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Abstract Protection of systems and computer networks against novel, unknown
attacks is currently an intensively examined and developed domain. One of pos-
sible solutions to the problem is detection and classification of abnormal behaviors
reflected in the analyzed network traffic. In the presented article we attempt to resolve
the problem by anomaly detection in the analyzed network traffic described with the
use of five different statistical models. We tested two groups of models which dif-
fered in autocorrelation dependences. The first group was composed of AR, MR and
ARMA models which are characterized by short memory dependences. The second
group, on the other hand, included statistical attempts described with ARFIMA and
FIGARCH models which are characterized by long memory dependences. In order
to detect anomalies in the network traffic we used differences between real network
traffic and its estimated model. Obtained results of the performed experiments show
purposefulness of the conducted comparative study of exploited statistical models.
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1 Introduction

For many years, there have been used safety systems based on formerly isolated
and classified patterns of threats, named signatures. Anti-virus software, systems
for detection and breaking-in counteraction and protection against information leaks
are just examples from a long and diversified list of application of those techniques.
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Nevertheless, there is one aspect in common, namely, they are able to protect systems
and computer networks from known attacks described by the mentioned patterns.
However, does lack of traffic matching known signatures mean there is no threat?

A means to defend from novel, unknown attacks is a rather radical change in
operation concept. Instead of searching for attack signatures in network traffic it is
necessary to browse for abnormal behavior which is a deviation from the normal
traffic characteristic. The strength of such an approach is visible in solutions which
are not based on knowledge a priori of attack signatures but on what does not respond
particular norms, profiles of the analyzed network traffic. The techniques based on
the above mentioned assumptions should be able to detect both: simple attacks of
DoS type (Denial of Service) orDDoS (DistributedDenial of Service), and intelligent
network worms up to hybrid attacks which are a combination of numerous differ-
ent destruction methods. The consequence of such kind of attacks is inception of
network anomalies, which creates a possibility to detect them, or even prevent from
unwanted actions. The hardest challenge, however, is differentiation between dan-
gerous behavior and normal movement in its initial stage in order to limit the usage
of network resources. Anomalies are abnormalities, variations from the adopted rule.
Anomalies in network traffic can signify device damage, an error in software or attack
on resources and network systems. The essence of anomaly disclosure in computer
networks is therefore detecting abnormal behaviors or actions which in particular
can constitute a source of a potential attack [6]. One of possible solutions to the pre-
sented problem is implementation ofAnomalyDetection Systems. They are currently
used as one of the main mechanisms of safety supervision in computer networks.
Their action consists in monitoring and detecting attacks directed onto information
system resources on the basis of abnormal behaviors reflected in parameters of net-
work traffic. Anomaly detection methods have been a topic of numerous surveys and
review articles. In works describing the methods there were used techniques consist-
ing in machine learning, neural networks, clustering techniques and expert systems.
At present, anomaly detection methods that are particularly intensively developed
are those based on statistical models describing the analyzed network traffic [6].
The most often used models are autoregressive ARMA or ARIMA, and Conditional
Heteroscedastic Models ARCH and GARCH, which allow to estimate profiles of a
normal network traffic [18]. In the present article we propose using estimation of
statistical models AR, MR, ARMA, ARFIMA and FIGARCH for defined behavior
profiles of a given network traffic. The process of anomaly detection (a network
attack) is realized by comparison of parameters of a normal behavior (predicted
on the basis of the tested statistical models) and parameters of real network traffic.
This paper is organized as follows. After the introduction, in Sect. 2 we present the
definition of long and short memory dependence. In Sect. 3 the different statistical
models for date traffic prediction are described in details. Then, in Sect. 4 the Anom-
aly Detection System based on AR, MR, ARMA, ARFIMA and FIGARH model
estimation is shown. Experimental results and conclusion are given thereafter.
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2 Definition of Long and Short-Memory Dependence

