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Preface

This volume contains the proceedings of the 15th International Conference on Runtime
Verification (RV 2015), which was held on September 22–25, 2015 at TU Wien,
Vienna, Austria.

The RV series is an annual meeting that gathers together scientists from both
academia and industry interested in investigating novel lightweight formal methods to
monitor, analyze, and guide the execution of programs. The discussion centers around
two main aspects. The first is to understand whether the runtime verification techniques
can practically complement the traditional methods for proving programs correct before
their execution, such as model checking and theorem proving. The second concerns
formal methods and how their application can improve traditional ad-hoc monitoring
techniques used in performance monitoring, hardware design emulation, etc.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events to an established forum, including
CAV and ETAPS. The proceedings for RV from 2001 to 2005 were published in the
Electronic Notes in Theoretical Computer Science. Since 2006, the RV proceedings
have been published in Springer’s Lecture Notes in Computer Science. The previous
five editions of the RV conference took place in Malta (2010), San Francisco, USA
(2011), Instanbul, Turkey (2012), Rennes, France (2013), Toronto, Canada (2014).

RV 2015 received 45 submissions, from which the Program Committee accepted 15
regular papers, 4 short papers, and 2 tool demonstration papers. All papers received at
least 4 reviews. The paper selection process involved extensive discussion among the
members of the Program Committee and external reviewers through the EasyChair
conference manager. The status of the papers had been decided once a consensus had
been reached by the committee.

To complement the contributed papers, we also included in the program three
invited lectures by P. Godefroid (Microsoft Research, USA), S. Sankaranarayanan
(University of Colorado Boulder, USA), and G. Weissenbacher (TU Wien, Austria),
and four tutorials presented during the first day.

RV 2015 also hosted two co-located events: the 5th International Challenge on the
Rigorous Examination of Reactive Systems (RERS) and the 2nd International Com-
petition on Runtime Verification (CRV).

We are extremely grateful to the members of the Program Committee and their
sub-reviewers for their insightful reviews and discussion. The editors are also grateful
to the authors of the accepted papers for revising the papers according to the sug-
gestions of the Program Committee and for their responsiveness on providing the
camera-ready copies within the deadline.

We would also like to thank Klaus Havelund and all the members of the RV
Steering Committee for their advice on organizing and running the conference.



Special thanks also to the Austrian Association of Computer Science, and in par-
ticular, Karin Hiebler and Christine Haas, for their support and valuable assistance with
the online registration.

The EasyChair conference management system was used in the submission, review,
and revision processes, as well as for the assembly of the symposium proceedings. We
thank the developers of EasyChair for this invaluable service. Finally, we thank
NVIDIA for providing their equipment as the best paper award.

June 2015 Ezio Bartocci
Rupak Majumdar
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Towards a Verified Artificial Pancreas:
Challenges and Solutions for Runtime

Verification

Fraser Cameron1, Georgios Fainekos2, David M. Maahs3

and Sriram Sankaranarayanan4

1 Department of Mechanical Engineering, University of Texas, El Paso
2 School of Computing, Informatics and Decision Systems Engg.,

Arizona State Univ., Tempe
3 Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver

4 Department of Computer Science, University of Colorado, Boulder

Abstract. In this paper, we briefly examine the recent developments in artificial
pancreas controllers, that automate the delivery of insulin to patients with type-1
diabetes. We argue the need for offline and online runtime verification for these
devices, and discuss challenges that make verification hard. Next, we examine a
promising simulation-based falsification approach based on robustness semantics
of temporal logics. These ideas are implemented in the tool S-Taliro that auto-
matically searches for violations of metric temporal logic (MTL) requirements
for Simulink(tm)/Stateflow(tm) models. We illustrate the use of S-Taliro for
finding interesting property violations in a PID-based hybrid closed loop control
system.



Twenty Years of Dynamic Software Model
Checking

Patrice Godefroid

Microsoft Research
pg@microsoft.com

Abstract. Dynamic software model checking consists of adapting model
checking into a form of systematic testing that is applicable to industrial-size
software. Over the last two decades, dozens of tools following this paradigm
have been developed for checking concurrent and data-driven software. This
talk will review twenty years of research on dynamic software model checking.
It will highlight some key milestones, applications, and successes. It will also
discuss limitations, disappointments, and future work.



Explaining Heisenbugs

Georg Weissenbacher

TU Wien, Austria

Abstract. Heisenbugs are complex software bugs that alter their behaviour when
attempts to isolate them are made. The term heisenbug is a pun on the name of
physicist Werner Heisenberg and refers to bugs whose analysis is complicated by
the probe effect, an unintended alteration of system behaviour caused by an
observer.

Heisenbugs are most prevalent in concurrent systems, where the interplay of
multiple threads running on multi-core processors leads to intricate effects not
anticipated by the developer. Faced with a heisenbug, it is the tedious task of the
programmer to reproduce the erroneous behaviour and analyse its cause before
the bug can be fixed.

It is exactly in these situations that automated analyses are the most desirable.
Model checkers and systematic testing tools, for instance, can automatically
reproduce erroneous executions manifesting the bug. The subsequent inspection
of the error trace, however, is still a time-consuming process that requires sub-
stantial insight.

My group developed two approaches to analyse erroneous executions and
explain concurrency bugs, attacking the problem from different angles. In both
cases, the goal is to allow the programmer to focus on the essence of the bug
rather than the specifics of the failed execution. On the one hand, we use data
mining to extract explanations from execution logs by juxtaposing successful
runs of the program with failed executions. The resulting explanations highlight
potentially problematic data dependencies that frequently occur in failing exe-
cutions. The second approach relies on static analysis and automated reasoning to
obtain a slice of an erroneous execution trace that reflects the core of the problem.

After introducing both approaches, I will discuss their advantages as well as
shortcomings, and explain differences regarding soundness and comprehensi-
bility using case studies and empirical results.

G. Weissenbacher — Supported by the Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund (WWTF)
through grant VRG11-005.



Contents

Invited Paper

Towards a Verified Artificial Pancreas: Challenges and Solutions
for Runtime Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fraser Cameron, Georgios Fainekos, David M. Maahs,
and Sriram Sankaranarayanan

Regular Papers

Qualitative and Quantitative Monitoring of Spatio-Temporal Properties . . . . . 21
Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti,
and Mieke Massink

Runtime Adaptation for Actor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Ian Cassar and Adrian Francalanza

Robust Online Monitoring of Signal Temporal Logic. . . . . . . . . . . . . . . . . . 55
Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh,
Xiaoqing Jin, Garvit Juniwal, and Sanjit A. Seshia

On Verifying Hennessy-Milner Logic with Recursion at Runtime . . . . . . . . . 71
Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir

Assuring the Guardians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Jonathan Laurent, Alwyn Goodloe, and Lee Pike

A Case Study on Runtime Monitoring of an Autonomous Research Vehicle
(ARV) System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Aaron Kane, Omar Chowdhury, Anupam Datta, and Philip Koopman

Monitoring Electronic Exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Ali Kassem, Yliès Falcone, and Pascal Lafourcade

Monitoring Real Android Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Jan-Christoph Küster and Andreas Bauer

Time-Triggered Runtime Verification of Component-Based Multi-core
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Samaneh Navabpour, Borzoo Bonakdarpour,
and Sebastian Fischmeister

http://dx.doi.org/10.1007/978-3-319-23820-3_1
http://dx.doi.org/10.1007/978-3-319-23820-3_1
http://dx.doi.org/10.1007/978-3-319-23820-3_2
http://dx.doi.org/10.1007/978-3-319-23820-3_3
http://dx.doi.org/10.1007/978-3-319-23820-3_4
http://dx.doi.org/10.1007/978-3-319-23820-3_5
http://dx.doi.org/10.1007/978-3-319-23820-3_6
http://dx.doi.org/10.1007/978-3-319-23820-3_7
http://dx.doi.org/10.1007/978-3-319-23820-3_7
http://dx.doi.org/10.1007/978-3-319-23820-3_8
http://dx.doi.org/10.1007/978-3-319-23820-3_9
http://dx.doi.org/10.1007/978-3-319-23820-3_10
http://dx.doi.org/10.1007/978-3-319-23820-3_10


Monitoring for a Decidable Fragment of MTL-
R
. . . . . . . . . . . . . . . . . . . . . 169

André de Matos Pedro, David Pereira, Luís Miguel Pinho,
and Jorge Sousa Pinto

Runtime Verification Through Forward Chaining . . . . . . . . . . . . . . . . . . . . 185
Alan Perotti, Guido Boella, and Artur d’Avila Garcez

Collision Avoidance for Mobile Robots with Limited Sensing and Limited
Information About the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Dung Phan, Junxing Yang, Denise Ratasich, Radu Grosu,
Scott A. Smolka, and Scott D. Stoller

From First-Order Temporal Logic to Parametric Trace Slicing . . . . . . . . . . . 216
Giles Reger and David Rydeheard

R2U2: Monitoring and Diagnosis of Security Threats for Unmanned
Aerial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier

A Hybrid Approach to Causality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 250
Shaohui Wang, Yoann Geoffroy, Gregor Gössler, Oleg Sokolsky,
and Insup Lee

Short Papers

Statistical Model Checking of Distributed Adaptive Real-Time Software . . . . 269
David Kyle, Jeffery Hansen, and Sagar Chaki

Probabilistic Model Checking at Runtime for the Provisioning of Cloud
Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Athanasios Naskos, Emmanouela Stachtiari, Panagiotis Katsaros,
and Anastasios Gounaris

Runtime Verification for Hybrid Analysis Tools . . . . . . . . . . . . . . . . . . . . . 281
Luan Viet Nguyen, Christian Schilling, Sergiy Bogomolov,
and Taylor T. Johnson

Suggesting Edits to Explain Failing Traces. . . . . . . . . . . . . . . . . . . . . . . . . 287
Giles Reger

Tool Papers

STARVOORS: A Tool for Combined Static and Runtime Verification
of Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Jesús Mauricio Chimento, Wolfgang Ahrendt, Gordon J. Pace,
and Gerardo Schneider

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-23820-3_11
http://dx.doi.org/10.1007/978-3-319-23820-3_12
http://dx.doi.org/10.1007/978-3-319-23820-3_13
http://dx.doi.org/10.1007/978-3-319-23820-3_13
http://dx.doi.org/10.1007/978-3-319-23820-3_14
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_16
http://dx.doi.org/10.1007/978-3-319-23820-3_17
http://dx.doi.org/10.1007/978-3-319-23820-3_18
http://dx.doi.org/10.1007/978-3-319-23820-3_18
http://dx.doi.org/10.1007/978-3-319-23820-3_19
http://dx.doi.org/10.1007/978-3-319-23820-3_20
http://dx.doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_21


TiPEX: A Tool Chain for Timed Property Enforcement During eXecution . . . 306
Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand

Tutorial Papers

Machine Learning Methods in Statistical Model Checking and System
Design – Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti

RV-Android: Efficient Parametric Android Runtime Verification, a Brief
Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Philip Daian, Yliès Falcone, Patrick Meredith, Traian Florin Şerbănuţă,
Shin’ichi Shiriashi, Akihito Iwai, and Grigore Rosu

LearnLib Tutorial: An Open-Source Java Library for Active Automata
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Malte Isberner, Bernhard Steffen, and Falk Howar

Monitoring and Measuring Hybrid Behaviors: A Tutorial . . . . . . . . . . . . . . . 378
Dejan Ničković

Software Competitions

Second International Competition on Runtime Verification: CRV 2015 . . . . . 405
Yliès Falcone, Dejan Ničković, Giles Reger, and Daniel Thoma

Rigorous Examination of Reactive Systems: The RERS Challenge 2015 . . . . 423
Maren Geske, Malte Isberner, and Bernhard Steffen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Contents XIX

http://dx.doi.org/10.1007/978-3-319-23820-3_22
http://dx.doi.org/10.1007/978-3-319-23820-3_23
http://dx.doi.org/10.1007/978-3-319-23820-3_23
http://dx.doi.org/10.1007/978-3-319-23820-3_24
http://dx.doi.org/10.1007/978-3-319-23820-3_24
http://dx.doi.org/10.1007/978-3-319-23820-3_25
http://dx.doi.org/10.1007/978-3-319-23820-3_25
http://dx.doi.org/10.1007/978-3-319-23820-3_26
http://dx.doi.org/10.1007/978-3-319-23820-3_27
http://dx.doi.org/10.1007/978-3-319-23820-3_28


Invited Paper



Towards a Verified Artificial Pancreas:
Challenges and Solutions for Runtime

Verification

Fraser Cameron1, Georgios Fainekos2, David M. Maahs3,
and Sriram Sankaranarayanan4(B)

1 Department of Mechanical Engineering, University of Texas, El Paso, USA
2 School of Computing, Informatics and Decision Systems Engineering,

Arizona State University, Tempe, USA
3 Barbara Davis Center for Childhood Diabetes,

University of Colorado, Denver, USA
4 Department of Computer Science, University of Colorado, Boulder, USA

srirams@colorado.edu

Abstract. In this paper, we briefly examine the recent developments in
artificial pancreas controllers, that automate the delivery of insulin to
patients with type-1 diabetes. We argue the need for offline and online
runtime verification for these devices, and discuss challenges that make
verification hard. Next, we examine a promising simulation-based fal-
sification approach based on robustness semantics of temporal logics.
These ideas are implemented in the tool S-Taliro that automatically
searches for violations of metric temporal logic (MTL) requirements for
Simulink(tm)/Stateflow(tm) models. We illustrate the use of S-Taliro for
finding interesting property violations in a PID-based hybrid closed loop
control system.

1 Introduction: Artificial Pancreas

Type-1 Diabetes (T1D) is a chronic condition caused by the inability of the
pancreas to secrete insulin, a hormone that is critical to maintaining blood glu-
cose levels inside a tight euglycemic range [42,59]. The standard treatment for
T1D consists of delivering insulin externally through injections, or more recently,
through insulin pumps that deliver short acting artificial insulin analog, sub-
cutaneously. Insulin pumps provide many features, including the accurate deliv-
ery of insulin at varying rates over time. However, insulin pumps are controlled
manually by the patient, who is ultimately responsible for increasing insulin
delivery at meal times (meal bolus), or decreasing/disabling insulin delivery
during physical activity [11]. The manual control of insulin delivery poses a
heavy burden on the patients themselves, is error-prone and can sometimes lead
to dangerous outcomes [57]. Too much insulin causes a dangerous drop in blood

c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-23820-3 1



4 F. Cameron et al.

glucose levels (hypoglycemia), whereas too little insulin causes the blood glucose
levels to remain high (hyperglycemia), resulting in long term damage to organs
such as the kidneys, eye and peripheral nerves.

The artificial pancreas (AP) project envisions a series of increasingly sophisti-
cated control systems to automate the delivery of insulin to patients with T1D.
At it’s core, the AP system combines a continuous glucose monitor (CGM)
which senses blood glucose levels periodically, and an insulin pump that delivers
insulin in a closed loop managed by a software-based controller. Table 1 shows
the original stage wise development for the overall AP concept. A recently revised
pathway acknowledges that all stages are currently technologically feasible and
classifies insulin delivery beyond stage 3 simply as “insulin-only” control and
“multihormonal” control [39]. The first (and simplest) stage simply shuts off the
pump when the blood glucose level is sensed below a widely accepted thresh-
old for hypoglycemia. Further improvements add the ability to forecast future
trends of the blood glucose and perform predictive pump shutoff, introduce extra
insulin when blood glucose levels are high, predict the onset of meals and finally
a fully closed loop that is expected to completely eliminate the need for manual
control of insulin infusions.

Table 1. Original pathway to the artificial pancreas project with representative
papers showing technological feasibility. Source: Juvenile Diabetes Research Founda-
tion (JDRF). See [39] for a recently proposed revised pathway.

ID Description Refs.

1 Very Low Glucose Pump Shutoff [48]

Pump shutoff during hypoglycemia

2 Hypoglycemia Minimizer [10]

Pump shutoff in advance of predicted future hypoglycemia

3 Hypo/Hyperglycemia Minimizer [4,32,50]

Same as # 2 plus addition of insulin when glucose is above
threshold

4 Hybrid Closed Loop [33–35]

Closed loop insulin delivery with manual bolus

5 Fully Autoamted Closed Loop [7–9,15,19,38,44]

#4 with all manual meal boluses eliminated

6 Multihormone Closed Loop [25,26]

Use glucagon and insulin to achieve bidirectional control

The AP project promises a drastically improved approach to treating T1D
by improving glucose control and reducing the burden of care to the patient.
However, it’s use potentially presents numerous risks to the patient. Too much
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insulin delivered to the patient can drive their blood glucose levels too low,
causing seizures, coma or even death [6]. At the other end, a failure to deliver
adequate insulin to cover meals can result in too high blood glucose levels that
can lead to near-term complications such as ketacidosis. In order to be successful,
the AP controller must tolerate significant sensor noise, and unpredictable events
such as meals, physical activity and pump/sensor failures [16,36]. Furthermore,
software errors in the controller software can have frightening and unexpected
consequences [29].

Since it’s inception in 2001, the Runtime Verification (RV) community has
pioneered numerous techniques in efficient monitoring of temporal requirements
of systems both during deployment (online monitoring) and development (offline
monitoring). Progress in AP controllers bring about two important classes of
challenges to the larger verification community, and specifically to the runtime
verification community:

1. AP controllers have large state-spaces, a rich set of behaviors and are subject
to large disturbances such as meals, exercise, sensor and infusion set failures,
that makes these systems hard to reason with for existing symbolic methods.
We examine the use of simulation-based verification techniques, particularly
for the artificial pancreas controllers.

2. Beyond offline monitoring, it is also necessary to perform online monitoring
of deployed artificial pancreas control systems to detect failures, caused due
to rare events that may be hard to observe in clinical trials. In fact, the idea
of robustness of a trace with respect to a logical specification can also be used
to perform online monitoring for detecting potential failures early [21,23].

In this paper, we focus mainly on offline monitoring and illustrate how
simulation-based falsification techniques can be employed as a first step towards
verified artificial pancreas controllers.

2 Simulation-Based Falsification

In this section, we briefly survey simulation-based falsification approaches. We
focus primarily on robustness-guided falsification, a promising approach that
combines the notion of robustness of temporal logic formulas with stochastic
optimization techniques for automatically search for falsifying traces.

2.1 Simulation-Based Falsification

Model-based falsification techniques for cyber-physical systems (CPS) seek
behaviors of a system that violate a given property ϕ of interest. Falsification
techniques can be symbolic, exploring the system behavior using a constraint
solver [5], or numeric, using numerical simulations of the model to find property
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violations. In practice, significant strides in symbolic falsification have been made
towards faster constraint solvers that support richer logics [20]. Nevertheless, the
state-of-the-art for symbolic model checking techniques are currently restricted
to linear models that involve controllers with linear assignments/conditionals and
plants with linear dynamics [30]. Symbolic model checkers for nonlinear mod-
els and nonlinear controllers are currently a topic of ongoing research [13,14,31].
However, significant algorithmic challenges currently limit the scalability of these
approaches. Furthermore, the use of these techniques on nonlinear, software-
based control system with nonlinear plant models expressed in popular frame-
works such as Simulink(tm)/Stateflow(tm) in Matlab(tm) requires a significant
tool building effort.

Therefore, in this exposition, we focus on simulation-based approaches.
Broadly, a simulation-based falsification technique performs repeated simula-
tions of the system under various inputs and initial conditions, using results
of past simulations to guide the future inputs to the system. Simulation-based
falsification techniques offer two main features: (a) They are able to handle the
system itself as a black box. This is an enormous advantage when the model
is specified in a widely-used formalism such as Simulink(tm)/Stateflow(tm).
Simulink/Stateflow models have complex semantics that change substantially
over successive versions of the Matlab(tm) framework. On the other hand, the
absence of detailed system knowledge is a drawback: repeated simulations are
well-known to be inadequate for exploring systems with large state-spaces. As a
result, simulation-based falsification techniques typically have very weak mathe-
matical guarantees. (b) Simulation is cheap, parallelizable and can be performed
quite accurately even for large nonlinear systems that are beyond the reach of
many symbolic tools. However, numerical simulation tools are approximate: the
simulation trajectories may deviate from the actual system trajectories due to
integration and floating-point errors. Many simulation-based approaches have
been proposed, especially for falsifying properties of CPS. We restrict our dis-
cussion below to two main approaches: (a) Rapid Exploration of Random Trees
(RRTs) and (b) Robustness-Guided Falsification.

RRTs explore the behaviors of the system by building a tree whose nodes are
system states and edges are trajectories connecting these states [41]. At each step,
the tree is grown towards a current target state through a local search technique.
Many variants of the basic RRT approach have been explored, some specifically
designed for the falsification of temporal logic properties of CPS [18,24,53–55].
Recently, the RRT approach has been increasingly successful on larger bench-
marks [24]. However, the performance can be quite variable, depending on the
specific RRT scheme used. Furthermore, the techniques are also quite sensitive
to the choice of distance metrics. Finally, the practical application of RRTs,
specifically to Simulink(tm) /Stateflow(tm) models is currently challenging due
to the large costs of setting up a simulation run. This is disadvantageous since
the standard RRT approach relies on numerous simulations over a short time
period for the local search.
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In contrast, robustness-guided approaches are based on two main ingredi-
ents: (a) First, the notion of temporal property satisfaction is extended to allow
us to have a distance metric to property violation [23,27,56]. Such a metric is
referred to as the “trace robustness”. Intuitively, a trace with a smaller robust-
ness is therefore “closer” to a violation when compared to a trace that has a
larger robustness. (b) In turn, the robustness metric can be used as an objective
function to guide the system towards property violations in a systematic man-
ner by seeking trajectories of ever decreasing robustness [1,3,49]. This is usually
achieved inside a global optimization technique such as Nelder-Mead, simulated
annealing, ant-colony optimization or the cross-entropy method that uses the
robustness as an objective function to minimize.

Fig. 1. Trace robustness for temporal property ϕ : ♦S1 ∧ �S2. Traces x 1, x 2 both sat-
isfy the property: ρ(x 1, ϕ) > ρ(x 2, ϕ) > 0. Likewise, x 3, x 4 both violate the property:
ρ(x 4, ϕ) < ρ(x 3, ϕ) < 0. The robustness cylinder for x 1 is highlighted.

We will now briefly outline the robustness-guided approach for falsifying
Metric Temporal Logic (MTL) properties of systems [40], following the work of
Fainekos and Pappas [27]. The TaLiRo tool implements the MTL monitoring
algorithm inside Matlab(tm). The ideas presented are conceptually similar to
those of Donzé and Maler, using the alternative formalism of Signal Temporal
Logic (STL) [23]. This is implemented in the Breach tool [22]. As mentioned
earlier, the notion of robustness extends the standard Boolean notion of property
satisfaction of a trace (i.e., a trace either satisfies a property or it does not) to
a real-valued notion. Let x : R≥0 → X be a trajectory, mapping time t ≥ 0 to
state x (t) ∈ X and ϕ be a MTL property.

Definition 1 (Robustness Metric). The robustness of x(·) w.r.t ϕ is a real
number ρ(x, ϕ) that has the following properties: (a) ρ(x, ϕ) > 0 if x |= ϕ, and
(b) ρ(x, ϕ) < 0 if x �|= ϕ. Furthermore, the magnitude v : |ρ(x, ϕ)| denotes the
maximum radius of a cylinder around the trace x so that any other trace in the
cylinder also has the same outcome for ϕ as x.
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Example 1. Figure 1 illustrates robustness using the property ϕ : ♦S1 ∧ �S2

that requires the trace to stay entirely inside the blue rectangle S2 while inter-
secting the red circle S1. We see that traces x 1,x 2 satisfy the property. The
robustness cylinder around trace x 1 is illustrated in the figure. The cylinder
represents all perturbations of x 1 that also satisfy the property ϕ and the robust-
ness ρ(x 1, ϕ) is taken to be the radius of the cylinder. It is evident upon a visual
inspection that ρ(x 1, ϕ) > ρ(x 2, ϕ) > 0.

Similarly, we see that x 3,x 4 violate the property. The robustness cylinder
around x 3 represents all perturbations of x 3 that will also violate ϕ. The robust-
ness ρ(x 3, ϕ) < 0 to denote the violation and |ρ(x 3, ϕ)| is set to the radius of
the robustness cylinder. It is easy to see that ρ(x 4, ϕ) < ρ(x 3, ϕ) < 0.

In fact, robustness for a given trace and property can be computed efficiently
using polynomial time in the size of the formula and the number of sample points
in the trace x [28]. For convex sets as atomic predicates this requires solving
convex optimization problems. However, in practice, the atomic predicates are
often described by boxes or half-spaces, and the robustness computation can be
optimized significantly.

From Robustness to Falsifications: The problem of finding a violation translates
naturally to the problem of finding a negative robustness trace. In turn, we
will consider the following optimization problem that seeks to minimize the
robustness metric over all traces of a system: ρ∗ : minimizex∈Traces ρ(x , ϕ). If the
minimum robustness is ρ∗ < 0, then we conclude that the system violates the
property and the trace x ∗ that corresponds to the violation is obtained. On the
other hand, the robustness function can be quite complicated, even for simple
systems. As a result, the optimization problem is hard to solve precisely. To
this end, numerous heuristic global optimization algorithms such as simulated
annealing [1,49], ant-colony optimization [2], genetic algorithms or the cross-
entropy method [58] can be applied to this problem. If these techniques discover
a negative robustness trace, then a property violation is concluded. Otherwise,
the least robust trace often provides valuable information to the designer, as to
how close we get towards violating the property.

Fig. 2. Illustration of the overall robustness-guided falsification setup.
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2.2 S-Taliro Tool

Figure 2 shows a schematic diagram for S-Taliro1, a robustness guided falsifi-
cation tool that supports MTL properties [3]. S-Taliro has been implemented
inside the Matlab (tm) environment, and can support models described inside
Simulink/Stateflow (tm). The tool uses the inbuilt simulator and computes the
robustness for a trace. The resulting robustness is used as an objective function
by a global optimization engine that seeks to minimize this value. The global
optimizer, in turn, decides on future test inputs to the simulator based on the
past inputs and the robustness values of the resulting traces. Currently, the
tool supports many optimization engines including uniform random exploration,
simulated annealing search, ant-colony optimization, cross-entropy method and
genetic algorithms. Since no single optimization engine can guarantee finding a
global minimum, the typical practice of using the tool consists of using multiple
optimization engines, repeatedly and in parallel. If the tool fails to discover a
violation, one of the key advantages of robustness metrics is that the least robust
trace can provide a relaxed property that can be violated by S-Taliro. S-Taliro
is available as an open source tool2, and is built to be extensible through the
addition of new solvers and alternative robustness computation techniques. The
latest version uses multiple cores to perform numerous simulations in parallel.
It also supports features such as property-directed parameter tuning for models
and requirements. These features will be enhanced in future releases of the tool.

3 AP Controller Falsification

We now illustrate the use of S-Taliro on an example PID-based controller design
that provides a hybrid closed loop for overnight insulin infusion control. Figure 3
shows the overall diagram of the closed loop system. We note that the controller
design here simply serves to illustrate the ideas behind the use of robustness-
guided falsification to find potentially harmful scenarios. In particular, the results
presented can be improved through systematic and personalized tuning the key
controller parameters. We will investigate the overnight use of this control system
assuming manual boluses for meals. Such overnight control has the benefit of
preventing dangerous seizures due to prolonged hypoglycemia through pump
shutoff. Additionally, it helps bring the early morning blood glucose levels inside
a tight euglycemic range of [70, 150] mg/dl, leading to desirable longer term
outcomes [43].

Controller Design: The controller used in this example is directly inspired by
the PID control scheme proposed by Steil et al. [60–62]. A detailed analysis
of this control scheme was presented by Palerm [51]. Let G(t) represent the
value of the blood glucose at time t. The controller operates through periodic
sampling of the glucose sensor readings with a period Δ. The insulin level u(k)

1 S-Taliro stands for System TemporAl LogIc RObustness.
2 Cf. https://sites.google.com/a/asu.edu/s-taliro/s-taliro.

https://sites.google.com/a/asu.edu/s-taliro/s-taliro
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Fig. 3. Closed loop diagram for the hybrid PID control system, and equations defining
the controller. The controller gains and other parameters are shown in blue.

at the kth time period t = kΔ is calculated as shown in Fig. 3. The insulin
infusion rate is held constant for the subsequent time period [kΔ, (k+1)Δ). The
overall insulin rate i(t) is derived as the sum of the controller input and the
patient’s manual meal bolus. The terms involved are Ie(k), the integrated error
at the kth period, D(k) the derivative term and IOB(k), an insulin-on-board
compensation term. These are calculated as shown in Fig. 3. The parameters
for the controller include the target glucose value G0, taken to be 100mg/dl,
the gains Kp,Ki,Kd, γ that are chosen by trial and error starting from initial
values based on the total daily insulin requirements of the patient as explained by
Weinzimer et al. [62]. Likewise, the cutoff parameters umax that are adjusted by
trial and error, starting from the patient’s open loop basal rate. The parameters
δ(j) for j = 0, . . . , N specify the amount of active insulin in the blood at time
t = jΔ corresponding to a unit bolus at time t = 0, and is based on available
physiological data [61]. Finally, the time period Δ is taken to be 5 min for our
simulation. The controller code along with the parameter values will be made
available to researchers upon request.

Patient Model: Patient modeling is an important part of the overall in silico
verification process. To this end, many detailed models of insulin-glucose reg-
ulation have been proposed. The monograph by Chee and Fernando provides
a detailed, historical account of numerous mathematical models [12]. For this
simulation study, we use the Dalla-Man et al. model [17,45,47]. This model is
a nonlinear ordinary differential equation (ODE) with 10 state variables. The
model and corresponding parameters are available as part of the FDA approved
T1DM simulator that can now be used as an alternative to animal testing [46].
The model has been increasingly popular inside a simulation environment for
“in-silico” or “virtual” clinical trials [44,52].

Nevertheless, to the best of our knowledge, the typical use of this model is
through a finite set of fixed “in-silico clinical protocol”, that is simulated for
multiple sets of patient parameters [52]. The performance statistics such as total
time in the euglycemic range or number of hypoglycemic events are reported
for each “virtual” patient defined by values of the model parameters. In this
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exposition, we illustrate a different approach that uses S-Taliro to search over a
set of possible scenarios to potentially discover the worst case, as defined by the
robustness metric, for a given property.

Verification Protocol: For the purposes of falsifying properties of the proposed
controller, we use a set of possible scenarios, as specified below. Let t = 0
represent 7 pm in the evening. Each usage scenario is as follows:

(a) The patient consumes dinner, and manually infuses an insulin bolus at some
time T1 ∈ [0, 60] min. The amount of carbohydrates consumed at dinner X1

can vary between [50, 150] g. The bolus is delivered using an insulin-to-CHO
ratio IC1 that can also vary between [0, 0.01] U/g. Finally, the timing of the
bolus relative to the meal time can vary in the range δ1 ∈ [−15, 15] min.

(b) The controller is turned on at some time Tc ∈ [40, 60] min, each night.
(c) The patient may possibly consume a snack after the controller is turned

on. The snack is consumed sometime between T2 ∈ [180, 300], and can vary
between X2 ∈ [0, 40] g of carbohydrates. The insulin-to-CHO ratio IC2 and
relative timing δ2 fall in the same ranges as for dinner.

(d) The controller is turned off at “wake up time” Tw = 720.

Finally, we assume that a sensor error of d(t) ∈ [−20, 20] mg/dl is possible at
each sampling instant. This is the error between the sensor output of the Dalla-
Man model and the value input to the controller. To decrease the number of
parameters, we simply use the values at d(100), d(105), . . . , d(720) as parameters
input to the simulator. These parameters lie in the range [−20, 20] mg/dl, and
are also controlled by the S-Taliro tool while exploring the worst-case.

Table 2. Inputs that are set by S-Taliro to falsify properties for the AP control system.

T1 [0, 60] mins Dinner time

X1 [50, 150] g Amount of CHO in dinner.

T2 [180, 300] mins Snack time.

X2 [0, 40] g Amount of CHO in snack

IC1, IC2 [0, 0.01] U/gm Insulin-to-CHO ratio for meal boluses

δ1, δ2 [−15, 15] min timing of insulin relative to meal j

d(100), d(105), . . . , d(720) [−20, 20] mg/dl sensor error at each sample time

Table 2 summarizes the inputs that S-Taliro can modify to obtain various
behaviors of the model. Including the sensor noise inputs, the search space for
S-Taliro has nearly 130 parameters. We employed three solvers: uniform random
exploration, simulated annealing and the cross-entropy method.
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Fig. 4. Least robust trace found by S-Taliro for property
ψ1 : �[100,700](G(t) ≥ 70). The top plot for shows the
blood glucose levels (mg/dl) over time (minutes) while
the bottom plots show the insulin infusion (U/hr) over
time (mins). The red impulses represent Bolus amounts
in U/hr assuming the bolus amount is delivered over 5
minutes.

Hypoglycemia: The first
property concerns worst
case hypoglycemia (low
blood glucose levels) pos-
sible for this controller.
We wish to check whether
the system satisfies the
MTL property: ψ1 :
�[100,700] (G(t) ≥ 70),
which states that dur-
ing the time period t ∈
[100, 700], the blood glu-
cose level should remain
above 70mg/dl in all sce-
narios. The time interval
[100, 700] is used to allow
a run-in period with the
controller switched on.
As a result, property violations before the controller has warmed up will not
be considered. We used three parallel process to search using the simulated-
annealing, uniform random and cross-entropy method. While, S-Taliro could
not violate the property, the least robust scenario (found by the uniform ran-
dom search) involves G(t) ∼ 75mg/dl. In other words, the trace approaches
quite close to violating the property. The search takes nearly 3200 seconds using
three parallel Matlab (tm) R2014 instances on a 4 core, 800 MHz 64 bit AMD
Phenom(tm) II processor with 8 GB RAM running Linux. Figure 4 shows the
resulting output trace obtained from S-Taliro.

Fig. 5. Least robust trace found by S-Taliro for prop-
erty ψ2 : �[100,700](G(t) ≤ 350).

Hyperglycemia: The next
property concerns whether
hyperglycemia (high blood
glucose levels) are possi-
ble. We wish to check
the MTL property ψ2 :
�[100,700](G(t) ≤ 350), which
states that during the time
period t ∈ [100, 700], can the
blood glucose level go above
350mg/dl. S-Taliro finds a
violation of this property
with the maximum glucose
level of 472 mg/dl. This is found by the cross entropy solver requiring under
5 seconds of total running time. Figure 5 shows the violation trace produced by
S-Taliro.
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Insulin Infusion below Target: The next property concerns whether the controller
can infuse insulin while the blood glucose level is below a target level of 90mg/dl:
ψ3 : �[100,700](G(t) ≤ 90 ⇒ u(t) = 0). The property states that whenever
G(t) ≤ 90 mg/dl, the controller should not command additional insulin, or in
other words u(t) = 0 should hold. Infusing insulin when the blood glucose is low,
can be quite dangerous, worsening the hypoglycemia. The property is violated
by S-Taliro in nearly 90 s. While all three engines discover a violation, the least
robust violation is discovered by the cross entropy (CE) solver.

Hyperglycemia at Wakeup: One of the important objectives of nighttime insulin
infusion control is to provide a blood glucose level as close to the normal range
as possible at wake up time. Recent clinical evidence indicates that starting off
with a normal blood glucose level at wake up time can have beneficial longer
term outcomes [43]. To this end, we check whether the morning wakeup blood
glucose level can exceed 200 mg/dl.

ψ4 : �[600,700](G(t) ≤ 200) .

The property states that the blood glucose levels must remain below 200 mg/dl
during the time period t ∈ [600, 700]. S-Taliro cannot violate the property. The
minimal robustness trace shows a blood glucose level of 180mg/dl at wakeup
time, and is discovered by the uniform random search after 3500 s.

Fig. 6. Least robust trace found by S-Taliro for
the prolonged hyperglycemia property ψ5 : ¬♦[200,600]

�[0,180] (G(t) ≥ 240).

Prolonged Hyperglycemia:
We now focus on the
possibility of prolonged
hyperglycemia that can
potentially give rise to
ketacidosis: ψ5 in Fig. 6.
The property states that
during the time t ∈
[200, 600] the blood glu-
cose cannot be continu-
ously above 240 mg/dl for
more than 180 minutes. S-
Taliro easily falsifies this
property: the cross-entropy
search discovers the least
robust trace within 3 s.

Prolonged Hypoglycemia: Finally, we conclude by searching for the possibil-
ity of a prolonged hypoglycemia that can potentially lead to seizures [6]:
ψ6 : ¬♦[200,600] �[0,150] (G(t) ≤ 70). The property states that there cannot
be a contiguous interval of 150 minutes during which G(t) ≤ 70 mg/dl. The
property cannot be violated by S-Taliro. The least robust trace is discovered
by uniform random search in 3550 s shows a scenario where G(t) ≤ 85 over a
150 min interval.



14 F. Cameron et al.

4 Conclusions

In conclusion, we have outlined the need for verifying artificial pancreas con-
trollers and the challenges faced by current verification technique. We have illus-
trated the use of simulation-based falsification as a first step towards full for-
mal verification. Ongoing work is addressing important gaps in our verification
framework including careful modeling of disturbances such as meals, exercise
and various sources of sensor noise. We are also working towards making the
tool S-Taliro more user friendly to allow control designers to directly use the
tool. To this end, we envision simpler and more visual formalisms for specifying
temporal properties [37].
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Abstract. We address the specification and verification of spatio-
temporal behaviours of complex systems, extending Signal Spatio-
Temporal Logic (SSTL) with a spatial operator capable of specifying
topological properties in a discrete space. The latter is modelled as a
weighted graph, and provided with a boolean and a quantitative seman-
tics. Furthermore, we define efficient monitoring algorithms for both the
boolean and the quantitative semantics. These are implemented in a Java
tool available online. We illustrate the expressiveness of SSTL and the
effectiveness of the monitoring procedures on the formation of patterns
in a Turing reaction-diffusion system.
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1 Introduction

There is an increasing interest in the introduction of smart solutions in the
world around us. A huge number of computational devices, located in space, is
interacting in an open and changing environment, with humans and nature in the
loop that form an intrinsic part of the system. Yet, science and technology are
still struggling to tame the challenges underlying the design and control of such
systems. In this paper, in particular, we focus on the challenge of spatially located
systems, for which the spatial and temporal dimensions are strictly correlated
and influence each other. This is the case in many Cyber-Physical Systems, like
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pacemaker devices controlling the rhythm of heart beat, and for many Collective
Adaptive Systems, like the guidance of crowd movement in emergency situations
or the improvement of the performance of bike sharing systems in smart cities.

Controlling and designing spatio-temporal behaviours requires proper formal
tools to describe such properties, and to monitor and verify whether, and to
which extent and how robustly, they are satisfied by a system. Formal meth-
ods play a central role, in terms of formal languages to specify spatio-temporal
models and properties, and in terms of algorithms for the verification of such
properties on such models and on monitored systems. The type of systems that
we are considering are very large and complex for which standard model checking
procedures (checking whether all event sequences produced by a system satisfy
a property) are not feasible. For these kind of systems simulation and testing is
a preferred validation method. This is the area of the run-time verification, as
reported in [8,15], where an individual simulation trace x of a system is checked
against a formula, using an automatic verification procedure.

Related work. Logical specification and monitoring of temporal properties is
a well-developed area. Here we mention Signal Temporal Logic (STL) [8,15],
an extension of Metric Interval Temporal Logic (MITL) [2], describing linear-
time properties of real-valued signals. STL has monitoring routines both for its
boolean and quantitative semantics, the latter measuring the satisfaction degree
of a formula [8,9,15].

Much work has been done also in the area of spatial logic [1], yet focussing
more on expressivity and decidability, often in continuous space. Less attention
has been placed on more practical aspects, like model checking routines in dis-
crete space. An exception is the work of some of the authors [5], in which the
Spatial Logic for Closure Spaces (SLCS) is proposed for a discrete and topo-
logical notion of space, based on closure spaces [11]. First applications of that
work in the context of smart transportation can be found in [7]. Another spa-
tial logic equipped with practical model checking algorithms, and with learning
procedures, is that of [12,13], in which spatial properties are expressed using
ideas from image processing, namely quad trees. This allows one to capture very
complex spatial structures, but at the price of a complex formulation of spatial
properties, which are in practice only learned from some template image.

In this work, we will focus on a notion of discrete space. The reason is that
many applications, like bike sharing systems or metapopulation epidemic mod-
els [16], are naturally framed in a discrete spatial structure. Moreover, in many
circumstances continuous space is abstracted as a grid or as a mesh. This is the
case, for instance, in many numerical methods to simulate the spatio-temporal
dynamics of Partial Differential Equations (PDE). Hence, this class of models is
naturally dealt with by checking properties on such a discretisation.

The combination of spatial and temporal operators is even more challeng-
ing [1], and few works exist with a practical perspective. In [4], some of the
authors proposed an extension of STL with a somewhere spatial modality, which
can be arbitrarily nested with temporal operators, proposing a monitoring algo-
rithm for both the boolean and the quantitative semantics. An extension of SLCS
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with temporal aspects can be found in [6] where the logic has been applied in
the context of smart public transportation. In [14], instead, the authors merge
the spatial logic of [13] within linear temporal logic, by considering atomic spa-
tial properties. They also provide a qualitative and quantitative semantics, and
apply it to smart grids and to the formation of patterns in a reaction diffusion
model.

Contributions. In this work, we present an extension of the Signal Spatio-
Temporal Logic (SSTL), that combines the works in [4,5]. We extend SSTL with
the topological spatial surround operator, inspired by the spatial until modality
defined in [5].

We provide a qualitative and quantitative semantics for this new operator
and we define efficient monitoring algorithms for both of them. The major chal-
lenge is to monitor the surround operator for the quantitative semantics, for
which we propose a novel fixed point algorithm, discussing its correctness and
computational cost. Spatial monitoring requires very different algorithms from
those developed for timed modalities, as space is bi-directional, thus it makes
sense to observe both reaching and being reached ; classical path-based model
checking does not coincide with spatial model checking also because loops in
space are not relevant in the definition of surrounded operators. The monitoring
algorithms have been implemented in Java, and applied and tested on a case
study of pattern formation in a Turing reaction-diffusion system modelling a
process of morphogenesis [18].

Paper structure1. The paper is organised as follows: Sect. 2 introduces some
background concepts on STL and on discrete topologies. Section 3 presents the
syntax and the semantics of SSTL. Section 4 introduces the monitoring algo-
rithms. Section 5 is devoted to the example of pattern formation, while conclu-
sions are drawn in Sect. 6.

2 Background Material

Weighted undirected graphs. We will consider discrete models of space that
can be represented as a finite undirected graph. Edges of the graph are equipped
with a positive weight, giving a metric structure to the space, in terms of short-
est path distances. The weight will often represent the distance between two
nodes. This is the case, for instance, when the graph is a discretization of con-
tinuous space. However, the notion of weight is more general, and may be used
to encode different kinds of information. As an example, in a model where nodes
are locations in the city and edges represent streets, the weight could represent
the average travelling time, which can be different between two paths with the
same physical length but different levels of congestion or different number of
traffic lights.

We represent a weighted undirected graph with a tuple G = (L,E,w),
where:
1 Due to lack of space all proofs are omitted. The interested reader may refer to [17].
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● L is the finite set of locations (nodes), L /= ∅

● E ⊆ L ×L is a symmetric relation, namely the set of connections (edges),
● w ∶ E → R>0 is the function that returns the cost/weight of each edge.

Furthermore, we denote by E∗ the set containing all the pairs of connected loca-
tions, i.e. the transitive closure of E. We will also use an overloaded notation
and extend w to the domain E∗, so that for arbitrary nodes x, y (not necessarily
connected by an edge) we let w(x, y) be the cost of the shortest path between
two different locations. Finally, for all � ∈ L and w1,w2 > 0, we let L�

[w1,w2]
be

the set of locations �′ such that w1 ≤ w(�, �′) ≤ w2.

Closure spaces and the boundary of a set of nodes. In this work, we focus
on graphs as an algorithmically tractable representation of space. However, spa-
tial logics traditionally use more abstract structures, very often of a topological
nature (see [1] for an exhaustive reference). We can frame a generalised notion
of topology on graphs within the so called Cech closure spaces, a superclass of
topological spaces allowing a clear formalisation of the semantics of the spatial
surround operator on both topological and graph-like structures (see [5] and
the references therein). What is really relevant for this work, because of the
restriction to finite (weighted and undirected) graphs, is the notion of external
boundary of a set of nodes A, i.e. the set of nodes directly connected with an
element of A but not part of it.

Definition 1. Given a subset of locations A ⊆ L, we define the boundary of
A as:

B+(A) ∶= {� ∈ L ∣ � ∉ A ∧ ∃�′ ∈ A s.t. (�′, �) ∈ E}.

Signal Temporal Logic. Signal Temporal Logic (STL) [8,15] is a linear
dense time-bounded temporal logic that extends Metric Interval Temporal Logic
(MITL) [2] with a set of atomic propositions {μ1, ..., μm} that specify properties
of real valued traces, therefore mapping real valued traces into boolean values.

Let x ∶ T→ D be a trace that describes an evolution of our system, where T =

R≥0 is the time set and D = D1×⋯×Dn ⊆ R
n is the domain of evaluation; then each

μj ∶ D → B is of the form μj(x1, . . . , xn) ≡ (fj(x1, . . . , xn) ⩾ 0), where fj ∶ D → R

is a (possibly non-linear) real-valued function and B = {true, false} is the set of
boolean values. The projections xi ∶ T → Di on the ith coordinate/variable are
called the primary signals and, for all j, the function sj ∶ T→ R defined by point-
wise application of fj to the image of x, namely sj(t) ∶= fj(x1(t), ..., xn(t)), is
called the secondary signal [9].

The syntax of STL is given by

ϕ ∶= μ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 U[t1,t2] ϕ2,

where conjunction and negation are the standard boolean connectives, [t1, t2]
is a real positive dense intervals with t1 < t2, U[t1,t2] is the bounded until
operator and μ is an atomic proposition. The eventually operator F

[t1,t2] and
the always operator G

[t1,t2] can be defined as usual: F
[t1,t2]ϕ ∶= ⊺U

[t1,t2]ϕ,
G
[t1,t2]ϕ ∶= ¬F

[t1,t2]¬ϕ.
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3 SSTL: Signal Spatio-Temporal Logic

Signal Spatio-Temporal Logic (SSTL) is a spatial extension of Signal Tempo-
ral Logic [8,15] with two spatial modalities: the bounded somewhere operator
�
[w1,w2], defined in [4], and the bounded surround operator S

[w1,w2], that we
will define here, inspired by the work [5]. In the following, we first introduce
spatio-temporal signals, and then present the syntax and the boolean and quan-
titative semantics of SSTL.

Spatio-Temporal Signals. SSTL is interpreted on spatio-temporal, real-valued
signals. Space is discrete and described by a weighted graph G = (L,E,w),
as in Sect. 2, while the time domain T will usually be the real-valued interval
[0, T ], for some T > 0. A spatio-temporal trace is a function x ∶ T × L → D,
where D ⊆ R

n is domain of evaluation. As for temporal traces, we write
x(t, �) = (x1(t, �),⋯, xn(t, �)) ∈ D, where each xi ∶ T × L → Di, for i = 1, ..., n,
is the projection on the ith coordinate/variable. Spatio-temporal traces can be
obtained by simulating a stochastic model or by computing the solution of a
deterministic system. In the previous work [4], some of the authors discussed
the framework of patch-based population models, which generalise population
models and are a natural setting from which both stochastic and determinis-
tic spatio-temporal traces of the considered type emerge. An alternative source
of traces are measurements of real systems. For the purpose of this work, it
is irrelevant which is the source of traces, as we are interested in their off-line
monitoring.

Spatio-temporal traces are then converted into spatio-temporal boolean or
quantitative signals. Similarly to the case of STL, each atomic predicate μj is
of the form μj(x1, . . . , xn) ≡ (fj(x1, . . . , xn) ≥ 0), for fj ∶ D → R. Each atomic
proposition gives rise to a spatio-temporal signal. In the boolean case, one may
define function sj ∶ T × L → B; given a trace x, this gives rise to the boolean
signal sj(t, �) = μj(x(t, �)) by point-wise lifting. Similarly, a quantitative signal
is obtained as the real-valued function sj ∶ T ×L → R, with sj(t, �) = fj(x(t, �)).

When the space L is finite, as in our case, we can represent a spatio-temporal
signal as a finite collection of temporal signals. More specifically, the signal s(t, �)
can be equivalently represented by the collection {s�(t) ∣ � ∈ L}. We will stick
mostly to this second notation in the following, as it simplifies the presentation.

Syntax. The syntax of SSTL is given by

ϕ ∶= μ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 U[t1,t2] ϕ2 ∣ �[w1,w2]ϕ ∣ ϕ1 S[w1,w2]ϕ2.

Atomic predicates, boolean operators, and the until operator U
[t1,t2] are those

of STL. The spatial operators are the somewhere operator, �
[w1,w2], and the

bounded surround operator S
[w1,w2], where [w1,w2] is a closed real interval

with w1 < w2. The spatial somewhere operator �
[w1,w2]ϕ requires ϕ to hold

in a location reachable from the current one with a total cost greater than or
equal to w1 and lesser than or equal to w2. The surround formula ϕ1 S[w1,w2]ϕ2

is true in a location �, for the trace x, when � belongs to a set of locations
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A satisfying ϕ1, such that its external boundary B+(A) (i.e., all the nearest
neighbours external to A of locations in A) contains only locations satisfying ϕ2.
Furthermore, locations in B+(A) must be reached from � by a shortest path of
cost between w1 and w2. Hence, the surround operator expresses the topological
notion of being surrounded by a ϕ2-region, with additional metric contraints.
We can also derive the everywhere operator ⧈

[w1,w2]ϕ ∶= ¬�
[w1,w2] ¬ϕ requiring

ϕ to hold in all the locations reachable from the current one with a total cost
between w1 and w2. Several examples of SSTL formulas, that can be used to
clarify one’s intuition about the operators defined above, are provided in Sect. 5.

Semantics. We now define the boolean and the quantitative semantics for SSTL.
The boolean semantics, as customary, returns true/false depending on whether
the observed trace satisfies the SSTL specification.

Definition 2 (Boolean semantics). The boolean satisfaction relation for an
SSTL formula ϕ over a spatio-temporal trace x is given by:

(x, t, �) ⊧ μ ⇔ μ(x(t, �)) = 1

(x, t, �) ⊧ ¬ϕ ⇔ (x, t, �) /⊧ ϕ

(x, t, �) ⊧ ϕ1 ∧ϕ2 ⇔ (x, t, �) ⊧ ϕ1 ∧ (x, t, �) ⊧ ϕ2

(x, t, �) ⊧ ϕ1 U[t1,t2]ϕ2 ⇔ ∃t′ ∈ t + [t1, t2] ∶ (x, t′, �) ⊧ ϕ2 ∧ ∀t′′ ∈ [t, t′], (x, t′′, �) ⊧ ϕ1

(x, t, �) ⊧ 
[w1,w2]ϕ ⇔ ∃�′ ∈ L ∶ (�′, �) ∈ E∗ ∧w1 ⩽ w(�′, �) ⩽ w2 ∧ (x, t, �′) ⊧ ϕ

(x, t, �) ⊧ ϕ1 S[w1,w2]ϕ2 ⇔ ∃A ⊆ L�
[0,w2]

∶ � ∈ A ∧ ∀�′ ∈ A, (x, t, �′) ⊧ ϕ1

∧B+(A) ⊆ L�
[w1,w2]

∧ ∀�′′ ∈ B+(A), (x, t, �′′) ⊧ ϕ2.

A trace x satisfies ϕ in location �, denoted by (x, �) ⊧ ϕ, if and only if (x,0, �) ⊧ ϕ.

The quantitative semantics returns a real value that can be interpreted as a
measure of the strength with which the specification is satisfied or falsified by
an observed trajectory. More specifically, the sign of such a satisfaction score is
related to the truth of the formula (positive stands for true), while the absolute
value of the score is a measure of the robustness of the satisfaction or dissat-
isfaction. This definition of quantitative measure is based on [8,9], and it is a
reformulation of the robustness degree of [10].

Definition 3 (SSTL Quantitative Semantics). The quantitative satisfac-
tion function ρ(ϕ,x, t, �) for an SSTL formula ϕ over a spatio-temporal trace x
is given by:

ρ(μ,x, t, �) = f(x(t, �)) where μ ≡ (f ≥ 0)

ρ(¬ϕ,x, t, �) = − ρ(ϕ,x, t, �)

ρ(ϕ1 ∧ϕ2,x, t, �) = min(ρ(ϕ1,x, t, �), ρ(ϕ2,x, t, �))

ρ(ϕ1 U[t1,t2]ϕ2,x, t, �) = sup
t′∈t+[t1,t2]

(min{ρ(ϕ2,x, t′, �), inf
t′′∈[t,t′]

(ρ(ϕ1,x, t′′, �))}

ρ(�[w1,w2]ϕ,x, t, �) = max{ρ(ϕ,x, t, �′) ∣ �′ ∈ L, (�′, �) ∈ E∗,w1 ⩽ w(�′, �) ⩽ w2}

ρ(ϕ1 S[w1,w2]ϕ2,x, t, �) = max
A⊆L�

[0,w2]
,�∈A,B+(A)⊆L�

[w1,w2]

(min(min
�′∈A

ρ(ϕ1,x, t, �′),

min
�′′∈B+(A)

ρ(ϕ2,x, t, �′′))),
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where ρ is the quantitative satisfaction function, returning a real number
ρ(ϕ,x, t) quantifying the degree of satisfaction of the property ϕ by the trace
x at time t. Moreover, ρ(ϕ,x, �) ∶= ρ(ϕ,x,0, �).

The definition for the surround operator is essentially obtained from the boolean
semantics by replacing conjunctions and universal quantifications with the min-
imum and disjunctions and existential quantifications with the maximum, as
done in [8,9] for STL.

4 Monitoring Algorithms

In this section, we present the monitoring algorithms to check the validity of
a formula ϕ on a trace x(t, �). The monitoring procedure, which is similar to
the ones for STL [9,15], works inductively bottom-up on the parse tree of the
formula. In the case of the boolean semantics, for each subformula ψ, it constructs
a spatio-temporal signal sψ s.t. sψ(�, t) = 1 iff the subformula is true in position
� at time t. In the case of the quantitative semantics, for each subformula ψ, the
signal sψ corresponds to the value of the quantitative satisfaction function ρ,
for any time t and location �. In this paper, we discuss the algorithms to check
the bounded surround operator. The procedures for the boolean and temporal
operators are those of STL [8,9,15], while the methods for the somewhere spatial
modality have been previously discussed in [4]. The treatment of the bounded
surround modality ψ = ϕ1S[w1,w2]ϕ2, instead, deviates substantially from these
procedures. In the following, we will present two recursive algorithms to compute
the boolean and the quantitative satisfaction, taking inspiration from [5] and
assuming the boolean/quantitative signals of ϕ1 and ϕ2 being known.

4.1 Description of the Algorithms

Preliminary notions on boolean signals. Before describing Algorithm 1, we
need to introduce the definition of minimal interval covering Is1,...,sn

consistent
with a set of temporal signals s1, . . . sn, see also [15].

Definition 4. Given an interval I, and a set of temporal signals s1, . . . sn with
si ∶ I → B, the minimal interval covering Is1,...,sn

of I consistent with the
set of signals s1, . . . , sn is the shortest finite sequence of left-closed right-open
intervals I1, ..., Ih such that ⋃j Ij = I, Ii⋂ Ij = ∅, ∀i ≠ j, and for k ∈ {1, . . . , n},
sk(t) = sk(t

′
) for all t, t′ belonging to the same interval. The positive minimal

interval covering of s is I+s = {I ∈ Is∣∀t ∈ I ∶ s(t) = 1}.

Monitoring the Boolean semantics of the bounded surround. Algorithm 1
presents the procedure to monitor the boolean semantics of a surround formula
ψ = ϕ1S[w1,w2]ϕ2 in a location �̂, returning the boolean signal sψ,�̂ of ψ at

location �̂. The algorithm first computes the set of locations L�̂
[0,w2]

that are at

distance w2 or less from �̂, and then, recursively, the boolean signals sϕ1,� and
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Algorithm 1. Boolean monitoring for the surround operator
1: input �̂, ψ = ϕ1S[w1,w2]ϕ2

2: ∀� ∈ L�̂
[0,w2]

compute sϕ1,�, sϕ2,�

3: compute Is
ψ,�̂

{the minimal interval covering consistent with sϕ1,�, sϕ2,�, � ∈

L�̂
[0,w2]

}
4: for all Ii ∈ Is

ψ,�̂
do

5: V = {� ∈ L�̂
[0,w2]

∣sϕ1,�(Ii) = 1}

6: Q = {� ∈ L�̂
[w1,w2]

∣sϕ2,�(Ii) = 1}
7: T = B+(Q⋃V )
8: while T /= ∅ do
9: T ′ = ∅

10: for all � ∈ T do
11: N = pre(�)⋂V = {�′ ∈ V ∣�E�′}
12: V = V /N
13: T ′ = T ′⋃(N/Q)
14: end for
15: T = T ′

16: end while

17: sψ,�̂(Ii) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if � ∈ V,

0 otherwise.

18: end for
19: merge adjacent positive interval Ii, i.e. Ii s.t. sψ,�̂(Ii) = 1
20: return sψ,�̂

sϕ2,�, for � ∈ L�̂
[0,w2]

. These signals provide the satisfaction of the sub-formula ϕ1

and ϕ2 at each point in time, and for each location of interest. Then, a minimal
interval covering consistent to all the signals sϕ1,� and sϕ2,� is computed, and
to each such interval, a core procedure similar to that of [5] is applied. More
specifically, we first compute the set of locations T in which both ϕ1 and ϕ2 are
false, and that are in the external boundary of the locations that satisfy ϕ1 (V )
or ϕ2 (Q). The locations in T are “bad” locations, that cannot be part of the
external boundary of the set A of ϕ1-locations which has to be surrounded only
by ϕ2-locations. Hence, the main loop of the algorithm removes iteratively from
V all those locations that have a neighbour in T (set N , line 13), constructing
a new set T containing only those locations in N that do not satisfy ϕ2, until
a fixed point is reached. As each location can be added to T and be processed
only once, the complexity of the algorithm is linear in the number of locations
and linear in the size of the interval covering. Correctness can be proven in a
similar way as in [5].

Piecewise constant approximation of quantitative signals. The quanti-
tative semantics for STL is defined for arbitrary signals, but algorithms are pro-
vided for piecewise linear continuous ones [8,9], considered as the interpolation
of continuous functions. In this paper, we deviate from this interpretation, and
consider instead a simpler interpolation based on piecewise constant signals. In
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particular, we discretise time with step h > 0, so that our signals in each location
�, s� ∶ [0, T ]×L → R, are represented by the finite set {s�(0), s�(h), . . . , s�(mh)},
where mh = T . Then the piecewise constant approximation of s�(t) is the signal
ŝ�(t) = s�(kh) for t ∈ [kh, (k + 1)h). We further assume, without loss of gen-
erality2, that all time bounds appearing in the temporal operators of a SSTL
formula are multiples of h.

Under the assumption that secondary signals are Lipschitz continuous3, and
letting K be the maximum of their individual Lipschitz constants, we have that
the following properties hold: (a) s�(kh) = ŝ�(kh); and (b) ∥s�(t) = ŝ�(t)∥ ≤
Kh/2, uniformly in t.

Monitoring the quantitative semantics. We now turn to the monitoring
algorithm for the quantitative semantics, assuming the input is a piecewise con-
stant signal, where the time domain has been discretised with step h. Monitoring
boolean operators is straightforward, we just need to apply the definition of the
quantitative semantics pointwise in the discretisation. Monitoring the somewhere
operator �

[w1,w2]ϕ is also immediate: once the location �̂ of interest is fixed, we
can just turn it into a disjunction of the signals sϕ,� for each location � ∈ L�̂

[w1,w2]
,

see [4] for further details. The time bounded until operator, instead, can also be
easily computed by replacing the min and max over dense real intervals in its
definition by the corresponding min and max over the corresponding finite grid
of time points. In this case, however, we can introduce an error due to the dis-
crete approximation of the Lipschitz continuous signal in intermediate points, yet
this error accumulates at a rate proportional to Kh, where K is the previously
defined Lipschitz constant.

The only non-trivial monitoring algorithm is the one for the spatial surround
operator, which will be discussed below. However, as the satisfaction score is
computed at each time point of the discretisation and depends on the values of
the signals at that time point only, this algorithm introduces no further error
w.r.t. the time discretisation. Hence, we can globally bound the error introduced
by the time discretisation:

Proposition 1. Let the primary signal x be Lipschitz continuous, as the func-
tions defining the atomic predicates. Let K be a Lipschitz constant for all sec-
ondary signals, and h be the discretisation step. Given a SSTL formula ϕ, let
u(ϕ) counts the number of temporal until operators in ϕ, and denote by ρ(ϕ,x)
its satisfaction score over the trace x and by ρ(ϕ, x̂) the satisfaction score over
the discretised version x̂ of x with time step h. Then ∥ρ(ϕ,x) − ρ(ϕ, x̂)∥ ≤

u(ϕ)Kh.

Monitoring the quantitative semantics of the bounded surround. The
quantitative monitoring procedure for the bounded surround operator is shown
2 Time bounds can be restricted to rational numbers, hence there always exists an

h > 0 satisfying all assumptions.
3 The assumption of Lipschitz continuity holds whenever the primary signal is the

solution of an ODE with a locally Lipschitz vector field, as usually is the case.
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in Algorithm 2. Similarly to the boolean case, the algorithm for the surround
formula ψ = ϕ1S[w1,w2]ϕ2 takes as input a location �̂ and returns the quantitative
signal sψ,�̂, or better its piecewise constant approximation with time-step h (an
additional input, together with the signal duration T ). As a first step, it computes
recursively the quantitative satisfaction signals of subformula ϕ1 for all locations
� ∈ L�̂

[0,w2]
and of subformula ϕ2 for all locations � ∈ L�̂

[w1,w2]
. Furthermore, it sets

all the quantitative signals for ϕ1 and ϕ2 for the other locations to the constant
signal equal to minus infinity. The algorithm runs a fixpoint computation for
each time instant in the discrete time set {0, h,2h, . . . ,mh}. The procedure is
based on computing a function X , with values in the extended reals R

∗, which
is executed on the whole set of locations L, but for the modified signals equal
to −∞ for locations not satisfying the metric bounds for �. The function X is
defined below.

Definition 5. Given a finite set of locations L and two functions s1 ∶ L →

R
∗, s2 ∶ L → R

∗. The function X ∶ N × L → R is inductively defined as:
(1)X(0, �) = s1(�) (2)X(i+1, �) = min(X(i, �),min�′∣�E�′(max(X(i, �′), s2(�′)))).

The algorithm then computes the function X iteratively, until a fixed-point is
reached.

Theorem 1. Let be s1 and s2 as in Definition 5, and

s(�) = maxA⊆L,�∈A (min(min�′∈A s1(�
′
),min�′∈B+(A) s2(�

′
))),

then limi→∞X(i, �) = s(�),∀� ∈ L. Moreover, ∃K > 0 s. t. X(j, �) = s(�),∀j ≥ K.

The following corollary provides the correctness of the method. It shows that,
when X is computed for the modified signals constructed by the algorithm, it
returns effectively the quantitative satisfaction score of the spatial surround.

Corollary 1. Given an �̂ ∈ L, let ψ = ϕ1S[w1,w2]ϕ2 and

s1(�) =

⎧⎪⎪
⎨
⎪⎪⎩

ρ(ϕ1,x, t, �) if 0 ≤ w(�̂, �) ≤ w2

−∞ otherwise.
s2(�) =

⎧⎪⎪
⎨
⎪⎪⎩

ρ(ϕ2,x, t, �) if w1 ≤ w(�̂, �) ≤ w2

−∞ otherwise.

Then ρ(ψ,x, t, �̂) = s(�̂) = maxA⊆L,�̂∈A (min(min�∈A s1(�),min�∈B+(A) s2(�))).

In order to discuss the complexity of the monitoring procedure, we need an
upper bound on the number of iterations of the algorithm. This is given by the
following

Proposition 2. Let dG be the diameter of the graph G and X(�) the fixed point
of X(i, �), then X(�) = X(dG + 1, �) for all � ∈ L.

It follows that the computational cost for each location is O(dG∣L∣m), where
m is the number of sampled time-points. The cost for all locations is therefore
O(dG∣L∣

2m).
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Algorithm 2. Quantitative monitoring for the surround operator

1: inputs: �̂, ψ = ϕ1S[w1,w2]ϕ2 , h, T
2: for all � ∈ L do
3: if 0 ≤ w(�̂, �) ≤ w2 then
4: compute sϕ1,�

5: if w(�̂, �) ≥ w1 then compute sϕ2,� else sϕ2,� = −∞
6: else sϕ1,� = −∞, sϕ2,� = −∞
7: end for
8: for all t ∈ {0, h,2h, . . . , T} do
9: for all � ∈ L do

10: Xprec(�) = +∞
11: X(�) = sϕ1,�(t)
12: end for
13: while ∃� ∈ L, s.t. Xprec(�) /= X(�) do
14: Xprec = X
15: for all � ∈ L do
16: X(�) =min(Xprec(�),min�′ ∣�E�′(max(sϕ2,�′(t),Xprec(�

′))))
17: end for
18: end while
19: sψ,�̂(t) = X(�̂)
20: end for
21: return sψ,�̂

4.2 Implementation

To support qualitative and quantitative monitoring of SSTL properties, a Java
library has been developed. This library, named jSSTL4, consists of three main
packages: core, util and io. Package core provides the classes used to represent
SSTL formulas. These classes mimic the abstract syntax tree of formulas. This
package also includes the implementations of the monitoring algorithms pre-
sented in this section and of those previously introduced in [4].

Monitoring algorithms are implemented following the visitor pattern. Hence,
monitoring is performed via a visit of a formula that implements a bottom-
up evaluation. It is important to remark that the use of this pattern simplifies
the integration of possible alternative monitoring algorithms. Each monitoring
algorithm is rendered in terms of a class that is parametrised with respect to
a weighted graph and provides the method check. The former represents the
topology of the considered locations, while the latter takes as parameters an
SSTL formula and a list of piecewise constant signals (one for each location)
and returns a list of piecewise constant signals providing monitoring evaluation.
The classes used to represent and manage piecewise constant signals are provided
within package util. The implementation of weighted graphs relies on JGraphT5.
This is a free Java graph library that provides mathematical graph-theory objects
4 jSSTL is available on-line at https://bitbucket.org/LauraNenzi/jsstl.
5 http://jgrapht.org.

https://bitbucket.org/LauraNenzi/jsstl
http://jgrapht.org
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and algorithms. Package io provides a set of classes that can be used to read
graph models and input signals from an input stream and to write monitoring
results to an output stream. Specific interfaces are also provided to simplify the
integration of new specific input/output data formats.

5 Example: Pattern Formation in a Reaction-Diffusion
System

In this section, we show how SSTL can be used to identify the formation of
patterns in a reaction-diffusion system. From the point of view of formal verifi-
cation, the formation of patterns is an inherently spatio-temporal phenomenon,
in that the relevant aspect is how the spatial organisation of the system changes
over time. Alan Turing theorised in [18] that pattern formation is a consequence
of the coupling of reaction and diffusion phenomena involving different chemical
species, and can be described by a set of PDE reaction-diffusion equations, one
for each species.

Our model, similar to [12,14], describes the production of skin pigments
that generate spots in animal furs. The reaction-diffusion system is discretised,
according to a Finite Difference scheme, as a system of ODEs whose variables
are organised in a K ×K rectangular grid. More precisely, we treat the grid as
a weighted undirected graph, where each cell (i, j) ∈ L = {1, . . . ,K} × {1, . . . ,K}

is a location (node), edges connect each pairs of neighbouring nodes along four
directions (so that each node as at most 4 adjacent nodes), and the weight of
each edge is always equal to the spatial length-scale δ of the system6. We consider
two species A and B in a K ×K grid, obtaining the system:

⎧

⎪
⎪
⎪

⎨

⎪
⎪
⎪

⎩

dxA
i,j

dt
= R1x

A
i,jx

B
i,j − xA

i,j +R2 +D1(μ
A
i,j − xA

i,j) i = 1..,K, j = 1, ..,K,
dxB

i,j

dt
= R3x

A
i,jx

B
i,j +R4 +D2(μ

B
i,j − xB

i,j) i = 1..,K, j = 1, ..,K,
(1)

where: xA
i,j and xB

i,j are the concentrations of the two species in the cell (i, j); Ri,
i = 1, ...,4 are the parameters that define the reaction between the two species;
D1 and D2 are the diffusion constants; μA

i,j and μB
i,j are the inputs for the (i, j)

cell, that is

μn
i,j =

1
∣νi,j ∣

∑

ν∈νi,j

xn
ν n ∈ {A,B}, (2)

where νi,j is the set of indices of cells adjacent to (i, j). The spatio-temporal trace
of the system is the function x = (xA, xB

) ∶ [0, T ]×L → R
K×K

×R
K×K where each

xA and xB are the projection on the first and second variable, respectively. In
Fig. 1, we report the concentration of A for a number of time points, generated by
the numerical integration of System 1; at time t = 20 and t = 50, the shape of the
pattern is apparent and remains stable. We can see that some regions (in blue)

6 For simplicity, here we fix δ = 1. Note that using a non-uniform mesh the weights of
the edges of the resulting graph will not be uniform.
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have a low concentration of A surrounded by regions with a high concentration
of A. We consider as spots of our pattern the regions with low concentration of
A. The opposite happens for the value of B (high density regions surrounded by
low density regions, not shown).

t=0 t=5 t=7 t=10 t=20 t=50
0

2

4

6

Fig. 1. Value of xA for the system (1) for t = 0,5,7,12,20,50 time units with parameters
K = 32,R1 = 1,R2 = −12,R3 = −1,R4 = 16,D1 = 5.6 and D2 = 25.5. The initial condition
has been set randomly. The colour map for the concentration is specified in the legend
on the right (Color figure online).

The following shows how we can use the surround operator to characterise the
behaviour of this system. In order to classify spots, one should identify the sub-
regions of the grid that present a high (or low) concentration of a certain species,
surrounded by a low (high, respectively) concentration of the same species. For-
mally, one can e.g., capture the spots of the A species using the spatial formula

ϕspot ∶= (x
A
≤ h)S

[w1,w2](x
A
> h). (3)

A trace x satisfies ϕspot at time t, in the location (i, j), (x, t, (i, j)) ⊧ ϕspot, if
and only if there is a subset L′ ⊂ L, that contains (i, j), such that all elements
have a distance less than w2 from (i, j), and xA, at time t, is less or equal to h.
Furthermore, each element in the boundary of L′ has a concentration of A, at
time t, greater than h, and its distance from (i, j) is in the interval [w1,w2]. Note
that the use of distance bounds in the surround operator allows one to constrain
the size/ diameter of the spot to [w1,w2]. Recall that we are considering a
spatio-temporal system, so this spatial property alone is not enough to describe
the formation of a pattern over time; to identify the insurgence time of the
pattern and whether it remains stable over time we have to combine the spatial
property with temporal operators in this way:

ϕpattern ∶= F[Tpattern,Tpattern+δ]G[0,Tend](ϕspot); (4)

ϕpattern states that eventually at a time between Tpattern and Tpattern + δ the
property surround becomes true and remains true for at least Tend time units.
In Fig. 2(b) we show the validity of the property ϕpattern in each cell (i, j) ∈ L, for
both the boolean and the quantitative semantics. Recalling that (x, �) ⊧ ϕ, if and
only if (x,0, �) ⊧ ϕ, for this reason the plots show the satisfaction at time t = 0.
It is evident how well the procedure is able to identify which locations belong
to the spots or not. If we make the distance constraint stricter, by reducing the
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width of the interval [w1,w2], we are able to identify only the “centre” of the
spot, as shown in Fig. 2(d). However, in this case we may fail to identify spots
that have an irregular shape (i.e., that deviate too much from a circular shape).

Formula ϕpattern describes the persistence of a spot in a specific location. To
describe a global spatial pattern, i.e. that every location is part of a spot or has
a nearby spot, can be expressed in SSTL by the following formula:

ϕST−pattern ∶= ⧈[0,w]�[0,w′] ϕpattern, (5)

where � and ⧈ are the everywhere and somewhere operators, w is chosen to
cover all space, and w′ measures the maximal distance between spots. Checking
this formula in a random location of our space is enough to verify the presence of
the pattern; this is enough because the first part of the formula, ⧈

[0,w], permits
us to reach all the locations of the grid. This is an example of how we can
describe global property also with a semantics that verifies properties in the
single locations. We verify the property (5) with w = 45 and w′ = 15 (the other
parameters as in Fig. 2), for a solution of the system (1) obtaining true for
the boolean semantics and 0.3 for the quantitative one. The low value of the
quantitative semantics is due to the choice of the threshold h.

Fig. 2. Validity of formula (4) with h = 0.5, Tpattern = 19, δ = 1, Tend = 30,w1 = 1,w2 = 6
for (b), (c) and w2 = 4 for (d). (a) Concentration of A at time t = 50; (b) (d) Boolean
semantics of the property ϕpattern; the cells (locations) that satisfy the formula are in
red, the others are in blue; (c) Quantitative semantics of the property ϕpattern; The
value of the robustness is given by a colour map as specified in the legend on the right
of the figure (Color figure online).

Changing the diffusion constants D1 and D2 affects the shape and size of the
spots or disrupts them (Fig. 3(a)). We evaluate formula (5) for model (1) with
parameters D = [1.5,23.6] and D = [8.5,40.7], as in Fig. 2(a), and it results false
with a quantitative value equal to -0.05 for both. Formula (4), instead, is still
true in some locations. This is due to the irregularity of the spots (where, as
Fig. 3(a) left, some spots can have a shape similar to the model in Fig. 2(a)), or
due to particular boundary effects on the border of the grid (where fractions of
spots still remain, as in Fig. 3(a) right).

A strength of spatio-temporal logics is the possibility to nest the temporal
and spatial operators. We illustrate this in the following scenario. We assume as
initial conditions of the system (1) its stable state, i.e. the concentrations of A
and B at time 50 (see Fig. 2(a)). We introduce a small perturbation, by changing
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a single value in a specific location in the centre of a spot. The idea is to study
the effect of this perturbation, i.e. checking if it will disrupt the system or not.
Specifically, we perturb the cell (6,6), setting xA

6,6(0) = 10. Dynamically, the
perturbation is quickly absorbed and the system returns to the previous steady
state. Formally, we can consider the following property:

ϕpert ∶= (x
A
≥ hpert) ∧ (ϕ1S[wm,wM ]

ϕ2); (6)

(x, (i, j)) ⊧ ϕpert, i.e. a trace x satisfies ϕpert in the location (i, j), if and only
if xA

i,j(0) > hpert (the location is perturbed) and if there is a subset L′ ⊆ L
that contains (i, j) such that all its elements have a distance less than wM from
(i, j) and satisfy ϕ1 = F[0,Tp]

G
[0,Td]

(xA
< h′); ϕ1 states that the perturbation

of xA is absorbed within Tp units of time, stabilising back to a value xA
< h′

for additional Td time units. Furthermore, within distance [wm,wM ] from the
original perturbation, where wM is chosen such that we are within the spot of the
non-perturbed system, ϕ2 ∶= G[0,T ](x

A
< h′) is satisfied; i.e. no relevant effect is

observed, the value of xA stably remains below h′. The meaning of ϕpert is that
the induced perturbation remains confined inside the original spot. In Fig. 3(b)
we report the evaluation of the quantitative semantics for ϕpert, zooming in on
the 15 × 15 lower left corner of the original grid. All the locations that are not
plotted have been evaluated and do not satisfy the property. As shown in the
figure, the only location that satisfies this property is the perturbed one, (6,6).

Fig. 3. (a) Snapshots at time t = 50 of xA for the model (1) with D = [1.5,23.6] (on
the left) and D = [8.5,40.7] (on the right). (b) Boolean and quantitative semantics for
the formula ϕpert with hpert = 10, wm = 1, wM = 2, Tp = 1, Td = 10, h′ = 3, and T = 20.

Model (1) has been coded in Matlab/Octave, and the monitoring has been
performed by our Java implementation. As time performance, the verification of
property ϕpattern took 1.04 s (boolean) and 69.39 s (quantitative) for all locations
and 100 time points, while property ϕST−pattern took 1.81 s and 70.06 s, and
property ϕpert took 28,19 s and 55,31 s, respectively. The computation of the
distance matrix can be done just once because it remains always the same for
a given system, this takes about 23 s. All the experiments were run on a Intel
Core i5 2.6 GHz CPU, with 8 GB 1600 MHz RAM.

6 Discussion

We extended the Signal Spatio-Temporal Logic [4], a spatio-temporal exten-
sion of STL [9], with the spatial surround operator from [5]. In SSTL, spatial
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and temporal operators can be arbitrarily nested. We provided the logic with a
boolean and a quantitative semantics in the style of STL [9], and defined novel
monitoring algorithms to evaluate such semantics on spatio-temporal trajecto-
ries. The monitoring procedures, implemented in Java, have been applied on a
Turing reaction-diffusion system modelling a process of morphogenesis [18] in
which spots are formed over time.

This work can be extended in several directions. First, we plan to perform
a more thorough investigation of the expressivity of the logic, and to apply it
on further case studies. In particular, we remark that SSTL can also be applied
to describe properties of stochastic spatio-temporal systems, and the monitoring
algorithms can be plugged in seamlessly into statistical model checking routines.
Secondly, we plan to extend our logic to more general quasi-discrete metric
spatial structures, exploiting the topological notion of closure spaces [5] and
extending it to the metric case. Note that the current monitoring algorithms
work already for more general spatial structures, like finite directed weighted
graphs, but we plan to provide a more precise characterisation of the class of
discrete spatial structures on which they can be applied. We will also optimise
the implementation to improve performance, and additionally investigate if and
how directionality can be expressed in SSTL. Finally, we plan to exploit the
quantitative semantics for the robust design of spatio-temporal systems, along
the lines of [3].
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Abstract. We study the problem of extending RV techniques in the
context of (asynchronous) actor systems, so as to be able to carry out
a degree of system adaptation at runtime. We propose extensions to
specification logics that provide handles for programming both monitor
synchronisations (with individual actors), as well as the administration
of the resp. adaptations once the triggering behaviour is observed. Since
this added functionality allows the specifier to introduce erroneous adap-
tation procedures, we also develop static analysis techniques based on
substructural type systems to assist the construction of correct adapta-
tion scripts.

1 Introduction

Runtime Adaptation (RA) [16,17] is a technique prevalent to long-running,
highly available software systems, whereby system characteristics (e.g., its struc-
ture, locality etc.) are altered dynamically in response to runtime events (e.g.,
detected hardware faults or software bugs, changes in system loads), while caus-
ing limited disruption to the execution of the system. Numerous examples can be
found in service-oriented architectures [15,21] (e.g., cloud-services, web-services,
etc.) for self-configuring, self-optimising and self-healing purposes; the inherent
component-based, decoupled organisation of such systems facilitates the imple-
mentation of adaptive actions affecting a subset of the system while allowing
other parts to continue executing normally.

Actor systems [2,9,14] consist of independently-executing components called
actors. Every actor is uniquely-identifiable, has its own local memory, and
can either spawn other actors or interacting with them through asynchronous
messaging.1 Actors are often used to build service-oriented systems with lim-
ited downtime [3,14]. Coding practices such as fail-fast design-patterns [9,14]
already advocate for a degree of RA for building robust, fault-tolerant systems:
through mechanisms such as process linking and supervision trees, crashed actors
are detected by supervisor actors, which respond through adaptations such as
restarting the actors, replacing them with limp-home surrogate actors, or killing
further actors that may potentially be affected by the crash.

In this paper, we study ways how RA for actor systems can be extended to
respond to runtime events that go beyond actor crashes. For instance, we would
1 Messages are received in a message buffer called a mailbox, read only by the owning

actor.
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like to observe sequences of events that allow us to take preemptive action before
a crash happens; alternatively, we would also like to observe positive (liveness)
events that allow us to adapt the system to execute more efficiently (e.g., by
switching off unused parts). More generally, we intend to develop a framework
for extending actor-system functionality through RA, so as to improve aspects
such as resilience and resource management.

We propose to do this by extending existing Runtime Verification (RV)
tools such as [10–12,25]. The appeal of such an approach is that RV tools
already provide mechanisms for specifying the behaviour to be observed, together
with instrumentation mechanisms for observing such behaviour. As a proof-of-
concept, our study focusses on one of these actor-based RV tools — detectEr2

[7,12] — and investigates ways how violation detections can be replaced by
adaptation actions that respond to behaviours detected, while reusing as many
elements as possible from the hosting technology.

Fig. 1. A server actor implementation offering integer increment and decrement ser-
vices

Example 1. Figure 1 depicts a server consisting of a front-end Common Interface
actor with identifier i receiving client requests, a back-end Incrementor actor
with identifier j, handling integer increment requests, and a back-end Decre-
mentor actor k, handing decrement requests. A client sends service requests to
actor i of the form {tag, arg, ret} where tag selects the type of service, arg carries
the service arguments and ret specifies the return address for the result (typi-
cally the client actor ID). The interface actor forwards the request to one of its
back-end servers (depending on the tag) whereas the back-end servers process
the requests, sending results (or error messages) to ret. The tool detectEr allows
us to specify safety properties such as (1), explained below:

ϕ
def= max Y. [i?{inc, x, y}]

(
( [j�y!{res, x + 1}] Y ) & ( [ �y!err] ff)

)
(1)

It is a (recursive, max Y. . . .) property requiring that, from an external viewpoint,
every increment request received by i, action i{inc, x, y}, is followed by an answer
from j to the address y carrying x+1, action j �y!{res, x + 1} (recursing through
variable Y ). However, increment requests followed by an error message sent from
2 An RV tool for long-running reactive (actor) systems written in Erlang [3].
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any actor back to y, action �y!err, represent a violation, ff. detectEr can syn-
thesise a monitor (a system of actors) corresponding to (1) and instrument it
with a system execution [12].

max Y.[i?{inc, x, y}]
(
( [j�y!{res, x + 1}] Y ) & ( [z �y!err] restr(i) prg(z) Y )

)

(2)

We aim to extend properties such as (1) with adaptation actions to be taken
by the monitor once a violation is detected, as shown in property (2) above.
The specifier presumes that the error (which may arise after a number of correct
interactions) is caused by the interface actor i (as shown in Fig. 1, where an inc
request is erroneously forwarded to the decrementor actor k) — she may, for
instance, have prior knowledge that actor i is a newly-installed, untested com-
ponent. The monitor thus restarts actor i, adaptation restr(i), and empties the
mailbox of the backend server—which may contain more erroneously forwarded
messages—through adaptation prg(z) (the actor to be purged is determined at
runtime, where z is bound to identifier k from the previous action [z �y!err]).
Importantly, note that in the above execution (where k is the actor sending the
error message), actor j is not affected by any adaptation action taken. �

To implement adaptation sequences such as those in Example 1, the resp. mon-
itors require adequate synchronisation control over the asynchronous system
being monitored. For instance, to mitigate effects of erroneous components as
soon as detections are made, the monitor may want to synchronise with the exe-
cution of actor i from Fig. 1 each time a client request is received, temporarily
suspending its execution until it determines that the request is serviced correctly
(at which point it is released again). Moreover, adaptations such as actor restarts
and mailbox purging require the resp. actors to be temporarily suspended for the
adaptation implementation to execute correctly.

Adequate synchronisation procedures are generally hard to infer and auto-
mate from specification scripts such as (2) of Example 1 (e.g., an early suspension
of actor i’s execution — before it communicates with one of its backend actors —
stalls the entire system) and is exacerbated by findings in prior work [7], con-
cluding that actor synchronisations carry substantial overheads and should thus
be kept to a minimum. In our work, we thus extend the specification language
to include explicit de/synchronisation commands, thereby transferring synchro-
nisation responsibility to the specifier of the adaptation property. This allows
for fine-tuned synchronisations carrying low overheads, but also permits the
specifier to introduce synchronisation errors herself (e.g., applying synchronous
adaptations to actors that are not yet synchronised).

Therefore, in this paper we also develop a type system that analyses specifica-
tion scripts with adaptations and de/synchronisation commands and identifies
errors prior to deployment. We also prove that the type system is—in some
sense—sound, accepting scripts are free from certain monitor runtime errors.
Since static analyses typically approximate computation, the type system may
reject otherwise valid specification scripts; in such cases, the specifier may use
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the type system as a tool assisting script development, directing her to the parts
that may potentially lead to errors.

In what follows, Sect. 2 presents the logic used by detectEr and Sects. 3
and 4 extend this with synchronisation directives and adaptation mechanisms.
Section 5 presents our type system. This is accompanied in Sect. 6 by an extended
runtime semantics for monitors carrying dynamic checks corresponding to the
type disciplines of Sect. 5; we prove type system soundness wrt. this runtime
semantics. Section 7 concludes.

2 The Logic

Following [7,12], detectEr (safety) properties are expressed using the logic sHML
[1], a syntactic subset of the modal μ-calculus [18]. The syntax is defined in Fig. 2
and assumes two distinct denumerable sets of term variables, x, y, . . . ∈ Var (to
quantify over values) and formula variables X,Y, . . . ∈ LVar (to define recur-
sive logical formulas). It is parametrised by boolean expressions, b, c ∈ Bool
equipped with a decidable evaluation function, b ⇓ c where c ∈ {true, false}, and
a set of action patterns e ∈ Pat that may contain term variables. Formulas
include truth and falsehood, tt and ff, conjunctions, ϕ &ψ, modal necessities,
[e]ϕ, maximal fixpoints (for recursive properties), max X.ϕ, and conditionals to
reason about data, if b then ϕ else ψ. Free term variables in a subformula ϕ of a
necessity formula, [e]ϕ are bound by the variables used in the pattern e; similarly
max X.ϕ is a binder for X in ϕ. We work up-to alpha-conversion of formulas.

Fig. 2. The logic and its derivative semantics
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A derivative semantics [24] for the closed and guarded logic formulas is given
as a Labelled Transition System (LTS), defined by the transition rules in Fig. 2. It
models the monitoring for violations of the resp. (safety) property, and assumes
a set of (visible) actions α, β ∈ Act and a distinguished silent action, τ (we let γ
range over Act ∪ {τ}). Visible actions represent system operations and contain
values v, u ∈ Val, that range over either actor identifiers, i, j, h ∈ Pid, or generic
data such as integers, d ∈ Data. The semantics also assumes a partial function
match(e, α) matching action patterns, e, with visible actions, α; when a match
is successful, the function returns a substitution from the term variable found in
the pattern to the corresponding values of the matched action, σ :: Var ⇀ Val.
We work up-to structural equivalence of formulas ϕ ≡ ψ; see rules in Fig. 2 for
commutativity, associativity etc.

In Fig. 2, formulas tt and ff are idempotent wrt. external transitions and
interpreted as final states (verdicts). Conditional formulas silently branch to the
resp. subformula depending on the evaluation of the boolean expression (rTru
and rFls) whereas rule rMax silently unfolds a recursive formula. Necessity
formulas, [e]ϕ, transition only with a visible action, α: if the action matches the
pattern, mtch(e, α) = σ, it transitions to the necessity subformula where the
variables bound by the matched pattern are substituted with the resp. matched
values obtained from the action, ϕσ; otherwise, the necessity formula transitions
to tt in case of a mismatch (rNc2) — see [7] for details. The rules for conjunction
formulas model the parallel execution of subformulas as described in [12]: subfor-
mulas are allowed to perform independent silent transitions (rCn2 and rCn3)
but transition together for external actions, depending on their individual tran-
sitions (rCn1). Finally, rStr allows us to abstract over structurally equivalent
formulas. We write ϕ

γ
=⇒ ψ in lieu of ϕ( τ−→)∗ γ−−→ ( τ−→)∗ψ. We let t ∈ Act∗

range over lists of visible actions and write ϕ
t=⇒ ψ to denote ϕ

α1==⇒ . . .
αn==⇒ ψ

where t = α1 . . . αn.

Example 2. Recall property ϕ from (1) of Example 1. Using the semantics of
Fig. 2, we can express an execution leading to a violation detection for the action
sequence below as:

ϕ
i?{inc,5,h}

========⇒ (
( [j�h!{res, 5 + 1}]ϕ) & ( [ �h!err]ff)

)

(using rules rMax and rNc1, where mtch(i?{inc, x, y}, i?{inc, 5, h}) = {x �→ 5, y �→ h})

j �h!{res,6}
=========⇒ ϕ

i?{inc,3,h′}
=========⇒ (

( [j�h′!{res, 3 + 1}]ϕ)& ( [ �h′!err]ff)
) k�h′!err
=======⇒ ff �

The derivative semantics corresponds to the violation semantics of [12]: actor A
with trace t violates ϕ, assertion (A, t) �v ϕ, iff ϕ transitions to ff along t and
A can generate t.

Theorem 1 (Semantic Correspondence). (A, t) �v ϕ iff (ϕ t=⇒ ff and
A

t=⇒)
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3 Designing Runtime Adaptation Mechanisms

(Erlang) actor systems, such as those monitored for by detectEr, provide natural
units of adaptations in terms of the individual actors themselves. We identify
two classes of adaptation actions, namely asynchronous adaptations, aA(w), and
synchronous adaptations, sA(w): they both take a list of actor references as argu-
ment — w, r ∈ (

Pid ∪ Var
)∗. In particular, whereas asynchronous adaptations

may be administered on the resp. actors while they are executing, the synchro-
nous ones require the adaptees’ execution to be suspended for the adaptation
to function correctly. Examples of asynchronous adaptations include actor (i.e.,
process [3]) killing and actor linking/unlinking; both examples are native (and
atomic) commands offered by the host language [3]. We have implemented addi-
tional adaptation actions that require a more complex sequence of operations,
such as a purge action (it empties the messages contained in the actor’s mail-
box), and a restart action (it restarts the actor execution, emptying its mailbox
and refreshing its internal state, while preserving its unique identifier); these
constitute examples of synchronous adaptations that require the suspension of
the resp. actor.

Synchronous adaptations require a mechanism for gradually suspending the
actor executions of interest while a property is being monitored for, so that
actors are in the required status when the adaptation is administered. There
are many ways how one can program incremental synchronisations between the
system and the monitor. We chose to piggyback on the specification scripts pre-
sented in Sect. 2 and extend necessity formulas with a synchronisation modality,
[e] ρ ϕ, where ρ ranges over either b (blocking), stating that the subject of the
action (i.e., an actor) is suspended if the action is matched by pattern e, or a
(asynchronous), stating that the action subject is allowed to continue executing
asynchronously when the pattern e is matched. We recall that if the necessity for-
mula [e]ϕ mismatches with a trace action, its observation terminates (see rNc2
in Fig. 2); in our case this would also mean that the synchronous adaptation
contained in the continuation, ϕ (for which we have been incrementally blocking
actor executions) are never administered. In such cases, we provide a mecha-
nism for releasing the actors blocked thus far: necessity formulas are further
extended with a list of actor references, r, that denote the (blocked) actors to
be released in case the necessity pattern e mismatches, [e] ρ

r ϕ. Since adaptations
in a script may be followed by further observations, we also require a similar
release mechanism for adaptation actions, aA(w)r and sA(w)r , where the actor
list r is unblocked after the adaptation is administered to the actors w.

Remark 1. Although minimally intrusive, the expressivity of our mechanism for
incremental synchronisation relies on what system actions can be observed (i.e.,
the level of abstraction the system is monitored at). For instance, recall the
system depicted in Fig. 1. If monitored from an external viewpoint, the commu-
nications sent from the interface actor, i, to the backend actors, j and h, are not
visible (according to [12], they are seen as internal τ -actions). However, for obser-
vations required by properties such as (2), we would need to block actor i only
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after it sends a message to either of the backend actors—otherwise the entire
system blocks. This requires observing the system at a lower level of abstraction,
where certain τ -actions are converted into visible ones e.g., the instrumentation
used by detectEr allows us to observe internal actions such as function calls or
internal messages sent between actors as discussed for Fig. 1. See [7] for more
examples of this.

Example 3. The script extensions discussed in this section allow us to augment
the adaptation script outlined in (2) from Example 1 as follows:

ϕ′ def= max Y.[i?{inc, x, y}] a
ε

[tau(i, , {inc, x, y})] b
ε

(
( [j�y!{res, x + 1}] a

ε Y ) &
( [z �y!err] b

i restr(i)ε prg(z)i,z Y )

)

(3)
After asynchronously observing action i ?{inc,v,h } (for some v, h pattern
matched to x and y resp.), the monitor synchronously listens (modality b) for
an internal communication action from i to some actor with this data, {inc,v,h
}, action [tau(i, , {inc, x, y})] b

ε . If this action is observed, the subject of the
action, i.e., actor i, is blocked. If the subsequent action observed is an error
reply, z �h!err (from an actor bound to z at runtime), we block actor z (again,
note modality b) and start the synchronous adaptation actions, restr(i)ε and
prg(z)i;z. Note that the last adaptation action releases the two blocked actors i
and z before recursing; similarly the necessity formula for the error reply releases
the blocked actor i if the resp. action is not matched, [z �y!err] b

i . �

4 A Formal Model for Runtime Adaptation

Figure 3 describes a semantics for the extended logic with adaptations discussed
in Sect. 3. Apart from the extended necessity and the asynchronous/synchronous
adaptation formulas, it uses two additional constructs, blk(r) ϕ and rel(r) ϕ; these
are not meant to be part of the specification scripts but are used as part of the
runtime syntax. Since the extended logic affects the system being monitored
through adaptations and synchronisations, the operational semantics is given
in terms of configurations, s � ϕ. In addition to closed formulas, configurations
include the monitored system represented abstractly as a partial map, s ::Pid ⇀
{•, ◦}, describing whether an actor (through its unique identifier) is currently
blocked (suspended), •, or executing, ◦. We occasionally write w : • to denote
the list of mappings i1 :•, . . . , in :• where w = i1, . . . , in (similarly for w :◦).

To describe adaptation interactions between the monitor and the system,
the LTS semantics of Fig. 3 employs four additional labels, ranged over by the
variable μ. These include the asynchronous and synchronous adaptation labels,
a(w) and s(w), to denote resp. that an asynchronous and synchronous action
affecting actors w has been executed. They also include a blocking action, b(w),
and an unblocking (release) action, r(w), affecting the execution of actors with
identifiers in the list w.
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Fig. 3. A runtime semantics for instrumented properties with adaptations

The semantics is defined in terms of three LTSs: one for logical formulas
(monitors), one for systems, and one for configurations, which is based on the
other two LTSs. The LTS semantics for formulas extends the rules in Fig. 2 with
the exception of those for the necessity formulas, which are replaced by rules
rNc1, rNc2 and rNc3. Whereas rNc2 follows the same format as that of
rNc1 from Fig. 2, the rule for synchronous necessity formulas, rNc1, transitions
into a blocking construct, blk(i) ϕ, for the subject of the action, i, in case a
pattern match is successful. In case of mismatch, rNc3 transitions the necessity
formula to a release construct, rel(r) ϕ, with the specified release list of actors,
r. Asynchronous and synchronous adaptation formulas transition with the resp.
labels to a release construct as well (rules rAdA and rAdS), as do block and
release constructs (rules rRel and rBlk). Finally, rule rCn4 allows monitor
actions affecting the system, μ, to be carried out under a conjunction formula,
independent of the other branch; we elide the obvious symmetric rule rCn5.
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The system transition rules allow further actor spawning (sNew) but restrict
actions to those whose subject is currently active, i.e., unblocked i : ◦ (sAct).
Whereas asynchronous adaptations can be applied to any actor list, irrespective
of their status (sAdA), synchronous ones require the adaptees to be blocked
(sAdS). Finally rules sBlk and sRel model the resp. actor status transitioning
from active to blocked (and viceversa).

The instrumentation rules for configurations describe how system (visible)
actions, α, affect the monitors and, dually, how the monitor adaptation and syn-
chronisation actions, μ, affect the system. For instance, if the monitor instigates
action μ and the system allows it, they both transition together as a silent move
(iAda). Dually, if the system generates action α and the monitor can observe it,
they also transition in unison (iAct); if the monitor cannot observe this action
(iTrm), it terminates as formula tt. Note that both rules iAct and iTrm require
the monitor not to be in a position to perform an adaptation/synchronisation
action, i.e., premise ϕ 	μ−−→; this gives precedence to monitor actions over system
ones in our instrumentation. Rules iSys and iMon allow systems and monitors
to transition independently wrt. τ -actions.

Example 4. Recall the adaptation formula ϕ′ defined in (3) of Example 3. For
the system s = (i : ◦, j : ◦, k : ◦, h : ◦) we can model the runtime execution with
adaptations:

s � ϕ′ i?{inc,1,h}
=======⇒ · tau(i,k,{inc,1,h})

============⇒ s � blk(i)
(

[j�h!{res, 2}] a
ε ϕ′ &

[z �h!err] b
i restr(i)ε prg(z)i,z ϕ′

)

(4)

τ−→ (
(j, h, k) :◦, i :•)

�
(
[j�h!{res, 2}] a

ε ϕ′ & [z �h!err] b
i restr(i)εprg(z)i,zϕ

′
)

(5)

k�h!err−−−−−−→ (
(j, h, k) :◦, i :•)

� blk(k) restr(i)ε prg(k)i,k ϕ′ (6)

τ−→ (
(j, h) :◦, i :•, k :•)

� restr(i)ε prg(k)i,k ϕ′ (7)

τ=⇒ (
(j, h) :◦, i :•, k :•)

� rel(i, k) ϕ′ τ−→ s � ϕ′ (8)

In particular, the synchronous pattern-matches in (4) and (6) yield the run-
time actor blocking constructs, that are applied (incrementally) in (5) and (7).
This allows the synchronous adaptations in (8) to proceed, followed by the
unblocking of the resp. actors. Erroneous blocking directives result in stuck syn-
chronous adaptations (see sAdS). For instance, if we change the first blocking
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necessity in ϕ′ of (3) to an asynchronous one, [tau(i, , {inc, x, y})] a
ε , it yields

the execution below (ϕ′′ is the erroneous formula):

s � ϕ′′ i?{inc,1,h}
=======⇒ · tau(i,k,{inc,1,h})

===========⇒ · k�h!err
=====⇒ ((i, j, h) :◦, k :•) � restr(i)ε prg(k)i,k ϕ′′

The final configuration is stuck because the synchronous adaptation on i cannot
be carried out since i is not blocked. A similar situation is reached if a blocked
actor is released prematurely. For instance, if we erroneously change the release
list of the necessity subformula [j �y!{res, x + 1}] a

ε Y from ε to i, this releases
i upon mismatch, interfering with adaptation actions along the other branch of
the conjunction. �

The semantics of Fig. 3 allows us to formalise configurations in an erroneous
state, i.e., when a monitor wants to apply synchronous adaptations that the
system prohibits.

Definition 1. error(s�ϕ) def= ϕ
s(w)−−−→ and s 	s(w)−−−→ for some w ∈ dom(s)

5 Static Type Checking

Synchronisation errors in adaptation-scripts, such as those outlined in Example 4
can be hard to detect by the specifier. We therefore develop a type system with
the aim of assisting script construction, by filtering out the errors defined in
Definition 1. It relies on the type structure defined in Fig. 4 where values are
partitioned into either generic data, dat, or actor identifiers; identifiers are further
divided into unrestricted, uid, and linear, lid. The type system is substructural
[22], using linear types to statically track how the actor identifiers used for
adaptations are blocked and released by the parallel branches (i.e., conjunctions)
of the resp. script. In fact, type checking (internally) uses a sub-category for
linear identifier types, lbid, to denote a blocked linear identifier. Type checking
works on typed scripts, where the syntax of Fig. 3 is extended so that the binding
variables used in action patterns are annotated by the types dat, uid or lid.

Example 5. The adaptation-script (4) of Example 3 would be annotated as fol-
lows:

ϕ′ def= max Y.[i?{inc, x :dat, y :uid}] a
ε

[tau(i, , {inc, x, y})] b
ε

(
( [j�y!{res, x + 1}] a

ε Y ) &
( [z : lid �y!err] b

i restr(i)ε prg(z)i,z Y )

)

(9)
In (9) above, pattern variables x, y and z are associated to types dat, uid and lid
resp. �

Our type system for (typed) adaptation-scripts is defined as the least relation
satisfying the rules in Fig. 4. Type judgements take the form Σ;Γ 
ϕ where

– Value environments, Γ ∈ Env::(Pid ∪ Var) ⇀ Typ, map identifiers or vari-
ables to types — we let meta-variable l ∈ (Pid ∪ Var) range over identifiers
and variables;
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– Formula environments, Σ ∈ LVar ⇀ Env, map formula variables to value
environments — they are used to analyse recursive formulas (see rules tMax
and tVar).

We sometimes write Γ 
 ϕ in place of ∅;Γ 
 ϕ. The rules in Fig. 4 assume
standard environment extensions, (Γ, Γ ′), and use environment splitting, Γ1+Γ2,
to distribute linearly mappings amongst two environment (see rules sU and
sL in Fig. 4 — we elide the symmetric rule sR). Similar to before, we write
w : T to denote the list of mappings l1 : T, . . . , ln : T where w = l1, . . . , ln. In
addition to subj(e), the typing rules use another auxiliary function on patterns
that extracts a map of type bindings, bnd(e). For instance, from Example 5, we
have bnd(i?{inc, x :dat, y :uid}) = x :dat, y :uid.

The typing rules for asynchronous and blocking necessities are similar: tNcA
extends the environment Γ with the bindings introduced by the pattern e to
check that the continuation formula typechecks, Σ; (Γ, bnd(e))
ϕ; it also checks
that the resultant actor releases (in case of action mismatch) also typecheck,
Σ;Γ 
 rel(r) tt. Rule tNcB performs similar checks, but the continuation for-
mula typechecking is prefixed by the blocking of the subject of the pattern,

Fig. 4. A type system for adaptation sHML scripts
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Σ; (Γ, bnd(e)) 
 blk(l) ϕ. Typing for actor blocking and releasing changes the
respective bindings from lid to lbid (and vice-versa) to typecheck the continua-
tions, rules tBlk and tRel. Typechecking asynchronous adaptations requires
the adaptees to be linearly typed, rule tAdA, whereas synchronous adaptations
require adaptees to be linearly blocked, rule tAdS; in both cases, they consider
the resp. released actors when typechecking the continuations, Σ;Γ 
 rel(r) ϕ.

We have two rules for typechecking conjunction formulas. Since conjunction
subformulas may be executing in parallel (recall rules rCn1, rCn2, rCn3 and
rCn4 from Figs. 2 and 3) rule tCn1, typechecks each subformula wrt. a split
value environment, Γ1+Γ2, as is standard in linear type systems. Unfortunately,
this turns out to be too coarse of an analysis and rejects useful adaptation-scripts
such as (9) from Example 5.

