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Abstract. This work presents new approaches to minimize the number
of test frequencies for linear analog circuits. The cases of single and mul-
tiple fault detection regions for multiple test measures are considered.
We first address the case when the injected faults have a single detection
region in the frequency band. We show that the problem can be formu-
lated as a set covering problem with a matrix having the consecutive-ones
property for which the network simplex algorithm turns out to be very
efficient. A second approach consists in modeling the problem by means
of an interval graph, leading to its solution with a specific polynomial-
time algorithm. A case-study of a biquadratic filter is presented for
illustration purposes. Numerical simulations demonstrate that the two
different approaches solve the optimization problem very fast. Finally,
the optimization problems arising from multiple detection regions are
modeled and solution approaches are discussed.

Keywords: Set covering problem - Consecutive-ones property - Analog
circuit testing - Linear programming - Interval graphs

1 Introduction

Testing of analog circuits to verify their functionality is a time consuming and
expensive task. In order to reduce costs, testing for the presence of faults that
affect the device structure leads to more structured and cheaper test sets.
Although the number of faults to be tested may indeed be very large, a reduced
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set of tests that are simple to apply may be sufficient to achieve high fault cov-
erage values. There is today a pressing need from the Semiconductors Industry
to provide these fault coverage measures and optimized tests, especially in the
context of SoC (System-on-Chip) devices that embed digital and mixed-signal
blocks in a single chip.

Multi-frequency tests (i.e., multi-tone sinusoidal signals) have been classically
considered for the test and diagnosis of linear analog devices such as analog
filters. Since the effect of parametric and catastrophic faults varies as a function
of frequency, it is possible to derive a minimal set of test frequencies either for
the detection or for the diagnosis of all potential faults. To optimize the set
of test frequencies, the approaches based on sensitivity analysis have typically
addressed parametric faults [1,2]. However, these approaches are not accurate for
very large deviations, such as those that result from catastrophic faults. On the
other hand, the approaches based on fault simulation can handle catastrophic
faults, but at the expense of very time consuming simulations when realistic
faults at transistor-level are considered. Today, it is evident that fault simulation
of analog circuits is becoming essential in order to optimize test sets relying on
new techniques to accelerate fault simulation.

In this context, this work proposes a new technique for the optimization of
multi-frequency tests for linear analog circuits. Fault simulation is used to obtain
the frequency intervals for the detection of each fault. New efficient algorithms
are then presented for the selection of the optimal set of test frequencies within
these intervals for the detection of all faults. A simple case-study is used to illus-
trate the algorithms. Numerical simulations with randomly generated problem
instances demonstrate the good time complexity of the proposed algorithms,
with a large improvement over previous approaches [3]. We notice that the test
optimization algorithms are general, applicable to any case-study requiring an
optimization of multi-frequency tests based on fault simulation data. This tech-
nique is today feasible for analog filters, but it is also applicable to other analog
devices such as analog-to-digital converters or radio-frequency front-ends requir-
ing multi-tone tests, provided that fault simulation data are made available.

This work is organized as follows: in Sect. 2, the mathematical formulation of
the Set Covering Problem (SCP) is reviewed and some definitions are given. In
Sect. 3, we present the mathematical formulation of the problem of minimizing
the number of frequency intervals necessary to detect the faults of an analog
circuit, and we study the specific structure of the related coefficient matrix. In
Sect. 4, we present two approaches for solving the problem: the Linear Program-
ming (LP) approach and the interval graph approach, and a numerical example
is given for illustration purposes. In Sect.5, we present a mathematical formu-
lation of the problem to minimize the number of test measures necessary for
detecting the faults of an analog circuit. In Sect. 6, we present a case-study of
testing a biquadratic filter. In Sect. 7, we carry out a large-scale numerical study
in order to compare both approaches and to evaluate their time complexity.
Finally, Sect. 8 concludes the work and provides some perspectives.
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2 The Set Covering Problem

In this section, we present the set covering problem, we cite the existing methods
for solving this problem and some of its applications. Finally, we present the
corresponding mathematical model and some definitions.

2.1 Overview

The Set Covering Problem is one of the most important models in combinato-
rial optimization. Indeed, a wide range of real-world problems can be modeled
as SCP, namely: railway crew scheduling, airline crew scheduling, facility loca-
tion, etc. The practical importance of the SCP has motivated many researchers
to develop efficient algorithms and heuristics for finding good solutions in rea-
sonable time. We can cite: exact algorithms based on branch-and-bound or
branch-and-cut [4], greedy heuristics [5], Lagrangian-based heuristics [6], genetic
algorithms [7], etc. In order to test the efficiency of the proposed algorithms,
there exists a library of SCP Benchmarks (Beasley’s OR Library [8]).