Long memory dependences manifest themselves in the existence of autocorrelations
of elements creating the given time series. In most cases it is high-order autocor-
relation. This means that in the examined series there is a dependence between the
observations—even those distant in time. This phenomenon is called long memory
and was discovered by a British hydrologist Hurst [13]. In case of long memory exis-
tence the autocorrelation function is slowly falling at hyperbolic pace. The time series
with long memory feature has in the spectral domain distribution of low frequency.
Short memory time series, however, show essential autocorrelation of low frequency
only. This means that observations that are separated even by a relatively short time
period are no longer correlated. Short memory series are easy to recognize due to
the fact that in the time domain the autocorrelation function disappears quickly, and
in the spectral domain there are distributions of high frequency. It is said that the
stochastic process has long memory with parameter d if its spectral density function
f (λ) meets the condition

f (λ) ∼ cλ−2d , when λ → 0+, (1)

where c is constant, and symbol ∼ means that the relation of left and right side is
heading to one. When the process meets that condition and when d > 0 then its
autocorrelation function is disappearing in hyperbolic manner [3, 4, 18] i.e.

ρk ∼ cρk2d−1, when k → ∞. (2)

Parameter d describes the memory of the process. When d > 0, the spectra
density function in unlimited in surrounding 0. It is then said that the process has a
long memory. When d = 0, the spectral density is limited in 0, and the process is
described as having short memory. When d < 0, then the spectral density equals 0
and the process shows negative memory and is named anti persistent [10, 12].

3 Statistical Models for Network Traffic Prediction

The tested network traffic is represented by means of time series describing variance
of parameters characterizing the number of received and sent TCP, UDP and ICMP
packages within a time unit. A natural way of describing such series are statistical
models which are based on autoregression and moving average in relation to differ-
ently realized data variances and autocorrelation of elements creating the given time
series.
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3.1 Short-Memory Models

In order to describe the properties of short memory time series (essential autocorre-
lations of low order only) the approach that is often applied is the use of solutions
known as autoregression model AR, moving averageMR andmixed models ARMA.
They can be used for modeling stationary series, i.e. series where there are only ran-
domfluctuations around the average, or non-stationary reducible to a stationary form.
Their composition is based on autocorrelation phenomenon, i.e. on correlation of the
predicted variable value with values of the same variable but delayed in time [5].

Autoregressive ModelNumerous time series are composed of interdependent obser-
vations which means that it is possible to estimate the models coefficients which
describe the following elements of the series on the basis of the delayed in time
previous elements of the series

(
Yt−1, Yt−2, . . . , Yt−p

)
, and random component εt

in current period t . The above can be presented with the use of equation of autore-
gression of the order (p) as AR(p)

Yt = c0 + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + εt , (3)

where φ1,φ2, . . . ,φp describe the models parameters, c0 is invariable and εt
(
0,σ2

)

is the white noise process with zero mean and variance σ2. AR is a process with
memory of previous realizations of the series. Such a process is called stationary,
when there is a condition p > 1 and all roots of the polynomial W (z) = 1− φ1z −
φ2z2 + · · · − φpz p of each module are greater than one. For such a model the
prediction is built step by step by recurrent substitution of successive values. With
stationary processes AR(p) such a prediction is heading for the average value of the
process, and the error variance of the forecast aims at the variance of the process.

Moving Average Model It is a linear model in which the realization of Yt in the
current period depends on realization of the random component εt in the current
period and q in subsequent previous periods. It can be presented by means of an
equation of moving average of order q as M A(q)

Yt = εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q , (4)

where θ1, θ2, ..., θp describe the models parameters, and εt ∼ (
0,σ2

)
is the white

noise process with zero mean and variance σ2. M A is a process with memory of pre-
vious values of the random component. Every M A process which can be reduced to
a stationary autoregressive process is called invertible. In general case this condition
is fulfilled when the roots of the polynomial W (z) = 1+θ1z +θ2z2 +· · ·+θpzq lie
outside the unit circle. The predictionmade with the use of M A(q)model is obtained
in the recurrent way, as it seeks the average value.

