoning for detection of security threats and post-attack
UAS behavior. In Sect. 4, we will illustrate our approach with several small case
studies on attacks through the ground control station (GCS), attempts to hijack
a UAS through an attacker GCS, and GPS spoofing. Finally, Sect. 5 discusses
future work and concludes.

2 Background

For this paper, we consider a simple and small UAS platform, the NASA Drag-
onEye (Fig. 1A). With a wingspan of 1.1 m it is small, but shares many common-
alities with larger and more complex UAS. Figure 1B shows a high-level, generic
UAS architecture: the UAS is controlled by an on-board flight computer running
the flight software (FSW). It receives measurements from various sensors, like
barometric pressure and airspeed, GPS, compass readings, and readings from
the inertial measurement unit (IMU). Based upon this information and a flight
plan, the FSW calculates the necessary adjustments of the actuators: elevator,
rudder, ailerons, throttle. A ground control station (GCS) computer transmits

http://temporallogic.org/research/RV15.html
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Fig. 1. A: Photo of NASA DragonEye. B: High level system architecture of a small
UAS.

commands and flight plans to the UAS, and receives and displays UAS telemetry
information. For fully autonomous missions, there is no link between the UAS
and the GCS.

Our example system uses the open-source FSW “APM:Plane” [3], which does
not contain any security features like command or data encryption for the GCS-
UAS link per default. We nevertheless selected this FSW because it very closely
resembles the architecture of both similarly small and larger, more complex
UAS. This architecture allows us to easily carry out white-box experiments and
to study the relationship between attacks and post-attack behavior. Results of
our studies can be carried over to highly secure and resilient flight software.

2.1 R2U2

Developed to continuously monitor system and safety properties of a UAS in
flight, our real-time R2U2 (Realizable, Responsive, and Unobtrusive Unit)
has been implemented on an FPGA (Field Programmable Gate Array). Hier-
archical and modular models within this framework are defined using Metric
Temporal Logic (MTL) and mission-time Linear Temporal Logic (LTL) [25] for
expressing temporal properties and Bayesian Networks (BN) for probabilistic
and diagnostic reasoning. In the following, we give a high-level overview of the
R2U2 framework and its FPGA implementation. For details on temporal reason-
ing, its implementation, and semantics the reader is referred to [25]; [8] describes
details on the FPGA implementation of Bayesian networks. Also [28] provides
details on R2U2 modeling and system health management.

Temporal Logic Observers. LTL and MTL formulas consist of proposi-
tional variables, the logic operators ∧, ∨, ¬, or →, and temporal operators to
express temporal relationships between events. For LTL formulas p, q, we have
�p (Always p), ♦p (Eventually p), Xp (NextTime p), pUq (pUntil q), and
pRq (pReleases q) with their usual semantics [25]. For MTL, each of the tem-
poral operators are accompanied by upper and lower time bounds that express
the time period during which the operator must hold. Specifically, MTL includes
the operators �[i,j] p, ♦[i,j] p, p U[i,j] q, and p R[i,j] q where the temporal opera-
tor applies over the interval between time i and time j, inclusive, and time steps
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refer to ticks of the system clock. For mission-bounded LTL operators these time
bounds are implied to be the start and end of the UAS mission.

Bayesian Networks for Health Models. In many situations, temporal logic
monitoring might find several violations of security and safety properties. For
example, a certain system state might have been caused by an attack or by
a bad sensor; we can use the combination of property violations to determine
which one. In order to be able to disambiguate the root causes, the R2U2 frame-
work uses Bayesian Networks (BN) for diagnostic reasoning. BNs are directed
acyclic graphs, where each node represents a statistical variable. BNs are well-
established in the area of diagnostics and health management (e.g., [18,22]).
Conditional dependencies between the different statistical variables are repre-
sented by directed edges; local conditional probabilities are stored in the Condi-
tional Probability Table (CPT) of each node [8,26,28]. R2U2 evaluates posterior
probabilities, which reflect the most likely root causes at each time step.