Example 6. The conjunction formula used in (9) from Example 5 has the form:

( [j�y!{res, x + 1}] a
ε Y ) & ( [z : lid �y!err] b

i restr(i)ε prg(z)i,z Y )

where the subformulas are necessity formulas with mutually exclusive patterns
i.e., there is no action satisfying both patterns j�y!{res, x + 1} and z : lid�y!err.
In such cases, a conjunction formula operates more like an external choice con-
struct rather than a parallel composition [20], where only one branch continues
monitoring. �

In order to refine our analysis, we define an approximating function excl(ϕ,ψ)
that syntactically analyses subformulas to determine whether they are mutually
exclusive or not. When this can be determined statically, it means that only one
branch will continue, whereas the other will terminate, releasing the actors speci-
fied by the resp. necessity formulas (recall rNc3 from 3). Accordingly, excl(ϕ,ψ)
denotes that mutual exclusion can be determined by returning a tuple consisting
of two release sets, 〈rϕ, rψ〉 containing the actors released by the resp. subformu-
las when an action is mismatched. Rule tCn2 then typechecks each subformula
wrt. the entire environment Γ , adjusted to take into consideration the actors
release by the other (defunct) branch, e.g., Σ; eff(Γ, rψ)
ϕ. When this cannot
be determined, i.e., excl(ϕ,ψ) = ⊥, rule tCn1 is used.

The rest of the typing rules are standard. E.g., rule tIf approximates the
analysis of the boolean condition and requires typechecking to hold for both
branches.

Example 7. We can typecheck (9) wrt. Γ = i : lid, j : uid. The typesystem also
rejects erroneous scripts discussed earlier. E.g., for any environment, we cannot
typecheck the erroneous script ϕ′′ from Example 4 — with the necessary type
annotations as in (9). Similarly, we cannot typecheck the script below (mentioned
earlier in Example 4).

ϕ′′′ def= max Y.[i?{inc, x :dat, y :uid}] a
ε

[tau(i, , {inc, x, y})] b
ε

(
( [j�y!{res, x + 1}] a

i Y ) &
( [z : lid �y!err] b

i restr(i)ε prg(z)i,z Y )

)
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ϕ′′′ differs from (9) only wrt. the necessity subformula [j�y!{res, x + 1}] a
i Y , which

releases i when it mismatches an action. As discussed in Example 4, this results in
a premature release of actor i, which interferes with the synchronous adaptation
restr(i)ε along the other branch. However, rule tCn2 detects this interference. �

6 Dynamic Analysis of Typed Scripts

The typed adaptation-scripts of Sect. 5 need to execute wrt. the systems
described in Sect. 4. Crucially, however, we cannot expect that a monitored sys-
tem observes the type discipline assumed by the script. This, in turn, may create
type incompatibilities that need to be detected and handled at runtime by the
monitor.

Example 8. Recall the typed script (9) from Example 5. There are two classes
of type incompatibilities that may arise during runtime monitoring:

– When listening for a pattern, e.g., i?{inc, x : dat, y : uid}, the system may
generate the action i?{inc, 5, 6}; matching the two would incorrectly map
the identifier variable y (of type uid) to the data value 6; we call this a type
mismatch incompatibility.

– When listening for pattern z : lid �y!err, the system may generate a match-
ing action i �h!err mapping variable z to i. Aliasing z with i violates the
linearity assumption associated with z, lid, which assumes it to be distinct
from any other identifier mentioned in the script [22]; we call this an aliasing
incompatibility.

A system that is typed wrt. the same type environment that (9) is typechecked
with (e.g., Γ = i : lid, j : uid from Example 7) would not generate any of the
incompatibilities above. �

In the absence of system typing, our monitors need to perform dynamic type
checks (at runtime) and abort monitoring as soon as a type incompatibility is
detected: any violations to the type discipline assumed by the script potentially
renders unsafe any adaptations specified, and should thus not be administered
on the system. In order to perform dynamic type checks, the operational seman-
tics of typed scripts is defined wrt. the type environment with which they are
typechecked — together with the type annotations included for binding (value)
variables in the necessity patterns, it captures the (type) assumptions the script
makes on the system being monitored.

Example 9. The execution of the typed script (9) would use the type envi-
ronment Γ = i : lid, j :uid from Example 5 to determine that an action such as
i?{inc, 5, i} cannot be matched with pattern i?{inc, x :dat, y :uid}, as this would
lead to a type mismatch between y :uid and the resulting map to i : lid (note the
mismatching types). Conversely, matching pattern i?{inc, x : dat, y : uid} with
action i?{inc, 5, h} would not only constitute a valid match, but also allow moni-
toring to extend the assumed knowledge of the system from Γ to Γ ′ = (Γ, h :uid),
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where h is associated to the type of the matched pattern variable y. The extended
environment Γ ′ would then allow the monitor to detect a type mismatch between
pattern z : lid �h!err and action h �h!err. Importantly however, it also allows
the monitor to also detect an aliasing violation between the same pattern and
action i �h!err — variable z cannot be mapped to i, since i ∈ dom(Γ ′). It
would however allow z : lid�h!err to be matched to action k �h!err, which would
(again) extend the current type environment to (Γ ′, k : lid) using the script type
association z : lid. �

Although safe, the mechanism discussed in Example 9 turns out to be rather
restrictive for recursive properties (using maximal fixpoints). Note that, by
alpha-conversion, the variable bindings made by a necessity formula under a
fixpoint formula is different for every unfolding of that fixpoint formula: e.g.,
unfolding script (9) twice yields

[i?{inc, x :dat, y :uid}] a
ε

(
. . . [z : lid �y!err] b

i . . .

(
[i?{inc, x′ :dat, y′ :uid}] a

ε

(. . . [z′ : lid �y!err] b
i . . . ϕ′)

))

where the outer bindings x, y, z are distinct from the inner bindings x′, y′, z′.
More importantly, however, the scope of these bindings extends until the next
fixpoint unfolding, and are not used again beyond that point, e.g., x, y, z above
are not used beyond the resp. adaptations of the first unfolding. Thus, one pos-
sible method for allowing a finer dynamic analysis for adaptation-scripts, esp.
relating to linearity and aliasing violations, is to employ a mechanism that keeps
track of which bindings are still in use. In the example above, this would allow
us to bind k twice — once with z during the first iteration, and another time
with z′ — safe in the knowledge that by the time the second binding occurs (z′),
the first binding (z) is not in use anymore, i.e., there is no aliasing.

To implement this mechanism, our formalisation uses three additional com-
ponents. First, the operational semantics for adaptation-scripts uses an extra
environment, Δ ∈ Pid ⇀ P(LVar), keeping track of the recursion variables
under which an identifier binding is introduced by associating that identifier to
a set of formula variables, κ ∈ P(LVar). Environment Δ keeps track of the linear
identifiers that are currently in use. Second, to facilitate updates to environment
Δ, the patterns in necessity formulas are decorated by sets of formula variables,
denoting their resp. recursion scope: e.g., formula max X.[e] ρ

r . . . max Y.[e′] ρ′
w ff

is decorated3 as max X.[e{X}] ρ
r . . . max Y.[e′

{X,Y }]
ρ′
w ff. Third, the runtime syntax

uses an additional construct, clr(X)ϕ, when unfolding a recursive formula: the
new runtime construct demarcates the end of an unfolding and, upon execution,
removes all identifier entries in Δwith X in their resp. set of formula variables
so as to record that they are not in use anymore.

Figure 5 describes the main transition rules for typed adaptation-scripts,
defined over triples 〈Γ, Δ, ϕ〉. Together with the system and instrumentation
rules of Fig. 3 (adapted to triples 〈Γ, Δ, ϕ〉), they form the complete operational
semantics. By contrast to the rule in Fig. 2, rMax in Fig. 5 unfolds a recursive
formula to one prefixed by a clear construct, clr(X)max X.ϕ. Rule rClr removes
3 Decoration is easily performed through a linear scan of the script.
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Fig. 5. Dynamically typed adaptation-script rules (main rules)

all entries in Δ containing X. The new version of rNc1 in Fig. 5 implicitly
checks for type mismatch incompatibilities by requiring that the environment
extension,

(
Γ, Γ ′), is still a map — conflicting entries e.g., i : uid, i : lid would

violate this condition. It also checks that the new bindings, dom(Γ ′) are dis-
tinct from the linear identifiers currently in use, dom(Δ), as these constitute
aliasing incompatibilities, and that pattern matching does not introduce alias-
ing for linear variables itself, i.e., |lin(Γ ′)| = |lin(bnd(e))|. Finally, it transitions
by updating Δ accordingly. Rule rNc2 is analogous. Rule rCn1 performs simi-
lar checks e.g., it ensures that linear aliasing introduced along separate branches
do not overlap, dom(Δ) =

(
dom(Δ′) ∩ dom(Δ′′)

)
. If any of the conditions for

rNc1, rNc2 and rCn1 are not satisfied, the adaptation-script blocks and is
terminated in an instrumented setup using rule iTrm from Fig. 3, i.e., it aborts
as soon as type incompatibilities are detected.

Using a straightforward extension of Definition 1, we prove type soundness
wrt. the dynamic semantics of typed adaptation-scripts: configurations with
typed scripts (and initial Δ) never transition to an erroneous configuration (for
any trace t).

Theorem 2 (Type Soudness). Whenever Γ 
 ϕ then, for initial Δinit =
{i :∅ | Γ (i)= lid}:

s � 〈Γ, Δinit, ϕ〉 t=⇒ s′ � 〈Γ ′, Δ′, ϕ′〉 implies ¬error(s′ � 〈Γ ′, Δ′, ϕ′〉)

7 Conclusion

We have designed language extensions for an RV tool monitoring actor systems,
cf. Sect. 3. These extensions weave synchronisation and adaptation directives
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over behavioural specifications expressed in the tool logic. We then formalised
the resp. behaviour of these new constructs (Figs. 3 and 5). Through the for-
malisation, we also identified execution errors that may be introduced by the
synchronisation and adaptation directives. Subsequently, we defined a type sys-
tem for assisting the construction of such adaptation-scripts, Sect. 5, and proved
soundness properties for it, Theorem 2. We conjecture that our techniques and
methodologies are generic enough to be applied, at least in part, to other RA
extensions of existing RV logics and tools.

Related Work: Perhaps the closest work to ours is [26], where an extension to
the logic LTL called A-LTL is developed so as to describe properties of self-
adaptive systems. In [13] the authors also implement an RV tool that checks for
these adaptation properties at runtime. A crucial difference between this work
and ours is that in [13,26] systems are assumed to be self-adaptive already; by
contrast, we take (normal) systems and introduce degrees of adaptation through
monitoring. We also spend substantial effort contending with the specific issue
of partial monitor synchronisation in the context of inherently asynchronous
(actor) systems.

In [4], the authors explore an interplay between static and dynamic type-
checking in a message passing setting through monitoring. This framework of
synthesising monitors from (session) types is further extended in [8] to carry
out degrees of adaptations for security purposes. No type checking is carried
out on the synthesised monitors in either of these works. Runtime Adaptation
through monitoring are also explored in [19,23] for C programs to attain “failure-
oblivious computing” that can adapt to errors such as null-dereferencing through
a technique called reverse shepherding. Again, no static analysis is performed
on the monitors themselves. Finally, in [5,6], the authors extend Aspect-J with
dependent advices, and subsequently perform static analysis on these RV scripts
(using typestates) in order to determine optimisations in monitor instrumenta-
tions. However, the static analysis does not consider aspects relating to monitor
safety.
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Abstract. Requirements of cyberphysical systems (CPS) can be rigor-
ously specified using Signal Temporal Logic (STL). STL comes equipped
with semantics that are able to quantify how robustly a given signal sat-
isfies an STL property. In a setting where signal values over the entire
time horizon of interest are available, efficient algorithms for offline com-
putation of the robust satisfaction value have been proposed. Only a few
methods exist for the online setting, i.e., where only a partial signal trace
is available and rest of the signal becomes available in increments (such
as in a real system or during numerical simulations). In this paper, we
formalize the semantics for robust online monitoring of partial signals
using the notion of robust satisfaction intervals (RoSIs). We propose an
efficient algorithm to compute the RoSI and demonstrate its usage on
two real-world case studies from the automotive domain and massively-
online CPS education. As online algorithms permit early termination
when the satisfaction or violation of a property is found, we show that
savings in computationally expensive simulations far outweigh any over-
heads incurred by the online approach.

1 Introduction

Embedded software designers typically validate designs by inspecting concrete
observations of system behavior. For instance, in the model-based development
(MBD) paradigm, designers use numerical simulation tools to obtain traces from
models of systems. An important problem is to efficiently test whether some
logical property ϕ holds for a given simulation trace. It is increasingly common
[2,3,11,14–16,18] to specify such properties using a real-time temporal logic
such as Signal Temporal Logic (STL) [9] or Metric Temporal Logic (MTL) [12].
An offline monitoring approach involves performing an a posteriori analysis on
complete simulation traces (i.e., traces starting at time 0, and lasting till a user-
specified time horizon T ). Theoretical and practical results for offline monitoring
[7,9,12,20] focus on the efficiency of monitoring as a function of the length of
the trace, and the size of the formula representing the property ϕ.

There are a number of situations where offline monitoring is unsuitable. Con-
sider the case where the monitor is to be deployed in an actual system to detect
c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 55–70, 2015.
DOI: 10.1007/978-3-319-23820-3 4
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erroneous behavior. As embedded software is typically resource constrained,
offline monitoring is impractical as it requires storing the entire observed trace.
In a simulation tool that uses numerical techniques to compute system behav-
iors, obtaining even one signal trace may require several minutes or even hours.
If we wish to monitor a property over the simulation, it is usually sensible to
stop the simulation once the satisfaction or violation of the property is detected.
Such situations demand an online monitoring algorithm, which has markedly
different requirements. In particular, a good online monitoring algorithm must:
(1) be able to generate intermediate estimates of property satisfaction based on
partial signals, (2) use minimal amount of data storage, and (3) be able to run
fast enough in a real-time setting.

Most works on online monitoring algorithms for logics such as Linear Tempo-
ral Logic (LTL) or Metric Temporal Logic (MTL) have focussed on the Boolean
satisfaction of properties by partial signals [10,13,21]. Recent work shows that
by assigning quantitative semantics to real-time logics such as MTL and STL,
problems such as bug-finding, parameter synthesis, and robustness analysis can
be solved using powerful off-the-shelf optimization tools [1,6]. The quantitative
semantics define a function mapping a property ϕ and a trace x(t) to a real
number, known as the robust satisfaction value. A large positive value suggests
that x(t) easily satisfies ϕ, a positive value near zero suggests that x(t) is close to
violating ϕ, and a negative value indicates a violation of ϕ. While the recursive
definitions of quantitative semantics naturally define offline monitoring algo-
rithms to compute robust satisfaction values [7,9,12], there is limited work on
an online monitoring algorithm to do the same [5].

The theoretical challenge of online monitoring lies in the definition of a prac-
tical quantitative semantics for a temporal logic formula over a partial signal,
i.e., a signal trace with incomplete data which may not yet validate or invalidate
ϕ. Past work [10] has identified three views for the satisfaction of a LTL prop-
erty ϕ over a partial trace τ : (1) a weak view where τ satisfies ϕ if there is some
suffix τ ′ such that τ.τ ′ satisfies ϕ, (2) a strong view where τ does not satisfy ϕ
if there is some suffix τ ′ such that τ.τ ′ does not satisfy ϕ and (3) a neutral view
when the satisfaction is defined using a truncated semantics of LTL restricted
to finite paths. In [13], the authors extend the truncated semantics to MTL. In
[5], the authors introduce the notion of a predictor, which works as an oracle to
complete a partial trace and provide an estimated satisfaction value. In general,
such a value cannot be formally trusted as long as the data is incomplete.

The layout of the paper is as follows: In Sect. 3, we present robust interval
semantics for an STL property ϕ on a partial signal (with data available till
time ti, denoted x[0,i]) that unifies the different semantic views of real-time
logics on truncated paths. Informally, we define a function that maps x[0,i] and
ϕ to the robust satisfaction interval (RoSI) (�, υ), with the interpretation that
for any suffix x[ti+1,tN ], � is the greatest lower bound on the robust satisfaction
value of xN , and υ is the corresponding lowest upper bound. There is a natural
correspondence between the RoSI and three-valued semantics: (1) ϕ is violated
according to the weak view iff υ is negative, and is satisfied otherwise; (2) ϕ is
satisfied according to the strong view iff � is positive, and violated otherwise;
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and (3) a neutral semantics, e.g., based on some predictor, can be defined when
� < 0 < υ, i.e., when there exist suffixes that can violate or satisfy ϕ.

In Sect. 4, we present an efficient online algorithm to compute the RoSI for a
bounded-time-horizon STL formula by extending the offline algorithm of [7]. In
spite of being online, the extension imposes minimal runtime overhead. It works
in a fashion similar to incremental Boolean monitoring of STL implemented in
the tool AMT [21]. In Sect. 5, we present algorithms that can perform online
monitoring of commonly-used unbounded time-horizon formulas using only a
bounded amount of memory.

Finally, we present experimental results on two large-scale case studies:
(i) industrial-scale Simulink models from the automotive domain in Sect. 6, and
(ii) an automatic grading system used in a massive online education initiative on
CPS [17]. Since the online algorithm can abort simulation as soon as the satisfac-
tion of the property is determined, we see a consistent 10 %–20 % savings in sim-
ulation time (which is typically several hours) in a majority of experiments, with
negligible overhead (<1 %). In general, our results indicate that the benefits of our
online monitoring algorithm over the offline approach far outweigh any overheads.

2 Background

Interval Arithmetic. We now review interval arithmetic. An interval I is a
convex subset of R. A singular interval [a, a] contains exactly one point. Inter-
vals (a, a), [a, a), (a, a], and ∅ denote empty intervals. We enumerate interval
operations below assuming open intervals. Similar operations can be defined for
closed, open-closed, and closed-open intervals.

1. −I1 = (−b1,−a1)
2. c + I1 = (c + a1, c + b1)

3. I1 ⊕ I2 = (a1 + a2, b1 + b2)
4. min(I1, I2) = (min(a1, a2),min(b1, b2))

5. I1 ∩ I2 =
{ ∅ if min(b1, b2) < max(a1, a2)

(max(a1, a2),min(b1, b2)) otherwise.
(2.1)

Definition 1 (Signal). A time domain T is a finite or infinite set of time
instants such that T ⊆ R

≥0 with 0 ∈ T . A signal x is a function from T to X .
Given a time domain T , a partial signal is any signal defined on a time domain
T ′ ⊆ T .

Note that X can be any set, but it is usual to assume some subset of R
n.

Simulation frameworks typically provide signal values at discrete time instants,
usually this is a by-product of using a numerical technique to solve the dif-
ferential equations in the underlying system. These discrete-time solutions are
assumed to be sampled versions of the actual signal, which can be reconstructed
using some form of interpolation. In this paper, we assume constant interpo-
lation to reconstruct the signal x(t), i.e., given a sequence of time-value pairs
(t0,x0), . . . , (tn,xn), for all t ∈ [t0, tn), we define x(t) = xi if t ∈ [ti, ti+1), and
x(tn) = xn. Further, let Tn ⊆ T represent the finite subset of time instants at
which the signal values are given.
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Signal Temporal Logic. We use Signal Temporal Logic (STL) [9] to analyze
time-varying behaviors of signals. We now present its syntax and semantics.
A signal predicate μ is a formula of the form f(x) > 0, where x is a variable
that takes values from X , and f is a function from X to R. For a given f , let
finf denote infx∈X f(x), i.e., the greatest lower bound of f over X . Similarly, let
fsup = supx∈X f(x). The syntax of an STL formula ϕ is defined in Eq. (2.2).
Note that � and ♦ can be defined in terms of the U operator, but we include
them for convenience.

ϕ::=μ | ¬ϕ | ϕ ∧ ϕ | �(u,v)ϕ | ♦(u,v)ϕ | ϕU(u,v)ϕ (2.2)

Quantitative semantics for timed-temporal logics have been proposed for STL
in [9]; we include the definition below. In the usual Boolean sense of satisfaction,
a signal x satisfies ϕ at a time τ iff the robust satisfaction value ρ(ϕ,x, τ) ≥ 0.

Definition 2 (Robust Satisfaction Value). We first define a function ρ
mapping an STL formula ϕ, the signal x, and a time τ ∈ T as follows:

ρ (f(x) > 0,x, τ) = f(x(τ))
ρ (¬ϕ,x, τ) = −ρ(ϕ,x, τ)
ρ (ϕ1 ∧ ϕ2,x, τ) = min (ρ(ϕ1,x, τ), ρ(ϕ2,x, τ))
ρ (�Iϕ,x, τ) = inft∈τ+I ρ(ϕ,x, t)
ρ (♦Iϕ,x, τ) = supt∈τ+I ρ(ϕ,x, t)

ρ (ϕ1UIϕ2,x, τ) = sup
t2∈τ+I

min
(

ρ(ϕ2,x, t2), inf
t1∈(τ,t2)

ρ(ϕ1,x, t1)
)

(2.3)
The robust satisfaction value of a given signal x w.r.t. a given formula ϕ is then
defined as ρ(ϕ,x, 0).

3 Robust Interval Semantics

We assume finite time-horizon T for signals. Further, we assume that the signal
is obtained by applying constant interpolation to a sampled signal defined over
time-instants {t0, t1, . . . , tN}, such that tN = T and ∀i : ti < ti+1. In the online
monitoring context, at any time ti, only the partial signal over time instants
{t0, . . . , ti} is available, and the rest of the signal becomes available in discrete
time increments. We define new semantics for STL formulas over partial signals
using intervals. A robust satisfaction interval (RoSI) includes all possible robust
satisfaction values corresponding to the suffixes of the partial signal. In this
section, we formalize the recursive definitions for RoSI of an STL formula with
respect to a partial signal, and next we will discuss an efficient algorithm to
compute and maintain these intervals.

Definition 3 (Prefix, Completions). Let {t0, . . ., ti} be a finite set of time
instants such that ti ≤ T , and let x[0,i] be a partial signal over the time domain
[t0, ti]. We say that x[0,i] is a prefix of a signal x if for all t ≤ ti, x(t) = x[0,i](t).
The set of completions of a partial signal x[0,i] (denoted by C(x[0,i])) is defined
as the set {x | x[0,i] is a prefix of x}.
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Definition 4 (Robust Satisfaction Interval (RoSI)). The robust satisfac-
tion interval of an STL formula ϕ on a partial signal x[0,i] at a time τ ∈ [t0, ti]
is an interval I s.t.:

inf(I) = inf
x∈C(x[0,i])

ρ(ϕ,x, τ) and sup(I) = sup
x∈C(x[0,i])

ρ(ϕ,x, τ)

Definition 5. We define a recursive function [ρ] that maps a given formula ϕ,
a partial signal x[0,i] and a time τ ∈ T to an interval [ρ](ϕ,x[0,i], τ).

[ρ]
(
f(x[0,i]) > 0,x[0,i], τ

)
=

{
[f(x[0,i](τ)), f(x[0,i](τ))] τ ∈ [t0, ti]

[finf , fsup] otherwise.

[ρ]
(¬ϕ,x[0,i], τ

)
= −[ρ](ϕ,x[0,i], τ)

[ρ]
(
ϕ1 ∧ ϕ2,x[0,i], τ

)
= min([ρ](ϕ1,x[0,i], τ), [ρ](ϕ2,x[0,i], τ))

[ρ]
(
�Iϕ,x[0,i], τ

)
= inft∈τ+I

(
[ρ](ϕ,x[0,i], t)

)

[ρ]
(
♦Iϕ,x[0,i], τ

)
= supt∈τ+I

(
[ρ](ϕ,x[0,i], t)

)

[ρ]
(
ϕ1UIϕ2,x[0,i], τ

)
= sup

t2∈τ+I
min

⎛

⎝
[ρ](ϕ2,x[0,i], t2),

inf
t1∈(τ,t2)

[ρ](ϕ1,x[0,i], t1))

⎞

⎠

(3.1)

It can be shown that the RoSI of a signal x w.r.t. an STL formula ϕ is equal
to [ρ](ϕ,x, 0); we defer the proof to the full version [4].

4 Online Algorithm

Donzé et al. [7] present an offline algorithm for monitoring STL formulas over
(piecewise) linearly interpolated signals. A näıve implementation of an online
algorithm is as follows: at time ti, use a modification of the offline monitoring
algorithm to recursively compute the robust satisfaction intervals as defined by
Definition 5 to the signal x[0,i]. We observe that such a procedure does many
repeated computations that can be avoided by maintaining the results of inter-
mediate computations. Furthermore, the näıve procedure requires storing the
signal values over the entire time horizon, which makes it memory-intensive. In
this section, we present the main technical contribution of this paper: an online
algorithm that is memory-efficient and avoids repeated computations.

As in the offline monitoring algorithm in [7], an essential ingredient of the
online algorithm is Lemire’s running maximum filter algorithm [19]. The problem
this algorithm addresses is the following: given a sequence of values a1, . . . , an,
find the maxima over windows of size w, i.e., for all j, find maxi∈[j,j+w) ai (sim-
ilarly, for finding the corresponding minima). We briefly review an extension
of Lemire’s algorithm over piecewise-constant signals with variable time steps,
given as Algorithm 1. The main observation in Lemire’s algorithm is that it is
sufficient to maintain a descending (resp. ascending) monotonic edge (denoted
F in Algorithm 1) to compute the sliding maxima (resp. minima), in order to
achieve an optimal procedure (measured in terms of the number of comparisons
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Algorithm 1. SlidingMax((t0,x0), . . . , (tN ,xN ), [a, b]).
Output: Sliding maximum y(t) over times in [t0, tN ]

1 F : = {0} // F is the set of times representing the monotonic edge

2 i : = 0 ; s, t : = t0 − b
3 while t + a < tN do
4 if F �= ∅ then t : = min(tmin(F) − a, ti+1 − b)
5 else t : = ti+1 − b
6 if t = ti+1 − b then
7 while xi+1 ≥ xmax(F) ∧ F �= ∅ do
8 F: = F − max(F)
9 F: = F ∪ {i + 1}, i : = i + 1

10 else // Slide window to the right

11 if s > t0 then y(s) : = xmin(F)

12 else y(t0) : = xmin(F)

13 F: = F − min(F), s : = t

between elements). The descending edge satisfies the property that if i ∈ F, then
ti ∈ t+[a, b], and for all tj > ti in t+I, x(tj) < x(ti). Lines 8 and 9 incrementally
update the edge when a new point is encountered that is still within the t+[a, b]
window, and lines 11–13 correspond to the case where the window is slid right
as a result of updating the t. These lines then providing the sliding maximum
over t + [a, b] at the t from which the window was advanced.

We first focus on the fragment of STL where each temporal operator is scoped
by a time-interval I, where sup(I) is finite. The algorithm for online monitoring
maintains the syntax tree of the formula ϕ to be monitored in memory, and
augments the tree with some book-keeping information. First, we formalize some
notation. For a given formula ϕ, let Tϕ represent the syntax tree of ϕ, and let
root(Tϕ) denote the root of the tree. Each node in the syntax tree (other than
a leaf node) corresponds to an STL operator ¬,∨,∧,�I or ♦I .1 We will use HI

to denote any temporal operator bounded by interval I. For a given node v, let
op(v) denote the operator for that node. For any node v in Tϕ (except the root
node), let parent(v) denote the unique parent of v.

Algorithm 2 is a dynamic programming algorithm operating on the syntax
tree of the given STL formula, i.e., computation of the RoSI of a formula com-
bines the RoSIs for its constituent sub-formulas in a bottom-up fashion. As
computing the RoSI at a node v requires the RoSIs at the child-nodes, this com-
putation has to be delayed till the RoSIs at the children of v in a certain time-
interval are available. We call this time-interval the time horizon of v (denoted
hor(v)), and define it recursively in Eq. (4.1).

hor(v) =

⎧
⎨

⎩

[0] if v = root(Tϕ)
I ⊕ hor(parent(v)) if v �= root(Tϕ) and op(parent(v)) = HI

hor(parent(v)) otherwise.
(4.1)

We illustrate the working of the algorithm using a small example then give
a brief sketch of the various steps in the algorithm.
1 We omit the case of UI here for lack of space, although the rewriting approach of

[7] can be adapted here and is implemented in our tool.
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Example 1. For the formula2 in (4.2), we show Tϕ and hor(v) for each v in Tϕ

in Fig. 1.
ϕ � �[0,a]

(¬(y > 0) ∨ ♦[b,c](x > 0)
)

(4.2)

Fig. 1. Syntax tree Tϕ for ϕ (given in (4.2)) with each node v annotated with hor(v)

The algorithm augments each node v of Tϕ with a double-ended queue,
that we denote worklist[v]. Let ψ be the subformula denoted by the tree rooted
at v. For the partial signal x[0,i], the algorithm maintains in worklist[v], the
RoSI [ρ](ψ,x[0,i], t) for each t ∈ hor(v) ∩ [t0, ti]. We denote by worklist[v](t) the
entry corresponding to time t in worklist[v]. When a new data-point xi+1 corre-
sponding to the time ti+1 is available, the monitoring procedure updates each
[ρ](ψ,x[0,i], t) in worklist[v] to [ρ](ψ,x[0,i+1], t).

Fig. 2. These plots show the signals x(t) and y(t). Each signal begins at time t0 = 0,
and we consider three partial signals: x[0,3] (black + blue), and x[0,4] (x[0,3] + green),
and x[0,5] (x[0,4] + red) (Color figure online).

In Fig. 3, we give an example of a run of the algorithm. We assume that the
algorithm starts in a state where it has processed the partial signal x[0,2], and
show the effect of receiving data at time-points t3, t4 and t5. The figure shows
the states of the worklists at each node of Tϕ at these times when monitoring
the STL formula ϕ presented in Eq. (4.2). Each row in the table adjacent to a
node shows the state of the worklist after the algorithm processes the value at
the time indicated in the first column (Fig. 3).

The first row of the table shows the snapshot of the worklists at time t2.
Observe that in the worklists for the subformula y > 0, ¬y > 0, because a < b,
2 We remark that ϕ is equivalent to �[0,a]

(
(y > 0) =⇒ ♦[b,c](x > 0)

)
, which is a

common formula used to express a timed causal relation between two signals.
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Fig. 3. We show a snapshot of the worklist[v] maintained by the algorithm for four
different (incremental) partial traces of the signals x(t) and y(t). Each row indicates
the state of worklist[v] at the time indicated in the first column. An entry marked --
indicates that the corresponding element did not exist in worklist[v] at that time. Each
colored entry indicates that the entry was affected by availability of a signal fragment
of the corresponding color (Color figure online).

the data required to compute the RoSI at t0, t1 and the time a, is available,
and hence each of the RoSIs is singular. On the other hand, for the subformula
x > 0, the time horizon is [b, a + c], and no signal value is available at any time
in this interval. Thus, at time t2, all elements of worklist[vx>0] are (xinf ,xsup)
corresponding to the greatest lower bound and lowest upper bound on x.

To compute the values of ♦[b,c](x > 0) at any time t, we take the max. over
values from times t+b to t+c. As the time horizon for the node corresponding to
♦[b,c](x > 0) is [0, a], t ranges over [0, a]. In other words, we wish to perform the
sliding max. over the interval [0+b, a+c], with a window of length c−b. We can
use Algorithm 1 for this purpose. One caveat is that we need to store separate
monotonic edges for the upper and lower bounds of the RoSIs. The algorithm
then proceeds upward on the syntax tree, only updating the worklist of a node
when there is an update to the worklists of its children.

The second row in each table is the effect of obtaining a new time point
(at time t3) for both signals. Note that this does not affect worklist[vy>0] or
worklist[v¬y>0], as all RoSIs are already singular, but does update the RoSI values
for the node vx>0. The algorithm then invokes Algorithm1 on worklist[vx>0] to
update worklist[v♦[b,c](x>0)]. Note that in the invocation on the second row (corre-
sponding to time t3), there is an additional value in the worklist, at time t3. This
leads Algorithm 1 to produce a new value of SlidingMax (worklist[vx>0], [b, c]) (t3−
b), which is then inserted in worklist[v♦[b,c]x>0]. This leads to additional points
appearing in worklists at the ancestors of this node.

Finally, we remark that the run of this algorithm shows that at time t4, the
RoSI for the formula ϕ is [−2,−2], which yields a negative upper bound, showing
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Algorithm 2. updateWorkList(vψ, ti+1, xi+1)
// vψ is a node in the syntax tree, (ti+1,xi+1) is a new timepoint

1 switch ψ do
2 case f(x) > 0
3 if ti+1 ∈ hor(vψ) then
4 worklist[vψ](ti+1) : = [f(xi+1), f(xi+1)]

5 case ¬ϕ
6 updateWorkList(vϕ, ti+1 ,xi+1) ;
7 worklist[vψ] : = −worklist[vϕ]

8 case ϕ1 ∧ ϕ2

9 updateWorkList(vϕ1 , ti+1, xi+1) ;
10 updateWorkList(vϕ2 , ti+1, xi+1) ;
11 worklist[vψ] : = min(worklist[vϕ1 ],worklist[vϕ2 ])

12 case �Iϕ
13 updateWorkList(vϕ, ti+1 , xi+1) ;
14 worklist[vψ] : = SlidingMax(worklist[vϕ], I)

that the formula is not satisfied irrespective of the suffixes of x and y. In other
words, the satisfaction of ϕ is known before we have all the data required by
hor(ϕ).

Algorithm 2 is essentially a procedure that recursively visits each node in the
syntax tree Tϕ of the STL formula ϕ that we wish to monitor. Line 4 corresponds
to the base case of the recursion, i.e. when the algorithm visits a leaf of Tϕ or
an atomic predicate of the form f(x) > 0. Here, the algorithm inserts the pair
(ti+1,xi+1) in worklist[vf(x)>0] if ti+1 lies inside hor(vf(x)>0). In other words, it
only tracks a value if it is useful for computing the RoSI of some ancestor node.

For a node corresponding to a Boolean operation, the algorithm first updates
the worklists at the children, and then uses them to update the worklist at the
node. If the current node represents ¬ϕ (Line 5), the algorithm flips the sign of
each entry in worklist[vϕ]; this operation is denoted as −worklist[vϕ]. Consider
the case where the current node vψ is a conjunction ϕ1 ∧ ϕ2. The sequence of
upper bounds and the sequence of lower bounds of the entries in worklist[vϕ1 ]
and worklist[vϕ1 ] can be each thought of as a piecewise-constant signal (likewise
for worklist[vϕ2 ]). In Line 11, the algorithm computes a pointwise-minimum over
piecewise-constant signals representing the upper and lower bounds of the RoSIs
of its arguments. Note that if for i = 1, 2, if worklist[vϕi

] has Ni entries, then
the pointwise-min would have to be performed at most N1 + N2 distinct time-
points. Thus, worklist[vϕ1∧ϕ2 ] has at most N1+N2 entries. A similar phenomenon
can be seen in Fig. 3, where computing a max over the worklists of v♦[b,c](x>0)

and v¬(y>0) leads to an increase in the number of entries in the worklist of the
disjunction.

For nodes corresponding to temporal operators, e.g., ♦Iϕ, the algorithm first
updates worklist[vϕ]. It then applies Algorithm 1 to compute the sliding max-
imum over worklist[vϕ]. Note that if worklist[vϕ] contains N entries, so does
worklist[v♦Iϕ].
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A further optimization can be implemented on top of this basic scheme. For
a node v corresponding to the subformula HIϕ, the first few entries of worklist[v]
(say up to time u) could become singular intervals once the required RoSIs for
worklist[vϕ] are available. The optimization is to only compute SlidingMax over
worklist[vϕ] starting from u + inf(I). We omit the pseudo-code for brevity.

5 Monitoring Untimed Formulas

If the STL formula being monitored has untimed (i.e. infinite-horizon) temporal
operators, a direct application of Algorithm2 requires every node in the sub-
tree rooted at the untimed operator to have a time horizon that is unbounded,
or in other words, the algorithm would have to keep track of every value over
arbitrarily long intervals. For a large class of formulae (shown in Theorem1), we
can perform robust online monitoring using only a constant amount of memory.
The question whether an arbitrary STL formula outside of the fragment stated
thus far can be monitored using constant memory remains an open problem. We
now show how constant memory monitoring can be performed for the first set of
formulae. In what follows, we assume that the subformulae ϕ and ψ are atomic
predicates of the form f(x) > 0. Also, as we assume that signals are obtained by
constant interpolation over a finite number of time-points, there is only a finite
collection of values of f(x) for any atomic predicate. Thus, we replace inf and
sup in the definitions of [ρ] by min and max respectively.

First, we introduce some equivalences over intervals a, b, c that we use in the
theorem and the proof to follow:

min(max(a, b),max(a, c)) = max(a,min(b, c)) (5.1)
min(a,max(b, c)) = max(min(a, b),min(a, c)) (5.2)
max(max(a, b), c) = max(a, b, c) (5.3)
min(max(a, b), a) = a (5.4)

Theorem 1. For each of the following formulae, where ϕ and ψ are atomic
predicates of the form f(x)>0, we can monitor interval robustness in an online
fashion using constant memory: (1) �ϕ, ♦ϕ, (2) ϕUψ, (3) �(ϕ∨♦ψ), ♦(ϕ∧�ψ),
(4) �♦ϕ, ♦�ϕ, and (5) ♦(ϕ ∧ ♦ψ), �(ϕ ∨ �ψ).

Proof. We consider each of the five cases of the theorem in turn. The proof strat-
egy is to show that if a constant memory buffer has been used to monitor up to
n samples, then receiving an additional sample does not require the memory to
grow. In what follows, we use the following short-hand notation:

pi ≡ [ρ](f(x)>0,x[0,n+1], ti) qi ≡ [ρ](g(x)>0,x[0,n+1], ti) (5.5)

Note that if i ∈ [0, n], then pi is the same over the partial signal x[0,n], i.e.,
pi = [ρ](f(x)>0,x[0,n], ti) (and respectively for qi). We will use this equivalence
in several of the steps in what follows.
(1) �ϕ, where ϕ ≡ f(x) > 0. Observe the following:

[ρ](ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

pi = min
(

min
i∈[0,n]

pi, pn+1

)
(5.6)
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In the final expression above, observe that the first entry does not contain any
pn+1 terms, i.e., it can be computed using the data points x1, . . . ,xn in the par-
tial signal x[0,n] itself. Thus, for all n, if we maintain the one interval representing
the min of the first n values of f(x) as a summary, then we can compute the
interval robustness of �(f(x) > 0) over x[0,n+1] with the additional data xn+1

available at tn+1. Note for the dual formula ♦(f(x) > 0), a similar result holds
with min substituted by max.
(2) ϕUψ, where ϕ ≡ f(x)>0, and ψ ≡ g(x)>0. Observe the following:

[ρ](ϕUψ,x[0,n+1], 0) = max
i∈[0,n+1]

min(qi, min
j∈[0,i]

pj) (5.7)

We can rewrite the RHS of Eq. (5.7) to get:

max

(

max
i∈[0,n]

min
(

qi, min
j∈[0,i]

pj

)
, min

(

min
j∈[0,n]

pj , pn+1, qn+1

))

(5.8)

Let Un and Mn respectively denote the first and second underlined terms in the
above expression. Note that for any n, Un and Mn can be computed only using
data x1, . . . ,xn. Consider the recurrences Mn+1 = min(Mn, pn+1, qn+1) and
Un+1 = max(Un,Mn+1); we can observe that to compute Mn+1 and Un+1, we
only need Mn, Un, and xn+1. Furthermore, Un+1 is the desired interval robust-
ness value over the partial signal x[0,n+1]. Thus storing and iteratively updating
the two interval-values Un and Mn is enough to monitor the given formula.
(3) �(ϕ ∨ ♦ψ), where ϕ ≡ f(x)>0, and ψ ≡ g(x)>0. Observe the following:

[ρ](�(ϕ ∨ ♦ψ),x[0,n+1], 0) = min
i∈[0,n+1]

max
(

pi, max
j∈[i,n+1]

qj

)

= min
i∈[0,n+1]

max
(

pi, max
j∈[i,n]

qj , qn+1

) (5.9)

Repeatedly applying the equivalence (5.1) to the outer min in (5.9) we get:

max
(

qn+1, min
i∈[0,n+1]

max
(

pi, max
j∈[i,n]

qj

))
(5.10)

The inner min simplifies to:

max

(

qn+1,min

(

pn+1, min
i∈[0,n]

(
max

(
pi, max

j∈[i,n]
qj

))))

(5.11)

Let Tn denote the underlined term; note that we do not require any data at time
tn+1 to compute it. Using the recurrence Tn+1 = max (qn+1,min (pn+1, Tn)), we
can obtain the desired interval robustness value. The memory required is that
for storing the one interval value Tn. A similar result can be established for the
dual formula ♦(f(x)>0 ∧ �(g(x)>0)).
(4) �♦(ϕ), where ϕ ≡ f(x)>0. Observe the following:

[ρ](�♦(ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

max
j∈[i,n+1]

pj (5.12)

Rewriting the outer min operator and the inner max more explicitly, we get:

min

(

min
i∈[0,n]

max
(

max
j∈[i,n]

pj , pn+1

)
, pn+1

)

(5.13)
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Repeatedly using (5.1) to simplify the above underlined term we get:

min
(

max
(

pn+1, min
i∈[0,n]

max
j∈[i,n]

pj

)
, pn+1

)
= pn+1. (5.14)

The simplification to pn+1, follows from (5.4). Thus, to monitor �♦(f(x)>
0), we do not need to store any information, as the interval robustness simply
evaluates to that of the predicate f(x)>0 at time tn+1. A similar result can be
obtained for the dual formula ♦�(f(x)>0).
(5) ♦(ϕ ∧ ♦(ψ)), where ϕ ≡ f(x)>0 ψ ≡ ♦(g(x)>0)). Observe the following:

[ρ](♦(ϕ ∧ ♦(ψ)),x[0,n+1], 0) = max
i∈[0,n+1]

(
min

(
pi, max

j∈[i,n+1]
qj

))
(5.15)

We can rewrite the RHS of Eq. (5.15) as the first expression below. Applying the
equivalence in (5.2) and (5.3) to the expression on the left, we get the expression
on the right.

max

⎛

⎜
⎝

min (p0,max (q0, . . . , qn+1))
· · ·
min (pn,max (qn, qn+1))
min (pn+1, qn+1)

⎞

⎟
⎠ = max

⎛

⎜
⎝

min(p0, q0), . . . ,min(p0, qn+1),
· · ·
min(pn, qn),min(pn, qn+1),
min(pn+1, qn+1)

⎞

⎟
⎠

(5.16)
Grouping terms containing qn+1 together and applying the equivalence in (5.2)
we get:

max

⎛

⎜
⎜
⎜
⎜
⎜
⎝

max

⎛

⎜
⎝

min(p0, q0),min(p0, q1), . . . ,min(p0, qn),
min(p1, q1), . . . ,min(p1, qn),
· · ·
min(pn, qn)

⎞

⎟
⎠ ,

min(qn+1,max(p0, p1, . . . , pn)),
min(pn+1, qn+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5.17)

Observe that the first argument to the outermost max can be computed using
only x1, . . . ,xn. Suppose we denote this term Tn. Also note that in the second
argument, the inner max (underlined) can be computed using only x1, . . . ,xn.
Let us denote this term by Mn. We now have a recurrence relations:

Mn+1 = max(Mn, pn+1), (5.18)
Tn+1 = max(Tn,min(qn+1,Mn),min(qn+1, pn+1)), (5.19)

where T0 = min(p0, q0) and M0 = p0. Thus, the desired interval robustness can
be computed using only two values stored in Tn and Mn. The dual result holds
for the formula �(ϕ ∨ �(ψ)).

Remarks on extending the above result: The result in Theorem 1 can be gen-
eralized to allow ϕ and ψ that are not atomic predicates, under following two
conditions:

1. Bounded horizon subformulae condition: For each formula, the subformulae
ϕ and ψ have a bounded time-horizon, i.e., hor(ϕ) and hor(ψ) are closed
intervals.

2. Smallest step-size condition: Consecutive time-points in the signal are at least
Δ seconds apart, for some finite Δ, which is known a priori.
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We defer the proof of the general case to the full version of the paper [4],
but remark that the proof techniques are very similar. Let w denote the least
upper bound of the time horizon for all subformulae of a given untimed formula.
At any time tn, additional book-keeping is required to store partial information
for time-points in the range [tn − w, tn]. By the step-size condition there can be
at most � w

Δ� time-points in this range. This is then used to show that constant
memory proportional to � w

Δ� is sufficient to monitor such an untimed formula
(with bounded-horizon subformulae).

6 Experimental Results

We implemented Algorithm 2 as a stand-alone tool that can be plugged in loop
with any black-box simulator and evaluated it using two practical real-world
applications. We considered the following criteria: (1) On an average, what frac-
tion of simulation time can be saved by online monitoring? (2) How much over-
head does online monitoring add, and how does it compare to a näıve implemen-
tation that at each step recomputes everything using an offline algorithm?

Diesel Engine Model (DEM). The first case study is an industrial-sized
Simulink R©model of a prototype airpath system in a diesel engine. The closed-
loop model consists of a plant model describing the airpath dynamics, and a
controller implementing a proprietary control scheme. The model has more than
3000 blocks, with more than 20 lookup tables approximating high-dimensional
nonlinear functions. Due to the significant model complexity, the speed of sim-
ulation is about 5 times slower, i.e., simulating 1 s of operation takes 5 s in
Simulink R©. As it is important to simulate this model over a long time-horizon
to characterize the airpath behavior over extended periods of time, savings in
simulation-time by early detection of requirement violations is very beneficial.
We selected two parameterized safety requirements after discussions with the
control designers, (shown in Eqs. (6.1) and (6.2)). Due to proprietary concerns,
we suppress the actual values of the parameters used in the requirements.

ϕovershoot (p1) = �[a,b](x < c) (6.1)
ϕtransient(p2) = �[a,b](|x| > c =⇒ (♦[0,d]|x| < e)) (6.2)

Property ϕovershoot with parameters p1 = (a, b, c) specifies that in the interval
[a, b], the overshoot on the signalx should remain below a certain threshold c. Prop-
erty ϕtransient with parameters p2 = (a, b, c, d, e) is a specification on the settling
time of the signal x. It specifies that in the time interval [a, b] if at some time t, |x|
exceeds c then it settles to a small region (|x| < e) before t + d. In Table 1, we con-
sider three different valuations ν1, ν2, ν3 for p1 in the requirement ϕovershoot (p1),
and two different valuations ν4, ν5 for p2 in the requirement ϕtransient(p2).

The main reason for the better performance of the online algorithm is that
simulations are time-consuming for this model. The online algorithm can ter-
minate a simulation earlier (either because it detected a violation or obtained
a concrete robust satisfaction interval), thus obtaining significant savings. For
ϕovershoot (ν3), we choose the parameter values for a and b such that the online
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Table 1. Experimental results on DEM.

Requirement Num. traces Early termination Simulation time (h)

Offline Online

ϕovershoot(ν1) 1000 801 33.3803 26.1643

ϕovershoot(ν2) 1000 239 33.3805 30.5923

ϕovershoot(ν3) 1000 0 33.3808 33.4369

ϕtransient(ν4) 1000 595 33.3822 27.0405

ϕtransient(ν5) 1000 417 33.3823 30.6134

Table 2. Evaluation of online monitoring for CPSGrader.

STL test bench Num. Early Sim. time (mins) Overhead (s)

traces termination Offline Online Näıve Algorithm 2

avoid front 1776 466 296 258 553 9

avoid left 1778 471 296 246 1347 30

avoid right 1778 583 296 226 1355 30

hill climb1 1777 19 395 394 919 11

hill climb2 1556 176 259 238 423 7

hill climb3 1556 124 259 248 397 7

filter 1451 78 242 236 336 6

keep bump 1775 468 296 240 1.2 × 104 268

what hill 1556 71 259 253 1.9 × 104 1.5 × 103

algorithm has to process the entire signal trace, and is thus unable to terminate
earlier. Here we see that the total overhead (in terms of runtime) incurred by
the extra book-keeping by Algorithm2 is negligible (about 0.1 %).

CPSGrader. CPSGrader [8,17] is a publicly-available automatic grading and
feedback generation tool for online virtual labs in cyber-physical systems. It
employs temporal logic based testers to check for common fault patterns in stu-
dent solutions for lab assignments. CPSGrader uses the National Instruments
Robotics Environment Simulator to generate traces from student solutions and
monitors STL properties (each corresponding to a particular faulty behavior) on
them. In the published version of CPSGrader [17], this is done in an offline fash-
ion by first running the complete simulation until a pre-defined cut-off and then
monitoring the STL properties on offline traces. At a step-size of 5 ms, simulating
6 s. of real-world operation of the system takes 1 s. for the simulator. When stu-
dents use CPSGrader for active feedback generation and debugging, simulation
constitutes the major chunk of the application response time. Online monitoring
helps in reducing the response time by avoiding unnecessary simulations, giving
the students feedback as soon as faulty behavior is detected.

We evaluated Algorithm 2 on the signals and STL properties used in CPS-
Grader [8,17]. These signal traces result from running actual student submissions



Robust Online Monitoring of Signal Temporal Logic 69

on a battery of tests such as failure to avoid obstacles in front, failure to re-orient
after obstacle avoidance, failure to reach the target region (top of a hill), failure
to detect the hill, and failure to use a correct filter in order to climb a hill. For
lack of space, we refer the reader to [17] for further details. As an illustrative
example, consider keep bump property in Eq. 6.3:

ϕkeep bump = ♦[0,60]�[0,5] (bump right(t) ∨ bump left(t)) (6.3)

The keep bump formula checks whether when the bump signal is activated (i.e.,
the robot bumps into an obstacle either from the left or the right), the con-
troller keeps moving forward for some time instead of driving back in order to
avoid the obstacle. For each STL property, Table 2 compares the total simula-
tion time needed for both the online and offline approaches, summed over all
traces. For the offline approach, a suitable simulation cut-off time of 60 sec.
is chosen. At a step-size of 5 ms, each trace is roughly of length 1000. For the
online algorithm, simulation terminates before this cut-off if the truth value of
the property becomes known, otherwise it terminates at the cut-off. Table 2 also
shows the monitoring overhead incurred by a näıve online algorithm that per-
forms complete recomputation at every step against the overhead incurred by
Algorithm 2. Table 2 demonstrates that online monitoring ends up saving up to
24 % simulation time (>10 % in a majority of cases). The monitoring overhead
of Algorithm 2 is negligible (<1 %) as compared to the simulation time and it is
less than the overhead of the näıve online approach consistently by a factor of
40x to 80x.

7 Conclusions and Future Work

We have defined robust interval semantics for Signal Temporal Logic formulas
over partial signal traces. The robust satisfaction interval (RoSI) of a partial
signal contains the robust satisfaction value of any possible suffix of the given
partial signal. We present an online algorithm to compute RoSI for a large class of
STL formulas. Generalizations to full STL and considering signal traces defined
by piecewise linear interpolation over given discrete-time points are important
directions for future work.
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Abstract. We study μHML (a branching-time logic with least and
greatest fixpoints) from a runtime verification perspective. We establish
which subset of the logic can be verified at runtime and define correct
monitor-synthesis algorithms for this subset. We also prove completeness
results wrt. these logical subsets that show that no other properties apart
from those identified can be verified at runtime.

1 Introduction

Runtime Verification (RV) [14,20] is a lightweight verification technique whereby
the execution of a system is analysed with the aim of inferring correctness wrt.
some property. Despite its advantages, the technique is generally limited when
compared to other verification techniques such as model-checking because certain
correctness properties cannot be verified at runtime [10,21]. For instance, online
RV analyses partial executions incrementally (up to the current execution point
of the system) which limits its applicability to satisfaction verdicts relating to
correctness properties describing complete (i.e., potentially infinite) executions.

There are broadly two approaches to address such a limitation. The first
approach is to restrict the expressive power of the correctness specifications:
typically, one either limits specifications to descriptions of finite traces such as
regular expressions (RE) [12,15], or else redefines the semantics of existing logics
(e.g., LTL) so as to reflect the limitations of the runtime setting [5–7,13]. The
second approach is to leave the semantics of the specification logic unchanged,
and study which subsets of the logic can be verified at runtime [11,16,17,24].

Both approaches have their merits. The first approach is, in general, more
popular and tends to produce specifications that are closely related to the mon-
itors that check for them (e.g., RE and automata in [15,23]), thus facilitating
aspects such as monitor correctness. On the other hand, the second approach
does not hinder the expressive power of the logic. Instead, it allows a verifica-
tion framework to determine whether either to check for a property at runtime
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(when possible), or else to employ more powerful (and expensive) verification
techniques such as model-checking. One can even envisage a hybrid approach,
where parts of a property are verified using RV and other parts are checked using
other techniques. More importantly, however, the second approach leads to bet-
ter separation of concerns: since it is agnostic of the verification technique used,
one can change the method of verification without impinging on the property
semantics.

This paper follows this second approach. In particular, it revisits Hennessy-
Milner Logic with recursion [3], μHML, a reformulation of the expressive modal
μ-calculus [19], used to describe correctness properties of reactive system; sub-
sets of the logic have already been adapted for detectEr [25], an RV tool for
runtime-verifying actor-based systems [8,16], whereas constructs from the modal
μ-calculus have been used in other RV tools such as Eagle [4]. In this study we
consider the logic in its entirety, and investigate the monitorability of the logic
wrt. an operational definition of a general class of monitors that employ both
acceptance and rejection verdicts [7,14]. In particular, our results extend the
class of monitorable μHML properties used in [16] and establish monitorability
upper bounds for this logic. We also present new results that relate the utility of
multi-verdict monitors wrt. logics defined over programs (as opposed to traces).
To the best of our knowledge, this is one of the first bodies of work investigating
the limits of RV wrt. a branching-time logic that specifies properties about the
execution graph of a program; other work pertaining to the aforementioned sec-
ond approach has focussed on linear-time logics defined over execution traces,
and has explored RV’s limits along the linear-time dimension, e.g., [11].

In the rest of the paper, Sect. 2 introduces our model for reactive systems and
Sect. 3 presents the logic μHML defined over this model. Section 4 formalises our
abstract RV operational setup in terms of monitors and our instrumentation rela-
tion. In Sect. 5 we argue for a particular correspondence between monitors and
μHML properties within this setup. Section 6 identifies monitorability limits for
the logic but also establishes a monitorable logical subset that satisfies the cor-
respondence of Sect. 5. Section 7 shows that this subset is maximally expressive,
using a result about multi-verdict monitors. Section 8 concludes.

2 The Model

We describe systems abstractly as Labelled Transition Systems (LTSs) [3,19].
An LTS is a triple 〈Proc, (Act∪{τ}),−→〉 consisting of a set of states, Proc, a
set of actions, Act with distinguished silent action τ (we assume μ ∈ Act∪{τ}
and τ �∈ Act), and a transition relation, −→⊆ (Proc × (Act ∪ {τ}) × Proc).
LTS states can be expressed as processes, Proc, from the regular fragment of
CCS [22] as defined in Fig. 1. Assuming a set of (visible) actions, α, β ∈ Act and
a set of (recursion) variables x, y, z ∈ Vars, processes may be either inactive,
prefixed by an action, a mutually-exclusive choice amongst two processes, or
recursive; rec x.p acts as a binder for x in p and we work up to alpha-conversion
of bound variables. All recursive processes are assumed to be guarded.
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Fig. 1. A model for describing systems

The dynamic behaviour is then described by the transition rules of Fig. 1,
defined over the closed and guarded terms in Proc (we elide the symmetric
rule SelR). The suggestive notation p

μ−−→ p′ denotes (p, μ, p′) ∈−→; we also
write p � α−−→ to denote ¬(∃p′. p

α−−→ p′). For example, p1 + p2
μ−−→ q if either

p1
μ−−→ q or p2

μ−−→ q. As usual, we write p =⇒ p′ in lieu of p( τ−→)∗p′ and p
μ

=⇒ p′

for p =⇒ · μ−−→ ·=⇒ p′, referring to p′ as a μ-derivative of p. We let t, u ∈ Act∗

range over sequences of visible actions and write p
α1=⇒ . . .

αn=⇒ pn as p
t=⇒ pn,

where t = α1, . . . , αn. See [3,22] for more details.

Example 1. A (reactive) system that acts as a server that repeatedly accepts
requests and subsequently answers them, with the possibility of terminating
through the special close request, may be expressed as the following process, p.

p = rec x.
(
req.ans.x + cls.nil

)

A server that non-deterministically stops offering the close action is denoted by
process q, whereas r only offers the close action after the first serviced request.

Fig. 2. A depiction of the system in Example 1
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Fig. 3. μHML syntax and semantics

q = rec x.
(
req.ans.x + cls.nil + (rec y.req.ans.y)

)

r = req.ans.rec x.
(
req.ans.x + cls.nil

)

Pictorially, the resp. LTSs denoted by processes p, q and r are shown in Fig. 2,
where the arcs correspond to weak transitions,

μ
=⇒. �

3 The Logic

The logic μHML assumes a countable set of logical variables X,Y ∈ LVar, and
is defined as the set of closed formulae generated by the grammar of Fig. 3. Apart
from the standard constructs for truth, falsehood, conjunction and disjunction,
the logic is equipped with possibility and necessity modal operators, together
with recursive formulae expressing least or greatest fixpoints; formulae min X.ϕ
and max X.ϕ resp. bind free instances of the logical variable X in ϕ , inducing
the usual notions of open/closed formulae and equality up to alpha-conversion.

Formulae are interpreted over the process powerset domain, S ∈ P(Proc).
The semantic definition of Fig. 3 is given for both open and closed formulae
and employs an environment from variables to sets of processes, ρ ∈ LVar ⇀
P(Proc); this permits an inductive definition on the structure of the formula.
For instance, in Fig. 3, the semantic meaning of a variable X wrt. an environ-
ment ρ is the mapping for that variable in ρ. The semantics of truth, falsehood,
conjunction and disjunction are standard (e.g., ∨ and ∧ are interpreted as set-
theoretic union and intersection). Possibility formulae 〈α〉ϕ describe processes
with at least one α-derivative satisfying ϕ whereas necessity formulae [α]ϕ
describe processes where all of their α-derivatives (possibly none) satisfy ϕ .
The powerset domain P(Proc) is a complete lattice wrt. set-inclusion, ⊆,
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which guarantees the existence of least and largest solutions for the recursive
formulae of the logic; as usual, these can be resp. specified as the intersection of
all the pre-fixpoint solutions and the union of all post-fixpoint solutions [3]. Note
that ρ[X → S] denotes an environment ρ′ where ρ′(X) = S and ρ′(Y ) = ρ(Y )
for all other Y �= X. Since the interpretation of closed formulae is indepen-
dent of the environment ρ, we sometimes write �ϕ � in lieu of �ϕ , ρ�. We say
that a process p satisfies a formula ϕ whenever p ∈ �ϕ �, and violates a formula
whenever p �∈ �ϕ �.

Example 2. Formula 〈α〉tt describes processes that can perform action α whereas
formula [α]ff describes processes that cannot perform action α.

ϕ 1 = min X.(〈req〉〈ans〉X ∨ [cls]ff) ϕ 2 = max X.(〈req〉〈ans〉X ∨ [cls]ff)
ϕ 3 = max X.([req][ans]X ∧ 〈cls〉tt) ϕ 4 = max X.([req][ans]X ∧ [cls]ff)

Formula ϕ 1 denotes a liveness property describing processes that eventually
stop offering the action cls after any number of serviced request, (req.ans)∗—
processes q and r from Example 1 satisfy this property but p does not. Changing
the fixpoint into a maximal one, i.e., ϕ 2, would include p in the property as well.
Formulae ϕ 3 and ϕ 4 denote safety properties: e.g., ϕ 3, describes (terminating
and non-terminating) processes that can always perform a cls action after any
number of serviced request (p satisfies this property but q and r do not).

ϕ 5 = 〈req〉〈ans〉max X.
(
([req]ff ∨ 〈req〉〈ans〉X) ∧ [cls]ff

)

ϕ 6 = min X.
(
(〈req〉〈ans〉tt ∧ [req][ans]X) ∨ 〈cls〉tt)

Formula ϕ 5 is satisfied by processes that, after one serviced request, req.ans,
exhibit a complete1 transition sequence (req.ans)∗ that never offers action cls
(q from Example 1 satisfies this property whereas p and r do not). Formula
ϕ 6 describes processes that along all serviced request sequences, (req.ans)∗,
eventually reach a stage where they offer action cls (processes p and q satisfy
the criteria immediately, whereas r satisfies it for (req.ans)∗ sequences longer
than 1). �

4 Monitors and Instrumentation

Monitors may also be viewed as LTSs, through the syntax of Fig. 4; this is similar
to that of processes, with the exception that nil is replaced by three verdict
constructs, yes, no and end, resp. denoting acceptance, rejection and termination
(i.e., an inconclusive outcome). Monitor behaviour is similar to that of processes
for the common constructs; see rules in Fig. 4. The only new transition concerns
verdicts, mVer, stating that a verdict may transition with any α ∈ Act and go
back to the same state, modelling the requirement that verdicts are irrevocable.

1 A transition sequence is complete if it is either infinite or affords no more actions.
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Fig. 4. Monitors and instrumentation

Figure 4 also describes an instrumentation relation connecting the behaviour
of a process p with that of a monitor m: the configuration m� p denotes a moni-
tored system. In an instrumentation, the process leads the (visible) behaviour of
a monitored system (i.e., if the process cannot α-transition, then the monitored
system will not either) while the monitor passively follows, transitioning accord-
ingly; this is in contrast with well-studied parallel composition relations of LTSs
[18,22]. Specifically, rule iMon states that if a process can transition with action
α and the resp. monitor can follow this by transitioning with the same action,
then in an instrumented monitored system they transition in lockstep. However,
if the monitor cannot follow such a transition, m � α−−→ , even after any num-
ber of internal actions, m � τ−→ , instrumentation forces it to terminate with an
inconclusive verdict, end, while the process is allowed to proceed unaffected; see
rule iTer. Rules iAsyP and iAsyM allow monitors and processes to transition
independently wrt. internal moves.2

Proposition 1. m � p
t=⇒ m′ � p′ iff p

t=⇒ p′ and

– either m
t=⇒ m′

– or m′ = end and ∃t′, α, t′′,m′′. t = t′αt′′, m′′ � τ−→ and m
t′

=⇒m′′ � α−−→.

Remark 1. Since we strive towards a general theory, the syntax in Fig. 4 allows
for non-deterministic monitors such as α.yes + α.no or α.nil + α.β.yes. There are

2 If a monitor cannot match a process action, but can transition silently, it is allowed
to do so, and the matching check is applied again to the τ -derivative monitor.
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settings where determinism is unattainable (e.g., distributed monitoring [15]) or
desirable (e.g., testers [23]), and others where non-determinism expresses under-
specification (e.g., program refinement [1]). Thus, expressing non-determinism
allows us to study the cases where it is tolerated or considered erroneous.

Example 3. Monitor m1 (defined below) monitors for executions of the form
(req.ans)∗.cls returning the acceptance verdict yes, whereas m2 dually rejects
executions of that form. When composed with process p from Example 1, the
monitored system m1 � p may either service requests forever, m1 � p

req
=⇒ · ans−−−→

m1 � p, or else terminate with a yes verdict, m1 � p
cls=⇒ yes � nil. By contrast,

when instrumented over a process capable of the transition p′ ans−−−→ p′′, m1 may
terminate its process observation after one transition, i.e., m1 � p′ ans=⇒ end � p′′.

m1 = rec x.
(
req.ans.x + cls.yes

)
m3 = rec x.

(
req.ans.x + cls.yes + req.req.x

)

m2 = rec x.
(
req.ans.x + cls.no

)
m4 = rec x.

(
req.ans.x + cls.yes + cls.no

)

Monitor m3 may either behave like m1 or non-deterministically terminate upon
a serviced request, i.e., m3 � p

req
=⇒ req.m3 � p1

ans−−−→ end� p. Conversely, monitor
m4 non-deterministically returns verdict yes or no upon a cls action, e.g., m4 �

p
cls=⇒ yes � nil but also m4 � p

cls=⇒ no � nil. �

5 Correspondence

Our goal is to establish a correspondence between the verdicts reached by moni-
tors over an instrumented system from Sect. 4 and the properties specified using
the logic of Sect. 3. In particular, we would like to relate acceptances (yes) and
rejections (no) reached by a monitor m when monitoring a process p with sat-
isfactions (p ∈ �ϕ �) and violations (p �∈ �ϕ �) for that process wrt. some μHML
formula, ϕ . This will, in turn, allow us to determine when a monitor m represents
(in some precise sense) a property ϕ .

Example 4. Monitor m1 from Example 3 monitors for satisfactions of the prop-
erty

ϕ 7 = min X.(〈req〉〈ans〉X ∨ 〈cls〉tt)
describing processes that can perform a cls action after a number of serviced
requests. Stated otherwise, m1 produces a yes verdict for a computation of the
form (req.ans)∗.cls from a process p, attesting that p ∈ �ϕ 7�. Similarly, m2

from Example 3 monitors for violations of the property ϕ 4 from Example 2. The
same cannot be said for m4 from Example 3 and ϕ 7 above: for some processes,
e.g., p from Example 1, it may produce both verdicts yes and no for witness
computations (req.ans)∗.cls, which leads to contradictions at a logical level i.e.,
we cannot have both p ∈ �ϕ 7� and p �∈ �ϕ 7�. A similar argument applies to m4

and m2 from Example 3. �
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Remark 2. A monitor may behave non-deterministically in other ways wrt. a
process. For instance, m3 from Example 3 may sometimes flag an acceptance but
at other times may not when monitoring p from Example 1, even when p produces
the same trace: e.g., for t = req.ans.cls we have m3 � p

t=⇒ yes � nil but also
m3 � p

t=⇒ end � nil. However, since any other terminal monitor state apart from
yes and no (i.e., end and any other non-verdict state) is of no consequence from
a logical satisfaction/violation point of view, we abstract from such outcomes.

We investigate conditions that one could require for establishing the corre-
spondence between monitors and formulae. We start with Definition 2 (below):
it defines when m is able to monitor soundly for a property ϕ , smon(m,ϕ ), by
requiring that acceptances (resp. rejections) imply satisfactions (resp. violations)
for every monitored execution of a process p.

Definition 1 (Acceptance/Rejection). acc(p,m) def= ∃t, p′. m� p
t=⇒ yes� p′

and rej(p,m) def= ∃t, p′. m � p
t=⇒ no � p′.

Definition 2 (Sound Monitoring).

smon(m,ϕ ) def= ∀p.
(
acc(p,m) implies p ∈ �ϕ �

)
and

(
rej(p,m) implies p �∈�ϕ �

)

Note that, if smon(m,ϕ ) and ∃p.acc(p,m), by Definition 2 we know p ∈ �ϕ �;
thus, ¬(p �∈ �ϕ �) and by the contrapositive of Definition 2, we must also have
¬rej(p,m).

Example 5. From Example 4, we formally have smon(m1, ϕ 7), smon(m2, ϕ 2)
and smon(m3, ϕ 7). We can also show that ¬smon(m4, ϕ 7) and ¬smon(m4, ϕ 2).

�

Sound monitoring is arguably the least requirement for relating a monitor
with a logical property. Further to this, the obvious additional requirement would
be to ask for the dual of Definition 2, i.e., complete monitoring for m and ϕ ,
stating that for all p, p ∈ �ϕ � implies acc(p,m), and also that p �∈ �ϕ � implies
rej(p,m). However, such a requirement turns out to be too strong for a large
part of the logic presented in Fig. 3.

Example 6. Consider the basic formula 〈α〉tt. One could ascertain that the sim-
ple monitor α.yes satisfies the condition that p ∈ �ϕ � implies acc(p,m) for all
p. However, there does not exist a sound monitor that can satisfy ∀p.p �∈ �ϕ �
implies rej(p,m) for 〈α〉tt. Arguing by contradiction, assume that one such mon-
itor m exists. Since nil �∈ �〈α〉tt� then we should have rej(nil,m). By Definition 1
and Proposition 1, this means m=⇒ no which, in turn, implies that rej(α.nil,m)
although, clearly, α.nil ∈ �〈α〉tt�. This makes m unsound, contradicting our ini-
tial assumption.

A similar, albeit dual, argument can be carried out for another core basic
formula, [α]ff: although there are sound monitors satisfying the condition
∀p.p �∈ �ϕ � implies rej(p,m), there are none that also satisfy the other condi-
tion ∀p.p ∈ �ϕ � implies acc(p,m). �
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Concretely, requiring complete monitoring would limit correspondence to a
trivial subset of the logic, namely tt and ff. We therefore define the weaker forms
of completeness that are stated below.

Definition 3 (Satisfaction/Violation/Partially-Complete
Monitoring).

scmon(m,ϕ ) def= ∀p.p ∈ �ϕ � implies acc(p,m) (satisfaction complete)
vcmon(m,ϕ ) def= ∀p.p �∈ �ϕ � implies rej(p,m) (violation complete)
cmon(m,ϕ ) def= scmon(m,ϕ ) or vcmon(m,ϕ ) (partially complete)

We can now formalise monitor-formula correspondence: m monitors for ϕ ,
mon(m,ϕ ), if it can do it soundly, and in a partially-complete manner, i.e., if
it is either satisfaction complete or violation complete.

Definition 4 (Monitoring). mon(m,ϕ ) def= smon(m,ϕ ) and cmon(m,ϕ ).

6 Monitorability

Using Definition 4, we can define what it means for a formula to be monitorable.

Definition 5 (Monitorability). Formula ϕ is monitorable iff ∃m. monm,ϕ .
A language L ⊆ μHML is monitorable iff every ϕ ∈ L is monitorable.

We immediately note that not all logical formulae are monitorable.

Example 7. Through the witness outlined in Example 6, we can show that for-
mulae 〈α〉tt and 〈β〉tt are monitorable with a satisfaction complete monitor.
However, ϕ 8 = 〈α〉tt∧〈β〉tt (their conjunction), is not. Intuitively, this is so
because once a monitor observes one of the actions, it cannot “go back” to
check for the other. Formally, we argue towards a contradiction by assuming
that ∃m.mon(m,ϕ 8). There are two subcases to consider.

If m is satisfaction complete, then acc(α.nil + β.nil,m) since α.nil + β.nil ∈
�ϕ 8�. By Proposition 1, m reaches verdict yes along one of the traces ε, α or β. If
the trace is ε, then m also accepts nil, which is unsound (since nil �∈ �ϕ 8�) whereas
if the trace is α, m must also accept α.nil, which is also unsound (α.nil �∈ �ϕ 8�);
the case for β is analogous.

If m is violation complete then rej(β.nil,m) since β.nil �∈ �ϕ 8�. By Proposi-

tion 1, we either have m
ε=⇒ no or m

β
=⇒ no and for both cases we can argue that

m also rejects process α.nil + β.nil, which is unsound since α.nil + β.nil ∈ �ϕ 8�.
�

We now identify a syntactic subset of μHML formulae called mHML, with
the aim of showing that it is a monitorable subset of the logic. At an intuitive
level, it consists of the safe and co-safe syntactic subsets of μHML, sHML and
cHML respectively.
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Definition 6 (Monitorable Logic). ψ, χ ∈ mHML
def= sHML∪cHML where:

θ , ϑ ∈ sHML ::= tt | ff | [α]θ | θ ∧ϑ | max X.θ | X

π ,� ∈ cHML ::= tt | ff | 〈α〉π | π ∨� | min X.π | X

To prove monitorability for mHML, we define a monitor synthesis function
�-� generating a monitor for each ψ ∈ mHML. We then show that �ψ� is the
witness monitor required by Definition 5 to demonstrate the monitorability of ψ.

Definition 7 (Monitor Synthesis).

�ff�
def
= no �tt�

def
= yes �X�

def
= x

�[α]ψ�
def
=

{
α.�ψ� if �ψ� �= yes

yes otherwise
�〈α〉ψ�

def
=

{
α.�ψ� if �ψ� �= no

no otherwise

�ψ1∧ψ2�
def
=

⎧
⎪⎨

⎪⎩

�ψ1� if �ψ2�=yes

�ψ2� if �ψ1�=yes

�ψ1� + �ψ2� otherwise

�ψ1∨ψ2�
def
=

⎧
⎪⎨

⎪⎩

�ψ1� if �ψ2�=no

�ψ2� if �ψ1�=no

�ψ1� + �ψ2� otherwise

�maxX.ψ�
def
=

{
rec x.�ψ� if �ψ� �= yes

yes otherwise
�minX.ψ�

def
=

{
rec x.�ψ� if �ψ� �= no

no otherwise

A few comments are in order. We first note that Definition 7 is compositional ;
see e.g., [23] for reasons why this is desirable. It also assumes a bijective mapping
between the denumerable sets LVar and Vars; see synthesis for X, max X.ψ
and min X.ψ, where the logical variable X is converted to the process variable x.
Although Definition 7 covers both sHML and cHML, the syntactic constraints
of Definition 6 mean that synthesis for a formula ψ uses at most the first row
and then either the first column (in the case of sHML) or the second column
(in case of cHML). The conditional cases handle logically equivalent formulae,
e.g., since �ff� = �min X.〈α〉ff� we have �ff� = �min X.〈α〉ff� = no. In the case of
conjunctions and disjunctions, these are essential to be able to generate sound
monitors.

Example 8. Consider the cHML formula 〈α〉tt∨ff (which is logically equivalent
to 〈α〉tt). A naive synthesis without the case checks would generate the monitor
α.yes + no which is not only redundant, but unsound e.g., for p = α.nil we have
both acc(p, α.yes + no) and rej(p, α.yes + no). Similar problems would mani-
fest themselves for less obvious cases, e.g., 〈α〉tt∨(min X.〈α〉ff)∨(〈α〉min X.ff).
However, in all of these cases, our monitor synthesis of Definition 7 generates
α.yes. �

Theorem 1 (Monitorability). ϕ ∈ mHML implies ϕ is monitorable.

Proof. We show that for all ϕ ∈ mHML, mon(�ϕ �, ϕ ) holds.
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Theorem 1 provides us with a simple syntactic check to determine whether
a formula is monitorable; as shown earlier in Example 7, determining whether
a formula is monitorable is in general non-trivial. Moreover, the proof of
Theorem 1 (through Definition 7) provides us with an automatic monitor syn-
thesis algorithm that is correct according to Definition 4.

Example 9. Since ϕ 4 from Example 2 is in mHML, we know it is monitorable.
Moreover, we can generate the correct monitor �ϕ 4� = rec x.

(
req.ans.x+cls.no

)
=

m2 (from Example 3). Using similar reasoning, ϕ 7 (Example 4) is also moni-
torable, and a correct monitor for it is m1 from Example 3. �

7 Expressiveness

The results obtained in Sect. 6 beg the question of whether mHML is the largest
monitorable subset of μHML. One way to provide an answer to this question
would be to show that, in some sense, every monitor corresponds to a formula
in mHML according to Definition 4. However, this approach quickly runs into
problems since there are monitors, such as yes + no, that make little sense from
the point of view of Definition 4. To this end, we prove a general (and perhaps
surprising) result.

Theorem 2 (Multi-verdict Monitors and Monitoring). ∀m ∈ Mon

(∃t, u ∈ Act∗. m
t=⇒ yes and m

u=⇒ no
)

implies � ∃ϕ ∈ μHML. mon(m,ϕ ).

Proof. By contradiction. Assume that ∃ϕ .mon(m,ϕ ). Using t and u, we
can construct the obvious process p = t + u, where m � p

t=⇒ yes � nil and
m � p

u=⇒ no � nil. We therefore have acc(p,m) and rej(p,m), and by monitor
soundness (Definition 2), that p ∈ �ϕ � and p �∈ �ϕ �. This is clearly a contradic-
tion.

Stated otherwise, Theorem 2 asserts that multi-verdict monitors are necessar-
ily unsound, at least wrt. properties defined over processes (as opposed to logics
defined over other domains such as traces, e.g., [7,11,14]). This also implies that,
in order to answer the aforementioned question, it suffices to focus on uni-verdict
monitors that flag either acceptances or rejections (but not both). In fact, a closer
inspection of the synthesis algorithm of Definition 7 reveals that all the monitors
generated using it are, in fact, uni-verdict.

We partition uni-verdict monitors into the obvious classes: acceptance mon-
itors, AMon (using verdict yes), and rejection monitors, RMon (using no). In
what follows, we focus our technical development on one monitor class, in the
knowledge that the corresponding development for the other class is analogous.

Definition 8 (Rejection Expressive-Complete). A subset L ⊆ μHML is
expressive-complete wrt. rejection monitors iff

∀m ∈ RMon. ∃ ϕ ∈ L such that mon(m,ϕ ).
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We show that the language sHML (Definition 6) is rejection expressive-
complete. We do so with the aid of a mapping function from a rejection monitor
to a corresponding formula in sHML defined below. Definition 9 is fairly straight-
forward, thanks to the fact that we only need to contend with a single verdict.
Again, it assumes a bijective mapping between the denumerable sets LVar and
Vars (as in the case of Definition 7). The mapping function is defined induc-
tively on the structure of m where we note that (i) no translation is given for
the monitor yes (since these are rejection monitors) and (ii) the base case end is
mapped to formula tt, which contrasts with the mapping used in Definition 7.

Definition 9 (Rejection Monitors to sHML Formulae).

〈〈no〉〉 def= ff 〈〈end〉〉 def= tt 〈〈x〉〉 def= X

〈〈α.m〉〉 def= [α]〈〈m〉〉 〈〈m + n〉〉 def= 〈〈m〉〉∧〈〈n〉〉 〈〈rec x.m〉〉 def= max X.〈〈m〉〉
Proposition 2. sHML is Rejection Expressive-Complete.

Proof. We show that for all m ∈ RMon, mon(m, 〈〈m〉〉) holds.

Definition 10 (Acceptance Expressive-Complete). Language L ⊆ μHML
is expressive-complete wrt. acceptance monitors iff ∀m ∈ AMon. ∃ ϕ ∈ L such
that mon(m,ϕ ).

Proposition 3. cHML is Acceptance Expressive-Complete.

Equipped with Propositions 2 and 3, it follows that mHML is expressive
complete wrt. uni-verdict monitors.

Definition 11 (Expressive-Complete). L ⊆ μHML is expressive-complete
wrt. uni-verdict monitors, iff ∀m ∈ AMon ∪ RMon. ∃ ϕ ∈ L. mon(m,ϕ ).

Theorem 3. mHML is Expressive-Complete.

Proof. Follows from Propositions 2 and 3

We are now in a position to prove the result alluded to at the beginning of this
section, namely that mHML is the largest monitorable subset of μHML up to
logical equivalence, i.e., Theorem 4. First, however, we define what we understand
by language inclusion up to formula semantic equivalence, Definition 12.

Definition 12 (Language Inclusion). For all L1,L2 ∈ μHML

L1 � L2
def= ∀ϕ 1 ∈ L1. ∃ϕ 2 ∈ L2 such that �ϕ 1� = �ϕ 2�

We also prove the following important proposition, that gives an upper bound
to the expressiveness of languages satisfying monitorability properties.

Proposition 4. For any L ⊆ μHML:

1.
(∀ϕ ∈ L.∃m ∈ AMon.∀p.(acc(p,m) iff p ∈ �ϕ �)

)
implies L � cHML.
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2.
(∀ϕ ∈ L.∃m ∈ RMon.∀p.(rej(p,m) iff p �∈ �ϕ �)

)
implies L � sHML.

Proof. We prove the first clause; the second clause is analogous. Assume ϕ ∈ L.
We need to show that ∃π ∈ cHML such that �ϕ � = �π �. For ϕ we know that

∃m ∈ AMon.
(∀p.(acc(p,m) iff p ∈ �ϕ �)

)
. (1)

By Proposition 3, for the monitor m used in (1), we also know

∃π ∈ cHML.
(∀p.(acc(p,m) iff p ∈ �π �)

)
. (2)

Assume an arbitrary p ∈ �ϕ �. By (1) we obtain acc(p,m), and by (2) we obtain
p ∈ �π �. Thus �ϕ � ⊆ �π �. Dually, we can also reason that �π � ⊆ �ϕ �.

Theorem 4 (Completeness). (L ⊆ μHML is monitorable) implies L �
mHML.

Proof. Since L is monitorable, by Definitions 5 and 4 we know:

∀ϕ ∈ L. ∃m such that smon(m,ϕ ) and cmon(m,ϕ ) (3)

By Theorem 2, we know that every m used in (3) is uni-verdict. This means that
we can partition the formulae in L into two disjoint sets Lacc � Lrej where:

(∀ϕ ∈ Lacc.∃m ∈ AMon.∀p.(acc(p,m) iff p ∈ �ϕ �)
)

(4)
(∀ϕ ∈ Lrej.∃m ∈ RMon.∀p.(rej(p,m) iff p �∈ �ϕ �)

)
(5)

By (4), (5) and Proposition 4 we obtain Lacc � cHML and Lrej � sHML resp.,
from which the required result follows.

Theorems 2 and 4 constitute powerful results wrt. the monitorability of our
branching-time logic. Completeness, Theorem 4, guarantees that limiting one-
self to the syntactic subset mHML does not hinder the expressive power of the
specifier when formulating monitorable properties. Alternatively, one could also
determine whether a formula is monitorable by rewriting it as a logically equiv-
alent formula in mHML.3 This would enable a verification framework to decide
whether to check for a μHML property at runtime, or resort to more expressive
(but expensive means) otherwise. Whenever the property is monitorable, The-
orem 2 guarantees that a uni-verdict monitor is the best monitor that we can
synthesise. This is important since multi-verdict monitor constructions, such as
those in [7], generally carry higher overheads than uni-verdict monitors.

Example 10. By virtue of Theorem4, we can conclude that properties ϕ 1, ϕ 2,
ϕ 3, ϕ 5 and ϕ 6 from Example 2 are all non-monitorable properties according
to Definition 5, since no logically equivalent formulae in mHML exist. Arguably,
the problem of establishing logical equivalence through syntactic manipulation of
3 The problem of determining whether a (general) formula is logically equivalent to

one in mHML is decidable in exponential time — probably EXPTIME complete.
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formulae is easier to determine and automate, when compared to direct reasoning
about the semantic definitions of monitorability and those of the resp. properties;
recall that Definition 5 (Monitorability) — through Definition 2 and Definition 3
— universally quantifies over all processes, which generally poses problems for
automation.

For instance, in the case of ϕ 1, we could use Theorem 2 to substantially reduce
the search space of our witness monitor to the uni-verdict ones, but this still leaves
us with a lot of work to do. Specifically, we can reason that the witness cannot be
an acceptance monitor, since it would need to accept process nil, which implies that
it must erroneously also accept the process cls.nil (using reasoning similar to that
used in Example 6). It is less straightforward to argue that the witness cannot be a
rejection monitor either. We argue towards a contradiction by assuming that such
a monitor exists. Since it is violationspscomplete (Definition 3) it should reject the
process req.nil + cls.nil since this process does not satisfy ϕ 1: by Proposition 1 we
know that it can do so along either of the traces ε, req or cls. If it rejects it along
ε, then it also rejects the satisfying process nil; if it rejects along trace req, it also
rejects the satisfying process req.ans.nil; finally, if it rejects it along cls, it must also
reject the satisfyingprocess req.ans.nil+cls.nil. Thus, themonitormust be unsound,
meaning that it cannot be a rejection monitor. �

8 Conclusion

We have investigated monitorability aspects of a branching-time logic called
μHML, which impinges on what properties can be verified at runtime. It extends
and generalises prior work carried out in the context of reactive systems modelled
as LTSs [16]. The concrete contributions of the paper are:

1. An operational definition of monitorability, Definition 4, specified over an
instrumentation relation unifying the individual behaviour of processes and
monitors, Fig. 4, which is used to define monitorable subsets of μHML,
Definition 5.

2. The identification of a subset of μHML, Definition 6, that is shown to be
monitorable, Theorem 1, and also maximally expressive, Theorem4, wrt.
Definition 5.

3. A result asserting that, wrt. Definition 4, uni-verdict monitors suffice for mon-
itoring branching-time properties, Theorem2.

Future Work: It is worth exploring other definitions of monitorability apart from
that of Definition 4, and determining how this affects the monitorable subset of
μHML identified in this work. For instance, one could relax the conditions of
Definition 4 by only requiring soundness (Definition 2), or require more stringent
conditions wrt. verdicts and monitor non-determinism; see [16] for a practical
motivation of this. Moreover, monitorability is also largely dependent on the
underlying instrumentation relation used; there may be other sensible relations
apart from the one defined in Fig. 4 that are worth investigating within this
setting.



On Verifying Hennessy-Milner Logic with Recursion at Runtime 85

A separate line of research could investigate manipulation techniques that
decompose formulae into monitorable components. For instance, reformulating a
generic formula ϕ as the disjunction φ∨π (recall π ∈ cHML) could allow for a
hybrid verification approach that distributes the load between the pre-deployment
phase and the runtime phase whereby we model-check for the satisfaction of a sys-
tem wrt. φ and, if this fails, runtime verify the system wrt. π .

Related Work: In [23], monitorability is defined for formulae defined over traces
(e.g., LTL) whenever the formula semantics does not contain ugly prefixes; an
ugly prefix is a trace from which no finite extension will ever lead to a conclu-
sive verdict. Falcone et al. [14] revisit this classical definition, extending it to
the Safety-Progress property classification, while proposing an alternative defi-
nition in terms of the structure of the recognising Streett Automata of the resp.
property. Although our definition is cast within a different setting (a logic over
processes), and has a distinct operational flavour in terms of monitored system
executions, it is certainly worthwhile to try to reconcile the different definitions.

The logic μHML has been previously studied from a linear-time perspective
in [2,9], in order to find subsets that characterise may/must testing equivalences.
Although tests are substantially different from our monitor instrumentations, the
logic subsets identified in [2,9] are related to (albeit different from) mHML.
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Abstract. Ultra-critical systems are growing more complex, and future
systems are likely to be autonomous and cannot be assured by traditional
means. Runtime Verification (RV) can act as the last line of defense to
protect the public safety, but only if the RV system itself is trusted. In
this paper, we describe a model-checking framework for runtime moni-
tors. This tool is integrated into the Copilot language and framework
aimed at RV of ultra-critical hard real-time systems. In addition to
describing its implementation, we illustrate its application on a num-
ber of examples ranging from very simple to the Boyer-Moore majority
vote algorithm.

1 Introduction

Runtime Verification (RV), where monitors detect and respond to property vio-
lations at runtime, can help address several of the verification challenges fac-
ing ultra-critical systems [20,24]. As RV matures it will be employed to verify
increasingly complex properties such as checking complex stability properties of
a control system or ensuring that a critical system is fault-tolerant. As RV is
applied to more complex systems, the monitors themselves will become increas-
ingly sophisticated and as prone to error as the system being monitored. Apply-
ing formal verification tools to the monitors to ensure they are correct can help
safeguard that the last line of defense is actually effective.

The work reported here is part of a larger program aimed at creating a frame-
work for high assurance RV. In order to be used in ultra-critical environments,
high-assurance RV must:

1. Provide evidence for a safety case that the RV enforces safety guarantees.
2. Support verification that the specification of the monitors is correct.
3. Ensure that monitor code generated implements the specification of the mon-

itor.

These guiding principles inform the continued development of the Copilot
language and framework that is intended to be used in RV of ultra-critical
systems [18,22]. Earlier work focused on verifying that the monitor synthesis
c© 2015 US Government Work subject to 17 USC 105. All other rights reserved.
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 87–101, 2015.
DOI: 10.1007/978-3-319-23820-3 6
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process is correct (Requirement 3 above) [21]. Here, the focus is on the second
requirement for high-assurance RV - making sure the monitor specification is
correct. Requirement 1, in the spirit of Rushby’s proposal [24] is future work.

Contributions. In this paper we describe the theory and implementation of a
k-induction based model-checker [5,25] for Copilot called copilot-kind. More
precisely, copilot-kind is a model-checking framework for Copilot, with two
existing backends: a lightweight implementation of k-induction using Yices [4]
and a backend based on Kind2, implementing both k-induction and the IC3 algo-
rithm [26].

After providing a brief introduction to Copilot in Sect. 2 and to Satisfiability
Modulo Theories (smt)-based k-induction in Sect. 3, we introduce copilot-kind
in Sect. 4. Illustrative examples of copilot-kind are provided in Sect. 5, and
implementation details are given in Sect. 6. The final two sections discuss related
work and concluding remarks, respectively.

Copilot and copilot-kind are open-source (BSD3) and in current use at
NASA.1

2 Copilot

Copilot is a domain specific language (DSL) embedded in the functional pro-
gramming language Haskell [14] tailored to programming monitors for hard real-
time, reactive systems. Given that Copilot is deeply embedded in Haskell, one
must have a working knowledge of Haskell to effectively use Copilot. However,
the benefit of an embedded DSL in Haskell is that the host-language serves as
a type-safe, Turing-complete macro language, allowing arbitrary compile-time
computation, while keeping the core DSL small.

Copilot is a stream based language where a stream is an infinite ordered
sequence of values that must conform to the same type. All transformations of
data in Copilot must be propagated through streams. In this respect, Copilot is
similar to Lustre [2], but is specialized for RV. Copilot guarantees that specifi-
cations compile to constant-time and constant-space implementations to update
stream states.

Copilot’s Expression Language. In the following, we briefly and informally
introduce Copilot’s expression language. Copilot streams mimic both the syn-
tax and semantics of Haskell lazy lists with the exception that operators are
automatically promoted point-wise to the list level.

Two types of temporal operators are provided in Copilot, one for delaying
streams and one for looking into the future of streams:

1 https://github.com/Copilot-Language.

https://github.com/Copilot-Language


Assuring the Guardians 89

Here xs ++ s prepends the list xs at the front of the stream s. The expression
drop k s skips the first k values of the stream s, returning the remainder of
the stream. For example, the Fibonacci sequence modulo 232 can be written in
Copilot as follows:

The base types of Copilot over which streams are built include Booleans,
signed and unsigned words of 8, 16, 32, and 64 bits, floats, and doubles. Type-
safe casts in which overflow cannot occur are permitted.

Sampling. Copilot programs are meant to monitor arbitrary C programs. They
do so by periodically sampling values in the program under observation. Cur-
rently, Copilot can be used to sample variables, arrays, and the return values
of side-effect free functions—sampling arbitrary structures is future work. For a
Copilot program compiled to C, symbols become in-scope when arbitrary C code
is linked with the code generated by the Copilot compiler. Copilot provides the
operator extern to introduce an external symbol to sample.

The following stream samples the C variable e0 of type uint8 t to create
each new stream index. If e0 takes the values 2, 4, 6, 8,... the stream ext
has the values 1, 3, 7, 13,....

3 Background on SMT-based k-induction

The focus of our investigation has been on applying model checking to
prove invariant properties of our monitors. We employ a technique known as
k-induction [5,25] for verifying inductive properties of infinite state systems.
k-induction has the advantage that it is well suited to smt based bounded
model checking. This section profiles the basic concepts of the k-induction proof
technique needed in the remainder of the paper. In practice, we use tools that
implement enhancements of the basic procedure such as path compression [3]
that help the process scale, but are beyond the focus of the paper.

Consider a state transition system (S, I, T ), where S is a set of states, I ⊆ S
is the set of initial states and T ⊆ S × S is a transition relation over S. To
show P holds in the transition system one must show that (1) the base case
holds—that P holds in all states reachable from an initial state in k steps, and
(2) the induction step holds—that if P holds in states s0, . . . , sk−1 then it holds
in state sk. The k-induction principle is formally expressed in the following two
entailments:
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I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) |= P (sk)
P (s0) ∧ · · · ∧ P (sk−1) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) |= P (sk)

If one cannot show the property to be true, the property is strengthened by either
extending the formula or progressively increasing the length of the reachable
states considered.

Property P said to be a k-inductive property with respect to (S, I, T ) if
there exists some k ∈ N

0< such that P satisfies the k-induction principle. As k
increases, weaker invariants may be proved. If P is a safety property that does
not hold, then the first entailment will break for a finite k and a counterexample
will be provided. The trick is to find an invariant that is tractable by the smt
solver yet weak enough to satisfy the desired property.

4 Copilot Prover Interface

The copilot-kind model-checker is an extensible interface to multiple provers
used to verify safety properties of Copilot programs. Currently, two backends for
copilot-kind have been implemented: the first is a homegrown prover we call
“the light prover” built on top of Yices [4] and the second is the Kind2 model
checker being developed at the University of Iowa [17].

To begin, we describe how safety properties are specified in Copilot. Using
the “synchronous observer” approach [10], properties about Copilot programs
are specified within Copilot itself. In particular, properties are encoded with
standard Boolean streams and Copilot streams are sufficient to encode past-
time linear temporal logic [12]. We bind a Boolean stream to a property name
with the prop construct in the specification, where the specification has type
Spec.

For instance, here is a straightforward specification declaring one property:

In order to check that property gt0 holds, we use a prove function implemented
as part of copilot-kind. Here, we can discharge the proof-obligation for the
program above with the light prover using the command:

where lightProver def stands for the light prover with default configuration.
While numeric types are bounded in Copilot, they are abstracted as integers

in the prover, so we ignore overflow; see Sect. 6 for details.

Combining Provers. Copilot-Kind allows provers to be combined. Given
provers A and B, the combine function returns a prover C which launches both



Assuring the Guardians 91

A and B and returns the most precise output of the two upon termination.
“Precise” in this case means returning the least element in the following partial
order: for a given execution, classify prover outputs as valid (V ), unknown (U),
invalid with countexample (C), and invalid with no counterexample (N); the
partial order is the least relation such that

U

V N

C

(Merging provers that handle non-termination within a bound is future work.)
In practice, we used the following prover in the examples of Sect. 5:

which uses both the light and Kind2 provers, the first being limited to 5 steps
of the k-induction.

Proof Schemes. Consider the example:

and suppose we want to prove "neq0". Currently, the two available solvers fail
at showing this non-inductive property (if at index i, x = −k, then it satisfies
the induction hypothesis but fails the induction step for all k). Yet, we can prove
the more general inductive lemma "gt0" and deduce our main goal from this.
For this, we apply our proof scheme feature as follows:

A proof scheme is a chain of primitive proof operations glued together by the
>> operator to combine proofs, and in particular, provide lemmas. The available
primitives are:

– check "prop" checks whether or not a given property is true in the current
context.

– assume "prop" adds an assumption in the current context.
– assert "prop" is a shortcut for check "prop" >> assume "prop".
– assuming props scheme assumes the list of properties props, executes the

proof scheme scheme in this context, and forgets the assumptions.
– msg "..." displays a string in the standard output.
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5 Examples

In this section, we will present several examples of copilot-kind applied to
verify properties on Copilot monitors.

First, let us reexamine the Copilot program from Sect. 2 that generates the
Fibonacci sequence. A fundamental property of this program is that it produces
a stream of values that are always positive. We express this as follows:

This invariant property is clearly inductive and is easily discharged. Note that, as
discussed in Sect. 6, 64-bit words are modelled by integers and eventual overflow
problems are ignored here.

The next example uses copilot-kind to prove properties relating two dif-
ferent specifications. Consider the following specification:

that acts as a counter performing modulo arithmetic, but is reset when the reset
stream value is true. Now consider the specification

After a reset, greyTick’s output stream forms a cycle of Boolean values with
the third item in the cycle having value true and the rest being false. Thus,
the two specifications both have a cyclic structure and with a cycle that begins
when the reset stream is set to true.

Fig. 1. Spec listing.
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From the above observations we conjecture that given the same input stream,
when reset is true, the intCounter is 0 and greyTick is true when intCounter
is 2. (Extern streams are uninterpreted; see Sect. 6.) We formalize these two
properties in our framework as shown in Fig. 1. These predicates are discharged
using the proof scheme.

5.1 Boyer-Moore Majority Vote

Earlier research on Copilot has investigated fault-tolerant runtime verifica-
tion [22]. Fault-tolerant algorithms often include a variant of a majority vote
over values (e.g., sensor values, clock values, etc.). The Boyer-Moore Majority
Vote Algorithm is a linear-time voting algorithm [13,16]. In this case-study, we
verify the algorithm.

The algorithm operates in two passes, first it chooses a candidate and the
second pass verifies that the candidate is indeed a majority. The algorithm is
subtle and the desire to apply formal verification to our Copilot implementation
helped motivate the effort described here.

Two versions of this algorithm were checked with copilot-kind. The first
algorithm was the one implemented as part of the aforementioned research on
fault tolerance and flew on a small unmanned aircraft. This algorithm is a parallel
implementation, where at each tick, the algorithm takes n inputs from n distinct
streams and is fully executed. The second version of the algorithm is a sequential
version, where the inputs are delivered one by one in time and where the result
is updated at each clock tick. Both can be checked with the basic k-induction
algorithm, but the proofs involved are different.

The Parallel Version. The core of the algorithm is the following:

Let us denote A as the set of the elements that can be used as inputs for the algo-
rithm. Assume l is a list and a ∈ A, we denote |l|a as the number of occurrences
of a in l. The total length of a list l is simply written |l|. The majorityVote
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function takes a list of streams l as its input and returns an output maj such
that:

∀a ∈ A, (a �= maj) =⇒ (|l|a ≤ |l|/2)

Given that quantifiers are handled poorly by smt solvers and their use is
restricted in most model-checking tools, including copilot-kind, we use a sim-
ple trick to write and check this property. If P (n) is a predicate of an integer
n, we have ∀n . P (n) if and only if ¬P (n) is unsatisfiable, where n an uncon-
strained integer, which can be solved by a smt solver. The corresponding Copilot
specification can be written as:

The function arbitrary is provided by the copilot-kind standard library and
introduces an arbitrary stream. In the same way, arbitraryCst introduces a
stream taking an unconstrained but constant value.

Note that we prove the algorithm for a fixed number of N inputs (here
N = 10). Therefore, no induction is needed for the proof and the invariant of
the Boyer-Moore algorithm does not need to be made explicit. However, the size
of the problem discharged to the smt solver grows in proportion to N .

The Serial Version. Now, we discuss an implementation of the algorithm
where the inputs are read one by one in a single stream and the result is
updated at each clock tick. As the number of inputs of the algorithm is not
bounded anymore, a proof by induction is necessary and the invariant of the
Boyer-Moore algorithm, being non-trivial, has to be stated explicitly. As stated
in Hesselink [13], this invariant is:

∀m ∈ A, (m �= p) =⇒ (s + 2|l|m ≤ |l|) ∧ (m = p) =⇒ (2|l|m ≤ s + |l|)
where l is the list of processed inputs, p is the intermediary result and s is an
internal state of the algorithm. The problem here is that the induction invariant
needs universal quantification to be expressed. Unfortunately, this quantifier
cannot be removed by a similar trick like the one seen previously. Indeed, when
an invariant is of the form ∀x.P (x, s), s denoting the current state of the world,
the induction formula we have to prove is:

∀x.P (x, s) ∧ T (s, s′) |= ∀x.P (x, s′)
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Sometimes, the stronger entailment

P (x, s) ∧ T (s, s′) |= P (x, s′)

holds and the problem becomes tractable for the smt solver by replacing a
universally quantified variable by an unconstrained one. In our current example,
it is not the case.

Our solution to the problem of dealing with quantifiers is restricted to the
case where A is finite and we replace each formula of the form ∀x ∈ A P (x) by∧

x∈A P (x). This can be done with the help of the forAllCst function provided
by the copilot-kind standard library. It is defined as:

The code for the serial Boyer-Moore algorithm and its specification is then:
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We make the hypothesis that all the elements manipulated by the algorithm
are in the set allowed, which is finite. The smt proofs are generally exponential
with respect to the number of variables, so this approach does not scale well.

6 Implementation

In this section, we shall outline the structure of the implementation of our Copi-
lot verification system. After Copilot type-checking and compilation, a Copilot
program is approximated so it can be expressed in a theory handled by most smt
solvers, as described below. Any information of no use for the model checking
process is thrown away. The result of this process is encoded in Cnub format,
which is is structurally close to the Copilot core format, but supports fewer
datatypes and operators. Then, it can be translated into one of two available
representation formats:

– The IL format: a list of quantifier-free equations over integer sequences, where
each sequence roughly corresponds to a stream. This format is similar to the
one developed by Hagen [8], but customized for Copilot. The light prover
works with this format.

– The TransSys format: a modular representation of a state transition system.
The Kind2 prover uses this format, which can be printed into Kind2’s native
format [17].

6.1 Approximating a Specification

The complexity of the models that are built from Copilot specifications is limited
by the power and expressiveness of the smt solvers in use. For instance, most
smt solvers do not handle real functions like trigonometric functions. Moreover,
bounded integer arithmetic is often to be approximated by standard integer
arithmetic.

The Cnub format is aimed at approximating a Copilot specification in a for-
mat relying on a simple theory including basic integer arithmetic, real arithmetic,
and uninterpreted functions. The stream structure is kept from the Copilot core
format, but the following differences have to be emphasized:

– In contrast to the great diversity of numeric types available in Copilot, we
restrain ourselves to three basic types which are handled by the SmtLib
standard: Bool, Integer, and Real. Problems related to integer overflows
and floating point arithmetic are ignored.

– Uninterpreted functions are used to model operators that are not handled.
They are abstract as function symbols satisfying the equality:

(∀i. xi = yi) =⇒ f(x1, · · · , xn) = f(y1, · · · , yn).

in the quantifier-free theory of uninterpreted function symbols, as provided
by most smt solvers.
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– Copilot extern variables are modelled by unconstrained streams. Particular
precautions have to be taken to model access to external arrays in order to
express the constraint that several requests to the same index inside a clock
period must yield the same result.

Excepting the first point, the approximations made are sound: they result in
a superset of possible behaviors for the RV.

The problem of integer overflows can be tackled by adding automatically
to the property being verified some bound-checking conditions for all integer
variables. However, this solution can generate a great overhead for the proof
engine. Moreover, it treats every program which causes an integer overflow as
wrong, although this behaviour could be intended. An intermediate way to go
would be to let the developer annotate the program so he can specify which
bounds have to be checked automatically or to use the bit vector types of SmtLib,
which will be implemented in a future release.

6.2 The Light Prover and the IL Format

Our homegrown prover relies on an intermediate representation format called
IL. An IL specification mostly consists of a list of quantifier-free equations over
integer sequences. These equations contain a free variable n which is implicitly
universally quantified. The IL format is similar to the one used by Hagen [8].

A stream of type a is modeled by a function of type N → a. Each stream
definition is translated into a list of constraints on such functions. For instance,
the stream definition

is translated into the IL chunk:

f : N → N

f(0) = 1
f(1) = 1

f(n + 2) = f(n + 1) + f(n).

