
123

Alex Orailoglu
H. Fatih Ugurdag

Luís Miguel Silveira
Martin Margala

Ricardo Reis (Eds.)

21st IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2013
Istanbul, Turkey, October 6–9, 2013
Revised and Extended Selected Papers

VLSI-SoC:
At the Crossroads
of Emerging Trends

IFIP AICT 461

IFIP Advances in Information
and Communication Technology 461

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

Foundation of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Security and Privacy Protection in Information Processing Systems
Yuko Murayama, Iwate Prefectural University, Japan

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Jan Gulliksen, KTH Royal Institute of Technology, Stockholm, Sweden

Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for soci-
eties working in information processing, IFIP’s aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to devel-
oping nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of
information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and publi-
cations. IFIP’s events range from an international congress to local seminars, but the
most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is also rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to one
society per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for associate or
corresponding membership. Associate members enjoy the same benefits as full mem-
bers, but without voting rights. Corresponding members are not represented in IFIP
bodies. Affiliated membership is open to non-national societies, and individual and hon-
orary membership schemes are also offered.

More information about this series at http://www.springer.com/series/6102

Alex Orailoglu • H. Fatih Ugurdag
Luís Miguel Silveira • Martin Margala
Ricardo Reis (Eds.)

VLSI-SoC:
At the Crossroads
of Emerging Trends
21st IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2013
Istanbul, Turkey, October 6–9, 2013
Revised and Extended Selected Papers

123

Editors
Alex Orailoglu
University of California at San Diego
La Jolla, CA
USA

H. Fatih Ugurdag
Ozyegin University
Istanbul
Turkey

Luís Miguel Silveira
University of Lisbon
Lisbon
Portugal

Martin Margala
University of Massachusetts
Lowell, MA
USA

Ricardo Reis
Universidade Federal do Rio Grande do Sul
Porto Alegre
Brazil

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-23798-5 ISBN 978-3-319-23799-2 (eBook)
DOI 10.1007/978-3-319-23799-2

Library of Congress Control Number: 2015952217

Springer Cham Heidelberg New York Dordrecht London
© IFIP International Federation for Information Processing 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This book contains extended and revised versions of the highest-quality papers that were
presented during the 21st edition of the IFIP/IEEE WG10.5 International Conference on
Very Large Scale Integration (VLSI-SoC), a global system-on-chip design and CAD
conference. This edition of the conference was held at Novotel Hotel in Istanbul, Turkey
(October 6–9, 2013). Previous conferences have taken place in Edinburgh, Trondheim,
Vancouver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt,
Perth, Nice, Atlanta, Rhodes, Florianopolis, Madrid, Hong Kong, and Santa Cruz.

The purpose of this conference, which was sponsored by IFIP TC 10 Working
Group 10.5, the IEEE Council on Electronic Design Automation (CEDA), and the
IEEE Circuits and Systems Society, and In-Cooperation of ACM SIGDA, was to
provide a forum for the exchange of ideas and presentation of industrial and academic
research results in the field of microelectronics design. The current trend toward
increasing chip integration and technology process advancements have brought new
challenges both at the physical and system design levels as well as in the test of these
systems. The VLSI-SoC conference aims to address these exciting new issues.

The quality of submissions (244 papers from 48 countries, excluding PhD Forum and
embedded tutorials) made the selection process a very difficult one. Finally, 49 were
accepted as full papers (6 pages in the proceedings), 19 as short papers (4 pages), and 14
as extended abstracts (2 pages). Out of the 48 full papers presented at the conference, 11
papers were chosen by a selection committee to have an extended and revised version
included in this book. An extended version of a previously unpublished high-quality
paper from VLSI-SoC 2012 is also included. The selection process of these papers
considered the evaluation scores during the review process as well as the review forms
provided by members of the technical program committee and session chairs as a result
of the presentations. The Technical Program Committee comprised 97 members.

The chapters of this book have authors from Algeria, France, Germany, Greece,
Italy, Japan, Sweden, Switzerland, United Arab Emirates, and USA.

VLSI-SoC 2013 was the culmination of the work of many dedicated volunteers:
paper authors, reviewers, session chairs, invited speakers, and various committee chairs
and members, especially the local organizers. We thank them all for their contributions.
We also thank Aydin Dirican, Cagatay Ozmen, and Nurettin Tan (University of
Massachusets Lowell) for their critical help in the revision of the book chapters.

This book is intended for the VLSI community, mainly those who did not have the
chance to attend the conference. We hope you will enjoy reading this book and that you
will find it useful in your professional life and for the development of the VLSI
community as a whole.

July 2015 Alex Orailoglu
H. Fatih Ugurdag

Luís Miguel Silveira
Martin Margala

Ricardo Reis

Organization

The IFIP/IEEE International Conference on Very Large Scale Integration-
System-on-Chip (VLSI-SoC) 2013 took place during October 6–9, 2013, in Novotel,
Istanbul, Turkey. VLSI-SoC 2013 was the 21st in a series of international conferences,
sponsored by IFIP TC 10 Working Group 10.5 (VLSI), IEEE CEDA, and
ACM SIGDA.

General Chairs

H. Fatih Ugurdag Ozyegin University, Turkey
Luís Miguel Silveira INESC ID/IST - University of Lisbon, Portugal

Program Chairs

Alex Orailoglu UC San Diego, USA
Luigi Carro UFRGS, Brazil

Special Sessions Chair

Yankin Tanurhan Synopsys, USA

Local Arrangement Chair

Nizamettin Aydin Yildiz Technical University, Turkey

Publication Chairs

Martin Margala University of Massachusetts, Lowell, USA
Ricardo Reis UFRGS, Brazil

Publicity Chair

Ricardo Reis UFRGS, Brazil

Registration Chair

Sezer Goren Yeditepe University, Turkey

Finance Chair

Sule Ozev Arizona State University, USA

PhD Forum Chair

Mahmut Kandemir Penn State University, USA

VLSI-SoC Steering Committee

Manfred Glesner TU Darmstadt, Germany
Matthew Guthaus UC Santa Cruz, USA
Salvador Mir TIMA, France
Ricardo Reis UFRGS, Brazil
Michel Robert University of Montpellier, France
Luís Miguel Silveira INESC ID/IST - University of Lisbon, Portugal
Chi-Ying Tsui HKUST, Hong Kong, SAR China

Program Committee

Track 1 - Analog and Mixed-signal IC Design

Günhan Dündar Boğaziçi University, Turkey (chair)
Jose M. de La Rosa CNM, Spain (chair)
Abhijit Chatterjee Gatech, USA
Dongsheng Ma UT Dallas, USA
Haralambos Stratigopoulos IMAG, France
Jerzy Dobrowski Linköping University, Sweden
Piero Malcovati University of Pavia, Italy
Pui-In Mac University of Macau, China
Sergio Bampi UFRGS, Brazil

Track 2 - Circuits for Applications
(DSP, Image processing, Communications, Medical)

Tobias Noll RWTH-Aachen, Germany (chair)
Urs Frey Riken, Japan (chair)
Andreas Demosthenous University College London, UK
Andrew Mason Michigan State University, USA
George Jie Yuan UST, Hong Kong – China
Goksenin Yaralıoğlu Özyeğin University, Turkey
Jun Ohta Nara Institute of Science and Technology, Japan
Vijaykrishnan Narayanan Pennsylvania State University, USA

Track 3 - Application Systems
(DSP, Image Processing, Communications, Medical)

Luc Claesen University of Hasselt, Belgium (chair)
İlker Hamzaoğlu Sabancı University, Turkey (chair)
Berna Ors Istanbul Technical University, Turkey
Chun-Jen Tsai National Chiao Tung University, Taiwan

VIII Organization

Hassan Ghasemzadeh UCLA, USA
Pai Chou UC Irvine, USA
Yun Pan Zhejiang University, China

Track 4 - VLSI Test, Diagnosis and Silicon Debug

Matteo Sonza Reorda Politecnico di Torino, Italy (chair)
Zain Navabi University of Tehran, Iran (chair)
Erik Larsson Lund University, Sweden
Hans-Joachim Wunderlich University of Stuttgart, Germany
Fernanda Kastensmidt UFRGS, Brazil
Michiko Inoue Nara Institute of Science and Technology, Japan
Xiaoqing Wen Kyutech, Japan

Track 5 - Variability, Security, Reliability

Srinivas Devadas MIT, USA (chair)
Özgür Sinanoğlu NYU, UAE (chair)
Bruno Rouzeyre LIRMM, France
Maria Michael University of Cyprus, Cyprus
Mehdi Tahoori Karlsruhe Institute of Technology, Germany
Paolo Prinetto Politecnico di Torino, Italy
Ramesh Karri NYU, USA
Swaroop Ghosh USF, USA

Track 6 - Devices, Circuits and Systems for Emerging Technologies

Wenjing Rao University of Illinois Chicago, USA (chair)
Swarup Bhunia Case Western Reserve University, USA (chair)
Andras Moritz UMass Amherst, USA
Dmitry Strukov UC Santa Barbara, USA
Fabien Clermidy CEA LETI, France
Ian O’Connor Ecole Centrale de Lyon, France
Sorin Cotofana TU Delft, Netherlands
Valeriu Beiu United Arab Emirates University, UAE

Track 7 - Prototyping, Verification, and Validation

Masahiro Fujita University of Tokyo, Japan (chair)
Franco Fummi University of Verona, Italy (chair)
Alper Şen Boğaziçi University, Turkey
Andreas Veneris University of Toronto, Canada
Graziano Pravadelli University of Verona, Italy
Ian Harris UC Irvine, USA
Laurence Pierre IMAG, France

Organization IX

Track 8 - Embedded Systems, HW-SW Codesign, Logic and High-Level Synthesis

Andreas Gerstlauer UT Austin, USA (chair)
Jason Xue City University of Hong Kong, Hong Kong – China

(chair)
Fadi Kurdahi UC Irvine, USA
Frederic Rousseau IMAG, France
Jarmo Takala Tampere University of Technology, Finland
Joerg Henkel Karlsruhe Institute of Technology, Germany
Petru Eles Linköping University, Sweden
Sri Parameswaran UNSW, Australia

Track 9 - Reconfigurable, Adaptive, FPGA

Koen Bertels TU Delft, Netherlands (chair)
Juergen Becker Karlsruhe Institute of Technology, Germany (chair)
Apostolos Dollas Technical University of Crete, Greece
Joao Cardoso University of Porto, Portugal
Michael Huebner Karlsruhe Institute of Technology, Germany
Pascal Benoit LIRMM, France
Philip Brisk UC Riverside, USA
Rainer Hartenstein Kaiserslautern University of Technology, Germany

Track 10 - SOC Design and Interconnect

Cristina Silvano Poltecnico di Milano, Italy (chair)
Jose Ayala Complutense University of Madrid, Spain (chair)
Jiang Xu Hong Kong University of Science & Technology,

China
Gilles Sassatelli LIRMM, France
Leandro Soares Indrusiak The University of York, UK
Luca Carloni Columbia University, USA
Smail Niar LAMIH/University of Valenciennes, France
Xiaoxia Wu Qualcomm, USA

Track 11 - Processor Architecture, Embedded Processors, Multicores

Onur Mutlu CMU, USA (chair)
Stephan Wong TU Delft, Netherlands (chair)
Ayse K. Coskun Boston University, USA
Chengmo Yang University of Delaware, USA
Gang Qu University of Maryland, USA
Mirko Loghi University of Udine, Italy
Soontae Kim KAIST, Korea
Tulika Mitra National University of Singapore, Singapore

X Organization

Track 12 - Transistor Level Digital VLSI Circuits and Memory

Massimo Alioto University of Siena, Italy (chair)
Saibal Mukhopadhay Gatech, USA (chair)
Alexander Fish Bar-Ilan University, Israel
Ali Afzali-Kusha University of Tehran, Iran
Alper Demir Koç University, Turkey
Armin Tajalli EPFL, Switzerland
Joachim Rodrigues Lund University, Sweden
Yajun Ha National University of Singapore, Singapore

Organization XI

Contents

Debugging Methods Through Identification of Appropriate Functions
for Internal Gates . 1

Kosuke Oshima, Takeshi Matsumoto, and Masahiro Fujita

Gate Sizing Under Uncertainty . 23
Nathaniel A. Conos, Saro Meguerdichian, and Miodrag Potkonjak

New Scan-Based Attack Using Only the Test Mode and an Input
Corruption Countermeasure . 48

Sk Subidh Ali, Samah Mohamed Saeed, Ozgur Sinanoglu,
and Ramesh Karri

Quantitative Optimization and Early Cost Estimation of Low-Power
Hierarchical-Architecture SRAMs Based on Accurate Cost Models 69

Yuan Ren and Tobias Noll

Low-Power Low-Voltage ΔΣ Modulator Using Switched-Capacitor
Passive Filters. 94

Ali Fazli Yeknami and Atila Alvandpour

Fine Grain Precision Scaling for Datapath Approximations in Digital
Signal Processing Systems . 119

Seogoo Lee and Andreas Gerstlauer

A Complete Real-Time Feature Extraction and Matching System Based on
Semantic Kernels Binarized . 144

Michael Schaffner, P.A. Hager, L. Cavigelli, Z. Fang, P. Greisen,
F.K. Gürkaynak, A. Smolic, H. Kaeslin, and L. Benini

An FPGA-Based Real-Time System for 3D Stereo Matching, Combining
Absolute Differences and Census with Aggregation and Belief Propagation . . . 168

Kyprianos Papadimitriou, Sotiris Thomas, and Apostolos Dollas

Minimizing Test Frequencies for Linear Analog Circuits: New Models
and Efficient Solution Methods . 188

Mohand Bentobache, Ahcène Bounceur, Reinhardt Euler,
Salvador Mir, and Yann Kieffer

Partition-Based Faults Diagnosis of a VLIW Processor 208
Davide Sabena, Matteo Sonza Reorda, and Luca Sterpone

Enhanced Compressed Look-up-Table Based Real-Time
Rectification Hardware. 227

Abdulkadir Akin, Luis Manuel Gaemperle, Halima Najibi,
Alexandre Schmid, and Yusuf Leblebici

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation
in MIMO-OFDM Systems . 249

Andreas Minwegen, Dominik Auras, and Gerd Ascheid

Author Index . 267

XIV Contents

Debugging Methods Through Identification
of Appropriate Functions for Internal Gates

Kosuke Oshima1, Takeshi Matsumoto2, and Masahiro Fujita3(B)

1 Department of Electrical Engineering and Information Systems,
The University of Tokyo, Tokyo, Japan

oshima@cad.t.u-tokyo.ac.jp
2 Department of Electronics and Information Engineering,
Ishikawa National College of Technology, Sapporo, Japan

matsumoto@ishikawa-nct.ac.jp
3 VLSI Design and Education Center, The University of Tokyo, Tokyo, Japan

fujita@ee.t.u-tokyo.ac.jp

Abstract. In this chapter, we propose methods for correcting gate-level
designs by identifying appropriate logic functions for internal gates. We
introduce programmable circuits, such as look up table (LUT) and multi-
plexer (MUX) to the circuits under debugging, in order to formulate the
correction processes mathematically. There are two steps in the proposed
methods. The first one is to identify sets of gates and their appropriate
inputs whose functions are to be modified. The second one is to actually
identify logic functions for the correction by solving QBF (Quantified
Boolean Formula) problems with repeated application of SAT solvers.
There are a number of bugs which cannot be corrected unless the inputs
of the gates to be modified are changed from the original ones, and the
selection of such additional inputs is a key for effective debugging. We
show a couple of methods by which appropriate inputs to the gates can be
efficiently identified. Experimental results for each such a method as well
as their combinations targeting benchmark circuits as well as industrial
ones are shown.

Keywords: Gate-level circuit · Design debugging · Programmable
circuit

1 Introduction

Thanks to the advancement of semiconductor technology, VLSI designs keep
becoming larger and more complicated continuously. Now verifying such huge
VLSI chips is a big challenge and needs lots of human efforts and time, which
can approach to 80 % or more of the total design time. Moreover, some bugs
may not be detected in the verification processes before fabrication and are only
recognized by running an actual chip after fabrication. In such cases, re-spin of
the whole design processes, including very time-consuming physical and timing
design processes, must be performed again. Re-spins often happen due to the
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 1–22, 2015.
DOI: 10.1007/978-3-319-23799-2 1

2 K. Oshima et al.

insufficient time for verification and debugging in pre-silicon design phases. Due
to the design schedule, sometimes the verification and debugging efforts must be
terminated before the design is fully examined. If the verification and debugging
processes become more efficient and effective, significantly more bugs could be
detected and corrected before fabrication. Usually, more than a half of the verifi-
cation time is spent for correcting the buggy portions of the designs rather than
identifying them, since debugging is much less automated than checking correct-
ness of the designs. Thus, automating and shortening the debugging processes
is now one of the most important issues in VLSI designs. The efficiency of veri-
fication is very important to find more bugs or most bugs in a shorter time, and
debugging is equally or more important since same or longer time is now spent
for correcting the buggy portions of the design after recognizing that the design
is not correct.

In this chapter, we focus on debugging gate-level designs. We assume exis-
tence of a specification in terms of golden models in RTL or in gate level. Our
method tries to let a given circuit under debugging behave equivalently to the
specification through modifications inside the circuit. To this end, our method
tries to identify the appropriate new functions for some of the internal gates in
the circuit, so that the circuit as a whole can have an equivalent logic function
to the specification. For the purpose of formulating the debugging process math-
ematically, we introduce some amount of programmability in the circuit under
debugging and find a way to appropriately program it for correction. Note that,
after identifying such appropriate functions for internal gates, those gates are
assumed to be completely replaced with new gates corresponding to the those
functions. In other words, programmability is introduced only for mathematical
modeling and is nothing to do with actual implementations.

In [1], Yamashita et al. proposed Partially-Programmable Circuit (PPC)
where programmable circuits such as look-up tables (LUTs) and multiplexers
(MUXs) are added to the original circuit in order to correct bugs and/or defects
in fabricated chips. While their purpose of introducing programmability is to
make chips re-programmable or correctable in post-silicon (patching in their
words), our purpose in this work is to find correct logic functions for internal
gates by which the entire designs can be rectified in pre-silicon design phases.
Therefore, in principle, we can freely add programmable circuits in the target
circuit under debugging without considering physical implementation. Once a
circuit is corrected, its logical and physical design can be performed again in
such a way that the programmable circuits that are introduced for debugging
are replaced with appropriate standard logic gates. If it is better to keep physical
structures of the circuit similar as much as possible in order to avoid performing
complicated physical design processes again, the corrected logic may be imple-
mented utilizing various Engineering Change Order (ECO) techniques.

Debugging consists of two processes: locating the suspicious portions in the
designs and correcting them through replacements with appropriate sets of gates.
In the locating process, designers try to find locations of bugs (or candidate
locations) which should be the root cause of the bugs. Then, they modify logic

Debugging Methods Through Identification of Appropriate Functions 3

functions at those possibly buggy locations in the correcting process. There exist
researches for locating bugs in gate-level circuits such as path tracing and SAT-
based diagnosis [8]. Note that the methods such as [8] examine the designs only
with given counterexamples and do not refer to specifications. This makes the
analysis much simplified, but appropriate locations for all the bugs in the designs
may not be found, as counterexamples may be related only to the specific bugs in
the designs. Moreover, it is very difficult to identify a small set of logic gates that
need to be modified for correction, especially when there are multiple bugs in a
design. In addition, some methods such as [8] require designers to come up with
a new logic function that can correct the current buggy one, which may take a
long time if that is a manual process. Since the methods such as [8] assume that
any primary input can be used when creating the functions for correction, in
the worst case, the circuit size can become almost doubled. Based on the above
discussion, there is a large demand for methods which generate logic functions
for the set of logic gates identified in the bug locating processes, by which the
entire designs become correct.

The basic idea of our proposed debugging methods is to correct a circuit
under debugging by finding another logic function for a set of gates that is iden-
tified as a bug location, in such a way that the entire circuit becomes equivalent
to its specification [9]. In the methods, the logic function for each gate for correc-
tion has the same set of inputs as the original gate. In other words, our method
tries to replace each of the original (possibly) buggy gates with a different logic
gate having the same input variables. So, the new gate to be used for replace-
ment may have to realize a complicated logic function with the same inputs and
can only be implemented with a set of simple gates, such as, NAND, NOR, etc.
As described in the following sections, we utilize an existing method proposed
in [2,7] to efficiently generate logic functions for programmable circuits. There
are, however, bugs which cannot be corrected if the input variables of the gates
remain the same. In such cases, we need to add an additional input variable to
LUTs or MUXs. When the number of variables in a circuit is very large, it is not
practical to check all the variables one by one. To quickly find variables which
cannot improve the chance of getting a correct logic when they are connected to
LUTs or MUXs, we introduce a necessary condition that should be satisfied by
each variable in order to improve the chance of correction. We also propose an
efficient selection method based on that condition.

The contributions of this chapter are summarized as follows.

– We propose a method to find a correction by introducing programmability
in a circuit under debugging based on LUTs or MUXs and mathematically
formulating the debugging problem.

– To deal with cases where a correction is impossible due to a lack of certain
input variables to LUTs or MUXs, we propose a method to filter out variables
which cannot contribute to improving the possibility of correction.

– Through the experiments with various designs and bugs including industrial
ones, we show that our proposed method can provide a correction in a short
time in many cases.

4 K. Oshima et al.

The remainder of this chapter is organized as follows. In Sect. 2, we introduce
an existing method to efficiently find a logic function of each programmable
circuit for correction. In Sect. 3, our proposed method is described in detail. In
Sect. 4, we show experimental results with bugs in an industrial on-chip network
circuit and ARM Cortex microprocessor designs as well as benchmark circuits.
Section 5 gives ideas for extensions of the proposed debugging methods with
preliminary experimental results. Finally, in Sect. 6, concluding remarks and
future directions are discussed.

2 Related Work: Finding a Configuration of LUTs Using
Boolean SAT Solvers

For easiness of explanation, in this chapter, we assume the number of output for
the target buggy circuit is one. That is, one logic function in terms of primary
inputs can represent the logic function for the entire circuit. This makes the nota-
tions much simpler, and also extension for multiple outputs is straightforward.
Also, variables in this chapter are mostly vectors of individual ones.

As there is only one output in the design, a specification can be written as
one logic function with the set of primary inputs as inputs to the function. For a
given specification SPEC(x) and an implementation with programmable circuits
IMPL(x, v), where x denotes the set of primary input variables and v denotes
the set of variables to configure programmable circuits inside, the problem is
to find a set of appropriate values for v satisfying that SPEC and IMPL are
logically equivalent. This problem can be described as QBF (Quantified Boolean
Formula) problem as follows:

∃v.∀x.SPEC(x) = IMPL(x, v).

That is, with appropriate values for v, regardless of input values (values of
x), the circuits must be equivalent to the specification (i.e., the output values are
the same), which can be formulated as the equivalence of the two logic functions
for the specification and the implementation. There are two nested quantifiers
in the formula above, that is, existential quantifiers are followed by universal
quantifiers, which are called QBF in general. Normal SAT formulae have only
existential quantifiers and no universal ones.

In [2], CEGAR (Counter-Example Guided Abstraction Refinement) based
QBF solving method is applied to the circuit rectification problem. Here, we
explain the method using 2-input LUT for simplicity, although LUT having any
numbers of inputs can be processed in a similar way.

Logic functions of a 2-input LUT can be represented by introducing four
variables, v00, v01, v10, v11, each of which corresponds to the value of one row of
the truth table. Those four variables are multiplexed with the two inputs of the
original gate as control variables, as shown in Fig. 1. In the figure a two-input
AND gate is replaced with a two-input LUT. The inputs, t1, t2, of the AND
gate becomes the control inputs to the multiplexer. With these control inputs,

Debugging Methods Through Identification of Appropriate Functions 5

Fig. 1. LUT is represented with multiplexed four variables as truth table values.

the output is selected from the four values, v00, v01, v10, v11. If we introduce M
of 2-input LUTs, the circuit has 4 × M more variables than the variables that
exist in the original circuit. We represent those variables as vij or simply v which
represents a vector of vij . v variables are treated as pseudo primary inputs as
they are programmed (assigned appropriate values) before utilizing the circuit.
t variables in the figure correspond to intermediate variables in the circuit. They
appear in the CNF of the circuits for SAT/QBF solvers.

If the logic function at the output of the circuit is represented as fI(v, x)
where x is an input variable vector and v is a program variable vector, after
replacements with LUTs, the QBF formula to be solved becomes:

∃v.∀x.fI(v, x) = fS(x),

where fS is the logic function that represents the specification to be implemented.
Under appropriate programming of LUTs (assigning appropriate values to v), the
circuit behaves exactly the same as specification for all input value combinations.

Although this can simply be solved by any QBF solvers theoretically, only
small circuits or small numbers of LUTs can be successfully processed [2]. Instead
of doing that way, we here like to solve given QBF problems by repeatedly
applying normal SAT solvers using the ideas shown in [3,4].

Basically, we solve the QBF problem only with normal SAT solvers in the
following way. Instead of checking all value combinations on the universally quan-
tified variables, we just pick up some small numbers of value combinations and
assign them to the universally quantified variables. This would generate SAT
formulae which are just necessary conditions for the original QBF formulae.
Note that here we are dealing with only two-level QBF, and so if universally
quantified variables get assigned actual values (0 or 1), the resulting formu-
lae simply become SAT formulae. The overall flow of the proposed method is
shown in Fig. 2. For example, if we assign two combinations of values for x
variables, say a1 and a2, the resulting SAT formula to be solved becomes like:
∃v.(fI(v, a1) = fS(a1)) ∧ (fI(v, a2) = fS(a2)). Then we can just apply any SAT
solvers to them. If there is no solution, we can conclude that the original QBF
formulae do not have solution neither. If there is a solution found, we need to
make sure that it is a real solution for the original QBF formula. Because we
have a solution candidate vassigns (these are the solution found by SAT solvers)
for v, we simply make sure the following:

∀x.fI(vassigns, x) = fS(x).

6 K. Oshima et al.

This can be solved by either usual SAT solvers or combinational equivalence check-
ers. In the latter case, circuits with tens of millions of gates may be processed, as
there have been conducted significant amount of researches for combinational
equivalence checkers which utilize not only state-of-the-art SAT techniques but
also various analysis methods on circuit topology. If they are actually equivalent,
then the current solution is a real solution of the original QBF formula. But if
they are not equivalent, a counterexample, say xsol, is generated and is added
to the conditions for the next iteration:

∃v.(fI(v, a1) = fS(a1)) ∧ (fI(v, a2) = fS(a2)) ∧ (fI(v, xsol) = fS(xsol)).

This solving process is repeated until we have a real solution or we prove the non-
existence of solution. In the left side of Fig. 2, as an example, the conjunction of
the two cases where inputs/output values are (0, 1, 0)/1 and (1, 1, 0)/0 is checked
if satisfiable. If satisfiable, this gives possible solutions for LUTs. Then using those
solutions for LUTs, the circuit is programmed and is checked to be equivalent with
the specification. As we are using SAT solvers, usually non-equivalence can be
made sure by checking if the formula for non-equivalence is unsatisfiable.

Satisfiability problem for QBF in general belongs to P-Space complete. In
general QBF satisfiability can be solved by repeatedly applying SAT solvers,

Generate necessary conditions
as the conjunction of formulae
with a set of value assignments
to the universally quantified variables
(value assignments of primary inputs)

Solve by
normal SAT

solver

Existentially quantified variables are
replaced with the solution
Generate formula for the non-
equivalence between specification
and implementation

Solve by
normal SAT

solver
No solution exists

A solution found

Circuit under debug

LUT

LUT

LUT

LUT

Circuit under debug

LUT

LUT

LUT

LUT

0

0

0

1

1

1

1

0

Conjunction

Circuit under debug

LUT

LUT

LUT

LUT

Specification

x1

x3

x2

Non-equivalence

x1

x3

x2

SAT

Non-equivalent
(with new counter example)

UNSAT

Equivalent

Fig. 2. Overall flow of the rectification method in [2]

Debugging Methods Through Identification of Appropriate Functions 7

which was first discussed under FPGA synthesis in [5] and in program synthesis
in [6]. The techniques shown in [3,4] give a general framework on how to deal
with QBF only with SAT solvers. These ideas have also been applied to so called
partial logic synthesis in [7].

3 Our Proposed Method to Correct Gate-Level Circuits

3.1 Overall Flow

Figure 3 shows an overall flow of our proposed correction method. Given

– a specification,
– an implementation circuit that has bugs, and
– a set of candidate locations of the bugs,

the method starts with replacing each logic gate corresponding to a candidate
bug location with an LUT. Each inserted LUT has the same set of input variables
as its original gate. Then, by applying the method in [2,7], we try to find a
configuration of the set of LUTs so that the specification and the implementation
become logically equivalent. Once such a configuration is found, it immediately
means we get a logic function for correction. Then, another implementation will
be created based on the corrected logic function, which may require re-synthesis
or synthesis for ECO. Although the method to compute a configuration of LUTs
for correction in [2,7] is relatively more efficient than most of the other methods,
it can solve up to hundreds of LUTs within a practical runtime. Therefore, it is

Start

Replace each gate, which is
identified as a (possible) bug

location, with a LUT

Any correction
found ?

fonoitarugifnocarofkooL
LUTs for correctionby

applying the methods in [2,7]

Correct succeeded

Refine locations or
connections of LUTs

Yes

No

Modify the implementation
based on the correction

There may be time-out

Fig. 3. An overall correction flow

8 K. Oshima et al.

LUT

LUT

LUT

N=2

Fig. 4. An example of LUT insertions

not practical to replace all of the gates in the given circuit with LUTs, and the
number of LUTs inserted into the implementation influence a lot on the runtime.
In order to obtain candidate locations of bugs, existing methods such as [8] can
be utilized. In this work, we employ a simple heuristic, which is something similar
to the path tracing method that all gates in logic cones of erroneous primary
outputs are replaced with LUTs when they are within a depth of N levels from
the primary outputs. Figure 4 shows an example of such introduction of LUTs.
In this figure N = 2. In the experiments described in Sect. 4, N is set to Sect. 5.
This number is determined through experiments. If the number is larger, there
are more chances for the success of corrections. On the other hand, if the number
is smaller, we can expect faster processing time.

There can be cases where any correction cannot be found for a given imple-
mentation with LUTs. There can be varieties of reasons on the failure. It may be
due to the wrong selection of the target gates to be replaced, the inputs to LUTs
are not sufficient, or other reasons. In this chapter, we assume that bugs (or por-
tions that are implemented differently from designers’ intention or specification)
really exist within the given candidate locations. That is, we need to add more
variables to the inputs of the LUTs to increase the chances of corrections, which
is discussed in the next subsection.

3.2 Adding Variables to LUT Inputs

As mentioned above, there are bugs that cannot be corrected with LUTs having
the same set of input variables as their original gates, if so called “missing wire”
bugs in [12] are happening. Figure 5 shows a simple example. In this example, the
logic function of an implementation generates A∧B∧C, while its specification is
A∨B∨C ∨D. With an LUT whose inputs are A,B,C that replaces the original
AND gate in the incorrect implementation, we cannot get any configuration of
its truth table for correction, since D is essential to the correct logic function.
In general, assuming that bugs really exist within the gates that are replaced
with LUTs, the reason why we cannot obtain any correction is due to the lack
of variables that should be connected to appropriate LUTs. Therefore, what
we need to do in the refinement phase in Fig. 3 is to add extra variables to
LUT inputs and try to find a correction again. If we inappropriately add a set

Debugging Methods Through Identification of Appropriate Functions 9

A
B
C Z

LUT
A

B

C

Z’

Specification

Z

A

B

C

Z’

There is no
D signal

D

A
B
C
D

Need signal D for correctionImplementation

Fig. 5. An example bug that cannot be corrected with LUTs having the same inputs

of variables to inputs of some LUTs, however, it simply results in no solution
in the next iteration of the loop in Fig. 3. The numbers of ways to add extra
variables to input of LUTs are large, and we cannot check one by one. In our
method, we try to correct the implementation by adding as small numbers of
variables as possible. First, all possible ways to add one variable to LUTs are
tried. If no correction can be found, then the method looks for correction with
two additional variables to one or two LUTs. Basically, we continue this process
until we find corrections.

3.3 Using MUXs to Examine Multiple Additional Variables

As discussed above, the method looks for any correction by adding variables to
the inputs of LUTs. Even if only one variable is added to the inputs of some
LUT, we need to iterate the loop in Fig. 3 many times until a correction is
found or a proof of no solution is obtained. For a large circuit, the number of
iterations may be too large even for the case of adding one variable to an LUT.
To make this process more efficient, we introduce a multiplexer and connect
multiple variables, which are candidates to be added to an LUT, to its inputs.
The output of the MUX and the additional input of the LUT are connected
as shown in Fig. 6. Then, we can select a variable to be added to the LUT by
appropriately assigning values to the control variables of the MUX.

Fig. 6. Additional input variables to an LUT

10 K. Oshima et al.

Figure 6 shows how multiplexers work for examining candidate variables that
may need to be added to the inputs of the LUT in order to get a correction. The
LUT in the example originally has three inputs, A,B, and C, which means this
LUT is supposed to be replaced with some 3-input logic gate for corrections.
Suppose that we want to examine multiple variables to be added as an input of
the LUT at the same time, instead of examining one by one. Using the MUX
in the example, we can examine four additional candidate variables D,E, F,
and G at one iteration. Here, we need to treat the control variables as program
variables, same as the ones in the LUTs. If any correction is found, the corre-
sponding values of the control variables identify a variable for addition. That
is, if it becomes an input of the LUT connected to the MUX, the implementa-
tion can be equivalent to its specification. Otherwise, all variables connected to
inputs of the LUT cannot make the incorrect implementation equivalent to its
specification. A straightforward way to realize something similar is to introduce
LUTs having larger numbers of inputs rather than using MUX. This is definitely
more powerful in terms of the numbers of function which can be realized at the
output of the LUTs. In the example shown in Fig. 6, instead of using a MUX,
an LUT having seven inputs may be used, and that LUT can provide many
more distinct functions for possible corrections. The problem, however, is the
number of required program variables. If we use a MUX in the example, we need
24 + 2 = 18 variables. If we use a seven-input LUT, however, we need 27 = 128
variables, which may not be practical with our methods if we deal with multiple
of such cases simultaneously.

Even when MUXs are used to examine multiple variables at the same time,
we should be aware of the increase of the number of program variables. As can
be seen in [2,7], larger numbers of program variables increase runtime for finding
a correction, which corresponds to the runtime spent for each iteration of the
loop in Fig. 3. Note that one iteration in Fig. 3 may include many iterations in
Fig. 2. In the experiments, we show a case study with varieties of numbers of
inputs to MUX.

3.4 Filtering Out Variables Based on Necessary Condition

When a variable is added to an input of an LUT, it may or may not be an appro-
priate variable to correct the target bug. Even with the more efficient method
using MUXs described above, we should not try to examine a variable which
cannot correct the bug. In this subsection, we propose a method for filtering out
such non-useful variables from the set of candidate variables that can be con-
nected to inputs of LUTs by utilizing necessary conditions on the correctability.

Necessary Condition for the Variables to be Added. For simplicity, the
following discussion assumes that there is one LUT added to an implementation
circuit. It can be easily extended to the cases of a set of multiple LUTs where
each LUT does not have any other LUTs in its fan-in cone (i.e. an LUT depends
on other LUTs). However, we here omit such cases.

Debugging Methods Through Identification of Appropriate Functions 11

When no correction is found, which corresponds to taking “NO” branch in
Fig. 3, we cannot correct an implementation under debugging with the current
LUT, which is the only LUT added, with its current input variables. The reason
why there is no correction (i.e. no configuration of LUTs works correctly) is that
the LUT outputs the same value for different two input values to the LUT. This
happens when “No solution” is reached in Fig. 2. Figure 7 explains the situation.
In the figure, xi is an input pattern added in one of the previous iterations of
the process shown in Fig. 2, and xj is the pattern that is added as a result of the
last iteration. Then, there can be situations where the following two conditions
are satisfied.

1. For a pair of primary input patterns xi and xj , the input values to the
LUT lin(xi) and lin(xj) are the same, where lin represents a logic function
that determines an input value to the LUT for a given primary input pat-
tern. Therefore, the output values from the LUT are also the same, that is,
lout(xi) = lout(xj).

2. In order to make the implementation equivalent to the specification for both
xi and xj , that is, fI(xi) = fS(xi) ∧ fI(xj) = fS(xj), lout(xi) and lout(xj)
must be different, where fS and fI denote logic functions of the primary
outputs of the specification and the implementation, respectively.

Note that fS(xi) can be a different value from that of fS(xj). With the condi-
tions, there is no way to have an LUT configuration that satisfies the specification
for both xi and xj at the same time. In this case, it cannot make an LUT configu-
ration for both xi and xj even if we add a variable v to the LUT that has the same
value for xi and xj (v(xi) = v(xj)), since lout(xi) and lout(xj) are still the same.
This is because the output of the LUT can be represented as lout(lin(x), v(x))
for a primary input pattern x and lin(xi) = lin(xj) ∧ v(xi) = v(xj) implies lout
are equivalent for xi and xj for any configuration of the LUT.

0
0

0

LUT
1
0

0 lout(xi)

0
1

0

LUT
1
0

0 lout(xj)

Different
input patterns

Input values to
LUT are the same

Specification:
fI(xi) = fS(xi)

Specification:
fI(xj) = fS(xj)

xi

xj

lin(xi)

lin(xj)

fI(xi)
…

…

Specification is not satisfied
both for x i and x j with the
same LUT configuration

…

fI(xj)

…

Fig. 7. Reason of no correction

The observation above suggests that we must not add a variable to the LUT
inputs if it has the same value for xi and xj . It gives us a necessary condition

12 K. Oshima et al.

that the added variable to an LUT must have different values for xi and xj .
If this necessary condition is satisfied, there is an LUT configuration where
lout(xi) �= lout(xj) is satisfied, which is a requirement to make fS = fI for both
xi and xj . Note that fS = fI may not be satisfied even lout is different for the
two input patterns.

Figure 8 shows how to make the output of the LUT different by adding a vari-
able that satisfies the necessary condition. Here, we denote the added variable
to the LUT as A(x), where x is the primary input variables. An LUT configura-
tion with its input lin(x) and A(x) is represented by l′out(x), which is rewritten
as l′out(x) = PĀ(lin) ∗ Ā + PA(lin) ∗ A, where PĀ(lin) and PA(lin) represents
truth table values for lin when A = 0 and A = 1, respectively. This is nothing
but Shannon’s expansion of l′out. If the added variable A(x) that satisfies the
necessary condition takes 1 for xi and 0 for xj , we can make an LUT configu-
ration satisfying l′out(xi) �= l′out(xj) by setting the two truth tables PĀ and PA

appropriately. For the case of xi = 0 and xj = 1, an LUT configuration can be
obtained in a similar way.

l’ou t = P (lin) * ¬A + PA(lin) *A,
to differentiate l’ou t for x i and xj

0
0

0

LUT
1
0

0 l’ou t(xi)

0
1

0

LUT
1
0

0 l’ou t(xj)

Necessary condition:
Must be different values

for xi and xj

xi

xj

lin(xi)

lin(xj)

…

…

A(xi)

A(xj)

Different input
patterns

Specification:
fI(xi) = fS(xi)

Specification:
fI(xj) = fS(xj)

fI(xi)

fI(xj)

…

…

Fig. 8. Adding a variable satisfying a necessary condition

Based on the discussion above, we can filter out variables from candidates
when they have the same value for both xi and xj . Now we show an example of
such filtering. Figure 9(a) is the specification which is Z = A ∨B ∨C ∨D. Here
we assume that this is one of the specifications and there are other outputs in the
target circuit. Now assume that a wrong implementation is generated as shown
in Fig. 9(b). Here the output only depends only on C and D, which is clearly
wrong. For the input values where all of inputs are 0, this implementation looks
correct as it generates the same output value, 0, as the specification. Note that
the implementation has more gates in the circuit in order to realize the other
outputs which are not shown in the figure.

Then we find a counterexample, which is A = 0, B = 1, C = 0,D = 0 as
shown in Fig. 10(a). For these values, the correct output value is 1, but the
value of the output in the implementation is 0 as seen from Fig. 10(b). Our
debugging method first replaces the suspicious gate, the OR gate, with an LUT

Debugging Methods Through Identification of Appropriate Functions 13

A
B
C Z

A

B

Specification

D

Implementation

C
Z’

D

A

B

…

…
0
0
0
0

0

0

0

0

0

0

0

0

0

0

(a)

(b)

t1

t2

Fig. 9. An example specification and its buggy implementation

A
B
C Z

A

B

Specification

D

Implementation

C
Z’

D

A

B

…

…
0
1
0
0

0

1

0

1

0

0

1

0

0

1

(a)

(b)

A

B

C
Z’

D

A

B

…

…

0

1

0

1

0

0
0

0

1

(c)

Circuit
under debug

LUT

A

B

C
Z’

D

A

B

…

…

0

1

0

1

0

0
0

0

1

(d)

Circuit
under debug

LUT

t1

t2

t1

t2

t1

t2

Fig. 10. A debugging process for the design in Fig. 9 with a necessary condition

as shown in Fig. 10(c). Unfortunately, there is no configuration for the LUT
which makes the implementation correct, and so we need to add an variable to
the LUT. Now we have two candidates, t1 and t2 as shown in Fig. 10(d). The
necessary condition discussed in the above requires that the value of the variable
must be different between the two cases, A = 0, B = 0, C = 0,D = 0 and
A = 0, B = 1, C = 0,D = 0. From this condition, the variable t1 is eliminated
and the variable t2 is selected.

14 K. Oshima et al.

An Improved Flow with Filtering Variables. Figure 11 shows an improved
flow with variable filtering based on the necessary condition discussed above.
When no correction is found for all the input patterns so far, the method searches
for a set of variables that can be added to inputs of an LUT. During this search,
variables which do not satisfy the necessary condition are filtered out. This
consists of the following two steps:

1. Find an input pattern xi that is added in one of the previous iterations and
has the same input values of an LUT as those of the lastly added pattern xj .

2. Find a variable having different values for xi and xj .

As a result, the method tries to add a variable satisfying the necessary con-
dition to inputs of some LUT. Then, with the added LUT input, the method
looks for another correction v by applying CEGAR based method in [2,7].

If this filtering method is applied with the method using MUXs to examine
multiple variables simultaneously that is described in Sect. 3.3, it needs to pick
up N variables, where N is the total number of input variables to MUXs.

Start

Look for a candidate
correction v for input
patterns X = (x0 , …, xn)

Any candidate
v found?

Look for input pattern xn+1

which makes output
incorrect with v

Any xn+1?

Finish

v is
a correction

add xn+1 to X
(counterexample)

No correction

Yes

Yes

No

No

No

Add a variable to
some LUT input

Search variables to be
added

Any
candidates?

Yes

Fig. 11. An bypass flow including filtering out variables

4 Experimental Results

4.1 Experimental Setup

Four sets of experiments are conducted in order to evaluate our debugging meth-
ods proposed in this chapter. We use the following circuits for the experiments:

Debugging Methods Through Identification of Appropriate Functions 15

ISCAS85 benchmark circuits, an industrial on-chip network circuit (“Indus-
trial”), and an ARM Cortex microprocessor (“ARM processor”). While ISCAS85
circuits are combinational ones, the last two circuits are sequential ones. All are
in gate level designs except for the last experiment which deals with bugs in RTL
designs. Table 1 shows the characteristics of these circuits. In order to apply our
method, sequential circuits needs to be time-frame expanded. The number of
expanded time-frames (i.e. clock cycles for examinations) are shown in the sec-
ond column for Industrial and ARM processor.

We use PicoSAT [10] as a SAT solver. In order to convert the netlists written
in Verilog into SAT formulae, we use ABC [11] and AIGER [13]. All experiments
reported in this section are run on a machine with Intel Core 2 Duo 3.33GHz
CPU and 4GB Memory.

Table 1. Characteristics of circuits

of expansion Inputs Outputs Gates

ISCAS85 benchmarks

c499 202 41 32

c880 383 60 26

c1355 546 41 32

c1908 880 33 25

c2670 1193 233 140

c3540 1669 50 22

c5315 2307 178 123

c7552 3512 207 108

Others

Industrial 3 1201 1216 8289

ARM processor 1 895 923 4666

4.2 Simultaneous Examination on Multiple Variables Using
Multiplexers

First, we perform an experiment with our method that introduces multiplexers
(MUXs) into a circuit under debugging so that multiple extra variables are
connected to LUTs through MUXs. In this experiment, we identify the erroneous
primary outputs through simulation, and replace all gates in their logic cones
within the depth of 5 levels from the erroneous primary outputs with LUTs.
Then, we insert a N -input MUX to the circuit, and its output is connected to
all LUTs. We randomly choose sets of variables out of all primary inputs of the
circuit to be debugged, and they are connected to the inputs of MUXs.

If no solution for correction can be found, we replace all the input variables
to MUXs with another set of variables that are not examined yet, and execute
the method again. In this experiment, the runtime is limited up to 5 h.

The results are shown in Table 2. N , the number of inputs to MUX, varies
from 1 to 256. N = 1 means no MUX, in other words, a variable is directly

16 K. Oshima et al.

added to inputs of all LUTs. “Change inputs” represents the number of variable
sets that are examined for correction. If this number is M , N ×M variables are
examined in total. As can be seen in the table, we need to run the method in [2,7]
only a few times when the number of MUX inputs is 64 or 256. “Time” shows the
total runtime. We can see the runtime for 256-input MUX is the shortest in both
circuits. Also, it is notable that we cannot find a correction within 5 h without
MUX, since a lot of iterations are required in order to check many variables one
by one.
Table 2. Experimental results of simultaneous examination of candidate variables
using MUXs

Inputs of MUX Change inputs Time (sec)

Industrial 1(no MUXs) - Timeout (-)

16 15 5281

64 4 12794

256 1 211

ARM processor 1(no MUXs) - Timeout (-)

16 8 11204

64 2 8857

256 1 5909

4.3 Candidate Variable Filtering Using the Necessary Condition

Next, we conduct another experiment to evaluate our method in terms of how
well the necessary conditions works. In this experiment, only an incorrect gate
is replaced with an LUT. The candidates of variables are all variables in the
circuit under debugging. For this experiment, we need to record the values of
internal variables for all input patterns. For this purpose, we use Icarus Verilog
simulator [14].

The results are shown in Table 3. In this experiments, there is no MUX
inserted for the simultaneous examination of multiple variables. Instead, each
variable is examined one by one. From the table, we can see only small numbers
of iterations are required. Comparing to the results in Table 2 with N = 1, where
any correction is not obtained within 5 h, the proposed filtering method based
on the necessary condition makes the execution time much shorter. It implies
that a large number of variables examined in the results shown in Table 2 do
not satisfy the necessary condition. The necessary condition works pretty well
as filtering.

4.4 Applying Both Multiple Variable Examination and Candidate
Filtering

In the previous experiments, we evaluate our proposed methods for finding vari-
ables which can correct circuits when added to inputs of LUTs. That is, simul-
taneous examination of multiple candidate variables using MUXs and filtering

Debugging Methods Through Identification of Appropriate Functions 17

Table 3. Experimental results of filtering candidate variables based on the necessary
condition

Changed inputs Time (sec)

Industrial 29 524

ARM processor 24 293

candidate variables based on necessary condition are examined. In this section,
we see the effects of applying both of the methods at the same time. For this
experiment, we use ISCAS85 circuits and an industrial circuit.

In order to generate buggy designs, one gate in each ISCAS circuit is replaced
with an LUT, and one of its inputs is removed from the LUT. As a result, we
realize cases where a potentially buggy gate is replaced with an LUT, but it lacks
one input for correction because we intentionally remove it. The gate replaced
with an LUT and a variable to be removed are randomly chosen, and we make
five instances for each ISCAS circuit. For Industrial circuit, we replace one of the
buggy gates with an LUT. The replaced LUT needs one more input for correction
(without intentionally removing one of its original input) as the original circuit
is buggy.

We apply the following three methods for each instance.

– (PI). Examining all primary input variables one by one until one can correct
the circuit.

– (Filtering). Examining only primary input and internal variables one by one
which satisfy the necessary condition discussed in Sect. 3.4.

– (Filtering + MUX). Examining multiple variables which satisfy the neces-
sary condition using MUX.

The results are shown in Table 4. In the table, # of var, Corrected, and #
of examined represent the total number of candidate variables, (the number of
successfully corrected)/(the total number of instances), and the average number
of examined variables in successfully corrected cases, respectively. When # of
examined is N/A, it means that none of the experimented instances can be
corrected by the corresponding method. Ratio means the ratio of the number of
examined variables with filtering to the total number of variables. Runtime in
the table is the average runtime of the experimented instances.

From the table, we can see the following.

– When we want to correct circuits utilizing programmability of LUT and one
additional input to LUT, we need to add some internal variables (not primary
input variables) to the LUT.

– When applying the filtering method to filter out variables not satisfying the
necessary condition, we can reduce the numbers of examined candidates to
10 %–30 % of all variables.

– Examining multiple candidates simultaneously using MUXs reduces the run-
time significantly.

18 K. Oshima et al.

Table 4. Experimental results of applying both of our proposed method

Circuit # of var Method Corrected # of examined(ratio) Runtime(sec)

c499 243 PI 0/5 N/A 46.4

Filtering 5/5 88.6 (36%) 48.3

Filtering + MUX 5/5 88.6 (36%) 2.3

c880 443 PI 1/5 61.0 (14%) 80.8

Filtering 5/5 54.2 (12%) 57.0

Filtering + MUX 5/5 54.2 (12%) 2.6

c1355 587 PI 0/5 N/A 60.6

Filtering 5/5 155.8 (27%) 227.7

Filtering + MUX 5/5 155.8 (27%) 3.3

c1908 911 PI 2/5 34.0 (4.0 %) 69.2

Filtering 5/5 194.2 (21%) 284.5

Filtering + MUX 5/5 194.2 (21%) 3.9

c2670 1194 PI 0/5 N/A 708.1

Filtering 5/5 142.2 (12%) 83.2

Filtering + MUX 5/5 142.2 (12%) 4.7

c3540 1670 PI 0/5 N/A 154.9

Filtering 5/5 503.8 (30%) 915.9

Filtering + MUX 5/5 503.8 (30%) 7.8

c5315 2476 PI 0/5 N/A 915.5

Filtering 5/5 324.6 (13%) 268.1

Filtering + MUX 5/5 324.6 (13%) 8.8

c7552 3604 PI 0/5 N/A 1484.3

Filtering 5/5 1016.0 (28%) 3990.1

Filtering + MUX 5/5 1016.0 (28%) 15.9

Industrial 3209 PI 0/1 N/A Time out

Filtering 1/1 100 (3.1 %) 972.3

Filtering + MUX 1/1 100 (3.1 %) 172.5

4.5 Debugging Bugs in RTL Designs

As a final experiment, the proposed debugging method is applied to the bugs
in RTL designs, i.e., incorrect statements in RTL design descriptions, in order
to understand how much portions of bugs in RTL designs can be corrected. In
general, it is much harder to debug bugs in RTL designs, as multiple portions
of the synthesized gate level circuits may have to be corrected even when one
statement in RTL is wrong.

We insert one wrong RTL statement into the RTL design descriptions. There
are four types of wrong statements we introduce as shown in Table 5. Please note
that “Incorrect variable” and “Missing variable” most likely need extra inputs

Debugging Methods Through Identification of Appropriate Functions 19

to LUTs, and so they are relatively difficult cases. Also “Incorrect logic” can
be difficult cases as the incorrect logic function may make it possible for logic
synthesis tools to minimize the circuits incorrectly too much, which results in
similar situations as “Missing variable”.

The results are shown in Table 6. From the results, we can observe the fol-
lowing.

– Bugs in RTL statements are in general more difficult than the ones in gate
level designs. Mostly 30–40 % cases can be corrected.

– The bugs as “Extra variable” are relatively easy as expected. This is mostly
because we do not need extra variables to be added to LUTs.

– The bugs as “Incorrect logic” are relatively difficult as they mostly need mul-
tiple gates to be corrected.

These observations are important as they suggest for future directions tar-
geting bugs in RTL designs.

Table 5. Examples of bugs inserted into ARM processor

Type of bugs Correct statement Buggy statement

Incorrect logic assign Z = A & B; assign Z = A | B;

Extra variable assign Z = A & B; assign Z = A & B & C;

Incorrect variable assign Z = A & B; assign Z = A & C;

Missing variable assign Z = A & B; assign Z = A;

Table 6. Results on RTL debugging

Type of bugs Success ratio #Added #Candidates #Iterations Time (sec)

variables Success Fail

Incorrect logic 3/10 0 N/A 10.4 29563.0 213.8

Extra variable 9/10 0 N/A 16.9 38141.4 1550.2

Incorrect variable 3/10 3 4282.7 13.0 39192.1 173.2

Missing variable 4/10 4 5333.8 39.0 38016.6 480.3

5 Discussions for Extensions

One thing we can observe from the experimental results is that we need some-
times many iterations especially when we need to add additional variables to
LUTs. Also, if we can utilize LUTs which have larger numbers of inputs may
make the proposed methods more efficient and more effective. For that direc-
tion, one way is, on behalf of LUTs having large numbers of inputs, to introduce
fixed topology circuits consisting of a set of LUTs having smaller numbers of
inputs, such as the one shown in Fig. 12. Here a 12-input circuit is defined with
a set of LUTs: two of 4-input/3-output LUTs, three of 4-input/2-output LUTs,

20 K. Oshima et al.

and one 4-input/1-output LUT. If we implement 12-input LUT directly, we
need 212 = 4K bits. On the other hand, the circuit shown in Fig. 12 needs only
24 × (2 × 3 + 3 × 2 + 1) = 832 bits, although the number of logic functions that
can be realized is much less. The fact that the circuit shown in Fig. 12 can only
realize very small subset of all possible logic functions with 12-inputs may not
be a critical problem if it can represent many or most of the logic functions with
12-inputs actually appearing in real designs.

As a first step of experiments, we apply the proposed debugging methods to
synthesize the configuration of the LUTs in the circuit shown in Fig. 12 from
given specifications. Hence, this corresponds to the identification of logic func-
tions for the LUTs of the 12-inputs circuit, which as a whole can be used in
larger circuits. That is, this is an effort to try to accommodate gates with larger
number of inputs as candidates of modification when debugging circuits.

Fig. 12. Small LUT-based circuit having 12 inputs

There is a research on enumerating all logic functions appearing in vari-
ous benchmark circuits [15]. As seen from the chapter, there are not so many
logic functions with 12-inputs actually appearing under NPN-equivalence. The
chapter also shows the most frequently appearing twenty functions. We have suc-
cessfully obtained appropriate configurations for the LUTs of the circuit shown in
Fig. 12 targeting those twenty logic functions. The processing time for one logic
function is rather quick, varying from seconds to hundreds of seconds. Although
these results are just for the most frequent twenty logic functions, it is suggest-
ing that the circuit shown in Fig. 12 has good flexibility to accommodate various
frequently used logic functions and that the proposed debugging methods can
really work for the circuits replacing the buggs gates.

Debugging Methods Through Identification of Appropriate Functions 21

6 Conclusions and Future Work

In this chapter, we have proposed debugging methods for gate-level circuits
applying partial synthesis techniques shown in [2,7]. In the methods, possible
bug locations, which may be given from bug locating methods, are replaced with
LUTs, and a configuration of LUTs that makes an implementation under debug-
ging equivalent to its specifications is searched. To deal with the missing input
variables to LUTs, we have also proposed methods to examine variables for LUT
inputs in trial-and-error manner. Using MUXs, multiple variables are examined
simultaneously, which largely reduces the number of iterations of the processes.
In addition, we have introduced a necessary condition that variables added to
LUT inputs must be satisfied, so that variables not satisfying the condition can
be removed quickly from the candidates. Through the experiments with ARM
processor design, on-chip network controller taken from industry, and benchmark
circuits, we have shown that both of our proposals can significantly speed-up the
process to get a correction (i.e. an appropriate configuration of LUTs to make an
incorrect implementation correct). We have also shown preliminary experimental
results for bugs in RTL designs.

We have also discussed possible extensions of our proposed method, intro-
ducing sub-circuits having relatively larger numbers of inputs, such as 12 inputs
to the buggy locations of the design under debugging. For such large numbers
of inputs, it is not practical to represent the entire sub-circuit with a single
12-input LUT. Instead we have discussed about introduction of decomposition
of such sub-circuits with a sets of LUTs having much smaller numbers of inputs.

As a future work, we plan to develop a method to reduce the candidate vari-
ables based on the necessary condition discussed in this chapter for the cases
where LUTs are dependent with each other. In such cases, the necessary condi-
tion may need to be refined to deal with dependency.

References

1. Yamashita, S., Yoshida, H., Fujita, M.: Increasing yield using partially-
programmable circuits. In: Proceedings of Workshop on Synthesis And System
Integration of Mixed Information technologies, pp. 237–242 (2010)

2. Jo, S., Matsumoto, T., Fujita, M.: SAT-based automatic rectification and debug-
ging of combinational circuits with LUT insertions. In: 2012 IEEE 21st Asian Test
Symposium (ATS), pp. 19–24. IEEE Press, New York (2012)

3. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer,
Heidelberg (2011)

4. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

5. Ling, A., Singh, D.P., Brown, S.D.: FPGA logic synthesis using quantified boolean
satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
444–450. Springer, Heidelberg (2005)

22 K. Oshima et al.

6. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat, V.A.: Combi-
natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 404–415. ACM, New York (2006)

7. Fujita, M., Jo, S., Ono, S., Matsumoto, T.: Partial synthesis through sampling
with and without specification. In: 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 787–794. IEEE Press, New York (2013)

8. Fahim Ali, M., Veneris, A., Smith, A., Safarpour, S., Drechsler, R., Abadir, M.:
Debugging sequential circuits using Boolean satisfiability. In: IEEE/ACM Interna-
tional Conference on Computer Aided Design 2004, pp. 204–209. IEEE Press, New
York (2004)

9. Oshima, K., Matsumoto, T., Fujita, M.: A debugging method for gate level circuit
designs by introducing programmability. In: IFIP WG10.5 VLSI-SoC, pp. 78–83,
October 2013

10. Biere, A.: PicoSAT essentials. J. Satisfiability Boolean Model. Comput. (JSAT) 4,
75–97 (2008)

11. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

12. Abadir, M.S., Ferguson, J., Kirkland, T.E.: Logic design verification via test gen-
eration. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 7(1), 138–148 (1988).
IEEE Press, New York

13. AIGER. http://fmv.jku.at/aiger/
14. Icarus Verilog. http://iverilog.icarus.com/
15. Mishchenko, A.: Enumeration of irredundant circuit structures. In: Proceedings of

International Workshop on Logic and Synthesis (2014)

http://fmv.jku.at/aiger/
http://iverilog.icarus.com/

Gate Sizing Under Uncertainty

Nathaniel A. Conos(B), Saro Meguerdichian, and Miodrag Potkonjak

University of California, Los Angeles, 4403 Boelter Hall,
Los Angeles, CA 90095, USA

{conos,saro,miodrag}@cs.ucla.edu

Abstract. We present a gate sizing approach to efficiently utilize gate
switching activity (SA) and gate input vector control leakage (IVC)
uncertainty factors in the objective function in order enable more effi-
cient power and speed yield trade-offs. Our algorithm conducts iterative
gate freezing and unlocking with cut-based search for the most beneficial
gate sizes under delay constraints. In an iterative flow, we interchange-
ably conduct gate sizing and IVC refinement to adapt to new circuit
configurations. We evaluate our approach on benchmarks in 45 nm tech-
nology and demonstrate up to 62 % (29% avg.) energy savings compared
to a traditional objective function that does not consider SA and IVC.
We further adapt our approach to optimize yield objectives by address-
ing processing variation (PV). Significant improvements were achieved
under identical timing yield targets of up to 84 % max (55 % avg.) and
74 % max (25 % avg.) mean-power savings for selected ISCAS-85 and
ITC-99 benchmarks, respectively.

Keywords: Gate sizing · Low power · Input vector control · Switching
activity · Yield optimization

1 Introduction

Gate sizing is a powerful optimization technique used to minimize power and/or
area under strict timing constraints by altering the widths of transistors in gates.
Gate sizing has been extensively studied over the past three decades [2–5] and
several approaches have been proposed. Previous approaches, however, do not
consider optimization uncertainty factors, such as switching activity (SA) and
the impact of input vector control leakage (IVC), which greatly impact the overall
optimization strategy. Additionally, the impact technological uncertainty, i.e.,
process variation (PV), has increased in the deep-micron regime, and traditional
techniques lack the ability to effectively address yield targets. As a result, the
modern design flow imposes a number of modeling and optimization challenges,
that require new methods in accounting for uncertainty, both technological and
optimization.

One major challenge is the simplification of timing and power models, which
may lead to suboptimal solutions when mapping out to real designs, thus,
increasing optimization uncertainty. Accounting for accurate gate and intercon-
nect delay and its dependencies on capacitive load slew are often ignored [5].
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 23–47, 2015.
DOI: 10.1007/978-3-319-23799-2 2

24 N.A. Conos et al.

Additionally, nominal gate switching activity and/or average gate leakage are
generally assumed in previous works limiting the potential improvements by
accounting for realistic operating conditions. Moreover, previous approaches
are either dynamic or leakage power-centric in their optimization flows, which
do not address the varying application usage characteristics present in high-
performance systems (e.g., data-centers, super-computing) to energy constrained
mobile devices (e.g., tablets, smart-phones).

Cell library-based optimization has emerged as the de facto standard for
modeling power and delay of a circuit design. Many previous approaches, how-
ever, utilize simplified timing models by assuming convex and/or linear delay
and power models [4]. Empirical analysis has shown that accurate timing mod-
els are non-linear/non-convex. Furthermore, optimizing circuit designs using a
discrete cell library, however, leads to solving an NP-Hard problem [6]. As a
result, many heuristics have been developed in order to address the huge opti-
mization problem search space. A major drawback of these methods is that they
require heavy parameter tuning and are difficult to reproduce, since they are
technology dependent and are driven by a set of sensitivity functions. These
methods often perform iterative per-gate or per-group improvement and are too
compute intensive and are impractical to be applied on modern IC sizes, even
with incremental updates. Furthermore, these approaches mainly perform local
optimization (i.e., local-moves) and are susceptible to be trapped in local mini-
mas [7]. In this work, we interchangeably use the term gate and cell to represent
the granularity in which we size gates, which is at the cell-level.

The usage of modern cell libraries, however, have enabled the support of var-
ious supply/threshold voltages, and drive strengths, thus, enabling a rich per-
formance and energy trade-off to address the potentially vastly differing device
usage characteristics. However, current tools do not account for realistic con-
ditions into their objective functions (e.g., gate activity, duty cycle, input vec-
tor control), with respect to their applications, potentially impacting obtained
results.

In this chapter we focus on two main contributions. The first contribution,
introduced in [1], improves state-of-the-art sizing methodologies by simultane-
ously considering gate switching activity (SA) and gate input vector control
(IV C) uncertainty. The key contribution is that significant benefits of incorpo-
rating actual gate SA and gate IVC in the objective function over the equivalent
approach that only uses averaged values. Additionally, we show how the obtained
solution varies when accounting varying duty cycles. The second contribution,
introduced in this chapter, is the integration our SA+IVC technique with a
pre-characterization step to improve power and yield targets.

The focal point of our approach is a scalable gate sizing algorithm that con-
siders gate SA and IV C leakage. The steps are to: (1) extract the SA of gates
based on simulation of real workloads; and (2) conduct IVC to obtain the input
vector that induces the lowest total leakage energy across all gates, and (3) an
iterative gate sizing approach freezes maximally-constrained gates (ones that are
at high-power states as determined by SA and IVC) while searching for a sizing
option that best improves the current picture. The objective function in step 3

Gate Sizing Under Uncertainty 25

B[1] A[1] Cin[1]

Carry[1]

B[0] A[0] Cin[0]

Carry[0]

G6 G5 G4

G7

G2 G1 G0

G3

1

00 11 1

0 0 0

1

1 1 1

1

B[2] A[2] Cin[2]

Carry[2]

G10 G9 G8

G11

11 00

1 0 1

1 1 10 01 1

01

=0.6=0.5 =0.6 =0.2=0.2 =0.2=0.1=0.1 =0.05

=0.6 =0.1 =0.3

Fig. 1. Carry propagation for 3-bit carry-ripple adder

to be considered at the iteration depends on the types of options available and
their impacts on both delay and energy. The algorithm prevents the algorithm
from reaching a local minima by freezing gates as they are sized until all gates
have been frozen, then unfreezes all gates, re-conducts IVC (since new gates may
be energy-dominant), and reiterates steps 2 and 3 until the solution converges
or the delay constraint cannot be met.

The concept introduced in this chapter is the extension of our gate sizing
technique to account for the impact of process variation for maximizing yield
targets with respect to specified delay and power targets. Efficient yield optimiza-
tion is achieved by a pre-characterization step which identifies the most critical
cells that are likely to impact delay targets through an efficient Monte Carlo
simulation that considers epsilon-paths (ε-paths). The intuition is to simultane-
ously speed-up critical paths in order to minimize the impact of process variation
across generated circuit instances and minimize the power costs by conducted
gradual gate sizing.

We evaluate our gate sizing approach on benchmarks included in ISCAS-
85/89, ITC99 and arithmetic units first without consideration of PV. Our results
indicate over 62 % (29 % avg.) energy improvement over a method that assumes
nominal SA and IV C, demonstrating that gate SA and IV C play an major role
in the guiding sizing decisions over an equivelent sizing algorithm that does not.
We then present results using our PV-aware technique, which further imroves
our original gate sizing algorithm to address yield objectives. We demonstrate
the effectiveness of our process variation-aware (PV-aware) against a non PV-
aware technique across ISCAS-85 and ITC99 benchmarks, achieving 64 % and
48 % power savings with respect to identical target delays.

26 N.A. Conos et al.

2 Motivation

We begin by providing a small realistic example demonstrating the importance
of considering both SA and IVC uncertainty factors in the gate sizing optimiza-
tion process. Consider the carry propagation of a 3-bit carry-ripple adder, shown
in Fig. 1. Assume that 2- and 3-input NAND gates have input-dependent leak-
age power consumption values for two possible sizes, small (X1) and large (X2),
shown in Table 1. Also assume that the given input vectors (A = 101, B = 101,
and Cin = 1) are realized throughout the entire duration of the application.
Figure 1 shows the input vectors to each gate. Therefore, the overall leakage
power of the circuit is 288 nW. For simplicity, ignoring load and slew dependen-
cies, assume that all gates have delay of 10 ps at size X1 and 5 ps at size X2.
Finally, assume that at the beginning of the optimization process, all gates are
nominally sized to size X1. Therefore, there are eight nominal critical paths (col-
ored), {G0, G2} → G3 → {G4, G6} → G7 → {G8, G10} → G11, with nominal
delay 60 ps. Consequently, total leakage energy of the circuit is 1.73 × 10−17 J.

As an example, consider a delay constraint of 55 ps. It is clear that one
of gates G3, G7, or G11 should be sized up to X2, as all critical paths pass
through these bottleneck gates and decrease the delay of each of these gates will
decrease the overall delay. A traditional approach to gate sizing would consider
these gates equally. In other words, increasing the size of either would decrease
delay and increase switching and leakage power by the same amounts. However,
from Table 1, we see that the leakage power of a gate, due to transistor stacking,
strongly depends on its applied inputs, with up to a 43X difference between
the lowest-leakage state (input vector “100”: 1.29 nW) and highest-leakage state
(input vector “111”: 55.8 nW) of a 3-input NAND gate. Furthermore, switching
energy of a gate is directly proportional to its activity factor, or the likelihood
that the gate will switch. Therefore, because the gates have both different applied
input vectors and different activity factors, sizing up each one will have a different
effect on overall power and energy consumption, so they should not be weighted
equally in the optimization process.

First, consider the case where the duty cycle of the adder is low and therefore
leakage energy dominates. We can determine from Table 1 that increasing the size
of gates G3, G7, or G11 will increase leakage power by 9.96 nW, 167.42 nW, or
56.35 nW, respectively, while decreasing the overall delay by 5 ps. Therefore, the
optimal decision is to increase the size of gate G3, which will have minimal impact
on leakage energy, increasing leakage power to 298 nW and decreasing leakage
energy to 1.64×10−17 J. Increasing the size of G7 would instead increase leakage
power to 455 nW, increasing leakage energy to 2.50×10−17 J. Thus, considering
IVC in this example in the optimization algorithm can improve the energy by
roughly 60 %.