The set covering problem is known to be NP-hard [9]. However, there exist
some particular forms of the SCP which are polynomial-time solvable such as
the SCP with a constraint matrix having the consecutive-ones property (i.e.,
the ones in each row appear consecutively). This particular case, denoted in the
following by SCP-C1P, can be solved efficiently with LP algorithms.

2.2 Some Definitions

Let M ={1,...,m} and N = {1,...,n} be two sets of indices. Let A = (a,;,i €
M, j € N) be a binary (m xn)-matrix and ¢ = (¢;, j € N) be an integer n-vector.
The value ¢;,j € N, may represent the cost of column j. We assume without
loss of generality that c¢; > 0 for all j € N. We say that a column j € N covers a
row ¢ € M if a;; = 1. A set S C N is called a cover if each row i € M is covered
by at least one column j € S. The problem of finding a cover S of minimum cost
can be formulated as an ILP (Integer Linear Programming) problem as follows:

min z = c’z, (1la)

subject to Az > 1,,, = € {0,1}", (1b)

where 1,, is the m-vector of ones. When ¢; = 1, for all j € N, problem (1) is
called a unicost set covering problem.

Definition 1 ([10]).

e A block of 1’s (block of 0’s) in a row of a binary matriz A is a maximal set
of consecutive I1-entries (0-entries) in this row.

e A binary matriz has the strong consecutive-ones property (strong C1P) if in
every row the 1’s appear consecutively, that is, if every row contains at most one
block of 1’s.

e A binary matriz has the consecutive-ones property (C1P) if its columns can
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be permuted in such a way that the resulting matrixz has the strong C1P. If an
ordering for the columns of a binary matriz yields the strong C1P, it is called a
Cl-ordering.

e A graph G is an interval graph if its vertices can be mapped to intervals on
the real line such that two vertices are adjacent if and only if their corresponding
intervals have non empty intersection.

e A binary matriz is totally unimodular if every square submatriz has determi-
nant 0, 1, or —1.

3 Minimization of Test Frequencies to Detect
All the Faults of an Analog Circuit

In [3], the problem of selecting a minimum number of test frequencies is formally
presented and solved using boolean expressions. However, when the number of
faults is large, the technique used is not efficient. In this section, we present a
mathematical formulation of the general problem as a set covering problem. We
show that, under some special conditions on the considered faults, the coefficient
matrix of the SCP will have the C1P. Moreover, we suggest an interval graph
formulation of the problem.

3.1 Mathematical Formulation of the Problem as an SCP-C1P

Consider a given linear analog circuit C. Let F = {F}, F,..., F,} be the set
of all faults which can occur in C. Let T be a test measure which will be used
in the fault detection process. In order to detect a given fault F; using the test
measure T', test signals with maximum amplitude and at different frequencies
in the interval [fin, fmaz] are used as inputs of the analog circuit. The fault
is detected if the test measure T exceeds a fixed threshold 7. Fault simulation
allows then to compute, for each fault F;, the frequency intervals for which the
threshold is exceeded. These intervals are called the detection regions of fault F;.
Note that each fault can have one, two or more detection regions. Let n; be the
number of detection regions of the fault F; and R; = {R;1, Ria, ..., Rin, } be the
set of all the detection regions of the fault F;. Note that these detection regions
are disjoint: for each two detection regions R;, and R;4, we have R;, N R;q = 0.
After that, we sort in increasing order the bounds of the different detection
regions, we find the vector of frequencies:

f=fo, fr,-o fo), with fo < fi < fo <o < fr1 < fa (2)
Then, we compute a set of n frequency intervals Z = {Iy, I, ..., I} as follows:
Ilz[f()afl[a IQZ[flaf2[a"'7 In:[fn—17fn[~ (3)

We denote by A = (ai;,4 = 1,...,m, j = 1,...,n) the matrix which is
defined as follows:

1,1fEIk€ ].,,774 IQRZ,
U:{ tooomabs 5 € B (4)

0, otherwise.
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The problem consists in finding a minimal-cardinality set of frequency inter-
vals S C 7 which can detect all the possible considered faults. One frequency for
each selected frequency interval (typically in the middle of the interval) can be
used in the optimized test set. This problem can be formulated as a unicost set
covering problem: for each S C 7 and each frequency interval I}, j € {1,...,n},
we define a binary variable as follows:

s _ 1, if I; belongs to the set S; (5)
J 0, otherwise.
Now, if x = (z;,j =1,...,n) is any vector of binary variables, then the mathe-

matical model corresponding to this problem will be given by:
min r = 172, (6a)
s.t. Az > 1,,, x € {0,1}™ (6b)
Remark 1. The matrix A cannot have more than 2>, n; columns.