Suppose we want to check the property fib > 0 which translates into f(n) > 0.
This can be done in two steps of the k-induction seen in Sect. 3 by taking

T [n] ≡ ( f(0) = 1 ∧ f(1) = 1 ∧ f(n + 2) = f(n + 1) + f(n) )

P [n] ≡ ( f(n) > 0 )

and checking that both

T [0] ∧ T [1] ∧ ¬ (P [0] ∧ P [1])

and
T [n] ∧ T [n + 1] ∧ P [n] ∧ P [n + 1] ∧ ¬P [n + 2]
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are non-satisfiable, the last one being equivalent to

(f(n + 2)=f(n + 1) + f(n)) ∧ (f(n) > 0) ∧ (f(n + 1) > 0) ∧ (f(n + 2) ≤ 0) ∧ · · ·
This simple example illustrates that the construction of SmtLib requests from
an IL specification is straightforward.

6.3 The Kind2 Prover and the TransSys format

Recall that a state transition system is a triple (S, I, T ), where S is a set of
states, I ⊆ S is the set of initial states, and T ⊆ S × S is a transition relation
over S. Here, a state consists of the values of a finite set of variables, with types
belonging to {Int, Real, Bool}. I is encoded by a logical formula whose free
variables correspond to the state variables and that holds for a state q if and
only if q is an initial state. Similarly, the transition relation is given by a formula
T such that T [ q, q′ ] holds if and only if q → q′.

The TransSys format is a modular encoding of such a state transition sys-
tem. Related variables are grouped into nodes, each node providing a distinct
namespace and expressing some constraints between its variables. A significant
task of the translation process to TransSys is to flatten the Copilot specification
so the value of all streams at time n only depends on the values of all the streams
at time n− 1 which is not the case in the Fibonacci example shown earlier. This
is done by a simple program transformation which turns

into

After this, it is natural to associate a variable to each stream. Here, the variables
fib0 and fib1 would be grouped into a single node in order to keep some struc-
ture in the representation of the transition system.2 Such a modular transition
system is almost ready to be translated into the Kind2 native format. How-
ever, we first have to merge each node’s pair whose components are mutually
dependent as Kind2 requires a topological order on its nodes.

7 Related Work

The research reported here builds on recent research conducted in a number
of areas including formal verification, functional programming and DSL design,
and RV.
2 Maintaining structure is important for two reasons. First, the model checker can use

this structural information to optimize its search; see structural abstraction in [8].
Second, structured transition systems are easier to read, debug, and transform.
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Copilot has many features common to other RV frameworks aimed at mon-
itoring distributed or real-time systems. There are few other instances of RV
frameworks targeted to C code. One exception is Rmor, which generates
constant-memory C monitors [11]. Rmor does not address real-time behavior or
distributed system RV, though. To our knowledge no other RV framework has
integrated monitor verification tools into their systems.

Haskell-based DSLs are of growing popularity and given that they are all
embedded into the same programming language, they share many similarities
with Copilot. For instance, Kansas Lava [7], which is designed for programming
field programmable gate arrays, and Ivory [19], which is designed for writing
secure autonomous systems, are both implemented using techniques similar to
Copilot.

The ROSETTE extension to the Racket language [6] provides a framework
for building DSLs that integrate smt solvers. Smten [23] is a DSL with embedded
smt solvers that is targeted at writing satisfiability based searches.

As we have already mentioned, Copilot is similar in spirit to other languages
with stream-based semantics, notably represented by the Lustre family of lan-
guages [15]. Copilot is a simpler language, particularly with respect to Lustre’s
clock calculus, focused on monitoring (as opposed to developing control sys-
tems). The work that is most relevant the research presented in this paper is the
application of the Kind model checking tool to verify Lustre programs [9]. Kind
and its most recent incarnation [17] is designed to model check Lustre programs
and due to the similarities between Copilot and Lustre we targeted the Kind2
prover to be one of our back ends as well. Yet, to the best of our knowledge, the
Boyer-Moore majority voting examples given in Sect. 5.1 are more sophisticated
than published results using Kind with Lustre.

8 Conclusion

In this paper, we have presented the development of copilot-kind that
enhances the Copilot RV framework with an integrated model-checking capa-
bility for verifying monitors and illustrated its applicability to verify a range of
monitors.

In practice, our tool turned out to be very useful, indeed, even when the
property being checked is not inductive or the induction step is too hard, it is
very useful to test the first entailment of the k-induction algorithm for small
values of k, proving the property cannot be violated in the first k time steps
or displaying a counterexample trace. Many subtle bugs can be captured for
reasonable values of k.

Yet, k-induction does have limitations. For instance, writing k-inductive spec-
ifications can be difficult. Newer advances like the IC3 algorithm, implemented
by Kind2, are aimed at proving non-inductive properties by splitting it into
concise and relevant inductive lemmas. However, our experiments showed that
currently available tools fail at proving very simple properties as soon as basic
arithmetic is involved.
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The development of copilot-kind has reinforced the efficacy of the embed-
ded DSL approach. Being embedded in a higher-order functional language facil-
itated the creation of a number of features such as our proof scheme capability.
We have also found it quite advantageous to be able to write properties in
the familiar style of Haskell programs. For instance, in Sect. 5.1, the function
forAllCst for the serial Boyer-Moore example in that it uses both a fold and a
map operator to model finite conjunctions. Beyond our own purposes, we believe
that other embedded DSL developers could use our designs in order to interface
their languages with proof engines.

Having successfully applied our tool to rather sophisticated monitors, future
extensions are planned. Given that we are focused on cyber-physical systems,
the limitations of smt-based provers go beyond the fact that they become pro-
hibitively slow as the size of their input increases. smt-solvers do not generally
handle quantifiers or special real-valued functions well. A promising way to deal
with both these issues would be an extension of the proof scheme system where
properties involving arbitrary streams are seen as universally quantified lemmas
which can be specialized and added to the proof context by an explicit use of a
new apply directive. An interface to MetiTarski [1] will also allow us to auto-
matically prove some of the mathematical properties of interest, but connecting
to an interactive prover may also be necessary.
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Abstract. Runtime monitoring is a versatile technique for detecting
property violations in safety-critical (SC) systems. Although instrumen-
tation of the system under monitoring is a common approach for obtain-
ing the events relevant for checking the desired properties, the current
trend of using black-box commercial-off-the-shelf components in SC sys-
tem development makes these systems unamenable to instrumentation.
In this paper we develop an online runtime monitoring approach tar-
geting an autonomous research vehicle (ARV) system and recount our
experience with it. To avoid instrumentation we passively monitor the
target system by generating atomic propositions from the observed net-
work state. We then develop an efficient runtime monitoring algorithm,
EgMon, that eagerly checks for violations of desired properties written in
future-bounded, propositional metric temporal logic. We show the effi-
cacy of EgMon by implementing and empirically evaluating it against logs
obtained from the testing of an ARV system. EgMon was able to detect
violations of several safety requirements.

1 Introduction

Runtime verification (RV) is a promising alternative to its static counterparts
(e.g., model checking [9] and theorem proving [6]) for checking safety and correct-
ness properties of safety-critical embedded systems. In RV, a runtime monitor
observes the concrete execution of the system in question and checks for vio-
lations of some stipulated properties. When the monitor detects a violation of
a property, it notifies a command module which then attempts to recover from
the violation. In this paper, we develop a runtime monitor that monitors an
autonomous research vehicle (ARV) and describe our experience with it.

The ARV is an autonomous heavy truck which is being designed for use in
vehicle platoons. It is representative of common modern ground vehicle designs.
These systems are generally built by system integrators who utilize commercial-
off-the-shelf components developed by multiple vendors, some of which may be
provided as black-box systems. These systems are also often hard real-time sys-
tems which leads to additional constraints on system monitoring [13]. This type
c© Springer International Publishing Switzerland 2015
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of system architecture is incompatible with many existing runtime monitoring
techniques, which often require program or system instrumentation [4,7,15,19]
to obtain the relevant events or system properties (e.g., propositions) necessary
to check for violations. Without access to component source code instrumenting
systems is more difficult, and even when the source is available there are risks
of affecting the timing and correctness of the target system when instrumented.

Obtaining Relevant System State. To avoid instrumentation, we obtain the rel-
evant information for monitoring the ARV system through passive observation
of its broadcast buses. Controller area network (CAN) is a standard broadcast
bus for ground vehicles which is the primary system bus in the ARV. We can
obtain useful amounts of system-state relevant information for monitoring the
system safety specification by observing the data within the CAN messages that
are broadcasted between system components. Before we can start monitoring
the ARV system, we need a component, which we call the StP (in short, state to
proposition map), that observes messages transmitted on the bus and interprets
them into propositions relevant to monitoring which are then fed into the mon-
itor. We want to emphasize that the limits of external observability can cause
significant challenges in designing the StP when considering the state available
from the system messages and the necessary atomic propositions [17].

Specification Logic. To obtain the relevant safety requirements and invariants
for monitoring the ARV system we consulted the safety requirements of the ARV
system. Many desired properties for these types of systems are timing related, so
using an explicit-time based specification language for expressing these proper-
ties is helpful. System requirements of the form “the system must perform action
a within t seconds of event e” are common, for instance, “Cruise control shall dis-
engage for 250ms within 500ms of the brake pedal being depressed”. For efficient
monitoring, we use a fragment of propositional, discrete time, future-bounded
metric temporal logic (MTL) [20].

Monitoring Algorithm. We have developed a runtime monitoring algorithm,
which we call EgMon, that incrementally takes as input a system state (i.e.,
a state maps propositions to either true/false) and a MTL formula and eagerly
checks the state trace for violations. Some existing monitoring algorithms that
support bounded future formulas wait for the full-time of the bound before eval-
uating the formula (e.g., [2]). EgMon uses a dynamic programming based iterative
algorithm that tries to reduce the input formula as soon as possible using his-
tory summarizing structures and formula-rewriting (leaving a partially reduced
formula when future input is required). This eager nature of the algorithm can
detect a violation earlier, leaving the system more time to attempt a graceful
recovery. We have also proved the correctness of our algorithm. As the target
systems we envision to monitor have strict time restriction, it is possible that
the eager checks performed by EgMon are not finished before the next trace state
arrives, possibly leaving trace properties unchecked. To overcome this, we have
developed a hybrid monitoring algorithm, HMon, that first performs conservative
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checking like traditional runtime monitoring algorithms for MTL and performs
as many eager checks as the remaining time permits.

Empirical Evaluation. We have implemented both EgMon and HMon on an inex-
pensive embedded platform and empirically evaluated it against logs obtained
from the testing of an ARV system using properties derived from its safety
requirements. EgMon (resp., HMon) has moderate monitoring overhead and
detected several safety violations.

2 Background and Existing Work

In this section we briefly introduce the background concepts and discuss relevant
existing work that will put the current work in perspective.

Monitoring Architecture. Goodloe and Pike present a thorough survey of
monitoring distributed real-time systems [13]. Notably, they present a set of mon-
itor architecture constraints and propose three abstract monitor architectures in
the context of monitoring these types of systems. One of the proposed distrib-
uted real-time system monitor architectures is the bus-monitor architecture. This
architecture contains an external monitor which receives network messages over
an existing system bus, acting as another system component. The monitor can
be configured in a silent or receive only mode to ensure it does not perturb the
system. This is a simple architecture which requires minor changes to the target
system. We utilize this architecture for our monitoring framework.

Controller Area Network. Controller Area Network is a widely used automo-
tive network developed by Bosch in the 1980s [5]. In this work we primarily focus
on CAN as it is a common automotive bus which typically conveys enough of
the state information so that we can check for interesting safety properties of the
system. CAN is an event-based broadcast network with data rates up to 1 Mb/s.
Messages on CAN are broadcast with an identifier which is used to denote both
the message and the intended recipients. The message identifiers are also used as
the message priorities for access control. Although CAN is an event-based bus, it
is often used with periodic scheduling schemes so the network usage can be sta-
tically analyzed. Hence, our monitoring approach is based on a time-triggered,
network sampling model which allows it to monitor time-triggered networks as
well. We use EgMon as a passive external bus-monitor which can only check
system properties that are observable by passive observation of the messages
transmitted through CAN.

Monitoring Algorithm. Our monitoring algorithm is similar to existing
dynamic programming and formula-rewriting based algorithms [3,14,15,24,25].
Our main area of novelty is the combination of eager and conservative specifica-
tion checking used in a practical setting showing the suitability of our bounded
future logic for safety monitoring. Our monitoring algorithm is inspired by the
algorithms reduce [12] and prècis [8], adjusted for propositional logic and eager
checking. The structure of our algorithm is based on reduce. reduce, prècis, and
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EgMon can handle future incompleteness but reduce additionally considers incom-
pleteness for missing information which we do not consider. The NASA PathEx-
plorer project has led to both a set of dynamic programming-based monitoring
algorithms as well as some formula-rewriting based algorithms [15] for past-time
LTL. The formula rewriting algorithms utilize the Maude term rewriting engine
to efficiently monitor specifications through formula rewriting [24]. Thati and
Roşu [25] describe a dynamic programming and rewriting-based algorithm for
monitoring MTL formulas. They perform eager runtime monitoring by formula
rewriting which resolves past-time formulas into equivalent formulas without
unguarded past-time operators and derive new future-time formulas which sep-
arate the current state from future state. While they have a tight encoding of
their canonical formulas, they still require more memory than some existing
algorithms (formulas grow in size as they are rewritten), including EgMon.

Heffernan et al. present a monitor for automotive systems using ISO 26262
as a guide to identify the monitored properties [16]. They monitor past-time lin-
ear temporal logic (LTL) formulas and obtain system state from target system
buses (CAN in their example). Our StP component is similar to their “filters”
used to translate system state to the atomic propositions used in the policy.
Their motivation and goals are similar to ours, but they use system-on-a-chip
based monitors which utilize instrumentation to obtain system state, which is
not suitable for monitoring black-box commercial-off-the-shelf (COTS) systems.
Reinbacher et al. present an embedded past-time MTL monitor in [23] which
generates FPGA-based non-invasive monitors. The actual implementation they
describe does however presume system memory access to obtain system state
(rather than using state from the target network). Pellizzoni et al. describe a
monitor for COTS peripherals in [22]. They generate FPGA monitors that pas-
sively observe PCI-E buses to verify system properties, but they only check
past-time LTL and regular expressions which cannot capture timing proper-
ties. Basin et al. compare runtime monitoring algorithms for MTL properties
[3]. EgMon works similarly to their point-based monitoring algorithm but EgMon
checks future temporal operators more aggressively. Donzé et al. [11] developed a
robustness monitor for Signal Temporal Logic which supports continuous signals.
Nickovic and Maler [21] developed the AWT tool which monitors analog systems.
We only consider discrete events. Dokhanchi et al. [10] developed an online run-
time monitoring algorithm for checking the robustness of formulas written in a
future-bounded MTL fragment. We consider satisfaction of the formula instead
of robustness.

3 Monitoring Algorithm

For checking whether the given ARV system adheres to its specification, we
need an algorithm which incrementally checks explicit time specifications (i.e.,
propositional metric-time temporal logic [20]) over finite, timed system traces.
This has led to our algorithm EgMon which is an iterative monitoring algorithm
based on formula rewriting and summarizing the relevant history of the trace
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in history-structures. To detect violations early, EgMon eagerly checks whether it
can reduce subformulas of the original formula to a truth value by checking the
(potentially incomplete) trace history and using formula simplifications (e.g.,
a ∧ false ≡ false). Many of the existing algorithms for evaluating formulas such
as [l,h]a∨ b (i.e., either b is true or sometimes in the future a is true such that
the time difference between the evaluation state and the future state in which
a is true, td, is within the bound [l, h]) wait enough time so that [l,h]a can be
fully evaluated. EgMon however tries to eagerly evaluate both[l,h]a and b imme-
diately and see whether it can reduce the whole formula to a truth value. For
another eagerness checking example, let us assume we are checking the property
aU[l,h]b (read, the formula is true at trace position i if there is a trace position j
in which b holds such that j ≥ i and the time difference between position i and j
is in the range [l, h] and for all trace positions k such that i ≤ k < j the formula
a holds) at trace position i. While monitoring if we can find a trace position
k > i for which a is false and no previous b’s (e.g., at position l, i ≤ l < k) are
true then we can evaluate the formula to be false without waiting for a trace
position in which b is true. We want to emphasize that EgMon optimistically
checks for violations and hence we could have a trace in which each formula can
only be evaluated at the last possible trace position which causes our algorithm
will behave in the exact same way as the non-eager algorithms modulo the extra
computation for eager checking.

3.1 Specification Logic

Our safety specification language for the ARV system, which we call αVSL, is a
future-bounded, discrete time, propositional metric temporal logic (MTL [20]).
The syntax of αVSL is as follows:

ϕ : := t | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1SIϕ2 | ϕ1UIϕ2 | Iϕ | Iϕ

Syntax. αVSL has logical true (i.e., t), propositions p, logical connectives (i.e.,
¬,∨), past temporal operators since and yesterday (S,), and future temporal
operators until and next (U ,). Other temporal operators (i.e.,,,,)
can be easily derived from the ones above. There is a bound I of form [l, h]
(l ≤ h and l, h ∈ N ∪ ∞) associated with each temporal operator. Note that
the bound [l, h] associated with the future temporal operators must be finite.
Specification propositions p come from a finite set of propositions provided in
the system trace by the StP. These propositions are derived from the observable
system state and represent specific system properties, for instance, proposition
speedLT40mph could describe whether the vehicle speed is less than 40 mph. We
use ϕ, φ, α, and β (possibly with subscripts) to denote valid αVSL formulas.
Semantics. αVSL formulas are interpreted over time-stamped traces. A trace
σ is a sequence of states, each of which maps all propositions in StP, to either
t or f. We denote the ith position of the trace with σi where i ∈ N. Moreover,
each σi has an associated time stamp denoted by τi where τi ∈ N. We denote
the sequence of time stamps with τ . For all i, j ∈ N such that i < j, we require
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τi < τj . For a given trace σ and time stamp sequence τ , we write σ, τ, i |= ϕ to
denote that the formula ϕ is true with respect to the ith position of σ and τ . The
semantics of αVSL future bounded MTL is standard, see for instance, [2]. Each
property ϕ has an implicit unbounded  future operator (ϕ signifies that ϕ
is true in all future trace positions including the current trace position) at the
top-level which is handled by checking whether ϕ is true in each trace position.

tempSub(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if ϕ ≡ p

{α} ∪ {β} ∪ tempSub(α) ∪ tempSub(β) if ϕ ≡ αUIβ|αSIβ

tempSub(α) ∪ tempSub(β) if ϕ ≡ α ∨ β

tempSub(α) if ϕ ≡ ¬α

We now introduce the readers with some auxiliary notions which will be neces-
sary to understand our algorithm EgMon. We first define “residual formulas” or,
just “residues”. Given a formula ϕ, we call another formula φ as ϕ’s residual,
if we obtain φ after evaluating ϕ with respect to the current information of the
trace. Note that a formula residue might not be a truth value if the formula
could not conclusively be reduced given the current trace state (e.g., if future
state is required to determine the truth value). A residue rj

ϕ is a tagged pair
〈j, φ〉ϕ where j is a position in the trace in which we intend to evaluate ϕ (the
original formula) and φ is the current residual formula. We use these residues to
efficiently hold trace history for evaluating temporal formulas. The next notion
we introduce is of “wait delay”. It is a function Δw that takes as input a formula
ϕ and Δw(ϕ) returns an upper bound on the time one has to wait before they
can evaluate ϕ with certainty. For past- and present-time formulas φ, Δw(φ) = 0.
Future time formulas have a delay based on the interval of the future operator
(e.g., Δw([0,3]p) = 3). The length of a formula ϕ, denoted |ϕ|, returns the total
number of subformulas of ϕ.

3.2 EgMon Algorithm

Our runtime monitoring algorithm EgMon takes as input an αVSL formula ϕ
and monitors a growing trace, building history structures and reporting the
specification violations as soon as they are detected. We summarize the relevant
algorithm functions below:

EgMon(ϕ) is the top-level function.
reduce(σi, τi, S

i
ϕ, 〈i, ϕ〉ϕ) reduces the given residue based on the current state

(σi, τi) and the history S
i
ϕ.

tempSub(ϕ) identifies the subformulas which require a history structure to eval-
uate the formula ϕ.

incrS(Si−1
ϕ , Si

ϕ, σi, τi, i) updates the history structure Si−1
ϕ to step i given the

current trace and history state.

Top-Level Monitoring Algorithm. The top-level monitoring algorithm
EgMon is a sampling-based periodic monitor which uses history structures to
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store trace state for evaluating temporal subformulas. History structures are lists
of residues along with past-time markers for evaluating infinite past-time formu-
las. The algorithm checks the given formula ϕ periodically at every trace sample
step. When the formula cannot be decided at a given step (e.g., it requires future
state to evaluate), the remaining formula residue is saved in a history structure
for evaluation in future steps when the state will be available. The history struc-
ture for formula φ at trace step i is denoted Si

φ. We use S
i
ϕ to denote the set of

history structures for all temporal subformula of ϕ, i.e., S
i
ϕ =

⋃
φ∈tempSub(ϕ) Si

φ.
The high level algorithm EgMon is shown in Fig. 1. First, all the necessary

history structures Sφ are identified using tempSub(ϕ) and initialized. Once these
structures are identified, the monitoring loop begins. In each step, all the history
structures are updated with the new trace step. This is done in increasing formula
size since larger formula can depend on the history of smaller formula (which may
be their subformula). Each structure is updated using incrS(Si−1

φ , Si
φ, σi, τi, i)

which adds a residue for the current trace step to the structure and reduces
all the contained residues with the new step state. Then, the same procedure
is performed for the top level formula that is being monitored – the formula’s
structure is updated with incrS(Si−1

ϕ , Si
ϕ, σi, τi, i). Once updated, this structure

contains the evaluation of the top-level formula. The algorithm reports any iden-
tified formula violations (i.e., any f residues) before continuing to the next trace
step. We note that due to the recursive nature of the monitoring algorithm, the
top-level formula is treated exactly the same as any temporal subformula would
be (which follows from the fact that the top-level formula contains an implicit
always ). The history structure updates for the top-level formula are separated
in the algorithm description for clarity only. The only difference between the top-
level formula and other temporal subformula is that violations are reported for
the top-level formula.

Reducing Residues. EgMon works primarily by reducing formula residues
down to truth values. Residues are reduced by the reduce(σi, τi, S

i
ϕ, 〈j, φ〉ϕ)

function, which uses the current state (σi, τi) and the stored history in S
i
ϕ to

Fig. 1. EgMon Algorithm
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rewrite the formula φ to a reduced form, either a truth value or a new formula
which will evaluate to the same truth value as the original. For past or present-
time formulas, reduce() is able to return a truth value residue since all the
necessary information to decide the formula is available in the history and current
state. In a given state, if the input formula ϕ ≡ p, reduce returns true only if
p is true in the state and returns false otherwise. For input formula of form
ϕ ≡ ϕ1 ∨ ϕ2, reduce is recursively called for ϕ1 and ϕ2, respectively, and the
formula ϕ1∨ϕ2 is reduced to ϕa∨ϕb (simplified if necessary) where ϕa and ϕb are
reduced form of ϕ1 and ϕ2, respectively. Negation is handled similarly. Future-
time policies may be fully-reducible if enough state information is available. If
a future-time formula cannot be reduced to a truth value, it is returned as a
reduced (potentially unchanged) residue. For residues whose formula is an until
formula αU[l,h]β, the history structures Si

α and Si
β are used to reduce the formula.

If the formula can be evaluated conclusively then the truth value is returned,
otherwise the residue is returned unchanged. The reduction algorithm for until
temporal formula is shown below. Reducing since formulas is essentially the
same except with reversed minimum/maximums and past time bounds.

reduce(σi, τi, i, S
i
α U[l,h] β , 〈j, α U[l,h] β〉) : :=

let aa ← min({k|τj ≤ τk ≤ τj + h ∧ 〈k, ⊥〉 ∈ Si
α}, i)

au ← max({k|τk ∈ [τj , τj + h] ∧ ∀k′ ∈ [j, k − 1].(〈k′, α′〉 ∈ Si
α ∧ α′ ≡ �}, i)

ba ← min({k|τj + l ≤ τk ≤ τj + h ∧ 〈k, β′〉 ∈ Si
β ∧ β′ �= ⊥})

bt ← min({k|τj + l ≤ τk ≤ τj + h ∧ 〈k, �〉 ∈ Si
β})

bn ← � if (τi − τj ≥ Δw(ψ)) ∧ ∀k.(τj + l ≤ τk ≤ τj + h).〈k, ⊥〉 ∈ Si
β

if bt �= ∅ ∧ au ≥ bt return〈j, �〉
else if (ba �= ∅ ∧ aa < ba) or bn = � return〈j, ⊥〉
else return〈j, α U[l,h] β〉

The reduce function for until formulas uses marker values to evaluate the seman-
tics of until. reduce calculates five marker values: aa is the earliest step within
the time interval where α is known false. au is the latest step within the interval
that αU[l,h]β would be true if β were true at that step. ba is the earliest step
within the interval at which β is not conclusively false, and bt is the earliest step
within the interval at which β is conclusively true. bn holds whether the current
step i is later than the wait delay and all β values within the interval are false.
With these marker variables, reduce can directly check the semantics of until,
and either return the correct value or the unchanged residue if the semantics are
not conclusive with the current history. Reducing since formulas works in the
same way (using the same marker values) adjusted to past time intervals and
utilizing the unbounded past time history values.

Incrementing History Structures. To evaluate past and future-time poli-
cies, we must correctly store trace history which can be looked up during a
residue reduction. We store the trace history of a formula φ in a history struc-
ture Sφ. This history structure contains a list of residues for the number of
steps required to evaluate the top-level formula. History structures are incre-
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mented by the function incrS(Si−1
φ , Si

φ, σi, τi, i) = (
⋃

r∈Si−1
φ

reduce(σi, τi, S
i
φ, r))∪

reduce(σi, τi, S
i
φ, 〈i, φ〉). This function takes the previous step’s history structure

Si−1
φ and the current state σi and performs two actions: (1) Adds a residue for

the current step i to Si
φ and (2) Reduces all residues contained in Si−1

φ using σi.

3.3 Algorithm Properties

There are two important properties of EgMon which need to be shown. First,
correctness states that the algorithm’s results are correct. That is, that if EgMon
reports a property violation, the trace really did violate the property. Second,
promptness requires that the algorithm provide a decision for the given property
in a timely fashion. Promptness precisely requires that the algorithm decides
satisfaction of the given property at trace position i as soon as there is another
trace position j available such that j ≥ i and τj − τi ≥ Δw(ϕ). The following
theorem states that EgMon is correct and prompt. It requires the history struc-
tures S

i
ϕ to be consistent at i analogous to the trace σ, τ , that is, the history

structures contain correct history of σ till step i.

Theorem 1 (Correctness and Promptness of EgMon). For all i ∈ N, all
formula ϕ, all time stamp sequences τ and all traces σ it is the case that (1) if
〈j, f〉 ∈ Si

ϕ then σ, τ, j � ϕ and if 〈j, t〉 ∈ Si
ϕ then σ, τ, j � ϕ (Correctness) and

(2) if τi − τj ≥ Δw(ϕ) then if σ, τ, j � ϕ then 〈j, f〉 ∈ Si
ϕ and if σ, τ, j � ϕ then

〈j, t〉 ∈ Si
ϕ (Promptness).

Proof. By induction on the formula ϕ and time step i. See [18]
We now discuss the runtime complexity of EgMon while checking satisfaction

of a property ϕ. For any evaluation position of the trace σ, let us assume we have
maximum L positions in σ for which ϕ has not yet been reduced to a boolean
value. Note that the maximum number of positions in that are not yet reduced
must be Δw(ϕ)

P where P is the monitor’s period. Additionally, for each temporal
subformula φ1Uφ2 of ϕ, we build history structures that keep track of segments
of positions in σ for which φ1 is true. Let us assume we have a maximum of
M such segments that are relevant for ϕ evaluation. Hence, the complexity of
EgMon is O(LM |ϕ|).

4 Monitor Implementation and Evaluation

To evaluate the feasibility of our monitoring algorithm for safety-critical real-
time systems we have built a real-time CAN monitor on an ARM Cortex-M4
development board. This allowed us to explore the necessary optimizations and
features required to perform real-time checking of realistic safety policies.

Challenges. Software for safety-critical embedded systems typically contains
more strict design and programming model constraints than less critical software.
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Two important and common constraints for these systems are avoiding recursion
and dynamic memory allocation. As αVSL is future bounded, we avoid dynamic
allocation in our EgMon implementation by statically allocating space for the
maximum number of entries for our history structures and other temporary data
structures. Although EgMon is defined recursively, we implement EgMon using a
traditional iterative traversal of the specification formulas instead.

Discussion. Passive monitoring of running systems requires attention to timing
issues with regards to system state sampling. The monitor possesses a copy of the
target system state which is updated when a new CAN message is observed. The
monitor periodically takes a snapshot of this constantly updated state and uses
that snapshot as the trace state which is monitored. Thus, the actual monitored
state (i.e., the trace) is a discrete sampling of the monitor’s constantly updated
system state. The monitor’s period must be fast enough that any changes in
system state which are relevant to the specification are seen in the sampled
trace. To ensure this, the monitor’s period should be twice as fast as the shortest
CAN message period. If the monitor’s period is not fast enough, multiple CAN
messages announcing the same system value may end up in the same trace state
causing those values to not be seen in the trace. For example, if the monitor is
sampling at 2ms, and three messages announcing the value of property X are
received at times 0 ms, 1ms, and 1.5ms, only the value announced at 1.5ms
will be seen in the trace. To avoid this, the monitor would need to run faster
than the messages inter-arrival rate (at least 0.5ms in this case).

Along with requiring the monitor to sample its trace state fast enough to see
all the relevant state changes, the specification time bounds must be a multiple
of the monitoring period. This ensures that each time step in the formula is
evaluated on the updated information. A simple way of understanding this is to
use monitor steps as the temporal bounds instead of explicit time bounds. For
example, if the monitor is running at 2 ms intervals, we can use [0,50]p as an
equivalent to [0,100ms]p. If a bound is not a multiple of the monitor’s interval,
then formulas with different bounds can look indistinguishable, e.g., [0,5ms]p is
equivalent to [1ms,4ms]p for a 2ms monitor. To summarize, using a monitoring
period at least twice as fast as the shortest CAN message period (i.e., shortest
time between a CAN message retransmission) and only using temporal bound
values that are multiples of this period provides intuitive monitoring results.

Hybrid Algorithm (HMon). The eager monitoring algorithm attempts to eval-
uate specification rules as soon as possible which requires checking properties
which may not be fully reducible given the current trace. Continuously attempt-
ing to check partially reduced residues which need future information to evalu-
ate requires extra computation. In some cases, the worst-case execution time to
eagerly check a property (or set of properties) over a trace may be longer than
the monitor’s period. In this case the eager algorithm cannot guarantee prompt
monitoring since some residues will be left unchecked. This is unacceptable for
safety-critical system monitoring, as without a promptness guarantee the results
cannot be fully trusted. To enable the benefits of eager checking while avoiding
the risks of losing real-time correctness, we can use a hybrid approach (called
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HMon) which first performs non-eager (conservative) checking and then uses any
spare time left in the monitoring period to perform as much eager checking as
possible. HMon preserves the monitor’s promptness guarantee (all violations will
be detected within their delay Δw) even if the EgMon cannot finish eager check-
ing the specification. HMon preserves promptness while providing a chance to
eagerly detect specification violations. HMon is functionally equivalent to EgMon
when it finishes execution before the monitoring period whereas HMon is equiv-
alent to the conservative algorithm when there is no spare execution time to
perform eager checks.

Figure 2 shows the violation detection latency for HMon while checking the
property (CruiseActive ∧ brakePressed) → [250ms,1s](¬CruiseActive) over a syn-
thetic trace using different monitoring periods. With a 1ms monitoring period
HMon is able to eagerly detect every violation early. For 8.2us monitoring period,
HMon is able to detect some violations early, but it does not detect all of them
right away. For 1us monitoring period, HMon only evaluates conservatively due
to lack of left-over time, identifying the violations at the promptness limit of 1s.

Fig. 2. Detection latencies with different hybrid monitor periods

We have also implemented HMon in our embedded board. HMon updates
the history structures (shared between the conservative and eager checking) and
performs a conservative check once every monitoring period. Eager checking is
then performed until the next monitor period interrupts it.

4.1 Case Study

This section reports our case study performing real-time monitoring of a CAN
network for realistic safety properties. For this case study we have obtained CAN
network logs from a series of robustness tests on the ARV which we have replayed
on a test CAN bus. This setup helps us show the feasibility of performing external
bus monitoring on this class of system with a realistic safety specification.
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The logs contain both normal system operation as well as some operation
under network-based robustness testing. During robustness testing, the testing
framework can intercept targeted network messages on the bus and inject its
own testing values. A PC was connected to a PCAN-USB Pro [1] device which
provides a USB interface to two CAN connections. One CAN channel was used
to replay the logs, while the other was used as a bus logger for analysis purposes.

Requirements documentation for this system was available, so we were able
to build a monitoring specification based on actual system requirements. The
specification evaluated in the embedded monitor on the test logs are shown in
Table 1. This specification was derived from the system requirements based on
the observable system state available in the testing logs. We note that the safety
specification is simple and does not fully exercise the monitor’s constraints. Since
this specification is small, does not have long duration future-time formulas,
and the monitor period is relatively slow (25ms) HMon and EgMon function
equivalently for the case study – EgMon can always finish within the monitoring
period in the worst case. We use the HMon for the study since it acts the same
as EgMon when there is excess monitoring time. Using HMon allows us to avoid
worrying about the execution time and has little downside.

Table 1. Case study monitoring specification

Table 1 shows the monitored specification. HeartBeatOn is a guard used to
avoid false-positive violations during system startup. The system’s heartbeat
message contains a single heartbeat status bit which we checked directly in
Rule #0 to ensure the component is still running (essentially a watchdog mes-
sage). The heartbeat message also has a rolling counter field. We use the StP to
ensure that this counter is incrementing correctly and output this check as the
HeartbeakOk proposition which is monitored in Rule #1. We also checked for
illegal state transitions. Rules #2 through #5 check both for illegal transition
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commands from the vehicle controller and actual illegal state transitions in the
interface component.

4.2 Monitoring Results

Monitoring the test logs with the above specification resulted in identifying two
real violations as well as some false positive violation detections caused by the
testing infrastructure. Three different types of heartbeat violations were identi-
fied after inspecting the monitor results, with one being a false positive. We also
identified infrastructure-caused false-positive violations of the transition rules.

Fig. 3. Heartbeat counter values over time

Specification violations. The first violation is a late heartbeat message. In one of
the robustness testing logs the heartbeat message was not sent on time, which
is clearly a heartbeat violation. Figure 3 shows the heartbeat counter values and
the inter-arrival time of the heartbeat messages over time for this violation. We
can see here that the heartbeat counter did in fact increment in a valid way, just
too slowly. The second violation is on-time heartbeat status message but the
heartbeat status field is 0. We do not know from the available documentation
whether a bad status in an on-time message with a good counter is valid or not.
So without more information we cannot tell whether these violations are false
positives or not. This is worthy of further investigation.

False-positive violations. The last type of heartbeat violation is a bad counter. A
good rolling counter should increment by one every message up to its maximum
(255 in this case) before wrapping back to zero. Every consecutive heartbeat
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Fig. 4. Bad heartbeat counter values

status message must have an incremented heartbeat counter or a violation will
be triggered. Figure 4 shows the counter value history for one of the traces with
a heartbeat violation caused by a bad counter value. Further inspection of this
violation showed that the bad counter values were sent by the testing framework
rather than the actual system. In this case, the network traffic the monitor is
seeing is not real system state instead are observing messages that are being
injected by the testing framework. This is a false positive violation since the
violating state is not actual system state.

The monitor also reported violations of the legal transition rules, but these,
similar to the heartbeat counter violation, also turned out to be false positives
triggered by message injections by the robustness testing harness. Since the
monitor checks network state, if we perform testing that directly affects the
values seen on the network (such as injection/interception of network messages)
we may detect violations which are created by the testing framework rather than
the system. Information about the test configurations can be used to filter out
these types of false positives which arise from test-controlled state. This type of
filtering can be automated if the test information can be input to the monitor,
either directly on the network (e.g., adding a message value to injected messages)
or through a side-channel (i.e., building a testing-aware monitor).

5 Conclusion and Future Work

We have developed a runtime monitoring approach for an ARV system. Instead
of instrumentation, we passively monitor the system, generating the system trace
from the observed network state. We have developed an efficient runtime moni-
toring algorithm, EgMon, that eagerly checks for violations of properties written
in future-bounded propositional MTL. We have shown the efficiency of EgMon
by implementing it and evaluating it against logs obtained from system testing
of the ARV. EgMon was able to detect violations of several safety requirements in
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real-time. We want to further explore runtime monitors executing in multi-core
environment to provide increased monitoring power as well as further formaliz-
ing the StP (in a domain specific language). Currently, we do not investigate the
energy consumption of the runtime monitors. It could be possible that the extra
checks required for eager checking might not feasible due to energy consumption
restrictions in which case one has to investigate energy-efficient alternatives.
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Abstract. Universities and other educational organizations are adopt-
ing computer-based assessment tools (herein called e-exams) to reach
larger and ubiquitous audiences. While this makes examination tests
more accessible, it exposes them to unprecedented threats not only from
candidates but also from authorities, which organize exams and deliver
marks. Thus, e-exams must be checked to detect potential irregularities.
In this paper, we propose several monitors, expressed as Quantified Event
Automata (QEA), to monitor the main properties of e-exams. Then, we
implement the monitors using MarQ, a recent Java tool designed to sup-
port QEAs. Finally, we apply our monitors to logged data from real
e-exams conducted by Université Joseph Fourier at pharmacy faculty,
as a part of Epreuves Classantes Nationales informatisées, a pioneering
project which aims to realize all french medicine exams electronically by
2016. Our monitors found discrepancies between the specification and
the implementation.

1 Introduction

Electronic exams, also known as e-exams, are computer-based systems employed
to assess the skills, or the knowledge of candidates. Running e-exams promises
to be easier than running traditional pencil-and-paper exams, and cheaper on
the long term. E-exams are deployed easily, and they are flexible in where and
when exams can be set; their test sessions are open to a very large public of
candidates and, if the implementation allows automatic marking, their results
are immediately available.

We do not want to argue about the actual benefits of e-exams in promot-
ing and supporting education, but as a matter of facts, their use has consid-
erably raised (and will likely continue to raise). Nowadays, several universities,
such as MIT, Stanford, and Berkeley, just to cite a few, have began to offer
university courses remotely using the Massive Open Online Course platforms
(e.g., Coursera1 and edX2) which offer e-exams. Even in a less ambitious and

1 www.coursera.org.
2 www.edx.org.
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more traditional setting, universities start adopting e-exams to replace tradi-
tional exams, especially in the case of multiple-choice questions and short open
answers. For example, pharmacy exams at Université Joseph Fourier (UJF) have
been organized electronically using tablet computers since 2014 [1]. Since several
french medicine exams are multiple-choice tests, the French government plans
to realize all medicine exams electronically by 2016.3 Other institutions, such as
ETS4, CISCO5, and Microsoft6, have for long already adopted their own plat-
forms to run, generally in qualified centers, electronic tests required to obtain
their program certificates.

This migration towards information technology is changing considerably the
proceeding of exams, but the approach in coping with their security still focuses
only on preventing candidates from cheating with invigilated tests. Wherever it
is not possible to have human invigilators, a software running on the student
computer is used, e.g., ProctorU7. However, such measures are insufficient, as
the trustworthiness and the reliability of exams are today threatened not only
by candidates. Indeed, threats and errors may come from the use of information
technology, as well as, from bribed examiners and dishonest exam authorities
which are willing to tamper with exams as recent scandals have shown. For
example, in the Atlanta scandal, school authorities colluded in changing student
marks to improve their institution’s rankings and get more public funds [2]. The
BBC revealed another scandal where ETS was shown to be vulnerable to a fraud
perpetrated by official invigilators in collusion with the candidates who were
there to get their visas: the invigilators dictated the correct answers during the
test [3].

To address these problems, e-exams must be checked for the presence/absence
of irregularities and provide evidence about the fairness and the correctness of
their grading procedures. Assumptions on the honesty of authorities are not jus-
tifiable anymore. Verification should be welcomed by authorities since verifying
e-exams provides transparency and then public trust. E-exams offer the possi-
bility to have extensive data logs, which can provide grounds for the verification
and checking process, however, the requirements to be satisfied by e-exams have
to be clearly defined and formalized before.

Contributions. To the best of our knowledge, this paper proposes the
first formalization of e-exams properties, using Quantified Event Automata
(QEAs) [4,5], and their off-line runtime verification on actual logs. Our con-
tributions are as follows. First, we define an event-based model of e-exams that
is suitable for monitoring purposes. Moreover, we formalize eight fundamental
properties as QEAs: no unregistered candidate try to participate in the exam by
submitting an answer; answers are accepted only from registered candidates; all

3 The project is called Épreuves Classantes Nationales informatisées, see www.
side-sante.org.

4 www.etsglobal.org.
5 www.cisco.com.
6 www.microsoft.com/learning/en-us/default.aspx.
7 www.proctoru.com.

www.side-sante.org
www.side-sante.org
www.etsglobal.org
www.cisco.com
www.microsoft.com/learning/en-us/default.aspx
www.proctoru.com
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accepted answers are submitted by candidates, and for each question at most
one answer is accepted per candidate; all candidates answer the questions in the
required order; answers are accepted only during the examination time; another
variant of the latter that offers flexibility in the beginning and the duration of
the exam; all answers are marked correctly; and the correct mark is assigned to
each candidate. Our formalization also allows us for some properties to detect the
cause of the potential failures and the party responsible for them. Note, formaliz-
ing the above properties entailed to add features to QEAs. Then, we implement
the monitors using MarQ8 [6], a Java tool designed to support QEA specifi-
cation language. Finally, we perform off-line monitoring, based on the avail-
able data logs, for an e-exam organized by UJF; and reveal both students that
violate the requirements, and discrepancies between the specification and the
implementation.

Outline. In Sect. 2, we define the events and a protocol for e-exams. We spec-
ify the properties and propose the corresponding monitors in Sect. 3. Then, in
Sect. 4, we analyze two actual e-exams organized by UJF. We discuss related
work in Sect. 5. Finally, we conclude in Sect. 6. An extended version of this
paper is available as [7].

2 An Event-Based Model of E-exams

We define an e-exam execution (or e-exam run) by a finite sequence of events,
called trace. Such event-based modelling of e-exam runs is appropriate for moni-
toring actual events of the system. In this section, we specify the parties and the
phases involved in e-exams. Then, we define the events related to an e-exam run.
Note, the e-exam model introduced in this section refines the one proposed in [8].

2.1 Overview of an E-exam Protocol

An exam involves at least two roles: the candidate and the exam authority. An
exam authority can have several sub-roles: the registrar registers candidates; the
question committee prepares the questions; the invigilator supervises the exam,
collects the answers, and dispatches them for marking; the examiner corrects
the answers and marks them; the notification committee delivers the marking.
Generally, exams run in four phases: (1) Registration, when the exam is set up
and candidates enrol; (2) Examination, when candidates answer the questions,
submit them to the authority, and have them officially accepted; (3) Marking,
when the answers are marked; (4) Notification, when the grades are notified to
the candidates. Usually, each phase ends before the next one begins.

2.2 Events Involved in an E-exam

Events flag important steps in the execution of the exam. We consider parametric
events of the form e(p1 , . . . , pn), where e is the event name, and p1 , . . . , pn is
8 www.github.com/selig/qea.

www.github.com/selig/qea
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the list of symbolic parameters that take some data values at runtime. We define
the following events that are assumed to be recorded during the exam or built
from data logs.

– Event register(i) is emitted when candidate i registers to the exam.
– Event get(i , q) is emitted when candidate i gets question q .
– Event change(i , q , a) is emitted when candidate i changes on his computer the

answer field of question q to a.
– Event submit(i , q , a) is emittedwhen candidate i submits answer a to question q .
– Event accept(i , q , a) is emitted when the exam authority receives and accepts

answer a to question q from candidate i .
– Event corrAns(q , a) is emitted when the authority specifies a as a correct

answer to question q . Note that more than one answer can be correct for a
given question.

– Event marked(i , q , a, b) is emitted when the answer a from candidate i to
question q is scored with b. In our properties we assume that the score b
ranges over {0, 1} (1 for correct answer and 0 for wrong answer), however
other scores can be considered.

– Event assign(i ,m) is emitted when mark m is assigned to candidate i . We
assume that the mark of a candidate is the sum of all the scores assigned to his
answers. However, more complex functions can be considered (e.g., weighted
scores).

– Event begin(i) is emitted when candidate i begins the examination phase.
– Event end(i) is emitted when candidate i ends the examination phase. The

candidate terminates the exam himself, e.g., after answering all questions
before the end of the exam duration.

In general, all events are time stamped, however we parameterize them with
time only when it is relevant for the considered property. Moreover, we may omit
some parameters from the events when they are not relevant to the property. For
instance, we may use submit(i) when candidate i submits an answer regardless
of his answer. We also use marked(q , a, b) instead of marked(i , q , a, b) to capture
anonymous marking.

3 Properties of E-exams

In this section, we define eight properties that aim at ensuring e-exams correct-
ness. They mainly ensure that only registered candidates can take the exam,
all accepted answers are submitted by the candidates, all answers are accepted
during the exam duration, and all marks are correctly computed and assigned
to the corresponding candidates. Note that in case of failure, two of the proper-
ties report all the individuals that violate the requirement of the property. This
notion of reporting can be applied to all other properties (see [7]).

Each property represents a different e-exam requirement and can be moni-
tored independently. An exam run may satisfy one property and fail on another
one, which narrows the possible source of potential failures and allows us to
deliver a detailed report about the satisfied and unsatisfied properties.
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Quantified Event Automata (QEAs). We express properties as QEAs [4,5].
We present QEAs at an abstract level using intuitive terminology and refer to [4]
for a formal presentation. A QEA consists of a list of quantified variables together
with an event automaton. An event automaton is a finite-state machine with
transitions labeled by parametric events, where parameters are instantiated with
data-values at runtime. Transitions may also include guards and assignments to
variables. Note, not all variables need to be quantified. Unquantified variables
are left free, and they can be manipulated through assignments and updated
during the processing of the trace. Moreover, new free variables can be introduced
while processing the trace. We extend the initial definition of QEAs in [4] by
(i) allowing variable declaration and initialization before reading the trace, and
(ii) introducing the notion of global variable shared among all event automaton
instances. Note, we use global variables in our case study presented in Sect. 4.2
and in the extended version of this paper. Global variables are mainly needed in
QEAs to keep track and report data at the end of monitoring. Such QEAs may
also require some manipulation of the quantified variables which is not currently
supported by MarQ. Thus, we could not implement them and hence omitted
them from the paper. The shaded states are final (accepting) states, while white
states are failure states. Square states are closed to failure, i.e., if no transition
can be taken, then there is a transition to an implicit failure state. Circular states
are closed to self (skip) states, i.e., if no transition can be taken, then there is an
implicit self-looping transition. We use the notation [guard]

assignment to write guards
and assignments on transitions: :=̂ for variable declaration then assignment, :=
for assignment, and = for equality test. A QEA formally defines a language (i.e.,
a set of traces) over instantiated parametric events.

Correct Exam run. An exam run satisfies a property if the resulting trace is
accepted by the corresponding QEA. A correct exam run satisfies all the proper-
ties. We assume that an input trace contains events related to a single exam run.
To reason about traces with events from more than one exam run, the events
have to be parameterized with an exam run identifier, which has to be added to
the list of quantified variables.

Candidate Registration. The first property is Candidate Registration, which
states that only already registered candidates can submit answers to the exam.
An exam run satisfies Candidate Registration if, for every candidate i , event
submit(i) is preceded by event register(i). A violation of Candidate Registration
does not reveal a weakness in the exam system (as long as the answers submitted
from unregistered candidates are not accepted by the authority). However, it
allows us to detect if a candidate tries to fake the system, which is helpful to be
aware of spoofing attacks.

Definition 1. (Candidate Registration). Property Candidate Registration
is defined by the QEA depicted in Fig. 1 with alphabet ΣCR = {register(i),
submit(i)}.
The input alphabet ΣCR for Candidate Registration contains only the events
register(i) and submit(i), so any other event in the trace is ignored. The QEA for
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∀i

1 2
register(i)

Fig. 1. QEA for Candidate
Registration

Initially: I =̂: ∅

1 2

register(i) I :=I∪{i}

accept(i , q , a) [i /∈I ]
F :=̂{(i,q,a)}

register(i) I :=I∪{i}

accept(i , q , a) [i /∈I ]
F :=F∪{(i,q,a)}

Fig. 2. QEA for Candidate Eligibility

Candidate Registration has two accepting states, and one quantified variable i .
Note, the empty trace is accepted by the QEA. State (1) is a square state, so an
event submit(i) that is not preceded by event register(i) leads to a failure. An
event register(i) in state (1) leads to state (2) which is a skipping (circular) state,
so after event register(i) any sequence of events is accepted. The quantification
∀i means that the property must hold for all values that i takes in the trace, i.e.,
the values obtained when matching the symbolic events in the specification with
concrete events in the trace. For instance, let us consider the following trace:
register(i1 ).submit(i2 ).submit(i1 ).register(i2 ). To decide whether it is accepted
or not, the trace is sliced based on the values that can match i , resulting in the
two slices: i �→ i1 : register(i1 ).submit(i1 ), and i �→ i2 : submit(i2 ).register(i2 ).

Then, each slice is checked against the event automata instantiated with the
appropriate values for i . The slice associated to i1 is accepted as it reaches the
final state (2), while the slice associated to i2 does not reach a final state since
event submit(i2 ) leads from state (1) to an implicit failure state. Therefore, the
whole trace is not accepted by the QEA. Note, we omit parameters q and a from
event submit(i , q , a) since only the fact that a candidate i submits an answer is
significant for the property, regardless of the question he is answering, and the
answer he submitted.

Candidate Eligibility. Property Candidate Eligibility states that no answer is
accepted from an unregistered candidate. Candidate Eligibility can be modeled
by a QEA similar to that of Candidate Registration depicted in Fig. 1, except
that event submit(i , q , a) has to be replaced by accept(i , q , a) in the related
alphabet. However, we formalize Candidate Eligibility in a way that, in addition
to checking the main requirement, it reports all the candidates that violate
the requirement, i.e., those that are unregistered but some answers are accepted
from them. Note, Candidate Registration can also modeled similarly by replacing
accept(i , q , a) with submit(i , q , a).

Definition 2. (Candidate Eligibility). Property Candidate Eligibility is
defined by the QEA depicted in Fig. 2 with alphabet ΣCE = {register(i),
accept(i , q , a)}.
The QEA of Candidate Eligibility has three free variables I ,F , and i , and no
quantified variables. Instead of being instantiated for each candidate i , the
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QEA of Candidate Eligibility collects all the registered candidates in set I,
so that any occurrence of event accept(i , q , a) at state (1) with i /∈ I fires
a transition to the failure state (2). Such a transition results in the failure
of the property since all transitions from state (2) are self-looping transi-
tions. Set F is used to collect all the unregistered candidates that submit-
ted an answer. Note, variable I is pre-declared and initialized to ∅. Trace
register(i1 ).accept(i2 , q0 , a2 ).accept(i1 , q0 , a1 ).register(i2 ) is not accepted by
Candidate Eligibility , and results in F = {(i2 , q0 , a2 )}. Note, reporting the can-
didates that violates the requirements requires to monitor until the end of the
trace.

Answer Authentication. Property Answer Authentication states that all
accepted answers are submitted by candidates. Moreover, for every question,
exactly one answer is accepted from each candidate that submitted at least one
answer to that question.

Definition 3. (Answer Authentication). Property Answer Authentica-
tion is defined by the QEA depicted in Fig. 3 with alphabet ΣAA =
{submit(i , q , a), accept(i , q , a)}.
The QEA of Answer Authentication fails if an unsubmitted answer is accepted.
A candidate can submit more than one answer to the same question, but exactly
one answer has to be accepted. Note, any answer among the submitted answers
can be accepted. However, the QEA can be updated to allow only the acceptance
of the last submitted answers by replacing set A with a variable, which acts as
a placeholder for the last submitted answer. If no answer is accepted after at
least one answer has been submitted, the QEA ends in the failure state (2), while
acceptance of an answer leads to the accepting state (3). A candidate can submit
after having accepted an answer from him to that question. However, if more than
one answer is accepted, an implicit transition from state (3) to a failure state is
fired. Trace submit(i1 , q0 , a1 ).submit(i1 , q0 , a2 ).accept(i1 , q0 , a2 ) – where candi-
date i1 submits two answers a1 and a2 to question q0 , then only a2 is accepted –
is accepted by Answer Authentication. While the traces accept(i1 , q , a), where an
unsubmitted answer is accepted from i1 , and submit(i1 , q , a1 ). submit(i1 , q , a2 ).
accept(i1 , q , a1 ).accept(i1 , q , a2 ), where two answers to the same question are
accepted from same candidate, are not accepted.

Answer Authentication can be further split into three different properties
which allow us to precisely know whether, for a certain question, an unsubmit-
ted answer is accepted, no answer is accepted from a candidate that submitted

∀i,∀q

1 2 3
submit(i , q , a) A:=̂{a}

submit(i , q , a) A:=A∪{a}

accept(i , q , a) [a∈A]

submit(i , q , a)

Fig. 3. QEA for Answer Authentication
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an answer, or more than one answer is accepted from the same candidate. For
instance, updating the QEA depicted in Fig. 3 by getting rid of state (3), con-
verting state (2) into an accepting state, and adding a self loop transition on
state (2) labeled by accept(i , q , a) [a∈A] results in a QEA that fails only when
an unsubmitted answer is accepted (see [7] for more details).

Question Ordering. The previous properties formalize the main requirements
that are usually needed concerning answer submission and acceptance. How-
ever, additional requirements might be needed. For example, candidates may be
required to answer questions in a certain order: a candidate should not get a
question before validating his answer to the previous question. This is ensured
by Question Ordering.

Definition 4. (Question Ordering). Let q1 , . . . , qn be n questions such that
the order ord(qk ) of qk is k. Property Question Ordering is defined by the QEA
depicted in Fig. 4 with alphabet ΣQO = {get(i , q), accept(i , q)}.

∀i , Initially c : =̂1

1 2

get(i , q) [ord(q)<c]

get(i , q) [ord(q)=c]

get(i , q) [ord(q)≤c]

accept(i , q) [ord(q)=c]
c++

Fig. 4. QEA for Question Ordering

The QEA of Question Ordering fails if a candidate gets (or an answer is accepted
from him for) a higher order question before his answer to the current question
is accepted. Note, Question Ordering also allows only one accepted answer per
question. Otherwise, there is no meaning for the order as the candidate can re-
submit answers latter when he gets all the questions.

Exam availability. An e-exam must allow candidates to take the exam only
during the examination phase. Exam Availability states that questions are
obtained, and answers are submitted and accepted only during the examina-
tion time.

Definition 5. (Exam Availability). Let t0 be the starting instant, and tf
be the ending instant of the exam. Property Exam Availability is defined
by the QEA depicted in Fig. 5 with alphabet ΣEA = {get(i , t), change(i , t),
submit(i , t), accept(i , t)}.
The QEA of Exam Availability checks that all the events in ΣEA are emitted
between t0 and tf . It also collects all the candidates that violates the require-
ments in a set F . Note, any other event can be added to ΣEA if required.
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1 2
ΣEA(i , t) [t0>t∨t>tf ]

F :=̂{i}

ΣEA(i , t) [t0>t∨t>tf ]
F :=F∪{i}

Fig. 5. QEA for Exam Availability

∀i

1 2 3
begin(i , t) [t1≤t≤t2 ]

tb :=̂t

accept(i , t) [tb≤t≤t2∧t−tb≤dur(i)]

end(i)

Fig. 6. QEA for Exam Availability with
Flexibility

Exam availability with flexibility. Some exams offer flexibility to the can-
didates, so that a candidate is free to choose the beginning time within a cer-
tain specified period. To capture that, we define Exam Availability with Flexibility
which states that no answer can be accepted from a candidate before he begins the
exam, after he terminates the exam, after the end of his exam duration, or after
the end of the specified period. The beginning time of the exam may differ from
one candidate to another, but in any case it has to be within a certain specified
period. The exam duration may also differ between candidates. For example, an
extended duration may be offered to certain candidates with disabilities.

Definition 6. (Exam Availability With Flexibility). Let t1 and t2 respec-
tively be the starting and the ending time instants of the allowed period, and
let dur(i) be the exam duration for candidate i . Property Exam Availabil-
ity with Flexibility is defined by the QEA depicted in Fig. 6 with alphabet
ΣEA = {begin(i , t), end(i), accept(i , t)}.
Exam Availability with Flexibility also requires that, for each candidate i ,
there is only one event begin(i , t) per exam. Hence, it fails if event begin(i)
is emitted more than once. A candidate can begin his exam at any time
tb such that t1 ≤ tb ≤ t2 . Note, no answer can be accepted from a candi-
date after then ending time t2 of the period, if the duration of the candi-
date is not finished yet. Assume that t1 = 0, t2 = 1, 000, dur(i1 ) = 90,
and dur(i2 ) = 60. Then, trace begin(i1 , 0 ).accept(i1 , 24 ).begin(i2 , 26 ).accept
(i2 , 62 ).accept(i1 , 90 ) is accepted. While, trace accept(i1 , 5 ).begin (i1 , 20 ) and
trace begin(i1 , 0 ).accept(i1 , 91 ) are not accepted since in the first one an answer
is accepted from candidate i1 before he begins the exam, and in the second one
an answer is accepted after the exam duration expires.

∀q, A : =̂∅

1 2

corrAns(q , a) A:=̂A∪{a}
marked(q , a, b) [(b=1⇔a∈A)]

marked(q , a, b) [b=1⇔a∈A]

Fig. 7. QEA for Marking Correctness

Event submit is not included
in ΣEA, thus an answer sub-
mission outside the exam time
is not considered as an irreg-
ularity if the answer is not
accepted by the authority. How-
ever, again other events (e.g.,
get and submit) can be consid-
ered. In such a case, the QEA in
Fig. 6 has to be edited by looping over state (2) with any added event.
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Marking correctness. The last two properties state that each candidate should
get the correct mark, the one computed correctly from his answers. Marking
Correctness states that all answers are marked correctly. In the QEA of Marking
Correctness, the correct answers for the considered question are collected in a
set A (self loop over state (1)).

Definition 7. (Marking Correctness). Property Marking Correctness is
defined by the QEA depicted in Fig. 7 with alphabet ΣMC = {corrAns(q , a),
marked}(q , a, b)}.
In state (1), once an answer to the considered question is marked correctly, a
transition to state (3) is fired, otherwise if an answer is marked in a wrong way
a transition to an implicit failure state occurs. In state (3), the property fails
either if an answer is marked in a wrong way, or if an event corrAns(q , a) is
encountered as this means that certain answers are marked before all the cor-
rect answers are set.

Mark integrity. Property Mark Integrity states that all accepted answers are
marked, and that exactly one mark is assigned to each candidate, the one
attributed to his answers. Mark Integrity together with Marking Correctness,
guarantee that each candidate participated in the exam gets the correct mark
corresponding to his answers. The QEA of Mark Integrity collects, for each can-
didate, the submitted answers in a set A.

Definition 8. (Mark Integrity). Property Mark Integrity is defined by the
QEA depicted in Fig. 8 with alphabet ΣMI = {accept(i , q , a),marked(q , a, b),
assign(i ,m)}.

For each accepted answer, the QEA accumulates the corresponding score b
in the sum s. If the accepted answers are not marked, the property fails (failure
state (2)). If the candidate is not assigned a mark or assigned a wrong mark the
property fails (failure state (3)). Once the the correct mark is assigned to the
candidate, if another mark is assigned or any other answer is accepted from him,
the property fails (square state (4)).

4 Case Study: UJF E-exam

In June 2014, the pharmacy faculty at UJF organized a first e-exam, as a part
of Epreuves Classantes Nationales informatisées project which aims to realize
all medicine exams electronically by 2016. The project is lead by UJF and the
e-exam software is developed by the company THEIA9 specialized in e-formation
platforms. This software is currently used by 39 french universities. Since then,
1,047 e-exams have been organized and 147,686 students have used the e-exam
software.

9 www.theia.fr.

www.theia.fr
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∀i

1 2

34

marked(q , a, b)

accept(i , q , a) A:=̂{(q,a)}

accept(i , q , a) A:=A∪{(q,a)}

marked(q , a, b) [(q,a)/∈A]

marked(q , a, b) [(q,a)∈A]
A:=A\{(q,a)}; s:=̂b

marked(q , a, b) [(q,a)/∈A]

accept(i , q , a) A:=A∪{(q,a)}
marked(q , a, b) [(q,a)∈A]

A:=A\{(q,a)}; s:=s+b

assign(i ,m) [m=s∧A=∅]

marked(q , a, b)

Fig. 8. QEA for Mark Integrity

We validate our framework by verifying two real e-exams passed with this
system. All the logs received from the e-exam organizer are anonymized; never-
theless we were not authorized to disclose them. We use MarQ10 [6] (Monitoring
At Runtime with QEA) to model the QEAs and perform the verification. We
provide a description for this system that we call UJF e-exam11, then we present
the results of our analysis.

4.1 Exam Description

Registration. The candidates have to register two weeks before the examina-
tion time. Each candidate receives a username/password to authenticate at the
examination.

Examination. The exam takes place in a supervised room. Each student han-
dled a previously-calibrated tablet to pass the exam. The internet access is con-
trolled: only IP addresses within an certain range are allowed to access the exam
server. A candidate starts by logging in using his username/password. Then, he
chooses one of the available exams by entering the exam code, which is provided
at the examination time by the invigilator supervising the room. Once the cor-
rect code is entered, the exam starts and the first question is displayed. The
pedagogical exam conditions mention that the candidates have to answer the

10 https://github.com/selig/qea.
11 We have also designed an event-based behavioral model of the e-exam phases that

is not reported in this paper for space reasons. The description was obtained and
validated through discussions with the engineers at THEIA.

https://github.com/selig/qea
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questions in a fixed order and cannot get to the next question before answering
the current one. A candidate can change the answer as many times as he wants
before validating, but once he validates, then he cannot go back and change
any of the previously validated answers. Note, all candidates have to answer
the same questions in the same order. A question might be a one-choice ques-
tion, multiple-choice question, open short-text question, or script-concordance
question.

Marking. After the end of the examination phase, the grading process starts.
For each question, all the answers provided by the candidates are collected.
Then, each answer is evaluated anonymously by an examiner to 0 if it is wrong,
0 < s < 1 if it is partially correct, or 1 if it is correct. An example of a partially-
correct answer is when a candidate provides only one of the two correct answers
for a multiple-choice question. The professor specifies the correct answer(s) and
the scores to attribute to correct and partially-correct answers, as well, as the
potential penalty. After evaluating all the provided answers for all questions, the
total mark for each candidate is calculated as the summation of all the scores
attributed to his answers.

Notification. The marks are notified to the candidates. A candidate can consult
his submission, obtain the correct answer and his score for each question.

4.2 Analysis

We analyzed two exams: Exam 1 involves 233 candidates and contains 42 ques-
tions for a duration of 1h35. Exam 2 involves 90 candidates, contains 36 questions
for a duration of 5h20. The resulting traces for these exams are respectively of
size 1.85 MB and 215 KB and contain 40,875 and 4,641 events. The result of
our analysis together with the time required for MarQ to analyze the whole
trace on a standard PC (AMD A10-5745M–Quad-Core 2.1 GHz, 8 GB RAM),
are summed up in Table 1. (�) means satisfied, (×) means not satisfied, and
[1] indicates the number of violations. Only four of the eight general proper-
ties presented in Sect. 3 were compatible with UJF E-exam. We considered five
additional and specific properties for the UJF e-exam.

Property Candidate Registration was satisfied, that is, no unregistered can-
didate submits an answer. Candidate Eligibility is also satisfied. We note that,
in MarQ tool the Candidate Eligibility monitor stops monitoring as soon as a
transition to state (2) is made since there is no path to success from state (2).
Thus, only the first candidate that violates the property is reported. In order to
report all such candidates, we had to add an artificial transition from state (2)
to an accepting state that could never be taken. Then, monitoring after reaching
state (2) remains possible. Moreover, the current implementation of MarQ does
not support sets of tuples. Consequently, we could only collect the identities i
in a set F instead of the tuples (i , q , a).

Answer Authentication was violated only in Exam 1. We reported the vio-
lation to the e-exam’s developers. The violation actually revealed a discrepancy
between the initial specification and the current features of the e-exam software:
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a candidate can submit the same answer several times and this answer remains
accepted. Consequently, an event accept can appear twice but only with the same
answer. To confirm that the failure of Answer Authentication is only due to the
acceptance of a same answer twice, we updated property Answer Authentica-
tion and its QEA presented in Fig. 3 by storing the accepted answer in a variable
av , and adding a self loop transition on state (3) labeled by accept(i , q , a) [a=av ] .
We refer to this new weaker property as Answer Authentication∗, which differs
from Answer Authentication by allowing the acceptance of the same answer
again; but it still forbids the acceptance of a different answer. We found out that
Answer Authentication∗ is satisfied, which confirms the claim about the possi-
bility of accepting the same answer twice. After diagnosing the source of failure,
we defined property Answer Authentication Reporting presented in Fig. 9, which
fails if more than one answer (identical or not) is accepted from the same can-
didate to the same question. At the same time, it collects all such candidates
in a set F . Answer Authentication Reporting is defined by the QEA depicted in
Fig. 9 with the input alphabet ΣAAR = {accept(i , q , a)}. The analysis of Answer
Authentication Reporting shows that, for Exam 1, there is only one candidate
such that more than one answer are accepted from him to the same question.
The multiple answers that are accepted for the same question are supposed to
be equal since Answer Authentication∗ is satisfied. Note that MarQ currently
does not support global variables, so for Answer Authentication Reporting , a set
is required for each question. Note for Exam 1, Answer Authentication required
less monitoring time than Answer Authentication∗ and Answer Authentication
Reporting as the monitor for Answer Authentication stops monitoring as soon
as it finds a violation.

Global:F : =̂∅ ∀q

1 2 3
accept(i , q , a) A:=̂{i}

accept(i , q , a) [i /∈A]
A:=A∪{i}

accept(i , q , a) [i∈A]
F :=̂{i}

accept(i , q , a) [i /∈A]
A=A∪{i}

accept(i , q , a) [i∈A]
F=F∪{i}

Fig. 9. QEA for Answer Authentication Reporting

Furthermore, UJF exam has a requirement stating that after acceptance the
writing field is “blocked” and the candidate cannot change it anymore. Actually,
in UJF exam when a candidate writes a potential answer in the writing field the
server stores it directly, and once the candidate validates the question the last
stored answer is accepted. As Answer Authentication shows, several answers can
still be accepted after the first acceptance, then the ability of changing the answer
in the writing field could result in an acceptance of a different answer. For this
purpose, we defined property Answer Editing that states that a candidate cannot
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change the answer after acceptance. Answer Editing is defined by the QEA
depicted in Fig. 10 with the input alphabet ΣAE = {change(i , q), accept(i , q , a)}.

∀i , ∀q

1 2

change(i , q)

accept(i , q , av )

accept(i , q , a) [a=av ]

Fig. 10. QEA for Answer Editing

Note, we allowed the accep-
tance of the same answer to
avoid the bug found by Answer
Authentication. Our analysis
showed that Answer Editing
was violated in Exam 2: at
least one student was able to
change the content of the writ-
ing field after having his answer
accepted.

Concerning Question Ordering the developers did not log anything related
to the event get(i , q). However, we defined Question Ordering∗ which fails if a
candidate changes the writing field of a future question before an answer for
the current question is accepted. Question Ordering∗ is defined by the QEA
depicted in Fig. 11 with the input alphabet ΣQO′ = {change(i , q), accept(i , q)}.
The idea is that if a candidate changes the answer field of a question, he must
have received the question previously. Moreover, we allow submitting the same
answer twice, and also changing the previous accepted answers to avoid the two
bugs previously found. Note, UJF exam requires the candidate to validate the
question even if he left it blank, thus we also allow acceptance for the current
question before changing its field (self loop above state (2)). The analysis showed
that Question Ordering∗ was violated in both exams.

∀i

1 2 3

change(i , q) [ord(q)=1 ]

accept(i , q) [ord(q)=1 ]
c:=̂2

change(i , q) [ord(q)<c]

accept(i , q) [ord(q)<c]

accept(i , q) [ord(q)=c]
c++

change(i , q) [ord(q)=c]

change(i , q) [ord(q)≤c]

accept(i , q) [ord(q)<c]

accept(i , q) [ord(q)=c]
c++

Fig. 11. QEA for Question Ordering∗

Alternatives to Answer Editing and Question Ordering can be defined to
report all the candidates who violate the requirement (see [7]). However, it can-
not be implemented using MarQ as it requires the ability either to manipulate
the quantified variables or to build sets of pairs which are both currently not sup-
ported by MarQ. However, the tool still outputs the first candidate who violates
the property.

Note, the manual check of Question Ordering∗ showed that some candidates
were able to skip certain questions (after writing an answer) without validating
them, and then validating the following questions.
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As we found a violation for Question Ordering∗, we defined Acceptance Order
that checks, for each candidate, whether all the accepted answers are accepted
in order, i.e., there should be no answer accepted for a question that is followed
by an accepted answer for a lower order question. Acceptance Order is defined
by the QEA depicted in Fig. 12 with the input alphabet ΣAO = {accept(i , q , a)}.

∀i , c : 1=̂1

accept(i , q) [ord(q)≥c]
c:=ord(q)

Fig. 12. QEA for Acceptance Order

Exam Availability is also violated in
Exam 2. A candidate was able to change
and submit an answer, which is accepted,
after the end of the exam duration. We could
not analyze Exam Availability with Flexibil-
ity , since it is not supported by the exam.
We also did not consider Marking Correct-
ness, and Mark Integrity properties since the
developers did not log anything concerning
the marking and the notification phase is done by each university and we were
not able to get the logs related to this phase. This shows that universities only
look for cheating candidates, and do not look for internal problems or insider
attacks. We expect the developers of the e-exam software to include logging
features for every phase. Note, we implemented all properties in MarQ and vali-
dated them on toy traces as we expect to obtain the actual traces of the marking
phase in the near future.

Table 1. Results of the off-line monitoring of two e-exams.

Property Exam 1 Exam 2

Result Time (ms) Result Time (ms)

Candidate Registration � 538 � 230

Candidate Eligibility � 517 � 214

Answer Authentication × 310 � 275

Answer Authentication∗ � 742 � 223

Answer Authentication Reporting ×[1] 654 � 265

Answer Editing � 641 × 218

Question Ordering∗ × 757 × 389

Acceptance Order � 697 � 294

Exam Availability � 518 ×[1] 237

5 Related Work and Discussion

To the best of our knowledge, this is the first paper to address the runtime
verification of e-exams. However, a formal framework for checking verifiabil-
ity properties of e-exams based on abstract tests has been proposed by Dreier
et al. in [8]. Note, the proposed tests in [8] need to be instantiated for each exam
depending on its specifications. The authors of [8] have validated their framework
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by (i) modeling two exams in the applied π-calculus [9], and then (ii) analyzing
them using ProVerif [10]. More precisely, they proposed a set of individual and
universal properties that allow to verify the correctness of e-exams. The indi-
vidual properties allow the candidate to check himself whether he received the
correct mark that corresponds to his answers. While the universal properties
allow an outsider auditor to check whether only registered candidates partic-
ipate in the exam, all accepted answers are marked correctly, and all marks
are assigned to the corresponding candidates. The universal properties that we
proposed revisit the properties defined in [8]. However, as mentioned before,
this paper is concerned with the monitoring of actual exam executions rather
than operating on the abstract models of the exam specification. Furthermore,
in general, formal verification techniques such as the one in [8] suffer from the
so-called state explosion that may limit the size of systems that can be verified.
Moreover, as formal methods operate on models, they introduce an additional
question concerning the correctness of the abstraction. In contrast, as runtime
verification operates only on the actual event traces, it is less dependent on the
size of the system and, at the same time, does not require as much abstraction.
Our properties can be monitored only by observing the events of trace from an
exam run.

System verification is also addressed in some other related domains e.g., in
auctions [11], and voting [12,13]. Back to e-exams, Dreier et al. also propose
a formal framework, based on π-calculus, to analyze other security properties
such as authentication and privacy [14]. These complementary approaches study
security and not verification, however both aspects are important to develop
such sensitive systems.

All the mentioned related approaches only allow symbolic abstract analysis
of the protocols specifications, mainly looking for potential flaws in the used
cryptographic primitives. What is more, these approaches support neither on-
line nor off-line analysis of the actual logs obtained from system executions.

On the other hand, off-line runtime verification of user-provided specifications
over logs has been addressed in the context of several tools in the runtime verifi-
cation community [15]: Breach for Signal Temporal Logic. RiTHM and StePr for
(variants of) Linear Temporal Logic, LogFire for rule-based systems, and Java-
MOP for various specification formalisms provided as plugins. MarQ [6] is a tool
for monitoring Quantified Event Automata [4,5]. Our choice of using QEA stems
from two reasons. First, QEAs is one of the most expressive specification for-
malism to express monitors. The second reason stems from our interviews of the
engineers who were collaborating with us and responsible for the development of
the e-exam software at UJF. To validate our formalization of the protocol and
the desired properties for e-exams, we presented the existing alternative speci-
fication languages. QEAs turned out to be the specification language that was
most accepted and understood by the engineers. Moreover, MarQ came top in
the 1st international competition on Runtime Verification (2014)12, showing that
MarQ is one of the most efficient existing monitoring tools for both off-line and

12 http://rv2014.imag.fr/monitoring-competition/results.

http://rv2014.imag.fr/monitoring-competition/results
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on-line monitoring. Note, off-line runtime verification was successfully applied to
other case studies, e.g., for monitoring financial transactions with LARVA [16],
and monitoring IT logs with MonPoly [17].

6 Conclusions and Future Work

We define an event-based model for e-exams, and formalize several essential
properties as Quantified Event Automata, enriched with global variables and
pre-initialization. Our model handles e-exams that offer flexible independent
beginning time and/or different exam duration for the candidates. We validate
the properties by analyzing real logs from e-exams at UJF. We perform off-line
verification of certain exam runs using the MarQ tool. We find several discrep-
ancies between the specification and the implementation. Analyzing logs of real
e-exams requires only a few seconds on a regular computer. Due to the lack of
logs about the marking and notification phases, we were not able to analyze all
properties. The UJF E-exam case study clearly demonstrates that the develop-
ers do not think to log these two phases where there is less interaction with the
candidates. However, we believe that monitoring the marking phase is essential
since a successful attempt from a bribed examiner or a cheating student can be
very effective.

Several avenues for future work are opened by this paper. First, we intend to
analyze more existing e-exams: from other universities and the marking phase of
the pharmacy exams at UJF. We encourage universities and educational institu-
tions to incorporate logging features in their e-exam software. Moreover, we plan
to perform on-line verification during live e-exams, and to study to what extent
runtime enforcement (cf [18] for an overview) can be applied during a live e-exam
run. Finally, we plan to study more expressive and quantitative properties that
can detect possible collusion between students through similar answer patterns.
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Jan-Christoph Küster1,2(B) and Andreas Bauer3

1 NICTA, Canberra, Australia
2 Australian National University, Canberra, Australia

jan-christoph.kuester@anu.edu.au
3 TU München, Munich, Germany

Abstract. In the most comprehensive study on Android attacks so far
(undertaken by the Android Malware Genome Project), the behaviour of
more than 1, 200 malwares was analysed and categorised into common,
recurring groups of attacks. Based on this work (and the corresponding
actual malware files), we present an approach for specifying and identi-
fying these (and similar) attacks using runtime verification.

While formally, our approach is based on a first-order logic abstraction
of malware behaviour, it practically relies on our Android event inter-
ception tool, MonitorMe, which lets us capture almost any system event
that can be triggered by apps on a user’s Android device.

This paper details on MonitorMe, our formal specification of malware
behaviour and practical experiments, undertaken with various different
Android devices and versions on a wide range of actual malware incarna-
tions from the above study. In a nutshell, we were able to detect real mal-
wares from 46 out of 49 different malware families, which strengthen the
idea that runtime verification may, indeed, be a good choice for mobile
security in the future.

1 Introduction

The landmark work undertaken by the Android Malware Genome Project
(AMGP, [15]) is the first that comprehensively collected and systematically
analysed more than 1, 200 Android malware samples. Despite the high total
amount of unique samples, their study reveals that those can be divided into
only 49 families and described by even fewer recurring attack patterns, which
fall into the following categories: information stealing, financial charges, privilege
escalation and malicious payload activation.

Inspired by those patterns, we formalise in this paper common malicious
behaviour in our own specification language (published prior in [2]) to dynam-
ically identify real malware on a user’s Android device; that is, by checking its
runtime footprint against our specifications. As our approach has access to the
actual executed behaviour of apps, it can complement static analysis techniques,
whose malware detection often faces difficulties in face of code obfuscation
(cf. [11]). Dynamic analysis techniques on the other hand, which are often used
on an emulator in order to detect malware, face difficulties with samples that
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employ recent emulator-detection techniques (cf. [13]). Naturally, this is not a
problem either when working directly on the device.

We were able to detect suspicious behaviour of 46 out of 49 malware fam-
ilies from the AMGP, while generating 28% positive alerts when monitoring a
representative set of 61 benign apps with our specifications.

For conducting our experiments we have developed a standalone monitoring
app, called MonitorMe. Compared to other approaches, which are usually either
app- or platform-centric (see discussion in Sect. 5), its major advantage is that it
combines the strengths of both “worlds”, i.e., while it is easy to install on a user’s
off-the-shelf device, it is also capable of gathering all system events necessary for
our analysis, without requiring the modification of either the Android platform
or apps themselves (cf. [1,4,6,14]). Hence, for a future, stable version of our pro-
totype, we have the average phone user in mind, assuming that specifications are
centrally created by security experts and that the app receives regular updates
to them over the internet. Currently, MonitorMe runs on various devices of the
Google Nexus family (tested for Nexus S, 7 and 5), and is portable to older and
very recent Android versions (2.3.6, 4.3 and 5.0.1). However, we require devices
to be rooted to load a Linux kernel module. This may seem restrictive, but one
should keep in mind that it has become common practice by now and does not
disrupt the user experience by reinstalling the system on the device at hand.

Outline. In the next section, we give a technical overview of MonitorMe. Our
specification language and its use for monitoring malware is introduced in Sect. 3,
followed by experiments (Sect. 4.1) demonstrating that our policies help identify
most AMGP-families. The experiments further demonstrate (Sect. 4.2) that only
few false positives for benign apps are generated and that performance- and
portability-wise our approach does, indeed, lend itself to be executed on almost
arbitrary end-user Android devices.

2 Event Interception with
MonitorMe

Fig. 1. Architecture of MonitorMe.

To enable our modular way of malware
detection on a user’s device, we have devel-
oped a monitoring app,1 which has two
main components (depicted in Fig. 1): a
framework for collecting system events on
the Android platform (grey area, named
DroidTracer2), and an analysis component
(on top of DroidTracer), which receives
those events in chronological order and
incrementally “feeds” them into monitors

1 http://kuester.multics.org/MonitorMe/.
2 http://kuester.multics.org/DroidTracer/.

http://kuester.multics.org/MonitorMe/
http://kuester.multics.org/DroidTracer/
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generated by Ltlfo2mon.3 We create a monitor for each of our policies that
specifies a certain malware behaviour and run a copy of them per app under
inspection. Ltlfo2mon is written in Scala, but is compatible to run as part of an
Android app in Java. In short, the monitoring algorithm creates an automaton
for each LTL-like subformula in a policy. These are then spawned with concrete
values based on observed system events at runtime (for details of the algorithm
see [2]). It is worth pointing out that DroidTracer works without polling for
events, i.e., a Java callback method is triggered whenever a new system event
occurs. Furthermore, DroidTracer is implemented as a standalone library so that
it can be integrated in third-party apps for other analyses.

DroidTracer. In the following we explain the inner workings of DroidTracer
(three sub-components marked as white inside the grey area); that is, the novel
way on how we intercept interactions between apps and the Android platform
without requiring platform or app modifications. As there is no public API for
this task, not even on a rooted device, nor any complete documentation about
Android’s internal communication mechanism, our approach is mainly based on
insights gained from reverse engineering.

System Call Interception. We exploit the fact of Android’s security design
that the control flow of all apps’ actions that require permission, such as request-
ing sensitive information (GPS coordinates, device id, etc.) or connecting with
the outside world (via SMS, internet, etc.), must eventually pass one of the
system calls in the Linux kernel; for example, to be delegated to a more privi-
leged system process that handles the request. In other words, intercepting the
control flow at a central point in kernel space does not allow apps to bypass
our approach. Furthermore, system calls are unlikely to change so that hooking
into them is fairly robust against implementation details on different Android
versions.

Hence, our idea is to use kprobes4 (the kernel’s internal debugging mech-
anism) to intercept system calls in a non-intrusive way. More specifically, we
built a custom kernel module (bottom sub-component in Fig. 1), which contains
handler methods that get invoked by small bits of trampoline code (so called
probes). We add those with kprobes dynamically to the following system calls:

• sys open(const char user *filename, ...), opens files with filename for
read/write.

• sys connect(int sockfd, const struct sockaddr *addr, ...), where addr contains the
IPv4 or IPv6 address of an established internet connection.

• do execve(char *filename, char user * user *argv, ...), where filename is a pro-
gram or shell script being executed with the arguments argv.

• ioctl(...), is used to control kernel drivers, such as Android’s Binder driver.

From the function arguments of ioctl we cannot directly retrieve relevant infor-
mation (unlike for the other system calls shown above, which provide to us IP
3 https://github.com/jckuester/ltlfo2mon.
4 https://www.kernel.org/doc/Documentation/kprobes.txt.

https://github.com/jckuester/ltlfo2mon
https://www.kernel.org/doc/Documentation/kprobes.txt
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addresses, opened files, or executed program names). The reason is that infor-
mation is compactly encoded (for efficiency reasons), when sent through ioctl by
Android’s own inter process communication (IPC) mechanism, called Binder.5

As Binder handles the majority of interesting interactions between apps and the
Android platform, its decoding is crucial for our analysis. Hence, for a deeper
understanding of Binder’s control flow, we look at the following Java code snip-
pet of a method call that an app developer might write to send an SMS.

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("12345", null,"Hello!", null, null);

Figure 2 illustrates the control flow of the Binder communication when this code
is executed. All Java code of an app is compiled into a single Dalvik executable
classes.dex (upper left box), which runs on its own Dalvik VM. The called method
sendTextMessage() is part of the Android API (lower left box), which is linked
into every app as a JAR file. But instead of implementing the functionality
of sending an SMS itself, it rather hides away the technical details of a remote
procedure call (RPC); that is, a call of a Java method that lives in another Dalvik
VM (right box). What further happens is that SmsManager calls the method
sendText() of the class Proxy, which has been automatically generated for the
ISms interface. The Proxy then uses the class Parcel to marshall the method
arguments of sendText() into a byte stream, which is sent (together with other
method call details) via the Binder driver to the matching Stub of ISms (lower
right box). There, the arguments are unmarshalled and the final implementation
of sendText() in the SMS service is executed. As the SMS service is running on
a Dalvik VM privileged to talk to the radio hardware, it can send the SMS.

Unmarshalling. The main challenge in reconstructing method calls was to
reverse engineer how Binder encodes them to send them through the kernel,
such that the task of unmarshalling for our analysis can be automated. Like for
the code snippet of sending an SMS, we aim at reconstructing every method
call in its original human readable format (including its Java method arguments
and types). In what follows, we describe how we achieved it and what the imple-
mentation of this feature looks like on a technical level. All we can intercept in
the kernel is the following C structure, which wraps the information copied by
Binder driver from the sender into the address space of the receiving process.

struct binder_transaction_data {

unsigned int code; // value 5 for our SMS example

uid_t sender_euid; // UID of the app initiating the request

const void *buffer; // Fig.4 shows its content for our example

};

A comprehensive technical report contains more details on the implementation
[10] and shows how we intercept binder transaction data during a certain stage
of the Binder driver communication, which follows a strict protocol. The integer

5 http://developer.android.com/reference/android/os/Binder.html.

http://developer.android.com/reference/android/os/Binder.html
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Fig. 2. An app (left) requesting the Android platform (right) to send an SMS.

sender euid provides us with the UID to unambiguously identify the sender app
of a request. However, the method name the integer code translates to, and which
arguments are encoded in the byte stream of buffer, is not transmitted, mainly
for efficiency reasons. We have a closer look at some code of the Stub and Proxy
(shown in Fig. 3), which are automatically generated for the interface ISms, to
better understand why there is no need for Binder to send this information.

01: public void sendText(String destAddr, ...,
...)...,txetgnirtS:20

03: {
04: android.os.Parcel _data =
05: android.os.Parcel.obtain();
06: ...
07: _data.writeInterfaceToken(DESCRIPTOR);
08: _data.writeString(destAddr);
09: ...
10: _data.writeString(text);
11: ...
12: mRemote.transact(Stub.TRANSACTION_sendText,

;)...,atad_:31
14: ...
15: }

01: private ... String DESCRIPTOR =
02: "com.android.internal.telephony.ISms";
03: ...
04: switch (code) { ...
05: case TRANSACTION_sendText: {
06: data.enforceInterface(DESCRIPTOR);
07: ...
08: _arg0 = data.readString();
09: ...
10: _arg2 = data.readString(); ...
11: this.sendText(_arg0,..., _arg2,...);
12: }}
13: ...
14: static final int TRANSACTION_sendText =
15: (IBinder.FIRST_CALL_TRANSACTION + 4);

Fig. 3. Auto-generated Proxy (left) and Stub class (right) for the ISms interface.

When the Proxy makes the actual RPC for sendText() via Binder (left, line
12), it includes the integer TRANSACTION sendText defined in its corresponding
Stub (right, lines 14–15). We discovered that this is the value of code we find
in binder transaction data. The second argument data is an instance of the class
Parcel and relates on a lower level to the buffer we intercept. More specifically,
the Proxy takes a Parcel object (reused from a pool for efficiency) and then
writes the DESCRIPTOR (left, line 7), which is the name of the interface ISms
(right, lines 1–2), followed by the method arguments into it (left, lines 8–10).
We can observe that this is done in the order of the arguments appearing in
the method signature. Furthermore, dedicated write methods are used provided
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by Parcel, such as writeString(). When the Stub receives the call, it executes
the TRANSACTION sendText part of a switch construct (right, line 5), which
reconstructs the arguments from the byte stream of the Parcel object; that is,
using the equivalent read methods in the exact same order as the write methods
have been used. Based on those key observations, we designed the following
(three-step) algorithm to automate unmarshalling for arbitrary method calls
with DroidTracer (top sub-component in Fig. 1):

1. Unmarshall interface name (e.g., ISms)
(a) Take a Parcel object and fill it with the byte stream buffer. This is pos-

sible, as the class Parcel is public and provides an according method.
(b) Read the DESCRIPTOR from the Parcel object via readString(), as it is

always the first argument in buffer (see Fig. 4).
2. Unmarshall method name (e.g., sendText)

(a) Use Java reflection to find the variable name with prefix TRANSACTION
and code assigned to in the Stub of the unmarshalled interface name. This
works, as every app, and so MonitorMe, has access to the JAR of the
Android API.

3. Unmarshall method arguments (e.g., “12345”, null, “Hello!”, null,
null)
(a) Determine the order and types of method arguments by accessing the

signature of the unmarshalled method name via reflection.
(b) Apply Parcel’s read methods according to the type and order of argu-

ments appearing in the method signature. This works for Java primitives,
but we also reverse engineered how complex objects are composed into
Java primitives.

It is worth pointing out that our unmarshalling algorithm does not rely on
low-level Binder implementations, which might vary for different Android ver-
sions, as we are able to use the exact Java read methods of the class Parcel that
are also used by the Android framework itself on a specific device.

Netlink Endpoint. As event interception takes place solely inside the kernel
space and unmarshalling relies on access to the Android API, we need a mecha-
nism that allows us to pass data from inside the kernel module up to DroidTracer
in user space. Moreover, we need to send data also in the other direction so that
the user can control the kernel module for even the most basic tasks, for example,
to switch event interception on and off. Android has no built-in way to serve as a
solution, but we were able to usenetlink6 (a socket based mechanism of the Linux
kernel) to bidirectionally communicate with user space. As only the kernel but
not the Android API offers netlink support, we had to build a custom endpoint
for our app (middle sub-component in Fig. 1), using the Netlink Protocol Library
Suite(libnl7). Note that netlink implements a callback principle so that rather
than polling the kernel module for new occurring system events, DroidTracer
can push them all the way to our analysis component.
6 http://www.linuxfoundation.org/collaborate/workgroups/networking/generic

netlink howto.
7 http://www.carisma.slowglass.com/∼tgr/libnl/.

http://www.linuxfoundation.org/collaborate/workgroups/networking/generic_netlink_howto
http://www.linuxfoundation.org/collaborate/workgroups/networking/generic_netlink_howto
http://www.carisma.slowglass.com/~tgr/libnl/
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Fig. 4. The buffer sent via Binder containing the arguments of sendTextMessage().

3 Specifying Malware Behaviour

Whenever an app causes a system event on the Android platform that we can
intercept with DroidTracer, we capture it as an action. We represent actions in
our internal, logical model by ground terms p(c1, . . . , cn), where p is a predicate
symbol and ci is a constant. Typically, p denotes the method and interface name
of an intercepted method call, and ci (if any) its ith unmarshalled method argu-
ment. That is, we write sendText@ISms(“12345”, null, “Hello!”, null, null) for
a ground term representing the sending of an SMS, given as an example in Sect. 2,
where we conventionally delimit method and interface name by the @-symbol.
Let us refer to finite sets of actions as worlds. An app’s behaviour, observed over
time, is therefore a finite trace of worlds. Note that in the case of our analysis,
worlds contain only one action and are ordered by the position at which the
corresponding system event has been sent from our kernel module via netlink.
That is, there is no predefined delay between worlds as the trace is only extended
by one world whenever a new system event occurs. Table 1 shows a selection of
events collected for a sample of the malware family Walkinwat. Distinct malware
samples (i.e., with different hash values) are usually grouped under the same
family name if they share the same behaviour and manner in which they spread.
Each row contains a system event, where the ID indicates its position in the
trace and the remaining columns show the outcome of the three steps in our
unmarshalling algorithm (see Sect. 2). For all other system calls, our algorithm
returns “syscall” as the interface name, and beyond that the actual syscall func-
tion name and its intercepted arguments in the kernel. For example, look at
the third row, which means an internet connection has been established via the
system call sys connect to URL wringe.ispgateway.de. An action at position
i ∈ N in some trace means that at time i this action holds (or, from a practical
point of view for the 397th world in Table 1 that Walkinwat has requested the
Android framework to send an SMS to number “451-518-646” with text “Hey,
just ...”).

We specify undesired malware behaviour in terms of formulae (or policies) in
a first-order linear temporal logic, called LTLFO. From a formal point of view,
we merely used safety formulae and our tool to detect finite counterexamples.
For brevity, we recall here only the key concepts of LTLFO by explaining an
example policy, whereas the full syntax and semantics as well as our monitoring
algorithm can be found in [2]. LTLFO is an extension of propositional future LTL
with quantifiers that are restricted to reason over those actions that appear in a
trace, and not arbitrary elements from a (possibly infinite) domain (i.e., we can’t
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Table 1. Trace of system events for malware Walkinwat collected by DroidTracer.

express “for all numbers x of SMS messages that an app has not sent”). Let us
consider the example that apps must not send SMS messages to numbers not
in a user’s contact book. Assuming there exists a predicate sendText@ISms,
which is true (i.e., appears in the trace), whenever an app sends an SMS message
to phone number dest, we could formalise said behaviour in terms of of a policy
G∀(dest, ) : sendText@ISms. inContactBook(dest), shown as ϕ18 in Table 2.
Note how in this formula the meaning of dest is given implicitly by the first
argument of sendText@ISms and must match the definition of inContactBook
in each world. We use the “ ”-symbol simply as placeholder for one or more
remaining program variablesthat are not used in the formula. Also note that we
call sendText@ISms an uninterpreted predicate as it is interpreted indirectly via
its occurrence in the trace, whereas inContactBook never appears in the trace,
even if true. inContactBook can be thought of as interpreted via a program
that queries a user’s contact database, whose contents may change over time.
An interpreted predicate can also be rigid; that is, its truth value never changes
for the same arguments. For example, look at regex(uri, “.* calls.*”) in policy
ψ6 in Table 3, which is true if uri (an identifier for Android’s content providers),
matches the regular expression “.* calls.*”. This way, we check whether the
database that stores the call history on a phone is accessed.

As we can’t anticipate when or if an app stops, a policy ϕ normally specifies
behaviour in terms of an infinite trace. But the monitor we build to check ϕ
will only see a prefix (observed system events so far), denoted u, and therefore
return ⊥ if u is a bad prefix, and ? otherwise. This means that a monitor for ϕ18,
when it processes the 397th event, will return ⊥ and terminate, as the number
“451-518-646” is not in the contact book. Furthermore, there exists a third case,
that the monitor returns � if u is a good prefix, but as we only monitor safety
formulae, this case is not relevant for our study. Our monitoring semantics is
akin to the 3-valued finite-trace semantics for LTL introduced in [3].

Based on the patterns from four different categories identified by the AMGP
[15], we have formally specified various key characteristics of malware behaviour
in LTLFO. The results are the policies listed in Table 2. For readability, we write
ϕi∈[a,b], grouping policies of the same pattern together, where ψi, ψ′ or ψ′′ are
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Table 2. Key characteristics of Android malware behaviour specified in LTLFO.

Information stealing

ϕi∈[1,14] G¬ψi [ϕi∈[1,14]] G(ψi → ¬Fψ′)
[[ϕi∈[1,14]]] G(ψi ∧ ¬ψ′ → (¬ψ′W(N/A@ISurfaceComposer ∧ ¬ψ′))) [[ϕi∈[1,4]]]

′ G(ψi → ¬Fψ′′)

Privilege escalation

ϕ15 G¬∃(args) : do execv@syscall. regex(args, “.*su|pm (un)?install|am start.*”)

Launching malicious payloads

ϕi∈[16,17] G¬ψi [ϕ17] G(ψ17 → ¬Fψ′) [[ϕ17]] G(ψ17 → ¬Fψ′′)

Financial charges

ϕ18 G∀(dest, ) : sendText@ISms. inContactBook(dest)
ϕ19 G(ψ17 → ¬F∃(w, x, y, z, abort) : finishReceiver@IActivityManager. regex(abort, “true”))

auxiliary formulae listed in Table 3. We surround a policy ϕi with n square
brackets (calling it the nth refinement of ϕi), if its bad prefixes are a strict subset
of the bad prefixes of ϕi surrounded with n − 1 square brackets. For example a
bad prefix of [ϕ1], the first refinement of ϕ1, has to contain after accessing the
device id as well an event of establishing a connection to the internet, describing
from a practical point of view a more severe malware behaviour for the user.

Information Stealing. The AMGP discovered that malware is often actively
harvesting various sensitive information on infected devices. Thus, our policies
ϕi∈[1,11] specify that an app should neither request any permission secured sen-
sitive data, such as the device or subscriber id, SIM serial or telephone number,
or device software version, nor query any of the content providers that contain
the call history, contact list, phone numbers, browser bookmarks, carrier settings
or SMS messages. Policy ϕ12 covers the harvesting of installed app or package
names on a device, and ϕ13 the reading of system logs via the Android logging
system, called logcat. Note that before Android 4.1, an app could read other
apps’ logcat logs, which might contain sensitive messages. Policy ϕ14 specifies
that neither the coarse grain location based on cell towers nor the more precise
GPS location should be accessed. The policies [ϕi∈[1,14]] refine the policies above
towards the more suspicious behaviour that an app should not, after requesting
the sensitive information, eventually connect to the internet, send an SMS or
exchange data with another app. Even though a detected bad prefix for those
polices does not guarantee that information has been leaked, the usage of above
sinks bears at least its potential. However, the data could have been encrypted
or in other ways obscured, which makes it hard to prove leakage in general based
on the trace we collect. Furthermore, [[ϕi∈[1,14]]] expresses the absence of any
screen rendering (via N/A@ISurfaceComposer) in between information request
and potential leakage. This excludes the case that the sending of data was caused
by some user interaction with the app, but rather by some app’s malicious back-
ground service. Note that we represent with “N/A” methods which we could
not unmarshall. Also note that we used the well-known specification patterns
[5] to specify our policies, where the first and second refinements are based on
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Table 3. Auxiliary formulae for Table 2.

the “absence after”, and “exists between” patterns, respectively. [[ϕi∈[1,4]]]′ are
further refinements as they only trigger if we find the device id, etc. cleartext
(represented by the placeholder “<sensitiveInfo>”) in the trace.

Privilege Escalation. The attack of exploiting bugs or design flaws in software
to gain elevated access to resources that are normally protected from an appli-
cation, is called privilege escalation. From the samples in [15], 36.7 % exploit
a version-specific known software vulnerability of either the Linux kernel or
some open-source libraries running on the Android platform, such as WebKit or
SQLite, to gain root access (e.g., to replace real banking apps with a fake one,
for phishing attacks). Therefore, policy ϕ15 lets us detect when an app opens
a root shell, secretly starts, installs or removes other packages via the activity
manager (am) or the package manager (pm). Monitoring of this behaviour is
possible, because the do execv() system call is exclusively used for the execution
of any binary, shell command or script on the underlying Linux OS.

Launching Malicious Payloads. Apps’ background services, which don’t have
any UI, can’t only be actively started when clicking on an app’s launch icon,
but also by registering for Android system-wide events (called broadcasts). The
AMGP discovered that 29 of the 49 malware families contain a malicious service
that is launched after the system was booted, or for 21 families when an SMS was
received (i.e., they registered for the BOOT COMPLETED or SMS RECEIVED
broadcast, respectively). Therefore, we consider it as suspicious if services are
activated by the broadcasts mentioned above; which we specify in form of
ϕi∈[16,17], where we replace “<pkg>” for each app specifically with its pack-
age name. Note that, to monitor this behaviour, we need to intercept system
events of the Android system (UID 1000) as it starts the services that have reg-
istered for a certain broadcast (via scheduleReceiver@IApplicationThread). We
prefix those predicates with “system#”; that is, to distinguish them from an
app’s events in a trace. Since malware, after registering for SMS RECEIVED,
gets access to the sender and content of an incoming SMS, we check with the
refinements [ϕ17] and [[ϕ17]] for information stealing. This means, similar as
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specified by the refinements of ϕi∈[1,14], the internet should not be accessed, and
so on, after the broadcast was received.

Financial Charges. The AMGP discovered apps, such as the first Android mal-
ware FakePlayer, that secretly call or register for premium services via an SMS. As
this behaviour can result in high financial charges for the user, Google labels the
permissions that allow to call or send an SMS with “services that cost you money”.
Instead of defining policies that check outgoing messages against a fixed list of
potential premium numbers, ϕ18 more generically specifies that an SMS should
not be sent to a number not in the user’s contact book. Since Android 4.2, Google
added a similar security check, where a notification is provided to the user if an
app attempts to send messages to short codes as those could be premium num-
bers. Note that we could have specified that apps should not make phone calls to
numbers not in the phone book as well, but as we have not observed this behaviour
during our experiments, we neglect the policy for it.

Before Android 4.4, apps could block incoming SMS messages, which was
used by malware to suppress received confirmations from premium services or
mobile banking transaction authentication numbers (TANs). The latter were
then forwarded to a malicious user. Thus, policy ϕ19 checks if apps abort a
broadcast after receiving SMS RECEIVED, in which case the SMS would not
be delivered further to appear in the usual messaging app on a device.

4 Identifying Malware Behaviour

We installed MonitorMe, provided with the polices introduced in Sect. 3, on our
test device Nexus S running Android 2.3.6. We then monitored separately one
malware sample for each of the AMGP-families. That is, we first installed its
application package (APK), and before starting it (i.e., clicking on its launch
icon if it had any), test using and finally uninstalling it, we tried to activate
potential background services by sending the broadcast BOOT COMPLETE
via the Android Debug Bridge (adb) and an SMS to our phone. Even though
MonitorMe performed online monitoring, which means that monitors processed
events incrementally when they occurred, we also persisted the trace for each
malware in an SQLite database on the phone;8 both, for repeatability of our own
experiments, and to provide them to other researchers.

4.1 Experiments’ Results

Table 4 summarises for which malware families (49 in total) and policies Mon-
itorMe detected bad prefixes during our experiments. The second column indi-
cates, whether a malware or one of its services crashed during our experiments;
e.g., due to incompatibility with the Android version on our test device. Thus,
we might have missed observing some critical behaviour. The third column tells
us if a malware had no launch icon, which is usually intended to stay hidden
and spy on the user. SMSReplicator, for example, is used by parents to secretly

8 Traces are available at http://kuester.multics.org/DroidTracer/malware/traces.

http://kuester.multics.org/DroidTracer/malware/traces
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forward all SMS messages received on their childrens’ phones. As we monitored
in general all UIDs above 10000,9 apps without an icon could not bypass our
analysis unnoticed. The fourth column shows the number of system events we
have recorded for each malware. Between the double lines are the individual
monitor results, where the single lines separate results from the four categories
introduced in Table 2. The cell containing [[ϕ18]]

397
in the row for Walkinwat denotes

that the monitor for [[ϕ18]] found a bad prefix for the Walkinwat sample after
397 worlds. As this implies that the same prefix is also a bad one for lower refine-
ments of ϕ18, we neglect showing this information. The last column shows the
number of bad prefixes found in total per malware. In summary, for 46 (93.9%)
out of 49 families, we detected suspicious behaviour. This is under the assump-
tion that we consider bad prefixes for ϕ16 alone as not critical. Note that our
results take into account that, according to [15], we would have observed addi-
tional malicious behaviours guarded by ϕ15, ϕ18 and ϕ19 (indicated by an � in
Table 4). The reason for ϕ15 is that the nine marked families targeted Android
versions below 2.3.6. Thus, their exploits were not attempted in the first place or
unsuccessful. We missed bad prefixes for ϕ18 as malware often waited to receive
instructions from a remote server, which wasn’t active anymore. The servers are
needed for malware to send an SMS, as they provide premium numbers dynam-
ically. Regarding ϕ19, we could rarely observe the blocking of incoming SMS
messages as most malware was designed to only suppress the received confir-
mation from specific premium numbers. Out of 46 detected families, 34 can be
associated with potential information stealing, as they use the internet or other
sinks after accessing sensitive information. For NickySpy and SMSReplicator we
discovered that the device id was leaked cleartext via an SMS, and an SMS
received was forwarded to a malicious user, respectively. To discuss limits of our
malware detection, which are by no means unique to our approach, consider the
FakeNetflix family. It uses a phishing attack for which is no observable behaviour
in the trace; that is, it shows a fake login screen to the user and then sends the
entered credentials to a malicious server.