2.2 FPGA Implementation

R2U2 is implemented in FPGA hardware (Fig. 2). Signals from the flight com-
puter and communication buses are filtered and discretized in the signal process-
ing (SP) unit to obtain streams of propositional variables. The runtime ver-
ification (RV) and runtime reasoning (RR) units comprise the proper health
management hardware: the RV unit monitors MTL/LTL properties using pairs
of synchronous and asynchronous observers defined in [25]. After the temporal
logic formulas have been evaluated, the results are transferred to the RR sub-
system, where the compiled Bayesian network is evaluated to yield the posterior
marginals of the health model.

Fig. 2. Principled R2U2 implementation

3 Our Approach to Threat-Detection

For our approach, we consider the “system” UAS (as depicted in Fig. 1B) as a
complex feedback system. Commands, GPS readings, and measurements of the
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sensors are processed by the FSW on the flight computer to calculate new values
for the actuators, and to update its internal status. In this paper, we assume
that all malicious attacks are attempted via communication during flight.2 Fur-
thermore, all communications to the UAS are received via a wireless link from
the ground control station, or GPS satellites, or transmitters only. Spoofing of
the compass sensor, for example, via a strong magnetic field is outside the scope
of R2U2.

With our R2U2 framework, we continuously monitor inputs from ground
control and GPS and can identify many attack mechanisms and surfaces. Typical
examples include denial-of-service, sending of illegal or dangerous commands,
or jamming of the GPS receiver. Because, in most cases, information about the
communication does not suffice to reliably identify an attack scenario, additional
supporting information is necessary. This will be obtained from the analysis of
post-attack behavior of the UAS. Any successful attack on the UAS will result
in some unusual and undesired behavior of the UAS.

Fig. 3. High-level architecture of R2U2

Monitoring the system inputs and analyzing the post-attack behavior are
not independent from each other so we have to model their interactions within
our R2U2 framework. Typically, a certain input pattern followed by a specific
behavior characterizes an attack. For example, a strong oscillation in the aircraft
movement that was triggered by an unusual GCS command indicates an attack
(or an irresponsible pilot). Similarly, transients in GPS signals followed by subtle
position movements could be telltales of a GPS spoofing attack. Figure 3 shows
how our R2U2 framework monitors the various inputs going into the UAS sys-
tem (GCS and GPS), as well as sensor/actuator signals and status of the flight
software for post-attack analysis. We next consider modeling for attacks and
post-attack behavior, loosely following [14].

3.1 Attack Monitoring

As all attacks are initiated through the GCS or GPS inputs, we monitor the
following attack surfaces. Because of zero-day attack mechanisms, this list will
always be incomplete [4]. Note that the occurrence of such a situation does

2 In this paper, we do not model attack scenarios via compromised flight software.
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not mean that an actual attack is happening; other reasons like unusual flight
conditions, transmission errors, or faulty hard- or software might be the reason.

Ill-formatted and illegal commands should not be processed by the FSW.
Such commands could result from transmission errors or might be part of an
attack. If such commands are received repeatedly a denial-of-service attack
might be happening.

Dangerous commands are properly formatted but might cause severe prob-
lems or even a crash depending on the UAS mode. For example, a “reset-
FSW” command sent to the UAS while in the air, will, most certainly, lead
to a crash of the UAS because all communication and system parameters are
lost. Thus, in all likelihood, receiving this command indicates a malicious
attack. Other dangerous commands are, for example, the setting of a gain
in the control loops during flight. However, there are situations where such
a command is perfectly legal and necessary.

Nonsensical or repeated navigation commands could point to a malicious
attack. Although new navigation waypoints can be sent to a UAS during
flight to update its mission, repeated sending of waypoints with identical
coordinates, or weird/erroneous coordinates might indicate an attack.

Transients in GPS signals might be signs of GPS spoofing or jamming.
Because the quality of UAS navigation strongly depends on the quality of the
received GPS signals, sudden transients in the number of available satellites,
or signal strength and noise ratios (Jamming-to-Noise Sensing [9]) might
indicate a GPS-based attack.