Proposition 1. Ifn; =1, fori=1,...m, i.e., each fault has a unique detection
region, then the matriz A will have the strong consecutive-ones property.

Proof. Let F;,i € M, be a given detected fault and R;; = [a, ;] be the unique
detection region of fault i. By construction, R;; can be written as a union of k
consecutive intervals I;,,I;,,...,1;, , where «; is the lower bound of I;, and g;
is the upper bound of I}, . (Two intervals are consecutive if they have a common
bound). Since the intervals I; correspond to the consecutive columns a;, of A
forr =1,...,k, the detection regions correspond to the rows of 4, and I, C Ry,
ie., a;, =1lforr=1,... k.

Note, that the previous proposition is very important because it gives a simple
sufficient condition for the matrix arising in our application to have the strong
C1P.

In the following we consider only problems with faults having one detection
region.

Following Proposition 1, ILP problem (6) is a unicost set covering problem
with a coeflicient matrix having the strong C1P (SCP-C1P). More precisely, it
is given by:

min z = Zacj, (7a)
j=1
rz (i)
st. Y x;>1,i€M, z;€{0,1},j €N, (7b)
Jj=l=z(d)

where for each row i, l2(i) denotes the leftmost index [ for which a; = 1 and
ra(i) the rightmost index r for which a; = 1. To get the LP-relaxation of the
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above problem, we simply exchange the integrality constraints against the non-
negativity constraints [11]. Thus, we get the following LP problem:

min z = ij, (8a)
j=1

rz (i)
st. Y w;>1,i€M, x;>0j€N. (8b)

j=la(i)

3.2 Graph Formulation of the Problem

Previously, we have formulated the problem of minimizing the number of fre-
quency intervals to detect all the faults of an analog circuit using an ILP model.
In this subsection, we suggest a new formulation based on the concept of interval
graph: we denote the detection region of fault ¢ by the interval [a;, b;] for i € M.
Let the interval graph G = (F, Er) be defined as follows:

F = {[a;,bi], i € M}, Ep = {F;Fj :Ja;, b[Na, bj[# 0}. )

In the next section we will suggest a polynomial algorithm using this interval
graph for solving the considered problem.

4 Approaches for Solving the Minimization
Problem of Frequency Intervals

In this section, we suggest two approaches for solving the problem of minimizing
the number of frequency intervals necessary to detect all the faults of an analog
circuit.

4.1 LP Approach
Let us recall the following results:

Theorem 1 ([12]). An (m X n)-matric A with entries 0, 1 and —1 is totally
unimodular if and only if each collection of columns from A can be partitioned
into two column sets such that in each row the sum of the entries of the first set
and the sum of the entries of the second set differ by at most 1.

Theorem 2 ([13]). Let A be an m x n integral matriz. Then the polyhedron
defined by Ax < b and x > 0 is integral for every integral vector b if and only if
A is totally unimodular.

Remark 2 ([10]). Any matrix A having the C1P fulfills the conditions of Theo-
rem 1 and, hence, is totally unimodular.
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Following Theorem 2 and Remark 2, any basic feasible solution of the LP
problem (8) represents a cover for the SCP-C1P (7). Therefore, we can find
an optimal solution using LP algorithms such as the primal or dual simplex
method [14], the support method [15], the hybrid direction algorithm [19], etc.
However, it is more efficient to transform the SCP-C1P into a min-cost network
flow problem [10].

Let us make the Veinott-Wagner transformations [20] for the variables of
problem (8): we introduce the variables y;, 7 = 1,...,n + 1 such that z; =

-y +Yj+1, 3 =1,...,n. Hence, we obtain the following equivalent LP problem:
min z = —y1 + Yn+1, (10a)
st = Yiw@) T Yre@)+1 = 1,1 e M, (10Db)