Now, consider the high duty cycle scenario, where switching energy is the
dominant factor. Again, for simplicity, assume that all gates consume 10 nJ and
20 nJ of switching energy at nominal activity factor 1.0 for a given application
at sizes X1 and X2, respectively. Figure 1 shows the activity factors (α) for each
gate. Therefore, overall switching energy consumption at the nominal size is
35.5 nJ. In this case, increasing the size of gate G7 is the optimal decision, since

Gate Sizing Under Uncertainty 27

it has the lowest activity factor and consumes less switching energy than when
up-sizing either G3 or G11. In fact, this decision results in a switching energy of
36.5 nJ, whereas increasing the size of G11 would result in a switching energy of
41.5 nJ. Therefore, the decision that considers SA performs roughly 14 % better.

Another key component modern design flow that requires attention is the
process variation (PV) impact on sizing moves. For example, sizing alterations,
such as the ones discussed in this section, are mostly performed in the pre-silicon
phase. Therefore, there is uncertainty in how sizing alterations are affected by
on-chip variations once the design has been manufactured. Optimizing for yield
can be exhaustive and require extensive statistical characterization; however, con-
ducting a pre-characterization step may reveal more suitable circuit alterations
that may not be possible to capture in a traditional static flow. For example,
designers may leverage spatial and temporal correlations in a design to deter-
mine the best cell(s) to size. For example, G3 may belong to a path whose delay
is more susceptible by PV; thus, it would be more beneficial for G3 to be up sized
eve though G7 was identified to be a more efficient move in terms of power-speed
trade-off under a traditional static optimization approach. As a result, the benefits
of accounting the impact of PV in a circuit is clear when optimizing for yield.

Table 1. NAND gate leakage values (nW) for two sizes (X1, X2) based on input vector
control (IVC) from a single threshold 45 nm cell library [8], where min and max leakage
states are represented by bold and italicized fonts, respectively.

NAND-3
IVC X1 X2

000 3.32 13.28
001 18.18 72.73
010 4.21 16.84
011 39.49 157.97
100 1.29 5.15
101 18.78 75.13
110 3.76 15.04
111 55.8 223.22

NAND-2
IVC X1 X2

00 3.48 13.93
01 24.8 99.2
10 4.09 16.34
11 37.21 148.83

To present these motivations, we have made a number of assumptions that
when relaxed make the optimization much more complex in practice. It is reason-
able to assume that additional information (gate switching, input vector state,
and pre-characterization statistics) can be readily obtained by modern CAD
tools and/or by implementing a simple gate-level simulator combined with sta-
tistical packages. Such information is beneficial since it enables the simultaneous
consideration of low duty cycle and high duty cycle scenarios, as in real use cases
at current and pending deep-submicron feature sizes, leakage and switching may
both have significant impacts on overall energy. For example, sizing up G7 in
the high duty cycle scenario may in reality not be optimal, since its input gates
have higher values for α than, the input gates of G3, and thus their switching

28 N.A. Conos et al.

energies would increase by larger factors. Thus, this IVC depends on how the
circuit is sized and its duty-cycle. Therefore, a feedback loop exists between gate
sizing and IVC that must be addressed simultaneously during the optimization.
The example here demonstrates that both IVC and SA are crucial considerations
in gate sizing for energy optimization in the presence of delay deadlines. Fur-
thermore, combining PV-uncertainty can further provide key insight in guiding
circuit alterations.

3 Related Work

We cover a set of related gate sizing approaches that have considered a variant
of SA or IV C. Several approaches exist that address continuous and discrete
gate sizing. Common methods to solve the gate sizing problem have been convex
optimization [4], Lagrangian Relaxation [2,3,17], and gradient and sensitivity-
based optimization [9,18].

Gate sizing methods have also been combined with Vdd and Vth assignment to
minimize power under various gate SA ratios [10,11]. These works, however, have
only considered average leakage values when accounting for leakage and have
not explored real application activity factors when considering gate switching
activity. Leakage minimization using IV C is a popular technique for due to its
strong dependency on the input vector state [12]. IV C and gate replacement
techniques have also been combined [13] by replacing gates at their worse-case
leakage state with equivalent gates with lower leakage power.

To the best of our knowledge, we are the first to consider gate sizing in
the presence of both SA, IV C, and duty cycle. Prior approaches have at most
considered one or two terms accurately [16], and/or do not differentiate between
the duty cycle with respect to switching and leakage energy weights, leaving
many approaches to be either dynamic or leakage power-centric. For example,
the state-of-the-art gate sizing contest considers only nominal leakage power [5].
Our technique minimizes total energy, such that both the switching and leakage
energy components are accurately accounted for in accordance to their usage or
duty cycle.

4 Cell Library Energy and Delay

The total energy of a CMOS integrated circuit can be characterized into two main
components: (1) dynamic (switching) energy due to charging of input pin/output
load capacitance’s; and (2) static (leakage) energy, which we model from the
dominant sub-threshold leakage and gate leakage currents. Thus, the total energy
consumed can be computed as:

Etotal = Eswitch + Eleak (1)

Eswitch =
N∑

i

es(gi), Eleak =
N∑

i

el(gi) (2)

Gate Sizing Under Uncertainty 29

es and el represent the switching and leakage energies, respectively, for gate gi. es
is the product between probability that a gate’s input pin j will switch, α (SA),
and the estimated full-cycle (efc) power consumed from propagating a signal
from input pin j to output pin k. el is the sum of leakage energies consumed at
each possible leakage state of a gate, which is also dependent the ratio of the
total time spent at each leakage state for both active and standby (idle) periods.
The total time (T) is directly proportional to product of the circuit delay (D)
and total cycles, where D represents the critical output-pin arrival time (rise or
fall) of a primary output gate otr,f (gi):

D = max(otr,f (gi)) s.t. gi ∈ Gout (3)

Gout represents a circuit’s set of primary output gates. Therefore, the delay of
a circuit can be determined by solving:

otr,f (gi) = dlr,f (gi) + max(ot(finf,r
j)) (4)

s.t. fini ∈ FIi

finf,r
j is the fall, rise arrival time of a fan-in gate j in the set FIi of gate gi.

Note that the propagation of delay depends on the unateness assumption. For
simplicity, we assume all cells are negative unate, thus, rise (r) and fall (f) gate
delays are propagated as assumed to the next stage.

We use a cell table library look-up as [5] to model gate rise and fall delay
(dlr,f) as a function of its input slew (transition time), and driving load. However,
we use an alternate 45 nm cell library (Nandgate) [8] to account for switching

Switching Activity Extraction

Input Vector Control

Gate Sizing Optimization

Result

Performance
Target

Fig. 2. Gate sizing optimization flow

30 N.A. Conos et al.

and input vector dependent leakage power, which are obtained in a similar look-
up table fashion, provided per-input pin accurate switching, and input vector
state probabilities, which can be obtained using gate-level simulation.

5 Technical Approach

5.1 Gate Sizing

Our gate sizing procedure is composed of three major phases (Fig. 2). The first
phase extracts gate switching activity factors (SA) for a given circuit by per-
forming event-driven gate simulation from a set of input bit vectors. Figure 3
illustrates an example SA extraction for a carry-look-ahead unit (cla4) from two
applications (mpeg2enc/dec). The second step identifies a primary input bit vec-
tor that places gates in low leakage states in order to minimize the total energy
of the circuit, which accounts for leakage consumption for both active (obtained
from SA) and idle periods. IVC techniques range from random simulation to sat-
isfiability (SAT) and model counting-based formulations. The final component
is the gate sizing algorithm, where the goal is to minimize total energy consump-
tion under a delay constraint. The approach is iterative; at each iteration, gates
are either frozen or unlocked based on their leakage (IVC) and switching (SA)
impact, while a search is conducted for the most beneficial current move.

Fig. 3. Gate switching activity for a 32-bit CLA circuit when using real mpeg2enc/dec
application input stimulus. Shown are varying distribution of gate activity within a
circuit and across two applications.

Our algorithm is sensitivity-based in nature in terms of determining which
move or set of moves to perform. A gate sizing move can have 1 of 3 effects
(increase, decrease, have no effect) on 2 parameters (energy and delay), leading
to a total of 9 separate possible classes for a move. The algorithm classifies

Gate Sizing Under Uncertainty 31

each move to and enforces a priority scheme in order to select a move that has
higher precedence. There are three precedence levels, where level 1 is the highest
priority. Moves that improve both parameters are at precedence 1, moves that
improve just one parameter and do not affect the other are at precedence 2, and
moves that improve one parameter at the expense of degrading another are of
precedence 3. Note that moves that degrade both parameters are never selected.
Each precedence level has its own objective function for selecting the best move:
(1) the product of the respective improvements; (2) the single improvement; and
(3) the normalized ratio of improvement and degradation.

The algorithm considers a cut of M gates at a time and restricts one gate to
be sized per group visit. Once a size move is committed, the gate is locked and
is no longer considered within that phase. The completion of a phase is defined
as having locked all gates, or having no more acceptable moves among sizable
gates that improve the objective function. The algorithm terminates after the
solution converges or if a target delay (Dtarget) can not be met after a number
of phases. All gates are unlocked before the start of each new sizing phase.

The algorithm initially freezes the top K energy-critical gates by setting them
to their minimal sizes at the beginning of the phase. We note that this initial
set potentially restricts some delay critical gates, as improving the delay of these
gates may be required in meeting a deadline. To relax this constraint (i.e., if a
solution cannot be obtained), K is relaxed through a locking threshold ratio γ,
where a new K is computed (e.g., K = K

′ ·γ), thereby, enabling potentially more
delay critical gates to be reduced. It is crucial to identify the top K energy-critical
gate, which in turn depends on both SA and IVC; this maximally-constrained
gate locking is one of the key innovations of the approach, and prevents being
trapped at a local minima by encouraging global circuit optimization.

We utilize an epsilon tree to minimize circuit delay updates (εpath), which
consists of gates that were on the critical path during the last accurate delay
computation (Fig. 4a). Since the critical path may change during optimization,
we also include the immediate fan-out gates of each critical gate (e.g., nodes 1
and 3), fan-in nodes may be added for greater accuracy as their slews may also
impact timing propagation. The figure shows bold-outlined nodes (e.g., 7, 8, 9, 5
and 6) are the primary outputs (Gout), and are transitively connected to at least
one node belonging to the critical path (e.g., 0, 2, 4, 8). Thus, the delay cost of
sizing a gate on the εpath can be estimated by the sum of its δi with respect to
the target delay (Dtarget) is used to estimate the delay impact of each move via
a delay cost formula, as shown below:

Dcost =
∑|Gout|

i
(δi − Dtarget)2 (5)

This formulation enables very efficient delay estimation by only considering the
delay impact of a small subset of gates at a time. A drawback of this approach,
however, is that a potentially new critical path may emerge. This remains to be
a major challenge for existing gate sizing techniques that attempt to maintain
delay accuracy during optimization [9,17,18]. To address this issue, the frequency
of delay updates can be increased by adjusting M and γ to be larger values, as we
have done. These parameters can be adjusted, to trade-off accuracy vs run-time.

32 N.A. Conos et al.

Our used values of M and γ achieved a delay accuracy to be within 5 %, while
achieving linear run-time scaling with respect to circuit size (Fig. 4b).

5.2 Maximizing Yield

In this section, we extend our gate sizing technique to account for the impact of
process variation in order to maximize yield targets with respect to delay and
power.

Cell Characterization. As a pre-processing step, we characterize each cell’s
ability to improve the circuit delay when its size is increased by one. The objec-
tive is to capture its delay impact on a set of ε-critical paths when its size is
increased. We define the ε-critical paths as the set of paths whose cell slack is
within an ε-threshold value with respect to the critical slack. The distinguishing
factor of our PV gate sizing method against our non-PV method is that we aim
to improve a set of ε-critical paths. Doing so improves the circuit’s resiliency
against the potentially harmful effects of PV by over-optimizing one or few crit-
ical paths that do not consider PV.

The major challenge of our cell characterization phase is that it incurs addi-
tional run-time overhead of O(n2), since the delay impact of sizing each cell is
required to be computed. The timing overhead, however, can be minimized by
considering a smaller ε-critical set and is practical, since this step can be per-
formed only once or a few times. Additionally, the typical distribution of critical
cells in the circuit is anywhere from 1 % to 10 % during the initial stages of our
gate sizing method when all cells are initially set to their valid minimal size
configuration. It is important to note, however, the number of cells that belong
within ε-critical paths increases as the circuit becomes more sensitive. At these
inflection points, additional characterization phases can be performed in order
to improve accuracy.

Figure 5 presents the circuit slack impact (y-axis) when increasing the size of
each cell (x-axis) independently. The y-axis represents a normalized slack sum
value across a set of 1000 generated circuit instances with process variation using
3-sigma normal threshold-voltage and gate effective length distribution [19]. The
x-axis lists cell id’s ranked in ascending order from left to right with respect to
its initial slack value for a circuit without PV. It is important to note that a
larger slack for a given cell indicates that it has a greater potential to improve
circuit delay (increase overall slack) when it is up sized. Also note that cells are
originally listed in ascending order with respect to their original slack computed
without PV, thus demonstrating that greedily up sizing the most critical gates
(left-most gates) does not yield a result in the most delay improvement when
increasing their size. In fact, some cells that are not on the critical path yield
better delay improvements than cells with smaller slack, as shown with some
cells in between 60 and 160 for circuit c432. This behavior can be attributed to
cells that may not be initially on the critical path, but are an immediate fan-out
of a cell that is, and therefore, increasing their size may cause subsequent up-
sizing of their critical transitive fan-in cells, thus improving circuit delay greater

Gate Sizing Under Uncertainty 33

7

8

9

5

6

0

2

31

4

Delay Target

(a)

(b)

Fig. 4. (a) An example of ε critical path (εpath); the critical path in dashed-red; tran-
sitive fan-out output nodes in bold outlines; and εi corresponds to the absolute delay
difference w.r.t to the target delay used for estimating delay cost of a move. (b) The
linear run-time of the new gate sizing approach

than individually sizing a gate on the critical path. For our approach, we then
rank the cells by their normalized slack value when considering which cells are
more critical with respect to timing when conducting gate sizing.

34 N.A. Conos et al.

Fig. 5. Impact of independent gate sizing. Gates are ordered left to right in ascending
order with respect to their slack (without PV). Larger normalized sum slack values
(y-axis) indicate greater ability to improve delay (reduce delay, increase slack) across
1000 generated circuit instances with PV when size is increased to the next discrete
size.

PV-Aware Gate Sizing Algorithm. We present several extensions to our
PV-aware gate sizing approach for yield optimization. Specifically, these exten-
sions are introduced to guide which cells are chosen to be sized first based on
their pre-processing characterization result described in the previous subsection.
As previously mentioned, the cells which are first considered to be sized are
based on their normalized slack sum value acquired during the pre-processing
characterization step and are ranked in descending order. Thus, the cells with
the largest slack-sum are sized or configured first.

We conduct the same cut-based search gate sizing algorithm presented in
Sect. 5.1. However, we also further prune the potential candidate cells to be
sized by sizing cells that fall under an ε-critical path, as well as further selecting
cells which are the least constraining cells (smallest size) to be sized. We define
the least constraining cells as the set of cells currently in the sizing phase set
that are currently configured as the minimum size among the cells belonging
to the ε-critical paths. For example, assume that the current ε-set include cells
A, B, C, and D with sizes 1X, 1X, 2X, and 3X, respectively. Then, cells A
and B are to be considered to be sized first during this phase. To break ties
between cells A and B, their respective cost score (Eq. 5) is multiplied by their
respective normalized slack sum value. Increasing the size of these cells enable
more balanced ε-critical paths, thus, effectively enabling more efficient delay-
power trade-offs to be performed in later sizing iterations that achieve tighter
delay constraints; this is achieved since optimizing a set of ε-critical prevents

Gate Sizing Under Uncertainty 35

from over optimizing a few paths, which may cause certain paths to converge to
a timing wall.

6 Experimental Results

We evaluated our gate sizing approach on a set of benchmarks in ISCAS-85/89,
ITC-99 suites, as well as integer arithmetic units consisting of adders (carry
ripple, carry-look-ahead, Kogge-Stone) and multipliers (array, Dadda). All units
were synthesized using a single threshold (HVt) 45 nm open cell library from
[8] under the typical cell configuration. An in-house timing/power engine was
implemented in C++ and was correlated to an industrial tool, Synopsys Prime-
Time, to be within 10−3ps. All results were optimized using identical rules such
as ensuring no slew or load violations exists in the final design, as presented
in [5]. The only differences in our framework is the choice in cell library, which
was done in order to enable accurate IVC computations, as well as the choice of
circuit benchmarks. In handling slew and load violations, we adopt an iterative
approach as proposed in [18].

The SA of gates and IVC for each circuit were obtained from simulation
of random input vectors. However, real application switching activity factors
were obtained from mpeg2enc/dec benchmarks from recorded operand values
from each unit type, running ARM7TDMI-ISA mpeg2-enc/dec traces [14,15].
The initial simulation parameters set were, K = 25 %, M = twice the length of
average critical path, γ = 0.2, and were fixed across all benchmarks. The delay
target for each circuit was set as the median between the achieved delay when all
gates were set to their maximal size, and the achieved delay when all gates are at
their minimal size. Five duty cycle scenarios (D0 = 10 %, D1 = 20 %, D2 = 33 %,
D3= 50 %, and D4= 100 %) were considered.

6.1 Gate Sizing Under Switching Activity and IVC Uncertainty

We first evaluate our sizing algorithm under two gate sizing assumptions:
(1) SA+IVC, which considers gate switching activity factors and input vec-
tor control in the objective function; and (2) Base, where the objective function
uses only nominal gate switching (50 %) and average gate leakage values for total
energy computation. Table 2 compares the two methods, where Max (%) sav-
ings corresponds to the maximum energy improvement achieved over the Base
method across the five duty cycle cases (D0 to D4) for each circuit under the
same timing constraint. As expected, the maximum improvement observed varies
across duty cycles and circuits, motivating the advantage of utilizing accurate
power and delay knowledge.

Table 4 provides overall energy improvements across the benchmark suites.
The results generated by the new approach achieved a maximum energy improve-
ment of 62 % for circuit c2670 and 29 % average overall for the same delay.

Figure 6 provides a normalized energy and delay plot for c2670, which illus-
trates the advantage of using more accurate power and delay information. A delay
of 0.87 shows that the Perceived energy deviates from the trend of the Actual

36 N.A. Conos et al.

Table 2. Energy savings when considering gate SA and IV C during the gate sizing
procedure over the Base method. The obtained switching and leakage energies are
presented for the SA+IV C. The maximum energy deltas (Δ %), corresponds to the
max difference in energy profile “perceived” by the Base method during optimization.

Circuit No. gates Max energy savings SA + IV C

Total
(%)

Sw
(%)

Lk
(%)

Sw
(μJ)

Max
(Δ%)

Lk
(μJ)

Max
(Δ%)

Duty
Cycle

Delay
(ns)

c880 383 8.14 8.16 8.05 125.11 31.22 15.75 3.01 D2 0.73

c1355 554 14.35 15.01 13.26 264.13 31.12 164.79 15.19 D1 0.74

c1908 932 13.41 13.72 9.41 405.7 29.57 32.06 6.75 D4 1.14

c7552 3568 43.65 44.02 41.32 1685 30.27 284.6 3.21 D2 1.20

c5315 2330 58.72 59.1 54.57 855.6 32.93 87.58 3.19 D4 1.34

c432 272 30.15 35.24 22.35 68.54 33.15 53.55 23.67 D1 0.62

c2670 1202 62.64 62.74 60.78 407.6 31.91 24.62 1.39 D4 0.85

c3540 1703 28.84 29.66 24.14 799.1 31.09 152.2 2.47 D2 0.79

s1488 698 46.38 46.49 44.81 182.6 35.54 14.09 12.05 D2 0.42

s1494 692 35.5 36.08 33.84 283.9 36.36 103.3 12.55 D1 0.42

s15850 10547 31.34 30.76 34.48 3803 33.69 662.1 4.98 D3 2.22

s838 473 32.49 38.89 27.17 139.3 31.76 199.8 10.84 D1 1.64

s5378 3054 16.76 30.08 15.06 826.6 36.2 7876 26.34 D0 0.68

s9234 5897 50.19 50.52 47.23 2041 32.51 242.5 4.43 D3 1.50

s38417 23963 53.2 53.85 46.17 6661 30.65 714.2 8.58 D3 1.29

s35932 21035 22.27 22.31 21.25 8317 29.28 332.1 37.26 D3 0.80

s38584 18161 29.01 31.52 28.75 5820 32.24 59720 4.77 D0 1.52

b10 204 44.69 45.06 32.43 40.56 34.45 1.55 54.83 D2 0.36

b11 633 35.53 35.79 31.74 250.9 32.37 18.77 61.52 D2 1.10

b12 1183 22.91 27.89 3.31 314.0 37.03 107.3 60.54 D1 0.61

b13 375 22.05 22.78 15.01 161.23 31.85 18.4 55.33 D1 0.33

b14 6498 28.42 28.65 26.21 3024 33.22 320.7 54.94 D2 1.31

b15 8920 27.62 27.7 26.75 1666 38.99 166.1 54.24 D3 1.58

b17 28911 21.25 25.29 20.79 8.53 38.76 80.58 55.99 D3 1.68

b18 85188 7.02 8.67 5.96 44.54 37.84 71.4 54.72 D1 2.10

b20 14322 27.85 28.57 24.07 3.66 33.2 0.74 55.8 D2 2.08

cra32 225 38.32 45.14 37.76 6.72 44.90 92.22 32.09 D0 2.08

cla432 305 22.25 25.02 12.18 10.18 42.87 3.28 13.62 D2 0.35

ks32 611 24.2 23.18 24.63 17.64 44.76 40.83 14.6 D0 0.30

arr8 512 35.96 36.3 23.18 178.5 34.69 22.84 21.29 D1 0.81

dad8 542 30.35 30.99 36.33 101.3 35.83 9.12 11.98 D2 0.62

energy plot. In performing move-trace analysis, we noted that the Base method
caused the algorithm to over-size a few selected critical paths and encountered
a timing wall much earlier, whereas SA+IV C was able to efficiently trade-off
delay for an additional 0.05 delay units, as shown.

Gate Sizing Under Uncertainty 37

Table 3. Energy savings of (SA+IV C) over Base using extracted gate switching activ-
ity and input vector control from mpeg2enc/dec applications assuming a (D2) “33 %”
duty cycle. The units represent an single-adder (32b) and multiplier (8b) configuration
of an ARM7TDMI core [15].

mpeg2 Energy savings cla432 dad8

Total
(%)

Sw
(%)

Lk
(%)

Sw
(μJ)

Sw Imp
(%)

Lk
(μJ)

Lk Imp
(%)

Sw
(μJ)

Sw Imp
(%)

Lk
(μJ)

Lk Imp
(%)

enc 15.31 17.15 8.55 742.7 4.73 628.7 1.09 2267 20.61 498.6 13.92

dec 25.10 29.89 6.21 11.02 6.42 24.30 1.20 101.4 30.99 9.24 21.58

Figure 7 shows a cumulative distribution of gate switching and leakage ener-
gies of the max improved result for SA+IV C over Base for circuit c2670. Our
approach shows that accurate knowledge enabled the algorithm to efficiently
guide the circuit to a lower energy state, as shown with higher percentage of
gates falling under lower energy profiles for both leakage and switching energy.
This is important to note since due to the difficulty of comparing gate sizing algo-
rithms, many existing algorithms are sensitivity-based in nature, thus, the ability
to guide an algorithm to determine more promising “moves” greatly impacts the
optimization procedure.

Table 3 presents results comparing the minimal configuration found by SA+
IV C and the perceived minimal configuration obtained by Base. The mini-
mum energy configuration determined was cla432 and dad8, optimized under the
same timing constraints determined by the multiplier. For these configurations,

Fig. 6. Energy vs delay plot of c2670. The SA+IV C approach consistently outperforms
the Base method.

38 N.A. Conos et al.

Table 4. Overall energy savings with respect to benchmark suite

Benchmark
suite

Max tot
(%)

Avg. tot
(%)

Avg. Sw
(%)

Avg. Lk
(%)

ISCAS-85 62.64 29.70 30.58 26.74

ISCAS-89 53.20 28.33 29.99 26.96

ITC-99 58.83 29.23 30.90 24.15

Arith 57.19 30.48 33.23 33.15

our approach shows additional savings in both leakage and switching cate-
gories where the majority of the savings for both cases (15 % mpeg2enc, 25 %
mpeg2dec) were achieved by the multiplier circuit.

6.2 Yield Optimization

Figure 8(a–b) compares the power reduction (%) of using a PV-aware gate sizing
approach against one that does not. Each result compares the highest performance
target (smallest delay), where both the PV-aware and non-PV-aware solution are
able to satisfy. Average power savings of up to 64 % and 48 % were achieved for
ISCAS-85 and ITC-99 benchmarks, respectively. We compare the highest com-
parable performance delay target since solutions obtained at lower performance
delays require few circuit alterations, thus, achieve similar power results.

The complete sizing optimization procedure can be observed in Figs. 9 and 10
for ISCAS-85 and ITC-99 benchmarks, respectively. Two sizing solutions are

Fig. 7. Cumulative distribution of leakage and switching energy after sizing for gates
in c2670. The accurate SA+IV C approach results in a higher percentage of gates at
lower energy.

Gate Sizing Under Uncertainty 39

Fig. 8. Power savings (%) achieved when comparing generated sizing solutions using
a process variation-aware over a non-process variation-aware gate sizing technique.
Reported savings are generated from the minimum delay result achieved with respect
to each approach.

compared for each benchmark: (1) PV-aware gate sizing (red circle); and (2) non-
PV gate sizing (blue triangle). Each point corresponds to a sizing phase where
up to K cells are sized simultaneously. Therefore, for each circuit, the gate sizing
procedure begins with all cells set to their minimal power configuration and is
represented by the right-most point. The left-most point corresponds to the
fastest achieved delay for each sizing procedure.

Significant savings were achieved in six out of the eight ISCAS-85 benchmarks
since the enhanced PV-aware algorithm was able to avoid hitting a timing wall.

40 N.A. Conos et al.

Fig. 9. Selected ISCAS-85 gate sizing result comparing the process variation-aware
(PV) and non-process variation-aware (non-PV) techniques

Fig. 10. Selected ITC-99 gate sizing result comparing the process variation-aware (PV)
and non-process variation-aware (non-PV) techniques

The greatest savings were achieved from solutions where the non-PV sizing app-
roach hit the timing wall earlier than the PV approach; however, this is not
always the case as shown by one instance where the PV-aware sizing procedure
achieved a lower performance delay target than its corresponding non-PV-aware
approach as shown in Fig. 12(h), thus, high lighting the optimization uncertainty
and room for potential improvement. It is also important to note that in circuit
c1355, the target delays between 0.48 and 0.58 show solutions where the non-
PV technique obtained superior results, which can be explained by speeding up

Gate Sizing Under Uncertainty 41

a larger set of cells that belong in the ε-critical path early in the sizing effort,
resulting with potentially more cells sized earlier than needed in order to achieve
a lower performance target. However, sizing these ε-paths, enabled more efficient
gate sizing, in terms of power-delay trade-offs, to be performed since the circuit
was placed at a less-constrained sizing state, where each cell drives a smaller
capacitive load, thus reducing the likelihood of getting stuck in a timing wall.

A timing wall scenario can be described where the cells that belong on the
ε-critical paths are in such a state that increasing their size no longer improves
circuit critical delay. Our experiments show that a gate sizing procedure that
focus on the current critical path, result with over-optimizing a small set of
critical paths, which in turn increases the convergence rate to an achievable
target delay.

Tables 5 and 6 present yield results for selected ISCAS-85 and ITC-99 bench-
marks. Yield results are acquired from computing the normalized delay and
power values from 1000 PV-generated circuits for each benchmark. Timing and
power values are reported for each benchmark from two obtained solutions in
the previous gate sizing procedure. For fair comparison, each benchmark was
optimized to meet an identical delay target. We report results obtained using
two scenario optimization assumptions: (1) process variation-aware (PV), which
uses the enhanced gate sizing algorithm presented in this Sect. 5.2; and (2) non-
process variation-aware (nPV), which uses the standard gate-sizing algorithm
presented in Sect. 5.1. The min, max, mean, standard deviation (std.), and vari-
ation values are presented for each benchmark. Variation is computed as std.

mean
and represents how much each yield result varies with respect to the mean. To
summarize the results: ISCAS-85 benchmarks achieved a mean-power savings of
55 % (9 % min, 84 % max), whereas ITC-99 benchmarks achieved a mean-power
savings of 25 % (2 % min, 74 % max).

Figures 11 and 12 present the cumulative distribution graphs for their respec-
tive delay (left-graph) and power (right-graph) yield results for selected bench-
marks, as presented in Tables 5 and 6. As shown, the circuits optimized using the
PV-aware approach achieved significant power yield improvements with respect
to target delay yields. Note that although the obtained solutions were originally
optimized to satisfy the same target delay under both PV and non-PV gate
sizing techniques, their representative yields demonstrate that the PV-aware
approach achieved significant yield improvements in both delay and power. For
instance, circuit c432 achieved a normalized mean delay yield of 0.875 under
the PV scenario compared to 0.920 for the non-PV scenario. Additionally, the
delay variation factor of the PV scenario is 22 % less compared to the non-PV
scenario. Collectively, the PV-aware solutions obtained lower variation factors
in 14 out of the 19 studied benchmarks. Significant power reductions are also
shown in the respective c432 power yield graphs, achieving an 84 % mean-power
savings (0.125 PV vs. 0.818 nPV), demonstrating the effectiveness of combining
cell characterization and the gradual gate sizing technique over our presented
gate sizing technique. Overall, the PV-aware solutions also achieved reduced
variation factors in 14 out of the 19 benchmarks.

42 N.A. Conos et al.

Table 5. ISCAS-85: yield results comparing 1000 generated process variation instances
from a base circuit utilizing a: (1) process variation-aware (PV); or (2) non-process
variation-aware (nPV) technique

Benchmark Scenario Metric Min Max Mean Std Variation

c1355 PV Delay 0.853 0.983 0.900 0.022 0.956

nPV 0.862 1.000 0.919 0.023 1.000

PV Power 0.738 0.946 0.829 0.029 1.000

nPV 0.827 1.000 0.913 0.027 0.850

c1908 PV Delay 0.869 0.980 0.914 0.017 0.943

nPV 0.887 1.000 0.939 0.018 1.000

PV Power 0.368 0.457 0.406 0.016 0.980

nPV 0.818 1.000 0.895 0.036 1.000

c2670 PV Delay 0.870 0.994 0.915 0.018 1.000

nPV 0.872 1.000 0.913 0.016 0.901

PV Power 0.195 0.233 0.211 0.007 0.830

nPV 0.801 1.000 0.881 0.034 1.000

c3540 PV Delay 0.877 0.966 0.921 0.014 0.974

nPV 0.899 1.000 0.939 0.015 1.000

PV Power 0.385 0.504 0.441 0.019 1.000

nPV 0.825 1.000 0.916 0.033 0.869

c432 PV Delay 0.828 0.951 0.875 0.019 0.771

nPV 0.858 1.000 0.920 0.026 1.000

PV Power 0.107 0.157 0.125 0.008 1.000

nPV 0.706 1.000 0.818 0.053 0.992

c5315 PV Delay 0.872 0.959 0.906 0.015 0.729

nPV 0.882 1.000 0.928 0.021 1.000

PV Power 0.324 0.376 0.347 0.009 0.863

nPV 0.861 1.000 0.930 0.028 1.000

c6288 PV Delay 0.914 1.000 0.946 0.013 1.000

nPV 0.890 0.968 0.926 0.012 0.940

PV Power 0.172 0.196 0.182 0.004 0.820

nPV 0.860 1.000 0.916 0.024 1.000

c7552 PV Delay 0.856 0.945 0.891 0.014 0.836

nPV 0.882 1.000 0.920 0.017 1.000

PV Power 0.309 0.346 0.328 0.007 0.967

nPV 0.860 1.000 0.929 0.020 1.000

c880 PV Delay 0.822 0.954 0.872 0.021 0.875

nPV 0.833 1.000 0.891 0.025 1.000

PV Power 0.640 0.828 0.724 0.037 0.828

nPV 0.746 1.000 0.841 0.051 1.000

Gate Sizing Under Uncertainty 43

Table 6. ITC-99: yield results comparing 1000 generated process variation instances
from a base circuit utilizing a: (1) process variation-aware (PV); or (2) non-process
variation-aware (nPV) technique

Benchmark Scenario Metric Min Max Mean Std Variation

b10 PV Delay 0.720 0.900 0.789 0.029 0.885

nPV 0.727 1.000 0.809 0.034 1.000

PV Power 0.486 0.866 0.608 0.057 0.961

nPV 0.571 1.000 0.703 0.068 1.000

b11 PV Delay 0.748 0.912 0.806 0.024 0.620

nPV 0.759 1.000 0.849 0.041 1.000

PV Power 0.193 0.247 0.219 0.009 0.663

nPV 0.682 1.000 0.841 0.052 1.000

b12 PV Delay 0.749 0.946 0.815 0.035 1.000

nPV 0.775 1.000 0.834 0.029 0.802

PV Power 0.285 0.389 0.332 0.019 0.837

nPV 0.673 1.000 0.815 0.056 1.000

b13 PV Delay 0.707 0.885 0.772 0.026 0.683

nPV 0.760 1.000 0.846 0.042 1.000

PV Power 0.579 0.874 0.698 0.046 0.849

nPV 0.630 1.000 0.756 0.058 1.000

b14 PV Delay 0.816 0.925 0.847 0.016 0.974

nPV 0.885 1.000 0.928 0.018 1.000

PV Power 0.546 0.664 0.587 0.017 1.000

nPV 0.838 1.000 0.906 0.024 0.943

b15 PV Delay 0.833 0.926 0.866 0.014 0.888

nPV 0.893 1.000 0.938 0.017 1.000

PV Power 0.545 0.675 0.602 0.023 0.910

nPV 0.789 1.000 0.867 0.037 1.000

b17 PV Delay 0.896 0.984 0.929 0.013 1.000

nPV 0.912 1.000 0.943 0.013 0.993

PV Power 0.864 0.978 0.903 0.016 0.995

nPV 0.899 1.000 0.937 0.017 1.000

b18 PV Delay 0.873 0.946 0.897 0.010 0.841

nPV 0.919 1.000 0.949 0.013 1.000

PV Power 0.886 0.978 0.906 0.008 0.949

nPV 0.907 1.000 0.930 0.009 1.000

b20 PV Delay 0.814 0.901 0.845 0.015 0.665

nPV 0.857 1.000 0.912 0.024 1.000

PV Power 0.863 0.967 0.902 0.015 0.875

nPV 0.881 1.000 0.928 0.018 1.000

44 N.A. Conos et al.

Fig. 11. Selected ISCAS-85 yield result comparing generated 1000 process varia-
tion instances with respect to identical target delay using generated solution from:
(a) process variation-aware (PV); and (2) non-process variation-aware (non-PV)

Gate Sizing Under Uncertainty 45

Fig. 12. Selected ITC-99 yield result comparing generated 1000 process variation
instances with respect to identical target delay using generated solution from:
(a) process variation-aware (PV); and (2) non-process variation-aware (non-PV)

7 Conclusion

We have presented a new gate sizing approach that includes the switching activ-
ity (SA) and input vector control (IVC) to minimize overall energy. First, the

46 N.A. Conos et al.

new objective function has several ramifications on the optimization procedure,
including the need for reiteration between gate sizing and input vector selec-
tion and freezing and unlocking of high-power gates. On a comprehensive set
of benchmarks, from ISCAS-85/89, ITC-99, and arithmetic units, synthesized
using 45 nm technology, we reduce average actual energy consumption by 30 %.

Next, we presented an extension of our gate sizing procedure for conducting
delay and power yield optimization under uncertainty. Here, we further improve
upon our presented gate sizing procedure to optimize a set of critically identified
ε-critical paths in order to mitigate the impact of PV, thus, enabling more effi-
cient delay and power trade-offs to be performed using our gradual gate sizing
procedure. Under the yield optimization task, we compare generated solutions
from selected circuits in ISCAS-85 and ITC-99 benchmark suites and show sig-
nificant delay and power yield improvements of up to 55 % mean-power savings
for ISCAS-85 circuits, and 25 % savings for ITC-99 circuits under equivalent
timing targets.

We note that our presented techniques are generic in the sense that ther-
mal impacts and multi-Vth can be easily addressed using the new optimization
procedure.

References

1. Conos, N.A., Meguerdichian, S., Potkonjak, M.: Gate sizing in the presence of gate
switching activity and input vector control. In: VLSI-SoC, pp. 138–143 (2013)

2. Shiyan, H., Ketkar, M., Hu, J.: Gate sizing for cell library-based designs. In: DAC,
pp. 847–852 (2007)

3. Ozdal, M.M., Burns, S., Hu, J.: Gate sizing and device technology selection algo-
rithms for high-performance industrial designs. In: ICCAD, pp. 724–731 (2011)

4. Joshi, S.: An efficient method for large-scale gate sizing. In: TCSI, pp. 2760–2773
(2008)

5. Ozdal, M.M., Amin, C., Ayupov, A., Burns, S., Wilke, G., Zhuo, C.: The ISPD-
2012 discrete cell sizing contest and benchmark suite. In: ISPD, pp. 161–164 (2012)

6. Li, W.N.: Strongly NP-hard discrete gate-sizing problems. In: ICCD, pp. 1045–1051
(1993)

7. Agarwal, A., Chopra, K., Blaauw, D.: Statistical timing based optimization using
gate sizing. In: DAC, pp. 400–405 (2005)

8. Nangate FreePDK 45 nm Library (2011). http://www.si2.org/
9. Coudert, O.: Gate sizing for constrained delay/power/area optimization. In: VLSI,

pp. 465–472 (1997)
10. Srivastava, A., Sylvester, D., Blaauw, D.: Power minimization using simultaneous

gate sizing, dual-Vdd and dual-Vth assignment. In: DAC, pp. 783–787 (2004)
11. Huang, Y.-H., Chen, P.-Y., Hwang, T.: Switching-activity driven gate sizing and

Vth assignment for low power design. In: ASPDAC, pp. 24–27 (2006)
12. Abdollahi, A., Fallah, F., Pedram, M.: Leakage current reduction in CMOS VLSI

circuits by input vector control. In: VLSI, pp. 140–154 (2004)
13. Yuan, L., Qu, G.: A combined gate replacement and input vector control approach

for leakage current reduction. In: VLSI, pp. 173–182 (2006)

http://www.si2.org/

Gate Sizing Under Uncertainty 47

14. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: a tool for evaluating
and synthesizing multimedia and communicatons systems. In: MICRO, pp. 330–
335 (1997)

15. Mudge T.: The SimpleScalar-Arm power modeling project. http://eecs.umich.edu/
panalyzer/

16. Tsui, C., Au, R.Y., Choi, R.Y.: Minimizing the dynamic and subthreshold leakage
power consumption using least leakage vector assisted technology mapping. In:
VLSI Journal, pp. 76–86 (2008)

17. Li, L., Kang, P., Lu, Y., Zhou, H.: An efficient algorithm for library-based cell-type
selection in high-performance low-power designs. In: ICCAD, pp. 226–232 (2012)

18. Hu, J., Kahng, A.B., Kang, S.H., Kim, M.-C., Markov, I.L.: Sensitivity-guided
metaheuristics for accurate discrete gate sizing. In: ICCAD, pp. 233–239 (2012)

19. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations
in sub-0.1 um MOSFET’s: a 3-D atomistic simulation study. In: IEEE T-ED, pp.
2505–2513 (1998)

http://eecs.umich.edu/panalyzer/
http://eecs.umich.edu/panalyzer/

New Scan-Based Attack Using Only the Test
Mode and an Input Corruption Countermeasure

Sk Subidh Ali1(B), Samah Mohamed Saeed2, Ozgur Sinanoglu1,
and Ramesh Karri2

1 New York University Abu Dhabi, New York, USA
{sa112,os22}@nyu.edu

2 New York University Polytechnic School of Engineering, New York, USA
{sms22,rkarri}@nyu.edu

Abstract. Scan-based design-for-testability, which improves access and
thus the test quality, is highly vulnerable to scan attack. While in-field
test is enabled through the scan design to provide debug capabilities, an
attacker can leverage the test mode to leak the secret key of the chip.
The scan attack can be thwarted by a simple defense that resets the data
upon a switch from the normal mode to the test mode. We proposed a
new class of scan attack in [15] using only the test mode of a chip, cir-
cumventing this defense. In this book chapter we extend our earlier work
by introducing case studies to explain this new attack in greater detail.
Furthermore, we study the effectiveness of existing countermeasures to
thwart the attack and propose a new input corruption countermeasure
that requires a smaller area overhead compared to the existing counter-
measures.

Keywords: AES · Scan chain · Scan attack · Scan-based dft ·
Testability · Security

1 Introduction

Scan-based design-for-testability (DFT) technique is widely used, which provides
internal access to the circuit in order to enhance the testability of manufactur-
ing defects. To provide debug capabilities, in-field test is enabled, by retaining
scan capabilities. However, the scan design can be misused by an attacker to
leak secret information of a crypto-chip. The intermediate results of a crypto-
chip can be shifted out during the test mode through the scan interface. This
attack is known as a scan-based side-channel attack, and was reported first in [1],
which targets Data Encryption Standard (DES) chip. The attacker applies the
plaintext in the normal mode after which he/she switches to the test mode
to observe the intermediate result of the DES chip. With this information in
hand, the attacker can retrieve the secret key by applying differential analy-
sis on the response patterns. Scan-based side-channel attack can also reveal the
128-bit secret key of Advanced Encryption Standard (AES) chip even in the pres-
ence of advanced DFT techniques such as partial scan [3], X-masking [4], and
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 48–68, 2015.
DOI: 10.1007/978-3-319-23799-2 3

New Scan-Based Attack Using Only the Test Mode 49

X-tolerant architecture [5,6]. Other ciphers such as RSA [7,8], ECC [9,10], and
stream ciphers [11], are also vulnerable to scan attack.

The existing scan-based attacks switch the chip between the normal mode
and the test mode and assume that the content of the scan cells is retained
intact. A mode-reset countermeasure [12] thwarts these attacks by resetting the
scan cells upon switching from the normal mode to the test mode.

We proposed a new scan-based attack on AES using only the test mode
to circumvent the mode-reset countermeasure [15]. The attack showed how to
overcome the challenges introduced by the mode-reset countermeasure and to
leak the secret key of a AES crypto core. In this book chapter we explain the
attack in greater detail with case studies. We also discuss some of the existing
countermeasures and their effectiveness against our test-mode-only attack. We
also propose a novel cost-effective input corruption countermeasure, crafted to
thwart our test-mode-only scan attack.

The remainder of the paper is organized as follows. Section 2 provides back-
ground on AES and DfT. Section 3 provides motivations and challenges of the
test-mode-only attack. Section 4 describes the proposed test-mode-only attack.
Section 5 gives an overview of the existing countermeasures against scan attacks
while Sect. 6 provides a new countermeasure to thwart the test-mode-only
attacks. Finally, we conclude the paper and elaborate on our future work in
Sect. 7.

2 Preliminaries

2.1 AES

AES is a 128-bit symmetric key block cipher available in three different key
lengths: 128, 192 and 256 bits. The entire AES algorithm is divided into several
identical round operations. The number of rounds in the three different versions
of AES are 10 (128-bit key), 12 (192-bit key) and 14 (256-bit key) respectively.
Each round comprises of following four basic transformations,

– SubBytes is a non-linear substitution operation.
– ShiftRows is the byte-wise permutation.
– MixColumns is the four-byte mixing operation.
– AddRoundKeys is the XORing the state with the round key.

We will refer to these operations as SB, SR, MC and ARK respectively. Figure 1
shows the structure of first round of AES which contains an extra key XORing
at the beginning.

Each transformation of AES round has specific properties. We use the fol-
lowing properties in our attack.

2.2 Differential Properties of AES

In S-box, for an input X and the input difference α, the output difference β is
represented as

β = SB(X ⊕ α) ⊕ SB(X) (1)

50 S.S. Ali et al.

Fig. 1. First round of AES: pi is the plaintext byte, ki is the initial key byte, qi is the
SR output byte, k′

i is the round key byte, and ri is the round output byte.

For a given value of (α, β), there could be two, four or no solution of X [13]. In
case of two solutions, if one solution is δ, the other solution will always be δ ⊕α.
On the other hand for four solutions, the solutions will be δ, δ ⊕ α, 0 and α.

Lemma 1. For a given input X and two one-bit differences ei and ej (where ei
and ej are eight bit strings with a 1 in position i and j respectively where i �= j),
the output differences di and dj are generated as

di = SB(X) ⊕ SB(X ⊕ ei)
dj = SB(X ⊕ ej) ⊕ SB(X ⊕ ej ⊕ ei) (2)

For any value X, di can not be the same as dj.

Proof. We prove this by contradiction. Let as assume that there is a value x of
X for which di = dj . We also have y = x⊕ej . Therefore, we have two equations:

di = SB(x) ⊕ SB(x ⊕ ei)
dj = SB(y) ⊕ SB(y ⊕ ei), (3)

where di = dj implies x and y are the two solutions of (1) where β = di = dj and
α = ei. If x and y are the two solutions of the equation, then either y = x ⊕ ei
or one of these two values must be zero and the other equals ei. If we consider
the first case then y = x ⊕ ei ⇒ x ⊕ ej = x ⊕ ei ⇒ ej = ei which contradicts our
assumption. Let us consider the second case, x = 0 and y = ei which implies
y = x ⊕ ej = ei ⇒ ej = ei. Again this contradicts our assumption. Therefore, di
and dj can not be the same under the given condition.

2.3 DFT Structure

Scan design is a well-known DFT technique that provides direct access to flip-
flops. Scan design converts each flip-flop into a fully accessible scan cell that
can be controlled and observed easily through shift operations. Due to the lim-
ited number of tester channels, especially for integrated circuits with a large

New Scan-Based Attack Using Only the Test Mode 51

Fig. 2. DFT structure for a design with two scan chains; TDI/TDO pins not shown

number of input/output pins, boundary scan design [14] is used, which asso-
ciates a boundary scan cell to each primary input/output of the circuit (BSC
in Fig. 2). Boundary scan design enables a cost-effective few-pin access to the
primary inputs/outputs in the test mode. On one hand, in the normal mode, the
input pins directly drive the primary inputs (PIs) of the chip, while the primary
outputs (POs) drive the output pins. On the other hand, in the test mode, the
boundary scan cells break the connection between the chip pins and the primary
input/outputs. The test mode consists of shift and capture operations. During
shift operations, the test vectors are serially shifted into the scan chains through
the chip input pins, while test responses can be observed through the chip out-
put pins. During the capture operation, the scan cells capture the response of
the combinational logic, while the boundary scan cells drive the PIs and capture
the POs. As a result, there is no direct path from the chip inputs to the primary
inputs in the test mode.

3 Motivation and Challenges

In this section we review the existing state-of-the-art scan attack on AES and
discuss its limitations. Subsequently, we elaborate on how to overcome these
limitations and propose a new scan attack on AES: test-mode-only scan attack.

3.1 State-of-the-Art Scan Attack

The state-of-the-art scan attack requires switching between the normal and test
modes. Figure 3 shows the AES core with a single scan chain which consists of
AES round register flip-flops (SC in the figure). In the normal mode, a plaintext
is applied to the AES core through the primary input and the results are stored
in the round register. The round register content is again applied to the AES
in the next round operation. The round operation is highlighted green in Fig. 3.
After completion of ten rounds the ciphertext output is generated at the primary
outputs. In the test mode, the flip-flops of the round register are connected into
a scan chain. During the shift cycle a test vector is shifted to the scan chain,
while in the capture cycle the response of the AES core is captured and shifted
out through the SO line.

52 S.S. Ali et al.

The attack works in two steps. In the first step, the chip is run in the normal
mode with a desired input plaintext applied from the primary inputs for only
one round of AES. The round output is stored in the round register. Then, in the
second step, the chip is switched to the test mode and the stored round output
is shifted out through the SO line by applying repeated shift cycles. These two
steps are repeated for different plaintexts.

The attack uses one of the basic differential properties of the AES round
operation. In AES, if one-bit difference is applied in the least significant bit of
any one of the sixteen bytes, the output difference can have 18 possible hamming
distances. Out of these hamming distances, only four can be generated by a
unique pair of S-box inputs. Therefore, the attacker should follow the above two
steps for all possible 27 pairs of plaintexts, in order to get any such hamming
distance. Once the hamming distance is observed, the corresponding key byte is
retrieved by XORing the plaintext byte with the corresponding unique pair of
S-box inputs. Therefore, each unique pair will produce two possible key bytes.
The same procedure is repeated for all the sixteen key bytes. Finally, by applying
27 · 16 = 211 plaintext pairs, the search space of the AES key is reduced to 216.
These 216 key hypotheses can be brute-forced by using the plaintext-ciphertext
pairs in negligible time.

Fig. 3. AES Core with a single scan chain; SC represents the flip-flop/scan cell of the
round register (Color figure online).

3.2 Limitations of the Existing Scan Attacks

One fundamental limitation of this kind of attacks is that they require switching
from the normal mode to the test mode under the assumption that the data in the
scan cells can be preserved intact during the switch. One simple countermeasure
is resetting the device whenever there is a switch from the normal mode to the

New Scan-Based Attack Using Only the Test Mode 53

test mode. In this case, the attacker can perform the first step of the attack and
the round output will be stored in the round register. However, whenever the
second step of the attack is applied i.e., switching to the test mode, the content
of the SCs will reset. Hence, the second step will only produce the zero response
of the AES core. Therefore, any scan attack that requires switching between the
normal and test modes is bound to fail against this simple countermeasure.

3.3 Overcoming the Limitations of Existing Scan Attacks

In order to overcome the limitations of the above attack, the attacker must come
up with an attack that will only use the test mode. As there is no switching
required from the normal mode to the test mode, the aforementioned mode-
reset countermeasure will be circumvented. The attacker is then constrained to
use only the operations highlighted in blue and green in Fig. 3.

The major challenge associated with such an attack is to apply the desired
input plaintext to AES. As explained in Sect. 2.3, the primary inputs are not
directly accessible in the test mode. The inputs should rather be applied by
shifting them in as test vectors through SI line. However, the problem is that the
attacker does not know which scan cell drives which input of AES. The physical
placement tools determine the mapping between scan cells and the AES inputs.

We need to leverage some of the basic differential properties of AES to (1) find
out the exact order of the scan cells which correspond to the AES input register,
and (2) launch the attack and leak out the secret key.

4 Test-Mode-Only Attack on AES

In this section we explain our test-mode-only attack on AES [15]. In this attack,
the plaintexts are applied in the form of test vectors. Before going into the detail
of the attack we first define the attackers ability in the form of the resources and
information he/she has. As in the conventional scan attack, we assume that
the attacker knows the AES algorithm running inside the security chip and the
in-field debug of the chip is enabled. For the sake of simplicity, we assume that
there are only 128 scan cells in the design, which correspond to the 128-bit round
register.

Let us first consider one example of AES operation. Figure 4 shows the results
corresponding to each step of the AES first round, and finally the corresponding
round-output difference. P and P120 are the two plaintexts (120 is the bit position
of 1 from the right), while K0 and K1 are the first and the second round keys,
respectively. It may be noted that K0 is the whitening key, which is also the
128-bit AES key. The goal of the attacker is to retrieve K0. The values in the
figure are represented in 32-digit hexadecimal format.

In test-mode-only attack, the major challenge to the attacker is to figure
out which scan cell corresponds to which input bit of AES. For P , the test
vector is same as the plaintext. However, in order to apply P120, the attacker
should precisely know which scan cell corresponds to the 120-th input bit of

54 S.S. Ali et al.

Fig. 4. Example input-outputs of each transformation of first round of AES

AES. Therefore, to attack AES using only the test mode the attacker has to
determine the mapping between the scan cells and the AES inputs. The mapping
is determined by the physical placement tool and it is considered as almost
random. We determine the mapping in three steps. In the first step, we determine
the scan cells corresponding to the AES words. The second step determines the
scan cells corresponding to the AES bytes. In the third step, the order of the
bytes in a word is determined. Finally, we determine the order of the scan cells
in a byte, and identify the corresponding key. Once we have the key bytes, we
combine them as per the assumed order, and deduce the possible key hypotheses.
In the next subsection, we explain the first step.

4.1 Determining the Mapping Between Scan Cells and AES Input
Words

Similar to Fig. 4, we use two types of test vectors. One with all zero bits (P)
and the other (Pi) with only one bit set to one (i-th bit where 0 ≤ i ≤ 127) and
the rest of the bits set to zero. At first, the test vector P is shifted in and the
response R is captured and shifted out. It may be noted that R is the jumbled
up value of the round output BCC028B8FEC241AB6A7F2590F13757A2.

Next, in each step a test vector Pi is shifted in and the corresponding response
Ri is captured and shifted out. The difference Di = R ⊕ Ri will pinpoint the
positions where the bits are flipped. In our example, P0 and P120 differ in the
120-th bit. For this input pair, we apply a one-bit difference to the leftmost input
byte. The figure shows that the output difference (0x3e1f1f21) confines within
only the leftmost four bytes of the same word. The one-bit input difference affects
only one output word. Therefore, two such input differences in the same input
word will affect the same output word. We use this property of AES to partition
the scan cells into AES input words.

New Scan-Based Attack Using Only the Test Mode 55

Say, Dj
i is the j-th bit of Di and FDi = {j| Dj

i = 1}. So, FDi is the set of
output bit-flip positions corresponding to input bit-flip at i. In 128 iterations,
128 different sets of output bit-flip positions (FD = {FDi|0 ≤ i ≤ 128}) are
generated. These 128 sets are combined into four sets by considering the common
bit-flip positions in the sets.

Algorithm 1 describes the detailed procedure, where Enc() is the AES round
function. The first loop determines the 128 sets FD0 . . . FD127. In the second
loop, in each iteration, a set FDx is chosen from FD, and compared with the rest
of the sets for common output bit-flip positions. If a common bit-flip position
is found in any set (FDy), both sets are combined into one set (FDx) and the
new set (FDy) is deleted from FD. Therefore, at the end of the iteration, FDx

will have all the output bit-flip positions, which correspond to a particular word.
These bit-flip positions, which represent the positions of the scan cells, are saved
in Wi. Hence, four iterations of the second loop will partition the 128 scan cells
into four words W0 . . . W3, which correspond to four different MC operations
of AES.

Algorithm 1. Determining the bits in the words
Input: P and Pi where 0 ≤ i ≤ 127
Output: W0,W1,W2,W3

R = Enc(P)
for i = 0 to 127 do

Ri = Enc(Pi); Di = R ⊕ Ri

for j = 0 to 127 do

if Dj
i = 1 then
FDi = FDi ∪ j

end

end
FD = FD ∪ FDi

end
for i = 0 to 3 do

Select any element FDx from FD
FD = FD − FDx

for Each element FDy in FD do
if FDx ∩ FDy �= ∅ then

FDx = FDx ∪ FDy; FD = FD − FDy

end

end
Wi = FDx

end

56 S.S. Ali et al.

4.2 Determining the Mapping Between Scan Cells and AES Input
Bytes

In order to determine the mapping between scan sells and AES input bytes we
use Lemma 1. Similar to previous step, we create four test vectors: P , Pi, Pj

and Pij . We already have the response for the base plaintext P . Now we choose
any two bit positions, say i and j, where i �= j. We then create Pi and Pj . Say
the byte corresponding to bit i is Bl, where 0 ≤ l ≤ 15. We get the response
Ri = Enc(Pi) corresponding to Pi. Therefore, the difference is Di = R ⊕ Ri. It
may be noted that any non-zero value in Di is due to the input difference in byte
Bl from the plaintext pair (P, Pi). In the rest of the 15 bytes, both plaintexts
have the same values.

Next, we create Pj and Pij , where Pij is the same as Pj except in the i-th bit,
which is also 1; Pij has only two ones in positions i and j. It may be noted that
the j-th bit may be in the same byte as the i-th bit or in a different byte. We
get the response Rj = Enc(Pj) and Rij = Enc(Pij) corresponding to plaintexts
Pj and Pij respectively. Therefore, we have another difference Dj = Rj ⊕ Rij .
Still, this difference is due to the input difference in byte Bl generated from the
plaintext pair (Pj , Pij).

Now there are two possibilities: the j-th and the i-th bits are either in different
bytes, or in the same byte Bl. Let us consider the first case; the input difference in
byte Bl is only due to the flip in the i-th bit which is the same for both plaintext
pairs (P, Pi) and (Pj , Pij). Therefore, the differences Di and Dj corresponding
to the two plaintext pairs will be the same. On the other hand if the i-th and
j-th bits are both in Bl, then we have the same input difference corresponding
to bit i, but in addition to other differences as well. Therefore, as per Lemma 1,
this should result in different output differences; the MC operation is linear.
Therefore, Di and Dj will be different in the second case.

For example in Fig. 5, the two plaintext pairs (P , P124) and (P120, P124,120)
have two bit-flips with respect to P ; one in the 124-th bit and the other one in
the 120-th bit. It may be noted that both bit-flips are in the same byte. There-
fore, we have two different input pairs with the same input differences (in bit

D0=R R124=49A9A9E0000000000000000000000000

01001001101010011010100111100000

D1=R R12o=3E1F1F21000000000000000000000000

00111110000111110001111100100001

P =00000000000000000000000000000000
P124 =10000000000000000000000000000000
P120 =01000000000000000000000000000000
P124,120=11000000000000000000000000000000

R =BCC028B8FEC241AB6A7F2590F13757A2
R124 =F5698158FEC241AB6A7F2590F13757A2
R120 =82DF3799FEC241AB6A7F2590F13757A2
R124,120=6521C980FEC241AB6A7F2590F13757A2

D2=R120 R124,120=E7FEFE19000000000000000000000000

D0=R0 R124=49A9A9E0000000000000000000000000

Fig. 5. Four inputs and the corresponding one round outputs, and the differences

New Scan-Based Attack Using Only the Test Mode 57

position 124). Hence, the output difference should always be different. As shown
in the figure, the output differences D0 and D2 are unequal. If the second bit-flip
(120-th) were in a different byte, say in the 100-th bit, the corresponding output
differences would be the same. Therefore, by comparing the output differences
we can determine whether the two input bit-flips are in the same byte. This way
by flipping bits in input pairs we can partition the bits into the AES bytes.

So one can determine whether two different bits are in the same byte by
just observing the output differences Di and Dj , and checking whether they are
different. In order to determine the same for all the bytes, we follow Algorithm 2.
It takes the set of bits W corresponding to a word, which is generated in the
previous step, and partitions the bits into four bytes B0 . . . B3. The outer loop
selects a bit from W and passes it to the inner loop. The inner loop finds all the
bits, which lie in the byte that corresponds to the given bit. The four iterations of
the outer loop determine the four bytes B0 . . . B3. In order to reduce the number
of test vectors, we can use a single pair of test vectors to identify the differences
in all the four words in one shot. As the four MC operations of AES in a round
are independently calculated, we can apply the above technique to determine
the bytes in all the four words simultaneously by flipping bits in four words of
the input plaintexts. Therefore, the number of input test vectors will reduce by
four.

Algorithm 2. Determining the bits in the bytes
Input: W
Output: B0, B1, B2, B3

for l = 0 to 3 do
Bl = ∅; Wt = ∅
Select i where i ∈ W
Bl = Bl ∪ i ; W = W − i; Pi = P ⊕ (0x1 	 i)
Ri = Enc(Pi); R = Enc(P); Di = R ⊕ Ri

for Each j ∈ W do
W = W − j
Pj = P ⊕ (0x1 	 j); Pij = Pj ⊕ (0x1 	 i)
Rj = Enc(Pj); Rij = Enc(Pij); Dj = Rj ⊕ Rij

if Di �= Dj then
Bi = Bi ∪ j

end
else

Wt = Wt ∪ j
end

end
W = Wt; Wt = ∅

end

Note. It may be noted that there could be more than 128 registers in the
AES design. However, these extra registers can be identified by considering their

58 S.S. Ali et al.

effects on the AES round output. If the registers are not part of the round
operation (e.g. AES controller registers), they will not affect the round output.
If they are part of the round operation, their effect on the output will reveal
their position in the round operation. Once identified, the extra registers can be
discarded in the attack.

4.3 Determining the Order of Bytes in a Word

In this section, we try to determine the position of each byte in the words. In
order to do that, we use the properties of the AES MC operation. Figure 6(a)
shows the basic operation of AES MC in terms of a matrix multiplication oper-
ation. As illustrated in Fig. 6(b), if there is a non-zero value a in only one of the
four input bytes, the output bytes will have values (a, a, 2a, 3a).

We analyze the hamming distance to determine the order of the bytes. As
per the AES MC operation, two of the four output bytes will always have the
same hamming distance (two output bytes with values a).

We apply two plaintexts (P and P ′) in a way that only one input byte of
the MC operation gets a non-zero difference and the rest of the three bytes
all get zero differences. Say we have scan cells corresponding to the four bytes
B0, B1, B2, B3 of a word. We need to find the actual order of these bytes cor-
responding to MC, i.e., to a0 . . . a3 in Fig. 6(a). If the input difference value a
is applied in B0, the output difference value 2a should be loaded in this byte.
We need to determine which two bytes will have the same hamming distance.
However, for some value of a, the rest of the three bytes (other than the byte
B0) may have the same hamming distance.

We experimentally observed that in 52 out of the 255 different values of a,
more than two bytes will have the same hamming distance. We need to try at
least 53 different values of a to exactly know the two bytes that correspond
to the output differences a and a respectively. Say, B2 and B3 are the two
bytes. Then we also determine that B1 corresponds to the output difference 3a.

Fig. 6. AES Mixcolumns operation and its differential properties

New Scan-Based Attack Using Only the Test Mode 59

However, as B2 and B3 have the same value, we can’t directly identify the
order of these two bytes. In order to determine their order, we next apply the
input difference to the byte B1. Then B0 corresponds to output difference a,
and either B2 corresponds to a and B3 corresponds to 3a or vice versa. In the
first case, the exact order of the four bytes is identified to be (B0, B2, B3, B1),
which corresponds to the first of the four cases presented in Fig. 6(b). We can
have three more possible permutations, which are the circular rotations of this
permutation. The procedure is repeated for the rest of the three words. It may
be noted that instead of applying difference in one byte at a time, we can apply
the byte difference in four words corresponding to four different MC operations,
which will help determine the order of the bytes in the four words simultaneously.

So, given the four bytes in a word, we can tell the four possible permutations
as per the AES input.

4.4 Determining the Order of Bits in a Byte

At this point, we do not know which scan cell corresponds to which bit of a given
byte although we know the order of the bytes. If we apply the existing attack [5]
by varying the input pairs in order to get a particular hamming weight, we will
uniquely determine the key byte. In our case we don’t know the exact value of
the input plaintext as we do not know the order of the bits in a byte. Therefore,
the key byte which we determined is corresponding to the assumed order of the
scan cells in the bytes. Eight scan cells corresponding to a byte can be arranged
in 8!

4!·4! = 70 (consider the average case where half of the bits are one and rest
are zero) ways. Therefore, in average each byte can have 70 possible values. If
we combine all the sixteen bytes we get (10)16 values, which is a large number.
Therefore, we must determine the order of the scan cells.

We develop a new technique to determine the key despite the unknown order
of the scan cells in the byte. In this scheme, instead of considering the difference
in any particular bit, we consider eight different differences, each corresponding
to a one-bit difference in one of the eight input bits. As all the bits are considered,
the output signature is irrespective of the order of the bits. In order to do that,
we choose an input plaintext P with all zero bits. Therefore, the chosen byte
will have the value B = 00000000. Then we produce eight different plaintexts
P0 to P7 by varying the bit-flip position 0 to 7.

Let us consider the chosen byte is the first byte. Then the first bytes of the
eight plaintexts are 0 × 01, 0 × 02, 0 × 04, 0 × 08, 0 × 10, 0 × 20, 0 × 40,
and 0 × 80. It may be noted that in these eight values, the bit-flip position
varies from the right-most bit to the leftmost bit. Each of these eight plaintexts
is paired with P . We compute the output difference Di (0 ≤ i ≤ 7) of each pair
and get the hamming distance. From Di we get the hamming distance of the
four bytes. Two of these bytes will have the same hamming distance as shown
in Fig. 6(b). So, we consider only one of these two.

We maintain a signature table where, for each value of K, we have eight
the three-byte hamming distances corresponding to eight input differences. The
values are shown in Table 1. The data in the table shows that the last eight

60 S.S. Ali et al.

Table 1. Signature table

K B0 B1 B2 B3 B4 B5 B6 B7

0 525 224 334 446 334 455 446 455

1 525 233 444 466 367 233 358 233

2 222 224 222 112 556 455 556 334

3 222 233 556 224 222 556 334 345

4 334 255 334 222 112 345 145 255

...
...

...
...

...
...

...
...

...

255 255 224 334 266 134 233 244 345

columns uniquely determine the row. Therefore, given eight hamming distances
corresponding to eight input differences, one can uniquely determine the value
of K, which is the key byte itself. It may be noted that we have sixteen tables
corresponding to sixteen S-boxes of AES. We need to search the eight hamming
distances in all the sixteen tables.

Algorithm 3 shows the detail technique of determining the value of the key
byte and the order of the bits in a byte. The attacker get the output differences
corresponding to eight pair of plaintexts. She then determines the four out-
put bytes which have got the non-zero output differences. The function Trim()
determines four none-zero bytes and reduce them to three after removing the
duplicate one. HD will have eight hamming distances correspond to eight input
differences. These eight value are searched in the rows of Table 1. When a row
matches, the value of K corresponding to that row is the value of the key byte.
The position of the bit is determined by the column index of the hamming weight
corresponding to the bit. The position of the i-th bit is the index of the column
of HDi in the row K.

Algorithm 3. Determining the key byte and the order of the bits in a byte
Input: P and Pi where 0 ≤ i ≤ 7
Output: Key and order of the bits

HD = ∅ R = Enc(P) for i = 0 to 7 do
Ri = Enc(Pi)
Di = R ⊕ Ri

HDi = Trim(Di)
/*Getting three bytes*/ HD = HD ∪ HDi

end
for K = 0 to 255 do

Search HD in row K of Table 1
if All elements of HD is found in row K then

Key=K
Order of the bit is the column index of the element of HD

end

end

New Scan-Based Attack Using Only the Test Mode 61

4.5 Determining the AES Key

In the previous section, we determine the order of the scan cells in a byte as
well as the key corresponding to the byte. Now we have to determine the order
of bytes in a word (Sect. 4.3). We have four possible permutations of the four
bytes in a word. Therefore, if we know the position of the four words, then there
will be 44 = 28 possible values of the key. However, we don’t know the order
of the four words, which can be arranged in 4! = 24 ways. The total possible
hypotheses of the AES key is 24 · 256 = 6144 = 212.58. As we know the plaintext
and the ciphertext, we can brute-force the key hypotheses in negligible time.

4.6 Attack Complexity Analysis

In the first step of the attack (Sect. 4.1), we need 128 + 1 = 129 test vectors to
partition scan cells into the AES words. In determining the bytes in a word in
the second step (Sect. 4.2), we need (1 + 31 · 2) + (1 + 23 · 2) + (1 + 15 ∗ 2) = 141
test vectors. For getting the order of the bytes in a word in the third step
(Sect. 4.3), we used 52 · 2 = 104 test vectors. In the fourth step (Sect. 4.4),
where we determine the order of the bits in bytes, we don’t need any extra test
vectors, because the required test vectors are already available from the first
step. Therefore, in total we need 129+141+104 = 375 test vectors to determine
the secret key.

Regarding the time complexity, it can be observed that most of the execu-
tion time is spent on partitioning the scan cells corresponding to bytes and in
determining the order of bits in a byte. For the first part, the time complexity
is 31 + 15 + 7 = 53. In the second part the time complexity is 256 · 8 = 211.
However, the final key hypotheses is around 212.58, which need to be brute-forced
to get the master key. Therefore, the time complexity of the complete attack is
212.58.

5 Existing Countermeasures

So far we have shown that the mode-reset countermeasure, which provides pro-
tection against all the existing attacks, fails against the proposed test-mode-only
attack. In this section we discuss some of the other existing countermeasures and
their level of effectiveness against our proposed test-mode-only attack. Our goal
is to devise a countermeasure for our attack.