False Positives. Finally, we checked if our policies are suitable to distinguish mal-
ware from benign apps. Therefore, we ran MonitorMe on a Nexus 5 with Android
5.0.1 that had more than 60 apps from common app categories installed: social
(Facebook, Twitter, LinkedIn, etc.), communication (Whatsapp, etc.), trans-
portation (Uber, etc.), travel &local (Yelp, TripAdvisor, etc.), and games (Cut
the rope, etc.) to name a few. We discovered suspicious behaviour for 17 (28 %)
out of 61 apps, using the same assumption as above that ϕ16 alone is not critical.
The false positive rate seems high at first glance, but a closer look reveals that
some benign apps bear unwanted behaviour for the user so that a warning of
MonitorMe seems reasonable. For example, eleven apps surprisingly requested
the device or subscriber id, which is explicitly not recommended by the Google
developer guidelines.10 Under those apps were a soccer news and Yoga app,
which in our opinion both do not require this data for its functionality, but rather

9 UIDs below 10000 are reserved for system apps with higher privileges.
10 http://developer.android.com/training/articles/security-tips.html#UserData.

http://developer.android.com/training/articles/security-tips.html#UserData
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Table 4. Monitor results for malware of the Android Malware Genome Project.

collect sensitive data from the user. Another app was the private taxi app Uber,
which has been criticised in the past due to collecting personal data without the
user’s permission.11 Only five apps started after boot, such as dropbox, which
we consider as necessary regarding its purpose, and only two apps after an SMS
was received, which were a secure SMS app and Twitter.

4.2 Performance and Portability

We evaluated (1) the performance of DroidTracer and MonitorMe, i.e., the bare
system event interception including unmarshalling as well as when running our
11 http://thehackernews.com/2014/11/ubers-android-app-is-literally-malware 28.

html.

http://thehackernews.com/2014/11/ubers-android-app-is-literally-malware_28.html
http://thehackernews.com/2014/11/ubers-android-app-is-literally-malware_28.html
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Table 5. Execution of Android method calls (each up to 10,000 times) with and
without DroidTracer. The margin of error is given for the 95 % confidence interval.

monitors on top. Moreover, we (2) demonstrate that our automated approach
to unmarshalling is portable to different Android devices and versions.

Performance. We wrote seven test apps, where each was designed to generate
100 runs of up to 10, 000 system events named by the interface and method
names in Table 5. When MonitorMe is being executed with the policies in Sect. 3
and monitors our test apps individually, the highest performance overhead is
38.6% for the system event sendText@Isms. This was determined on a Nexus 7
(quad-core CPU, 1 GB RAM) with Android 4.3. Note that the overhead involves
the monitor for ϕ18 checking the contact book each time an SMS was sent.

Furthermore, as the results of these test runs are specific only to our imple-
mentation of runtime verification, we also need to measure the performance
overhead of DroidTracer when no further analysis is undertaken. Table 5, shows
the execution time when intercepting the method calls of the above seven system
events in three different modes of operation: (1) without DroidTracer enabled to
get a reference execution time for the unmodified system, (2) with only the
event interception part of our kernel module enabled, and (3) with unmar-
shalling and netlink communication added. During the experiments, we ran all
four cores of the Nexus 7 on a fixed frequency rate, which allowed us to reduce
the margin of error dramatically. Note that we left cells empty, where overhead
could not significantly be determined wrt. the t-test. As the results show, the
actual performance overhead of using just our kernel module with kprobes is
only 2.51–3.92 %, whereas the complete performance overhead of DroidTracer is
8.81–17.35 %. What is noteworthy is that getDeviceId() and getIccSerialNumber()
have significant lower overhead than getLastKnownLocation() and sendText(), as
both former method signatures have no arguments that require unmarshalling.
The call getLastKnownLocation() has the highest overhead, probably because its
arguments contain several complex objects, for example, one of type Location-
Request, which unmarshalling involves additional reflection calls. As sendText()
contains only Java primitives as arguments, its unmarshalling overhead is slightly
lower.

Portability. We ran DroidTracer on three different devices and Android versions,
including 5.0.1, which is, at the time of writing, the most recent one. Table 6
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Table 6. Unmarshable parts of observed system events.

demonstrates the success of unmarshalling events we have intercepted. While we
could unmarshall the interface name of all method calls, we could unmarshall
45.77 %-68.78 % of unique method names; that is, we were able discover for an
integer code its according method name in the Android API via reflection. The
number of unmarshalled method names seem low, but missing ones are mainly
specific to Android internals, for example to render the screen. As such, they
have no Stub or Proxy in the Android API, but only in some native C library.
This is not accessible to the developer and therefore usually contain no relevant
events for our analysis. If method calls had arguments, we could unmarshall
for 79.34 %-95.93 % all and for 87.78 %-98.20 % at least some arguments. Note
that if we failed to unmarshall one argument of a call, we also failed for all the
remaining of that call, as Parcel’s read methods have to be applied in the correct
order.

5 Conclusions and Related Work

To the best of our knowledge, our work is the first runtime verification approach
to comprehensively monitor the collected malwares by the AMGP. Arguably,
detection rates are promising and help substantiate the claim that methods
developed in the area of runtime verification are, in fact, suitable not only for
safety-critical systems, but also when security is critical. Indeed, at the time of
writing, the samples of the AMGP are ca. three years old, which in the rapid
development of new attacks seems like a long time. However, the database has
grown over a number of years and the underlying patterns emerged as a result
of that. While there are always innovative, hard to detect malwares, it is not
unreasonable to expect the bulk of new malwares to also fall into the existing
categories, identified by the AMGP, and therefore detectable by our approach.
Validation of this hypothesis, however, must be subject to further work.

Besides MonitorMe, one corner stone of our approach is the ability to specify
policies over traces that contain parameters. Other runtime verification works
that haven’t been applied to Android, but also allow monitoring parametric
traces are, for example, Hallé and Villemaire’s [7], who use a logic with quantifi-
cation identical to ours, but without arbitrary computable predicates. Further-
more, JavaMOP [9] is by now a quasi-standard when dealing with parametric-
traces, although it is not based on first-order logic, but on “trace-slicing”.

Most monitoring approaches for Android can be divided into two categories.
App-centric ones (cf. [1,12,14]) intercept events inside the apps by rewriting
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and repackaging them, so that neither root access nor modifying the Android
platform is necessary. As a consequence, they are portable to most phones and
Android versions, and are easy to install even for non-experts. Examples are
AppGuard [1] and Aurasium [14], which is even able to enforce security polices
for apps’ native code as it rewrites Android’s own libc.so that is natively linked
into every app. However, the ease in portability comes at the expense of inherent
vulnerabilities, namely that security controls run inside the apps under scrutiny
and thus could be bypassed; e.g., by dynamically loading code after rewriting.
Also, as apps have to be actively selected for rewriting, hidden malware, such
as the ones without launch icon that we came across in Sect. 4.1, might be
overlooked.

Platform-centric approaches (cf. [4,6,8]) usually tie deep into the source code
of the Android platform and are therefore less portable. TaintDroid [6], a pio-
neering platform-centric tool for taint flow analysis, requires modifications from
the Linux kernel all the way up to the Dalvik VM. Although it is being actively
ported, users have to be sufficiently experienced to not only compile their own
version of Android, including the TaintDroid changes, but also to make it work
on a hardware of their choice. Our approach is, conceptually, a combination of
the advantages of app- and platform-centric monitoring; that is, MonitorMe can
be loaded even into a currently running Android system, yet is able to trace
app (even preinstalled Google apps that can’t be rewritten) and Android system
interactions all the way down to the OS kernel level.
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Abstract. In this paper, we characterize and solve the problem of
augmenting a component-based system with time-triggered runtime ver-
ification (TTRV), where different components are expected to run on dif-
ferent computing cores with minimum monitoring overhead at run time.
We present an optimization technique that calculates (1) the mapping
of components to computing cores, and (2) the monitoring frequency,
such that TTRV’s runtime overhead is minimized. Although dealing with
runtime overhead of concurrent systems is a challenging problem due to
their inherent complex nature, our experiments show that our optimiza-
tion technique is robust and reduces the monitoring overhead by 34 %,
as compared to various near-optimal monitoring patterns of the compo-
nents at run time.

1 Introduction

Embedded systems are engineering artifacts that involve computations subject
to physical world constraints [12]. These systems interact with the physical world
as well as execute on physical platforms. Since embedded systems are normally
deployed in safety/mission-critical systems, assurance about their correctness is
significantly vital. In addition, as embedded applications are increasingly being
deployed on multi-core platforms, due to their inherent complex nature, the
need for guaranteeing their correctness is further amplified. Consequently, it is
essential to augment such systems with runtime verification technology, where
a monitor inspects the system’s correctness at run time.

The conventional monitoring approach in runtime verification has been event-
triggered, where the occurrence of an event of interest triggers the monitor to
evaluate properties. This technique leads to unpredictable monitoring overhead
and potentially bursts of monitoring invocations at run time, which may cause
undesirable behavior and, hence, catastrophic consequences in real-time embed-
ded systems. To tackle this problem, the notion of time-triggered runtime veri-
fication (TTRV) is introduced [5], where the monitor runs in parallel with the
program and reads the program state at fixed time intervals (called the polling
c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 153–168, 2015.
DOI: 10.1007/978-3-319-23820-3 10
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period) to evaluate a set of logical properties. Although a time-triggered monitor
exhibits bounded overhead and predictable monitoring invocations, the approach
in [5] falls short in handling multi-core applications when several computing com-
ponents execute concurrently.

In this paper, we focus on extending the notion of TTRV to the context
of component-based multi-core embedded systems. The main challenge in this
context is to identify the polling period of the monitors and a mapping from
components and monitors to a set of computing cores, such that the cumulative
monitoring overhead is minimized. To further describe this problem consider
a system with four components C1, C2, C3, and C4 that are executed only
once. The system runs on two interconnected and identical computing cores
P1 and P2, where each core hosts one time-triggered monitor. Each monitor
has a fixed polling period and monitors all the components running on its host
computing core. Table 1 shows the results of an experiment (see Subsection 4.3 for
the settings) which measures the monitoring overhead (in milliseconds) imposed
by a time-triggered monitor onto a component for different polling periods.

Table 1. Example of monitoring overhead [ms].

Polling Period [CPU cycles]

10 20 30 40 50 60 70 80 90

C1 81 136 140 140 145 142 140 138 137

C2 120 70 84 91 94 92 63 74 79

C3 120 70 88 95 99 91 61 76 77

C4 120 83 86 93 91 80 77 78 76

To demonstrate the importance of the mapping of components to computing
cores, we randomly map the components in two ways:

– {C1, C2, C3} runs on P1 and {C4} runs on P2, and
– {C2, C3, C4} runs on P1 and {C1} runs on P2.

In the first mapping, on P1, the polling period of 20 cycles and on P2, the
polling period of 90 cycles achieve the optimal cumulative monitoring overhead
(i.e., overall overhead on P1 and P2) which is 352 ms. In the second mapping,
on P1, the polling period of 70 cycles and on P2, the polling period of 20 cycles
achieve the optimal overall monitoring overhead which is 337 ms. Hence, the
second mapping imposes 20 % less monitoring overhead. This simple experi-
ment indicates that the mapping of components to the computing cores affects
the monitoring overhead and since embedded systems are usually resource con-
strained, it is highly desirable to find the mapping which results in the least
monitoring overhead throughout the system run.

With this motivation, in this paper, we propose an approach for optimiz-
ing the monitoring overhead of TTRV in component-based multi-core embedded
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systems. That is, given a set of components, computing cores, and a set of
allowed polling periods, the goal is to identify (1) the mapping of components
to computing cores, and (2) the polling period of each monitor, such that the
monitoring overhead of TTRV is minimized. To achieve this goal, first, we for-
malize the notion of monitoring overhead associated with terminating and non-
terminating components. This notion incorporates different sources of runtime
monitoring overhead such as monitor invocation, event buffering, and execu-
tion of instrumentation instructions. Since the optimization problem is known
to be intractable even for single component uni-core systems [5], we introduce
a mapping from our problem to Integer Linear Programming (ILP). In order to
incorporate the runtime characteristics of each component in our ILP model, we
employ symbolic execution techniques [14].

Our approach is fully implemented within a tool chain and we report the
results of rigorous experiments using the SNU [1] benchmark suite. Experimental
results show that on average, our approach can reduce the monitoring overhead
of TTRV by 34 % as compared to various near-optimal monitoring patterns of
the components at run time.

Organization. The rest of the paper is organized as follows. Section 2 presents
the background concepts. Section 3 formally states our optimization problem.
Section 4 presents the tool chain and the experimental results. Section 5 discusses
related work. Finally, in Sect. 6, we make our concluding remarks.

2 Preliminaries

2.1 Software Components

We adapt the general view of [18], where a software component is a binary unit of
independent production, acquisition, and deployment that interacts with other
components to form a system. Our view of a software component is in terms of
a control-flow graph.

Definition 1. The control-flow graph of a component C is a weighted directed
simple graph CFGC = 〈V, v0, A,w〉, where:
– V : is a set of vertices, each representing a basic block of C. Each basic block

consists of a sequence of instructions in C.
– v0: is the initial vertex with indegree 0, which represents the initial basic block

of C.
– A: is a set of arcs of the form (u, v), where u, v ∈ V . An arc (u, v) exists in

A, if and only if the execution of basic block u can immediately lead to the
execution of basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. ��
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Two components interact with each other using conventional methods such
as shared variables, message passing, etc. For example, consider the two compo-
nents in Fig. 1(a) and (c) which interact with each other via the shared variable
alert. Component1 reads a temperature sensor every 5 time units and when the
temperature exceeds 100 Celsius, it will set alert to 1. Component2 reads a pressure
sensor every 10 time units and when the pressure exceeds 20 Pascals while alert

is equal to 1, it will start checking the pressure every 3 time units. In this exam-
ple, we assume that the BCET of each instruction in both components is 1 time
unit. As a result, Fig. 1(b) and (d) show the CFG of Component1 and Component2,
respectively. Each vertex is annotated with the corresponding line numbers in
the code. Note that since we focus on BCET of instructions, we consider the
least delay (3 time units) for the wait instruction (line 5) in Component2.

1. __task void component1 (void) {
2. int delay = 5;
3. os_tsk_prio (2);
4. while (1) {
5.    os_dly_wait(delay);
6.* temperature = read_temp();
7. if(temperature > 100){
8. alert = 1;} 
9. else {
10. alert = 0;}
11.   }}

(a) Component1
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(b) CFG of Com-
ponent1

1. __task void component2 (void) {
2.* int delay = 10;
3. os_tsk_prio (2);
4. while (1) {
5.    os_dly_wait(delay);
6.* pressure = read_pressure();
7. if(alert == 1 && pressure > 20){
8.* delay = 3;
9. else {
10.* delay = 10;}
11. update_report();
12. }}

(c) Component2
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Fig. 1. Component1 and Component2, along with their CFGs.
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2.2 Time-Triggered Runtime Verification (TTRV)

The main challenge in implementing TTRV is to compute the longest polling
period (LPP), such that the monitor polls (i.e., observes) all the changes in the
value of the variables of interest. The following recaps the procedure to calculate
LPP [5].

Let C be a component and Π be a logical property, where C is expected to
satisfy Π. Let VΠ be the set of variables whose values can change the valuation
of Π (i.e., variables of interest) and CFGC be the control-flow graph of C. We
use control-flow analysis to estimate the time intervals between consecutive state
changes of C with respect to the variables in VΠ . In order to calculate LPP , we
modify CFGC in two steps.

Step 1 (Identifying critical vertices). We modify CFGC , such that each
critical instruction (i.e., an instruction that updates the value of a variable
in VΠ) resides in one and only one vertex by itself. We refer to such a vertex
as a critical vertex. For example, if VΠ = {pressure, delay} in Component2, then
the critical instructions are at lines 2, 6, 8, and 10. Figure 2(a) shows the
transformed CFG of Component2. We call this graph a critical CFG.

Step 2 (Calculating LPP). The polling period of the monitor must be such
that the monitor does not overlook any state changes that could occur in C
at run time. Such a polling period is defined as follows.

Definition 2. Let CCFG = 〈V, v0, A,w〉 be a critical control-flow graph and
Vc ⊆ V be the set of critical vertices. The longest polling period (LPP) for
CCFG is the minimum-length shortest path between two vertices in Vc. ��
For example, LPP of Component2 is 2 time units.

To reduce the overhead of time-triggered monitoring by increasing LPP ,
in [5], the authors propose employing auxiliary memory to build a history of
state changes between consecutive monitoring polls. More specifically, let v be a
critical vertex in a critical CFG, where the critical instruction I updates the value
of a variable x. The following graph transformation results in a new critical CFG
with a larger LPP : it (1) removes v, (2) merges the incoming and outgoing arcs of
v, and (3) adds an instruction I ′ : x′ ← x after instruction I in the component’s
source code, where x′ is an auxiliary memory location. For example, the graph
in Fig. 2(b) is the result of applying this transformation to vertices E and G of
Component2 (see Fig. 2(a)), where vertices E and G are removed, and two new
arcs (D,H) and (F,H) with weights of 1 + 1 = 2 are added. The new graph has
LPP = 6 due to the length of the path between A1 and C2.

3 Optimal Monitoring of Component-Based Systems

3.1 System Architecture

We follow an abstract view towards the underlying architecture of the system
which is independent of the hardware, operating system, network protocol, etc.
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Fig. 2. Critical CFG.

That is, a component-based system runs on a set of interconnected and poten-
tially heterogeneous computing cores. However, we make the following assump-
tions:

– A component is either nonterminating or is invoked infinitely often throughout
the system run.

– Given a set C = {C1 · · · Cn} of components and a set P = {P1 · · · Pm} of
computing cores, where m ≤ n, a function F : P → 2C maps each core in P
to a unique subset of components of C. Moreover, for any two distinct cores
P1, P2 ∈ P, we have F(P1) ∩ F(P2) = {}. This function remains unchanged
throughout the system execution.

– We assume a fully preemptive scheduler.
– The components can be invoked aperiodically.
– When a timing property involving a set of components requires verification,

this set of components must run on the same core, so the property is soundly
verified.

– We assume time-triggered monitors M = {M1 · · · Mm}, where monitor Mi is
deployed on core Pi, for all i ∈ {1 · · · m}. Each monitor observes and verifies
all the components in F(Pi).

– No two components share a variable of interest ; i.e., shared variables cannot
be monitored.
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3.2 Underlying Objective

Definition 3. An execution path of a component C with CFGC = 〈V, v0, A,w〉
is a sequence of the form γ = 〈(v0, ω0, v1), (v1, ω1, v2), . . .〉, where:
– v0 = v0.
– For all i ≥ 0, vi ∈ V .
– For all (vi, ωi, vi+1), where i ≥ 0, there exists an arc (vi, vi+1) in A.
– For all i ≥ 0, ωi = w(vi).
– If C is a terminating component, then γ = 〈(v0, ω0, v1), . . . , (vn−1, ωn−1, vn)〉

is finite and vn is a vertex in V with outdegree of zero. ��
When it is clear from the context, we abbreviate an execution path
γ = 〈(v0, ω0, v1), (v1, ω1, v2), ...〉 by the sequence of its vertices γ = 〈v0, v1, v2, . . .〉.
Moreover, for an infinite execution path γ, we represent the finite sub-execution
path 〈v0, v1, v2, . . . , vn〉 with γn, where n ≥ 0.

For a finite path γn, monitored with a polling period δ, we identify the
following types of time-related overheads:

– Oδ
c(γ

n) denotes the cumulative time spent for invoking the monitor through-
out γn.

– Oδ
r(γ

n) denotes the cumulative time spent for executing the monitoring code
throughout γn (i.e., reading variables of interest and auxiliary memory).

– Oδ
i (γ

n) denotes the cumulative time spent for executing the instrumentation
instructions in γn. Recall that (from Subsect. 2.2) instrumentation is used to
increase LPP of a component.

Hence, the time-related monitoring overhead for γn is

Oδ
T (γn) = Oδ

c(γ
n) + Oδ

r(γ
n) + Oδ

i (γ
n)

Moreover, we identify the memory-related overhead, denoted by Oδ
M (γn), which

represents the auxiliary memory required to increase LPP (see Subsect. 2.2).
To this end, we consider both the time-related and memory-related overheads
to represent the overhead associated with time-triggered monitoring. Thus, we
present monitoring overhead as the pair Oδ(γn) = 〈Oδ

T (γn),Oδ
M (γn)〉.

Observe that the polling period δ of a monitor considerably affects Oδ(γn).
That is, increasing δ results in decreasing the monitor invocations (i.e., Oδ

c(γ
n)),

and increasing instrumentation instructions and the memory consumption (i.e.,
Oδ

i (γ
n) and Oδ

M (γn)). For instance, in Component2, consider execution path γ1 =
〈A, (B,C,D,E,H)ω〉, where ω denotes the infinite execution of a sequence of
basic blocks. Assuming that an instrumentation instruction takes 2 CPU cycles,
for δ = 2, where vertices E and G are instrumented, we have Oδ

i (γ
n
1 ) = 2n

5 .
Note that for each polling period δ, there is one and only one set of associated
overheads and, hence, a unique Oδ(γn).

Clearly, for a finite path γn and two polling periods δ1 and δ2, the time-related
overhead incurred by δ1 is better than the time-related overhead incurred by δ2
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iff Oδ1
T (γn) < Oδ2

T (γn). Accordingly, for an infinite path γ, the overhead incurred
by δ1 is better than the overhead incurred by δ2 iff

lim
n→∞

Oδ1
T (γn)

Oδ2
T (γn)

< 1 (1)

For instance, for execution path γ1 and δ1 = 2, the monitor is invoked 8n
5×2 times

where 8 is the BCET of 〈B,C,D,E,H〉. Assuming that the monitoring code
and monitor invocation each takes 5 CPU cycles, Oδ1

c (γn
1 ) = Oδ1

r (γn
1 ) = 5× 8n

5×2 .
For δ2 = 6, where once again vertices E and G are instrumented, Oδ2

c (γn
1 ) =

Oδ2
r (γn

1 ) = 5 × 8n
5×6 , and Oδ2

i (γn
1 ) = 2n

5 . As a result, δ2 imposes less time-related
overhead since:

lim
n→∞

Oδ2
T (γn

1 ) = 2(5 × 8n
5×6 ) + 2n

5

Oδ1
T (γn

1 ) = 2(5 × 8n
5×2 ) + 2n

5

< 1

Our goal is to minimize the monitoring overhead associated with a compo-
nent. Thus, for a finite set of possible polling periods PP , and a component C
with set of execution paths Γ , we want to find the polling period Δ ∈ PP such
that:

∀δ ∈ PP : lim
n→∞

OΔ
T (C) =

∑

γ∈Γ

OΔ
T (γn)

Oδ
T (C) =

∑

γ∈Γ

Oδ
T (γn)

≤ 1 (2)

As discussed, the internal structure of a component determines the polling period
Δ. Moreover, the features of the computing cores define the possible polling
periods in PP which in practice is always finite.

In the general case, where a monitor M inspects a set of components C, our
underlying objective is to minimize the time-related overhead over all compo-
nents. In other words, our objective is to identify Δ such that:

∀δ ∈ PP : lim
n→∞

OΔ
T (M) =

∑

C∈C
OΔ

T (C)

Oδ
T (M) =

∑

C∈C
Oδ

T (C)
≤ 1 (3)

One can develop the corresponding equations identical to Eqs. 1–3 for the
memory-related overhead, and, hence, generalize these equations for the moni-
toring overhead.

3.3 Optimization Problem

In a system with multiple components that run on multiple computing cores,
to minimize the overall monitoring overhead, in addition to calculating Δ (see
Eq. 3), one has to also identify an efficient mapping from components to cores.
Thus, our optimization problem is as follows:
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Problem statement. Given a set of components C, a set of computing
cores P, where |C| ≥ |P|, and a set of polling periods PP , identify function
F : P → 2C and polling period ΔP for each F(P ), where P ∈ P, such that

– the following is minimized:
∑

{OΔP (MP ) | P ∈ P}

– ΔP ∈ PP (i.e., the polling period of monitor MP for components in F(P ))
satisfies Eq. 3 with respect to the monitoring overhead,

– for any two computing cores P1, P2 ∈ P, we have F(P1) ∩ F(P2) = {}.

In [5], the authors show that optimizing the memory-related overhead and the
polling period even for one component is NP-complete. Thus, the NP-hardness
of our optimization problem immediately follows. To tackle this obstacle, we
propose a mapping from our optimization problem to integer linear programming
(ILP). For reasons of space, this mapping is described in detail in http://www.
cas.mcmaster.ca/borzoo/Publications/15/RV/rv15.pdf.

4 Implementation and Experimental Results

4.1 Implementation

Fig. 3 presents the modules of our tool chain that implements our solution for
solving the optimization problem described in Subsect. 3.3.

opt instrument. This module uses the techniques from [5] to optimally instru-
ment the source code of the set of components C for each polling period in PP . It
takes as input the source code of each component in C, a set of Linear Temporal
Logic (Ltl) properties, and the set PP of possible polling periods. Globalizer
extracts the set of variables of interest from the Ltl properties and prepares the
components in C for monitoring. CFG Builder extracts the CFG of each compo-
nent in C and Critical Instruction Identifier finds the set of critical instructions

Globalizer

Critical Instruction

Identifier
Instruction

4
2

Critical CFG

Builder

Critical
Instrumentor

CFGSet

Set of Components

1

Variables

CFG

9

3

CFG Builder

LTL Properties

Set of Polling Periods

fγ ,

5

LLVM

lp solve

8

lp solve

ΘC
O

Δ, FC

LLVM

C
LLVM

Overhead
Calculator

ILP Mapper

7

gcov

Extractor
Frequency

KLEE

Extractor
Finite Path

6

fγ

Instrumented Components C′

get paths

opt instrument

Γγn Γγn

PP

Set of Processors P

Fig. 3. Tool chain.

http://www.cas.mcmaster.ca/borzoo/Publications/15/RV/rv15.pdf
http://www.cas.mcmaster.ca/borzoo/Publications/15/RV/rv15.pdf


162 S. Navabpour et al.

of each component in C. Critical CFG Builder uses the set of critical instructions
and the set of CFGs to create the set of critical CFGs. Instrumentor uses the set
of critical CFGs to optimally instrument the components in C for each polling
period in PP by leveraging the ILP solver lp solve and LLVM [15].

get paths. This module extracts the set of finite execution paths of each instru-
mented component in C′. Finite Path Extractor (FPE) leverages the symbolic
execution tool KLEE [6]. FPE initially adjusts the terminating components in C′

and runs KLEE to extract the set of execution paths Γγn of the components in C′.
Since the components in C′ are non-terminating, we set an upper bound on the
analysis time of KLEE. If all the paths in Γγn achieve path and CFG coverage,
FPE sends Γγn to Frequency Extractor, otherwise, FPE increases the analysis
time and restarts KLEE. When CFG coverage is not satisfied, FPE checks whether
the uncovered CFG is dead code. If so, FPE flags CFG coverage as unnecessary.
Note that for an execution path, by increasing the analysis time of KLEE, we
can potentially increase the length of the path. Frequency Extractor uses gcov

to extract the execution frequency of each instruction of an execution path in
Γγn . If the paths in Γγn do not satisfy frequency coverage, FPE increases the
analysis time of KLEE. When the paths in Γγn satisfy all three coverages, FPE
reports Γγn and the set of execution frequencies fγ .

Overhead Calculator. This module estimates overheads using the character-
istics of the computing cores and the overhead associated with each instrumen-
tation instruction, memory read and write, running the monitoring code, etc.

ILP Mapper. This module solves the optimization problem and returns the
polling period of each monitor (i.e., Δ) and the mapping of components to
computing cores (i.e., function F). It uses lp solve to solve the ILP model for all
the possible combinations of polling periods in PP .

4.2 Experimental Settings

We use two interconnected MCB1700 boards, Core1 and Core2, both running the
RTX operating system. The time-triggered monitor on each board is a task with
read access to all the variables of interest. At each poll the monitor writes the
variables of interest and the auxiliary memory to an SD card for the verification
engine to retrieve. The auxiliary memory on each board is 1600 bytes. We con-
sider the following factors: (1) the mapping function F , (2) the polling period of
each monitor, and (3) the probability distribution for executing the components.
For evaluation, we run each experiment for one hour and measure the following
metrics in 1-minute intervals (i.e., each experiment provides 60 data points):
(1) the number of polls, (2) Oδ

c , Oδ
i , Oδ

r , and Oδ
M .

Our case study leverages the SNU benchmark suite [1] to create a component-
based embedded system. Each program is a component that is invoked infinitely
often according to a normal distribution. Moreover, the set of possible polling
periods is PP = {5 · · · 30}.
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Fig. 4. Experimental results.

4.3 Analysis of Experiments

We ran the ILP model for each possible combination of polling periods used by
the monitors running on the two boards. Figure 4(a) shows the ILP results (i.e.,
the optimal normalized monitoring overhead for each combination of polling
periods). Since the normalized monitoring overhead is a complex number, in
Fig. 4(a), normalized monitor-overhead is the distance of the optimal normalized
monitoring overhead to the origin of a complex plane. Inverted polling period, in
Fig. 4(a), presents 1∑

m∈Msm×factor , where M = {Core1, Core2}, sm is the polling
period of the monitor on each core, and factor presents the impact that a mon-
itor invocation along with monitoring code execution has on the monitoring
overhead in comparison to an instrumentation. factor has a value of 100 in our
experiments. Figure 4(a) shows that the settings from point 20 is the solution to
the optimization problem. Row Opt in Table 2 presents the solution. Metric F
is the mapping of components to cores and Δ is the optimal polling period.

Impact of Mapping Function. We now evaluate the effectiveness of the
mapping function of Opt . To this end, we change function F and recalculate Δ
for each monitor using Eq. 3. We create 13 different mappings, denoted by MF .
Three mappings from MF that have the closest monitoring overhead to Opt are
shown in Table 2 (for reasons of space). Table 3 shows the experimental results
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Table 2. Settings for SNU programs.

Setting Metric Core1 Core2

Opt Δ 21 cycles 23 cycles

F bs, jfd, ludcmp, sqrt, matmul,
minver, qsort, insertsort, select

crc, fibcall, fft, fir, lms, qurt

M1 Δ 16 cycles 23 cycles

F bs, crc, fft, fibcall, jfd, fir minver, lms, ludcmp, matmul,
qsort, select, sqrt

M2 Δ 16 cycles 23 cycles

F bs, fft, lms, ludcmp, minver crc, fibcall, fir, jfd, matmul, qurt,
qsort, select, sqrt

M3 Δ 16 cycles 23 cycles

F bs, crc, fibcall, jfd, matmul,
ludcmp

fft, fir, lms, minver, qurt, qsort,
select, sqrt

Table 3. Monitoring overhead of SNU programs.

Setting Poll OΔ
c [ms] OΔ

i [ms] OΔ
r [ms] OΔ

T [ms] OΔ
M [byte] OΔ

T % OΔ
M% σOΔ

T
σOΔ

M
OΔ[ms] σOΔ

Opt 250,617.98 1,700.69 6.26 2,607.79 4,314.75 925.33 7.02 57.83 4.75 24.73 4,412.84 12.30

M1 361,275.83 2,443.04 5.82 2,727.42 5,176.29 827.2 8.62 51.7 4.48 28.67 5,242.58 10.81

M2 360,929.61 2,441.17 7.74 2,744.72 5,193.64 984 8.65 61.5 4.68 27.29 5,279.62 13.28

M3 368,088.71 2,493.52 9.07 2,828.90 5,331.50 1,004.26 8.88 62.73 5.13 31.83 5,425.21 12.84

for the mappings in Table 2. All the values are averages over 60 data points.
Polls is the number of monitoring polls, OΔ

T % is the percentage of the execution
time consumed by the time-related overhead OΔ

T , OΔ
M% is the percentage of the

consumed auxiliary memory OΔ
M , OΔ is the absolute value of the monitoring

overhead (i.e., the distance to the origin of a complex plane), and σOΔ
T

, σOΔ
M

,
and σOΔ are the standard deviations of OΔ

T , OΔ
M , and OΔ, respectively.

Table 3 shows that on average Opt imposes 20.46 % less monitoring overhead
in comparison to M1–M3. Opt imposes 11.86 % more memory-related overhead
OΔ

M in comparison to M2. On the other hand, M2 imposes 19.98 % more time-
related overhead OΔ

T . Although, M2 imposes less OΔ
M , the impact of OΔ

T is
stronger on OΔ (i.e., factor is 100 in our experiments). This observation matches
with the observations in [5]. The larger OΔ

T of M1–M3 is caused by the larger
number of polls which is the outcome of the smaller polling period on Core1.
Moreover, the experiments on all the mappings in MF show that on average
Opt imposes 31.1 % less monitoring overhead. Optimal-PP, in Fig. 4(b), shows
the ratio of the monitoring overhead associated with each mapping in MF to
the monitoring overhead associated with Opt . In addition, the results showed
that our optimization approach has an error factor of 0.07. In other words, in
one out of 13 mappings, our approach did not accurately reflect the monitoring
overhead. The significance test on all these experiments show that the results are
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statistically significant with a p-value of less than 1−100, hence, our approach can
successfully find the mapping that results in the minimum monitoring overhead.

Impact of Polling Period. We change the polling period of the monitor on
each core for every mapping in MF . We once increase and once decrease the
polling period of each monitor by 2 CPU cycles. Figure 4(b) shows the ratio of
the monitoring overhead associated with each mapping in MF to the monitoring
overhead associated with Opt with respect to the changed polling periods. On
average Opt imposes 32.81 % less monitoring overhead in comparison to the
monitoring overhead associated with the mappings in MF . Moreover, in Fig. 4(c),
for each mapping M , increased/decreased-PP presents the ratio of the monitoring
overhead associated with mapping M when using the increased/decreased polling
periods to the monitoring overhead of mapping M when using the optimal polling
period Δ. The error bars reflect the standard deviation. The results show that
by employing Δ, the mappings in MF impose 1.39 % less monitoring overhead.
The error factor of this set of experiments is 0.19; i.e., in 5 out of 26 experiments,
our approach did not correctly calculate Δ.

Robustness Analysis. To calculate the normalize monitoring overhead, we
assumed that the execution paths of each component and the set of compo-
nents are executed based on a normal distribution. We change the probability
distribution as follows to evaluate the robustness of our optimization approach:

1. We increase the probability distribution of the execution path(s) and com-
ponent(s) with the highest normalized monitoring overhead, by 10 units. In
Fig. 4(d), increased-prob shows the ratio of the monitoring overhead associ-
ated with each mapping in MF to the monitoring overhead associated with
Opt with respect to the new probability distribution. The error bars reflect
the standard deviation. Figure 4(d) shows that with moderate increases in
the probability distribution, our approach is still effective since on average
Opt imposes 33.14 % less monitoring overhead. By also changing the polling
period as in Subsect. 4.3, on average Opt imposes 34.1 % less overhead. The
experiments show an error factor of 0.38, meaning that in 15 out of 39 exper-
iments, our approach did not either correctly reflect the monitoring overhead
or calculate the optimal polling period.

2. Likewise, we decrease the probability distribution of the execution path(s) and
component(s). Figure 4(d) shows that with moderate decreases in the proba-
bility distribution, our approach is still effective since on average Opt imposes
27.27 % less monitoring overhead. By also changing the polling period as in
Subsect. 4.3, on average Opt imposes 29.2 % less overhead. The experiments
show an error factor of 0.25, meaning that in 10 out of 39 experiments, our
approach did not either correctly reflect the monitoring overhead or calculate
the optimal polling period.

Note that the above error factors are expected, since our overhead calculations
are based on normal distribution. Having said that, these experiments shows
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that changing the probability distribution does not significantly undermine the
robustness of our approach. Thus, the insight is when the probability distrib-
ution of the components are approximately known, it is advisable to use the
knowledge when calculating the normalized monitoring overheads. In addition,
in all the aforementioned experiments, the significance test show that the results
are statistically significant with a p-value of less than 1−100.

5 Related Work

Most runtime verification frameworks [7,11,13] use event-triggered monitoring.
These frameworks are not suitable for time-sensitive systems. Time-triggered
monitoring [5] ensures periodic monitoring with sound program state reconstruc-
tion. To reduce the overhead, the approach in [4,5,17] uses auxiliary memory
to increase the polling period. The technique in [16] uses symbolic execution
to adjust the monitor’s polling period at run time according to the execution
path. Reference [2] discards instrumentation with respect to the system’s execu-
tion path in event-based monitoring. References [3,8] discards/adds monitoring
instrumentation with respect to the properties being monitored.

To our knowledge, our approach is the first that handles time-triggered mon-
itoring for component-based multi-core systems. Reference [10] uses the BIP
modelling language to formally model and introduce runtime verification into
software components. Reference [19] uses a software monitor that observes the
system’s input, output and partial internal states to check a set of assumption-
guarantee rules and suffers from high computation runtime overhead. In [9], the
authors design a monitor over the Eclipse modelling framework where its moni-
toring coverage changes at run time to keep the monitoring overhead bounded.

6 Conclusion

In this paper, we presented an effective optimization approach to minimize the
monitoring overhead associated with time-triggered runtime verification (TTRV)
of component-based multi-core embedded systems. In TTRV, a monitor runs in
parallel with the components under inspection and polls the component’s state
periodically to evaluate a set of properties. The overhead imposed by TTRV is
mainly affected by (1) the mapping of the components to computing cores, and
(2) the polling period of the time-triggered monitors. Our proposed approach
leverages control-flow analysis and symbolic execution to characterize the moni-
toring overhead associated with monitoring each component at run time. Then,
it transforms the optimization problem (for finding the mapping of components
to cores that incurs minimum overhead) to an integer linear program. We eval-
uated our approach using the SNU benchmark. Experimental results show that
our approach finds the optimal solution with a success rate of 80 %. On aver-
age, our approach can reduce the monitoring overhead by 34 %, as compared
to various near-optimal monitoring patterns of the components at run time.
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In addition, our technique shows resilience towards changes in the probability
distribution of invoking the components.

As for future work, we plan to further reduce the monitoring overhead by
adjusting the polling period of the monitors at run time using symbolic execution
techniques. Another interesting extension is to consider TTRV for distributed
applications.
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Abstract. Temporal logics targeting real-time systems are traditionally
undecidable. Based on a restricted fragment of MTL-

∫
, we propose a new

approach for the runtime verification of hard real-time systems. The
novelty of our technique is that it is based on incremental evaluation,
allowing us to effectively treat duration properties (which play a crucial
role in real-time systems). We describe the two levels of operation of
our approach: offline simplification by quantifier removal techniques; and
online evaluation of a three-valued interpretation for formulas of our
fragment. Our experiments show the applicability of this mechanism as
well as the validity of the provided complexity results.

1 Introduction

Temporal logics are widely used formalisms in the field of specification and veri-
fication of reactive systems [17], since they provide a natural and abstract tech-
nique for the analysis of safety and liveness properties. Linear Temporal Logic
(LTL) describes properties concerning the temporal order of the input model,
and is well studied in terms of expressiveness, decidability and complexity. Timed
temporal logics are extensions of temporal logics with quantitative constraints to
handle temporal logic specifications [2]. Metric Temporal Logic (MTL) [10,15]
is an undecidable real-time extension of LTL, describing the temporal order
constrained by quantitative intervals on the temporal operators.

These formalisms have been used for formal verification, either by deductive
or by algorithmic methods [9]. However, real-time logics are notably less well-
behaved than traditional temporal logics. In particular, the model checking prob-
lem for MTL is known to be undecidable [15]. Decidable real-time formalisms
that can be used as alternatives are currently the focus of much attention.

A diversity of MTL fragments reveal that the undecidable results of MTL
are due to the excessive precision of the timing constraints (i.e., punctuality [1]),
the presence of unbounded temporal operators (unboundedness), the presence of
unsafe formulas, and the excessive richness of the semantic model [15]. Metric
Interval Temporal Logic (MITL) is a fragment that avoids punctuality by con-
straining any interval on the temporal operators to be non-singular; Bounded
MTL (BMTL) is another fragment that, instead of avoiding punctual intervals,
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bounds intervals that are infinitely large. Both are decidable fragments. Syntac-
tic restrictions on temporal logic operators of MTL may also result in decidable
fragments. Ouaknine and Worrell [14] describe a fragment of MTL named Safety
MTL (SMTL), that does not allow expressing invariant formulas, and Bouyer
et al. [5] have introduced the term flatness for MTL.

In addition to being undecidable, the previous logics also fail to capture
the notion of duration. This notion, however, is of paramount importance when
specifying and developing real-time systems, mainly because the fundamental
results about the reliability of this class of systems are related to ensuring that
the execution time of the involved components does not miss some predetermined
deadline. Lakhnech and Hooman [11] came up with Metric temporal logic with
durations (MTL-

∫
) and Chaochen and colleagues [8] with Duration Calculus,

which provide expressive power to specify and reason about durations within
real intervals. By applying syntactic and semantic restrictions it is possible to
derive decidable fragments for duration properties.

The motivation for this work is that of providing an expressive formal lan-
guage that fits the timing requirements of real-time systems, from the point of
view of runtime verification (RV). RV is concerned with the problem of gener-
ating monitors from formal specifications, and adding these monitors into the
target code as a safety-net that is able to detect abnormal behaviors and, possi-
bly, respond to them via the release of counter-measures. As such, RV methods
can be applied to systems where the source code is not available due to intel-
lectual property, or in those cases where we have access to the code but the
complexity of the system’s requirements is too high to be addressed via any of
the known static verification approaches.

The major contribution of this paper is a new mechanism for runtime verifi-
cation of hard real-time systems regarding duration properties, based on a decid-
able fragment of MTL-

∫
and a three-valued abstraction of this fragment. The

fragment allows for expressing quantified formulae, and is adequate for quantifier
elimination: we give an algorithm for the simplification of formulas containing
quantifiers and free logic variables. Intuitively, we abstract our fragment into
first order logic of real numbers (FOLR) to obtain quantifier-free formulas.

One particular application scenario for RV is in scheduling theory of hard
real-time systems. Rigorous calculation of the worst case execution time (WCET)
is commonly difficult, and the known approximation methods based on statis-
tical abstractions degrade the dependability of the systems, since the available
schedulability theory tends to assume the WCET. Application of monitors in
this case will make the system more reliable. We will show through an appli-
cation example (based on resource models, which are mechanisms that ensure
time isolation for execution units) the interest of allowing formal specifications
to express existential quantification over durations, for real applications.

The paper is organized as follows: in Sect. 2 we introduce suitable restrictions
over MTL-

∫
; Sect. 3 describes the three-valued semantics of restricted MTL-

∫
,

and Sect. 4 describes an algorithm for inequality abstraction. In Sect. 5 we then
introduce an evaluation algorithm for the restricted MTL-

∫
with three-valued

semantics. Section 6 describes our experimental work and finally Sect. 7 discusses
related work and concludes the paper.
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2 Specification Language RMTL-
∫

MTL-
∫

is more expressive than DC [11], but is undecidable since the relation
over terms or the term function may themselves be undecidable. Let us begin
by briefly reviewing MTL-

∫
.

Definition 1. Let P be a set of propositions and V a set of logic variables. The
syntax of MTL-

∫
terms η and formulas ϕ is defined inductively as follows:

η ::= α | x | f(η1, . . . , ηn) |
∫ η

ϕ

ϕ ::= p | R(η1, . . . , ηn) | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ϕ1 S∼γ ϕ2 | ∃x ϕ

where α ∈ R, x ∈ V is a logic variable, f a function symbol of arity n,
∫ η

ϕ is
the duration of the formula ϕ in an interval, p ∈ P is an atomic proposition,
U and S are temporal operators with ∼∈ {<,=}, γ ∈ R≥0, and the meaning of
R(η1, . . . , ηn), ϕ1 ∨ ϕ2,¬ϕ,∃x ϕ is defined as usual.

We will use the following abbreviations: ϕ∧ψ for ¬(¬ϕ∨¬ψ), ϕ → ψ for ¬ϕ∨ψ,
tt for ϕ ∨ ¬ϕ, ff for ϕ ∧ ¬ϕ, ♦∼γ ϕ for tt U∼γ ϕ, and �∼γ ϕ for ¬(tt U∼γ ¬ϕ).

An observation function σ of length δ ∈ R≥0 ∪ {∞} over P is a function
from P into the set of functions from interval [0, δ) into {tt,ff}. The length of σ
is denoted by #σ. A logical environment is any function υ : V → R≥0. For any
such υ, x ∈ V and r ∈ R, we will denote by υ[x 
→ r] the logical environment
that maps x to r and every other variable y to υ(y). The following auxiliary
definition will be used in the interpretation of the duration of a formula.

Definition 2 (MTL-
∫

Semantics). The truth value of a formula ϕ will be
defined relative to a model (σ, υ, t) consisting of an observation σ, a logical envi-
ronment υ, and a time instant t ∈ R≥0. We will write (σ, υ, t) |= ϕ when ϕ is
interpreted as true in the model (σ, υ, t). Terms and formulas will be interpreted
in a mutual recursive way. First of all, for each formula ϕ, observation σ and
logical environment υ, the auxiliary indicator function 1ϕ(σ,υ) : R≥0 → R≥0 is
defined as follows, making use of the satisfaction relation:

1ϕ(σ,υ)(t) =

{
1 if (σ, υ, t) |= ϕ,

0 otherwise.

The value T [[η]](σ, υ) t of a term η relative to a model can then be defined. A
Riemann integral [7] of 1ϕ(σ,υ) is used for the case of a duration

∫ η
ϕ:

T [[α]](σ, υ) t = α

T [[x]](σ, υ) t = υ(x)

T [[f(η1, . . . , ηn)]] = f (T [[η1]](σ, υ) t, . . . ,T [[ηn]](σ, υ) t)

T

[[∫ η

ϕ

]]
=

{∫ t+T [[η]](σ,υ) t

t
1ϕ(σ,υ)(t∗) dt∗ if (∗)

0 otherwise
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where (∗) means that 1ϕ(σ,υ) satisfies the Dirichlet condition [11, p.7] and the
sub-term T [[η]](σ, υ) t is non-negative, otherwise the function is non Riemann
integrable. The satisfaction relation in turn is defined as:

(σ, υ, t) |= p iff σ(p)(t) = tt and t < #σ

(σ, υ, t) |= R(η1, . . . , ηn) iff R(T [[η1]](σ, υ) t, . . . ,T [[ηn]](σ, υ) t)

(σ, υ, t) |= ϕ1 ∨ ϕ2 iff (σ, υ, t) |= ϕ1 or (σ, υ, t) |= ϕ2

(σ, υ, t) |= ¬ϕ iff (σ, υ, t) �|= ϕ

(σ, υ, t) |= ϕ1 U∼γ ϕ2 iff there exists t′ such that t < t′ ∼ t + γ, (σ, υ, t′) |= ϕ2,

and for all t′′, t < t′′ < t′, (σ, υ, t′′) |= ϕ1

(σ, υ, t) |= ϕ1 S∼γ ϕ2 iff there exists t′ such that t − γ ∼ t′ < t, (σ, υ, t′) |= ϕ2,

and for all t′′, t′ < t′′ < t, (σ, υ, t′′) |= ϕ1

(σ, υ, t) |= ∃x ϕ iff there exists an r ∈ R such that (σ, υ[x �→ r], t) |= ϕ

Note that the semantics of the until operator is strict and non-matching [4].

To overcome the undecidability results of MTL-
∫

, we apply restrictions over
MTL-

∫
. Restricted metric temporal logic with durations (RMTL-

∫
) is a syntac-

tically and semantically restricted fragment of MTL-
∫

; the syntactic restrictions
over MTL-

∫
include the use of bounded formulas, of a single relation < over the

real numbers, the restriction of the n-ary function terms to use one of the + or ×
operators, and a restriction of α constants to the set or rationals Q. Tarski’s the-
orem [19] states that the first-order theory of reals with +, ×, and < allows for
quantifiers to be eliminated. Algorithmic quantifier elimination leads to decid-
ability, assuming that the truth values of sentences involving only constants can
be computed. We will denote by Φ the set of RMTL-

∫
formulas.

The semantic restrictions on the other hand include the conversion of the con-
tinuous semantics of MTL-

∫
into an interval-based semantics, where models are

timed state sequences and formulas are evaluated in a given logical environment
at a time t ∈ R≥0. A timed state sequence κ is an infinite sequence of the form
(p0, [i0, i′0[), (p1, [i1, i′1[) . . . , where pj ∈ P, i′j = ij+1 and ij , i

′
j ∈ R≥0 such that

ij < i′j and j ≥ 0. Let κ(t) be defined as {pj} if there exists a tuple (pj , [ij , i′j [)
such that t ∈ [ij , i′j [, and as ∅ otherwise. Note that there exists at most one such
tuple. The replacement rule for propositions is (κ, υ, t) |= p iff p ∈ κ(t), and σ
is globally replaced by κ. In particular the indicator function 1ϕ(κ,υ) is defined
as 1 if (σ, υ, t) |= ϕ, and 0 otherwise. An important property of our restriction
is that RMTL-

∫
satisfies by construction the Dirichlet conditions implying the

Riemann property:

Lemma 1. For any formula ϕ in RMTL-
∫
, timed state sequence κ, and logical

environment υ, the indicator function 1ϕ(κ,υ) is Riemann integrable.

Example 1 (Application of Durations). Let us now consider an example using
the duration term where the evolution of a real-time system formed by tasks
depends entirely on the occurrence of events, the evaluation of the propositions
is performed over these events, and all of its tasks have an associated fixed set
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of events. Let φm be a formula that specifies the periodic release of a renewal
event for a timed resource in the system, and let ψm be a formula specifying
every event triggered by tasks belonging to that resource. To monitor utilization
and the release of timed resources, we employ the formula,

�<∞ φm →
∫ t

ψm ≤ β,

where t is the budget renewal period, and β is the allowed budget (i.e., the exe-
cution time of tasks belonging to the timed resource). However, the incremental
evaluation as t evolves is inconsistent in the two-valued setting since we could
have a false verdict at t = 0 and a true verdict at t = 10 (different from the
solution that will be presented in the next section).

3 Three-Valued Abstraction of RMTL-
∫

The three-valued logic abstraction of RMTL-
∫

, which we will call three-valued
restricted metric temporal logic with durations (RMTL-

∫
3
), is syntactically defined

as before, but contains two new terms. These terms allow variables to be maxi-
mized and minimized in certain intervals, subject to a constraint given as a
formula. The terms must be introduced here due to the situation in which no mini-
mum or maximum exists (the formula is not satisfied in the interval), since we need
to define an infeasible value instead of assigning a real number to these terms. The
language of terms of RMTL-

∫
3

is defined as follows:

η ::= α | x | min
x∈I

ϕ | max
x∈I

ϕ | η1 ◦ η2 |
∫ η

ϕ

where x ∈ I
min

ϕ and x ∈ I
max

ϕ, with I = [Imin, Imax] and Imin, Imax ∈ R, and

◦ ∈ {+,×}. All other formulas and terms are as in RMTL-
∫

. We will denote by
Φ3 the set of RMTL-

∫
3

formulas, and by Γ the set of RMTL-
∫
3

terms.

Definition 3 (RMTL-
∫
3
Semantics). The truth value of a formula ϕ will

again be defined relative to a model (κ, υ, t) consisting of a timed state sequence
k, a logical environment υ, and a time instant t ∈ R≥0. The auxiliary indicator
function 1ϕ(κ,υ) : R≥0 → {0, 1} ∪ {−1} is defined as follows:

1ϕ(κ,υ)(t) =

⎧
⎪⎨

⎪⎩

1 if [[ϕ]](κ, υ, t) = tt,

0 if [[ϕ]](κ, υ, t) = ff,

−1 if [[ϕ]](κ, υ, t) = ⊥

The interpretation of the term η will be given by T [[η]](σ, υ) t ∈ R ∪ {⊥R}, as
defined by the following rules. Whenever T [[η]](σ, υ) t = ⊥R, this means that the
term η is infeasible.

Rigid Terms:

– T [[η1]](σ, υ) t is defined as α if η1 = α, and as υ(x) if η1 = x
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Minimum and Maximum Terms:

– If η1 = min
x∈I

ϕ (resp. max
x∈I

ϕ), then T [[η1]](σ, υ) t = is defined as:

{
I = m{r | r ∈ I and (κ, υ[x �→ r], t) |=3 ϕ} if I �= ∅
⊥R otherwise

where m is one of the operators min or max as appropriate.

Duration Term:

– If η1 =
∫ η2 φ, then T [[η1]](σ, υ) t is defined as:

⎧
⎨

⎩

∫ t+T [[η2]](σ,υ) t

t
1φ(κ,υ)(t

′) dt′ if
T [[η2]](σ, υ) t ≥ 0 and for all t′′,

t′′ ∈ [t, t+T [[η2]](σ, υ) t], 1φ(κ,υ)(t
′′) ∈ {0, 1}

⊥R otherwise

Turning to the interpretation of formulas, we define [[ϕ]](κ,υ,t) to be one of the
three values in {tt,ff,⊥}, according to the following rules.

Basic Formulae:

– If φ = p, then [[φ]](κ,υ,t) is tt if p ∈ κ(t), ff if p �∈ κ(t) and κ(t) �= ∅, and
⊥ if κ(t) = ∅.

Relation Operator:

– If φ = η1 < η2, then [[φ]](κ,υ,t) is defined as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tt if T [[η1]](σ, υ) t < T [[η2]](σ, υ) t, and

T [[η1]](σ, υ) t,T [[η2]](σ, υ) t ∈ R

ff if T [[η1]](σ, υ) t ≥ T [[η2]](σ, υ) t, and

T [[η1]](σ, υ) t,T [[η2]](σ, υ) t ∈ R

⊥ otherwise

Boolean Operators:

– If φ = ¬ϕ, then [[φ]](κ,υ,t) is tt if [[ϕ]](κ,υ,t) = ff, ff if [[ϕ]](κ,υ,t) = tt, and
⊥ otherwise.

– If φ = ϕ1 ∨ ϕ2, then [[φ]](κ,υ,t) is tt if [[ϕ1]](κ,υ,t) = tt ∨ [[ϕ2]](κ,υ,t) = tt, ff if
[[ϕ1]](κ,υ,t) = ff ∧ [[ϕ2]](κ,υ,t) = ff, and ⊥otherwise.

Temporal Operators:

– If φ = ϕ1 U∼γ ϕ2, then [[φ]](κ,υ,t) is defined as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tt if ∃t′, t < t′ ∼ t + γ such that [[ϕ2]](κ,υ,t′) = tt, and

∀t′′, t < t′′ < t′, [[ϕ1]](κ,υ,t′′) = tt

ff if ∀t′, t < t′ ∼ t + γ such that

[[ϕ1]](κ,υ,t′) = ff → ∃t′′, t < t′′ < t′, [[ϕ1]](κ,υ,t′′) = ff

⊥ otherwise
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– If φ = ϕ1 S∼γ ϕ2, then [[φ]](κ,υ,t) is defined as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tt if ∃t′, t − γ ∼ t′ < t such that [[ϕ2]](κ,υ,t′) = tt, and

∀t′′, t′ < t′′ < t, [[ϕ1]](κ,υ,t′′) = tt

ff if ∀t′, t − γ ∼ t′ < t such that

[[ϕ1]](κ,υ,t′) = ff → ∃t′′, t′ < t′′ < t, [[ϕ1]](κ,υ,t′′) = ff

⊥ otherwise

Existential Operator:

– If φ = ∃x ϕ, then [[φ]](κ,υ,t) is defined as:

⎧
⎨

⎩

tt if there exists a value r ∈ R such that [[ϕ]](κ,υ[x �→r],t) = tt

ff if for all r ∈ R such that [[ϕ]](κ,υ[x �→r],t) = ff

⊥ otherwise

We will write (κ, υ, t) |=3 ϕ when [[ϕ]](κ,υ,t) = tt, and (κ, υ, t) �|=3 ϕ when
[[ϕ]](κ,υ,t) = ff. In what follows we will often write x ∈ I as an abbreviated
form for Imin < x ∧ x < Imax, and η1 = η2 for ¬(η1 < η2) ∧ ¬(η1 > η2).

Preservation of RMTL-
∫

Semantics. An immediate motivation for the choice of
defining a three-valued semantics for our logic fragment comes from the nature of
runtime verification, which evaluates timed sequences where it is not possible to
determine a definitive true or false value without analyzing the complete trace.
For instance, considering a prefix κp of a timed sequence κ, we have that the
evaluation of the same formula in the models (κ, υ, t) and (κp, υ, t) produces
different truth values. Classic semantics cannot provide a common truth value
to make consistent incremental evaluations of the model, which is an important
feature for RV.

The semantic preservation of both truth and falsity for the three-valued logic
is defined using the following two relations: a partial relation ≺ on {tt,ff,⊥}
defined by ⊥ ≺ tt, ⊥ ≺ ff, ⊥ ≺ ⊥, tt ≺ tt, and ff ≺ ff; and a partial relation
 : R × R ∪ {⊥R} defined by 0  ⊥R, and n  m, for all n,m ∈ R, which gives a
distinct treatment to duration terms that evaluate to 0 in the standard semantics.

Definition 4. Let (κ, υ, t) be a model. The three-valued semantics is said to
preserve the two-valued semantics iff the following rules hold:

1. For basic formulas containing the relation operator, for all terms η1 ∈
RMTL-

∫
and η2 ∈ RMTL-

∫
3

excluding minimum and maximum terms,
T [[η1]](σ, υ) t  T [[η2]](σ, υ) t holds and it implies that 0  ⊥R if η1 has the
form

∫ η3 φ and T [[η3]](σ, υ) t < 0; and 0  0 otherwise.
2. For each basic formula φ containing Boolean, temporal, and existential oper-

ators, [(κ, υ, t) |=3 γ] ≺ [(κ, υ, t) |= γ] holds.
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We will now formulate two auxiliary results required to prove the semantic
preservation of RMTL-

∫
in RMTL-

∫
3
. From a close examination of the minimum

and maximum term semantics, we have that these terms are indeed quantified
formulas, interpreted as a minimum or a maximum value that satisfies the quan-
tification, or as ⊥R when this minimum or maximum is nonexistent. First of all
we observe that the following axioms [19, p. 205] extend to our present setting:

A 1. η1 ◦ min
x∈I

φ ∼ η2 implies that there exists an x such that η1 ◦ x ∼ η2, x ∈ I, and

φ implies that for all y, y < x and ¬φ.

A 2. η1 ◦ max
x∈I

φ ∼ η2 implies that there exists an x such that η1 ◦ x ∼ η2, x ∈ I, and

φ implies that for all y, y > x and ¬φ.

Theorem 1. Let (κ, υ, t) be a model, φ3 a formula in RMTL-
∫
3
, and

ft : Φ3 → Φ a mapping of formulas. Then [(κ, υ, t) |=3 φ3] ≺ [(κ, υ, t) |= ft(φ3)].

4 Inequality Abstraction Using a Theory of Reals

A close examination of the semantics of RMTL-
∫
3

reveals that the timed state
sequence κ and the logic environment υ are not directly related as parameters
for evaluating the truth value of formulas. This property allows us to define a
mechanism for introducing isolation by splitting formulas and/or abstract them
into inequality conditions. Conditions are discarded prior to execution, and the
resulting formula is then suitable for runtime monitoring.

The axiom system for the arithmetic of real numbers provided by Tarski [19]
can be used as an abstraction of inequalities in RMTL-

∫
3
. Several properties

provided by this well-known fragment will be used to facilitate the removal
of quantifiers, when properties expressed as quantified formulas are monitored
at execution time. From the Tarski–Seidenberg theorem [19] we have that for
any formula in FOLR (R, <,+,×) there is an equivalent one not containing
any existential quantifiers. Thus there exists a decision procedure for quantifier
elimination over FOLR. One of the most efficient algorithms, with complexity
2-EXPTIME, is cylindrical algebraic decomposition (CAD), later proposed by
Collins [3,6]. To use it we require a set of axioms for isolation of temporal
operators and duration terms, and a mechanism to abstract formulas with free
variables.

Let us now describe the constraint required for an RMTL-
∫
3

formula to be
interpreted as a formula of FOLR.

Definition 5 (Inequality Abstraction Constraint). Let φ3 be a formula
in RMTL-

∫
3
. φ3 is a formula in FOLR if it is free of duration terms, mini-

mum/maximum terms, temporal operators, and propositions.

Let φi
< be a formula in FOLR; φi a formula in RMTL-

∫
3

without quantifiers
and free variables; opi one of the operators ∧ or ∨, and i ∈ N an index for
operators/formulas. Axioms A3 and A4 below describe how formulas φi

< can be
isolated outside the scope of the temporal operator. Axiom A5 replaces a formula
containing a duration constrained in an interval by a duration term constrained
by a logic variable. Axiom A6 isolates inequalities inside duration terms.
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A 3.
((

φ1
< op1 φ1

)
U
(
φ2

< op2 φ2

))→ (φ2
< op2

(¬(φ2
<) → ((φ1

< op1 φ1

)
U φ2

)))

A 4. ((φ< op1 φ1) U φ2) → ((φ< → true U φ2) op1 φ1 U φ2)

A 5.
∫ ηx φ1 ◦ η1 ∼ η2 → ∃x

(
x = ηx ∧ ¬(x < 0) ∧ ∫ x

φ1 ◦ η1 ∼ η2

)

A 6.
∫ η

φ ∨ ψ =
∫ η

φ +
∫ η

ψ − ∫ η
φ ∧ ψ

These axioms can be used to provide isolation of formulas only for certain
patterns, due to the changing nature of temporal operators and the duration
terms over the model parameter t. To abstract any formula in RMTL-

∫
3

into
a formula in FOLR compliant with Definition 5, we require an algorithm for
generating weaker inequality conditions. Algorithm 1 can be used to replace
duration terms with new free variables constrained by the nature of those terms,
and propositions with fixed valued logic variables (e.g., p = 1 means that the
proposition P is true in a certain interval). It begins by testing if a formula
contains free logic variables and existential quantifiers. If the formula can be
simplified we proceed, otherwise we return the input formula φ3 (Line 2). Next,
the duration terms are recursively replaced by new fresh variables in υ, minimum
and maximum terms are transformed into quantified inequalities, and weaker
inequality conditions are generated (Line 3). The function Reduce MinMax Terms
applies min/max term substitutions as provided by Axioms A1, A2, and A5;
and the auxiliary function Map RMTLD3 into FOLR abstracts formulas in RMTL-∫
3

into FOLR formulas. It begins by replacing duration terms with new free
variables (Line 7), and for each replaced term the same function is recursively
applied (Line 12). The function Gen Weaker Inequality Conditions generates
the inequality conditions for temporal operators and duration terms using axioms
A3, A4, A5, and A6. Let us now see an illustration of its functionality.
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Example 2. Consider the duration term 0 <
∫ 10

P ∨ φ<. The result of applying
the function Replace Duration Terms to this term is 0 < x. Applying axiom A6
over the formula, and knowing the sub-formula φ∫ := P ∨ φ< and the sub-term
η∫ := 10, results in x = b+ c−a and then 0+

∫ 10
P ∧φ< <

∫ 10
P +

∫ 10
φ<. Now

we are able to generate the weaker conditions. They are (φ< → (c = 10 ∧ a = b))
and (¬φ< → c = 0 ∧ a = 0 ∧ ((p = 0 → b = 0) ∧ (p = 1 → 0 < b))) with a, b, c ∈
[0, 10[ and p ∈ {0, 1}.

After this step we have the inequality conditions ready to be simplified using
the CAD technique (Line 4). The formula that was decomposed can then be
reduced or recursively replaced with the terms initially found in the original
formula (Line 5). Note that the function Gen Weaker Inequality Conditions
is not formally described; we assume the existence of mechanisms for application
of the axioms and for calculating the weaker inequality conditions.

Example 3. Let us now see a practical application of the algorithm for a simple
formula. Consider the formula x <

∫ x+1 (P ∧ x < 10), with P a proposition
whose truth value depends on the model parameter t. Since the logic variable x is
used at the level of the relation operator of the formula and in the duration term,
finding a valuation of x that satisfies the formula is not trivial; we can use our
algorithm that generates inequality conditions and reduce the latter conditions
into an RMTL-

∫
3

formula. We begin by replacing
∫ x+1 (P ∧ x < 10) by y and

constraining it by the formula φs := x < y∧0 ≤ y ≤ x+1; replacing proposition
P by p = 1 we get: φs := φs ∧ (x < 10) →

(
p = 0 →

(
x <

∫ x+1
P ≤ x + 1

))
∧

¬(x < 10) → ff. After simplification of φs using CAD we have y = 0 ∧ (z =
0 ∨ (0 < z ≤ x + 1 ∧ p = 1))) ∨ (0 < y ≤ x + 1 ∧ 0 < z ≤ x + 1 ∧ p = 1) if
x ∈ [−1, 0[; and (x < y ≤ x + 1 ∧ x < z ≤ x + 1 ∧ p = 1) if x ∈ [0, 10[. After
applying the function Reduce Inequality Conditions into RMTLD3, the free
logic variables are recursively substituted following the structure of the formula,
with the exception of x that remains unchanged. In the case that x is substituted
by a duration term then we have a decision procedure to compute the truth value
of the term based on the outcome of the procedure; if x has not been replaced
by a duration term and x is not quantified then we need to quantify it explicitly,
otherwise the formula cannot be evaluated. Note that ∀x φs ↔ ff and ∃x φs ↔ tt.

5 Computation of RMTL-
∫
3
Formulae

Given the definition of RMTL-
∫
3
, we can derive an evaluation algorithm for

monitor synthesis. In what follows we will present the algorithm and study the
time complexity of the computation with respect to both trace and formula size.

We begin with a set of preliminary definitions. The set of timed sequences
is denoted by K, the duration of the timed state sequence κ ∈ K is denoted
by d(κ), and the set of logic environments is denoted by Υ. Let B4 be the set
{tt4,ff4,⊥4} ∪ {r} where r is a new symbol that will be used only for purposes
of formulae evaluation, and D the set R≥0 ∪ {⊥R}. The function subK : (K ×
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Υ×R≥0) → R≥0 → K defines a timed sub-sequence constrained by the interval
]t, t + γ], where t and γ are real numbers to be used as parameters in subK.
The function mapB4 : B3 → B4 maps tt to tt4, ff to ff4 and ⊥ to ⊥4; mapB3 :
B×B4 → B3 maps (tt, r) to ⊥; (ff, r), (ff,ff4), and (tt,ff4) to ff; and (ff, tt4) and
(tt, tt4) to tt. We will employ a left fold function defined in the usual way.

From close examination of the operators, the corresponding Compute(¬) and
Compute(∨) evaluation functions have time complexity constant in the number
of timed sequence symbols, and linear in the size of the formula. Let us consider
the functions Compute(η) :: (K×Υ) → R → Γ → D and Computeϕ :: (K×Υ×
R≥0) → Φ3 → B3 for the evaluation of U< and <, and the term

∫
.

Fig. 1. Evaluation of the operators U< and <, and of duration terms

Operator U<. Given formulas φ1, φ2 and γ ∈ R≥0, the formula φ1 U<γ φ2

is evaluated in a model (κ, υ, t) by the function Compute(U<) : (K × Υ ×
R≥0) → R≥0 → Φ3 → Φ3 → B3, defined in Fig. 1. We report here only
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on the computation function Compute(U<); the remaining functions would be
Compute(U=) for punctual until, Compute(S<) for the non-punctual dual opera-
tor, and Compute(S=) for the punctual dual operator. These operators have at
most two new branches. Given an input κ with size nκ, and m a measure of the
number of temporal operators in ϕ, we obtain from the structure of the computa-
tion the lower bound of time complexity 2(nκ)2 ·m(ϕ)−4(nκ)2+nκ ·m(ϕ)−2(nκ).

Operator <. Given two terms η1, η2 ∈ Γ, the formula η1 < η2 is evaluated
relative to a model (κ, υ, t) by the function Compute(<) : (K × Υ × R≥0) →
Γ → Γ → B3, also shown in Fig. 1. The time complexity of this computation is
constant, since any formula containing only the relation operator < cannot have
the size of the formula greater than one or consume any input symbols.

Term
∫
. The evaluation of a duration term

∫ a
φ in the model (κ, υ, t) is per-

formed by the function Compute(∫ ) : (K × Υ) → R≥0 → R → Φ3 → D, again
defined in Fig. 1. It has linear time complexity in the size of the timed sequence,
and constant time complexity in the formula size. + and × terms are directly
mapped into their respective computational operations. The complexity of those
operations is directly related to the number of terms. Given a formula ϕ and a
measure mη describing the number of operators + and × occurring in a formula
ϕ, we have a linear lower bound of time complexity in mη(ϕ).

Time Complexity of the Evaluation Algorithm. We are now in a position to
present the recursive top-level evaluation Algorithm 2 excluding punctual tem-
poral operators, using the previous definitions for auxiliary computations. Let
m be a measure for ∨, <, temporal operators, and non-rigid terms. Given the
complexity of these formulas and term operators, and knowing that all temporal
operators have the same complexity as the until operator, we have by semantic
definition that any combination of formulas has higher complexity. As such, the
complexity of Algorithm 2 is polynomial in the input size of the formula and the
timed state sequence, as given by the lower bound identified above.
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6 Experiments

Our approach uses an offline algorithm for formula simplification, and an online
evaluation procedure that can be directly applied for the synthesis of runtime
monitors. We will now show an example of application of Algorithm 1 for mon-
itoring the budget of a set of resource model (RMs); then we will present the
empirical validation of the complexity results for Algorithm 2.

RMs are mechanisms to ensure time isolation between tasks. In the case of
periodic RMs [18], they are defined by a replenishment period and a budget
supply. The budget supply is available as time passes, and is replenished at each
period by the resource model. Elastic periodic RMs are resource models contain-
ing elastic coefficients (similar to spring coefficients in physics), describing how
a task can be compressed when the system is overloaded, allowing RV of impre-
cise computation. Naturally, the coefficients need to be constrained (linearly or
non-linearly) before execution. Intuitively, the idea is to check the coefficients
according to the polynomial constraints using our static phase, and provide the
simplified formulas for the further runtime evaluation phase.

Let us now extend Example 1 for multiple RMs, considering without loss of
generality the case of two RMs. We will use indexed formulas φmi

, ψmi
with

0 ≤ i < 2, and let αi, αai be pre-defined constants. For measuring their budgets
we could use the following invariant:

n−1∧

i=0

φmi ∧ �<∞∗

((
n−1∧

i=0

φmi

)

→
(

0 ≤
n−1∑

i=0

ci ×
∫ αi

ψmi < αb ∧ rm ∧ ♦=π

n−1∧

i=0

φmi

))

,

where ci are coefficients that have different weights for each RM, compliant with

the restrictions rm constrained in the interval [0, αb[, αb ∈ R≥0, and
n−1∧

i=0

φmi

corresponds to the periodic release of the RMs with period π. A more detailed
description can be found in [12]. The problem is then to find values for c1, c2
satisfying the constraints r1 := 1

250 (245− 444x+200c1
2) = c2, r2 := 1− c1 = c2,

or r3 := 1 − c1
2 = c2, as shown in Fig. 2, based on two duration observations

over ψmi
formulas.

Fig. 2. Inequality con-
straints

We will use Algorithm 1 for discarding possible
inconsistencies, and decompose the formulas into sub-
formulas that are free of quantifiers. Let us simplify
the previously defined invariant for two resource mod-
els where the coefficient c0 is existentially quantified
and constrained by r2. After some transformations on
the formula we obtain

φ1
	< := φm0∧φm1∧¬(tt U<∞∗ ((φm0∧φm1∧¬♦=π (φm0 ∧ φm1))∨(φm0∧φm1∧¬φ1

<))),

such that φ1
< := ∃c0 0 ≤ c0 ×a+ c1 × b < αb ∧1− c0 = c1 ∧ c0 ≥ 0∧ c1 ≥ 0 holds.

Duration terms have been replaced by the logic variables a and b. Since Axioms
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A3 and A4 cannot be used here for isolation purposes, we have to substitute the
inequality formula by a constant Θ. We will then have an isolated formula, and
apply CAD to determine if φ1

< is satisfied. If it is, then we directly replace Θ
by tt, otherwise we have the bounds that satisfy φ1

<. For this case, we obtain
(a = 0 ∧ b ≥ 10 ∧ 0 ≤ c1 < 10

b ) ∨ (a = 0 ∧ 0 ≤ b < 10 ∧ 0 ≤ c1 ≤ 1) ∨ (a ≥
10 ∧ a−10

a−b < c1 ≤ 1 ∧ 0 ≤ b < 10) ∨ (b ≥ 10 ∧ 0 < a ∧ a < 10 ∧ 0 ≤ c1 <
a−10
a−b )∨ (0 < a < 10∧0 ≤ b < 10∧0 ≤ c1 ≤ 1). This is applied recursively for all

the terms that have been substituted by fresh logic variables. In this particular
case there are no subsequent iterations. After these steps the simplified bounds
are ready to be evaluated by the online method.

Fig. 3. Experimental validation of the complexity results

Let us now discuss the complexity of Algorithm 2 and establish an empirical
comparison with the lower bounds presented previously. We observe that the
generation of nested durations is more critical on average than the nesting of
temporal operators. This result matches the semantics of both terms and formu-
las, since the duration terms can integrate any indicative function provided for
any trace, unlike the until operator that requires a successful trace to maximize
its search. Consider Fig. 3a, where the boxes i1 to i6 are respectively the intervals
]10j , 10j+1] for all j ∈ [1, 7[. They represent the number of cycles performed by
folding functions. The results confirm that as the number of until operators stabi-
lizes and the number of duration operators increases, the computation time also
increases at a higher rate due to the presence of durations. This occurs for gen-
erated uniform formulas and traces; deep nesting of until operators and nested
durations is unlikely to occur in hand-written specifications (it has not been
clearly confirmed whether they are useful for real-life applications). The experi-
ments confirm the theoretical complexity bounds obtained earlier (Fig. 3b). We
have performed the experiments on an Intel Core i3-3110M at 2.40 GHz CPU,
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and 8 GB RAM running Fedora 21 X86’64; the source code is available from the
first author’s web page.

7 Discussion and Future Work

We have developed a new approach for the RV of hard real-time systems, where
duration properties play an important role, and incremental evaluation is
required. The closest approaches to ours are that of Nickovic and colleagues [13],
who provide synthesis algorithms for MTL specifications, and the work of Pike
and colleagues [16], who have developed a framework based on a formal stream
language, together with a synthesis mechanism that generates monitors. How-
ever, none of these previous approaches is sufficiently expressive to allow reason-
ing about duration properties, which is the novelty of our work.

The first level of operation of our approach consists of offline analysis for the
simplification of formulas by means of quantifier removal techniques; the second
is an online evaluation algorithm for RV purposes. We restrict syntactically and
semantically the two-valued MTL-

∫
logic, with a three-valued interpretation.

Incremental evaluation allows our technique to handle millions of samples, with
formulas containing hundreds of operators. It remains to be seen whether exten-
sions of LTL that are strictly more expressive than MTL, such as TPTL [4] could
be used as an alternative for dealing with durations.
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UID/CEC/04234/2013 (CISTER); by FCT/MEC and the EU ARTEMIS JU within
project ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: Huizing,
C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600, pp. 74–106. Springer, Heidelberg (1992)

3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics. Springer, Heidelberg (2006)

4. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL.
Inf. Comput. 208(2), 97–116 (2010)

5. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.B.: On expressiveness and com-
plexity in real-time model checking. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
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Abstract. In this paper we present a novel rule-based approach for Run-
time Verification of FLTL properties over finite but expanding traces.
Our system exploits Horn clauses in implication form and relies on a
forward chaining-based monitoring algorithm. This approach avoids the
branching structure and exponential complexity typical of tableaux-based
formulations, creating monitors with a single state and a fixed number
of rules. This allows for a fast and scalable tool for Runtime Verification:
we present the technical details together with a working implementation.

1 Introduction

We are designing a framework for combining runtime verification and learning
in neural networks to improve the verification of compliance of systems based
on business processes [15]. By adapting formal specifications of such systems to
include tolerable soft-violations occurring in real-practice to optimise the sys-
tems, we want to obtain a more realistic representation of compliance. Adapta-
tion is the recent trend in Process Mining [18]: the goal is to discover, monitor
and improve real processes (i.e., not assumed processes) by extracting knowl-
edge from event logs readily available in todays (information) systems. Within
this wider framework, this paper focuses on the introduction of a novel monitor-
ing system, RuleRunner, built as a set of Horn clauses in implication form and
exploiting forward chaining to perform runtime verification tasks. A RuleRunner
system can be encoded in a recurrent neural network exploiting results from the
Neural-Symbolic Integration [5] area, but this is outside the scope of this paper.

This paper is structured as follows: Sect. 2 introduces background and related
work, while Sect. 3 provides a technical introduction of our rule system. Section 4
provides experimental results and Sect. 5 ends the paper with final considerations
and directions for future work.
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2 Background and Related Work

2.1 Horn Clauses and Chaining

A Horn clause [9] is a clause which contains at most one positive literal. The
general format of such a clause is thus as follows: ¬α1 ∨ .. ∨ ¬αn ∨ β. This may
be rewritten as an implication: (α1 ∧ .. ∧ αn) → β, where β is called head and
(α1 ∧ ..∧αn) is called body. The two formulations are equivalent, and usually the
former is called disjunctive form and the latter implication form. Horn clauses
are used for knowledge representation and automatic reasoning; in particular,
inference with Horn clauses can be done through backward or forward chaining.
Backward chaining algorithms are goal-driven approaches that work their way
from a given goal or query; it is implemented in logic programming (e.g. in
Prolog) by SLD resolution [19]. Forward chaining is a data-driven approach that
starts with the available data and uses inference rules to extract more data until
a goal is reached; it is a popular implementation strategy for production rule
systems [11].

2.2 Runtime Verification

Runtime Verification (RV) relates an observed system with a formal property
φ specifying some desired behaviour. An RV module, or monitor, is defined
as a device that reads a trace and yields a certain verdict [12]. A trace is a
sequence of cells, which in turn are sets of observations occurring in a given
discrete span of time. Runtime verification may work on finite (terminated),
finite but continuously expanding, or on prefixes of infinite traces. While LTL is
a standard semantic for infinite traces [17], there are many semantics for finite
traces: FLTL [13], RVLTL [2], LTL3 [3], LTL± [7] just to name some. Since LTL
semantics is based on infinite behaviours, the issue is to close the gap between
properties specifying infinite behaviours and finite traces. In particular, FLTL
differs from LTL as it offers two next operators (X, X̄ in [2], X,W in this paper),
called respectively strong and weak next. Intuitively, the strong (and standard)
X operator is used to express with Xφ that a next state must exist and that
this next state has to satisfy property φ. In contrast, the weak W operator in
Wφ says that if there is a next state, then this next state has to satisfy the
property φ. More formally, let u = a0..an−1 denote a finite trace of length n.
The truth value of an FLTL formula ψ (either Xφ or Wφ) w.r.t. u at position
i < n, denoted by [u, i � ψ], is an element of B and is defined as follows:

[u, i � Xφ] =

{
[u, i + 1 � φ], if i+1 < n

⊥, otherwise
[u, i � Wφ] =

{
[u, i + 1 � φ], if i+1 < n

�, otherwise

While RVLTL and LTL3 have been proven to hold interesting properties
w.r.t. FLTL (see [2]), we selected FLTL as we think it captures a more intuitive
semantics when dealing with finite traces. Suppose to monitor φ = �a over a
trace t, where a is observed in all cells: we have that [t � φ] equals, respectively,



Runtime Verification Through Forward Chaining 187

� in FLTL, ? in LTL3, and T p in RVLTL. If t is seen as a prefix of a longer trace
tσ, then LTL3 and RVLTL provide valuable information about how φ could be
evaluated over σ. But if t is a conclusive, self-contained trace (e.g. a daily set of
transactions), then the FLTL semantics captures the intuitive positive answer
to the query does a always hold in this trace?

Several RV systems have been developed, and they can be clustered in
three main approaches, based respectively on rewriting, automata and rules [12].
Within rule based approaches, RuleR [1] uses an original approach. It copes with
the temporal dimension by introducing rules which may reactivate themselves in
later stages of the reasoning, and RuleRunner is inspired by this powerful idea.
However, RuleR rules may contain disjunctions in the head and therefore do
not correspond to Horn clauses. Furthermore, RuleR creates alternative obser-
vations expectations, and therefore the application of forward-chaining inference
mechanisms on a RuleR system creates a branching, Kripke-like possible world
structure [10]. We focus on FLTL and encode each formula in a system of rules
that correspond to Horn clauses and therefore allow to apply forward-chaining
inference algorithms. The next section will describe the difference in the two
approaches in more detail.

3 The RuleRunner Rule System

RuleRunner is a rule-based online monitor observing finite but expanding traces
and returning an FLTL verdict. RuleRunner accepts formulae φ generated by
the grammar:

φ : := true | a | !a | φ ∨ φ | φ ∧ φ | φUφ | Xφ | Wφ | ♦φ | �φ

a is treated as an atom and corresponds to a single observation in the trace.
We assume, without loss of generality, that temporal formulae are in negation
normal form (NNF), e.g., negation operators pushed inwards to propositional
literals and cancellations applied. W is the weak next operator. END is a special
character that is added to the last cell of a trace to mark the end of the input
stream.

Given an FLTL formula φ and a trace t, Algorithm 1 provides an abstract
description of the creation and runtime behaviour of a RuleRunner system mon-
itoring φ over t. At first, a monitor encoding φ is computed. Second, the monitor
enters the verification loop, composed by observing a new cell of the trace and
computing the truth value of the property in the given cell. If the property is
irrevocably satisfied or falsified in the current cell, RuleRunner outputs a binary
verdict. If this is not the case (because the φ refers to cells ahead in the trace),
the system shifts to the following cell and enters another monitoring iteration.
The FLTL semantics guarantees that, if the trace ends, the verdict in the last
cell of the trace is binary. RuleRunner is a runtime monitor, as it analyses one
cell at a time and never needs to store past cells in memory nor peek into future
ones.
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Algorithm 1. RuleRunner monitoring (abstract)
1: function RR-monitoring(φ,trace t)
2: Build a monitor RRφ encoding φ
3: while new cells exist in t do
4: Observe the current cell
5: Compute truth values of φ in the current cell of t � Evaluation rules
6: if φ is verified or falsified then
7: return SUCCESS or FAILURE respectively
8: end if
9: Set up the monitor for the next cell in t � Reactivation rules

10: end while
11: end function

3.1 Building the Rule System

Definition. A RuleRunner system is a tuple 〈RE , RR, S〉, where RE (evaluation
rules) and RR (reactivation rules) are rule sets, and S (for state) is a set of active
rules, observations and truth evaluations.

Throughout this paper we mostly use the terms State and rule, as they are
used in the Runtime Verification area. However, our rules correspond to Horn
clauses in implication form, and what we call State corresponds to a knowledge
base.

Given a finite set of observations O and an FLTL formula φ over (a subset
of) O, a state S is a set of observations (o ∈ O), rule names (R[ψ]) and truth
evaluations ([ψ]V ); V ∈ {T, F, ?} is a truth value. A rule name R[ψ] in S means
that the logical formula ψ is under scrutiny, while a truth evaluation [ψ]V means
that the logical formula ψ currently has the truth value V . The third truth value,
? (undecided), means that it is impossible to give a binary verdict in the current
cell.

Evaluation rules follow the pattern R[φ], [ψ1]V, . . . , [ψn]V,→ [φ]V and their
role is to compute the truth value of a formula φ under verification, given the
truth values of its direct subformulae ψi (line 5 in Algorithm 1). For instance,
R[♦ψ], [ψ]T → [♦ψ]T reads as if ♦ψ is being monitored and ψ holds, then ♦ψ is
true.

Reactivation rules follow the pattern [φ]? → R[φ], R[ψ1], . . . , R[ψn] and the
meaning is that if one formula is evaluated to undecided, that formula (together
with its subformulae) is scheduled to be monitored again in the next cell of the
trace (line 9 in Algorithm 1). For instance, [♦ψ]? → R[♦ψ], R[ψ] means that if
♦ψ was not irrevocably verified nor falsified in the current cell of the trace, both
ψ and ♦ψ will be monitored again in the next cell.

Evaluation rules are Horn clauses in implication form. Reactivation rules usu-
ally have several positive conjuncts in the head, and therefore a reactivation rule
A → β1, ..βn (where A = α1, .., αm) can be rewritten as n separate Horn clauses
A → β1, .., A → βn. Having different rules with the same head is something
to handle with care in case of backward chaining, as many inferential engines
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implement a depth-first search and therefore the order of these rules impacts on
the result. This is not the case when applying forward chaining, as for all rules,
if all the premises of the implication are known, then its conclusion is added to
the set of known facts.

A RuleRunner feature is that rules never involve disjunctions. In RuleR, for
instance, the simple formula ♦a is mapped to the rule R♦a : −→ a | R♦a and its
meaning, intuitively, is that, if ♦a has to be verified, either a is observed (thus
satisfying the property) or the whole formula will be checked again (in the next
cell of the trace). The same formula corresponds to the following set of rules in
RuleRunner:

R[♦a], [a]T → [♦a]T

R[♦a], [a]? → [♦a]?

R[♦a], [a]F → [♦a]?

R[♦a], [a]?, END → [♦a]F

[♦a]? → R[a], R[♦a]

The disjunction in the head of the RuleR rule corresponds to the additional
constraints in the body of the RuleRunner rules. Therefore, where RuleR gener-
ates a set of alternative hypotheses and later matches them with actual obser-
vations, RuleRunner maintains a detailed state of exact information. This is
achieved by means of evaluation tables: three-valued truth tables (as introduced
by Lukasiewitz [14]) annotated with qualifiers. Each evaluation rule for φ cor-
responds to a single cell of the evaluation table for the main operator of φ; a
qualifier is a subscript letter providing additional information to ? truth values.
Table 1 gives the example for disjunction. Qualifiers (B,L,R in this case) are
used to store and propagate detailed information about the verification status
of formulae.

Table 1. Truth table (left) and evaluation tables (right) for ∨

∨
T ? F

T T T T
? T ? ?
F T ? F

∨
B T ? F
T T T T
? T ?B ?L
F T ?R F

∨
L

T T
? ?L
F F

∨
R

T T
? ?R
F F

For instance, if φ is undecided and ψ is false when monitoring φ ∨ ψ (high-
lighted cell in Table 1), ?L means that the disjunction is undecided, but that
its future verification state will depend on the truth value of the Left disjunct.
Note, in fact, how ∨L is a unary operator. An example for this is monitoring
♦b ∨ a against a cell including only c: a is false, ♦b is undecided (as b may be
observed in the future), and the whole disjunction will be verified/falsified in the
following cells depending on ♦b only.
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Fig. 1. Evaluation tables

The complete set of evaluation tables is reported in Fig. 1, while the genera-
tion of evaluation and reactivation rules is summarised in Algorithm 2. The algo-
rithm parses φ in a tree and visits the parsing tree in post-order. The system is
built incrementally, starting from the system(s) returned by the recursive call(s).
If φ is an observation (or its negation), an initial system is created, including two
evaluation rules (as the observation may or may not occur), no reactivation rules
and the single R[φ] as initial state. If φ is a conjunction or disjunction, the two
systems of the subformulae are merged, and the conjunction/disjunction evalu-
ation rules, reactivation rule and initial activation are added. The computations
are the same if the main operator is U , but the reactivation rule will have to
reactivate the monitoring of the two subformulae; in particular, UA denotes the
standard until operator, while UB is the particular case where the ψ failed and
the until operator cannot be trivially satisfied anymore. Formulae with X or
W as main operator go through two phases: first, the formula is evaluated to
undecided, as the truth value can’t be computed until the next cell is accessed.

Special evaluation rules force the truth value to false (for X) or true (for W )
if no next cell exists. Then, at the next iteration, the reactivation rule triggers
the subformula: this means that if Xφ is monitored in cell i, φ is monitored in
cell i + 1. φ is then monitored independently, and the Xφ (or Wφ) rule enters
a ‘monitoring state’ (suffix M in the table), simply mirroring φ truth value
and self-reactivating. The evaluation of �φ is false (undecided) when φ is false
(undecided); it is also undecided when φ holds (as �φ can never be true before
the end of the trace), but the K suffix indicates when, at the end of the trace, an
undecided � can be evaluated to true. Finally, ♦φ constantly reactivates itself
and its subformula φ, unless φ is verified at runtime (causing ♦φ to hold), the
trace ends (♦φ fails).
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Algorithm 2. Generation of rules
1: function Initialise(φ)
2: op ← main operator

� Apply recursively to subformula(e)
3: if op ∈ {�, ♦, X, W} then
4: 〈R1

E , R1
R, S1〉 ← Initialise(ψ1)

5: RE ← R1
E ;

6: RR ← R1
R;

7: else if op ∈ {∨, ∧, U} then
8: 〈R1

E , R1
R, S1〉 ← Initialise(ψ1)

9: 〈R2
E , R2

R, S2〉 ← Initialise(ψ2)
10: RE ← R1

E ∪ R2
E ; RR ← R1

R ∪ R2
R;

11: else
12: RE ← ∅; RR ← ∅;
13: end if

� Compute and add evaluation rules for main operator
14: Cells ←op’s-evaluation-tables
15: for all cell ∈ Cells do
16: Convert cell to single rule re, substituting formula names
17: RE ← RE ∪ re

18: end for
19: if φ-is-main-formula then
20: RE ← RE ∪ ([φ]T → SUCCESS)
21: RE ← RE ∪ ([φ]F → FAILURE)
22: RE ← RE ∪ ([φ]? → REPEAT )
23: end if

� Compute initial state for this subsystem
24: if op = a then S ← R[a]
25: else if op =!a then S ← R[!a]
26: else if op ∈ {∨, ∧} then S ← S1 ∪ S2 ∪ R[φ]B
27: else if op = U then S ← S1 ∪ S2 ∪ R[φ]A
28: else if op ∈ {�, ♦} then S ← S1 ∪ R[φ]
29: else if op ∈ {X, W} then S ← R[φ]
30: end if

� Compute and add reactivation rules for main operator
31: if op ∈ {∨, ∧} then RR ← RR ∪ ([φ]?Z → R[φ]?Z), for Z ∈ L, R, B
32: else if op = U then RR ← RR ∪ ([φ]?Z → R[φ]?Z, S1, S2), for Z ∈ A, B, L, R
33: else if op ∈ {�, ♦} then RR ← RR ∪ ([φ]? → R[φ], S1)
34: else if op ∈ {X, W} then RR ← RR ∪([φ]? → R[φ]M, S1)∪([φ]?M → R[φ]M)
35: end if

� Return computed system
36: return 〈RE , RR, S〉
37: end function

RuleRunner generates several rules for each operator, but this number is
constant, as it corresponds to the size of evaluation tables plus special rules (like
the SUCCESS one). The number of rules corresponding to φ ∨ ψ, for instance,
does not depend in any way on the nature of φ or ψ, as only the final truth
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evaluation of the two subformulae is taken into account. The preprocessing phase
creates the parse tree of the property to encode and adds a constant number of
rules for each node (subformula), and therefore the size of the rule set is linear
w.r.t. the structure of the encoded formula φ. The obtained rule set does not
change at runtime nor when monitoring new traces.

3.2 Verification Through Forward Chaining

A RuleRunner rule system RRφ encodes a FLTL formula φ in a set of rules.
RRφ can be used to check whether a given trace t verifies or falsifies φ. Given a
set of Horn clauses in rule form R and a set of atoms A, let the FC(·) (Forward
Chaining) function be:

FC(R,A) = {β | (Ai → β) ∈ R ∧ Ai ⊆ A}

Algorithm 3 describes how RuleRunner exploits forward chaining to perform
a runtime verification task. At the beginning, the rule system RRφ is created.
The monitoring loop iterates until SUCCESS/FAILURE is computed, and
the FLTL semantics guarantees this happen in the last cell, if reached. At the
beginning of each iteration (corresponding to the monitoring of a cell), the initial
state S contains a set of rule names corresponding to the subformulae to be
checked in that cell. The observations of that cell are then added to the state of
the system, and the state is incrementally expanded by means of forward chaining
using the evaluation rules (line 7). This corresponds to computing the truth
values of all subformulae of φ in a bottom-up way, from simple atoms to φ itself.
If the monitoring did not compute a final verdict (SUCCESS/FAILURE), the
state for the next cell is computed with a single application of FC(·) using the
reactivation rules (line 12). Note that in this case the state is not expanded,
as only the output of the forward chaining is stored (S′ ← S ∩ FC(S,RE) vs
S ← FC(S,RR)). This is used to flush all the previous truth evaluation, which
are to be computed from scratch in the new cell.

During the runtime verification, for each cell, the FC(·) function is applied
to the initial observations until the transitive closure of all evaluation rules is
computed. The number of applications depends linearly on the encoded formula
φ: at each iteration the truth values of new subformulae are added, proceeding
bottom-up from atoms to φ. For instance, if φ = a ∨ ♦b, the first iteration
would compute the truth values for a and b, the second would add to the state
the truth evaluation for ♦b, and finally the third one would compute the truth
value of φ in the current cell. Therefore, for each cell the number of iterations
of FC(·) is linear w.r.t. the structure of φ. Each application of FC(·) depends
on the number of rules and is again linear w.r.t. the structure of φ, as stated in
the previous subsection. This would suggest a quadratic complexity. However,
in our implementation, (for each cell of the trace) the system goes through
all rules exactly once. This is obtained by the post-order visit of the parsing
tree, as shown in Algorithm 2, assuring pre-emption for rules evaluating simpler
formulae. Therefore, the complexity of the system is inherently linear. This is not
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Algorithm 3. Runtime Verification using RRφ

1: function NN-monitor(φ,trace t)
2: Create RRφ = 〈RR, RE , S〉 encoding φ (Algorithm 2)
3: while new observations exist in t do
4: S′ ← S ∩ obs
5: while S �= S′ do
6: S = S′

7: S′ ← S ∩ FC(S, RE)
8: end while
9: if S contains SUCCESS (resp.FAILURE) then

10: return return SUCCESS (resp.FAILURE)
11: end if
12: S ← FC(S, RR)
13: end while
14: end function

in contrast with known exponential lower bounds for the temporal logic validity
problem, as RuleRunner deals with the satisfiability of a property on a trace,
thus tackling a different problem from the validity one (this distinction is also
mentioned in [6]).

As an example, consider the formula φ = a ∨ ♦b and the trace t = [c − a −
b, d − b, END] (dashes separate cells and commas separate observations in the
same cell). Intuitively, φ means either a now or b sometimes in the future. If
monitoring φ over t, a fails straight from the beginning, while b is sought until
the third cell, when it is observed. Thus the monitoring yields a success even
before the end of the trace.

In RuleRunner, for first, the formula φ is parsed into a tree, with ∨ as root
and a, b as leaves. Then, starting from the leaves, evaluation and reactivation
rules for each node are added to the (initially empty) rule system. In our example,
(part of) the rule system obtained from φ, namely RR(a∨♦b), and its behaviour
over t are the following:

EVALUATION RULES

– R[a], a is not observed → [a]F

– R[b], b is observed → [b]T

– R[b], b is not observed → [b]F

– R[♦b], [b]T → [♦b]T

– R[♦b], [b]F → [♦b]?

– R[a ∨ ♦b]B, [a]F , [♦b]? → [a ∨ ♦b]?R

– R[a ∨ ♦b]R, [♦b]T → [a ∨ ♦b]T

– R[a ∨ ♦b]R, [♦b]? → [a ∨ ♦b]?R

– [a ∨ ♦b]T → SUCCESS

REACTIVATION RULES

– [♦b]? → R[b], R[♦b]

– [a ∨ ♦b]?R → R[a ∨ ♦b]R

INITIAL STATE

– R[a], R[b], R[♦b], R[a ∨ ♦b]B

EVOLUTION OVER [c − a − b, d − b, END]

state R[a], R[b], R[♦b], R[a ∨ ♦b]B

+ obs R[a], R[b], R[♦b], R[a ∨ ♦b]B, c

eval [a]F, [b]F, [♦b]?, [a ∨ ♦b]?R

react R[b], R[♦b], R[a ∨ ♦b]R

state R[b], R[♦b], R[a ∨ ♦b]R

+ obs R[b], R[♦b], R[a ∨ ♦b]R, a

eval [b]F, [♦b]?, [a ∨ ♦b]?R

react R[b], R[♦b], R[a ∨ ♦b]R

state R[b], R[♦b], R[a ∨ ♦b]R

+ obs R[b], R[♦b], R[a ∨ ♦b]R, b, d

eval [b]T, [♦b]T, [a ∨ ♦b]T, SUCCESS

STOP PROPERTY SATISFIED
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The behaviour of the runtime monitor is the following:

– At the beginning, the system monitors a,b,♦b and a ∨ ♦b (initial state =
R[a], R[b], R[♦b], R[a∨♦b]B). The −B in R[a∨♦b]B means that both disjuncts
are being monitored.

– In the first cell, c is observed and added to the state S. Using the evaluation
rules, new truth values are computed: a is false, b is false, ♦b is undecided. The
global formula is undecided, but since the trace continues the monitoring goes
on. The −R in R[a ∨ ♦b]R means that only the right disjunct is monitored:
the system dropped a, since it could only be satisfied in the first cell.

– In the second cell, a is observed but ignored (the rules for its monitoring are
not activated); since b is false again, ♦b and a ∨ ♦b are still undecided.

– In the third cell, d is ignored but observing b satisfies, in cascade, b, ♦b and
a ∨ ♦b. The monitoring stops, signalling a success. The rest of the trace is
ignored.

3.3 Semantics

RuleRunner implements the FLTL [13] semantics; however, there are two main
differences in the approach. Firstly, FLTL is based on rewriting judgements,
and it has no constraints over the accessed cells, while RuleRunner is forced to
complete the evaluation on a cell before accessing the next one. Secondly, FLTL
proceeds top-down, decomposing the property and then verifying the observa-
tions; RuleRunner propagates truth values bottom up, from observations to the
property. In order to show the correspondence between the two formalisms, we
introduce the map function:

map : Property → FLTL judgement

The map function translates the state of a RuleRunner system into a FLTL
judgement, analysing the state of the RuleRunner system monitoring φ. Since
� and ♦ are derivate operators and they don’t belong to FLTL specifications,
we omit them from the discussion in this section.

function map(φ, State,index)

if SUCCESS ∈ State then return �
else if FAILURE ∈ State then return

⊥
else if [φ]T ∈ State then return �
else if [φ]F ∈ State then return ⊥
else if [φ]?S ∈ State then aux ← S

else find R[φ]S ∈ State; aux ← S

end if

if φ = a then

return [u, index |= a]F
else if φ = !a then

return [u, index |= ¬a]F
else if φ = ψ1..ψ2 and aux = L then

return map(ψ1)

else if φ = ψ1..ψ2 and aux = R then

return map(ψ2)

else if φ = ψ1 ∨ ψ2 and aux = B then

return map(ψ1) 	 map(ψ2)

else if φ = ψ1 ∧ ψ2 and aux = B then

return map(ψ1) � map(ψ2)

else if φ = ψ1Uψ2 and aux = A then

return map(ψ2) 	 (map(ψ1) �
(map(X(ψ1Uψ2))))

else if φ = ψ1Uψ2 and aux = B then

return map(ψ2)�(map(X(ψ1Uψ2)))

next

else if φ = Xψ and aux �= M then

return [u, index |= Xψ]F
else if φ = Wψ and aux �= M then

return [u, index |= X̄ψ]F
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else if (φ = Xψ or φ = Wψ) and aux =

M then

return map(ψ)

end if

end function

Theorem. For any well-formed FLTL formula φ over a set of observations, and
for every finite trace u, for every intermediate state si in RuleRunner’s evolution
over u there exist a valid rewriting rj of [u, 0 |= φ]F such that map(φ) = rj. In
other words, RuleRunner’s state can always be mapped onto an FLTL judgement
over φ.

Proof. The proof proceeds by induction on φ:

– φ = a
If the formula is a simple observation, then the initial state is R[a], and
map(R[a]) = [u, 0 |= a]F . Adding observation to the state does not change
the resulting FLTL judgement. If a is observed, RuleRunner will add [a]T to
the state, and this will be mapped to �. If a is not observed, RuleRunner
will add [a]F to the state, and this will be mapped to ⊥. So for this simple
case, the evolution of RuleRunner’s state corresponds either to the rewriting
[u, 0 |= a]F = � (if a is observed) or to the rewriting [u, 0 |= a]F =⊥ (if a is
not observed).

– φ = !a
This case is analogous tho the previous one, with opposite verdicts.

– φ = ψ1 ∨ ψ2

By inductive hypothesis, a RuleRunner system monitoring ψ1 always corre-
sponds to a rewriting of [u, i |= ψ1]. The same holds for ψ2. Let 〈Ri

R, Ri
E , Si〉

be RuleRunner system monitoring the subformula ψ1, with i ∈ {1, 2}. A
RuleRunner system encoding φ includes R1 and R2 rules and specific rules
for ψ1 ∨ ψ2 given the truth values of ψ1 and ψ2. The initial state is there-
fore R[ψ1 ∨ ψ2] ∪ S1 ∪ S2, and this is mapped to map(S1) � map(S2). By
inductive hypothesis, this is a valid FLTL judgement. In each iteration, as
long as the truth value of ψ1 ∨ ψ2 is not computed, the state is mapped on
map(S1) � map(S2). When the propagation of truth values reaches ψ1 ∨ ψ2,
the assigned truth value mirrors the evaluation table for the disjunction. If
either ψ1 or ψ2 is true, then φ is true, and map(φ) = �. This corresponds to
the valid rewriting map(S1)�map(S2) = �, given that we are considering the
case in which there is a true ψi: [ψi]T belongs to the state and map(ψ1) = �.
The false-false case is analogous. In the ?B case, the mapping is preserved,
and this is justified by the fact that both ψ1 and ψ2 are undecided in the
current cell, therefore map(ψi) �= �,⊥, therefore map(ψ1) � map(ψ2) could
not be simplified. In the ?L case, we have that [ψ2]F , therefore map(ψ2) =⊥.
The FLTL rewriting is map(ψ1) � map(ψ2) = map(ψ1), and this is a valid
rewriting since map(ψ1) � map(ψ2) = map(ψ1)� ⊥= map(ψ1). The ?R case
is symmetrical.