It should be noted that these patterns do not provide enough evidence to
reliably identify an attack. Only in correspondence with a matching post-attack
behavior are we able to separate malicious attacks from unusual, but legal com-
mand sequences. We therefore also monitor UAS behavior.

3.2 System Behavior Monitoring

Our R2U2 models for monitoring post-attack behavior obtain their information
from the UAS sensors, actuators, and the flight computer. In our current setting,
we do not monitor those electrical signals directly, but obtain their values from
the FSW. This simplification, however, prevents our current implementation
from detecting a crash of the flight software initiated by a malicious attack.
With our R2U2 framework we are able to monitor the following UAS behaviors,
which might (or might not be) the result of a malicious attack.

Oscillations of the aircraft around any of its axes hampers the aircraft’s per-
formance and can lead to disintegration of the plane and a subsequent crash.
Pilot-induced oscillations (PIO) in commercial aircraft have caused severe
accidents and loss of life. In a UAS such oscillations can be caused by issu-
ing appropriate command sequences or by setting gains of the control loops
to bad values. Oscillations of higher frequencies can cause damage due to
vibration or can render on-board cameras inoperative.



240 J. Schumann et al.

Deviation from flight path: In the nominal case, a UAS flies from one way-
point to the next via a direct path. Sudden deviations from such a straight
path could indicate some unplanned or possibly unwelcome maneuver. The
same observation holds for sudden climbs or descents of the UAS.

Sensor Readings: Sudden changes of sensor readings or consistent drift in the
same direction might also be part of a post-attack behavior. Here again,
such behavior might have been caused by, for example, a failing sensor.

Unusual software behavior like memory leaks, increased number of real-time
failures, or illegal numerical values can possibly point to an on-going mali-
cious attack. In the case of software, such a behavior might be a post-attack
behavior or the manifestation of the attack mechanism itself. Therefore,
security models involving software health are the most complex ones.

3.3 R2U2 Models

We capture the specific patterns for each of the attack and behavior observers
with temporal logic and Bayesian networks. We also use these mechanisms to
specify the temporal, causal, and probabilistic relationships between them. As a
high-level explanation, an attack is detected if a behavioral pattern B is observed
some time after a triggering attack A has been monitored. Temporal constraints
ensure that these events are actually correlated. So, for example, we can express
that an oscillation of the UAS (osc = true) occurs between 100–200 time steps
after the control loop parameters have been altered (param change = true).
Any trace satisfying the following formula could indicate an attack.

�(param change ∧ ♦[100,200]osc)

3.4 Modeling Variants and Patterns

The combination of signal processing, filtering, past-time and future-time MTL,
and Bayesian reasoning provides a highly expressive medium for formulating
security properties. Further generality can be achieved by grouping related indi-
cators. For example, we can define groups of dangerous commands, unusual
repeated commands, or events:

dangerous cmds = cmd reset ∨ cmd calibrate sensor ∨ cmd disarm ∨ . . .
unusual cmds airborne = cmd get params ∨ set params ∨ get waypoints ∨ . . .
unusual cmds periodic = cmd nav to ∨ cmd mode change ∨ invalid packet rcvd

This enables us to directly use these preprocessed groups in temporal formu-
las and feed them into a BN, thereby supporting simple reuse of common pat-
terns and assisting more comprehensive security models. The following example
demonstrates how we use such patterns to specify that there shall be no danger-
ous commands between takeoff and landing.

�[(CMD == takeoff) → ((¬ dangerous cmds) U landing complete)]
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Fig. 4. Threat detection with R2U2 model.

