
1© Springer International Publishing Switzerland 2016 
G. Ciarimboli et al. (eds.), Organic Cation Transporters, 
DOI 10.1007/978-3-319-23793-0_1

    Chapter 1   
 Introduction to the Cellular Transport 
of Organic Cations       

       Giuliano     Ciarimboli    

    Abstract     Organic cations (OCs) are substances of endogenous and exogenous ori-
gin to which belong important neurotransmitters such as histamine and serotonin 
and also drugs such as metformin. Because OCs are positively charged they need 
membrane transporters to permeate the plasma membrane. Membrane transporters 
which translocate OCs according to their electrochemical gradient belong to the 
Solute Carrier (SLC) families 22 (organic cation transporters (OCT) 1–3, and 
organic cation transporters novel (OCTN) 1–2) and 47 (multidrug and toxin extru-
sion (MATE) 1–2). This chapter collects the information on expression and function 
of these transporters present in the literature, comparing the characteristics of 
human and rodent transporters. These data show that OCTs play an important physi-
ological role for neurotransmitter balance in the body. Moreover, they are also 
important uptake routes for intracellular drug delivery and, considering their high 
expression in excretory organs, together with MATEs are responsible for drug 
excretion. For this reason, OCTs and MATEs can be important determinants of drug 
effi cacies and also toxicities. OCTNs are transporters involved in the cellular uptake 
of substances, which are important in cell metabolism and in signal transmission, 
such as ergothioneine, carnitine and acetylcholine. Even though the expression and 
function of orthologs of transporters for OCs is generally similar, still there are 
important differences that have to be considered for a proper interpretation of trans-
lational studies. Paralogs of transporters for organic cations often display similar 
characteristics, however they show also important differences e.g. with regard to 
interaction with substrates and to regulation. Other important functional aspects of 
transporters for organic cations, such as the molecular correlates of polyspecifi city, 
regulation, interaction with drugs, genetic variations, role in the central nervous 
system, and distribution in the plants are discussed in the other sections of this book.  
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        Introduction 

 The development of a plasma  membrane   was a fundamental step in the evolution of 
the cell, because it allowed the separation of an internal milieau from the external 
environment, which is of special importance to protect the genetic material. 
However, this important evolutionary progress created new challenges, because 
now the cell had to fi nd solutions able to guarantee the entry of all essential nutrients 
into the cytoplasmatic compartment, the distribution of cellular products such as 
proteins, complex carbohydrates and lipids into and beyond the plasma membrane, 
and the handling of waste products and toxic substances, processes aimed at keep-
ing the intracellular milieau constant [ 1 ]. The solution of these problems was the 
development of specialized transport systems of  proteinic nature (transporters)   
embedded in the plasma membrane. Thus, it is evident that transporters are essential 
to sustain life and adaptation to changes in the environment. Their malfunction can 
result in diseases and, therefore, they are target of therapeutic intervention. Some 
transporters are also responsible for effi cacy and also dangerous side-effects of che-
motherapy [ 2 ,  3 ]. 

 A total of 40,678 transport proteins classifi ed into 134 families were predicted by 
 whole-genome transporter analysis   of 141 species, including 115 Eubacteria, 17 
Archaea and 9 Eukaryota [ 4 ]. Eukaryotic cells, especially those of multicellular 
eukaryotic organisms, express the largest total number of transporters, which dis-
play a high number of paralogs generated by gene duplication or expansion within 
certain transporter families. The formation of paralogs is a sign of specialization, 
since closely related paralog transporters become expressed in specifi c tissues or at 
specifi c subcellular localisation and developmental time points [ 4 ]. 

 Based on mode of transport and energy-coupling source, molecular phylogeny, 
and substrate specifi city, there are fi ve main recognised classes of transporters: 
pores and channels, electrochemical-potential-driven transporters, primary active 
transporters, group translocators, and transmembrane electron carriers ([ 1 ],   http://
www.tcdb.org    ). Each transporter category is further classifi ed into individual fami-
lies and subfamilies (Table  1.1    ).

   This book focuses on transporters for organic cations, which are not directly ATP 
dependent and mediate the substrate movement through the plasma membrane 
according to the electrochemical gradient. According to the “ Transporter 
Classifi cation Database ” (  http://www.tcdb.org    ), these transporters belong to the 
family 2, subfamily 2. A  (Table  1.1 ). Here a special attention will be payed at organic 
cation transporters (OCTs), novel organic cation transporters (OCTNs), and multi-
drug and toxin extrusion transporters (MATEs). 

 Basing on the amino acid sequences, the Human Genome Organisation ( HUGO        ), 
classifi ed human transporters in 54  S o l ute  C arrier (SLC) families (a transporter has 
been assigned to a specifi c family if it has at least 20–25 % amino acid sequence 
identity to other members of that family [ 5 ]). These SLC families comprise 386 
different SLC human transporters [ 6 ], additional new members being identifi ed 
constantly [ 5 ]. 
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 According to this classifi cation, OCTs and OCTNs belong to the SLC22 and 
MATEs to the SLC47 family  (Table  1.2    ) . The HUGO nomenclature system is also 
informally used with lowercase letters for rodents and this notation has been also 
extended to the spelling of protein (e.g.,  Slc22a1  and Oct1 denote the rodent ortho-
logs of the human  SLC22A1  gene and hOCT1 protein, respectively).

   Many of the SLC families present in  H. sapiens  (among these also the SLC22 
family) are highly evolutionary conserved in  Bilaterian species   [ 7 ]; moreover, the 
high representation of the SLC22 family in the plant  Arabidopsis thaliana , suggests 
that it has an ancient origin [ 7 ]. More information about transporters for organic cat-
ions in plants will be presented in the Chap.   10     by T. Eggen and C. Lillo in this book.  