– φ = ψ1 ∧ ψ2

Same as above, with the evaluation table for conjunction on the RuleRunner
side and the � operator on the FLTL judgement side.
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– φ = Xψ
A RuleRunner system encoding Xφ has initial state R[Xφ], which is mapped
on [u, 0 |= Xψ]F . Then, if the current cell is the last one, R[Xφ] evaluates to
[Xφ]F , and the corresponding FLTL judgement is ⊥. If another cell exists,
R[Xφ] evaluates to [Xφ]? (with the same mapping). When the reactivation
rules are triggered, [Xφ]? is substituted by R[Xψ]M,R[ψ]. Over this state,
map(Xψ) = map(ψ), and the index is incremented since reactivation rules
were fired. Therefore, the FLTL rewriting is [u, i |= Xψ] = [u, i + 1 |= ψ], and
this is a valid rewriting.

– φ = Wψ
This case is like the previous, but if the current cell is the last then R[Wψ]
evolves to [Wψ]T ; the mapping is rewritten from [u, i |= Wψ] to �, and this
is a valid rewriting if there is no next cell.

– φ = ψ1Uψ2

The initial RuleRunner system includes rules for ψ1, ψ2 and for the U oper-
ator. As long as R[ψ1Uψ2]A is not evalued, map(ψ1Uψ2) = map(ψ2) �
(map(ψ1) � (map(X(ψ1Uψ2)))), that is, the standard one-step unfolding of
the ‘until’ operator as defined in FLTL. When a truth value for the global
property is computed, there are several possibilities. The first one is that
ψ2 is true and ψ1Uψ2 is immediately satisfied. RuleRunner adds [ψ1Uψ2]T
to the state and map(φ) = �; this corresponds to the rewriting map(ψ2) �
(map(ψ1) � (map(X(ψ1Uψ2)))) = � � (map(ψ1) � (map(X(ψ1Uψ2)))) = �,
which is a valid rewriting. The case for [ψ1]F and [ψ2]F is analogous. The
?A case means that the evaluation for the until is undecided in the current
trace, and is mapped on the standard one-step unfolding of the until opera-
tor in FLTL. The ?B case implicitly encode the information that ‘the until
cannot be trivially satisfied anymore’, and henceforth the FLTL mapping is
map(ψ1)�(map(X(ψ1Uψ2))). The cases for ?L and ?R have the exact meaning
they had in the disjunction and conjunction cases. For instance, if [ψ1]F and
[ψ2]?, RuleRunner adds [ψ1Uψ2]?R to the state, and for the obtained state
map(φ) = map(ψ2). The sequence of FLTL rewriting is map(ψ2)�(map(ψ1)�
(map(X(ψ1Uψ2)))) = map(ψ2) � (⊥ �(map(X(ψ1Uψ2)))) = map(ψ2)� ⊥=
map(ψ2).

Corollary. RuleRunner yields a FLTL verdict.

Proof. RuleRunner is always in a state that can be mapped on a valid FLTL
judgement; therefore, when a binary truth evaluation for the encoded formula is
given, this is mapped on the correct binary evaluation in FLTL. But since for
such trivial case the map function corresponds to an identity, the RuleRunner
evaluation is a valid FLTL judgement. The fact that RuleRunner yields a binary
verdict is guaranteed provided that the analysed trace is finite, thanks to end-
of-trace rules.
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Fig. 2. Average monitoring time vs trace properties)

4 Experiments

In this paper we have described how to build RuleRunner monitors from FLTL
formulae. The process is deterministic and the resulting monitor is guaranteed to
compute the correct FLTL verdict. We autonomously implemented all the com-
ponents described in this paper - an online tool is available at www.di.unito.it/
∼perotti/RuleRunner.jnlp. All experiments reported in this section were run on
a 2014 MacBook Pro with a 2.6 GHz dual-core Intel Core i5 processor, 16 GB
RAM and SSD SATA disk.

– We tested the impact of the trace length on the monitoring performance:
• We took into account three Declare [16] patterns: existence (♦a), response

(�(a ⇒ ♦b) ≡ �(!a ∨ ♦b)) and exclusive choice ((♦a ∨ ♦b)∧!(♦a ∧ ♦b) ≡
(♦a ∨ ♦b) ∧ (�!a ∨ �!b)).

• We generated traces where a never occurs: this guarantees that the moni-
toring process always reaches the end of the trace.

• We generated traces with an increasing number of cells, from 1 to 1000.
• We measured the time required by RuleRunner to monitor each formula/

trace combination.
Figure 2(left) shows the average time required to monitor a single cell of a
trace. The steep drop at the beginning of all curves is an overhead cost
(input/output, etc.) being quickly averaged down by the increasing number of
cells. Besides this initial effect, the graph shows how the average time required
to monitor a cell is constant wrt. the length of the analysed trace: this behav-
iour is caused by the fact that RuleRunner keeps a single state rather than
relying on a branching structure.

– With a similar setup, we tested the impact of the size of the observational
alphabet, with analogous results (Fig. 2(right)).

– We performed tests aimed at evaluating the actual ratio between the com-
plexity of a FLTL formula and the size of the resulting RuleRunner monitor:

http://www.di.unito.it/~perotti/RuleRunner.jnlp
http://www.di.unito.it/~perotti/RuleRunner.jnlp
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Fig. 3. Monitor size and monitoring time vs formula complexity

1. We took into account formulae φ with length spanning from 1 (observa-
tions) to 100.

2. For each length, we generated 1000 random FLTL formulae.
3. For each formula, we generated the RuleRunner monitor.
4. For each monitor, we measured the total number of generated rules.
5. For each set of same-length 1000 rules, we computed the minimum, max-

imum and average size of the resulting monitors.
The results (Fig. 3, left) show how, in fact, the number of rules in a RuleRunner
monitor for φ is linear wrt. the size of φ.

– We analysed the impact of increasingly large monitors on the cell-averaged
monitoring time:
1. We took into account formulae φ with length spanning from 1 (observa-

tions) to 100.
2. For each length, we generated 100 random FLTL formulae.
3. For each formula, we generated a random trace over a fixed-size observa-

tional alphabet (including 50 elements).
4. For each formula/trace combination, we ran the monitoring algorithm,

measured the performance time, and divided it by the index of the cell that
has been reached in the trace. This is necessary, since the monitoring could
terminate anywhere in the cell: the measured time alone is not informative
enough.

In order to try and optimise the performances, we designed and coded another
RuleRunner implementation, strictly based on the concept of parsing trees.
Instead of having a single rule list, we scattered the (identical) list of rules over
the nodes of the parsing trees, with the goal of fully localising the monitoring
process and the storage of the monitoring state. This version (simply called
tree-based) implements the metaphor of monitoring as truth-values propaga-
tion along the parsing tree of φ which we used throughout the paper. We
stress that this implementation uses the same set of rules, as generated by
Algorithm 2, and follows the monitoring process of Algorithm 3: the main dif-
ference is that it does it on a more distributed data structure. The performance
and comparison of the two implementations are visualised in Fig. 3(right).
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5 Conclusions and Future Work

In this paper we present RuleRunner, a rule-based runtime verification system
that exploits Horn clauses in implication form and forward chaining to perform
a monitoring task. RuleRunner is a module in a wider framework that includes
the encoding of the rule system in a neural network, the exploitation of GPUs
to improve monitoring performances (as computation in neural networks boils
down to matrix-based operations) and the adoption of machine learning algo-
rithms to adapt the encoded property to the observed trace. Our final goal is
the development of a system for scalable and parallel monitoring and capable to
provide a description of patterns that falsified the prescribed temporal property.
The applications of this frameworks spans from multi-agent systems (where a
system designer may want to use an agent’s unscripted solution to a problem as
a benchmark for all other agents [8]) to security (where a security manager may
want to correct some false positives when monitoring security properties [4]).

Concerning RuleRunner, a future direction of work is to create rule systems
for other finite-trace semantics. For instance, we conjecture that removing all
rules with END would be a valid starting point for the development of a rule
system for LTL3; the rule systems for FLTL and LTL3 will then be used to
build a rule system for RVLTL. A second direction of future work will be to
modify RuleRunner in such a way to use external forward chaining tools for
the monitoring (as we use our own inference engine), such as the Constraint
Handling Rules extension included in several Prolog implementations.
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Abstract. This paper addresses the problem of safely navigating a
mobile robot with limited sensing capability and limited information
about stationary obstacles. We consider two sensing limitations: blind
spots between sensors and limited sensing range. We identify a set of
constraints on the sensors’ readings whose satisfaction at time t guar-
antees collision-freedom during the time interval [t, t + Δt]. Here, Δt
is a parameter whose value is bounded by a function of the maximum
velocity of the robot and the range of the sensors. The constraints are
obtained under assumptions about minimum internal angle and mini-
mum edge length of polyhedral obstacles. We apply these constraints
in the switching logic of the Simplex architecture to obtain a controller
that ensures collision-freedom. Experiments we have conducted are con-
sistent with these claims. To the best of our knowledge, our study is
the first to provide runtime assurance that an autonomous mobile robot
with limited sensing can navigate without collisions with only limited
information about obstacles.

1 Introduction

Autonomous mobile robots are becoming increasingly popular. They are used in
homes, warehouses, hospitals and even on the roads. In most applications, colli-
sion avoidance is a vital safety requirement. Ideally, the robots would have 360◦

field-of-view. One approach to achieve this is to closely place a sufficient number
of sensors (e.g., infrared, laser, or ultrasound) on the robot. The biggest prob-
lem with this approach is interference between sensors. It is difficult to install
the sensors close enough to achieve 360◦ sensing while at the same time avoid-
ing interference.1 In addition, the use of numerous sensors increases cost, power
1 Cameras, i.e., sensing based on computer vision, do not interfere with each other but

are less common as a basis for navigation due to other disadvantages: cameras depend
on good lighting; accurate ranging from stereoscopic vision is impossible on small
robots, is generally less accurate than and requires significantly more computational
power than ranging from lasers, ultrasound, IR, etc..
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consumption, weight, and size of the robot. Another option is to use sensors
that have wide angle of observation, such as the Hokuyo URG-04LX laser range
finder with 240◦ range. This approach, however, adds thousands of dollars to
the cost. Due to these difficulties, 360◦ sensing capability is often not a practi-
cal option. Consequently, many well-known cost-effective mobile robots, such as
E-puck, Khepera III, Quickbot and AmigoBot, lack this capability. These robots
have a small number of narrow-angle infrared or ultrasound sensors that do not
provide 360◦ field-of-view. The resulting blind spots between sensors make the
robot vulnerable to collision with undetected obstacles that are narrow enough
to fit in the blind spots.

One approach to prevent such collisions is for the robot to repeatedly stop or
slow down (depending on the sensor range), rotate back and forth to sweep its sen-
sors across the original blind spots, and then continue (this assumes the robot can
rotate without moving too much). This approach, however, is inefficient: it signif-
icantly slows the robot and wastes power. A similar approach is to mount the sen-
sors so that they can rotate relative to the robot. Unfortunately, this approach adds
hardware and software complexity, increases power usage, and limits themaximum
safe speed of the robot (depending on the rotation speed of the sensors).

In this paper, we present a runtime approach, based on the Simplex architec-
ture [8,9], to ensure collision-freedom for robots with limited field-of-view and
limited sensing range in environments where obstacles are polyhedral and sat-
isfy reasonable assumptions about minimum internal angle and minimum edge
length. One example of such an environment is an automated warehouse, where
some information is known about the shapes and sizes of shelving racks, pallets,
etc. Our work is also applicable to robots designed with 360◦ sensing capability
that temporarily acquire blind spots due to one or more sensor failures. Our
approach does not suffer from the above disadvantages, and requires only some
weak assumptions about the shape of the obstacles. Our approach guarantees
collision-freedom if the obstacles are stationary. If the environment contains mov-
ing obstacles, and a bound on their velocity is known, our approach can easily
be extended to also ensure passive safety, which means that no collisions can
happen while the robot is moving.

Many navigation algorithms have been proposed for autonomous mobile
robots. Few of these algorithms, however, have been verified to ensure the safety
of the robot. One consequence of this state of affairs is that supposedly superior
but uncertified navigation algorithms are not deployed in safety-critical appli-
cations. The Simplex architecture allows these uncertified algorithms, which in
Simplex terms are called advanced controllers (ACs), to be used along side a pre-
certified controller, called the baseline controller (BC). The BC will take control
of the robot if something goes wrong with the AC. The key component of the
Simplex architecture that makes this happen is the decision module, which uses
switching logic to determine when to switch from the AC to the BC.

In this paper, we present a Simplex-based approach that offers runtime assur-
ance that a mobile robot with limited sensing capability can safely navigate an
unknown environment with stationary obstacles. By “safely navigate” we mean
without colliding with an obstacle. We consider two sensing limitations: blind
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spots between sensors, and limited sensing range. We identify a set of constraints
on the sensors’ readings whose satisfaction at time t guarantees collision-freedom
during the time interval [t, t + Δt]. Here, Δt is a parameter whose value is
bounded by a function of the maximum velocity of the robot and the range of
the sensors. The constraints are obtained under assumptions about minimum
internal angle and minimum edge length of polyhedral obstacles, and form the
basis for the switching logic. The simulation results we have obtained are con-
sistent with our runtime-assurance claims.

Another distinguishing feature of our work is the manner in which the
switching condition is computed, using extensive geometric reasoning. Exist-
ing approaches to computation of switching condition are based on Lyapunov
stability theory (e.g., [8,9]) or, more recently, state-space exploration (e.g., [2]).
These existing approaches cannot be applied to the problem at hand, because
of the incomplete knowledge of the shapes and locations of the obstacles in the
robot’s environment. To the best of our knowledge, our study is the first to pro-
vide runtime assurance that a mobile robot with limited sensing can navigate in
such an environment without colliding with obstacles.

The paper is organized as follows. Section 2 considers related work on prov-
able collision avoidance. Section 3 provides background on the Simplex architec-
ture. Section 4 contains a detailed derivation of the switching condition. Section 5
discusses our implementation and experimental results. Section 6 offers our con-
cluding remarks and directions for future work.

2 Related Work

Prior work [1,3–5] has focused on establishing collision-freedom for specific navi-
gation algorithms. In contrast, we employ the Simplex architecture to ensure the
safety of the robot in the presence of any navigation algorithm, however faulty
it may be. We consider each of these approaches in turn.

Theorem-proving techniques are used in [4] to establish two safety properties
of the Dynamic Window algorithm for collision avoidance: passive safety and
passive friendly safety, both of which apply to stationary and moving obstacles.
Infinite sensor detection range is assumed. Our approach, in contrast, accounts
for the limited detection range of sensors.

In [3], the authors present the PassAvoid navigation algorithm, which avoids
“braking-inevitable collision states” to achieve passive safety. In [7], a biologically
inspired navigation algorithm for a unicycle-like robot moving in a dynamic
environment is presented. Both algorithms assume 360◦ sensing capability. We
do not make this assumption, and instead rely on certain weak assumptions
about the shapes of obstacles.

In [1], the authors propose an algorithm that constrains the velocity of a
mobile robot moving on a known trajectory such that it stops before colliding
with moving obstacles. They assume 360◦ field-of-view and a pre-planned trajec-
tory that guides the robot through an environment with known static obstacles.
We do not make any of these assumptions.
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A method is presented in [5] for computing a smooth, collision-free path from
a piecewise linear collision-free trajectory produced by sampling-based planners.
They assume the given sampling-based trajectory is collision-free and use cubic
B-splines to generate a smooth trajectory that guarantees collision-freedom. We
do not make any assumptions about robot trajectories.

3 The Simplex Architecture

The Simplex architecture [8,9] was developed to allow sophisticated control soft-
ware to be used in safety-critical systems. This sophisticated software, called an
advanced controller, is designed to achieve high performance according to spec-
ified metrics (e.g., maneuverability, fuel economy, mission completion time). As
a result, it might be so complex that it is difficult to achieve the desired level
of safety assurance in all possible scenarios. Its complexity might also prevent
it from achieving required certifications (e.g., RTCA DO-178C for flightwor-
thiness). The Simplex architecture allows such advanced controllers to be used
safely, by pairing them with a simpler baseline controller for which the desired
level of safety assurance can be achieved, and with a decision module that deter-
mines which controller is in control of the plant.

While the system is under the control of the advanced controller, the decision
module monitors the system state and periodically checks whether the system
is in imminent danger of violating a given safety requirement. If so, the deci-
sion module switches control of the system from the advanced controller to the
baseline controller. The period with which the decision module makes the switch-
ing decision is called the decision period and denoted Δt. The condition on the
system state that it evaluates to determine whether to switch to the baseline
controller is called the switching condition. The switching condition depends on
the safety requirements, the system dynamics, and the decision period. A state is
correct if it satisfies the given safety requirements. A state is recoverable if, start-
ing from that state, the baseline controller can ensure that the system remains
correct; i.e., remains in correct states.

The correctness requirement for the switching condition is: If the switching
condition is false (i.e., “don’t switch”), then the system is guaranteed to remain
in recoverable states for the next Δt time units, regardless of the control inputs
to the plant produced by the advanced controller during that interval. The quan-
tification over all possible control inputs to the plant is needed because we make
no assumptions about the advanced controller’s behavior. If the baseline con-
troller and switching condition are correct, then correctness of the system is
ensured, regardless of the advanced controller’s behavior.

4 Switching Logic

Our approach uses the Simplex architecture with a baseline controller that imme-
diately stops the robot. To simplify the derivation of the switching condition
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slightly, we make the following assumptions: (1) the execution time of the deci-
sion module is negligible; (2) the switching latency is negligible (i.e., the baseline
controller can take over immediately); (3) the robot can instantly come to a full
stop from any velocity; (4) the robot’s shape is a single point, as in [4]. None of
these assumptions is essential. Our derivation can easily be extended to eliminate
them.

Since we assume instantaneous stop, the decision module only needs to ensure
that no collisions can occur within Δt time units. Since we make no assumptions
about the advanced controller’s behavior, and do not assume any limits on how
rapidly the robot can turn or accelerate, the robot may immediately move in any
direction at its maximum speed, denoted vmax. The speed vmax and the decision
period Δt define the robot’s safety disk, a circular disk with radius R = vmaxΔt
centered at the robot. The choice of the decision period Δt is constrained by
the requirement that R < Rs, where Rs is the maximum detection range of the
sensors. To ensure collision-freedom for time Δt, there must not be any obstacles
within the safety disk.

The robot is equipped with N distance sensors with angle of detection βs and
maximum range Rs, as shown in Fig. 1. For simplicity, we assume the sensors
are evenly spaced; it is easy to analyze other spacings in a similar way. The
angle (in radians) of the gap between the fields-of-view of adjacent sensors is
βg = (2π −Nβs)/N . We assume N and βs are such that βg > 0; in other words,
the robot has blind spots.

Fig. 1. The robot has N evenly spaced sensors s1, s2, ..., sN with angle of detection βs

and maximum range Rs. The angle of the gap between two adjacent sensors is βg.

When an obstacle intersects a sensor’s cone of observation at multiple dis-
tances, depending on the exact nature of the sensor, it may report the closest
distance to the obstacle, the farthest distance, or something in between. Our
derivation of the switching condition is based on the worst-case (from the per-
spective of collision avoidance) assumption about sensor behavior, namely, that
the sensor reports the farther distance to the obstacle.
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4.1 Notation

Let Eα
AB = {P |∠APB = α} be the α-equiangular arcs of AB, i.e., the locus of

points that see the line segment AB under angle α. Geometrically, Eα
AB forms

two circular arcs that pass through A and B, shown as the red boundary of
the blue shape in Fig. 2. Let Sα

AB be the set of points that lie within the area
enclosed by α-equiangular arcs of AB including the boundary. It is easy to show
that Sα

AB = {C |∠ACB ≥ α}, which means Sα
AB is the locus of all possible

vertices with angle at least α such that one edge passes through A and the other
edge passes through B.

Fig. 2. Illustration of Sα
AB . The α-equiangular arcs of AB is the boundary.

Let O be the position of the robot. Let Ssafe be the set of points that lie
within the safety disk, i.e., Ssafe = {P |OP ≤ R}. Let Sobstacle be the set of
points that belong to the obstacle. Ssafe and Sobstacle are illustrated in Fig. 3.
By definition of the safety disk, a collision is possible within Δt time units iff
Sobstacle ∩ Ssafe �= ∅.

Fig. 3. Illustration of Ssafe and Sobstacle. A collision may happen within Δt time units
iff Sobstacle ∩ Ssafe �= ∅

Let Sii′
safe be the set of points in the safety disk and in or between the cones

of observation of sensors si and si′ , shown as the orange region in Fig. 4.

4.2 Collision-Freedom Constraints

We derive the constraints that guarantee collision-freedom for Δt time units
under the following assumptions about obstacles: (1) obstacles are polyhedra;
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Fig. 4. Illustration of Sii′
safe , the set of points in the safety disk and in or between the

cones of observation of sensors si and si′ .

(2) there is a known lower bound α on the internal angles between edges and
α > β, where β is the angle of the wedge Sii′

safe (i.e., β = βg +2βs); (3) there is a
known lower bound lmin on the edge lengths and lmin ≥ L, where L is defined
below; (4) the separation between obstacles is such that whenever two adjacent
sensors detect an obstacle, they are detecting the same obstacle. Intuitively, the
lower bound on internal angles ensures that vertices of obstacles are wide enough
so that they will be detected by the robot’s sensors despite blind spots.

Suppose sensor si detects an obstacle at Bi, i = 1..N . We define Ai as the
point in the cone of observation of si such that OAi = lmin, if si does not detect
any obstacle and OAi = min{OBi, lmin}, otherwise. Consider a sensor si′ , where
i′ = (i mod N) + 1, that is adjacent to si. The definition of Ai implies there
is at most one obstacle vertex inside triangle OAiAi′ . The assumptions about α
and lmin are designed such that Sα

AiAi′
∩ Sii′

safe = ∅ if OAi = OAi′ = lmin. We
prove the constraints Sα

AiAi′
∩Sii′

safe = ∅ for i = 1..N , where i′ = (i mod N)+1,
imply Sobstacle ∩ Ssafe = ∅ and hence guarantee collision-freedom for Δt time
units. The proof is in the extended version of this paper, available at http://
www.fsl.cs.stonybrook.edu/∼dphan/rv2015-extended.pdf.

Figure 5 shows what the constraints look like geometrically. Intuitively, each
constraint guarantees collision-freedom in one wedge of the safety disk. These
wedges overlap and cover the safety disk.

Figure 6 shows the lower bound L on lmin. Let Oarc be the center of the
α-equiangular arc of AiLAi′L as shown in Fig. 6. L can be derived from the
following equations.

AiLAi′L =
√

2 · L2 − 2 · L2 · cos β (1)
Rarc = (AiLAi′L/2)/ sin α (2)

OOarc = Rarc + R (3)

The assumption lmin ≥ L ensures that if adjacent sensors si and si′ both
detect an obstacle at distances greater than lmin, then no obstacle point appears
within the wedge Sii′

safe . We prove this in the extended version of this paper
(case 1c in Appendix A).

http://www.fsl.cs.stonybrook.edu/~dphan/rv2015-extended.pdf
http://www.fsl.cs.stonybrook.edu/~dphan/rv2015-extended.pdf
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Fig. 5. Geometric meaning of the constraint Sα
AiAi′ ∩ Sii′

safe = ∅, where si and si′ are a
pair of adjacent sensors.

Fig. 6. Lower bound L on lmin such that the α-equiangular arcs of AiLAi′L touch the
safety disk.

The assumption α > β is needed because if α ≤ β, then ∠AiOAi′ = β ≥ α,
i.e., O ∈ Sα

AiAi′
for any pair Ai, Ai′ . That means Sα

AiAi′
always intersects the

safety disk and we cannot guarantee the safety of the robot.
In principle, the constraints Sα

AiAi′
∩ Sii′

safe = ∅ for i = 1..N , where i′ = (i
mod N)+1, can be used as the switching condition for the switching logic in the
Simplex architecture. However, checking these constraints exactly is computa-
tionally expensive. In the following sections, we derive computationally cheaper
but more conservative switching conditions. We derive these switching condi-
tions for two cases: case 1: a sensor s detects an obstacle within distance lmin

and the adjacent sensors do not; case 2: two adjacent sensors s and s′ detect an
obstacle within distance lmin. Denote these switching conditions by φ1(s) and
φ2(s, s′), respectively. The overall switching condition is the disjunction of these
two cases, i.e., (∃s. φ1(s)) ∨ (∃s, s′. φ2(s, s′)).



Collision Avoidance for Mobile Robots with Limited Sensing 209

We do not need a switching condition for the case when two adjacent sensors
detect an obstacle at distances greater than lmin because of the assumptions
lmin ≥ L and α > β discussed above, which allow us to treat detections at
distances above lmin as detections at lmin.

4.3 Case 1: A Sensor Detects an Obstacle Within lmin; Adjacent
Sensors Do Not

We use the following property to derive the switching condition in this case.
Let OX,OY be two readings by sensor si such that OX < OY . Let OZ be the
reading of sensor si′ that is adjacent to si.

Property 1.
∣
∣
∣Sα

XZ ∩ Sii′
safe

∣
∣
∣ = 1 ⇒ Sα

Y Z ∩ Sii′
safe = ∅

Proof. By contradiction. Suppose
∣
∣
∣Sα

XZ ∩ Sii′
safe

∣
∣
∣ = 1 and Sα

Y Z ∩ Sii′
safe �= ∅. Let

C ∈ Sα
XZ ∩ Sii′

safe as shown in Fig. 7 (C is the point where Sα
XZ touches Sii′

safe).
Since C lies on the boundary of Sα

XZ , we have ∠XCZ = α. Let D ∈ Sα
Y Z ∩

Sii′
safe . Because OY is strictly greater than OX, the geometry implies ∠XDZ >

∠Y DZ ≥ α. This means D ∈ Sα
XZ and D �≡ C, therefore

∣
∣
∣Sα

XZ ∩ Sii′
safe

∣
∣
∣ > 1, a

contradiction.

Suppose sensor s1 detects an obstacle at point A1, where OA1 = d1, and
adjacent sensors do not detect any obstacle within distance lmin, as shown in
Fig. 8. In this case, we assume the adjacent sensor s2 detects an obstacle at

Fig. 7. Illustration of Property 1. Sα
XZ touches Sii′

safe at C. Sα
Y Z ∩ Sii′

safe = ∅
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Fig. 8. Illustration of case 1. Sensor s1 detects an obstacle at distance OA1 < lmin.
Adjacent sensor s2 does not detect any obstacle within distance lmin so we assume
OA2 = lmin.

distance OA2 = lmin, as described in Sect. 4.2. The switching condition φ1(s1)
in this case is of the form d1 ≤ d1switch, for the threshold d1switch defined below.

If we can find a point AT such that
∣
∣Sα

AT A2
∩ Ssafe

∣
∣ = 1 (i.e., Sα

AT A2
touches

Ssafe), then by Property 1, we can let d1switch = OAT . This switching condition
is more conservative than the constraint Sα

A1A2
∩S12

safe = ∅ because there are some
cases when Sα

AT A2
touches Ssafe at a point outside the wedge S12

safe . The benefit
is that the switching threshold d1switch = OAT can be computed statically,
resulting in a very simple switching condition.

Similar to the computation of lower bound L on lmin described in Sect. 4.2,
the point AT must satisfy the following equations, where Oarc is the center of
the α-equiangular arc of AT A2 as shown in Fig. 9.

AT A2 =
√

OA2
T + l2min − 2 · OAT · lmin · cos β (4)

Rarc = (AT A2/2)/ sin α (5)
OOarc = Rarc + R (6)

Given lmin, α, β and R, all of which are known statically, the switching
threshold OAT can be obtained by straightforward solution of these equations
using algebraic geometry. We use Matlab to automate this.

4.4 Case 2: Two Adjacent Sensors Detect an Obstacle Within lmin

Suppose s1 detects an obstacle at A1 where OA1 ≤ lmin, and an adjacent sensor
s2 detects an obstacle at A2 where OA2 ≤ lmin, as depicted in Fig. 10.

Checking the constraint Sα
A1A2

∩ S12
safe = ∅ exactly requires a complex algo-

rithm. To obtain a computationally cheaper switching condition, we instead
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Fig. 9. Illustration of switching threshold OAT calculation.

Fig. 10. Sensors s1 and s2 detect an obstacle at distance OA1 ≤ lmin and OA2 ≤ lmin,
respectively (Color figure online).

check the more conservative constraint Sα
A1A2

∩Ssafe = ∅. Algorithm 1 computes
the switching condition φ2(s1, s2) by checking whether Sα

A1A2
∩ Ssafe �= ∅. This

algorithm performs only a short sequence of inexpensive geometric calculations.
The geometric reasoning underlying Algorithm 1 is similar to the derivation of
the lower bound L on lmin described in Sect. 4.2.

5 Implementation and Experimental Results

We implemented the Simplex architecture with the baseline controller and
switching conditions described in Sect. 4 in the Matlab simulator for the
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Input: OA1, OA2, α, ∠A1OA2, R

// Distance between points A1 and A2

A1A2 =
√

OA2
2 + OA2

2 − 2 · OA1 · OA2 · cos ∠A1OA2;
// Radius of the α-equiangular arcs for A1A2, i.e., points C such

that ∠A1CA2 = α
Rarc = (A1A2/2)/ sin α;
// Find the centers of those two arcs (the green dots in Fig. 10).

Their position is defined by the following geometric constraints,

whose solution amounts to finding the third vertex of a triangle,

given the other two vertices (namely, A1 and A2) and the internal

angle at the third vertex ∠A1OA2.

Oarc,1, Oarc,2 = the points Oarc satisfying OarcA1 =OarcA2 ∧ ∠A1OarcA2 =2α;
// Between those two points, choose the one corresponding to the arc

that intersects the safety disk.

Oarc = α ≤ π/2 ? min{OOarc,1, OOarc,2} : max{OOarc,1, OOarc,2};
// Test whether the arc intersects the safety disc by comparing the

distance between their centers with the sum of their radii.

return OOarc ≤ Rarc + R

Algorithm 1. Switching condition when adjacent sensors detect an obstacle
within distance lmin

Quickbot ground robot [6]. The robot has sensor architecture as in Fig. 1 with
the following parameters: (1) number of sensors N = 8; (2) angle of detection of

Fig. 11. Snapshots from simulations showing the robot correctly stops to ensure no
obstacles in the safety disk. The circle around the robot represents the safety disk.
The red region represents the obstacle. The blue wedges represent the robot’s cones of
observation. (a) Snapshot from scenario for case 1: a sensor detects an obstacle within
lmin; adjacent sensors do not. (b) Snapshot from scenario for case 2: two adjacent
sensors detect an obstacle within lmin (Color figure online).
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the sensors βs = 10o; (3) maximum range of the sensors Rs = 80 cm; (4) maxi-
mum velocity vmax = 28 cm/s, and decision period Δt = 0.5 s. The radius of the
safety disk is R = vmaxΔt = 14 cm.

We tested the switching condition in the following two scenarios; snapshots
from simulations of these scenarios appear in Fig. 11. Both scenarios involve
an obstacle with lower bound on internal angles α = 70◦. For the scenario
in Fig. 11(a), we place the obstacle such that when the robot approaches the
obstacle and the vertex with angle α is about to enter the safety disk, only one
sensor detects an edge with lmin and the other edge barely misses the cone of
observation of an adjacent sensor. This is the worst-case scenario for case 1 in
Sect. 4.3. For the scenario in Fig. 11(b), we place the obstacle such that when
the robot approaches the obstacle and the vertex with angle α is about to enter
the safety disk, the vertex is in the gap of two adjacent sensors and both sensors
detect an edge of the obstacle within lmin. This is the worst-case scenario for
case 2 in Sect. 4.4.

Fig. 12. Graphs of d1switch as a function of various parameters. (a) d1switch as a func-
tion of α, with β = π/4, lmin = 80 and R = 14. (b) d1switch as a function of β, with
α = π/2, lmin = 80 and R = 14. (c) d1switch as a function of lmin, with α = π/2,
β = π/4, and R = 14. (d) d1switch as a function of R, with α = π/2, β = π/4, and
lmin = 80.
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The snapshots in Fig. 11 show the moment when the switching condition
becomes true and the robot stops. One observation is that, in both scenarios,
the switching condition is correct: the obstacle does not enter the safety disk. Of
course, this is expected. A more interesting observation is that, in both scenar-
ios, the switching condition is tight (not unnecessarily conservative): the robot
does not stop until the obstacle is about to enter the safety disk. The actual
simulations leading to these snapshots can be viewed at https://www.youtube.
com/watch?v=bK-YnGgwjwU.

Figure 12 shows how the switching threshold d1switch in case 1 depends on
various parameters. Figure 12(a) shows how d1switch decreases as α increases. It is
clear from the worst-case scenario of case 1 that when an obstacle with a sharper
corner, i.e., a smaller α, touches the safety disk, the sensor detects its edge at
a greater distance than one with a flatter corner, and this necessitates a larger
d1switch. Figure 12(b) shows how d1switch increases as β increases. Intuitively, a
larger β means a larger gap between the cones of observation of two adjacent
sensors, so the edge of the obstacle is detected at a larger distance when the
vertex is at the boundary of the safety disk. Figure 12(c) shows how d1switch

decreases as lmin increases. This can be seen from the worst-case scenario: the
edge of the obstacle that is not detected within lmin will make a smaller angle
with the edge of the cone if lmin is larger, so the other edge is detected at a
smaller distance. Figure 12(d) shows how d1switch increases as R increases (note:
it doesn’t matter whether the increase in R is due to an increase in vmax or Δt).
This directly reflects the fact that a robot with a larger safety disk needs to stop
farther from obstacles.

6 Conclusions

In this paper, we have shown how it is possible to use the Simplex architecture,
equipped with a sophisticated geometric-based switching condition, to ensure at
runtime that mobile robots with limited field-of-view and limited sensing range
navigate without collisions with only limited information about obstacles.

Future work includes extending our approach to take into account the size
and shape of the robot, its braking power (instead of assuming immediate stop),
and the minimum detection distance of the sensors. We will also consider more
powerful baseline controllers. We also plan to develop algorithms that allow the
robot to learn about its environment, enabling it to replace worst-case assump-
tions with more detailed information about obstacles it has encountered, allowing
tighter switching conditions. The geometric analysis that we developed to derive
and verify the switching condition can also be used as a basis for the design of
collision-avoidance logic in navigation algorithms for mobile robots.
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Abstract. Parametric runtime verification is the process of verifying
properties of execution traces of (data carrying) events produced by
a running system. This paper considers the relationship between two
widely-used specification approaches to parametric runtime verification:
trace slicing and first-order temporal logic. This work is a first step in
understanding this relationship. We introduce a technique of identifying
syntactic fragments of temporal logics that admit notions of sliceability.
We show how to translate formulas in such fragments into automata with
a slicing-based semantics. In exploring this relationship, the paper aims
to allow monitoring techniques to be shared between the two approaches
and initiate a wider effort to unify specification languages for runtime
verification.

1 Introduction

Runtime verification [12] is the process of checking properties of execution traces
produced by running a computational system. An execution trace is a finite
sequence of events generated by the computation. In many applications, events
carry data values – the so-called parametric, or first-order, case of runtime veri-
fication. To formalise runtime verification, we need to provide (a) a specification
language for describing properties of execution traces, and (b) a mechanism for
checking these formally-defined properties during execution, i.e. a mechanism for
generating monitors from specifications. Many different formalisms have been
proposed (see Sect. 7). In fact, almost every runtime verification approach intro-
duces its own specification language. One aim of this work is to develop tech-
niques for relating approaches to runtime verification as a first step to bringing
some order to this variety of formalisms.

One approach to runtime verification [3,15] is to use automata both to specify
trace properties and to act as monitors of execution traces. In the first-order case,
the semantics of automata can be defined in terms of so-called trace slicing [9],
whereby traces are projected according to the values carried by events, and
properties are evaluated on these projections. This has been shown to be highly
efficient [1]. An alternative approach is to use temporal logic to specify properties
of traces. Mechanisms for constructing monitors from first-order temporal logic
specifications have been proposed (see, for example, [5,7,10,14,20]). This paper
considers the relationship between these two approaches.
c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 216–232, 2015.
DOI: 10.1007/978-3-319-23820-3 14
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In general, properties expressed in a first-order temporal logic do not respect
trace slicing. We examine the reasons for this and then introduce a technique for
exploring the relationship between trace slicing and temporal logic. To do so, we
introduce a first-order linear temporal logic with a finite trace semantics. The key
step is then to identify syntactic fragments of this logic and the corresponding
notions of ‘sliceability’. We give one example of such a syntactic fragment and
prove that it admits a notion of sliceability. We then show how we may construct
monitoring automata from formulas in the fragment. To what extent do such
syntactic fragments provide specification languages for runtime verification? As
we discuss, currently the expressivity of formalisms for runtime verification is
not easy to assess as we do not have adequate data on specifications likely to
occur in runtime verification activities.

There are two main motivations behind this work. Firstly, giving a translation
from first-order temporal logic into slicing-based formalisms allows specifications
written in the former language to be monitored using techniques based on the
latter. Secondly, the wide range of specification languages for (parametric) run-
time verification often makes comparison and re-usability of specifications diffi-
cult. This work therefore is a contribution to unifying specification languages for
runtime verification. More precisely, it is a necessary first step in the authors’
wider goal of finding a correspondence between the full expressiveness of the
slicing-based formalism QEA and temporal logics.

The contributions of this paper are as follows:

– Based on a first-order linear temporal logic (Sect. 2) and slicing (Sect. 3), we
describe restrictions that slicing places on the structure of formulas, and intro-
duce a syntactic fragment that satisfies these restrictions (Sect. 4)

– To make the correspondence practically useful we provide a translation from
formulas in the fragment to a slicing-based formalism (Sect. 5)

The paper finishes with related work (Sect. 7) and conclusions (Sect. 8).

2 A First-order Linear Temporal Logic

We begin by presenting a first-order discrete linear-time temporal logic, FO-LTLf ,
with a finite-trace semantics, where traces are finite sequences of events (see [8]
for a discussion). As we are focussing on the correspondence with slicing, we
do not consider general first-order functions and predicates; we plan to consider
these in future work.

Let Σ be a finite set of names of events, Var be a finite set of variable names
and Val be a finite set of value symbols (constants) disjoint from Var . An event
e(z1, . . . , zn) is an element of the set Σ × (Var ∪ Val)∗. An event is ground if
all of its parameters are values. We write events as a,b . . . A (ground) trace is a
finite sequence of (ground) events. We write the empty trace as ε. Given a trace
τ we write the length of a trace as |τ | and the i-th element as τi where the first
element is at index 0.
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The syntax of FO-LTLf is defined as the following formulas:

φ = true | a | ∀x : φ | ¬φ | φ ∨ φ | φ U◦ φ

We use standard identities, defining false = ¬true, φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2),
∃x : φ = ¬∀x : ¬φ and φ1 → φ2 = ¬φ1 ∨ φ2. The logic incorporates a single
temporal modality U◦ which can be read as next until. This is sufficient for
defining in FO-LTLf the temporal modalities that we would expect to see in a
discrete linear-time temporal logic: the ‘next’ modality ©φ = false U◦ φ; ‘until’
φ1 U φ2 = φ2 ∨ (φ1 ∧ (φ1 U◦ φ2)); ‘eventually’ ♦φ = true U φ; and ‘always’
�φ = φ U false.

A valuation is a map (i.e. a partial function with finite domain) from variables
to values. For valuations θ1 and θ2 let θ1 †θ2 be the valuation where θ2 overrides
or extends values for variables in θ1. Valuations can be applied to events and to
formulas to replace variables with values. A domain is a map from variables to
sets of values. Let events(φ) be the set of events occurring in φ.

A formula φ is a sentence if it has no free variables. We define the semantics
of FO-LTLf in terms of a models relation |= on sentences:

Definition 1 (Semantics). We define the semantics of FO-LTLf with respect
to a quadruple (D, τ, v, i) where D is the domains of variables, τ is a trace, v is
a valuation and i an index of the trace. The relation |= is defined as follows:

D, τ, v, i |= true
D, τ, v, i |= a if τi = v(a)
D, τ, v, i |= ¬φ if D, τ, v, i 	|= φ
D, τ, v, i |= φ1 ∨ φ2 if D, τ, v, i |= φ1 or D, τ, v, i |= φ2

D, τ, v, i |= φ1 U◦ φ2 if there exists a j > i such that either D, τ, v, j |= φ2 or
j = |τ | and φ2 = false

and for every k where i < k < j we have D, τ, v, k |= φ1

D, τ, v, i |= ∀x : φ if for every d ∈ D(x) we have D, τ, v † [x �→ d], i |= φ

Linear temporal logics are usually defined on infinite traces. However, in
runtime verification, we evaluate formulas on finite traces. We therefore con-
sider how temporal properties should behave at the end of a trace. A common
approach (see [18]) is to assume that next and eventually evaluate to false beyond
the end of a finite trace and always evaluates to true. This captures the intu-
ition that these modalities represent obligations for something desired to happen
in the unfinished trace whereas the always modality captures an obligation for
something undesired not to happen. We capture this idea with a special treat-
ment of φ1 U◦ φ2, where φ2 is false. In this case, we allow the obligation to hold
after the end of the trace. This gives the above trace semantics for the temporal
modality U◦.

We write τ |= φ if a trace τ satisfies a property φ, defined as follows

τ |= φ iff dom(τ, φ), τ, [], 0 |= φ
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where the domain function dom is defined as:

dom(τ, φ)(x) = {di | e(. . . , di, . . .) ∈ τ ∧ e(. . . , xi, . . .) ∈ events(φ) ∧ xi = x}
Prefix Semantics. An alternative way of viewing finite traces is as prefixes of
infinite traces, leading to a multi-valued semantics based on whether the trace
could be extended to an accepting infinite trace [8]. We do not consider this view
here but note that QEA [3] has this notion of multi-valued verdicts based on
possible extensions. We will explore this correspondence further in future work.

3 Parametric Trace Slicing

Parametric trace slicing [9] is a technique that transforms a monitoring problem
involving quantification over finite domains into a propositional one. The idea is
to take each valuation of the quantified variables and consider the specification
grounded with that valuation for the trace projected with respect to the valu-
ation. Ground events can then be considered as propositional symbols in the
specification and in the projected traces. The benefit of this approach is that
projection can lead to efficient indexing techniques.

Introductory Example. We illustrate the notion of trace slicing using an
example of calls and returns of (non-recursive) methods. A required property
is that whenever a method m2 is called inside a method m1, the method
m2 should return before m1. This gives rise to a set of abstract events:
call(m1), return(m1), call(m2), return(m2). The property should hold for all
values for m1 and m2 and is therefore a quantified property. To understand how
trace slicing works consider the following trace:

call(A).call(B).call(C).return(C).return(B).call(C).return(C).return(A)

There are three values that m1 and m2 can take, A, B or C, and the trace is
sliced with respect to each valuation of m1 and m2. The following table gives the
trace slices for the non-equal values for m1 and m2, omitting symmetric cases.

m1 m2 slice

A B call(A).call(B).return(B).return(A)
A C call(A).call(C).return(C).call(C).return(C).return(A)
B C call(B).call(C).return(C).return(B).call(C).return(C)

Each slice can be checked against a quantifier-free property for a given m1

and m2. The above property is captured in the automaton below which processes
the trace by replacing m1 and m2 appropriately for each slice.

1 2 3call(m2), return(m2)

call(m1) call(m2)

return(m1) return(m2)
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3.1 Defining Slicing

We define a variant of slicing as in [17], which is based on [9]. Let A(X) be an
event alphabet (i.e. a set of events) where events use exactly those variables in
the set X. A quantifier-free property P(X) over alphabet A(X) defines a
language L(P(X)) over A(X). This can be grounded by giving values for X.
Given a valuation θ with domain X let the grounded language L(θ, P(X)) be
given by θ applied to each event in each trace of L(P(X)). For example we
may have a(x).b(y) ∈ L(P({x, y})) and therefore a(1).b(2) ∈ L([x �→ 1, y �→
2],P({x, y})). Slicing can then be defined in terms of the ground events from
the trace that match events in the event alphabet:

Definition 2 (Slicing). Given a trace τ and valuation θ let τ ↓θ be the θ-slice
of τ

ε ↓θ = ε

τ.e(v) ↓θ =
{

(τ ↓θ).e(v) if ∃e(z) ∈ A(X) : θ(e(z)) = e(v)
(τ ↓θ) otherwise

A quantified property 〈Λ(X),P(X)〉 consists of a list of quantifications
(quantifiers and variables) and a quantifier-free property over a shared set of
variables X. Some systems [15] only consider universal quantification and in this
case acceptance is defined as the acceptance by P(X) of all θ-trace slices for
all possible valuations θ. However, it is straightforward to introduce existential
quantification also [3]. In this case the notion of acceptance captures the boolean
combination of the quantifier-free acceptance for possible valuations.

Definition 3 (Acceptance). The trace τ is accepted for quantification list
Λ(X) and propositional property P(X) if τ |=P(X)

[] Λ(X), defined as

τ |=P(X)
θ ∀x : Λ if for every d ∈ dom(x) we have τ |=P(X)

θ†[x�→d] Λ

τ |=P(X)
θ ∃x : Λ if for some d ∈ dom(x) we have τ |=P(X)

θ†[x�→d] Λ

τ |=P(X)
θ ε if τ ↓θ∈ L(θ,P(X))

3.2 Choices for the Quantifier-Free Language

The JavaMOP system [15] is based on parametric trace slicing and introduces
multiple languages for the quantifier-free part, including finite state automata
and linear temporal logic. Quantified Event Automata (QEA) [3,16] use a form
of extended finite state machine that allows unquantified variables to capture
changing values in the trace. Later (Sect. 8) we discuss how this can be used
to extend the fragment of FO-LTLf defined next. Note that QEA has a very
efficient monitoring tool MarQ [17]. Here we use a simplified form of QEA that
uses finite state automata as the quantifier-free formalism.
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4 Temporal Logic and Trace Slicing

In this section, we introduce a syntactic fragment of FO-LTLf (see Sect. 2), and
show how it relates to trace slicing. We begin by introducing the notion of
slicing invariance and then discuss restrictions on FO-LTLf formulas that respect
this invariance. Finally, we describe a syntactic fragment that satisfies these
restrictions.

4.1 Sliceability

A formula in FO-LTLf is sliceable if its truth value for a valuation of its free
variables is the same over a trace and the corresponding trace slice:

Definition 4. A formula ψ with free variables X is sliceable if for valuation θ
over X and trace τ

τ, θ |= ψ ⇔ τ ↓θ, θ |= ψ.

We can phrase sliceability in terms of invariance with respect to non-relevant
events i.e. the evaluation is stable under the deletion and addition of those
events that are removed during slicing. The events relevant to a formula ψ, for
valuation θ, are defined as relevant(ψ, θ) = {θ(a) | a ∈ events(ψ)}. Thus, a trace
slice includes exactly those events relevant to the valuation. A formula is slicing
invariant if adding/removing non-relevant events to/from a trace has no effect
on whether the trace satisfies the formula:

Definition 5 (Slicing invariance). Given a formula ψ with free variables X
and valuation θ over X, let L(ψ, θ) = {τ | τ, θ |= ψ} be the set of traces that
satisfy ψ. Let the non-relevance-closure of L(ψ, θ) be inductively defined as the
smallest set satisfying

τ ∈ LC(ψ, θ) if τ ∈ L(ψ, θ)
τ1.τ2.τ3 ∈ LC(ψ, θ) if ∀a ∈ τ2 : a /∈ relevant(ψ, θ) and τ1.τ3 ∈ LC(ψ, θ)
τ1.τ3 ∈ LC(ψ, θ) if ∃τ1.τ2.τ3 ∈ LC(ψ, θ) : ∀a ∈ τ2 : a /∈ relevant(ψ, θ)

The formula ψ is slicing invariant if L(ψ, θ) = LC(ψ, θ).

Note that if we treat ground events as propositional symbols, as is common
in slicing approaches, this invariance corresponds to removing/adding symbols
from/to the trace that do not occur in the formula ψ.
We show that the notions of being sliceable and being slicing invariant are the
same.

Lemma 1. The sliceable and slicing invariant formulas coincide. For slicing
invariant formula ψ over X, valuation θ over X and trace τ ,

τ ∈ L(ψ, θ) ⇔ τ ↓θ∈ L(ψ, θ)
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Proof. Firstly we note that as ψ is slicing invariant L(ψ, θ) = LC(ψ, θ) as per
Definition 5. The proof proceeds by induction on the length of τ . For the base
case where τ = ε we have τ = τ ↓θ and the property holds trivially. In general,
note that if τ and τ ↓θ have the same length then τ contains only relevant events
and τ = τ ↓θ. Therefore, we assume τ = τ1.a.τ2 for some non-relevant event a.

In the ⇒ direction assume τ ∈ L(ψ, θ). As a is non-relevant and by the
second rule in Definition 5 we have τ1.τ3 ∈ L(ψ, θ). As τ1.τ3 is shorter than τ we
can apply the induction hypothesis to conclude (τ1.τ3) ↓θ∈ L(ψ, θ). By definition
τ ↓θ = (τ1 ↓θ). (τ3 ↓θ) = (τ1.τ3 ↓θ) and the property holds. In the ⇐ direction
assume τ ↓θ∈ L(ψ, θ). By definition τ ↓θ = τ1 ↓θ .τ3 ↓θ as a is non-relevant.
As τ1 ↓θ .τ3 ↓θ is shorted than τ we can apply the induction hypothesis to
conclude that τ1.τ3 ∈ L(ψ, θ). Therefore, by the third rule in Definition 5, we
have τ1.a.τ3 ∈ L(ψ, θ).

Next, we discuss restrictions that this invariance imposes on formulas. This
will motivate a syntactic fragment that allows only sliceable formulas to be
written.

4.2 Restrictions on the Structure of Formulas

Not all FO-LTLf formulas are sliceable. We discuss restrictions that the notion of
slicing invariance places on FO-LTLf formulas. We use Fig. 1 to illustrate these
restrictions. It gives an example trace where shaded states are not relevant to a
formula ψ over {x} and to the valuation [x = b].

Fig. 1. Illustrating sliceable restrictions

Top-level Quantification: Consider the following formula with embedded
quantifiers ∃x : �(f(x) → ∃y : ♦h(x, y)). It is not possible to rewrite this so
that the ∃y appears at the top level. Our example trace satisfies the property,
but we cannot use slicing to capture this1. In the definition of slicing in Sect. 3
all variables must be used for slicing. To check this property for x = b it would
be necessary to include every h(b, y) event for an arbitrary number of ys, requir-
ing an arbitrary number of quantifications. Therefore, we consider only FO-LTLf

formulas that have quantification at the top level.

1 Here we refer to the notion of slicing in Sect. 3. A more general notion of slicing
involves free variables [3], which could be used for y. It is future work to consider
this generalisation.
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Starting at the Start: Consider the formula f(x) ∨ ♦k(x) as in Fig. 1. The
trace does not satisfy this formula for x = b. The first event is not f(b) and there
is no k(b). However, in the slicing approach, the first event for the [x = b]-slice is
f(b) and this would be accepted. The formula ¬f(x) ∨ ♦k(x) would have similar
(symmetrical) discrepancy. This means that we cannot allow events (in positive
or negative form) at the top level of a sliceable formula. Furthermore, we cannot
allow U◦ formulas at the top level, as it is not possible to tell whether it should
be evaluated from the first or second event in a trace slice, as illustrated by the
formula ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never Saying Next: Consider the formula �(f(x) → ©g(x)) on the trace
in Fig. 1. For x = b we have g(a) after a f(b); however, in the [x = b]-slice
this is removed. This shows that evaluation differs after slicing. Formulas must
therefore be next-free. This next-freeness extends to the left side of U and U◦

formulas in general. Consider the formula �(f(x)∨ g(x)) = (f(x)∨ g(x)) U false
as in Fig. 1. The trace does not satisfy the formula; however, for the [x = b]-slice
it would as the non-relevant events violating f(x)∨g(x) are removed. This shows
that the left side of any U or U◦ formula must evaluate to true for non-relevant
events.

Never Saying Never: Consider the formula ♦(¬f(x)∧¬g(x)) = true U (¬f(x)∧
¬g(x)) as in Fig. 1. Here the obligation (¬f(x) ∧ ¬g(x)) is never satisfied in the
[x = b]-slice but it is in the full trace. This shows that the right side of an U or
U◦ formula must evaluate to false for non-relevant events.

Symmetry: Note that there is a symmetry between the restrictions on the
left and right of U and U◦ formulas. This is due to the following identity
ψ2 U ψ3 = ¬(¬ψ3 U ¬ψ2) which can turn a restriction on the left to one on the
right.

4.3 A Syntactic Fragment

We introduce a syntactic fragment F of FO-LTLf that incorporates the restric-
tions discussed above. The fragment consists of formulas Q1x1 : . . . Qnxn : ψT

for zero or more quantifications Qixi, with Qi = ∀ or ∃, and quantifier-free ψT

inductively defined as:

ψT = ψL U ψR | ψT ∨ ψT | ψT ∧ ψT

ψL = true | ψL ∨ ψU | ψL ∧ ψL | ¬a
ψR = false | ψR ∧ ψU | ψR ∨ ψR | a
ψU = ψL U◦ ψR | ψL U ψR | ψU ∨ ψU | ψU ∧ ψU

where a is an event. This syntax captures the restrictions discussed above: the
restricted form of ψT captures the restrictions on ‘start’, and the restrictions on
the left and right of U and U◦ formulas are captured by the restricted forms
of ψL and ψR respectively.

Not all identities in FO-LTLf can be expressed in the fragment F . For
example, the definition of the next modality ©φ = false U◦ φ is not in F ,
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as false cannot occur by itself on the left side of a U◦ formula. The iden-
tity ♦ψR = true U ψR however, for quantifier-free ψR, is expressed in F , but
�φ = φ U false is not in general in F because of the restrictions placed on the
left side of U◦. However, �(a → ψR) is expressible in F as ¬a∨ψR is an allowed
left formula for U .

We show that formulas in F are sliceable. Lemma 2 first shows that the
structure of formulas in F allows non-relevant events to be added and removed
from a trace.

Lemma 2. For any formula ψ ∈ F with free variables X, traces τ1 and τ2,
valuations θ over X, events a /∈ relevant(ψ, θ) and indices i and j:

Case 1. If ψ is in ψL, ψR or ψU and (τ1.a.τ2)i ∈ relevant(ψ, θ) then
τ1.a.τ2, θ, i |= ψ ⇔ τ1.τ2, θ, j |= ψ where j = i if i < |τ1| or j = i − 1
otherwise.
Case 2. If ψ is in ψL then τ1.a.τ2, θ, |τ1| |= ψ i.e. ψ holds at a.
Case 3. If ψ is in ψR then τ1.a.τ2, θ, |τ1| 	|= ψ i.e. ψ does not hold at a.
Case 4. If ψ is in ψT then τ1.a.τ2, θ, 0 |= ψ ⇔ τ1.τ2, θ, 0 |= ψ.

Proof. By simultaneous structural induction on ψ, under the assumption that
the properties hold for appropriate subformulas.

Case 1. If i 	= |τ1| then (τ1.a.τ2)i = (τ1.τ2)j and i = |τ1| is not allowed as
the event at (τ1.a.τ2)i must be relevant. The base cases true, false, a and ¬a
hold trivially. The conjunctive and disjunctive cases follow from the induction
hypothesis. The interesting cases are U and U◦, we consider U and then
describe the extension to U◦.

For the ⇒ direction assume τ1.a.τ2, θ, i |= ψL U ψR and therefore there
must exist a k ≥ i such that τ1.a.τ2, θ, k |= ψR. By the induction hypothesis
τ1.τ2, θ, l |= ψR where l depends on the location of a, note that the induction
hypothesis can be used as by case 3, the event at k is relevant. By the assump-
tion, ψL holds at all points m ≥ i and m < l in τ1.a.τ2 and so by the induction
hypothesis and case 2 (when the point is not relevant) it holds in all such points
in τ1.τ2. Therefore, τ1.τ2, θ, j |= ψL U ψR.

The ⇐ direction is similar. Again, we can assume that τ1.τ2, θ, k |= ψR for
some k ≥ i and therefore, by the induction hypothesis, τ1.a.τ2, θ, l |= ψR. Also
we argue by the assumption, the induction hypothesis and case 2 that ψL holds
for all points i to l, including the new |τ1| if included in the range. Therefore,
τ1.a.τ2, θ, i |= ψL U ψR.

For the U◦ case the proof is similar but we reason about ψR being satisfied at
a point k strictly greater than i. This relies on τi being relevant as this prevents
i = |τ1|, which is necessary for the ⇒ direction. If i = |τ1| and k = |τ1| + 1 then
due to the semantics of U◦ we can no longer argue that τ1.τ2, θ, l |= ψR implies
that τ1.τ2, θ, j |= ψL U◦ ψR as we would have l = j.

Case 2. If ψ = true then this holds trivially. If ψ = ¬b then this will be
satisfied by all non-relevant a. Both the conjunctive and disjunctive cases follows
from the inductive hypothesis as in the ∧ case both parts are in ψL and in the
∨ case at least one is.
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Case 3. If ψ = false then this holds trivially. For ψ = b, b 	= a as a is not
relevant. Again the conjunctive and disjunctive cases follow from the inductive
hypothesis.

Case 4. The conjunctive and disjunctive cases follow from the inductive
hypothesis. The U case is the same as the argument above for case 1 where
i = 0 and the condition that τi is relevant can be dropped as this is not used.

Finally, any formula that can be expressed in F is sliceable:

Theorem 1. All formulas in F are sliceable.

Proof (Sketch). Any ψ ∈ F is slicing invariant. This follows from Lemma 2 by
induction on the length of τ using Definition 5 (similar to the proof of Lemma1).

5 From Temporal Logic to Automata

In this section, we introduce a translation from formulas in F to the slicing-based
formalism QEA. This is based on the notion of progression and a normal form
that ensures a finite number of syntactically different formulas resulting from
progression.

Fig. 2. The progression and acceptance rules.

5.1 Progression

Figure 2 gives the progression and acceptance rules for FO-LTLf formulas. The
progression rules show how formulas are rewritten, note that these convert formu-
las in F to formulas not necessarily in F . The acceptance rules capture whether
a formula is currently accepting. Firstly, we note that progression preserves the
semantics of FO-LTLf :

Lemma 3. For every FO-LTLf formula ψ, valuation θ and trace τ we have

τ, θ, 0 |= ψ ⇔ τ, θ, |τ | |= ψ′ for ψ
τ↓θ−−→ ψ′
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Proof (Sketch). By induction on the structures of τ then ψ, noting that the
progression rules follow |= (in Definition 1). For a similar proof, see Lemmas 3
and 4 in [6].

Secondly, the acceptance rules capture the desired behaviour i.e. what the
verdict would be if the trace terminated at this point. Note that the rule for U◦

reflects the notion of outstanding obligations alongside the finite-trace interpre-
tation of �:

Lemma 4. For every ψ ∈ F and valuation θ

ε, θ, 0 |= ψ ⇔ τ, θ, |τ | |= ψ ⇔ accept(θ(ψ))

Proof (Sketch). By induction on the structure of ψ, we show that accept respects
the semantics |=.

5.2 A Normal Form

We give a normal form that gives an upper bound for the number of progression
steps to syntactically different formulas. This approach was inspired by [18] and
a similar result has recently been established in [19].
The normal form is given by the following rewrite rules.

true ∧ ψ → ψ
ψ ∧ true → ψ
¬true ∨ ψ → ψ
ψ ∨ ¬true → ψ

¬¬ψ → ψ
ψ1 ∧ ψ2 → ψ1 if ψ1 = ψ2

ψ1 ∨ ψ2 → ψ1 if ψ1 = ψ2

(
∨

i ψi) ∧ (
∧

j ψj) → ∨
i(ψi ∧ (

∧
j ψj)

A formula is in normal form if none of these rewrite rules can be applied to any
of its subformulas. We write nf(ψ) for the normal form of ψ. If ψ ∈ F then
nf(ψ) is a disjunction of conjunctions where each conjunct is either an event or
a temporal formula i.e. a U◦ formula. We first show:

Lemma 5. For ψ ∈ F , let T be the temporal subformulas of ψ, every formula
ψ′ such that ψ

τ−→ ψ′ for any trace τ , has temporal subformulas T ′ ⊆ T .

Proof. The only progression rule dealing with temporal formulas is the U◦

rule. This copies the temporal formula. Therefore, no new temporal formulas
are created.

Next we show that there can be no infinite progression sequences without
repeating formulas syntactically equivalent up to normal form.

Lemma 6. Any formula ψ ∈ F has a finite number of formulas ψ′ such that
ψ

τ−→ ψ′ for any trace τ .

Proof. Let P(ψ) be the set of formulas in normal form that can be built from
boolean combinations of events in ψ and formulas in T , the temporal subformulas
of ψ. The set P(ψ) is finite as there are a finite number of events and T is finite.
From Lemma 5, ψ′, we have ψ′ ∈ P(ψ) and therefore there are a finite number
of such ψ′.

Furthermore, P(ψ) is bounded by 2|ψ| (see the result in [19]), giving an upper
bound on such a sequence.



From First-order Temporal Logic to Parametric Trace Slicing 227

5.3 Progression-Based Translation

We now introduce a translation based on progression. We begin by introducing
a translation from quantifier-free formulas to state machines.

Definition 6 (Quantifier-free translation). Given a quantifier-free formula
ψ ∈ F , let translate(ψ) = 〈Q, q0,A, δ, F 〉 be the automaton such that

A = events(ψ)
q0 = nf(ψ)

Q = {q0} ∪ {nf(ψ′) | ∃τ : ψ
τ−→ ψ′}

δ(ψ′,a) = nf(ψ′′) where ψ′ ∈ Q,a ∈ A and ψ′ a−→ ψ′′

F = {ψ′ ∈ Q | accept(ψ′)}
It is important that the constructed state machine is finite, so that this trans-
lation step terminates. This follows from Lemma 6, as there are only a finite
number of syntactically distinct ψ′ such that ψ

τ−→ ψ′. This also puts an upper
bound of 2|ψ| on the number of states of the automata.

There exists a simple procedure for building this state machine that begins
with a set of states S containing the initial formula/state and the set of events A
and considers all possible progressions from states in S for events in A, producing
a new set of reachable states S′. This is then repeated for S′\S.

This automata translation captures the progression semantics directly:

Lemma 7. For every quantifier-free formula ψ and trace τ

ψ
τ−→ ψ′ ⇔ δ(ψ, τ) = ψ′

where δ is the transition relation of translate(ψ)

Proof (Sketch). By induction on the structure of τ . Note that δ is defined directly
in terms of progression.

We then define the full translation from quantified temporal formulas in F
to QEA.

Definition 7 (Translation). Let translate(φ) = 〈Λ(X), E〉 such that for φ =
Q1x1 : . . . Qnxn : ψ, Λ(X) = Q1x1 : . . . Qnxn and E = translate(ψ).

5.4 An Example of the Translation

Let us consider the translation of the standard HasNext temporal formula that
will be described in Sect. 6. In the following, we use h = hasNext(i) and n =
next(i). The formula for the property is given as follows where we rewrite U ,
� and →.

ψ = (h ∨ (n ∧ (¬n U◦ h))) ∧ (¬n ∨ (¬n U◦ h)) ∧ ((¬n ∨ (¬n U◦ h)) U◦ false)

The following shows the normal form of rewriting each subformula of ψ with
respect to the events h and n.
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φ1 = n h−→ false
n−→ true

φ2 = h h−→ true
n−→ false

φ3 = ¬φ1 U◦ φ2
h,n−−→ φ4

φ4 = φ2 ∨ (¬φ1 ∧ φ3)
h−→ true
n−→ false

φ5 = ¬φ1 ∨ φ3
h−→ true
n−→ φ4

φ6 = φ5 U◦ false
h,n−−→ φ5 ∧ φ6

ψ = φ4 ∧ φ6
h−→ φ5 ∧ φ6
n−→ false

From this we can observe three states: ψ, false and φ5 ∧ φ6. Observe that
φ5 ∧ φ6

n−→ (φ4 ∧ φ5 ∧ φ6) = ψ. The final states are given by accept where
accept(false) = false and accept(ψ) and accept(φ5 ∧ φ6) are true due to their
top level U◦ operators. This gives the following automaton.

ψfalse φ5 ∧ φ6

h

n h
n

h,n

5.5 Correctness of Translation

We show that the translated QEA is trace-equivalent to the original formula.
We first establish the unquantified case.

Lemma 8. For any unquantified ψ ∈ F with free variables X, trace τ , and
valuation θ over X

τ, θ |= ψ ⇔ τ ↓θ∈ L(translate(ψ))

Proof. As ψ ∈ F is sliceable (by Theorem 1) this can be rewritten as

τ ↓θ, θ |= ψ ⇔ τ ↓θ∈ L(translate(ψ)) (1)

By definition L(translate(ψ)) = {τ | δ(ψ, τ) = ψ′ and accepts(ψ′)}. There-
fore, by Lemmas 7 and 4 the right side of (1) can be rewritten

ψ
τ↓θ−−→ ψ′ and τ ↓θ, θ, |τ ↓θ | |= ψ′ (2)

and by Lemma 3, (2) can be rewritten as τ ↓θ, θ |= ψ, showing the equivalence
holds.

This can be used to show the correctness in the quantified case.

Theorem 2. For every trace τ and a formula φ ∈ F
τ |= φ ⇔ τ |=P(X)

[] Λ(X)

where translate(φ) = 〈Λ(X),P(X)〉.
Proof (Sketch). By structural induction on the quantification structure of φ and
Lemma 8.
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6 The Fragment F as a Trace Specification Language

Are syntactic fragments of FO-LTLf that respect a notion of sliceability expres-
sive enough to be considered as practically useful trace specification languages?
We consider how we may answer this question for the syntactic fragment F .
However, assessing the (practically useful) expressiveness of a specification lan-
guage for runtime verification is currently not easy and there are no accepted
methods, or accepted corpora of cases or specification patterns likely to occur in
real runtime verification applications.

Common Patterns. In 1999 Dwyer et al. conducted a survey of common finite-
state properties used for model-checking in industry and academia [11]. We con-
sider whether some of the more common properties are expressible in F .

A common pattern is that of response written �(P → ♦Q). This can be
rewritten to (¬P ∨ (true U Q)) U false, which is a formula expressed in the
fragment. Another pattern in the collection is an absence property stating that
P does not occur before R. We show how this can be rewritten into a formula
expressed in the fragment.

(♦R → ¬P U R) = (¬(true U R) ∨ (¬P U R)) = (¬R U false) ∨ (¬P U R)

A more complex absence property that may appear to be outside of the fragment
at first is that P does not occur between Q and R, written as �((Q ∧ ©♦R) →
(¬P ∧ ©(¬P U R))). This can be written using the identities such as ©♦R =
true U◦ R to be (¬Q ∨ (¬R U◦ false) ∨ (¬P ∧ (¬P U◦ R))) U false.

A set of patterns from this study that cannot be expressed in F are the general
universality patterns �P . However, specific cases of these may be expressible.

This is but a small sample, and only for common model-checking properties,
but the technique is clear.

Specifications in the Literature. There are specifications commonly occur-
ring as examples in RV literature that belong to the fragment F , we give some
of these here.

HasNext. For every iterator i the first event is hasNext(i) and whenever a
next(i) event occurs there is not another next(i) event until there has been
a hasNext(i) event. This can be captured by the following formula in F .

∀i : (¬next(i) U hasNext(i)) ∧ �(next(i) → (¬next(i) U◦ hasNext(i)))

UnsafeMapIter. For every map m, collection c and iterator i, whenever c is
created from m and i is created from c, after m is updated i should not be used.

∀m : ∀c : ∀i : �(create(m, c) → �(iterator(c, i) → �(update(m) → �¬use(i))))
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CallNesting. The call-nesting property given to motivate the slicing approach
earlier can also be specified in F as follows.

∀m1 : ∀m2 : (¬return(m1) U call(m1)) ∧ (¬return(m2) U call(m2))∧
�(call(m1) → (¬call(m1) U return(m1))) ∧ �(call(m1) →
(call(m2) → ((¬return(m2) ∧ ¬call(m2)) U return(m2))) U return(m1))

Note how the formula requires many parts to capture the different paths through
the previously defined automaton. This demonstrates the differing usability of
the two approaches. This study could be extended by considering the slicing-
based specifications for the Java JDK given in [13]. We expect all slicing-based
specifications from work with JavaMOP that use a regular propositional lan-
guage to be expressible in F .

7 Related Work

This work aims to connect approaches based on parametric trace slicing with
those based on first-order temporal logic. We give an overview of related work
in each area. We have not considered the rule-based system approach [4], where
some work has linked the expressiveness of rule systems with (propositional)
temporal logic [4].

Slicing. Arguably, the first system to use trace-slicing was tracematches [2], but
the paper did not use this terminology, and the suffix-based matching meant
that the authors did not need to solve the main technical difficulty in slicing
i.e. dealing with partial bindings. The JavaMOP system [15] has made the
slicing approach popular with its highly efficient implementation. The QEA
formalism [3,16] and associated MarQ tool [17] were inspired by JavaMOP.
The notion of slicing presented here is compatible with that used in JavaMOP.
Note that the combination of slicing and propositional LTL used in JavaMOP
does not correspond to a first-order temporal logic. For example, the JavaMOP
property Λx.�(f(x) → ©g(x)) does not have the standard first-order temporal
logic interpretation as discussed in Sect. 4.

First-order Temporal Logics in RV. Most approaches that add first-order
reasoning to LTL for runtime verification use similar concepts, with the main
difference typically being the domain of quantification. An early work extend-
ing LTL by parameters by Stolz and Bodden [20] makes bindings locally in a
PROLOG-style. Bauer et al. [7] have proposed a variant of first-order LTL
where quantification is restricted to the values known at a single point in time.
Decker et al. [10] introduce the notion of temporal data logic, an extension of
temporal logic with first-order theories. Monpoly [5] constructs monitors for a
safety-fragment of metric first-order temporal logic where temporal operators
are augmented with intervals. Yoshi et al. [14] introduce a parallel monitoring
approach for first-order LTL extended with second-order numerical constraints.
In principle it would be possible to consider restricting all of these logics syn-
tactically so that they could be sliceable. However, in some cases the syntactic
fragment may not be useful.
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8 Conclusion

The aim of this work is to explore the relationship between first-order temporal
logic and parametric trace slicing. We have introduced a technique based on
identifying syntactic fragments of temporal logics which respect trace slicing,
and defined one such fragment of FO-LTLf . From this fragment, we have shown
how we may construct automata with a slicing interpretation i.e. QEA.

The notion of trace slicing, and hence sliceability, used in this work is more
restrictive than that used in [3] as it requires all variables to participate in slicing.
We briefly discuss possible future work that could lead to different fragments,
perhaps of more expressive temporal logics:

Embedded Quantification. There are cases when embedded quantification
can be necessary in specification e.g. ∀x : ∀t1 : �(start(x, t1) → ∃t2 :
stop(x, t2)). Here the existential quantification of t2 cannot be lifted outside
of the scope of �. However, embedded quantification is supported in QEA using
free variables.

Predicates and Functions. First-order logics usually include predicates and
functions. A simple extension would allow predicates on quantified values of the
form ∀x : p(x) → ψ and ∃x : p(x) ∧ ψ. The translation to the slicing setting
would be straightforward as QEA support global guards of this form. A more
general incorporation of predicates and functions would be supported by the
guard and assignments on transitions in the QEA formalism; this would be
most appropriate alongside embedded quantification. Predicates and functions
require interpretation. These interpretations could be supplied on a built-in or
ad-hoc basis or taken from a formal theory, as is done in [10].

Translation from QEA to Temporal Logic. Even the restricted form of
QEA used in this paper are more expressive than the temporal logic, as it
inherits the star-freeness of standard LTL. For example, the language ‘there are
an even number of a(x) events’ cannot be expressed in the logic, but can be
expressed as a QEA. Therefore, to translate QEA to temporal logic a more
expressive temporal logic is required.

Whilst the fragment F introduced here does not cover all specifications that
might be written in a slicing framework, we have considered how we may assess
its practical expressiveness and provided a technique for translating formulas in
F to QEA.

We believe the goal of this work, seeking methods for unifying existing specifi-
cation languages, is of considerable importance in runtime verification in allowing
us to improve the comparability and interoperability of tools.
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Abstract. We present R2U2, a novel framework for runtime monitor-
ing of security properties and diagnosing of security threats on-board
Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hard-
ware, is a real-time, Realizable, Responsive, Unobtrusive Unit for
security threat detection. R2U2 is designed to continuously monitor
inputs from the GPS and the ground control station, sensor readings,
actuator outputs, and flight software status. By simultaneously monitor-
ing and performing statistical reasoning, attack patterns and post-attack
discrepancies in the UAS behavior can be detected. R2U2 uses runtime
observer pairs for linear and metric temporal logics for property monitor-
ing and Bayesian networks for diagnosis of security threats. We discuss
the design and implementation that now enables R2U2 to handle secu-
rity threats and present simulation results of several attack scenarios on
the NASA DragonEye UAS.

1 Introduction

Unmanned Aerial Systems (UAS) are starting to permeate many areas in every-
day life. From toy quadcopters, to industrial aircraft for delivery, crop dust-
ing, public safety, and military operations, UAS of vastly different weight, size,
and complexity are used. Although the hardware technology has significantly
advanced in the past years, there are still considerable issues to be solved before
UAS can be used safely. Perhaps the biggest concern is the integration of UAS
into the national airspace (NAS), where they have to seamlessly blend into the
crowded skies and obey Air Traffic Control commands without endangering other
aircraft or lives and property on the ground [5].

A related topic, which has been vastly neglected so far, is security [24]. All
sensors and software set up to ensure UAS safety are useless if a malicious attack
can cause the UAS to crash, be abducted, or cause severe damage or loss of life.
Often, live video feeds from military UAS are not encrypted, so people on the
ground, with only minimal and off-the-shelf components, could see the same
images as the remote UAS operator [29]. In 2011, Iran allegedly abducted a CIA
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drone by jamming its command link and spoofing its GPS. Instead of returning
to the CIA base, the UAS was directed to land on Iranian territory [6]. Even
large research UAS worth millions of dollars are controlled via unencrypted RF
connections; most UAS communicate over a large number of possible channels
[9], relying on the assumption that “one would have to know the frequencies”1

to send and receive data.
There are multiple reasons for these gaping security holes: most UAS flight

computers are extremely weak with respect to computing power. Thus, on-board
encryption is not possible, especially for larger data volumes as produced, for
example, by on-board cameras [12]. Another reason is that a lot of UAS tech-
nology stems from the Hobby RC area, where security is of low concern. Finally,
security aspects have only played a minor role in FAA regulation to date [7].

On a UAS, there are multiple attack surfaces: the communication link, sen-
sor jamming or spoofing, exploitation of software-related issues, and physical
attacks like catching a UAS in a net. In this paper, we focus on the detection of
communication, sensor, and software-related security threats, but do not elabo-
rate on attack prevention or possible mitigation strategies. Though design-time
verification and validation activities can secure a number of attack surfaces, an
actual attack will, most likely, happen while the UAS is in the air. We therefore
propose the use of dynamic monitoring, threat detection, and security diagnosis.

In order to minimize impact on the flight software and the usually weak flight
computer, R2U2 is implemented using FPGA hardware. This no-overhead imple-
mentation is designed to uphold the FAA requirements of Realizability and
Unobtrusiveness. To our knowledge, there are only two previous embedded
hardware monitoring frameworks capable of analyzing formal properties: P2V
[15] and BusMOP [19,23]. However, P2V is a PSL to Verilog compiler that vio-
lates our Unobtrusiveness requirement by instrumenting software. Like R2U2,
BusMOP can monitor COTS peripherals, achieving zero runtime overhead via
a bus-interface and an implementation on a reconfigurable FPGA. However,
BusMOP violates our Realizability requirement by reporting only property
failures and handling only past-time logics whereas we require early-as-possible
reporting of future-time temporal properties passing and intermediate status
updates. BusMOP also violates Unobtrusiveness by executing arbitrary user-
supplied code on the occurrence of any property violation.

Previously, we developed our on-board monitoring and diagnosis frame-
work R2U2 for system health management of hardware-only components and
developed implementations to detect hardware failures [8,25,27]. We defined
and proved correct our FPGA temporal logic observer encodings [25] and our
Bayesian network (BN) encodings [8], which comprise R2U2’s underlying health
model. We also envisioned a compositional building-block framework for integra-
tion with other diagnosis technologies that also analyzed software components
[27]; in this paper, we follow up on that idea by providing the first implementa-
tion of R2U2 that includes software components.

Here, we extend R2U2 to enable the dynamic monitoring of the flight soft-
ware, the communication stream, and sensor values for indications of a malicious

1 Conversation with an Ikhana/Global Hawk pilot, NASA, 2011.



R2U2: Monitoring and Diagnosis of Security Threats 235

attack on the autopilot and, even more importantly, to be able to quickly and
reliably detect post-attack behavior of the UAS. The temporal and probabilistic
health models and their FPGA implementations are suited for fast detection and
diagnosis of attacks and post-attack behavior. The separate FPGA implementa-
tion of a security extension to R2U2 described in this paper is highly resilient to
attacks, being an isolated hardware entity and programmed using VHDL. Javaid
et al. [10] also analyze cybersecurity threats for UAS. They simulated the effects
of attacks that usually ended in a crash, focusing on identifying different exist-
ing attack surfaces and vulnerabilities rather than focusing on runtime detection
or post-attack analysis. TeStID [2], ORCHIDS [21], and MONID [20] are intru-
sion detection systems that use temporal logic to specify attack patterns. These
security monitoring frameworks are targeted at IT systems and infrastructure.
Our contributions include:
– extending R2U2 from monitoring of safety properties of hardware [8,25] to

integrating hardware and software bus traffic monitoring for security threats
thus enabling on-board, real-time detection of attack scenarios and post-attack
behavior;

– detection of attack patterns rather than component failures;
– ensuring monitoring and reasoning are isolated from in-flight attacks; our

FPGA implementation provides a platform for secure and independent mon-
itoring and diagnosis that is not re-programmable in-flight by attackers;

– demonstrating R2U2 via case studies on a real NASA DragonEye UAS; and
– implementing a novel extension of R2U2 that we release to enable others to

reproduce and build upon our work:
http://temporallogic.org/research/RV15.html.

The rest of this paper is structured as follows. Section 2 provides background
information on our UAS platform, the open-source flight software, and the R2U2
framework. Section 3 is devoted to our approach of using temporal logic observers
and BN diagnostic reasoning for detection of security threats and post-attack
UAS behavior. In Sect. 4, we will illustrate our approach with several small case
studies on attacks through the ground control station (GCS), attempts to hijack
a UAS through an attacker GCS, and GPS spoofing. Finally, Sect. 5 discusses
future work and concludes.

2 Background

For this paper, we consider a simple and small UAS platform, the NASA Drag-
onEye (Fig. 1A). With a wingspan of 1.1 m it is small, but shares many common-
alities with larger and more complex UAS. Figure 1B shows a high-level, generic
UAS architecture: the UAS is controlled by an on-board flight computer running
the flight software (FSW). It receives measurements from various sensors, like
barometric pressure and airspeed, GPS, compass readings, and readings from
the inertial measurement unit (IMU). Based upon this information and a flight
plan, the FSW calculates the necessary adjustments of the actuators: elevator,
rudder, ailerons, throttle. A ground control station (GCS) computer transmits

http://temporallogic.org/research/RV15.html
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Fig. 1. A: Photo of NASA DragonEye. B: High level system architecture of a small
UAS.

commands and flight plans to the UAS, and receives and displays UAS telemetry
information. For fully autonomous missions, there is no link between the UAS
and the GCS.

Our example system uses the open-source FSW “APM:Plane” [3], which does
not contain any security features like command or data encryption for the GCS-
UAS link per default. We nevertheless selected this FSW because it very closely
resembles the architecture of both similarly small and larger, more complex
UAS. This architecture allows us to easily carry out white-box experiments and
to study the relationship between attacks and post-attack behavior. Results of
our studies can be carried over to highly secure and resilient flight software.

2.1 R2U2

Developed to continuously monitor system and safety properties of a UAS in
flight, our real-time R2U2 (Realizable, Responsive, and Unobtrusive Unit)
has been implemented on an FPGA (Field Programmable Gate Array). Hier-
archical and modular models within this framework are defined using Metric
Temporal Logic (MTL) and mission-time Linear Temporal Logic (LTL) [25] for
expressing temporal properties and Bayesian Networks (BN) for probabilistic
and diagnostic reasoning. In the following, we give a high-level overview of the
R2U2 framework and its FPGA implementation. For details on temporal reason-
ing, its implementation, and semantics the reader is referred to [25]; [8] describes
details on the FPGA implementation of Bayesian networks. Also [28] provides
details on R2U2 modeling and system health management.

Temporal Logic Observers. LTL and MTL formulas consist of proposi-
tional variables, the logic operators ∧, ∨, ¬, or →, and temporal operators to
express temporal relationships between events. For LTL formulas p, q, we have
�p (Always p), ♦p (Eventually p), Xp (NextTime p), pUq (pUntil q), and
pRq (pReleases q) with their usual semantics [25]. For MTL, each of the tem-
poral operators are accompanied by upper and lower time bounds that express
the time period during which the operator must hold. Specifically, MTL includes
the operators �[i,j] p, ♦[i,j] p, p U[i,j] q, and p R[i,j] q where the temporal opera-
tor applies over the interval between time i and time j, inclusive, and time steps
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refer to ticks of the system clock. For mission-bounded LTL operators these time
bounds are implied to be the start and end of the UAS mission.

Bayesian Networks for Health Models. In many situations, temporal logic
monitoring might find several violations of security and safety properties. For
example, a certain system state might have been caused by an attack or by
a bad sensor; we can use the combination of property violations to determine
which one. In order to be able to disambiguate the root causes, the R2U2 frame-
work uses Bayesian Networks (BN) for diagnostic reasoning. BNs are directed
acyclic graphs, where each node represents a statistical variable. BNs are well-
established in the area of diagnostics and health management (e.g., [18,22]).
Conditional dependencies between the different statistical variables are repre-
sented by directed edges; local conditional probabilities are stored in the Condi-
tional Probability Table (CPT) of each node [8,26,28]. R2U2 evaluates posterior
probabilities, which reflect the most likely root causes at each time step.

2.2 FPGA Implementation

R2U2 is implemented in FPGA hardware (Fig. 2). Signals from the flight com-
puter and communication buses are filtered and discretized in the signal process-
ing (SP) unit to obtain streams of propositional variables. The runtime ver-
ification (RV) and runtime reasoning (RR) units comprise the proper health
management hardware: the RV unit monitors MTL/LTL properties using pairs
of synchronous and asynchronous observers defined in [25]. After the temporal
logic formulas have been evaluated, the results are transferred to the RR sub-
system, where the compiled Bayesian network is evaluated to yield the posterior
marginals of the health model.

Fig. 2. Principled R2U2 implementation

3 Our Approach to Threat-Detection

For our approach, we consider the “system” UAS (as depicted in Fig. 1B) as a
complex feedback system. Commands, GPS readings, and measurements of the
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sensors are processed by the FSW on the flight computer to calculate new values
for the actuators, and to update its internal status. In this paper, we assume
that all malicious attacks are attempted via communication during flight.2 Fur-
thermore, all communications to the UAS are received via a wireless link from
the ground control station, or GPS satellites, or transmitters only. Spoofing of
the compass sensor, for example, via a strong magnetic field is outside the scope
of R2U2.

With our R2U2 framework, we continuously monitor inputs from ground
control and GPS and can identify many attack mechanisms and surfaces. Typical
examples include denial-of-service, sending of illegal or dangerous commands,
or jamming of the GPS receiver. Because, in most cases, information about the
communication does not suffice to reliably identify an attack scenario, additional
supporting information is necessary. This will be obtained from the analysis of
post-attack behavior of the UAS. Any successful attack on the UAS will result
in some unusual and undesired behavior of the UAS.

Fig. 3. High-level architecture of R2U2

Monitoring the system inputs and analyzing the post-attack behavior are
not independent from each other so we have to model their interactions within
our R2U2 framework. Typically, a certain input pattern followed by a specific
behavior characterizes an attack. For example, a strong oscillation in the aircraft
movement that was triggered by an unusual GCS command indicates an attack
(or an irresponsible pilot). Similarly, transients in GPS signals followed by subtle
position movements could be telltales of a GPS spoofing attack. Figure 3 shows
how our R2U2 framework monitors the various inputs going into the UAS sys-
tem (GCS and GPS), as well as sensor/actuator signals and status of the flight
software for post-attack analysis. We next consider modeling for attacks and
post-attack behavior, loosely following [14].

3.1 Attack Monitoring

As all attacks are initiated through the GCS or GPS inputs, we monitor the
following attack surfaces. Because of zero-day attack mechanisms, this list will
always be incomplete [4]. Note that the occurrence of such a situation does

2 In this paper, we do not model attack scenarios via compromised flight software.
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not mean that an actual attack is happening; other reasons like unusual flight
conditions, transmission errors, or faulty hard- or software might be the reason.

Ill-formatted and illegal commands should not be processed by the FSW.
Such commands could result from transmission errors or might be part of an
attack. If such commands are received repeatedly a denial-of-service attack
might be happening.

Dangerous commands are properly formatted but might cause severe prob-
lems or even a crash depending on the UAS mode. For example, a “reset-
FSW” command sent to the UAS while in the air, will, most certainly, lead
to a crash of the UAS because all communication and system parameters are
lost. Thus, in all likelihood, receiving this command indicates a malicious
attack. Other dangerous commands are, for example, the setting of a gain
in the control loops during flight. However, there are situations where such
a command is perfectly legal and necessary.

Nonsensical or repeated navigation commands could point to a malicious
attack. Although new navigation waypoints can be sent to a UAS during
flight to update its mission, repeated sending of waypoints with identical
coordinates, or weird/erroneous coordinates might indicate an attack.

Transients in GPS signals might be signs of GPS spoofing or jamming.
Because the quality of UAS navigation strongly depends on the quality of the
received GPS signals, sudden transients in the number of available satellites,
or signal strength and noise ratios (Jamming-to-Noise Sensing [9]) might
indicate a GPS-based attack.

It should be noted that these patterns do not provide enough evidence to
reliably identify an attack. Only in correspondence with a matching post-attack
behavior are we able to separate malicious attacks from unusual, but legal com-
mand sequences. We therefore also monitor UAS behavior.

3.2 System Behavior Monitoring

Our R2U2 models for monitoring post-attack behavior obtain their information
from the UAS sensors, actuators, and the flight computer. In our current setting,
we do not monitor those electrical signals directly, but obtain their values from
the FSW. This simplification, however, prevents our current implementation
from detecting a crash of the flight software initiated by a malicious attack.
With our R2U2 framework we are able to monitor the following UAS behaviors,
which might (or might not be) the result of a malicious attack.

Oscillations of the aircraft around any of its axes hampers the aircraft’s per-
formance and can lead to disintegration of the plane and a subsequent crash.
Pilot-induced oscillations (PIO) in commercial aircraft have caused severe
accidents and loss of life. In a UAS such oscillations can be caused by issu-
ing appropriate command sequences or by setting gains of the control loops
to bad values. Oscillations of higher frequencies can cause damage due to
vibration or can render on-board cameras inoperative.
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Deviation from flight path: In the nominal case, a UAS flies from one way-
point to the next via a direct path. Sudden deviations from such a straight
path could indicate some unplanned or possibly unwelcome maneuver. The
same observation holds for sudden climbs or descents of the UAS.

Sensor Readings: Sudden changes of sensor readings or consistent drift in the
same direction might also be part of a post-attack behavior. Here again,
such behavior might have been caused by, for example, a failing sensor.

Unusual software behavior like memory leaks, increased number of real-time
failures, or illegal numerical values can possibly point to an on-going mali-
cious attack. In the case of software, such a behavior might be a post-attack
behavior or the manifestation of the attack mechanism itself. Therefore,
security models involving software health are the most complex ones.

3.3 R2U2 Models

We capture the specific patterns for each of the attack and behavior observers
with temporal logic and Bayesian networks. We also use these mechanisms to
specify the temporal, causal, and probabilistic relationships between them. As a
high-level explanation, an attack is detected if a behavioral pattern B is observed
some time after a triggering attack A has been monitored. Temporal constraints
ensure that these events are actually correlated. So, for example, we can express
that an oscillation of the UAS (osc = true) occurs between 100–200 time steps
after the control loop parameters have been altered (param change = true).
Any trace satisfying the following formula could indicate an attack.

�(param change ∧ ♦[100,200]osc)

3.4 Modeling Variants and Patterns

The combination of signal processing, filtering, past-time and future-time MTL,
and Bayesian reasoning provides a highly expressive medium for formulating
security properties. Further generality can be achieved by grouping related indi-
cators. For example, we can define groups of dangerous commands, unusual
repeated commands, or events:

dangerous cmds = cmd reset ∨ cmd calibrate sensor ∨ cmd disarm ∨ . . .
unusual cmds airborne = cmd get params ∨ set params ∨ get waypoints ∨ . . .
unusual cmds periodic = cmd nav to ∨ cmd mode change ∨ invalid packet rcvd

This enables us to directly use these preprocessed groups in temporal formu-
las and feed them into a BN, thereby supporting simple reuse of common pat-
terns and assisting more comprehensive security models. The following example
demonstrates how we use such patterns to specify that there shall be no danger-
ous commands between takeoff and landing.

�[(CMD == takeoff) → ((¬ dangerous cmds) U landing complete)]
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Fig. 4. Threat detection with R2U2 model.

3.5 Bayesian Networks for Security Diagnosis

Most models of attack monitoring and post-attack behavior are capable of indi-
cating that there might have been an attack, but cannot reliably detect one as
such, because the observed patterns could have been caused by a sensor failure,
for example. However, we can use the BN reasoning engine of R2U2 to perform
better probabilistic diagnosis. For details of Bayesian R2U2 models see [28]. The
results of all the temporal observers are provided as inputs to the observable
nodes (shaded in Fig. 4) of the BN. The internal structure of the BN then deter-
mines how likely a specific attack or failure scenario is. Prior information helps to
disambiguate the diagnosis. For example, a sudden change in measured altitude
could be attributed to a failing barometric altimeter, a failing laser altimeter, a
failing GPS receiver, or a GPS spoofing attack. In order to determine the most
likely root cause, additional information about recently received commands, or
the signal strength of the GPS receiver can be used. So, transients in GPS signal
strength with otherwise healthy sensors (i.e., measured barometric and laser alti-
tude coincide) make an attack more likely. On the other hand, strongly diverging
readings from the on-board altitude sensors make a sensor failure more likely.
With prior information added to the BN, we can, for example, express that the
laser altimeter is much more likely to fail than the barometric altimeter or the
GPS sensor. Also, GPS transients might be more likely in areas with an overall
low signal strength. Since a BN is capable of expressing, in a statistically cor-
rect way, the interrelationships of a multitude of different signals and outputs of
temporal observers, R2U2 can provide best-possible attack diagnosis results as
sketched in Fig. 4.

4 Experiments and Results

Our experiments can be run either in a software-in-the-loop (SITL) simulation or
directly on the UAS; most of the experiments in this paper were executed on our
Ironbird processor-in-the-loop setup, which consists of the original UAS flight
computer hardware components in a laboratory environment. In all configura-
tions, the produced data traces were forwarded via a UART transmission to the
R2U2 framework running on an Adapteva Parallella Board [1]. R2U2 is imple-
mented on this credit-card sized, low-cost platform where the actual monitoring
is performed inside the Xilinx3 zynq xc7z010 FPGA. Our R2U2 implementation
3 http://www.xilinx.com.

http://www.xilinx.com
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Fig. 5. R2U2 SITL test setup

(Fig. 2) uses 40 % of the FPGA’s slice registers and 64 % of its slice look-up
tables (LUTs). These numbers are independent of the size and structure of the
LTL and MTL formulas. The implementation in this paper used 128 input sig-
nals through the UART to the FPGA, though this number could be extended
for other implementations. The R2U2 framework is running with a maximum
frequency 85.164 MHz. An Ubuntu Linux installation on the Parallella board
is used for the interface configuration, signal preprocessing, and evaluation of
arithmetic circuits. In our SITL simulation (Fig. 5), the UAS flight behaviors is
simulated by the open source JSBSim [11] flight dynamics model. All hardware
components are emulated by SITL low-level drivers, which enables us to inject
the desired behaviors without the risk of damaging the aircraft during a real
test flight. The operator’s GCS is connected to the UAS via an open source
MAVLink proxy [17]. We also connect a second GCS to the proxy in order to
simulate the attackers injected MAVLink packets.

4.1 Dangerous MAV Commands

In addition to commands controlling the actual flight, the MAVLink protocol
[16] allows the user to remotely set up and configure the aircraft. In particular,
parameters that control the feedback loops inside the FSW can be defined, as
they need to be carefully adjusted to match the flight dynamics of the given
aircraft. Such commands, which substantially alter the behavior of the UAS
can, when given during flight, cause dangerous behavior of the UAS or a poten-
tial crash. In 2000, a pilot of a Predator UAS inadvertently sent a command
“Program AV EEPROM” while the UAS was in the air. This caused all FSW
parameters and information about communication frequencies to be erased on
the UAS. Communication to the UAS could not be reestablished and the UAS
crashed causing a total loss $3.7 M [31]. If parameters for the FSW control loops
are set to extreme values during flight, the aircraft can experience oscillations
that could lead to disintegration of the UAS and a subsequent crash. Therefore,
such commands might be welcome targets for a malicious attack.

In this experiment, we set up our R2U2 to capture and report such dan-
gerous behaviors. Our security model consists of two parts: (a) detection
that a potentially dangerous MAV command has been issued, and (b) that
a dangerous behavior (in our case, oscillation around the pitch axis) occurs.
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Fig. 6. UAS behavior after malicious setting of gain parameters (Color figure online)

Each of the parts seen individually does not give an indication of an attack:
MAV commands to change parameters are perfectly legal in most circumstances.
On the other hand, oscillations can be caused by turbulence, aircraft design,
or the pilot (pilot-induced-oscillations). Only the right temporal combination
of both pieces of information allows us to deduce that a malicious attack has
occurred: after receiving the “set parameter” command, a substantial and per-
sistent oscillation must follow soon thereafter. In our model we use the specifi-
cation �(C ∧ ♦[0,1200](�[0,300]O)) where O is the occurrence of oscillations and
C is the event of receiving a “set parameter” command. We require that the
oscillation persists for at least 300 time steps and is separated from the com-
mand by not more than 1200 time steps. The event C can be directly extracted
from the stream of received MAV commands; oscillations can be detected with
the help of a Fast Fourier Transform (FFT) on the pitch, roll, or yaw angu-
lar values. Figure 6 shows how such an attack occurs. The top panel shows the
UAS pitch as well as the points in time when a “set-parameter” command has
been received (blue boxes). Caused by a malicious command (setting pitch gain
extremely high) issued at around t = 2800, a strong low-frequency up-down
oscillation appears in the pitch axis. That excessive gain is turned off at around
t = 5100 and the oscillation subsides. Shortly afterwards, at t = 5900, a mali-
cious setting of a damping coefficient causes smaller oscillations but at a higher
frequency. This oscillation ramps up much quicker and ends with resetting that
parameter. In the second panel, two elements of the power spectrum obtained
by an FFT transform of the pitch signals are shown. The signals, which have
been subjected to a low-pass filter clearly indicate the occurrence of a low (red)
and high (blue) frequency oscillation. The third panel shows the actual Boolean
inputs for R2U2: “set-parameter received” C, “Low-frequency-oscillation” OL,
and “high-frequency-oscillation” OH . The bottom panel shows valuations of for-
mulas �(C ∧ ♦[0,1200](�[0,300]OL)) and �(C ∧ ♦[0,500](�[0,200]OH)) as produced
by the R2U2 monitor. On the latter property the maximal lead time of the
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malicious attack has been set to only 500 time steps to reduce the number of false
alarms, because the high-frequency oscillation ramps up almost immediately. We
estimate that 10 person-hours were spent writing, debugging, and revising the
two temporal logic properties used for this experiment and approximately 30 h
were spent on experimental setup and simulation.

4.2 DoS Hijack Attack

Attackers continuously find new ways to break into and compromise a system.
Therefore, it is challenging to account for every possible attack scenario, since
there can always be an unforeseen loophole. The following experiment shows how
our R2U2 framework can detect an intrusion without the need for an explicit
security model for each specific scenario. Here, we will look at possible indicators
that can be grouped into patterns as described earlier.

In our simulation we initiate a sophisticated attack to hijack the UAS by
first trying to establish a link from the attacker’s GCS to the UAS. Because the
attacker has to cope with issues like an incorrect channel, a different version of
the protocol, or link encryption, a large number of bad command packets will be
received within a short time frame. The top panel of Fig. 7 shows such a typical
situation (black). The R2U2 security model could use, for example, the following
formula for detection given the rate of received bad command packages Rb per
time step:

F1 ≡ �[0,10](Rb = 0 ∨ (Rb ≥ 1 U[0,10]Rb = 0))

The formula F1 means that no more than one bad command is received within
each time interval of length 10 time steps.

Next, an attacker could try to gather information about the UAS, e.g., by
requesting aircraft parameters or trying to download the waypoints using the
MAVLink protocol. This activity is shown in Fig. 7 as blue spikes between time
step 1000 and 1300. For our model, we use the input command groups defined
earlier. With Cu as the event of receiving an unusual command, we state that
no unusual command should be received after takeoff until the UAS has landed.

F2 ≡ �((CMD == takeoff) → ( ¬ Cu) U landing complete)

Finally, an attacker may flood the communication link in a way similar to a
Denial of Service (DoS) attack by sending continuous requests Cnav to navigate
to the attacker’s coordinates, combined with requests Chomeloc to set the home
location of the UAS to the same coordinates. This phase of the attacks results in
a continuously high number of navigation commands starting around t = 1400 as
shown in the bottom panel of Fig. 7. For attack detection, we specify formulas,
either explicitly detecting an unusual period of navigational commands (F3),
or detecting a group of previously-defined unusual periodic commands (F4). F3

states that there shall be no continuous navigation requests for more than 30 time
steps: �[0,30]Cnav. Finally, F4 states that there shall be no continuous unusual
periodic events for more than 60 time steps: �[0,60]Cu. The formulas F1, F2, F3,
and F4 are not reliable indicators of an ongoing attack if viewed individually.
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Fig. 7. UAS DoS hijack results (Color figure online)

Only by considering the overall pattern can we calculate a high probability for
an ongoing attack. In order to accomplish this, we feed the results of these
formulas into a Bayesian network for probabilistic reasoning. We estimate that
6 person-hours were spent writing, debugging, and revising the four temporal
logic properties used for this experiment and approximately 15 h were spent on
experimental setup and simulation.

Even if the attack was detected by a UAS operator, all attempts to change the
UAS to its original course would immediately be overwritten by the attacker’s
high-rate navigation commands. Due to the altered home coordinates, any
attempt of the UAS to return to the launch site would fail as well. Rather it
would fly to the target location desired by the attacker. Furthermore, the simu-
lation of this scenario showed that besides crashing the UAS intentionally, there
was no simple way for the UAS operator to prevent this kind of hijacking. In
particular, for autonomous missions, where the UAS is flying outside the oper-
ator’s communication range, it is essential that the UAS is capable of detecting
such an attack autonomously.

In order to protect a UAS from attacks against command link jamming, a
UAS is sometimes deliberately put into a complete autonomous mode, where it
does not accept any further external commands [9]. Ironically, what was intended
to be a security measure could inhibit the operator’s attempts to recover a UAS
during such an attack. However, R2U2 enables the UAS to detect an ongoing
attack autonomously in order to enable adequate countermeasures.

4.3 GPS Spoofing

GPS plays a central role in the control of autonomous UAS. Typically, a flight plan
for a UAS is defined as a list of waypoints, each giving a target specified by its
longitude, latitude, and altitude. The FSW in the UAS then calculates a trajec-
tory to reach the next waypoint in sequence. In order to accomplish this, the UAS
needs to know its own position, which it obtains with the help of a GPS receiver.
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Due to limited accuracy, only GPS longitude and latitude are used for navigation;
the UAS’s current altitude is obtained using, e.g., the barometric altimeter.

For the control of UAS attitude, the UAS is equipped with inertial sensors.
Accelerometers measure current acceleration along each of the aircraft axes;
gyros measure the angular velocity for each axis. Integration of these sensor val-
ues yields relative positions and velocities. These data streams are produced at a
very fast rate and are independent from the outside interference but very noisy.
Thus, the inertial sensors alone cannot be used for waypoint navigation. There-
fore, the FSW uses an Extended Kalman Filter (EKF) to mix the inertial signals
with the GPS position measurements. If the inertial measurements deviate too
much from the GPS position, the filter is reset to the current GPS coordinates.

Several methods for attacking the GPS-based navigation of a UAS are known,
including GPS jamming and GPS spoofing. In a jamming attack, the signals sent
from the GPS satellites are drowned out by a powerful RF transmitter sending
white noise. The UAS then cannot receive any useful GPS signals anymore and
its navigation must rely on compass and dead reckoning. Such an attack can
cause a UAS to miss its target or to crash. A more sophisticated attack involves
GPS spoofing. In such a scenario, an attacker gradually overpowers actual GPS
signals with counterfeit signals that have been altered to cause the UAS to
incorrectly estimate its current position. That way, the UAS can be directed
into a different flight path.

This type of attack became widely known when Iran allegedly used GPS
spoofing to hijack a CIA drone and forced it to land on an Iranian airfield
rather than its base [6,30]. Subsequently, researchers from the University of
Texas at Austin successfully demonstrated how an $80M yacht at sea,4 as well
as a small UAS can be directed to follow a certain pattern due to GPS spoofing
[13]. Because civil GPS signals are not encrypted it is always possible to launch
a GPS spoofing attack. For such an attack, only a computer and a commercially
available GPS transmitter is necessary. We can employ our R2U2 framework to
detect realistic GPS spoofing attacks like the common attack scenarios described
in [13]; whereas that paper discusses attack detection in theory we demonstrate it
via hardware-in-the-loop simulation on-board our IronBird UAS. Here we focus
on attack detection; techniques to avoid or mitigate GPS spoofing are beyond
the scope of this paper.