5.1 Insertion of Inverters in the Scan Path

In this technique the scan chain is divided into multiple subchains in the form
of a scan tree [16]. The subchains are placed in a random order so that it will
be difficult for the attacker to figure out the exact round output. Some of the
scan cell values are flipped by placing inverters selectively on the scan paths
(Fig. 7). The location of the inverters is known only to the designer or the tester.

62 S.S. Ali et al.

Fig. 7. Insertion of inverters in the scan path

Therefore, only the designer or the tester can retrieve the exact response of the
chip, while the attacker can only observe the modified response of the chip.

In the differential scan attack, such countermeasures will fail, as the effect of
the inverters will be cancelled out in the output difference. Therefore, the pro-
posed test-mode-only attack can easily overcome this countermeasure through
the differential analysis it employs. In the same way, our proposed scan attack
can thwart the scan scrambling technique proposed in [17].

5.2 Masking

There are two masking countermeasures proposed in [6]. The first method masks
the 128-bit round register and then unmasks it for the subsequent round oper-
ation. The mask value is generated by using an input and a key of size 128-bit
(Fig. 8). During the normal operation, the masking remains transparent. In the
capture operation during the test mode, the scan chain captures the masked
response of the circuit. Only the tester and the designer have the knowledge
about the mask value. Therefore, they can unmask the scan output and retrieve
the actual response of the circuit. On the other hand, the attacker will be unable
to retrieve the actual response, hence failing to apply the differential analysis to
reveal the secret key. Thus the attack will fail. The drawback of this counter-
measure is not only the area overhead, but also the prolongation of the critical
path, and thus the performance degradation.

To overcome the critical path issue, a second masking technique is proposed,
which modifies the response compactor output (Fig. 9). This technique is based
on an enhanced Linear Feedback Shift Register (eLFSR), which can either oper-
ate as a register or an LFSR. In the test mode, the LFSR output is XORed with
the response compactor output bit-stream. Therefore, each compacted slice is
XORed with a pseudorandom bit. A 128-bit LFSR is used to prevent the attacker
from retrieving the initial state of the LFSR. Although the countermeasure has
no impact on the critical path delay, the area overhead remains a problem, which
is around 5% of the AES chip.

5.3 Noise Injection in the Scan Output

This technique is similar to the previous masking technique. It includes two
levels of security: one is the LFSR and the other one is the True Random Number

New Scan-Based Attack Using Only the Test Mode 63

Fig. 8. Round register masking

Fig. 9. Masking the compactor output

Generator (TRNG) [18]. Figure 10 shows the architecture of the countermeasure.
In this case, the masking values are controlled by both the LFSR and the TRNG.
Therefore, on average half of the scan output bits are masked and the rest of
the bits remain unchanged. As the TRNG hides some of the LFSR outputs,
the designer can choose a smaller LFSR, which will drastically reduce the area
overhead of this countermeasure. The success rate of the attack in the presence
of this countermeasure depends on how frequently the masking is done. It was
shown that the attack will fail, only when the masking is done in each clock
cycle.

5.4 On-chip Comparison of Responses

The countermeasure in [19] provides a scan protection scheme using an on-chip
comparison of the circuit response and the expected response that is shifted
in. The attacker can only observe a one pass-fail bit per test vector, which is
insufficient to leak the secret key of the chip. Similar to the traditional test
process, the test vector is shifted into the scan architecture during the shift
operations. Then, the response is captured during the capture operation. Instead

64 S.S. Ali et al.

Fig. 10. Randomized noise injection

of shifting out the captured response, the expected response is shifted in through
another pin that replaces the scan output pin, while shifting in the next test
vector by using the scan input pin. This countermeasure performs an on-chip
comparison, which produces a pass, only when the whole captured response
matches the expected response. The test time and data volume is the same
compared to traditional testing.

This countermeasure impacts the diagnosis and debug capabilities of the IC,
as the entire information about the IC under test consists of one pass-fail bit
per test vector. To support the diagnosis of the IC, an expected faulty response
of one fault at a time is shifted into the scan architecture instead of the fault-
free response, which is compared with the captured response. However, such
procedure is only valid for modeled faults. Furthermore, the diagnostic time
becomes unaffordable.

6 Proposed Countermeasure

As we have seen in the previous section, there are various proposed countermea-
sures to provide a certain level of security against scan-based side-channel attack.
However, all these countermeasures have been proposed with the existing scan
attack model in mind, thus failing to provide protection against a fundamen-
tally different attack model, such as the proposed test-mode-only attack. In this
section, we present a countermeasure judiciously crafted for the test-mode-only
attack that relies on the access to the scan input pin, which no other existing
scan attack requires.

Our proposed test-mode-only attack is based on launching an individual bit-
flip from each scan cell in the round register independently of the remaining
scan cells. Disabling this capability will prevent the attacker from mapping each
scan cell to its corresponding word and byte of the AES. We propose a defense
mechanism, which injects random noise by randomly flipping the bits of the test
vectors, while they are shifted through the scan input pin, hampering the attack’s
ability to classify scan cells into words and bytes. The LFSR randomly selects
the locations of the bit-flips of each test vector. The LFSR generates a new bit
per clock cycle that is XORed with the shifted test vector bit. In other words,
the shifted bit is flipped if the output of the LFSR is one. No countermeasure for

New Scan-Based Attack Using Only the Test Mode 65

the existing scan attacks has considered the alteration of the test vector shifted
through the scan input pin, mainly because the previously proposed scan attacks
assume that the attacker can apply the plaintext through the primary inputs.

Without the capability of controlling the data delivered into the scan cells,
the attacker fails to launch the desired bit-flips. The attacker thus needs to
circumvent this defense by deciphering the LFSR sequence, which requires the
LFSR structural details. The only way the attacker can identify the LFSR con-
figuration is to apply the same test vector for a sufficient number of times by
using the scan flush test capabilities, where the test vector can be shifted in and
out without any capture operation. If the LFSR consists of m bits, the attacker
has to apply the same test vector for 2m − 1 times to figure out the structure
of the LFSR that can be chosen to implement a primitive polynomial. For an
LFSR of medium size, this can be quite costly for the attacker.

To provide a higher level of security, we propose the optional integration of
a second defense mechanism to disallow a specific number of continuous shift
cycles. Another possible smaller LFSR can be used to inject extra noise on
the shifted stimulus, once a specific number of consecutive shift cycles with no
capture operation in between is detected. The maximum allowed number of
continuous shift cycles should be selected carefully to maintain both security
and testability of the chip. If the maximum number of continuous shift cycles is
too small, the scan flush test will be affected. On the other hand, permitting a
large number of continuous shift cycles may enable the identification of the first
LFSR structure, and thus, compromise the security of the chip. An n-bit counter
can be used to allow up to 2n −1 consecutive shift operations. Every clock pulse
during the test mode increments the counter as long as the scan enable signal
is high, indicating a shift operation. When the counter saturates, it signals the
second LFSR to kick in and add a second level of bit flipping.

To circumvent the second level of defense, an attacker can employ a dummy
capture attack as shown in Fig. 11; in this scheme, the attacker pulls down the
scan enable signal (to indicate capture) in between the active clock edges. The
goal of the attacker is to reset the counter and be able to extend the number
of the consecutive shift cycles without corrupting the scan chain content with
a capture operation. To thwart such attacks, the reset structure of the counter
is designed carefully. The counter is reset only with a capture during an active
clock. Figure 12 provides the implementation details.

clk

Scan enable

Fig. 11. Timing diagram of the clock signal and the scan enable signal in a dummy
capture attack

66 S.S. Ali et al.

Fig. 12. The proposed countermeasure for test-mode-only attack

The area cost is an m-bit LFSR and one XOR gate for the level-1 defense,
and an s-bit LFSR, c-bit counter, 3 AND gates, one OR gate, one inverter, and
one XOR gate in addition for the optional level-2 defense.

7 Conclusion and Ongoing Work

With a simple yet effective chip mode-reset countermeasure in place, none of the
existing scan attacks can leak the secret information of a security-critical IC. In
this work, we bring a new perspective to scan attack research by introducing a
new class of scan attacks, test-mode-only attack, that targets circumventing this
commonly used mode-reset countermeasure. The proposed attack misuses the
in-field debug capabilities of the IC by leveraging operations, such as shift and
capture that the test mode offers. By remaining in the test mode, the proposed
attack circumvents the mode-reset countermeasure.

A fundamentally different type of scan attack comes with its own challenges
to be tackled. As the boundary scan cells block the access to the primary inputs
during the test mode, the proposed attack ends up having to use the scan inter-
face to load the attack patterns, in contrast to all the existing scan attacks that
benefit from the available PI access in the normal mode. The prerequisite for
applying the proposed test-mode-only attack is therefore to decipher the map-
ping between the scan cells and the AES inputs, which is dictated by the physical
position of the scan cells and the physical placement tools used by the designer.

In this work, we tackle the aforementioned challenges and devise a test-mode-
only attack, which we illustrate for AES, while we note that the technique herein
can be easily extended for other ciphers as well. The attack analysis shows that
only 375 test vectors are sufficient to reveal the 128-bit AES secret key where
the 128-bit key is reduced to only 12 bits. Furthermore, we also present a brief
overview of existing countermeasures, and devise a cost-effective one that can
circumvent the proposed test-mode-only attack. We thus present a two-level
defense with an underlying input corruption countermeasure that prevents an
attacker from launching the bit-flips required to leak the secret key.

New Scan-Based Attack Using Only the Test Mode 67

Our future work will focus on contemporary scan architectures where a test
stimulus decompressor and a response compactor reside on the scan path. We
have already made some progress on attacks using compactor [20] and boundary
scan chains [21]. The technique we present in this paper is readily applicable on
ICs that enable debug and diagnostics with a bypass of such advanced DFT fea-
tures. When this bypass capability is not supported, however, the attack should
be enhanced by developing techniques to launch bit-flips through the decom-
pressor in the scan cells, and to perform differential analysis on the compacted
responses. The ultimate goal of this line of work is to develop techniques that
facilitate the design of testable yet secure ICs.

References

1. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware
implementations of data encryption standard. In: ITC, pp. 339–344. IEEE (2004)

2. Yang, B., Wu, K., Karri, R.: Secure scan: a design-for-test architecture for crypto
chips. In: Joyner Jr., W.H., Martin, G., Kahng, A.B. (eds.) DAC, pp. 135–140.
ACM (2005)

3. Kapur, R.: Security vs. test quality: are they mutually exclusive? In: Proceedings
of International Test Conference, ITC 2004, p. 1414, October 2014

4. DaRolt, J., Natale, G.D., Flottes, M.L., Rouzeyre, B.: Are advanced DfT structures
sufficient for preventing scan-attacks? In: VTS, pp. 246–251. IEEE (2012)

5. Ege, B., Das, A., Ghosh, S., Verbauwhede, I.: Differential scan attack on AES with
X-tolerant and X-masked test response compactor. In: DSD, pp. 545–552. IEEE
(2012)

6. DaRolt, J., Natale, G.D., Flottes, M.L., Rouzeyre, B.: Scan attacks and counter-
measures in presence of scan response compactors. In: European Test Symposium,
pp. 19–24. IEEE Computer Society (2011)

7. Nara, R., Satoh, K., Yanagisawa, M., Ohtsuki, T., Togawa, N.: Scan-based side-
channel attack against RSA cryptosystems using scan signatures. IEICE Trans.
93–A(12), 2481–2489 (2010)

8. Da Rolt, J., Das, A., Di Natale, G., Flottes, M.-L., Rouzeyre, B., Verbauwhede,
I.: A new scan attack on RSA in presence of industrial countermeasures. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 89–104.
Springer, Heidelberg (2012)

9. Nara, R., Togawa, N., Yanagisawa, M., Ohtsuki, T.: Scan-based attack against
elliptic curve cryptosystems. In: 2010 15th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pp. 407–412, January 2010

10. Da Rolt, J., Das, A., Di Natale, G., Flottes, M., Rouzeyre, B., Verbauwhede, I.: A
scan-based attack on elliptic curve cryptosystems in presence of industrial design-
for-testability structures. In: 2012 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 43–48, October
2012

11. Liu, Y., Wu, K., Karri, R.: Scan-based attacks on linear feedback shift register
based stream ciphers. ACM Trans. Des. Autom. Electron. Syst. 16(2), 20:1–20:15
(2011)

12. Hely, D., Bancel, F., Flottes, M.L., Rouzeyre, B.: Test control for secure scan
designs. In: Proceedings of the 10th IEEE European Symposium on Test, ETS
2005, pp. 190–195. IEEE Computer Society, Washington, DC (2005)

68 S.S. Ali et al.

13. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

14. IEEE standard test access port and boundary-scan architecture. In: IEEE Std
1149.1-2001, pp. i-200 (2001)

15. Ali, S.S., Sinanoglu, O., Saeed, S.M., Karri, R.: New scan-based attack using
only the test mode. In: Margala, M., da Luz Reis, R.A., Orailoglu, A., Carro, L.,
Silveira, L.M., Ugurdag, H.F. (eds.) VLSI-SoC, pp. 234–239. IEEE, Istanbul (2013)

16. Sengar, G., Mukhopadhayay, D., Roy Chowdhury, D.: An efficient approach to
develop secure scan tree for crypto-hardware. In: International Conference on
Advanced Computing and Communications, ADCOM 2007, pp. 21–26, December
2007

17. Hély, D., Flottes, M.L., Bancel, F., Rouzeyre, B., Bérard, N., Renovell, M.: Scan
design and secure chip. In: IOLTS, pp. 219–226. IEEE Computer Society (2004)

18. Das, A., Ege, B., Ghosh, S., Batina, L., Verbauwhede, I.: Security analysis of indus-
trial test compression schemes. IEEE Trans. CAD Integr. Circuits Syst. 32(12),
1966–1977 (2013)

19. Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: On-chip test comparison
for protecting confidential data in secure ICS. In: 2012 17th IEEE European Test
Symposium (ETS), p. 1, May 2012

20. Ali, S.S., Sinanoglu, O., Saeed, S.M., Karri, R.: New scan attacks against state-of-
the-art countermeasures and DFT. In: HOST, pp. 142–147. IEEE (2014)

21. Ali, S.S., Sinanoglu, O., Karri, R.: Test-mode-only scan attack using the boundary
scan chain. In: Natale, G.D. (ed.) ETS, pp. 1–6. IEEE, Paderborn (2014)

Quantitative Optimization and Early
Cost Estimation of Low-Power

Hierarchical-Architecture SRAMs
Based on Accurate Cost Models

Yuan Ren(&) and Tobias Noll

Chair of Electrical Engineering and Computer Systems,
RWTH Aachen University, Aachen, Germany
{ren,tgn}@eecs.rwth-aachen.de

Abstract. Dedicated low-power SRAMs are frequently used in various
system-on-chip designs and their power consumption plays an increasingly
crucial role in the overall power budget. However, the broad amount of choices
regarding the capacity, wordlengths and operational modes make it hard for
designers to determine the optimal SRAM architecture. Additionally, many
low-power techniques and circuits are frequently utilized but not supported by
previously proposed cost models. In order to solve these problems, a cost-model
based quantitative optimization approach is proposed. In particular, a fast and
accurate power estimation model is built for aiding the low-power SRAM
designs. It precisely fits the various complex SRAM circuits and architectures.
The quantitative approach provides useful conclusions early in the design phase
guiding further optimizations. The estimation error of the power model has been
proven to be less than 10 % compared to results based on time-hungry
extracted-netlist simulations in a 40-nm CMOS technology.

Keywords: SRAM � Power model � Quantitative parameter optimization

1 Introduction

SRAMs are widely used in many applications as caches etc. due to their fast access
speed but also contribute significantly to area cost and power consumption. Particularly
in system-on-chip design, dedicated SRAMs with optimized architecture and circuits
are often applied for achieving low-power. The optimization of those dedicated
SRAMs for lowest possible power at a given performance is a quite challenging task
because of the complexity of the design space. An attractive approach is to perform a
quantitative optimization based on cost models. Such cost models not only support the
optimization process but also allow for early cost estimation in the system conception
phase. The focus of the study is laid on the power cost considering the increasingly
significant role of power consumption of SRAMs.

From the low-power perspective, SRAMs with hierarchical architecture, as
described e.g. in [1–4], are very attractive choices. A quantitative optimization
approach for the hierarchical-architecture SRAMs deserves further research.

© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 69–93, 2015.
DOI: 10.1007/978-3-319-23799-2_4

Figure 1 provides a block diagram of such a hierarchical-architecture SRAM of 2 K
words with a 45 bit-wordlength. Apart from the timing control circuits, the memory
matrix and the address decoders dominate the total power consumption. These two
components exhibit a large design space regarding the underlying architecture and
circuits. In the hierarchical architecture the memory matrix is typically organized in 2m

(m = 3) columns. Each column includes a local timing generator, a bit cell column and
a local wordline decoder. A bit-cell column consists of 2n (n = 4) local blocks and a
local block is sub-divided into 2u (u = 4) words vertically. Thereby, the long bitlines
and wordlines are both divided into global and local lines for reducing the switched
capacitances. Moreover, the use of local sense amplifiers further reduces the power
consumption by decreasing the signal swing on the long interconnects. Furthermore,

Fig. 1. A block diagram of a conventional on-chip SRAM with a hierarchical architecture

70 Y. Ren and T. Noll

the bit cell column could consist of various efficient circuits, such as assist circuits [1],
stable bit cell and bit-interleaved technique [2] and pre-charge schemes [3, 5].
Apparently a large design space exists for selecting hardware-efficient architectures and
the underlying circuits. Especially for SRAMs with different capacities and features,
the time to market constraints make design space difficult to be explored. Therefore,
there is a strong demand to come up with a cost model, by which architecture
parameters, local circuits and power reduction techniques are characterized and
quantitatively analyzed.

Many available power cost models were investigated for hierarchical-architecture
SRAMs using various low-power circuits and techniques. As it is illustrated in Table 1,
the widely used CACTI tool [6] is a tool to understand large caches in the context of
microprocessors. It focuses on microprocessor caches (including cache coherency
techniques) and with fewer possibilities for choices of circuits and techniques, in [1–3,
5]. For on-chip SRAMs CACTI is found very inaccurate due to its incompatibility with
specific circuits and techniques so that it cannot be used as an optimization or design
guiding tool. The power model in [7] cannot be used for SRAMs with low-power
architectures containing divided bitline and divided wordline structures. Moreover this,
it cannot deal with a variety of efficient specific circuits. In [8] only the traditional
subdivided bitline structure is discussed without considering other possible low-power
architectures or circuits. Moreover they do not consider LSAs in their model since the
LSAs significantly contribute to the leakage power. The approach in [9] requires a
complex reference design of a whole SRAM whose characterization is
time-consuming, which makes it not practical for designers at the early design stage.
Moreover, neither LSA in a hierarchical architecture nor energy-efficient circuits for
local blocks are included. The power model in [10] discussed a binary tree SRAM
based on the approach in [7] which makes it similarly inappropriate. Moreover, the
energy consumed by long interconnects existing in the binary tree organization is not
considered in the total energy consumption in a proper way. Hence, these models
cannot help designers in making quantitative decisions about architecture and circuits.

A predictive and mature design flow for on-chip SRAMs must simultaneously
consider energy (E), area (A) and speed (T) properties. For this reason a cost estimation
environment is under elaboration serving as an efficient design aid and a quantitative
optimization tool. Figure 2 sketches the overall flowchart of this environment. The
SRAM specifications are given by the capacity in number of words and wordlength.
The first task is to determine the optimal architecture and most effective circuit

Table 1. Estimation approaches investigation

[6] [7] [8] [9] [10] This work

Hierachical using LSA Y N N Y N Y
Specific efficient Circuits N N N N N Y
No Reference Design Needed Y Y Y N Y Y
Validation Technology ≥32 nm 130 nm 65 nm N.A 45 nm – 180 nm 40 nm

Quantitative Optimization and Early Cost Estimation 71

techniques. A hierarchical architecture is taken as the subject to be analyzed and
optimized. The architectures are specified by the partitioning parameters (m, n, u).
Here, parameter m is the column address decoder width, which denotes the number of
columns (M = 2m) and n is the row address decoder width, which denotes the number of
rows (N = 2n) in a memory matrix. Parameter u is the unit address decoder width,
which denotes the number of cells (U = 2u) in a column unit. On the whole, the three
parameters define the partitioning and organization of a hierarchical-architecture
SRAM with a total capacity of M*N*U words being equal to 2a address bits with
wordlength (w). The decomposition and combination possibilities of the three
parameters are explored for selecting the optimal architecture partitioning.

Besides the choices related to partitioning regarding the design space, there exists a
wide choice of various energy-efficient circuit techniques. These circuit techniques, such
as the ones related to the bit cells, assist circuits and local sense amplifiers (LSA) cause
additional overhead and complexity to the overall design. The consumed energy is
difficult to evaluate and estimate since it depends on the context in which these circuits
are used. Their non-standard features cannot longer be characterized using the available
models which only include standard features. Hence there must be a quantitative
benchmarking tool to assess these circuits and techniques. Accordingly, their respective
power consumption should be estimated and compared while using different

Fig. 2. Overall flowchart of the cost estimation environment

72 Y. Ren and T. Noll

configurations so that the optimal one can be selected. A pre-characterization method-
ology is employed for capturing their distinct features and quantifying the analysis. With
these 2 sets of inputs, partitioning parameters and specific circuit techniques, a
design-space exploration is carried out, while building a cost (A, T, E) model for on-chip
SRAMs. This way a Pareto-optimization is carried out by trading off the three costs (A,
T, E). Finally the design decisions regarding architecture and circuits are made.

The idea of a cost-model based pre-characterization of elementary components (i.e.
logic gates and bit cells) is further explained in Fig. 3. Given specification parameters
(a, w), all the possibilities of the partitioning parameter (m, n, u) are generated and then
these possibilities are evaluated by the presented cost model. An ATE cost database is
built by proper circuit simulation of extracted component netlists, which depends on
the use case (e.g. Vdd, Vbias), technology corners, temperature, frequency and gate sizes.

• The area can be estimated by a parameterized floor plan estimation and an accu-
mulation of elementary widths and height values (e.g. Wcomponents, Hcomponents).

• In the energy model, the elementary energy values of basic circuits (e.g. Egate) are
accumulated with the partitioning parameters and switching activity probabilities.
The interconnect energy is estimated from the wire length and the energy per unit
length (Ewire_unit). Finally the total energy consumption is derived by an accumu-
lation of elementary energy (e.g. Ebl) from all used circuit components.

Fig. 3. Overview of an ATE cost model

Quantitative Optimization and Early Cost Estimation 73

• The speed can also be derived by using the cost data base (e.g. tslope, Wwire, Cload,

Cinput) and a elementary delay accumulation along the critical path involving long
resistance-capacitance interconnects.

In this contribution, we focus on the energy cost model and the relevant opti-
mization approach. In the proposed model, only a few necessary basic circuit com-
ponents (i.e. basic bit cells) need to be characterized. These circuit components could
be verified by a number of Monte-Carlo simulations for ensuring robustness. Moreover,
the pre-characterization including simulation time and model building only requires
couple of hours and afterwards the estimation results can be acquired in a few minutes.
Therefore, the total effort of the cost model is much less compared to a complete
reference design.

2 Hierarchical Architecture

A conventional hierarchical low-power SRAM organization including address decoders
and memory matrices is illustrated in Fig. 4. It is partitioned into 2(m+n) blocks which are
organized as an array ofM = 2m block columns and N = 2n block rows, while m and n are
dependent on the decompositions of column and row address decoders. The outputs of
these two pre-decoders, 2m column select (CS) and 2n row select (RS) signals, are further
decoded by NOR or NAND gates for generating the 2(m+n) Blockact signals for selecting
a specific block. Each block is composed of U = 2u words placed vertically and it
includes w column units. The column unit is considered as a basic unit for the memory
matrix, which includes 2u cells per column unit and one LSA. A unit decoder and the
row decoder generate 2(u+n) global wordlines (GWL) at the output to access the selected
row in the block. Afterwards, the GWLs and Blockact signals are further decoded to
2(m+n+u) local wordlines (LWL) to access the selected word. In this way, bitline and
wordline capacitances are reduced for meeting the low-power requirement. Also, the
introduction of LSA reduces the voltage swing on global bitlines.

Fig. 4. Hierarchical-architecture SRAM organization comprising DWL structure

74 Y. Ren and T. Noll

As discussed before, the memory matrix is organized intoM = 2m block columns. In
these block columns various complex but efficient circuits are utilized. In Fig. 5, a block
column is shown for exemplifying these specific circuits. It is composed of a local
timing-control signal generator, a LWL decoder and a bit cell column. In the local
timing-control signal generator, the global timing pulse signals are combined with the
Blockact signals to generate local timing pulse signals for the N = 2n blocks. Similarly in
the LWL decoder, the GWL signals running through the whole memory matrix are
combined with the Blockact signals to generate LWL signals for each word in the bit cell
column. The bit cell column is instantiated by high-threshold voltage bit cells with
reverse back-biasing long channels, equalizer pre-charge scheme, read/write assist cir-
cuits and a wide local sense amplifier [5]. A block in a bit cell column is composed of
w column units. Each column unit includes U = 2u 6T cells, assist circuits and a LSA.

Fig. 5. Specific circuits found in a column of a hierarchical-architecture SRAM macro

Quantitative Optimization and Early Cost Estimation 75

The choice of m and w defines the parasitic wordline capacitances and the wordline
structure. Either a non-divided wordline (non-DWL) or a DWL structure can be selected
according to the capacity and wordlength. The parameter n defines the bitline hierarchy
and therewith affects the global and local bitline capacitances. Especially, charging and
discharging the bitlines contributes significantly to the overall power consumption. The
number of cells u in one column unit determines to a large extent the minimum energy
consumption for one operation. The n and u must be carefully selected for trading the
least frequent use of LSAs and the minimum switching capacitances.

3 Partitioning Impact Analysis

SRAMs typically include two major contributors to power consumption: the address
decoders and the memory matrices. In the hierarchical architecture (Fig. 4), the way of
dividing and combining the address decoders determines how the memory matrix is
partitioned into sub-blocks. A probabilistic estimation approach is employed for esti-
mating the switching activity and power consumption of the address decoder especially
regarding whether or not a distributed wordline structure is used. The memory matrices
including complex assist and periphery circuits, which consume a large portion of
power, were also modeled and characterized. Four basic circuit templates and a power
estimation method are proposed to extract and describe the architecture and circuit
characteristics for the hierarchical architecture. The specific circuits used within the
four circuit templates can be altered without changing the estimation approach itself.
Various power reduction techniques, e.g. precharge schemes in [3, 5], circuit tech-
niques in [1, 2, 5], can be pre-characterized and benchmarked in the same configura-
tions, which makes this model very appropriate for customized SRAM designs.

For an SRAM with a address bits comprising a capacity of 2a words with a
wordlength w, a flow chart of the power estimation model is shown in Fig. 6. The two
portions constituting the power model are the address decoder and the memory matrix.
For the address decoder, a address bits are divided into three sections (m, n, u), which
are decoded by the three pre-decoders including column, row and unit decoder. In the
2nd stage, a block decoder combines RS and CS signals to generate the Blockact
signals. A word-row decoder uses RS and US signals for generating the GWL signals.
In the 3rd step, a word decoder uses both Blockact and GWL signals to produce the
LWL signals. The three decoders are all composed of NAND or NOR gates and are
arranged in a matrix-like select circuit. The sum of the power consumed by the
pre-decoders and the matrix-like select circuits provides an estimate of the total power
estimation of the whole address decoder. For the memory matrix, the parameters (m, n,
u) are used for quantifying and analyzing the bitline and wordline structure. Since the
parameters represent the number of the sub-modules and determine the final SRAM
architecture, their respective impact is analyzed and attributed to the components of the
memory matrix. The parameter m determines the capacitances of the horizontal global
wordlines (HGBL) and the amount of pass transistors used as column selectors. The
number of the Blockact and GWL signals affects the capacitances of vertical global
bitlines (VGBL) and GWLs respectively. Finally, the choice of u has an impact on the
power consumption from LBLs of accessed cells, assist circuits, and LSAs. Therefore,

76 Y. Ren and T. Noll

a quantitative analysis about the dependency relations is made between the combina-
tions of (m, n, u) and all the power contributors. Given the specifications a and w, all
the possible partitioning parameters (m, n, u) are evaluated by estimating the respective
power consumption. Finally, the optimal parameter selection is saved for fulfilling
different ATE design requirements, such as minimum power consumption.

4 Power Model of Address Decoder

4.1 Basic Circuits of Address Decoder

As shown in Fig. 6, the address decoder includes three pre-decoders and three dis-
tributed decoders. The three pre-decoders can be decoders comprising either a large
fan-in or a small fan-in, depending on their input numbers. The other three intermediate
decoders are regarded to be matrix-like select circuits which are composed of logic
gates distributed in a matrix. A probabilistic method is employed for modeling the
underlying switching activities of these logic gates, by which the transition power
consumption of the matrix-like select circuit is estimated. The large fan-in decoder is
composed of a matrix-like select circuit and two small fan-in decoders. Therefore, if the
energies associated with small fan-in decoders and basic gates are available, the energy
of the three pre-decoders and the three distributed decoders can be derived by the
probabilistic method. Also, a realistic topology estimation approach is used to estimate
the wire capacitances and area of different (m, n, u).

Fig. 6. Partitioning parameter possibilities and their impact on SRAM components

Quantitative Optimization and Early Cost Estimation 77

A circuit pre-characterization database is built in the pre-characterization phase,
which includes the related configuration regarding the use case (VDDH, VDDL), process
corners, temperature and frequency. The database can be acquired in a short time since
the complexity of the basic circuits is much less compared to the overall SRAMs.
Moreover, such a pre-characterization approach is also convenient for estimating the
static power dissipation. Small fan-in decoders are usually very flexible and customized
regarding their layouts and transistors, so these basic circuits were simulated based on
extracted-netlists. Dynamic energy, static power, input capacitances and areas are listed
in Table 2 for TT corner, 25°C, 400 MHz and 0.9 V supply in a 40-nm CMOS
technology. Dynamic energy figures were obtained from random-input power simu-
lations. Other corners were evaluated as well, but only TT corner numbers are reported
in this chapter. The static power values were determined by power simulations at
different frequencies and approximately linear extrapolation of the results for P(f = 0).

4.2 Switching Activity

Besides the energy of the basic decoders (Table 2), the matrix-like select circuits
formed by NAND or NOR gates also contribute significantly to the total power con-
sumption. Such circuits are typically acting as distributed decoders and are located
among the memory matrices. As illustrated in Fig. 7, a distributed decoder composed of
NOR gates has an aspect ratio given by R rows and C columns. When another address
is accessed, not only the corresponding gates switch but also the other gates in the row
and column are charged and then discharged. As different transitions of each gate lead
to different amounts of consumed energy, the corresponding energy of each NOR gate
in its transition cases must be estimated separately. Additionally, for the overall
matrix-like circuits composed of NOR gates four switching cases (Fig. 7) exist. For
each switching case the energy and switching probability are also derived.

In Table 3, a subset of the database for the consumed energy of the basic NOR
gates is shown for each possible input transition. E.g. the transition 00 → 01 of a
two-input NOR gate is depicted by the decimal equivalents 0 → 1. Hence, a transition
10 → 01 is depicted by 21 and its switching energy is denoted by E21

NOR, and so on. In
particular, the static power of the four “no transition” situations (00, 11, 22, 33) is also
included in Table 3, where the total energy is obtained when the frequency is set to
400 MHz. A NAND matrix-like select circuit can be pre-characterized and estimated in
the same way as well.

Table 2. Characterization database of basic decoders (TT, 25°, 400 MHz, VDDH = 0.9 V)

Decoder 2-to-4 Decoder 3-to-8 Decoder 4-to-16

Dynamic energy (aJ) 2105 4400 8460
Static power (nW) 12 31 56
Input Capacitance (fF) 1.44 2.44 3.93
Width (µm) 2.73 3.45 4.17
Height (µm) 2.02 3.53 5.63

78 Y. Ren and T. Noll

For a distributed decoder with (R x C) NOR gates four possible switching cases
exist. Case1 means no switching of the selected column or row. Case2 means a
switching of the selected column within the same row. Case3 means a switching within
the same column. Case4 means a switching from one gate to another gate located in a
different row and a different column. In order to elaborate the switching details and its
energy distribution, Case2 is exemplified in four steps as shown in Fig. 7. Since the
switching happens in the same row, it means that one cross point in the matrix is
selected and another one in the same row is unselected. (a) Hence, the selected NOR
gate switches from 1 to 0 and another unselected one switches from 0 to 1. (b) Hori-
zontally in the selected row, (C-2) NOR gates have no switches and their inputs stay at
1. (c) Vertically, (R-1) NOR gates switch from 2 to 3, which means they are discharged
in the relevant column. Also, (R-1) NOR gates switch from 3 to 2 which means they are
charged in another column. (d) The remaining NOR gates do not switch and stay at 3.
Using the transition energy depicted in Table 3 the respective energy of the four
switching cases is derived as

Fig. 7. Four switching cases and their switching probabilities in a distributed decoder

Table 3. Energy of NOR gate for all possible input transition possibilities (TT, 25°, 400 MHz,
VDDH = 0.9 V, VDDL = 0.3 V)

Inputs transitions 00 11 12 13 01 02 03 23
Total energy(aJ) 11 4 400 68 213 320 235 68
Inputs transitions 22 33 21 31 10 20 30 32
Total energy(aJ) 2 3 315 228 705 655 880 228

Quantitative Optimization and Early Cost Estimation 79

ECase1
DecMatrix ¼ E00

NOR þ R� 1ð Þ � E22
NOR þ C � 1ð Þ � E11

NOR þ R� 1ð Þ � C � 1ð Þ � E33
NOR ð1Þ

ECase2
DecMatrix ¼ E01

NOR þ E10
NOR þ R� 1ð Þ � E23

NOR þ E32
NOR

� �þ C � 2ð Þ � E11
NOR þ R� 1ð Þ � C � 2ð Þ � E33

NOR ð2Þ

ECase3
DecMatrix ¼ E02

NOR þ E20
NOR þ C � 1ð Þ � E13

NOR þ E31
NOR

� �þ R� 2ð Þ � E22
NOR þ R� 2ð Þ � C � 1ð Þ � E33

NOR ð3Þ

ECase4
DecMatrix ¼ E03

NOR þ E12
NOR þ E21

NOR þ R� 2ð Þ � E23
NOR þ E32

NOR

� �þ E30
NOR þ C � 2ð Þ

� E13
NOR þ E31

NOR

� �þ R� 2ð Þ � C � 2ð Þ � E33
NOR:

ð4Þ

In particular, the four cases occur with different probabilities, which are associated
with the number of rows and columns. These probabilities may also depend on the way
the memory is used in an application but in the context of this chapter the focus is set on
the random accesses. Assuming a random address access pattern for the SRAM, the
probabilities are derived as follows. Dynamic energy of the matrix-circuit is estimated as

Ematrix R;Cð Þ ¼ ECase1
DecMatrix � 1= R � Cð Þð Þ þ ECase2

DecMatrix � C � 1ð Þ= R � Cð Þ þ ECase3
DecMatrix � R� 1ð Þ� R � Cð Þ

þ ECase4
DecMatrix � 1� 1= R � Cð Þ � R� 1ð Þ= R � Cð Þ � C � 1ð Þ= R � Cð Þð Þ: ð5Þ

The equation was verified using several different combinations of rows and col-
umns and shows 5 % estimation error compared to extracted-netlist simulation results.

4.3 Energy Cost Related to Interconnects

As technology keeps shrinking the role of interconnects becomes increasingly signif-
icant in the total power budget. Particularly interconnects incur large capacitive loads in
the dense SRAM layout. As described in Fig. 1, the 1st stage pre-decoders and the 2nd

stage decoders are typically placed around the memory matrix. The 3rd stage LWL
decoders are distributed into the block columns. Hence, the aspect ratio of the LWL,
local timing circuits and the bit-cell column must be considered together. For esti-
mating the associated interconnect lengths, a floor plan containing the dominating
memory matrix and address decoder must be determined in advance.

Since different layout floor plans result in different wire and coupling capacitances,
two typical placements are selected as possible layout organizations. In the reference
floor plans, a matrix circuit is always much larger than the other two sub-blocks.
Therefore, a compact topology exhibiting smaller area is selected. As shown in Fig. 8, a
horizontal placement leads to different interconnect lengths compared to a vertical
placement. For a large fan-in decoder, two pre-decoders and a matrix-like select circuit
are placed in both ways for evaluation purposes. For the given floor plans the total area,
interconnect lengths and wire capacitances are estimated and compared. By assessing
which placement is more compact for the overall floor plan, the two arrangements are
selected.

The height and width of the two pre-decoders are denoted as (Hpre1, Wpre1) and
(Hpre1, Wpre2), which are obtained from the pre-characterization given in Table 2. The
height and width of basic gates (HGate, WGate) such as NOR or NAND gate are also
available. Given the two placement possibilities, the height and width of the required

80 Y. Ren and T. Noll

wiring can be derived for horizontal (Hh, Wh) and vertical (Hv, Wv) placements
respectively.

Hh ¼ HGate � R; Wh ¼ WGate � C þWPre1 þWPre2 ð6Þ

Hv ¼ HGate � Rþ HPre1 þ HPre2 ; Wv ¼ WGate � C ð7Þ

As the wire lengths in the two sub-blocks are much shorter compared to the matrix
circuits, the following criterion is used to select the more compact topology. If holds,
the placement should be horizontal, otherwise a vertical placement is applied. Subse-
quently, the wire lengths can be estimated by computing the amount of gates and their
individual sizes in the selected placement. The two floor plans can be used either for a
large fan-in decoder or a memory matrix and its surrounding circuits. For a global
SRAM floor plan (Fig. 1), the two pre-decoders are replaced by a LWL decoder and a
local control timing generator. The matrix-like select circuits are replaced by a memory
matrix column. Thereby, a floor plan of a block column is determined. The decision
procedure to estimate the global wire capacitances is similar.

abs HPre1 þ HPre2 � HGate � R� �
\ abs WPre1 þWPre2 �WGate � Cð Þ ð8Þ

Considering the switching activities of the relevant wires the energies for switching
the interconnects in the two possible topology scenarios are estimated as

Eh R;Cð Þ ¼ Vdd2 � 0:08 � Wh � C � 1ð Þ þ Hh � ðR� 1Þ½ �= R � Cð Þ
þ Vdd2 � 0:08 � Wh þ Hhð Þ � R � C � R� C � 2ð Þ= R � Cð Þ ð9Þ

Fig. 8. Two empirical placement orientations for wire capacitance estimation

Quantitative Optimization and Early Cost Estimation 81

Ev R;Cð Þ ¼ Vdd2 � 0:08 � Wv � C � 1ð Þ þ Hv � ðR� 1Þ½ �= R � Cð Þ
þ Vdd2 � 0:08 � Wv þ Hvð Þ � R � C � R� C � 2ð Þ= R � Cð Þ ð10Þ

The wire capacitance per unit length of a metal wire is assumed as an appropriate
value (0.08fF/µm) for a 40-nm technology. This value is evaluated and modified when
coupling capacitances exist in very dense layouts. Moreover, under the assumption that
only the column decoder switches and the row decoder does not, the switched
capacitances are only determined by the width (Wh) with a switching probability (C-1)/
(R·C). In case that only the row decoder switches and the column decoder does not, the
switched capacitances considering its switching probability are equal to 0.08 ·Hh·(C-1)/
(R·C). If both row and column decoders are switching, the switched capacitances are
computed considering both width and height. To summarize, for the two typical floor
plans wire lengths and capacitances are estimated, which leads to a decision regarding
which floor plan has to be assumed.

4.4 Verification of Address Decoder Estimation Model

For low-power SRAMs with large capacities and long word length, it is inevitable that
a DWL structure is superior to non-DWL. Because in the non-DWL structure long
wordlines suffer from the half-select problem and numerous bitlines are needlessly
precharged. As shown in Fig. 9, in a DWL structure the block row decoder which
generates 2n RS signals is used twice instead of only once in non-DWL structure. Also
an extra distributed GWL decoder is used in a DWL structure which brings additional
area cost. But the benefit of a DWL structure is that switching occurs within a smaller
memory matrix and thereby the total energy is significantly reduced. Therefore this is a
tradeoff between the power and area of the address decoder and memory matrix.

For the energy estimation of the DWL-address decoder, large fan-in decoders with
(n + u) inputs can be handled by a nested loop calculation using smaller fan-in decoder
data from Table 2 and the relevant matrix-like selected circuits. The energies of dis-
tributed decoders in the 2nd and 3rd stage are estimated by the approach described
above. The dynamic energy and static power figures are derived as

Fig. 9. Divided wordline (DWL) structure for address decoder

82 Y. Ren and T. Noll

Edyc tot ¼ Edyc nð Þ þ Edyc uð Þ þ Ematrix N;Uð Þ þ Ewire N;Uð Þ þ Edyc mð Þ þ Ematrix M;Nð Þ
þ Ewire M;Nð Þ þ Ematrix N � U;Mð Þ þ Ewire N � U;Mð Þ ð11Þ

Psta tot ¼ Psta nð Þ þ Psta uð Þ þ Psta mð Þ þ Psta matrix N;Uð Þ
þ Pstatic matrix M;Nð Þ þ Psta matrix N � U;Mð Þ ð12Þ

The dynamic energy of three pre-decoders are represented by Edyc(n), Edyc(u) and
Edyc(m). The parameters m, n and u denote the input widths of the three decoders
respectively. The energy can be acquired from Table 2 (optionally in combination with
small fan-in decoders and matrix-like circuits). For the second stage, energy figures for
word-row and block decoders are given by Ematrix(N,U) + Ewire(N,U) and Ematrix(M,
N) + Ewire(M,N). N = 2n and U = 2u represent the number of rows and columns of the
matrix-circuit. Note that in the 3nd stage a matrix (N·U, M) is applied instead of a matrix
(N·U, M·N) since every GWL signal only needs 2m Blockact signals to select the word
in that column, cf. in Fig. 9. For an address decoder in a non-DWL structure there is no
use of GWLs. Therefore, the energies from Ematrix(M, N) and Ewire(M, N) are not
counted into the total energy.

Figure 10 shows the simulated energy versus the estimated energy of a
non-DWL-1 K address decoder and a DWL-4 K address decoder. The breakdown
energies are compared accordingly. In particular, the energy associated with wiring
capacitance is quite low compared to other components. This is explained by a short
global interconnect length and non-significant coupling. For larger address decoders
and denser layouts, the energy contribution from interconnects cannot be neglected any

Fig. 10. Simulation v.s. estimation energy for a 1 K Non-DWL and a 12-to-4 K DWL decoders

Quantitative Optimization and Early Cost Estimation 83

more. It can be seen that the 4 × 1024-NOR-Matrix circuit dominates the overall power
for the 4 K DWL decoder. The comparison indicates that the estimation errors of the
address decoder power model are less than 10 %.

5 Power Model of the Memory Matrix

The contribution of the memory matrix to the total memory access energy is dominated
by the cycle-based pre-charge and discharge of long bitlines. For low-power memory
matrix designs, assist circuits, bit cells and pre-charge schemes span a large design
space complicating the power modeling. Their complex features bring significant
influences on the layout placement location and the switching capacitances. Accord-
ingly, the total energy cannot be computed by directivity accumulating their respective
individual energies. Additionally, the use of LSAs in [1] brings low-voltage swing at
global bitlines and high-voltage swing at local bitlines. The complexity with multiple
VDD plays at larger scale which makes it more difficult to estimate the power con-
sumption. As before, the variable partitioning parameters (m, n, u and w) result in
different access gates and parasitic capacitances due to different wire lengths. Another
challenge is that read, write and standby operations must be considered separately,
including a hierarchical bitline structure and the memory cell toggling state. In order to
solve these issues, four circuit templates are proposed to act as a black box for
pre-characterization. In this way a database depending on the use case (VDDH and
VDDL), technology corners, temperature and the characteristics of gates (width) and
wires is generated. Finally, the elementary energies from assist circuits, bit cells and
vertical global bitlines are separated by our estimation approach. Combined with the
partitioning parameters the power consumed by the overall memory matrix is estimated
accurately. Leakage power is estimated in a similar way.

5.1 Four Circuit Templates

Four circuit templates based on the circuits given in [5] are presented as basic circuit
elements for characterizing the complex assist circuits and specific bit cells. As shown
in Fig. 11, a single cell circuit template is presented first to separate the elementary
energy from multi cell circuits. Its dynamic energy consists of contributions from the
local bitline of each cell (Elbl), the local wordline (Elwl) and the periphery circuits
including precharge circuits (Epre), read/write assist transistors (Eren/Ewen) and LSA
(Elsa). For pre-characterization the customized design a layout for the single cell circuit
template is drawn. This way the dynamic energy (E1) and static power (Pstatic1) are
obtained by extracted-netlist simulation

E1 ¼ Epre þ Eren þ Elwl þ Elsa þ Elbl: ð13Þ

For separating the elementary energy from the local bitline of each cell (Elbl), a
column unit circuit template is drawn in Fig. 12. Its dynamic energy (E2) and static
power (Pstatic2) are also obtained from extracted-netlist simulation. In the same way its

84 Y. Ren and T. Noll

total energy (E2) is decomposed to several elementary energies. By taking the LSA and
periphery circuits apart, the energy from the 1–8 cells are linearly interpolated.
Thereby, the energy consumed by local bitline of each cell (Elbl) is derived

E2 ¼ Epre þ Eren þ Elwl þ Elsa þ 8 � Elbl ð14Þ

Elbl ¼ E2 � E1ð Þ=7 ð15Þ

For further separating the elementary energy from the periphery circuits, a row unit
circuit template is designed as shown in Fig. 13. In the same manner this fraction is
separated by calculating E3 and E2.

Fig. 11. A single cell circuit template

Fig. 12. A column unit circuit template

Quantitative Optimization and Early Cost Estimation 85

E3 ¼ 8 � Epre þ Eren þ Elbl
� �þ Elwl þ Elsa ð16Þ

Epre þ Eren þ Elwl þ Elsa ¼ E3 � E2ð Þ=7: ð17Þ

Similarly, a column circuit template is created in Fig. 14, by which the elementary
energy consumed by vertical global bitlines (Evgbl) is separated.

E4 ¼ Epre þ Eren þ Elwl þ Elsa þ 8 � Elbl þ 7 � Evgbl ð18Þ

Evgbl ¼ E4 � E2ð Þ=7: ð19Þ

Since E1…E4 and Pstatic1…Pstatic4 are pre-characterized by simulating the
extracted-netlists of the four circuit templates, the elementary energy values Elbl, Epre+ren+

lwl+lsa, Evgbl can be derived. This way the dynamic energy for read/write operations and
static power of the four circuit templates are obtained. It is assumed that a toggle condition
occurs for each write operation. As before, the simulation configuration is TT corner, 25°
C, 400 MHz and 0.9 V supply voltage in 40 nm CMOS technology. The voltage swing of
vgbl pair was chosen to 300 mV to guarantee robust operations. The estimation approach
is the same for other technology corners but the pre-characterization must be modified
based on a Monte-Carlo simulation.

Read Operation. As mentioned before, read and write operations are studied sepa-
rately due to their different characteristics. For a read operation of a hierarchical SRAM
with the use of LSAs, the bitline/wordline capacitance, the LSA along with read/write
assist and precharge circuit are the main energy consuming components. The dynamic
energies Elbl and Elwl are the sum of the energies due to the wiring capacitance itself

Fig. 13. A row unit circuit template

86 Y. Ren and T. Noll

and the capacitances attached to the memory cells. In addition, the energy consumed by
the static components of the unselected memory matrices is attributed to the dynamic
energy, comprising a significant portion. The static power (Pstatic1…Pstatic4) of the four
circuit templates can be acquired using the same approach as before by separating the
dynamic energy of each component. Particularly the pass transistors acting as column
selectors are also included in the model. The static power of the global sense amplifiers
(GSA) and the pass transistors are obtained by multiplying their count with the static
power of two simple circuits: a GSA circuit and a pass transistor circuit. As a con-
sequence, according to the parameters of memory matrix defined above for a hierar-
chical architecture, standby power of a column block can be estimated as

Pstatic col ¼ w � U � N � Plbl staic þ Pgsa pass static
� �þ w � Ppre static þ Pren static þ Plwl static þ Plsa static

� �

¼ w � U � N � Pstatic2 � Pstatic1ð Þ=7þ Pgsa pass staticÞ
� �þ w � Pstatic3 � Pstatic2ð Þ=7ð Þ ð20Þ

Finally, the overall dynamic energy of reading a bit from the memory matrix is
estimated. The partitioning parameters (m, n, u) are converted to the number (M = 2m,
N = 2n, U = 2u) of partitioned components in memory matrix. The total energy is
calculated by parameterized accumulating the elementary energies (Elbl, Epre+ren+lwl+lsa,
Evgbl, Egsa, Epass). Particularly, the energy from the unselected parts in the memory
matrices is calculated independently and then added to the total dynamic energy.

Fig. 14. A column circuit template

Quantitative Optimization and Early Cost Estimation 87

Eread bit ¼ w � U � Elbl þ Evgbl � N � 1ð Þ þ Egsa þM � w � Epass

þ Epre þ Eren þ Elwl þ Elsa
� �þ ðM � 1Þ � Pstatic col=f

¼ w � U � E2 � E1ð Þ=7þ N � 1ð Þ � E4 � E2ð Þ=7þ Egsa þM � w � Epass

þ E3 � E2ð Þ=7þ ðM � 1ÞPstatic col=f :

ð21Þ

Write Operation. For the write operation, the method to separate the dynamic
write energy of each component is similar but using the pre-characterized write
energies in Table 4. Particularly, the toggle state is not considered here because the
energy of the write operation is obtained assuming a toggle event for each write.
A toggle state does not occur all the time and its corresponding energy can be estimated
using a similar approach as in [2] using a toggling probability. As a result, the write
cycle energy can be calculated as follows.

Ewrite bit ¼ w � U � E0
lbl þ E

0
pre

�
þ E

0
wen þ E

0
lwl þ E

0
lsa

�

þ N � 1ð Þ � E0
vgbl þ ðM � 1ÞPstandby col=f

¼ w � U � E
0
2 � E

0
1

� �.
7þ E

0
3 � E

0
2

� �.
7

þ N � 1ð Þ � E
0
4 � E

0
2

� �.
7þ ðM � 1Þ � Pstandby col=f :

ð22Þ

5.2 Verification of Memory Matrix Model

Several memory matrices have been simulated in 40-nm CMOS technology to validate
the model equations above. In Fig. 15 the dynamic power break-down of a 64-KByte
memory matrix is shown. It is observed that the energy of local bitlines dominates the
power consumption in a memory matrix as compared to the other circuits.

Figure 16 shows a comparison of simulation and estimation data for four memory
matrices of different capacities (64, 128, 256, 1 K). Assuming a read access operation
the four extracted-netlists were simulated using the same configuration. As shown in
Table 5, the dynamic energies are compared to the estimated data and the differences
are below 10 %. For the leakage power, the same comparisons are performed and the
estimation errors are also below 10 %.

To further demonstrate the accuracy, four memory matrices with a fixed number of
64 words and with word lengths 8, 16, 32, 64 are implemented. As shown in Fig. 17 the

Table 4. Energy of four circuit templates (TT, 25°, 400 MHz, VDDH = 0.9 V, VDDL = 0.3 V)

Circuit Templates Cell Column unit Row unit Column

Dynamic energy (pJ) Write 4.26 5.25 25.75 12.58
Read 2.91 3.71 22.47 5.88

Static power (nW) 3.23 24.37 25.88 195.74

88 Y. Ren and T. Noll

estimation data are comparable to extracted-netlist simulation data. Both for dynamic
energy and leakage power the estimation error remains below 10 %, as listed in
Table 6.

6 Optimization Results

The power model created in this work takes all the dominating power contributors of
on-chip SRAMs into account, which include an address decoder, memory cells and
assists circuits, local and global sense amplifiers, driver circuits and interconnect
capacitance. Figure 18 shows the power model applied for estimating the power

Fig. 15. Dynamic power component for a memory matrix (64 words 8 bit)

Fig. 16. Estimation and simulation data comparison for memory matrices with four capacities

Table 5. Model Estimation Errors of the four capacities (TT, 25°, 400 MHz, VDDH = 0.9 V,
VDDL = 0.3 V)

Capacity 64 × 8 bit 128 × 8 bit 256 × 8 bit 1024 × 8 bit

Dynamic energy −5 % −1 % 9 % 3 %
Static power −4 % −4 % −5 % 2 %

Quantitative Optimization and Early Cost Estimation 89

Fig. 17. Estimation and simulation data comparison for memory matrices with four wordlengths

Table 6. Model Estimation Errors of the four word lengths (TT, 25°, 400 MHz, VDDH = 0.9 V,
VDDL = 0.3 V)

Word lengths 64 × 8 bit 64 × 16 bit 64 × 32 bit 64 × 64 bit

Dynamic energy −5 % −5 % −5 % −7 %
Static power −4 % −4 % −3 % −6 %

Fig. 18. Dynamic energy vs address bits & wordlengths for two architectures. The yellow
bottom and the rest part of one bar represent the contributions of the address decoder and the
memory matrix respectively (Color figure online).

90 Y. Ren and T. Noll

consumption of SRAMs for various capacities and wordlengths. Minimum read
dynamic power data is given due to more frequent read operation in caches. The model
is applicable for capacities ranging from 16 to 1 M words and four wordlengths (8, 16,
32, 64). The figure illustrates how DWL and hierarchical LSA architecture affect the
read power of SRAMs as function of different capacities and wordlengths. Moreover it
indicates the different power contributions from address decoder and memory matrix to
the dynamic read power.

In addition, the power model can be used for optimizing a specific SRAM by
determining the optimal parameter combination. As discussed before, many possibil-
ities exist for partitioning the memory matrix, the corresponding address decoder, given
the three parameters partitioning parameters (m, n, u), and many options for circuit
implementations. Depending on the optimization criteria parameter combinations are
picked from all possible implementations options. Note that the impact of process
variations on leakage power is included in the power model.

A Pareto-optimization is made by considering silicon area and read power of the
different partitioning parameters. Figure 19 shows how to use this approach to optimize
a 1 K Byte SRAM for achieving a power and area tradeoff. In the scatter plot, there are
ten architectures presenting relatively good area and power, which are picked from all
the generated architectures. Four Pareto-optimal implementations are marked, in which
two architectures deliver low area and the other two deliver low read power. Depending
on the user’s requirements a selection can be made, for instance the green point
deliving a favorable area/power tradoff.

Fig. 19. Area cost vs read power tradeoff for a 1 K-Byte SRAM

Quantitative Optimization and Early Cost Estimation 91

Figure 20 shows a direct area/power break-down for the same ten possible archi-
tectures in Fig. 19. The contributions of the address decoder and memory matrix to the
overall area and read power are shown and analyzed quantitatively. Between the worst
case and best case solution a difference is observed for area and power up to 41 % and
62 % respectively.

7 Conclusion

In this chapter, a new method for power optimization of on-chip SRAMs comprising a
hierarchical architecture was described. The method is based on a power model
including various energy-efficient circuits and techniques. The introduction of the
probabilistic estimation approach and the use of circuit templates provide quantified
switching activities and pre-characterized customized circuits separately. Simultane-
ously the hierarchical architecture regarding many partitioning choices is defined by the
partitioning parameters. The power model is verified by a variety of extracted-netlist
simulations and it consistently exhibits good accuracy.

As a quantitative parameter optimization tool, this approach allows a fast and
accurate power estimation of SRAMs comprising various capacities and wordlengths.
In a hierarchical-architecture SRAM, the impact of partitioning with circuit selections
on power and area were evaluated. The optimal architecture and circuits can be
identified very quickly and accurately which leads to a SRAM specification with an
achievable and attractive power consumption and silicon area. Moreover, this approach
allows an easy tradeoff between area and power for meeting different design require-
ments. Furthermore, the power model can also be employed as a customized

Fig. 20. Contribution of address decoder and memory matrix to area cost and read power for the
10 possible architectures of a 1 K Byte SRAM

92 Y. Ren and T. Noll

benchmark for comparing various local circuits using the same architecture. Finally,
this approach can easily be extended to other CMOS technologies due to its circuit
templates and switching activity analysis.

References

1. Sharma, V., et al.: A 4.4 pJ/access 80 MHz, 128 kbit variability resilient SRAM with
Multi-Sized sense amplifier redundancy. IEEE J. Solid-State Circuits 46(10), 2416–2430
(2011)

2. Clerc, S., et al.: A 65 nm SRAM achieving 250 mV retention and 350 mV, 1 MHz, 55fJ/bit
access energy, with bit-interleaved radiation soft error tolerance. In: 2012 Proceedings of the
ESSCIRC (ESSCIRC), pp. 313–316. IEEE (2012)

3. Rooseleer, B., Dehaene, W.: A 40 nm, 454 MHz 114 fJ/bit area-efficient SRAM memory
with integrated charge pump. In: 2013 Proceedings of the ESSCIRC (ESSCIRC), pp. 201–
204. IEEE (2013)

4. Ren, Y., Noll, T.G.: An accurate power estimation model for low-power
hierarchical-architecture SRAMs. In: 2013 IFIP/IEEE 21st International Conference on
Very Large Scale Integration (VLSI-SoC), pp. 144–149.IEEE (2013)

5. Ren, Y., et al.: Low power 6T-SRAM with tree address decoder using a new equalizer
precharge scheme. In: 2012 IEEE International SOC Conference (SOCC), pp. 224–229.
IEEE (2012)

6. Muralimanohar, N., et al.: CACTI 6.0: A tool to model large caches. Technical report
(2009). http://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf

7. Liang, X., et al.: Architectural power models for sram and cam structures based on hybrid
analytical/empirical techniques. In: IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2007, pp. 824–830. IEEE (2007)

8. Do, M.Q., et al.: Leakage-Conscious Architecture-Level power estimation for partitioned
and Power-Gated SRAM arrays. In: 8th International Symposium on Quality Electronic
Design, ISQED 2007, pp. 185–191. IEEE, Washington, DC (2007)

9. Donkoh, E., et al.: A hybrid and adaptive model for predicting register file and SRAM power
using a reference design. In: 2012 49th ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 62–67. IEEE (2012)

10. Sun, L., et al.: Low power and robust binary tree SRAM design for embedded systems. In:
2013 International Symposium on Electronic System Design (ISED), pp. 87–92. IEEE
(2013)

Quantitative Optimization and Early Cost Estimation 93

http://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf

Low-Power Low-Voltage ΔΣ Modulator Using
Switched-Capacitor Passive Filters

Ali Fazli Yeknami1(&) and Atila Alvandpour2

1 School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA
fazliyea@onid.oregonstate.edu
2 Department of Electrical Engineering,
Linköping University, Linköping, Sweden

atila.alvandpour@liu.se

Abstract. A low-voltage low-power fourth-order active-passive ΔΣ modulator
with one active stage is presented. The input-feedforward architecture is adop-
ted, which improves the voltage swing prior to the quantizer. This enables a
simpler comparator design and cascade of three passive filters. The passive
integrator, as an alternate option to its power-hungry active counterpart, and the
non-idealities associated with it are investigated. The active integrator used at
the input stage provides most of the loop gain, which suppresses the thermal
noise from the succeeding stages and minimizes the non-idealities in the com-
parator, such as noise and offset. The active integrator employs a two-stage
amplifier with load compensation, whose DC-gain is boosted by a partially
body-driven technique. The modulator, operated from a 0.7 V supply and
clocked with 256 kHz sampling frequency, achieves 84 dB SNR and 80.3 dB
SNDR over a 500 Hz signal bandwidth, while it dissipates only 400 nW power.

Keywords: Passive integrator � Delta-sigma modulator � Low-voltage �
Low-power � Active-passive modulator � Feedforward architecture

1 Introduction

Biomedical electronics including portable medical devices, ambulatory and in-site
hospital equipments and body implantable devices, in particular, have gained signifi-
cant attention in healthcare. Low energy consumption is one of the major design
concerns for prolongation of the battery lifetime or other limited source of energy. The
analog-to-digital converters (ADCs) are the key building blocks of such devices.
Delta-sigma modulator is a powerful ADC technique because of its higher accuracy in
low-speed applications (e.g., medical applications).

Passive integrator, as an alternative to the power-hungry active integrator, is a
significant approach in the design of low-power and low-voltage delta-sigma (ΔΣ)
modulators for reducing the analog power consumption [1–6]. However, due to the lack
of DC gain inside the passive filter (or integrator), the modulator is sensitive to noise
coupling, thereby affecting the signal-to-noise ratio (SNR). Modulators in [1, 2] employ
switched-capacitor (SC) gain-boosted passive filter to somewhat compensate for the

© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 94–118, 2015.
DOI: 10.1007/978-3-319-23799-2_5

lack of gain. However, achieving very high gain requires unrealistically large capacitive
area as well as high sensitivity to parasitic capacitances [3]. In [4] no DC gain is used in
the second-order loop filter. Instead, a three-stage preamplifier is exploited before the
comparator to compensate for the gain, which is a power consuming solution.

Due to no gain, the signal experiences a large suppression inside the passive filter,
making the comparator design a challenging task. The comparator non-idealities
including noise, DC offset, and hysteresis directly limit the modulator resolution [5, 6].
The third-order modulator in [5] makes use of the passive filter in the first and third
stages and an active Gm-C filter in the middle stage in order to compensate for the loop
gain and to mitigate the comparator’s offset and noise. In addition, the Gm block is to
isolate the two pole sectors from each other and to prevent inter-stage loading between
them. The fourth-order active-passive modulator in [7] utilizes a low-power amplifier
topology in the first integrator, which can suppress the comparator non-idealities and
the thermal noise from the succeeding passive stages, resulting in significant reduction
of the capacitive area.

This chapter introduces a new approach for power reduction in the ΔΣ modulators.
It describes the design of the basic passive filter and the non-idealities associated with
it. The traditional passive modulators using cascade-of-integrators feedback (CIFB)
architecture are briefly reviewed and their advantages and disadvantages are explained
in details. Then, a fourth-order feedforward active-passive modulator is presented using
only one active stage, which mitigates some of the fundamental problems associated
with the traditional passive ADCs.

The input feedforward architecture has an extra path from the input of the modu-
lator to the quantizer [8–11]. This small architectural modification eliminates the signal
component inside the loop filter; therefore the filter only processes the quantization
noise [11]. This distinct feature of the feedforward modulator structure encourages the
cascading of three power-efficient SC passive filters despite their large attenuation.
Moreover, the voltage swing at the quantizer input is the sum of the input signal and the
suppressed quantization noise (processed by the filter), which eases the comparator
design without requiring any preamplifier circuit. Significant power reduction can thus
be achieved due to (i) the reduced sampling clock frequency by employing a
fourth-order active-passive loop filter; (ii) the removal of the power-consuming
preamplifier prior to the comparator, unlike the traditional passive modulators with
feedback architecture; (iii) the use of power-efficient passive integrators; (iv) the
relaxed amplifier design requirements in the full input-feedforward modulator structure
[8, 9]; (v) an accurate and low attenuation passive adder for summation of the input and
feedforward paths, and (vi) last, but not least, the reduced supply voltage helped to
scale down the power consumption from digital blocks.

The rest of the chapter is organized as follows. Section 2 discusses the issues
associated with the design of passive modulators using feedback structure. Section 3
describes both the architecture-level and circuit-level design of the proposed
fourth-order active-passive modulator, followed by the simulation results in Sect. 4.
Section 5 presents the performance comparison of this modulator with respect to the
previously reported passive modulators. The chapter is then summarized in Sect. 6.

Low-Power Low-Voltage ΔΣ Modulator 95

2 Passive Modulator Design Using CIFB Topology

In this section we take a closer look at the challenges concerning the design of passive
modulators implemented by the CIFB architecture. The CIFB topology has no forward
connections to the quantizer input, unlike the CIFF topology, but requires internal
digital-to-analog converters (DACs) which are fed back to the input and the interme-
diate filters. In other words, a fourth-order CIFB modulator topology needs four
feedback DAC branches to each integrator’s input, while a CIFF modulator structure
needs only one feedback DAC from the output to the input. Thus, the DAC circuitry is
much simpler in a CIFF modulator structure.

2.1 System-Level Considerations

The linear model of the second-order passive ΔΣ modulator with two-pole lowpass
filter and single-bit quantizer is shown in Fig. 1. To determine the signal and noise
transfer functions (STF and NTF), a linear model is used for the quantizer. It is a gain
stage, G, followed by additive white quantization noise. The gain factor G in a con-
ventional active modulator is estimated as unity [12] assuming the integrators swing is
maintained close to the reference voltage. In a passive modulator the signal swing at the
quantizer input is much weaker than the reference level, due to the successive atten-
uation by the passive filters [1–3], resulting in a non-unity G. This gain is lumped into
the comparator input, according to Fig. 1, and is a function of the passive filter’s pole
location [3]. An estimate of this gain is given by [2, 4] in which the overall loop gain is
approximated to be unity at half of the sampling clock frequency, fs/2. For an overall
loop filter transfer function HT, the estimated G can be calculated as 1/|HT(fs/2)|. On the
other hand, since the modulator is a nonlinear system, an accurate value of the
quantizer gain can only be obtained from the nonlinear simulations [13].

For a simple passive filter shown in Fig. 2, the ideal transfer function can be given
in the z-domain as

HðzÞ ¼ VoutðzÞ
VinðzÞ ¼ �z�1

1þ q� qz�1 ð1Þ

Fig. 1. The linearized model of the 2nd-order passive ΔΣ modulator using distributed feedback
topology [7] (Courtesy of IEEE)

96 A.F. Yeknami and A. Alvandpour

where ρ = C/Cs. The low-frequency gain is unity and the –3 dB cut-off frequency can
be calculated from Eq. (1) as

f�3dB ¼ fs
2pðqþ 1Þ ð2Þ

where fs is the sampling clock frequency. Taking fs = 500 kHz, Cs = 2 pF, determined
from the thermal noise requirement, and C = 128 pF, placing the –3 dB bandwidth
around 1 kHz, the NTF and STF of the second-order passive modulator shown in Fig. 1
can be approximated as:

NTFðzÞ ¼ 1
1þ 0:3GH þ GH2 ¼

1:36� 2:77zþ 1:41z2

1� 2:38zþ 1:41z2
ð3Þ

STFðzÞ ¼ GH2

1þ 0:3GH þ GH2 ¼
0:02z2

1� 2:38zþ 1:41z2
ð4Þ

Figure 3 depicts the magnitude of the NTF and STF. As expected, the passive mod-
ulator suffers from the limited in-band quantization-noise suppression due to lack of
gain in the passive loop filter, resulting in low SNR. Unlike the conventional active ΔΣ
ADCs which has unity-gain STF at low frequencies, some signal attenuation is
obtained in the passive modulator. As clearly seen, this attenuation (or loss) is –3.5 dB
at low-frequency, which can also be obtained by substituting z = 1 into STF Eq. (4)
This is the fundamental problem of the passive filters and the major performance
limiting factor in the passive modulators, which terminates to an extremely low voltage
swing at the quantizer input. For the second-order passive modulator presented in [4],
as an example, the integrators output swing is in the order of 10 mVrms and 100
μVrms, respectively, for a full scale (FS) input that the comparator has to detect it.
A highly sensitive comparator is then required to distinguish the signal from the noise
coupled inside the loop. Therefore, the comparator in this design employs a three-stage
preamplifier circuit in order to compensate for the required loop gain, dissipating a
large amount of analog power in this block. To the best of our knowledge, most of the
existing passive ADCs have been designed based on the CIFB topology [1–4], which
rely only on second-order loop filter. Cascading more than two passive filters is
impractical because the very large signal attenuation inside the loop demands
multi-stage power-consuming preamplifier circuit prior to the comparator.