—Yj +yj+1 =20, jEN. (10c)
The dual of the above problem has m + n variables v1, v, ..., Up4pn and n + 1
constraints and it is given by:
min w = —Zvj, (11a)
m4+n j=1
s.t. Z ah v = —1, (11b)
j=1
m—+n
> alv;=0,i=2,...n, (11c)
j=1
m—+n
g1V =1, v, 20, j=1,....m+n. (11d)
j=1

where A" = (aj;,i =1,...,n+1,j=1,...,m+n), and A" has exactly one 1 and
one —1 in each column. Remark that the LP problem (11) is a min-cost network
flow problem. Thus, it can be solved by the network simplex algorithm. The
scheme of the LP approach to solve the problem is described in the following
steps:
Step 1. Compute the frequency intervals necessary to detect the different faults
using relation (2);
Step 2. Compute the constraint matrix of the SCP-C1P using relation (4);
Step 3. Make the Veinott-Wagner transformations. Let V' be the constraint
matrix of the LP problem (10);
Step 4. Compute the constraint matrix A’, the (n+1)-vector of right-hand-sides
b and the cost (m + n)-vector ¢’ of the min-cost network flow problem (11):
A =VT ¥ =(-1,0,...,0,1)T, ¢/ = _01’" ;
n
Step 5. Solve the min-cost network flow problem with the network simplex
algorithm.
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4.2 Interval Graph Approach

In order to solve the problem using the interval graph G defined by (9), we sug-
gest the following algorithm:

Algorithm 1.
e Sort the vertices F;, ¢ =1,m by increasing order of their
upper bounds b;;
e Compute the frequencies f;, k=0,n with (2);
e Set S=10, label(i)=0,i=1,m;
e For i =1 tom
e If label(i) =0, then
e Find the index k such that b; = f; and set
S =S U{[fr-1, ful}s
e For j=i+1 tom
If F; is adjacent to F; in G, then set label(j) =1;
endif
endfor
endif
endfor

The input of this polynomial algorithm is the interval graph G and the output
is a minimal-cardinality set S of frequency intervals, which detects all the faults.

Note, that it is not necessary to construct the whole interval graph: we can
use only its vertices, i.e., detection regions of the different faults, and replace the
test “If F; is adjacent to F; in G” by the test “If a; < b; < b;”.

Remark 3. Contrarily to the LP approach, the interval graph approach uses the
detection regions of the considered faults directly, i.e., without transforming the
problem.

4.3 Numerical Example

Example 1. We consider an analog circuit with five faults. The detection regions of
these faults are: Ry = [1,80], Ry = [160,1700], R3 = [1,1400], R4 = [1400, 2000]
and Rs = [1000, 1500]. Let us compute the minimal-cardinality set of frequency
intervals necessary to detect all the five faults with the two approaches.

LP Approach: First, we compute the different frequency intervals I;,7 = 1,.. .,
n: we sort the different bounds of the detection regions in increasing order, we
get the vector f = (f;, ¢ = 0,...,7) = (1,80, 160, 1000, 1400, 1500, 1700, 2000).
Thus, the different frequency intervals are computed as follows: I; = [1,80[, Ix =
[80,160[, Is = [160,1000[, I, = [1000, 1400[, Is = [1400, 1500[, Is = [1500,1700]
and Ir = [1700, 2000[. The question is then: among all these seven intervals, which
one must be included in a minimal-cardinality set? In order to answer this ques-
tion, we solve the following I L P problem:

minz = 1,7z, (12a)



196 M. Bentobache et al.

s.t. Az > b, x € {0,1}", (12b)

T

where x T1,T2,23,T4, Ts, Te, T7), b1 = (1,1,1,1,1) and

1000000
0011110
A=11111000 |. (13)
0000111
0001100

It is easy to remark that the constraint matrix has the consecutive-ones property.
Using the Veinott-Wagner transformations (z; = —y; + y;4+1, 7 = 1,2,...,7),
we get the following equivalent LP problem:

min z = (¢/)Ty

14
st. Vy>1b, (14)

where y € R®, ¢/ = (—1,0,0,0,0,0,0,1)T, ¥ = (1,1,1,1,1,0,0,0,0,0,0,0) and

-11 0 0 0 0 0O
0O 0-10 0 0 10
-10 0 01 0 00O
0 00 0O-10 01
0 00-101 00
-11 0 0 0 1 00
V= 0-11 0 0 0 00O (15)
0 0O-11 00 00
0 00-11 000
0 00 0-1100
0 000 0-110
0O 0 0 0 0 0 -11
The dual problem of the LP problem (14) is
minw = —(b)Tw

st. VIiv=¢, v>0,

where v € R'2. Remark that the LP problem (16) is a min-cost network flow
problem. The primal and dual optimal solutions obtained by the network simplex
algorithm of CPLEX are:

v* =(0,0,1,1,0,0,0,0,0,0,0,0)", y* =(0,1,1,1,1,2,2,2)T. (17)
Hence z* = (1,0,0,0,1,0,0)”, which means that a minimal-cardinality set of

frequency intervals is S = {I1, Is} = {[1, 80], [1400, 1500[}.