Our developed R2U2 model monitors the quality of the GPS signal and the
inertial navigation information. For our experimental evaluation, we defined a
UAS mission that flies, at a fixed altitude, toward the next waypoint south-south-
west of the current UAS location. When spoofing occurs, the attacker modifies
the GPS signal in such a way that it tricks the UAS into believing it is still flying
a direct route as expected. In reality, however, the UAS is actually veering off to
reach a target point defined by the attacker. Figure 8 shows the relevant signals
during this mission. Here, we focus on the latitude as observed by the UAS. The
top panel shows the point of the spoofing attack and the trace for the temporal
development of the UAS latitude as observed by the UAS (black) and the actual

4 http://www.ae.utexas.edu/news/features/humphreys-research-group.

http://www.ae.utexas.edu/news/features/humphreys-research-group
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Fig. 8. Set of traces that indicate GPS spoofing (Color figure online)

UAS position (blue). A severe and increasing discrepancy can be observed as the
effect of the attack. As the actual position (ground truth) is not available to the
on-board FSW, R2U2 reasons about relationships with alternate signals that
convey similar information. The inertial navigation unit produces an error or
offset signal that reflects the deviation between the current position observed by
GPS and the inertial sensors. The next two panels of Fig. 8 shows that these offset
signals can become substantially large during the actual spoofing period, when
the GPS locations are gradually moved to the attacker’s target. The bottom
panel shows the spoofing detection output stream from R2U2. We estimate that
10 person-hours were spent on model development and approximately 45 h were
spent on experimental setup and simulation.

Again, these signals are not individually absolute indicators that an attack
has happened. Flying in areas with weak GPS coverage, for example, in a
mountainous or urban environment, could produce similar signals. Therefore,
in our R2U2 models, we aim to take into account other observation patterns and
use a Bayesian network for probabilistic reasoning. Information supporting the
hypothesis of an attack could include prior loss of satellite locks, transients in
GPS signals, or other types of attacks. In the case of the captured CIA drone,
an Iranian engineer claimed to have jammed the drone’s communications link
in order to force the drone into an autopilot mode and then initiated the GPS
spoofing attack [30].

5 Conclusion

We have extended our Realizable, Responsive, Unobtrusive Unit (R2U2)
to enable real-time monitoring and diagnosis of security threats. This includes
the ability to reason about complex and subtle threats utilizing indicators from
both the UAS system and its software. Our embedded implementation on-board
a standard, flight-certifiable FPGA meets stated FAA requirements and effi-
ciently recognizes both individual attack indicators and attack patterns, adding
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a new level of security checks not available in any previous work. Case studies
on-board a real NASA DragonEye UAS provide a promising proof-of-concept of
this new architecture.

The myriad directions now open for future work include considering software
instrumentation to enable more FSW-related compromises and doing hardware-
in-the-loop simulation experiments to detect these. We plan to extend this tech-
nology to other, more complex UAS and beyond, to other types of aircraft and
spacecraft with different configurations and capabilities. A major bottleneck of
the current R2U2 is the manual labor required to develop and test every tempo-
ral logic formula and BN; we are currently considering methods for making this
a semi-automated process to better enable future extensions.
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Abstract. In component-based safety-critical systems, when a system
safety property is violated, it is necessary to analyze which components
are the cause. Given a system execution trace that exhibits component
faults leading to a property violation, our causality analysis formalizes
a notion of counterfactual reasoning (“what would the system behavior
be if a component had been correct?”) and algorithmically derives such
alternative system behaviors, without re-executing the system itself. In
this paper, we show that we can improve precision of the analysis if
(1) we can emulate execution of components instead of relying on their
contracts, and (2) take into consideration input/output dependencies
between components to avoid blaming components for faults induced by
other components. We demonstrate the utility of the extended analysis
with a case study for a closed-loop patient-controlled analgesia system.

1 Introduction

A key idea in systems engineering is that complex systems are built by assem-
bling components. Component-based systems are desirable because they allow
independent development of system components by different suppliers, as well as
their incremental construction and modification. The down side of component-
based development is that no single entity – neither the integrator, nor com-
ponent suppliers – have a complete understanding of component behaviors and
possible interactions between them. This incomplete knowledge, in turn, requires
us to resort to black-box analysis methods, when only the input-output behavior
of a component is specified.

In this work, we are interested in the forensic analysis of a component-based
system following the discovered violation of system safety properties. Diagnosis
of the root cause is crucial for the subsequent recovery and follow-up prevention
measures. Such diagnosis requires recording of system executions leading to the
failure, as well as methods for the efficient analysis of the recorded data.
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There has been a great amount of research following the seminal work of
[5,16] in the study of fault diagnosis. In our previous work in [8,9,18], we took
a step further and considered the problem of causality analysis for component-
based systems. We formalized counterfactual reasoning (“what would the system
execution be should a component have behaved correctly?”) as a basis for the
analysis. Our analysis provided a plausible explanation to how the component
faults had contributed to the system property violation.

Specifically, we proposed a general causality analysis framework in [8,18],
and identified four major steps in causality analysis. First, the set F of all
faulty components with respect to their corresponding component properties are
identified. Second, the set of possible counterfactual behaviors for a suspected
subset S ⊆ F is constructed. Third, based on our formalization of causality,
it is determined whether the suspected subset S is the culprit. Lastly, minimal
culprits are determined based on the results from the third step. The causality
analysis we proposed in [18] assumes that the only information available to
the analysis are the system definition (system property, component properties,
and system topology) and a single system execution trace on which the system
property is violated. It was assumed that we cannot re-run the system with some
of the component faults removed, risking another failure if the true culprit was
not corrected. This assumption limits precision of the analysis, as little additional
information can be obtained from the system itself.

We show in this paper that we can improve the analysis without relaxing
this assumption for the whole system, if some components of the system—which
we refer to as separable components—can be run in isolation from the rest of
the system to assist in counterfactual trace generation. The use of separable
components during analysis phase provides a hybrid way to construct counter-
factual traces that combines component traces generated statically, based on
the system definition and the observed trace, and dynamic traces of separable
components, containing actual outputs of the component on inputs generated
during the analysis.

Another piece of under-utilized information in determining causes is the rela-
tion in between component property violations, i.e., horizontal causes [9]. For
instance, when components A and B together are determined to be a cause for
system property violation, by investigating and concluding that component A’s
fault is the cause of that of component B’s, we can exclude B from blame.

To evaluate these extensions, we applied the proposed causality analysis to a
patient controlled analgesia (PCA) infusion pump case study from the medical
device domain. A post-surgery patient can request pain relief medication by
pressing a button on the PCA pump. A pump controller monitors patient state
using readings from a pulse-oximeter. To avoid potential overdose, the controller
issues tickets to the pump that can limit its ability to respond to repeated patient
requests. Errors in computing, delivering, and processing tickets can lead to an
overdose, and the faulty component needs to be determined. Results from the
case study show that our proposed causality analysis can provide a more fine-
grained analysis than our previous approach.
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The contribution of this paper is a new algorithm for counterfactual reasoning
that incorporates the two extensions to our existing approach, namely the use of
separable components and horizontal causality. Evaluation of the new approach
shows that the analysis becomes more intuitive and precise. To the best of our
knowledge, the proposed approach is also the first to have incorporated both
static and run-time analysis for causality analysis. On the application side, we
have demonstrated the applicability of the approach to a case study in the safety-
critical systems domain.

2 The PCA Example

Patient controlled analgesia (PCA) infusion pumps are used for post-surgical
pain treatment in an intensive care unit (ICU). A potential hazard for the patient
is overdosing. When continuously in infusion, the patient vital signs, e.g. blood
oxygen saturation level (SpO2), would gradually decrease. It is considered a
critical condition for the patient when SpO2 drops below 70 %. To prevent over-
dosing, smart PCA pumps are usually equipped with a controller which reads
measurements of patient vital signs and issues to PCA pumps tickets, i.e., maxi-
mum duration allowed for infusion given the patient vital sign readings. Figure 1
shows a simplified schematic view of the scenario, adapted from a system mod-
eled out of a real component-based system in the clinical setting, presented in [1].

Fig. 1. Schematic view of PCA case study

Fig. 2. Ticket vs SpO2

System and Components. The PCA
system consists of four components: the
Patient, the pulse-oximeter (PO), the
controller (Ctrl), and the PCA pump.
The system level safety property is that
Patient SpO2 never drops below 70 %.

The Patient component is simulated
based on given patient physiological
reactions when infusion is and is not
in progress. The differential equations
describing the dynamics are given in [1].
For the purpose of this case study, it suf-
fices to know that patient SpO2 value would gradually decrease (resp., increase)
while infusion is in progress (resp., stopped).
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Table 1. Example faulty trace for PCA case study

Snapshot Patient.SpO2 PO.SpO2 Controller.Ticket Patient.BR PCA.IR

0. 71 75 3 true 400

1. 70 72 0 false 400

2 69

PO measures the Patient SpO2 and transmits the measurements to Ctrl.
Ctrl reads the patient SpO2, computes the ticket, and outputs the calculated

ticket. The ticket-SpO2 relation given in [1] is pre-calculated and shown in Fig. 2
with values for SpO2 in the range 65%–80%.

The PCA component takes patient bolus request and the ticket as input.
When there is a patient bolus request, the PCA delivers (a) no drug if ticket is
0; (b) one time unit of infusion if ticket is 1; and (c) two consecutive time units
of infusion if ticket is greater than 1.

Traces. An execution of the PCA system with manually injected faults is
recorded as a system trace, i.e., a sequence of snapshots of variable values of
components’ input and output. We use a tabular form to represent a trace illus-
trated in Table 1.

Example of Causality Analysis Problem. On the trace in Table 1, in Snap-
shot 0, PO is faulty in measuring the value of the patient SpO2 in that the
measured value (75%) is larger than the actual value (71%). Ctrl takes the
wrong value as input, and makes a faulty computation as well (by outputting
the ticket value 3 instead of the expected 1 as shown in Fig. 2). The PCA receives
a patient bolus request and reads the ticket value to be 3, so it initiates infusion
for two time units consecutively until in Snapshot 2 where the patient SpO2
drops below the critical value 70%—a patient adverse event represented as a
system level property violation occurs.

The causality analysis problem aims to study, in component-based systems
where multiple components have committed faults in a given system execution
so that system level property violation occurs, which subsets of component faults
are the culprits for the system level property violation.

3 Definition of the Causality Analysis Problem

Preliminaries. A type T is a set of values. A typed variable x : T is a variable
with values in T . We only consider finite types in this work. A snapshot sX for
a set X = {x1, . . . , xm} of typed variables x1 : T1, . . . , xm : Tm is an assignment
of each variable xi to its value sX(xi) in Ti, for 1 ≤ i ≤ m. A trace Tr =
s0, s1, . . . for a set X of typed variables is a sequence of snapshots, where every
snapshot si is for X. The snapshot at location i on a trace Tr is denoted Tr[i].
The suffix of Tr starting at location i is denoted Tr[i...]. A segment of Tr
starting from location i and ending at location j (inclusive) is denoted Tr[i..j].
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For convenience, we denote by |Tr[i..j]| the length of Tr[i..j], i.e., the number
of snapshots on Tr[i..j]. A set TR of traces is called prefix-closed if ∀Tr ∈
TR.∀l < |Tr|. T r[0..l] ∈ TR. We denote TX the set of all possible traces over
a set X.1 The projection πY (s) of a snapshot s for X on to a subset Y ⊆ X is
a snapshot for domain Y such that ∀y ∈ Y.

(
πY (s)

)
(y) = s(y). The projection

πY (Tr) of a trace Tr = s0, s1, . . . on to a subset Y ⊆ X is a trace for Y , defined
as πY (Tr) = πY (s0), πY (s1), . . . . We write πv(·) for π{v}(·).

3.1 System Definition

Definition 1 (Component signature). A component signature is a tuple C =
〈I,O,PC〉, where I and O are disjoint, and

– I = {i1 : T i
1, . . . , im : T i

m} is a set of typed variables called the input,
– O = {o1 : T o

1 , . . . , on : T o
n} is a set of typed variables called the output, and

– PC ⊆ TI∪O is a prefix-closed set of traces called the component property.

A component signature describes all knowledge of the component available
to causality analysis. The component property can be characterized by formal
languages such as regular expressions, first-order logic, temporal logics, etc. Here
we take a model-theoretic view and identify the property and the set of traces
that satisfy the property.

Definition 2 (Channel and connection). A channel c = (x, y) is a pair of typed
variables (x : Tx, y : Ty) such that Tx ⊆ Ty. A connection θ is a set of channels.

We make the following assumptions on component composition: (a) Fan-in
connections are not allowed, i.e., it is required that ∀(x1, y1), (x2, y2) ∈ θ.y1 =
y2 → x1 = x2. (b) Variable name clashes are resolved by associating them
with the component names, as is common in component-oriented languages. (c)
Channels are reliable. A value passed into a channel will be successfully received
by the connected component.

Definition 3 (Composition of components). Let A = {C1, . . . , CJ} be a set of J
components with disjoint sets of variables, where Cj = 〈Ij , Oj ,Pj〉 for 1 ≤ j ≤ J .
Let θ be a connection where ∀(x, y) ∈ θ.∃j, k ∈ {1, . . . , J}.x ∈ Oj ∧ y ∈ Ik.
The composition of components C1, . . . , CJ , denoted C1‖ . . . ‖CJ , is defined as
a component A = 〈I,O,P〉, where

– I =
(⋃J

j=1Ij

) \ {y | ∃x.(x, y) ∈ θ} and O =
⋃J

j=1 Oj, and
– P =

{
Tr = s0s1 . . . s� ∈ TI∪O | ∀1 ≤ j ≤ J.πj(Tr) ∈ Pj ∧ ∀(x, y) ∈ θ ∀k ∈

[0, �].sk(x) = sk(y)
}
.

1 Throughout the paper we use bold font to represent a set of traces (e.g., TR, TX)
or a property (e.g., P) and calligraphic font to represent a set of components (e.g.,
A in Definition 3).
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Definition 4 (System). A system Sys = 〈A, θ,P〉 is a tuple where Sys is com-
posed of components in A = {C1, . . . , CJ} by connection θ, and P is a prefix-
closed superset of PC1‖...‖CJ

called the (safety) property for system Sys.

The system property P may contain more behaviors than PC1‖...‖CJ
. This

means the composition of C1, . . . , CJ is essentially a refinement of the system
property. This is also an equivalent assumption as in [8,18] which stipulates that
when a system property violation occurs, there must be at least one component
property violation among C1, . . . , CJ .

Definition 5 (System trace). A system trace Tr for Sys = 〈A, θ,P〉 composed
of components C = {C1, . . . , CJ} is a trace where each snapshot is for the set of
all components’ input and output,

⋃J
j=1

(
Ij ∪ Oj

)
.

We assume in this work that a violation of a property P on a trace Tr can be
detected and that the minimal prefix of Tr that violates P can be determined,
i.e., if Tr /∈ P, then iTr,P = min{i | Tr[0..i] ∈ P} is well defined. Our formaliza-
tion of component and system property violation naturally aligns respectively
with the definitions of fault and failure: a component property violation is a
manifestation of a fault, whereas a system property violation is a failure.

Definition 6 (Faults and failures). Given a system Sys and a system trace Tr
for Sys, a component fault (system failure, resp.) on Tr is a violation of the
component (system, resp.) property.

3.2 Causality Definitions

We state the causality analysis for component-based faulty tolerant systems as
follows. Given

– a system definition Sys = 〈A, θ,P〉,
– a trace Tr for Sys on which the system property is violated, and
– a causality definition CD,

determine the minimal subsets of faulty components that are causes for the
system property violation, with respect to a given causality definition CD.

Reasoning for causality is based on counterfactuals. For instance, to establish
that event e1 is a necessary cause of event e2, we consider whether the event e2
would happen if event e1 does not occur in any alternative system execution.

Here, an alternative system execution when certain system events are changed
is called a counterfactual trace, whereas the observed system execution is called
the actual trace. The key to reasoning about causality is to construct the set of
all possible counterfactual traces.

In an abstract level, the set of counterfactual traces can be viewed as a
function on Tr, Sys, and S. We use the notation σ(Tr, Sys, S) to represent the
reconstructed sets of traces. Note that on those traces, the property violations
for components in S are corrected. For simplicity we only consider necessary
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causality in this paper, but we note that the formalism can be used to express
other notions of causality, such as sufficient causality.

In addition, we can distinguish vertical and horizontal causality. Vertical
causality refers to the causal relationship between component faults and system
failures, whereas horizontal causality refers to the causal relationship between
component faults.

Definition 7 (Necessary vertical cause). Given a system definition Sys and
a trace Tr for Sys, let F = {C ∈ Sys | πC(Tr) ∈ PC} be the set of
faulty components on trace Tr and S ⊆ F be a non-empty suspected sub-
set of faulty components. The component property violation in S is a neces-
sary vertical cause for system property violation on trace Tr if and only if
∀Tr′ ∈ σ(Tr, Sys, S).T r′ ∈ P.

Definition 8 (Necessary horizontal cause). Let F and S be as in Definition 7,
and let C ∈ F\S be another faulty component. The component property violation
in S is a necessary horizontal cause for the property violation of component C
on trace Tr if and only if ∀Tr′ ∈ σ(Tr, Sys, S).πC(Tr′) ∈ PC .

4 Approach

In this work, we propose two extensions to our existing causality analysis frame-
work in [18,19], illustrated in Fig. 3, one using separable components and the
other using horizontal causality. The four steps involved in a causality analysis
are briefly discussed below, whereas using separable components and horizontal
causality intervene in Step 2 (Trace Reconstruction) and Step 4 (Culprit Mini-
mization), respectively.

Step 1. Offline Analysis & Powerset Construction. We first determine the set
F as in Definition 7, and construct the powerset 2F of F .

Step 2. Trace Reconstruction. For each subset S ∈ 2F \ ∅, called a suspect, we
construct σ(Tr, Sys, S).

Step 3. Causality Analysis &Collecting Causes. Based on σ(Tr, Sys, S) we check
whether S is a cause according to the causality definition CD. If yes,
S is a culprit and is collected for the subsequent culprit minimization;
otherwise S is not a cause for the violation of system property P.

Step 4. Culprit Minimization. The last step of causality analysis is to check the
minimality of each collected culprit. Non-minimal culprits are exempted
from blame.

4.1 Separable Components

Determining component behavior, i.e., the set σ(Tr, Sys, S) in Step 2 of the
causality analysis framework, poses a challenge in previous approaches when a
component is faulty but not suspected. Unlike suspected components, which have
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Fig. 3. Casusality analysis framework overview

their outputs corrected according to their contracts, unsuspected components are
not supposed to be corrected. When an input of an unsuspected component has
changed as a result of correcting outputs of a suspected component, we need to
determine, which outputs, possibly faulty, we should use in trace reconstruction.
In [18,19], we assumed that this output was the same as observed on the given
system trace. This assumption was due to the unavailable information of how
a faulty should behave in such a scenario, where the component’s behavior has
to be assumed to obtain the output. This assumption may lead to an imprecise
analysis if the actual component follows a different behavior model when it is
faulty.

A more realistic treatment is to re-execute the components that are available
to the analyzer so that the actual output of a component given a changed input
can be produced by the component itself whether it being faulty or not. We call
such components separable since they can be separated from the original system
and re-executed in a controlled experiment setting.

Example 1. For the running example, in the trace reconstruction for the case of
{PO}, when PO outputs a correct value 71 corresponding to the input 71 from
Patient, Ctrl has a changed input 71 other than 75 on the observed trace. With
Ctrl being a separable component, it is possible to experimentally feed the new
input to Ctrl so as to observe its output. Note that Ctrl is also a faulty component
(that we are not suspecting when analyzing {PO}), it may or may not produce
the expected value in Fig. 2. If the output ticket value from Ctrl is 0 (resp.,
1), then the patient gets no infusion (resp., infusion for 1 time unit). In either
case, the patient SpO2 correspondingly does not drop below the 70 threshold,
therefore there is no system property violation, so {PO} is a necessary cause. On
the other hand, if the output ticket value from Ctrl is 2 or above, then the PCA
would continue the infusion for 2 time units, so there is still system property
violation. In this case {PO} is not a necessary cause. ��



258 S. Wang et al.

Being able to re-execute separable components increases analysis precision.
The output obtained by assuming the faulty, unsuspected components to always
produce the same output as on the observed trace in [18] is essentially one case
included in the analysis with separable components. For the example, in the
analysis in [18] Ctrl would produce a ticket output 3 as observed, which is on of
the cases when the Ctrl output is 2 or above in the analysis in Example 1. With
separable components, a more detailed causality analysis result is obtained.

We now provide a formal definition of separable components, of the
re-execute function, and a property on them. A separable component is simply
a trace generator that takes a sequence of input and produces a corresponding
output sequence. We require that the behavior of the separable component is
deterministic with respect to the sequence of input and the internal states, even
when faulty.

Definition 9 (Separable component). Let C = 〈I,O,PC〉 be a component. C
is separable if ∀Tr, Tr′ ∈ TI∪O.(πI(Tr) = πI(Tr′) =⇒ Tr = Tr′.

This definition ensures that the outputs of the component are deterministic
and only depend on the inputs fed to it.

Definition 10 (Re-execute function, re-execute(C, Tr)). Let C = 〈I,O,PC〉 be
a component and Tr be a trace. re-execute(C, Tr) is the trace given by C if
πI(Tr) is fed to C as input.

Property 1. Let C = 〈I,O,PC〉 be a separable component and Tr and Tr′ be
two traces, then πI(Tr) = πI(Tr′) =⇒ re-execute(C, Tr) = re-execute(C, Tr′).

This property is a direct consequence of the two previous definitions. It means
that if we execute the separable component with the same input, it will always
produce the same trace as output.

Trace Reconstruction with Separable Components. We use the construc-
tion of cone of influence, adapted from [8], to over-approximate the impact of
the faulty components on the rest of the system. Informally, when a value has
changed in a snapshot on a system trace, then the ones in the cone of influence
must be updated accordingly to reflect the impact of this change. A trace Tr′ is
deemed as a counterfactual for a trace Tr if they share the same prefix outside
of the cone of influence.

Definition 11 (Cone of influence with separable components, K(Tr, S,R)).
Given a system Sys = 〈A, θ,P〉, with A = {C1, ..., CJ} and Cj = 〈Ij , Oj ,Pj〉
for 1 ≤ j ≤ J , a system trace Tr, a set S ⊆ {1, ..., J} of suspected com-
ponent indices, and a set R ⊆ {1, ..., J} of separable component indices. Let
A = 〈I,O,P〉 be the composition of the components in A. The cone of influence
K = K(Tr, S,R) = (�v)v∈I∪O is a vector of maximal indexes which satisfies the
following properties:
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∀v ∈ ( ⋃
i∈{1,...,J} Ii

) ∪ O: �v � |Tr| and

(1) (v ∈ O ∧ C(v) ∈ S) =⇒ lv � fvC(v)(Tr)
(2) ∃v′ ∈ O.(v′, v) ∈ θ =⇒ lv = lv′

(3)

(
v ∈ O ∧ (

C(v) ∈ R ∨ fd(v, Tr) � fvC(v)(Tr)
))

=⇒ �v � min(fvC(v)(Tr), fd(v, Tr))

with C(v) = i such that v ∈ Ii ∪ Oi, fvi(Tr) = min({� ∈ {0, ..., |Tr| − 1 |
πi(Tr[0..�]) /∈ PC(v)} ∪ {|Tr|}), lmin(i) = min{�v | v ∈ Ii}, and
fd(v, Tr) = min({� ∈ {lmin(v) − 1, ..., |Tr|} | ∃Tr′ ∈ PC(v).∀v′ ∈ IC(v).

πv′(Tr[0..�v′ − 1]) = πv′(Tr′[0..�v′ − 1]) ∧
πv(Tr[0..lmin(v) − 1]) = πv(Tr′[0..lmin(v) − 1]) ∧
πv(Tr[� + 1]) = πv(Tr′[� + 1])})

C(v) is the component to which variable v belongs. fvi(Tr) is the index
of the first violation of Pi in Tr. lmin(i) is the minimal lv for the inputs v
of component Ci. The first constraint means that an output variable from a
suspected component must be in the cone if the component is faulty. The second
constraint propagates the entry of outputs in the cone to the inputs on which
they are linked. The third constraint means that an output v of a non-faulty,
or separable, component i receiving inputs from a component in the cone must
enter the cone at the latest when component i becomes faulty or at fd(v, Tr).
fd(v, Tr) is the first index on which v can differ from its observed value when
the component producing v is fed its observed input up to the cone, followed by
arbitrary values.

Definition 12 (Counterfactuals). Let Sys be a system definition, Tr be a
system trace, R ⊆ {1, . . . , J} be the set of separable components indices, and
K = K(Tr, S,R) be the cone of influence. Let A = 〈I,O,P〉 be the composition
of the components in A. We define the counterfactuals of trace Tr given cone
K and separable components R to be

σ(Tr,K,R) =
{
Tr′ ∈ T | ∀v ∈ I ∪ O.πv(Tr′)[0..�v − 1] = πv(Tr[0..�v − 1]) ∧

∀i ∈ {1, ..., J}.
[
(i ∈ S ∨ i /∈ R) ∧ πi(Tr′) ∈ Pi ∨ (i /∈ S ∧ i ∈ R) ∧ πi(Tr′) ∈

RX(i)
]}

,

where RX(Ci) = {Tr ∈ TIi∪Oi
| ∃Tr′ ∈ TIi .T r = re-execute(Ci, T r′)}.

The notion of counterfactuals represents the reconstructed set of possible sys-
tem traces when the faulty suffixes of the suspected components’ observed traces
are replaced with correct ones, and the effects of such faults are reconstructed by
the separable components. The first condition in the definition of σ(Tr,K,R)
states that the counterfactual must begin with the observed unaffected prefixes
πv(Tr[0..�v −1]) before the cone is entered. The second condition states that if a
component is not separable, it will be prolonged using its property; for separable
components, we re-execute them to build the new trace.

In practice, Tr′ is constructed incrementally, without explicitly computing
RX(Ci), provided that all components have a finite specification. In that case,
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Fig. 4. Trace reconstruction algorithm

the cone and the counterfactuals are computed by the algorithm in Fig. 4. The
trace reconstruction depends on the causality definition being used, where we
illustrate necessary vertical cause here. In the general case, the algorithm takes
the causality definition as an input, based on which different trace reconstruction
procedures are selected.

The use of separable components is a hybrid approach in trace reconstruc-
tion. For the system behavior that comes before the violations of the suspected
components or that is generated by non-faulty components, we want to keep
the reconstructed trace as similar as the observed trace, so static information
(observed trace Tr and system definition Sys) that is already available at the
time of the analysis is used. For the alternative system behavior that depends on
dynamic component output, separable components are used to generate run-time
output to be used in trace reconstruction.

4.2 Culprit Minimization with Horizontal Causality

A second extension to our existing approach is to replace the use of set contain-
ment checking in [18] with the use of horizontal causality, in order to exclude
non-minimal subsets of causes from blame. The approach in [18] starts from a
viewpoint that always aims to blame the minimal number of components and
removes a culprit from blame if one of its proper subsets is also a culprit. While
this treatment may have provided one approach to reduce the number of com-
ponents in a culprit, it is counter-intuitive. Dependency in between component
interactions is completely overlooked with this treatment.
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With the use of horizontal causality, relationships in between components
can be utilized to improve the precision of causality analysis. In details, if the
analysis determines that a non-singleton subset S of faulty components is a cul-
prit, then the horizontal causalities between the component property violations
are investigated. Let I = {iTrC ,PC

| C ∈ S} be the set of indices for component
violations in S on trace Tr. Then for each i, j ∈ I such that i < j, the horizontal
causality between the subset Si = {Cl ∈ S | l = i} and each component Cr

in Sj = {Cl ∈ C | l = j} is investigated. If the property violations in Si is a
horizontal cause for the property violation in Cr, then Cr is removed from S.

Example 2. For the running example, when the analysis determined that the
set {PO,Ctrl} is a culprit, the analysis in [18] used simple set minimization to
exclude {PO,Ctrl} from blame, since the singleton set {Ctrl} is a cause as well.
With horizontal causality: In the case of {PO,Ctrl} being a cause and the fault in
PO occurs before the fault in Ctrl, we remove the blame on Ctrl only if the fault
in PO causes the fault in Ctrl. In this example, should PO output a correct value
71, the expected output from Ctrl should be 0 time unit. In the approach in [18],
Ctrl outputs 3 as on the observed trace, i.e., the property violation in Ctrl does
not disappear, so the fault in PO is not a horizontal cause for the fault in Ctrl.
Therefore, it is not proper to simply remove {PO,Ctrl} from blame. Both {Ctrl}
and {PO,Ctrl} should be taken as blame, as they represent different scenarios
that the system property violation can be prevented. ��

We note that the two extensions we introduced in this work are orthogonal,
and can be applied to our existing approach individually. However, the analysis
results, as summarized in Table 2, do not achieve the same precision as when
both extensions are incorporated, as shown in Example 3 below.

Example 3. Continuing the running example where {PO,Ctrl} is determined to
be a necessary vertical cause, if separable component Ctrl is used for causality
analysis, then the Ctrl output, given the changed input 71, is not necessarily 3
as on the observed trace. If the Ctrl output is 1 or greater, then the property
violation in {PO} is not a horizontal cause for the property violation in {Ctrl},
thus the blame on {PO,Ctrl} is not excluded. On the other hand, if Ctrl’s output
is 0, the horizontal causality between property violations in between {PO} and
{Ctrl} is established. The blame on {PO,Ctrl} is reduced to {PO}, even if {PO}
itself is not determined as a necessary vertical cause in the first place. ��

5 Implementing Causality Analyzer

In this section, we present some key implementation details for the proposed
causality analysis. We implemented trace recording, reconstruction, and causal-
ity analysis modules based on the publicly available medical device coordination
framework (MDCF) [12]. MDCF is a message exchange platform for medical
devices operating in a cooperative fashion. The framework implements message
publish/subscribe model as specified in the ICE standard [2].



262 S. Wang et al.

Table 2. Comparison of Causality Analysis Results with Extensions

Analysis in [18, 19]
Analysis in [18, 19] with

Horizontal Causality

Analysis in [18, 19] with
Separable Components

Analysis in [18, 19] with both Horizontal 
Causality and Separable Components

     {PO} and {Ctrl}

     (given input 71) during trace reconstruction

     otherwise blame {Ctrl} only

     minimization

     (given input 71) during trace reconstruction

 2

     is 1, {PO} is the vertical cause and blamed. When Ctrl
     output is 0, there may be two explanations: (a) {PO} is
     the vertical cause, or (b) {PO, Ctrl} is a vertical cause,
     and {PO} is the horizontal cause for Ctrl, so {PO} is 
     blamed, not {PO, Ctrl}

Trace Recording. The PCA example for our case study is component-based.
Each component registers itself as a message publisher to send messages to oth-
ers and as a subscriber to receive messages from others. We also implemented
a network-wide data logger for MDCF. The data logger declares itself as a sub-
scriber to all relevant messages exchanged via message bus. When a message orig-
inates from a medical device, it is time-stamped, serialized, and sent to MDCF.
MDCF will push the message to the data logger (as well as other subscribers
to the message) so that the data logger is able to capture the message together
with its time-stamp of creation. The recorded traces are then normalized to
the formalism presented in Sect. 3.1 based on the case study’s setting that the
components are are stepped by a timer of 500 ms.

Implementing Separable Components. In our case study, a component can
be viewed as a trace generator in that it takes a sequence of input and produces
a sequence of output. A component in MDCF is then naturally separable in
that the component can be incorporated in the trace reconstruction module in
a controlled fashion.

In details, for components with no internal states, the component imple-
mentation is simply executed each time an output is needed. For a separable
component C with internal states, the trace reconstruction starts with the ini-
tial internal states of C and replays the recorded snapshots on the observed
trace Tr back to C, up to the boundary of cone of influence. Afterwards, input
to C may have changed as other faulty suspected components may generate new
output that is fed to C. The separable component C then reads the input and
produces an output. In this way, the internal states of C are implicitly kept
within C’s implementation, without being explicitly monitored.
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Causality Analyzer. The implementation of the causality analyzer follows
the functional blocks shown in Fig. 3. Notice that for the analysis of horizon-
tal causality in Step 4 of the causality analysis framework, no additional trace
reconstruction is required if we cache the reconstructed traces. For instance,
when having determined {PO,Ctrl} as a culprit, we then need to investigate
whether the property violation in PO is a cause of the property violation in
Ctrl. This requires the reconstruction of the trace when PO alone is suspected.
This has already been done, when investigating {PO} for vertical causality.

Result. We have instructed the causality analyzer to output useful human-
readable information with regard to the analysis process. A sample run of the
analysis outputs (a) set of faulty components, (b) for each suspect, whether it is
a culprit, (c) if a suspect is a non-singleton culprit, whether there are horizontal
causal relations between its components, and (d) a list of the minimal culprits.
The expected analysis result as discussed in Sect. 4 for the running example is
summarized in the bottom right cell of Table 2. Note that the result does not
invalidate our previous analysis presented in [18,19] as the criteria of determining
minimal culprits are different. Also, with separable components, our proposed
analysis is equipped with a more realistic trace reconstruction technique that
produces more accurate counterfactual traces, thus we obtain culprits that match
our intuition better for this case study.

Scalability. By our problem definition it is inevitable to investigate each non-
empty subset of faulty components and determine if it is a culprit. Thus the
overall complexity of our approach is exponential in the number of faulty com-
ponents. However, we note that in practice, the number of faulty components is
usually small and tractable. Also, as has been shown in [18,19] that state-of-the-
art SAT/SMT solvers (e.g., Z3 [6]) can be used to efficiently solve a causality
analysis problem instance, our approach could benefit from leveraging SAT/SMT
solvers with proper encoding.

6 Related Work

Analysis for causes has long been a human intellectual inquisition. Recent philo-
sophical inquisition on causality based on counterfactuals starts from Hume, and
is extensively studied in [15]. Halpern and Pearl [10] were among the first to pro-
vide a formalism to reason about causality. [10] defines causality for structural
equation models (constraints on variables) and does not study component-based
or real-time systems, which typically exhibit much more complex behaviors.

Works following Halpern and Pearl’s definitions include [3,13,14], all requir-
ing a cause to be both necessary and sufficient. The work in [3] illustrated how
causality can be used for providing an explanation of system property viola-
tion. The work in [13,14] is based on the assumption that a plethora of system
traces can be obtained for analysis so that is possible to categorize the available
traces by trace characteristics so that each category can be regarded as a failure
mode in the failure mode and effects analysis (FMEA). The work in [3,13,14]
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all model traces as a sequence of observed events, and the occurrence or absence
of events are potential causes to the violation of properties, which are modeled
as temporal logic properties. These approaches neglect the underlying system
components that generate the events as well as the interactions between com-
ponents. Similarly, work based on using distance metrics [4,17] to measure the
similarity between actual and counterfactual traces shares the same limitation.

The work in [11] and our previous work in [18] share similar ideas if program
statements are viewed as black-box components. Encoding the program and error
trace into a MAX-SAT problem instance can yield a set of program statements
so that correcting the identified statements can eliminate the program error.
On a larger scale, the delta-debugging technique proposed in [20] can also be
viewed as an application of counterfactual reasoning: debugging is by experi-
mentally correcting statements of a program until a set of statements are found
to eliminate compiler panic should the identified statements are corrected.

Our line of work [7–9,18,19] starts with preliminary definitions of causali-
ties for component-based systems [9,18] and extends to real-time settings for
system definitions with logical constraints [19], synchronous systems [8], and
timed automata [7]. A salient difference of our work from existing ones is that,
although we assume components are black-boxes, we take expected component
behaviors specified in component properties as guidelines for trace reconstruc-
tion. This directs us to a set of counterfactual traces that are more relevant to
the observed one. We in this work further employs separable components, which
first appeared in combinational circuits diagnosis [5] where internal states of
components are not considered.

7 Conclusion

We presented an extension of trace reconstruction algorithm for causality analy-
sis. Using a case study from the medical domain, we show that the extension
improves precision of the analysis and matches our intuition about the analysis
results. The key to the improvement is the ability to re-execute some of the
system components separately from the rest of the system. We further show
that analysis can be improved by considering horizontal causality; that is, tak-
ing input-output dependencies between components into consideration in order
to avoid induced faults. Our future work will concentrate on extending causality
analysis to cover weaker component contracts that may make some of the faults
unobservable.
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Abstract. The problem of estimating quantitative properties of dis-
tributed cyber-physical software that coordinate and adapt to uncertain
environments is addressed. A domain-specific language, called dmpl, is
developed to both describe such a system and a target property. Statisti-
cal model checking (SMC) is used to estimate the probability with which
the property holds on the system. A distributed SMC tool is developed
and described. Virtual machines are used to implement a realistic exe-
cution environment, and to isolate simulations from one another. Exper-
imental results on a coordinated multi-robot example are presented.

1 Introduction

A Distributed Adaptive Real-Time (DART) system consists of a set of physically
disjoint nodes that communicate and coordinate to achieve a set of objectives,
and increase the likelihood of achieving these objectives (i.e., success) under an
uncertain environment via self-adaptation. Given a stochastic system M, an
event Φ in its execution, and an error bound RE , statistical model checking
(SMC) [10] is a systematic use of Monte-Carlo simulations to estimate the prob-
ability of Φ with an error of no more than RE . In this paper, we present and
evaluate an approach for statistical model checking of DART systems (DARTs).

We make three contributions. First, we develop a language called the DART
Modeling and Programming Language (dmpl). A dmpl program P is a triple
(M, Φ, T ), where M is the DART system, and T (a time limit) and Φ (a predicate
over executions of M) express the target property. Our goal is to estimate the
probability p that Φ holds on a random execution of M of duration T . Second,
we develop a compiler, dmplc, that given a dmpl program P, generates: (i) a
log generator LogG ; a run of LogG produces one log for each node of M; and
(ii) a log analyzer LogA that combines all the logs from one execution of LogG ,
and produces the value of Φ at time T . Finally, we implement a distributed SMC
tool, smcd, that uses LogG and LogA to estimate p with a target precision.

We evaluated our approach on a DART example with mobile robots, where
success involves avoiding collisions, while maximizing speed, and minimizing
exposure to environmental hazards. For our experiments, we use the ZSRM [7]
scheduler, the v-rep [9] physics engine, and the madara [5] middleware. Our
approach easily handles this example system with 5 nodes, each running 3
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threads, and should scale to much larger systems. We also demonstrated running
on clusters with 5 VMs. Further details are provided in Sect. 4.

Related Work. SMC has been applied to various types of “models”: stochastic
hybrid automata [3], real-time systems [4], and Simulink models of cyber-physical
systems [2]. Our work bridges the gap between what is analyzed and what will
be executed. In addition, unlike current distributed SMC tools, smcd handles
dynamic addition and removal of simulators. Younes [11] showed that naive
parallelization of SMC is incorrect due to a bias caused by differences in execution
time, and that [11] this bias is eliminated by performing simulations in “rounds”.
Bulychev, et. al. [1] proposed two optimizations to round-based parallelization –
batching and buffering. Since we simulate the actual system for time T , the time
to perform a simulation is relatively large, and the simulation times for “true”
and “false” results are close. Hence, we do not believe that batching or buffering
will be helpful for us, but we do apply the basic round-based approach to avoid
bias. SMC performance can also be improved via techniques orthogonal to ours,
e.g., importance splitting [6], and importance sampling [8].

2 The dmpl Language

A dmpl program P is a triple (M, Φ, T ). The system M is a triple (V, F, T ),
where V is a set of shared variables; F is a set of procedures (functions); T is a
set of threads. dmpl defines M and Φ, through a mostly C-like syntax; however:

– dmpl does not support pointers, to avoid variable aliasing complications.
– dmpl functions in F can be declared pure. These functions cannot modify V ;
dmplc will reject code that violates this.

– dmpl defines threads statically, like functions, but with the thread keyword.
dmpl automatically spawns these threads. dmpl threads are inherently peri-
odic; each thread’s code runs within an implied infinite loop.

– dmpl variables, comprising V , may be defined as local or global.
Threads on a given node share local variables, while threads across all nodes
share global variables. dmpl uses a “read-execute-write” computation model.
Threads operate on cached copies of these variables, read atomically at the
start of each period, and write atomically back at the end. Additionally, each
node publishes its own version of global variables, which other nodes cannot
“overwrite”. Nodes, however, can “read” others’ versions.

– dmpl supports defining a Φ as part of its source, using expect clauses. These
clauses specify a Boolean expression, over values in V and returned from pure
functions, whose truth SMC will evaluate.

– dmpl can call arbitrary extern C++ functions; however, these functions can-
not directly access V . They may be labeled pure, indicating that they are safe
to call from expect clauses, i.e., they do not affect runtime behavior, only
gather information about it. dmplc does not enforce this contract.

dmplc creates LogG and LogA from a dmpl program. LogG includes an
observer thread which periodically logs (with a timestamp) all variables in V
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Fig. 1. A dmpl property for coverage, with geometric justification.

appearing in expect clauses. The read-execute-write model ensures consistent
state observation. Functions declared pure are executed in either LogG or LogA
as needed. LogA uses the timestamps to cross-reference the logs and evaluate each
expect clause. Figure 1 shows an example dmpl program for a scenario used later
in Experiment 1. The @AtLeast(0.5) annotation in the expect clause means
that the specified coverage property should hold true at least 50 % of the time
for a mission run to be successful. dmpl also supports an @AtEnd annotation;
such expect clauses must hold true at the end of a mission run.

3 Statistical Model Checking (SMC)

The goal of SMC is to estimate the probability that the property Φ holds in
the system M. We model this as an indicator function IM|=Φ : x → {0, 1}
where x ∼ f (i.e., x is a random input vector distributed by f). We can then
state the SMC problem as determining the probability p = E[IM|=Φ(x)] =
∫

IM|=Φ(x)f(x)dx which can be estimated as: p̂ =
∑N

i=1 IM|=Φ(xi), where xi

is the i-th of N trials. The precision of p̂ is quantified by its “relative error”

RE(p̂) =
√

Var(p̂)

E[p̂] where Var(p̂) is the variance of the estimator. It is known [2]

that: RE(p̂) =
√

1−p
pN ≈ 1√

pN
and N = 1−p

pRE2(p̂) ≈ 1
pRE2(p̂) .

Our SMC tool smcd consists of one or more collectors and an aggregator.
Each collector is deployed on a VM, where it: (i) awaits a signal from the aggre-
gator; and (ii) runs a simulation η, computes the result η |= Φ, and transmits
it back to the aggregator. The aggregator manages the SMC in rounds to avoid
execution time bias [11]. At the beginning of each round, the aggregator sends a
message to each collector to begin a simulation. After all collectors have reported
their result, the current probability and relative error is calculated. If the cal-
culated relative error is less than the target relative error RE , the algorithm
terminates. If not, a new round of simulations is started.
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Since our simulations execute the actual system code, each may take signif-
icant time. Moreover, we know that many simulations (N) are needed if p and
RE are small. Thus, to analyze systems of realistic complexity, smcd collectors
might be deployed on large clusters of machines with varying availability. Hence,
the aggregator is designed so that collectors may join and drop at any time. If
a collector joins during a round, it is held in reserve until the next round but
not used during the current round. If a collector disconnects during a round, an
“abort” message is send to the other collectors, and the results of that round
are discarded. Thus, we avoid any potential bias in the probability estimation.

Fig. 2. Graphs of results from experiments 1(left) and 2 (right).

4 Experiments

Our scenario (c.f. Fig. 1 for dmpl code fragment) involves a reconnaissance mis-
sion with five flying robots (i.e., nodes) on a 2-dimensional grid. One node
(leader) has mission-critical sensors, while the others (protectors) provide phys-
ical defense from attackers (so we want to maximize coverage). The leader must
follow a specific flight path, and reach a particular location by time T while
maintaining a minimum level of protection for mission success. Nodes execute a
(presumed correct) collision-avoidance protocol, which slows down the the fleet,
due to additional coordination. Each grid cell has a random hazard level with
known probability distribution. The system has two formations: (i) tight – the
protectors are closer to the leader, and (ii) loose – protectors are further apart.
The tight formation provides better coverage to the leader but is about twice
as slow. The leader executes a self-adaption algorithm for formation selection,
based on upcoming hazards and remaining mission time, to increase likelihood
of mission completion. Further details are not germane to this paper. However,
our tools and the complete example is available at http://www.andrew.cmu.edu/
∼schaki/misc/smc-dart.tgz.

http://www.andrew.cmu.edu/~schaki/misc/smc-dart.tgz
http://www.andrew.cmu.edu/~schaki/misc/smc-dart.tgz
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Experiment 1: Quality of Formation. First, we analyzed the quality of
formation-keeping by the protectors. At any time instant, let us define the
leader’s risk (R) as the product of the hazard at its location and its exposure
(one minus its coverage, computed via the method shown in Fig. 1). We selected
14 R values: {2, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 95}, and 7 @AtLeast
values: {.25, .50, .62, .75, .85, .90, .95}. For each R value ρ and @AtLeast value
al , we defined an expect clause to express mission success only if the leader’s
risk remains below ρ for at least al fraction of the time. This yielded 98 proper-
ties, whose probabilities were computed using smcd. We ran 603 simulations, on
5 VMs in parallel, using T = 115s. This achieved RE = 0.1 for most of the prop-
erties. A few properties had RE > 0.1, and would require techniques to handle
rare events [6,8]. Our results are summarized in Fig. 2. Each curve corresponds
to a different @AtLeast value. As expected, the probability increases with the
risk threshold, but falls with increasing @AtLeast value.

Experiment 2: Resilience to Network Disruption. Next, we instrumented
our simulation to randomly drop messages between the nodes. This slows down
the fleet due to increased coordination time for collision avoidance. We defined
four network categories based on drop rate ranges: high (0 % to 20 %), medium
(20 % to 40 %), low (40 % to 60 %), and poor (60 % to 80 %). Using an @AtEnd
expect clause we defined the following property: at the end of the mission, the
leader must be at the target location. We then computed the probability of
this property for each network category. For each experiment for a category, we
randomly selected a drop rate from that category’s range, uniformly distributed.
To achieve RE = 0.1, we needed 35 experiments for “high”, 43 experiments
for “medium”, and 264 for “low”. Figure 2 shows the results. As expected, the
probability drops with decreasing network quality. For the “poor” network, we
stopped after 43 experiments, since we saw no successes. Techniques to handle
rare events in SMC [6,8] are needed for this case as well1.

References

1. Bulychev, P., David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.:
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model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

1
This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. This material has been
approved for public release and unlimited distribution. DM-0002365.



274 D. Kyle et al.

5. Edmondson, J., Gokhale, A.: Design of a scalable reasoning engine for distributed,
real-time and embedded systems. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011.
LNCS, vol. 7091, pp. 221–232. Springer, Heidelberg (2011)

6. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013)

7. de Niz, D., Lakshmanan, K., Rajkumar, R.: On the scheduling of mixed-criticality
real-time task sets. In: Proceedings of RTSS (2009)

8. Srinivasan, R.: Importance Sampling: Applications in Communications and Detec-
tion. Springer, Heidelberg (2002)

9. V-REP website. http://www.coppeliarobotics.com
10. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchro-

nous Events. Ph.D. thesis, Carnegie Mellon University (2005)
11. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,

S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

http://www.coppeliarobotics.com


Probabilistic Model Checking at Runtime
for the Provisioning of Cloud Resources

Athanasios Naskos, Emmanouela Stachtiari, Panagiotis Katsaros(B),
and Anastasios Gounaris

Aristotle University of Thessaloniki, Thessaloniki, Greece
{anaskos,emmastac,katsaros,gounaria}@csd.auth.gr

Abstract. We elaborate on the ingredients of a model-driven approach
for the dynamic provisioning of cloud resources in an autonomic man-
ner. Our solution has been experimentally evaluated using a NoSQL
database cluster running on a cloud infrastructure. In contrast to other
techniques, which work on a best-effort basis, we can provide probabilis-
tic guarantees for the provision of sufficient resources. Our approach is
based on the probabilistic model checking of Markov Decision Processes
(MDPs) at runtime. We present: (i) the specification of an appropriate
MDP model for the provisioning of cloud resources, (ii) the generation
of a parametric model with system-specific parameters, (iii) the dynamic
instantiation of MDPs at runtime based on logged and current measure-
ments and (iv) their verification using the PRISM model checker for the
provisioning/deprovisioning of cloud resources to meet the set goals (This
research has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program
“Education and Lifelong Learning of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.”).

1 Introduction

A practical model-driven approach is presented for the provisioning of resources
to a cloud application, such as a web-enabled NoSQL database on a cluster
of virtual machines (VMs). The load of service requests submitted by end-
users evolves over time. Each request has to be served within a fixed period
of time determined by a threshold on acceptable response latency. To achieve
this goal, we rely on horizontal scaling elasticity actions, i.e., new VMs may be
added on the fly to cope with load increases and VMs can be released when the
load decreases. The main challenge is to develop a decision making policy that
avoids both resource under-provisioning, which leads to violations of the latency
threshold, and over-provisioning, which leads to low infrastructure utilization
and unnecessary economic cost.

Existing decision making policies such as the one implemented in Amazon’s
EC2 manager mainly work on a best-effort basis and there is no way to pro-
vide guarantees for their performance in diverse workload scenarios. Some other
c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 275–280, 2015.
DOI: 10.1007/978-3-319-23820-3 18
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model-driven proposals [6] combine Markov Decision Process (MDP) models
with reinforcement learning-based policies.

Our decision making solution is based on the probabilistic model checking
of dynamically instantiated MDPs by using the PRISM tool [1] at runtime. A
decision step is activated periodically, e.g., every 30 s or every few minutes. Each
decision (or elasticity) step is split into the following three phases:

1. Appropriate MDP models are dynamically instantiated, which reflect the pre-
dicted system utility and the possibility of latency threshold violations. These
models are constructed based on the monitored incoming load and past log
measurements of response latency, for similar incoming load values.

2. MDPs are verified online using PRISM, in order to find the optimal elasticity
decisions for the solved model instances.

3. The selected elasticity action to be applied is chosen from the set of possible
actions {add, remove, no op} that respectively correspond to adding new
VMs, releasing existing VMs and leaving the cluster unchanged. If any of
the first two actions are decided, then the run of the next elasticity step is
suspended until the system stabilizes.

In [5], we have experimentally evaluated and compared the described approach
with the mentioned alternatives. The presented results are based on traces from
a real NoSQL database cluster under constantly evolving external load and they
are particularly promising: we can support decision policies that improve upon
the state-of-the-art in significantly decreasing under-provisioning, while avoiding
over-provisioning. Here, we focus on our MDP modeling approach for the first
elasticity phase, whereas details for the two other phases are provided in [5].

In Sect. 2, we elaborate on our approach for the specification of an appropri-
ate MDP model. Section 3 discusses the generation of a parametric model with
system-specific parameters, the dynamic instantiation of MDPs, and their verifi-
cation at runtime. Finally, we conclude with a critical review on the practicality
and the prospects of the proposed solution.

2 An MDP for the Control of Cloud Resource
Provisioning

An MDP allows to capture both the non-deterministic and the probabilistic
aspects of the modeled system and it is formally defined as follows:

Definition 1. [2] An MDP is a tuple M = (S, s0, Act,P, L), where S is a finite
set of states with s0 the initial state, Act a finite set of actions and L : S → 2AP

maps states to a subset of a given set of atomic propositions AP . The transition
probability matrix P is a function P : S × Act × S → [0, 1]. For all states s ∈ S
and actions α ∈ Act, we require that

∑
s′∈S P(s, α, s′) ∈ {0, 1}. We also require

that for each s ∈ S there is at least one α ∈ Act with
∑

s′∈S P(s, α, s′) = 1.

With Act(s) = {α | ∑
s′∈S P(s, α, s′) = 1} we specify the set of enabled

actions in a state. Figure 1 introduces a simplified representation of our MDP
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Fig. 1. MDP model overview.

state space and the enabled
actions in each of the shown
states. Every state si corresponds
to the number of VMs that com-
pose the application cluster (e.g.
the NoSQL cluster used in [5])
with i representing the cluster’s
size at some time instant.
This illustration of the state
space is separated in time sec-
tions (t, t + 1, t + 2, ...) with each
one corresponding to a distinct
decision step of the cloud provi-
sioning policy. We can thus take
into account the evolution of the
conditions with time, which is
particularly important when a decision policy is coupled with external load pre-
diction1. After remove and add VM actions, the decision maker may be idle
for a pre-specified time period (e.g. one decision step) to allow the system to
stabilize. In Fig. 1, s3−4 at t+1 and all other states identified with si−j repre-
sent transient states, i.e. unstable system states due to a recent change in the
number of active VMs. Thus, based on the enabled actions at t, we have three
states at t + 1 including two stable states s2 and s′

3 - if the number of VMs is
not changed - and one transient state. States s3 and s′

3 represent a configuration
with 3 VMs, however as the environment evolves, these two states can behave
differently to the incoming load (e.g. they may receive different incoming load
and may be characterized by different response latency). Also, as we observe,
after the s′

3 state, the same pattern is repeated with different time sections and
state naming conventions, with s′

3 now being the current state.

Fig. 2. Detailed MDP model states.

The model’s representation in
Fig. 1 is further elaborated in
Fig. 2 to account for the possi-
ble variability in the application’s
performance for a given external
load and cluster size. In Fig. 2, si
can be any possible stable state of
the previous model view, where
each si is in fact represented by
n states (shown as sibm, 1 ≤
m ≤ n). In [5], the most effec-
tive decision policies, for a given
number of VMs, employ one state
representing the possibility of not

1 An ARIMA-based predictor of future load can be used in decision policies as sug-
gested by [5].
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meeting the latency threshold and other states representing the possibility to
meet it. Transition probabilities are based on the prediction of the future incom-
ing load and the collected logs (cf. Sect. 3).

Definition 2. [2] A reward structure for an MDP with state space S and action
set Act is a partial function r : S × Act ⇀ R≥0 assigning a reward to each state
and enabled action.

In our MDPs, a reward is assigned in states based on measurements of the
system’s latency and throughput, and a user-defined utility function.

3 MDP Model Instantiation and Verification at Runtime

The described model representation is encoded into a parametric MDP in
PRISM’s input language. The model is automatically generated using scripts
based on: (i) system-specific parameters such as the minimum/maximum allowed
number of VMs, the allowed numbers of simultaneous VM additions/removals
in a single decision step, the lookahead prediction steps, the duration of the
transient states, the number of states representing each cluster size, and (ii) sys-
tem measurements such as the response latency. Our PRISM model’s structure
is accessible in [3]. Every model is defined as the parallel composition of three
PRISM modules:

1. The decision module, where the actual elasticity is modeled (add, remove and
no op actions between model states).

2. The transient module, which stores measurements for stable states from which
an add action is applied, thus reaching a transient state. These measurements
are used to compute the rewards for the transient states.

3. The cluster module, where a possible state representation as in Fig. 2 is cho-
sen; here the name “cluster” stems from the log measurements clustering in
different groups (states) for the same external load and VM cluster size, as
explained below and detailed in [5].

Appropriate PRISM formulas are also used to: (i) find the current system mea-
surements, (ii) define the utility function for reward computation and (iii) control
the computation of rewards for specific model transitions.

Dynamic MDP Instantiation. In each decision step, current and logged mea-
surements are gathered through periodic monitoring (e.g., every 30 s). Measure-
ments are then fed after preprocessing into the parametric model to create a
new MDP model instance. For the experiments in [5], all model parameters are
derived from clustering log measurements for similar past conditions, where simi-
larity is decided based on the external load, the number of VMs and the response
latency. This extends the approach in [6], in order to capture the inherent uncer-
tainty in the application’s environment. Log measurements are grouped in each
step for a specific number of active VMs by their incoming load λ, and they are
then fed into a k-means clusterer, which returns k center points. The k centers
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are mapped to probabilities, proportional to the size of their clusters. Finally,
the state representation of Fig. 2 is used during the MDP model instantiation,
with the computed center points (states) and their respective probabilities.

Model Verification and Decision Making. The elastic decision is based on
the maximum expected reward after a specified number of steps. This prop-
erty is expressed in Probabilistic Computation Tree Logic (PCTL) as follows:
R{“cumulative reward ”}max =? [ F (stop) ]. The model checking result is the
expected maximum cumulative reward and the set of adversaries which yield
this reward, i.e. functions δ : S → Act that resolve nondeterminism in the MDP
by choosing which action to take in each state.

From the obtained adversaries, we choose the first action of the adver-
sary with the least maximum expected probability for a system measurement
threshold violation. The used PCTL properties for this purpose have the form:
Pmax =? [ F (stop) & (meas > meas threshold) & (first action = X)], where
meas is a specific system measurement and X denotes every possible initial
action of the processed adversaries. This result represents the preferred elastic-
ity decision.

4 Conclusions and Future Work

We introduced a parametric MDP model for the control of cloud resource provi-
sioning. This model is the key-component of various elasticity decision policies
that have been experimentally evaluated [5] using traces from a real NoSQL
database cluster under constantly evolving external load. To the best of our
knowledge, this is the first initiative towards integrating model checking in cloud
elasticity management and the results in [5] show that our model-driven policies
outperform compared to existing alternatives in that they can decrease under-
provisioning, while at the same time avoiding over-provisioning.

Latest results show that the presented model checking approach at runtime
can be also beneficial for the management of trade-offs between the need to meet
performance requirements, while respecting critical constraints in cloud security.
To this end, we have evaluated the effectiveness of a new security-aware elasticity
policy on scaling NoSQL databases in a cloud environment [4].
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Abstract. In this paper, we present the first steps toward a runtime
verification framework for monitoring hybrid and cyber-physical sys-
tems (CPS) development tools based on randomized differential test-
ing. The development tools include hybrid systems reachability analysis
tools, model-based development environments like Simulink/Stateflow
(SLSF), etc. First, hybrid automaton models are randomly generated.
Next, these hybrid automaton models are translated to a number of
different tools (currently, SpaceEx, dReach, Flow*, HyCreate, and the
MathWorks’ Simulink/Stateflow) using the HyST source transformation
and translation tool. Then, the hybrid automaton models are executed
in the different tools and their outputs are parsed. The final step is the
differential comparison: the outputs of the different tools are compared.
If the results do not agree (in the sense that an analysis or verification
result from one tool does not match that of another tool, ignoring time-
outs, etc.), a candidate bug is flagged and the model is saved for future
analysis by the user. The process then repeats and the monitoring contin-
ues until the user terminates the process. We present preliminary results
that have been useful in identifying a few bugs in the analysis methods
of different development tools, and in an earlier version of HyST.

1 Introduction

Runtime verification is an approach to ensure the correctness and reliability
of a system during its execution. It can check and analyze executions of a
system under scrutiny that violate or satisfy a given correctness property by
using a decision procedure called a monitor. A monitor can also be considered
as a device that can read finite traces and output a truth value derived from
a truth domain [3]. Runtime verification can be used broadly for many pur-
poses such as debugging, testing, verification, validation, fault protection, and
online system repair. In this paper, we describe a preliminary work toward a
randomized differential testing framework [5] that may be used as a runtime
monitor for various components (from parsers to analysis algorithms) in hybrid
and CPS analysis tools such as SpaceEx, dReach, Flow*, HyCreate and the
c© Springer International Publishing Switzerland 2015
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Mathworks’ Simulink/Stateflow (SLSF). A test subject is the hybrid automa-
ton randomly generated in the input format for SpaceEx using a prototype tool
called HyRG [4]1, which is then translated to other formats including dReach,
Flow*, HyCreate and SLSF using the HyST model transformation tool [1]. Our
contributions include (a) the first steps toward a randomized differential testing
framework to monitor CPS development and verification tools, and (b) identify-
ing some bugs in existing tools, including a semantic difference between SpaceEx
and SLSF that we did not know about and some soundness bugs in the verifica-
tion tools that have been corrected by the tool authors [1].

2 Monitoring with Randomized Differential Testing

We first describe how the hybrid systems are randomly generated in HyRG
so they have diverse continuous and discrete behaviors. We then analyze these
examples with different hybrid systems development and verification tools, and
then compare their outputs to identify possible bugs in the tools. Figure 1 shows
the overview of our framework for randomized differential testing to monitor
hybrid systems development tools. First, a hybrid automaton AR is randomly
generated by HyRG, then AR is translated using HyST to equivalent automata
in different tools’ formats, denoted AS, AF, AD, AH, AM, and AO. Next, the
automata can be analyzed using the different tools, such as SpaceEx, Flow*,
dReach, and HyCreate, or simulated in SLSF. Then we compare all analysis
results by using a function reachCheck shown in Fig. 2.

Random Generation
(HyRG)

Model Translation
(HYST)

SpaceEx HyCreatedReachFlow*

Execute a Random Model on Different Tools

SLSF

Compare Analysis Results by Calling reachCheck

SAT

Report a Candidate Bug

UNSAT

Other Tools

AR

AMAS AF AOAHAD

Reach, Trace

Fig. 1. Overview of monitoring framework for hybrid systems analysis tools with ran-
domized differential testing.

1 The tool and examples are available online: http://www.verivital.com/hyrg/.

http://www.verivital.com/hyrg/
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Fig. 2. reachCheck checks whether the set of reachable states and traces computed by
different tools overlap (have non-empty intersection) at every time instant.

The reachCheck function has three inputs: Reach, Trace, and β, where β is
the reachability analysis and simulation time bound. Reach is a list of sets of
time-bounded reachable states computed by different tools (e.g., the output of
SpaceEx, Flow*, etc.). Each set of reachable states, R(t), is the set of states that
may be visited by following the model’s trajectories and transitions, for any time
t ∈ [0, β]. That is, for a given time t, R(t) is the set of states reachable at time t
(sometimes referred to as a time-slice). The input Trace is a set of all simulation
traces produced by SLSF up to a maximum simulation time β.

The reachCheck function can check whether the reachable states or simulation
traces computed by different tools at each time have non-empty intersections.
Although all of the reachable states and simulation traces are described in dif-
ferent formats such as support functions, Satisfiability Modulo Theories (SMT)
formulas, convex sets, etc., there still exists an equivalence among them. For
example, reachable sets computed by SpaceEx’s LGG algorithm are a represen-
tation of convex sets (support functions), but these could be compared to the
Taylor models of Flow*. If the reachable sets computed by different tools have a
non-empty intersection (pairwise over all the tools), then reachCheck will return
SAT, and the monitoring continues by generating a different random model.
Otherwise, there is possibly a bug in the HyST translation or the verification
tools. For the simulation traces, if some portions of a trace are not contained in
any of the reachable states, reachCheck will return UNSAT and there is again
possibly a bug in HyST, the verification tools, or SLSF. Obviously all these tools
have numerous parameters, so numerical issues, accuracies, etc. must be taken
into account by the user to determine whether a candidate bug is real.

Next, we define the structure of a hybrid automaton [2] and then summarize
the random generation framework.

Definition 1. Ahybrid automatonH is a tuple,H Δ= 〈Loc, Var, Flow, Inv, Trans,
Init〉, consisting of following components: (a) Loc: a finite set of discrete locations.
(b) Var: a finite set of n continuous, real-valued variables, where ∀x ∈ Var, v(x) ∈
R and v(x) is a valuation—a function mapping x to a point in its type—here, R;
and Q Δ= Loc × Rn is the state space. (c) Inv: a finite set of invariants for each
discrete location, ∀l ∈ Loc, Inv(l) ⊆ Rn. (d) Flow: a finite set of derivatives
for each continuous variable x ∈ Var, and Flow(l, x) ⊆ Rn that describes the
continuous dynamics in each location l ∈ Loc. (e) Trans: a finite set of transitions
between locations; each transition is a tuple τ = 〈src, dst, Grd, Rst〉, which can be
taken from source location src to destination location dst when a guard condition
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Grd is satisfied, and a state is updated by an update map Rst. (f) Init: an initial
condition, Init ⊆ Q.

We denote a hybrid automaton that has been randomly generated by AR. We
randomly generate each syntactic component of the automaton AR. Rather than
picking only random matrices and vectors for the affine functions used in flows,
guards, invariants, assignments, etc., we instead partition these affine functions
into classes. While we assume affine functions making up the automaton, the
general method may be extended to nonlinear functions. We highlight that all
structural components of the automaton are selected randomly (i.e., the tran-
sitions and continuous dynamics), and are not simply parameters. For brevity,

Loc1
t ≤ 7

ẋ1 = −0.7949x1 + 0.2722x2
ẋ2 = 0.2722x1 − 0.1835x2

ṫ = 1

Loc2
t ≤ 9

ẋ1 = −0.2936x1 − 0.1111x2
ẋ2 = −0.1111x1 − 0.4496x2

ṫ = 1

Loc3
t ≤ 5

ẋ1 = −0.5679x1 − 0.1359x2
ẋ2 = −0.1359x1 − 0.9269x2

ṫ = 1

start

t ≥ 7
t := 0 ∧ x1 := 2 ∧ x2 := 8

t ≥ 9
t := 0 ∧ x1 := x1 + 9 ∧ x2 := x2 + 15

t ≥ 10
t := 0
x1 := 7
x2 := 4

t ≥ 5
t := 0

x1 := x1 + 17
x2 := x1 + 18

Fig. 3. An example hybrid automaton AR with time-dependent switching that was
randomly generated using HyRG.
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Fig. 4. SLSF simulation (blue), reachable states computed by Flow* (green), SpaceEx’s
STC algorithm (red), and SpaceEx’s LGG algorithm (gray) for AR showing x1 and x2
versus time, respectively. The SLSF simulation traces and the reachable states com-
puted by Flow*, SpaceEx’s LGG and STC algorithms do not line up (i.e., have an
empty intersection) at some points in time (so reachCheck returns UNSAT) due to a
semantic difference (Color figure online).
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we do not describe in detail the random generation of all structural components
here, but refer to our other preliminary results [4].

3 Preliminary Experimental Results

We evaluate our preliminary2 monitoring framework in several scenarios to
compare differences among several hybrid systems verification tools including
SpaceEx, dReach, and Flow*, as well as SLSF simulation. Consider a randomly
generated hybrid automaton AR shown in Fig. 3. The initial state of AR is Loc3,
and the randomly generated initial values of its variables are respectively x1 = 10,
x2 = 17, and t = 0. Note that AR is nondeterministic. The results of simula-
tions and reachability analysis on AR are shown in Fig. 4. The reachable states
restricted to x1 and x2 computed by Flow* as well as the STC and LGG algo-
rithms in SpaceEx do not contain a simulation trace for a supposedly equivalent
SLSF model created using HyST when AR takes a transition. In this case, the
reachCheck function in Fig. 2 will return UNSAT. This happens because of seman-
tic differences in resets among Flow*, SpaceEx, and SLSF. In SLSF, the variables
x1 and x2 are updated sequentially, so that x1 will first be updated to a new value,
and then x2 will be updated using the new (already updated) value of x1. However,
these variables are updated concurrently in Flow* and SpaceEx [2], so x2 will be
updated by using the previous value of x1. Based on this, we fixed this translation
error in HyST.

4 Conclusion and Future Work

In this paper, we describe our preliminary results toward building a randomized
differential testing framework to monitor hybrid and CPS development tools like
SLSF and verification tools like SpaceEx, dReach, Flow*, etc. Our preliminary
results include identifying semantic mismatches between tools automatically that
have been integrated into subsequent versions of HyST. Additionally, we have
found a couple bugs in some of the verification tools that have been corrected by
the tool authors. Based on our promising preliminary results, we plan to fully
automate every step of the framework in the future.
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ment is authorized to reproduce and distribute reprints for Governmental purposes
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Abstract. Runtime verification involves checking whether an execution
trace produced by a running system satisfies a specification. However, a
simple ‘yes’ or ‘no’ answer may not be sufficient; often we need to under-
stand why a violation occurs. This paper considers how computing the
edit-distance between a trace and a specification can explain violations
by suggesting correcting edits to the trace. By including information
about the code location producing events in the trace, this method can
highlight sources of bugs and suggest potential fixes.

1 Introduction

Runtime verification [4] is the process of checking whether an execution trace τ
produced by a running system satisfies a specification ϕ. This means checking
τ ∈ L(ϕ) where L(ϕ) is the language of the specification. This paper considers
traces as finite sequences of propositional symbols and specifications as finite
state automata but the ideas could be transferable to both the parametric case,
and cases where the specification can be translated to automata i.e. LTL. In the
case of automata the check τ ∈ L(ϕ) is well understood; however, if the answer
is ‘no’ it does not reflect how close the trace is nor give any information about
why the trace violations the specification.

The aim of this paper is to highlight and encourage the use of the edit-distance
between a trace and the specification to measure the degree to which the trace
satisfies the specification. If the trace is failing this approach can also suggest
edits to the trace that could explain the violation and how to fix it. To motivate
this approach consider the following trace of open and close events extracted
from different parts of a system.

open.close.open.
︸ ︷︷ ︸

A.java

open.close.
︸ ︷︷ ︸

B.java

open.close.open.
︸ ︷︷ ︸

A.java

open.close
︸ ︷︷ ︸

C.java

This violates the specification captured by the regular expression1 (open.close)∗.
There are different ways we can edit this trace to make it satisfy the specification.
1 For conciseness we will use regular expressions to represent the corresponding

automaton.

c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 287–293, 2015.
DOI: 10.1007/978-3-319-23820-3 20
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For example,

open.close.���open.open.close.open.close.���open.open.close
open.close.open.���open.close.open.close.���open.open.close

open.close.open.
close

↓ .open.close.open.close.open.
close

↓ .open.close
. . .

Producing these edits can suggest ways in which the original system could
be modified. Furthermore, if we can label the trace with the source of events
we can use this information to suggest which sets of edits might be the most
sensible. In this case we should prefer consistently editing the file A.java as it
would involve the smallest change.

Some Related Work. Distance metrics have been considered before in the
area of fault localization. For example, in [8] the distance is measured between
a faulty run and a large set of correct runs to select a correct run similar to the
faulty run, which is used to report suspicious parts of a program. Other similar
approaches exist.

The ideas in this paper are similar to those presented in [3] in the context of
using an FSA inferred from correct program runs to detect anomalous behav-
iours. A failing trace is used to edit the inferred FSA to give an interpretation
of the failure.

In runtime verification it is common to simply report the event on which the
first error occurred. Approaches for parametric runtime monitoring (i.e. Java-
MOP [5], MarQ [7]) can report on errors per set of parameters. Approaches
that restart a monitor on failure effectively edit the trace but not necessarily in
the most appropriate way.

Structure. Section 2 describes an existing method for computing the edit-
distance between a trace and the language of an automaton. Section 3 introduces
a method for suggesting sensible edits. Section 4 describes an experiment and
Sect. 5 concludes.

2 Computing the Edit Distance

This section gives a brief overview of an existing method for computing the
edit distance between a trace and an automaton’s language. This was previously
described in [6], which uses the approach in [2]. The general idea is to model the
trace, automaton and edit operations as weighted transducers and compute their
composition. Paths through the composed transducer to a final state represent
different ways the trace can be edited to fit the automaton’s language and the
shortest path gives the edit distance.
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Edit Distance. The edit (or Levenshtein) distance between two traces is the
minimal number of edits required to transform one trace into the other. This dis-
tance, using the standard edit operations of addition, removal and replacement,
is defined as follows:

Definition 1 (Levenshtein Distance). The Levenshtein distance between
traces τ1 and τ2 is distance(τ1, τ2), defined as

distance(τ1, ε) = |τ1|
distance(ε, τ2) = |τ2| distance(aτ1, bτ2) = min

⎧
⎪⎪⎨

⎪⎪⎩

distance(τ1, bτ2) + 1
distance(aτ1, τ2) + 1
distance(τ1, τ2) + 1 if a �= b
distance(τ1, τ2) if a = b

i.e. we repeatedly choose the edit (removing a, adding b, replacing a by b) or
non-edit that leads to the fewest edits overall. The edit distance between a trace
τ and an automaton ϕ is the smallest distance between τ and a trace in the
language of ϕ:

distance(τ, ϕ) = min({distance(τ, τ ′) | τ ′ ∈ L(ϕ)})

Weighted Transducers. A weighted transducer (see [2]) has transitions labeled
with input and output symbols and a weight (for this work this is 0 or 1). Input
and output symbols can be ε i.e. can be taken without consuming or producing a
symbol.

The composition T ◦ X of two transducers T and X considers all possible
sequencing between strings of T and strings of X i.e. if a/b.a/c is a string of T
and b/d.c/a is a string of X then a/d.a/a is a string of T ◦X. Here we consider a
three-way composition i.e. T ◦ X ◦ P . We compute this as a single operation for
efficiency reasons - if we computed T ◦ X and then (T ◦ X) ◦ P it is likely that
(T ◦X) would contain many superfluous transitions. An algorithm for doing this
is presented in [1].

Computing the Edit Distance UsingWeighted Transducers. This section
briefly describes how to construct the three weighted transducers representing the
trace, the edits and the automaton and how their composition is used to find the
edit distance.

Traces are translated into weighted transducers by turning each event into
a 0-weighted transition between states with ε self-looping transitions with the
last state being final. The trace a.a.b.c.b would become the following weighted
transducer:

An automaton is translated into a weighted transducer by (a) making each
transition 0-weighted using the event as input and output, and (b) adding a
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0-weight self-looping ε transition to each state. The automaton for the regular
expression (ab∗c)∗ would be:

The edit transducer has a single state with looping transitions for each of
the edit operations it can perform - given below for alphabet {a, b, c}. Note how
ε is used to model deletions and additions and all edit operations have a weight
of 1.

The edit distance is computed using the composition T ◦ X ◦ P where T,X
and P are weighted transducers for the trace, edits and automaton respectively.
Every path through this composition represents a way in which the trace T can
be rewritten to a path of P using the edits in X. The edit-distance is given by
the shortest path. Furthermore, a path describes how the trace can be edited.
See [6] for an example.

Performance and Online Monitoring. In [1] it is shown that the three-way
composition T ◦X ◦P can be computed in time O(|X||T |). This special method
prevents a large intermediate result from dominating the computation. In [2] it
is shown that the edit-distance between a string and automaton can be found in
linear-space.

This approach assumes that the whole trace is available, which is reasonable
for log file analysis but not for an online application of runtime monitoring. It
may be possible to lazily compute the composition T ◦ X ◦ P and perform the
shortest path search in tandem online. This would involve keeping track of the
states reachable in the composition and pruning this set (perhaps heuristically)
to ensure it does not become unmanageable. Note that the composition rep-
resents a rewriting of the trace such that edits typically take the composition
a finite number of steps away from the trace before returning to it. Further
investigation is required.

It is clear that we cannot use any online approach that requires the trace to
be stored as the space requirements would be impractical. As the composition
itself is quadratic in the size of the trace this should also not be stored. Methods
for compacting the trace online could be explored - this is briefly suggested in
Sect. 4.

3 Suggesting Sensible Edits

The previous section described a technique that gives a set of minimal edit
sequences that ‘correct’ a failing trace. This section explores how to produce
sensible edits where:
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1. Edits are consistently applied
2. Repeating the same edit is preferred to multiple separate edits

Here there is a notion of an edit as something more than altering the trace. To
capture this we label the trace with the source of each event i.e. the source file and
line number. In this work we only consider consistent labelled traces were each
label is associated with a single event i.e. the source of events is deterministic
Now a removal of event a at label l1 is distinct from the removal of a at label l2.

The composition construction in the previous section can be lifted to labelled
events by ignoring the labels. The labels will be used to define a notion of a
sensible edit path. An edit path is a finite sequence of edit records ((〈a1, l〉, a2, w)
starting (ending) in an initial (accepting) state of the composition where 〈a1, l〉
is a labelled event from the trace and a2 is an (edited) event from the automaton
(possibly ε). The path cost of an edit path can be defined such that there is no
cost to repeat an edit:

Definition 2 (Path Cost). The cost of an edit path τ is given as cost(τ, {})
defined as

cost(ε, S) = 0

cost(((〈a1, l1〉, a2, w).τ, S) = cost(τ, S + (a1/a2, l1)) +
w if (a1/a2, l1) /∈ S
0 if (a1/a2, l1) ∈ S

A sensible edit path is one that preserves consistency and has a minimal path
cost.

Finding Sensible Edit Paths. Firstly, it is possible to put an upper bound
on minimal edit path cost using a modified version of Djkistra’s algorithm; this
is only an upper bound as the edit path cost is dependent on the whole path
not just the state reached. To identify sensible edit paths we perform the follow-
ing non-deterministic heuristic search of the composition structure. The search
maintains a set S of previously performed edits that is used to ensure consis-
tency. The search is based around the idea that for a successful trace there will
be a 0-weighted path through the composition and every failure can be seen as
a blockage of this path. When a blockage is met we perform a local search to
find the continuation of the trace. The steps taken by the search are:

1. Follow the 0-weighted path until there are no 0-weight transitions. If a tran-
sition matching an edit in S is found it must be taken to preserve consistency
even if this diverges from the 0-weighted path.

2. Choose a (short) path p to the closest state with a 0-weight transition. The
path p must be consistent with S and all edits in p should be added to S.

3. Repeat steps 1 and 2 until the final state is reached

Practically we perform the search in a breadth-first manner, keeping track of
all possible choices. These can be pruned either by a max value given either by
the approximated minimal edit path cost computed as described above or some
other heuristic.
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Paths found by this search are consistent by construction. Finding all paths
of minimal path cost depends on how the path is chosen in step 2. An edit path
of minimal path cost may be missed if a smaller set of edits are chosen too early,
forcing a larger set to be used later. Note that if the search completes it will find
a path of minimal path cost.

Performance. The complexity of this approach is exponential in the number
of choices made. However, every choice restricts further choices as consistency
must be preserved i.e. a path p cannot make a different edit at a label where an
edit has already been made. Nevertheless, it is vital that paths are trimmed. We
use the strategy of searching with max = 0 first (for the case where there are
no failures) and increasing this by 1 until a path is found. Further heuristics for
pruning paths should be investigated.

Online Monitoring. As discussed in the previous section, unless the compo-
sition can be created and searched lazily this approach will not be applicable to
online monitoring. In [6] an approach that edited the trace as it was produced
was explored. This was found to be very expensive as many different edit varia-
tions had to be tracked. Further work could apply the notion of sensible path to
filter these edits.

4 A Scalability Experiment

The techniques presented here have been implemented in Scala and are available
at https://github.com/selig/RVsuggestEdit. We use the resource usage property
(ab∗c) to explore the scalability of the approach presented here. As a test trace
we use the example trace given in Sect. 1 with use events inserted in-between
the open and close events making the trace 100 events long. Let t(m) be the
test trace followed by m good events and let t(m,n) be n repetitions of t(m).
We vary m and n to produce larger traces; the same edit paths are identified in
each case. The results are as follows:

m n len errs Time (s) m n len errs Time (s) m n len errs Time (s)

0 1 100 4 0.005 900 1 1k 4 0.4 2.4k 1 2.5k 4 2.3

0 3 300 12 0.038 900 5 3k 12 3.3 2.4k 3 7.5k 12 20.4

0 6 600 24 0.144 900 10 6k 24 13.1 2.4k 6 15k 24 82.2

This demonstrates that this approach has the ability to scale but could cer-
tainly benefit from improvements. Two possible extensions would be (a) collaps-
ing repeated sections of the trace, represented by larger weights in T ; and (b)
collapsing prefixes in the search to tame the exponential branching at each error.
This experiment tentatively argues for the viability of the approach but further
work with real software systems is needed to support the claim that this is a
useful method for understanding failing traces.

https://github.com/selig/RVsuggestEdit
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5 Conclusion and Related Work

This paper has discussed a method for measuring the extent of failure in a trace
and suggesting possible changes to the trace that could ‘fix’ it. The approach
uses traces labelled with the points that generate events to suggest sensible
edits. This was inspired by our earlier work using edit-distance in pattern-based
specification mining [6].

The final point to be addressed is whether these edit paths are useful in
explaining failing traces as the title of this short paper suggests. The motivation
here is that by connecting the edit paths to program points via labels (and
ensuring the edits are sensible) the edit paths correspond to edits to the program
such as the deletion, insertion or replacement of a method call. Describing failures
in this way is certainly not a new notion in the area of fault localisation.

Irrespective of their use for explaining failing traces, the author would suggest
that using distance metrics is a reasonable direction for detecting multiple errors
in a trace; an activity not often studied in the runtime verification community.

This is a preliminary investigation into this approach and much can be done
to extend the ideas and make them more applicable to runtime verification prob-
lems.
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Abstract. We present the tool StaRVOOrS (Static and Runtime
Verification of Object-Oriented Software), which combines static and
runtime verification (RV) of Java programs. The tool automates a frame-
work which uses partial results extracted from static verification to
optimise the runtime monitoring process. StaRVOOrs combines the deduc-
tive theorem prover KeY and the RV tool LARVA, and uses properties
written using the ppDATE specification language which combines the
control-flow property language DATE used in LARVA with Hoare triples
assigned to states. We demonstrate the effectiveness of the tool by apply-
ing it to the electronic purse application Mondex.

1 Introduction

In this paper we present StaRVOOrS, a tool for the specification and verifi-
cation of data- and control-oriented properties combining static and runtime
verification techniques. A detailed motivation for the combination along these
two dimensions (data- vs. control-oriented, and static vs. dynamic verification)
has been reported in [3,4] and will not be repeated here. For this paper, we
only emphasise that this combination allows us to get a richer specification lan-
guage able to express both data- and control-oriented properties, proving some
properties once and for all statically, letting others to be checked at runtime.

The tool is a fully automated implementation of the theoretical results pre-
sented in [3,4]. Given a property specification and the original program, our
tool chain produces a statically optimised monitor and the weaved program to
be monitored. This includes the automated triggering of numerous verification
attempts of the underlying static verification tool, the analyses of resulting par-
tial proofs, and the monitor generation.1

Supported by the Swedish Research Council under the StaRVOOrS project (Unified
Static and Runtime Verification of Object-Oriented Software), no. 2012-4499.

1 The implementation of StaRVOOrS, its user manual, and a video showing how to
use StaRVOOrS, are available from [2].

c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 297–305, 2015.
DOI: 10.1007/978-3-319-23820-3 21
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2 The StaRVOOrS Framework

The StaRVOOrS framework (Static and Runtime Verification of Object-
Oriented Software) was originally proposed in [4] and its theoretical founda-
tions further developed in [3]. Object oriented software provides an abstract
manner in which we replicate properties for every instance of a class, but many
of the features in the framework that we discuss in this paper are not specific to
object oriented software. The workflow of StaRVOOS is shown in Fig. 1, and is
explained in detail in [3]. Here we give a brief overview of the deductive verifier
KeY [5], the runtime monitoring tool Larva [6], and the specification language
ppDATE.

Fig. 1. High-level description of the StaRVOOrS framework workflow

The Static Verifier KeY. KeY is a deductive verification system for data-
centric functional correctness properties of Java programs [5]. It features (static)
verification of Java source code annotated with specifications written in the Java
Modelling Language (JML) [7]. JML allows for the specification of pre/post-
conditions of methods, and loop invariants. KeY translates the different parts of
the specification to proof obligations in Java dynamic logic (DL). At the core of
KeY is a theorem prover for Java DL, a modal logic for reasoning about programs.
KeY uses a sequent calculus following the symbolic execution paradigm.

The Runtime Verifier LARVA. Larva (Logical Automata for Runtime Ver-
ification and Analysis) [6] is an automata-based runtime verification tool for
Java programs. Larva automatically generates a runtime monitor from a prop-
erty written in a formal language, which in the case of Larva is an extension of
timed automata called DATEs (Dynamic Automata with Timers and Events).
At their simplest level DATEs are finite state automata whose transitions are
triggered by system events and timers. Further details and the formalisation of
DATEs can be found in [6]. Given a system to be monitored (a Java program)
and a set of properties written in terms of DATEs, Larva generates monitoring
code together with AspectJ code to link the system with the monitors.

ppDATE: A Specification Language for Data- and Control-Oriented
Properties. StaRVOOrS uses ppDATEs as its property input language, which
enables the combination of data- and control-based properties in a single formal-
ism. ppDates are a composition of the control-flow language DATE, and of data-
oriented specifications in the form of Hoare triples with pre-/post-conditions.
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q : {true}transferFile(f){bytes == old(bytes)}start

q′ :
{true}transferFile(f){bytes == old(bytes) + size(f)}
{write ∈ rights(f)}rename(f, n){name(f) == n}

bad

login↑ | sessionIsOpen() �→ c = 0

transferFile↓ | c > 10 �→

transferFile↓ | c ≤ 10 �→ c ++

logout↓ | �→

Fig. 2. A ppDATE limiting file transfers

Consider the ppDATE shown in Fig. 2. The structure of the automaton,
less the information given in the states, provides the control-flow aspect of the
property in the form of a DATE, in which transitions are tagged with triples:
e | c �→ a — indicating that (i) they are triggered when event e occurs and
condition c holds; (ii) and apart from changing the state of the property, action
a is executed. For instance, the reflexive transition on the middle state is tagged:
transferFile↓ | c ≤ 10 �→ c ++, means that if the automaton is in the middle
state when the system enters the function named transferFile and counter
variable c does not exceed 10, then the counter is incremented by 1. Some states
are identified as bad states, denoted using a double-outline in the figure, and
used to indicate that if and when reached, the system has violated the property
in question. The property represented in Fig. 2 can thus be understood to ensure
that no more than 10 file transfers take place in a single login session.

In ppDATEs the data-oriented features of the specification appear in the
states. A state may have a number of Hoare triples assigned to it. Intuitively,
if Hoare triple {π}f{π′} appears in state q, the property ensures that: if the
system enters code block f while the monitor lies in state q and precondition
π holds, upon reaching the corresponding exit from f, postcondition π′ should
hold. Pre-/post-conditions in Hoare triples are expressed using JML boolean
expression syntax [7], which is designed to be easily usable by Java programmers.
For instance, the Hoare triple appearing in the top state of the property given
in Fig. 2, ensures that any attempted file transfer when in the top state (when
logged out), should not change the byte-transfer count. Similarly, while logged in
(in the middle state of the property) (i) the number of bytes transferred increases
when a file transfer is done while logged in; and (ii) renaming a file does indeed
change the filename as expected if the user has the sufficient rights.

To ensure efficient execution of monitors, ppDATEs are assumed to be deter-
ministic by giving an ordering in which transitions are executed.

3 The StaRVOOrS Tool Implementation

StaRVOOrS takes three arguments: (i) The Java files to be verified (the path
to the main folder), (ii) A description of the ppDATE as a script (a file with
extension .ppd), and (iii) The path of the output folder. The output of the tool
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is the runtime monitor (this file is placed in the output folder together with an
instrumented version of the Java files).

To describe our implementation, we use as working example a login scenario,
where users attempt to login into a system. The set of logged users is imple-
mented as a HashTable object, whose class represents an open addressing hash
table with linear probing as collision resolution. The method add, which is used
to add objects into the hash table, first tries to put the corresponding object at
the position of the computed hash code. However, if that index is occupied then
add searches upwards (modulo the array length) for the nearest following index
which is free. Within the hash table object, users are stored into a fixed array h,
meaning that the set has a capacity limited by the length of h. In order to have
an easy way of checking whether or not the capacity of h is reached, a field size
keeps track of the number of stored objects and a field capacity represent the
total amount of objects that can be added into the hash table.

In a nutshell, the tool works following these steps: (1) A property is written
using our script language for ppDATEs; (2) Hoare triples are extracted from the
specification of the property, are translated into JML contracts to be added to
the Java files; (3) KeY attempts to verify all JML contracts, generating (partial)
proofs, the analysis of which results in an XML file, (4) The ppDATE is refined
based on the XML file; (5) Declarative pre/post-conditions are operationalised;
(6) The code is instrumented with auxiliary information for the runtime verifier;
(7) The ppDATE specification is encoded into DATEs; (8) The Larva compiler
generates a runtime monitor. We will now describe some of the above steps in
more detail by describing them using our running example.

3.1 ppDATE Property: Adding a User

For simplicity we do not present the full specification for the login example but
rather focus on the operation of adding a user to the hash table. Figure 3 depicts
the ppDATE specification. The property is written as the following script.

EVENTS {

add_entry(Object o,int key) = {HashTable users.add(o, key)}

}

PROPERTY add {

q q′

add entry↓ | users.contains(o,key) < 0 •→�

q contains ‘{size < capacity && key > 0} add {post}’ post ≡
(∃ int i; i ≥ 0 && i < capacity ; h[i] == o)

Fig. 3. ppDATE specification for adding a user.
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STATES { NORMAL{q2;} STARTING{q1 (add_ok);} }

TRANSITIONS { q1 -> q2 [add_entry\users.contains(o, key) < 0] }

}

CINVARIANTS {

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0 }

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == o)}

ASSIGNABLE {size, h[*]}}

}

Invariants (section CINVARIANTS) are described by class name {invariant}.
Section CONTRACTS lists named Hoare triples (CONTRACT). The predicate in the
post-condition follows JML-like syntax and pragmatics. The second semicolon is
semantically an ‘and’, but conveys a certain pragmatics. It separates the ‘range
predicate’ (i >= 0 && i < capacity) from the desired property of integers in
that ‘range’, (h[i] = o). The constraint add ok specifies that, if there is room
for an object o in the hash table and the received key is positive, then after
adding that object into the hash table it is found in one of the entries of the
array h. Finally, the PROPERTY section represents the entire automata, which
in this tiny example has only two states, q1 and q2, the second being initial
(STARTING). The syntax q1 (add ok) assigns the Hoare triple add ok to q1.

3.2 Proof Construction and Partial Proof Analysis

The first step in our work-flow is to annotate the Java sources with JML con-
tracts extracted from the Hoare triples specified in the ppDATE. We automat-
ically generate such JML annotations and insert them just before the corre-
sponding method declaration. Once the JML annotations are in place, the tool
performs static verification, checking whether, or to which extent, the various
JML contracts (each corresponding to a Hoare triple in ppDATE) can be sta-
tically verified. KeY is used to generate proof obligations in Java DL for each
contract, and attempts to prove them automatically. Although we could have
allowed for user interaction (using KeY’s elaborate support for interactive theo-
rem proving), we chose to use KeY in auto-mode, as StaRVOOrS targets users
untrained in theorem proving.

For each Hoare triple KeY’s verification attempt will result in either a full
proof, where all goals are closed, or a partial proof, where some goals are open
while others are closed. Partial proofs are analysed by our tool, and results are
collected in an XML file. Most importantly, this file contains, for each Hoare
triple specifying a method, say m, additional assumptions on the state in which
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m is called, telling whether or not this Hoare triple needs to be checked at
runtime for executions of m.

3.3 ppDATE Transformation: Hoare Triple Refinement

Our tool uses the output of our previous step for refining, in the ppDATE, all
Hoare triples based on what was proved/unproved. Hoare triples whose JML
translation was fully verified by KeY are deleted entirely. On the other hand,
each Hoare triple not fully proved by KeY is refined. The new precondition is a
conjunction (&&) of the old precondition and a disjunction of new preconditions
corresponding to open proof branches.

In our example, the precondition of add ok will be strengthened with the
condition for the one goal not closed by KeY, !(h[hash function(key)] ==
null). The Hoare triple will thus be refined as follows:

CONTRACT add_ok {

PRE {size < capacity && key > 0

&& !(h[hash_function(key)] == null)}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == o)}

ASSIGNABLE {size, h[*]} }

Once all Hoare triples in the original ppDATE are refined this way, reflecting
the results from static verification, the tool will translate the resulting ppDATE
into the pure DATE formalism, to be processed by Larva further on.

3.4 Translation to DATE and Monitor Generation with Larva

Once the refinement is performed, the tool syntactically analyses the specifi-
cation for declarative assertions in pre/post-conditions which may need to be
operationalised i.e. transformed into algorithmic procedures. This includes, for
instance, transforming existential and universal quantification into loops. The
next step in the work-flow is to instrument the source code by adding identi-
fiers to each method definition and additional code to get fresh identifiers. These
identifiers will be used to distinguish between different calls to the method.

After these modifications, the statically refined (see Sect. 3.3) ppDATE speci-
fication is translated into the pure DATE formalism, enabling monitor generation
by Larva. The control part of the ppDATE is already in automaton form, and
can be interpreted directly as a DATE, but we still have to encode the Hoare
triples into DATE. We refer to [3] for details of this translation.

The final step is the generation of the monitor by the Larva compiler, tak-
ing as input the DATE obtained in the previous step. The compiler not only
generates the monitor but also generates aspects, and weaves the code with the
Java programs subject to verification. See [6] for further explanation on Larva.
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4 Case Study: Mondex

Mondex is an electronic purse application for smart cards products [1]. We con-
sider a variant of the original presentation, strongly inspired by the JML for-
malisation given in [8]. One of the main differences with respect to the original
presentation is that we consider a Java implementation working on a desktop
instead of the Java Card one for smart cards. The full specification and code of
this case study can be found from [2].

Mondex essentially provides a financial transaction system supporting trans-
ferring of funds between accounts, or ‘purses’. Whenever a transaction between
two purses is to take place, (i) the source and destination purses should (indepen-
dently) register with the central fund transferring manager; (ii) then a request
to deduct funds from the source purse may arrive, followed by (iii) a request
to add the funds to the destination purse; and (iv) finally, there should be an
acknowledgement that the transfer took place, before the transaction ends.

Besides specifying the protocol, one has to specify the behaviour of the
involved methods, which obviously changes together with the status of the pro-
tocol. For instance, transfer of funds from a purse to another should succeed once
both purses have been registered, but should fail if attempted before registration
or if an attempt is made to perform the transfer multiple times. This behaviour
is encoded by different Hoare triples assigned to different S states.

The control-oriented properties ensure that the message exchange goes as
expected. In contrast, the pre/post-conditions (in total, there are 26 Hoare triples
in the states of the ppDATE) ensure the well-behaviour of the individual steps.

We feed StaRVOOrS with the above ppDATE and the source code of Mon-
dex. Our tool automatically produces a runtime monitor which is then run in
parallel with the application. Initially, the ppDATE automaton consisted of only
one automaton with 10 states and 25 transitions. Except for two Hoare triples
related to the initialisation and termination of a transaction which were fully
proven by KeY, all the other 24 triples are only partially verified by KeY. The
automated analysis of these proofs leads to a refined ppDATE as explained in
Sect. 3.3. Besides, it is necessary to deal with the operationalisation of the JML
operator \old . This is done by adding a fresh variable at the automaton level,
saving the value of the variable annotated with \old before the method (asso-
ciated to its Hoare triple) is executed. Then, when analysing the postcondition,
if the value of the variable has changed, it can be compared with its previous
value store in the automaton level variable. The obtained DATE (following the
procedure explained in Sect. 3.4) consists on 25 automata, one automaton to
control the main property and 24 replicated automata to control postconditions,
with 106 states and 196 transitions in total. Also, due to the operationalisa-
tion of \old , it were added four new variables at automata level in the main
automaton.

The whole process to generate the monitor for Mondex took our tool 2 min
30 sec on PC Pentium Core i7, where most time is used in KeYs static analy-
sis of the Hoare triples (2 min 15 sec). Our original implementation of Mondex
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weighted 23.5 kB. After, running the tool, the total weight of all the new gener-
ated files related to the implementation of the monitor is 177.8 kB.

We have compared the execution times of: (a) the unmonitored implemen-
tation, (b) the monitored implementation using the original specification S and
translating it unoptimised into a DATE, and (c) the monitored implementa-
tion using the specification S ′, obtained from S via application of StaRVOOrS.
The concrete performance numbers of this experiment are the same as the ones
reported in [3, sect. 5]. To summarise the results, the addition of a monitor (case
(b)) causes an overhead on the execution time w.r.t. the unmonitored version
(a), between 15 and 1000 times. However, this overhead is dramatically reduced
by using our approach (case (c)), only doubling the execution time (again w.r.t.
(a)). The saving comes from only triggering post-condition checks in states sat-
isfying pre-conditions from open branches in KeY proofs.

5 Conclusions

A key feature of our work is that everything is done fully automatic: StaRVOOrS
is a push-button technology taking as input a specification and a Java program
and given as output a partially verified program running in parallel with a run-
time monitor. Our current experiments are encouraging as we drastically improve
the time complexity of the runtime verifier Larva. Both the efficiency gain for
monitoring and the confidence gain can only increase along with future improve-
ments in the static verifier used. For instance, if ongoing work on loop invariant
generation in KeY leads to closing some more branches in typical proofs, this
will have an immediate effect that is proportional to the frequency of executing
those loop at runtime. For related work on the combination of static verification
and static verification, we refer the reader to [3].

Acknowledgements. We would like to thank C. Colombo and M. Henschel for their
support concerning implementation issues about Larva and KeY respectively.
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Abstract. The TiPEX tool implements the enforcement monitoring
algorithms for timed properties proposed in [1]. Enforcement monitors
are generated from timed automata specifying timed properties. Such
monitors correct input sequences by adding extra delays between events.
Moreover, TiPEX also provides modules to generate timed automata
from patterns, compose them, and check the class of properties they
belong to in order to optimize the monitors. This paper also presents the
performance evaluation of TiPEX within some experimental setup.

1 Enforcement of Timed Properties

Runtime enforcement extends runtime verification [2] and refers to the theo-
ries, techniques, and tools aiming at ensuring the conformance of the executions
of systems under scrutiny w.r.t. some desired property. As shown in Fig. 1, an
enforcement monitor (EM) modifies an (untrustworthy) input sequence of events
into an output sequence that complies with a property. To be as general as possi-
ble, we consider that the enforcement monitor is placed between an event emitter
and an event receiver, which can be considered to be e.g., a program or the envi-
ronment. In [1], we introduced runtime enforcement for timed properties modeled
as timed automata. An extensive comparison between runtime enforcement of
timed properties and related work is provided in [1].

Enforcement
Monitor for ϕ

events |= ϕ eventsEvent
Receiver

Event
Emitter

Fig. 1. Usage of an enforcement monitor at runtime.

1.1 (Deterministic) Timed Automata

A lot of ongoing research efforts are related to the verification of real-time sys-
tems by means of e.g., model-checking, testing, and runtime monitoring. Central
c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 306–320, 2015.
DOI: 10.1007/978-3-319-23820-3 22
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to these techniques is the use of timed automata (TAs) [3] as a formalism to
model requirements or systems. One of the most successful tools for the verifi-
cation of real-time systems is UPPAAL [4,5]. UPPAAL is based on the theory
of TAs and comes with a somewhat standard syntax format for the definition of
TAs.

In this paper, we consider timed properties as languages that can be defined
by deterministic TAs. We introduce TAs [3] via the example in Fig. 2.

l0 l1

l2

Σ \ {g, r} g,
x := 0

r

Σ \ {g, r}

g;
r, x < 15 ∨ x > 20

r, 15 ≤ x ≤ 20,
x := 0

Σ

Fig. 2. A TA.

The set of locations is {l0, l1, l2}, l0 is initial (incom-
ing edge), and accepting (blue square). The alpha-
bet of actions is Σ = {r , g}. A finite set of real-
valued clocks is used to model time ({x}). A tran-
sition between locations (e.g., l1 to l0) consists of
(i) an action (e.g., r), (ii) a guard specifying a clock
constraint (e.g., 15 ≤ x ≤ 20), and (iii) a reset
of some clocks (e.g., x := 0). This TA defines the
requirement “Resource grants (g) and releases (r)
should alternate, starting with a grant, and every
grant should be released within 15 to 20 time units

(t.u.)”. Upon the first g , the TA moves from l0 to l1, and resets x. From l1, if r
is received and 15 ≤ x ≤ 20, then the TA moves to l0 and resets x, otherwise it
moves to l2 (where it is stuck). The semantics of a TA can be defined by timed
words recognized by the TA, i.e., sequences of timed events (pairs of actions and
delays) reaching accepting locations.

1.2 General Principles of Timed Enforcement

Enforcement monitors proposed in [1] have the ability of delaying events to
produce a correct output sequence. At an abstract level, an EM for a property
ϕ can be seen as a function from timed words to timed words. An EM operates
online and should thus satisfy some physical-(time) constraints: i) new events
can only be appended to the tail of output words, and ii) any event should be
input before being output. An EM should be sound : it should only output events
that contribute to an output word in ϕ, and otherwise produce an empty output.
An EM should be transparent : it should keep the order between events. Finally,
an EM should be optimal : it should release events as soon as possible.

To ease their design, implementation, and correctness proofs, EMs are
described at different levels of abstraction in [1]. An enforcement algorithm fur-
ther concretises the description of an EM as an algorithmic implementation of
an enforcement monitor. One of TiPEX’s modules implements the enforcement
algorithms in Python (see Sect. 2).

Runtime Enforcement on an Example. We provide some intuition on the expected
behavior of EMs via an example (see [1] for formal details): enforcing the prop-
erty defined by the TA in Fig. 2. Let us consider the input sequence σ =
(3, g) · (10, r) · (3, g) · (5, g), where the delay of each event indicates the time
elapsed since the previous event or system initialization: g is received at t = 3, r
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at t = 13, etc. Upon receiving the first g, the EM cannot output it because the
event alone does not satisfy the requirement (and the EM does not know yet the
next events). Upon receiving action r, then it can output action g followed by
r, as it can choose appropriate delays for both actions while satisfying timing
constraints. Hence, the output delay associated with g is 13 t.u. However, the
EM cannot choose the same (input) delay for r, because the property would
not be satisfied. Consequently, the EM chooses a delay of 15 t.u., which is i) the
minimal delay satisfying the constraint, and ii) is greater than the corresponding
delay in the input sequence. When the EM receives the second g at t = 16, it
releases it as output. Since the next action observed at t = 21 is not r, it becomes
impossible for the EM to output a correct sequence. Hence, after t = 21, the
output remains (13, g) · (15, r).

Contributions and Outline. This paper provides an implementation and test
harness of enforcement algorithms. The major improvements (over the initial
implementation [1]) provided in this paper are as follows:

– We implemented synthesis of EM for any regular property (while the imple-
mentation in [1] supports only safety and co-safety properties) and provide
complimentary details on the implementation of EM.1

– We implemented a test harness that generates and composes TA.
– We experiment optimized version of EM synthesis for safety and co-safety

properties and show performance improvements through experiments.

The paper is organised as follows: Sect. 2 presents the architecture and func-
tionalities of TiPEX, Sect. 3 discusses the evaluation results; and Sect. 4 draws
conclusions.

2 Overview and Architecture of TIPEX

TiPEX is a tool of 1,200 LLOC in Python and consists of three modules (see
Fig. 3). Module Enforcement Monitor from Timed Automata (EMTA) consists
in an implementation of the enforcement algorithms described in [1]. Module
Enforcement Monitor Evaluation (EME) is a test harness for the performance
of enforcement monitors, with functionalities such as a trace generator. Module
Timed Automata Generator (TAG) provides functionalities such as generating
and composing TAs (which can be also used in other contexts than enforcement
monitoring). Module TAG provides a TA (defining the requirement) to module
EMTA, and information such as the class to which the timed automaton belongs.
The functionalities of this module are used offline (i.e., prior to monitoring). TAG
manipulates TAs described in UPPAAL [5] model written in XML. TAG and
EMTA make use of the UPPAAL pyuppaal and DBM libraries, respectively.2

1 Regular properties are the ones that can be defined by TA. Safety (resp. co-safety)
properties are the prefix-closed (resp. extension-closed) languages. See [1] for more
details.