    Table 1.1     Transporter classifi cation   (classes and subclasses) according to the International Union 
of Biochemistry and Molecular Biology (  http://www.tcdb.org    )   

 1. Pores and channels  1.A α-Helical channels 
 1.B β-Strand porins 
 1.C Pore-forming toxins 
 1.D Non-ribosomally synthesized channels 
 1.E Holins 

 These proteins catalyze facilitated diffusion by passage through a transmembrane aqueous pore 
or channel. They do not exhibit stereospecifi city but may be specifi c for a particular molecular 
species or class of molecules 
 2. Electrochemical-potential-driven 
transporters 

 2.A Transporters or carriers (uniporters, 
symporters and antiporters) 
 2.B Non-ribosomally synthesized transporters 

 These transporters utilize a carrier-mediated process not directly linked to a form of energy 
other than chemiosmotic energy to catalyze uniport (a single species is transported by facilitated 
diffusion), antiport (two or more species are transported in opposite directions) and/or symport 
(two or more species are transported together in the same direction) 
 3. Primary active transporters  3.A P–P-bond-hydrolysis-driven  transporters   

 3.B Decarboxylation-driven transporters 
 3.C Methyltransfer-driven transporters 
 3.D Oxidoreduction-driven transporters 
 3.E Light-driven transporters 

 These transporters use a primary source of energy (chemical, electrical and solar) to drive active 
transport of a solute against a concentration gradient 
 4. Group translocators  4.A Phosphotransferases 
 Transport systems of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. The 
product of the reaction, derived from extracellular sugar, is a cytoplasmic sugar-phosphate. The 
enzymatic constituents, catalyzing sugar phosphorylation, are superimposed on the transport 
process in a tightly coupled process 
 5. Transmembrane electron carriers  5.A Two-Electron Carriers 

 5.B One-Electron  Carriers   
 Systems that catalyze electron fl ow across a biological membrane, from donors localized to 
one side of the membrane to acceptors localized on the other side. These systems contribute to 
or subtract from the membrane potential, depending on the direction of electron fl ow. They are 
therefore important to cellular energetics 
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    Substrates of Transporters for Organic Cations 

 The substrates of the three types of  transporters   for organic cations discussed in this 
book (OCTs, OCTNs, MATEs) are mainly organic cations, even though also inor-
ganic substances such as Cd 2+  [ 8 ] and cisplatin [ 9 ,  10 ] have been demonstrated to be 
accepted as substrate by some of these transporters. Moreover, some of these pro-
teins can transport also zwitterions such as  L -carnitine [ 11 ,  12 ] (OCTNs) and cepha-
lexin and cephradine [ 13 ] (human MATE1, hMATE1) and anionic substances such 
as estrone sulphate (hMATE1, [ 13 ]), acyclovir, and ganciclovir (hOCT1 and 
hMATE, [ 13 ,  14 ]). 

 Organic cations (OCs) can derive from endogenous and also exogenous  sources  . 
Endogenous OCs are important neurotransmitters such as histamine, serotonin and 
dopamine [ 15 ] and polyamines such as putrescine and spermidine [ 16 ], which have 
an important function in many cellular processes such as DNA stabilization, 

   Table 1.2    The  SLC22A and SLC47A families     

 Gene name  Gene locus  Protein name  Function 

  SLC22A1    6q25.3    hOCT1   Electrogenic cation transport 
  SLC22A2    6q25.3    hOCT2  
  SLC22A3    6q25.3    hOCT3  
  SLC22A4    5q23.3    hOCTN1   Carnitine and cation transport 
  SLC22A5    5q23.3    hOCTN2 / CT1  
  SLC22A16    6q21    hCT2 / hFLIPT2 / hOCT6  
  SLC22A6   11q12.3  hOAT1  Anion transport 
  SLC22A7   6q21.1  hOAT2 
  SLC22A8   11q12.3  hOAT3 
  SLC22A9   11q12.3  hOAT7 
  SLC22A11   11q13.1   hOAT4   
  SLC22A12   11q13.1  hURAT1 
  SLC22A13   3p22.2  hOAT10 
  SLC22A20   11q13.1  hOAT6 
  SLC22A10   11q12.3  hOAT5  Predominant substrates not 

yet determined   SLC22A14   3p22.2  OCTL2/hORCTL4 
  SLC22A15   1p13.1  FLIPT1 
  SLC22A17   14q11.2  BOIT/BOCT 
  SLC22A18   11p15.5  TSSC5/hORCTL2 
  SLC22A23   6p25.2 
  SLC22A24   11q12.3 
  SLC22A25   11q12.3  UST6 
  SLC22A31   16q24.3 
  SLC47A1    17p11.2    hMATE1   H + -coupled electroneutral 

exchange of organic  cations     SLC47A2    17p11.2    hMATE2  

  The transporters presented in this book are in bold characters  
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 regulation of ion channel activity, gene expression, and cell proliferation [ 17 ]. In 
general, neurotransmitters and polyamines seem to be low affi nity substrates of 
transporters for OCs, underlying the importance of these transport systems in places, 
where the concentration of such substances is high. Exogenous OCs are drugs (up 
to 40 % of the prescribed drugs are OCs [ 18 ]), xenobiotics such as the herbicide 
paraquat and the DNA intercalating agent ethidium bromide [ 19 ,  20 ], and also sev-
eral natural contents of fungi, fruits and vegetables. Of practical experimental inter-
est are fl uorescent OCs such as 4(4-dimethylaminostyryl)- N -methylpyridinium 
(ASP + ), and rhodamine 123, which are substrates for several transporters for OCs 
and are therefore useful for investigating transporter activity [ 21 – 24 ]. 

 OCs are also classifi ed as  type I and type II   OCs depending on their chemical 
structure. Type I OCs are small (below 500 Da), strongly hydrophilic cations, such 
as tetraethylammonium (TEA + ) and 1-methyl-4-phenylpyridinium (MPP + ), while 
Type II OCs are large, more hydrophobic and mostly polyvalent substances, such as 
 D -tubocurarine and quinine [ 25 ]. 

 Even though many substrates are common between OCTs, OCTNs, and MATEs, 
every single transporter has a specifi c interaction spectrum with the substrates and 
inhibitors. For example, TEA +  is a substrate for OCT1 and OCT2 [ 26 ], but not for 
OCT3 [ 15 ]. Some substances are known to bind to, but not to be transported by 
these transporters, as for example shown for  proton pump inhibitors   [ 27 ]. 

 From this brief description it is evident why these transporters are called  poly-
specifi c  . The translational relevance of studies on OCs with laboratory animals 
should be cautionally inferred, since rodent and human transporter orthologs can 
differ in substrate specifi city, tissue expression [ 28 ] and also regulation (see Chap. 
  5     by E. Schlatter of this book), even though the global substrate preference of the 
SLC22 family seems to be conserved over a long evolutionary time [ 7 ].  