Fig. 2. Passive lowpass filter in a single-ended form together with two-phase non-overlapping
clocks [7] (Courtesy of IEEE)

Low-Power Low-Voltage ΔΣ Modulator 97

2.2 Low-Voltage Compatibility

One of the most significant advantages of the passive filter is that it can function at very
low supply voltage as long as the gate of the switches is driven adequately. Utilizing
advanced switches developed to date, the switch overdriving problem can simply be
alleviated. Low-VTH switch [8, 14], gate-boosted [15, 16] or boot-strapped switches
[17] are several examples of such modern switches. Energy harvesting and biomedical
implant systems are two applications where ultra low-voltage circuit design is com-
pulsory and highly demanding. Conventional analog circuit topologies are no longer
useful in these systems. Therefore, new circuit techniques have been developed
recently, which have enabled ultra low-voltage operation of the ΔΣ ADCs [15, 16].
Body-input operational transconductance amplifiers (OTAs) and body-input gate-
clocked comparator operating at 0.5 V in [15] eliminated the constraint on the threshold
voltage. Moreover, inverter-based integrators were realized by overdrive voltages near
the VTH in the modulator presented in [16] using a switched-capacitor (SC) biasing
scheme, where charge pump clock boosting scheme were utilized for sufficient switch
overdrive. These combinations have made it possible to develop a ΔΣ modulator
operated from a power supply below 0.3 V. Both modulator prototypes rely on
power-hungry active integrators at which analog circuit design is a challenging task at
such low supply voltages, due to the limited headroom and small available signal
swing. For a given gm, a body-input OTA requires several times larger bias current than
a typical gate-input OTA, thereby preventing the target modulator to achieve a high
power-efficiency. In addition to charge-pump clock boosting, the inverter amplifier
biased near VTH needs special biasing and common-mode feedback (CMFB) circuitries
that can operate with a 0.25 V supply voltage, imposing circuit overhead and additional
power consumption.

An alternative approach for designing a low-voltage low-power ΔΣ modulator is the
substitution of power consuming OTAs by the power-efficient passive integrators [1, 3].
Despite the lack of gain and therefore larger sensitivity to noise coupling inside the loop
filter, the passive integrators suggest significant power reduction and ability to operate at

Fig. 3. The magnitude of NTF and STF of a 2nd-order passive modulator with ρ = 64 [7]
(Courtesy of IEEE)

98 A.F. Yeknami and A. Alvandpour

low supply voltages. A 0.7 V second-order modulator was implemented in [3] using a
fully passive filter and the standard feedback topology. It only consumes 430 nW power
while obtaining 70 dB peak SNR. Due to very low signal swings of the passive inte-
grators, high dynamic range signals can be applied at the modulator input. Since digital
power is the dominant source of the power consumption in the aforementioned design,
scaling down of the power supply could significantly contribute in the overall power
reduction. A 0.5 V fully passive modulator was presented in [1] based on the design in
[3] using a charge-redistributed gain-boosted passive filter in the second stage, a
body-driven gain-enhanced preamplifier prior to the comparator, and a low-voltage
comparator circuit. The switch overdrive problem was mitigated by low-VTH transistors
while the non-linear sub-VTH leakage current of the critical switches was suppressed by
an analog T-switch scheme [14]. The modulator achieves 71 dB peak signal-to-noise-
and-distortion (SNDR) from a supply voltage of 0.5 V, while dissipating only 250 nW
power. The attained figure of merit (FOM) is 86 fJ/convertion-step, where FOM is
calculated as Power/(2ENOB × 2×BW) with ENOB as the effective number of bits (or
resolution) and BW as the input signal bandwidth.

2.3 Performance Limiting Factors

Here the main limiting factors that avoid the passive modulators from obtaining a high
resolution will be discussed. As mentioned before, the lack of gain and significant
signal suppression inside the passive loop filter make the design of high-resolution
comparator a critical and challenging task. To revisit other issues concerning the
comparator design, the linear model of a second-order single-loop modulator, shown in
Fig. 4, is considered in which all the noise sources are specified. The baseband output
signal can be approximated as:

Y � X þ N1 þ N2

H1
þ NCom

H1H2
þ Nq

GH1H2
ð5Þ

where H1 and H2 are the integrators transfer functions, N1 and N2 are their
input-referred noise, respectively, while NCom and Nq represent the comparator input
referred noise and quantization noise. Since both filters have no DC gain, only
quantization noise obtains some lowpass filtering, due to the loop gain G provided by
the quantizer. On the other hand, for a certain SNR the thermal noise (kT/C noise) of
the passive filters can be mitigated by scaling up the capacitors size (area penalty).

Fig. 4. Noise sources in a single-loop second-order passive modulator [7] (Courtesy of IEEE)

Low-Power Low-Voltage ΔΣ Modulator 99

However, NCom is the only noise term that is not subject to any attenuation at low
frequencies simply because H1 and H2 have no gain. NCom is any non-idealities of the
comparator including the thermal noise, low frequency 1/f noise, and offset voltage. To
alleviate these non-idealities the passive modulator in [2] utilizes a preamplifier whose
input devices have a W/L ratio of 200 μm/1.2 μm, imposing about 0.5 pF at the
comparator input. Moreover, in the passive delta-sigma ADCs due to no gain in
the stages preceding the comparator, the offset of the overall ADC is defined by that of
the comparator [4].

To alleviate the non-idealities of the comparator, several solutions have been tried
in the past [5, 6] where at least one active stage was used to suppress the input-referred
noise and the dc offset.

To summarize, due to a very small signal swing at the quantizer input of the passive
ADCs using CIFB topology, the comparator design is a crucial and difficult task,
limiting the design scaling to higher-order modulator. In the following section, a
fourth-order modulator will be presented that employs three successive passive filters
using cascade-of-integrators feedforward (CIFF) topology, resulting in voltage swing
improvement at the comparator input. As a result, the comparator design becomes
simpler and no power-consuming preamplifier is involved.

3 4-th Order Active-Passive Modulator

In this section we describe both the architecture-level and circuit-level design of a
fourth-order active-passive modulator using full feedforward topology.

3.1 Architectural Design

Full feedforward architecture has become popular in recent years for low-power and
low-voltage modulator design [8–11, 16]. We take advantage of this architecture to
improve the voltage swing at the quantizer input, a drawback of the passive modulators
using traditional CIFB topology. As a result, the comparator design becomes simpler
and no preamplifier stage is required prior to the comparator.

Modulator Topology. Figure 5 shows the block diagram of the single-loop
fourth-order modulator topology with single-bit quantizer. An active integrator is
used in the first stage, while three SC passive filters are employed in the following
stages. The passive filters were described using the transfer function given by Eq. (1).
The feedforward branches are summed at the input node of the quantizer. The optimal
coefficients of the designed modulator are calculated from the behavioral simulation
and are summarized in Table 1. It must be pointed out that the actual coefficients ai for
i = 2, 3, 4 is 1/(1 + ρ) which is included into the passive filter transfer function in Fig. 5.
The NTF can be calculated as

NTFðzÞ ¼ z4 þ 2:03z3 � 11:76z2 þ 13:42z� 4:69
z4 � 7:91z3 � 5:97z2 � 15:19zþ 4:64

ð6Þ

100 A.F. Yeknami and A. Alvandpour

The magnitude plot of the NTF is shown in Fig. 6.
Behavioral simulation indicates that the signal amplitude at the quantizer input is

40 mV for a FS input, much lower than the reference voltage, 0.5 V in this design.
Since the delta-sigma ADC is a nonlinear block, the equivalent gain of the quantizer
can be directly calculated from the simulation.

A local resonator feedback loop with a gain coefficient of k is used to move a pair
of the NTF zeros to the edge of the signal band. In this way, some SNR improvement
can be achieved.

Integrators Output Swing. A behavioral simulation with –1.94 dBFS input signal is
accomplished to show the integrators output swing and the summed voltage level at the
quantizer input. The reference voltage is set to 0.5 V. It is worth to be mentioned that
the signal component leaks to the loop filter, due to the attenuation by the passive
summation network. As can be seen from Fig. 7, the largest swing is observed at the
first integrator output, however it is still within 60 % of the reference voltage. The
reduced voltage swing enables the OTA, the most critical and power consuming block,
to have a relaxed slew-rate requirement, hence low power consumption. The output
swing at the succeeding passive integrators decreases continually. As the loop filter in a

YX
-

DAC

1

1

1 −

−

−+ z

z

ρρ

a1 a2 a3 a4 c4

c3

c2

c1

+ +

-k

H2H1

1

1

1 −

−

− z

z
1

1

1 −

−

−+ z

z

ρρ

H2

1

1

1 −

−

−+ z

z

ρρ

H2

Fig. 5. Block diagram of the single-loop fourth-order full feedforward active-passive ΔΣ
modulator with one active integrator in the first stage [7] (Courtesy of IEEE)

Table 1. Modulator coefficients [7] (Courtesy of IEEE)

Filter coefficients Feedforward coefficients Resonator
coefficient

a1 = 0.2 c1 = 2
a2 = 1 c2 = 3 k = 1/64
a3 = 1 c3 = 2
a4 = 1 c4 = 5

Low-Power Low-Voltage ΔΣ Modulator 101

full feedforward topology ideally only processes the quantization noise [13], the
continuous attenuation of the passive integrators does not harm the input signal. In
contrast to the feedback or CIFB topology, the feedforward topology has a signal path
from the modulator input to the quantizer. Therefore, the voltage level at the quantizer
input is still large enough for the comparator to detect it without requiring a stringent
preamplifier circuit.

More details of circuit design are explained in the following section. One thing
should be noted is that, since the single-bit quantizer is used, the integrators in the full
feedforward architecture still contain the attenuated signal component, particularly in
the first integrator.

Fig. 6. The NTF magnitude of the designed 4th-order modulator neglecting the resonator

Fig. 7. Integrators output swing in mV using a –1.94 dBFS, 187 Hz input signal. Comp
represents the comparator input signal, and Inti (i = 1–4) represents the ith integrator output [7]
(Courtesy of IEEE)

102 A.F. Yeknami and A. Alvandpour

3.2 Circuit-Level Design

This section describes the overall modulator circuit and its building blocks.

Passive Filter Design. The passive filter used as integrator in the second to fourth
stages was shown in Fig. 2. The larger ρ places the filter pole to a lower frequency,
according to Eq. (2). Intuitively, the overall loop gain is distributed among the first
active pole sector and the quantizer gain, while the low frequency DC gain of the
passive integrators is unity.

The parameter ρ = C/Cs, in general, is selected so that the –3 dB cut-off frequency,
calculated from Eq. (2), to be placed near the edge of signal bandwidth. The simulation
demonstrates that the voltage swing at the quantizer input is almost constant for ρ≥ 32, as
shown in Fig. 8a. On the other hand, the parameter ρ can also be determined from the
SNDR simulations, which consider both the quantization noise and distortion perfor-
mance. The simulation result shown in Fig. 8b illustrates an optimal ρ of 64. The sampling
and integrating capacitors are therefore selected as 0.25 pF and 16 pF, respectively.

In practical implementation of the passive filter (Fig. 2), the parasitic capacitors
introduced by the top and bottom plates of the sampling and integrating capacitors can
influence the filter transfer function, low frequency gain and pole location, given by
Eqs. (1) and (2). Here we examine the effect of these parasitics on the filter’s and ΔΣ
modulator performance. Considering the filter of Fig. 9a for which the most significant
parasitic capacitors are lumped into CP, the filter transfer function given by Eq. (1) can
be modified to

HPðzÞ ¼ �z�1

1þ qþ b� qz�1 ð7Þ

where ρ = C/CS and β = CP/CS. Compared to Eq. (1), the term β = CP/CS is excessive
and is created because of the parasitic capacitor at the internal node. The integrator
(filter) loss and –3 dB cut-off frequency can be calculated from Eq. (7) as follows:

(a) (b)

Fig. 8. (a) Simulated voltage swing at the quantizer input; (b) simulated SNDR across ρ. –1.94
dBFS, 187 Hz sinusoidal signal was applied in both cases [7] (Courtesy of IEEE)

Low-Power Low-Voltage ΔΣ Modulator 103

A0P ¼ Hpðz ¼ 1Þ�� �� ¼ Cs

Cs þ Cp
\1 ð8Þ

f�3dB ¼ fs
2p

� Cs þ Cp

C þ Cs þ Cp
ð9Þ

where A0P is the magnitude of Hp(z) at DC. Compared to Eq. (2), the net effect of the
parasitic capacitor is the higher passband attenuation (DC gain of less than unity) as
given by Eq. (8) and the shift of the –3 dB cut-off frequency to a higher frequency as
given by Eq. (9), which can degrade the quantization noise suppression. As an
example, with fs = 500 kHz, CS = 2 pF, C = 64 pF and the estimated CP = 100 fF, the

Ф2Ф1

Ф2

Vin Vout

Ф1

VREF cmi

CS

C
Cp

(a) (b)

Fig. 9. (a) The basic passive filter associated with lumped parasitic capacitor; (b) the simulated
transfer function with/without parasitic capacitor [3] (Courtesy of IEEE)

Fig. 10. Simulated output spectra of the fourth-order modulator with addition of 10 fF and 50 fF
parasitic capacitor in the passive integrators of the second to fourth stages

104 A.F. Yeknami and A. Alvandpour

filter transfer function with/without parasitic capacitor is simulated. Figure 9b indicates
that in the presence of CP the gain decreases from unity to 0.95, while the pole shifts
from 2.4 kHz to 2.54 kHz. The results can also be verified by inserting the parameters
into Eqs. (8) and (9), showing a good agreement between the simulation results and
calculations.

Furthermore, the impact of parasitic capacitors of the passive filters on the overall
performance of the designed fourth-order modulator was simulated. Figure 10 shows
the power spectra of the modulator with 10 fF and 50 fF parasitic capacitors inserted in
the internal node of the passive integrators of the second to fourth stages.

The achieved simulated SNDR is 79.6 dB and 77.4 dB from 10 fF and 50 fF
parasitic capacitors, respectively. The third and fifth harmonic distortions also grow by
3 dB when the parasitic capacitor value increases from 10 fF to 50 fF. Consequently,
the implementation of the sampling and integrating capacitors of the passive filters is
very important to avoid large internal parasitics.

Inter-Stage Loading. Another non-ideality which can influence the performance of the
passive modulators is the inter-stage loading effect. To explain this, we consider the
cascade of two basic passive filters, illustrated in Fig. 2, for the sake of clarity.
Figure 12 shows the resulting 2nd-order passive filter and its equivalent model in the
sampling phase, Ф1. Clearly seen in Fig. 12b, there is charge-sharing between inte-
grating capacitor C2 of the first stage and the sampling capacitor CS3 of the next stage.
During the sampling phase, this charge-sharing may cause a sampling error, and can
reduce the integrator’s accuracy. This phenomenon is also called inter-stage loading
effect, i.e. the sampling capacitor of the following stage loads the previous stage. The
sampled voltage corresponding to the time instance n at node x (Fig. 12b) can be
written as

Fig. 11. Simulated output spectra with/without local resonator using a –1.94 dBFS, 187-Hz
input signal [7] (Courtesy of IEEE)

Low-Power Low-Voltage ΔΣ Modulator 105

VxðnÞ ¼ C2

C2 þ CS3
Vout2ðn� 1Þ ð10Þ

One way to prevent the 2nd-order filter (Fig. 12a) from the inter-stage loading is to fully
isolate the two passive stages from each other by using a buffer or an active integrator
in the middle [5, 6]. However, this is a power-consuming approach, which requires a
power-hungry active integrator. Another practical solution to cope with this problem is
the proper capacitor sizing. By keeping C2 >> CS3 the fraction C2/(C2 + CS3) in (10)
approaches one. For instance, in the designed modulator C2 and CS3 are 16 pF and
0.25 pF, respectively. Thus, there is only 1.5 % sampling error in the second passive
filter, due to charge-sharing. To further decrease the error, relatively larger integrating
capacitor C2 is required, which imposes area penalty and more attenuation. On the
other hand, the value of C2 was obtained from the –3 dB bandwidth requirement given
by (2). Clearly, there exist trade-offs among sampling error, pole location, attenuation
and area.

Local Resonator. The purpose of the local resonator feedback loop used in the
designed modulator is to move a pair of the NTF zeros to the edge of the signal band,
improving the in-band noise shaping. The resonator creates a simple negative feedback
loop with a gain coefficient k of 1/64. The resonator is simple to be realized using SC
implementation (two switches and one small capacitor). Figure 11 shows the simulated
output spectra with/without local resonator. A 5 dB SNDR improvement was achieved
in this way at the expense of a small area penalty.

21

2

Vin2 Vout2

1

cm

CS2

C2

cm

21

2

Vout3

1

cm

CS3

C3

cm

1st-order filter 1st-order filter

(a)

1Vin2(n) Vx

1

cm

CS2

C2

cm

CS31

1+
- Vout2(n-1)

(b)

Fig. 12. (a) A 2nd-order passive low-pass filter built from the cascade of two basic passive filters,
(b) Equivalent model in sampling phase Ф1

106 A.F. Yeknami and A. Alvandpour

Partially Body-Driven Gain-Enhanced Amplifier. Several OTA topologies were
designed and carefully analyzed [18, 19] for ultra-low-power delta-sigma modulators.
Among them a two-stage load-compensated amplifier was selected because of its
higher power-efficiency, rail-to-rail voltage swing, and minimal load for a balanced
gain-bandwidth (GBW) and phase margin. While two-stage Miller amplifier and
single-stage current-mirror OTA have been commonly used for low-power and
low-voltage modulators [8, 20], we exploit the two-stage load-compensated OTA
topology because of its privilege in low bias current and low speed environment of the
target medical application [21, 22]. Due to low bias current (in the range of 100 nA) in
this design, the output resistance of the OTA is intrinsically high and the dominant pole
of the output load CL is then placed at very low frequency using a minimal load
capacitor value (2 pF load). Therefore, in this low clock speed application the load
compensation is preferred to the Miller compensation as it prevents additional power
consumption for driving the Miller capacitor.

A fully-differential partially body-driven and gain-enhanced two-stage amplifier
with load-compensation was developed for the modulator’s input active stage. The
detailed circuit is shown in Fig. 13. To reduce the power, the input common-mode level
of the OTA is set to 0.35 V (i.e., VDD/2), which is limited by the gate-source voltage of
M1a-M1b, and the drain-source voltage of M0. Low-VTH transistors are used to pro-
vide more headroom for the low-voltage analog design. Meanwhile, the bodies of the
p-MOS transistors (i.e., M2, M3, and M6) are tied to half of the VDD (the
common-mode level of the ΔΣ modulator) to further decrease the threshold voltage,
providing even more operating headroom.

The cascode topologies such as telescopic or folded cascode do not exist in
low-voltage analog design, which brings rail-to-rail voltage swing at the cost of
restricted DC gain. A body-driven positive feedback is adopted at the output stage
(M6a/M6b) to enhance the gain without significant power increase. The transistors
M6a and M6b form a cross-coupled connection at their body terminals, which intro-
duces negative conductance −gmb6 at the output nodes (Vo + and Vo–). In this way, the
overall output conductance is effectively decreased, which boosts the total DC gain.
The overall DC gain can be expressed as

A0 ¼ gm1
gds1 þ gds2

� gm3 þ gm6
gds3 þ gds4 þ gds5 þ gds6 � gmb6

ð11Þ

The size of M6a/M6b is chosen such that the conductance gmb6 becomes 65 % of the
term gds3 + gds4 + gds5 + gds6. With this option the amplifier is stable and gives high
enough DC gain. As shown in Fig. 14, with gain-enhancement technique the typical
DC gain and GBW increase from 39.6 dB and 670 kHz to 50.4 dB and 1.12 MHz,
respectively. Figure 15 also shows the gain and phase plot of the OTA under process
and temperature variations (–20°C to +85°C). The worst-case gain and GBW are 43 dB
and 600 kHz, respectively, which are adequate for the target SNR, according to
system-level simulations. Using typical simulations, the OTA achieves 50.4 dB DC
gain, 60° phase margin and 1.2 MHz GBW with a 2 pF load, while dissipating 250 nW
power.

Low-Power Low-Voltage ΔΣ Modulator 107

Since for a given bias current the gm of the weak inversion transistor is almost five
times larger than that of a strong inversion [23], the main transistors (M1, M3, and M6)
are driven in the weak inversion region, while other transistors are biased in the
moderate inversion region. This can also help to decrease the thermal noise of the
mentioned transistors that is represented by 2kTγ/gm1.

Passive Adder. In the designed modulator a passive SC network is employed for the
summation of the feedforward branches in order to avoid power consumption due to an
active adder. However, careful design consideration is needed to prevent significant

VDD

M1aVi+ Vi-M1b
M3b

M4b

cmfb1

M2a M2b

M0

M3a M6bM6a
Vo+ Vo-

Vo-
Vo+

cmfb2

M5bM4a
cmfb2

M5a

Ibias

vcmvcm

vcmvcm

M9

VD
D

0.32/3.5

0.22/0.20.22/0.2 0.15/0.20.15/0.2

18/2 18/2

0.4/5 2/82/8 0.2/70.2/7

Fig. 13. The proposed two-stage load-compensated amplifier employing body-driven gain-
enhancement technique; the bodies of p-MOS transistors are tied to the modulator common-mode
voltage vcm = VDD/2. Sizes are given in µm unit

Fig. 14. The simulated typical DC gain with/without gain-enhancement technique

108 A.F. Yeknami and A. Alvandpour

voltage attenuation prior to the quantizer. Figure 16 shows the used adder in its
single-ended form. In Ф1 the input and integrators output are sampled onto feedfor-
warded capacitors Cf0–Cf4, while in Ф2 these capacitors are discharged. Using
superposition principle and the voltage divider across CCom, the output voltage Vout can
be expressed as

VOut ¼ Cf 0
Cf 0þ CCom

Vinþ þ Cf 1
Cf 1þ CCom

Vo1þ þ . . .þ Cf 4
Cf 4þ CCom

Vo4þ ð12Þ

where Vin+ is the positive input, Voi+ (i = 1–4) is the i-th integrator’s output, and CCom

models the parasitic capacitor at the comparator input. An important design consid-
eration at this point is to keep the CCom a low value in order to avoid voltage atten-
uation. In the designed comparator, the estimated input parasitic is less than 100 fF.
With this value and the capacitor values listed in Table 2, the output voltage given by
(12) reduces to

VOut ¼ 0:9Vinþ þ 0:95Vo1þ þ 0:97Vo2þ þ 0:95Vo3þ þ 0:98Vo4þ ð13Þ

In the modulator block diagram shown in Fig. 5, it is assumed that the input-
feedforward coefficient (from input x to quantizer input) is unity. It can be shown that
the corresponding STF is one in all frequencies. In modulator realization with passive
adder shown in Fig. 16, however, the input-feedforward coefficient reduces to 0.9
rather than unity. As a result, the STF can be modified to

STF ¼ 0:9þ H
1þ H

ð14Þ

Fig. 15. Bode diagram of the gain and phase response across process and temperature variations

Low-Power Low-Voltage ΔΣ Modulator 109

It can be shown that the loop filter H is equal to 0.4H1 + 0.6H1H2 + 0.4H1 H2
2 +H1 H3

2 ,
where H1 is the transfer function of the first active integrator, and H2 is the transfer
function of each passive integrator in the following stages (Fig. 5). For the sake of
simplicity, the local resonator is omitted and is not considered in the function H. The
magnitude plot of the STF is shown in Fig. 17. To summarize, the attenuation due to
the passive summation is dealt with a low input parasitic capacitor in the designed
comparator circuit. In turn, a power-consuming amplifier in an active adder is pre-
vented, leading to a power-efficient modulator design.

Single-Bit Quantizer. The existing passive ADCs [1–5] make use of the traditional
CIFB architecture, which primarily suffer from the extreme signal suppression. This
makes the comparator design a challenging task. The use of preamplifier stages, as a
power consuming solution, prior to the comparator circuit is essential for detecting the
very weak signal. As an example, 35 % of the total power dissipation in the design
presented by [1] comes from the preamplifier.

The single-bit quantizer in this design is composed of a dynamic regenerative
comparator followed by a SR latch [20]. No pre-amplification stages were used, which
lead to a significant power saving. The simple reason is that, compared to the traditional
CIFB modulator architecture, the selected CIFF architecture relaxes the voltage swing
requirement at the quantizer input. In other words, the voltage amplitude at the com-
parator input node of the designed feedforward modulator is the sum of the input signal,
the first active integrator’s output swing and the attenuated output swing from the
succeeding passive integrators, which is relatively larger than that of a modulator
implemented by a CIFB structure. This can be clearly seen in Fig. 7. We then utilize

11 Cf4

2

cm

2

cm

VO4+

1 Cf0

2

cm

Vin+

1 Cf1

2

cm

VO1+

CCom

VOut

Fig. 16. Passive adder. Single-ended scheme is shown for the sake of simplicity. Voi+ (i = 1–4) is
the i-th integrator’s output, and CCom represents the parasitic capacitor at the input of the
comparator

110 A.F. Yeknami and A. Alvandpour

a simple and power-efficient quantizer circuit without pre-amplifications [7]. The circuit
schematic is shown in Fig. 18. When clock signal clk goes low, the nodes x and y are
precharged to VDD. While clk goes high, the precharged nodes start to discharge to
ground by transistors M1a and M1b. The amount of discharge currents depend on the
input signals. The cross-coupled transistors, M3a and M3b, form a positive feedback
loop and amplify the difference in the inputs to a full-rail output. As the comparator is a
dynamic circuit and is clocked by the non-overlapping clock phases, a slow clock causes
leakage current flow through the branches. Therefore, high-VTH and low-power (hvtlp
type) transistors of the used 65 nm CMOS technology were utilized to suppress the
leakage. The total power consumption of the comparator and latch is less than 10 nW.

Complete Modulator Circuit. The overall modulator circuit is shown in Fig. 19. It
employs a fourth-order loop filter implemented by single-loop full feedforward
architecture. It has four integrators including an active one in the first stage and three

Fig. 17. The STF magnitude of the designed 4th-order modulator

M1a M1b

M2a M2b

inp inn

VDD

outn

outp

clk clkM3a M3b

x
y

Fig. 18. Dynamic comparator and SR latch

Low-Power Low-Voltage ΔΣ Modulator 111

passive ones in the following stages. The summation at the quantizer input is performed
by using a SC network. A simple dynamic comparator is utilized as single-bit quan-
tizer, while the power consuming preamplifier is removed in total.

A basic resonator feedback composed of two switches and a small capacitor Cb is
employed to optimize the NTF’s zero location near the edge of signal bandwidth.
A 5 dB SNR improvement can be obtained according to the simulation. The
common-mode voltage is set to the middle of the power supply, i.e. 0.35 V. The
reference voltage is set to 0.5 V, which is defined by VREFP of 0.6 V and VREFN of
0.1 V.

The capacitor value of the first integrator (i.e., CS1) and the signal feedforward path
(i.e., Cf0) are selected to fulfill the kT/C noise requirement of the modulator with a safe
margin [10]. The other modulator sampling and feedforward capacitors (i.e., CSi and Cfi

for i = 2, 3, 4) are chosen to satisfy the modulator coefficients listed in Table 1. The first
integrating capacitors (i.e., C1) is chosen to realize the coefficient a1 = 0.2, while the
rest of the integrating capacitors (i.e., Ci for i = 2, 3, 4) are selected from the passive
filter requirement, as discussed in Sect. 3.2. It is worth to be pointed out that the first
active stage suppresses the thermal noise or kT/C noise of the succeeding passive
filters, thereby reducing the capacitor sizes drastically. Moreover, the resonator
capacitor Cb is 0.25 pF in order to realize the resonator gain coefficient of 1/64. The
capacitor values are summarized in Table 2.

4 Simulation Results

The proposed modulator was designed in a 65 nm CMOS technology and was simu-
lated using a 256 kHz sampling clock frequency. Table 3 summarizes the simulation
results. The modulator achieves 84 dB and 80.3 dB peak SNR and peak SNDR,
respectively, from a 0.7 V supply. A –2.85 dBFS (i.e., 0.18 V peak amplitude), 109 Hz
differential input signals were applied to the modulator input, while the reference
voltage was set to 0.5 V (i.e., VREFP of 0.6 V and VREFN of 0.1 V), as shown in Fig. 19.
The simulated output spectrum is shown in Fig. 20. Figure 21 shows the modulator
peak SNDR with respect to the oversampling ratio (OSR). When the modulator is run
at 1.0 MHz sampling frequency, the attained SNDR is 86 dB while dissipating 650 nW
power. The input differential range is 1 VPP.

Compared to the previous passive modulator in [3], the clock frequency is halved
by using higher-order filter, beneficial for power reduction in the ADC and the fol-
lowing decimating filter. Significant SNR improvement was achieved by cascading
four integrators and also alleviating the low swing at the quantizer input with input
feedforward architecture. It is important to point out that the total capacitor area is
estimated to be scaled down by 50 %, as compared to the fully passive modulator
presented in [3]. The total sum of all capacitor values in the passive ADC in [3] and the
proposed fourth-order active-passive modulator is 280 pF and 138 pF, respectively.

112 A.F. Yeknami and A. Alvandpour

+ -

- +

2 2

1 1
C

M
1

C
1

C
S1

C
1

O
T

A

C
S1

V
R

E
F

P
V

R
E

F
N

L
p

L
n

1

L
p

L
n

in
p

in
n

2

V
R

E
F

N
V

R
E

F
P

L
p

L
n

2

2 2

1 1
C

M

1
C

S2

C
S2

1

C
2

+ -

- +1d

2 2
C

M

2 2

1 1
C

M

1
C

S3 C
S3

12 2
C

M

2 2

1 1
C

M

1
C

S4

C
S4

12 2
C

M

C
f3

C
2

C
3

C
3

C
4

C
4

C
f2

C
f1C
f0

1 1

2 2

1
C

f4

C
f4

12 2
C

M
C

M

1 2 C
M

C
f3 C
f2

C
f1 C
f0

1

2C
M

1

2

C
b

1

2

C
b

Fig. 19. Schematic of the proposed fourth-order active-passive modulator [7] (Courtesy of
IEEE)

Low-Power Low-Voltage ΔΣ Modulator 113

Table 2. Capacitor values in pF [7] (Courtesy of IEEE)

Sampling capacitors Integrating capacitors Feedforward Capacitors Resonator capacitor

Cf0 = 1 Cb = 0.25
CS1 = 1 C1 = 5 Cf1 = 2
CS2 = 0.25 C2 = 16 Cf2 = 3
CS3 = 0.25 C3 = 16 Cf3 = 2
CS4 = 0.25 C4 = 16 Cf4 = 5

Fig. 20. Simulated modulator output spectrum with a –2.85 dBFS, 109 Hz input and
16384-points FFT [7] (Courtesy of IEEE)

Fig. 21. Simulated SNDR versus oversampling ratio OSR [7] (Courtesy of IEEE)

114 A.F. Yeknami and A. Alvandpour

5 Comparison of the Power Efficiency

The performance of the presented modulator in Sect. 3 is compared with previously
reported modulators using passive filter(s) in Table 4. Two commonly used FOMs
(Walden and Schreier FOMs) are defined below:

FOMW ¼ Power
2ðSNDR�1:76Þ=6:02 � 2� BW

ð15Þ

FOMS ¼ DRdB þ 10 logð BW
Power

Þ ð16Þ

The FOMW favors low-resolution ADCs, whereas the FOMS favors high-DR ADCs.
The passive modulator presented in [3] with 0.43 µW power consumption and medium
resolution (68 dB SNR from a 0.7 V power supply) looks attractive when using FOMW

definition, as given by Eq. (15). When considering FOMS, the hybrid second-order and
fourth-order modulators present the FOM of 156.5 and 175, respectively, which
demonstrate high power-efficiency among the modulators [2–6]. In particular, the

Table 3. Perfprmance results [7] (Courtesy of IEEE)

Technology 65 nm CMOS

Supply voltage 0.7 V
Clock frequency 256 kHz 1.024 MHz
Signal bandwidth 500 Hz
Input range 1.0 V differential
Peak SNR 84 dB 92.8 dB
Peak SNDR 80.3 dB 86 dB
Power 400 nW 650 nW

Table 4. Performance comparison with previously reported modulators using passive filter

Reference Type BW
[Hz]

Sampling
rate [MHz]

SNDR
[dB]

DR
[dB]

Power
[μW]

FOMW
a

[pJ/step]
FOMS

b

[dB]

[2] Chen DT passive 20 k 10 67 78 250 3.41 157
[4] Chen DT passive 100 k 104 74.1 80.5 830 1.0 159.7
[5] Yousrye DT APDSMc 10 M 640 56 54 5500 0.55 146.6
[6] Das CT APDSMd 600 k 256 N/A 86 5400 N/A 166.5
[3] Fazli DT passive 0.5 k 0.5 65 65 0.43 0.3 144
[3] Fazli DT APDSM 0.5 k 0.25 70 70.5 1.27 0.49 156.5
[7] Fazlie DT APDSM 0.5 k 0.256 80.3 84 0.4 0.05 175

aFOMW = Power/(2ENOB × 2 × BW) known as the Walden FOM.
bFOMS = DR(dB) + 10log (BW/Power) known as the Schreier FOM.
cDT-APSDM = Discrete-Time Active-Passive Delta-Sigma Modulator.
dCT-APSDM = Continuous-Time Active-Passive Delta-Sigma Modulator.
eSimulation results were provided in [5, 7].

Low-Power Low-Voltage ΔΣ Modulator 115

fourth-order modulator in [7] employing a feedforward architecture presents an
excellent energy-efficiency when both FOMW and FOMS are applied.

6 Summary

The ultimate purpose of this design was to improve the ADC resolution by solving
some of the fundamental problems associated with the traditional passive modulators,
discussed in Sect. 2, such as extremely low voltage swing at the quantizer input and the
comparator non-idealities including offset and noise. Furthermore, cascading three
passive filters became possible by using feedforward modulator architecture.

Significant power reduction was obtained through (i) the reduced clock frequency
by using a fourth-order and power-efficient loop filter, (ii) the removal of the power
consuming preamplifier and (iii) the relaxed amplifier performance requirements in the
full feedforward modulator structure.

The main advantage of the first active filter is that it can suppress the comparator
nonidealities to a high extent. Additionally, due to the gain of this stage the thermal
noise from the succeeding passive filters is also attenuated, resulting in significant
capacitor area reduction.

Since in the feedforward architecture the loop filter mainly processes the quanti-
zation noise, the continual attenuation along with the passive integrator does not harm
the signal components, another advantage of using passive stages in the feedforward
structure. Therefore, three cascades of passive filters were exploited to create
higher-order noise-shaping, which can decrease the OSR or sampling clock frequency
leading to huge digital and analog power reduction. Furthermore, the input feedforward
structure is suited well for low-power ΔΣ modulator design due to offering low inte-
grators swing, which relaxes the slew rate requirement of the OTAs.

Therefore, the slew rate and GBW of the OTA in the active stage were scaled
down.

The impact of parasitics of the sampling and integrating capacitors on the perfor-
mance of passive filter and the overall modulator was investigated and the simulation
results were included.

Compared to the second-order passive modulator implemented in 65 nm technol-
ogy [3] using distributed feedback architecture, the clock frequency in the proposed
modulator reduced from 500 kHz to 256 kHz, which is beneficial for both analog
performance scaling down and digital power reduction. The SNDR improved from
65 dB to 80 dB (2.5-bit resolution improvement), while the attained power of 400 nW
is in the same order as the previous design (i.e., 430 nw). In other words, the
power-efficiency (or FOM) of the overall modulator was enhanced from 296 fJ/step to
47 fJ/step, showing the effectiveness of combined feedforward structure and cascade of
passive integrators. The attained FOM of 47 fJ/step makes this design a suitable
candidate for low-voltage low-power ADC designs intended for medical applications.

116 A.F. Yeknami and A. Alvandpour

References

1. Yeknami, A. F., Alvandpour, A.: A 0.5-V 250-nW 65-dB SNDR passive ΔΣ modulator for
medical implant devices. In: IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–4 (2013)

2. Chen, F., Leung, B.: A 0.25-mW low-pass passive sigma-delta modulator with built-in
mixer for a 10-MHz IF input. IEEE J. Solid-State Circuits 32(6), 774–782 (1997)

3. Yeknami, A.F., Qazi, F., Alvandpour, A.: Low-power DT ΔΣ modulators using SC passive
filters in 65 nm CMOS. IEEE Trans. Circuits Syst. I 61(2), 358–370 (2014)

4. Chen, F., Bakkaloglu, B., Ramaswamy, S.: Design and analysis of a CMOS passive ΣΔ
ADC for low power RF transceivers. Analog Integr. Circ. Sig. Process 59(2), 129–141
(2009)

5. Yousry, R., Hegazi, E., Ragai, H.F.: A third-order 9-Bit 10-MHz CMOS ΔΣ Modulator with
one active stage. IEEE Trans. Circuits Syst. I 55(9), 2469–2482 (2008)

6. Das, A., Hezar, R., Byrd, R., Gomez, G.: A 4th-order 86 dB CT ΔΣ ADC with two amplifiers
in 90 nm CMOS. In: ISSCC Digest of Technical Papers, pp. 496–612 (2005)

7. Yeknami, A. F., Alvandpour, A.:. A 0.7-V 400-nW fourth-order active-passive delta-sigma
modulator with one active stage. In: 21st IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), pp.1–6 (2013)

8. Roh, J., Byun, S., Choi, Y., Roh, H., Kim, Y.G., Kwon, J.K.: A 0.9-V 60-μW 1-bit
fourth-order delta-sigma modulator with 83-dB dynamic range. IEEE J. Solid-State Circuits
43(2), 361–370 (2008)

9. Zhang, J., Lian, Y., Yao, L., Shi, B.: A 0.6-V 82-dB 28.6-μW continuous-time audio
delta-sigma modulator. IEEE J. Solid-State Circuits 46(10), 2326–2335 (2011)

10. Wang, J., Matsuoka, T., Taniguchi, K.:. A 0.5 V feedforward delta-sigma modulator with
inverter-based integrator. In: Proceedings of ESSCIRC, pp. 328–331 (2009)

11. Yao, L., Steyaert, M., Sansen, W: A 1-V, 1-MS/s, 88-dB sigma-delta modulator in 0.13-μm
digital CMOS technology. In: Digest of Technical Papers of Symposia on VLSI Technology
and Circuits, pp. 180–183 (2005)

12. Rabii, S., Wooley, B.A.: The Design of Low-Voltage, Low-Power Sigma-Delta Modulators.
Kluwer Academic Publishers, Boston (2002)

13. Norsworthy, S., Schreier, R., Temes, G.C.: Delta-Sigma Data Converters: Theory, Design,
and Simulation. IEEE press, New York (1997)

14. Ishida, K., Kanda, K., Tamtrakarn, A., Kawaguchi, H., Sakurai, T.: managing subthreshold
leakage in charge-based analog circuits with low-VTH transistors by analog T-Switch
(AT-Switch) and super cut-off CMOS (SCCMOS). IEEE J. Solid-State Circuits 41(4), 859–
867 (2006)

15. Pun, K.P., Chatterjee, S., Kinget, P.R.: A 0.5 V 74-dB SNDR 25-kHz continuous-time
delta-sigma modulator with a return-to-open DAC. IEEE J. Solid-State Circuits 42(3), 496–
507 (2007)

16. Michel, F., Steyaert, M.S.J.: A 250 mV 7.5 μW SNDR SC ΔΣ modulator using
near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS. IEEE J. Solid-State
Circuits 47(3), 2326–2335 (2012)

17. Abo, A., Gray, P.: A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter.
IEEE J. Solid-State Circuits 34(5), 599–606 (1999)

18. Yaknami, A.F., Qazi, F., Dabrowski, J.J., Alvandpour, A.: Design of OTAs for
ultra-low-power sigma-delta ADCs in medical applications. In: International Conference
on Signals and Electronic Systems (ICSES), pp. 229–232 (2010)

Low-Power Low-Voltage ΔΣ Modulator 117

19. Yeknami, A.F., Alvandpour, A.: A 2.1 μW 80 dB SNR DT delta-sigma modulator for
medical implant devices in 65 nm CMOS. Analog Integr. Circ. Sig. Process 77(1), 69–78
(2013)

20. Yao, L., Steyaert, M., Sansen, W.: A 1-V 140-μW 88-dB audio sigma-delta modulator in
90-nm CMOS. IEEE J. Solid-State Circuits 39(11), 1809–1818 (2004)

21. Yeknami, A.F., Alvandpour, A.: A 2.1 µW 76 dB SNDR DT delta-sigma modulator for
medical implant devices. In: IEEE NORCHIP Conference, pp. 1–4 (2012)

22. Yeknami, A.F. : Low-power delta-sigma modulators for medical application. Linkoping
University Electronic Press, Dissertation, p. 1563 (2014)

23. Tedja, S., der Spiegel, J.V., Williams, H.H.: Analytical and experimental studies of thermal
noise in MOSFETs. IEEE Trans. Electron. Devices 41, 2069–2075 (1994)

118 A.F. Yeknami and A. Alvandpour

Fine Grain Precision Scaling for Datapath
Approximations in Digital Signal

Processing Systems

Seogoo Lee(B) and Andreas Gerstlauer

Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX, USA

{sglee,gerstl}@utexas.edu

Abstract. Finding optimal word lengths in digital signal processing sys-
tems has been one of the primary mechanisms for reducing complexity.
Recently, this topic has been explored in a broader approximate comput-
ing context, where architectures allowing for fine-grain control of hard-
ware or software accuracy have been proposed. One of the obstacles
for adoption of fine-grain scaling techniques is that they require deter-
mining the precision of all intermediate values at all possible operation
points, making simulation-based optimization infeasible. In this chapter,
we study efficient analytical heuristics to find optimal sets of word lengths
for all variables and operations in a dataflow graph constrained by mean
squared error type of metrics. We apply our method to several industrial-
strength examples. Our results show a more than 5,000x improvement in
optimization time compared to an efficient simulation-based word length
optimization method with less than 10 % estimation error across a range
of target quality metrics.

Keywords: Power reduction · Approximate computing · Word length
optimization · Digital signal processing

1 Introduction

Scaling internal system precision continues to be one of the most important
mechanisms to reduce implementation complexity and hence improve perfor-
mance and power consumption in digital signal processing (DSP) systems.
Traditionally, fixed-point word lengths of custom hardware or software imple-
mentations are set to match worst-case operating conditions determined at design
time. In more aggressive recent power saving methods, a system’s precision is
dynamically and adaptively configured in reaction to changing operating points
while maintaining a certain signal quality level [3,7,9,10]. Such dynamic preci-
sion scaling mostly targets application-specific hardware implementations [3,7,
10], although software implementations also exist [9]. Precision scaling can be
realized by bit-level clock gating of the least significant bits as shown in Fig. 1.
The maximum number of bits for any operation of an application should be
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 119–143, 2015.
DOI: 10.1007/978-3-319-23799-2 6

120 S. Lee and A. Gerstlauer

… …Combinational Logic

Inactive if input SNR > X dB

M
ul

ti
-b

it
 re

gi
st

er

X < Y < Z

MSB

LSB

Inactive if input SNR > Y dB

Inactive if input SNR > Z dB

Fig. 1. A realization example of precision scaling

enough to support worst-case conditions, but some of the lower bits can remain
inactive for different operating points. At a constant clock rate and hence perfor-
mance, a power reduction comes from the reduced activity of the gated sequential
and associated combinational cells.

More recently, similar scaling of precision has been considered in the broader
context of approximate computing (AC) [22]. Approximate computing generally
exploits tradeoffs between computational complexity and energy or performance
at various levels ranging from algorithms to transistors. Recent work in this
area has been focused on precision-scalable software realizations on general-
purpose programmable approximate processors [19,20]. Similar to traditional
fixed-point hardware design, word length of computations in the underlying
hardware is thereby flexibly controlled through source-level program annota-
tions and instruction set extensions.

In all cases, there is a significant burden on designers or programmers to
carefully control precision of individual variables and operations in order to max-
imize energy savings while meeting overall application-level quality goals. Given
the large number of variables and operating points to optimize for, traditional
simulation-based approaches are too time-consuming. This is a main reason why
fine-grain precision scaling is not widely employed, where designers and program-
mers instead resort to conservative worst-case analysis, self-adjusting runtime
schemes [3,7], which come with additional overhead, or coarse-grain approaches
that assume the same precision or a limited number of precision levels across
the whole design, which leaves additional power saving opportunities through
fine-tuning of each variable’s word length unexploited.

By contrast, in this chapter, we investigate novel analytical techniques that
resolve some of the drawbacks of previous work. Our method calculates the opti-
mal set of word lengths at design time using statistical analysis [23]. Compared
to the methods that require long simulations, our approach can dramatically
reduce the design time. Moreover, fine tuning of word lengths with low overhead

Fine Grain Precision Scaling for Datapath Approximations 121

improves power consumption compared to coarse-grain or run-time precision
determination. At the core of our precision optimization technique is an accu-
rate and fast error estimation capability, which, when coupled with a similar
power model, provides the basis for developing corresponding optimization for-
mulations and algorithms.

The chapter is organized as follows: after a brief summary of the related
work in Sect. 2 and the problem definition in Sect. 3, our error (Sect. 4) and
power (Sect. 5) models at the basis of our optimization formulation are described.
Results as applied to several design examples are shown in Sect. 6. Finally, Sect. 7
concludes and discusses future work.

2 Related Work

Fixed-point conversion and word length optimization has a long history of
research dating back to [1,4]. In a fixed-point representation, there are basically
two considerations in determining a word length, the number of integer bits
and the number of fractional bits. Integer bits are related to the dynamic range
of a signal, where an insufficient integer bit width causes saturation errors. By
contrast, fractional bits are related to the precision and introduce quantization
errors.

For determining the optimal number of both integer and fractional bits,
analytical or simulation-based methods have been introduced. Simulation-based
methods are widely used to estimate fixed-point performance. For example, Sung
et al. [11] add a signal-to-quantization noise ratio (SQNR) block to quantify the
finite word-length effects when the word-length in the implementation of the sys-
tem changes. In [12], various word length search methods are summarized and
compared. The efficiency of simulation-based methods is analyzed to determine
the number of simulations needed to reach optimum word lengths. The com-
plexity of a full search is O(Ns), where N is the number possible word lengths
for each decision variable, and s is the number of variables. It is shown that the
complexity can be dramatically reduced down to O(s) by using efficient search
methods that rely on sensitivity information but may run into local minima.

Among the various analytical techniques, the authors in [21] show that opti-
mally determining the number of fractional bits in linear time invariant (LTI)
systems is a NP-hard problem. In [15], the authors adopt affine arithmetic (AA)
to model the min/max error propagation of quantization noise. However, static
min/max approaches are not appropriate for fine-grain precision scaling. They
are known to be overly conservative. Furthermore, in applications such as com-
munication systems, additive white Gaussian noise (AWGN) sources from the
outer channel environment are hard to characterize in a min/max form. The
research done by Shi and Brodersen [16] analyzes quantization noise with per-
turbation theory instead. They measure the sensitivities of input word lengths
to output noise by simulations and use this information in their constraint func-
tion. Constantinides et al. find optimal word lengths by evaluating the variance
of quantization noise through the system transfer function and subsequently

122 S. Lee and A. Gerstlauer

formulating the optimization as a mixed integer linear programming (MILP)
problem [13]. Finally, in [17] a variance propagation method is applied to quan-
tization noise analysis in a fast Fourier transform (FFT) block, whereas Menard
et al. [14] propose a similar method for generalized dataflow graphs. Because
their method can be used both for linear and nonlinear systems and is suitable
for general DSP applications, we adopt it for statistical word length analysis and
optimization in this chapter.

On the application side, the authors of [7] introduce the concept of dynamic
precision scaling for power savings in wireless communication systems by forc-
ing lower significant bits to zero if the current signal quality is better than a
predetermined minimum requirement. There are two drawbacks in their work:
the authors use the same word length across the whole design and their method
requires dedicated training symbols to find the best word lengths at run time in
a self-adjusting scheme, which introduces additional overhead that negates some
of the power savings. In [3], the authors use both precision and voltage scal-
ing to maximize power reduction. They first optimize word lengths according
to the channel environment and then use these word lengths to find the opti-
mal voltage that still satisfies a required error rate. Their method is robust to
process variation, but it also incurs run time overhead. In [9,10], word lengths
are optimized at design time to avoid the run time overhead. In [9], the authors
target software-defined implementations of wireless systems, and use simulations
to support fine-grain optimization of all variables but only consider powers of 2
as word lengths. In [10], optimal word lengths are also determined by slow sim-
ulation, where precision is instead allowed to decrease when it can be absorbed
in increasing base noise under varying bit error requirements.

Finally, in the approximate computing domain, the authors in [19] propose
Java-based language extensions to support programmer annotations for specify-
ing variables and computations that can be approximated on top of an underlying
architecture that supports such approximations. The work in [20] proposes such
instruction-set and micro-architecture extensions that enable operation-level pre-
cision scaling for energy savings in a computation-oriented vector processor. In
all of these cases, however, source- or binary-level annotations have to be man-
ually determined by the programmer using other optimization techniques.

3 Problem Formulation

Our approach applies to world length optimization of fractional bits in DSP
datapaths. As such, we assume that the number of integer bits has already
been determined by a range analysis. We only consider systems with fixed-point
number representations. Since floating-point computations are more accurate
but come with a large complexity, fixed-point computations are still preferred in
many energy-constrainted applications.

Applications are inherently error-tolerant DSP systems, which can have input
signal noise and allow for a certain amount of additional error noise at their
primary outputs. These type of systems exists, for example, in wireless com-
munications, image/video processing and machine learning. We assume that

Fine Grain Precision Scaling for Datapath Approximations 123

applications are represented as dataflow graphs (DFGs) of addition and mul-
tiplication operations. Many data-dominated, regular DSP applications such as
filters, transforms, or general matrix computations fall into this category. We fur-
ther limit our target applications to systems that can be characterized by mean
squared error (MSE) quality metrics, such as a given or desired signal-to-noise
ratio (SNR) or peak SNR (PSNR) at primary inputs and outputs.

Our word length optimization procedure is shown in Fig. 2. Our optimization
problem is to minimize power consumption subject to output quality constraints
under given input and quantization noises. We start by building a floating-point
model of our system, which is simulated to obtain a set of target output SNRs and
a set of possible input SNRs, which form the operating points of an application.
These are the inputs to our optimization problem. From the floating-point model,
we also extract the DFG of the system. With the DFG, we build power cost
and quality constraint functions, which are functions of an operating point and
word lengths. Then, we solve our optimization problem in order to determine an
optimal set of word lengths that minimizes power consumption while satisfying
the output quality requirement of a chosen operating point. This process is
repeated for all possible operating points.

Figure 3 shows the conceptual change in the output quality and power con-
sumption that results from precision scaling. An operating point is defined by
a possible input quality and a required minimum output quality. In the exam-
ple of Fig. 3, we assume that a single output quality goal must be met across
multiple possible input SNRs. Scaling reduces the precision to minimize power

Optimization for one
operating point

System specification

Floating point
simulation

Build optimization
problem

Define an operating
points set

DFG

cost &
constraints
functionsoperating

points set

al
lo

w
ed

 S
N

R
 lo

ss

in
 fi

xe
d

p
oi

nt
 c

on
ve

rs
io

n

yes

no

End of optimization with
optimal word lengths

target & input SNRs

floating point
model

Done for all
operating points?

Fig. 2. Optimization procedure

124 S. Lee and A. Gerstlauer

consumption such that a constant targeted output quality is maintained for any
input condition that would otherwise lead to a better-than-required quality. Note
that the same concept can be applied to systems with just a single better-than-
worst-case input SNR or with multiple output quality goals for different input
conditions.

In general, the system can have one or more possible operating points or
operating scenarios. An operating point is defined by a given input quality and a
required output quality. Possible operating points of a system are combinations
of a set of N possible input conditions Φ = {Qin,1,Qin,2, ...,Qin,N} and a set
of M desired output quality goals Ψ = {Qout,1,Qout,2, ...,Qout,M}. We only
scale precision when the output quality of the system under the current input
condition is larger than a current output quality goal, i.e. when there is room
for energy reduction by injecting additional quantization errors. For all other
operating points, the application will be configured to work at full precision, i.e.
in a best effort manner.

The decision variables of the optimization problem are the word lengths of
the scalable fixed-point variables in the DFG of the application. Assume that
the set F of K decision variables is:

F = {F1, F2, ..., FK}. (1)

Without precision scaling With precision scaling

O
ut

pu
t

SN
R

Input
SNR

...

given input
SNRs

ta
rg

et

SN
R

Room for
power saving

Po
w

er

Po
w

er
 w

ith
 m

ax
.

pr
ec

is
io

n
Po

w
er

Output SNR Change

Power Change

Input
SNR

Po
w

er
 w

ith

m
ax

. p
re

ci
si

on

Input
SNR

Input
SNR

O
ut

pu
t

SN
R

ta
rg

et

SN
R

Fig. 3. Quality and power change by precision scaling

Fine Grain Precision Scaling for Datapath Approximations 125

In our statistical analysis, we first find the maximum word length of each variable
at the worst-case operating point, i.e. where the application should work at its
fullest precision. The hardware needs to be designed to support these worst-case
word lengths. For a software implementation on a general-purpose processor,
the full precision is the maximum precision of the adders and multipliers in
the processor’s datapath. These word lengths define the upper bound of each
decision variable as follows:

0 < Fi ≤ FMAX,i, (2)

where FMAX,i is the maximum word length for the i-th decision variable Fi.
We solve different optimization problems for different operating points (Qin,n,

Qout,m). Each optimization problem becomes:

minF P (F) (3)
subject to

N(Qin,n,F) ≤ Qout,m, (4)
0 ≤ Fi ≤ FMAX,i, ∀i, (5)

where P (F) and N(Qin,n,F) represent power and noise models to estimate imple-
mentation cost and output quality as a function of word lengths and input con-
ditions. Corresponding fast yet accurate analytical noise and power models are
at the core of our statistical optimization and will be described in the following
sections.

We introduce our models on two examples, an FFT in an orthogonal fre-
quency division multiplexing (OFDM) wireless communication system and an
inverse discrete cosine transform (IDCT) in JPEG decoder. The FFT example
can operate under multiple different input conditions depending on the external
channel conditions. Similarly, the IDCT example can have multiple operating
points as defined by the compression rate in the encoder. The final results of
applying our optimization to both examples will be given in Sect. 6.

4 Noise Model

The output quality is determined by the input noise and the injected noise from
word length scaling, the latter being in the form of quantization noise. Our
approach is heuristic because (1) we use a pseudo quantization noise (PQN)
model [17] instead of exact distribution functions of noise, and (2) we consider
the quantization of system coefficients, such as twiddle factors or filter coeffi-
cients as additive noise injection, which ignores associated changes of the transfer
function. In contrast to other approaches [17], This allows us to consider coeffi-
cient quantization noise. The impact on the transfer function and corresponding
inaccuracies in our method are, however, specific to a given application.

We assume that quantization noise sources as well as input noise sources are
independent. It is well known that we can get the variance σ2 after addition and
multiplication of two independent random variables as follows:

126 S. Lee and A. Gerstlauer

Addition: σ2 = σ2
1 + σ2

2 (6)
Multiplication: σ2 = μ2

1σ
2
2 + μ2

2σ
2
1 + σ2

1σ
2
2 , (7)

where μi is the expectation and σ2
i is the variance of input random variable i. The

output variances after subtraction or division are also available in a similar way.
Quantization noise is modeled as additive noise. If we add quantizers to two

independent inputs of an adder, s1 and s2 with signal variances σ2
s1 and σ2

s2,
respectively, we add noise sources σ2

n1 to σ2
s1 and σ2

n2 to σ2
s2. At the output of

the addition, the noise and signal variances therefore become σ2
n = σ2

n1 + σ2
n2

and σ2
s = σ2

s1 + σ2
s2, respectively. Hence, the total variance is σ2 = σ2

s + σ2
n =

σ2
s1 + σ2

s2 + σ2
n1 + σ2

n2.

4.1 Noise Analysis for One Decision Variable

We use a pipelined 256-point FFT with four series-connected radix-4 stages to
derive and demonstrate our noise model. The overall FFT structure and the
DFG for one stage of the FFT are shown in Fig. 4. The first two additions are
for the butterfly and the following multiplier and adder represent the complex
twiddle multiplication. Only calculation of the real phase is shown. The same
computation is performed for the imaginary phase. There can be two quantiza-
tion points in each stage of the FFT that affect the number of fractional bits:
quantization of the input and of the twiddle factor. For simplification, we use a
single word length for those two quantization points.

Stage1

Pipelined 256-point FFT

Quantizer
(F bits)

Quantizer
(F bits)

Twiddle factor

Output
required SNR

Butterfly Twiddle multiplication

Input SNR Stage2 Stage2 Stage2

Fig. 4. The pipelined 256-point FFT structure and DFG for one radix-4 stage

The input to the FFT can be modeled as a sum of the error-free input
with variance σ2

sin and additive input noise with variance σ2
nin

. Furthermore, the
variance of quantization noise with F fractional bits and uniform distribution

Fine Grain Precision Scaling for Datapath Approximations 127

under a round-to-nearest rounding is σ2
nquan

= 1
32−2F−2. The variance at the

output of the butterfly is then also a sum σ2
butterfly = σ2

sbutterfly
+ σ2

nbutterfly
of the

error-free output variance σ2
sbutterfly

= 4σ2
sin and the noise variance σ2

nbutterfly
=

4(σ2
nin

+ σ2
nquan

) = 4σ2
nin

+ 1
32−2F , including input quantization noise.

The butterfly output becomes the input to twiddle multiplication. The other
input, the twiddle factor is a sum of the ideal, sinusoidal twiddle factor with
variance σ2

stwiddle
= 1/8 (for a 4-stage, 256-point FFT) and additive quantization

noise σ2
nquan

. We assume that all signals and variables have zero mean (μ = 0)
and that σ2

sin is gain-controlled to 1. Therefore, the output variance after one
FFT stage is

σ2
out = 2(σ2

sbutterfly
+ σ2

nbutterfly
)(σ2

stwiddle
+ σ2

nquan
) (8)

≈ 1 + σ2
nin

+ (
2
3

+
2
3
σ2
nin

+
1
12

)2−2F (9)

= 1 + σ2
nout

(10)

With this, we can use the allowed performance loss in the floating- to fixed-point
conversion process for our optimization. For example, if the allowed performance
loss in SNR is 0.2 dB for fixed-point conversion, given an input SNR of 11.6 dB
and the signal power of 1 (σ2

nin
= 0.069), the minimum word length to get a

11.4 dB output SNR (σ2
nout

= 0.072) becomes F = 5. We can find the same
value through simulation. By contrast, min/max propagation using affine arith-
metic [15] with a ±3σ min/max of the input AWGN would result in F = 9. This
reflects that static analysis with min/max propagation is conservative.

4.2 Extension to Multiple Stages

We extend the above analysis to an FFT with multiple stages and hence decision
variables. The output noise from the first stage becomes the input noise to the
second stage and propagates through the whole FFT. At the end of the FFT, a
noise constraint function can be represented as a function of the variance of the
input noise (σ2

nin
) and a set of word lengths Fi for each stage i. For our four-stage

FFT example, the output noise variance from the first stage is a function of σ2
nin

and F1 as shown in the previous subsection:

σ2
nout,1

= f(σ2
nin

, F1), (11)

where f() is defined as

f(σ, F) = σ + (
2
3

+
2
3
σ +

1
12

)2−2F . (12)

Similarly, the output noise variance from the i-th stage (i > 1) can be formulated
as a function of σ2

nout,i−1
and Fi:

σ2
nout,i

= f(σ2
nout,i−1

, Fi). (13)

128 S. Lee and A. Gerstlauer

In this formulation, we ignore that the input to the i-th stage is already quan-
tized, i.e. that the re-quantization noise introduced in the i-th stage is in reality
lower if σ2

nout,i−1
does not represent an ideal input signal with perfect precision.

This leads to a small estimation error. We will demonstrate how successive inter-
mediate quantization steps can be incorporated into our formulation in the next
subsection.

Combining the above output noise formulations, the output noise variance
from the last FFT stage is a function of σ2

nin
and F1 through F4, and the con-

straint function becomes:

N(σ2
nin

, F1), (F2), (F3), (F4) = f(f(f(f(σ2
nin

, F1), F2), F3), F4) ≤ σ2
nout

. (14)

In other words, under different input SNRs 1/σ2
nin

, the targeted output SNR
1/σ2

nout
should remain constant.

4.3 Extension to Multiple Inputs with Intermediate Quantization

Figure 5 shows the data flow graph of an IDCT, which has 64 inputs with different
statistical properties for one IDCT calculation. In the IDCT case, input data
values are already quantized integer values in the frequency domain with zero
fractional bits. The inputs experience two multiplications with cosine values and
are then summed up to generate a final output value. This process is repeated
with different coefficients to generate 64 different outputs. There are four internal
quantization points, where the last output quantization step simply removes all
fractional bits. Accordingly, there are three decision variables, F1, F2 and F3,
where a fourth word length is hardcoded to F4 = 0.

Quantizer
(F1 bits)

cos

Input OutputQuantizer
(0 bit)

Quantizer
(F3 bits)

Quantizer
(F2 bits)

cos

Σ

Fig. 5. DFG for 64-point IDCT

Different from the FFT example, we consider the effect of re-quantizing an
already quantized signal down to a smaller number of bits [13]. The variance of
the additional noise introduce by such a re-quantization can be modeled as the
difference in quantization noise at the input and output of an internal quantizer:

σ2 =
1
3
(2−2FOUT−2 − 2−2FIN−2), (15)

where FIN is the number input bits and FOUT is the number of fractional bits at
the quantizer output. The formulation accurately considers the number of bits

Fine Grain Precision Scaling for Datapath Approximations 129

in an already quantized input signal, and it shows that there is no additional
noise if FOUT = FIN, i.e. that FOUT must be the same or smaller than FIN to
achieve an additional quantization effect. Note that quantization in the integer
domain can be modeled through negative values of F .

We present two different formulations for IDCT noise estimation. Similar to
the FFT example, we first formulate our noise model by considering all 64 input
values and all cosine coefficients as realizations of one random variable each,
i.e. inputs and coefficients are represented by two lumped variances. This allows
us to apply the same formulation approach as in the FFT. For such a lumped
model, the quantization noise variances in the first and the second coefficient
quantizers are

σ2
nc1

=
1
3
2−2F1−2, (16)

σ2
nc2

=
1
3
2−2F3−2. (17)

Assuming an input signal with error-free signal variance σ2
sin , noise variance σ2

nin
,

and integer format with zero fractional bits (F0 = 0), the noise variance after
the first multiplication and the following quantizer becomes:

σ2
nm1

≈ σ2
sinσ

2
nc1

+ σ2
nin

σ2
sc +

1
3
(2−2F2−2 − 2−2F1−2), (18)

where σ2
sc is the error-free cosine variance. After the second multiplication and

summation, the noise variance becomes:

σ2
nm2

= 64(σ2
sinσ

2
scσ

2
nc2

+ σ2
scσ

2
nm1

+ σ2
nc2

σ2
nm1

). (19)

Finally, the output quantizer rounds off all the fractional bits to make the final
output values be integers. We target a PSNR metric with a fixed and known
peak signal variance as quality goal. Hence, the constraint can be formulated as:

N(σ2
nin

, F1, F2, F3) = σ2
nm2

+
1
3
(2−2 − 2−2(F2+F3)−2) ≤ σ2

nout
, (20)

where the output noise variance is constrained to be the same or smaller than σ2
nout

.
As a second formulation, we develop a separated model in which each of

the inputs and coefficients is considered as a different random variable. Such an
approach is possible for applications that operate with a fixed number of inputs
in a block-wise manner, as is the case in our IDCT example. This requires more
information about the functionality and the inputs of a DFG, but can achieve a
more accurate noise estimation. We use different variances for each of the inputs
based on expected or actual observations. Figure 6 shows the log-scaled input
variance distribution for typical 8 × 8 IDCT frequency-domain inputs. As is
well-known, we can observe that most of the input information is located at low
frequencies. Especially the DC input element has a significantly higher variance
than other input elements. Furthermore, the cosine values it is multiplied with

130 S. Lee and A. Gerstlauer

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0

2

4

6

8

10

Row Index

Column Index

lo
g(

E
[X

]2)

Fig. 6. Power distribution for 8 × 8 IDCT input with compression rate = 10

are a constant, 1√
2

cos(0), across all outputs being computed. This fact allows
us to model the quantization noise for the DC input coefficient as a constant
instead of a uniformly distributed variance, which increases estimation accuracy.
All other coefficients vary per output and are thus modeled in lumped form as
shown in (16) and (17).

We build a separated optimization problem treating each input element as
one random variable with signal and noise variance σsin,i,j and σnin,i,j , where
i and j are the column and row index of the input element. Also, each of the
associated cosine coefficients is treated as a random variable with pre-computed
error-free signal and quantization noise variances of σsc1,i,j and σnc1,i,j for the
first cosine coefficients, and σsc2,i,j and σnc2,i,j for the second ones. After the
first multiplication and the following quantizer, the noise variance of the (i,j)
element becomes:

σ2
nm1,i,j

≈ σ2
sin,i,jσ

2
nc1,i,j

+ σ2
nin,i,j

σ2
sc1,i,j +

1
3
(2−2F2−2 − 2−2F1−2). (21)

With this, the noise variance after the second multiplication and summation
becomes:

σ2
nm2

=
∑

i

∑

j

(σ2
sin,i,jσ

2
sc1,i,jσ

2
nc2,i,j

+ σ2
sc2,i,jσ

2
nm1,i,j

+ σ2
nc2,i,j

σ2
nm1,i,j

). (22)

The final output noise variance and constraint is the same as in (20).

Fine Grain Precision Scaling for Datapath Approximations 131

5 Power Model

The cost in our optimization problem is determined the dynamic power con-
sumption of the system. The power consumption is the same for all input SNRs,
and it only differs with the word lengths of operations in the DFG. The energy
cost for an addition is thereby different from the cost for a multiplication, and
both costs are affected by the active word lengths of the arithmetic computa-
tions. The total energy cost P (F) is the sum of the energy costs Pi for each
operation in the dataflow graph. Pi is a function of the arithmetic operation
type performed to compute the i-th controllable variable with its active word
length Fi:

P (F) =
∑

i

Pi(Fi). (23)

We assume that all the bits in our design have the same transition rate of
0.5. With this assumption, dynamic power consumption is linearly proportional
to the area of the circuit that is toggling. Hence, our power cost function can
be represented as the number of unit hardware blocks. For combinational logic
such as adders and multipliers, the cost for each stage is the same and can be
represented as the number of 1-bit full adder equivalents. For sequential logic,
the power consumption of a 1-bit D flip-flop (DFF) is compared to that of a 1-bit
full adder in the TSMC 0.18µm target technology library used in our validations.

5.1 Datapath Power Analysis

For the example of one stage of the FFT, Ia is the number of integer bits at the
input to the FFT and Ib is the number of integer bits for the twiddle factor.
Then, the cost for one butterfly is

c
′
= 2 × (Ia + F) + (Ia + 1 + F) (24)

and the cost for one twiddle multiplication becomes

c
′′

= 2 × (Ia + 2 + F) × (Ib + F) + (Ia + Ib + 2 + 2F). (25)

Ia = 3 including the sign bit is enough not to affect decoding performance. Also,
Ib is 1 since the range of twiddle factors is within ±0.5.

In each FFT stage, two intermediate values are stored: (Ia + F) bits of data
after input quantization and (Ia + F + 2) bits of data after the butterfly. Hence,
the number of DFFs used in one FFT stage becomes (2F +8). According to our
synthesis results, the ratio in power consumption between a 1-bit DFF and a
1-bit full adder is 8.4, and this is used as a weight of the normalized sequential
logic cost:

c
′′′

= 8.4(2F + 8). (26)

With this, the total cost of one FFT stage becomes:

C(F) = c
′
+ c

′′
+ c

′′′
= 2F 2 + 33.4F + 32. (27)

132 S. Lee and A. Gerstlauer

Note that for large FFTs, intermediate data is usually stored in SRAMs. How-
ever, since scaling is only performed for DFFs and combinational logic, the power
consumption of SRAMs is not included in our analysis.

The power model for a complete 4-stage FFT is a straightforward extension
of the 1-stage model. Likewise, we obtain the power model for our IDCT example
in the exactly the same way as for the FFT example.

5.2 Overhead Analysis

If precision scaling is applied at run time to dynamically change word lengths in
response to varying input conditions, an input SNR measurement block and a
mapping between measured input SNRs and word lengths for all decision vari-
ables has to be added to the system. Also, if not already part of a programmable
micro-architecture, combinational gates have to be added in front of the DFFs
to control clock gating.

Most wireless communication systems already include SNR measurement
capabilities for various uses such as channel state information feedback. In such
cases, it is assumed that our approach uses the existing SNR measurement block
and we do not include it in overhead analysis. Similarly, for image/video process-
ing applications it is assumed that compression rates used in the encoder and
hence SNR at the inputs of the decoder is communicated through existing out-
of-band mechanisms.