2 The UPPAAL libraries are provided by Aalborg Univ. at http://people.cs.aau.dk/
∼adavid/python/.

http://people.cs.aau.dk/~adavid/python/
http://people.cs.aau.dk/~adavid/python/
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EMTA

actions
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increment

# of traces
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boolean
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Fig. 3. Overview of TIPEX tool.

2.1 Module EMTA

Enforcement Monitor

Dump
Process

Store
Process

Shared Memory

MemoryOutput Input

Fig. 4. Implementing an EM.

Module EMTA is the core func-
tionality. It implements enforce-
ment monitors by two concur-
rently running processes called as
store and dump, communicating
via shared memory as shown in
Fig. 4. The shared memory con-

tains the corrected sequence that can be released as output. The memory is
realized as a queue, shared by the processes store and dump, where process
store adds events with corrected delays. Process dump reads events stored in the
shared memory and releases them as output after the required amount of time.
Process store also makes use of another internal memory (not shared with any
other process), to store the events that cannot be yet corrected (to satisfy the
property).

EMTA takes as input a TA and one trace. The most important part of
module EMTA is the store process which computes optimal output delays for
input events by exploring the TA. This computation relies on function Update.
The dump process of monitors are algorithmically simple and lightweight from
a computational point of view.
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Function Update (see Algo-
rithm 1) checks if an accept-
ing state is reachable in the
TA from the current state q,
upon a delayed version of the
sequence of events σmc provided
as input. In case if an accepting
state is reachable, then it com-
putes optimal delays. It returns
a timed word of same length as
σmc and a Boolean indicating

the result of this reachability analysis. Function computeReach computes all the
reachable paths from the current state q upon events in σmc. These paths are
computed using forward analysis, zone abstraction, and operations on zones such
as the resetting of clocks and intersection of guards [4]. Function getAccPaths
takes all the paths returned by computeReach and returns a subset of them
that end in an accepting location. A path is accepting if the location in its
last state belongs to the set of accepting locations of the input TA. Function
getOptimalWord takes all the accepting paths and a sequence σmc and com-
putes optimal delays for events in σmc. This function first computes an optimal
delay for each event, for all accepting paths. Finally, it picks a path among the set
of accepting paths whose sum of delays is minimal, and returns it as the result.
If the set of accepting paths is empty, then function Update returns ff and σmc.
Otherwise, it returns tt and the optimal word computed using getOptimalWord.

We now briefly describe the implementation of process store. It first parses
an input model and performs the necessary initialization. As seen in Sect. 1, an
EM may not output events immediately after they are received. Consequently,
process store also uses an internal memory (σmc) to store events. Each event
(t, a) of the trace in order is appended to the internal memory, and function
Update is invoked, with the current state information and the events in the
internal memory (σmc · (t, a)). If function Update returns ff, then the monitor
waits for the next event. If function Update returns tt and σ′

mc, σ′
mc is added

to the shared memory (since it contributes to a correct sequence and can be
released as output). Before continuing with the next event, the process store
updates the current state information, and internal memory.

2.2 Module EME

Module EME is a test harness of 150 LLOC to: i) validate through experiments
the architecture and feasibility of enforcement monitoring, and ii) measure and
analyze the performance of function Update of process store. The architecture
of module EME is depicted in Fig. 3.

Module Trace Generator takes as input the alphabet of actions, the range of
possible delays between actions, the desired number of traces, and the increment
in length per trace. For example, if the increment in length per trace is 100, then
the first trace is of length 100 and the second trace of length 200 and so on. For
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each event, module Trace Generator picks an action (from the set of possible
actions), and a random delay (from the set of possible delays) using methods
from the Python random module.

Module Main Test Method uses module Trace Generator to obtain a set of
input traces to test module EM. It sends each sequence to the EM, and keeps
track of the result returned by the EM for each trace. Module EM takes as input
a property (defined as a TA) and one trace, and returns the total execution
time of function Update to process the given input trace. In process store, the
execution time of Update is measured. Process store keeps track of the total
time of Update, by adding the time measured after each event to the total time,
which is returned as a result of invoking process store.

2.3 Module TAG

Motivations. TAG facilitates the translation of informal requirements into for-
mal models by automating the process of generating TAs. Using TAG, one can
generate several (meaningful) TAs of some pattern, with varying complexity
which can be used as input models for testing EMs. Note, TiPEX can be also
used with manually-generated TAs.

Consider the requirement “There cannot be more than 100 requests in every
10 t.u.”. The TA defining this requirement has more than 100 locations and
associated transitions, and manually modeling it (for example using a graphical
editor) is tedious and time consuming. Using TAG, the corresponding TA can
be obtained almost instantly, just by providing some pattern, time constraint,
and actions. TAG also implements the algorithms for the composition of TAs
using Boolean operations (defined in [1,3]).

Figure 3 presents the architecture of TAG. Note that the modules inside TAG
are loosely coupled: each module can be used independently, and can be easily
extended. In the following, we detail each sub-module.

Generating Basic Timed Automata. Module TA Generator generates TAs
based on some parameters: the pattern specifying the form of the TA among
those defined in [6]; some complexity constant specifying the number of transi-
tions and locations, the maximal constant in guards, and some action alphabets.

Supported Patterns. Currently, the tool supports generation of automata for the
requirements of the following forms (see [6]):

– Absence: In every consecutive time interval of TIME CONSTRAINT
CONSTANT t.u., there are no more than COMPLEXITY CONSTANT
actions from ACTION SET1.

– Precedence with a delay: A sequence of COMPLEXITY CONSTANT actions
from ACTION SET1 enable actions belonging to ACTION SET2 after a
delay of at least TIME CONSTRAINT CONSTANT t.u.
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– Timed bounded existence: There should be COMPLEXITY CONSTANT con-
secutive actions belonging to ACTION SET1 which should be immediately
followed by an action from ACTION SET2 within TIME CONSTRAINT
CONSTANT time units.

Composing Timed Automata. Module Boolean Operations builds a TA by
composing two input TAs using Boolean operations (see Fig. 3). All boolean
operations are supported. In particular, operations Union and Intersection are
performed by building the synchronous product of the two input TAs, where, in
the resulting automaton, each location is a pair, and the guards are the conjunc-
tions of the guards in the input TA. For operation Union, accepting locations
are the pairs where at least one location is accepting in the input TAs, and for
Intersection operation, both the locations in the corresponding input TAs are
accepting. See [3] for formal details.

Identifying the Class of a Timed Automaton. Module Class Checker takes
as input a TA and determines the class of the property it defines:3 safety (resp.
co-safety) if the constraints of a safety (resp. co-safety) TA are satisfied, and
“other” otherwise. With the class information, one can use simplified enforce-
ment algorithms (see Sect. 3).

3 Performance Evaluation

We focus on the performance evaluation of function Update, the most computationally-
intensive step as discussed in Sect. 2.1. Experiments were conducted on an Intel
Core i7-2720QM at 2.20 GHz CPU, with 4 GB RAM, and running on Ubuntu
12.04 LTS. The reported numbers are mean values over 10 runs and are rep-
resented in seconds. To compute the average values, 10 runs turned out to be
sufficient because, for all metrics, with 95 % confidence, the measurement error
was less than 1 %.

The considered properties follow different patterns [6], and belong to different
classes. They are recognized by one-clock TA since this is a current limitation
of our implementation. We however expect the trends exposed in the following
to be similar when the complexity of automata grows.

– Property ϕs is a safety property expressing that “There should be a delay of
at least 5 t.u. between any two request actions”.

– Property ϕcs is a co-safety property expressing that “A request should be
immediately followed by a grant, and there should be a delay of at least 6 t.u
between them”.

3 A TA defining a safety (resp. a co-safety) property is said to be a safety (resp. a
co-safety) TA. In a safety (resp. co-safety) TA, transitions are not allowed from non-
accepting (resp. accepting) to accepting (resp. non-accepting) locations. For formal
details, see [1].
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– Property ϕre is a regular property, but neither a safety nor a co-safety prop-
erty, and expresses that “Resource grant and release should alternate. After a
grant, a request should occur between 15 to 20 t.u”.

Table 1. Performance analysis.

ϕs ϕre ϕcs

|tr| t Update
(sec)

|tr| t Update
(sec)

|tr| t Update
(sec)

10, 000 9.895 10,000 16.354 100 3.402

20, 000 20.323 20,000 32.323 200 13.583

30, 000 29.722 30,000 48.902 300 29.846

40, 000 40.007 40,000 65.908 400 53.192

50, 000 49.869 50,000 83.545 500 82.342

60, 000 59.713 60,000 99.088 600 120.931

70, 000 72.494 70,000 117.852 700 169.233

Results and Analysis. Results of the
performance analysis for ϕs, ϕcs, and
ϕre are reported in Table 1. Entry |tr|
(resp. t Update) indicates the length
of the considered traces (resp. the total
execution time of functio n Update).

As expected, for the safety prop-
erty (ϕs), we can observe that
t Update increases linearly with the
length of the input trace. Moreover,
the time taken per call to Update
(which is t Update/|tr|) does not depend

on the length of the trace. This behavior is as expected for a safety property:
function Update is always called with only one event which is read as input (the
internal buffer σmc remains empty). Consequently, the state of the TA is updated
after each event, and after receiving a new event, the possible transitions leading
to a good state from the current state are explored.

For the co-safety property (ϕcs), the considered input traces are generated
in such a way that they can be corrected only upon the last event. Notice that
t Update is now quadratic. For the considered input traces, this behavior is as
expected for a co-safety property because for an input sequence of length |tr|,
function Update is invoked |tr| times, starting with a sequence of length 1 that
is incremented by 1 in each iteration.

For the regular property (ϕre), the considered input traces are generated
in such a way that it can be corrected every two events. Consequently, function
Update is invoked with either one or two events. For the considered input traces,
t Update is linear in |tr|, and thus the time taken per call to Update (which is
t Update/|tr|) does not depend on the length of the trace. For input traces of same
length, the value of t Update is higher for ϕre than the value of t Update for ϕs.
This stems from the fact that, for a safety property, function Update is invoked
only with one event.

Implementation of Simplified Algorithms for Safety Properties. As explained
in [1], for safety properties, the internal memory is never used, since the decision
of whether to output an event or not has to be taken when receiving it. Thus,
the functional definition can be simplified, and consequently the enforcement
monitors and algorithm can be also simplified. The simplified algorithm is also
implemented in TiPEX, and experiments were conduced using several safety
properties (see [1] for details and evaluation results). From the results in [1], we
can notice that for safety properties, using the simplified algorithm gives better
performance. The time taken per call to Update reduces by around 0.2 ms using
the simplified algorithm.
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Remark 1. More experimental results used to assess the influence of the size,
class, and pattern of a property on the monitoring metrics are available in [1,7].

4 Summary and Discussion

TiPEX implements and assesses the enforcement monitoring algorithms for timed
properties in [1]. It demonstrates the practical feasibility of our theoretical results.

TiPEX consists of 3 modules. Module EMTA consists of functionalities to syn-
thesize enforcement monitors from a TA, and module EME is a test harness for
monitors. Module TAG consists of features to automatically generate TAs from
some input data such as the actions, pattern, and time constraint constant. To
the best of our knowledge, there is no available tool to help formalizing real-time
requirements. As shown in the examples, the input data required by TAG can
be easily inferred from the informal description of a requirement. Moreover, TAG
composes TAs using Boolean operations, and identifies the class of a given TA.

Assessing the performance of runtime enforcement monitors is crucial in a
timed context as the time when an action happens influences satisfaction of the
property. We also evaluated the performance of enforcement monitors for several
properties, and considering very long input executions. As our experiments in
Sect. 3 show, the computation time of the monitor upon the reception of an
event is relatively low. For example, for safety properties, one can see that, on
the used experimental setup, the computation time of function Update is below
1ms. Moreover, given some average computation time per event and a property,
one can determine easily whether the computation time is negligible or not for
an application domain in consideration. By taking guards with constraints using
integers above 0.1s, one can see that the computation time can be negligible in
some sense as the impact on the guard is below 1 %, and makes the overhead of
enforcement monitoring acceptable.

For co-safety and regular properties, the computation time of function Update
depends on the property and the input trace. For example, for a co-safety property
with a loop in a non-accepting location, the execution time of Update depends
on the length of the minimal prefix of the input sequence allowing to reach an
accepting state.

Finally, note that while the monitoring algorithm implemented in EME is
used with traces, it is an online algorithm. To use TiPEX within a system for
online runtime enforcement, one needs to define the implementation of the delay-
ing of an action in the monitored system by, for instance, suspending the thread
performing the delayed action.

Acknowledgments. This work has been partly done in the context of the ICT COST
Action IC1402 Runtime Verification beyond Monitoring (ARVI).
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A Demonstration of TiPEX

We illustrate the features of TiPEX discussed in the paper via some examples.
All the source files with examples, prerequisites, and some documentation are
available at:

http://srinivaspinisetty.github.io/Timed-Enforcement-Tools/

A.1 Modules EMTA and EME

In the following subsections, we describe how to test the input-output behavior
of an enforcement monitor, and how to collect performance data for a property.

Testing the Behavior of an Enforcement Monitor. We present how the
input-output behavior of enforcement monitors for some properties is tested.
We consider three example properties (used in Sect. 3). We also provide the TAs
defining these properties in UPPAAL format (.xml files) inside the source folder.

– Example Safety.xml defines a safety property expressing that “There should
be a delay of at least 5 t.u. between any two request actions”.

– Example CoSafety.xml defines a co-safety property expressing that “A
request should be immediately followed by a grant, and there should be a delay
of at least 7 t.u. between them”.

– Example Response.xml defines a regular property, and expresses that
“Resource grant and release should alternate. After a grant, a request should
occur between 15 to 20 t.u.”. Note that this property is neither a safety nor a
co-safety property.

To test the functionality, with these properties for some input traces, simply run
the test script testFunctionality.py (available inside the source folder). For
each property, the input trace provided and the output of the EM is printed
on the console. On the console, we can observe that for each property, for the
provided input, the output satisfies the property (soundness) and the other con-
straints (transparency, optimality).

Collecting Performance Data. We explain via an example how the main test
method is invoked via Python command line to collect performance data for a
property (see Fig. 5).The steps are the following:

http://srinivaspinisetty.github.io/Timed-Enforcement-Tools/
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(a) TAG GUI. (b) Generate TA GUI.

Fig. 5. Collecting performance data.

– Import the MainTest module.
– Specify the property by indicating its path.“Example Safety.xml” is the prop-

erty in this example, which is a UPPAAL model stored as “.xml”.
– Specify the accepting locations in the input TA. For instance, by typing

“accLoc=[‘S1, ‘S2’]”, one specifies that the set of accepting locations in the
input TA is {S1, S2}.

– Specify the possible actions. For instance by typing “actions = [‘a,’r’]” one
specifies that the set of actions is {a, r}.

– Define the range of possible delays.
– Invoke method testStoreProcess in module MainTest, providing the follow-

ing arguments in order: property, accepting locations, actions, delays, # traces
incr.

“#traces” is the number of traces used for testing (3 in the example above),
each trace varying in length, and “incr” is the increment in length per trace
(1,000 in the example above). As shown in Fig. 5, a list of triples (trace length,
total execution time of the Update function, average time per call of the Update
function) is returned as the result.

A.2 Module TAG

Module TAG has a basic GUI. The following lines demonstrate how to launch
the GUI via Python command line.

– Browse to the folder containing the source code.
– Execute the script GUI TAG Tool.py entering the following line in the com-

mand prompt python GUI TAG Tool.py.
– A GUI will be launched (shown in Fig. 6a), using which the user can select to

generate a basic TA, or to combine TAs, or to check the class of a TA.

We demonstrate how to use each feature via an example.
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Fig. 6. GUI.

Generating Basic Timed Automata. We present some TAs generated using
module TA Generator. Clicking “Generate Basic TA” launches the GUI shown
in Fig. 6b. To generate a TA defining the requirement “In any time interval of
10 t.u., there cannot be 3 or more a actions”, the values of the input parameters
provided the tool are:
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Fig. 7. Automaton belonging to the precedence pattern.

– PATTERN = absence,
– COMPLEXITY CONSTANT = 3,
– TIME CONSTRAINT CONSTANT = 10,
– ACTION1 = a, and ACTION2 = b.

Figure 8 shows the representation in UPPAAL. In this TA, L0 is initial location,
{L0, L1, L2, L3} is the set of accepting locations, and the only non-accepting
location is Final NA. In L0, upon action a, if the value of clock x ≥ 10, then the
clock x is reset and the TA remains in the same location. We can see that the
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TA moves to a non-accepting (trap location) Final NA upon 3 a actions within
10 time units. To generate a TA defining the requirement “A sequence of 3 a
actions enables action b after a delay of at least 5 t.u.”, the values of the input
parameters provided to the tool are:

Fig. 8. Automaton belonging to the absence pattern.

– PATTERN = precedence,
– COMPLEXITY CONSTANT = 3,
– TIME CONSTRAINT CONSTANT = 5,
– ACTION1 = a, and ACTION2 = b.

Figure 7 shows its representation in UPPAAL tool. In this TA, L0 is the initial
location, {L0,L1,L2,L3} is the set of accepting locations, and the only non-
accepting location is NAcc. We can see that from locations L0, L1, and L2, if a
b action occurs then the TA moves to the trap state, since 3 preceding a actions
are missing.

Composing Timed Automata. Clicking “Combine TAs” launches the GUI
shown in Fig. 9. Clicking “Select File” button allows the user to select an input
UPPAAL model. The input UPPAAL model (stored as .xml) selected by the
user, should contain two input TAs (defined as two different templates). Note
that in the input TAs, names of accepting locations should be prefixed by
“Final”. The user should select an operation. The resulting TA will be writ-
ten as another template in the UPPAAL model file given as input by the user.

Let us now see an example of the resulting TA obtained after combining two
TAs using the Boolean Operations functionality. The two input TAs are shown
in Figs. 10a and b. Figure 10c shows the resulting TA after combining the two
input TAs using Union operation.
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Fig. 10. Example: Combining TAs using Boolean operations.
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Abstract. Recent research has seen an increasingly fertile convergence
of ideas from machine learning and formal modelling. Here we review
some recently introduced methodologies for model checking and sys-
tem design/parameter synthesis for logical properties against stochastic
dynamical models. The crucial insight is a regularity result which states
that the satisfaction probability of a logical formula is a smooth function
of the parameters of a CTMC. This enables us to select an appropriate
class of functional priors for Bayesian model checking and system design.
We give a tutorial introduction to the statistical concepts, as well as an
illustrative case study which demonstrates the usage of a newly-released
software tool, U-check, which implements these methodologies.

1 Introduction

Verification of temporal logic formulae via model checking is one of the major
success stories of theoretical computer science [1]. An important development
has been the introduction of probabilistic model checking [2–4], which aims to
verify logical formulae on trajectories of stochastic processes such as Contin-
uous Time Markov Chains (CTMCs): here, due to the intrinsic stochasticity
of the system and the fact that formulae may evaluate differently on different
trajectories of the same system, the purpose of probabilistic model checking is
therefore to quantify the probability of a formula being true. From the theo-
retical point of view, probabilistic model checking has stimulated a remarkable
cross-fertilisation between applied mathematics and computer science, resulting
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in a renaissance in algorithms for computing transient probabilities in Markovian
processes [5]. From the practical point of view, the impact of probabilistic model
checking has arguably been even greater, since ideas from verification and for-
mal modelling could now be applied to a wide array of models from the physical
sciences and engineering disciplines. Partly as a result of these developments,
formal modelling is now a major player in applications as diverse as systems
biology, ecology, performance modelling and smart cities.

While probabilistic model checking is undoubtedly a major player in all
applications of formal modelling, it is not without its challenges. Despite many
elegant algorithms for computing transient probabilities have been developed,
exact probabilistic model checking is still computationally too demanding to be
deployed on many realistic problems. Statistical model checking (SMC) algo-
rithms are often employed in these circumstances [6–8] if the underlying system
can be simulated efficiently, one can simply draw several independent trajectories
from the system, evaluate the formula of interest on each trajectory and obtain
in this way a Monte Carlo estimate of the desired probability. However, in many
applications, a more fundamental difficulty is encountered, as models are often
incompletely specified, relying on a parametrisation which can be highly uncer-
tain. For example, in a systems biology application a parameter may represent a
kinetic reaction rate which can only be measured with considerable approxima-
tion; in a smart-city application, a parameter may model how a group of trans-
port users may behave in a hypothetical scenario, which cannot be accurately
measured before the scenario is actually implemented. In many cases, therefore,
it is of primary importance not only to quantify the probability that a trajectory
of the system will satisfy a certain property, but also how this probability may
depend on uncertain parameter, and how to select parameter values which will
(robustly) yield consistent behaviour. While direct parameter exploration is in
some cases possible [9,10], it is always computationally intensive.

Recently, we proposed a novel family of algorithms for statistical model
checking and parameter synthesis on CTMC models with parametric uncer-
tainty, which can achieve considerable computational savings over parameter
exploration methods [11–15]. Our methods are theoretically grounded on a novel
characterisation of the functional dependence of the satisfaction probability of
a formula on the parameters. This regularity result enables us to use powerful
methodologies from Bayesian machine learning, obtaining efficient algorithms
with theoretical guarantees. Recently, some of these methods have been imple-
mented in the open source U-check software suite [16], a flexible tool which can
interface with some of the most widely used modelling languages.

In this paper, we provide a tutorial introduction to these novel algorithms and
their use. We focus on providing an accessible introduction to the relevant statis-
tical machine learning concepts, as well as demonstrating the use of the U-check
tool on a non-trivial case study. The rest of the paper is organised as follows:
we start by reviewing briefly basic concepts of temporal logics and (Bayesian)
statistical model checking. We then introduce the notion of satisfaction func-
tion for models with parametric uncertainty, and introduce Gaussian processes,
a suitable class of functional priors. GPs are at the heart of Smoothed model
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checking, a Bayesian statistical algorithm that directly performs model check-
ing of the whole satisfaction function. We then discuss the parameter synthesis
problem and introduce the GP-UCB algorithm, a provably globally convergent
optimisation algorithm which is at the basis of the parameter synthesis routines
in U-check. Finally, we illustrate the use of the U-check tool on an example, with
the aim of facilitating the use of these novel tools in practical applications.

2 CTMCs, Temporal Logics and Statistical Model
Checking

2.1 Continuous-Time Markov Chains

In this paper we will be mostly concerned with Continuous-Time Markov Chains
(CTMC), which are memoryless stochastic processes on a countable state space
evolving in continuous time [17]. CTMC are the most widespread class of stochas-
tic models in many areas, including performance and systems biology. In these
domains, they usually take the form of Population CTMC (PCTMC), describing
how a population of agents evolves in time [18]. Typically, the state of a PCTMC
M is represented as a vector of integer-valued variables X = (X1, . . . , Xn), while
the dynamical evolution is represented by a set of transition classes. These spec-
ify events changing the state of some agents, and are easily represented in the
biochemical reaction style as follows:

r1X1 + . . . + rnXn
α(X,θ)−−−−→ s1X1 + . . . + snXn.

Each such a rule specifies that r1 agents in state X1, r2 in state X2, and so
on, interact and are replaced by s1 copies of X1 agents, s2 of X2 agents, and
so on. Hence, the net change of agents is given by the update vector v defined
by vi = si − ri. Each reaction happens with a rate or frequency given by the
function α(X, θ), depending on the current state of of the system and on a vector
of parameters θ.

Example. In order to illustrate the description of a PCTMC, we consider here a
simple example from system biology, describing the (uncontrolled) transcription
and translation of a gene into a protein. We need two variables, Xm and Xp,
counting the amount of messenger RNA and of protein in the system. We further

need four transition classes: transcription of DNA into mRNA (∅ kp−→ Xm),
degradation of mRNA (Xm

kdmXm−−−−−→ ∅), translation of mRNA into the protein

Xm
ktXm−−−−→ Xp, and degradation of the protein Xp

kdpXp−−−−→ ∅. In all cases, we
assume a mass action rate, proportional to the amount of reactants involved.
Note that the state space of this model is the countably infinite set N

2.

Uncertain PCTMC. The dynamic behaviour of a PCTMC M can heavily depend
on the parameters θ, a fact we make explicit in the notation Mθ. As discussed in
the introduction, the values of θ are seldom known exactly, hence often we can
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only assume that they belong to a certain compact, connected subset D of Rd,
where d is the dimension of the parameter space. By varying θ ∈ D, we have a
family of PCTMC models, which we will refer as an uncertain CTMC.

We conclude this section noting that we can consider different classes of
stochastic models, including Stochastic Differential Equations and Stochastic
Hybrid Systems. We refer the reader to [12,14,15] for a more detailed discussion
in this sense.

2.2 Metric Interval Temporal Logic

In order to describe behavioural properties of biological and complex systems
we will consider formal languages satisfying two main constraints:

– the language should capture properties of single executions of the system, as
this is the only way we can experimentally observe such a system;

– properties should be time-bounded, as we can observe a real system only for
a finite amount of time.

In this paper, we stick to the linear-time temporal-logic based formalism of
Metric Interval Temporal Logic [19,20], which is defined by the following syntax:

ϕ := tt | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2.

Atomic predicates μ = μ(x(t)) are evaluated pointwise on time bounded tra-
jectories x : [0, T ] → R

n, and are usually boolean inequalities of the form
f(x(t)) ≥ 0. Boolean operators work as usual, while the time-bounded until
ϕ1U[a,b]ϕ2, with a < b, holds in a trajectory at time t0 whenever the formula
ϕ1 is satisfied from t0 to a time point t ∈ [t0 + a, t0 + b], at which ϕ2 must
hold. The time-bounded eventually and always operators are definable as usual:
F[a,b]ϕ := ttU[a,b]ϕ and G[a,b]ϕ := ¬F[a,b]¬ϕ. MITL can be given a boolean
semantics in a standard way, see [19,20] for details. Furthermore, it can be
assigned a quantitative satisfaction score along the lines of [21,22]. This seman-
tics is obtained by essentially using maxima (minima) and suprema (infima)
in place of conjunction (disjuction) and universal (existential) quantification,
respectively, and by replacing atomic predicates μ(x(t)) := f(x(t)) ≥ 0 with
the real value f(x(t)). It associates with a formula ϕ and a trajectory x a real
number ρ(ϕ,x) whose sign is associated with satisfiability of ϕ (true if and only
if ρ(ϕ,x) is positive), and whose absolute value measures how robustly the for-
mula is satisfied by the trajectory. Both boolean and quantitative semantics can
be efficiently checked on sample trajectories by monitor algorithms, see [20,22].

The boolean semantics of MITL can be extended to stochastic models by con-
sidering the probability p(ϕ) = p(ϕ = tt) of the set of trajectories which satisfy
a formula ϕ. For the quantitative semantics, instead, this extension produces a
probability distribution over real numbers, see [13,15] for further details.

We remark here that the use of MITL is not mandatory: any linear-time, time
bounded formalism will do, provided it is equipped with a monitoring routine.
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2.3 Statistical Model Checking

The goal of probabilistic model checking is to compute the satisfaction proba-
bility of a MITL formula (in accordance with the boolean semantics) for a given
stochastic (PCTMC) model. Numerical algorithms for this problem [23] are pro-
hibitively costly, hence the standard approach is to rely on statistical methods.
Basically, one combines a simulation algorithm for the stochastic process (e.g.,
Gillespie’s algorithm [24] for PCTMC) with a monitor routine for the MITL
formula ϕ, thus generating samples from a Bernoulli random variable with prob-
ability p(ϕ). Then, standard stastistical tools can be used to obtain an estimate
p̂ of p(ϕ), with a given error and confidence, or to test if p(ϕ) is greater or smaller
than a threshold q, see [6–8]. Of particular interest in the context of this paper
are Bayesian methods [8], which assume a prior distribution over p(ϕ), and com-
pute the posterior distribution, given the observed Bernoulli samples. Typically,
this prior is the Beta distribution, which is conjugate [25] with the Bernoulli
distribution, meaning that the posterior is still a Beta and hence analytically
computable [8].

When the quantitative semantics is concerned, pipelining a simulation algo-
rithm for PCTMC with a monitor will produce samples of a real valued random
variables, which can again be analysed with statistical means. In particular, in
[13,15], the authors focus on the average quantitative score as a measure of
robustness of the property in the stochastic model, which can be estimated by
standard statistics.

3 Smoothness and Functional Priors

3.1 Satisfaction Functions

We now switch our attention to examine the behaviour of the truth probability
of a formula as we change the model within a parametric family of models. The
scenario we consider is the following: let ϕ being a proposition in a suitable
temporal logic (e.g. MITL) which we wish to verify over the trajectories of a
stochastic process. Let Mθ be an uncertain CTMC whose transition rates depend
on a set of parameters θ ∈ D where D is a connected, compact domain in R

d, as
in Sect. 2.1. For a fixed value of the parameters θ, model checking the formula
ϕ would return the probability pθ(ϕ) = p(ϕ = tt | Mθ) that the formula will
be evaluated as true on a randomly sampled trajectory of the system. This
procedure therefore defines a function from the parameters domain D to the
interval [0, 1]. We can formalise this in the following definition.

Definition 1. Let Mθ be an uncertain CTMC indexed by the variable θ ∈ D,
and let ϕ be a temporal logic formula. The satisfaction function fϕ : D → [0, 1]
associated with ϕ and Mθ is

fϕ(θ) = p(ϕ = tt | Mθ)

i.e., with each value θ in the space of parameters D it associates the satisfaction
probability of ϕ for the model with that parameter value.
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The following theorem characterises the dependence of the satisfaction func-
tion on its parameters, and was proved in [12].

Theorem 1. Let ϕ be a formula in a suitable temporal logic and let Mθ be an
uncertain CTMC indexed by the variable θ ∈ D. Denote as α(X, θ) the transition
rates of the CTMC and assume that these depend smoothly on the parameters
θ and polynomially on the state vector of the system X. Then, the satisfaction
function of ϕ is a smooth function of the parameters, fϕ ∈ C∞(D). ��

3.2 Prior Distributions over Smooth Functions – Gaussian
Processes

Our discussion in Sect. 3.1 highlights the fact that, for uncertain CTMCs, the
concept of satisfaction probability must be replaced with a functional analogue,
which takes into account the influence that model parameters may have on
the satisfaction probability of the formula. From the statistical model check-
ing perspective, this suggests that Monte Carlo estimation should be replaced
by function approximation. We will retain a Bayesian perspective in this paper,
and construct a statistical model checking method based on Bayesian functional
approximation: this requires the definition of a suitable class of probability dis-
tribution over functions. Our theoretical analysis in Theorem 1 enabled us to
conclude that the satisfaction function is a smooth function of its arguments,
the model parameters: a natural choice of prior distribution over smooth func-
tions is a Gaussian Process (GP [26]). Formally, the definition of a GP is as
follows:

Definition 2. A GP is a collection of random variables indexed by an input
variable x such that every finite dimensional marginal distribution is a multi-
variate normal distribution.

In practice, a sample from a GP is a random function; the random vector
obtained by evaluating a sample function at a finite set of points x1, . . . , xN

is a multivariate Gaussian random variable. A GP is uniquely defined by its
mean and covariance functions, denoted by μ(x) and k(x, x′); the mean vector
(covariance matrix) of the finite dimensional marginals are given by evaluating
the mean (covariance) function on every (pair of) point in the finite sample. Nat-
urally, by subtracting the mean function to any sample function, we can always
reduce ourselves to the case of zero mean GPs; in the following, we will adopt
this convention and ignore the mean function.

A popular choice for the covariance function, which we will also use, is the
squared exponential covariance function

k(x, x′) = σ2 exp
[
− (x − x′)2

λ2

]
(1)

with two hyper-parameters: the amplitude σ2 and the characteristic length scale
λ2 [26].
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The covariance function endows the space of samples from a GP with a
metric: this is an example of a Reproducing Kernel Hilbert Space (RKHS).
A complete characterisation of such spaces is non-trivial; for our purposes, how-
ever, it is sufficient to show that their expressivity is sufficient to approximate
a satisfaction function by a sample from a GP. The following result is a simple
corollary of the results in [27]:

Theorem 2. Let f be a continuous function over a compact domain D ∈ R
p.

For every ε > 0, there exists a sample ψ from a GP with squared exponential
covariance such that

‖f − ψ‖2 ≤ ε

where ‖ · ‖2 denotes the L2 norm.

The results of Theorems 1 and 2 jointly imply that the satisfaction function of
a formula can be approximated arbitrarily well by a sample from a GP, justifying
the use of GPs as priors for the satisfaction function.

4 Smoothed Model Checking

To see how this fact enables a Bayesian statistical model checking approach
directly at the level of the satisfaction function, we need to explain the basics
of posterior computation in GP models. Let x denote the input value and let
f̂ = {f̂1, . . . , f̂N} denote observations of the values of the unknown function f
at input points x1, . . . , xN . We are interested in computing the distribution over
f at a new input point x∗ given the observed values f̂ , p(f(x∗)|̂f). A priori, we
know that the true function values at any finite collection of input points is
Gaussian distributed, hence p (f(x∗), f(x1), . . . , f(xN )) = N (μ,Σ), with μ and
Σ obtained from the mean and covariance function as explained before. This
prior distribution can be combined with likelihood models for the observations,
p(f̂ |f) in a Bayesian fashion to yield a joint posterior

p
(
f(x∗), f(x1), . . . , f(xN )|̂f

)
=

1
Z

p (f(x∗), f(x1), . . . , f(xN ))
∏

i

p(f̂i|f(xi))

where Z is a normalisation constant. The desired posterior predictive distribution
can then be obtained by integrating out (marginalising) the true function values
f(x1), . . . , f(xN )

p(f(x∗)|̂f) =
∫ N∏

i=1

df(xi)p
(
f(x∗), f(x1), . . . , f(xN )|̂f

)
. (2)

Equation (2) plays a central role in non-parametric function estimation; the infer-
ence procedure outlined above goes under the name of GP regression. It is impor-
tant to note that, in the case of Gaussian observation noise, the integral in Eq. (2)
can be computed in closed form. For further details see e.g. [26].
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Important Remark: GP regression provides an analytical expression for the
predicted mean and variance of the unknown function at all input points.

In our case, observations of the satisfaction function are obtained through
boolean evaluations of a formula over individual trajectories at isolated parame-
ter values. The satisfaction of a formula ϕ over a trajectory generated from a
specific parameter value θ is a Bernoulli random variable with success probabil-
ity fϕ(θ). In order to map this probability to the real numbers, we introduce the
inverse probit transformation

ψ(f) = g ⇔ f =
∫ g

∞
N (0, 1) ∀f ∈ [0, 1], g ∈ R

where N (0, 1) is the standard Gaussian distribution with mean zero and
variance 1. The function gϕ(θ) = ψ(fϕ(θ)) is by construction a smooth, real
valued function of the model parameters, and can therefore be modelled as a
draw from a GP.

We can summarise the algorithm as follows: we draw m binary evaluations
of satisfaction at each of N parameter values θ1, . . . , θN ; these are collected
in a (binary) data matrix D = [d1, . . . ,dN ] whose rows di are the boolean
m-vectors of evaluations at θi. By construction, at each θi value the observations
are independent draws from a Binomial(m, fϕ(θ)). The inverse probit transform
of the satisfaction function gϕ(θ) = ψ(fϕ(θ)) is a smooth function of the para-
meters and is assigned a GP prior. Denote as (g∗,g) the vector containing the
values of gϕ at a new parameter value θ∗ and at the training parameter values
θ1, . . . , θN . Using Bayes theorem and the marginalisation property (2) of GPs,
the posterior estimate of gϕ(θ∗) at a new parameter value is given by

p (gϕ(θ∗)|D) ∝
∫

dgN ((g∗,g)|0,Σ)
N∏

i=1

(fϕ(θi))
∑

di (1 − fϕ(θi))
m−∑di . (3)

Computing this posterior distribution can be done accurately and efficiently
using the Expectation-Propagation algorithm described in [12].

5 Learning and Designing Systems from Logical
Constraints

Smoothed model checking provides an effective algorithm for approximating the
satisfaction function of a formula, in other words, to examine the sensitivity
of the formula’s truth probability to the parameters of the uncertain CTMC.
A related set of problems, which can also benefit from a machine learning app-
roach, is concerned with reducing the uncertainty in the model, either by incor-
porating observations of the system, or by enforcing requirements in a system
design scenario. Parameter synthesis from observations of the state of a stochas-
tic process is a well studied problem in computational statistics and machine
learning (see, e.g. [28,29]). Here we focus instead on the less studied problem
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where observations are truth values of a (set of) formula over individual realisa-
tions of the process (trajectories). The two questions we aim to address are the
following:

1. Learning Problem. Given truth evaluations of a set of formulae over inde-
pendent individual realisations of a stochastic process, how can we find the
parameter set which optimises their probability (maximum likelihood)?

2. Probabilistic Design Problem. Given a desired target (joint) probability
distribution for the truth of a (set of) formula, how can we find the parameter
set for a system which will optimally meet these requirements?

3. Robust Design Problem. Given a behavioural requirement expressed as a
MITL formula, how can we find the parameter set for a system which will
satisfy this requirement as robustly as possible?

In this section, we review a GP-based approach to address these problems, which
was first presented in [11,14] for qualitative semantics (problems 1 and 2) and
in [13,15] for quantitative semantics (robustness of a formula, problem 3).

5.1 Observations, Constraints and Objective Functions

All of these problems can be effectively addressed as optimisation problems;
the first step is therefore to define a suitable objective function. We focus our
description on the Learning problem with qualitative semantics as it is the most
direct in terms of exposition; similar general considerations apply in the other
scenarios, although additional technical difficulties are encountered for quanti-
tative semantics [13,15].

The first step in setting up an optimisation procedure is to define an objective
function. Let ϕ1, . . . , ϕM be the formulae being monitored over system trajec-
tories, and arrange in the M × N design matrix D the observed truth values of
the M formulae over N independent trajectories. Assuming one could access the
true joint satisfaction function of the formulae p(ϕ1, . . . , ϕM |θ) (an 2M vector
valued function of the parameters), a natural objective function would be the
log-likelihood function

L(D, θ) =
N∑

j=1

log[p(ϕ1(Tj), . . . , ϕM (Tj)|θ)] (4)

where p(ϕ1(Tj), . . . , ϕM (Tj)|θ) denotes the entry of the function p(ϕ1, . . . , ϕM |θ)
corresponding to the actual truth values observed on trajectory j. If the joint
satisfaction function is known analytically, one might be able to apply a vari-
ety of optimisation methods to identify the maximum likelihood parameter set.
Unfortunately, the log-likelihood (4) is never analytically available, except in the
simplest of cases.

In [11,14] we proposed an alternative, statistical approach to optimise the un-
computable log-likelihood (4). This is based on obtaining noisy estimates of the
function from a limited number of SMC runs, and then adopting a reinforcement
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learning approach to obtain a provably optimal solution. In the next subsection,
we briefly detail the algorithm we use.

Th same optimisation approach can be used for problems 2 and 3. Probabilis-
tic design can be rephrased as the minimisation of a suitable distance function
(the Jansen-Shannon divergence) between the target joint probability and the
joint distribution p(ϕ1, . . . , ϕM |θ) for a fixed θ, see [11,14] for details. Robust
design, instead, has been modelled in [13,15] as the maximisation of the expected
quantitative score for the formula ϕ expressing the desired requirement.

5.2 Optimising Un-Computable Functions – The GP-UCB
Algorithm

We have seen in Sect. 4 that Smoothed Model Checking can provide an accurate
reconstruction of the satisfaction function of a formula from a limited set of
truth evaluations. A naive idea would be to plug the Smoothed Model Checking
approximation in (4) and then directly optimise the resulting function. This
however would be a suboptimal procedure: as we are often interested in joint
probabilities, the computation of the training set for Smoothed Model Checking
might become computationally intensive (intuitively, we have to estimate 2M

satisfaction functions). It is therefore advantageous to use an adaptive strategy
to select the least possible number of parameter values where to evaluate the
log-likelihood (4).

The key insight we adopt comes from reinforcement learning: there, one is
tasked with devising an optimal strategy for an agent acting in an incompletely
known environment. A central object of study in reinforcement learning is the
trade-off between exploitation and exploration: the agent may settle for the best
known policy so far (exploitation), or it may choose better policies potentially
still unknown (exploration). Bayesian optimisation algorithms export this par-
adigm to the world of optimisation by constructing a statistical model of the
unknown function which not only can predict the unknown function values, but
also quantify the uncertainty in the unknown function values.

More specifically, suppose one has already acquired function evaluations f̂ at
a number of initial training points x1, . . . , xN . In order to choose a subsequent
point, we first construct a GP model of the unknown function f by using GP
regression. To achieve a trade-off between exploration and exploitation, one then
optimises a quantile of the process (rather than the mean): in this way, rather
than choosing a point where the expectation is maximal, one chooses a point
where the function could be even greater. Formally, we introduce the concept
of acquisition function, an auxiliary function constructed from the statistics of
the GP model which is optimised to obtain the next evaluation point. Let the
unknown function f ∼ GP(μ, k) and let μN and βN be the posterior mean and
variance after N observations. The acquisition function we will use is defined as

αN (x) = μN (x) + λNβN (x) (5)

where λN is a constant factor (which depends on the number of points acquired
only).
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The algorithm we use, called GP Upper Confidence Bound (GP-UCB), itera-
tively selects novel points for approximate function evaluation by optimising the
auxiliary function (5), which is known analytically due to the properties of GP
regression. Importantly, Srinivas et al. [30] showed that the GP-UCB algorithm
is globally convergent with high probability for a particular choice of the con-
stants λN in (5) (which depends on the probability of globally converging). Our
approach to learning from logical constraints therefore relies on applying the
GP-UCB algorithm to Eq. (4) (or the analogous objective functions for system
design/robustness optimisation, see [14,15]).

5.3 Related Work: Learning Formulae

Our previous description has focussed on the scenario where a fixed formula was
evaluated over runs of an uncertain model. In reality, formulae may themselves
come in parametric families, and there may be uncertainty over the parametrisa-
tion/structure of the formula. This is often the case for temporal logic formulae,
when the temporal bounds of formulae that best characterise a behaviour may be
subject to uncertainty (e.g. an oscillator of imprecisely known period in the case
of Signal Temporal Logic). In the most general case, one may have uncertainty
over both model and formulae parameters.

This general problem can also be addressed using ideas from machine learning
and in particular GPs. In [31] a general strategy was proposed where, given
observations of the state of a real system, one would learn a statistical model
of the system, and then optimise formulae parameters using GP-UCB to obtain
formulae that could optimally characterise a system (in the sense that they would
be satisfied by the system with high probability). This approach was applied
to the problem of discriminating cardiac arrhythmias from electro-cardiogram
data: the authors fitted hidden Markov models (HMM) to annotated sequences
to learn models of the different type of arrhythmias, and then applied the GP-
UCB procedure to determine temporal logic formulae which could optimally
discriminate different conditions.

6 The U-Check Software Suite

All the algorithms discussed above have been implemented in the open source
tool U-check [16], available online1. U-check has been implemented in Java, it
runs cross platform, and can be used as a Java library or as a standalone software,
with a command line interface.

The simple interface of the tool takes as input an option file, which specifies
the algorithm to run. The choice at the moment is between smoothed model
checking (Sect. 4), parameter estimation from qualitative data and system design
using the MITL quantitative semantics (Sect. 5). The option file has additional
fields specifying additional properties of the algorithm, see [16] and the online

1 http://homepages.inf.ed.ac.uk/dmilios/ucheck.

http://homepages.inf.ed.ac.uk/dmilios/ucheck
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documentation for further details. Furthermore, one has to specify the link to a
model file and to the properties file.

U-check supports models specified in several modelling languages, some of
them of common use, such as PRISM guarded commands [2] and Bio-PEPA [32].
It also supports models in the SimHyA modelling language [33]. Properties,
instead, can be specified only in MITL for the moment, though a spatio-temporal
extension of MITL [34] will be supported soon.

In the following section, we will illustrate the methods discussed and the use
of U-check through a simple example of a virus infection.

7 Case Study: A CTMC Model of Viral Infection

In this section, we show the statistical verification methods at work on a viral
infection model appeared in [35]. This model, in particular, is stiff, which
makes stochastic simulation very expensive. Therefore, any statistical method to
explore the parameter space should minimise the number of simulation runs to
keep the analysis efficient. In this scenario, the use of smoothed model checking
and of active learning strategy for optimisation is of highest value.

The model has three counting variables keeping track of three species: the
viral template T , the viral genome G, and the viral structural protein S. Its
dynamics is given by the reactions of Table 1. It is assumed that nucleotides
and amino acids are available at constant concentrations, and their contribu-
tions to the rate functions are encoded in the model parameters. In the initial
state, we assume 1 molecule for T and zero for the rest of the species. In the
experiments that follow, we vary cn and ca, which are coefficients that control
the concentrations of nucleotides and amino acids correspondingly.

Table 1. Rate functions and default parameter values for the viral model.

Reaction Rate function Kinetic constant

Nucleotides + T
k1−→ G + T k1XT cn k1 = 1, cn = 1

Nucleotides + G
k2−→ T k2XGcn k2 = 0.025

Nucleotides + amino acids + T
k3−→ S + T k3XT cnca k3 = 100, ca = 1

T
k4−→ ∅ k4XT k4 = 0.25

S
k5−→ ∅ k5XS k5 = 0.2

G + S
k6−→ V k6XGXS k6 = 7.5 × 10−6

The trajectories of the model in question are characterised by irregular fluc-
tuations around a fixed level. We formalise this concept by the following formula
that captures fluctuations of a certain magnitude:

ϕ = F[100,150](G > Thi ∧ F[1,20](G < Tlo ∧ F[1,20]G > Thi)) (6)
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The property will be satisfied if at lest one fluctuation occurs for the genome
population in the area specified by the threshold parameters Tlo and Thi .

The PRISM specification of the viral model, the MITL properties considered,
and the inputs for the experiments that follow, are distributed along with the
source code of U-check.

7.1 Using the Command-Line Version of U-Check

The U-check executable has to be provided with a configuration file that specifies
the properties of a certain experiment. The experiment options are in the form
of assignments as follows:

OPTION = VALUE

where VALUE can be a number, a truth value, or a string, depending on the
option. A comprehensive summary of the options available is given in [16],
while a exhaustive description can be found in the user manual associated with
the code release. We highlight the most important options required to execute
the algorithms supported.

– modelFile: A file that contains the model specification.
– propertiesFile: A file that contains one or more MITL properties.
– observationsFile: A file that contains qualitative observations; it is required

for parameter inference from qualitative data only.
– mode: It can be either inference, robust or smoothedmc.

The parameters to be explored have to be defined by a declaration of the form:

parameter NAME = [A, B]

which implies that NAME is assigned with the interval between A and B.

7.2 Smoothed Model Checking

We demonstrate the configuration required to perform smoothed model checking
for the viral expression model. The code that follows dictates that the cn parame-
ter (k nucleotides) is explored in the interval [0.8, 2] and ca (k amino acids)
in [0.5, 1]. In the viral.mtl we have specified the fluctuation formula in (6) for
Tlo = 280 and Thi = 320.
modelFile = viral.sm
propertiesFile = viral.mtl
mode = smoothedmc
parameter k_nucleotides = [0.8, 2]
parameter k_amino_acids = [0.5, 1]
endTime = 200
runs = 10
initialObservtions = 100
numberOfTestPoints = 1600
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Fig. 1. U-check screenshot: smoothed model checking result presented via gnuplot

According to the initialObservtions option, the satisfaction probability will
be evaluated on a grid of 100 regularly distributed parameters values. The runs
and endTime options imply that for each parameter value 10 trajectories will be
sampled up to time 200. The numberOfTestPoints option means that satisfac-
tion function will be eventually estimated on a grid of 1600 points.

Eventually, U-check produces a csv file that contains the estimated satis-
faction probabilities for the specified grid of points, as well as a matlab/octave
script file that allows easy manipulation of the results. Automatic plotting for
up to two dimensions is also possible via the gnuplot program. Figure 1 depicts
a screenshot of the current smoothed model checking result.

7.3 Robust Parameter Synthesis

The configuration that follows is an example of robustness optimisation.
modelFile = viral.sm
propertiesFile = viral.mtl
mode = robust
parameter k_nucleotides = [0.001 , 2]
parameter k_amino_acids = [0.001 , 2]
endTime = 200
runs = 10
initialObservations = 40
numberOfTestPoints = 100

The initialObservtions option specifies the number of points that are required
for the initialisation of the GP-UCB algorithm; these will serve as the ini-
tial training set for the GP that emulates formula robustness. The option
numberOfTestPoints controls the size of the GP test set used in each iteration
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Fig. 2. U-check screenshot: robust parameter synthesis terminal output

of the algorithm. Increasing this value will increase the possibility of discovering
a new potential maximum, assuming there is one.

The program output that contains the solution obtained and its robustness
value, as well as additional information regarding the progress of the optimisation
process; a screenshot can be seen in in Fig. 2. The most robust values found for
cn and ca have been 1.929 and 0.766 correspondingly, with robustness value 20.4.
This implies that the system robustly fluctuates around in the area specified by
Tlo = 280 and Thi = 320.

7.4 Learning from Qualitative Observations

We shall demonstrate U-check capability of learning the model parameters from
qualitative observations on some artificial data. We make use of three variations
of (6), which capture fluctuations of different magnitude. The values used for
(Tlo , Thi) have been: (290, 310), (280, 320) and (270, 370). Artificial observations
have been generated by considering cn = 1.5 and ca = 0.75. We have sampled 100
independent trajectories from this fixed model and performed model checking,
resulting in a n × m matrix of boolean observations, where n = 100 and m = 3;
these are stored in the observations file viral.dat. Given that the formulae are
specified in a file named viral inference.mtl, the following configuration will
perform parameter inference:
modelFile = viral.sm
propertiesFile = viral_inference.mtl
observationsFile = viral.dat
mode = inference
parameter k_nucleotides = [0.001 , 2]
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parameter k_amino_acids = [0.001 , 2]
endTime = 200
runs = 10

The program output is depicted in Fig. 3. The optimal values for cn and ca

have been 1.445 and 0.762 correspondingly. The solution obtained is a good
approximation of the actual parameters that produced the data.

Fig. 3. U-check screenshot: terminal output for inference from qualitative observations

8 Discussion

In this paper we gave a simple introduction to recent development at the border
between machine learning and formal methods, leading to statistically grounded
methods for the analysis of uncertainty in stochastic models. We used a simple
but representative case study of viral infection taken from system biology, to
show how these analyses can be performed with the tool U-check. The reader
interested in a more exhaustive discussion about performance and accuracy of
these these methods is referred to [12,14,15]. Applications of these techniques are
naturally found in domains as diverse as systems and synthetic biology, cyber-
physical systems, smart cities and collective adaptive systems. We believe that
the methods presented here, and related approaches, can provide effective tools
to investigate and design the behaviour of such systems.

Related Work. The cross fertilisation between ideas from statistical machine
learning and formal methods/verification is a novel area of research which is
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gaining momentum. The bulk of works of the authors discussed in this paper is
part of this growing trend.

Parameter estimation using temporal logic and qualitative data has been
discussed in [36], using heuristic methods based on evolutionary algorithms to
explore the state space. This is in contrast with our approach [11,14], in which we
rely on more advanced optimisation techniques from active learning, providing
guarantees on finding the maximum likelihood estimate.

The same optimisation approach has then been used in [13,15] with the
purpose of system design of stochastic models, using temporal logic specifications
and leveraging its quantitative semantics.

Another problem which received considerable attention is the synthesis and
parameter exploration problem, where one is interested in the satisfaction prob-
ability as a function of some parameters. Besides our statistical approach [12],
there are some numerical methods based on exaustive exploration of the state
space combined with error bounds [9,10]. These methods, however, are much
more affected by the curse of dimensionality and by scalability issues.

A complementary problem which has been tackled with similar methods is
that of learning temporal logic formulae that best characterise model proper-
ties or that explain observed data. In this respect we recall works of some of
the authors [31,37], exploiting active learning, possibly combine with heuristic
searches in the space of formulae. Other works dealing with learning of temporal
logic specifications are, for instance, [38,39].

Another area of formal methods in which machine learning methods have
a large potential is that of abstraction, recasted in a statistical sense. At the
moment, these ideas have been used to speed up simulation of systems with
multiple time scales [40] and systems where only a small portion is simulated
explicitly, while the rest of the system is abstracted by a Gaussian Process [41].
They have also been used for modular decomposition of systems in parameter
estimation tasks [42].

Finally, the integration of machine learning and formal methods is happening
also at the level of modelling languages. In [43], a novel process algebra is defined,
with a semantics in terms of uncertain CTMC, and equipped with inference
routines to reduce parametric uncertainty in presence of observations.
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Abstract. RV-Android is a new freely available open source runtime
library for monitoring formal safety properties on Android. RV-Android
uses the commercial RV-Monitor technology as its core monitoring
library generation technology, allowing for the verification of safety prop-
erties during execution and operating entirely in userspace with no ker-
nel or operating system modifications required. RV-Android improves on
previous Android monitoring work by replacing the JavaMOP framework
with RV-Monitor, a more advanced monitoring library generation tool
with core algorithmic improvements that greatly improve resource con-
sumption, efficiency, and battery life considerations. We demonstrate the
developer usage of RV-Android with the standard Android build process,
using instrumentation mechanisms effective on both Android binaries
and source code. Our method allows for both property development and
advanced application testing through runtime verification. We showcase
the user frontend of RV-Monitor, which is available for public demo use
and requires no knowledge of RV concepts. We explore the extra expres-
siveness the MOP paradigm provides over simply writing properties as
aspects through two sample security properties, and show an example of
a real security violation mitigated by RV-Android on-device. Lastly, we
propose RV as an extension to the next-generation Android permissions
system debuting in Android M.

1 Introduction

With the rise in popularity of Android [1], a Linux-based consumer smartphone
operating system, the need for effective techniques to improve the security and
reliability of third-party applications running on end user devices is well estab-
lished [2]. One solution explored by previous work in the field is the use of run-
time verification and runtime enforcement to detect and recover from violations
of formal safety properties during the execution of Android applications [2,3].
c© Springer International Publishing Switzerland 2015
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Some previous work in this space has relied on using kernel modifications to the
Linux base of Android to generate the runtime traces required to verify safety
properties [3,4]. This solution is inflexible for several reasons: it requires root
access to the device to install, requires reinstallation on each operating system
upgrade, and provides few additional guarantees from a compromised kernel over
a userspace monitoring solution.

Other RV-based Android work has used JavaMOP, an experimental moni-
tor oriented programming framework, to generate Android monitoring libraries
which are weaved into third-party userspace applications, providing monitoring
functionality and guarantees without requiring kernel-level modifications [2].

This approach has been demonstrated using AspectJ [5] for weaving, and
allows us to weave binary bytecode useful towards instrumenting off-the-shelf
third party packaged applications (apk’s) [2,4]. Our work focuses on improv-
ing these approaches with efficient and versatile runtime verification tools that
benefit from the previous research endeavors related to JavaMOP, resulting in
a unified and open framework for runtime verification and analysis of Android
applications.

1.1 Contributions

RV-Monitor is a proprietary library generation technology, allowing for the
runtime monitoring, verification, and enforcement of safety properties through
the generation of generic monitoring libraries. RV-Monitor is provided free for
non-commercial use, and represents the evolution of the prototype JavaMOP
tools with improvements in the codebase and core algorithms. Like JavaMOP,
RV-Monitor supports logic plugins, allowing for the specifications of proper-
ties in multiple formalisms including regular expressions, context-free grammars,
automata, and past-time linear temporal logic.

We make the case for the future use of RV-Monitor and its related Android
runtime library for use in runtime verification and runtime enforcement of
Android applications. We compare monitor-oriented programming techniques
to popular aspect-oriented techniques, acknowledging the usefulness of both and
supporting both as property inputs to our tools. We analyze a real security
violation on the Android platform with the potential to be stopped by monitor-
oriented programming, including the relevant property with our tool’s distribu-
tion. Lastly, we discuss the future of RV on the Android platform and lay out a
roadmap for future industry-lead work in the space.

2 RV-Android Overview and Build Process

RV-Android consists of two components, a monitoring library generation tool
and a runtime environment used in the generation of these libraries for dynamic
on-device property monitoring and violation recovery. For the first of these RV-
Monitor is used off-the-shelf, allowing for the specification of both formal prop-
erties over events and the instrumentation points for these events in a single
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monitor-oriented file. This monitor-oriented programming is achieved through a
new version of JavaMOP, a lightweight compiler that generates RV-Monitor
(monitoring library) and AspectJ (program instrumentation) output. Unlike
versions of JavaMOP used in previous work, which were fully responsible for
monitoring applications and did not leverage RV-Monitor, this next-generation
JavaMOP stands to benefit from the significant core algorithmic improvements
that form the basis of the RV-Monitor IP [6] while completely separating the
generation of efficient monitoring libraries from application instrumentation.

In our work, we will separate the discussion on instrumentation from the
discussion on event and property definitions. We do this to leave open the
possibility of future instrumentation models. While we focus on instrumenta-
tion methods using AspectJ in this work, other instrumentation mechanisms
for packaged Android binaries have already been effectively demonstrated and
proved [2,4,7,8]. RV-Monitor is compatible with any Java instrumentation
method, and the JavaMOP project can be extended to generate the required
input for other instrumentation tools if necessary.

Our website, http://runtimeverification.com/android, provides downloads
and full instructions for the use of RV-Android, as well as the examples we
discuss in the remainder of the paper and a video demonstrating a few currently
available capabilities of the tool.

2.1 Build Process

The RV-Android process (shown above in Fig. 1) forms the basis of all tools
based on RV-Android. Taking either a binary packaged Android application or
set of source files as input, RV-Android additionally optionally takes any (or
all) of aspect files, RV-Monitor properties, and monitor-oriented programming
(MOP) files compatible with the JavaMOP tool. This flexibility in input allows
RV-Monitor to be used with a wide variety of property formats, including aspect-
oriented AspectJ properties that do not require formalisms or the additional
features provided by RV-Monitor or JavaMOP.

By being able to mix and bundle these diverse formats together into a single
set of properties as input to a single tool, property developers and application
developers have an easy way to develop, apply, and share dynamic properties of
their choice without the need to constrain themselves to a single tool. Futher-
more, property developers have the ultimate control over the instrumentation
of their properties in the original application: they can choose to use AspectJ
directly, use MOP, or use other techniques of manual instrumentation. In doing
so, the goal is to create a platform in which all developers of runtime proper-
ties for the Android platform feel comfortable using their preferred technologies,
encouraging third-party property development.

RV-Monitor also features a flexible plugin architecture that allows for the
development of custom or third-party formalisms supported by the tool, allow-
ing virtually unlimited expressiveness in the properties it defines. By combin-
ing this with instrumentation in a single monitor-oriented programming files,

http://runtimeverification.com/android
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Fig. 1. RV-Android build process

advanced developers can write complex properties succinctly while defining sim-
ple properties not requiring dedicated formalisms in native Java directly through
AspectJ.

RV-Android is also an open source project built around the closed source
RV-Monitor project, but can be used without RV-Monitor as an aspect oriented
programming platform, as well as extended to work with any number of tools
supporting Java transformation and analysis. Because it is open source, RV-
Android can also be extended by other tool developers who provide runtime
analysis and verification of applications to integrate any technique into its work-
flow. We are already developing prototype extensions for taint analysis and other
popular dynamic analysis techniques, extending the capabilities of RV-Android
beyond the capabilities of any single tool.

Figure 1 shows the output of RV-Android as a signed, packaged Android
application to be distributed to users. By signing all verified and monitored
applications with an “RV” key from a source trusted by the user, the user’s
smartphone can then verify that the application has been correctly monitored
and transformed to the specifications provided as input to the tool.

Excluded from the figure is the inclusion of the AspectJ and RV-Monitor
runtimes in the monitored and instrumented application. These runtimes are



346 P. Daian et al.

needed for the instrumentation and monitoring of the application on-device,
and are simply the binary runtimes as provided by each project.

2.2 RV-Android for Developers

In order to provide a full framework for runtime verification and enforcement on
the Android platform, we must allow developers to complete their two primary
tasks of interest with regards to runtime verification: developing new properties
to check on their applications and third-party applications, and checking their
own applications against existing property sets. To do this, we provide two ver-
sions of RV-Android for developers, targeted at two possible use cases. The first
allows developers to integrate RV-Android into projects where they are using
the standard Android build process and have access to the source code of the
application, instrumenting source code directly. The second version is able to
monitor properties of binary Android applications, or apks, and can be used on
any application that runs on the Android platform.

Monitoring Source Code. To monitor source code, we provide a version of
RV-Android called the “developer source” edition. Found in the “developer src”
subdirectory of the RV-Android distribution, this edition requires the developer
to create two directories, “aspects” and “properties”. By placing AspectJ files
and RV-Monitor or MOP properties in the relevant directories and following
the remainder of the setup instructions for the source edition, developers can
integrate monitors and runtime verification in their build and testing process
with no modification required to the source of the application itself.

This provides a convenient way for developers interested in obtaining the
maximum assurance from their Android applications to leverage runtime veri-
fication. Additionally, developers using the default Android build process who
wish to ship monitors integrated with their final application to end users (for
assurance, security, or enforcement purposes) can use this version to monitor
their source directly, requiring no binary transformations.

Monitoring Binary APKs. The second and more flexible distribution of RV-
Android for developers focuses on monitoring arbitrary binary Android applica-
tions, and is referred to as the “command line” distribution. This distribution
can also be used by advanced users who are comfortable using command-line
tools. Similarly to the previous application, the tool takes both properties and
aspects, and has a simple command-line interface with parameters as follows:

./rv_android [apk] [keystore] [keystore password]
[signing key alias] [monitors_directory] [aspects_directory]

Because of its simplicity and extensibility, this version of RV-Android can be
integrated into any environment or build process. We recommend this version
to all new developers interested in RV on Android.
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2.3 RV-Android for End Users - GUI Frontend

For end-users who are not familiar with command-line applications and property
development, but still wish to gain some additional assurance in or control over
their applications, we provided a GUI version of RV-Android. The architecture
of this system is shown in Fig. 2. RV-Android runs entirely on a remote server
in the cloud, which runs the same CLI version of RV-Android with the workflow
in Fig. 1. The program on the user’s device is simply a shell allowing them
to manage and select properties, and select an application on their device to
instrument. This is similar to previous approaches applied to runtime verification
on Android [9].

Fig. 2. RV-Android on-device architecture

Through this graphical user interface, we allow users that may be completely
unfamiliar with RV or its concepts to apply generic “properties” to any of the
applications currently on their device. We also allow them to download third-
party sets of properties and read their descriptions.

Such an application aims to bring RV to the mainstream by providing sim-
ple, human-readable descriptions of what each property does or checks for and
allowing any property to be used with any userspace application on any Android
smartphone, without requiring root access. In the user frontend, there is no dis-
tinction made between properties written as aspects, monitors, or other formats,
all of which are simply referred to as “properties”.

We believe such a platform is an ideal introduction point to runtime verifi-
cation for users and developers alike. With the increased importance of security
on mobile devices, which often carry personal information and other sensitive
data [10,11], and the ability to instrument any arbitrary binary Android appli-
cation by virtue of the Java bytecode format used, we are able to show off the
powerful and generic nature of runtime verification technology in an environment
becoming increasingly important to end users.

Figure 3 shows two screenshots of the RV-Android frontend for end-users,
currently in beta. Users select an application followed by a set of properties to
apply to the application, with the remainder of the process being automated.
These properties have extended descriptions that can be viewed by the user, and
can be extended to include custom or user-defined properties. Applications can
also be filtered by those requesting a set of permissions considered by the user
to be particularly sensitive.
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Fig. 3. RV-Android screenshots, application and property selection

3 Towards Practicality - RV-Android Case Studies

Having presented the overall architecture and currently available distributions
of the RV-Android tool, the question of whether such techniques are practical
and cost effective for use on real applications and devices arises naturally. The
practicality of the tools presented hinges on the ability to develop a useful set
of properties supported by the tool, which can then be shared, packaged, and
distributed to end users for monitoring of arbitrary applications on-device or
used by developers to test and evaluate their applications against the given set
of API rules, coding best practices, and security properties.

To address the matter of usable properties, we will first consider the ideal
language for expressing properties. Because RV-Monitor supports a variety of
techniques for writing properties, including raw aspect-oriented properties and
monitor-oriented properties that define both formal mathematical properties and
their instrumentation, it is important to note the drawbacks and advantages of
both techniques.
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3.1 Two Properties in MOP and AspectJ

Blocking Device Location and Network Accesses. The first property is
a security property intended to block malicious or questionably-sourced appli-
cations from accessing a user’s location through the Android location API. The
second property is not security oriented as the first one is. Instead, it merely
logs and notifies the user when an application attempts to use an Android API
call related to networking and connections to the Internet.

The Properties in AspectJ. We present how to implement monitors for the
two properties in AspectJ. Note, the monitors make use of the following imports:
import android.app.Activity; import android.content.Context; import android.content.

ContextWrapper; import android.widget.Toast;

The monitor for blocking the device location is shown in full in aspect form
in Listing 1.1. It prints a message to the user and log noting the attempted
location access, and denies the access by returning null to the aspect around() join
point rather than proceeding with the original call. It is clear from examining
the property that there is a lot of code that can be automatically generated,
including the code required to track the current activity in order to show the
notification to the user.

The monitor for keeping track of network accesses is shown in full in aspect
form in Listing 1.2. The monitor does not attempt to preserve any security prop-
erties (such as an unknown application cannot access user location). Instead, it
merely logs and notifies the user when an application attempts to use an Android
API call related to networking and connections to the Internet.

The monitors for these properties share a large amount of code, which is
expected as both are fundamentally performing the same task (notifying the
user of some event occurring on the device). This also suggests that there is
a significant potential for automatically generating the monitor, and that both
monitors could be expressed more concisely.

The Properties in MOP. While aspect-oriented programming is one app-
roach to monitoring and analyzing applications on the Android platform [4], a
newer paradigm familiar to the runtime verification community involves using
the monitoring-oriented programming paradigm. Listing 1.3 shows the same
property being enforced as in Listing 1.1 with a monitor defined with significantly
less code. Using several keywords provided by RV-Monitor and RV-Android, par-
ticularly TOAST and SKIP, which in addition to ACTIVITY form the basic
keywords for user interaction currently supported by RV-Monitor, we automat-
ically generate much of the code performing similar functions to the previous
monitors in AspectJ.

Similarly, Listing 1.4 shows the same monitor as in Listing 1.2 using MOP
format. Some clear advantages include shorter property that is easier to write,
debug, and validate for developers and even advanced end-users.

Neither of these properties, however, leverage the primary feature of RV-
Monitor, which is the ability to define logical properties over the event trace of
an application in a variety of formalisms.
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1 aspect BlockGetLocation extends Act iv i ty {
2

3 pr i va t e ContextWrapper contextWrapper ;
4 pr i va t e Act iv i ty a c t i v i t y ;
5 pr i va t e Object ob j e c t ;
6

7 Object around ( ) : c a l l (∗ android . l o c a t i o n . . ∗ ( . . ) )
8 && ! with in ( BlockGetLocation )
9 {

10 St r ing method = th i sJo inPo in t . ge tS ignature ( ) . getName ( ) ;
11 St r ing c l a s s e = th i s Jo inPo in t . ge tS ignature ( ) . getDeclar ingType ( ) .

getName ( ) ;
12 /∗ Log in format ion about method and c l a s s ∗/ ;
13 Object ob j e c t = th i s Jo inPo in t . getThis ( ) ;
14 Toast . makeText (
15 ( ( android . content . ContextWrapper ) ob j e c t ) .

getAppl i cat ionContext ( ) ,
16 ”Appl i cat ion a c c e s s i n g l o c a t i o n in format ion ” , Toast .

LENGTH LONG) . show ( ) ;
17 re turn nu l l ;
18 }
19

20 // Advice to get the context app l i c a t i on
21 a f t e r ( ) : execut ion ( void Act iv i ty . onCreate ( . . ) )
22 && ! with in ( BlockGetLocation ) {
23 t ry {
24 a c t i v i t y = new Act iv i ty ( ) ;
25 ob j e c t = th i s Jo inPo in t . getThis ( ) ;
26 System . out . p r i n t l n ( ( ob j e c t i n s t an c e o f Act iv i ty ) ) ;
27 contextWrapper = new ContextWrapper (
28 ( ( android . content . ContextWrapper ) ob j e c t )
29 . getAppl i cat ionContext ( ) ) ;
30 } catch ( Exception e ) {
31 System . e r r . p r i n t l n ( e . t oS t r i ng ( ) ) ;
32 }
33 }
34 }

Listing 1.1. Aspect-oriented property blocking location accesses

One example of using such formalisms is shown in Listing 1.5, which combines
the previous two properties by denying all network-related API calls after the
user’s location is accessed. The access is otherwise permitted by the system.

The property is formally defined by a finite state machine in which the first
state is safe, as the application has not accessed any location information. The
application accessing any location information brings it to an unsafe state, after
which any network access lead to a “denied” state. On entering the denied state,
the monitor skips the function call to the network, returning null rather than
executing that call. The distinction between the unsafe and deny states is that
the unsafe state does not skip the call, allowing for further location accesses after
the first access, but not for further.

Such a property is useful to users concerned about the leakage of their loca-
tion data, though it is not in its current form comprehensive for all possible data
exfiltration channels on Android devices.

In addition to allowing for the addition of logic to Android programming, RV-
Monitor can extremely efficiently monitor parametric properties, or properties
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1 aspect WebAspect extends Act iv i ty {
2 // Android In t e rn e t methods
3 po intcut webCall ( ) : c a l l (∗ android . net . . ∗ ( . . ) ) | | c a l l (∗ android .

webkit .WebView . . ∗ ( . . ) ) | | c a l l (∗ java . net . HttpURLConnection
. . ∗ ( . . ) ) && ! with in (WebAspect ) ;

4 po intcut onCreate ( ) : execut ion (∗ onCreate ( . . ) ) && ! with in (
WebAspect ) ;

5

6 pr i va t e ContextWrapper contextWrapper ;
7 pr i va t e Act iv i ty a c t i v i t y ;
8 i n t count ;
9 a f t e r ( ) : webCall ( ) {

10 t ry {
11 i f ( count == 0){
12 i f ( contextWrapper != nu l l && a c t i v i t y != nu l l && count==0){
13 a c t i v i t y . runOnUiThread (new Runnable ( ) {
14 pub l i c void run ( ) {
15 count++;
16 // Toast message to inform
17 Toast . makeText ( contextWrapper . getAppl i cat ionContext ( ) ,
18 ”Appl i cat ion a c c e s s i ng to In t e rn e t ” , Toast .LENGTH LONG) .

show ( ) ;
19 }
20 }) ;
21 }
22 e l s e { /∗ Log e r r o r about the miss ing context app l i c a t i on ∗/ }
23 }
24 } catch ( Exception e ){
25 /∗ Log except ion us ing th i s Jo inPo in t . getTarget ( ) . t oS t r i ng ( ) ∗/
26 }
27 }
28 // Advice to get the context app l i c a t i on
29 a f t e r ( ) : onCreate ( ) {
30 t ry {
31 count=0;
32 a c t i v i t y = new Act iv i ty ( ) ;
33 Object ob j e c t = th i s Jo inPo in t . getThis ( ) ;
34 contextWrapper = new ContextWrapper ( ( ( android . content .

ContextWrapper ) ob j e c t ) . getAppl i cat ionContext ( ) ) ;
35 } catch ( Exception e ) { /∗ Log e r r o r message ∗/ }
36 }
37 }

Listing 1.2. Aspect-oriented property monitoring network accesses

of a specific Java object, class, or memory location and allowing for millions of
monitors to be created with low runtime overhead [6]. This expressiveness and
low overhead makes RV-Monitor ideal for a wide range of properties, from simple
global properties like the above to complex parametric properties.

3.2 Preventing Security Violations - A Real Attack

While the above properties may be useful for users wishing to gain fine grained
control over the privacy of their data when faced with potentially malicious
applications, they are generally ineffective in protecting against real attacks.
Listing 1.6 shows a MOP monitor in blocking a wide range of attacks. Similarly
to the monitors in the previous subsection, this is a simple monitor designed to
skip all calls to any exec method in the Runtime class. This method in the Android
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1 import java . lang . ∗ ;
2

3 Android DenyLocation ( ) {
4

5 // Deny a l l l o c a t i o n package c a l l s
6 event l o c a t i o n Object around ( ) : c a l l (∗ android . l o c a t i o n . . ∗ ( . . ) )

{
7 TOAST( ”Appl i cat ion a c c e s s i n g l o c a t i o n in format ion . ” ) ;
8 SKIP ;
9 }

10 }

Listing 1.3. Monitor-oriented property blocking location accesses

1 import java . lang . ∗ ;
2

3 Android MonitorNetwork ( ) {
4

5 // Display app l i c a t i on toa s t on a l l network API c a l l s
6 event web ca l l a f t e r ( ) : c a l l (∗ android . net . . ∗ ( . . ) )
7 | | c a l l (∗ android . webkit .WebView . . ∗ ( . . ) )
8 | | c a l l (∗ java . net . HttpURLConnection . . ∗ ( . . ) ) {
9 TOAST( ”Appl i cat ion a c c e s s i n g the Inte rnet , ” ) ;

10 }
11

12 }

Listing 1.4. Monitor-oriented property monitoring network accesses

API allows developers to execute shell code directly through the currently run-
ning process, allowing for arbitrary commands interpreted by the Linux kernel
underpinning Android [12].

One potential practical application of this property is the disabling of cur-
rently available Tor libraries, which are becoming widely used on Android in
a malware context [13]. The Tor network allows malware, including spyware,
adware, and ransomeware, to obfuscate its network connections to command
and control servers, the location of which can be hidden from law enforcement
and the public [14]. A 2014 survey of Android security by Google specifically
mentions ransomware as an up-and-coming problem needing to be addressed
by the Android security team, further suggesting the application of dynamic
and static analysis techniques against spyware and other malicious applications
which often use Tor to communicate with their operators [13,15].

The above property disbales Tor due to the code in Listing 1.7, which needs
to install executable binary blobs of native code. Because there is no native file
permission API on Android, the above aspect blocks all attempts to change file
permissions and thus install native code from any third-party applications. In
doing so, it blocks a wide range of potential attacks and privilege escalation
exploits which rely on shell access, rendering it a powerful practical defense
against violations of user privacy by malware that leverages the Tor network.

To test this property, it is sufficient to instrument the “Orbot” applica-
tion in the Play store and attempt to run it on-device for the first time. We
include detailed instructions and a sample of such monitored applications on
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1 import java . lang . ∗ ;
2

3 Android MonitorLocationNetwork ( ) {
4

5 event web ca l l Object around ( ) : c a l l (∗ android . net . . ∗ ( . . ) )
6 | | c a l l (∗ android . webkit .WebView . . ∗ ( . . ) )
7 | | c a l l (∗ java . net . HttpURLConnection . . ∗ ( . . ) ) {
8 TOAST( ”Appl i cat ion a c c e s s i n g the Inte rnet , ” ) ;
9 }

10

11 event l o c a t i o n Object around ( ) : c a l l (∗ android . l o c a t i o n . . ∗ ( . . ) )
{

12 TOAST( ”Appl i cat ion a c c e s s i n g l o c a t i o n in format ion . ” ) ;
13 }
14

15 fsm :
16 s t a r t [
17 l o c a t i o n −> unsa fe
18 web ca l l −> s t a r t
19 ]
20 unsa fe [
21 web ca l l −> deny
22 l o c a t i o n −> unsa fe
23 ]
24 deny [
25 web ca l l −> deny
26 l o c a t i o n −> unsa fe
27 ]
28

29 @deny {
30 SKIP ;
31 }
32

33 }

Listing 1.5. Monitor-oriented FSM property preventing network accesses after
location

https://runtimeverification.com/android, one of which is a sample of real spy-
ware disabled through the monitoring and enforcement of the above property.

4 Into the Future - Beyond Android Permissions

The future of the Android platform brings a substantial amount of change, with
an ever increasing level of the platform’s popularity and a significant number
of potentially harmful applications still being deployed to user devices regu-
larly [15].

4.1 Android M - A New Permissions Model

One of the most recently announced changes in the fundamental security model
of the Android platform is the change in the permissions system being released
with Android M. Rather than simply granting an application blanket permis-
sion to perform all operations in a given category, application permissions can
be revoked at any time by the user [16]. One example of this is the revocation of

https://runtimeverification.com/android
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1 import java . lang . ∗ ;
2

3 Android BlockShel lExec ( ) {
4

5 // Skip a l l s h e l l execut ion c a l l s
6 event s h e l l c a l l Object around ( ) : c a l l (∗ Runtime+. exec ( . . ) ) {
7 SKIP ;
8 }
9 }

Listing 1.6. Monitor-oriented property blocking shell calls

1 pub l i c s t a t i c void copyRawFile ( Context ctx , i n t r e s id , F i l e f i l e ,
S t r ing mode , boolean i sZ ipd ) throws IOException ,
Inter ruptedExcept ion

2 {
3 . . . // Copy f i l e
4 // Change the pe rmi s s i ons
5 Runtime . getRuntime ( ) . exec ( ”chmod ”+mode+” ”+abspath ) . waitFor

( ) ;
6 }

Listing 1.7. Potentially malicious code installing the Tor network from orbot

location permissions from applications which may be leaking user data to third
parties. This replaces many of the simpler security properties and aspects pre-
viously written targetting Android permissions, including the location property
presented in this paper.

Despite this, as shown in Listing 1.5, RV-Android can provide much finer
grained control over how permissions are used on device, revoking or grant-
ing permissions dynamically based on logical properties of the application state
or current trace. In this way, context-sensitive permissions become possible for
cases where a high level of control is desirable. One perfect example of this is
the revocation of the Internet permission we discussed, which is now granted
by default and without user confirmation to all applications being installed in
Android M [17]. This change potentially removes some control from the user
related to which applications have network access. However, because almost
all applications rely on network access, context-sensitive permissions in which
allowed hosts are whitelisted and certain services (like Tor or known ad net-
works) are blacklisted, and in which the level of action reacts to other system
events may be more appropriate for informing the end user and providing them
with ultimate control.

Using runtime verification and monitoring, one can control every category
of permission and API access, specifically defining the access patterns and data
allowed to the application. By defining such specific and tightly controlled execu-
tions, users can notice and prevent malicious or unexpected application behavior.
Such control may be useful for employers with employees dealing with sensitive
data on Android devices, and in all security-sensitive Android applications. The
ability to run third-party applications on such devices introduces security vul-
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nerabilities, a wide range of which can be detected and prevented with runtime
verification.

4.2 Integrating with Other Approaches

In addition to preventing security violations as they occur, RV-Android can be
used as a testing tool on a large number of applications to detect the presence of
such violations in third party applications. In doing so, RV-Android can leverage
a number of automated unit testing tools already available for Android designed
to mimic and mock user behavior on the platform [18,19], checking a large
number of properties automatically.

In addition to testing, RV-Android could potentially integrate with other
dynamic analysis tools, including popular tools designed to ensure data security
through taint analysis. Taint analysis is a popular technique that tracks sensitive
information as it is handled by applications, preventing it from leaving through
any unprivileged API calls or other “sinks” [20,21]. By integrating many such
techniques, we aim to create the foremost security tool and platform for Android,
with an ability to implement any future dynamic analysis techniques desirable
to users and developers.

Lastly, runtime verification can integrate with static analysis to improve its
efficiency and inform the automatic generation of properties checkable at run-
time [22]. While there are no concrete plans to do so in RV-Android currently,
this remains a future potential research direction.

4.3 Towards a Public Property Database

Undoubtedly the most important work in developing a framework for practical
Android runtime verification is the development of properties that thoroughly
encompass both known misuses of the Android and Java API’s and violations
of secure states by previously observed malware. To this end, we are developing
a property database which provides annotated copies of both the Android and
Java API’s with RV-Monitor properties and AspectJ instrumentation built in.
The current property database can be viewed and downloaded for free at https://
github.com/runtimeverification/property-db/, and can be used by RV-Android
with minimal modification. The property database currently contains around
180 safety properties of the Java API, which can be practically simultaneously
monitored by our technology. These properties differ substantially from the secu-
rity properties presented in this paper in that they monitor correct use of the
API and thus functionality of the application rather than attempting to enforce
the security of the device itself. This flexibility of RV-Android in capturing a
wide range of potential properties on Android, together with this robust data-
base of existing properties provides a good starting point for the development
of a comprehensive dynamic analysis and runtime verification tool.

We further plan on providing additional privacy profiles focused on stronger
security guarantees for the security conscious user, such as profiles useful in
avoiding data exfiltration when using specific API’s. While we will still allow

https://github.com/runtimeverification/property-db/
https://github.com/runtimeverification/property-db/
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users to define their own properties, the utility of future iterations of RV-Android
will stem partially from the robustness of the default properties in our property
database.
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vol. 4839, pp. 22–37. Springer, Heidelberg (2007)

23. Goedicke, M., Menzies, T., Saeki, M. (eds.): IEEE/ACM International Conference
on Automated Software Engineering, ASE 2012, Essen, Germany, 3–7 September.
ACM (2012)

http://bgr.com/2015/05/28/android-m-granular-permissions-controls/
http://bgr.com/2015/05/28/android-m-granular-permissions-controls/
www.androidpolice.com
www.androidpolice.com
http://wpage.unina.it/ptramont/GUIRipperWiki.htm
https://github.com/wtchoi/swifthand


LearnLib Tutorial

An Open-Source Java Library for Active Automata
Learning

Malte Isberner1(B), Bernhard Steffen1, and Falk Howar2

1 TU Dortmund University, Chair for Programming Systems,
44227 Dortmund, Germany

{malte.isberner,steffen}@cs.tu-dortmund.de
2 IPSSE/TU Clausthal, 38678 Clausthal-zellerfeld, Germany

falk.howar@tu-clausthal.de

Abstract. Active automata learning is a promising technique to gener-
ate formal behavioral models of systems by experimentation. The prac-
tical applicability of active learning, however, is often hampered by the
impossibility of realizing so-called equivalence queries, which are vital for
ensuring progress during learning and finally resulting in correct models.
This paper discusses the proposed approach of using monitoring as a
means of generating counterexamples, explains in detail why virtually
all existing learning algorithms are not suited for this approach, and
gives an intuitive account of TTT, an algorithm designed to cope with
counterexamples of extreme length. The essential steps and the impact
of TTT are illustrated via experimentation with LearnLib, a free, open
source Java library for active automata learning.

1 Introduction

Most systems in use today lack adequate specification or make use of under-
specified or even unspecified components. In fact, the much propagated
component-based software design style typically leads to under-specified sys-
tems, as most libraries only provide partial specifications of their components.
Moreover, typically, revisions and last minute changes hardly enter the system
specification. This hampers the application of any kind of formal validation tech-
niques like model based testing or model checking. Active automata learning [2]
has been proposed as a technique to apply model-based techniques in scenarios
where models are unavailable, possibly incomplete, or erroneous [8,24].

Characteristic for active automata learning is its iterative alternation between
a “testing” phase for completing the transitions relation of the model aggregated
from the observed behavior, and an equivalence checking phase, which either
signals success or provides a counterexample, i.e., a behavior that distinguishes
the currently learned model from the system to be learned.

While implementing the testing phase is quite straightforward, the necessity
of an equivalence checking phase poses a major hurdle for practical applications

c© Springer International Publishing Switzerland 2015
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of active automata learning. Under certain assumptions, model-based confor-
mance testing techniques may provide definite answers, or at least statistical
guarantees. However, in the general case, every model inferred by a learning
algorithm should always be treated as preliminary, that is, as a hypothesis which
might turn out to be (partially) incorrect.

Thus, a truly robust learning-based solution must continuously validate the
inferred models, and be able to detect errors and adapt to them by adequately
refining the models to accommodate the observed diverging behavior. This par-
ticularly includes monitoring the regular operation of the system to be learned
over extended periods of time. If, at some point, the behavior of the system is
found to diverge from what was predicted by the model, the recorded trace up to
that point constitutes a counterexample.

Compared to counterexamples generated through model-based conformance
testing, counterexamples obtained through the above mechanism typically are
several orders of magnitude longer. This poses a challenge for learning algo-
rithms, as the length of counterexamples directly influences the overall complex-
ity. The TTT algorithm [15] is the first algorithm to overcome this through its
ability to extract the essence of a counterexample, i.e., analyzing it in such a
way that the resulting impact on the internal data structures is the same as if
an optimal (shortest) counterexample were processed.

In this tutorial we present the state of the art of practice-oriented, active
automata learning by using LearnLib [16],1 a free, open-source Java library for
active automata learning, as a means to infer models of software systems. The
open-source version of LearnLib is the result of 10 years of research and devel-
opment: It is the result of a redesign and re-implementation of the closed source
LearnLib [21,26], which has originally been designed to systematically build
finite state machine models of unknown real world systems (telecommunication
systems [8], web applications [25], communication protocols [1] etc.).

A decade of experience in the field led to the construction of a platform
for experimentation with different learning algorithms as well as for statistically
analyzing their characteristics in terms of learning effort, run time and mem-
ory consumption. More importantly, LearnLib provides a lot of infrastructure,
enabling easy application in the domain of software systems.

For the sketched application scenario of generating counterexamples through
monitoring, LearnLib is used to illustrate the practical impact of the way clas-
sical learning algorithms handle long counterexamples, as well as how the TTT
algorithm’s counterexample handling behaves differently. In the hands-on part
of the tutorial, users can experiment with LearnLib to explore these effects, and
will be instructed on how to use LearnLib in custom settings.2

Outline. Section 2 sketches the basics of active automata learning, before Sect. 3
discusses various realizations along a concrete example. Then, Sect. 4 describes
1 http://www.learnlib.de.
2 Supporting material for the hands-on session can be found at http://learnlib.de/

rv2015.

http://www.learnlib.de
http://learnlib.de/rv2015
http://learnlib.de/rv2015
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the envisioned approach of life-long learning, where learning and monitoring are
combined, and discusses why the presented learning algorithms are not suited
for this scenario. Subsequently, Sect. 5, presents the TTT algorithm, which is
particularly designed to overcome the previously identified deficiencies of other
algorithms. The paper closes with a demonstration of how LearnLib can be used
to explore the impact of long counterexamples on the data structures of the
various algorithms in Sect. 6, and some conclusions and perspectives in Sect. 7.

Note: This paper is partially based on the supporting paper [12] for the LearnLib
tutorial held at the ISoLA 2014 conference in Corfu, Greece, with an added
emphasis on the application in a Runtime Verification context.

2 An Introduction to Active Automata Learning

We will start by introducing some basic notation and then give a rough sketch
of active learning. Let Σ be a finite set of input symbols a1, . . . , ak. Sequences
of input symbols are called words. The empty word (of length zero) is denoted
by ε. Words can be concatenated in the obvious way: we write uv (or sometimes
also u · v) when concatenating two words u and v. Finally, a language L ⊆ Σ∗

is a set of words.

Definition 1 (Deterministic finite automaton). A deterministic finite
automaton (DFA) is a tuple 〈Q, q0, Σ, δ, F 〉, where

– Q is the finite set of states,
– q0 ∈ Q is the dedicated initial state,
– Σ is the finite input alphabet,
– δ : Q × Σ → Q is the transition function, and
– F ⊆ Q is the set of final states.

We write q
a−→ q′ for δ(q, a) = q′ and q

w=⇒ q′ if for w = a1 · · · an there is a
sequence q = q0, q1, . . . , qn = q′ of states such that qi−1 ai−→ qi for 1 ≤ i ≤ n. 	

A DFA A accepts the regular language LA of words that lead to final states on
A, i.e., LA =

{
w ∈ Σ∗

∣
∣
∣ q0

w=⇒ q, with q ∈ F
}

.
For words over Σ, we can define their residual (language) wrt. L, which

is closely related to the well-known Nerode relation [22]: for a language L let
the residual language of a word u ∈ Σ∗ wrt. L, denoted by u−1L, be the set
{v ∈ Σ∗ | uv ∈ L}.

Definition 2 (Nerode equivalence). Two words w,w′ from Σ∗ are equiva-
lent wrt. L, denoted by w ≡L w′, iff w−1L = w′−1L. 	

By [w] we denote the equivalence class of w in ≡L. For regular languages (where
≡L has finite index), a DFA AL for L can be constructed from ≡L (cf. [10]): For
each equivalence class [w] of ≡L, there is exactly one state q[w], with q[ε] being
the initial one. Transitions are formed by one-letter extensions, i.e. q[u]

a−→ q[ua].
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Finally, a state is accepting if [u] ⊆ L (if not, then [u] ∩ L = ∅, as either ε is
in the residual or not). No DFA recognizing L can have less states than AL,
and since it is unique up to isomorphism, it is called the canonical DFA for L.
This construction and the Nerode relation are the conceptual backbone of active
learning algorithms.

Active learning aims at inferring (unknown) regular languages. Many active
learning algorithms are formulated in the MAT-learning model introduced by
Angluin [2], which assumes the existence of a Minimally Adequate Teacher
(MAT) answering two kinds of queries.

Membership queries test whether a word w ∈ Σ∗ is in the unknown language
L. These queries are employed for building hypothesis automata.

Equivalence queries test whether an intermediate hypothesis language LH
equals L. If so, an equivalence query signals success. Otherwise, it will return
a counterexample, i.e., a word w ∈ Σ∗ from the symmetric difference of LH
and L.

The key idea of active learning algorithms, the most prominent example being
Angluin’s L∗ algorithm, is to approximate the Nerode congruence ≡L by some
equivalence relation ≡H such that ≡L (not strictly) refines ≡H. This approx-
imation is achieved by identifying prefixes u, which serve as representatives of
the classes of ≡H, and suffixes v, which are used to prove inequalities of the
respective residuals, separating classes. Throughout the course of the learning
process, the sets of both prefixes and suffixes grow monotonically, allowing for
an increasingly fine identification of representative prefixes.

Having identified (some) classes of ≡L, a hypothesis H is constructed in a
fashion resembling the construction of the canonical DFA (cf. [14] for a detailed
account). Of course, some further constraints must be met in order to ensure a
well-defined construction. For a more detailed description, also comprising the
technical details of organizing prefixes, suffixes and the information gathered
from membership queries, we refer the reader to [2] and [29].

As sketched above, H is subjected to an equivalence query, which either
signals success (in which case learning terminates) or yields a counterexample.
This counterexample serves as a witness that the approximation of ≡L is too
coarse, triggering a refinement of ≡H (and thus H). This alternation of hypothesis
construction and hypothesis validation is repeated until an equivalence query
finally signals success. Convergence is guaranteed as ≡H is refined with each
equivalence query, but always remains a (non-strict) coarsening of ≡L.

Practical Aspects of Active Automata Learning. In the above description, we fol-
lowed Angluin’s description of learning a regular language, represented by a DFA.
For the practical case of learning reactive systems, however, Mealy machines [20]
are a much better suited machine model, as they allow to directly model which
outputs are produced by the system in reaction to inputs, instead of requiring
to describe the I/O behavior of the system in the somewhat awkward terms of
a (regular) language.
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Luckily, translating the ideas of active DFA learning to the learning of Mealy
machines is relatively straightforward (cf. [23,28]), as the differences are mostly
of merely technical nature. These technical differences, however, prolong and
complicate the description of how learning algorithms work, which is why we will
stick to the scenario of learning DFAs in the scope of this paper. An elaborate
description on how the respective concepts can be transferred to the Mealy
setting, and also on other aspects of the practical application of active automata
learning, can be found in [29].

3 Realization: The L∗ Algorithm and Its Variants

In this section, we will briefly (and partially) discuss the ideas behind the seminal
L∗ algorithm for active automata learning, as well as a number of suggested
improvements to this algorithm that lead to better performance and thus an
increased practicality.

3.1 Running Example

Figure 1 shows the smallest deterministic automaton for our running example: a
language of all words over the alphabet {a, b} with at least two a’s and an odd
number of b’s.

q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 1. Minimal acceptor for our running example.

3.2 Initial Approach: Observation Table à la Angluin

In her 1987 paper describing the L∗ algorithm, Angluin [2] introduced the obser-
vation table data structure as a means to realize the Nerode approximation as
described in Sect. 2. Essentially, an observation table is a two dimensional array
partitioned in an upper and a lower part, where the upper part is intended to
model the states of a minimal acceptor, and the lower part models the tran-
sitions. Rows are labeled with reaching words (also called access sequences or
short prefixes), and columns with distinguishing futures, i.e., words that are
used to prove that the residual languages of two reaching words are different, or
equivalently, that these reaching words cannot lead to the same state. The cell
corresponding to a row labeled with u ∈ Σ∗ and a column labeled with v ∈ Σ∗

contains the outcome of the membership query for the word uv.
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The contents of a row serve to identify the state reached by the corresponding
prefix. The L∗ algorithm will organize the observation table in such a fashion
that all states of a hypothesis are contained in the upper part of the table, i.e.,
the content vectors of the rows in the lower part must also occur in the upper
part. This property is referred to as closedness. It is furthermore possible that
several rows in the upper part of the table correspond to the same state, i.e.,
have the same contents. In this case, it is required that, for every input symbol
a ∈ Σ, the rows for the corresponding transitions are equal as well, a property
called consistency.

Counterexamples in the L∗ algorithm are handled by simply adding all pre-
fixes of a counterexample w ∈ Σ∗ to the upper part of the table. This violates
consistency, which then can be restored by adding an additional column with a
new distinguishing future to the table. This is done in such a fashion that the
set of distinguishing suffixes is always suffix-closed, while the set of all prefixes
in the upper part of the table remains prefix-closed.

Two of the observation tables obtained when learning the running example
(Fig. 1) using L∗ are shown in Fig. 2. The first one (Fig. 2, middle) is the initial
one, whereas the second one (Fig. 2, right) is the final one, where the word
bbabbab was used as the first and only counterexample.

The main weakness of this data structure is that it applies the distinguishing
power of a certain distinguishing future similarly to all reaching words, without
consideration of the structure of the system. First, however, we will discuss issues
with the treatment of counterexamples described in the original L∗ algorithm,
as well as ways to overcome them.

3.3 Improvement 1: Rivest and Schapire’s Counterexample Analysis

The observation table depicted in the right of Fig. 2 contains a lot of redundancy:
several rows in the upper part are completely identical. As a consequence, some
of the states in the final hypothesis (Fig. 1) correspond to multiple prefixes. For
example, the state q0 is identified by both ε and bb. Each of these identifying
prefixes requires k rows in the lower part of the table. The cells in all these rows
at some point need to be filled by performing membership queries, resulting in
an unnecessarily large number of queries.

The redundancy induced by having several rows corresponding to a single
state can be eliminated by a change in the way how counterexamples are handled.
Rivest and Schapire [27] presented a method that, instead of directly adding
prefixes to the table and thus violating uniqueness of representatives (which
leads to an inconsistency and in turn to a new column), directly adds a single
suffix (i.e., column) to the observation table. As a result, the table is guaranteed
to no longer be closed. Restoring the closedness property comprises moving rows
from the lower to the upper part of the table, thus augmenting the set of states.

The suffix to be added can be found efficiently, using only O(log m) mem-
bership queries for a counterexample of length m. The original algorithm used
a binary search for this task (cf. also [29]); however, other search strategies
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q0 a, b

ε

ε 0

a 0

b 0

ε a ba b aa

ε 0 0 0 0 0

bb 0 0 0 0 0

bba 0 0 1 0 0

bbab 0 1 0 0 1

bbabb 0 0 1 0 0

bbabba 0 0 1 1 0

bbabbab 1 1 0 0 1

b 0 0 0 0 1

a 0 0 1 0 0

ba 0 1 0 0 1

bbb 0 0 0 0 1

bbaa 0 0 1 1 0

bbaba 1 1 0 0 1

bbabbb 0 1 0 0 1

bbabbaa 0 0 1 1 0

bbabbaba 1 1 0 0 1

bbabbabb 0 0 1 1 0

Fig. 2. Initial 1-state hypothesis, corresponding observation table, and observation
table for final hypothesis after processing counterexample w = bbabbab.

might perform significantly better on long counterexamples, while maintaining
the worst-case complexity [17].

Using this strategy, rows are only ever moved to the upper part of the table
because they represent a previously undiscovered state: otherwise, they would
not cause an unclosedness. This in turn means that all upper rows refer to
distinct states in the hypothesis, i.e., identifying prefixes are unique!

An important observation is that the prefix-closedness property of the short
prefix set is maintained. Along with the aforementioned uniqueness property, the
short prefixes now induce a spanning tree on the hypothesis. The corresponding
“tree” transitions are shown in bold in Fig. 3 (right). The remaining, “non-tree”
transitions correspond to the long prefixes.

A Side-Effect: Instable Hypotheses. While the set of short prefixes remains prefix-
closed, the suffix-closedness of the set of distinguishing futures is no longer pre-
served. This does not hurt the correctness of the algorithm, as suffix-closedness
of the discriminator set is not mandatory for realizing the Nerode approxima-
tion described in Sect. 2. However, there is a curious side effect: in spite of a
closed observation table, the hypothesis might no longer be consistent with the
observations stored in this table. In fact, it might not even be canonical, as the
example of a closed observation table and non-canonical hypothesis displayed in
Fig. 4 shows. There, the second hypothesis still accepts the empty language ∅,
which is also the language accepted by the first hypothesis (cf. Fig. 2).
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ε bbab bab b aba

ε 0 0 0 0 1

a 0 1 0 0 1

ab 0 0 1 0 0

aba 1 0 1 0 0

aa 0 1 0 1 1

b 0 0 0 0 0

aab 1 0 1 0 0

abab 0 1 0 1 1

abb 0 1 0 1 1

abaa 1 0 1 0 0

aaa 0 1 0 1 1

ba 0 0 1 0 0

bb 0 0 0 0 1

q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 3. Observation table obtained using Rivest & Schapire’s counterexample analysis
method.

Luckily, there is a simple remedy: for each cell in the observation table, we
check if its contents match the output predicted by the hypothesis. If this is
not the case, we have another counterexample which can be treated in the same
fashion as above. Concerns have been voiced that this might lead to an infinite
loop, as in some cases neither the counterexample nor the language accepted by
the hypothesis changes. However, this is not the case: the counterexample analy-
sis is based on transforming prefixes of the counterexample to access sequences
in the hypothesis. Progress is then ensured by the growth of the state and thus
access sequence set.

Following [14], we refer to hypotheses that do not predict the observation
table contents correctly as instable hypotheses. This is due to the fact that they
themselves form a source of counterexamples (in conjunction with the under-
lying data structure), triggering their own refinement without the need for an
“external” equivalence query.

3.4 Improvement 2: Discrimination Trees

Rivest&Schapire’s counterexample analysis method ensures that the number of
both rows and columns is bounded by kn and n, respectively. As every cell
in the observation table is filled by performing a membership query, in total
O(kn2) queries are required for constructing the table (which is asymptotically
optimal [3]), plus another O(n log m) for counterexample analysis (m being the
length of the longest counterexample). This constitutes a major improvement
over the original L∗ algorithm, where the number of rows can be as large as
knm, resulting in a query complexity of O(kmn2).

We can also conclude that the minimum number of columns is �log2 n�, as
c columns allow distinguishing 2c states. However, this is a rather hypothetical
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ε bbab

ε 0 0

a 0 1

b 0 0

aa 0 1

ab 0 0

q0 q1

a

b a
b

Fig. 4. Intermediate (closed) observation table and corresponding non-canonical
hypothesis during Rivest&Schapire’s algorithm. The highlighted cells induce the coun-
terexamples a · bbab and aa · bbab wrt. to the hypothesis, which accepts the empty
language ∅.

ε

bbab q5

bab b

aba q4 q1 q2

q3 q0

Fig. 5. Discrimination tree for final hypothesis, obtained using the Observation Pack
algorithm.

case: the obtained suffixes will usually not be that “informative”. In the example
above (cf. Fig. 3), in fact 5 suffixes are required to distinguish 6 states, even
though theoretically, 3 could suffice (23 = 8 ≥ 6).

How does this affect the learning process? To answer this question, let us
take a closer look of what happens when we add new rows to the observation
table after moving a row from the lower to the upper part of the table (i.e., after
fixing an unclosedness). The process of filling these new rows with data values
through membership queries has the goal of determining the target state of the
respective transition.

The contents of row abaa can be represented as the 5-dimensional bit vector
1, 0, 1, 0, 0. However, the first value alone is enough to rule out any other existing
state except for q5! Determining the values for all cells in this row thus is not
necessary to accomplish our stated goal of finding the successor state.

The data structure of a discrimination tree, introduced into the context of
active automata learning by Kearns&Vazirani [19], allows for a more fine-grained
classification scheme for distinguishing between states. An example for such a
discrimination tree is shown in Fig. 5. Leaves in this tree are labeled with states
of the hypothesis, while inner nodes are labeled with discriminators. Each inner
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node has two children, the 0-child (dashed line) and the 1-child (solid line).
The semantics of a discrimination tree is best explained in terms of the “sifting”
operation: given a prefix u ∈ Σ∗, at each inner node labeled with a discriminator
v a membership query for u ·v is posed. Depending on the outcome of this query
(0 or 1), we move on to the respective child of the inner node. This process is
repeated until a leaf is reached, which forms the result of the sifting operation.
Each state labels the leaf in the discrimination tree which is the outcome of
sifting its access sequence into the tree.

For each distinct pair of states, there is exactly one lowest common ancestor
(LCA) in the discrimination tree. The label of the LCA is sufficient evidence
for separating the two states, as it proves them to be Nerode-inequivalent. Dis-
crimination trees are thus redundancy-free in the sense that exactly one such
separator is maintained for every distinct pair of states. In an observation table,
in contrast, the number of discriminators to distinguish any pair of two states is
always fixed, regardless of “how different” the states are: state q5, for example, is
very different from the other states due to its being accepting. This is the reason
why only a single discriminator is enough to distinguish it from any other state.

The discrimination tree in Fig. 5 was obtained through the Observation
Pack [11] algorithm, which builds upon Rivest&Schapire’s algorithm, but
replaces the observation table with a discrimination tree. As such, it is not sur-
prising that the overall set of discriminators is the same as that in Fig. 3 (left).
Also, the short prefixes (access sequences), along with the spanning tree struc-
ture (Fig. 3, right), remains the same.

4 Life-Long Learning

In the previous sections, we have described how the L∗ and other active learn-
ing algorithms construct hypotheses by means of membership queries, and how
these hypotheses are refined using counterexamples. The question of how such
counterexamples are obtained was deliberately left open. In fact, the problem of
generating counterexamples poses a major hurdle for the practical application
of automata learning. The so-called equivalence query was an abstraction intro-
duced by Angluin with the purpose of allowing a complete and correct algorithm
to solve the problem of identifying a regular language to be formulated. Clearly,
however, determining whether an inferred DFA recognizes the exact target lan-
guage requires precise knowledge of the target language itself, the lack of which
is the very reason that learning is employed in the first place.