Autoregressive Moving Average Model For a stationary series, instead of applying
separate models of AR andMR classes, in order to describe the connections between
observations from the subsequent periods we use autoregressive models of moving
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average [3], i.e. ARM A(p, q) models with delay order (p, q) written as

Yt = φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (5)

where φ1,φ2, . . . ,φp, and θ1, θ2, . . . , θp describe the models parameters, and εt ∼(
0,σ2

)
is the white noise process with zero mean and variance σ2. As a result, by

means of a lower number of AR and M R components than separately for AR model
and M R model, any linear process can be described, which is beneficial from the
perspective of the models estimation possibility and its use in predicting. ARM A
process contains properties of both AR and M R which is most easily visible in
decomposition of the AC F function. ARM A model generates stationary process
if its components are: stationary AR and reversible M A. The prediction made by
means of ARM A(p, q) model is obtained in a recurrent way.

3.2 Long-Memory Models

An interesting approach towards describing the features of long memory time series
was the use of solutions with movable autoregressive averaging in the process of
fractional differentiation. In a result ARF I M A (Fractional Differenced Noise and
Autoregressive Moving Average) model was created [10], which is a generalization
of ARM A and ARI M A models. Another approach towards time series description
was including conditional variance dependence of the process from its previous val-
ues using the ARC H model (Autoregressive Conditional Heteroskedastic Model)
introduced by Engel [6]. Generalization of this approachwas the F I G ARC H model
(Fractionally Integrated G ARC H ), which autocorrelation function of squared resid-
uals of themodel decreases in a hyperbolicway. Such a behavior of an autocorrelation
function enables naming F I G ARC H a model of long memory in the context of the
autocorrelation function of squared residuals of the model.

3.3 Introduction to ARFIMA Model

The Autoregressive Fractional Integrated Moving Average model called AR−
F I M A (p, d, q) is a combination Fractional Differenced Noise and Auto Regres-
sive Moving Average which is proposed by Grange, Joyeux and Hosking, in order
to analysis the Long-Memory property [10, 12].

The ARF I M A(p, d, q) model for time series Yt is written as:

�(L)(1 − L)d yt = �(L)εt , t = 1, 2, ...�, (6)
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where yt is the time series, εt ∼ (0,σ2) is thewhite noise process with zeromean and
variancesσ2,�(L) = 1−φ1L−φ2L2−· · ·−φp L p is the autoregressive polynomial
and �(L) = 1 + θ1L + θ2L2 + · · · + θp Lq is the moving average polynomial, L
is the backward shift operator and (1 − L)d is the fractional differencing operator
given by the following binomial expansion:

(1 − L)d =
∞∑

k=0

(
d
k

)
(−1)k Lk (7)

and (
d
k

)
(−1)k = �(d + 1)(−1)k

�(d − k + 1)�(k + 1)
= �(−d + k)

�(−d)�(k + 1)
, (8)

where �(∗) denotes the gamma function and d is the number of differences required
to give a stationary series and (1− L)d is the dth power of the differencing operator.
When d ∈ (−0.5, 0.5), the ARF I M A(p, d, q) process is stationary, and if d ∈ (0,
0.5) the process presents long-memory behavior.

Forecasting ARF I M A processes is usually carried out by using an infinite autore-
gressive representation of (1), written as

∏
(L)yt = εt , or

yt =
∑∞

i=1
πi yt−i + εt , (9)

where
∏

(L) = 1 − π1L − π2L2 − · · · = �(L) (1 − L)d �(L)−1. In terms of
practical implementation, this form needs truncation after k lags, but there is no
obvious way of doing it. This truncation problem will also be related to the forecast
horizon considered in predictions (see [12]). From (9) it is clear that the forecasting
rulewill pick up the influence of distant lags, thus capturing their persistent influence.
However, if a shift in the process occurs, this means that pre-shift lags will also
have some weight on the prediction, which may cause some biases for post-shift
horizons [8].