    Integration of OC Transport 

 Since many transporters for OCs are expressed in liver and kidney, they play a piv-
otal role in  drug and xenobiotic absorption and excretion   [ 29 ]. In these organs, 
SLC22A and SLC47 transporters are expressed in hepatocytes and renal proximal 
tubules cells, which are highly polarized cells, and mediate the coordinated move-
ment of OCs across the cell by a concerted activity, mainly resulting in excretion of 
OCs into bile or urine. The fi rst step for hepatic and renal OC secretion is their 
absorption from the basolateral side into the cells. While in human kidney this pro-
cess is mainly mediated by OCT2 (Fig.  1.1 ), in rodent kidney it is supported by 
Oct1 and Oct2. OCT3 shows only a tiny expression in the basolateral membrane of 
proximal tubule cells, and for this reason is probably less important than OCT2 
under normal conditions. OCs are secreted in a second step from the tubular cell 
into the tubular lumen. In the kidney this process is mediated by different transport-
ers: the Na + -carnitine cotransporter OCTN2, and  P -glycoprotein (also named 
MDR1), an ATP-dependent transporter that probably mediates the effl ux of bulky 
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hydrophobic OCs, and other H + /organic cation antiporters (OCTN1, MATE1, and 
MATE2K in Fig.  1.1 ). According to their electrochemical gradient, in the kidney 
OCs can be also reabsorbed from the lumen into the interstitium. For this process, a 
polyspecifi c cation transport system mediating their uptake across the luminal 
membrane of proximal tubular cells has been proposed, but not yet molecularly 
identifi ed (system Y in Fig.  1.1    ). The effl ux across the basolateral membrane into 
the interstitium may be mediated by OCTs. The hepatic transport pathways of OCs 
in humans are illustrated in Fig.  1.2 . The uptake of OCs into human hepatocytes is 
mediated by OCT1 present on the sinusoidal membrane. The extrusion of OCs in 
the canalicular space is mediated by  P -glycoprotein (MDR1 in Fig.  1.2    ) and 
MATE1.

        Genetic Organisation of Transporters for Organic Cations 

 Some of the   SLC22A  genes   (e.g. the genes for OCT1 and 2, OCTN1 and 2, and also 
OAT1 and 3) are organized in the mouse and in humans as tightly linked pairs [ 32 ]. 
The gene coding for OCT3 is also in close proximity of the  SLC22A1 - 2  pair, and 
also  SLC47A1  and  SLC47A2  are adjacent. The gene pairing probably originates 

  Fig. 1.1    Transport systems for organic cations  in human renal proximal tubules  . The basolateral 
uptake of organic cations (OCs) from interstitium is mainly mediated by hOCT2, where there is 
also a much lower expression of hOCT3. Secretion of OCs into the tubular fl uid is mediated by 
MATE1, MATE2K, and OCTN1 in exchange with H + . The necessary H +  gradient is substained by 
the activity of NH3, an apically expressed Na + /H +  exchanger (not shown). Bulky OCs are secreted 
into the urine under energy consumption by the Multidrug Resistance protein 1 (MDR1). OCs can 
be also reabsorbed from the tubular fl uid by an not yet identifi ed transport system (Y), and then 
transported into the interstitium by OCT. Modifi ed from Koepsell et al. [ 30 ] and Ciarimboli and 
Schlatter [ 31 ]       
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from an evolutionary duplication event, aimed at conferring the advantages of 
redundancy or broader substrate specifi city [ 33 ]. 

 The genes encoding for Oct1- 3   are clustered within a 300-kb genomic region 
between the insulin-like growth factor receptor 2 ( Igf2r ) and the  Plg  (plasminogen) 
genes on mouse chromosome 17 and on rat chromosome 1. Also in humans, the 
genes encoding for OCT1-3 are clustered in a region between the  IGF2R  and the 
 APO ( a )- like  genes on chromosome 6 [ 34 ]. 

 Interestingly, expression of  Slc22a2  and  Slc22a3  in mouse placenta is predomi-
nantly maternally imprinted, at least till embryonic day 15.5 for  Slc22a3  [ 35 ]. 
Imprinting is an epigenetic modifi cation, which leads to preferential expression of a 
determined parental allele in somatic cells of the progeny. After evolutionary diver-
gence, imprinting of only 29 transcripts has been conserved in mice and humans 
[ 36 ].  Imprinted genes   often have key roles in embryonic development, but also in 
postnatal functions including energy homeostasis and behaviour [ 37 ]. In humans, 
imprinting of the  SLC22A2  and  SLC22A3  genes in the placenta is not a general 
phenomenon, but is present only in few subjects with a temporal expression pattern 
resembling that of the murine genes [ 38 ].  

     Topology of Transporters   for Organic Cations 

 The transporters of the SLC22 family have a similar predicted membrane topology 
consisting of 12 alpha-helical transmembrane domains (TMDs), a large glycosylated 
extracellular loop between the fi rst and the second TMD, and a large intracellular 

  Fig. 1.2    Transport systems for organic cations  in human hepatocytes  . OCs are transported through 
the sinusoidal membrane (corresponding to the basolateral side) of hepatocytes by hOCT1. 
Secretion of OCs into the bile canaliculus is mediated by MATE1 expressed in the apical mem-
brane in exchange with H + . Bulky OCs are secreted into the bile under energy consumption by 
MDR1. Modifi ed from Koepsell et al. [ 30 ] and Ciarimboli and Schlatter [ 31 ]       
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loop between TMDs 6 and 7 with consensus sequences for phosphorylation (Fig. 
 1.3a ). Both the amino- and carboxy-termini are intracellularly localized.

   The topology of SLC47 transporters seems to be somewhat different, as these 
transporters possess 13 TMDs, an intracellular amino- and an extracellular carboxy- 
terminus, no glycosylation sites and few intracellularly located putative phosphory-
lation sites (Fig.  1.3b ) [ 39 ,  40 ]. However, there are data demonstrating that the 
functional core of MATE1 consists of 12 TMDs [ 41 ]. 

 In the following the basic information on OCT, OCTN, and MATE present in the 
literature will be summarized, focussing on human and rodent transporters, which 
will be separately described, because of the known differences between  species  .  

    Organic Cation Transporters ( OCTs)   

 Transport of organic cations by the three OCT  subtypes   (OCT1, OCT2, and OCT3) 
is electrogenic, Na + - and H + -independent and bidirectional [ 29 ]. The driving force is 
supplied exclusively by the electrochemical gradient of the substrate. The fi rst mem-
ber of the SLC22 transporter family was isolated and identifi ed by expression clon-
ing from rat kidney and was named rat organic cation transporter 1 (rOct1) [ 42 ]. In 
this initial study, it was shown that rOct1 has functional characteristics resembling 
those of the organic cation transport processes previously described in the basolateral 
membrane of renal proximal tubule cells and of hepatocytes. Mammalian orthologs 
of   OCT1    have been cloned also from human [ 43 ,  44 ], rabbit [ 45 ], and mouse [ 46 ]. 