Interval Graph Approach: Let G = (F, Er) be the graph defined by (9).
First, we sort the vertices of the graph G in increasing order of their upper
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bounds, we get:

Fy = lay, bi[= 1,80, F> = [az,bo[= [1,1400[, F3 = [as, bs[= [1000, 1500],
F4 = [a4, b4[= [160, 1700[ and F5 = [a5, b5 [: [1400, 2000[.

The vector of frequencies computed by (2) is then
F=fo, fr.--, fr) = (1,80,160, 1000, 1400, 1500, 1700, 2000).

The different iterations of the interval graph algorithm are as follows:

We set S = ) and label(i) =0, i = 1,5.

Fori=1,b =80, fr = f1 =80, S = {[fo, fa[} = {[1,80[}.  The unique
adjacent vertex of Fy is Fy (the edge F}Fy € EF because ag < by < by), so we
set label(2) = 1.

For i = 2, we have label(2) = 1, so we pass to i = 3.

For i = 3, by = 1500, fi = f5, S = {[fo. /[, [f, f5[} = {[1, 80[, [1400, 1500[}.

The adjacent vertices of F5 are Fy and Fj, so label(4) = 1 and label(5) = 1.

For i = 4, we have label(4) = 1, so we pass to i = 5.

For i = 5, we have label(5) = 1. Since ¢ = m, a minimal-cardinality set of
frequency intervals is S = {[1,80[, [1400, 1500[}.

4.4 Case of Multiple Detection Regions
Let us illustrate this case by the following numerical example:

Ezample 2.

Faults | Detection regions

Fy R11 =[1, 80]

Iy R31 = [160, 200], R22 = [300,1700]
F3 R31 = [1,1400]

Fy R4 = [1400, 2000]

Fs Rs1 = [1000, 1500]

The vector of frequencies computed by (2) is then
f=(fo, f1,---, fo) = (1,80, 160, 200, 300, 1000, 1400, 1500, 1700, 2000).
The frequency intervals are:

I = [1,80[, I, = [80,160[, I3 = [160,200[, I, = [200,300], I5 = [300,1000],
Is = [1000, 1400, I; = [1400, 1500[, Is = [1500, 1700[, I = [1700, 2000].
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The constraint matrix of the SCP is then given by

100000000
001011110
A=|111111000 |. (18)
000000111
000001100

Let us remark that this matrix loses the consecutive-ones property because the
second row does not have consecutive ones. Therefore, we cannot apply the
techniques suggested above to solve it. If this case occurs in practice, the branch-
and-cut algorithm of CPLEX can be applied to solve the ILP problem. For this
example, CPLEX gives us the optimal solution: 2* = (1,0,0,0,0,0,1,0,0)7. So
a minimal-cardinality set of frequency intervals is

S = {I,I;} = {[1,80[, [1400,1500[}. (19)

Remark 4. Although the constraint matrix of the previous SCP does not possess
the consecutive-ones property, solving the LP relaxation gives us the optimal
solution z* = (1,0,0,0,0,0,1,0,0)”. This means that for this type of problems
the LP relaxation can give a good approximate solution for the optimal one (good
upper bound for the optimal value). That is why we expect the branch-and-cut
algorithm of CPLEX (or any other solver) to produce an optimal solution in
a few iterations in case that the optimal solution of the LP-relaxation is not
optimal for the SCP. Further numerical experiments have to be carried out in
order to confirm this assertion.

5 Minimization of the Number of Test Measures
Necessary for Detecting All the Faults
of an Analog Circuit

Previously, we have assumed that only one test measure is used in the testing
process. However, in practice, often we use several test measures. So if k is the
number of the used test measures, we need to solve £ SCPs for solving the
problem of frequency interval minimization. Therefore, solving the problem of
minimization of test measures beforehand can dramatically reduce the CPU time
of solving the whole optimization process.