By contrast, with binary on/off decisions stored in mapping tables, their size
becomes Ns × Nd, where Ns is the number of SNR steps and Nd is the number
of DFFs to control. For example, Ns = 11 if there are 11 input SNR steps from
6 dB to 16 dB, and Nd = 24 for an FFT with four stages, where each stage has
6 DFFs to be controlled. The overhead in power consumption of the mapping
table and additional clock gating logic is included in our power analysis shown
in the results.

6 Results

In the following, we validate our optimization model and present optimization
results demonstrating achievable gains for the FFT and IDCT examples. Since
our optimization problem is neither linear nor convex, we apply adaptive simu-
lated annealing (ASA) [18] for solving the optimization as in [15]. ASA is known
to be able to adapt to changing sensitivities and has faster convergence compared
to traditional simulated annealing approaches.

We perform power estimation of the generated gate-level netlists using Syn-
opsys Design Compiler and Power Compiler with a TSMC 0.18µm library at a
40 MHz clock. We do not specify the actual activity factors for power estimation
and use the default options in the tools. We include both dynamic and leakage
power consumption in all reported results. Our optimization is only targeted
at dynamic power, and leakage is less than 1µW for the more complex FFT
example in 0.18µm. For more advanced technology nodes with a larger fraction

Fine Grain Precision Scaling for Datapath Approximations 133

of leakage power, design techniques such as power gating can be combined with
dynamic word length scaling.

6.1 FFT Optimization Results

We apply our approach to a 256-point FFT example in a quadrature phase-
shift keying (QPSK) OFDM receiver with a cyclic prefix length of 64 assuming
perfect synchronization. As shown in Fig. 7, the OFDM receiver consists of a
synchronization block, a 256 point FFT, an equalizer, and a symbol de-mapper.
An AWGN channel model is assumed to exist between transmitter and receiver.
The FFT is used as an example to be designed in dynamically scaled fixed
point form. Without loss in generality, among many implementation schemes,
we assume that a pipelined radix-4 FFT is used. As presented earlier, the 256-
point FFT has four radix-4 stages and each stage contains a radix-4 butterfly
and a twiddle multiplication. Since we change the SNR of the system by adding
quantization noise, the targeted SNR of the FFT is defined as a desired SNR at
its output, which is affected both by a given input SNR and internal quantization
noise sources. At design time, statistical analysis determines multiple sets of word
lengths for all internal FFT variables and at all input SNRs defined through
floating-point simulations. At run time, a SNR block measures the FFT’s input
SNR and a word length controller selects the best set of word lengths that
is suitable for the current input SNR to maintain a pre-defined output SNR.
We assume that perfect SNR measurement is possible. We only use fixed-point
numbers with a round-to-nearest rounding method.

AWGN
Channel
Model

Sync
De-
map

Equali-
zation

Input
Received SNR

Word Length
Control

OFDM Receiver
Model

Pipelined 256 FFTData from
transmitter

BER

Fig. 7. An OFDM receiver

The final performance metric for a wireless communication system is usually
the coded frame error rate (FER). In this chapter, however, we use uncoded bit
error rate (BER) instead. Every FER has a corresponding BER, which is not
affected by frame length and coding scheme. Our goal is to find FFT word lengths
that satisfy a desired BER for any given input SNR. BER is closely related to
SNR. However, BER is decision error and the relationship between SNR and
BER is not linear, but a function of the noise’s probability density function
(PDF). It is hard to find the exact PDF of noise for a general DSP system that
has quantization noises. In this chapter, we therefore assume that propagated

134 S. Lee and A. Gerstlauer

noise at the output of an FFT stage is Gaussian distributed. From the central
limit theorem, it follows that the noise at the output of a radix-4 butterfly can
be approximated as Gaussian. Our simulation results also show that the output
noise from twiddle multiplications, since additive, can be approximated to be
Gaussian. Furthermore, the input signal is assumed to be Gaussian. This is true
considering the time-domain signal of an OFDM system. Hence, although we use
an SNR metric in our analysis, under the above assumptions we can estimate
BER from SNR.

The method presented in this chapter, which we call dynamic scaling by
variance propagation (DS-VP), is compared against four conventional methods:
(1) non-scaling by full simulation (NS-FS), which only finds one set of word
lengths for the worst-case operating point, (2) coarse dynamic scaling by full
simulation search (CS-FS), which finds multiple sets of word lengths by full simu-
lation, but using a single word length for all variables in a set, (3) dynamic scaling
by full simulation search (DS-FS), which finds optimal sets of word lengths using
full simulation, and (4) dynamic scaling by efficient simulation search (DS-ES),
which finds multiple sets of word lengths using the efficient simulation approach
from [12].

Table 1. Optimized word lengths for various target SNRs (BERs)

Channel NS-FS CS-FS DS-FS DS-ES DS-VP
SNR {Fi} Power {Fi} Power [mW] {Fi} Power [mW] {Fi} Power [mW] {Fi} Power [mW]

7.
25

dB
(1

%
) <8dB

{4
,4

,4
,3
}

2.
52

m
W

{4} 2.53 (0.4%) {4,4,4,3} 2.57 (2.0%) {4,4,4,3} 2.57 (2.0%) {4,4,4,3} 2.57 (2.0%)
8dB {3} 2.27 (-9.9%) {3,3,3,2} 2.20 (-12.7%) {3,3,3,2} 2.20 (-12.7%) {3,3,3,2} 2.20 (-12.7%)
9dB {3} 2.27 (-9.9%) {3,3,3,1} 2.13 (-15.5%) {3,3,3,1} 2.13 (-15.5%) {3,2,3,2} 2.16 (-14.3%)

10dB {3} 2.27 (-9.9%) {3,3,2,1} 2.05 (-18.7%) {3,2,3,1} 2.06 (-18.3%) {3,2,2,1} 1.97 (-21.8%)
11dB {2} 1.94 (-23.0%) {3,2,2,1} 1.97 (-21.8%) {3,2,2,1} 1.97 (-21.8%) {2,2,3,1} 1.99 (-21.0%)
12dB {2} 1.94 (-23.0%) {2,2,2,1} 1.90 (-24.6%) {2,2,2,1} 1.90 (-24.6%) {2,2,2,1} 1.90 (-24.6%)

9.
7d

B
(0

.1
%

) <10dB

{4
,5

,4
,4
}

2.
63

m
W

{5} 2.94 (11.8%) {4,5,4,4} 2.66 (1.1%) {4,5,4,4} 2.66 (1.1%) {4,5,4,4} 2.66 (1.1%)
10dB {4} 2.53 (-3.8%) {5,5,4,3} 2.60 (-1.1%) {5,5,4,3} 2.60 (-1.1%) {4,4,4,4} 2.57 (-2.3%)
11dB {3} 2.27 (-13.7%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,2} 2.20 (-16.3%)
12dB {3} 2.27 (-13.7%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,1} 2.13 (-19.0%)
13dB {3} 2.27 (-13.7%) {3,3,2,2} 2.16 (-17.9%) {3,3,2,2} 2.16 (-17.9%) {3,2,3,2} 2.16 (-17.9%)
14dB {3} 2.27 (-13.7%) {3,3,2,2} 2.16 (-17.9%) {3,3,2,2} 2.16 (-17.9%) {3,2,2,2} 2.06 (-21.7%)

11
.4

dB
(0

.0
1%

) <12dB

{5
,4

,5
,4
}

2.
75

m
W

{5} 2.94 (6.9%) {5,4,5,4} 2.83 (2.9%) {5,4,5,4} 2.83 (2.9%) {5,4,5,4} 2.83 (2.9%)
12dB {4} 2.53 (-8.0%) {4,5,3,3} 2.49 (-9.5%) {4,5,3,3} 2.49 (-9.5%) {4,4,4,3} 2.57 (-6.5%)
13dB {3} 2.27 (-17.5%) {4,3,3,2} 2.29 (-16.7%) {4,3,3,2} 2.29 (-16.7%) {4,3,3,2} 2.29 (-16.7%)
14dB {3} 2.27 (-17.5%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%)
15dB {3} 2.27 (-17.5%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%) {3,3,2,3} 2.22 (-19.3%)
16dB {3} 2.27 (-17.5%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%) {3,3,2,2} 2.16 (-21.5%)

Optim. time 3.6 hours 6 min. 21.6 hours 1-2 min. 1.2-1.8 msec.

Table 1 shows the sets of word lengths found by the different methods across
different target BERs and corresponding input SNRs. The sets of word lengths in
Table 1 are the word lengths for Stage 1 to Stage 4 of the FFT, i.e. {F1, F2, F3, F4}.
The table also includes estimated power consumption and optimization runtime
for each approach. All experiments were performed on an Intel Core i7 workstation
running at 2.7 GHz. The sets of word lengths from DS-FS are optimal and used as
word length and power reference.

Fine Grain Precision Scaling for Datapath Approximations 135

Our method shows a significant gain in design time compared to simulation-
based methods, which makes dynamic scaling feasible even for large systems
with many variables and operating points. For one operating point in our FFT
example, the number of simulations using a full search is 64 (4 decision vari-
ables and with a range from 1 to 6 bits each). For each simulation trial, we
run 10,000 OFDM symbols corresponding to 5 million bits in order to achieve
enough simulation accuracy. Each such simulation takes about 10 seconds. To
find the optimal word lengths using an exhaustive search requires 3.6 h. With
the preplanned simulation method from [12], the number of trials can be signifi-
cantly reduced. For example, if the search starts from {2,2,2,2}, and the optimal
word length set is {4,3,3,2}, optimal word lengths can be obtained with only 4
simulations. However, for dynamic scaling, a search is required for each oper-
ating point and total optimization time increases linearly with the number of
operating points. Thus, even efficient simulation-based methods may still not be
suitable for design-time optimization in the presence of dynamic scaling.

By contrast, our analysis method requires only about 2 ms to find a set of
word lengths for one operating point, which is 5,000 times faster than the time
for one simulation trial. Considering that word length optimizations can take
up to 50 % of design time with conventional simulation-based approaches [12],
this represents a significant improvement in productivity.

To validate the optimality and accuracy of our approach, achievable power
figures using various methods are compared to those of the reference DS-FS
approach. Figure 8 shows that our cost function used for optimization correlates
well with the final gate-level power numbers. Nevertheless, the DS-VP method
results in up to a 5 % difference in power consumption, which is a downside of
achieving large gains in design time. The DS-ES method also exhibits a small
0.5 % difference in some isolated cases where it is not able to guarantee the opti-
mal solution. We also compared fine-grain DS-based methods against dynamic
scaling with coarse optimizations, i.e. using a single word length for all variables
(CS-FS). Power numbers using fine-grain scaling are always the same or smaller
with a reduction of up to 13.6 % even considering additional overhead for control
at finer granularity.

In terms of overhead, compared to a method with no scaling (NS-FS), the
extra power consumption for dynamic scaling is less than 3 % according to our
synthesis results. This overhead is small compared to the average 17 % power
reduction that can be achieved by dynamic scaling across varying input SNR
levels. At SNR levels that are lower than the required SNR, the power numbers
are larger than those for NS-FS due to the overhead of finely tuned dynamic
scaling. The system, however, is not usually in such a poor environment. Hence,
on average, large power savings can be expected.

Finally, Figs. 9 and 10 plot the results of performance simulations. Using
DS-type methods, the system is able to maintain the targeted output BER over
the full input SNR range leading to a large power reduction at higher SNR
values. In Fig. 10, the BER of floating point model (FP) is also plotted as a
reference. The measured BER for a targeted BER of 0.01 % ranges from 0.004 %

136 S. Lee and A. Gerstlauer

Fig. 8. Accuracy of cost function

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

1.8

2

2.2

2.4

2.6

2.8

3
x 10-3

Input received SNR(dB)

B
E

R

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14

2

2.2

2.4

2.6

2.8

3

x 10-3

Input received SNR(dB)

B
ER

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
2

2.2

2.4

2.6

2.8

3

3.2
x 10-3

Input received SNR(dB)

B
E

R

NS-FS
CS-FS
DS-FS
DS-ES
DS-VP

NS-FS
CS-FS
DS-FS
DS-ES
DS-VP

NS-FS
CS-FS
DS-FS
DS-ES
DS-VP

(a) For 1% BER

(b) For 0.1% BER

(c) For 0.01% BER

Fig. 9. Power comparison

Fine Grain Precision Scaling for Datapath Approximations 137

6 7 8 9 10 11 12
10-5

10-4

10-3

10-2

10-1

Input received SNR(dB)

B
E

R

9 10 11 12 13 14 15
10-6

10-5

10-4

10-3

10-2

Input received SNR(dB)

B
E

R

10 11 12 13 14 15 16
10-6

10-5

10-4

10-3

Input received SNR(dB)

B
ER

FP
NS-FS
CS-FS
DS-FS
DS-ES
DS-VP

FP
NS-FS
CS-FS
DS-FS
DS-ES
DS-VP

FP
NS-FS
CS-FS
DS-FS
DS-ES
DS-VP

(a) For 1% BER

(b) For 0.1% BER

(c) For 0.01% BER

Fig. 10. QPSK BER comparison

to 0.014 % using our DS-VP method. Note that while in some cases the power
consumption can be lower than in other DS-based methods, this comes at the
cost of violating the BER constraint for those operating points. This mismatch
is caused by the heuristic nature of our optimization approach.

6.2 IDCT Optimization Results

We further apply our approach to an IDCT block within an overall JPEG image
processing chain. As shown in Fig. 11, a JPEG encoder performs color conversion,
a discrete cosine transform (DCT), quantization, zigzag ordering, and finally
Huffman encoding. The decoder implements a reverse processing chain, using
the IDCT as its main image reconstruction block. The algorithmic quantization
step in the encoder is the key for achieving lossy compression in the JPEG
algorithm. It uses the fact that most of the information in a natural image exists

138 S. Lee and A. Gerstlauer

in the low frequency region to non-uniformly quantize and scale the frequency-
domain DCT components. Coupled with subsequent run-length encoding, this
achieves a size reduction of the encoded bit stream at the expense of a reduced
image quality after decoding. This tradeoff is controllable by the quantization
and compression factor selected in the encoder.

Color
Converter

DCT Quantizer
Zigzag

Ordering
Huffman
Encoder

Huffman
Decoder

Color
Converter

IDCT
Dequantize

r
Zigzag

Reordering

Compressed
JPEG image

Bitmap
image

Bitmap
image

Compression rate control

JPEG Encoder

JPEG Decoder

Fig. 11. A JPEG encoder/decoder

We apply our word length optimization to the IDCT block in the JPEG
decoder, where we optimize IDCT word lengths for different operating points
as determined by the algorithmic quantization factor selected in the encoder.
Changing the encoder’s compression rate will influence the frequency-domain
noise at the input of the IDCT and hence the PSNR of the decoded image at the
IDCT output. This allows us to apply different precision scaling levels depending
on the compression level of the image data at the decoder input.

400 450 500 550 600 650 700 750 800
-5

0

5

10

15

20

25

30

Power (uW)

M
S

E
 (d

B
)

Simulation
Estimation with the lumped model
Estimation with the separated model

Fig. 12. IDCT design space of power consumption versus quality loss

Fine Grain Precision Scaling for Datapath Approximations 139

We use the standard Lena image file as sample for all our experiments.
Figure 12 shows the design space of power consumption and image quality loss
for the IDCT. In Fig. 12, we evaluate quality by only considering image degrada-
tion due to internal IDCT quantization noise, i.e. assuming that image data at
the IDCT input represents an error-free reference signal. In our estimation mod-
els, we therefore set input noise to be zero. For simulations, the output bitmap
image of the fixed-point IDCT is compared against the output of a reference
floating-point IDCT using real image data. Note that quality results in Fig. 12
are different from typical PSNR measurements, since errors reported here do
not include losses incurred by the encoder’s compression. In all cases, power
results were obtained from RTL synthesis. For each of the possible word length
combinations (F1, F2, and F3 sweeped from 2 to 10 with F2 ≤ F1) we plot:
(1) image quality obtained from simulation, (2) quality given by our lumped
estimation model, and (3) quality estimated by our separated noise model. The

0 5 10 15 20 25 30 35 40 45 50
30

35

40

45

50

Compression rate

P
S

N
R

 (d
B

)

Floating point reference
Targeting 1dB PSNR loss

Fig. 13. Output image PSNR for different IDCT implementations

0 5 10 15 20 25 30 35 40 45 50
450

500

550

600

650

Compression rate

P
ow

er
 (u

W
)

Full precision
Targeting 1dB PSNR loss

Fig. 14. IDCT power reduction

140 S. Lee and A. Gerstlauer

estimation error of the lumped model is less than 12 % compared to a simulation
of the same design, with an average estimation error of 8.3 %. For the separated
model, the maximum and average estimation error is 10.1 % and 5 %, respec-
tively. These results show that the estimation accuracy can be increased with
more information about the inputs to the DFG.

Figure 13 shows the final output image quality of a precision-scaled IDCT
in reference to a floating-point IDCT for various operating points as defined by
the encoder compression rate. Different from the FFT example that targeted a
constant output SNR under varying input conditions, we optimize the IDCT to
achieve a constant quality loss. We use a separated model and from simulations,
we first obtain the variances of individual IDCT inputs as a function of the
encoder compression rate as shown in Fig. 6. Again, our optimization problem
is only concerned with quality losses incurred in the IDCT. Furthermore, it can
not be assumed that compression noise is independent from frequency-domain
image data. As such, we formulate a simplified model that considers encoder
compression and IDCT scaling independently, i.e. we treat combined image data
with compression noise as the IDCT input signal with no separate noise sources
(set to zero). Then, for any compression rate, we set the targeted quality loss of
the optimization problem such that the final output image PSNR will become
1 dB lower than the corresponding ideal PSNR of a simulated floating-point
IDCT. For example, with a JPEG compression rate of 5, the ideal image PSNR
at the IDCT output is 42.6 dB, and we optimize the IDCT to achieve an overall
41.6 dB output PSNR instead. We use our optimization framework to find the
sets of optimal word lengths, and subsequently perform simulations to determine
the actual PSNR losses. As shown in Fig. 13, actual PSNR losses as compared
to an ideal implementation can reach 1.8 dB, which is an artifact of errors in our
estimation model.

Finally, Fig. 14 shows the power reduction achieved through word length scal-
ing. As we can observe, a higher power reduction is achieved when the compres-
sion rate is high and accordingly the input PSNR is low. The power reduction
is up to 27.1 % for a compression rate of 45. This result shows another applica-
tion for precision scaling: if the input quality decreases, we can reduce power by
injecting more quantization noise while keeping the output quality degradation
within an allowed range. This is due to the fact that, at higher compression lev-
els, input data is already quantized algorithmically in the encoder, requiring less
precision and energy to decode. As shown in Fig. 15, this allows for significant
power savings with no visually perceivable differences in decoding performance
across a wide range of JPEG compression rates.

Fine Grain Precision Scaling for Datapath Approximations 141

(a) Floating-point IDCT, compression rate=2.3 (b) Fixed-point IDCT, compression rate=2.3

(c) Floating-point IDCT, compression rate=45 (d) Fixed-point IDCT, compression rate=45

Fig. 15. Floating- and fixed-point IDCT output at different compression rates

7 Summary and Conclusions

In this chapter, we introduced a statistical analysis method using variance prop-
agation for word length optimization. A fine-grain optimization of precision scal-
ing is possible and results in significant power savings. A fast yet accurate static
design- or compile-time approach thereby avoids run-time overhead and the need
for time-consuming exhaustive simulations. In the future, we plan to generalize
our method to other types of operations and blocks in DSP systems, including
optimization for other metrics, such as coded BER, and other error models, such
as the ones arising from other approximation techniques. Furthermore, we plan

142 S. Lee and A. Gerstlauer

to automate the approach, including generation of optimized hardware descrip-
tion language code and clock-gating logic within our flow.

Acknowledgments. This work has been supported by Intel and the National Science
Foundation under Grant No. CCF-1018075. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References

1. Widrow, B.: Statistical analysis of amplitude-quantized sampled-data systems.
Trans. Am. Inst. Electr. Eng. Part II Appl. Indus. 79(6), 555–568 (1961)

2. Miyazaki, N., Yoshizawa, S., Miyanaga, Y.: Low-power dynamic MIMO detection
for a MIMO-OFDM receiver. In: IEEE International Symposium on Intelligent
Signal Processing and Communications Systems, Bangkok, pp. 1–6 (2011)

3. Nisar, M.M., Chatterjee, A.: Test enabled process tuning for adaptive base-
band OFDM processor. In: 26th IEEE International Symposium on VLSI Test,
San Diego, pp. 9–16 (2008)

4. Oppenheim, A.V., Weinstein, C.J.: Effects of finite register length in digital filtering
and the fast fourier transform. In: IEEE Proceedings, pp. 957–976 (1972)

5. Yoshizawa, S., Miyanaga, Y.: Tunable word length architecture for low power wire-
less OFDM demodulator. In: IEEE International Symposium on Circuits and Sys-
tems, Island of Kos, pp. 2789–2792 (2006)

6. Shi, C., Brodersen, R.W.: A perturbation theory on statistical quantization effects
in fixed-point DSP with Non-stationary inputs. In: IEEE International Symposium
on Circuits and Systems, Vancouver, pp. 373–376 (2004)

7. Kim, J., Yoshizawa, S., Miyanaga, Y.: Dynamic wordlength calibration for energy
reduction FFT processors in wireless LAN. In: 54th IEEE Midwest Symposium on
Circuits and Systems, Seoul, pp. 1–4 (2011)

8. Nisar, M.M., Chatterjee, A.: Environment and process adaptive low power wireless
baseband signal processing using dual Real-time feedback. In: 22nd IEEE Interna-
tional Conference on VLSI Design, New Delhi, pp. 57–62 (2009)

9. Novo, D., Bougard, B., Lambrechts, A., Van der Perre, L., Catthoor, F.: Scenario-
based Fixed-point data format refinement to enable Energy-scalable software
defined radios. In: Design, Automation and Test in Europe Conference and Exhi-
bition, Munich, pp. 722–727 (2008)

10. Nguyen, H.N., Menard, D., Romuald, R., Sentieys, O.: Energy reduction in wireless
system by dynamic adaptation of the Fixed-point specification. In: Conference on
Design and Architectures for Signal and Image Processing, Brussels, pp. 132–139
(2008)

11. Kum, K.-I., Sung, W.: Combined Word-length optimization and High-level synthe-
sis ofdigital signal processing systems. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 20(8), 921–930 (2001)

12. Han, K., Evans, B.L.: Optimum wordlength search using sensitivity information.
EURASIP J. Adv. Signal Process. 2006(1), 1–14 (2006)

13. Constantinides, G.A., Cheung, P.Y.K., Luk, W.: Wordlength optimization for lin-
ear digital signal processing. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 22(10), 1432–1442 (2003)

Fine Grain Precision Scaling for Datapath Approximations 143

14. Menard, D., Sentieys, O.: Automatic evaluation of the accuracy of Fixed-point
algorithms. In: Design, Automation and Test in Europe Conference and Exhibition,
Paris, pp. 529–535 (2002)

15. Lee, D.-U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., Constanti-
nides, G.A.: Accuracy-guaranteed Bit-width optimization. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 35(10), 1990–2000 (2006)

16. Shi, C., Brodersen, R.W.: Automated Fixed-point Data-type optimization tool
for signal processing and communication systems. In: 41st Design Automation
Conference, San Diego, pp. 478–483 (2004)

17. Widrow, B., Kollár, I.: Quantization Noise: Roundoff Error in Digital Compu-
tation, Signal Processing, Control, and Communications. Cambridge University
Press, New York (2008)

18. ASA 25.15. http://www.ingber.com//#ASA
19. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:

EnerJ: Approximate data types for safe and general Low-power computation. In:
32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, San Jose, pp. 164–174 (2013)

20. Venkataramani, S., Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan,
A.: Quality programmable vector processors for approximate computing. In:
46th Annual IEEE/ACM International Symposium on Microarchitecture, Davis,
pp. 1–12 (2013)

21. Constantinides, G.A., Woeginger, G.J.: The complexity of multiple wordlength
assignment. J. Appl. Math. Lett. 15(2), 137–140 (2002)

22. Han, J., Orshansky, M.: Approximate computing: an emerging paradigm for
Energy-efficient design. In: 41st IEEE European Test Symposium, Avignon,
pp. 1–6 (2013)

23. Lee, S., Gerstlauer, A.: Fine grain word length optimization for dynamic precision
scaling in DSP systems. In: IFIP/IEEE International Conference on Very Large
Scale Integration, Istanbul, pp. 266–271 (2013)

http://www.ingber.com//#ASA

A Complete Real-Time Feature Extraction
and Matching System Based on Semantic

Kernels Binarized

Michael Schaffner1,2(B), P.A. Hager1, L. Cavigelli1, Z. Fang1, P. Greisen1,
F.K. Gürkaynak1, A. Smolic2, H. Kaeslin1, and L. Benini1

1 ETH Zurich, Zürich, Switzerland
{schaffner,greisen,kgf,kaeslin,benini}@iis.ee.ethz.ch,

{phager,lukasc,fangz}@student.ethz.ch
2 Disney Research Zurich, Zürich, Switzerland

smolic@disneyresearch.com

Abstract. Feature extraction and matching is an important step in
many current image and video processing algorithms. In this work, we
designed and implemented an efficient feature extraction and match-
ing system for sparse point correspondence search in stereo video. Our
system is based on the recently proposed Semantic Kernels Binarized
(SKB) algorithm, which showed superior performance with respect to
other algorithms in our evaluation. The feature extraction stage has been
prototyped in 180 nm technology and the complete system with two fea-
ture extraction pipelines (left and right view) together with the matching
unit have been implemented on a Stratix IV FPGA where it delivers a
performance of up to 42 frames per second on 720p video. Especially
due to the high throughput of up to 25 k matched descriptors per frame,
our system compares favourably with recent hardware implementations
of similar algorithms.

Keywords: Features · Matching · Binary descriptor · Semantic Kernels
Binarized (SKB) · Stereo video processing · Real time · VLSI · ASIC ·
FPGA

1 Introduction

Current image and video processing pipelines commonly rely on image features in
order to calculate sparse point correspondences among several images or frames.
Over the past decade, numerous different algorithms and variations thereof have
been devised. Earlier methods such as SIFT [14] and SURF [5] are costly to
compute and the calculated descriptors consist of many floating point entries that
require a significant amount of memory – which renders them less attractive for
embedded devices or hardware implementations. This led to the development
of more efficient binary descriptors such as BRIEF [8], BRISK [13], FREAK
[4] and Semantic Kernels Binarized (SKB) [26]. These are less expensive to
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 144–167, 2015.
DOI: 10.1007/978-3-319-23799-2 7

A Complete Real-Time Feature Extraction and Matching System 145

DVI Interface
720p @30Hz
(top/bottom)

Line

Image
Pyramid

Memory Controller

SKB Core
Left

SKB Core
Right

Descriptor
Matching

Ethernet
Also implemented

on an ASICExt. Memory

Further processing
of point correspon-
dences (e.g. sparse
depth calculation)

Acquisition or
video source

FPGA

Fig. 1. Overview of the stereo video feature detection system with two SKB cores and
one matching unit. The ‘Teddy’ image shown here is from the dataset provided by [20].

compute (e.g. BRIEF and SKB directly compute the binary descriptor pattern
by means of intensity comparisons or thresholding), require less storage, and can
be matched very efficiently using the Hamming distance.

In this work, we consider the calculation of a sparse disparity map from stereo
video, as this is a crucial ingredient for certain video processing methods such
as automatic stereo-to-multiview conversion [22]. Our system implements the
SKB algorithm [26], as it provides competitive results in the restricted setting of
stereo vision and is amenable to efficient hardware implementations. We present
a hardware architecture of the whole feature extraction and matching system
(a system overview is shown in Fig. 1). The feature extraction core has been
implemented and fabricated in 180 nm CMOS technology, and the whole system
has been implemented on a Stratix IV FPGA.

1.1 Related Work

There exist many FPGA and ASIC implementations of SIFT and SURF, such
as [6,7,12,18,21,23]. But to our knowledge, the following two are the only other
FPGA/ASIC implementations of complete feature extraction and matching sys-
tems which are based on binary descriptors. J. S. Park, et al. [16] implemented
a variant of BRIEF with FAST keypoints [17] on an ASIC that has a through-
put 94.3 full-HD frames per second with 512 extracted feature points per frame.
J. Wang, et al. [25] propose a FPGA system which is also based on BRIEF, but
with SIFT keypoints. In their implementation, they achieve a feature through-
put of 60 fps for 720p video with 2k detected points. Both of these works are
single view systems matching the extracted descriptors to the ones extracted
from the previous frame. In contrast, our system operates on the left and right
views simultaneously, and the constrained stereo camera set-up is exploited in
order to match the descriptors from both views on-the-fly. Further, our system is
capable of extracting and matching a much larger number of features per frame
(15 k–25 k).

1.2 Summary of Contributions

We have developed a hardware architecture for real-time SKB feature extraction
and matching from 720p stereo video for real-time stereo vision applications.

146 M. Schaffner et al.

Instead of using a two-dimensional integral image1 to compute the filter responses,
we use a local one-dimensional integral image in order to overcome the large mem-
ory entries and the associated bandwidth that a two-dimensional integral image
entails. Since the feature extraction part is able to extract a large amount of inter-
est points (up to 25 k) per frame, we developed a high throughput matching engine
able to match interest points at this rate. The system has been implemented on
a Stratix IV based FPGA evaluation board where it runs with up to 142 MHz,
delivering a throughput of 42 fps (stereo video). Finally, we compare our work with
other state-of-the-art implementations.

This chapter is an extension of our conference paper [19], where we presented
the feature extraction core of this system.

1.3 Chapter Organization

The system overview and our version of the SKB algorithm is explained in
Sect. 2, and a performance simulation of the implemented configuration is shown
at the end of this section. The hardware architecture is explained in Sect. 3.1,
the implementation results and comparisons are given in Sects. 4 and 5 concludes
the chapter.

2 Algorithm Details

When searching for sparse point correspondences in an image pair using fea-
tures, the three main steps that have to be performed are the interest point
detection, the descriptor calculation and the descriptor matching. In the follow-
ing, we summarize these steps of our version of the SKB algorithm and point
out the differences to the original [26]. A performance comparison with other
descriptors is given at the end of this section.

2.1 Interest Point Detection

Similar to the original SKB implementation, we use a variant of the simple
Difference of Boxes (DoB) filter to detect interest points in the image. However,
our system builds upon the original DoB version of CenSurE [2] instead of the
modified SUSurE DoB [9] that is used in the SKB paper. The CenSurE detector
basically performs a pixel-dense scan on all scales, whereas the SUSurE detector
uses a scan line sparsification to leave out pixel positions which are not likely
to lead to an extremal filter response. The SUSurE detector is about 3× faster
than the CenSurE in software [9], but it exhibits a data dependent, irregular
flow which inhibits parallel processing of different filter scales. The DoB filter
is a simplified Laplacian of Gaussian (LoG) filter and its response is given by
the subtraction of the pixel sums within two quadratic boxes with side length
2n+1 and 4n+1. The advantage of this simplification is that it can be efficiently
1 The 2D integral image is defined as IIxy =

∑

x′≤x

∑

y′≤y

Ix′y′ [24].

A Complete Real-Time Feature Extraction and Matching System 147

calculated using an integral image [24], since the area of a box can be obtained
by only adding/subtracting the integral image values at the box corners. The
image is filtered using different sizes of this filter, thereby forming a volume
of filter responses which is also denoted as scale space. As noted in [5,21], the
largest number of interest points is found on the first few scales. Therefore, and
because and in our application we do not require a large scale invariance, the
scale space is limited to the first 8 scales (i.e. n ∈ [1, 2, . . . , Nmax = 8]).

The DoB filter responses in the scale space are checked for extremal points
in a local 3×3×3 neighborhood using non-maximum suppression (NMS), and a
weak response threshold twk is applied in order to filter out non-robust interest
points. Since a part of the NMS neighborhood is unknown at the scale space
border, maxima are not allowed to occur there. Interest points are therefore
only detected on 6 out of 8 scales. Note that the integrated box areas must
be properly normalized [2] such that comparisons among different scales are
possible. The accuracy of the interest point coordinates could be enhanced by
additional interpolation of the maxima location, but since the DoB filters are
evaluated pixel-dense on each scale this is not done here. Further, no Harris
corner test is performed in our implementation, since this operation is very costly
and often not necessary in this application [26]. The output of the interest point
detection is a set of tuples {(xi, yi, si)}i∈{0,1,...,M}, where xi and yi are the integer
image coordinates and si is the index of the scale of a particular interest point i.

Depending on the value of the weak response threshold twk, different amounts
of interest points are detected. It is desirable to adjust this threshold, such
that each frame of a video yields around the same number of points. Since the
DoB filter responses are basically differences of image areas, their magnitudes
correlate with the average gradient magnitude2 in the image. Although this
relationship may be used to set the threshold to a suitable value, we found that
this does not stabilize the number of points well over a video sequence since the
image content itself has a large influence on how many points are detected. A
feedback loop with simple rules on how to adapt the threshold has proven to be
much more effective. In our version of the DoB detector, we use the following
rules

twk :=

⎧
⎪⎪⎨

⎪⎪⎩

if I < Ilo2 ,max
(
twk − Δtwk2, tmin

wk

)

else if I < Ilo1 ,max
(
twk − Δtwk1, tmin

wk

)

else if I > Ihi2 ,min (twk + Δtwk2, tmax
wk)

else if I > Ihi1 ,min (twk + Δtwk1, tmax
wk) ,

(1)

where Ilo2, Ilo1, Ihi1, Ihi2 are the decision boundaries, and Δtwk1, Δtwk2 are the
step sizes, and tmin

wk , tmax
wk are the minimal and maximal threshold values (used

for saturation). Figure 2a shows the behavior of the feedback loop when applied
to a test video sequence containing three scene cuts. Using 4 decision boundaries
instead of only 2 allows to use larger step sizes if the number of interest points is
far away from the target. Note that the step size should not be chosen too large
since this may cause an oscillatory behavior. A similar functionality to control

2 The average gradient magnitude is given by mavg = 1
X·Y

X∑

x=1

Y∑

y=1

‖ ∇Ixy ‖.

148 M. Schaffner et al.

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

frame #

0.3

0.6

0.8#interest pts threshold value

a)

lo

b)

2

hi2

lo1
hi1

desired operation region

0.5

0.7

0.4

Fig. 2. (a) Behavior of the weak response threshold adjustment scheme in the interest
point detection step (every 10 frames there is a scene change in this video sequence).
The following parameter set has been used in order to stabilize the number of points
between 3k and 4k: (Ilo2, Ilo1, Ihi1, Ihi2) = (2k, 3k, 4k, 5k), (Δtwk1, Δtwk2) = (0.05, 0.1)
and
(
tmin
wk , tmax

wk

)
= (0.1, 1.0). (b) example for a sparse disparity estimation using SKB

256 bit type B descriptors (this is the left image and the estimated disparity has been
color-coded). Note that there are almost no outliers even tough no post-processing step
like RANSAC has been performed (Color figure online).

the population of detected interest points is provided by the AdjusterAdapter
class in OpenCV [1].

2.2 SKB Descriptor Calculation

The SKB descriptor makes use of a set of sixteen 4 × 4 filter kernels (also called
semantic kernels, shown in Fig. 9b) which are evaluated at 16 positions within
a normalized support region around an interest point. This leads to 256 values
which are binarized using a certain thresholding scheme. In [26] they propose
three different binarization variants A, B and C where A leads to a 256 bit
descriptor and B and C lead to a 512 bit descriptor. Here we use the fast variant
A where the 256 values are binarized by comparing them against 0, i.e. only the
sign bit is kept. In [26] they also define two different support regions (type A
and B) out of which we use the larger 16 × 16 region (B), as our experiments
show that it performs slightly better (Fig. 3).

The (xi, yi, si) tuples from the interest point detector are used to calculate
the coordinates of the support region of that interest point. Bilinear interpolation
is then used to resample the support region such that it fits into the normalized
frame of 16 × 16 pixels (the normalization factors are given by the ratio of the
outer DoB box size of the actual scale and the smallest scale i.e. (4 · si + 1)/5).
Note that we do not perform any rotational alignment as this is not necessary
in the case of stereo matching. In order to facilitate the resampling step, we
precompute an image pyramid by successive down sampling of the input image
by a factor of two. Depending on the scale factor of an interest point i, the
nearest pyramid level is selected as the pixel source (this concept is also known

A Complete Real-Time Feature Extraction and Matching System 149

as mipmapping [3]). This has the advantage that aliasing artifacts are reduced in
the resampled patches and that the accessed image patch is always contiguous.

2.3 Descriptor Matching

Generally speaking, feature matching in this context is the process of finding
the optimal assignment of feature points i ∈ {1, 2, . . . , I} extracted from the left
stereo image to feature points j ∈ {1, 2, . . . , J} extracted from the right stereo
image. I.e. we have to solve an assignment problem of the form

S = arg min
S

∑

i,j

(Sij · Cij) , (2)

where Cij are the elements of a I × J matching cost matrix C; and Sij ∈
{0, 1} are the elements of a I × J assignment matrix S, which contains exactly
min (I, J) nonzero elements, and at most one nonzero entry per row and column.
As the feature descriptors are binary vectors in this case, the cost of matching a
descriptor di from the left image with a descriptor dj from the right image can be
efficiently calculated using the Hamming Distance between the two vectors, i.e.,

Cij =
N∑

k=1

(dik xor djk) , (3)

where k is the bit index in the vectors. However, the assignment problem itself is
computationally challenging if a globally optimal solution has to be computed.
E.g., the Hungarian Method which is often employed to solve this kind of prob-
lems has a complexity of O

(
I3

)
, where I is the expected number of descriptors in

the left and right image. Furthermore, a direct solution of the assignment prob-
lem (2) without any further constraints may still lead to suboptimal solutions,
since the geometrical relationship between the two images is completely ignored.
For example the solution with the least overall cost could assign a feature point
in the top right corner of the left image to a feature point in the bottom left
corner of the right image, which completely violates the geometry of a rectified
stereo setup. It is therefore common to constrain the search to a small window,
based on the knowledge about the camera setup. In our work, we adopt a greedy
nearest-neighbour (NN) search which is computationally efficient and – as will
be seen in the performance evaluation in Sect. 2.4 – which provides sufficient
accuracy. An additional Random Sample Consensus (RANSAC) [10] step could
be performed to eliminate wrong matches, but this is currently not done in our
hardware implementation. The details of the window search are given below.

Windowed Nearest-Neighbour Search. In this work, we match points from
the left image to the right, i.e., the list of descriptors from the left image is
traversed, and for each point i we exhaustively search a corresponding point j
in a window in the right image. This window is defined by (Δy,Δx1,Δx2), and
the point j has to fulfill the following set of constraints

{|yi − yj | < Δy, xj − xi < Δx1, xi − xj < Δx2}. (4)

150 M. Schaffner et al.

Δy is the maximum y disparity, Δx1 is the maximum negative- and Δx2 the max-
imum positive disparity. Two different Δx values are used here, since
the positive and negative disparity ranges in stereo setup are dependent on the
alignment of the cameras and are often not equal. Δy accounts for disparities
in y direction that occur if the image planes of the two cameras are not com-
pletely coplanar3. The current descriptor di from the left image is compared to
all descriptors dj within the matching window (4) using the hamming distance.
The point with descriptor dj with the lowest hamming distance is deemed the
correspondence of the point i if the hamming distance lies below the matching
threshold tmatch (usually ∈ {10, . . . , 30} here). Once a match has been found,
the points j and i are removed from the descriptor lists. This method is greedy,
but it has a complexity of only O (I · C · log (J)), where C is the average number
of points in the matching window (assuming that the descriptors from the right
image have been sorted according to their position, and that a point lookup has
complexity O (log (J))).

2.4 Descriptor Performance

Evaluation Setup. We developed a similar framework as K. Mikolajczyk,
et al. [15] in order to compare the descriptor performance of different SKB vari-
ants against the implementations of SIFT [15], SURF [5] and BRIEF [8]. The
difference to the framework of K. Mikolajczyk, et al. is that we use the Middle-
bury stereo test set [11], since we are interested in the performance on rectified
stereo content. In the framework of K. Mikolajczyk, et al., the test set comprises
images with blur and JPEG distortion artifacts, different exposures, and camera
rotations – which is useful to evaluate descriptors for applications where a lot of
invariance is required (such as image in stitching or object recognition), but it
does not model a stereo-camera setup.

The SIFT, SURF and BRIEF descriptors were all parameterized using the
default configuration. The SIFT and SURF descriptors have dimensions 128 and
64, respectively, and the Euclidean distance is used to calculate their matching
cost. The BRIEF descriptor has dimension 256 and the matching cost is calcu-
lated using the Hamming distance. As explained in Sect. 2.2, the SKB descriptor
comes in different flavors, out of which the computationally more efficient 256 bit
types A and B are evaluated. The fixed point model of the hardware implemen-
tation is included in the evaluation as well (type B). The descriptors were all
evaluated on the same DoB interest points and are upright, since no orientation
information is extracted in the interest point detector. The descriptor perfor-
mance is assessed using 1 - precision vs. recall plots. This is a parametric plot,
where the matching threshold tmatch is swept from 0 to the maximum matching
cost. The precision is defined as the percentage of false matches, and the recall
is the ratio of the number of correct matches and the number of existing true
matches. The dataset [11] provides the ground truth in the form of accurate
depth maps. We use these maps in order to transform interest points from one

3 This is also called Keystone distortion.

A Complete Real-Time Feature Extraction and Matching System 151

view to the other to check for true correspondences. In this evaluation, we always
used view1 and view5 of the scenes. The precision-recall curves are averages over
the whole test set.

Results and Discussion. The evaluation results are shown in Fig. 3. In Fig. 3a
the Hungarian method has been used to calculate a globally optimal matching,
whereas in Fig. 3b a greedy, windowed NN matching has been used. In Fig. 3c, the
two different SKB types and our fixed-point implementation are compared (the
curve for BRIEF is shown as a reference, here). We can observe from Fig. 3a and b
that SKB outperforms all other descriptors, and has a very steep precision-recall
curve, i.e., at low thresholds, many accurate point correspondences are found.
This observation is in line with the claim of F. Zilly, et al. [26]. When comparing
the results from Fig. 3a and b we can see that a globally optimal matching
performs better – especially in the region with higher thresholds. There is no
‘bending down’ of the precision-recall curve, as can be observed in Fig. 3b. But we
also note that in the low threshold region there is almost no difference. Since we
intend to operate in this region, the greedy NN matching is a perfectly feasible
choice. We can see in Fig. 3c that among the SKB types A and B, the latter
performs slightly better, and our fixed-point implementation of SKB-B shows
no performance degradation.

SIFT
SURF
BRIEF
SKB-B

SKB−A
SKB−B
SKB-B-FIX
BRIEF

a) b) c)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Re
ca

ll

1 − Precision

SIFT

SURF
BRIEF

SKB-B

0 0.2 0.4 0.6 0.8
1 − Precision

0 0.2 0.4 0.6 0.8
1 − Precision

Fig. 3. Matching performance simulation with the stereo test set from [11]. The recall is
the ratio of correct matches and existing correspondences between left and right image,
and 1-precision is the percentage of false matches [15]. (a) globally optimal matching,
(b) greedy NN matching (left to right), (c) comparison of different SKB types and our
fixed point implementation

3 Hardware Architecture

The complete feature extraction and matching system given in Fig. 1 was devel-
oped in several distinct stages. Initial work concentrated on designing an efficient
SKB core in hardware. The resulting core (described in Sect. 3.2) was imple-
mented as a custom ASIC using a relatively mature 180 nm technology from

152 M. Schaffner et al.

UMC. In the later stages of the project, the development was moved to the
FPGA based prototyping system Terasic DE4-530 which is based on an Altera
Stratix IV FPGA (EP4SGX530KH40C2).

The presented system has been designed to be part of a much larger image
processing pipeline currently in development at our institute. The overall system
adds some additional constraints on the feature extraction and matching system
presented here. The first constraint is the need to process stereoscopic images
in a top-bottom format. In order to take advantage of existing video infrastruc-
ture, frames of a stereoscopic video that consist of a left and right image are
usually encoded as a single image of an existing video format. Two widely used
formats are side-by-side, which as the name implies places the two images next
to each other, and top-bottom, which places one image on top of the other.
The second constraint is the need for a relatively high number of interest points
(and corresponding descriptors) per frame. This is because our target applica-
tion multiview synthesis [22] requires many point correspondences in the order
of 5 k. Since the images are processed in scan-line fashion, the system must be
able to cope with clusters of interest points, which demands a throughput which
is higher than the average number of points that is detected per frame. Further,
not all interest points are going to lead to a match – depending on the matching
threshold tmatch, this number is about 60 % of the detected interest points.

One of the fundamental decisions in the entire system has been to process
streaming video data and to avoid storing entire image frames within the process-
ing core. The challenge in the design is to balance the amount of storage in the
system with the practical I/O bandwidth limitations.

In the following, we will explain individual components of the feature extrac-
tion and matching system shown in Fig. 1. It consists of three main parts: The
input buffering and image pyramid calculation, the detection of interest points
and calculation of the descriptors, and finally the matching unit that performs
the matching and sends the results out via Ethernet for further processing.

3.1 Image Pyramid and Line Buffer

The architecture of the image pyramid calculation and the line buffer is shown
in Fig. 4a and b. The incoming 720p video is converted to gray scale and the
image pyramid consisting of a 360p and 180p resolution level is calculated and
stored in the off-chip RAM4. The image pyramid is calculated by averaging four
neighboring pixels, which results in a reduction of two in both dimensions. This
averaging is implemented using two adders and a delay line per reduction step.
Since the two views in the input video arrive sequentially after each other in top-
bottom format, only two reduction instances are required. The calculated pixel
streams are then parallelized and buffered such that long bursts can be written to
the off-chip memory. In our system, the external memory is a PC2-6400 DIMM,
and a local memory controller interface provides a 256 bit wide access at 200 MHz

4 Since we use only eight scales in our implementation, three pyramid levels are suffi-
cient.

A Complete Real-Time Feature Extraction and Matching System 153

clock rate, resulting in a peak data rate of 1.6 GByte/s. The image pyramid
calculation block itself works with the input pixel clock (72.5 MHz), and the
off-chip bandwidth for 3 pyramid levels and 2 views amounts to 72.6 MByte/s
at 30 fps.

The line buffer keeps a sliding window of each of the pyramid levels on-chip,
such that the requests from the SKB cores can be served with low latency and
without generating additional overhead to the off-chip memory. Per view, a DoB
feed unit transfers the lowest level of the image pyramid to the interest point
detection stage of the SKB cores. The corresponding sliding window of the lowest
pyramid level comprises 62 rows. Of this total, 48 rows are needed to provide
the 1D integral image to the DoB feed in column-wise chunks (see Sect. 3.2). We
use the remaining 14 rows for prefetching, since the cores work on overlapping
image stripes of 48 rows height, and these stripes are spaced 14 pixels apart.

Two descriptor feed units fetch the image patches requested by the descriptor
calculation part of the SKB cores from the correct image pyramid level. Out of
the eight scales that are used in the interest point detection, only the scales 2–7
can actually have interest points due to the non-maximum suppression (NMS).
Since always the nearest mipmap is selected, these scales all fall onto the second
and third pyramid levels. Therefore, the descriptor feed units only need access
to these two levels. The sliding window comprises of 56 rows on the first, and 48
on the second level. This is enough to accommodate the largest descriptor that
is supported (∼30 pixels), plus a margin large enough such that the requested
descriptor patches do not fall outside of the sliding window5.

Image Pyramid

62x1280x8bit

RR gathering

8+1

9

9

Control &
Address

Generation

Parallelize
8 to 256

8 8

256+1

256

32+1
To Memory Controller

From
Video
Interface

Fifo depths:
16x256bit

DoB Feed
(Left)

32

32

32

32

32

32

32

32

32

32

32

32

32

256+1

32+1

8+1

11

1

1

8

1

24+1

4

8+1

1

24+1
4

b)a)

Delayline
(depth: 640)

Delayline
(depth: 320)

>>2

Control &
Address

Generation

From
Memory
Controller

Serialize
256 to 32

56x640x8bit

48x320x8bit

62x1280x8bit

56x640x8bit

48x320x8bit

To SKB
Core
(Left)

To SKB
Core

(Right)

DoB Feed
(Right)

Descriptor
Feed
(Left)

Descriptor
Feed

(Right)

Parallelize
8 to 256

Parallelize
8 to 256

>>2

Fig. 4. Details of the image pyramid (a), and line buffer blocks of the feature matching
system (b)

5 The descriptor calculation lags behind the interest point detection and thus it can
happen that requested descriptor patches lie outside of the current sliding window
if there are not enough rows in the buffer.

154 M. Schaffner et al.

3.2 SKB Core

A top-level diagram of the SKB core architecture is shown in Fig. 5. It is com-
posed of two main blocks which perform the interest point detection and the
descriptor calculation. The interest point detection unit performs a dense scan
over the whole image and is constantly supplied with image data by the DoB
feed unit of the line buffer. The detected interest points are temporarily stored
in a FIFO before they are fetched by the Descriptor Calculation Units (DCUs).
Note that the interest points are distributed sparsely over the whole image. The
DCU has been designed to handle up to 12.5 k descriptors. Depending on the
desired descriptor throughput, several instances can be operated in parallel. The
FIFO serves to compensate local variations in throughput. Based on the position
and scale of a certain interest point, the DCUs request the corresponding image
patch from the descriptor feed units in the line buffer. The resulting descriptors,
their position, and their scale are then sent on to the matching unit.

SKB Core

DOB B lock NMS Blo ck

Interest Point Detection

Patch Coord.
Calculation

Transfer
Controller

DCU 2
Output
Transfer

Controller

Non-Maximum
Suppression

2.1 kbit SRAM

1D
 In

te
gr

at
io

n 1D Int.
Image

Memory

26.2 kbit
SRAM 3.1kbit SRAM

Box
Response

Calc. Filter
Response

Calc.

1.2 kbit Regs

Descriptor Calculation

150 15064 64

25
2

8+2

1

Interest Point FIFO

Depth:
20 (ASIC),
64 (FPGA)

24

(ASIC only)

16+1

3

24+1

4

Grayscale
Pixels

(720p)

Mipmap
Image

Data

Data

4

Descriptor
Output
Stream

40

40

24

24

DCU 1

62

62
Chann el

Controller Bilinear
Interp.

Ker nel
Response

Calc.

1 kbit Regs

272272

1 kbit Regs

27296

4178

14 13
5

19
0

14
4

Fig. 5. Block diagram of the SKB core with two descriptor calculation units: The SKB
core is supplied with raw 8 bit gray-scale image pixels. In a first step it searches for
interest points within the image. In a second step, the surroundings of these points
are described. For this description step, image patches around the interest points are
transferred to the SKB core as well. The final descriptors are sent back to the matching
unit.

Interest Point Detection. A total of eight DoB responses have to be evaluated
for each pixel – one for each scale in the scale space. Each DoB filter response
can be decomposed into a linear combination of an inner and an outer box filter
response. These box filter responses are usually calculated with the aid of a 2D
integral image, which allows to compute the sum over an arbitrary rectangular
area by accessing only four values in the integral image [24].

A Complete Real-Time Feature Extraction and Matching System 155

The integral image requires significant amounts of memory. While a conven-
tional 720p image using 8 bit gray values requires 7.4 Mbit, the corresponding
integral image requires large 28 bit entries which results in 25.8 Mbit. When the
integral image is stored off-chip, this results in a large bandwidth as eight values
have to be accessed per DoB filter response. For Nmax = 8 scales and an effec-
tive image size of xeff × yeff = 1248 × 688 pixel this results in a bandwidth of
xeff × yeff × Nmax × 8 × 28 bit/frame ≈ 1.54Gbit/frame. The effective image
dimensions are given by xeff = xres − 4 × Nmax and yeff = yres − 4 × Nmax,
respectively.

One option to reduce this bandwidth is to transfer and locally store whole
blocks of the integral image in order to leverage the spatial overlap among sub-
sequent filters [18]. In our implementation we use only a one-dimensional local
integral image. Our approach builds on the observation in [9] where they show
how a box filter response can be calculated recursively, provided that a dense
scan is performed on the whole image. When scanning from left to right, a box
filter response can be updated by adding the new pixels the box covers on the
right side, and subtracting the pixels that are no longer covered by the box on
the left side (Fig. 6a).

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

−

−

−

−

−

−

a)

c

d

a

b

b)

In
te

gr
at

io
n

D
ire

ct
io

n

k = 16
N

m
ax

=
8

stripe orientation

x
y x

y

xy

j j-1

j-15

j-17
j-16

Stack index:

c)
stripe orientation

stripe orientation

Fig. 6. Interest point detection details: (a) Recursive DoB filter calculation for the
green pixel position. (b) 1D integral image box response update. (c) NMS evaluation:
the most recently added stack has index j (Color figure online).

However, the number of additions is still linearly dependent on the filter size.
In our architecture, we additionally make use of the observation that the pixel
groups that have to be added or subtracted are always continuous pixel columns.
It is therefore possible to use a one-dimensional integral image which enables
the calculation of 1D-sums of arbitrary length along the columns in constant
time (two memory accesses and one subtraction). This allows us to update a
box response by accessing only four corner values (a, b, c, d) as shown in Fig. 6:

Bi = Bi−1 − (b − a) + (d − c) = Bi−1 + (a − c) + (d − b). (5)

The terms can be reordered such that only differences between two values in
the same row need to be added. Note that the one-dimensional integral image

156 M. Schaffner et al.

can be easily constructed locally as the integration direction is orthogonal to
the scanning direction – i.e. if the image is processed in stripes of a certain
height h, the integration amounts to the addition of h values, and is completely
independent of the width of an image. This enables a hardware architecture
that only needs to store a sliding window of the original image in a line buffer,
and the memory bandwidth can be reduced considerably compared to a naive
implementation using a two-dimensional integral image.

During processing the image is scanned on all scales in parallel, as other-
wise several scanning passes through the same image would be required. The
line buffer contains sliding windows of the input images and supplies the DoB
block in the SKB core with a constant stream of raw image data. The image is
processed in overlapping stripes of height h = 4×Nmax+k, where 4×Nmax = 32
is the minimum neighborhood required for eight scales, and k is the number of
effectively calculated box filter responses within one column of the stripe. In
order to enable non-maximum suppression in a 3 × 3 × 3 neighborhood, the
inner part of evaluated responses of a stripe need to be overlapped by another
two pixels, i.e., subsequent stripes have a relative offset of k − 2 rows. A larger
value of k reduces the overhead due to the overlap among subsequent stripes,
but it also increases the size of the local integral image buffer. In our imple-
mentation we use a value of k = 16. This results in a total bandwidth of
(4×Nmax+k)×xres×

⌈
1 + yeff−k

k−2

⌉
×8 bit ≈ 24.1Mbit per frame, and the local

integral image buffer has to hold at least (4×Nmax +k)× (4×Nmax +1) = 1584
entries.

A detailed block diagram of the DoB unit is shown in Fig. 7. The input is
supplied in column-major format, which enables simple 1D integration along the
columns. Note that with k = 16, it is sufficient to transfer one pixel to the SKB
core per cycle to reach a frame rate above 30 frames per second with a clock
frequency of 100 MHz.

When k = 16, the 1D-integration of a column takes 48 cycles, and the down-
stream circuitry is designed to calculate all Nmax × k = 128 DoB responses
during this time. Some of the inner and outer boxes of the DoB-filter across
different scales coincide, such that only 12 out of the total 16 boxes have to be
effectively evaluated in the case of eight scales. The 1D integral image memory
is organized as a ring buffer and can hold 48 rows each with a width of 34 pixels.
The rows of this memory are segmented into nine dual-port memories to ensure
a collision free, parallel access for the box filter response calculation. Note that,
the values are accessed in such a way that the difference of two values in one
row (see previous section) can be immediately calculated at the memory output,
which reduces the multiplexing overhead of the subsequent logic.

The previous box filter responses for the recursive calculation are stored in
another memory block. In one computation cycle, the k = 16 sets of twelve box
responses are sequentially loaded, updated and stored again. For faster loading
and storing, as illustrated in Fig. 7, two interchangeable register banks are used:
while one bank is in accumulator bank configuration, the other bank is organized
as a shift register such that the intermediate values can be shifted to and from the

A Complete Real-Time Feature Extraction and Matching System 157

Pi
xe

l S
tr

ea
m

8 14
Dual Port
Memory

1D
Integrator

8 Filter Responses
(Stack in

Scale-Space)
+ 14

14 -
15+

M
ux

: 9
 to

 1
2

15 12+

Box Resp.
Memory
48x64 bit

64

M
ux

19

19
18+

x
x

15 13+

15 19+

Dual Port
Memory

14

14 -
15+

Dual Port
Memory

14

14 -
15

208x14 bit
+

18

18

18

18
-Is

18
Os

Input 1D Integral
Image Mem.

Box Response Calculation
(requires 3 cycles for 12 boxes)

Filter Response Calculation
(8 DOB responses in 3 cycles)

The two register banks
(accumulation registers and
shift register chain) can be
swapped for instantaneous
data exchange.

In total 9
memory
chains

In total 12
accumula-
tor chains

In total 3 box- to

conversion units

18
18
18
18
18

208x14 bit

208x14 bit

Fig. 7. The DoB filter block receives a dense pixel stream and calculates the DoB
responses, which are output as stacks of 8 values in the scale space (j-th stack in
Fig. 6c). The constants In and On are the appropriate normalization factors for the
inner and outer boxes of scale n.

memory. In three cycles, all 12 accumulators update their box response according
the method presented in (5). Finally, the weighted sums among the intermediate
box responses are formed to get the DoB response. For this purpose, three units
are used which are able to calculate eight DoB responses in three cycles.

The detailed block diagram of the NMS (Non Maximum Suppression) unit
is given in Fig. 8. It receives the filter responses stack-wise from the DoB unit
and performs NMS stack-wise on the local scale space volume. It is important
to note that the 26 × (Nmax − 2) comparisons for one 3 × 3 × (Nmax − 2) stack-
neighborhood are not computed at once, but in a sequential manner as indicated
in Fig. 6c: the incoming stack j is compared to the upper left half of its neigh-
borhood which has already been calculated, and the intermediate comparison
results are stored. At the same time, the stack j − 17 is compared to the lower
right half of its neighborhood, and these results are combined with the corre-
sponding intermediate values in order to get the final result. Compared to a naive
approach where the full neighborhood of a stack is stored in order to perform
the NMS comparisons, this sequential approach requires to keep track of only
the last k + 1 = 17 scale space stacks, including their intermediate comparison
results. This is about 2× less memory, since the intermediate results amount to
only 6 bits per stack (maxima do not occur on the lowest and highest scale).
After suppressing the non-maximum responses, the weak response twk threshold
is applied to the remaining interest point candidates. Finally, the coordinates of
the points passing this test are written to the interest point FIFO. We found
that a depth of 64 works well in this setting.

158 M. Schaffner et al.

Scale-
Space
Stack

Comparisons:

8x18
&

6

8x18

6
C &

8x18

6

C

6
6

&
6

Memory
14x(6+8x18)

bit

&
8x18

6

C

6
6

&
6

6

&
8x18

6

C

6
6

&
6

6

&
8x18

6

C

6
6

6

6

TH

&
6

ThresholdingIntra Stack Next/Previous
Stack

Stacks in Next/Previous Slice

&
Bitwise
AND

C
Compare neigh-
bouring Signals NMS &

Thresholding
Result for
one Stack

6

co
nv

er
t t

o
(x

,y
,s)

 tu
pl

e

24

j j-1 j-15 j-17j-16Stack Index:

NMS

Fig. 8. The NMS block receives a stack of eight DoB responses per pixel position
(j-th stack in Fig. 6c), performs the NMS, and applies the weak response threshold.
The 8 DoB responses of a single stack are stored in 8 × 18 bit wide registers and the
intermediate comparison results in 6 bit wide registers. Overall, a local history of the
last 17 scale space stacks is stored.

Interest Point Description. In contrast to the interest point detection, the
descriptor calculation operates on sparse data. It has to operate fast enough
such that – on average – it is able to process all interest points in an image.
Our evaluations have shown that several thousand interest points per frame are
detected when setting the weak response threshold within a reasonable range of
twk ∈ [0.1, 1.0]. The interest point description block is designed to be scalable
and consists of several parallel Descriptor Calculation Units (DCUs) which can
process up to 12.5 k descriptors per frame each. If the application requires a
high throughput, this can be easily achieved by instantiating the appropriate
amount of DCUs and adjusting the bandwidth of the image memory accordingly.
The current implementation uses two DCUs which results in an aggregated
throughput of 25 k descriptors per frame.

The interest point description block takes interest points from the FIFO
buffer and assigns each one of them to a DCU, which then acquires the required
data from the nearest mipmap level in the line buffer through the transfer con-
troller. Then the received data is interpolated to a normalized 16 × 16 image
patch which is convolved with several filter kernels and the responses are bina-
rized using a threshold before the result is written to the output buffer. These
steps are described in more detail below.

The interest points are read from the FIFO and the patch coordinate calcula-
tion block determines the parameters for the bilinear interpolator, the mipmap
level and the coordinates and dimensions of the patch to be fetched from that
mipmap level. The patch coordinate calculation unit then dispatches this infor-
mation together with the interest point to an available DCU.

The mipmap is selected according to the scale parameter s of the interest
points. A strategy that always selects the lower mipmap level would ensure that
no information is lost, since then the image patches would always be downscaled.
In our implementation, we use a different strategy that always selects the nearest
mipmap (in scale). This has the benefit that the amount of data to be transferred

A Complete Real-Time Feature Extraction and Matching System 159

SaddlesRidgesCornersEdges

−

−

−

−

−

−
−

−
−

−

−−
−−

−

−

−

−
−

− −−
− −

−−
− −

++
+ +

++
+ +

+ +
++

+ +

+
+ +

+

+
++

+ ++

− −
− −

−

−
+
+ +

++ +

++ +
++ +
++ +

++ +
++ +
++ +

++ +
++ +
++ +

++ +
++ +
++ +

+ +
−−+ +

+

−−+ +
−

−
−
−

−
−
−

−+ +

+ +
+ +
+ +
+ +

+
+

+
+

+

−
−

+
+

−
−

+
+

−
−

−

−
−
−

−
−
−
−

−

−
−

− −
−

−

+
+

+
+

−
−

−−
−

−

− −

− − −

− − −

− − − − −

− − − −

− − − −

−
−
−

−

−
−
−

−

+
+

+ + + +
+ +

− − − −

−
−
− −

−
− − −

+ +
+ +

+ +

−−−−
−− −−

−−

−−

++ ++

++ ++

++

++

Kernel set eval center
Interest pointa) b)

Fig. 9. Descriptor details: (a) The descriptor support region is overlaid over an image
patch showing the centers around which the set of semantic kernels depicted in (b) is
evaluated.

to the bilinear interpolators is reduced by around a factor of two when compared
to the first strategy. And although some information is lost since some patches
have to be magnified, we found that the matching performance does not degrade
significantly. Moreover, this strategy causes the DCUs to never access the lowest
mipmap level (corresponding to the original image). This does not imply that
the lowest mipmap level does not have to be stored – it is still needed by the
DoB unit – but it does not have to be accessible by the DCUs, and the size of
the sliding window buffer can be set to the minimum size dictated by the DoB
unit.

Each DCU has a local pixel buffer that temporarily stores the pixel data
used by the interpolator. This reduces the required throughput of the interface
significantly – in some cases certain pixels are used up to nine times within a
few cycles. Whenever there is enough free space in the buffer, the DCU requests
another two lines of the mipmap image patch from the transfer controller. The
transfer controller acknowledges the requests whenever it has the capacity, and
passes the request on to the line buffer while still receiving the response to an
earlier request (this overlapping of requests ensures a high utilization of the
interface bandwidth). A detailed block diagram of the datapath of one DCU is
shown in Fig. 10. First, the acquired patch from the nearest mipmap is resampled
with a normalization factor in [0.75, 1.5] using bilinear interpolation to complete
the normalization of the support region. In a second step, the resulting row-
wise stream of single pixels of the resulting 16 × 16 support region (Fig. 9a) is
convolved with the 16 semantic filter kernels shown in Fig. 9b). Each DCU is
able to process one interpolated pixel per cycle, which involves the evaluation
of 16 kernel updates. Since the normalized image patch is processed in scan line
order, it is necessary to keep track of four sets of 16 temporary kernel responses.
Whenever the convolution of a set of filters is completed, it is binarized using a
threshold, and the resulting part of the descriptor is written to the output buffer.

The raw descriptor calculation throughput of one DCU is one descriptor in
256 cycles which translates into around 12.5 k descriptors per frame (slightly

160 M. Schaffner et al.

8

8

Bilinear Interpolation Kernel Response Calculation

+
×

×
Δx

8

8
+

+

+
×

×
×

×
×2
×1

×(-1)
×(-2)

≥2
≥1

+2
+1

LUT

1-Δx

1-Δx

init Δy

init Δx

s

Pne

Pnw

Psw

Pse

Δx

Δy

Δy 179

9

9

17

164×19
In total 16 kernel
convolution units

pa
rt

ia
l d

es
cr

ip
to

r

19

19

1

1

1

0

>0

0

>0

0

>0

00

01

1-

18

+

18

+

18

+

Fig. 10. The descriptor calculation unit (shown without the channel controller) con-
tains a bilinear interpolator and 16 kernel response units. Note that the weights of the
semantic kernels can be implemented without multipliers.

less than 13 k due to control overhead). However this assumes that image data
is always present for the bilinear interpolation. This is not always the case since
the size of the image patches (on the mipmap levels) that are processed vary up
from 16× 16 to 25× 25 pixels (a factor of 2.44 in size). The effective throughput
may thus be dependent on the speed of this interface. In our implementation,
the interface can deliver 24 × 100 Mbit/s of pixel data, which depending on the
patch size corresponds to between 15 k and 38 k image patches in the worst and
best case including control overhead. This rate is sufficient to supply one DCU
continuously. However, to cope with feature point clusters, it is important to
have a higher throughput than what the average case suggests. This is necessary
to keep the interest point FIFO size within reasonable limits. If the FIFO is too
small, some of the interest points can be dropped when the density of interest
points gets too large. In our design we use two DCUs which together are able to
process at least 15 k descriptors in the I/O-limited case, and up to 25 k in the
computationally limited case.

Output Interface. The output interface transmits each interest point together
with its descriptor, i.e., the 24 bit triplet (x, y, s) and the 256 bit descriptor as
a data packet over a 4 bit wide bus6 requiring 71 cycles. A DCU requires at
least 256 cycles to calculate a descriptor. The output interface guarantees that
all results can be transmitted within these 256 cycles. Each DCU contains an
output buffer that can store two finished descriptors in order to bridge time
6 This particular organization is a left-over from the initial part of the project where

the SKB core was implemented in an external ASIC which had I/O constraints.

A Complete Real-Time Feature Extraction and Matching System 161

periods where the output transfer controller is busy transmitting a descriptor
from a different DCU.

3.3 Descriptor Matching

In this system, we are matching interest points from the left image to the right
image with a variant of the greedy, windowed nearest neighbour search explained
earlier in Sect. 2.3. Since the matching process is basically an exhaustive search
within the matching window, it is crucial to sort the descriptors from the right
image appropriately. Otherwise the whole memory needs to be scanned for each
point from the left image. In software, this is often done by using a range-tree
variant (e.g. k-d tree). Here we use a different, hardware friendlier approach
similar to a direct mapped cache which has a much simpler data structure man-
agement.

Interest Point Sorting and Matching. In the worst case our right image
will contain 25 k interest points, which is very sparse and corresponds to less
than 3 % of the number of pixels for a 720p image. In order to reduce both the
memory and the search overhead, we have decided to use a binning method where
we subdivide the entire image into uniformly sized bins. Each bin is allowed to
store a small number of descriptors. In our implementation, after an exhaustive
evaluation, we have decided to use a bin size of 4×32 pixels, with eight descriptor
slots per bin. Assuming 25 k uniformly distributed descriptors per image, the
average number of descriptors per bin is around 3.3. We use more slots per bin
since sometimes clusters of interest points occur, and this may lead to a bin
overflow. Our evaluations have shown that when using eight descriptor slots, the
percentage of dropped descriptors is usually low and around 2 %.

In order to match a descriptor from the left image, only the bins covered by
the matching window have to be accessed, as illustrated in Fig. 11. When deter-
mining the size of the matching window for the nearest neighbour search, the
setup of the stereo video system has to be taken into account. The exact match-
ing window size is dependent on the geometric setup of the two cameras. Our
implementation is able to handle a maximum window size of (Δy,Δx1,Δx2) =
(15, 31, 255) which works fine for most stereo setups.