3.4 FIGARH Model

The model enabling description of long-memory in variance series is F I G ARC H
(p, d, q) (Fractionally Integrated G ARC H ) introduced by Baillie et al. [1]. The
F I G ARC H(p, d, q) model for time series yt can be written as:

yt = μ + εt , t = 1, 2, ...�, (10)

εt = zt

√
ht , εt |�t−1 ∼ N (0, ht ) , (11)
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ht = α0 + β (L) ht +
[
1 − β (L) − [1 − φ (L)] (1 − L)d

]
ε2t , (12)

where zt is a zero-mean and unit variance process, ht is a positive time dependent
conditional variance defined as ht = E

(
ε2t |�t−1

)
and �t−1 is the information set

up to time t − 1.
The F I G ARC H(p, d, q) model of the conditional variance can be motivated as

ARF I M A model applied to the squared innovations

ϕ (L) (1 − L)d ε2t = α0 + (1 − β (L)) ϑt , ϑt = ε2t − ht , (13)

where ϕ (L) = ϕ1L − ϕ2L2 − · · · − ϕp L p and β (L) = β1L + β2L2 + · · · + βq Lq

and (1 − β (L)) have all their roots outside the unit circle, L is the lag operator and
0 < d < 1 is the fractional integration parameter. If d = 0, then FIGARCH model
is reduced to GARCH; for d = 1 though, it becomes IGARCH model. However,
FIGARCH model does not always reduce to GARCH model. If GARCH process is
stationary in broader sense, then the influence of current variance on its forecasting
values decreases to zero in exponential pace. In IGARCH case the current vari-
ance has indefinite influence on the forecast of conditional variance. For FIGARCH
process the mentioned influence decreases to zero far more slowly than in GARCH
process, i.e. according to the hyperbolic function [1, 18]. In practical implementation
of prediction FIGARH model see [18].

4 Parameters Estimation and Choice of Model

The aim of searching for a useful forecasting model is not utilization of the greatest
number of parameters which will most accurately describe variance of the analyzed
time series. It is due to the fact that too big matching may embrace the description
not only of the part of the process called signal but also of random noise, for which in
finished trials one can discern as random regularity. The objective of the research is
rather discovery of such a model which will describe the most important properties
of the analyzed time series by means of a finite number of statistically essential
parameters [7]. Themost oftenusedmethodof parameter estimationof autoregressive
models is theMaximumLikelihood Estimation (MLE). The basic problem appearing
while using this method is the necessity to define the whole model and consequently
sensitivity of the obtained estimator to the presumptive errors in the specification
of polynomials AR and MA, which are responsible for the process dynamics [9].
There is no universal criterion for the choice of themodel. Usually, themore complex
the model, the bigger is its likelihood function. Therefore, there is a searching for a
compromise between the number of parameters occurring in the model and the value
of the likelihood function. The choice of a sparing form of the model is performed
on the basis of information criteria such as Akaike (AI C) or Schwarz (SI C). In our
article, for parameter estimation and choice of the model, we utilized the Maximum
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LikelihoodMethod. It was due to its relative simplicity and computational efficiency.
In order to estimate the order of the AR and M A models we used the autocorrelation
function AC F and P AC F . For ARM A model, however, we used Box-Jenkins
procedure [2]. For ARF I M A model we applied H R estimator (described in the
Haslett and Rafterys work [11]) and automatic models order selection algorithm
based on information criteria (see Hyndman and Khandakar [14]). For estimation of
F I G ARC H model we used the methodology described in the article [18].

5 Experimental Results

Experimental results are based on traffic features set taken from SNORT [17] based
preprocessorwhichwe proposed in [16].We have used 26 traffic features presented in
Table1. For algorithms evaluation we used Kali Linux [15] tools for simulating real

Table 1 Network traffic
features used for experiments

f1 number of TCP pockets

f2 in TCP pockets

f3 out TCP pockets

f4 number of TCP pockets in LAN

f5 number of UDP datagrams

f6 in UDP datagrams

f7 out UDP datagrams

f8 number of UDP datagrams in LAN

f9 number of ICMP pockets

f10 out ICMP pockets

f11 in ICMP pockets

f12 number of ICMP pockets in LAN

f13 number of TCP pockets with SYN and ACK flags

f14 out TCP pockets (port 80)

f15 in TCP pockets (port 80)

f16 out UDP datagrams (port 53)

f17 in UDP datagrams (port 53)

f18 out IP traffic [kB/s]

f19 in IP traffic [kB/s]

f20 out TCP traffic (port 80) [kB/s]

f21 in TCP traffic (port 80) [kB/s]

f22 out UDP traffic [kB/s]

f23 in UDP traffic [kB/s]

f24 out UDP traffic (port 53) [kB/s]

f25 in UDP traffic (port 53) [kB/s]

f26 in TCP traffic (port 4444)
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world attacks in controlled network environment (for example: Application specific
DDos, various port scanning, DoS, DDoS, Syn Flooding, pocket fragmentation,
spoofing and others).