  Fig. 1.3    Panel ( a ) shows the  proposed   secondary structure of OCTs and OCTNs. These transport-
ers have 12 TMD, a big extracellular and a big intracellular loop with type and subtype specifi c 
glycosylation and phosphorylation sites, respectively. Amino- and carboxy-termini are intracellu-
lar. Panel ( b ) shows the proposed secondary structure of MATEs. These transporters have 13 
TMD, an intracellular and an extracellular terminus. Modifi ed from Ciarimboli and Schlatter [ 31 ]       
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    Mouse Organic Cation Transporter 1 ( mOct1)   

 The gene  Slc22a1  encodes for a 556 amino acids (aa) protein, which is mainly 
expressed in the liver and the kidneys [ 46 ,  47 ]. Upstream sequences for  mOct1  
contain  putative binding motifs   for hepatocyte (HNF5 and H-APF-1), and mam-
mary (WAP and MGF) specifi c expression, and potential binding sites for 
metallothioneine- regulated gene expression (MBF-1, GR-MT-IIA, and AP-2) [ 48 ]. 
  Slc22a1  transcripts   have been shown to turn up in the mouse kidney at midgesta-
tion, at the time when the proximal tubules begin to differentiate, and to increase 
gradually in the course of nephron maturation.  Slc22a1  transcripts are also tran-
siently expressed in other tissues than the kidneys such as the ascending aorta and 
the atrium [ 49 ]. In the liver, ontogenic expression data showed that  Oct1 - 3  approach 
adult expression levels at an age of about 3 weeks [ 50 ]. The highest hepatic Oct1 
mRNA labelling intensity was detected in the hepatocytes which are localized in the 
proximity of the vena centralis, while in the kidney Oct1 mRNA appeared to be 
unevenly distributed throughout the renal cortex but not in glomeruli [ 51 ]. The 
mOct1 has been found to be higher expressed than mOct2 and mOct3 in the S1, S2, 
and S3 segments of the  proximal tubules   (relative mRNA expression of Oct1/Oct2/
Oct3: 1/0.3/0.01) [ 52 ]. Expression and function of mOct1 has been detected also in 
other organs: in the luminal blood-retina barrier [ 53 ] Oct1 and Oct2 have been 
found to be expressed in an age-dependent manner (with decreased expression in 
aged mice [ 54 ]) in endothelial cells of mouse brain microvessels (BMVs). Elevated 
Oct1 mRNA levels were measured in mammary glands of lactating mice, suggest-
ing that this transporter may be involved in the transfer of drugs into milk [ 55 ]. 

 Generally, when expressed in polarized cells, such as  hepatocytes and proximal 
tubule cells,   mOct1 localizes to the basolateral plasma membrane [ 56 ]. However, in 
enterocytes this transporter has been shown to be expressed on the apical plasma 
membrane [ 57 ]. 

 The transport mediated by mOct1 has been demonstrated to be pH- and Na + -
independent and potential dependent [ 58 ]. In mice, Oct1 and Oct2 have been identi-
fi ed also in the respiratory epithelium, where they seem to be involved in the 
 acetylcholine (ACh) release   [ 59 ]. Interestingly, Oct1 and Oct3 have been also found 
to be expressed in mouse urothelium, where they may mediate ACh secretion [ 60 ]. 
Transport studies showed that the mOct1 mediates the uptake of choline with a  K   m   
of 42 μM [ 61 ] and the low-affi nity transport of serotonin [ 51 ]. Moreover, mOct1 
accepts also exogenous OCs such as [ 14 C]-TEA +  and MPP +  as substrates ( K   m   = 38 
μM [ 47 ] and 10 μM [ 62 ], respectively). 

 To better understand the physiological role of Oct1, Oct1 knockout ( Slc22a1  −/− ) 
mice were generated [ 63 ]. These mice were viable, healthy, and fertile and did not 
appear to have obvious phenotypic abnormalities; they only showed a decreased 
hepatic accumulation and intestinal excretion of exogenously administered TEA +  
[ 63 ]. Further studies with  Slc22a1  −/−  mice showed that Oct1 is important for the 
hepatic and intestinal uptake of metformin, a hypoglycemic agent used for the oral 
treatment of type 2 diabetes mellitus, whereas its renal distribution and excretion are 
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mainly governed by other transport mechanisms [ 64 ,  65 ]. Since a high-fat diet for 
19 weeks up-regulated the Oct1 expression in the mouse liver and this increased 
transporter expression was associated with a higher hepatic metformin uptake, it has 
been suggested that obesity might have an effect on the absorption or distribution 
 pharmacokinetics   of metformin through an up-regulation of hepatic Oct1 expres-
sion [ 66 ]. Also mice fed with a lithogenic diet, which increases the biliary choles-
terol and phospholipid secretion and the probability of gallstone formation, showed 
an up-regulation of hepatic Oct1 mRNA levels during lithogenic bile formation, 
probably resulting in an increased uptake of choline, necessary to substain phospho-
lipid synthesis under conditions of biliary phospholipid hypersecretion [ 67 ]. The 
hepatic expression of  mOct1   is transcriptionally increased by peroxisome prolifera-
tor agonist receptor (PPAR)-α and -γ  agonists  , which are commonly used agents 
able to regulate several hepatocellular transport functions [ 68 ]. Oct1 is not expressed 
in the mouse brain [ 51 ].  

    Rat Organic Cation Transporter 1 ( rOct1)   

 The rOct1 is a  556 aa membrane protein   [ 42 ] mapped to chromosome 1q11-12 [ 69 ], 
which has been identifi ed by Northern blot analysis in rat kidney, small intestine, 
colon and liver [ 42 ]. In the kidney, rOct1 protein expression has been localized at 
the basolateral membrane of S1 and S2 segments of proximal tubule cells [ 70 ,  71 ]. 
rOct1 mRNA was detected primarily in the superfi cial and juxtamedullary proximal 
convoluted tubules [ 72 ].  Renal rOct1 mRNA levels   are gradually up-regulated from 
day 0 through day 45 [ 73 ]. In the liver, rOct1 has been localized in the sinusoidal 
membranes of hepatocytes. Translational regulation is suggested since even though 
the mRNA of rOct1 is distributed throughout the liver lobules, the rOct1 protein is 
expressed only in hepatocytes surrounding the central veins [ 74 ]. rOct1 has been 
also identifi ed in the airway epithelia in the luminal membrane of ciliated epithelial 
cells [ 75 ]. 