Consider a given analog circuit C. Let F = {Fy, Fy,..., F,} be the set of
all faults which can occur in C. Let 7 = {T1,T%,...,T;} be the set of k test
measures to be used in the fault detection process. We denote by H = (hy;,i =
1,...,m, j =1,...,k) the Fault-Test-Measure (FTM) matrix which is defined
as follows:

1, if the test measure 7T} detects the fault Fj;
ij = (20)

0, otherwise.
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The problem consists in finding the minimal-cardinality set of test measures
which can detect all the considered faults. This problem can also be formulated
as a unicost set covering problem: for each test measure 7T}, j = 1,2...,k and
any set S C 7, we define a binary variable as follows:

g 1, if the test measure T} € S
x] = . (21)
0, otherwise.
Hence, the mathematical model corresponding to this problem is given by:
minp = 17z,
o (22)

st. Hr > 1,,, = € {0,1}*.

The optimal solution for this integer linear programming problem constitutes a
desired minimal-cardinality set of test measures which detect all the faults. Note
that, in general, the coefficient matrix of this problem does not have a specific
structure, so the branch-and-cut algorithm of CPLEX can be used to solve this
problem.

Once a minimal-cardinality set of test measures determined, we can solve the
problem of frequency interval minimization for each test measure in this set.

The global optimization scheme for testing a linear analog circuit with mul-
tiple test measures is shown in Fig. 1.

6 Case-Study

To illustrate our approach, similar to [3], we will now present a case-study
biquadratic filter as shown in Fig.2. There are 6 test measures for this circuit
that correspond to the common-mode signal at the input and at the output of
each operational amplifier. For simplicity, only catastrophic (10 MOhm open and
1 Q short) faults in the passive components are considered. Due to the differential
design, only 16 different faults need to be considered.

We denote the test measures by 11,75, ...,Ts and the faults by Fy, Fy, ...,
Fig. Figure 3 shows the frequency behavior of test measure T for some of these
faults. The detection regions of each fault F;, ¢ = 1,2, ..., 16 using test measures
T;, j=1,2,...,6 are computed using the fault simulator developed in [21,22].
Note, that the simulation results obtained in [21] indicate that test measures
Ty, Ty and Ty do not detect any fault. Hence, we only consider test measures
Ty, T3 and T5. For simplicity also, we have only considered nominal simulations of
the catastrophic faults. In practice, Monte Carlo simulations of each catastrophic
fault should be considered, and worst-case detection regions be computed (that
is, the intersection of the detection regions for each Monte Carlo instance).

First, we start by minimizing the number of test measures necessary for the
detection of the sixteen faults. Following simulation results, test measure T
detects the faults: Fy, F5,..., Fg; T3 detects the faults Fy, Fig, F11, Fi2 and
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- Alinear analog circuit;
- Asetoffaults: F;,i=1,....m;
- A set of test measures: Tj, j=1,... k.

)

@n Simulation Phas;e>

¥

- Fault-Test-Measure Matrix: H;
- For each test measureT;, for eachfault F; ,
we obtain a set of detection regions.

4

Solve the minimization problem (12) of test
measures with branch-and-cut algorithm of CPLEX.
. v

b
A minimal-cardinality set of test measures
ST:{TjI 'Tizl . ,ij}A Set ]=1 )

Y
Cd

YES NO

A

-Compute the frequency intervals j, j=1,...,n;
-Solve the minimization problem (4) of Choose test frequencies in the
frequer;cy_ in';er\:jals_ Use LPA or ICC’EA in tne optimal frequency intervals
case of single detection region and use the

branch-and-cut algorithm in the case of found for each test measure.
multiple detection regions;

-Set j=j+1-

A minimal-cardinality set of End
frequency intervals S ={IJ-1,I;2,___ Ak

Fig. 1. Global optimization scheme for testing analog circuits with multiple test mea-
sures



Minimizing Test Frequencies for Linear Analog Circuits: New Models 201

L L
s

20n

m
o

gl 3
e g ,
" -
& . K1 8y Wi &t
'—rﬂ\f\i\rn—ql . Leome B e
8 2 e
1 2L L 1
= _ 3 -u-\\\ .-
- -]
— 1 = p-u-\/\f\ =g b=\ m-o-m— 1 =
= ~ 5 e Y2
= =y w2
AT L L
VYV ' == wz vV *
frag= 100K ua Xa 3;5, Va2 Eg
: &
u L
o8 B y
and Eﬁ .-
T =

Fig. 2. Biquadratic filter

500m

400m

300m

Amplitude (Volts)

200m

100m |

0.00

freq (Hz)

Fig. 3. Output signals using test measure T3

Ts detects the faults Fi3, Fi4, Fi5, Fig. So the FTM matrix corresponding to
the minimization problem of test measures is

1111111100000000
HT=(0000000011110000 | . (23)
0000000000001111

Observe, that since test measures To, T4 and Ty do not detect any faults, the
matrix H contains only three columns which correspond to the test measures
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T1, T and Ts. Without solving the SCP problem (22), it is clear that a minimal-
cardinality set of test measures which detects all the faults is S = {T1,T5,7T5}.
Now, that a minimal set of test measures is at hand, we can proceed to solve
the problem of minimization of test frequencies for each test measure belonging
to this set.