For anomaly detection we used statistical algorithms with short and long memory
dependence: ARM A, F I G ARH and ARF I M A. In Tables2 and 3 there are results
of DR [%] and F P [%] for mentioned three algorithms. Most promising results in
terms of DR and F P were achieved for ARF I M A long memory statistics (with FP
less then 10%).

Table 2 Detection Rate DR [%] for a given network traffic features

Feature ARMA FIGARH ARFIMA

f1 4.24 5.40 6.26

f2 9.22 10.20 12.24

f3 9.22 10.20 12.24

f4 9.22 10.20 12.24

f5 9.22 10.20 12.24

f6 0.00 0.00 0.00

f7 0.00 0.00 0.00

f8 30.52 32.20 35.64

f9 88.68 90.42 96.52

f10 87.23 90.24 95.45

f11 0.00 0.00 0.00

f12 78.82 80.24 82.24

f13 9.22 10.20 12.24

f14 9.22 10.20 12.24

f15 9.22 10.20 12.24

f16 0.00 0.00 0.00

f17 4.42 5.40 6.26

f18 9.22 10.20 12.24

f19 9.22 10.20 12.24

f20 4.42 5.40 6.26

f21 9.22 10.20 12.24

f22 0.00 0.00 0.00

f23 0.00 0.00 0.00

f24 0.00 0.00 0.00

f25 0.00 0.00 0.00

f26 75.24 78.00 80.00
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Table 3 False Positive FP [%] for a given network traffic features

Feature ARMA FIGARH ARFIMA

f1 6.01 5.24 4.22

f2 5.85 5.45 4.12

f3 5.92 5.24 4.15

f4 5.72 5.22 4.11

f5 5.24 4.28 3.54

f6 4.42 3.34 2.23

f7 7.24 6.75 5.98

f8 6.15 5.24 4.15

f9 6.85 6.22 5.05

f10 2.53 1.46 0.48

f11 4.24 3.52 2.56

f12 2.18 1.04 0.05

f13 6.21 5.46 4.14

f14 5.12 4.45 3.24

f15 5.08 4.38 3.32

f16 2.11 1.24 0.02

f17 2.25 1.82 0.39

f18 5.12 4.55 3.82

f19 5.14 4.62 3.26

f20 6.22 5.34 4.55

f21 5.32 4.22 3.11

f22 3.17 2.46 1.60

f23 5.77 4.44 3.42

f24 0.00 0.00 0.00

f25 1.12 0.45 0.02

f26 1.12 0.45 0.02

6 Conclusion

Ensuring a sufficient level of safety to resources and information systems is a ques-
tion that is currently intensively surveyed and developed by many research centers
in the world. A growing number of novel attacks, their global reach and level of
complexity enforce dynamic development of network safety systems. Most often
implemented mechanism aiming to ensure security are methods of detection and
classification of abnormal behaviors reflected in the analyzed traffic. In the present
article, we compare properties of predicated analyzed statistical models in terms of
their effectiveness to detect anomalies in network traffic. The analyzed models were
those of a long and short memory reflected in the autocorrelation strength of elements
composing a given time series. Parameter estimation and identification of the range
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of the model were realized as a compromise between the models coherence and size
of its estimation error. While realizing implementation processes of the described
models there were achieved diverse statistical estimations for the analyzed signals
of the network traffic. In order to detect anomalies in the network traffic we used
differences between the real network traffic and its estimated model for the analyzed
parameters characterizing number of received or sent TCP, UDP and ICMP packages
within a time unit. The results obtained after the performed experiments show advan-
tage of predictive models ARFIMA and FIGARCH in the network traffic anomaly
detection.
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