 The transport mediated by rOct1 has been characterized as  electrogenic, Na + - 
and pH-independent and bidirectional   [ 76 ]. rOct1 can translocate organic cations 
like TEA +  ( K   m   = 38 μM) [ 77 ] and choline [ 78 ], catecolamines and other biogenic 
amines [ 79 ], nucleosides like 2′-deoxytubercidin [ 80 ], while cations like tetrapen-
tylammonium (TPA + ) and cyanine 863 are nontransported inhibitors of the trans-
porter [ 78 ,  81 ]. Superfusion of rOct1-expressing  Xenopus  oocytes with dopamine, 
serotonin, noradrenaline, histamine and acetylcholine induced saturable inwardly 
directed currents with K  m   values ranging from 20 to 100 μM [ 82 ]. Transport of 
 dopamine   was also demonstrated by uptake measurements in oocytes and in renal 
mammalian cells ( h uman  e mbryonic  k idney cells, HEK293 cells) transfected with 
rOct1. The high uptake rates measured in rOct1-expressing oocytes and in trans-
fected HEK293 cells suggested that rOct1 is a high capacity transporter, which 
in vivo mediates the fi rst step in the excretion of monoamine neurotransmitters [ 82 ]. 
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 The  cysteins   of the large extracellular loop of rOct1 have been suggested to be 
involved in the formation of oligomers, which infl uence the insertion of the trans-
porter in the plasma membrane, but not its affi nity for the substrates [ 83 ]. 

 An alternatively spliced variant of  rOct1   ( rOct1A  ), which lacks the fi rst two 
TMDs has been cloned from rat kidney. This variant is also present in the intestine 
and liver [ 84 ] and encodes a 430 aa protein that is 92 % identical to rOct1. rOct1A 
exhibited similar functional characteristics to those of rOct1, implying that the fi rst 
two transmembrane domains and the three potential glycosylation sites normally 
present in this protein domain are not essential for transport function, even though 
other characteristics such as synthesis, targeting, and sorting of the transporter have 
been supposed to be different between the two isoforms [ 84 ].  

    Rabbit Organic Cation Transporter 1 ( rbOct1        ) 

 A cDNA encoding a 554 aa protein highly homologous to other mammalian OCTs 
has been isolated from rabbit kidney (rbOct1) [ 45 ]. rbOct1 mediated a [ 3 H]MPP +  
transport, which was saturable, sensitive to membrane potential, and inhibited by 
various OCs. rbOct1 mRNA transcripts were found to be expressed in the kidney, 
liver, and intestine.  

    Human Organic Cation Transporter 1 ( hOCT1)   

 The  hOCT1  encodes a 553 aa protein with 80 % identity to rOct1.  Northern blot 
analysis   showed that  hOCT1  is mainly transcribed in the liver [ 43 ], differently to 
what was observed for  rOct1 , that is mainly transcribed in kidney, liver and small 
intestine [ 42 ].  hOCT1  has been localized on chromosome 6q26 [ 85 ]. 

 Functionally, hOCT1 together with hOCT3 have been also identifi ed in the pla-
centa [ 86 ], where they possibly mediate the release of non-neuronal  ACh  . 

 The presence of hOCT1 has been also demonstrated  in bronchial tissue   by immu-
nofl uorescence, where a luminal and also an intracellular staining of ciliated epithe-
lial cells was observed [ 75 ]. 

 hOCT1 expressed in  oocytes of  Xenopus laevis    could translocate ACh in either 
direction. An almost complete inhibition of hOCT1-mediated TEA +  uptake was 
produced by the inhalational glucocorticoids beclomethasone and budesonide, sug-
gesting that hOCT1 mediates a budesonide-inhibitable luminal ACh release in the 
respiratory epithelium [ 75 ]. 

 Since hOCT1 is expressed in both subcutaneous and visceral adipose tissue, and 
its expression is signifi cantly increased in obese subjects [ 87 ], it has been speculated 
that this is the reason for the increased metformin action in obese subjects [ 87 ]. 

 The binding site of hOCT1 has been demonstrated to interact preferentially 
with elongated cationic molecules, which are able to interact with a  “supraplanar 
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stabilizing structure”   within a hydrophobic pocket of the transporter [ 88 ]. A bal-
ance between hydrophobic and hydrophilic properties was supposed to be neces-
sary for binding and subsequent translocation by hOCT1 [ 89 ]. A comparative 
analysis of substrates of hOCT1 and hOCT2 showed that molecular volume was 
inversely correlated to transport by hOCT1, whereas H-bonding parameters like 
polar surface area dominated for hOCT2 mediated transport [ 90 ]. 

 When expressed in polarized cells, hOCT1 was generally localized on the baso-
lateral plasma membrane, except in airways and in the kidneys, where it seemed to 
be expressed on the apical cell membrane [ 75 ,  91 ]. These fi ndings imply that the 
information for the insertion of the transporter in the suitable plasma membrane 
domain is not directly contained in the transporter aa sequence. 

 Both hOCT1 and mOct1 have been proposed to be high-capacity thiamine trans-
porters, and for this reason, they are probably associated with its  hepatic dietary 
uptake   [ 92 ]. hOCT1 accepts TEA +  as a substrate: other OCs, including clonidine, 
quinine, quinidine and verapamil, but also the neutral compounds corticosterone 
and midazolam signifi cantly inhibited [ 14 C]-TEA +  uptake by hOCT1 [ 93 ]. The K i  
values of several compounds for interaction with hOCT1 are different from the K i  
values determined in previous studies for rOct1 and hOCT2 [ 93 ]. hOCT1 has been 
shown to mediate a specifi c and membrane potential sensitive uptake of MPP + , 
which showed remarkable differences in the interaction with some organic cations 
when compared to rOct1 [ 42 ,  43 ]. 

 In the human glioma cell line SK-MG-1, four  hOCT1   isoforms   were identifi ed 
[ 94 ]. Two of these isoforms were also found in human liver cDNA. Several reports 
are dedicated to the study of drug interactions and how transporter mutations infl u-
ence hOCT-drug interactions. These topics will be examined in the Chap.   4     by 
M. Tzvetkov, N. Dalila and F. Faltraco of this book. Here, it should be underlined 
that many drugs can interact with hOCT without being substrate of the transporters, 
as for example demonstrated for proton pump inhibitors, which potently inhibit 
hOCT but are not translocated into the cell [ 27 ]. Both the interaction as substrate 
and as inhibitor are of great pharmacological importance, in the fi rst case determin-
ing drug tissue distribution and excretion and in the second case causing important 
drug–drug interaction effects. 

 The expression of  hOCT1   in the sinusoidal membrane of  hepatocytes   is linked to 
drug hepatotoxicity, as shown for example for the quaternary alkaloid nitidine chlo-
ride [ 95 ] and the pyrrolizidine alkaloid retrorsine [ 96 ].  

    Mouse Organic Cation Transporter 2 ( mOct2)   

 The mOct2 exhibits about 93 and 84 % amino acid identity with rat Oct2 and 
hOCT2, respectively, and only about 70 % amino acid identity with the mouse and 
rat Oct1 [ 48 ]. 