First, we start by minimizing the frequency intervals under the test measure
Ti: the faults detected using test measure T are Fi, Fs, ..., Fg. The detection
regions of the different faults are

Ry = [1,10°], Roy = [85,3732], Rsy = [85,3732], Ryy = [1,2685],
Rs1 = [1,3442], Re = [336,1566], Ry = [1,1014] and Rs; = [647, 107).

When we sort in increasing order the bounds of the different detection regions,
we find the following vector of frequencies:

f=(fo, f1,..., fo) = (1, 85, 336, 647, 1014, 1566, 2685, 3442, 3732, 10°).
Therefore, the frequency intervals are

I = [1,85[, I, = [85,336[, I = [336,647[, Iy = [647,1014], I5 = [1014, 1566],
Is = [1566, 2685, I; = [2685,3442[, Is = [3442, 3732 and Iy = [3732,10°].

The constraint matrix of the SCP (6) is then:

111111111
011111110
011111110
111111000
111111100 |’
001110000
111100000
000111111

(24)

where each row i, ¢ = 1,...,8, corresponds to the detection region R;; and each
column j, j =1,...,9, to the frequency interval I;.

Since the matrix A has the consecutive-ones property (each fault has a unique
detection region), the optimal solution of the SCP (6) can be obtained using the
network simplex algorithm. In our example, this leads to the following optimal
solution: z* = (0,0,0,1,0,0,0,0)” and r* = 1, i.e., a minimal-cardinality set of
intervals detecting all the faults is S = {I4}. Therefore, it is sufficient to use
a single test frequency belonging to the interval [647 Hz, 1014 Hz[ to detect all
the faults F17F2, .. ,Fg.

Similarly, when we use the test measure T3, we detect the faults Fy, Fig, F11
and Fio. The corresponding detection regions are

Roy = [159,7957[, Rio1 = [1,1740[, Ry1 = [1,1739] and Rig; = [159, 7940].
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The different frequency intervals are

I, =[1,159], I, = [159,1739], I} = [1739, 1740],
I, = [1740,7940] and I, = [7940, 7959].

The constraint matrix of the SCP is

01111
11100
A= 11000 |- (25)

01110

Hence, for the test measure T3, the solution of the SCP (6) is obvious, that is,
a single test frequency belonging to the interval I} = [159 Hz, 1739 Hz[ detects
all the faults Fg,Fl(),Fll and Flg.

Finally, with test measure T5, we detect the faults Fi3, F4, F15 and Fi4. The
corresponding detection regions are

Ri31 =[1,2798[, Rya1 = [1,1413[, Ri51 = [1,1412[ and Ri61 = [1,2794].
The different frequency intervals are

IV =[1,1412], 1§ = [1412,1413[, I} = [1413,2794] and I} = [2794,2798.
The constraint matrix of the SCP is

1111
1100
A= 1000 |- (26)

1110

Thus, for the test measure T%, the solution is obvious again, that is, the frequency
interval which detects all the faults Fy3, F14, Fi5 and Figis IY = [1 Hz,1412 Hz],
and a single test frequency belonging to this interval is required.

7 Numerical Experiments

In order to compare the efficiency of the two approaches presented in Sect. 4
(LP approach and the interval graph one), we have implemented them in C++
programming language and carried out large-scale numerical experiments on a
set of randomly generated test instances using an Intel(R) Core(TM)2 Duo CPU
P8600 @ 2.40 GHz machine with 4 GB of RAM.

We have generated 60 problems with number of faults

m = 500, 000; 600, 000; 700, 000; 800, 000; 900, 000; 1, 000, 000. (27)

The detection region bounds are generated in the interval [1 Hz,10° Hz]. For
each class of test problems with m faults, we generate ten problems. We have
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solved the different instances with the LP approach (LPA) using the network
simplex method of the LP and ILP solver CPLEX [23] and the suggested interval
graph algorithm (IGA). The CPU time of the two approaches IGA and LPA are
reported in Table 1.