Since the calculated descriptors follow a scan-line pattern from the top-left
to the bottom-right of the image7, it is possible to use a two-dimensional cache
of bins. Considering the interest point detection step-size of 14 pixels and a
maximum matching window height of 30 pixels, the cache should at least span
30 + 2 × 14 = 58 pixels in y dimension (14 pixels to write the descriptors from
the current stripe, and 14 pixels for the stripe being matched). This value is
rounded up to 64 rows in our implementation.

7 The calculated descriptors do not necessarily follow a strict order due to the parallel
DCU s, and since the interest point detection works column-wise in a narrow strip.

162 M. Schaffner et al.

Currently matched point from left image
Points in the right image

... ...

...

...∆x1∆x2 ∆y

∆y

16
 B

in
s (

sp
an

 6
4

ro
w

s)

40 Bins (span 1280 rows)

up to 8 desc.1 Bin: 4 px

32 px

„s
lid

in
g

w
in

do
w

“ i
n

th
e

im
ag

e

Fig. 11. The image is divided into bins of 4 × 32 pixels. Each such bin can hold a
maximum of eight interest points. A sliding search window (in gray) is used to detect a
match of an interest point in the left image (green) to possible candidates in the right
image (red) (Color figure online).

Matching Block Details. A block diagram of the feature matching unit is
shown in Fig. 12. The feature matching unit consists of a descriptor FIFO for
the left image, a binning memory for descriptors from the right image, a valid
bit memory for the bins, a compare unit and two control units that control the
binning and matching processes.

Feature Matching

Descr. Rx
(Right)

4

4

277

277

10+8+1

Ad
dr

es
s

10

21
Invalidation Address

Ctrl + Valid Bits

277

11

11
10 8 8

10 8 8

Bitwise XOR

9
256

21

8

Descr.
Coord.

Valid
Bits

3
Index

<

59

Valid

256

21

21

Compare Unit

21

21

1
Score

Right Desc.
Coord.

Left Desc. Coord.

From
SKB

Cores Descr. Rx
(Left)

Write
Control

Matching
Control

Min. Tree

Pop. Count

8 Banks

Bin Mem.
16x40x
277 bit

Valid Bits
25x40x8 bit

Descr. Coord.

Descr. Coord.

Rd
/W

r P
oi

nt
er

s

Addr, Wr
Enable

2+8

FIFO Depth:
4 x 277 bit

FIFO Depth: 2k x 277 bit

Fig. 12. The feature matching unit contains a large descriptor FIFO for the left image,
a binning memory with associated valid bits for the right image, and a compare unit
that performs 8 descriptor comparisons in parallel.

A Complete Real-Time Feature Extraction and Matching System 163

The write control unit contains a counter that keeps track of the sliding
window position in the image. The coordinates of the incoming descriptors are
checked against this position, and if the point lies within the sliding window,
the write control unit checks the valid bits of the corresponding bin (there are
eight valid bits per bin, one for each descriptor slot). If there is a free slot, the
descriptor is written to that bin. Otherwise it is discarded. If the descriptor lies
below the sliding window, the uppermost row of the sliding window is invalidated,
moved to the bottom, and the row counter is incremented. This procedure is
repeated until the descriptor coordinates lie within the sliding window.

The matching control unit fetches the coordinate from the left-image descrip-
tor currently present at the output of the FIFO, and based on the sliding win-
dow parameters, it determines which bins have to be accessed. The depth of the
descriptor FIFO for the left image has been set to 2 k which is the expected num-
ber of descriptors in a 64 × 1280 pixel window in the image (assuming 25 k uni-
formly distributed descriptors). The required throughput of the feature matching
block in terms of comparisons per second (cps) is given by the expected number
of descriptors in the left image and the expected number of descriptors in the
matching window in the right image:

25 k × 25 k × 30 × (31 + 255)
720 × 1280

× 30 fps = 1.74Mcps. (6)

Assuming a clock frequency of 100 MHz, this corresponds to a throughput of
around 1.74 comparisons per cycle. But since the descriptors can be clustered, it
is necessary to provide enough throughput margin such that the feature matching
block does not start lagging behind. In our implementation, we access one whole
bin in parallel and perform 8 comparisons per cycle in order to stay on the
safe side. These descriptors are sent to the compare unit, where the Hamming
distances between the left image descriptor and all right image descriptors is
calculated. Next, the index of the descriptor with the smallest Hamming distance
is determined. After all bins have been loaded and compared, the coordinates of
the descriptor pair with the smallest Hamming distance is output – given that
the Hamming distance is below the matching threshold tmatch. The valid bit
corresponding to the right descriptor is then cleared.

4 Results

4.1 ASIC Implementation of the Core

As mentioned earlier, in the initial phase of the project, the SKB core for one
view has been prototyped on an ASIC which was named Sandstorm and which
has been fabricated in 180 nm CMOS technology (a die photograph is shown in
Fig. 13). Table 1 shows the key figures. At 100 MHz, one core is able to process
a 720p video stream at 30 fps with 15 k–25 k descriptors per frame (depending
on the distribution of the descriptor scales). As opposed to the FPGA imple-
mentation, the ASIC has a shorter interest point FIFO (20 instead of 64), does

164 M. Schaffner et al.

Fig. 13. Microphotograph of the Sandstorm chip

not automatically adjust the weak response threshold, and it contains an addi-
tional configuration block. This block allows to adjust parameters such as the
weak response threshold, and to read out statistical information on detected and
dropped interest points, as well as memory BIST results.

For comparison, Table 1 also lists the specifications of the BRIEF implemen-
tation of J. S. Park, et al. [16]. Note that their work has been designed for an
object recognition application with different throughput requirements (1080p
images, 512 descriptors per frame). Further, their implementation also contains
the matching part and a large descriptor buffer (4096 entries) for testing pur-
poses.

4.2 FPGA Implementation of the System

The synthesis results for an Altera Stratix IV EP4SGX530KH40C2 of our fea-
ture extraction and matching system are given in Table 2 (without memory con-
troller, video and Ethernet interface). On this FPGA, the system runs with up to
142 MHz, delivering a throughput of 42 fps with 15 k–25 k descriptors per frame
(depending on the distribution of the descriptor scales).

The results of the state-of-the art feature extraction and matching system
of J. Wang, et al. [25] is also shown on Table 2 for comparison. Their system is
based on BRIEF, and also works on 720p images. The difference is that they
work on single views at 60 fps, with 2 k descriptors per frame (the descriptors
are matched between subsequent frames). Their implementation uses about the
same amount of DSP slices and on-chip memory bits, and uses about 2× less
logic resources and around 3× less registers. But the fact that our system has
a much higher descriptor extraction and matching throughput puts this into
perspective.

A Complete Real-Time Feature Extraction and Matching System 165

Table 1. Measurement results of the Sandstorm chip. The results from J. S. Park,
et al. [16] are also listed as a reference.

Physical characteristics This work J. S. Park, et al. [16]

Technology UMC 180 nm (1P6M) 130 nm (1P6M)

Core Voltage 1.8 V 1.2 V

Package CQFP 120 ?

pads 82 (I:40, O: 26, PWR: 16) ?

Core Area 3.08 mm2 10.24 mm2

Complexity (with SRAM) 254 kGE (2.4 mm2) 861 kGE

Logic (std. cells) 193 kGE (1.8 mm2) 78.3 kGE

On-chip SRAM 29 kbit 1024 kbit

Operating Frequency 100 MHz 100 MHz

Power Dissipation 146 mW (core), 38mW (pads) 182 mW

Performance

Functionality IPD + FEa IPD + FE + FMa

Throughput (single frames) 30 fps (720p) 94.3 fps (1080p)

Max. Desc./Frame 15 k–25 k 512
aThe abbreviations IPD, FE and FM stand for Interest Point Detection, Feature
Extraction and Feature Matching

Table 2. Key figures of the FPGA implementation of our feature extraction and match-
ing system (without memory controller, video and Ethernet interface).

Physical characteristics This work J. Wang, et al. [25]

Target FPGA Altera Stratix IV Xilinx Virtex 5

(EP4SGX530KH40C2) (XC5VLX110T)

Maximum Clock Frequency 142 MHza 159 MHz

LUTs 33.6 k/425 k (7.9 %) 17 k/69 k (25 %)

Registers 30.7 k/425 k (7.2 %) 11.5 k/69 k (17 %)

Memory bits 4.15 Mbit/21 Mbit (19.5 %) 4.6 Mbit/5.33 Mbit (86%)

DSPs 64/1024 (6.25 %) 52/64 (81%)

Performance

Functionality IPD + FE + FM IPD + FE + FM

Throughput (720p) 42 fps (stereo) 60 fps (single)

Desc./Frame 15 k–25 k 2 k
aThis is for the worst case corner (slow 85C model). The pyramid calculation block
runs on the pixel clock of the video interface (72.5 MHz). The synthesis results from
J. Wang, et al. are also listed for comparison

166 M. Schaffner et al.

5 Conclusions

First and foremost, we have shown that SKB outperforms all other evaluated
descriptors on stereo content, and is thus a prime choice for efficient hardware
accelerators. The presented system is able to extract and match SKB features
from 720p stereo video in real-time, with 15 k–25 k descriptors per frame. We
have used several innovations to allow on-the-fly computation, and have reduced
the amount of intermediate data storage and necessary I/O bandwidth without
compromising the detection quality. Our system was designed for an application
where a large amount of matched interest points will be needed. The system still
remains competitive when compared to other state-of-the-art implementations,
even though it is able to extract and match nearly an order of magnitude more
interest points.

References

1. OpenCV Documentation (2014). Accessed May 2014. http://docs.opencv.org/
2. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for

realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A.
(eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg
(2008)

3. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering. AK Peters,
Natick (2008)

4. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)

5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

6. Bonato, V., Marques, E., Constantinides, G.: A parallel hardware architecture
for scale and rotation invariant feature detection. IEEE Trans. Circ. Syst. Video
Technol. 18(12), 1703–1712 (2008)

7. Bouris, D., Nikitakis, A., Walters, J.: Fast and efficient FPGA-based feature detec-
tion employing the SURF algorithm. In: IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, pp. 3–10 (2010)

8. Calonder, M., Lepetit, V., Ozuysal, M., et al.: BRIEF: computing a local binary
descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298
(2012)

9. Ebrahimi, M., Mayol-Cuevas, W.: SUSurE: speeded up surround extrema feature
detector and descriptor for realtime applications. In: “Workshop on Feature Detec-
tors and Descriptors: The State Of The Art and Beyond” as part of IEEE Confer-
ence CVPR, June 2009

10. Hartley, R., Zisserman, A.: Multiple View Geometry, 2nd edn. Cambridge Univer-
sity Press (2003). ISBN-13: 978-0-521540-051-3

11. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

12. Jeon, D., Kim, Y., Lee, I., et al.: A 470 mV 2.7 mW feature extraction-accelerator
for micro-autonomous vehicle navigation in 28 nm CMOS. In: IEEE International
Solid-State Circuits Conference Digest of Technical Papers, pp. 166–167 (2013)

http://docs.opencv.org/

A Complete Real-Time Feature Extraction and Matching System 167

13. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable
keypoints. In: IEEE International Conference on Computer Vision, pp. 2548–2555
(2011)

14. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vis. 60(2), 91–110 (2004)

15. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

16. Park, J.S., Kim, H.E., Kim, L.S.: A 182 mW 94.3 f/s in full HD pattern-matching
based image recognition accelerator for an embedded vision system in 0.13-CMOS
technology. IEEE Trans. Circ. Syst. Video Technol. 23(5), 832–845 (2013)

17. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning
approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–
119 (2010)

18. Schaeferling, M., Kiefer, G.: Object recognition on a chip: a complete SURF-based
system on a single FPGA. In: International Conference on Reconfigurable Com-
puting and FPGAs, pp. 49–54 (2011)

19. Schaffner, M., Hager, P., Cavigelli, L., et al.: A real-time 720p feature extraction
core based on semantic kernels binarized. In: IFIP/IEEE 21st International Con-
ference on Very Large Scale Integration, pp. 27–32, Oct 2013

20. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. I-195
(2003)

21. Sledevic, T., Serackis, A.: SURF algorithm implementation on FPGA. In: Biennial
Baltic Electronics Conference, pp. 291–294 (2012)

22. Stefanoski, N., Wang, O., Lang, M., et al.: Automatic view synthesis by image-
domain-warping. IEEE Trans. Image Process. 22(9), 3329–3341 (2013)

23. Svab, J., Krajnik, T., Faigl, J., et al.: FPGA based speeded up robust features. In:
IEEE International Conference on Technologies for Practical Robot Applications,
pp. 35–41 (2009)

24. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1, pp. I-511–I-518 (2001)

25. Wang, J., Zhong, S., Yan, L., et al.: An embedded system-on-chip architecture for
real-time visual detection and matching. IEEE Trans. Circ. Syst. Video Technol.
24(3), 525–538 (2014)

26. Zilly, F., Riechert, C., Eisert, P., et al.: Semantic kernels binarized - a feature
descriptor for fast and robust matching. In: Conference for Visual Media Produc-
tion, pp. 39–48, Nov 2011

An FPGA-Based Real-Time System for 3D
Stereo Matching, Combining Absolute

Differences and Census with Aggregation
and Belief Propagation

Kyprianos Papadimitriou, Sotiris Thomas, and Apostolos Dollas(B)

School of ECE, Technical University of Crete Akrotiri, 73100 Chania, Greece
{kpapadim,sthomas,dollas}@mhl.tuc.gr

Abstract. The implementation of 3D stereo matching in real time is
an important problem for many vision applications and algorithms. The
current work, extending previous results by the same authors, presents
in detail an architecture which combines the methods of Absolute Differ-
ences, Census, and Belief Propagation in an integrated architecture suit-
able for implementation with Field Programmable Gate Array (FPGA)
logic. Emphasis on the present work is placed on the justification of
dimensioning the system, as well as detailed design and testing infor-
mation for a fully placed and routed design to process 87 frames per
sec (fps) in 1920 × 1200 resolution, and a fully implemented design for
400 × 320 which runs up to 1570 fps.

Keywords: Stereo matching · Correspondence problem · Real-time ·
Field programmable gate arrays · Absolute differences · Census · Belief
propagation

1 Introduction

Stereo vision is a research area in which progress is made for some decades now,
and yet emerging algorithms, technologies, and applications continue to drive
research to new advancements. The purpose of stereo vision algorithms is to
construct an accurate depth map out of two or more images of the same scene,
taken under a slightly different angle/position. In a set of two images one image
has the role of the reference image while the other is the non-reference one. The
basic problem of finding pairs of pixels, one in the reference image and the other
in the non-reference image that correspond to the same point in space, is known
as the correspondence problem and has been studied for many decades [1]. The
difference in coordinates of the corresponding pixels (or similar features in the
two stereo images) is the disparity. Based on the disparity between correspond-
ing pixels and on stereo camera parameters such as the distance between the
two cameras and their focal length, one can extract the depth of the related
point in space by triangulation. This problem has been widely researched by
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 168–187, 2015.
DOI: 10.1007/978-3-319-23799-2 8

An FPGA-Based Real-Time System 169

the computer vision community and appears not only in stereo vision but in
other image processing topics as well such as optical flow calculation [2]. The
range of applications of 3D stereo vision cannot be underestimated, with new
fields of application emerging continuously, such as in recent research on shape
reconstruction of space debris [3].

The class of algorithms which we study falls into the broad category of pro-
ducing dense stereo maps. An extensive taxonomy of dense stereo vision algo-
rithms is available in [4], and an online constantly renewed comparison can be
found in [5], containing mainly software implementations. In general, the algo-
rithm searches for pixel matches in an area around the reference pixel in the
non-reference frame. This entails a heavy processing task as for each pixel the
2D search space should be exhaustively explored. To reduce the search space, a
constraint called epipolar line can be applied. This constraint aims at reducing
the 2D area search space to a 1D line by assuming that the two cameras are
placed on the same horizontal axis (much like the human eyes) and that the
corresponding images do not have a vertical displacement, thus the pixels which
correspond to the same image location are only displaced horizontally. The epipo-
lar line constraint is enforced through a preprocessing step called rectification,
which is applied to the input pair of stereo images. In this work we concentrate
on the stereo correspondence algorithm and not on the rectification step, assum-
ing that images are rectified prior to processing. We present an FPGA-based
implementation that is scalable and can be adjusted to the application at hand,
offering great speed-up over a software implementation. Essentially, we extend
our work published in [6], by including more results and a detailed analysis on
aspects related to performance and resource utilization. We should note here that
stereo matching is embarrassingly parallel and thus someone would reasonably
expect getting high performance gains from a custom hardware implementation.
Hence, our contributions go beyond solely achieving high performance results,
and these are:

– an analysis showing how the use of aggregation alleviates the need to employ
the more computationally demanding Sum of Absolute Differences (SAD)
algorithm while still maintaining good results;

– an analysis on how to dimension the combination of the Absolute Diferences
(AD) and the Census algorithms with aggregation in a single hardware imple-
mentation;

– the FPGA-based architecture with detailed tradeoff analysis in the use of its
primitive resources (Block RAM, Flip-Flops, logic slices), which justifies the
use of FPGAs in the field of stereo vision;

– a placed-and-routed design allowing real-time processing up to 87 fps for full
HD 1920 × 1200 frames in a medium-size FPGA;

– a modification at the final phase of design cycle that improved by 1.6x the
system performance;

– a detailed cost vs. accuracy analysis and on-FPGA RAM usage for design
optimization.

170 K. Papadimitriou et al.

The chapter is organized as follows: Sect. 2 discusses previous work, focusing
mainly on hardware-related studies, and with a more up-to-date comparison of
recent research results vs. those in our previous work [6]. Section 3 describes the
algorithm and its individual steps. Section 4 analyses the benefits of mapping
the algorithm to an FPGA with emphasis on dimensioning, and especially on
the usefulness of aggregation in addition to AD and Census vs. the SAD algo-
rithm. An in-depth discussion of our system is given in Sect. 5, including the
implementation of belief propagation. Section 6 has the system performance and
the usage of resources, and Sect. 7 summarizes the chapter.

2 Relevant Research

In recent years there is considerable work on 3D stereo vision, and in particular
on hardware systems to support real-time 3D stereo vision. Most of these results
are with FPGA technology, although there exist approaches with Digital Sig-
nal Processors (DSP) and Graphics Processor Units (GPU). Due to its intrinsic
heavy parallelization and pipelining, it is one of the most promising candidates
that can benefit from hardware implementation. However, several factors should
be considered when it comes to develop such a design. The main factors are
the maximum resolution supported and whether processing can be done at real-
time; a rate of 30 fps is desirable for the human eye, but higher rates might be
useful in industrial applications. Table 1 consolidates representative implemen-
tations in different technologies, with information on the maximum resolution
and processing rate.

The work in [7] was one of the earliest ones to combine the development of
cost calculation with the Laplacian of Gaussian in a DSP. More recently, several
works developed different algorithms in fully functional FPGA-based systems

Table 1. Implementation of 3D stereo vision in different technologies

Refernces Resolution Disparity fps Technology Year

[7] 160 × 120 32 30 DSP 1997

[8] 320 × 240 20 150 Spartan-3 2007

[9] 320 × 240 16 75 Virtex-II 2010

[10] 320 × 240 16 574 GPU 2010

[6] 400 × 320 64 1570 Virtex-5 2013

[11] 640 × 480 128 30 4 Stratix S80 2006

[12] 640 × 480 64 230 Virtex-4 2010

[13] 640 × 480 54 >30 Spartan-6 2013

[14] 640 × 480 60 507.9 Virtex-6 2014

[14] 1024 × 768 60 199.3 Virtex-6 2014

[15] 1920 × 1080 300 30 Spartan-6 2011

[6] 1920 × 1200 64 87 Virtex-5 2013

An FPGA-Based Real-Time System 171

ranging from relatively simple [8,9] to more complex ones [11,12,14,15]. The
authors of [12,15] have designed full stereo vision systems incorporating the rec-
tification preprocessing step. The work in [10] provides designs of an algorithm
based on census transform in three different technologies, i.e. CPU, GPU and
DSP; the maximum performance was obtained with the GPU. The authors in
[16] introduced a local stereo matching scheme, making use of a guided filter for
weighted cost aggregation to achieve impressive results relative to the quality
of local algorithms. Their implementation on a GPU achieved real-time perfor-
mance with 23 fps on average. The authors of [17] compare FPGA and GPU
implementations of stereo vision to expose the trade-off between the flexibility
but relatively low speed of an FPGA, and the high speed and fixed architecture
of the GPU; that work highlights the relative strengths and limitations of the two
systems. An interesting work reviewing algorithms suitable for low-cost FPGA
implementation was published in [18], concluding that the memory footprint
of the algorithm is the most important consideration given the limited on-chip
memory of FPGAs; three different algorithms were demonstrated as a part of a
real-time self-contained stereo vision system based on a Xilinx Spartan 6.

The supported disparity is an important parameter that scales with the
image resolution. As shown in Table 1, disparity for medium resolutions should
be between 64 and 128; this was the case for our functional prototype as well.
Our system surpasses all previous systems in terms of performance. The sys-
tem we implemented in a Xilinx Virtex-5 FPGA sustains a processing rate of
1570 fps for 400 × 320 frames. To the best of our knowledge this is far better
than any published work. For 640×533 resolution we achieved a processing rate
of 589 fps, while we support 1920× 1200 resolution at a rate of 87 fps. Moreover,
our analysis differs from other publications in the sense that we study the way
FPGA primitive resources suit the characteristics of each stage of the stereo
vision algorithm.

A more recent version of our system, aiming at a low-cost embeddable design
has been published in [13]. This design is substantially smaller in FPGA resources
vs. the current work, however, the design in [13] has fewer capabilities, including
a 15 % loss of 3D stereo matching capability in the near depth of field, which
comes from limitations in the number of pixels among which the disparities are
computed (54 in [13] vs. 64 in the present work), and the number of frames per
second was deliberately lowered to 30 in order to reduce power consumption;
however, with a higher clock rate a higher fps rate could be achieved.

3 The Algorithm

A typical approach in stereo matching is to employ a local algorithm which
matches corresponding pixels in the image pair. This local algorithm computes
matching costs between a pixel in the reference frame and a set of pixels in the
target frame and selects the match with the minimum cost. This is known as
the Winner-Take-All (WTA) strategy, according to which the algorithm selects
the match with the global minimum cost in the search space. Essentially, this

172 K. Papadimitriou et al.

process is equivalent to computing a 3D cost matrix (called Disparity Search
Image or DSI, shown in Fig. 1) of size W ×H×Dmax, - where W the frame width,
H the frame height and Dmax the size of the search space - and selecting the
index of the minimum in the Dmax dimension. To improve the results, usually
a cost aggregation step that acts on the DSI is interjected between the cost
computing and match selecting steps. Post-processing steps can further refine
the resulting disparity map.

Fig. 1. Disparity Search Image (DSI) volume

Our algorithm consists of the cost computation step implemented by the
Absolute Difference (AD) census combination matching cost, a simple fixed win-
dow aggregation scheme, a left/right consistency check and a scan-line belief
propagation solution as a post processing step. Each step of the algorithm will
be explained below, whereas the justification for the choice of this combination
of algorithms will become evident from quantitative data in Sect. 4.

The AD measure is defined as the absolute difference between two pixels,
CAD = |p1 − p2|, while census [19] is a window based cost that assigns a bit-
string to a pixel and is defined as the sum of the Hamming distance between
the bit-strings of two pixels. Let Wc be the size of the census window. A pixel’s
bit-string is of size W 2

c − 1 and is constructed by assigning 1 if pi > pc or 0
otherwise, for pi ∈ Window, and pc the central pixel of the window. The two
costs are fused by a truncated normalized sum:

C(pR, pT) = max(
CAD(pR, pT)

CMax
AD

+
CCensus(pR, pT)

CMax
Census

, λtrunc) (1)

An FPGA-Based Real-Time System 173

where λtrunc is the truncation value given as parameter. This matching cost
encompasses image local light structure (census) as well as information about
the light itself (AD), and produces better results than its parts alone, as was
shown in [20]. At object borders, the aggregation window necessarily includes
costs belonging to two or more objects in the scene, whereas ideally we would
like to aggregate only costs of one object. For this reason, truncating the costs
to a maximum value helps at least limiting the effect of any outliers in each
aggregation window [4].

After initializing the DSI volume with AD-Census costs, we perform a simple
fixed window aggregation on the W × H slices of the DSI, illustrated in Fig. 2.
This is based on the assumption that neighbouring pixels (i.e. pixels belonging in
the same window) most likely share the same disparity (depth) as well. Although
this does not stand for object borders and slanted surfaces, it produces good
results. On the other hand, one should select carefully the size of the aggregation
window Wa, as large windows tend to lead to an edge fattening effect in object
borders while small aggregation windows lead to loss of accuracy in the inside
area of an object itself, which results in a noisy output.

Fig. 2. Example of 3× 3 fixed window aggregation of DSI costs

Finally, we perform a left/right consistency check (LRC check) which repeats
the match selection step but with the opposite frame as reference and compares
the new disparity image with the original one. This process allows to detect mis-
matches due to occlusions (areas of the scene that appear only in one frame).
Using the mismatches detected, our scan-line belief propagation solution propa-
gates local confident matches along the scan-line, by accumulating matches that
passed the LRC check in a queue (called confident queue due to that it stores
only disparities that passed the LRC check), and propagating them to local
matches classified as occlusions in a neighborhood queue.

174 K. Papadimitriou et al.

4 Dimensioning of the FPGA Architecture

The algorithm can be mapped on an FPGA very efficiently due to its intrinsic
parallelism. For instance, the census transform requires W 2

c −1 comparisons per
pixel to compute the bit-string. Aggregation also requires W 2

a additions per cost.
For each pixel we must evaluate 64 possible matches by selecting the minimum
cost. These operations can be done in parallel. The buffer architecture requires
memories to be placed close to each other, as they shift data between them in
a very regular way. FPGA memory primitives (BRAMs) are located in such a
way they facilitate this operation. Figure 3 shows the critical components for
the different steps of the algorithm. Our system shares the pixel clock of the
cameras and processes the incoming pixels in a streaming fashion as long as the
camera clock does not surpass the system’s maximum frequency. This way we
avoid building a full frame buffer; we instead keep only the part of the image
that the algorithm is currently processing.

It is important to assess the need for flexibility regarding the algorithm para-
meters, and the gains of such a setup. First and foremost, we are seeking to build
a system that is frame-agnostic. Stating differently, we aim at supporting a series
of frame sizes within a range of choices; we regard this feature as obligatory. How-
ever, a limit on the maximum frame width was imposed for reasons explained in
Sect. 6. In addition, all the algorithmic parameters are adjustable; the maximum
disparity search range Dmax, the census window size Wc, and the aggregation
window size Wa. We chose to structure our system in a modular way in order

Fig. 3. Algorithm stages and critical components that fit well into FPGA regular struc-
tures

An FPGA-Based Real-Time System 175

to easily add/remove features. Features such as scanline belief propagation and
aggregation can be turned on or off selectively by the user. Figure 4 shows perfor-
mance results without aggregation and with various aggregation window sizes.

In order to develop an efficient architecture it is important to understand how
resources are used. In terms of sheer performance when no aggregation is used, the
SAD algorithm is the best, and so it would seem that it is best to implement it in
hardware. No aggregation means that the aggregation window is of size 1, when
computational cost is considered, the SAD algorithm is by far more expensive than
the alternatives, as it has approximately 2×W 2 comparisons. It is therefore useful
to consider cost vs. performance when we introduce aggregation to the system,
where we notice that the system-level performance with aggregation comes close
to the SAD performance, but at a lower computational cost.

The next question to answer in the development of a useful architecture is
the tradeoff between the census window size vs. the aggregation window size.
The effects of different census window sizes and different aggregation window
sizes is illustrated in Fig. 5, which contains in a more clear form the information
from Fig. 4 for the algorithms which were actually implemented in our system.

Fig. 4. Comparison of Census, AD and SAD performance with various aggregation
window sizes

176 K. Papadimitriou et al.

We analyzed the influence of the algorithm’s parameters on the quality metric
of percentage of good matches, over six (6) datasets of Middlebury’s 2005 data-
base [5]. We have settled on a Wc = 9×9 sized census window, a Wa = 5×5 sized
aggregation window and a Dmax = 64 disparity search range; these values offer
a good trade-off between overall quality and computational requirements. We
followed a similar procedure to determine all the other secondary parameters as
well, such as the confident neighborhood queue size and the neighborhood queue
size of the scan-line belief propagation module, and the LR check threshold of
the LR consistency check module [10].

There are negligible gains if we choose a larger Wc or Wa. The maximum
achievable percentage of good matches was 78,36 % for AD-Census (Wc = 7,
Wa = 13), therefore there is no actual benefit by choosing a large aggregation
window. It is thus our choice to fix the window sizes in our implementation. Our
design remains generic in any parameter aspect but it is not reconfigurable at
run-time. This decision simplifies our hardware design. For purposes of evalua-
tion and experimental verification of the design we designed our system using
Xilinx FPGAs, namely, a Virtex 5 XC5VLX110T as well as a Spartan 3 1000,
setting the parameters accordingly to fit the FPGA device at hand.

Last but not least, we need to consider what happens with occluded pixels from
one or the other camera. It is therefore useful to allow for some resources to be
used for Belief Propagation (BP), as shown in Sect. 5. Belief propagation (which
uses results from the Left-Right consistency check) does not consume significant

Fig. 5. Quality results in terms of the good matches for different census and aggregation
window sizes, when using the AD-Census

An FPGA-Based Real-Time System 177

resources but it solves the problem of uncertainty due to occluded pixels which
would result if only one camera were used as the only reference image.

5 Design and Implementation

The system in Fig. 6 receives two 8-bit pixel values per clock period, each one for
the corresponding image in the stereo pair. A window buffer is constructed for
each data flow in two steps. Lines Buffer stores Wc − 1 scan-lines of the image,
each in a BRAM, conceptually transforming the single pixel input of our system
to a Wc sized column vector. Window Buffer acts as a Wc sized buffer for this
vector, essentially turning it into a W 2

c matrix. This matrix is subsequently fed
into Census Bitstring Generator of Fig. 6, which performs W 2

c − 1 comparisons
per clock, producing the census bit-string. Central pixels/Bit-strings FIFO stores
64 non-reference census bit-strings and window central pixels, which along with
the reference bit-string and central pixel are driven to 64 Compute Cost mod-
ules. This component performs the XOR/summing that is required to produce
the Hamming distance for the census part of the cost, along with the absolute
difference for the AD part and the necessary normalization and addition of the
two. The maximum census cost value is 80 as there are 81 pixels in the win-
dow excluding the central pixel from calculations. Likewise, the maximum AD
cost value is 255 as each pixel is 8 bits wide. As the two have different ranges,
we scale the census part from the 0–80 range to a 0–255 range, by turning it
into an 8-bit value. To produce the final AD-Census cost we add the two parts

Fig. 6. Datapath of the cost computation (left side) and aggregation (right side)

178 K. Papadimitriou et al.

together, resulting in a 9-bit cost to account for overflow. Truncating this cost to
6-bit produces a slight improvement in quality as discussed in Sect. 3, and also
reduces buffering requirements in the aggregation step.

For the aggregation stage, 22 line buffers (Aggregation Lines Buffer in Fig. 6)
are used for 64 streams of 6-bit costs, each lines buffer allocated to 3 streams.
BRAM primitives are configured as multiples of 18 K independent memories, so
we maximize memory utilization by packing three costs per BRAM, accepting
a maximum depth of 1024 per line. Like the Lines Buffers at the input, they
conceptually transform the stream of data to Wa sized vertical vectors. Each
vector is summed separately in the Vertical Sum components and driven to
delay adders (Horizontal Sum), which output X(t) + X(t − 1) + ... + X(t − 4).
At the end of this procedure we have 64 aggregated costs.

Following the aggregation of costs, the LRC component illustrated in Fig. 7,
filters out mismatches caused by occlusions; its operation is illustrated in Fig. 8.
The architecture of LRC is based on the observation that by computing the right-
to-left disparity at reference pixel p(x, y), we have already computed the costs
needed to extract the left-to-right disparity at non-reference pixel p′(x, y). The
LRC buffer is a delay in the form of a ladder that outputs the appropriate left-
to-right costs needed to extract the non-reference disparity. The WTA modules
select the match with the best (lowest) cost using comparator trees. The reference
disparity is delayed in order to allow enough time for the non-reference disparities
space to build up in NonReference Disparities Buffer and then it is used to index
said buffer. Finally, a threshold in the absolute difference between DispRL(x, y)
and DispLR(x, y) indicates the false matches detected.

Fig. 7. Datapaths of the left/right consistency check (left side) and scan-line belief
propagation (right side)

The datapath for the scan-line belief propagation algorithm is shown in Fig. 7.
The function of this component is based on two queues: the Confident Neigh-
borhood Queue and the Neighborhood Queue. As implied by its name, the Con-
fident Neighborhood Queue places quality constraints on its contents, meaning

An FPGA-Based Real-Time System 179

Fig. 8. Top row has pixels of the Right image, whereas bottom row has pixels of the
Left image. The grey pixel in the center of the Right image has a search space in the
Left image shown with the broad grey area. To determine the validity of DispRL(x, y),
we need all left-to-right disparities in the broad grey area, thus we need right-to-left
costs up to x + Dmax. The same stands for the diagonal shaded pixel in the center of
the Left image.

that only disparities passing the LR consistency check are written in it. Fur-
thermore, at each cycle it calculates the average of the confident disparities,
as this value will ultimately be propagated to non confident ones in the neigh-
borhood queue. This average is calculated by a constant multiplier, using fixed
point arithmetic and rounding to reduce any number representation errors. On
the other hand, the Neighborhood Queue simply keeps track of local disparities
and their LR status. When the Propagate signal is asserted (active when a new
confident disparity is calculated and stored in the New Confident Disparity reg-
ister), the NewDisp is written to all records with a false LRC flag. NewDisp is
selected to be Previous Confident Disparity when this value is smaller than New
Confident Disparity, otherwise it is assigned New Confident Disparity, effectively
propagating confident background depths.

We report, below, some noticeable points regarding system operation:

– A small frame of unknown disparities is formed around the final disparity
image, where due to the image boundaries, the windows cannot be formed
and thus disparities cannot be computed.

– Searching for matches near the image boundary leads to reduced or trivial
disparity search spaces. In such cases our system finds the best match in the
possible range. Left/Right Consistency check filters out any incorrect matches
due to small search spaces.

– Belief propagation is activated on each end of line regardless of the LRC
indication, in order to fill in the occluded right area of the image.

– In order for high resolutions to work acceptably, the user needs to either
increase the Dmax accordingly or alternatively to reduce the inter-camera
spacing. The second option is preferable as it has no computational conse-
quences, whereas increasing Dmax has a cost on FPGA resources. Moreover,
as the features of the images are now more spaced out in pixel distances, the
other parameters of the system need also to be adjusted in order to maintain
output quality.

180 K. Papadimitriou et al.

6 Performance Evaluation and Resource Utilization

The system which was described, above, can process one pixel pair per clock
period, after an initial latency. The most computationally intensive part of the
main stage of the algorithm lies in the XOR/sum module of the AD census, which
computes the XOR/sum of 64 80-bit strings at the same time. A similar situation
stands for the WTA module, which performs 64 11-bit simultaneous comparisons.
We cope with both bottlenecks through fully pipelined adder/comparator trees
in order to increase the throughput. After the initial implementation, we added
extra pipeline stages to further enhance performance. Below we present the dif-
ferences between the initial (unoptimized) design, and the second (optimized)
design. Table 2 shows the performance results of the system implemented in a
Xilinx Virtex-5 FPGA. The maximum clock after place and route for the unopti-
mized design is 131 MHz, while for the optimized design is 201 MHz. Table 3 has
the differences in resource utilization between the two designs; it demonstrates
that for a speed improvement of over 50 %, the resource utilization penalty is
rather small. Based on data we gathered from the tools, the critical path lies
on a control signal driving the FSM of the aggregation line buffers; 16,6 % is
attributed to logic while the rest 83,4 % of the delay is due to routing.

Table 2. Design clock and processing rates for the optimized vs. unoptimized design
in Virtex XC5VLX110T FPGA for various resolutions

100× 83 384× 320 644× 533 1024× 853 1600× 1333 1920× 1200

Unoptimized design (131MHz) 15,783 fps 1,066 fps 384 fps 150 fps 61 fps 56 fps

Optimized design (201MHz) 24,216 fps 1,635 fps 589 fps 230 fps 94 fps 87 fps

Table 3. Resource utilization of the unoptimized vs. optimized design in Virtex
XC5VLX110T FPGA for Dmax = 64, Wc = 9, Wa = 5

Slices (%) LUTs (%) Flip-Flops (%) BRAMs (%)

Available 17,280 69,120 69,120 148

Unoptimized design (131MHz) 13,556 (78%) 37.107 (53%) 39,565 (57%) 59 (39%)

Optimized design (201MHz) 14,239 (82%) 37,986 (55%) 41,792 (60%) 59 (39%)

We should point out here that Wc, Wa and Dmax parameters are related
with tasks carried out in parallel, thus they do not affect system performance
but only resource utilization. Table 4 has the distribution of resources along with
the percentage breakdown in each type of resources for the optimized design.

We conducted several experiments by varying the parameters in each stage so
as to assess system performance in terms of scalability and increase in resource
utilization. Tables 5, 6, 7 have the FPGA resource results for different parame-
ter values. It is obtained that the design clock is not affected. At the same time
we observe that once a parameter increases, the amount of resources needed

An FPGA-Based Real-Time System 181

Table 4. Resource utilization of the optimized design in Virtex XC5VLX110T FPGA
for Dmax = 64, Wc = 9, Wa = 5

LUTs (%) Flip-Flops (%) BRAMs (%)

Available 69,120 69,120 148

Total consumed 37,986/69,120 (55%) 41,792/69,120 (60%) 59/148 (40%)

AD census 25,135/37,986 (66%) 29,167/41,792 (70%) 8/59 (14%)

Aggregation 6,547/37,986 (17%) 7,312/41,792 (17%) 51/59 (86%)

Left/Right check 4,638/37,986 (12%) 4,734/41,792 (11%) 0/59 (0%)

Scanline belief propagation 543/37,986 (1.5%) 634/41,792 (1.5%) 0/59 (0%)

for a resource category might increase drastically while another category is
not affected, i.e. in Table 6 as Wc increases, the amount of flip-flops and LUTs
increases as opposed to the amount of BRAMs which remains unchanged.

Table 5. Impact of Dmax on resource utilization and performance, when Wc = 9 and
Wa = 5

Dmax LUTs (%) Flip-Flops (%) BRAMs (%) Max Clock

16 10,284 (14%) 12,531 (18 %) 30 (20 %) 201.207 MHz

32 19,148 (27%) 22,687 (32 %) 30 (20 %) 201.045 MHz

64 37,986 (54%) 41,792 (60 %) 59 (39 %) 201.518 MHz

Table 6. Impact of Wc on resource utilization and performance, when Dmax = 64 and
Wa = 5

Wc LUTs (%) Flip-Flops (%) BRAMs (%) Max Clock

5 21,637 (31 %) 21,866 (31%) 59 (39%) 201.086 MHz

7 29,813 (43 %) 31,840 (46%) 59 (39%) 201.113 MHz

9 37,986 (54 %) 41,792 (60%) 59 (39%) 201.518 MHz

Aggregation of the costs consumes most of our BRAM resources, as we have
to construct Dmax×Wa cost line buffers (a total of Dmax×Wa×FrameWidth×
CostSize bits must be buffered). BRAM primitives of Virtex 5 FPGAs support
only certain aspect ratios. The vendor tool employs these primitives to con-
struct bigger memories, using an allocation algorithm. Memories with different
widths/depths from those ratios are mapped to the closest possible solution but
may not use the resources optimally. Memories with ratios of 1 × 16K (16,384
elements of 1-bit), 2 × 8K, 4 × 4K, 9 × 2K, 18 × 1K, 36 × 512 are guaranteed to
utilize a single 18 K primitive and thus use the resources optimally.

182 K. Papadimitriou et al.

Table 7. Impact of Wa on resource utilization and performance, when Dmax = 64 and
Wc = 9

Wa LUTs (%) Flip-Flops (%) BRAMs (%) Max Clock

1 (off) 28,505 (41 %) 33,047 (47%) 9 (6 %) 201.005 MHz

3 34,618 (50 %) 38,660 (55%) 31 (20 %) 201.167 MHz

5 37,986 (54 %) 41,792 (60%) 59 (39 %) 201.518 MHz

In addition, very large frame sizes cause parameter bloating. In specific,
images with 1800 × 1500 resolution require at least Dmax = 180 for achiev-
ing satisfactory results in terms of quality (without altering the current camera
baseline). While keeping the other parameters constant (Wc = 9, Wa = 5), such
a large Dmax would require buffering 180×5×1800 elements in the aggregation
stage.

Due to the above we decided to put a limit on the image width. Restricting
the frame width to 1024 pixels allowed us to:

– Pack at least two lines per 18K BRAM using a 18 × 1K BRAM primitive
configuration. For each cost line we allocate 9 × 1024 bits.

– Avoid excessive parameter bloating.

Using AD-Census, the costs are 9-bit long as described earlier. This benefits
our design as BRAM primitives can be used optimally in a 18×1K configuration.
Using pure Census, cost size is reduced to 7-bits. We can maximize BRAM usage
by using 9-bit costs, so we have room to increase census window size Wc up to
21 × 21, with little additional cost to resource usage.

If the cost size is less than 9-bits or if the frame width is less than 1024 we
can pack more lines. This aspect of our design is also parametric, as depending
on the frame size and cost size, each BRAM can fit up to 6 lines in a 36 × 512
BRAM configuration.

In an effort to reduce BRAM consumption even further, we performed a cost
size-accuracy tradeoff experimental analysis, depicted in Fig. 9. AD-Census was
redefined as:

ADCensus′ = min(ADCensus, SaturationV alue) (2)

Selecting saturation values to be power of 2, can reduce cost size and thus
fit more data into the BRAMs that implement the aggregation buffers. Our
analysis shows that there is a slight benefit in doing so: for a saturation value of
63 (cost size reduced to 6-bits), and for the default Wc and Wa values of 9 and 5
respectively, we observe a 0.5 % improvement over the cost without saturation.

This is an important result because it puts our quality almost on par with
a Wc = 11 and Wa = 5 parameter set. This slight improvement is attributed to
the reduction of the influence of outliers within the aggregation window by trun-
cating the cost. With 6-bit costs, we can pack 3 streams of costs per Aggregation
Lines Buffer, thus reducing BRAM consumption even further. Note that all the

An FPGA-Based Real-Time System 183

Fig. 9. Cost size/accuracy analysis. The peak value shifts to the right as the true
maximum cost increases.

results presented so far with regard to FPGA resource utilization, correspond to
designs incorporating the previous optimizations.

Figure 10 shows the effect of optimizations on BRAM utilization for Wc = 9,
Wa = 5, Dmax = 64 and a maximum frame width of 1024 pixels. Operating with
small frame sizes allows for optimal algorithm performance.

We performed extensive verification of our designs Fig. 11 has the set of
images we used to test our prototype. We entered stereo images and we compared
the software and the FPGA output over the ground truth. The SW version aimed
to support the validation phase; we developed it in Matlab prior to the FPGA
design. In terms of the physical setup for the verification, Fig. 12 shows the
methodology we followed to validate the FPGA system. The values of the pixels
in the output of the FPGA processing were subtracted from the values of the
pixels in the output of the SW, pixel-per-pixel so as to create an array holding
their differences. We obtained that SW and HW produced similar results. The
error lines are attributed to a slightly different selection policy in the WTA
process of the LRC stage. In particular, when it comes to compare two equal
cost values, our SW selects one cost value randomly, while our HW selects always
the first one. This variation occurs early in the algorithmic flow, thus it is not
only propagated but it is also amplified in the belief propagation module where
local estimates of correct disparities are spread to incorrectly matched pixels
along the scan-line. Finally, the errors at the borders that occur in both SW and

184 K. Papadimitriou et al.

Fig. 10. BRAM resource utilization with the optimized aggregation buffer structure

Fig. 11. Top row has Moebius 400× 320 input dataset from Middlebury database and
the ideal (ground truth) result. The bottow row has algorithm’s output from SW and
HW implementations.

An FPGA-Based Real-Time System 185

HW outputs as compared with the ground truth, are due to the unavoidable
occlusions at the image borders.

Fig. 12. Validation methodology

The actual prototype in the Virtex-5 FPGA can process images of up to
400 × 320 resolution. We put our efforts on building a high-speed stereo match-
ing design, rather than solving the I/O issue. Instead, at off-line time we send
images into internal BRAMs through a serial protocol; once the entire image is
stored in the BRAMs the design starts processing it. We used hardware means for
measuring the time to complete the FPGA processing, and by performing exper-
iments on different images - mainly from Middlebury database - we achieved a
processing rate of 1570 fps. To the best of our knowledge this outperforms any
published FPGA-based system.

7 Conclusions and Future Work

In this chapter we presented the architecture and implementation of a real time
stereo matching algorithm in an FPGA, which utilizes efficiently the strengths
of this device. We validated the system on a prototype, and we exceeded real-
time requirements by a large margin for various parameter configurations. In
the future we will place our efforts to more advanced aggregation schemes as
they are the key to better quality disparity maps for local methods. Another
point that would benefit from further research is the scan-line belief propagation
method, which we plan to augment to two dimensions and thus eliminate its
streaking artifacts. Also we plan to complete the stereo vision core algorithm
with rectification and full camera integration.

186 K. Papadimitriou et al.

Acknowledgement. Thisworkhas beenpartially supportedby theGeneral Secretariat
of Research and Technology (G.S.R.T), Hellas, under the project AFORMI- Allowing
for Reconfigurable Hardware to Efficiently Implement Algorithms of Multidisciplinary
Importance, funded in the call ARISTEIA of the framework Education and Lifelong
Learning (code 2427).

References

1. Ballard, D.H., Brown, C.M.: Computer Vision. Prentice-Hall, Englewood Cliffs
(1982)

2. Marr, D.: Vision. Freeman, San Francisco (1982)
3. Di Carlo, S., Prinetto, P., Rolfo, D., Sansonne, N., Trotta, P.: A novel algorithm

and hardware architecture for fast video-based shape reconstruction of space debris.
EURASIP J. Adv. Sig. Process. 2014(1), 1–19 (2014)

4. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

5. http://vision.middlebury.edu/stereo/eval/
6. Thomas, S., Papadimitriou, K., Dollas, A.: Architecture and implementation of

real-time 3D stereo vision on a Xilinx FPGA. In: IFIP/IEEE International Con-
ference on Very Large Scale Integration (VLSI-SoC), pp. 186–191, October 2013

7. Konolige, K.: Small vision systems: hardware and implementation. In: Proceedings
of the International Symposium on Robotics Research, pp. 111–116 (1997)

8. Murphy, C., Lindquist, D., Rynning, A.M., Cecil, T., Leavitt, S., Chang, M.L.:
Low-cost stereo vision on an FPGA. In: Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 333–334, April
2007

9. Hadjitheophanous, S., Ttofis, C., Georghiades, A.S., Theocharides, T.: Towards
hardware stereoscopic 3D reconstruction, a real-time FPGA computation of the
disparity map. In: Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 1743–1748, March 2010

10. Humenberger, M., Zinner, C., Weber, M., Kubinger, W., Vincze, M.: A fast stereo
matching algorithm suitable for embedded real-time systems. Comput. Vis. Image
Underst. 114(11), 1180–1202 (2010)

11. Masrani, D.K., MacLean, W.J.: A real-time large disparity range stereo-system
using FPGAs. In: Proceedings of the IEEE International Conference on Computer
Vision Systems, pp. 42–51 (2006)

12. Jin, S., Cho, J.U., Pham, X.D., Lee, K.M., Park, S.-K., Munsang Kim, J.W.J.:
FPGA design and implementation of a real-time stereo vision system. IEEE Trans.
Circuits Syst. Video Technol. 20(1), 15–26 (2010)

13. Rematska, G., Papadimitriou, K., Dollas, A.: A low-cost embedded real-time 3D
stereo matching system for surveillance applications. In: IEEE International Sym-
posium on Monitoring and Surveillance Research (ISMSR), in Conjunction with
the IEEE International Conference on Bioinformatics and Bioengineering (BIBE),
November 2013

14. Jin, M., Maruyama, T.: Fast and accurate stereo vision system on FPGA. ACM
Trans. Reconfigurable Technol. Syst. (TRETS) 7(1), 3:1–3:24 (2014)

15. http://danstrother.com/2011/01/24/fpga-stereo-vision-project/
16. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume

filtering for visual correspondence and beyond. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3017–3024, June 2011

http://vision.middlebury.edu/stereo/eval/
http://danstrother.com/2011/01/24/fpga-stereo-vision-project/

An FPGA-Based Real-Time System 187

17. Kalarot, R., Morris, J.: Stereo vision algorithms for FPGAs. In: IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–15,
June 2010

18. Mattoccia, S., Stereo vision algorithms for FPGAs. In: IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 636–641 (2013)

19. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual cor-
respondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158.
Springer, Heidelberg (1994)

20. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accu-
rate stereo matching system on graphics hardware. In: Proceedings of the IEEE
International Conference on Computer Vision Workshops (ICCV), pp. 467–474,
November 2011

Minimizing Test Frequencies for Linear Analog
Circuits: New Models and Efficient Solution

Methods

Mohand Bentobache1,2(B), Ahcène Bounceur3, Reinhardt Euler3,
Salvador Mir4,5(B), and Yann Kieffer6(B)

1 LAMOS Laboratory, University of Bejaia, 06000 Bejaia, Algeria
mbentobache@yahoo.com

2 LMPA Laboratory, University of Laghouat, 03000 Laghouat, Algeria
m.bentobache@lagh-univ.dz

3 Lab-STICC Laboratory, University of Brest, 20, Avenue Victor Le Gorgeu,
29238 Brest, France

{Ahcene.Bounceur,Reinhardt.Euler}@univ-brest.fr
4 University of Grenoble Alpes, TIMA, 38000 Grenoble, France

Salvador.Mir@imag.fr
5 CNRS, TIMA, 38000 Grenoble, France

6 LCIS Laboratory, University of Grenoble Alpes, 26900 Valence, France
Yann.Kieffer@esisar.grenoble-inp.fr

Abstract. This work presents new approaches to minimize the number
of test frequencies for linear analog circuits. The cases of single and mul-
tiple fault detection regions for multiple test measures are considered.
We first address the case when the injected faults have a single detection
region in the frequency band. We show that the problem can be formu-
lated as a set covering problem with a matrix having the consecutive-ones
property for which the network simplex algorithm turns out to be very
efficient. A second approach consists in modeling the problem by means
of an interval graph, leading to its solution with a specific polynomial-
time algorithm. A case-study of a biquadratic filter is presented for
illustration purposes. Numerical simulations demonstrate that the two
different approaches solve the optimization problem very fast. Finally,
the optimization problems arising from multiple detection regions are
modeled and solution approaches are discussed.

Keywords: Set covering problem · Consecutive-ones property · Analog
circuit testing · Linear programming · Interval graphs

1 Introduction

Testing of analog circuits to verify their functionality is a time consuming and
expensive task. In order to reduce costs, testing for the presence of faults that
affect the device structure leads to more structured and cheaper test sets.
Although the number of faults to be tested may indeed be very large, a reduced
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 188–207, 2015.
DOI: 10.1007/978-3-319-23799-2 9

Minimizing Test Frequencies for Linear Analog Circuits: New Models 189

set of tests that are simple to apply may be sufficient to achieve high fault cov-
erage values. There is today a pressing need from the Semiconductors Industry
to provide these fault coverage measures and optimized tests, especially in the
context of SoC (System-on-Chip) devices that embed digital and mixed-signal
blocks in a single chip.

Multi-frequency tests (i.e., multi-tone sinusoidal signals) have been classically
considered for the test and diagnosis of linear analog devices such as analog
filters. Since the effect of parametric and catastrophic faults varies as a function
of frequency, it is possible to derive a minimal set of test frequencies either for
the detection or for the diagnosis of all potential faults. To optimize the set
of test frequencies, the approaches based on sensitivity analysis have typically
addressed parametric faults [1,2]. However, these approaches are not accurate for
very large deviations, such as those that result from catastrophic faults. On the
other hand, the approaches based on fault simulation can handle catastrophic
faults, but at the expense of very time consuming simulations when realistic
faults at transistor-level are considered. Today, it is evident that fault simulation
of analog circuits is becoming essential in order to optimize test sets relying on
new techniques to accelerate fault simulation.

In this context, this work proposes a new technique for the optimization of
multi-frequency tests for linear analog circuits. Fault simulation is used to obtain
the frequency intervals for the detection of each fault. New efficient algorithms
are then presented for the selection of the optimal set of test frequencies within
these intervals for the detection of all faults. A simple case-study is used to illus-
trate the algorithms. Numerical simulations with randomly generated problem
instances demonstrate the good time complexity of the proposed algorithms,
with a large improvement over previous approaches [3]. We notice that the test
optimization algorithms are general, applicable to any case-study requiring an
optimization of multi-frequency tests based on fault simulation data. This tech-
nique is today feasible for analog filters, but it is also applicable to other analog
devices such as analog-to-digital converters or radio-frequency front-ends requir-
ing multi-tone tests, provided that fault simulation data are made available.

This work is organized as follows: in Sect. 2, the mathematical formulation of
the Set Covering Problem (SCP) is reviewed and some definitions are given. In
Sect. 3, we present the mathematical formulation of the problem of minimizing
the number of frequency intervals necessary to detect the faults of an analog
circuit, and we study the specific structure of the related coefficient matrix. In
Sect. 4, we present two approaches for solving the problem: the Linear Program-
ming (LP) approach and the interval graph approach, and a numerical example
is given for illustration purposes. In Sect. 5, we present a mathematical formu-
lation of the problem to minimize the number of test measures necessary for
detecting the faults of an analog circuit. In Sect. 6, we present a case-study of
testing a biquadratic filter. In Sect. 7, we carry out a large-scale numerical study
in order to compare both approaches and to evaluate their time complexity.
Finally, Sect. 8 concludes the work and provides some perspectives.

190 M. Bentobache et al.

2 The Set Covering Problem

In this section, we present the set covering problem, we cite the existing methods
for solving this problem and some of its applications. Finally, we present the
corresponding mathematical model and some definitions.

2.1 Overview

The Set Covering Problem is one of the most important models in combinato-
rial optimization. Indeed, a wide range of real-world problems can be modeled
as SCP, namely: railway crew scheduling, airline crew scheduling, facility loca-
tion, etc. The practical importance of the SCP has motivated many researchers
to develop efficient algorithms and heuristics for finding good solutions in rea-
sonable time. We can cite: exact algorithms based on branch-and-bound or
branch-and-cut [4], greedy heuristics [5], Lagrangian-based heuristics [6], genetic
algorithms [7], etc. In order to test the efficiency of the proposed algorithms,
there exists a library of SCP Benchmarks (Beasley’s OR Library [8]).

The set covering problem is known to be NP-hard [9]. However, there exist
some particular forms of the SCP which are polynomial-time solvable such as
the SCP with a constraint matrix having the consecutive-ones property (i.e.,
the ones in each row appear consecutively). This particular case, denoted in the
following by SCP-C1P, can be solved efficiently with LP algorithms.

2.2 Some Definitions

Let M = {1, . . . , m} and N = {1, . . . , n} be two sets of indices. Let A = (aij , i ∈
M, j ∈ N) be a binary (m×n)-matrix and c = (cj , j ∈ N) be an integer n-vector.
The value cj , j ∈ N, may represent the cost of column j. We assume without
loss of generality that cj > 0 for all j ∈ N . We say that a column j ∈ N covers a
row i ∈ M if aij = 1. A set S ⊆ N is called a cover if each row i ∈ M is covered
by at least one column j ∈ S. The problem of finding a cover S of minimum cost
can be formulated as an ILP (Integer Linear Programming) problem as follows:

min z = cTx, (1a)

subject to Ax ≥ 1m, x ∈ {0, 1}n, (1b)

where 1m is the m-vector of ones. When cj = 1, for all j ∈ N , problem (1) is
called a unicost set covering problem.

Definition 1 ([10]).
• A block of 1’s (block of 0’s) in a row of a binary matrix A is a maximal set
of consecutive 1-entries (0-entries) in this row.
• A binary matrix has the strong consecutive-ones property (strong C1P) if in
every row the 1’s appear consecutively, that is, if every row contains at most one
block of 1’s.
• A binary matrix has the consecutive-ones property (C1P) if its columns can

Minimizing Test Frequencies for Linear Analog Circuits: New Models 191

be permuted in such a way that the resulting matrix has the strong C1P. If an
ordering for the columns of a binary matrix yields the strong C1P, it is called a
C1-ordering.
• A graph G is an interval graph if its vertices can be mapped to intervals on
the real line such that two vertices are adjacent if and only if their corresponding
intervals have non empty intersection.
• A binary matrix is totally unimodular if every square submatrix has determi-
nant 0, 1, or −1.

3 Minimization of Test Frequencies to Detect
All the Faults of an Analog Circuit

In [3], the problem of selecting a minimum number of test frequencies is formally
presented and solved using boolean expressions. However, when the number of
faults is large, the technique used is not efficient. In this section, we present a
mathematical formulation of the general problem as a set covering problem. We
show that, under some special conditions on the considered faults, the coefficient
matrix of the SCP will have the C1P. Moreover, we suggest an interval graph
formulation of the problem.

3.1 Mathematical Formulation of the Problem as an SCP-C1P

Consider a given linear analog circuit C. Let F = {F1, F2, . . . , Fm} be the set
of all faults which can occur in C. Let T be a test measure which will be used
in the fault detection process. In order to detect a given fault Fi using the test
measure T , test signals with maximum amplitude and at different frequencies
in the interval [fmin, fmax] are used as inputs of the analog circuit. The fault
is detected if the test measure T exceeds a fixed threshold τ . Fault simulation
allows then to compute, for each fault Fi, the frequency intervals for which the
threshold is exceeded. These intervals are called the detection regions of fault Fi.
Note that each fault can have one, two or more detection regions. Let ni be the
number of detection regions of the fault Fi and Ri = {Ri1, Ri2, . . . , Rini

} be the
set of all the detection regions of the fault Fi. Note that these detection regions
are disjoint: for each two detection regions Rip and Riq, we have Rip ∩ Riq = ∅.
After that, we sort in increasing order the bounds of the different detection
regions, we find the vector of frequencies:

f = (f0, f1, . . . , fn), with f0 < f1 < f2 < · · · < fn−1 < fn. (2)

Then, we compute a set of n frequency intervals I = {I1, I2, . . . , In} as follows:

I1 = [f0, f1[, I2 = [f1, f2[, . . . , In = [fn−1, fn[. (3)

We denote by A = (aij , i = 1, . . . , m, j = 1, . . . , n) the matrix which is
defined as follows:

aij =

{
1, if ∃k ∈ {1, . . . , ni} : Ij ⊆ Rik;
0, otherwise.

(4)

192 M. Bentobache et al.

The problem consists in finding a minimal-cardinality set of frequency inter-
vals S ⊆ I which can detect all the possible considered faults. One frequency for
each selected frequency interval (typically in the middle of the interval) can be
used in the optimized test set. This problem can be formulated as a unicost set
covering problem: for each S ⊆ I and each frequency interval Ij , j ∈ {1, . . . , n},
we define a binary variable as follows:

xS
j =

{
1, if Ij belongs to the set S;
0, otherwise.

(5)

Now, if x = (xj , j = 1, . . . , n) is any vector of binary variables, then the mathe-
matical model corresponding to this problem will be given by:

min r = 1T
nx, (6a)

s.t. Ax ≥ 1m, x ∈ {0, 1}n. (6b)

Remark 1. The matrix A cannot have more than 2
∑m

i=1 ni columns.

Proposition 1. If ni = 1, for i = 1, . . . m, i.e., each fault has a unique detection
region, then the matrix A will have the strong consecutive-ones property.

Proof. Let Fi, i ∈ M, be a given detected fault and Ri1 = [αi, βi] be the unique
detection region of fault i. By construction, Ri1 can be written as a union of k
consecutive intervals Ij1 , Ij2 , . . . , Ijk , where αi is the lower bound of Ij1 and βi

is the upper bound of Ijk . (Two intervals are consecutive if they have a common
bound). Since the intervals Ijr correspond to the consecutive columns ajr of A
for r = 1, . . . , k, the detection regions correspond to the rows of A, and Ijr ⊆ Ri1,
i.e., aijr = 1 for r = 1, . . . , k.

Note, that the previous proposition is very important because it gives a simple
sufficient condition for the matrix arising in our application to have the strong
C1P.

In the following we consider only problems with faults having one detection
region.

Following Proposition 1, ILP problem (6) is a unicost set covering problem
with a coefficient matrix having the strong C1P (SCP-C1P). More precisely, it
is given by:

min z =
n∑

j=1

xj , (7a)

s.t.
rx(i)∑

j=lx(i)

xj ≥ 1, i ∈ M, xj ∈ {0, 1}, j ∈ N, (7b)

where for each row i, lx(i) denotes the leftmost index l for which ail = 1 and
rx(i) the rightmost index r for which air = 1. To get the LP-relaxation of the

Minimizing Test Frequencies for Linear Analog Circuits: New Models 193

above problem, we simply exchange the integrality constraints against the non-
negativity constraints [11]. Thus, we get the following LP problem:

min z =
n∑

j=1

xj , (8a)

s.t.
rx(i)∑

j=lx(i)

xj ≥ 1, i ∈ M, xj ≥ 0, j ∈ N. (8b)

3.2 Graph Formulation of the Problem

Previously, we have formulated the problem of minimizing the number of fre-
quency intervals to detect all the faults of an analog circuit using an ILP model.
In this subsection, we suggest a new formulation based on the concept of interval
graph: we denote the detection region of fault i by the interval [ai, bi] for i ∈ M .
Let the interval graph G = (F,EF) be defined as follows:

F = {[ai, bi], i ∈ M}, EF = {FiFj :]ai, bi[∩]aj , bj [�= ∅}. (9)

In the next section we will suggest a polynomial algorithm using this interval
graph for solving the considered problem.

4 Approaches for Solving the Minimization
Problem of Frequency Intervals

In this section, we suggest two approaches for solving the problem of minimizing
the number of frequency intervals necessary to detect all the faults of an analog
circuit.

4.1 LP Approach

Let us recall the following results:

Theorem 1 ([12]). An (m × n)-matrix A with entries 0, 1 and −1 is totally
unimodular if and only if each collection of columns from A can be partitioned
into two column sets such that in each row the sum of the entries of the first set
and the sum of the entries of the second set differ by at most 1.

Theorem 2 ([13]). Let A be an m × n integral matrix. Then the polyhedron
defined by Ax ≤ b and x ≥ 0 is integral for every integral vector b if and only if
A is totally unimodular.

Remark 2 ([10]). Any matrix A having the C1P fulfills the conditions of Theo-
rem 1 and, hence, is totally unimodular.

194 M. Bentobache et al.

Following Theorem 2 and Remark 2, any basic feasible solution of the LP
problem (8) represents a cover for the SCP-C1P (7). Therefore, we can find
an optimal solution using LP algorithms such as the primal or dual simplex
method [14], the support method [15], the hybrid direction algorithm [19], etc.
However, it is more efficient to transform the SCP-C1P into a min-cost network
flow problem [10].

Let us make the Veinott-Wagner transformations [20] for the variables of
problem (8): we introduce the variables yj , j = 1, . . . , n + 1 such that xj =
−yj +yj+1, j = 1, . . . , n. Hence, we obtain the following equivalent LP problem:

min z = −y1 + yn+1, (10a)
s.t. − ylx(i) + yrx(i)+1 ≥ 1, i ∈ M, (10b)

− yj + yj+1 ≥ 0, j ∈ N. (10c)

The dual of the above problem has m + n variables v1, v2, . . . , vm+n and n + 1
constraints and it is given by:

min w = −
m∑

j=1

vj , (11a)

s.t.
m+n∑

j=1

a′
1jvj = −1, (11b)

m+n∑

j=1

a′
ijvj = 0, i = 2, . . . , n, (11c)

m+n∑

j=1

a′
(n+1)jvj = 1, vj ≥ 0, j = 1, . . . , m + n. (11d)

where A′ = (a′
ij , i = 1, . . . , n+1, j = 1, . . . , m+n), and A′ has exactly one 1 and

one −1 in each column. Remark that the LP problem (11) is a min-cost network
flow problem. Thus, it can be solved by the network simplex algorithm. The
scheme of the LP approach to solve the problem is described in the following
steps:
Step 1. Compute the frequency intervals necessary to detect the different faults

using relation (2);
Step 2. Compute the constraint matrix of the SCP-C1P using relation (4);
Step 3. Make the Veinott-Wagner transformations. Let V be the constraint

matrix of the LP problem (10);
Step 4. Compute the constraint matrix A′, the (n+1)-vector of right-hand-sides

b′ and the cost (m + n)-vector c′ of the min-cost network flow problem (11):

A′ = V T , b′ = (−1, 0, . . . , 0, 1)T , c′ =
(−1m

0n

)
;

Step 5. Solve the min-cost network flow problem with the network simplex
algorithm.

Minimizing Test Frequencies for Linear Analog Circuits: New Models 195

4.2 Interval Graph Approach

In order to solve the problem using the interval graph G defined by (9), we sug-
gest the following algorithm:

Algorithm 1.
• Sort the vertices Fi, i = 1,m by increasing order of their
upper bounds bi;
• Compute the frequencies fk, k = 0, n with (2);
• Set S = ∅, label(i) = 0, i = 1,m;
• For i = 1 to m

• If label(i) = 0, then
• Find the index k such that bi = fk and set

S = S ∪ {[fk−1, fk[};
• For j = i + 1 to m

If Fj is adjacent to Fi in G, then set label(j) = 1;
endif

endfor
endif

endfor

The input of this polynomial algorithm is the interval graph G and the output
is a minimal-cardinality set S of frequency intervals, which detects all the faults.

Note, that it is not necessary to construct the whole interval graph: we can
use only its vertices, i.e., detection regions of the different faults, and replace the
test “If Fj is adjacent to Fi in G” by the test “If aj < bi ≤ bj”.

Remark 3. Contrarily to the LP approach, the interval graph approach uses the
detection regions of the considered faults directly, i.e., without transforming the
problem.

4.3 Numerical Example

Example 1. We consider an analog circuit with five faults. The detection regions of
these faults are: R1 = [1, 80], R2 = [160, 1700], R3 = [1, 1400], R4 = [1400, 2000]
and R5 = [1000, 1500]. Let us compute the minimal-cardinality set of frequency
intervals necessary to detect all the five faults with the two approaches.

LP Approach: First, we compute the different frequency intervals Ij , j = 1, . . . ,
n: we sort the different bounds of the detection regions in increasing order, we
get the vector f = (fi, i = 0, . . . , 7) = (1, 80, 160, 1000, 1400, 1500, 1700, 2000).
Thus, the different frequency intervals are computed as follows: I1 = [1, 80[, I2 =
[80, 160[, I3 = [160, 1000[, I4 = [1000, 1400[, I5 = [1400, 1500[, I6 = [1500, 1700[
and I7 = [1700, 2000[. The question is then: among all these seven intervals, which
one must be included in a minimal-cardinality set? In order to answer this ques-
tion, we solve the following ILP problem:

min z = 1n
Tx, (12a)

196 M. Bentobache et al.

s.t. Ax ≥ b, x ∈ {0, 1}n, (12b)

where xT = (x1, x2, x3, x4, x5, x6, x7), bT = (1, 1, 1, 1, 1) and

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 0 1 1 1 1 0
1 1 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 1 1 0 0

⎞

⎟⎟⎟⎟⎠
. (13)

It is easy to remark that the constraint matrix has the consecutive-ones property.
Using the Veinott-Wagner transformations (xj = −yj + yj+1, j = 1, 2, . . . , 7),
we get the following equivalent LP problem:

min z = (c′)T y

s.t. V y ≥ b′,
(14)

where y ∈ R
8, c′ = (−1, 0, 0, 0, 0, 0, 0, 1)T , b′ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T and

V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0
0 0 −1 0 0 0 1 0

−1 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 −1 0 1 0 0

−1 1 0 0 0 1 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The dual problem of the LP problem (14) is

min w = −(b′)T v

s.t. V T v = c′, v ≥ 0,
(16)

where v ∈ R
12. Remark that the LP problem (16) is a min-cost network flow

problem. The primal and dual optimal solutions obtained by the network simplex
algorithm of CPLEX are:

v∗ = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T , y∗ = (0, 1, 1, 1, 1, 2, 2, 2)T . (17)

Hence x∗ = (1, 0, 0, 0, 1, 0, 0)T , which means that a minimal-cardinality set of
frequency intervals is S = {I1, I5} = {[1, 80[, [1400, 1500[}.