 The  promoter region of    mOct2  contains a TATA and a CCAAT box, and several 
binding sites for transcription factors (three E-box motifs, putative responsive 
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elements for interleukin 6 (IL-6), and tumour necrosis factor (TNF), and a putative 
histone H1 specifi c element HI-S) [ 48 ]. mOct2 is mainly expressed in the kidney, in 
the brain, ureter and in the developing embryo. In the central nervous system, mOct2 
is expressed in the limbic system, where it plays a role in the control of the concen-
tration of noradrenalin (NA) and serotonin (5-HT) [ 97 ]. For this reason, mOct2 may 
be implicated in anxiety and depression-related mouse behaviors. Indeed,  genetic 
deletion   of  mOct2  in mice produced a signifi cant reduction in brain concentrations 
of NA and 5-HT [ 97 ]. Expression of mOct2 has been demonstrated in the cochlea 
in hair cells of the Corti organ and also in cells of the stria vascularis, where it is 
involved in the development of acute ototoxicity induced by cisplatin [ 98 ]. In the 
peripheral nervous system, mOct2 is expressed in dorsal root ganglia, where it plays 
a prominent role for the development of  oxaliplatin-induced peripheral neurotoxic-
ity   [ 99 ]. Together with mOct1, mOct2 is expressed in respiratory epithelium, where 
they mediate ACh release [ 59 ]. mOct2 is highly expressed in alveolar cells, where 
it seems to catalyze the transport of choline [ 100 ]. Interestingly, since adenoviruses 
increased both choline release from biomembranes and steady-state mOct2 mRNA 
and protein expression, it has been speculated that adenoviruses might transcrip-
tionally activate the  mOct2  promoter or directly interact with regulatory domains in 
the primary structure of the transporter [ 100 ]. 

 The  transport properties   of mOct2 are in general similar to those of mOct1, even 
though several organic cations had weaker inhibitory effects on MPP +  uptake by 
mOct2 than by mOct1 [ 62 ]. 

  mOct2   mediates the renal secretion of  creatinine   [ 101 ] and is involved in the 
renal uptake, secretion and toxicity of metals and metal containing compound such 
as Cd 2+  [ 102 ] and cisplatin [ 98 ].  

    Rat Organic Cation Transporter 2 ( rOct2)   

  rOct2  encodes a  593 aa protein   with a calculated molecular mass of 66 kDa [ 103 ]. 
The rat  Oct2  cDNA (2205 bp) shows 67 % identity with the rat  Oct1 . Renal expres-
sion of rOct2 is evident in the basolateral cell membrane of S2 and S3 segments of 
the proximal tubule [ 71 ,  104 ,  105 ]. rOct2 mRNA has been found to be expressed in 
rat choroid plexus [ 106 ] and, together with rOct1 and rOct3, it was also identifi ed in 
the luminal membrane of ciliated epithelial cells of respiratory tract, where, together 
with rOct1, it serves as an ACh transporter [ 75 ]. OCT-type transporters are probably 
responsible for  non-neuronal ACh release   [ 86 ]. A recent work demonstrates that 
rOct2 is expressed in cholinergic neurons, anterior horn motoneurons of the spinal 
cord, and in the neuromuscular junctions and plays a role in ACh recycling in pre-
synaptic terminals, possibly acting as a low-affi nity and high-capacity choline trans-
porter at presynaptic terminals in cholinergic neurons [ 107 ]. 

 rOct2 has been demonstrated to function also as a  histamine transporter   and thus 
to participate in histamine metabolism [ 108 ]. rOct2 transports dopamine, NA, 
adrenaline, 5-HT [ 104 ] and choline [ 106 ]. The IC 50  values of many inhibitors were 
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similar for both rOct1 and rOct2, whereas those of others (mepiperphenidol, 
 O -methylisoprenaline, and corticosterone) were signifi cantly different [ 81 ]. The 
 substrate binding site   of rOct2 is like a pocket containing overlapping binding 
domains for ligands, which may undergo separate structural changes, and which can 
change its affi nity depending on membrane potential [ 109 ]. Also  rOct2   has been 
demonstrated to mediate the cellular uptake and hence the nephrotoxicity of cispla-
tin [ 110 ].  

    Rabbit Organic Cation Transporter 2 ( rbOct2)   

 The rabbit ortholog of OCT2 (rbOct2) cloned from rabbit kidney is 71 % identical 
to its paralog rbOct1 [ 111 ]. The  structure of   rbOct2 postulated by computer analysis 
revealed 2 large hydrophilic loops and 12 transmembrane-spanning α-helices simi-
lar to what was described for rbOct1 and all other members of the OCT family 
[ 112 ]. Moreover, fi ve potential N-linked glycosylation sites and three potential PKC 
phosphorylation sites in the two large hydrophilic loops were also identifi ed [ 111 ]. 
 Asparagines   71, 96, and 112 in rbOct2 are glycosylated to target the transporter to 
the cell membrane [ 113 ]. Even though the  functional characteristics   of rbOct1 and 
rbOct2 are similar, they interact with different potency with specifi c substrates, such 
as cimetidine and 2-(4-nitro-2,1,3-benzoxadiazol-7-yl)aminoethyl trimethyl- 
ammonium (NBD-TMA), rbOct2 showing a greater apparent affi nity than rbOct1 
[ 111 ]. The  Glu447 residue in   rbOct2 exerted a marked infl uence on substrate selec-
tivity, being probably located in a putative docking region within a hydrophilic cleft 
of the protein [ 111 ]. In the rabbit kidneys, rbOct1 was found to be expressed mainly 
in the S1 segment of proximal tubules, while rbOct2 is the main Oct in S2- and 
S3-segments [ 114 ,  115 ]. Both rbOct1 and  rbOct2   have been demonstrated to be 
involved in the development of  Cd 2+ -induced nephrotoxicity   [ 116 ].  