3.5 Bayesian Networks for Security Diagnosis

Most models of attack monitoring and post-attack behavior are capable of indi-
cating that there might have been an attack, but cannot reliably detect one as
such, because the observed patterns could have been caused by a sensor failure,
for example. However, we can use the BN reasoning engine of R2U2 to perform
better probabilistic diagnosis. For details of Bayesian R2U2 models see [28]. The
results of all the temporal observers are provided as inputs to the observable
nodes (shaded in Fig. 4) of the BN. The internal structure of the BN then deter-
mines how likely a specific attack or failure scenario is. Prior information helps to
disambiguate the diagnosis. For example, a sudden change in measured altitude
could be attributed to a failing barometric altimeter, a failing laser altimeter, a
failing GPS receiver, or a GPS spoofing attack. In order to determine the most
likely root cause, additional information about recently received commands, or
the signal strength of the GPS receiver can be used. So, transients in GPS signal
strength with otherwise healthy sensors (i.e., measured barometric and laser alti-
tude coincide) make an attack more likely. On the other hand, strongly diverging
readings from the on-board altitude sensors make a sensor failure more likely.
With prior information added to the BN, we can, for example, express that the
laser altimeter is much more likely to fail than the barometric altimeter or the
GPS sensor. Also, GPS transients might be more likely in areas with an overall
low signal strength. Since a BN is capable of expressing, in a statistically cor-
rect way, the interrelationships of a multitude of different signals and outputs of
temporal observers, R2U2 can provide best-possible attack diagnosis results as
sketched in Fig. 4.

4 Experiments and Results

Our experiments can be run either in a software-in-the-loop (SITL) simulation or
directly on the UAS; most of the experiments in this paper were executed on our
Ironbird processor-in-the-loop setup, which consists of the original UAS flight
computer hardware components in a laboratory environment. In all configura-
tions, the produced data traces were forwarded via a UART transmission to the
R2U2 framework running on an Adapteva Parallella Board [1]. R2U2 is imple-
mented on this credit-card sized, low-cost platform where the actual monitoring
is performed inside the Xilinx3 zynq xc7z010 FPGA. Our R2U2 implementation
3 http://www.xilinx.com.

http://www.xilinx.com
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Fig. 5. R2U2 SITL test setup

(Fig. 2) uses 40 % of the FPGA’s slice registers and 64 % of its slice look-up
tables (LUTs). These numbers are independent of the size and structure of the
LTL and MTL formulas. The implementation in this paper used 128 input sig-
nals through the UART to the FPGA, though this number could be extended
for other implementations. The R2U2 framework is running with a maximum
frequency 85.164 MHz. An Ubuntu Linux installation on the Parallella board
is used for the interface configuration, signal preprocessing, and evaluation of
arithmetic circuits. In our SITL simulation (Fig. 5), the UAS flight behaviors is
simulated by the open source JSBSim [11] flight dynamics model. All hardware
components are emulated by SITL low-level drivers, which enables us to inject
the desired behaviors without the risk of damaging the aircraft during a real
test flight. The operator’s GCS is connected to the UAS via an open source
MAVLink proxy [17]. We also connect a second GCS to the proxy in order to
simulate the attackers injected MAVLink packets.

4.1 Dangerous MAV Commands

In addition to commands controlling the actual flight, the MAVLink protocol
[16] allows the user to remotely set up and configure the aircraft. In particular,
parameters that control the feedback loops inside the FSW can be defined, as
they need to be carefully adjusted to match the flight dynamics of the given
aircraft. Such commands, which substantially alter the behavior of the UAS
can, when given during flight, cause dangerous behavior of the UAS or a poten-
tial crash. In 2000, a pilot of a Predator UAS inadvertently sent a command
“Program AV EEPROM” while the UAS was in the air. This caused all FSW
parameters and information about communication frequencies to be erased on
the UAS. Communication to the UAS could not be reestablished and the UAS
crashed causing a total loss $3.7 M [31]. If parameters for the FSW control loops
are set to extreme values during flight, the aircraft can experience oscillations
that could lead to disintegration of the UAS and a subsequent crash. Therefore,
such commands might be welcome targets for a malicious attack.