It has commonly been suggested (e.g., in [4]) to resort to model-based con-
formance testing techniques (such as the W-method [7]), some of which may
guarantee that a counterexample is always found if some assumptions about
the target system (e.g., about its state count) hold. In other cases, random
sampling [2,6] may provide stochastic guarantees about the correctness of the
inferred model.

In any case, there can never be absolute certainty that a model inferred by a
learning algorithm is final. Instead, it should always be treated as a preliminary
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hypotheses, which at some (possibly much later) point may be proven to inad-
equately describe some aspects of the system’s behavior. Thus, a truly robust
application of automata learning should continuously monitor the system’s exe-
cution and validate the model against these observations.

4.1 Learning and Monitoring in the Connect Project

The aim of the Connect project3 [18] was to automatically synthesize medi-
ators between networked systems, to enable interoperability in environments
consisting of heterogeneous components, that, for instance, rely on incompati-
ble communication protocols. Among other things, connector synthesis requires
formal models of the systems to be connected.

Fig. 6. A setup with continuous learning and monitoring [15]

In the Connect architecture, LearnLib is used to infer these models of the
networked systems. The fact that learned models may be incorrect is addressed
by the integration of a monitoring subsystem, which monitors the execution of
the synthesized connectors and is thus able to detect divergences between the
actual behavior of a networked system and its inferred model. The idea of this
continuous validation, or life-long learning approach, which has been proposed
in [5], is sketched in Fig. 6: a Learner infers a model of a Target System using
membership queries. The system is instrumented to report its execution traces
during actual deployment to a Model Validator, which checks the observed traces
for compliance with the inferred model, i.e., the most recent Hypothesis. If diverg-
ing behavior is observed, a Counterexample is reported to the Learner, which
in a refinement step poses further membership queries to the Target System,
3 http://www.connect-forever.eu.

http://www.connect-forever.eu
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resulting in an updated Hypothesis. This next Hypothesis is then used by the
Model Validator for checking future traces, resulting in a feedback loop between
the learning and monitoring subsystems.

4.2 The Problem of Long Counterexamples

Compared to counterexamples generated through model-based or random test-
ing, execution traces recorded by a monitor might be several orders of magnitudes
longer. This poses a major problem for active learning algorithms, due to the
way in which counterexamples are handled (cf. Sect. 3).

In the L∗ algorithm, all prefixes of a counterexample are added to the upper
part of the table. Thus, if m is the length of a counterexample, this results in km
additional rows being added to the table. In the Observation Pack algorithm,
which replaces the observation table with a discrimination tree, the size of the
discrimination tree always remains linear. However, the length of the suffixes
that label the inner nodes of the tree, may become as long as m − 1. Since
the time required for performing a membership query can be assumed to be
linear in its length,4 long counterexamples may still render learning infeasible.
This is further aggravated by the fact that the internal data structures in both
cases grow monotonically, i.e., once an excessively long prefix or suffix (or a large
number of them) has been added, it will linger and may cause severe performance
degradation in every future refinement step.

It should be noted that this paper does not give a comprehensive overview
about all counterexample handling strategies for active learning algorithms that
have been suggested. Some heuristics, like Suffix1by1 [13], may often perform
well in practice. However, it is always possible to construct cases where effects
similar to the ones described above manifest themselves. The aim should thus
be to come up with a robust approach that works decently in all cases.

5 The TTT Algorithm

Looking at the discrimination tree in Fig. 5, one notices that even in this case the
discriminators are rather long: while no distinguishing suffix in the observation
table in Fig. 2 has a length greater than 2, the longest discriminator in the
discrimination tree has length 4. As noted above, discriminators are derived
as suffixes of former counterexamples, thus their length is bounded by m − 1.
Moreover, as the introduction of new transitions in the hypothesis requires sifting
through the whole tree, this means that an unfavorably long counterexample
4 Classically, the performance of learning algorithms is measured in terms of the num-

ber of queries they pose. This is justified as long as most queries are of rather uniform
length, especially since the reset that must occur between two queries often takes
a significant amount of time. However, especially when learning systems such as
web-services, executing every single symbol of a query takes considerable time (due
to latency), which is why a realistic performance must take into account the overall
number of symbols as well.
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obtained in one hypothesis validation round can affect the lengths of membership
queries in all subsequent hypothesis construction phases. The result is the above-
mentioned performance degradation due to the fact that membership queries
keep getting longer.

5.1 The Big Picture

The TTT algorithm [15] addresses this problem by ensuring that the length of
every discriminator in the tree is bounded by n. It does so by re-establishing the
suffix-closedness property of the discriminator set. This enables a very compact
representation of this set, which can then be stored as a trie: a root-directed
tree in which each node corresponds to a word, which can be obtained by con-
catenating the symbols on the path to the root.

q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a

b

a

b

a

b

ε

aq5

ba

b

q4

aa

q1q2 q0q3

ε

a b

aa ba

a b

a b

Fig. 7. The three tree-based data structures of TTT: the spanning tree-based hypoth-
esis, the discrimination tree, and the suffix trie. A subset of the connection between
the data structures is represented using dotted lines.

An instance of such a trie can be seen in the right of Fig. 7, corresponding
to the discriminator set {ε, a, ba, b, aa}. Note that this discriminator set is the
same as that of the classic L∗ algorithm (cf. Fig. 2).

Figure 7 moreover shows an exemplary view on TTT’s data structures, which
also explain its name: on the left is the transition graph of the hypothesis, which
is constructed around the spanning tree (highlighted transitions). Each state
in this graph corresponds to a leaf in the discrimination tree (middle). The
discriminators labeling inner nodes in this tree are then stored in the mentioned
suffix trie, such that each inner node of the discrimination tree corresponds to
a node in the suffix trie.

The redundancy-freeness of this setup is underlined by the fact that the
overall space requirement is asymptotically the same as that of the transition
graph alone, O(kn). The short-prefix set Sp can be obtained from the spanning
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tree, and the discriminators can be obtained from the suffix trie. Moreover, the
number of nodes in each of the trees is bounded by 2n.

5.2 Background: Discriminator Finalization

The TTT algorithm is very similar to the Observation Pack algorithm [11], but
extends it by one key step: discriminator finalization. This step ensures that
every discriminator occurring at an inner node is a suffix of another discrimina-
tor, which allows it to be stored in the suffix trie.

ε

q0

(1) ε

bbab

q0 q1

(2) ε

bbab q5

bab q1

q0 q4

(3)

ε

bbab q5

bab b

q0 q4 q1 q2

(4) ε

bbab q5

bab b

aba q4 q1 q2

q3 q0

(5)

Fig. 8. Sequence of discrimination trees generated during hypothesis stabilization. The
dashed inner nodes are temporary, and will be finalized in a later step.

The process of obtaining such discriminators by prepending a single symbol to
existing discriminators is closely related to the process of minimization (cf. [9]).
For the technical details, we refer the reader to [15] and focus on the “visible”
effect on the internal data structures.

As remarked in Sect. 3, intermediate (instable) hypotheses might be non-
canonical. In these cases, there are pairs of state for which no discriminator
can be obtained from the hypothesis, as they might be equivalent. This calls
for fully stabilizing the hypothesis first, before discriminators can be finalized.
During stabilization, the discrimination tree grows (cf. Fig. 8), but the newly
inserted inner nodes are marked as temporary (dashed outline). These temporary
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ε

a q5

bbab

b

q4

aba

q1 q2q3 q0

(1) ε

a q5

ba

b

q4

aba

q1 q2q3 q0

(2)

ε

a q5

ba

b

q4

aba

q1 q2q3 q0

(3) ε

a q5

ba

b

q4

aa

q1 q2q0 q3

(4)

Fig. 9. Sequence of discrimination trees generated during discriminator finalization.
The gray node is the inner node with the most recently finalized discriminator.

discriminators are then finalized in a second step, which is illustrated in Fig. 9.
In each of the finalization steps, a temporary discriminator is replaced by a new,
final one, which is backed by the hypothesis.

Considering the last discrimination tree shown in Fig. 8(5), only the root
(which is always ε) is final. Hence, any new final discriminator has to consist of
a single symbol (prepended to the empty word). The leaves in the left (“false”)
subtree are q0 through q4. Looking at the hypothesis (Fig. 3, right), this set
of nodes can be partitioned by the discriminators a or b, of which the former
is chosen (Fig. 9(1)). Note that the new, final discriminator is always placed
above all temporary discriminators, ensuring that all descendant inner nodes
of a temporary inner node are also temporary. Also note that the structure of
the discrimination tree can change, as is the case here, causing the maximum
depth to increase by one. However, experiments have shown that the step of
discriminator finalization often decreases the average tree depth, leading to not
only shorter but also fewer membership queries [15].

The remainder of Fig. 8 shows the discrimination trees that occur in the
course of complete finalization, and terminates with a discrimination tree where
all discriminators are final (and the set of all discriminators is suffix closed).
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Note that in this example, the topology (i.e., the structure) of the tree remains
unchanged. This, however, is not generally the case, as final discriminators may
partition the set of states in different ways than the temporary discriminators
they replace.

6 Experimentation with LearnLib

As the name suggests, LearnLib [16] is primarily a library that can be used
programmatically via its API. The use of this API to learn custom systems
will be the subject of the hands-on part of the tutorial. Additionally, Learn-
Lib also provides visualization capabilities that facilitate the understanding of
learning algorithms. This section demonstrates how the LearnVIZ tool shipped
with LearnLib can be used to directly and intuitively visualize the impact of
long counterexamples, and thus foster an improved understanding of the role of
counterexample analysis, and the differences between algorithms such as L∗ and
TTT.

6.1 The L∗ Algorithm

In a first step, the L∗ algorithm (cf. Sect. 3) is applied to the target system intro-
duced as the running example (Fig. 1). LearnVIZ is run in interactive mode,
which means that the user manually needs to supply counterexamples (there
is also a non-interactive mode, where counterexamples are automatically gener-
ated). Automata are rendered using the GraphVIZ dot tool5 and displayed in
a browser, which enables the user to easily jump back to previous intermediate
steps.

The L∗ algorithm starts with an initial one-state hypothesis (Fig. 10a), con-
structed from an observation table. The user is prompted to enter a counterex-
ample, which in the illustrated case is bbabbab. This results in several new rows
being added to the observation table. The updated observation table, as well as
the new intermediate hypothesis (which is not yet the final one) are then dis-
played, along with the new queries that have been asked in the completed round
(Fig. 10b).

6.2 The TTT Algorithm

The TTT algorithm (cf. Sect. 5) was designed to mitigate the effects of exces-
sively long counterexamples. In particular, it ensures that at the end of each
intermediate steps, the length of all suffixes is linearly bounded. Furthermore, it
replaces the observation table data structure with a binary decision tree (called
discrimination tree).

The TTT algorithm analyzes counterexamples (here, we use the same coun-
terexample as before, namely w = bbabbab) by applying prefix transformations

5 http://www.graphviz.org/.

http://www.graphviz.org/
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(a) (b)

Fig. 10. (a) Prompt for entering a counterexample; (b) resulting observation table and
hypothesis

(a) (b)

Fig. 11. (a) First counterexample analysis in the TTT algorithm; (b) detection of
instable hypothesis
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Fig. 12. Counterexample analysis step resulting from an instable hypothesis

Fig. 13. Finalization step in the TTT algorithm

(Fig. 11a). The hypothesis resulting from the first step, however, contradicts
the observations stored in the discrimination tree (Fig. 11b). This situation is
referred to as an instable hypothesis. Furthermore, while the discrimination tree
contains long suffixes (bbbaab in this case), these are marked as temporary (octa-
gon shape) and will be replaced later.

An instable hypothesis gives rise to a new counterexample, which TTT han-
dles in the ordinary fashion (Fig. 12). After a few more iterations of counterexam-
ple analysis and hypothesis stabilization, the (long) suffix bbbaab can be finalized
(Fig. 13), replacing it with a shorter suffix (b). Message boxes inform the user
about the progress in detail, and colored nodes in the data structure draw the
attention to the important and changing parts.
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7 Conclusions

In this paper and the accompanying tutorial we reviewed active automata learn-
ing and its combination with monitoring. After providing the theoretic founda-
tions, we discussed how the length of counterexamples affects the behavior and
performance of classical learning algorithm. We then analyzed how the TTT
algorithm handles counterexamples, and how it remedies the problems we iden-
tified in the other algorithms. The optimization of its internal data structures
qualifies TTT, above all other algorithms, to be employed in a setting where
counterexamples of astronomic length can occur. Finally, we showed how Learn-
Lib can be used to experiment with various learning algorithms, and to explore
the impact of long counterexamples.
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Abstract. Continuous and hybrid behaviors naturally arise from many
dynamical systems. In this tutorial, we present state-of-the-art tech-
niques for qualitative and quantitative reasoning about such behaviors.
We introduce Signal Temporal Logic and Timed Regular Expressions as
specification languages that we use to describe properties of hybrid sys-
tems. We then provide an overview of methods for (1) checking whether
a hybrid behavior is correct and robust with respect to its specifica-
tion; and (2) measuring of quantitative characteristics of a hybrid sys-
tem by property-driven extraction of relevant data from its behaviors.
We present the tools that support such analysis and discuss their appli-
cation in several application domains.

1 Introduction

Complex systems evolve in time and generate behaviors which are progressions
of state observations. For continuous and hybrid systems, such observations are
typically real-valued quantities that evolve in real time. We typically evaluate
the system’s correctness, efficiency and robustness according to the properties of
these behaviors. We can, for example, require or forbid sequences of events that
follow a certain pattern. We can also measure some quantitative properties of
the behavior such as temporal distance between events, or the sum of the values
of some state variable in a temporal window.

We use the term monitoring technology for the collection of techniques for
specifying what we want to detect and measure and how to extract the informa-
tion from the behaviors. Monitoring can be applied to real systems during their
execution, for example, monitoring a chemical or a nuclear process, where the
behaviors are constructed from sensor readings. In this case the monitoring pro-
cedure can give real time alerts about a potential deviation of the system from
normal behaviors and even take some corrective action. Monitoring can also be
applied during the (model-based) design process of the systems where behav-
iors correspond to simulation traces. In this context, monitoring can be viewed
as part of the verification and validation process, a lightweight form of formal
verification which gives up the complete coverage associated with verification,
but still uses a clean declarative specification language to classify behaviors.
Monitoring as verification has been practiced in the development of digital cir-
cuits (assertion checking, dynamics verification) and software (testing, runtime
c© Springer International Publishing Switzerland 2015
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verification). This tutorial explains how these techniques are adapted to timed,
continuous and hybrid behaviors.

Major classes of complex systems that produce continuous and hybrid behav-
iors are control systems such as in avionics, automotive or military applications,
analog and mixed signal (AMS) circuits, but also biological and medical processes.
The first two examples correspond to engineered systems, their design is heavily
supported by simulation tools and there are traditional and sub-domain-specific
ways to evaluate behavior. Property-based monitoring of continuous and hybrid
behaviors has been subject to vivid research in the recent years, and we provide a
survey of the latest results in this tutorial. In particular, we focus on the following
specification formalisms:

1. Signal Temporal Logic (STL) which extends the established specification
language Llinear-time Temporal Logic (LTL) used in discrete verification,
towards dense time and continuous values. We show how monitoring real-
valued signals against STL specification works;

2. Timed Regular Expressions (TRE) which allows one to express properties of
Boolean signals and sequences of time-stamped events. We describe a recent
algorithm for (two-sided) pattern matching for these expression;

3. Finally, we describe a new declarative measurement language where a special
class of regular expressions is used to define temporal intervals where measures
are to be taken.

We present the tools that support monitoring of such specifications and pro-
vide an overview of some applications from several domains in which these tech-
niques were used. We show several extensions of the formalisms presented in the
tutorial and discuss which features we believe are still missing in order to have
a wider industrial adoption of this technology.

2 Specification Languages for Hybrid Behaviors

In this section, we study the desired features for specification languages that
target description of common hybrid systems properties. We mainly focus on the
system-level view where properties of interest are temporal patterns occurring
in the transient behavior of the system. Consequently, specification languages
for this class of continuous and hybrid behavior requirements shall have the
following properties:

1. Allow reference to real-valued variables, for instance via numerical predicates;
2. Provide operators for describing events as real-valued patterns with shapes

and durations; and
3. Facilitate expressing timing constraints between such events.

The choice of the right specification language for hybrid systems also depends
on the type of analysis we want to make:

1. Checking the correctness and/or robustness of continuous and hybrid behav-
iors with respect to their specification; or
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2. Measuring the quantitative properties of hybrid systems by extracting and
processing relevant data from their executions.

Finally, the facility of specifying properties by experts from a specific application
domain that are not trained in formal methods is another aspect that is crucial in
successful exportation of formal methods to real applications. It is important that
the end user of the technology adopts the specification language and is able to
use it without excessive training - in the failing case the impact of the underlying
technology remains limited to the small community of formal methods research.

Example 1. We illustrate some common system-level hybrid requirements on the
Distributed Systems Interface (DSI3) example from the automotive application
domain. DSI3 is a flexible and powerful bus standard [29] developed by the
automotive industry. It is designed to interconnect multiple remote sensor and
actuator devices to a digital controller and allow them to communicate accord-
ing to a well-defined protocol. The controller interacts with the sensor devices
through the voltage and current lines.

DSI3 protocol consists of multiple modes that are activated sequentially. We
focus on its initialization phase that is called discovery mode. In the discovery
mode, prior to any interaction the power is turned on, resulting in a voltage ramp
from 0V to Vhigh. The communication is initiated by the controller that probes
the presence or absence of sensors by emitting analog pulses on the voltage
line. Connected sensor devices respond in turn with another pulse sent over
the current line. At the end of this interaction, a final short pulse is sent to the
sensors interfaces, marking the end of the discovery mode. Figure 1 illustrates the
behavior of a system with a single connected sensor device in the DSI3 discovery
mode.

In this example, we focus on the requirements relating the expected time
between consecutive discovery pulses. In order to characterize a discovery pulse,
we first define three regions of interest – when the voltage v is (1) below Vlow; (2)
between Vlow and Vhigh; and (3) above Vhigh. We denote these regions of interest
by vl, vb and vh, respectively. Next, we describe the shape of a discovery pulse.
Such a pulse starts at the moment when the signal v moves from vh to vb. The
signal then must go into vl, vb and finally come back to vh. In addition to its

Discovery response

Power ramp Discovery pulse End discovery pulse

v
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0

Vlow

Vhigh

0

I2resp

Iresp

Fig. 1. DSI3 discovery mode overview.
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Fig. 2. DSI3 discovery mode: (a) discovery pulse; and (b) timing between two consec-
utive pulses.

shape, the DSI3 specification requires the discovery pulse to have a duration of
tDisc Pulse μs (see Fig. 2 (a)). This timing requirement allows distinguishing a
discovery pulse from other pulses, such as the end-of-discovery pulse which has
the same shape but a shorter duration. Finally, the DSI3 standard bus states
that the distance between two consecutive discovery pulses shall be tDisc per μs
(see Table 6-2 in [29] and Fig. 2 (b)).

We now formulate several questions regarding the features of the specification
languages that we want to have:

Q1: Can we precisely describe the discovery pulse pattern?
Q2: Can we precisely express the property regarding the timing of consecutive

discovery pulses?
Q3: Can we measure quantitative aspects of the property such as the average

distance between consecutive pulses?
Q4: How difficult is it to express the above properties?

3 Signal Temporal Logic and Timed Regular Expressions

We present in this section two specification languages for hybrid systems: Sig-
nal Temporal Logic [33,34] and Timed Regular Expressions (TRE) [4,5] and
we study for them the questions raised in Sect. 2. We first introduce STL with
qualitative semantics, and then show how the language is extended with the
quantitative semantics in order to reason about robustness properties. We then
introduce a variant of TRE and finally present a simple measurement specifi-
cation language built on top of TRE that allows to reason about quantitative
properties of the system. This section focuses on specifying behaviors of hybrid
systems - we defer our discussion on how to effectively monitor and measure
such behaviors to Sect. 4.

3.1 Signal Temporal Logic with Qualitative Semantics

Signal Temporal Logic is a formal language for specifying real-time properties
of continuous and hybrid behaviors. It is interpreted over continuous (dense)
time and extends Metric Temporal Logic (MTL) [31] with numerical predicates
over real-valued variables. This specification language enables expressing com-
plex timing relations between digital and real-valued events in hybrid behaviors.
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Similarly to other temporal logic, the semantics of STL is defined in terms of a
satisfaction relation which determines whether a behavior satisfies a formula at
any given point in time. The logic is closed under all boolean operations.

These properties of the language make STL a suitable candidate for specifi-
cations aimed at monitoring hybrid behaviors. Firstly, the satisfaction relation of
the language provides the information about the satisfaction (and violation) of
the property (but also all of its sub-formulas) at any point in time. In addition, the
presence of the negation enables combining existential and universal quantifica-
tion over time. It follows that in STL one can easily express the requirement that
something must always hold as well as that it must happen at least once. We now
formally define the syntax of STL and its qualitative (correctness) semantics.

Let X and P be sets of real and propositional variables and w : T → R
m×B

n a
multi-dimensional signal (behavior), where T = [0, d) for some strictly positive d,
m = |X| and n = |B|. For a variable v ∈ X ∪P we denote by πv(w) the projection
of w on its component v.

We consider the variant of STL that has both past and future temporal
operators. The syntax of a STL formula ϕ over P ∪X is defined by the grammar

ϕ := p | x ∼ u | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2

where p ∈ P , x ∈ X, ∼∈ {<,≤}, u ∈ Q, and I is an interval that is a subset of
R

+. The semantics of a STL formula with respect to a signal w is described via
the satisfiability relation (w, t) |= ϕ, indicating that the signal w satisfies ϕ at
the time point t, according to the following definition.

(w, t) |= p ↔ πp(w)[t] = 	
(w, t) |= x ∼ u ↔ πx(w)[t] ∼ u
(w, t) |= ¬ϕ ↔ (w, t) 
|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U Iϕ2 ↔ ∃t′ ∈ (t + I) ∩ T: (w, t′) |= ϕ2 and ∀t < t′′ < t′, (w, t′′) |= ϕ1

(w, t) |= ϕ1 S Iϕ2 ↔ ∃t′ ∈ (t − I) ∩ T: (w, t′) |= ϕ2 and ∀t′ < t′′ < t, (w, t′′) |= ϕ1

We say that a signal w satisfies a STL formula ϕ, denoted by w |= ϕ,
if (w, 0) |= ϕ. We define a satisfaction signal wϕ for a formula ϕ such that
wϕ[t] = 	 iff (w, t) |= ϕ. From the basic definition of STL, we can derive other
standard operators as follows: 	 = p ∨ ¬p, ⊥ = ¬	, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2),

Strict Semantics of STL. In contrast to LTL [38], the semantics of the temporal
U I and S I operators in STL are strict in both arguments, as originally pro-
posed in [2]. We shortly discuss why this strictness is needed in the continuous
time setting. Let us denote by Ū the classical non-strict LTL until operator1,
and by U its strict counterpart. We note that in LTL, due to its discrete-time

1 To simplify the discussion about strictness of temporal operators, we restrict our-
selves to the future fragment of the logics. The same argument applies for their past
fragments.
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interpretation and in contrast to STL, the logic also has the next © operator.
In fact, in discrete time, the logic is Ū and © can be shown to be equivalent to
the logic with U only. In particular, we have the following equivalences.

ϕ1 Uϕ2 ≡ ©(ϕ1 Ūϕ2)
©ϕ ≡ ⊥Uϕ
ϕ1 Ūϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ (ϕ1 Uϕ2))

Due to its dense-time interpretation, STL does not have the next operator. In
fact, the logic with the strict semantics of its temporal operators is strictly more
expressive than its non-strict counterpart2. In particular, the major practical
consequence of the strict semantics for U I and S I operators is that it enables
defining instantaneous events as syntactic sugar.

Events in STL. Instantaneous events take place in singular intervals of zero
duration and represent rising and falling edges in boolean signals. Due to the
dense-time semantics in STL, we allow signals that do not change their value at
some specific time point but in the neighborhood of that point. The rise ↑ and
fall ↓ operators are defined as STL syntactic sugar as follows.

↑ ϕ ≡ (ϕ ∧ (¬ϕS	)) ∨ (¬ϕ ∧ (ϕU	))
↓ ϕ ≡ (¬ϕ ∧ (ϕS	)) ∨ (ϕ ∧ (¬ϕU	))

Example 2. We now respond to the questions from Example 1 regarding the
specification of DSI3 requirements in STL. We start with Question Q1 and
show that with some effort we can capture the discovery pulse in STL. We first
need to define three predicates: when the voltage v is (1) below Vlow; (2) between
Vlow and Vhigh; and (3) above Vhigh.

vl ≡ v ≤ Vlow

vb ≡ Vlow ≤ v ≤ Vhigh

vh ≡ v ≥ Vhigh

Next, we describe with ϕshape the shape of a discovery pulse. Such a pulse
starts at the moment when the signal v moves from vh to vb. The signal then
must go into vl, vb and finally come back to vh. In addition to its shape, the DSI3
specification requires the discovery pulse to have a duration of tDisc Pulse. We
note that in hybrid behaviors, it is very unlikely that a precise timing constraint
is met, hence we relax the constraint by adding a small tolerance τ and accord-
ingly define the interval IDisc Pulse = [tDisc Pulse − τ, tDisc Pulse + τ ] instead. We
formalize the timing requirement of the pulse as the property ϕdur. Finally, the
discovery pulse ϕpulse is the conjunction of ϕshape and ϕdur.

ϕshape ≡ ↓ vh ∧ (vb U vl U vb U vh)
ϕdur ≡ ↓ vh ∧ (¬vh U IDisc Pulse

↑ vh)
ϕpulse ≡ ϕshape ∧ ϕdur

2 The strictness of its temporal operators “forces” the time to advance.
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Given the characterization ϕpulse of the discovery pulse, it is possible to
express that two consecutive pulses must have a distance of tDisc per between
them. It follows that Question Q2 is answered positively for STL. Similarly to
the previous property, we allow a small tolerance for the timing constraint, and
define the interval IDisc per = [tDisc per − τ, tDisc per + τ ], where τ is a small
tolerance constant. We also observe that the property shall say that after the
last pulse, no more discovery pulses will be encountered until the end of the
trace. We formalize the property as follows:

Using STL with qualitative semantics does not provide any means for reason-
ing about quantitative properties of behaviors, hence Question Q3 is answered
negatively. The answer to Question Q4 is not straightforward. On one hand, we
have seen that formalizing the discovery pulse in STL requires some effort. In
fact, STL may not be a natural candidate for defining such sequential patterns.
On the other hand, describing the global timing property between consecutive
pulses is easy and natural.

3.2 Signal Temporal Logic with Quantitative Semantics

Signal Temporal Logic with qualitative semantics, presented in Sect. 3.1, allows
to reason about correctness of continuous and hybrid behaviors with respect to
specifications and provides a purely boolean (yes/no) answer to the problem. In
many real-life applications involving continuous and hybrid dynamics with real-
valued quantities, such qualitative reasoning may not be sufficient. Continuous
dynamical systems typically have a certain degree of sensitivity with respect
to initial conditions and system parameters. In addition, the precision of the
sensors may affect the accuracy to the measured behaviors. As a result, a small
perturbation in the behavior, the parameter of the system or a measurement
error can influence the correctness verdict.

Example 3. Consider the DSI3 discovery pulse introduced in Example 1 and the
behaviors depicted in Fig. 3. The imperfections in the behavior, possibly due to
random noise or measurement inaccuracies, may result in short but unexpected
crossings of the Vmin and Vmax thresholds (see Fig. 3 (b)) . It follows that the

(b)(a)

Vlow

VhighVhigh

Vlow

Fig. 3. Two DSI3 discovery pulses with small perturbations - the second one violates
the qualitative specification of a pulse.
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ϕpulse property could be violated when we expect it to be satisfied and hence
the discovery pulse may not be recognized by the formula.

In order to address this problem, Fages and Rizk [40] and Fainekos and
Pappas [23] proposed to augment LTL over real-valued sequences and STL,
respectively, with quantitative information about the satisfaction of a formula.
Consider the numerical predicate x < c which splits the domain R into two
partitions: (1) the set of all real values strictly smaller than c; and (2) the set
of all values greater or equal than c. When we choose a number x in R, the
answer to the qualitative satisfaction question just tells us whether the number
is below or above c, but not its relative position with respect to it. The quanti-
tative robustness degree gives a richer feedback on how far is the value of x from
satisfying/violating the property x < c.

Augmenting STL with quantitative semantics does not affect the syntax of
the logic, except that it does not allow propositional variables, hence we use the
slightly adapted grammar from Sect. 3.1 to specify properties. In order to adapt
the STL semantics to the quantitative setting, we adopt the notation proposed
in [19]. Given a STL formula ϕ, a signal w, and time t ∈ T, the quantitative
semantics ρ(ϕ,w, t) is defined by induction as follows:

ρ(	, w, t) = 	
ρ(x ∼ u,w, t) = u − πx(w)[t]
ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)
ρ(ϕ1 ∨ ϕ2, w, t) = max{ρ(ϕ1, w, t), ρ(ϕ2, w, t)}
ρ(ϕ1 U Iϕ2, w, t) = supt′∈(t+I)∩T

min{ρ(ϕ2, w, t′), inft′′∈(t,t′) ρ(ϕ1, w, t′′)}
ρ(ϕ1 S Iϕ2, w, t) = supt′∈(t−I)∩T

min{ρ(ϕ2, w, t′), inft′′∈(t′,t) ρ(ϕ1, w, t′′)}
We illustrate the difference between qualitative and quantitative semantics

for STL in Fig. 4. The quantitative semantics of STL has two fundamental
properties that relate it to the qualitative satisfaction semantics. Whenever
ρ(ϕ,w, t) 
= 0, its sign indicates the satisfaction/violation verdict of the for-
mula. Moreover, if w satisfies ϕ at time t, any other signal w′ whose pointwise
distance from w is smaller than ρ(ϕ,w, t) also satisfies ϕ at time t.

The above quantitative semantics of STL enable measuring spatial robustness
degree of hybrid behaviors, however it does not address the time robustness of
STL. Quantitative semantics for STL that combine both space and time robust-
ness were proposed in [20]. More recently, an extension of STL with averaged tem-
poral operators that also combine space and time robustness was proposed in [1].

The addition of the quantitative semantics to STL has allowed to measure
both the space and time robustness of continuous behaviors with respect to spec-
ifications. This extension of the logic successfully addresses some of the issues
related to the perturbations in the system, its parameters or the measurements.
However, STL with quantitative semantics does not provide a fully satisfactory
solution to the above-mentioned problem. Due to the min/max aggregation of
values when computing robustness degree of operators, glitches of small dura-
tion but high amplitude may still considerably affect the robustness degree of the
formula. This problem has been recently addressed by proposing the Skorokhod
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Fig. 4. Comparison of evaluating x ≥ 5 with qualitative and quantitative semantics.

metric for measuring distances between continuous behaviors and devising an
algorithm for effectively computing the distance [14,32]. The advantage of the
Skorokhod metric is that it allows mismatches in both space and time and quan-
tifies temporal and spacial variation of hybrid behaviors.

3.3 Timed Regular Expressions

Timed regular expressions extend regular expressions with real-time constraints
and thus enable matching patterns over continuous time behaviors. We con-
sider the variant of TRE from [25,43] that also allows numerical predicates over
real-valued variables. In contrast to STL, the semantics of TRE is not defined
relative to single time point, but rather a pair of points (t, t′) which determine
a segment of the behavior that matches the expression. This property of TRE
makes the formalism useful for identifying and capturing segments in a trace
that match a given regular expression. Similarly to standard regular expres-
sions, TREs existentially quantify over time - the matching semantics looks for
the existence of a behavior segment that matches an expression. Finally, the
negation is not allowed in TRE except at the level of propositional variables
and numerical predicates.

The signals in TRE are defined in the same way as in STL, see Sect. 3.1 for
details. A proposition θ is taken to be either a propositional variable p, a predicate
x ∼ u over some real variable x, or their negation ¬p and ¬(x ∼ u), respectively.
We denote by Θ the set of propositions derived from real and propositional
variables. We now define the syntax of timed regular expressions according to
the following grammar:

α := ε | θ | α1 · α2 | α1 ∪ α2 | α1 ∩ α2 | α∗ | 〈α〉I

where θ is a proposition of Θ, and I is an interval of R+.
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The semantics of a timed regular expression α with respect to a signal w
and times t ≤ t′ in [0, d] is given in terms of a satisfaction relation (w, t, t′) |= α
inductively defined as follows:

(w, t, t′) |= ε ↔ t = t′

(w, t, t′) |= θ ↔ t < t′ and ∀ t < t′′ < t′, πθ(w)[t′′] = 1
(w, t, t′) |= α1 · α2 ↔ ∃ t ≤ t′′ ≤ t′, (w, t, t′′) |= α1 and (w, t′′, t′) |= α2

(w, t, t′) |= α1 ∪ α2 ↔ (w, t, t′) |= α1 or (w, t, t′) |= α2

(w, t, t′) |= α1 ∩ α2 ↔ (w, t, t′) |= α1 and (w, t, t′) |= α2

(w, t, t′) |= α∗ ↔ ∃k ≥ 0, (w, t, t′) |= αk

(w, t, t′) |= 〈α〉I ↔ t′ − t ∈ I and (w, t, t′) |= α

We characterize the set of segments in w that match the expression α by their
match set. The match set M(α,w) = {(t, t′) ∈ R

2 | (w, t, t′) |= α} of expression
α over w is the set of all pairs (t, t′) such that the segment of w between t and
t′ matches α.

Conditional TRE. The matching semantics of TRE identify trace segments that
satisfy the entire expression. In many cases, it is necessary to further condition
the matching to a sub-expression only when its pre- and post-conditions are sat-
isfied. Conditional timed regular expressions (CTRE) is an extension of TRE
proposed in [25] that enables to condition the match of a TRE to a prefix or
a suffix. Two new binary operators are introduced in the syntax of CTRE, “?”
for pre-conditions, and “!” for post-conditions. Given expressions α1 and α2, a
signal w matches the expression α1 ? α2 at (t, t′) if it matches α2 and there
is an interval ending at t where w matches α1. Symmetrically, w matches the
expression α1 ! α2 at (t, t′) if it matches α1 and there is an interval beginning
at t′ where w matches α2. The difference between the precondition and post-
condition operators on one hand, and the concatenation on the other hand is
in the definition of their semantics (and consequently their match set), which is
defined for the two former operators as follows:

(w, t, t′) |= α1 ? α2 ↔ (w, t, t′) |= α2 and ∃t′′ ≤ t, (w, t′′, t) |= α1

(w, t, t′) |= α1 ! α2 ↔ (w, t, t′) |= α1 and ∃t′′ ≥ t′, (w, t′, t′′) |= α2

Events in TRE. Another important aspect of CTRE is that they enable defining
rise and fall events of zero duration associated to propositional terms. The rise
edge ↑ θ associated to the propositional term θ is obtained by syntactic sugar
as ↑ θ: = ¬θ ? ε ! θ, while the fall edge ↓ θ corresponds to ↓ θ := ↑ ¬θ. We note
that the rise and fall operators in TRE are slightly less powerful than their STL
counterparts, in that they cannot recognize zero-duration pulses in signals.

Example 4. We study the questions from the Example 1 regarding the specifi-
cation of DSI3 requirements in TRE. We borrow from Example 2 the definition
of predicates and of the timing intervals. The specification of the discovery pulse
is done in TRE using concatenation and time constraint operator, and results
in the following expression, thus positively answering Question Q1.

αpulse ≡↓ (vh) · 〈vb · vl · vb〉IDisc Pulse
· ↑ (vh)
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As we can see, the formalization of an individual DSI3 discovery pulse in TRE
is easy. In a similar manner, we can also capture all the segments that match
two consecutive pulses in the signal. However, checking whether their distance
is always bounded by tDisc per is not possible without additional machinery. In
order to express such a property, we would need either to universally quantify
over all the consecutive DSI3 discovery pulses or to allow negating TRE sub-
expressions, and neither is possible in TRE. This motivates the introduction of
a simple measurement specification language on top of TRE that we present in
the next section.

3.4 Measurement Specification Language

In this section, we present a simple specification language [25] built on top of
conditional TRE that enables describing declarative measurement properties of
continuous and hybrid behaviors. We first recall that the match set of a TRE
defines all the trace segments that match the expression. The number of such
segments can be infinite. An event-bounded TRE (E-TRE) is an expression of
the form

ψ: = ↑ p | ψ1 · α · ψ2 | ψ1 ∪ ψ2 | ψ1 ∩ α

with p a proposition, and ψ1, ψ2 event-bounded TRE. Such expressions have the
following important property - given an arbitrary finitely variable signal w, an
E-TRE can be matched in w only a finite number of times.

In this approach, we will use measure patterns based on timed regular expres-
sions to specify signal segments of interest. More precisely, a measure pattern
consists of three parts: (1) the main pattern; (2) the precondition; and (3) the
postcondition. The main pattern is an E-TRE that specifies the portion of the
signal over which the measure is taken. Using E-TRE to express main pat-
terns ensures the finiteness of signal segments, while pre- and post- conditions
expressed as general TRE allow to define additional constraints. A measure pat-
tern α is a CTRE of the form α1 ? ψ ! α2, where α1 and α2 are TRE, while ψ is
an E-TRE. Preconditions and postconditions are optional - we have ε ? α ≡ α
and α ! ε ≡ α. Hence, we use the simpler formula ψ to express the measure
pattern ε ? ψ ! ε.

Powerful declarative and pattern-driven performance evaluation of hybrid
and continuous systems is built on top of the match set for measure patterns.
Given a measure pattern α and a signal w, we describe a two stage analysis
of w. In the first step, we compute a scalar value for each segment of w that
matches α, either from absolute times of that match, or from the values of a
real signal x in w during that match. A measure is then written with the syntax
op(α) with op ∈ {time, valuex, duration, infx, supx, integralx, averagex} being some
sampling or aggregating operator. The semantics [[ ]]w of these operators is given
in Table 1; it associates to a measure op(α) and behavior w a multiset containing
the scalar values computed over each matched interval.3

3 We use multiset semantics as several patterns may have exactly the same measured
value, in which case set semantics would not record its number of occurrences.
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Table 1. Standard measure operators.

In the second step, we reduce the multiset of scalar values computed over
the signal matched intervals in M(α,w) to a single scalar. Typically, given the
multiset A = [[op(α)]]w of scalar values associated with these signal segments, this
phase consists in computing standard statistical indicators over A, such as the
average, maximum, minimum or standard deviation. This final step is optional
as the set of basic measurements sometimes provides sufficient information.

Example 5. We have defined in Example 4 the TRE pattern αpulse that char-
acterizes the DSI3 discovery pulse. We now formalize the pattern that matches
all consecutive discovery and show how to express the quantitative property of
measuring the average time between two consecutive discovery pulses. We first
characterize the signal segments that we want to measure. The pattern starts
at the beginning of a discovery pulse and end at the beginning of the next one,
as depicted by the ψ region in Fig. 5. It consists of a discovery pulse αpulse, fol-
lowed by the voltage signal being in the vh region, and terminating when the
voltage leaves vh. This description is not sufficient – we also need to ensure that
this segment is effectively followed by another discovery pulse. Hence we add
a postcondition that specifies this additional constraint. The measure pattern
α ≡ α1 ? ψ ! α2 is formalized as follows.

α1 ≡ ε

ψ ≡ αpulse · vh· ↓ (vh)
α2 ≡ αpulse

Finally, we evaluate the measure expression D = duration(α) which represents
the set of durations between all consecutive discovery pulses matched in w. Their
average value is simply obtained by the following computation

Σδ∈D δ

|D|
We note that the measuring patterns can also be used to answer whether all
the consecutive pulses are separated by a duration in IDisc per with the following
predicate

max{δ | δ ∈ D} ∈ IDisc per

It follows that we can use the TRE with measure operators to positively answer
both Questions Q2 and Q3. We now answer the Question Q4. We have seen
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time between 2 consecutive pulses

↓ (vh)

Vlow

Vhigh

αpulse αpulse

∈ IDisc pulse

vb vbvl

vh

↓ (vh) ↑ (vh)

ψ α2

Fig. 5. DSI3 discovery mode - timing between two consecutive pulses.

the TRE allow to easily capture continuous signal patterns and analog events.
Combined with measure operators, TRE enable taking quantitative measures
from signals in a natural way. On the other hand, timed regular expressions do
not facilitate specification of complex temporal properties that combine exis-
tential with universal quantifications over time. We needed additional measure
operators in order to enable specification of such temporal relations in the signal.

4 Monitoring and Measuring Hybrid Systems Properties

The analysis of behaviors generated by some system can take different forms,
depending on the nature of the system-under-test (SUT) and the mechanism
used to connect it to the tool that analyzes its behaviors. The system generates
behaviors by computing observable states sequentially.

Real-time monitoring: The generator creates behaviors in real-time and the
monitor cannot influence the frequency at which the system operates. In this
setting, the monitor must be able to read and process new data in real time,
hence it shall run at lease as fast as the system in order to guarantee that no
important data is missed. This situation typically occurs when monitoring
physical systems and systems such as nuclear plants, semi-conductor devices
and embedded systems. In safety critical applications, there may be a feed-
back loop between the system and the monitor which allows taking corrective
action and putting the system in the safe mode upon detection of violation.

Online monitoring: Similarly to their real-time counterparts, online monitors
run in parallel with the system generating the behaviors. The main difference
is that in this case, the behavior generator is typically a simulator that cre-
ates new data on-the-fly, but not in real time. It follows that the monitor is
allowed to introduce some computational overhead and even slow down the
simulation. The benefit of connecting online monitors to simulators generat-
ing behaviors is that an early detection of property violation allows stopping
behavior generation and thus saving precious simulation time.
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Offline monitoring: In this setting, the behaviors are completely generated by
the system before the monitoring procedure starts. Typically, offline moni-
toring algorithms are the simplest to implement, since the behaviors, saved
on a disk drive, can be read and analyzed in both directions. The main ben-
efit of the offline monitoring approach is that the monitor can read arbitrary
behaviors - it can remain agnostic to the provenience of the behaviors and is
thus applicable to both traces generated from simulators as well as physical
devices.

In the remainder of this section, we first discuss some issues that are spe-
cific to the analysis of continuous and hybrid behaviors. We also provide an
overview of different methods for monitoring STL with qualitative and quanti-
tative semantics and matching timed regular expression patterns. We focus on
giving some intuition behind the described procedures and do not aim to be
complete. We point the reader to the relevant literature for technical details and
full description of the algorithms.

4.1 Handling Numerical Predicates

In order to implement monitoring and measuring procedures for STL and TRE,
we need to address the problem of the computer representation of continuous
and hybrid behaviors. Both STL and TRE have a dense-time interpretation
of continuous behaviors which are assumed to be ideal mathematical objects.
This is in contrast with the actual behaviors obtained from simulators or mea-
surement devices and which are represented as a finite collection of (w(t), t)
value-timestamp pairs. The values of w at two consecutive sample points t1 and
t2 do not precisely determine the values of w inside the interval (t1, t2). We
need to handle this issue pragmatically, by using the interpolation to “fill in”
the missing values between consecutive samples. Some commonly used interpo-
lations to interpreted sampled data are step and linear interpolation. We note
that monitoring procedures are sensitive to the interpolation used, as shown in
Fig. 6.

(c)

c c c

x ≤ c x ≤ c

(a) (b)

Fig. 6. Signal x - (a) samples; (b) step interpolation; and (c) linear interpolation.
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4.2 Monitoring STL with Qualitative and Quantitative Semantics

In this section, we informally present monitoring techniques for STL properties
with qualitative and quantitative semantics. We start with an offline procedure
for qualitative STL monitoring - unlike automata-based monitoring algorithms,
it directly works on the input and STL satisfaction signals. The procedure is
recursive on the structure (parse-tree) of the formula - it propagates the truth
values upwards from input signals via super-formulas up to the main formula.
For every subformula φ of ϕ, it computes the satisfaction signal wφ. Most of
the work in the algorithm is done by the method that computes the satisfaction
signal for a given STL operator. For some operators, this computation is easy
- for instance, computing the satisfaction signal wϕ for the negation ϕ = ¬φ is
done by taking the signal wφ and switching its truth value. The more difficult
computations are related to the tempooral operators. We give an intuition on
the computation of wϕ where and refer the reader to [34] for the
technical description of the algorithm for the full STL. The procedure is based
on the following observation - whenever φ holds throughout an interval J , ϕ
must hold throughout (J � I) ∩ T, where J � I = {t − t′ | t ∈ J and t′ ∈ I}
is the Minkowski difference. Hence, the essence of the procedure is to back-shift
(Minkowski difference saturated by T) all the positive intervals in wφ and thus
obtain the set where holds. This method is illustrated in Fig. 7.

[1,2] p

6 8 10 12

p

0 2 4

Fig. 7. Example of offline marking for

We now sketch an incremental procedure for monitoring STL that combines
the simplicity of the offline method with the advantages of online monitoring -
possibility of detecting early an error and typically smaller memory footprint.
The incremental procedure works as follows. After observing a prefix of the input
signal over some interval [0, t), we apply the offline procedure. If the satisfaction
signal wϕ of the top formula ϕ is determined at time 0, the satisfaction/violation
of the formula is known and we are done. Otherwise, we wait to observe the new
segment of w over the interval [t, t′), and repeat the offline procedure. We note
that whenever the satisfaction of a formula ϕ is determined in some interval [0, t),
we only need to keep the information about the satisfaction of its sub-formulas
after t and discard the rest. This observation allows a memory-efficient imple-
mentation of the algorithm. For the complete presentation of the incremental
procedure, see [34].
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ρ(ϕ1, w, ·)

ρ(ϕ2, w, ·)

ρ(ϕ1 ∧ ϕ2, w, ·)

Fig. 8. Example of computing space robustness for ϕ1 ∧ ϕ2.

The procedure for offline monitoring of STL with qualitative semantics can
be adapted to compute the quantitative semantics. We illustrate the idea of the
extension for the case of space robustness. Similarly to the qualitative setting,
the procedure for computing the state robustness ρ(ϕ,w, t) is inductive in the
structure of the formula. Instead of computing the satisfaction (true/false) value
of an STL operator, the algorithm computes its real-valued robustness degree
defined by the quantitative semantics. For example, consider the formula ϕ =
ϕ1∧ϕ2. In the qualitative setting, computing the satisfaction signal wϕ at time t
consists in intersecting pointwise the values of satisfaction signals wϕ1 and wϕ2 .
In the quantitative setting, computing ρ(ϕ,w, t) consists instead of taking the
minimum value between ρ(ϕ1, w, t) and ρ(ϕ2, w, t) in time t, where robustness
degrees for ϕ1 and ϕ2 at time t are also real-valued quantities. This scenario is
illustrated in Fig. 8.

There are several algorithms available in the literature for computing robust-
ness degree of STL formulas. The algorithm for computing the space robustness
of a continuous behaviour with respect to a STL specification was originally
proposed in [23]. In [19], the authors develop a more efficient algorithm for mea-
suring space robustness by using an optimal streaming algorithm to compute the
min and the max of a numeric sequence over a sliding window and by rewriting
the timed until as a conjunction of simpler timed and untimed operators. The
procedure that combines monitoring of both space and time robustness is pre-
sented in [20]. Finally, the only algorithm for computing space robustness online
that we are aware of is given in [16].

4.3 Pattern Matching TRE

We sketch the algorithm proposed in [43] for computing offline the set of all
matches of a timed regular expression in a continuous or hybrid signal. The
procedure relies on the observation that any match set can always be represented
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Fig. 9. Example of a match set - (a) p; and (b) 〈p〉[1,2].

as a finite union of two-dimensional zones. We recal that in R
n, zones are special

class of convex polytopes definable by intersection of inequalities of the form
xi ≥ ai, xi ≤ bi and xi − xj ≤ ci,j or corresponding strict inequalities. For
instance, the match set M(ε, w) for the empty word ε is the diagonal zone
{(t, t′) ∈ T × T | t = t′}, while the match for a literal p or ¬p is a disjoint
union of triangles touching the diagonal whose number depends on the number
of switching points in πp(w). The match set of the time restriction operator is
obtained by intersecting the match set with the corresponding diagonal band,
hence M(〈α〉I , w) = M(α)∩{(t, t′) | t′ −t ∈ I}. The match sets for p and 〈p〉[1,2]

are depicted in Fig. 9. For the computation of the math sets for the other TRE
operators, we point the reader to [43].

5 Beyond STL and TRE

In the past years, the specification languages STL and TRE have inspired a
number of extensions that we describe in this tutorial and give references to the
relevant literature.

Combined Time and Frequency Specifications. Combining time and frequency
properties was first reported in [13] in which the authors describe predicates
over the Fourier coefficients in the context of hybrid systems verification. Time-
Frequency Logic (TFL) was introduced in [21] as a specification language for cap-
turing both time-domain and frequency-domain properties of signals. This logic
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essentially extends STL interpreted over discrete time with time-frequency pred-
icates that provide a tighter coupling of time and frequency domains. In order
to define time-frequency predicates, TFL enables taking a Short-Time Fourier
Transform (STFT)4 around a given frequency f and time t, which yields a spec-
tral signal which tracks the evolution of the STFT coefficient at f over time.

STL with freeze quantifiers. Motivated by oscillatory dynamics encountered in
biological applications, the temporal logic STL∗ is proposed in [10,15] as an
extension of STL augmented with a freezing operator that allows to record the
signal values during the evaluation of a sub-property, and to reuse it for com-
parison in the other parts of the formula. This operator increases the expressive
power of STL and for instance enables to express and capture various dynamic
aspects of oscillations. The quantitative semantics of STL∗ is proposed and
studied in [11].

Learning and Synthesis of STL formulas and parameters from behaviors. Behav-
ioral specifications of complex systems are often unknown or only partially
known. In engineered systems such as analog and mixed-signal designs, the top-
down design paradigm starts with an abstract behavioral model, which is then
iteratively designed. While some structural properties of the system may be
known in advance, many parameters are decided only during different stepwise
refinements of the design. In non-engineered applications, such as biology or
medicine, even structural specification of the system may be unknown - the
system already exists and by observing its behavior, one attempts to learn its
structural and quantitative properties.

Parametric identification of STL properties is proposed and studied in [6].
The problem is stated as follows - given an STL formula with timing and mag-
nitude parameters and a behavior of a system, find the range of parameters that
makes the formula satisfied with respect to the behavior. The paper proposes
two procedures for identifying such parameters using quantifier elimination and
approximating Pareto fronts by adaptive sampling of the parameter space.

In a recent work [9,12], the authors solve a more ambitious problem of learn-
ing STL formulas from behaviors. This problem is motivated by the medical
application of assisted ventilation in intensive care patients. The proposed pro-
cedure first builds statistical models of expected and faulty behaviors, and then
finds an STL formula that optimally discriminates good from bad traces. In
this work, both the space of formula structures and their space of parameters is
explored using an evolutionary algorithm combined with Bayesian optimization.

Spatio-Temporal Extensions of STL. Spatial-Temporal Logic (SpaTeL) [27]
was recently proposed as a unification of STL and Tree Spatial Superposition
Logic (TSSL) [26]. This specification formalism is motivated by the applications
from distributed and networked dynamic systems, ranging from robotic teams to
collections of genetically engineered living cells. In particular, SpaTeL enables
4 Computing STFT of a signal requires choosing a window function - TFL leaves the

possibility of choosing different window functions.
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expressing spatial patterns that evolve over time. The logic is equipped with
quantitative semantics and statistical model checking is used to analyze the
simulated behavior of networked dynamic systems.

6 Tools

In this section, we present four tools that implement monitoring algorithms for
STL. Some of them are prototypes, some consider STL with qualitative and
others STL with quantitative semantics. There are still no publicly available
tools for TRE pattern matching and measuring, despite a prototype implemen-
tation [25,43] used to evaluate the approach.

AMT. Analog Monitoring Tool (AMT) [37] is a standalone tool for monitoring
STL properties interpreted with the qualitative semantics. The tool implements
both an offline and an incremental monitoring algorithm, and supports several
common input formats from the semi-conductor industry, such as Value Change
Dump (VCD) and the Nanosim output format.

Breach. Breach [18] is a Matlab toolbox for simulation-based analysis of deter-
ministic hybrid dynamical systems. The tool allows to approximate the reachable
set of a hybrid system with a finite number of simulations by applying sensi-
tivity analysis. Declarative properties of the hybrid system can be expressed
in STL interpreted with the quantitative semantics from [23]. The tool imple-
ments efficient algorithms for monitoring both boolean and quantitative (robust)
satisfaction of STL formulas.

CPSGrader. CPSGrader [30] is a tool for automatic grading of student lab
assignments in the field of embedded and cyber-physical systems. The tools
is used in the following flow: (1) the student develods a dynamical model as
part of the assignment in the virtual lab; (2) the correctness property, used as
the reference for grading the assignment, is expressed in STL; (3) the simula-
tion test benches for exploring the model combine manual environment setup
and simulation-based falsification, (4) if the correctness property is satisfied,
the assignment is considered to be correct; (5) otherwise the model traces are
compared to known faulty properties in an attempt to provide feedback to the
student explaining the reasons of the model fault.

S-TaLiRo. S-TaLiRo [3] is a Matlab toolbox for temporal logic falsification. The
tool searches for counterexamples to STL properties interpreted with quantita-
tive semantics for non-linear hybrid systems through global minimization of the
robust satisfaction of the specification. In order to achieve this, S-TaLiRo com-
bines robust satisfaction monitoring with stochastic simulation. The output of
the tool is the simulation trace with the smallest robustness value with respect
to the associated STL formula that is found during the model simulation. The
traces with negative robustness values indicate the (boolean) violation of the
formula.
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7 Applications

In this section, we provide an overview of several application domains in which
analysis methods based on STL and TRE specifications have been used.

Automotive Applications. Both STL and TRE have been recently used to
specify, monitor and measure hybrid properties of the DSI3 standard [25,36].
A counterexample-guided inductive synthesis approach to controller synthesis
for cyber-physical systems subject to STL specifications, operating in poten-
tially adversarial nondeterministic environment was applied to a case study in
autonomous driving in [39]. An approach for automated directed test generation
that uses STL specification as one of the ingredients to guide the search has been
applied to an automotive powertrain control system in [22]. S-TaLiRo has been
applied to two automotive examples [24], an automatic transmission model and a
powertrain system, to check quantitative STL properties. The online robustness
STL monitoring procedure has been used to compute the robustness degree of
the Port Fuel Injected spark ignition model in [16].

Biological Applications. STL has been used to define qualitative properties of
the behavior of several cellular mechanisms and to characterize the parameter
that yield satisfying behaviors. This methodology has been applied to angio-
genesis, the onset of new blood vessel sprouting [17], to programmed cell deat
(apoptosis) [42] and the study of the effect of iron metabolism on blood cell spe-
cialization [35]. The logical characterization of an oscillator of the circadian clock
in Ostreococcus Tauri, a simple unicellular alga, was done in [9] by learning TFL
properties from a parameterized statistical model of the organism. Synthetic biol-
ogy is an emerging field the consists in designing artificial living systems with
a predictable behavior. A novel approach of compositionally designing synthetic
biologic circuits from modules specified in STL with quantitative semantics was
proposed in [7]. In [8], the authors investigated the notion of robust semantics
of STL for stochastic models on three biological systems: the Schlögl system,
which is a simple set of biochemical reactions exhibiting a bistable behavior, the
Incoherent type 1 Feed-forward loops, which is a frequent motif in gene regula-
tory systems, and the Repressilator, a synthetic biological clock implemented as
a gene regulatory network.

Medical Applications. Temporal logic specifications have played a role in several
medical application. The problem of insulin pump usage parameter synthesis
was studied in [41]. Insulin pumps are medical devices that are typically used
by patients having diabetes type-1 to control their blood glucose level. The
authors propose a model-based approach to find ideal parameters for regulating
the insulin glucose. In this approach, the authors assume the availability of a
mathematical model with parameters fitted to a particular patient, and formu-
late a function that rewards prescribed ranges of glucose levels, while penalizing
hypoglycemia and hyperglycemia. The desired properties of the insulin infusion
process were formalized in STL interpreted with the quantitative semantics and
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the pump usage is calibrated by optimizing the trace robustness. An approach
to automatically detect ineffective breathing efforts in patients in intensive care
subject to assisted ventilation, based on synthesis of STL formulas that discrimi-
nate between normal and ineffective breaths was proposed in [12]. Learning STL
formulas from electro-cardiogram data in the context of discriminating different
types of cardiac malfunctions was studied in [9].

Musical Applications. The applicability of temporal specifications in formalizing
and recognizing melodies was studied and demonstrated in [21]. The specifica-
tion language TFL combines both time and frequency features of the logic to
characterize notes and specify melodies. In particular, the framework was used
in an experiment where a Blues melody played on a guitar was checked against
its TFL specification.

8 Discussion and Future Perspectives

Specification-based monitoring of continuous and hybrid behaviors has drawn
considerable attention in the past decade and has found its application in versa-
tile domains. We observe that one of the main obstacles for making this technol-
ogy more mainstream is the nature of the specification languages. On one hand,
formalisms based on temporal logics and regular expressions have a mathemat-
ical flavor that enable rigorous analysis of behaviors. On the other hand, such
specification languages do not always appeal to the end user from application
areas that are not related to formal methods. We believe that a real effort needs
to be done to adapt formal specification formalisms to the notations that are
familiar in a specific domain.

For instance, analog designers are used to requirements that are given in the
form of timing diagrams, where expected behaviors and the associated timing
constraints are specified in a combination of graphical and tabular form - see
Fig. 10 as an example taken from the DSI3 Bus Standard. Providing higher level
graphical and domain specific specification languages that could be mapped to
STL and/or TRE would tremendously help their wider adoption. Recently, a
graphical formalism for writing and visualizing STL specifications was developed
and presented in [28]. This is the first attempt that we are aware of in bringing
STL closer to the non-expert user.

We also observe that little effort has been invested in making specifications
reusable, by allowing property templates and libraries. While not being a sci-
entific topic, reusability of specifications is essential in the industrial context.
We illustrate the advantages of reusable specifications on the DSI3 Bus Stan-
dard. For example, the standard is expected to be used in the entire automotive
industry - specifications that formalize the protocol remain the same regardless
of the car manufacturer. Such specifications could also be used to communicate
the requirements along different actors in the value chain. Since DSI3 is intended
to be a generic automotive protocol, it can be used for different products devel-
oped in the same company. Finally, specifications could be reused along different
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Fig. 10. Discovery mode example for a 4 device bus segment [29].

phases of the design - during the pre-silicon simulation, design emulation and
post-silicon validation. In order to achieve the reusability of specifications, we
need to provide syntactic constructs that allow developing property templates
and creating libraries of specifications.
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39. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, HSCC 2015, Seattle,
WA, USA, April 14–16, 2015, pp. 239–248 (2015)

40. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-
tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008)

41. Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos,
G.E.: A model-based approach to synthesizing insulin infusion pump usage para-
meters for diabetic patients. In: 2012 50th Annual Allerton Conference on Com-
munication, Control, and Computing, Allerton Park & Retreat Center, Monticello,
IL, USA, October 1–5, 2012, pp. 1610–1617 (2012)
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Abstract. We report on the Second International Competition on Run-
time Verification (CRV-2015). The competition was held as a satel-
lite event of the 15th International Conference on Runtime Verification
(RV’15). The competition consisted of three tracks: offline monitoring,
online monitoring of C programs, and online monitoring of Java pro-
grams. This report describes the format of the competition, the partici-
pating teams and submitted benchmarks. We give an example illustrat-
ing the two main inputs expected from the participating teams, namely
a benchmark (i.e. a program and a property on this program) and a
monitor for this benchmark. We also propose some reflection based on
the lessons learned.

1 Introduction

Runtime Verification (RV) [8,14] is a lightweight yet powerful formal
specification-based technique for offline analysis (e.g., for testing) as well as run-
time monitoring of system. RV is based on extracting information from a running
system and checking if the observed behavior satisfies or violates the properties
of interest. During the last decade, many important tools and techniques have
been developed and successfully employed. However, it has been observed that
there is a general lack of standard benchmark suites and evaluation methods
for comparing different aspects of existing tools and techniques. For this reason,
and inspired by the success of similar events in other areas of computer-aided
verification (e.g., SV-COMP, SAT, SMT), the First Internal Competition on
Software for Runtime Verification (CSRV-2014) was established [2]. This is the
second edition of the competition and the general aims remain the same:

– To stimulate the development of new efficient and practical runtime verifica-
tion tools and the maintenance of the already developed ones.

c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 405–422, 2015.
DOI: 10.1007/978-3-319-23820-3 27
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– To produce benchmark suites for runtime verification tools, by sharing case
studies and programs that researchers and developers can use in the future to
test and to validate their prototypes.

– To discuss the metrics employed for comparing the tools.
– To compare different aspects of the tools running with different benchmarks

and evaluating them using different criteria.
– To enhance the visibility of presented tools among different communities

(verification, software engineering, distributed computing and cyber security)
involved in monitoring.

CRV-2015 was held between January and August 2015 with the results presented
in September 2015 in Vienna, Austria, as a satellite event of the 15th Interna-
tional Conference on Runtime Verification (RV’15). This report was produced
in June 2015, prior to the evaluation stage of the competition described later.
Therefore, results of the competition have not been included and will be available
on the competition website.1

This report will begin (Sect. 2) by looking at the changes to the competition
between this and the previous edition. There is then a discussion of the format
of the competition (Sect. 3) where the three tracks (Offline, Java, and C) and
the three stages (Benchmark Submission, Monitor Submission, and Evaluation)
are discussed. To illustrate this process, we provide an example using data from
the competition (Sect. 4). We then present and briefly describe the participants
to each track (Sect. 5), followed by an overview of the benchmarks submitted in
each track (Sect. 6). Finally, we reflect on the challenges faced and give recom-
mendations to future editions of the competition (Sect. 7) before making some
concluding remarks (Sect. 8).

2 Changes from CSRV 2014

In this section, we highlight and discuss the changes from the first edition of the
competition - CSRV 2014.2

2.1 Towards Standardisation

One of the major difficulties faced when organising a competition is designing
it so that tools can compete on the same benchmarks. For this to work it is
convenient to conform to certain common standards. Prior to the previous com-
petition there was very little focus on standardisation in the Runtime Verification
community and it is still an area requiring much work.

The previous competition introduced a standard format for traces used in
Offline Monitoring and these have been updated this year, as described in
1 See http://rv2015.conf.tuwien.ac.at - CRV-2015 Competition.
2 The steering committee of the competition decided to change the name of the com-

petition from CSRV (Competition on Software for Runtime Verification) to CRV
(Competition on Runtime Verification) to reflect the intended broader scope of the
competition.

http://rv2015.conf.tuwien.ac.at


Second International Competition on Runtime Verification: CRV 2015 407

Sect. 3.2. The formats have been changed to conform with general formats for
CSV, JSON and XML files (see Sect. 3.2).

Currently, there are two important aspects of the runtime verification process
that have not yet been standardised. Firstly, there are no standard specifica-
tion languages for Runtime Verification, and most tools use their own language.
Secondly, there is no standard instrumentation format for Online Monitoring,
although for Java programs AspectJ is becoming a de-facto standard, although
there are also other instrumentation techniques often used. There exists a work-
ing group3 looking at these issues and it is hoped that standards in this area
will be available for the future editions of the competition.

2.2 Providing a Resource for the Community

As discussed previously, there is a lack of benchmarks for comparing Run-
time Verification techniques. To make the submitted benchmarks accessible and
usable, the organizers have used a Wiki4 to host the benchmarks and submissions
this year.

Each benchmark has its own page containing three main sections:

– Benchmark Data. Describing the property to be monitored (formally and
informally) and the artefact to be monitored i.e. trace or program.

– Clarification Requests. A space for benchmark clarifications (see below).
– Submitted Specifications. The specification used to capture the monitored

property from each team participating on the benchmark.

As well as providing benchmarks for evaluation, this information can provide
an insight into how different specification languages can be used to express the
same property. For further information, see the details about the format of the
competition in Sect. 3.

2.3 Transparency and Communication

One of the observations made after the previous competition was that commu-
nication often occurred in emails between the chairs and participants without
all participants necessarily being involved. This had two disadvantages:

1. Clarifications and instructions can be spread across many email threads with
the most recent version being difficult to find.

2. Information relevant to all participants is not necessarily received by all par-
ticipants, or participants may receive information at different times.

For CRV 15, there has been an effort to ensure that all communication between
chairs and participants, and between participants themselves, was conducted via
the Wiki in either a separate Rules page or the Clarification Request section of
a benchmark.
3 https://www.cost-arvi.eu/.
4 https://forge.imag.fr/plugins/mediawiki/wiki/crv15/index.php/Main Page.

https://www.cost-arvi.eu/
https://forge.imag.fr/plugins/mediawiki/wiki/crv15/index.php/Main_Page
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3 Format of the Competition

In this section we describe in detail all the phases of the competition.

3.1 Declaration of Intent

The competition was announced in relevant mailing lists starting from Novem-
ber 2014. Potential participants were requested to declare their intent to partic-
ipate to CRV 15 via email5. The deadline was January 30, 2015. The informa-
tion requested from the participants included: institute(s), contact person and
email, alternate contact persons and emails, tool home page, references to the
tool, programming language of the tool, specification language(s), features of the
specification languages handled by the tool (logical/dense time, propositional/-
parametric, etc.), and a reference to the specification language. This information
was purposed to let the chairs and participants having early information about
the competing tools and to get familiar with the tools and their supported spec-
ifications languages. Participants had to also indicate the track(s) in which they
intended to participate in. Identification numbers (ids) were assigned to par-
ticipants. As indicated in Sect. 2, a Wiki was created for the competition and
participants had to register to it. For each of the three tracks (Offline, C and
Java), the teams participating in the competition are listed in alphabetical order
in Tables 1, 2, and 3, respectively. See Sect. 5 for further details on participants.

3.2 Submission of Benchmarks and Specifications

In this phase, participants were asked to prepare benchmark/specification sets.
The deadline was March 15, 2015. The benchmarks and specifications were col-
lected in a shared repository6. The repository was made accessible through SFTP
and SSH protocols to facilitate the upload of benchmarks by allowing easy trans-
fer and Unix commands to participants. The benchmarks were collected and
classified into a hierarchy of directories. The hierarchy of directories has been
arranged according to tracks and teams, following their ids. The hierarchy was
the following:

falcone@lig-crv15:/work$ ls *
C_track:

1_MarQ 2_E-ACSL 3_RiTHM 4_RV-Monitor 5_TimeSquareTrace 6_RTC
Java_track:

1_MarQ 2_TJT 3_Java-MOP 4_Mufin
Offline_track:

1_MarQ 2_RiTHM 3_OCLR-Check 4_RV-Monitor 5_OptySim 6_AgMon
7_Breach 8_LogFire

Each of these directories had 5 sub-directories:
5 crv15.chairs@imag.fr.
6 crv15.imag.fr.

crv15.chairs@imag.fr
http://crv15.imag.fr/
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Benchmark1 Benchmark2 Benchmark3 Benchmark4 Benchmark5.

Each track directory contained a directory per participating team. Each team
directory contained a directory per benchmark. Files had to be placed in the
directory relevant to the track, team, and benchmark.

In this hierarchy, participants had reading rights to all directories and writing
rights in their directories only.

Online Monitoring of Java and C Programs Tracks. In the case of Java and C
tracks, each benchmark contribution was required to be structured as follows:

– Program package containing the program source code, a script to compile it,
a script to run the executable, and an English description of the functionality
of the program.

– Specification package containing the associated property, the instrumentation
setup, and some explanations. The property description had to contain a
formal description of it in the team’s specification language, informal expla-
nations, 6 short traces demonstrating valid and invalid behaviors (3 of each),
and the expected verdict (the evaluation of the property on the program).

Each specification consisted of a list of properties, with instrumentation infor-
mation, and explanations. The instrumentation information mapped the events
referred to in the properties to concrete program events. A property consisted
of a formalization (automata, formula, etc.), an informal description, and the
expected verdict (indicating whether the program satisfies the property or
not). Instrumentation was a mapping from concrete events (in the program)
to abstract events (in the specification). For instance, considering the classical
HasNext property on iterators, the mapping should have indicated that the has-

Next() event in the property refers to a call to the hasNext() method on an Iterator
object. Several concrete events could be associated to one abstract event.

Remark 1. The following additional guidelines were conveyed to participants:

– Too comprehensive properties should have been avoided, in order not to refrain
other participants from competing on such properties.

– Programs exhibiting non-deterministic behaviors were prohibited in order to
avoid interference with verdict detection.

– Benchmarks were requested to be standalone, not depending on any third-
party program.

Offline Monitoring Track. In the case of offline track, each benchmark contri-
bution was required to be structured as follows:

– a trace in either XML, CSV, or JSON format, with, for each event appearing
in the trace, its number of occurrences;

– a specification package containing the formal representation of the property,
informal explanation and the expected verdict (the evaluation of the prop-
erty on the program), and informal explanations; instrumentation informa-
tion indicating the mapping from concrete events (in the trace) to abstract
events (in the specification).



410 Y. Falcone et al.

At an abstract level, we defined traces as sequences of named records of the
form:

NAME{
field1 : value1,
...
fieldn : valuen

}

We defined an event as an entity that has a name and arguments each of which
has a name and a value.

Below, we present some example traces illustrating the three formats
accepted for traces, where an event name ranges over the set of possible event
names, a field name ranges over the set of possible field names, a value ranges
over the set of possible runtime values.

– In XML format:

<log>
<event>
<name>an_event_name</name>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
</event>

</log>

– In CSV format (following the standard http://www.ietf.org/rfc/rfc4180.txt),
where the spaces are intended and required. Note the required header:

event, a_field_name, a_field_name, a_field_name
an_event_name, a_field_value, a_field_value, a_field_value

– In JSON format (following the standard https://tools.ietf.org/html/rfc7159):

an_event_name: {
a_field_name: a_value,
a_field_name: a_value
}

A tool was also provided to translate traces between the different formats.

http://www.ietf.org/rfc/rfc4180.txt
https://tools.ietf.org/html/rfc7159
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3.3 Sanity-Check Phase

After the benchmark and specification phase ended on March 15, 2015, the
organizers performed a sanity check over the submitted benchmarks and specifi-
cations. The purposes of the sanity check were to ensure that (i) the benchmarks
and specifications were complete and followed the required formats, (ii) sufficient
and unambiguous explanations of the specifications were provided. The sanity
check resulted in clarification requests made to participants using the Wiki.
Clarification requests were made on the benchmark page of the participants
and were publicly available, for communication and transparency purposes. The
sanity check phase ended on March 30, 2015.

3.4 Training Phase and Monitor Collection Phase

The training phase started on March 30, 2015. During this phase, all partici-
pants were supposed to train their tools with all the available benchmarks in the
repository. This phase was scheduled to be completed by June 10, 2015, when
the participants would submit the monitored versions of benchmarks.

In this phase, competitors provided monitors for benchmarks. Participants
decide to compete on a benchmark described by a pair (team id, bench-
mark number) where the team id is the id of the team who has provided the
benchmark and benchmark number is the number of the benchmark provided
by the team. That is, a contribution is related to a benchmark and contains
monitors for the properties of this benchmark. Each monitor is related to one
property.

More precisely, a contribution takes one of the two forms below depending
on whether a program or a trace is monitored.

Java and C Tracks. In the Java and C tracks, each contribution should contain
the following elements:

1. The monitor given by two scripts to build and run the monitored program.
2. The property from which the monitor has been synthesized, where the prop-

erty is described by:
(a) a formal definition of the property in a well-defined specification language;
(b) a reference to the specification language;
(c) an informal explanation of the property.

3. The source code for instrumentation (e.g., AspectJ file for the Java track).
4. The source code of the monitoring code.

A monitor consists of two scripts, one for building the monitored version of
the program, one for running it. The actions performed by the script should be
documented. The description of the property should contain a formal definition
of the property in the specification language chosen by the participants. Ref-
erences to the specification language should be given. An informal description
of the property should be provided to help understanding the formalization. If
the property that was used to synthesize the monitor has been expressed in
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a different specification language than the one used to define the benchmark,
explanations should be given as of why the submitted specification indeed cor-
responds to the one in the benchmark. A contribution also contains the source
of the code for monitoring.

Offline Track. Similarly, for the offline track, each contribution should take the
following form:

1. The monitor given by two scripts to build and run the monitor over the trace.
2. The property from which the monitor has been synthesized, where the prop-

erty is described by:
(a) a formal definition of the property in a well-defined specification language;
(b) a reference to the specification language;
(c) an informal explanation of the property.

3. The code that is used to build concrete events out of the log entries.

The above elements are supposed to follow the same constraints as in the Java
and C tracks.

3.5 Benchmark-Evaluation Phase

The competition experiments for evaluation are performed on DataMill (http://
datamill.uwaterloo.ca), a distributed infrastructure for computer performance
experimentation targeted at scientists that are interested in performance evalu-
ation. DataMill aims to allow the user to easily produce robust and reproducible
results at low cost. DataMill executes experiments on real hardware and incor-
porates results from existing research on how to setup experiments and hidden
factors.

Each participant had the possibility to setup and try directly their tool using
DataMill or by using the virtual machine provided by DataMill. The final eval-
uation will be performed by the competition organizers.

Computing Scores. For CSRV 2014, the organizers designed an algorithm to
calculate the final score for each tool. We do not want to reiterate the description
of the algorithm but give an overview of the algorithm below and refer to [2] for
more details.

Essentially, the final score of each team is obtained by summing the score
obtained by this team on each available pair of benchmark and property on which
the team has competed. The score of a team on a benchmark consists of three
subscores: the first one for correctness, the second one for time overhead, and the
third one for memory overhead. The correctness score assesses whether the tool
produces the expected verdict for the property on the benchmark. A penalty is
applied in case of an incorrect verdict reported or in case if the tool crashes.
The scores for time and memory overheads assess how better is the overhead
obtained by the tool compared to the other tools. The score of each team is
influenced not only by the overhead of the team but also by the factor by which
it is better or worse than the average overhead obtained by the teams competing
on this benchmark.

http://datamill.uwaterloo.ca
http://datamill.uwaterloo.ca
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4 Illustrative Example

We use a concrete benchmark submitted to the Java track to illustrate how a
benchmark is submitted by a team and how a specification and monitor are
submitted for that benchmark by a different team.

4.1 Benchmark Submission

As an example benchmark we consider the first benchmark submitted by team
3 in the Java track i.e. MUFIN (see Sect. 5). The following description of the
specification to be monitored was uploaded to the Wiki.

It should be verified that no iterator object is used (by invoking the method
Iterator.next()) after the corresponding collection has changed (by an
invocation of Collection.add()). The property could be stated, for exam-
ple, in Linear Temporal Logic enriched with predicates and quantification
over object identities (cf. [4]) as

∀c∀i : G(create(c, i) → G(modify(c) → G¬next(i)))

where create(c, i) holds iff the method Collection.iterator() is invoked on
some collection c instantiating an iterator i. The predicate modify(c) holds at
those positions in the program execution trace where Collection.add() is
invoked on some collection c and next(i) is true whenever Iterator.next()
is called on an iterator i. The resulting symbolic monitor is the following:

– State space Q = {1, 2, 3, 4}
– Quantification: ∀c,∀i
– Transition function δ

• δ(1,¬create(c, i)) = 1, δ(1, create(c, i)) = 2
• δ(2,¬modify(c)) = 2, δ(2, modify(c)) = 3
• δ(3,¬next(i)) = 3, δ(3, next(i)) = 4
• δ(4, true) = 4

– Accepting states (with output) F = {1, 2, 3}

Importantly, this description contained an informal description of the prop-
erty being monitored and a formal specification in a well-defined specification
language [4]. The program to be monitored in this benchmark was uploaded
to the repository and described on the Wiki, including metadata such as the
number of each kind of event. In this case there are 2,000,001 create events, 10
modify events and 1 next event. It is indicated that the program is expected to
violate the property. Additionally, team 3 provided AspectJ pointcuts to con-
nect the specification and monitored program. For example, the create event is
associated with the following pointcut and advice:

public pointcut i t e r a t o rC r e a t e ( L i s t l ) :
ca l l ( I t e r a t o r L i s t . i t e r a t o r ( . . ) ) && target ( l ) ;

a f t e r ( L i s t l ) returning ( I t e r a t o r i ) : i t e r a t o rC r e a t e ( l ) { . . . }
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Finally, a number of short traces are given to illustrate valid and invalid
behaviour. For example the trace

create(1, 2).create(3, 4).next(2).modify(1).next(4)

is given as a valid behaviour and the trace

create(1, 2).next(2).modify(1)next(2)

is given as invalid behaviour.

4.2 Clarifications

After the benchmark has been submitted there is a time for sanity checking
where clarification requests can be made. In the case of this benchmark only a
few requests were made with respect to presentation.

4.3 Specification/Monitor Submission

We now consider how team 1 in the Java track (i.e. MarQ, see Sect. 5) submitted
a specification and monitor for this benchmark. The first step involved placing
a specification of the property on the Wiki as follows.

The property can be captured in the QEA language of MarQ as follows:
qea(unsafeIter){

Forall(c,i)

accept skip(start){ create(c,i) -> created }

accept skip(created){ modify(m) -> modified }

accept skip(modified){ next(i) -> failure }

}

This QEA quantifies universally over c and i. Note that the domain of quan-
tification for QEA is defined by matching symbolic events in the specification
against concrete events from the trace. The event automaton uses four states
and three transitions to capture the path to a failure. The skip annotation
on states indicates that events that do not match a transition are implicitly
skipped.

The next step involved uploading the two relevant scripts to the FTP. The
first script must compile the monitored program. For this team 1 submitted
an AspectJ file and a script to weave this into the provided source code. The
AspectJ code uses an API to construct the QEA given above and a monitor from
that specification.

public void i n i t ( ){
QEABuilder b = new QEABuilder ( ‘ ‘ u n s a f e I t e r ’ ’ ) ;
//Quant i f i ed Var iab l e s
int c = −1; int i = −2;
b . addQuant i f i ca t i on (FORALL, c , i ) ;
// Trans i t i ons
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b . addTrans i t ion (1 ,CREATE, c , i , 2 ) ;
b . addTrans i t ion (2 ,MODIFY, c , 3 ) ;
b . addTrans i t ion (3 ,NEXT, i , 4 ) ;
// Sate mod i f i e r s
b . s e tA l l Sk i pS t a t e s ( ) ;
b . addFina lStates ( 1 , 2 , 3 ) ;
//Create monitor
monitor = MonitorFactory . c r e a t e (b . make ( ) , GarbageMode .LAZY) ;

}
The pointcuts provided by team 3 are then used to submit events to the

monitor and check that the verdict is safe - reporting an error if not. An example
of advice submitting an event to the monitor is given below.

a f t e r ( L i s t l ) returning ( I t e r a t o r i ) : i t e r a t o rC r e a t e ( l ) {
synchronized (LOCK){

check ( monitor . s tep (CREATE, l , i ) ) ;
}

}
As the MarQ tool relies on a number of libraries (such as aspectjrt.jar)

the installation script also downloads these before weaving the source code using
the command:

java -cp "lib/*" org.aspectj.tools.ajc.Main -source 1.7 -d bin -sourceroots src

The running script then runs the instrumented program using the command:

java -cp "lib/*:bin"

de.uni_luebeck.isp.rvwithunionfind.benchmarks.benchmark1.MainBad

5 Participating Teams

In this section, for each track, we report on the teams and tools that participated
in CRV’15. Table 3 (resp. 2, 1) gives a summary of the teams participating in
the Offline (resp. Java, C) track. In the following of this section, we provide a
short overview of the tools involved in the competition.

MarQ. MarQ [18] (Monitoring at runtime with QEA) monitors specifications
written as Quantified Event Automata [1] (QEA). QEA is based on the notion
of trace-slicing, extended the existential quantification and free variables. The
MarQ tool is written in Java.

OCLR-Check. OCLR-Check [7] is a toolset to perform offline checking of
OCLR properties on system execution traces. OCLR is a temporal extension
of OCL (Object Constraint Language) which allows users to express temporal
properties using property specification patterns.

RV-Monitor. RV-Monitor [15] is a runtime verification tool developed by Run-
time Verification Inc. (http://runtimeverification.com), capable of online and

http://runtimeverification.com
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Table 1. Tools participating in online monitoring of C programs track.

Tool Ref. Contact person Affiliation

E-ACSL [5] J. Signoles CEA LIST, France

MarQ [18] G. Reger University of Manchester, UK

RiTHM-v2.0 [16] Y. Joshi McMaster Univ. and U. Waterloo, Canada

RV-Monitor [15] P. Daian Runtime Verification Inc., Urbana, IL

RTC R. Milewicz University of Alabama at Birmingham, USA

TimeSquare [3] F. Mallet Univ. Nice Sophia Antipolis

Table 2. Tools participating in online monitoring of Java programs track.

Tool Ref. Contact person Affiliation

JavaMop [11] Y. Zhang U. of Illinois at Urbana Champaign, USA

MarQ [18] G. Reger University of Manchester, UK

Mufin D. Thoma University of Lübeck, Germany

Table 3. Tools participating in the offline monitoring track.

Tool Ref. Contact person Affiliation

AgMon [13] A. Kane Carnegie Mellon University, USA

Breach [12] A. Donzé University of California, Berkeley, USA

LogFire [10] K. Havelund NASA JPL, USA

MarQ [18] G. Reger University of Manchester, UK

OCLR-Check [7] W. Dou University of Luxembourg, Luxembourg

OptySim [6] A. Salmerón University of Mlaga, Spain

RiTHM-v2.0 [16] Y. Joshi University of Waterloo, Canada

RV-Monitor [15] H. Xiao University of Illinois at Urbana Champaign, USA

offline monitoring of properties written in a variety of formalisms (”logic plug-
ins”). RV-Monitor separates instrumentation and library generation.

RiTHM-v2.0. RiTHM-v2.0 [16] takes a C program under inspection and a
set of First Order Linear Temporal Logic properties as input and generates an
instrumented C program that is verified at run time by a time-triggered moni-
tor. RiTHM-v2.0 provides two techniques based on static analysis and control
theory to minimize instrumentation of the input C program and monitoring
intervention.

OptySim. OptySim [6] is a tool for the analysis and optimization of heteroge-
neous systems whose behaviour can be observed as execution traces. OptySim
is based on the Spin model checker and analyzes systems observed as execution
traces. OptySim supports Linear Temporal Logic specifications.
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AgMon. AgMon is a monitoring framework and tool for the offline monitoring
of temporal formulae expressed in a bounded variant of MTL. The monitoring
strategy is based on sampling, i.e. the events in the trace are time-triggered.
AgMon takes traces expressed in the CSV format as input.

Breach. Breach [12] is a Matlab toolbox supporting quantitative monitoring
of Signal Temporal Logic (STL) properties. Breach provides a set of simulation-
based techniques aimed at the analysis of deterministic models of hybrid dynam-
ical systems.

LogFire. LogFire is a rule-based runtime verification tool. It is based on the
RETE [9] algorithm, and is built as an API in the Scala programming lan-
guage. A monitor is an instance of a monitor class. Specifically a monitor is a
user-defined Scala class that extends a pre-defined Monitor class defined in the
LogFire API.

JavaMop. Monitoring-Oriented Programming (MOP), is a software develop-
ment and analysis framework which aims to reduce the gap between formal
specification and implementation by allowing them together to form a system.
In MOP, monitors are automatically synthesized from specified properties and
integrated with the original system to check its dynamic behaviors during exe-
cution. JavaMOP [11] is an instance of MOP for Java.

Mufin. Mufin (Monitoring with Union-Find) is a framework for monitoring
Java programs. (Finite or infinite) monitors are defined using a simple API
that allows to manage multiple instances of monitors. Internally Mufin uses
hash-tables and union-find-structures as well as additional fields injected into
application classes to lookup these monitor instances efficiently. The main aim
of Mufin is to monitor properties involving large numbers of objects efficiently.

E-ACSL. E-ACSL [5] is both a formal specification language and a Frama-
C plug-in. The formal specification language is a behavioral first-order typed
specification language which supports in particular function contracts, assertions
and built-in predicates (like \valid(p) which indicates that the pointer p points
to a memory location that the program can write and read).

TimeSquare. TimeSquare [3] is an MDK (Model Development Kit) provided
as a set of Eclipse plugins that can be downloaded or installed over an existing
Eclipse. TimeSquare is based on the formal Clock Constraint Specification Lan-
guage (CCSL), which allows the manipulation of logical time. Logical time is a
relaxed form of time where any events can be taken as a reference for counting
(e.g. do something every 30 openings of the door). It can be used for specify-
ing classical and multiform real-time requirements as well as formally specifying
constraints on the behavior of a model (either a UML-based or a DSL model).

RTC. RTC (Run-Time error check for C programs) is a runtime monitoring tool
that instruments unsafe code and monitors the program execution. RTC is built
on top of the ROSE compiler infrastructure [17]. The tool finds memory bugs
and arithmetic overflows and underflows, and run-time type violations. Most of
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the instrumentation code is directly added to the source code and only requires
a minimal runtime system.

6 Benchmarks

We give a brief overview of the benchmarks submitted to each track.

6.1 Offline Track

There were 30 benchmarks submitted to the offline track by 6 teams - MarQ,
RiTHM-v2.0, OCLR-Check, RV-Monitor, Breach and LogFire. Gener-
ally each team submitted benchmarks from a particular domain:

– 4 benchmarks on Java API properties from RV-Monitor
– 5 benchmarks on resource management from LogFire
– 5 abstract benchmarks using letters from OCLR-Check and 1 from RV-
Monitor

– 5 concurrency benchmarks from RiTHM-v2.0
– From MarQ 1 benchmark on security, 1 on programming and 3 on abstrac-

tions of online systems

The benchmarks varied in complexity of specification and length of log file.
Some log files consisted of a few hundred events whilst others contained tens of
millions of events. Most events were relatively simple, consisting of a small num-
ber (one or two) of parameters and a small number (two to four) of different event
names. The specification languages had a wide range of features leading to a dis-
tinctive collection of specifications. Some of these features (e.g. the second-order
numeric constraints on quantifiers used by RiTHM-v2.0 and scoping modifiers
used by OCLR-Check) led to the modification of specification languages used
by other tools.

6.2 Java Track

There were 13 benchmarks submitted to the Java track by 3 teams - MarQ,
Java-MOP and Mufin. All three teams used AspectJ as an instrumentation
tool, allowing for easy reuse of instrumentation code.

Specifications in this domain from the literature have tended to focus on
properties of Java API. However, this year saw a wide range of domains covered
by submitted benchmarks. Five benchmarks are concerned with properties of
data structures. The rest were from the following varied domains:

– A protocol property about communicating nodes
– A property about the lifetime of channels in multiplexer usage
– A property about a modal device and the correct usage of actions in modes
– A property about resource usage
– A property capturing an abstract notion of SQL injection
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– A marking policy property for an abstract exam system

Whilst there were a variety of domains represented in the properties being mon-
itored, most programs had been written for the competition as short programs
that captured the desired behaviour (or not). This raises the question as to
whether the results are reflective of monitor usage in the real world.

Finally, one submitted property aimed at exposing the different ways mon-
itors for Java programs treated equality i.e. either semantically via equals or
referentially by ==. Benchmarks that test the expressiveness and usability of
tools in this way are helpful in a competition and should be encouraged.

6.3 C Track

There were 18 benchmarks submitted to the C track by 4 teams - E-ACSL,
RiTHM-v2.0, RV-Monitor and RTC. Thirteen of the benchmarks are con-
cerned with C-specific properties such as:

– Out of bounds array access
– Signed overflow
– Memory safety i.e. invalid memory deallocation or reallocation
– Heap-based buffer overflow
– Correct calling of functions such as strcat, strcopy, memcpy

Some of these also incorporate semantic properties such as sortedness of arrays.
Many of the benchmarks were modified versions of those used in static analysis
and two of the tools have this background (E-ACSL and RTC).

The five benchmarks from RiTHMv-2.0 are semantic properties related to
the usage of sockets and threads (and are the online version of the offline con-
currency benchmarks).

7 Reflection

As would be expected in an endeavour of this kind, we have encountered con-
siderable challenges. Here we reflect on these challenges and suggest how they
could be tackled in future iterations of the competition.

7.1 Participant Engagement

The benefit of the competition relies on engagement from participants so that it
can be presented as a reflection of the current status in the field. Therefore it is
necessary to consider how best to encourage participant engagement.

There are two factors that influence a participant’s likeliness to engage with
the competition: a low cost to entry and a benefit to entry.
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Low Cost of Entry. This has been a considerable challenge in both years the com-
petition has run. The burden on participants is relatively high, especially when
compared to competitions such as SAT, SMT and CASC. The effort required is
more similar to that required in SV-COMP. Below we discuss why this level of
effort is required in a competition of this maturity i.e. lack of standardisation.

One key issue is that entering the competition requires the participant to
carry out more tasks than just submitting a monitoring tool. Due to a lack of
standard specification languages, it also involves understanding and translating
specifications written in another language to the participant’s own specification
language. Additionally, due to a lack of standard notions of how monitoring
tools should be executed, it is necessary for participants to write and submit
scripts allowing their tools to be run. In the case of online monitoring requiring
instrumentation, it may be necessary to write such a script for each benchmark.
Addressing these issues of standardisation is key to the future of the competition.

Finally, the organizers of the competition have been attempting to move
towards more automated methods of evaluation. Continuing this automation is
necessary to lift the burden on both the participants and organizers.

Benefit of Entry. Whilst it may be obvious that this competition is important
for the runtime verification community in general, it is also important to ensure
that participants receive some benefit from entering. Only one tool can claim to
be a winner in each track, and in some cases tools may be confident that they
will not win before entry. Therefore, a benefit beyond the chance of winning is
required.

One suggestion is that the future editions of the competition invite partici-
pants to submit 2-page system description papers that are included in the pro-
ceedings of the conference. This is a practice taken by some other competitions
and acts as an obvious benefit to entry.

7.2 Engaging with Static Analysis Based Tools

In recent years, the runtime verification community has made a special effort to
engage with the static analysis community and this effort has been successful. It
is an exciting result that we are seeing tools with roots in static analysis adopting
runtime verification techniques and participating in the competition. However,
it is therefore necessary to consider how this difference in viewpoint effects the
design of the competition.

One point that was raised during the competition was that tools that perform
static analysis do not typically deal with a concepts of events and traces and
extensions to dynamic analysis typically involve introducing runtime assertions
and additional code to track data values, rather than extracting events.

7.3 The C Track

Whilst the areas of runtime verification for log file analysis and monitoring Java
programs have received a reasonable amount of attention in the literature, there
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has not been as much focus on monitoring C programs. Additionally, C programs
are more likely to be targeted by tools coming from the domain of static analysis,
as mentioned above. Consequently, there continues to be issues surrounding the
definition of benchmarks and monitors in the C track.

8 Concluding Remarks

This report was written during the training phase. Once this phase is complete,
the organizers will evaluate all the submitted monitors using the scoring mech-
anism introduced in [2] and outlined in Sect. 3.5. The results of the competition
are expected to be announced during the RV 2015 conference in Vienna, Austria.
This report is published to assist future organizers of CRV to build on the efforts
made to organize CSRV 2014 and CRV 2015.

Acknowledgment. The organizers would like to thank Christian Seguy from the IT
team of Laboratoire d’Informatique de Grenoble for his help on setting up the the
repository hosting the benchmarks. The organizers are also grateful to Yuguang Zhang
from the DataMill team for setting up a convenient and powerful evaluation infrastruc-
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Action IC1402 Runtime Verification beyond Monitoring (ARVI).
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Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

2. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on
software for runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 1–9. Springer, Heidelberg (2014)

3. DeAntoni, J., Mallet, F.: Timesquare: treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012). https://hal.inria.fr/hal-00688590

4. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,
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Abstract. In this paper we present the RERS challenge 2015, a free-
style program analysis challenge on reactive systems to evaluate the
effectiveness of different validation and verification techniques. It brings
together researchers from different areas including static analysis, model
checking, theorem proving, symbolic execution, and testing. The chal-
lenge characteristics and set-up are discussed, while special attention is
given to the Runtime Verification track that was newly introduced.

1 Introduction

As the name RERS1 – being an acronym for Rigorous Examination of Reactive
Systems – suggests, the focus of this challenge lies on reactive systems. These
were chosen due to their being omnipresent in industry and research, mani-
festing themselves as, e.g., web services, decision-support systems, or logical
controllers. Validation techniques for reactive systems are as diverse as their
appearance and structure. The used techniques comprise various forms of pro-
gram analysis [16], symbolic execution [13], software model checking [3,6,10], sta-
tistical model checking [14], model-based testing [5], inference of invariants [4,8],
automata learning [18], run-time verification [15], and monitoring [9], often tai-
lored to rather special assumptions about the respective environments. Thus,
it is almost impossible to compare these techniques in a common setting, let
alone to establish clear application profiles as a means for recommendation. The
RERS challenge aims at overcoming this situation by providing a forum for
experimental profile evaluation based on specifically designed verification tasks.
The benchmarks are automatically synthesized from chosen properties and tai-
lored to exhibit selected language features which allows us to generate various
grades of difficulty. A characteristic of the RERS challenge is that no restrictions
are placed with respect to computational means, in terms of both hardware and
software, and that the tools are not required to be fully automated, allowing
participants to interact with them during the challenge phase. This creates a
set-up that makes it difficult to define a global ranking. For this reason, we have
1 RERS originally was an acronym for Regular Extrapolation of Reactive Systems.

Although the acronym remained, the challenge itself has evolved towards a broader
focus, which lead to a change of the name and scope.

c© Springer International Publishing Switzerland 2015
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several rankings for different purposes: for example, some are purely numerical,
simply based on a “multiple choice” test which may be solved in a “free-style”
fashion, whereas others consider the approach taken, the underlying ideas, and
the concrete realization. In the remainder of this paper we will describe the
challenge’s characteristics (Sect. 2) and the benchmarks generated (Sect. 3). In
Sect. 4, we will take a closer look at the Runtime Verification-style challenge,
and describe what had to be adapted to meet the communities needs.

2 Challenge Set-Up

At first sight, real world applications would be the most attractive challenge
problems. However, they pose two intrinsic problems: it is hardly possible to
have a guaranteed property profile, and it is very difficult to tailor the degree of
difficulty. Moreover, we experienced that companies are very hesitant to provide
their code.

In order to avoid these drawbacks, RERS challenge problems are artificially
constructed to satisfy a pre-selected set of properties: our corresponding bench-
mark generator automatically synthesizes challenge problems directly from the
considered set of properties, while it at the same time obeys structural restric-
tions for tailoring the degree of difficulty [19].

In the following, we sketch the programs and the properties we use in the
verification tasks. Further details and the actual challenge problems can be found
on the RERS website [1].

2.1 Properties

For each challenge problem, there exists a set of 200 properties that need to be
analyzed. Points are awarded for correctly analyzed properties, with mistakes
resulting in negative points. No answer given for a certain property leaves the
score unchanged. The overall set of properties is divided into two categories,
each of which containing 100 properties.

Reachability Properties. The properties are implicitly defined by 100 error
codes (exceptions or failed assertions, with identifying messages or labels) dis-
tributed across the source code. Some value assignments to internal state vari-
ables correspond to error states, which cause the system to trigger the respective
error condition. Not all of those error states are reachable, and the goal is to
check which of these error states can in fact be reached (it is not expected
to provide an access sequence). Those errors come in the form of either an
IllegalStateException (Java) or a specific error label with a failed assertion
(C). The label error23 in Fig. 1a is an example for this class of properties.

LTL Properties. An execution trace of a reactive system consists of a sequence
of inputs and outputs, each from a finite alphabet. For each of the systems, a file
is provided, containing a set of 100 LTL properties for which the contestants have
to check whether they are satisfied by all traces, or if there are traces that violate
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them (it is not expected to also provide these traces as witness). The properties
are given both as an LTL formula and as a textual description. To allow an
intuitive mapping from LTL expressions to textual descriptions, the properties
to be checked are closely adhering to the patterns in property specifications from
the literature [7].

The LTL formulae are given in a standard syntax, and make use of the
following temporal operators:

– Xφ (next): φ has to hold after the next step,
– Fφ (eventually): φ has to hold at some point in the future (or now),
– Gφ (globally): φ has to hold always (including now),
– φUψ (until): φ has to hold until ψ holds (which eventually occurs),
– φWUψ (weak until): φ has to hold until ψ holds (which does not necessarily

occur), and
– φRψ (release): φ has to hold until ψ held in the previous step.

The atomic propositions correspond to input and output symbols, where the
prefix i is used for input and o is used for output symbols, to allow a clear
distinction. For example, G (! oU) means that output U never occurs. In other
words, the expression states that it is not possible – by any sequence of input
events – to make the system produce the output action U.

3 White-Box Problems

White-box problems have a long tradition in the RERS challenge. The problem
instances are scaled in several dimensions: size of the internal state space, number
of inputs, number of abstract program states, used data types and language
constructs (from mere assignments to pointer arithmetics). All problems are
generated in C and Java. Labels in the code are used to encode reachability
properties, more complex properties are written as LTL formulae over inputs
and outputs (cf. Sect. 2.1). The challenge task is to answers properties according
to best knowledge, without restriction to a specific tool or technique.

The problems are programs consisting of a main method with a while(true)
loop (cf. Fig. 1b), in which an input is read and passed to a method that calcu-
lates the updates on internal states and generates an output. In the most basic
form, the data types occurring in the programs are restricted to integers. The
problems are designed in reminiscence of controller software (e.g., for PLCs [2]),
which also typically consists of a loop that is executed in each cycle, and in which
the internal state is modified and outputs are produced according to inputs such
as sensor readings.

Figure 1a shows a source code snipped of the C version of a white-box prob-
lem. The program logic is contained in a method called calculate output,
which is a sequence of (nested) if-else blocks. The state of the system is rep-
resented by a set of variables. At the bottom of this function, a sequence of if
statements checks whether the system is in an invalid state. If this is the case,
an error is raised through a failed assertion. To identify the specific error in the
source code, the assertion is labeled with the error ID.
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int x1 = 1 ;
int x2 = 2 ;
. . .

int ca l c ou tput ( int input ) {
i f ( input == 3 &&

( x7 != 0 && x0 == 9)) {
x9 = 4 ;
return 24 ;

}
i f ( ( x23 == 0 && x3 != 0) ) {
e r ro r23 : a s s e r t ( 0 ) ;

}
. . .

}

(a) Variables and logic in C

int main ( ) {
while (1 ) { // main i /o−l oop
int input , output ;
s can f ( ”%d” , &input ) ;
output = ca l cu l a t e ou tpu t ( input ) ;
i f ( output == −2) {
f p r i n t f ( s tde r r , ” I nva l i d : %d\n” ) ;

} else i f ( output != −1) {
p r i n t f ( ”%d\n” , output ) ;

}
}

}

(b) Main method with infinite loop

Fig. 1. White-box problem example in C

From 2014 to 2015. In the 2014 version of the RERS challenge, we observed
that a large number of inserted errors were found at the same level and in close
proximity of only a few system states. The problems were also considered as
being too large, forcing the participants to guess a large share of the properties,
as they could not be properly computed in full. Therefore, in 2015, the code
size was drastically reduced by decreasing the number of state variables. The
problem of unevenly distributed errors was solved by inserting some of them
with the help of counter variables instead of explicitly coded transitions. This
measure increases the effective state space, without increasing the size of the
source code itself.

4 Runtime Verification-Style Track

Generally speaking, the RERS white-box problems could be used to conduct run-
time verification without further changes. The problem with this is that mon-
itoring the execution of a problem can only detect property violations in the
exhibited behavior, but cannot prove the absence of such violations in all pos-
sible executions. Instead, a test suite that steers the program execution in such
a fashion that the behavior it exhibits is sufficient to decide whether properties
are validated is required. This test suite can only be provided by the challenge
organizers, and will be made available only 2 days before the challenge dead-
line. To complicate this track for white-box analyzers and testers, who benefit
extremely from an analysis time of 2 months, the problems had to be adapted.

To ensure that the effective analysis time for those participants is reduced,
while at the same time allowing RV-style participants sufficient time to instru-
ment the code for monitoring, we decided to withhold a part of the program’s
logic to be released only 2 days before the challenge deadline. The idea behind
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Fig. 2. Monitoring program example in C

this is that the monitoring code can be inserted into the main body of the
problem and only the internal logic of some external methods is going to be
replaced. To explain this idea in detail, let us take a look at the code extraction
from the challenge problems in Fig. 2. The original problem, which is basically a
white-box problem as described in Sect. 3, is split into two files (problemX and
problemXExternal) by moving some of the internal logic in form of state vari-
ables to another file and replacing variable accesses and assertions with external
method calls. All changed code parts are marked in grey. After the external file
is created, the internal logic is altered, so that the program is still executable
but exhibits different behavior, thus no longer adhering to the specification. This
can be seen in the lower part of Fig. 2.

The challenge task for monitoring track can be summarized as follows:

1. Instrument the problemX file of the problem with monitors for all LTL prop-
erties in the corresponding property file.

2. Build a runtime environment suitable for their monitoring needs, that allows
to feed input sequences in form of strings to the program. To test the con-
struction, it is suggested to feed random input sequences generated from the
input alphabet.
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3. Upon release of the original external file: run your monitors with the provided
set of input sequences and generate the solutions according to the instructions
from the RERS website [1].

At this point, it is important to acknowledge that the reachability properties are
not part of the Runtime Verification challenge part, as these can be decided by
merely executing the sequences. Another important fact is that the provided set
of input sequences is guaranteed to exhibit all finitely provable violations of the
provided LTL properties. Violations that require witnesses of infinite length are
not considered for the score.

We are looking forward to a discussion with the community to make the
RERS challenge more attractive for participants with a background in Runtime
Verification. A perspective for this kind of challenge would be to ask for certain
values of variables or the reachability of arbitrary labels, which ranges beyond
the analysis of the input/output behavior alone.

5 Conclusion and Perspectives

The RERS challenge 2015 was the fourth successfully conducted iteration in a
series of challenges. Each time, the challenge scenario was adapted and refined
after fruitful discussions with the participants. This lead to productive enhance-
ments of the generation framework, which in turn enabled better assessment of
the strengths and weaknesses of the participants’ tools.

While the benchmarks of the first challenge, held in 2012 [11], contained only
simple programming language features and guarded if-else statements, the
2013 challenge [12] featured more complex control structures and additional fea-
tures in multiple languages. It had tracks for black-box, white-box and grey-box
(a mixture of the former two, with partially unknown code passages) problems.
The 2014 challenge focused mainly on small fundamental changes, like larger
input alphabets and overall denser but smaller program code.

With the 2015 challenge, we attempted to attract people from the Runtime
Verification community by creating problems that can be solved using monitor-
ing. For future challenges, we hope to integrate more interesting language features
and a greater variety of supported programming languages, as well as a track for
concurrent benchmarks based on the generation process developed in [17].
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