Let [a;,b;] be the detection regions of the faults F;, i = 1,...,m. In the
following, we give the implementation details for the LP approach:

Step 1. Compute the set of frequency intervals Z as follows:

— sort the bounds of the detection regions in increasing order: let f be the
vector of these sorted bounds;

— delete duplicate elements from f, and let f = (fo, f1,..., fn);

—set T={l; =[fj—1,f;[, j=1,...,n}

Step 2. Compute the constraint (m x n)-matrix of the SCP-C1P as follows:

set fmax = f(n) and compute the vector ¢ of dimension frmax as follows:
— set t(k) =0, for k=0,..., frnax;

—set t(f(j)) =4, for 5 =0,...,n;

set lx(i) =t(a;) + 1 and ra(i) = ¢(b;) for i =1,...,m;

Step 3. Make the Veinott-Wagner transformations: compute the constraint
matrix V' of the LP problem (10) as follows:

—fori=1,...,m;forj=1,..., m+n:
—1,if j = lz(d);
Vij=<%1, ifj=rz(i)+1; (28)

0, otherwise;
—fori=m+1,...,n+1;forj=1,.... m+n:

-1, ifj=1—my
Vij=4q1, ifj=i—m+1; (29)
0, otherwise;

Step 4. Compute the constraint matrix A’, the (n + 1)-vector of right-hand-
sides b’ and the cost (m + n)-vector ¢ of the min-cost network flow problem
(11): A =VT, V¥ =(-1,0,...,0,1)7, ¢/ = <_Olm>;

n
Step 5. Solve the min-cost network flow problem with the network simplex
algorithm.

Note, that the efficient implementation presented above computes the con-
straint matrices of the SCP-C1P and the min-cost network flow problem of the
LP approach in small CPU times (less than 1 second on average for all the test
problems). That is why we have not reported the CPU times of computing the
constraint matrices of the SCP-C1P and the min-cost network flow problem in
Table 1.
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Table 1. CPU time of the different approaches

m OptVal IGA |[LPA |CPU Ratio
500,000 |560.80 |4.10 |3.18 |1.29
600,000 [611.90 |5.30 (3.52 |1.51
700,000 |672.50 [6.70 |3.85 |1.74
800,000 |704.90 |9.40 |4.30 2.19
900,000 |762.90 {12.00(4.53 |2.65
1,000,000/809.10 |16.30(4.76 |3.42
Mean 8.97 |4.02/2.13

AR e ........................... ................... £esaeeee s Aaaids

CPU time (sec)

T 1

0 ; i :
50000 60000 70000 80000 90000 100000

Number of faults

Fig. 4. CPU time of the two approaches: IGA and LPA

The average optimal values found by the two approaches IGA and LPA for
the different test problems are shown in column OptVal. We compute the ratios
of the CPU time of IGA over LPA. These ratios are shown in column CPU
Ratio. Finally, the CPU time of the two approaches are plotted in Fig.4. The
LPA shows a time complexity O(m), while IGA shows a time complexity O(m?),
where m is the number of faults.

The graphs of Fig.4 indicate that transforming the problem into a min-
cost network flow problem and solving it with the network simplex algorithm
is more efficient than the interval graph algorithm. Indeed, LPA is, on average,
two times faster than IGA. However, the computation time is very small even for
problems with an extremely large number of faults. Therefore, the interval graph



206 M. Bentobache et al.

algorithm can also be used in practice by test engineers because of its simple
implementation; the good CPU times (an average of 16 seconds for optimizing
the test of analog circuits with 1,000,000 faults); and the fact that it solves the
original problem directly.

8 Conclusion

In this work, we have formulated as an SCP the problem of minimizing the num-
ber of test frequencies necessary to detect a set of faults injected into an analog
circuit. We have shown that when the considered faults have a unique detection
region, the constraint matrix of the SCP will have the strong consecutive-ones
property. After that, we have reformulated this special case using interval graphs
and an algorithm working directly with this graph is suggested. In order to solve
the problem efficiently, two approaches are compared: an LP approach and an
interval graph approach. The obtained numerical results show that the approach
which transforms the problem into a min-cost network flow problem to solve it
by the network simplex algorithm is the most efficient. However, the interval
graph approach can also be used by test engineers because it solves the origi-
nal problem directly; its implementation is very simple and it is extremely fast
with CPU times of a few tenths of seconds even for large-scale problems. More-
over, the optimization problem associated with multiple detection regions and
multiple test measures is studied. Future work will focus on developing a branch-
and-cut algorithm for solving efficiently the set covering problem corresponding
to the case of multiple detection regions.
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