In this experiment, we set up our R2U2 to capture and report such dan-
gerous behaviors. Our security model consists of two parts: (a) detection
that a potentially dangerous MAV command has been issued, and (b) that
a dangerous behavior (in our case, oscillation around the pitch axis) occurs.
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Fig. 6. UAS behavior after malicious setting of gain parameters (Color figure online)

Each of the parts seen individually does not give an indication of an attack:
MAV commands to change parameters are perfectly legal in most circumstances.
On the other hand, oscillations can be caused by turbulence, aircraft design,
or the pilot (pilot-induced-oscillations). Only the right temporal combination
of both pieces of information allows us to deduce that a malicious attack has
occurred: after receiving the “set parameter” command, a substantial and per-
sistent oscillation must follow soon thereafter. In our model we use the specifi-
cation �(C ∧ ♦[0,1200](�[0,300]O)) where O is the occurrence of oscillations and
C is the event of receiving a “set parameter” command. We require that the
oscillation persists for at least 300 time steps and is separated from the com-
mand by not more than 1200 time steps. The event C can be directly extracted
from the stream of received MAV commands; oscillations can be detected with
the help of a Fast Fourier Transform (FFT) on the pitch, roll, or yaw angu-
lar values. Figure 6 shows how such an attack occurs. The top panel shows the
UAS pitch as well as the points in time when a “set-parameter” command has
been received (blue boxes). Caused by a malicious command (setting pitch gain
extremely high) issued at around t = 2800, a strong low-frequency up-down
oscillation appears in the pitch axis. That excessive gain is turned off at around
t = 5100 and the oscillation subsides. Shortly afterwards, at t = 5900, a mali-
cious setting of a damping coefficient causes smaller oscillations but at a higher
frequency. This oscillation ramps up much quicker and ends with resetting that
parameter. In the second panel, two elements of the power spectrum obtained
by an FFT transform of the pitch signals are shown. The signals, which have
been subjected to a low-pass filter clearly indicate the occurrence of a low (red)
and high (blue) frequency oscillation. The third panel shows the actual Boolean
inputs for R2U2: “set-parameter received” C, “Low-frequency-oscillation” OL,
and “high-frequency-oscillation” OH . The bottom panel shows valuations of for-
mulas �(C ∧ ♦[0,1200](�[0,300]OL)) and �(C ∧ ♦[0,500](�[0,200]OH)) as produced
by the R2U2 monitor. On the latter property the maximal lead time of the
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malicious attack has been set to only 500 time steps to reduce the number of false
alarms, because the high-frequency oscillation ramps up almost immediately. We
estimate that 10 person-hours were spent writing, debugging, and revising the
two temporal logic properties used for this experiment and approximately 30 h
were spent on experimental setup and simulation.

4.2 DoS Hijack Attack

Attackers continuously find new ways to break into and compromise a system.
Therefore, it is challenging to account for every possible attack scenario, since
there can always be an unforeseen loophole. The following experiment shows how
our R2U2 framework can detect an intrusion without the need for an explicit
security model for each specific scenario. Here, we will look at possible indicators
that can be grouped into patterns as described earlier.

In our simulation we initiate a sophisticated attack to hijack the UAS by
first trying to establish a link from the attacker’s GCS to the UAS. Because the
attacker has to cope with issues like an incorrect channel, a different version of
the protocol, or link encryption, a large number of bad command packets will be
received within a short time frame. The top panel of Fig. 7 shows such a typical
situation (black). The R2U2 security model could use, for example, the following
formula for detection given the rate of received bad command packages Rb per
time step:

F1 ≡ �[0,10](Rb = 0 ∨ (Rb ≥ 1 U[0,10]Rb = 0))

The formula F1 means that no more than one bad command is received within
each time interval of length 10 time steps.

Next, an attacker could try to gather information about the UAS, e.g., by
requesting aircraft parameters or trying to download the waypoints using the
MAVLink protocol. This activity is shown in Fig. 7 as blue spikes between time
step 1000 and 1300. For our model, we use the input command groups defined
earlier. With Cu as the event of receiving an unusual command, we state that
no unusual command should be received after takeoff until the UAS has landed.