    Human Organic Cation Transporter 2 ( hOCT2)   

 The  hOCT2  encodes a  555 aa protein   with 81 % identity to rOct2 and 68 % identity 
to rOct1. hOCT2 could be detected in kidneys, spleen, placenta, small intestine and 
brain [ 43 ], and human bronchi, mostly in the apical membrane of ciliated cells, 
where, together with hOCT1 mediates cellular release of ACh [ 75 ]. In the kidneys, 
hOCT2 is expressed in the basolateral membrane of proximal tubule cells [ 117 ]. A 
splice variant of  hOCT2 ,  hOCT2 - A , mainly expressed in the kidneys and weakly in 
brain, liver, colon, skeletal muscle, bone marrow, spinal cord, testis, and placenta, 
has been also identifi ed.  hOCT2 - A  codes for a  483-amino acid protein  , which is 
predicted to have nine transmembrane domains and, when expressed in HEK293 
cells, was able to interact with organic cations, even though with different substrate 
affi nities compared with hOCT2 [ 118 ]. 
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 The  hOCT2  promoter region contains a combination of  TATA box and Inr ele-
ment  , probably important as transcription start point and many other possible regu-
latory sites for specifi c factors, such as E boxes, GATA, IK2, and HFH-8, a member 
of the forkhead/winged helix class of regulators involved in specifi c tissue expres-
sion of proteins [ 119 ]. 

 hOCT2 is a low affi nity transporter of the monoamine neurotransmitters dopa-
mine, NA, 5-HT, and histamine [ 120 ]. Since hOCT2 has a broad expression in the 
human brain, it might co-operate with high affi nity uptake mechanisms [ 120 ] to 
control the local concentration and action of  aminergic neurotransmitters  . Cerebral 
hOCT2 and also hOCT3 have been proposed as a complementary target of antide-
pressant action [ 15 ,  121 ,  122 ]. hOCT2 together with hMATE1 transports asymmet-
ric dimethylarginine (ADMA) and also  L -arginine (hOCT2 has a much lower affi nity 
for  L -arginine than for ADMA, see Table  1.3 ) and are consequently involved in the 
renal elimination of these substances [ 143 ]. ADMA is an endogenous substance, 
which interferes with the synthesis of nitric oxide from  L -arginine and with endothe-
lium-relaxation and for this reason is a cardiovascular risk factor [ 143 ]. In an attempt 
to identify endogenous substrates of hOCT2, metabolites differentially present in 
urine samples collected from individuals carriers of wild type and mutated  SLC22A2  
( SLC22A2  wild type,  808GT  heterozygous, and  808TT  homozygous) were analyzed 
by gas chromatography–mass spectrometry.  Tryptophan   was the most signifi cantly 
decreased compound associated with the  808GT  and  808TT  variants, compared 
with the levels in the individuals bearing the wild type  SLC22A2  [ 147 ].

   Interestingly, hOCT2 has been demonstrated to  transport metals and metal com-
pounds   such as Cd 2+  [ 8 ], cisplatin [ 9 ] and oxaliplatin [ 99 ]. These substances are 
well-known to be nephrotoxic and their hOCT2-mediated uptake seems to be criti-
cal for their toxic effects. 

 The binding of the substrates to hOCT2 was demonstrated to be dependent on 
their ionization degree [ 151 ] and also on their hydrophobicity, molecular size, 
shape, and fl exibility, as determined using quantitative structure activity relation-
ship (QSAR) computational  models   [ 192 ]. The hydrophilic cleft, where the trans-
porter interacts with its substrates, is supposed to be formed by several transmembrane 
helices, which contain cysteines at aa position 437, 451, 470, and 474, with cysteine 
474 exposed to the aqueous milieu of the cleft [ 193 ] and being part of an interaction 
domain [ 194 ]. As already demonstrated for rOct1 [ 195 ], also the binding region of 
hOCT2 is characterized by multiple, possibly overlapping interaction sites [ 196 ]. 
The molecular basis of polyspecifi city will be discussed in the Chap.   2     by T. Keller 
and H. Koepsell of this book. The six cysteines of the hOCT2 extracellular loop 
have been demonstrated to be important for transporter oligomerization and its cor-
rect traffi cking to the plasma membrane [ 197 ]. hOCT2 is not only able to interact 
with itself to form oligomers [ 197 ], but it has also other  proteinic interaction part-
ners   such as the lysosomal-associated protein transmembrane 4 α (LAPTM4A), 
which regulates the function of  hOCT2   by infl uencing its traffi cking to/from the cell 
membrane and processing it via the intracellular sorting machinery [ 198 ].  
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    Mouse Organic Cation Transporter 3 ( mOct3)   

 The coding region of   Slc22a3    consists of 11 exons and 10 introns [ 199 ].  Slc22a3  
encodes a low-affi nity transporter for the neurotransmitters 5-HT and histamine 
[ 15 ,  200 ]. Measuring mOct3 mRNA levels in different tissues, it was found that 
mOct3 was highly expressed in placenta, ovaries, and uterus [ 50 ], skeletal muscle 
and heart [ 201 ], and at low levels in most other tissues [ 50 ]. 

 In the placenta, mOct3 expression was shown to depend on embryonic develop-
ment, dramatically decreasing toward the end of gestation [ 34 ], analogously to what 
observed for the expression of the intracellular enzyme monoamine oxidase A 
( MAOA  ), which inactivates monoamines after transport into the cell [ 202 ]. In the 
placenta, mOct3 and MAOA were found to co-localize in the labyrinth layer, where 
trophoblast cells are in contact with both the maternal and the foetal circulation to 
allow an exchange of nutrients, gases and waste products [ 202 ]. mOct3 has been 
identifi ed as a component of the uptake 2 system, a transport system responsible for 
clearing extracellular monoamines, which is active in tissues with high mOct3 
expression such as skeletal muscle, heart, and uterus [ 201 ]. In an attempt to establish 
the importance of mOct3 as part of the  uptake2 system,   the effects of deletion of the 
 Slc22a3  gene in mice ( Slc22a3  −/−  mice) were evaluated. These mice were viable and 
fertile and showed no obvious physiological defect and no signifi cant imbalance of 
NA and dopamine. However, uptake experiments with MPP +  revealed that  Slc22a3  
is an essential component for uptake-2 function in the adult heart and placenta but 
not in other adult organs [ 201 ]. Further experiments with  Slc22a3  −/−  mice showed 
that these animals ingested an increased quantity of hypertonic saline under thirst 
and salt appetite conditions, and showed alterations of the neural response in the 
subfornical organ after Na +  deprivation [ 203 ]. In mouse brain, mOct3 was demon-
strated to be expressed in  dopaminergic neurons   of the substantia nigra compacta, 
non-aminergic neurons of the ventral tegmental area, substantia nigra reticulate 
(SNr), locus coeruleus, hippocampus and cortex [ 204 ]. However, mOct3 expression 
was also occasionally detected in astrocytes in the SNr, hippocampus and several 
hypothalamic nuclei.  Slc22a3  −/−  mice showed a decreased intracellular content and 
increased turnover of aminergic transmitters in the brain, which resulted in subtle 
behavioral alterations, such as increased sensitivity to psychostimulants and 
increased levels of anxiety and stress [ 204 ]. In contrast with these fi ndings, deletion 
of  mOct3  was found by another group to tendencially increase animal activity and 
diminish anxiety [ 205 ]. The reason for this discrepancy is not known. 