Interval Graph Approach: Let G = (F,EF) be the graph defined by (9).
First, we sort the vertices of the graph G in increasing order of their upper

Minimizing Test Frequencies for Linear Analog Circuits: New Models 197

bounds, we get:

F1 = [a1, b1[= [1, 80|, F2 = [a2, b2[= [1, 1400[, F3 = [a3, b3[= [1000, 1500[,

F4 = [a4, b4[= [160, 1700[and F5 = [a5, b5[= [1400, 2000[.

The vector of frequencies computed by (2) is then

f = (f0, f1, . . . , f7) = (1, 80, 160, 1000, 1400, 1500, 1700, 2000).

The different iterations of the interval graph algorithm are as follows:
We set S = ∅ and label(i) = 0, i = 1, 5.
For i = 1, b1 = 80, fk = f1 = 80, S = {[f0, f1[} = {[1, 80[}. The unique

adjacent vertex of F1 is F2 (the edge F1F2 ∈ EF because a2 < b1 < b2), so we
set label(2) = 1.

For i = 2, we have label(2) = 1, so we pass to i = 3.
For i = 3, b3 = 1500, fk = f5, S = {[f0, f1[, [f4, f5[} = {[1, 80[, [1400, 1500[}.
The adjacent vertices of F3 are F4 and F5, so label(4) = 1 and label(5) = 1.
For i = 4, we have label(4) = 1, so we pass to i = 5.
For i = 5, we have label(5) = 1. Since i = m, a minimal-cardinality set of

frequency intervals is S = {[1, 80[, [1400, 1500[}.

4.4 Case of Multiple Detection Regions

Let us illustrate this case by the following numerical example:

Example 2.

Faults Detection regions

F1 R11 = [1, 80]

F2 R21 = [160, 200], R22 = [300, 1700]

F3 R31 = [1, 1400]

F4 R41 = [1400, 2000]

F5 R51 = [1000, 1500]

The vector of frequencies computed by (2) is then

f = (f0, f1, . . . , f9) = (1, 80, 160, 200, 300, 1000, 1400, 1500, 1700, 2000).

The frequency intervals are:

I1 = [1, 80[, I2 = [80, 160[, I3 = [160, 200[, I4 = [200, 300[, I5 = [300, 1000[,

I6 = [1000, 1400[, I7 = [1400, 1500[, I8 = [1500, 1700[, I9 = [1700, 2000[.

198 M. Bentobache et al.

The constraint matrix of the SCP is then given by

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 0
1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0

⎞

⎟⎟⎟⎟⎠
. (18)

Let us remark that this matrix loses the consecutive-ones property because the
second row does not have consecutive ones. Therefore, we cannot apply the
techniques suggested above to solve it. If this case occurs in practice, the branch-
and-cut algorithm of CPLEX can be applied to solve the ILP problem. For this
example, CPLEX gives us the optimal solution: x∗ = (1, 0, 0, 0, 0, 0, 1, 0, 0)T . So
a minimal-cardinality set of frequency intervals is

S = {I1, I7} = {[1, 80[, [1400, 1500[}. (19)

Remark 4. Although the constraint matrix of the previous SCP does not possess
the consecutive-ones property, solving the LP relaxation gives us the optimal
solution x∗ = (1, 0, 0, 0, 0, 0, 1, 0, 0)T . This means that for this type of problems
the LP relaxation can give a good approximate solution for the optimal one (good
upper bound for the optimal value). That is why we expect the branch-and-cut
algorithm of CPLEX (or any other solver) to produce an optimal solution in
a few iterations in case that the optimal solution of the LP-relaxation is not
optimal for the SCP. Further numerical experiments have to be carried out in
order to confirm this assertion.

5 Minimization of the Number of Test Measures
Necessary for Detecting All the Faults
of an Analog Circuit

Previously, we have assumed that only one test measure is used in the testing
process. However, in practice, often we use several test measures. So if k is the
number of the used test measures, we need to solve k SCPs for solving the
problem of frequency interval minimization. Therefore, solving the problem of
minimization of test measures beforehand can dramatically reduce the CPU time
of solving the whole optimization process.

Consider a given analog circuit C. Let F = {F1, F2, . . . , Fm} be the set of
all faults which can occur in C. Let T = {T1, T2, . . . , Tk} be the set of k test
measures to be used in the fault detection process. We denote by H = (hij , i =
1, . . . , m, j = 1, . . . , k) the Fault-Test-Measure (FTM) matrix which is defined
as follows:

hij =

{
1, if the test measure Tj detects the fault Fi;
0, otherwise.

(20)

Minimizing Test Frequencies for Linear Analog Circuits: New Models 199

The problem consists in finding the minimal-cardinality set of test measures
which can detect all the considered faults. This problem can also be formulated
as a unicost set covering problem: for each test measure Tj , j = 1, 2 . . . , k and
any set S ⊆ T , we define a binary variable as follows:

xS
j =

{
1, if the test measure Tj ∈ S;
0, otherwise.

(21)

Hence, the mathematical model corresponding to this problem is given by:

min p = 1T
k x,

s.t. Hx ≥ 1m, x ∈ {0, 1}k. (22)

The optimal solution for this integer linear programming problem constitutes a
desired minimal-cardinality set of test measures which detect all the faults. Note
that, in general, the coefficient matrix of this problem does not have a specific
structure, so the branch-and-cut algorithm of CPLEX can be used to solve this
problem.

Once a minimal-cardinality set of test measures determined, we can solve the
problem of frequency interval minimization for each test measure in this set.

The global optimization scheme for testing a linear analog circuit with mul-
tiple test measures is shown in Fig. 1.

6 Case-Study

To illustrate our approach, similar to [3], we will now present a case-study
biquadratic filter as shown in Fig. 2. There are 6 test measures for this circuit
that correspond to the common-mode signal at the input and at the output of
each operational amplifier. For simplicity, only catastrophic (10 MOhm open and
1 Ω short) faults in the passive components are considered. Due to the differential
design, only 16 different faults need to be considered.

We denote the test measures by T1, T2, . . . , T6 and the faults by F1, F2, . . . ,
F16. Figure 3 shows the frequency behavior of test measure T1 for some of these
faults. The detection regions of each fault Fi, i = 1, 2, . . . , 16 using test measures
Tj , j = 1, 2, . . . , 6 are computed using the fault simulator developed in [21,22].
Note, that the simulation results obtained in [21] indicate that test measures
T2, T4 and T6 do not detect any fault. Hence, we only consider test measures
T1, T3 and T5. For simplicity also, we have only considered nominal simulations of
the catastrophic faults. In practice, Monte Carlo simulations of each catastrophic
fault should be considered, and worst-case detection regions be computed (that
is, the intersection of the detection regions for each Monte Carlo instance).

First, we start by minimizing the number of test measures necessary for the
detection of the sixteen faults. Following simulation results, test measure T1

detects the faults: F1, F2, . . . , F8; T3 detects the faults F9, F10, F11, F12 and

200 M. Bentobache et al.

Fig. 1. Global optimization scheme for testing analog circuits with multiple test mea-
sures

Minimizing Test Frequencies for Linear Analog Circuits: New Models 201

Fig. 2. Biquadratic filter

Fig. 3. Output signals using test measure T1

T5 detects the faults F13, F14, F15, F16. So the FTM matrix corresponding to
the minimization problem of test measures is

HT =

⎛

⎝
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞

⎠ . (23)

Observe, that since test measures T2, T4 and T6 do not detect any faults, the
matrix H contains only three columns which correspond to the test measures

202 M. Bentobache et al.

T1, T3 and T5. Without solving the SCP problem (22), it is clear that a minimal-
cardinality set of test measures which detects all the faults is S = {T1, T3, T5}.
Now, that a minimal set of test measures is at hand, we can proceed to solve
the problem of minimization of test frequencies for each test measure belonging
to this set.

First, we start by minimizing the frequency intervals under the test measure
T1: the faults detected using test measure T1 are F1, F2, . . . , F8. The detection
regions of the different faults are

R11 = [1, 105], R21 = [85, 3732], R31 = [85, 3732], R41 = [1, 2685],

R51 = [1, 3442], R61 = [336, 1566], R71 = [1, 1014] and R81 = [647, 105].

When we sort in increasing order the bounds of the different detection regions,
we find the following vector of frequencies:

f = (f0, f1, . . . , f9) = (1, 85, 336, 647, 1014, 1566, 2685, 3442, 3732, 105).

Therefore, the frequency intervals are

I1 = [1, 85[, I2 = [85, 336[, I3 = [336, 647[, I4 = [647, 1014[, I5 = [1014, 1566[,

I6 = [1566, 2685[, I7 = [2685, 3442[, I8 = [3442, 3732[and I9 = [3732, 105[.

The constraint matrix of the SCP (6) is then:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0
0 0 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where each row i, i = 1, . . . , 8, corresponds to the detection region Ri1 and each
column j, j = 1, . . . , 9, to the frequency interval Ij .

Since the matrix A has the consecutive-ones property (each fault has a unique
detection region), the optimal solution of the SCP (6) can be obtained using the
network simplex algorithm. In our example, this leads to the following optimal
solution: x∗ = (0, 0, 0, 1, 0, 0, 0, 0)T and r∗ = 1, i.e., a minimal-cardinality set of
intervals detecting all the faults is S = {I4}. Therefore, it is sufficient to use
a single test frequency belonging to the interval [647Hz, 1014Hz[to detect all
the faults F1, F2, . . . , F8.

Similarly, when we use the test measure T3, we detect the faults F9, F10, F11

and F12. The corresponding detection regions are

R91 = [159, 7957[, R10,1 = [1, 1740[, R11,1 = [1, 1739[and R12,1 = [159, 7940[.

Minimizing Test Frequencies for Linear Analog Circuits: New Models 203

The different frequency intervals are

I ′
1 = [1, 159[, I ′

2 = [159, 1739[, I ′
3 = [1739, 1740[,

I ′
4 = [1740, 7940[and I ′

5 = [7940, 7959[.

The constraint matrix of the SCP is

A =

⎛

⎜⎜⎝

0 1 1 1 1
1 1 1 0 0
1 1 0 0 0
0 1 1 1 0

⎞

⎟⎟⎠ . (25)

Hence, for the test measure T3, the solution of the SCP (6) is obvious, that is,
a single test frequency belonging to the interval I ′

2 = [159Hz, 1739Hz[detects
all the faults F9, F10, F11 and F12.

Finally, with test measure T5, we detect the faults F13, F14, F15 and F16. The
corresponding detection regions are

R13,1 = [1, 2798[, R14,1 = [1, 1413[, R15,1 = [1, 1412[and R16,1 = [1, 2794[.

The different frequency intervals are

I ′′
1 = [1, 1412[, I ′′

2 = [1412, 1413[, I ′′
3 = [1413, 2794[and I ′′

4 = [2794, 2798[.

The constraint matrix of the SCP is

A =

⎛

⎜⎜⎝

1 1 1 1
1 1 0 0
1 0 0 0
1 1 1 0

⎞

⎟⎟⎠ . (26)

Thus, for the test measure T5, the solution is obvious again, that is, the frequency
interval which detects all the faults F13, F14, F15 and F16 is I ′′

1 = [1Hz, 1412Hz[,
and a single test frequency belonging to this interval is required.

7 Numerical Experiments

In order to compare the efficiency of the two approaches presented in Sect. 4
(LP approach and the interval graph one), we have implemented them in C++
programming language and carried out large-scale numerical experiments on a
set of randomly generated test instances using an Intel(R) Core(TM)2 Duo CPU
P8600 @ 2.40 GHz machine with 4 GB of RAM.

We have generated 60 problems with number of faults

m = 500, 000; 600, 000; 700, 000; 800, 000; 900, 000; 1, 000, 000. (27)

The detection region bounds are generated in the interval [1Hz, 105 Hz]. For
each class of test problems with m faults, we generate ten problems. We have

204 M. Bentobache et al.

solved the different instances with the LP approach (LPA) using the network
simplex method of the LP and ILP solver CPLEX [23] and the suggested interval
graph algorithm (IGA). The CPU time of the two approaches IGA and LPA are
reported in Table 1.

Let [ai, bi] be the detection regions of the faults Fi, i = 1, . . . , m. In the
following, we give the implementation details for the LP approach:

Step 1. Compute the set of frequency intervals I as follows:

– sort the bounds of the detection regions in increasing order: let f be the
vector of these sorted bounds;

– delete duplicate elements from f , and let f = (f0, f1, . . . , fn);
– set I = {Ij = [fj−1, fj [, j = 1, . . . , n};

Step 2. Compute the constraint (m × n)-matrix of the SCP-C1P as follows:

– set fmax = f(n) and compute the vector t of dimension fmax as follows:
– set t(k) = 0, for k = 0, . . . , fmax;
– set t(f(j)) = j, for j = 0, . . . , n;
– set lx(i) = t(ai) + 1 and rx(i) = t(bi) for i = 1, . . . , m;

Step 3. Make the Veinott-Wagner transformations: compute the constraint
matrix V of the LP problem (10) as follows:

– for i = 1, . . . , m; for j = 1, . . . , m + n:

Vij =

⎧
⎨

⎩

−1, if j = lx(i);
1, if j = rx(i) + 1;
0, otherwise;

(28)

– for i = m + 1, . . . , n + 1; for j = 1, . . . , m + n:

Vij =

⎧
⎨

⎩

−1, if j = i − m;
1, if j = i − m + 1;
0, otherwise;

(29)

Step 4. Compute the constraint matrix A′, the (n + 1)-vector of right-hand-
sides b′ and the cost (m + n)-vector c′ of the min-cost network flow problem

(11): A′ = V T , b′ = (−1, 0, . . . , 0, 1)T , c′ =
(−1m

0n

)
;

Step 5. Solve the min-cost network flow problem with the network simplex
algorithm.

Note, that the efficient implementation presented above computes the con-
straint matrices of the SCP-C1P and the min-cost network flow problem of the
LP approach in small CPU times (less than 1 second on average for all the test
problems). That is why we have not reported the CPU times of computing the
constraint matrices of the SCP-C1P and the min-cost network flow problem in
Table 1.

Minimizing Test Frequencies for Linear Analog Circuits: New Models 205

Table 1. CPU time of the different approaches

m OptVal IGA LPA CPU Ratio

500,000 560.80 4.10 3.18 1.29

600,000 611.90 5.30 3.52 1.51

700,000 672.50 6.70 3.85 1.74

800,000 704.90 9.40 4.30 2.19

900,000 762.90 12.00 4.53 2.65

1,000,000 809.10 16.30 4.76 3.42

Mean 8.97 4.02 2.13

Fig. 4. CPU time of the two approaches: IGA and LPA

The average optimal values found by the two approaches IGA and LPA for
the different test problems are shown in column OptVal. We compute the ratios
of the CPU time of IGA over LPA. These ratios are shown in column CPU
Ratio. Finally, the CPU time of the two approaches are plotted in Fig. 4. The
LPA shows a time complexity O(m), while IGA shows a time complexity O(m2),
where m is the number of faults.

The graphs of Fig. 4 indicate that transforming the problem into a min-
cost network flow problem and solving it with the network simplex algorithm
is more efficient than the interval graph algorithm. Indeed, LPA is, on average,
two times faster than IGA. However, the computation time is very small even for
problems with an extremely large number of faults. Therefore, the interval graph

206 M. Bentobache et al.

algorithm can also be used in practice by test engineers because of its simple
implementation; the good CPU times (an average of 16 seconds for optimizing
the test of analog circuits with 1,000,000 faults); and the fact that it solves the
original problem directly.

8 Conclusion

In this work, we have formulated as an SCP the problem of minimizing the num-
ber of test frequencies necessary to detect a set of faults injected into an analog
circuit. We have shown that when the considered faults have a unique detection
region, the constraint matrix of the SCP will have the strong consecutive-ones
property. After that, we have reformulated this special case using interval graphs
and an algorithm working directly with this graph is suggested. In order to solve
the problem efficiently, two approaches are compared: an LP approach and an
interval graph approach. The obtained numerical results show that the approach
which transforms the problem into a min-cost network flow problem to solve it
by the network simplex algorithm is the most efficient. However, the interval
graph approach can also be used by test engineers because it solves the origi-
nal problem directly; its implementation is very simple and it is extremely fast
with CPU times of a few tenths of seconds even for large-scale problems. More-
over, the optimization problem associated with multiple detection regions and
multiple test measures is studied. Future work will focus on developing a branch-
and-cut algorithm for solving efficiently the set covering problem corresponding
to the case of multiple detection regions.

References

1. Alippi, C., Catelani, M., Fort, A., Mugnaini, M.: Automated selection of test fre-
quencies for fault diagnosis in analog electronic circuits. IEEE Trans. Instrum.
Meas. 54(3), 1033–1044 (2005)

2. Grasso, F., Luchetta, A., Manetti, S., Piccirilli, M.-C.: A method for the automatic
selection of test frequencies in analog fault diagnosis. IEEE Trans. Instrum. Meas.
56(6), 2322–2329 (2007)

3. Mir, S., Lubaszewski, M., Courtois, B.: Fault-based ATPG for linear analog circuits
with minimal size multifrequency test sets. J. Electron. Test. Theory Appl. 9, 43–57
(1996)

4. Balas, E., Carrera, M.C.: A dynamic Subgradient-based Branch-and-bound proce-
dure for set covering. Oper. Res. 44, 875–890 (1996)

5. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

6. Beasley, J.E.: A lagrangian heuristic for set covering problems. Nav. Res. Logistics
37, 151–164 (1990)

7. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J.
Oper. Res. 94, 392–404 (1996)

8. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41, 1069–1072 (1990)

Minimizing Test Frequencies for Linear Analog Circuits: New Models 207

9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1979)

10. Dom, M.: Recognition, Generation, and Application of Binary Matrices with the
Consecutive-Ones Property. Ph.D. thesis, Institut für Informatik, Friedrich-Schiller
Universität Jena, Germany (2008)

11. Matous̆ek, J., Gärtner, B.: Understanding and Using Linear Programming.
Springer, Berlin (2007)

12. Ghouila-Houri, A.: Caractérisation des matrices totalement unimodulaires. CR
Acad. Sci. Paris 254, 1192–1194 (1962)

13. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In:
Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp.
223–246. Princeton University Press, Princeton (1956)

14. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

15. Bentobache, M., Bibi, M.O.: A two-phase support method for solving linear pro-
grams: Numerical experiments. Math. Probl. Eng., 2012, Article ID 482193, 28
(2012). doi:10.1155/2012/482193

16. Bentobache, M., Bounceur, A., Euler, R., Kieffer, Y., Mir, S.: New techniques for
selecting test frequencies for linear analog circuits. In: VLSI-SoC 2013, Istanbul,
Turkey, pp. 93–98, 07–09 October 2013

17. Bentobache, M., Bounceur, A., Euler, R., Kieffer, Y., Mir, S.: Efficient minimiza-
tion of test frequencies for linear analog circuits. In: 18th IEEE European Test
Symposium, ETS 2013, Avignon, France, p. 1, 27–30 May 2013

18. Bentobache, M., Bounceur, A., Euler, R.: Une application efficace du problème
de recouvrement au test de circuits analogiques. In: ROADEF 2012, University of
Angers, France, pp. 424–425, 11–13, April 2012

19. Bibi, M.O., Bentobache, M.: A hybrid direction algorithm for solving linear pro-
grams. Int. J. Comput. Math. 92(1), 201–216 (2015)

20. Veinott, A.F., Wagner, H.M.: Optimal capacity scheduling. Oper. Res. 10, 518–547
(1962)

21. Bounceur, A.: CAO Platform for mixed circuit testing. Ph.D. thesis, Grenoble INP
(2007) (in french)

22. Bounceur, A., Mir, S., Roĺındez, L., Simeu, E.: CAT platform for analogue and
mixed-signal test evaluation and optimization. In: De Micheli, G., Mir, S., Reis, R.
(eds.) VLSI-SoC: Research Trends in VLSI and Systems on Chip. IFIP, vol. 249,
pp. 281–300. Springer, Boston (2007)

23. CPLEX, Software available at http://www-01.ibm.com/software/integration/
optimization/

http://dx.doi.org/10.1155/2012/482193
http://www-01.ibm.com/software/integration/optimization/
http://www-01.ibm.com/software/integration/optimization/

Partition-Based Faults Diagnosis of a VLIW Processor

Davide Sabena(✉), Matteo Sonza Reorda, and Luca Sterpone

Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy
{davide.sabena,matteo.sonzareorda,luca.sterpone}@polito.it

Abstract. Reconfigurable systems are increasingly used in different domains,
due to the advantages they offer in terms of flexibility: reconfigurability can also
be used for managing possible faults affecting a circuit, when fault tolerance is
the target. In this case the system must be able to (1) detect any possible fault,
(2) identify the module (or partition) including it, and (3) take proper actions able
to overcome the problem (e.g., by substituting the faulty module with a spare
one). In this chapter, we address the point (2) when a Very Long Instruction Word
(VLIW) processor is used by resorting to a Software-Based Self-Test (SBST)
approach. SBST techniques have shown to represent an effective solution for
permanent fault detection and diagnosis, both at the end of the production process,
and during the operational phase. When VLIW processors are addressed, SBST
techniques can effectively exploit the parallelism intrinsic in these architectures.
In this chapter, we propose a new approach that starting from existing detection-
oriented programs generates a diagnosis-oriented test program. Moreover, we
propose (1) a detailed analysis of the generated equivalence classes and (2) a
solution aimed to maximize the diagnosability of the modules composing the
VLIW processor under test, thus perfectly suiting the needs of reconfigurable
systems. Experimental results gathered on a case study VLIW processor show
the effectiveness of the proposed approach: at the end of the presented method,
the faulty module is always identified.

Keywords: Software-based diagnosis · Partition-based diagnosis · VLIW
processor

1 Introduction

Reconfigurable processors [1] are increasingly used in different domains. Their key
characteristic lies in the fact that they can be easily configured to match the specific
requirements of the target application, e.g., in terms of performance, size, and power
consumption, thus possibly making them more convenient than traditional processors.
Very Long Instruction Word (VLIW) processors [2] represent a popular choice among
reconfigurable processors.

When the system is used for a safety- or mission-critical application, dynamic
reconfigurability may be exploited to face the effects of permanent faults: in this case
the processor undergoes some test during the operational phase, aiming at detecting
possible faults affecting the hardware. The test can be activated either at a specific
moment in time (e.g., at power on), or periodically. As soon as a permanent fault is

© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 208–226, 2015.
DOI: 10.1007/978-3-319-23799-2_10

detected, a diagnostic procedure is activated to identify the faulty partition, so that proper
actions can be taken, e.g., by substituting it with a spare one, thus restoring the system
integrity.

When adopting this solution, we need an effective test procedure, able to detect the
highest percentage of possible faults while matching the requirements of a test performed
during the operational phase (e.g., in terms of duration, size, invasiveness). Some
previous works in the area [3, 4] showed that when considering VLIW processors, these
goals can be achieved resorting to a functional approach, in which a suitable test program
is executed and the produced results are observed (Software-Based Self-Test or SBST
[5]). The SBST test programs can be generated starting from the processor netlist or
(with some limitations) from its RT-level description [6]. Some recent work demon‐
strated that thanks to their regular structure, test program generation can be even auto‐
mated in the case of VLIW processors [4, 7], thus overcoming the major limitation of
the SBST approach, lying in the high cost for manually generating the test. On the other
side, the SBST approach shows some advantages with respect to the structural approach
(e.g., based on scan) when the in-field test is considered, mainly due to its easier usage
and much lower area overhead.

On fault detection, the application code is typically suspended in the faulty system,
thus preventing the fault to produce critical misbehaviors. Then, the system activates a
diagnostic procedure, whose goal is to identify the faulty partition out of those
composing the processor: in this context, each partition represents the minimal unit that
can be repaired or substituted if faulty. This procedure can resort once more to SBST,
i.e., to the execution of a suitable test program, whose results allow identifying the faulty
partition [8].

Since the basic motivation for this work is to support the design of highly dependable
systems based on dynamic reconfiguration, the goal of our diagnostic approach is to
identify the faulty partition, rather than the specific fault responsible for a given misbe‐
havior, as in other works (e.g., [9]). A similar approach was followed in [10], where the
issue of self-adapting the test so that it takes into account possible units, which have
been already, labeled as faulty is considered. However, no one of the previous works
gives a systematic method to generate diagnosis-oriented test programs, as we do in this
chapter.

This chapter proposes a method able to identify the module including the fault
affecting a VLIW processor, taking into account the intrinsic features of this particular
kind of processors. The proposed method is mainly composed of two parts: initially, we
focus on the issue of writing an accurate diagnostic SBST test program for a generic
VLIW processor. The proposed approach is based on exploiting an existing test program
(targeting to fault detection, only), and on applying a set of techniques for improving it
so that it can hold sufficient diagnostic properties [11] with respect to a previously
defined partitioning of the processor. In the second part, the method acts on the initial
partitioning, optimizing it so that the achieved diagnosability is maximized. Besides this
optimization algorithm, with respect to [11] this chapter also presents a detailed analysis
of the results obtained through the diagnostic test program, highlighting a number of
cases in which the faults belonging to different partitions cannot be distinguished using
a software-based solution (i.e., they are functionally equivalent).

Partition-Based Faults Diagnosis of a VLIW Processor 209

The basic idea behind the first part of the method is to exploit the regularity and
parallelism characterizing a VLIW processor. In particular, the technique we propose is
based on splitting the original test program in small pieces (called fragments), and then
modifying each fragment in such a way that it performs the same operation using
different resources (e.g., different registers, or different ALUs). By checking which ones
of the replicas of the original fragment (called brother fragments) generates a misbe‐
havior, we can identify the faulty module.

In the last part of the chapter we explain how to further improve the diagnosability
of a generic VLIW processor by implementing a clever partitioning. More in particular,
since in the dynamic reconfigurability scenario the aim is the identification of the faulty
module and not of the single possible fault, analyzing the composition of the equivalence
classes generated by the diagnostic program allows to understand that (1) due to the
implementation rules of the processor under test, it is not always possible to distinguish
the faults in a module from those in other modules, and (2) by slightly modifying the
partitioning it is possible to achieve a very high level of diagnosability.

The method we propose has been experimentally evaluated resorting to a sample
VLIW processor [12]: initially, an existing test program aimed at fault detection, only,
has been modified and improved, thus obtaining a diagnostic test program whose char‐
acteristics (in terms of size, duration and diagnostic capabilities) have been evaluated
and compared with those of the original test program. Secondly, applying the second
part of the method, the diagnosability of the considered processor has been maximized.

The chapter is organized as follows. Section 2 includes some background about the
architecture of a VLIW processor. Section 3 provides an overview about diagnosis of
circuits and processors and introduces some notation and vocabulary. Section 4 explains
the proposed method. Experimental results on the selected case study and their analysis
are presented in Sect. 5. In Sect. 6 we explain how to further improve the diagnosability
of the considered VLIW processor by acting on the partitioning. Finally, conclusions
and future works are described in Sect. 7.

2 VLIW Architecture Summary

VLIW processors are increasingly employed in systems requiring high performance
combined with low power consumption. From a hardware point of view, the two most
significant differences between a superscalar processor and a VLIW processor are:

• all the operations are executed by parallel independent Computational Domains
(CDs), each one characterized by its own Functional Units;

• the scheduling adopted by the processor for instruction execution is totally static,
since the compiler assigns the execution of each instruction to a determinate CD.
Consequently, in a traditional VLIW processor there isn’t any hardware scheduler of
the operations.

As shown in Fig. 1-a, from a software point of view the VLIW assembly code is
composed of a sequence of macro-instructions (also called Bundles): each macro-
instruction is composed of a sequence of instructions. Each instruction code embeds the

210 D. Sabena et al.

information items required to assign its execution to a specific Computational Domain,
which is selected at the compile time.

 (a) (b)

VLIW ASM Code

Macro-Instruction 1

Macro-Instruction 2

Macro-Instruction 3

Macro-Instruction 4

Macro-Instruction 5

Macro-Instruction 6

CD0: ADD R3,R2,R1
CD1: MUL R7,R2,R1
CD2:MUL R8,R2,R1
CD3:JMP R0 F

et
ch

D
ec

od
e

ALU 0

MUL 0

MUL 1

Branch

W
rit

e
B

ac
k

Register File

Fig. 1. Example of a VLIW Instruction Code format (a) and of a VLIW Architecture (b)

This scheme proved to be able, in some applications, to significantly reduce the
power consumption and the silicon area if compared to traditional superscalar
processors. Furthermore, the Instruction Level Parallelism (ILP) can be adequately
exploited (at least in the case of data intensive applications), since a good compiler is
able to detect which instructions can be executed in parallel by checking the entire
program at compile time [2].

As shown in Fig. 1-b, the architecture of a generic VLIW processor is fully para‐
metric, so that different options, such as the number and type of functional units (FUs),
the number of multi-ported registers (i.e., the size of the register file), the width of the
memory buses and the type of different accessible FUs can be modified depending on
the application requirements. The VLIW manifest collects all the characteristics of a
specific VLIW processor: it specifies the number of Computational Domains, the
number and type of the Functional Units embedded into each of them, the size and access
mode of the multiport Register File [4] and any other feature that must be taken in
account when developing the code for the considered processor.

Considering the regularity and simplicity of the typical VLIW architecture, this kind
of processors is perfectly suited for being adopted in reconfigurable systems [13], either
(1) to match variable application constraints and goals, or (2) to implement highly
dependable systems [14]. In the first case, the processor is implemented resorting to a
programmable device, and the different components are dynamically mapped on the
available resources in such a way to optimize the execution of the target application; in
the second case, some spare resources are embedded in the architecture, and they are
used to replace some faulty module as soon as a permanent fault is detected.

3 Basics on Diagnosis

Let call F = {f0, f1, …, fn-1} the set of n faults that can affect the Unit Under Test (UUT)
we are considering. Each of these faults causes the UUT to produce a given output

Partition-Based Faults Diagnosis of a VLIW Processor 211

behavior b (also called syndrome) when a given sequence of input stimuli I is applied;
let denote by bi the output behavior produced by fault fi, and bg the output behavior of
the fault-free circuit. Clearly, bi = bg for all undetected faults fi. When SBST is consid‐
ered, the assumption is often made, that the output behavior corresponds to the set of
values left by the program in memory at the end of its execution. We will make this
assumption throughout this chapter. The key rationale behind it is the ease of its imple‐
mentation in practice, when test (or diagnosis) are run during the operational phase.
Therefore, bi = bj iff the two faults fi and fj produce the same output values in memory
at the end of the execution of the test (or diagnosis) program. From a practical point of
view, storing a signature of the values produced by each fault may allow to easily identify
the existing faults [11]. Alternative solutions avoiding the storage even of this
compressed form of fault dictionary can also be considered [15].

A given pair of faults (fi, fj) is said to be distinguished by a given sequence of input
stimuli I iff bi ≠ bj. Otherwise, they are said to be equivalent wrt I. All faults that are
equivalent wrt to a given sequence of input stimuli I are said to belong to the same
Equivalence Class wrt I. A detected fault fi is said to be fully diagnosed by a sequence
of input stimuli I iff any couple of faults (fi, fj) including fi is distinguished by I. Since
two faults fi, fj can never be distinguished if they are functionally equivalent, the number
of fully diagnosed faults in a circuit is typically rather low [11].

Several possible metrics can be adopted to measure the diagnostic capabilities of a
sequence of input stimuli I [16].

When diagnosis is used in a reconfigurable system for identifying the partition
including the fault, the precision required is lower than in other situations where diag‐
nosis is required (e.g., for yield ramp-up): in fact, the final goal in this case is to be able
to distinguish all pairs of faults belonging to different partitions, while distinguishing
pairs of faults belonging to the same partitions is not of interest. Hence, for the purpose
of this chapter we will exploit a metric called Diagnostic Capability, or DC(I), which
corresponds to the percentage of faults belonging to an Equivalence Class wrt I
composed of faults all belonging to the same partition. In the ideal case in which DC(I)
is 100 %, this would mean that I is able to always identify the partition where the fault
is located. We will also exploit the notion of Fully Diagnosed Fault with respect to
Partitions (FDP), which is a fault belonging to an Equivalence Class composed of faults
all belonging to the same partition. Clearly, DC(I) is the percentage of FDP faults with
respect to the total number of faults.

4 Diagnostic Test Program Generation

In this section we describe a new method that allows to generate diagnostic programs
for a generic VLIW processor, once its specific configuration is known.

As shown in Fig. 2, the flow aimed at the generation of the diagnostic program is
composed of two main parts, denoted as classification and brother fragment genera‐
tion. The result of these two steps is an accurate test program with an improved diag‐
nostic capability.

212 D. Sabena et al.

Classification

VLIW
Manifest

VLIW SBST
Fragments

Brothers
Fragment

Generation
Accurate

diagnostic
Fragments

Fragments
partition scenario

Equivalence
Classes Set

Fig. 2. The flow of the proposed diagnosis method

The proposed flow requires two main inputs. The former is the manifest of the VLIW
processor under analysis, which contains all the features of the processor itself (which is
supposed to be organized into a few partitions). The latter is a collection of small test
programs aimed at fault detection, called fragments: each fragment performs a few test
instructions (aimed at exciting a specific fault or group of faults) plus some other instruc‐
tions needed to prepare the required parameters and make the results of the test instruction
observable. The fragments have been generated splitting the original SBST programs [4]:
the fragments should contain the lowest possible number of instructions and detect the
lowest possible number of faults (while still maintaining the same total fault coverage). The
set of the initial fragments is called Initial Test Program.

4.1 Classification

The classification part aims at computing the Equivalence Classes with respect to the
Initial Test Program. This task can be easily performed resorting to commercial Fault
Simulation tools and its final result (which requires some further custom post-
processing) is the assignment of each fault either to an Equivalence Class composed of
faults belonging to a single partition (in which case the fault is labeled as FDP) or to an
Equivalence Class including faults belonging to different partitions.

In practice, this phase requires performing the Fault Simulation of each fragment,
then processing the data base storing the syndrome of each fault, and finally computing
the Equivalence Classes.

The result of this part of the method is the Fragment Partition Scenario, which
consists of a database storing for each partition the list of faults belonging to it as well
as their syndrome.

4.2 Brother Fragment Generation

The brother fragment generation part is oriented to the generation of new diagnostic
fragments capable to improve the overall custom fragment diagnostic capability, thus
increasing the DC(I) metric of the addressed VLIW partitions. The flow, illustrated in
Fig. 3, is composed of four phases: (1) analysis of multiple partitions, (2) couple faults
extraction, (3) module identification and (4) creation of new fragments. The 4 phases
are repeated until a given stopping condition (e.g., based on maximum computational
time, or on the achieved diagnostic capabilities) is reached.

Partition-Based Faults Diagnosis of a VLIW Processor 213

Fragments
partition scenario

Analyze multiple
partition

Couple faults
extraction

Module
identification

VLIW
Manifest

Create New
Fragments

Fragments

New
Fragments Set

Equivalence
Classes Set

Fig. 3. The flow of the brother fragment generation

The “analyze multiple partition” phase elaborates the fragment partition scenario
database comparing equivalence classes including faults belonging to two partitions. In
details, in this step, all the equivalence classes are compared and the couple of faults
equivalent and belonging to different VLIW partitions are identified.

Once the list of equivalent faults is generated, the “couple faults extraction” phase
selects each couple of two fault locations, one belonging to the partition i and the other
belonging to j.

The “module identification” phase identifies the location of the two faults i and j,
analyzing the fault location hierarchy with respect to the VLIW manifest information;
the result of this phase is the identification of the VLIW circuit resources involved by
each fault.

Finally, the “create new fragments” phase is executed. Basically, this phase
elaborates the original test fragments involved into the VLIW resource module
identified by the Module identification phase and generates a new set of fragments
modifying the resource used by the original test instructions. In this way, the final
test program includes two or more different fragments, which are supposed to fail
alternatively, depending on whether one or the other of the two partitions we want
to distinguish are faulty. The pseudo-code of the Create New Fragments phase is
reported in Fig. 4.

The algorithm needs the code of the original test fragment (OF), the VLIW manifest
(VM) and the selected rule (R) which is provided by the module identification phase.
There are two main rules that can be used for the generation of the new fragments: the
first, denoted as R1, is a register re-allocation rule and it implies that the brother frag‐
ment will contain the same instructions of the original one, but each instruction will use
different registers. In this way, by checking the results of the two fragment execution,
we are able to understand if the fault is the register file (in case the two fragments results
are both wrong) or one of the other VLIW module involved by the two fragments. The
second rule, denoted as R2, is a resource re-allocation rule: simply, the new brother

214 D. Sabena et al.

fragment will use a different VLIW Functional Unit to execute the test instruction of the
fragment.

Fig. 4. The pseudo-code for the “create new fragments” phase

According to OF, VM, and R the algorithm analyzes the original test fragment
considering the used test instruction (TI), the VLIW functional unit (FU), the registers
used as operands (RI) and the registers used to forward the produced results to observable
locations (RO). Finally, it selects a new set of resources and on the basis of the defined
rules it generates a new fragment.

In Table 1, an example of original fragment and two corresponding brother fragments
is shown; in this example we address a fragment in which the test instruction aims at
the adder functional unit embedded in the Computational Domain 0 (referred as CD0).
The first brother fragment has been generated with the rule R1 (i.e., the register re-
allocation rule), in order to dismember an equivalence class containing faults embedded
in the register file and in the adder functional unit of CD0. Consequently, the new brother
fragment will be generated changing all the registers used to perform the test instruction
and to forward the result in the data memory, without changing the functionality of the
original fragment. The second brother fragment, instead, has been generated with the
rule R2 (i.e., the resource re-allocation rule): practically, the test instruction of the orig‐
inal fragment has been moved from the computational domain 0 to the computational
domain 1, leaving unaltered the other instructions composing the original fragment. In
this way, if the results of the two fragments are both wrong, the fault is definitely not
embedded in one of the two functional units executing the test instructions, but it belongs
to another module used by the two fragments.

Partition-Based Faults Diagnosis of a VLIW Processor 215

Table 1. An example of two brother fragments generated from the same original fragment.

5 Experimental Results

In this section we present the experimental results obtained using the ρ-VEX VLIW [12]
processor as a case study. The ρ-VEX processor is a generic and reconfigurable VLIW
processor written in VHDL language by researchers of the Delft University of Tech‐
nology. The ρ-VEX processor includes most of the features of VLIW processors used
by industry. For the purpose of this chapter, we considered the stuck-at fault model,
although the method can be easily extended to deal with other fault models. In order to
perform the stuck-at fault simulation experiments, we synthesized and implemented the
ρ-VEX processor using a standard ASIC gate library. The total number of stuck-at faults
in the resulting netlist is 335,336.

We divided the ρ-VEX processor in 10 partitions: the fetch unit, the decode unit, the
general-purpose register file, the branch-management register file, the write-back unit,
and the four Computational Domains in which the functional units are embedded.
Clearly, these partitions are not uniform (in terms of number of contained resources).

216 D. Sabena et al.

In Sect. 6.3 we present a method able to create homogeneous partitions without changing
the diagnostic results achieved by the method described in the following paragraphs.

Considering the diagnosis goal, in this Section we address only the most relevant
partitions of the ρ-VEX processor, i.e., the register file and the four Computational
Domains (CD0 to CD3). The number of faults enclosed in each of the four Computa‐
tional Domains is not exactly the same, since some of the functional units embedded in
each of them are different: for example, CD0 includes a branch unit, while CD3 embeds
a memory access unit, while all the CDs include an ALU unit.

We also wrote a program (composed of about 1,200 lines of C++ code) able to
compare the fault lists generated by the fault simulation step; the goal of this program
is to implement the classification phase, i.e., performing the computation of the equiv‐
alence classes with respect to the adopted test programs. Our tool also identifies FDP
faults, and provides information about the remaining faults.

By referring to the above 5 partitions in the ρ-VEX processor we applied the proposed
method and generated the diagnostic test program. As a starting test program we use the
set of fragments used for the optimized generation of an SBST program addressing the
ρ-VEX processor, generated with the method proposed in [4]; this set is a selection, from
an exhaustive set of possible fragments, of the fragments that allow to maximize the
stuck-at fault coverage, minimizing the test size and length.

The experimental results we gathered are reported in Table 2, which includes the
percentage of FDP faults with respect to the total number of faults of each partition, i.e.,
the Diagnostic Capability. The first column of Table 2 (denoted as Optimized SBST) is
the original test set, composed of 244 fragments; its diagnostic level is rather low for all
the considered partitions, since this is optimized in terms of size and length, which are
often conflicting goals with respect to diagnosis. The stuck-at fault coverage reached by
this test program is 98.2 % with respect to all the resources of the considered VLIW
processor.

Table 2. Diagnostic capability

Partition Method

Optimized
SBST

Exhaustive
fragments set

Proposed
approach

Register file 62.82 % 84.23 % 87.17 %

CD0 77.12 % 77.79 % 83.74 %

CD1 80.12 % 81.56 % 88.39 %

CD2 79.99 % 80.34 % 88.23 %

CD3 70.80 % 72.14 % 81.65 %

Partition-Based Faults Diagnosis of a VLIW Processor 217

The first step towards the improvement of the Diagnostic Capability is the use of the
whole fragments set generated resorting to the method described in [4]. The results
obtained with this approach are shown in the second column of Table 2 (Exhaustive
Fragments Set). The improvement of the diagnosis resolution is greater when the register
file is considered (the improvement for this partition is more than 21 %), while it is
limited for the Computational Domains. This is mainly because the considered set of
fragments is composed of 748 fragments, and 68 % of them target the test of a portion
of the register file itself.

The final step of the proposed flow is the evaluation of the diagnostic capabili‐
ties of an ad-hoc fragments set, composed of the fragments of the Exhaustive Frag‐
ments Set with an additional set of fragments brothers, developed with the method
proposed in Sect. 4. For the purpose of this chapter, we generated the brother frag‐
ments only for the fragments addressing the test of the ALUs (that are the most
relevant components of each CD in terms of number of stuck-at faults). Moreover,
we developed the brother fragments also for the memory unit (which is embedded
in CD3), since this unit is used by all the fragments in order to save the results of the
test instructions in the data memory; consequently, there are many equivalence
classes containing a fault of this unit and an efficient diagnostic of this module is
required. The resulting set of fragments is composed of 1,056 fragments, of which
308 are brother fragments. The CPU generation time for the brother fragments was
approximately 21 h, of which about 85 % used for the fault simulation; the compu‐
tational time has been evaluated on a workstation with an Intel Xeon Processor
E5450. As shown in Table 2, the improvements due to this approach are evident if
the partitions containing the ALUs (referred as CD1, CD2, CD3 and CD4) are
considered: the capability to recognize if a fault is enclosed in one of these parti‐
tions is improved of about 8 % with respect to the previous approaches. The resulting
diagnosability is not uniform for all the four CDs since, as explained previously, the
functional units embedded into these partitions are not the same.

We also made an analysis about the Equivalence Classes wrt the last test set, focusing
on those that include faults belonging to more than one partition (i.e., neglecting all FDP
faults). Analyzing these equivalence classes, only, it is possible to notice that about 95 %
of them are classes only including faults belonging to the same partition; moreover, if
the remaining classes are considered, about 60 % of them are equivalence classes
enclosing faults belonging to 2 partitions, while about 35 % are classes enclosing faults
belonging to 3 different partitions, as shown in the graph of Fig. 5. The above results
show that even when the diagnostic resolution of our method is not enough to identify
the single partition including a fault, still it is able to identify the couple of “candidate”
partitions in about 60 % of the cases.

Finally, in Table 3 some more information about the size and the execution time of
the final fragments set are shown. These results confirm that optimizations, in terms of
size and length, are often conflicting goals with respect to diagnosis.

218 D. Sabena et al.

Table 3. Size and duration of the different test sets

Method Size [KBs] Execution time
[Clock Cycles]

Optimized SBST 1,926 10,601

Exhaustive fragments set 3,429 17,049

Proposed approach 4,899 24,356

6 Equivalence Classes Analysis

In this section, we present a detailed analysis aimed at (1) better understanding the
achieved results, i.e., identifying the reasons that prevent the diagnostic metrics to be
further increased, and (2) understanding how it is possible to reach a complete diag‐
nosability of the partitions composing the addressed VLIW processor. Finally, we
present an equivalence class-based technique aimed at improving the partitioning of the
processor resources in order to achieve a scenario in which all the partitions are
composed of a comparable number of logic resources, in order to make the proposed
method suitable to be used in a dynamic partial reconfiguration environment [13].

6.1 VLIW Equivalence Classes Analysis

Using the Software-Based diagnosis method described in the previous sections, it is
possible reach a high level of diagnosability. However, due to the hardware structure of

59,27%34,43%

3,88%

1,74%
4,80% 0,80%

More than 1 partition equivalence classes analysis

2 Partitions

3 Partitions

4 Partitions

5 Partitions

6 Partitions

7 Partitions

Fig. 5. Analysis of Equivalence Classes including faults belonging to more than one partition

Partition-Based Faults Diagnosis of a VLIW Processor 219

the considered VLIW processor there is the possibility that several faults belonging to
different VLIW partitions are not distinguishable; here, we present a list of examples of
equivalent faults belonging to two or more partitions that are not distinguishable using
a software-based method, only. This analysis has been performed using the equivalence
classes generated with the flow explained in Sect. 4 (Fig. 2), and it is a sort of motivation
for the method explained in Sect. 6.2, where the partitioning of VLIW processor
resources is modified in order to reach the maximum diagnosability.

The first case is shown in Fig. 6 and represents a chain of flip-flops spanning the
various pipeline stages of the VLIW processor. Let us consider, for example, a flip-flop
that contains one of the bits devoted to identify the destination register of a generic
instruction: clearly, this value is provided by the decode stage, and it is available in all
the following pipeline stages. Each stage thus contains a flip-flop devoted to save this
value. Consequently, we have a set of flip-flops connected in a chain. The behaviour of
the processor when a stuck-at fault affects one of the inputs or outputs of these flip-flops
is always the same, thus making impossible to identify the root cause fault. Hence, all
these faults belong to the same equivalence class. Based on the partitioning strategy
adopted so far (which mainly assigns to each partition a single stage) these faults belong
to different VLIW partitions (i.e., the decode stage, the execute stage, and the write-back
stage). Clearly, this decreases the maximum diagnosability attainable by any SBST
program.

Decode Stage

D
Q

R
CK

Execute Stage

D
Q

R
CK

WriteBack
Stage

D
Q

R
CK

Address_dest_reg Address_dest_reg Address_dest_reg

FF_1 FF_2 FF_3

Fig. 6. Example of equivalent faults in different stages of the pipeline; stuck-at faults are
highlighted with red x (Color figure online)

The second case is shown in Fig. 7, and it corresponds to the logic gates devoted to
the decoding of a generic instruction, and to the flip-flop that contains one bit of the
result of the decode operation. Also in this case, if a stuck-at fault affects one of the logic
gates embedded in the decoder module or in the flip-flop that stores the result of the
decoding, the resulting processor behavior is the same. Hence, it will never be possible
to identify if the faulty module is the decoder belonging to the second computational
domain or the flip-flop belonging to the generic decode stage module. Consequently,
these faults belong to the same equivalence class but to different partitions, and
contribute to decreasing the maximum achievable diagnosability.

The third case is shown in Fig. 8, and it corresponds to the register file and the generic
flip-flop that contains one bit of the data retrieved from the register file itself. More in
particular, both the stuck-at fault affecting the flip-flop of a register and that affecting the
flip-flop containing the value of that register in another module (e.g., the generic decode

220 D. Sabena et al.

stage module) cause the processor to behave in the same way. Hence, by only checking
the signature provided by the diagnostic program, it will never be possible to detect the
faulty module; consequently, these faults belong to the same equivalence class. By only
checking the signature generated by the diagnostic program explained in Sect. 4 (or by any
other test program), it will never be possible to understand if the faulty module is the
register file or the decode stage.

Decode Stage

Register File

D
Q

R CK

Data[0]

FF

Fig. 8. Example of equivalent faults, considering the register file and the logic resources of the
decode stage; stuck-at faults are highlighted with red x (Color figure online)

6.2 Maximization of the Diagnosability of the VLIW Partitions

As described in the previous sub-section, the hardware structure of the VLIW processor
is organized in a way that several faults are equivalent wrt the adopted test program and
not physically distinguishable using a software-based diagnosis method. In case VLIW
partitions are selected on the basis of the VLIW hierarchical structure, equivalent faults

Decode Stage

Decoder D
Q

R
CK

Decoder D
Q

R
CK

Computational
Domain 1

Computational
Domain 2

Address_dest_reg

FF

FF

Address_dest_reg

Fig. 7. Example of equivalent faults, considering the decoder module of the second
computational domain and the decode stage containing all the instruction decode modules; stuck-
at faults are highlighted with red x (Color figure online)

Partition-Based Faults Diagnosis of a VLIW Processor 221

may negatively affect the diagnosability, since they can be located in different partitions
not uniquely identifiable in case only one of these faults is excited. Therefore, VLIW
partitioning based only on hierarchical module became an ineffective solution if applied
to a reconfigurable system, since it is slightly effective to identify a particular portion
of the processor to be repaired through reconfiguration. As illustrated in Fig. 9, two
partitions related to the VLIW hierarchical modules contain two faults belonging to the
same equivalent class making impossible their diagnosability.

Decoder
D Q

R
CK

FF

Address_dest_reg

Partition A Partition B

Equivalent
faults

Fig. 9. Example of faults belonging to the same equivalent class traversing two different VLIW
partitions

In order to improve the diagnosability, we defined a metric called Equivalent Cross
metric (EC metric), which for a given set of VLIW partitions, counts the number of
equivalent fault classes crossing two or more partitions (i.e., including faults belonging
to two or more partitions). In case the EC metric is nullified, the set of VLIW partitions
allows a complete diagnosability of the grouped faults. This result is viable, since the
EC metric supports two possible actions. The former consists in the identification of
fault groups belonging to a equivalence class traversing more partitions; the latter is the
possibility to move the identified equivalence class to a unique partition removing not
diagnosable conditions. As an example (reported in Fig. 10), let us consider two faults
belonging to a single equivalence class originally related to the partition A and partition
B respectively, applying the EC metric we obtain that the two faults are in the single
partition A. The minimization of the EC metric allows to obtain a DC metric equal to
100 %, however, the application of this metric is not realistic practicable just by moving
equivalence fault classes between the various partitions without considering the logical
composition of the VLIW modules, therefore we developed a VLIW partitioning algo‐
rithm which is able to take in account the VLIW physical implementation characteristics
(e.g., the logical dimension of each VLIW partition) which is depicted in the following
sub-section.

6.3 Improved VLIW Partitioning

The equivalence classes generated with the flow described in Sect. 4.2 can be used also
to improve the VLIW partitioning, in order to obtain partitions composed of a compa‐
rable number of logic resources.

222 D. Sabena et al.

When a device is used in a dynamic reconfiguration environment, and a fault occurs,
a diagnostic procedure is required in order to detect the faulty module; moreover, the
considered system has to be divided in homogeneous partitions (i.e., having a compa‐
rable size), in order to guarantee that the reconfiguration time is always the same.

In Fig. 11 we present an algorithm that, starting from the equivalence classes set,
divides a user selected partition P in several partitions, which dimension D is also
selected by the user. The first step of the algorithm is aimed at the selection of the set
of equivalence classes composed of faults belonging only to the addressed partition P;
in this way, each addressed fault has no equivalent faults in any other partition of the
considered VLIW processor. In the second step, the set of the new partitions is defined:
the user selects how many partitions will contain the resources of the original one. Then,
in the step 3, the resources of each equivalence class are iteratively inserted in one of
the new partitions. The insertion process starts from the largest equivalence class, in
order to guarantee that the equivalence classes composed of a larger number of faults
are contained entirely in a single partition. At the end of the algorithm execution, we
obtain a set of homogeneous partitions that contain the same resources of the original
one.

Considering the diagnosability of the new partitions, the DC metric remains
unchanged, since the creation of the new partitions has been done taking into account
the equivalence classes: simply, the new partitions have been generated avoiding the
allocation of an equivalence classes to more than one partition.

In Figs. 12 and 13 we present the results obtained applying the proposed technique
to the ρ-VEX processor, where the register file module has been divided in seven
different partitions, denoted as Register_File_A, Register_File_B, etc. More in partic‐
ular, Fig. 12 shows the composition of the partitions, in terms of number of faults, before
the application of the algorithm proposed in Fig. 11; as it is possible to notice, the number
of faults belonging to the register file is high if compared with the one of the others
partitions. This peculiarity is not acceptable in a dynamic reconfiguration environment,
since if the diagnostic procedure detects a fault in the register file this means that a large

RegisterFile

D
Q

R
CK

Data[0]

FF

Partition A Partition B

Fig. 10. Example of equivalent fault grouped in a unique partition in order to increase
diagnosability

Partition-Based Faults Diagnosis of a VLIW Processor 223

part of the processor has to be reconfigured. Figure 13, instead, shows the results
obtained after the module reorganization technique presented in this section; the
obtained partitions are more homogeneous than those before the application of the
proposed method.

Fig. 11. The pseudo-code for the redistribution of the faults belonging to a single large partition
to several partitions

Partition dimension AVG [# faults]

Fig. 12. Fault distribution in the different VLIW partitions before the module reorganization
phase based on the equivalence classes

In conclusion, adopting the techniques proposed in this section and in Sect. 6.2, we
obtain a complete diagnosability of the considered VLIW partitions; moreover, since
the obtained partitions are quite homogeneous in terms of size, the required reconfigu‐
ration time of the partitions itself is almost the same.

224 D. Sabena et al.

7 Conclusions and Future Work

In this chapter we presented a new method that starting from existing detection-oriented
programs generates a diagnosis-oriented test program for a generic VLIW processor.
The method exploits the parallelism (and the presence of several alternative resources)
intrinsic in VLIW processors to enhance the original test program. The resulting diag‐
nostic program is thus able in most cases to identify the faulty module and is therefore
highly suitable for being used within reconfigurable systems. Moreover, we demon‐
strated that using the equivalence classes generated by the software-based approach, it
is possible to maximize the diagnosability of the modules composing the VLIW
processor under test.

As future work we plan to estimate the overall performance overhead introduced by
the proposed approach and to apply the proposed method to a self-repair system based
on reconfigurable device.

References

1. Cardoso, J.M.P., Hübner, M. (eds.): Reconfigurable Computing: From FPGAs to Hardware/
Software Codesign. Springer, New York (2011)

2. Fisher, J.A., Faraboschi, P., Young, C.: Embedded Computing: a VLIW Approach to
Architecture, Compilers and Tools. Morgan Kaufmann, San Francisco (2004)

3. Bolchini, C.: A software methodology for detecting hardware faults in VLIW data paths.
IEEE Trans. Rel. 52(4), 458–468 (2003)

Partition dimension AVG [# faults]

Fig. 13. Fault distribution in the different VLIW partitions after the module reorganization phase
based on the equivalence classes

Partition-Based Faults Diagnosis of a VLIW Processor 225

4. Sabena, D., Sonza Reorda, M., Sterpone, L.: On the optimized generation of software-based
self-test programs for VLIW processors. In: IFIP/IEEE 20th International Conference on Very
Large Integration System Chip, pp. 129–134 (2012)

5. Psarakis, M., Gizopoulos, D., Sanchez, E., Sonza Reorda, M.: Microprocessor software-based
self-testing. IEEE Des. Test Comput. 2(3), 4–19 (2010)

6. Kabiri, P.S., Navabi, Z.: Effective RT-level software-based self-testing of embedded
processor cores. In: IEEE 15th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pp. 209–212 (2012)

7. Sabena, D., Sonza Reorda, M., Sterpone, L.: On the automatic generation of optimized
software-based self-test programs for VLIW Processors. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 22(4), 813–823 (2014)

8. Koal, T., Vierhaus, H.T.: A software-based self-test and hardware reconfiguration solution
for VLIW processors. In: IEEE Symposium Design Diagnostic Electronic Circuits Systems,
pp. 40–43 (2010)

9. Bernardi, P., Sanchez, E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An effective
technique for the automatic generation of diagnosis-oriented programs for processor cores.
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(3), 570–574 (2008)

10. Scholzel, M., Koal, T., Vierhaus, H.T.: An adaptive self-test routine for in-field diagnosis of
permanent faults in simple RISC cores. In: IEEE 15th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 312–317 (2012)

11. Sabena, D., Sonza Reorda, M., Sterpone, L.: On the development of diagnostic test programs
for VLIW processors. In: IFIP/IEEE 21th International Conference on Very Large Integration
System Chip, pp. 84–89 (2013)

12. Wong, S., Van As, T., Brown, G.: ρ-VEX: a reconfigurable and extensible softcore VLIW
processor. In: International Conference on ICECE Technology, pp. 369–372 (2010)

13. Sabena, D., Sterpone, L., Schölzel, M., Koal, T., Vierhaus, H.T., Wong, S., Glein, R., Rittner,
F., Stender, C., Porrmann, M., Hagemeyer, J.: Reconfigurable high performance
architectures: how much are they ready for safety-critical applications. In: 19th IEEE
European Test Symposium (ETS), pp. 175–182, May 2014

14. Abramson, J., Diniz, P.C.: Resiliency-aware scheduling for reconfigurable VLIW processors.
In: International Conference on Reconfigurable Computing and FPGAs (ReConFig),
pp. 1–7 (2012)

15. Holst, S., Wunderlich, H.-J.: Adaptive debug and diagnosis without fault dictionaries. In:
IEEE European Test Symposium, pp. 7–12 (2007)

16. Ryan, P.G., et al.: Fault dictionary compression and equivalence class computation for
sequential circuits. IEEE International Conference on Computer-Aided Design, pp. 508–511
(1993)

226 D. Sabena et al.

Enhanced Compressed Look-up-Table Based Real-Time
Rectification Hardware

Abdulkadir Akin(✉), Luis Manuel Gaemperle, Halima Najibi, Alexandre Schmid,
and Yusuf Leblebici

School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland

{abdulkadir.akin,luis.gaemperle,halima.najibi,alexandre.schmid,
yusuf.leblebici}@epfl.ch

Abstract. Real-time disparity estimation requires real-time rectification which
involves solving the models of lens distortions, image translations and rotations.
Low complexity look-up-table based rectification algorithms usually require an
external memory to store large look-up-tables. In this chapter, we present an imple‐
mentation of the look-up-table based approach which compresses the rectification
information to fit the look-up-table into the on-chip memory of a Virtex-5 FPGA.
First, a very low complexity compressed look-up-table based rectification algo‐
rithm (CLUTR) and its real-time hardware are presented. The implemented CLUTR
hardware rectifies stereo images with moderate lens distortion and camera misalign‐
ment. Moreover, an enhanced version of the compressed look-up-table based recti‐
fication algorithm (E-CLUTR) and its novel real-time hardware are presented.
E-CLUTR solves more extreme camera alignment and distortion issues than
CLUTR while maintaining the low complexity architecture.

Keywords: Stereo matching · Image rectification · Compression · Real-time ·
Hardware implementation · FPGA

1 Introduction

Disparity estimation (DE) is an algorithmic step that is applied in a variety of applica‐
tions such as autonomous navigation, robot and driving systems, 3D geographic infor‐
mation systems, object detection and tracking, medical imaging, computer games, 3D
television, stereoscopic video compression, and disparity-based rendering.

The stereo matching process compares the pixels in the left and right images and
provides the disparity value corresponding to each pixel. If the cameras could be aligned
perfectly parallel and the lenses were perfect, without any distortion, the matching pixels
would be located in the same row of the right and left images. However, providing a
perfect set-up is virtually impossible. Lens distortion and camera misalignments should
be modeled and removed by internal and external stereo camera calibration and image
rectification processes [1].

Image rectification is one of the most essential pre-processing parts of DE. Never‐
theless, many real-time stereo-matching hardware implementations [2–4] prove their

© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 227–248, 2015.
DOI: 10.1007/978-3-319-23799-2_11

DE efficiency using already calibrated and rectified benchmarks of the Middlebury
evaluation set [5], while some do not provide detailed information related to the recti‐
fication of the original input images [6].

In a system that processes the disparity estimation in real-time, image rectification
should also be performed in real-time. The rectification hardware implementation
presented in [7] solves the complex equations that model distortion, and consumes a
significant amount of hardware resources.

A look-up-table based approach is a straightforward solution that consumes a low
amount of hardware resources in an FPGA or ASIC [8–10]. In [8–10], the mappings
between original image pixel coordinates and rectified image pixel coordinates are pre-
computed and then used as look-up-tables. Due to the significant amount of generated data,
these tables are stored in an external memory such as a DDR or SRAM [8, 9]. Using
external storage for the image rectification process may increase the cost of the disparity
estimation hardware system or impose additional external memory bandwidth limitations
on the system. In [10], the look-up-tables are encoded to consume 1.3 MB data for
1280 × 720 size stereo images with a low-complexity compression scheme. This amount
of data requires at least 295 Block RAMs (BRAM) without considering pixel buffers, thus
it can only be supported by the largest Virtex-5 FPGAs or other recent high-end FPGAs.

In this chapter, we present a novel compressed look-up-table based image rectifica‐
tion (CLUTR) algorithm and its real-time hardware. A preliminary description of CLUTR
has been presented in [11]. In this chapter, the CLUTR algorithm and its real-time hard‐
ware implementation are explained with further details. In addition, an enhanced version
of the CLUTR (E-CLUTR) algorithm and its real-time hardware implementation are
presented. The real-time hardware of E-CLUTR maintains the low complexity architec‐
ture of CLUTR, while it is able to rectify images under excessive mechanical misalign‐
ment of the cameras and lens distortions. Moreover, the Caltech rectification algorithm [1]
which does not benefit from look-up-tables is implemented in hardware, and its hardware
resource consumption results are presented to improve the hardware comparison and to
evidence the efficiency of CLUTR and E-CLUTR much fairly.

This chapter is structured as follows. A typical look-up-table based rectification
process is introduced in Sect. 2. The compression scheme that is used by the CLUTR
algorithm is presented in Sect. 3. The proposed hardware implementation of the decom‐
pression process of CLUTR is presented in Sect. 4. The analysis of the challenges of
CLUTR to rectify images under extreme conditions is presented in Sect. 5. The compres‐
sion scheme of E-CLUTR is presented in Sect. 6. The hardware implementation of the
decompression process of E-CLUTR is presented in Sect. 7. The implementation results
of the CLUTR and E-CLUTR algorithms and their hardware resource comparisons are
presented in Sect. 8. Section 9 concludes the chapter.

2 Typical Look-up-Table Based Solution

Look-up-table based rectification methods can be distinguished by two different image
warping flows: forward mapping and inverse mapping. Forward mapping computes the
rectified target pixel locations based on the given pixel locations in the original image.
Inverse mapping computes the original source pixel locations based on the given pixel

228 A. Akin et al.

locations in the rectified image. The mapping requires separate tables for X and Y coor‐
dinates, and for the right and left images. Therefore, four tables are needed. The formu‐
lations for forward and inverse mappings are presented in Eqs. (1) and (2), respectively.
In these equations, ForwT is the forward mapping table, InvT is the inverse mapping
table, Ori represents the original image taken from the camera, Rec represents the recti‐
fied image. YRec, XRec, Yori and Xori represent the Y and X coordinates.

(1)

(2)

A typical rectification process utilizes fractional pixel precision which requires the
linear interpolation of four pixels. The linear interpolation schemes for forward and
inverse mappings are represented in Figs. 1 and 2, respectively. The linear interpolation
process for forward mapping is more complex than the linear interpolation process of
inverse mapping, since it requires additional computations and an intermediate memory
consumption to find the closest target pixels in the rectified image. The look-up-table
based rectification hardware architectures presented in [8–10] use inverse mapping due
to its simplicity.

Fig. 1. Inverse mapping with fractional precision coordinates. Corners indicate integer pixel
coordinates.

Fig. 2. Forward mapping with fractional precision coordinates

The size of the look-up-table depends on the size of the rectified image and the frac‐
tional precision. For example, for the rectification of 1024 × 768 resolution stereo images
with 6 bits fractional precision, the rectification map alone requires approximately 6 MB

Enhanced Compressed Look-up-Table 229

of space in a memory. This amount of data is excessive to fit into the on-chip memory of
a mid-range FPGA. Therefore, dumping look-up-tables into an external memory is
preferred in the hardware implementations of [8, 9].

3 Proposed Compression Scheme of the CLUTR Algorithm

In contrast to the selection of the hardware implementations of [8–10], a forward
mapping based rectification scheme is selected for the proposed CLUTR algorithm. In
CLUTR, fractional precision is ignored. Ignoring fractional precision allows an efficient
compression scheme. The negligible distortion in the rectified images originating from
this simplification is analyzed in Sect. 8.

The compression scheme is presented in the flow graph in Fig. 3. The proposed
compressed rectification algorithm produces four compressed tables. The compression
scheme requires eight steps. The details of steps 1–2 can be found in [1]. The details of
steps 3–8 are detailed in this section.

Fig. 3. Flow chart for the proposed compressed look-up-table based stereo image rectification
process

230 A. Akin et al.

In the third step, integer coordinate precision forward mapping is extracted from the
fractional precision inverse mapping. The extraction scheme is demonstrated in Fig. 4.
The example original and rectified pictures have a size of 4 × 5 pixels. First, inverse
mapping is applied to find the fractional source pixel locations of all pixels in the rectified
image. Due to the 3D rotation, some of the pixels in the rectified image cannot be related
to their source pixels in the 4 × 5 original image, as shown in Fig. 4(a). The nearest
integer coordinates of all fractional source coordinates are computed, and they are
targeted onto the integer pixel coordinates in the rectified image, as presented in
Fig. 4(b). Thus one-to-one mapping is provided in the third step.

The integer pixel precision forward mapping extracted for the example picture in
Fig. 4 yields the look-up-tables of X and Y coordinates shown in Fig. 5. The pixels that
are not targeted to any location are identified with NT. Ori(2,2) and Ori(2,3) are adjacent
pixels, and both of them target “row no 2” of the rectified image; Ori(2,2) and Ori(3,2)
are adjacent pixels and both target “column no 1” of the rectified image. This regular
order is more apparent with higher resolution images. According to our experiments
with a 1024 × 768 image, repetition of a single target coordinate up to 220 times is
observed in the integer precision forward mapping table of X coordinates.

The method governing compressed rectification is similar to the run-length encoding
technique. In the proposed coding scheme, instead of coding the run-length of the regular
order, the locations where the regular order changes are encoded. These locations are
called breakpoints. Moreover, the proposed scheme includes additional specific techni‐
ques to compress the integer precision forward mapping efficiently.

 (b)

 (a)

Fig. 4. Third step of the compression flow (a) selection of nearest source pixels from fractional
inverse mapping (b) extraction of forward mapping with integer coordinates

Enhanced Compressed Look-up-Table 231

The regular order of the Y coordinate mapping is encoded following a row-by-row
scheme, and the regular order of the X coordinate mapping is encoded following a column-
by-column scheme. The resulting look-up-tables after encoding Figs. 5(a) and (b) are
presented in Figs. 6(a) and (b). In Fig. 6(a), the elements of the compressed table are repre‐
sented as (column number, new value in row). In Fig. 6(b), the elements of the compressed
table are represented as (row number, new value in column).

 (a) (b)

Fig. 6. Coded regular orders after the third step (a) coded mapping of Y coordinates (b) coded
mapping of X coordinates

The high number of NT pixels dramatically increases the number of breakpoints.
This issue becomes more pronounced for high resolution images. Therefore, the fourth
step of the compression algorithm fills the NT pixel locations to keep the regular order.
In order to fill the NT pixel locations, the same order is repeated vertically and hori‐
zontally for Y and X locations, respectively. After the fourth step, Fig. 5 is transformed
into Figs. 6 and 7 into Fig. 8.

 (a) (b)

Fig. 7. Look-up-tables after filling the NT pixels using the fourth step (a) mapping of Y
coordinates (b) mapping of X coordinates

After the first two steps, two or more source fractional coordinates can have the same
pixel coordinate in the original image as their nearest neighbor, as presented in Fig. 9(a).
However, after step three and four, every integer pixel coordinate of the original image is
targeted to a single coordinate in the rectified image. Consequently, some pixels in the

 (a) (b)

Fig. 5. Integer coordinate precision forward mapping look-up-tables after the third step. Regular
orders are shown with red ellipses (a) mapping of Y coordinates (b) mapping of X coordinates.