F2 ≡ �((CMD == takeoff) → ( ¬ Cu) U landing complete)

Finally, an attacker may flood the communication link in a way similar to a
Denial of Service (DoS) attack by sending continuous requests Cnav to navigate
to the attacker’s coordinates, combined with requests Chomeloc to set the home
location of the UAS to the same coordinates. This phase of the attacks results in
a continuously high number of navigation commands starting around t = 1400 as
shown in the bottom panel of Fig. 7. For attack detection, we specify formulas,
either explicitly detecting an unusual period of navigational commands (F3),
or detecting a group of previously-defined unusual periodic commands (F4). F3

states that there shall be no continuous navigation requests for more than 30 time
steps: �[0,30]Cnav. Finally, F4 states that there shall be no continuous unusual
periodic events for more than 60 time steps: �[0,60]Cu. The formulas F1, F2, F3,
and F4 are not reliable indicators of an ongoing attack if viewed individually.
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Fig. 7. UAS DoS hijack results (Color figure online)

Only by considering the overall pattern can we calculate a high probability for
an ongoing attack. In order to accomplish this, we feed the results of these
formulas into a Bayesian network for probabilistic reasoning. We estimate that
6 person-hours were spent writing, debugging, and revising the four temporal
logic properties used for this experiment and approximately 15 h were spent on
experimental setup and simulation.

Even if the attack was detected by a UAS operator, all attempts to change the
UAS to its original course would immediately be overwritten by the attacker’s
high-rate navigation commands. Due to the altered home coordinates, any
attempt of the UAS to return to the launch site would fail as well. Rather it
would fly to the target location desired by the attacker. Furthermore, the simu-
lation of this scenario showed that besides crashing the UAS intentionally, there
was no simple way for the UAS operator to prevent this kind of hijacking. In
particular, for autonomous missions, where the UAS is flying outside the oper-
ator’s communication range, it is essential that the UAS is capable of detecting
such an attack autonomously.

In order to protect a UAS from attacks against command link jamming, a
UAS is sometimes deliberately put into a complete autonomous mode, where it
does not accept any further external commands [9]. Ironically, what was intended
to be a security measure could inhibit the operator’s attempts to recover a UAS
during such an attack. However, R2U2 enables the UAS to detect an ongoing
attack autonomously in order to enable adequate countermeasures.

4.3 GPS Spoofing

GPS plays a central role in the control of autonomous UAS. Typically, a flight plan
for a UAS is defined as a list of waypoints, each giving a target specified by its
longitude, latitude, and altitude. The FSW in the UAS then calculates a trajec-
tory to reach the next waypoint in sequence. In order to accomplish this, the UAS
needs to know its own position, which it obtains with the help of a GPS receiver.



246 J. Schumann et al.

Due to limited accuracy, only GPS longitude and latitude are used for navigation;
the UAS’s current altitude is obtained using, e.g., the barometric altimeter.

For the control of UAS attitude, the UAS is equipped with inertial sensors.
Accelerometers measure current acceleration along each of the aircraft axes;
gyros measure the angular velocity for each axis. Integration of these sensor val-
ues yields relative positions and velocities. These data streams are produced at a
very fast rate and are independent from the outside interference but very noisy.
Thus, the inertial sensors alone cannot be used for waypoint navigation. There-
fore, the FSW uses an Extended Kalman Filter (EKF) to mix the inertial signals
with the GPS position measurements. If the inertial measurements deviate too
much from the GPS position, the filter is reset to the current GPS coordinates.

Several methods for attacking the GPS-based navigation of a UAS are known,
including GPS jamming and GPS spoofing. In a jamming attack, the signals sent
from the GPS satellites are drowned out by a powerful RF transmitter sending
white noise. The UAS then cannot receive any useful GPS signals anymore and
its navigation must rely on compass and dead reckoning. Such an attack can
cause a UAS to miss its target or to crash. A more sophisticated attack involves
GPS spoofing. In such a scenario, an attacker gradually overpowers actual GPS
signals with counterfeit signals that have been altered to cause the UAS to
incorrectly estimate its current position. That way, the UAS can be directed
into a different flight path.

This type of attack became widely known when Iran allegedly used GPS
spoofing to hijack a CIA drone and forced it to land on an Iranian airfield
rather than its base [6,30]. Subsequently, researchers from the University of
Texas at Austin successfully demonstrated how an $80M yacht at sea,4 as well
as a small UAS can be directed to follow a certain pattern due to GPS spoofing
[13]. Because civil GPS signals are not encrypted it is always possible to launch
a GPS spoofing attack. For such an attack, only a computer and a commercially
available GPS transmitter is necessary. We can employ our R2U2 framework to
detect realistic GPS spoofing attacks like the common attack scenarios described
in [13]; whereas that paper discusses attack detection in theory we demonstrate it
via hardware-in-the-loop simulation on-board our IronBird UAS. Here we focus
on attack detection; techniques to avoid or mitigate GPS spoofing are beyond
the scope of this paper.

Our developed R2U2 model monitors the quality of the GPS signal and the
inertial navigation information. For our experimental evaluation, we defined a
UAS mission that flies, at a fixed altitude, toward the next waypoint south-south-
west of the current UAS location. When spoofing occurs, the attacker modifies
the GPS signal in such a way that it tricks the UAS into believing it is still flying
a direct route as expected. In reality, however, the UAS is actually veering off to
reach a target point defined by the attacker. Figure 8 shows the relevant signals
during this mission. Here, we focus on the latitude as observed by the UAS. The
top panel shows the point of the spoofing attack and the trace for the temporal
development of the UAS latitude as observed by the UAS (black) and the actual

4 http://www.ae.utexas.edu/news/features/humphreys-research-group.

http://www.ae.utexas.edu/news/features/humphreys-research-group
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Fig. 8. Set of traces that indicate GPS spoofing (Color figure online)

UAS position (blue). A severe and increasing discrepancy can be observed as the
effect of the attack. As the actual position (ground truth) is not available to the
on-board FSW, R2U2 reasons about relationships with alternate signals that
convey similar information. The inertial navigation unit produces an error or
offset signal that reflects the deviation between the current position observed by
GPS and the inertial sensors. The next two panels of Fig. 8 shows that these offset
signals can become substantially large during the actual spoofing period, when
the GPS locations are gradually moved to the attacker’s target. The bottom
panel shows the spoofing detection output stream from R2U2. We estimate that
10 person-hours were spent on model development and approximately 45 h were
spent on experimental setup and simulation.

Again, these signals are not individually absolute indicators that an attack
has happened. Flying in areas with weak GPS coverage, for example, in a
mountainous or urban environment, could produce similar signals. Therefore,
in our R2U2 models, we aim to take into account other observation patterns and
use a Bayesian network for probabilistic reasoning. Information supporting the
hypothesis of an attack could include prior loss of satellite locks, transients in
GPS signals, or other types of attacks. In the case of the captured CIA drone,
an Iranian engineer claimed to have jammed the drone’s communications link
in order to force the drone into an autopilot mode and then initiated the GPS
spoofing attack [30].

5 Conclusion

We have extended our Realizable, Responsive, Unobtrusive Unit (R2U2)
to enable real-time monitoring and diagnosis of security threats. This includes
the ability to reason about complex and subtle threats utilizing indicators from
both the UAS system and its software. Our embedded implementation on-board
a standard, flight-certifiable FPGA meets stated FAA requirements and effi-
ciently recognizes both individual attack indicators and attack patterns, adding
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a new level of security checks not available in any previous work. Case studies
on-board a real NASA DragonEye UAS provide a promising proof-of-concept of
this new architecture.

The myriad directions now open for future work include considering software
instrumentation to enable more FSW-related compromises and doing hardware-
in-the-loop simulation experiments to detect these. We plan to extend this tech-
nology to other, more complex UAS and beyond, to other types of aircraft and
spacecraft with different configurations and capabilities. A major bottleneck of
the current R2U2 is the manual labor required to develop and test every tempo-
ral logic formula and BN; we are currently considering methods for making this
a semi-automated process to better enable future extensions.
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