232 A. Akin et al.

rectified image may be void, as presented in Fig. 9(b). These pixels will remain as void, i.e.
black pixels, in the rectified image if they are not filled. The fifth step is applied to fill these
voids. As shown in Fig. 10, the pixels on the original image which target the pixel coordi‐
nates that are located on the row above these voids are marked. Marked pixels are used to
fill the voids as source pixels which have double targets (DT). Thus, DT pixels are used to
concurrently target two vertically neighboring pixels on the rectified image.

(a) (b)

Fig. 9. Visualization of the reason for the voids on the rectified image (a) inverse mappings with
fractional coordinates (b) forward mapping with integer coordinate

(a) (b)

Fig. 10. Filling the voids in the rectified image in the fifth step (a) finding the source location of
a pixel at one row above the void (b) marking the source pixel as double targeted pixel

The sixth step of the algorithm extracts the breakpoint locations and analyzes the
behavior of the breakpoints. As shown in Fig. 8, the difference between the new and
previous target locations equals plus or minus one, which can be encoded consuming
less data than encoding the exact integer coordinates. An example of coding the behavior
of the cells in Fig. 8 is presented in Fig. 11 as (location, behavior). The initialization
coordinates are provided in the first column of the look-up-table for Y coordinates, and
in the first row of the look-up-table for X coordinates. The next breakpoint values are
identified with ±1. Moreover, dummy breakpoints are inserted at the edges of the image
to simplify the hardware implementation. Dummy insertions are represented by (5,0)
and (4,0) in Fig. 11(a) and (b), respectively.

(a) (b)

Fig. 8. Coded regular orders after filling the NT pixels using the fourth step (a) coded mapping
of Y coordinates (b) coded mapping of X coordinates

Enhanced Compressed Look-up-Table 233

 (a) (b)

Fig. 11. Coding the behavior of breakpoints at the sixth step (a) coded mapping of Y coordinates
(b) coded mapping of X coordinates

In the seventh step, the locations and behaviors of the breakpoints are concatenated
and stored in a data array. Every BRAM in a Virtex-5 FPGA has 1024 addresses and it
can be configured to store one array composed of 1024 × 36 bits or two arrays composed
of 1024 × 18 bits. The BRAMs of the FPGAs are configured to store 18-bits in each
address in the proposed concatenation scheme. As shown in Fig. 12, 3-bits are used for
coding the behaviors, and the remaining 15-bits encode the locations of the breakpoints.
Therefore, the proposed concatenation scheme can be applied to an image that has a
resolution lower than 32767 × 32767 pixels. In Fig. 12(a), DT and changing the last
targeted row by ±1 are independent breakpoint conditions of Y coordinates, which can
be applied to source pixels, concurrently or separately. Therefore, the “X” symbol in
the −1 and +1 columns of Fig. 12 implies keeping the last targeted row coordinate.

 (a) (b)

Fig. 12. Concatenation of the locations and behaviors at the seventh step (a) for the mapping of
Y coordinates (b) for the mapping of X coordinates

The number of breakpoints in every row of the Y table and the number of breakpoints
in every column of the X table depend on the distortion of the lens, the resolution of the
image sensor and the mechanical misalignment. The experimental setup used in this
chapter consists of 1024 × 768 resolution cameras. In the experiments, cameras are
aligned in parallel configuration without using any sensitive mechanical placement tool.
At most 21 breakpoints are observed in any given row of Y tables, and at most 17
breakpoints are observed in any given column of X tables. Data arrays of CLUTR are
created for 24 possible breakpoint locations for Y tables and 20 possible breakpoint
locations for X tables to support more challenging distortion conditions. Therefore,
storing the X and Y tables for the right and left images requires 38 BRAMs which can

234 A. Akin et al.

even be supported by low cost FPGAs. The data arrays that are programmed into the
BRAMs are converted into coefficient (COE) files using MATLAB.

In the eighth step, 38 BRAMs are instantiated as single port ROMs. The pre-
computed compressed rectification maps are programmed into the BRAMs using the
Xilinx ISE 12.4 and COE files.

4 Real-Time Decompression Hardware of CLUTR

The decompression process is simpler than the off-line compression process in terms of
computational complexity. The proposed rectification module can be used as a hardware
accelerator taking place between the camera interface hardware and the on-chip memory
controller, as shown in Fig. 13. The rectification module is used for the left and right
cameras separately. The rectification module processes source pixel values as Ori(Yori, Xori)

and the respective source row and source column coordinates as Yori and Xori. The rectifi‐
cation module computes the target row and target column coordinates as YRec, and XRec, and
the 1-bit DT signal to identify double targeted locations. Ori(Yori, Xori) is delayed for 6 clock
cycles and Rec(Yrec, Xrec) is given as an output. Due to the pipelined structure of the hard‐
ware, inputs can be consecutively received and outputs can be consecutively provided.

Fig. 13. Example utilization of the proposed rectification hardware

The top-level block diagram of the rectification module is presented in Fig. 14. The
rectification module involves (768 × 24 × 18) / (1024 × 36) = 9 BRAMs to store the
compressed table of Y coordinates and (1024 × 20 × 18) / (1024 × 36) = 10 BRAMs to
store the compressed table of X coordinates. Half of 1 additional BRAM is used to store
the last break point locations and the last target X coordinates of the row which is located
above the row currently being processed.

The block diagram of the decompression hardware of Y coordinates is presented in
Fig. 15. The hardware resets itself every time Xori is equal to zero which implies that the
first pixel of a new row is fetched from the camera. The target Y coordinate of the first
incoming pixel in a new row is loaded from the ROM and written to the output register
of YRec. For every consecutive pixel, Xori is compared to the coordinate of the next
breakpoint which is loaded from the ROM. When a breakpoint is reached, the YRec value

Enhanced Compressed Look-up-Table 235

is changed using a multiplexer depending on the coded behaviors of the breakpoints.
Meanwhile, the hardware loads the coordinate of the next breakpoints to compare with
the upcoming Xori.

Fig. 15. Block diagram of the proposed rectification hardware for decompressing the table of Y
coordinates. Pipeline stages are presented with dashed lines.

The block diagram of the decompression hardware of X coordinates is presented in
Fig. 16. Pixels are supplied by the camera row-by-row, whereas the X coordinates are
compressed column-by-column. This situation causes one important difference between
the decompression hardware architectures of the X and Y tables. When the camera
provides pixels of a new row, the decompression hardware needs to keep record of the
previous XRec coordinates and the last checked breakpoint address in the ROM for the
respective column of the previous row. Two 1 × 1024 size data arrays are needed to
store this information. These arrays are named array_last_break_x and
array_last_target_x in Fig. 14. These arrays are concatenated for respective column
coordinates of the original image, and stored into one half of the 1 BRAM, which is
named X_last_data_BRAM in Fig. 16. The values in X_last_data_BRAM are replaced
with the new ones when a breakpoint is reached for the respective XOri. The decom‐
pression hardware of the Y coordinates does not comprise these arrays because Y coor‐
dinates are compressed row-by-row. Therefore, the last YRec can be directly used for
computing the next YRec of the next pixel in the same row of the original image. The
decompression hardware of X coordinates operates in a similar fashion as the decom‐
pression hardware of Y coordinates, with the exception of keeping record of the infor‐
mation about the previous row.

Fig. 14. Top-level block diagram of the proposed rectification hardware of CLUTR

236 A. Akin et al.

Fig. 16. Block diagram of the proposed rectification hardware for decompressing the table for X
coordinates

The proposed rectification hardware can be used in any stereo-matching system. The
stereo matching process can be started when the required amount of rows is buffered in
the BRAMs of the stereo matching hardware. Processed rows in these BRAMs can be
overwritten by new rows during the stereo matching process.

The hardware architectures presented in [9, 10] require large pixel buffers due to the
inverse mapping scheme. The proposed decompression does not need large pixel buffers
between the camera interface and the rectification modules. In contrast, the hardware
requires these pixels buffers for the rectified image. However, typically DE hardware
implementations already include BRAMs to buffer the pixels [2–4, 6]. Therefore, these
buffers can be used for the proposed decompression hardware. Thus, using the proposed
rectification hardware on a complete DE system may not need additional large pixel buffers.

5 Limitations of the CLUTR

In an ideal case, i.e. where the cameras are perfectly parallel and lenses do not have
distortion, two breakpoints are required for every row of the look-up-table for Y coor‐
dinates and two breakpoints are required for every column of the look-up-table for X
coordinates. One of these two breakpoints is needed to define the initial breakpoint
location to target coordinate 0, and the other one is needed to define the final target
location as the horizontal or vertical size of the image. In the classical case of a real-
time working environment, the mechanical set-up of the stereo-matching system should
be carefully designed to be close to an ideal case. Still the main goal of the rectification
consists of solving lens distortions and sensitive mechanical misalignments.

According to tests applied to the CLUTR algorithm and hardware, the pixel location
difference of two consecutive breakpoints typically reaches more than 15 pixels and the
number of breakpoints is smaller than the pre-defined breakpoint capacity of the ROMs
of CLUTR. Therefore, CLUTR successfully rectifies the images when the lens distortion
and the mechanical misalignments are not excessive. However, unusual conditions bring
limitations on the CLUTR hardware.

Enhanced Compressed Look-up-Table 237

Two important limitations of the CLUTR hardware must be considered to maintain
its suitability to rectify challenging situations. The first limitation relates to the capacity
of the ROMs to store a sufficient number of breakpoints. The second limitation relates
to the frequency of the breakpoints.

The limitation caused by the number of breakpoints is mainly due to the mechanical
misalignment of the cameras. In order to identify the limit of the breakpoint storage
capacity of ROMs, two cameras are manually rotated around 3 degrees around opposite
directions of all rotational axis. This test can be considered as an excessive misalignment
of a carefully designed mechanical setup of the stereo-matching system. Using the
compression scheme of CLUTR, 43 breakpoints are needed in the look-up-table of X
coordinates for one column, and 69 breakpoints are needed in the look-up-table of Y
coordinates for one row. The pre-defined breakpoint capacity of CLUTR does not
support this condition. Overcoming this first limitation is straightforward to achieve by
increasing the size of ROMs to store more breakpoints.

CLUTR supports rectification if the two breakpoints of the Y coordinates have at least
4 pixel position difference. When a breakpoint location is reached, the hardware needs to
read the next breakpoint from ROM. The address computation and reading the next break‐
point from the ROM consume 4 clock cycles. The camera continues to send pixels and the
camera controller increases XOri during the address computation and reading breakpoints
from the ROM. Therefore, if there are multiple breakpoints in 4 consecutive pixels, CLUTR
is not able to apply a breakpoint condition to those pixels. Hence, the limits of the CLUTR
hardware to successfully rectify stereo images is exceeded if breakpoints are frequent, i.e.
if two breakpoints of Y coordinates in a row have less than 4 pixel position difference.
Since the breakpoints of X coordinates are coded column by column but the camera sends
pixels row by row, the time to process consecutive breakpoints in same column and
consecutive rows is sufficiently long. Therefore, frequent breakpoints in the same column
of the look-up-table of X coordinates does not cause a limitation. The frequency limitation
of CLUTR is visually explained in Fig. 17.

 (a) (b)

Fig. 17. Visualization of the breakpoint frequency capacity of the X and Y coordinate mappings
(a) breakpoints for the mapping of Y coordinates (b) breakpoints for the mapping of X coordinates

The main reason for the occurrence of frequent breakpoints is the high number of
adjacent void pixels, which is caused by excessive camera misalignment or lens distor‐
tion. An example of one such challenging condition is presented in Fig. 18. As shown
in Fig. 18(b), 4 out of 5 consecutive pixels are marked as breakpoints. 3 out of these 4
breakpoints are DT breakpoints which are coded in the look-up-table of Y coordinates,

238 A. Akin et al.

and the other one is located at Ori(1,5) which requires changing the target row number
from 2 to 3. This challenging example case exceeds the limits of CLUTR, since CLUTR
is not able to apply a breakpoint condition if there are multiple breakpoints in 4 consec‐
utive pixels.

Adjacent void pixels may occur not only horizontally but also vertically. Vertically
adjacent void pixels may cause void pixels, which cannot be filled by the DT feature of
CLUTR. As visualized in Fig. 19, DT pixels can fill the voids located one row below
the targeted pixel on the rectified image. If there are two voids which are vertically
adjacent, the void below can not be filled by CLUTR since the pixel above is not targeted
directly by any source pixel.

Another limitation of CLUTR is related to the usage of ROMs for the hardware
implementation which increases the off-line processing duration. Using ROMs is suit‐
able to demonstrate the efficiency of compressed look-up-table based rectification.
However, after each adjustment of the camera settings and alignments, creating new
compressed tables of the hardware requires re-synthesis and place & route of the imple‐
mentation. Thus it takes a long time to initialize CLUTR hardware.

(a)

(b)

Fig. 18. Visualization of the reason for the frequent breakpoints (a) finding the source locations
of three pixels that are targeting one row above of the three consecutive voids (b) four breakpoints
in consecutive five locations

Fig. 19. Visualization of the reason for the voids which can not be filled by CLUTR

Enhanced Compressed Look-up-Table 239

6 The Compression Scheme of the E-CLUTR Algorithm

The E-CLUTR algorithm and its hardware implementation are designed to overcome
the limitations of CLUTR while maintaining the low complexity decompression scheme.
The limitations of CLUTR are mainly solved by improving the design of the decom‐
pression hardware. Moreover, algorithmic enhancements are applied to further improve
the efficiency of the compression scheme to handle challenging lens distortions and
mechanical misalignments.

Algorithmic enhancements are explained in this section. The flow chart of the
compression scheme of E-CLUTR is identical to the flow chart presented in Fig. 3. The
steps 5, 6 and 7 that are shown in Fig. 3 are enhanced in E-CLUTR. The algorithmic
enhancement for the compression scheme is proposed to reduce the frequency of DT
breakpoints. In order to decrease the amount of consecutive breakpoints in a row, the
condition type of breakpoints for filling the voids are improved. As explained in Sect. 4
in step 5, DT breakpoints are used to fill the voids that are located one pixel below the
targeted pixel. To avoid any confusion, the DT condition of CLUTR is renamed as below-
DT (B-DT) in E-CLUTR. In addition to B-DT, below-backward-DT (BB-DT), below-
forward-DT (BF-DT), upper-DT (U-DT), upper-backward-DT (UB-DT) and upper-
forward-DT (UF-DT) breakpoint conditions are defined in E-CLUTR. Using extra DT
conditions, the source pixel can be targeted not only to one pixel below the target, but
additional options are provided to fill any of 6 possible neighbors of the targeted pixel of
the rectified image. These additional options are visualized in Fig. 20.

As presented in Fig. 21, the frequency of breakpoints in the same row is reduced
compared to Fig. 18, by using BF-DT, BB-DT and U-DT breakpoint conditions. As
presented in Fig. 19, vertically adjacent void pixels are problematic for CLUTR. However,
these voids can be filled by multiple DT options of E-CLUTR as presented in Fig. 22.

In step 6, the breakpoints are coded considering the new DT breakpoint conditions.
In the challenging example, there should be support of 2 consecutive breakpoints at least

(a)

(b)

Fig. 20. Filling the voids on the rectified image in the fifth step (a) DT option of CLUTR (b) DT
options of E-CLUTR

240 A. Akin et al.

in 3 consecutive pixel coordinates, as presented for the breakpoints at Ori(1,4) and
Ori(1,5). Therefore, the algorithmic enhancement requires the support of at least 2
breakpoints for 3 consecutive locations as an additional constraint. The hardware based
enhancement to provide this support is explained in Sect. 7.

At the edges of the rectified image, black pixels occur. These stem from the 3-D
rotation of the original image and the mapping of the rectified image to the original
resolution. Consequently, the effective resolution slightly decreases in the rectified
image [1]. Due to this fact, changing row and column coordinates stay in the range of
±1. However, this range may not be guaranteed for all possible extreme conditions.
Thus, a generic solution should cover all possible extreme situations. In order to cover
the cases that create a situation beyond the challenging camera misalignment tests, ±2
row and ±2 column coordinate change options are included as a breakpoint condition
in step 6 of E-CLUTR.

The concatenation scheme presented in Fig. 12 of CLUTR is modified for E-CLUTR
as presented in Figs. 23, 24 and 25 using improved breakpoint conditions. The break‐
point conditions for DT conditions and row changing can be applied concurrently or

(a)

(b)

Fig. 21. Reducing the frequency of breakpoints using multiple DT options of E-CLUTR
(a) finding alternative source locations for void pixels of rectified image (b) reduced frequency of
breakpoints for the same row of the look-up-table of Y coordinates

Fig. 22. Vertically adjacent void pixels can be filled by E-CLUTR using multiple DT options.

Enhanced Compressed Look-up-Table 241

separately to the source pixel. Consequently, 7 × 5 = 35 different conditions occur for
the concatenation of the conditions for the breakpoints of Y coordinates. The brief
concatenation scheme of the Y coordinates is presented in Fig. 23. The concatenation
scheme for DT codes and row changing are separately presented in Fig. 24(a) and (b).
The concatenation scheme of the X coordinates is presented in Fig. 25.

Fig. 23. Brief representation for the concatenation of the locations and behaviors at the seventh
step of E-CLUTR for the mapping of Y coordinates

(a) (b)

Fig. 24. Concatenation of the locations and behaviors at the seventh step for E-CLUTR for the
mapping of Y coordinates (a) Concatenation scheme for DT options (b) Concatenation scheme
for the breakpoint conditions for changing last targeted row

Fig. 25. Concatenation of the locations and behaviors at the seventh step of E-CLUTR for the
mapping of X coordinates

7 Real-Time Decompression Hardware of E-CLUTR

The top-level block diagram of the E-CLUTR module is presented in Fig. 26. Data arrays
of E-CLUTR are created for 80 possible breakpoint locations for Y tables and 50 possible
breakpoint locations for X tables to support very challenging distortion conditions. The

242 A. Akin et al.

rectification module involves (768 × 80 × 18) / (1024 × 36) = 30 BRAMs to store the
compressed table of Y coordinates and (1024 × 50 × 18) / (1024 × 36) = 25 BRAMs to
store the compressed table of X coordinates. As presented in Fig. 26, the ROMs are
converted to RAM to ease the initialization of the look-up-tables of E-CLUTR after
changing the camera settings. The decompression hardware for the X coordinates is
presented in Fig. 27. The decompression hardware for Y coordinates is presented in
Fig. 28.

Fig. 26. Top-level block diagram of the proposed rectification hardware of E-CLUTR

Fig. 27. Block diagram of the proposed rectification hardware for decompressing the table of X
coordinates

Enhanced Compressed Look-up-Table 243

Fig. 28. Block diagram of the proposed rectification hardware for decompressing the table of Y
coordinates. Pipeline stages are presented with dashed lines.

As presented in Fig. 27, the decompression hardware of E-CLUTR pertaining to X
coordinates is similar to the hardware used in CLUTR. The multiplexing stage is adapted
to provide the ±2 target pixel column change feature for the X breakpoints.

The decompression hardware of E-CLUTR pertaining to Y coordinates is redesigned
to support frequent breakpoints and the six different DT options. As presented in Fig. 28,
the E-CLUTR hardware reads the first six breakpoints from the RAM as soon as the
camera starts to send a new row. The first breakpoint is used to initialize the target row
and the next five breakpoints are buffered in a local cache. Whenever a new breakpoint
location is reached, the next breakpoint location is read from the RAM and the cache
shifts the existing upcoming breakpoint locations. Using this local cache of the break‐
points, the original pixel coordinates can be compared to the pixel locations in the cache.
Therefore, the breakpoint conditions can be applied to all passing pixels even if the
breakpoints are frequent.

The multiplexing stage for the computation of the next target row is improved to
provide the ±2 target pixel row change feature. Moreover, the hardware sends the 3-bit
DT condition to the BRAM controller together with the pipelined source pixel and its
target locations YRec, and XRec, synchronously.

The BRAM controller that is shown in Fig. 13 writes the pipelined source pixels to
the decompressed target row and target column coordinates. E-CLUTR hardware is
verified by merging it with the DE hardware presented in [4], which buffers pixels of
rows in its own, separate BRAMs. YRec is used to select and enable the BRAM to write
target pixel. XRec is used to determine the write address of the enabled BRAM of the DE
hardware. If a DT condition exists, the same source pixel is written to two BRAMs
concurrently by enabling two BRAMs that buffer two consecutive rows. If the DT
condition is pointing into forward or backward positions, the address port of the BRAM
that is targeted by the DT condition receives the computed target BRAM address ±1.

244 A. Akin et al.

8 Implementation Results

The proposed rectification hardware architectures of CLUTR and E-CLUTR are imple‐
mented using Verilog HDL, and verified using Modelsim 10.1d. The Verilog RTL
models are mapped to a Virtex-5 XCUVP-110T FPGA comprising 69 k Look-Up-
Tables (LUT), 69 k DFFs and 148 BRAMs. One rectification module of CLUTR
consumes 0.32 % of the LUTs, 0.28 % of the DFF resources and 14 % of the BRAM
resources of the Virtex-5 FPGA. One rectification module of E-CLUTR consumes
0.63 % of the LUTs, 0.51 % of the DFF resources and 38 % of the BRAM resources of
the Virtex-5 FPGA. The proposed E-CLUTR hardware operates at 212 MHz after place
& route. Therefore, it can process up to 269 fps at a 1024 × 768 XGA video resolution.
In addition, the proposed rectification hardware of CLUTR and E-CLUTR are merged
with the DE hardware presented in [4]. The merged DE systems are also verified using
Modelsim 10.1d.

The proposed rectification hardware of CLUTR and E-CLUTR do not need the
support of external memory if the cameras are synchronized. The cameras can be
perfectly synchronized by driving the cameras with same clock source and using one
common I2C module for the initialization the cameras [12].

The proposed compression and decompression algorithms are evaluated using the
pictures taken by the stereo camera system presented in [4]. If the cameras are not
extremely misaligned, CLUTR and E-CLUTR provide identical visual and numerical
results. The 1024 × 768 size original left and right pictures that are shown in Fig. 29 are
taken under a camera misalignment condition that exceed the limits of CLUTR imple‐
mentation. The example pictures and the test results of CLUTR for typical camera
misalignment are presented in [11]. The original images in Fig. 29 are rectified using
the Caltech rectification algorithm [1] and the proposed E-CLUTR algorithm. The
rectification results of the E-CLUTR is presented in Fig. 30. The extreme rotation of the
rectified image can be visually observed in Fig. 30. The breakpoint locations for the
X and Y coordinates of the left image are presented in Fig. 31.

 (a) (b)

Fig. 29. Original images have distortions as observed on the lines (a) left image (b) right image.

Enhanced Compressed Look-up-Table 245

(a) (b)

Fig. 30. E-CLUTR corrects distortions as observed on the lines (a) left image (b) right image.

 (a) (b)

Fig. 31. Breakpoint locations of the left image (a) breakpoints of the targeted Y coordinates;
coded row-by-row. (b) breakpoints of the targeted X coordinates; coded column-by-column

The PSNR between the rectification results of E-CLUTR and Caltech rectification
algorithm are evaluated in Table 1. The PSNR of the left image is 43.10 dB, and the
PSNR of the right image is 42.02 dB. Generally, a PSNR larger than 30 dB is considered
acceptable to the human eye. Therefore, E-CLUTR provides very high quality rectifi‐
cation results. The PSNR between the original images and the rectification results of
Caltech are also provided in Table 1 for comparison.

Table 1. PSNR (dB) with the rectified images produced by [1]

Comparison with rectified
left image [1]

Comparison with rectified
right image [1]

Original image 17.99 19.34

Proposed (E-CLUTR) 43.10 42.02

The hardware implementation of the E-CLUTR is compared with the stereo image
rectification hardware implementations in Table 2. The hardware architecture of [7]
requires a significant amount of hardware resources to support complex operations for

246 A. Akin et al.

solving the lens distortion models. Hardware architectures of look-up-table based imple‐
mentations [8, 9] require an external memory. Combining the E-CLUTR with BRAM
controller consumes less LUT and DFF resources than [7–9] and it does not require an
external memory. The DFF and LUT consumption of [10] is not available (NA). Never‐
theless, the capacity of E-CLUTR to fit the look-up-tables into the on-chip memory of
the Virtex-5 FPGA is approximately two times more efficient than [10], as a benefit of
its efficient compression scheme. Moreover, high precision hardware of the Caltech
rectification algorithm is implemented, and its hardware consumption results are
presented in Table 2 for comparison. Hardware implementations of CLUTR and
E-CLUTR require much less hardware resource than the hardware implementation of
Caltech rectification while providing almost same rectification results.

Table 2. Hardware resource comparison of the rectification hardware implementations

Device Resolution LUT DFF On-chip
memory
(KB)

External
memory

[7] Virtex-4 752 × 480 3418 5932 0 �

[8] Virtex-E 640 × 512 2459 2075 99 �

[9] Spartan-2 640 × 480 ≈2396 ≈2396 16 �

[10] Virtex-5 1280 × 720 NA NA 1300 �

Caltech hardware Virtex-5 1024 × 768 24384 25346 0 �

CLUTR Virtex-5 1024 × 768 227 197 90 �

2 × (CLUTR +
 BRAM Contr.)

Virtex-5 1024 × 768 784 427 176 �

E-CLUTR Virtex-5 1024 × 768 434 350 252 �

2 × (E-CLUTR +
 BRAM Contr.)

Virtex-5 1024 × 768 2278 956 500 �

The hardware resource consumption of E-CLUTR is higher than CLUTR hardware.
However, if the cameras are extremely misaligned, the limitations of CLUTR can be
exceeded. In these extreme conditions, E-CLUTR still supports rectification. Whereas,
using CLUTR hardware can be more profitable if the stereo cameras are carefully
aligned.

9 Conclusion

In this chapter, two novel compressed look-up-table based image rectification algorithms
and their hardware implementations are presented. The proposed CLUTR and
E-CLUTR algorithms are based on off-line compression of the rectification information

Enhanced Compressed Look-up-Table 247

to fit the tables into the on-chip memory of a Virtex-5 FPGA. The presented decom‐
pression hardware implementations of CLUTR and E-CLUTR consume negligible
amounts of hardware resources, and they do not require any external memory to store
the look-up-tables. The proposed hardware implementations are advantageous if using
external memory is considered as an additional cost, or if the disparity estimation system
has external memory bandwidth limitations. The proposed rectification hardware imple‐
mentations would be even more profitable if they are adapted for high resolution multiple
camera disparity estimation systems.

References

1. Bouguet, J.Y.: Camera Calibration Toolbox for Matlab (2010). http://
www.vision.caltech.edu/bouguetj/calib_doc/index.html

2. Chang, N.Y.C., Tsai, T.H., Hsu, B.H., Chen, Y.C., Chang, T.S.: Algorithm and architecture
of disparity estimation with mini-census adaptive support weight. IEEE Trans. Circ. Syst.
Video Technol. 20(6), 792–805 (2010)

3. Georgoulas, C., Andreadis, I.: A real-time occlusion aware hardware structure for disparity
map computation. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol.
5716, pp. 721–730. Springer, Heidelberg (2009)

4. Akin, A., Baz, I., Atakan, B., Boybat, I., Schmid, A., Leblebici, Y.: A hardware-oriented
dynamically adaptive disparity estimation algorithm and its real-time hardware. In:
Proceedings of the 23rd ACM International Conference on Great Lakes Symposium on VLSI,
pp. 155–160. ACM, Paris (2013)

5. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

6. Greisen, P., Heinzle, S., Gross, M., Burg, A.P.: An FPGA-based processing pipeline for high-
definition stereo video. EURASIP J. Image Video Process. 1, 18–25 (2011)

7. Son, H.-S., Bae, K.-r., Ok, S.-H., Lee, Y.-H., Moon, B.: A rectification hardware architecture
for an adaptive multiple-baseline stereo vision system. In: Kim, T.-h., Adeli, H., Fang,
W.-c., Vasilakos, T., Stoica, A., Patrikakis, C.Z., Zhao, G., Villalba, J.G., Xiao, Y. (eds.)
FGCN 2011, Part I. CCIS, vol. 265, pp. 147–155. Springer, Heidelberg (2011)

8. Vancea, C., Nedevschi, S.: LUT-based image rectification module implemented in FPGA.
In: IEEE International Conference on Intelligent Computer Communication and Processing,
pp. 147–154 (2007)

9. Gribbon, K., Johnston, C., Bailey, D.: A Real-time FPGA implementation of a barrel
distortion correction algorithm with bilinear interpolation. In: Proceedings of the Image and
Vision Computing, New Zealand, pp. 408–413 (2003)

10. Park, D. H., Ko, H. S., Kim, J. G., Cho, J. D.: Real time rectification using differentially
encoded lookup table. In: Proceedings of the International Conference on UIMC (2011)

11. Akin, A., Baz, I., Gaemperle, L.M., Schmid, A., Leblebici, Y.: Compressed look-up-table
based real-time rectification hardware. In: Proceedings of the IFIP/IEEE 21st International
Conference on Very Large Scale Integration, Turkey, pp. 272–277 (2013)

12. Akin, A., Cogal, O., Seyid, K., Afshari, H., Schmid, A., Leblebici, Y.: Hemispherical multiple
camera system for high resolution omni-directional light field imaging. IEEE J. JETCAS 3,
137–144 (2013)

248 A. Akin et al.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

A Flexible ASIC for Time-Domain
Decision-Directed Channel Estimation

in MIMO-OFDM Systems

Andreas Minwegen(B), Dominik Auras, and Gerd Ascheid

Institute for Communication Technologies and Embedded Systems,
RWTH Aachen University, 52056 Aachen, Germany
{minwegen,auras,ascheid}@ice.rwth-aachen.de

Abstract. Channel estimation is a crucial task for the overall com-
munication performance of a wireless receiver. Compared to traditional
approaches the estimation of the wireless channel can be improved by
using iterative estimation with feedback from other receiver components,
however the VLSI implementation of such iterative channel estimation
in multiple-input multiple-output (MIMO) orthogonal frequency divi-
sion multiplexing (OFDM) systems is challenging due to the high com-
putational complexity. In this chapter we introduce the first ASIC for
Decision-Directed MIMO-OFDM channel estimation which tracks chan-
nel variations using feedback from a decoder and supports M-QAM. Fur-
thermore, timing and power dissipation trade-offs are analyzed.

Keywords: MIMO-OFDM · VLSI · ASIC · Channel estimation ·
Expectation maximization · SAGE

1 Introduction

Orthogonal frequency division multiplexing (OFDM) and spatial multiplexing
over multiple-input multiple-output (MIMO) transmissions schemes are adopted
by several recent wireless communication standards such as 3GPP Long Term
Evolution (LTE) or IEEE 802.11n and beyond. Due to the concept of coherent
detection in MIMO-OFDM receivers the channel estimation (CE) is a crucial and
computational intensive part of the overall system and has a significant impact an
the communication performance in terms of frame error rate and thus influence
directly the maximal achievable throughtput. Traditionally, pilot-aided channel
estimation (PACE) is applied where the channel is estimated at predefined pilot
positions. The complete channel over all subcarriers is obtained via interpolation.
Iterative channel estimation can be used to improve the estimates which delivers
promising SNR gains [1]. In the case of iterative channel estimation algorithms, a
priori knowledge from the detector or the decoder is used to improve the channel
estimates iteratively.

However, the gain in terms of algorithmic performance is payed for in terms
of high latencies since each block that participates in the iterations has to com-
plete its processing before the next one can start using the improved input.
c© IFIP International Federation for Information Processing 2015
A. Orailoglu et al. (Eds.): VLSI-SoC 2013, IFIP AICT 461, pp. 249–265, 2015.
DOI: 10.1007/978-3-319-23799-2 12

250 A. Minwegen et al.

An alternative that does not increase the latency but still provides significant
benefits is the channel tracking approach. This approach [2,3] provides channel
estimation updates for time instance n + Ux based on the detector or decoder
decisions for time instance n, as shown in Fig. 1.

Especially, fast fading channels are interesting scenarios for such a solu-
tion. An algorithmic investigation for a communication system similar to LTE
is performed in [4] using the simplified frequency domain (FD) SAGE (space-
alternating generalized expectation-maximization) algorithm, which calculates
updates of the channel impulse response (CIR) estimates for M-QAM constella-
tions. The authors of [3] present a modification that provides a gain of 2 dB for
64-QAM. This modification requires a non trivial matrix inversion. Fortunately,
this matrix inversion can be avoided by iteratively processing each tap of the
CIR in the time domain, as proposed by the time-domain (TD) SAGE algorithm
presented in [5].

Furthermore, the authors of [6] present an analysis of the TD-SAGE algo-
rithm in the context of LTE-Advanced. The results show that it has the potential
to double the system throughput at high user mobility due to a better channel
estimate and therefore, a lower frame error rate. Apart from that the authors
present simulation results about the impact on the system performance of usage
of variable number of feedback symbols from the decoder to the channel estima-
tion block. These results show interesting trade-offs between the computational
complexity and the algorithmic performance for the TD-SAGE algorithm. There-
fore, the number of feedback symbols seems to be interesting parameter for a
trade-off analysis between energy dissipation and algorithmic performance of a
dedicated VLSI architecture.

Contributions: This chapter introduces an extension of the first ASIC imple-
mentation of the TD-SAGE algorithm which is presented in [7]. The TD-SAGE
algorithm is transformed to a novel variant, further reducing the computational
complexity, to what is termed the tap alternating (TA) SAGE. Apart from that
this work discusses two options to further reduce the computational complexity
with the penalty of a loss in algorithmic performance. Either reducing the num-
ber of feedback symbols as discussed in [6] or reducing the frequency of updating
the channel estimate. A suitable VLSI architecture is presented and area, timing
and power numbers are provided. The support for a variable number of feedback
symbols introduces a modification to the state machine that has an impact on
the critical path. Therefore the implementation results for a architectures with
and without variable feedback support are presented. This work evaluates the
hardware costs of channel tracking in a MIMO-OFDM system.

Outline of the Chapter: The remainder of the chapter is organized as follows.
In Sect. 2 the system setup is introduced. Section 3 presents the implemented,
modified algorithm followed by Sect. 5 deriving the ASIC architecture and details
about the processing units and the memory are given. Finally Sect. 6 discusses
post-layout implementation results.

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 251

Fig. 1. The frame structure of the system

2 System Model

The system considered in this chapter is a MIMO-OFDM system using NT = 2
transmit antennas and NR = 2 receive antennas, with NK = 512 sub-carriers and
a cyclic prefix length of NL = 32. First, information bits {b} are encoded using a
convolutional encoder with the generator polynomial [133o171o]. These code bits
{c} are interleaved by a random interleaver, mapped to complex symbols using
a 4-, 16- or 64-QAM modulation and then multiplexed over NT spatial streams,
each corresponding to a transmit antenna. Each symbol stream is expressed as a
vector ti[n] = [ti[n, 0], . . . , ti[n,NK − 1]]T ∈ C

NK×1, where ti[n, k] is the complex
symbol at time n on sub-carrier k transmitted over the ith antenna. Each of the
spatial FD streams is processed by an OFDM modulator which outputs the final
TD vector si transmitted by the ith transmit antenna.

Fig. 2. Receiver model

The channel model used in this chapter is a frequency-selective Rayleigh fad-
ing channel with a power delay profile according to the typical urban COST259
model. It is time variant with the correlation according to Jake’s model with
a normalized Doppler frequency of fd = 1.4468 · 10−5, a sub-carrier spacing of
15 kHz, a user velocity v = 50 km/h and a carrier frequency fc = 2.4GHz.

252 A. Minwegen et al.

The frame structure of the system setup used throughout this chapter is
shown in Fig. 1. The first OFDM symbol of a frame is a preamble following an
orthogonal preamble scheme over the transmit antennas as proposed in [8]. The
subsequent OFDM symbols are only consisting of data symbol vectors across all
sub-carriers.

After the DFT processing of the received TD samples the NK × 1 vector rj

is obtained at the jth receive antenna and can be written as:

rj [n] =
NT−1∑

i=0

Hi,j [n]ti[n] + wj [n] (1)

with Hi,j [n] = [Hi,j [n, 0], . . . ,Hi,j [n,NK − 1]]T ∈ C
NK×1 being the channel fre-

quency response between the ith transmit antenna and the jth receive antenna.
wj [n] is additive white complex Gaussian noise. For the sake of a shorter nota-
tion the time index n will be omitted in the remainder of the chapter.

The receiver model considered throughout this chapter is depicted in Fig. 2.
Each received data symbol vector is iteratively processed by a soft-in soft-out
(SISO) detector and a SISO decoder. A data symbol vector is defined as the
vector over all receive antennas at the kth sub-carrier. Detection is performed
by a max-log MAP SISO sphere detector (SD) with QR decomposition [9], while
the channel decoder is a BCJR decoder providing soft information of the coded
bits {c}. For the simulation results each processing block is executed twice,
corresponding to one complete iteration between the detector and the decoder
is performed.

The channel estimation provides the required estimate of the channel fre-
quency response to the detector. As depicted in Fig. 2 the CE is split into two
parts. First, the PACE processing block calculates an initial CIR estimate based
on the preamble. This initial estimate is used to decode the second OFDM sym-
bol of the frame. Second, the DD-CE block uses the decoder decisions of time n
in order to provide an updated estimate at time n + Ux for the detection of the
next OFDM symbol. Thus, the third OFDM symbol is detected and decoded
based on the updated channel estimate. The update frequency (Ux) can vary
depending on the considered Doppler frequency.

There is an option to adjust the computational complexity of calculation
of an update of the CIR. It was presented in [6]. The idea is to reduce the
feedback from the decoder and therefore reduce the number of computations.
Either the full feedback is used, meaning that all modulation symbols of the
previous OFDM symbol are used to calculate the CIR estimate or only every
second, third and so on symbol is used in the calculation.

3 The TA-SAGE Algorithm

The Hi,j from (1) can be expressed as the DFT of the CIR: Hi,j = DFT(hi,j),
where hi,j is the CIR between the ith transmit antenna and the jth receive
antenna. Only the calculation of the CIR estimate ĥi,j = (ĥi,j [0], ..., ĥi,j [NL −
1])T will be investigated in the remainder of this chapter.

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 253

The description of the TD-SAGE algorithm in [5] is modified in this chapter
to remove redundant calculations for an efficient VLSI implementation.

First, a permutation matrix P l is defined such that P lt̂i cyclically shifts the
vector t̂i by l elements with t̂i containing the NK complex remapped decoder
hard decisions in the frequency domain for the ith antenna. Second, the TD
vectors ŝi and zi,l are defined as follows:

ŝi = FH
NK

t̂i ∈ C
NK (2)

zi,l = P lŝi ∈ C
NK (3)

where FNK is the NK dimensional DFT matrix, sj is the vector with the time-
domain samples of the decisions from the decoder that were sent via the ith
transmit antenna. zi,l is the by l elements cyclically-shifted time-domain vector.
With these definitions the signal model from (1) can be reformulated in the time
domain to

yj = FH
NK

rj =
NT−1∑

i=0

NL−1∑

l=0

hj,i,lzi,l + w̃j (4)

where w̃j is the transformed noise. The estimate of hj,i,l at SAGE iteration
m is denoted as ĥ

(m)
j,i,l. A SAGE iteration is defined as the calculation of an

update for one single tap of the CIR. Therefore, the SAGE iteration range is
m = 1, . . . , NLNTNi, where Ni specifies how often the algorithm iterates over
the complete CIR. The initial estimate provided by the PACE is ĥ

(0)
j,i,l.

The iterations are done for each receive antenna independently. The whole
processing of the algorithm is done on the TD samples and can be split into
four steps that have to be executed for each receive antenna. For these steps
a new variable is introduced. The residual ε

(m)
j is the vector of the values that

are remaining after subtracting the reconstruction of the observation given the
current CIR estimate from the real observation yj , which is basically the cur-
rent estimation error. Then, the steps of the modified SAGE algorithm are the
following:

Step 1: Initialize the residual and calculate the norm for each transmit antenna
vector:

ε
(0)
j = yj −

NT−1∑

i=0

NL−1∑

m=0

ĥ
(0)
j,n,mzn,m (5)

||ŝi||2 =
NK−1∑

k=0

(
Re{ŝi[k]}2 + Im{ŝi[k]}2) (6)

Step 2: Select the current tap by

l = (m − 1) mod NL (7)

i =
(⌊

m − 1
NL

⌋
mod NT

)
. (8)

254 A. Minwegen et al.

Step 3: Calculate a new δ based on the decoder decisions and the previous ε.

δ(m) =
zH
i,lε

(m−1)

||ŝi||2 (9)

Step 4: Update the selected tap and the residual by

ĥ
(m)
j,i,l = ĥ

(m−1)
j,i,l + δ(m) (10)

ε
(m)
j = ε

(m−1)
j − δ(m)zi,l. (11)

Step 2 to 4 are repeated Ni times for every tap of the estimated CIR.
A variable feedback from the decoder was evaluated in [6]. There the authors

explained that they use for a reduced feedback either every second, fourth symbol
and so on. In the time domain this means that only the first NKF

= NK/Fb

time-domain samples are used to calculate an update of the CIR estimate. The
variable Fb is defined to be a power of two, where Fb greater 8 is not considered.
This can be directly realized using the formulars (5)–(10) with the first elements
of the vectors z, si and εj respectively.

Fig. 3. Block error rate for the TA-SAGE with 4-,16- and 64-QAM. Using all available
time-domain samples (NK)

4 Algorithm Evaluation

Figure 3 shows the block error rate (BLER) for the investigated modulation
schemes 4-,16- and 64-QAM using a floating-point implementation. A block is
defined as one code word which is spread over one OFDM symbol. The sim-
ulations for 4-, 16- and 64-QAM were performed with Ni = 3 iterations. The
number of estimated taps is NL = 32 which equals the length of the cyclic pre-
fix. This is a worst case assumption for the presented OFDM system which is

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 255

used throughout this work. Besides the floating-point simulations the results for
a fixed-point implementation are shown in Fig. 3. The degradation due to the
fixed-point arithmetic is negligible.

For the following evaluation the modulation 4-QAM was chosen exemplary
and the number of internal iteration is Ni = 1. In Fig. 1 the update frequency is
given by Ux. In the following two different options to reduce the computational
complexity by a factor of four are evaluated for two different exemplary operation
points. The plot depicted in Fig. 4 shows the algorithmic performance for 4-QAM
and a mobile device speed of v = 50 km/h and an Ux = 1 and Ux = 4. The loss
in algorithmic performance is about 1 dB at a BLER of 1 %. Additionally the
BLER for a reduced feedback from the decoder is plotted. There Fb equals 4
which means that every 4th symbol from decoder is used to calculate the update
of the CIR estimate. In this case leads to the same computational complexity
than using the full feedback but updating the CIR estimate only every 4th
OFDM symbol. From an algorithmic perspective it can be concluded from Fig. 4
that for the given mobile speed and the same computational complexity it is a
better choice to update the CIR estimate every 4th OFDM symbol using the full
decoder feedback.

Figure 5 shows a BLER plot with the same parameters of Ux and Fb but
evaluated at a mobile device speed of v = 100 km/h. The loss in terms of algo-
rithmic performance is in this case for an Ux = 4 about 7 dB at a BLER of 10 %
using the full decoder feedback, compared to updating the CIR estimate every
OFDM symbol. Apart from that it also shows a clear error floor at a BLER of
3 · 10−2. The second option using only one 4th of the decoder feedback for the
calculations shows at v = 100 km/h a loss of 2 dB at a BLER of 10 %. The plot
depicted in Fig. 5 also shows that at the given speed it is better to use a fourth
of the decoder feedback every OFDM symbol instead, when the computational
complexity should be kept constant.

Fig. 4. Block error rate for the TA-SAGE with 4-QAM at a speed of v = 50 km/h

256 A. Minwegen et al.

Fig. 5. Block error rate for the TA-SAGE with 4-QAM at a speed of v = 100 km/h

5 TA-SAGE VLSI Architecture

The architecture is split into three processing units and three different memories.
The processing units are the residual update (RU) unit, the scalar product (SP)
unit and the tap unit. The memories are the residual memory, the TX memory
which stores the re-modulated symbol decisions from the decoder and the tap
memory used to store all taps of the channel impulse response h. Figure 6 shows
these blocks and depicts the memory accesses from each block.

Fig. 6. High level architecture

5.1 Processing Schedule

The processing is split into four different phases: load, pre-computation, iter-
ation and write-back. The load and the write-back phases do not include any

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 257

computation but are necessary to load the input data in the memories and write
back the results. These phases are considered for completeness of the hardware
complexity analysis. In the load phase the received data yj , the current CIR
estimate ĥ and the decoder feedback ŝi are loaded into the memories depicted
in Fig. 6.

The first processing phase (pre-computation) corresponds to step 1 of the
algorithm description. First, the scalar ||ŝi||2 is calculated for all transmit anten-
nas in the SP unit. Second, the residual vector ε

(0)
j for all receive antennas is

calculated in the SP and RU unit. Both units are running concurrently, process-
ing different receive antennas. In parallel to the ε

(0)
j calculation the reciprocal of

||ŝi||2 is pre-computed for all transmit antennas, since it does not change over
the internal iterations.

The second processing phase is the iteration phase, which corresponds to
steps 2, 3 and 4 of the algorithm. Step 2 is reflected in the dedicated address
generation of each memory. Step 3 is executed by the SP unit calculating the
inner product of (9) and the multiplication with the scaling factor 1

||ŝi||2 . The
last steps of the algorithm are (11), executed on the RU unit and (10) calculated
by the tap unit. To achieve full utilization of the processing units and account for
the data dependencies between (9) and (11) the SP and RU unit are separated by
a pipeline register and execute the calculations concurrently for different receive
antennas. This is possible since there is no data dependency between different
receive antennas, which is a property of the SAGE algorithm.

In the write-back phase the new calculated estimate of the CIR is written
from the tap memory to the output ports.

5.2 Processing Units

The processing units are the parts of the architecture that are executing the
calculations of (5) to (11). Apart from the algorithmic parameters defined in
the previous sections, the main architectural design parameter is the data path
parallelism w.

SP Unit. Section 5.1 discussed that the SP unit is used in two phases and
calculates (5), (6) and (9). It can be seen from (5) that all complex multiplica-
tions can be executed in parallel. Therefore, it is possible to have a data path
parallelism up to NK. In (6) and (9) it is necessary to accumulate the result of
the concurrent calculations. This is implemented via an adder tree. Due to the
high data path parallelism (up to w = 32) the maximum achievable frequency
is determined by these adder trees. This leads to the design decision to have a
dedicated pipeline stage as shown in Fig. 7 (third pipeline stage). The separation
into the first and second pipeline stage is done to avoid two real multipliers in
chain. This unit includes 6 · w multipliers and 3 · log(w) + 7 · w adders. The
multipliers in the first pipeline stage are active in the pre-computation phase
and the iteration phase. The dotted part in Fig. 7 is only active during the pre-
computation phase, where first ||ŝi||2 is computed and written into a register file

258 A. Minwegen et al.

Fig. 7. SP Unit

and then the initial residual vector ε
(0)
j is computed while the sequential divider

concurrently outputs all 1
||ŝi||2 . The dashed part is active in the iteration phase

calculating δ(m).

RU Unit. The RU unit also computes (5). Thus, the structure of this unit
differs only slightly from the SP unit. The calculation of (11) allows for parallel
complex multiplications up to NK. The separation into three pipeline stages for
this unit is done to achieve a balanced design. The output registers are added to
ensure the same latency for the RU and SP unit, which eases the scheduling of
the memory accesses. The complexity in terms of multipliers and adders of the
RU unit is 4 · w multipliers and 4 · w adders.

Tap Update Unit. This unit updates the current tap (10). Due to the low
requirements in terms of throughput and the low complexity (2 adders) of this
unit compared to the RU and SP units it is no longer discussed separately.

5.3 Memory Architecture

As shown in Fig. 6 the design has three different memories. Each of these mem-
ories has a dedicated controller that includes an address generation unit and
multiplexers to realize the different data access schemes. The first memory is
the tap memory, which stores the NRNTNL taps of the CIR. This memory has

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 259

Fig. 8. RU Unit

the most relaxed constraints in the architecture. During the initialization phase
it is read in every cycle from the RU and the SP unit with a linear addressing
scheme. In the iteration phase the tap memory is read and written once per tap
update, i.e. every NK

w cycles. Therefore, one read/write port is sufficient (Fig. 8).
The TX memory stores the NTNK TD samples of the complex symbols of

the remapped decisions from the decoder. The circular shift in (3) is realized
as part of the address calculations. This memory is read by the RU and SP
unit during the pre-computation phase and the iteration phase every cycle in
parallel and written in the load phase. Each access reads/writes w elements in
parallel. Therefore, two read/write ports with a word width of w elements are
implemented.

The third memory is the residual memory. It stores the NRNK ε-values and
needs to be read by the SP unit (9) and read and written by the RU unit (11)
independently and concurrently with a word width of w elements. Furthermore,
during the pre-computation phase the SP and RU units read and write indepen-
dently the residual memory (5). Thus, the residual memory has two read and
two write ports with a data width matching the data parallelism w.

With w and the algorithmic parameters NT, NR, NL, NK and Ni, the cycle
count of each phase can be calculated using the following equations.

Load phase:
cload = NTNRNL (12)

Pre-computation phase:

cprecomp = NTNK(1 + NL)/w + 2 (13)

260 A. Minwegen et al.

Iteration phase:

citer =
NK

w
NTNRNLNi + 3 + 2 (14)

Write-Back phase:
cwb = NTNRNL + 2 (15)

The additive constants are needed because the pipeline of the processing units
needs to be empty before the next phase can start. In the pre-computation
phase the RU and the SP unit are running completely independently, leading
to an overhead of two cycles. In the iteration phase the complete pipeline is the
concatenation of the SP and RU unit. Thus the latency is 5. The latency of two
in the write-back phase is due to the pipelined access to the memory. The total
cycle count for one update of the CIR is the sum of the cycle counts of the four
phases.

ctotal = cload + cprecomp + citer + cwb. (16)

6 Implementation Results

The architecture was synthesized using a 90 nm, 1.0 V standard-performance
standard cell library with Synopsys Design Compiler 2010.12-SP2 and layouted
with Cadence SoC Encounter 9.1. In the following first the implementation
results for the full feedback architecture are presented assuming Ni = 3, NT = 2,
NR = 2, NL = 32 and NK = 512. Second the results after extending the archi-
tecture to support the flexible decoder feedback is presented.

Fig. 9. Area-time trade-offs for different degrees of parallelism w and different syn-
thesis/layout constraints. The algorithmic parameters are Ni = 3, NT = 2, NR = 2,
NL = 32 and NK = 512.

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 261

6.1 Full Feedback Architecture

Three different configurations of the architecture were implemented. A configu-
ration is defined by its data path parallelism w = {8, 16, 32}. Each configuration
was synthesized and layouted for its maximum achievable frequency and addi-
tionally for 400 MHz and 200 MHz. There are only two different design points
for w = 32 since the maximum achievable frequency is 400 MHz.

The area-time trade-off diagram for the architecture variants is shown in
Fig. 9. In this diagram Texec is defined as the time that the specific architecture
requires to calculate a complete update of the CIR.

The best ATexec = 53.55mm2µs product is the configuration with w = 32
and a synthesis and layout constraint of 400 MHz. However, the following discus-
sion will focus on the configurations with an execution time around 70µs. The
configuration with data path parallelism w = 8 @ 400 MHz has the ATexec =
122.81mm2µ s product. Doubling the parallelism w = 16 and halving the fre-
quency (ATexec = 138.9mm2µs), leads to the same execution time and only a
slight increase in terms of area. This stems from the fact that this architecture
is memory dominated while an increase in the data path parallelism does not
influence the memory as much as the data path (Table 1).

The memories in the presented architecture are implemented using standard
cell based memories (SCM) [10]. In this work flip-flop SCMs are used. The TX
memory needs to be split into w banks each providing one word to allow for
non-aligned vector accesses. This would lead to 32 macro cells for the maxi-
mum configuration, rendering floor-planning difficult. Therefore, the SCMs were
utilized in this architecture.

Besides area and timing analysis, post-layout simulations were performed to
obtain power estimates for the different configurations. The post-layout simula-
tions with timing annotations were executed for independent test vectors for each
configuration in order to obtain statistic toggling information. Synopsys Power
Compiler uses the post-layout netlist and the annotated toggling information to
calculate the average power estimates.

The results of the power analysis are shown in Fig. 10. The execution time
Texec is the same as in the AT plot depicted in Fig. 9. The power-based analy-
sis leads to different conclusions than the AT -based analysis. The energy for a
certain configuration to compute one CIR estimate is the PTexec product. Com-
paring the configuration w = 8 @ 400 MHz with w = 16 @ 200 MHz in terms of
smallest AT product leads to choose the configuration w = 8 @ 400 MHz. The
same comparison achieving the lowest energy dissipation leads to the choice of
the configuration w = 16 @ 200 MHz. The main reason that a doubled data path
parallelism and a halved clock frequency leads to a better design decision in terms
of energy dissipation is the fact that this architecture is memory dominated. This
means that halving the frequency saves more energy in the memories than it is
added by doubling the data path parallelism, because the memory including the
memory controller is not affected as much as the processing units by an increase
of the data path.

262 A. Minwegen et al.

Table 1. Area breakdown for the TA-SAGE w = 16 @ 200MHz and w = 8 @ 400 MHz

area w = 16 [µm2] area w = 8 [µm2]

Tap mem 74284.8 (3.98%) 76822.6 (4.6%)
TX mem 515499.5 (27.62%) 518432.5 (31.08%)
Resid mem 747217.1 (40.03%) 767431.7 (46.01%)

RU unit 154939.6 (8.3%) 90029.9 (5.4%)
SP unit 374723.8 (20.07%) 215378.1 (12.91%)

The area requirements of the two aforementioned design points are split into
the different parts of the architecture in Table 1. As expected the tap mem-
ory is the smallest one since it only has to store NLNTNR elements. From this
breakdown the aforementioned memory domination of this architecture is obvi-
ous. This is also supported by the layout for the configuration with w = 8 @
400 MHz in Fig. 11. The layout shows that the SCM based memory approach
makes it possible that the memory is placed where needed. In Sect. 5.3 the dis-
cussion of the residual memory revealed that the SP and the RU unit are either
writing it in parallel with w parallel accesses in the initialization phase or read-
ing and writing it during the iteration phase. It can be seen that due to this
constraints the RU unit is surrounded by the residual memory and the SP unit
is placed close to it.

Fig. 10. Power-time trade-offs for different configurations of the TA-SAGE and dif-
ferent synthesis/layout constraints. The algorithmic parameters are Ni = 3, NT = 2,
NR = 2, NL = 32 and NK = 512.

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 263

Fig. 11. Layout of the TA-SAGE ASIC for a parallelism degree of w = 8.

6.2 Flexible Feedback Architecture

The extension of the architecture to support the flexible feedback involved adjust-
ments in the state machine and therefore in the schedule. Figure 12 compares
the implementation results for the full and the flexible feedback architectures.

It can be seen that for 400 MHz the area increase becomes visible in the
diagram. This comes from the fact, that the modifications have an influence on
the critical path and therefore to achieve the given timing constraint more area
has to be invested. The average increase in area is up to 10 %.

Table 2. Power comparision of the full and flexible feedback architecture with different
frequencies and a w = 8

Frequency TA-SAGE TA-SAGEflex

100 MHz 77.63mW 82.84 mW
200 MHz 152 mW 162.24 mW
400 MHz 374 mW 400.1 mW

The same can be observed for the power dissipation depicted in Table 2.
The procentual increase in the power is the same as the area increase for this
architecture configuration. Therefore, the additional power only comes from the
fact that the extension for the flexible feedback support has an influence on the
critical path.

264 A. Minwegen et al.

Fig. 12. Area-time trade-offs for different degrees of parallelism w and different syn-
thesis/layout constraints. The algorithmic parameters are Ni = 1, NT = 2, NR = 2,
NL = 32 and NK = 512.

7 Conclusion

In this chapter we present to the best of our knowledge the first ASIC implemen-
tation of a decision directed channel estimation for MIMO-OFDM for M-QAM.
The architecture is described and formulas for the calculation of the run-time
of the algorithm depending on its parameters on the architecture are presented.
The implementation is characterized in terms of area-time trade-offs and power
dissipation.

It was shown, that the additional hardware costs of a channel tracking algo-
rithm like the TA-SAGE are high compared to traditional PACE as presented
in [11] but it is possible and therefore worth further investigations.

Future work will include the influence of using latched based SCMs as pre-
sented in [10] and the evaluation of mixing macro cell memories (e.g. for the
residual and the tap memory) with the SCMs approach for the TX memory.
Furthermore, this architecture will be compared with simplified algorithms as
for example in [12].

Acknowledgments. This work has been supported by the UMIC Research Centre,
RWTH Aachen University. The authors would like to thank Ernst Martin Witte, David
Kammler, Martin Senst, Filippo Borlenghi and Uwe Deidersen for the valuable discus-
sions and their feedback.

A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation 265

References

1. Gao, J., Liu, H.: Low-complexity MAP channel estimation for mobile MIMO-
OFDM systems. IEEE Trans. Wireless Commun. 7(3), 774–780 (2008)

2. Li, Y., Seshadri, N., Ariyavisitakul, S.: Channel estimation for OFDM systems with
transmitter diversity in mobile wireless channels. IEEE J. Sel. Areas Commun. 17,
461–471 (1999)

3. Ylioinas, J., Juntti, M.: Iterative joint detection, decoding, and channel estimation
in turbo-coded MIMO-OFDM. IEEE Trans. Veh. Technol. 58, 1784–1796 (2009)

4. Xie, Y., Georghiades, C.: Two EM-type channel estimation algorithms for OFDM
with transmitter diversity. IEEE Trans. Commun. 51, 106–115 (2003)

5. Ylioinas, J., Raghavendra, M., Juntti, M.: Avoiding matrix inversion in DD SAGE
channel estimation in MIMO-OFDM with M-QAM. In: 2009 IEEE 70th Vehicular
Technology Conference Fall (VTC 2009-Fall), pp. 1–5, September 2009

6. Ketonen, J., Juntti, M., Ylioinas, J.: Decision directed channel estimation for
improving performance in LTE-A. In: 2010 Conference Record of the Forty Fourth
Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1503–
1507, November 2010

7. Minwegen, A., Auras, D., Ascheid, G.: A multimode decision-directed channel esti-
mation ASIC for MIMO-OFDM. In: 2012 IEEE/IFIP 20th International Confer-
ence on VLSI and System-on-Chip (VLSI-SoC), pp. 65–70, IEEE (2012)

8. Li, Y.: Simplified channel estimation for OFDM systems with multiple transmit
antennas. IEEE Trans. Wireless Commun. 1, 67–75 (2002)

9. Studer, C., Bölcskei, H.: Soft-input soft-output sphere decoding. In: IEEE Inter-
national Symposium on Information Theory, 2008, ISIT 2008, pp. 2007–2011, July
2008

10. Meinerzhagen, P., Roth, C., Burg, A.: Towards generic low-power area-efficient
standard cell based memory architectures. In: 2010 53rd IEEE International Mid-
west Symposium on Circuits and Systems (MWSCAS), pp. 129–132, August 2010

11. Simko, M., Wu, D., Mehlfuehrer, C., Eilert, J., Liu, D.: Implementation aspects of
channel estimation for 3GPP LTE terminals. In: 11th European Wireless Confer-
ence 2011 - Sustainable Wireless Technologies (European Wireless), pp. 1–5, April
2011

12. Qiao, X., Zhao, H., Han, Z., Sun, Y.: Decision-directed channel estimation for
MIMO-OFDM systems. In: 5th International Conference on Wireless Communi-
cations, Networking and Mobile Computing, 2009, WiCom 2009, Beijing, pp. 1–4
(2009)

Author Index

Akin, Abdulkadir 227
Ali, Sk Subidh 48
Alvandpour, Atila 94
Ascheid, Gerd 249
Auras, Dominik 249

Benini, L. 144
Bentobache, Mohand 188
Bounceur, Ahcène 188

Cavigelli, L. 144
Conos, Nathaniel A. 23

Dollas, Apostolos 168

Euler, Reinhardt 188

Fang, Z. 144
Fujita, Masahiro 1

Gaemperle, Luis Manuel 227
Gerstlauer, Andreas 119
Greisen, P. 144
Gürkaynak, F.K. 144

Hager, P.A. 144

Kaeslin, H. 144
Karri, Ramesh 48
Kieffer, Yann 188

Leblebici, Yusuf 227
Lee, Seogoo 119

Matsumoto, Takeshi 1
Meguerdichian, Saro 23
Minwegen, Andreas 249
Mir, Salvador 188

Najibi, Halima 227
Noll, Tobias 69

Oshima, Kosuke 1

Papadimitriou, Kyprianos 168
Potkonjak, Miodrag 23

Ren, Yuan 69
Reorda, Matteo Sonza 208

Sabena, Davide 208
Saeed, Samah Mohamed 48
Schaffner, Michael 144
Schmid, Alexandre 227
Sinanoglu, Ozgur 48
Smolic, A. 144
Sterpone, Luca 208

Thomas, Sotiris 168

Yeknami, Ali Fazli 94

	Preface
	Organization
	Contents
	Debugging Methods Through Identification of Appropriate Functions for Internal Gates
	1 Introduction
	2 Related Work: Finding a Configuration of LUTs Using Boolean SAT Solvers
	3 Our Proposed Method to Correct Gate-Level Circuits
	3.1 Overall Flow
	3.2 Adding Variables to LUT Inputs
	3.3 Using MUXs to Examine Multiple Additional Variables
	3.4 Filtering Out Variables Based on Necessary Condition

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Simultaneous Examination on Multiple Variables Using Multiplexers
	4.3 Candidate Variable Filtering Using the Necessary Condition
	4.4 Applying Both Multiple Variable Examination and Candidate Filtering
	4.5 Debugging Bugs in RTL Designs

	5 Discussions for Extensions
	6 Conclusions and Future Work
	References

	Gate Sizing Under Uncertainty
	1 Introduction
	2 Motivation
	3 Related Work
	4 Cell Library Energy and Delay
	5 Technical Approach
	5.1 Gate Sizing
	5.2 Maximizing Yield

	6 Experimental Results
	6.1 Gate Sizing Under Switching Activity and IVC Uncertainty
	6.2 Yield Optimization

	7 Conclusion
	References

	New Scan-Based Attack Using Only the Test Mode and an Input Corruption Countermeasure
	1 Introduction
	2 Preliminaries
	2.1 AES
	2.2 Differential Properties of AES
	2.3 DFT Structure

	3 Motivation and Challenges
	3.1 State-of-the-Art Scan Attack
	3.2 Limitations of the Existing Scan Attacks
	3.3 Overcoming the Limitations of Existing Scan Attacks

	4 Test-Mode-Only Attack on AES
	4.1 Determining the Mapping Between Scan Cells and AES Input Words
	4.2 Determining the Mapping Between Scan Cells and AES Input Bytes
	4.3 Determining the Order of Bytes in a Word
	4.4 Determining the Order of Bits in a Byte
	4.5 Determining the AES Key
	4.6 Attack Complexity Analysis

	5 Existing Countermeasures
	5.1 Insertion of Inverters in the Scan Path
	5.2 Masking
	5.3 Noise Injection in the Scan Output
	5.4 On-chip Comparison of Responses

	6 Proposed Countermeasure
	7 Conclusion and Ongoing Work
	References

	Quantitative Optimization and Early Cost Estimation of Low-Power Hierarchical-Architecture SRAMs Based on Accurate Cost Models
	Abstract
	1 Introduction
	2 Hierarchical Architecture
	3 Partitioning Impact Analysis
	4 Power Model of Address Decoder
	4.1 Basic Circuits of Address Decoder
	4.2 Switching Activity
	4.3 Energy Cost Related to Interconnects
	4.4 Verification of Address Decoder Estimation Model

	5 Power Model of the Memory Matrix
	5.1 Four Circuit Templates
	5.2 Verification of Memory Matrix Model

	6 Optimization Results
	7 Conclusion
	References

	Low-Power Low-Voltage Delta Sigma Modulator Using Switched-Capacitor Passive Filters
	Abstract
	1 Introduction
	2 Passive Modulator Design Using CIFB Topology
	2.1 System-Level Considerations
	2.2 Low-Voltage Compatibility
	2.3 Performance Limiting Factors

	3 4-th Order Active-Passive Modulator
	3.1 Architectural Design
	3.2 Circuit-Level Design

	4 Simulation Results
	5 Comparison of the Power Efficiency
	6 Summary
	References

	Fine Grain Precision Scaling for Datapath Approximations in Digital Signal Processing Systems
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Noise Model
	4.1 Noise Analysis for One Decision Variable
	4.2 Extension to Multiple Stages
	4.3 Extension to Multiple Inputs with Intermediate Quantization

	5 Power Model
	5.1 Datapath Power Analysis
	5.2 Overhead Analysis

	6 Results
	6.1 FFT Optimization Results
	6.2 IDCT Optimization Results

	7 Summary and Conclusions
	References

	A Complete Real-Time Feature Extraction and Matching System Based on Semantic Kernels Binarized
	1 Introduction
	1.1 Related Work
	1.2 Summary of Contributions
	1.3 Chapter Organization

	2 Algorithm Details
	2.1 Interest Point Detection
	2.2 SKB Descriptor Calculation
	2.3 Descriptor Matching
	2.4 Descriptor Performance

	3 Hardware Architecture
	3.1 Image Pyramid and Line Buffer
	3.2 SKB Core
	3.3 Descriptor Matching

	4 Results
	4.1 ASIC Implementation of the Core
	4.2 FPGA Implementation of the System

	5 Conclusions
	References

	An FPGA-Based Real-Time System for 3D Stereo Matching, Combining Absolute Differences and Census with Aggregation and Belief Propagation
	1 Introduction
	2 Relevant Research
	3 The Algorithm
	4 Dimensioning of the FPGA Architecture
	5 Design and Implementation
	6 Performance Evaluation and Resource Utilization
	7 Conclusions and Future Work
	References

	Minimizing Test Frequencies for Linear Analog Circuits: New Models and Efficient Solution Methods
	1 Introduction
	2 The Set Covering Problem
	2.1 Overview
	2.2 Some Definitions

	3 Minimization of Test Frequencies to Detect All the Faults of an Analog Circuit
	3.1 Mathematical Formulation of the Problem as an SCP-C1P
	3.2 Graph Formulation of the Problem

	4 Approaches for Solving the Minimization Problem of Frequency Intervals
	4.1 LP Approach
	4.2 Interval Graph Approach
	4.3 Numerical Example
	4.4 Case of Multiple Detection Regions

	5 Minimization of the Number of Test Measures Necessary for Detecting All the Faults of an Analog Circuit
	6 Case-Study
	7 Numerical Experiments
	8 Conclusion
	References

	Partition-Based Faults Diagnosis of a VLIW Processor
	Abstract
	1 Introduction
	2 VLIW Architecture Summary
	3 Basics on Diagnosis
	4 Diagnostic Test Program Generation
	4.1 Classification
	4.2 Brother Fragment Generation

	5 Experimental Results
	6 Equivalence Classes Analysis
	6.1 VLIW Equivalence Classes Analysis
	6.2 Maximization of the Diagnosability of the VLIW Partitions
	6.3 Improved VLIW Partitioning

	7 Conclusions and Future Work
	References

	Enhanced Compressed Look-up-Table Based Real-Time Rectification Hardware
	Abstract
	1 Introduction
	2 Typical Look-up-Table Based Solution
	3 Proposed Compression Scheme of the CLUTR Algorithm
	4 Real-Time Decompression Hardware of CLUTR
	5 Limitations of the CLUTR
	6 The Compression Scheme of the E-CLUTR Algorithm
	7 Real-Time Decompression Hardware of E-CLUTR
	8 Implementation Results
	9 Conclusion
	References

	A Flexible ASIC for Time-Domain Decision-Directed Channel Estimation in MIMO-OFDM Systems
	1 Introduction
	2 System Model
	3 The TA-SAGE Algorithm
	4 Algorithm Evaluation
	5 TA-SAGE VLSI Architecture
	5.1 Processing Schedule
	5.2 Processing Units
	5.3 Memory Architecture

	6 Implementation Results
	6.1 Full Feedback Architecture
	6.2 Flexible Feedback Architecture

	7 Conclusion
	References

	Author Index