 Interestingly, it has been shown that mOct3 is able to transport 5-HT and that its 
expression is upregulated in the brain of mice with constitutively  reduced 5-HT trans-
porter   [ 206 ]. Moreover, in these mice the OCT blocker decynium-22 diminished 
5-HT clearance, exerting antidepressant-like effects. In this way, mOct3 may be an 
important transporter mediating serotonergic signaling when the expression or func-
tion of 5-HT transporters is compromised [ 206 ].  mOct3   has been found to be expressed 
also in basophils, cells able to synthetize and secrete huge amounts of histamine. 
Here, mOct3 seems to be involved in the control of histamine secretion [ 200 ].  

G. Ciarimboli
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    Rat Organic Cation Transporter 3 ( rOct3)   

  rOct3  encodes a  551 aa protein   with a predicted molecular mass of 61 kDa and 48 
% identity with rOct1 and rOct2 [ 207 ]. rOct3 is expressed most abundantly in the 
placenta and moderately in the intestine, heart, and brain [ 207 ,  208 ]. Its expression 
is comparatively low in the kidney and lung and is undetectable in liver [ 207 ]. In the 
brain, rOct3 is expressed widely in different regions, especially in the hippocampus, 
cerebellum, and cerebral cortex [ 208 ], in osmolarity-sensitive regions, and in relay 
regions. Discrete expression of rOct3 was observed in circumventricular organs 
such as area postrema and subfornical organ, which are located at the blood–brain 
interface [ 209 ]. In these two structures, rOct3 was found in neurons. In addition, 
ependymal cells of the subcommissural organ and the pinealocytes of the  pineal 
gland   express rOct3. The transporter is also expressed in the choroid plexus and in 
ependymal cells of some areas lining the ventricles and in ependymal and glial-like 
cells of the dorsomedial hypothalamus (DMH) of male rats [ 210 ]. 

  DMH   accumulates histamine and this uptake could be reduced by corticoste-
rone, serotonine, estradiol, and the OCT inhibitor decynium22, supporting the 
hypothesis that corticosterone-mediated inhibition of rOct3 is responsible for stress-
induced accumulation of serotonine in the DMH [ 210 ]. Also the toxicity of MPP + , 
a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, in cerebellar granule 
neurons is probably mediated by rOct3 [ 211 ]. 

 In the placenta, rOct3 is expressed on the basolateral, i.e., fetus facing side of the 
placenta, while the rMate1 is expressed in the labyrinth area mainly on the apical 
(maternal) placenta region [ 212 ]. The  OC metformin   can be transported in the rat 
placenta in a fetal-to-maternal direction even against its concentration gradient 
[ 213 ] leading to the conclusion that rOct3 and rMate1 represent an “effi cient trans-
placental excretory pathway” responsible for protection and detoxication of the 
fetus [ 213 ]. 

 It has been observed that at  low concentration inhibitors and substrates   stimu-
lated rOct3-mediated MPP +  and noradrenaline, but not cimetidine transport. Basing 
on these observation, a kinetic model with two binding sites for substrate or inhibi-
tor per transporter unit was proposed, where activation may serve to keep the trans-
porter working for specifi c substrates in the face of inhibitors [ 214 ]. 

  rOct3   has been identifi ed in the luminal membrane of ciliated epithelial cells of 
the lung but it did not seem to be involved in the transport of ACh [ 75 ].  

    Human Organic Cation Transporter 3 ( hOCT3)   

 The hOCT3 (also known as extraneuronal monoamine  transporter  , EMT) has been 
fi rst cloned from Caki-1 cells, a human kidney carcinoma cell line [ 157 ]. The 
 SLC22A3  has been mapped to 6q27, the end of the long arm of chromosome 6 [ 157 ] 
and codes for a 556 aa long protein. Like in mouse  Slc22a3 ,  SLC22A3  coding 

1 Introduction to the Cellular Transport of Organic Cations
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regions consist of 11 exons and 10 introns [ 199 ]. The  SLC22A3   promoter   is located 
within a CpG island and lacks a consensus TATA box, but contains a prototypical 
initiator element and a number of potential binding sites for the ubiquitous tran-
scription factors Sp1 and NF-1 [ 119 ]. mRNA for hOCT3 was detected in liver, heart 
and brain cortex. HEK293 cells transfected with hOCT3 showed uptake of known 
substrates of the extraneuronal catecholamine transporter, such as tyramine, adrena-
line, NA, 5-HT and the neurotoxin MPP + . Adrenaline was taken up three times more 
effi ciently than NA, while TEA + , a prototypical substrate for the OCT proteins, was 
not accepted as a substrate by hOCT3 [ 15 ,  157 ]. The transport of the neurotransmit-
ters dopamine, NA, and 5-HT by hOCT3 was determined to be of high-capacity and 
low-affi nity [ 215 ]. Functionally, the hOCT3 has been proposed to be involved in the 
inactivation of released monoamine transmitters  that   escapes neuronal reuptake and 
thus in the prevention of uncontrolled signal spreading [ 157 ] and to be a new molec-
ular target for the development of drugs that aim at an elevation of free monoamine 
transmitters [ 157 ,  216 ]. Loss of hOCT3 function may cause chronically elevation of 
sympathetic tone, which may induce vasoconstriction and vascular hypertrophy, 
leading to progressive increases in peripheral resistance and hypertension [ 157 ]. A 
genome-wide haplotype association study  identifi ed    SLC22A3 - apolipoprotein ( a ) L2 -
 apolipoprotein ( a ) gene cluster as a strong susceptibility locus for coronary artery 
disease [ 217 ]. 

 A recent study examined the relationship between catecholamine gene  expres-
sion   in peripheral blood and tic severity in Tourette syndrome (TS), a heritable 
disorder characterized by tics and by dysregulation of neurotransmitters (such as 
dopamine, histamine, 5-HT, and NA) [ 218 ].  SLC22A3  was highly associated with 
TS severity, underlining the potential importance of hOCT3 in regulating neu-
rotransmitter balance [ 218 ]. 

 hOCT3 has been localized in the basolateral  membrane   of acinar and ductal cells 
of human submandibular salivary gland, where it is supposed to play a role in the 
secretion of histamine by such non-professional histamine-producing cells. 
Interestingly, hOCT3 expression in these cells is strongly reduced in Sjögren’s syn-
drome patients, suggesting that impaired histamine transport may contribute to 
glandular pathology in these patients [ 158 ]. 

 Also at the example of hOCT3 it has been shown that sensitivity of tumor  cells   
to chemotherapeutic treatment with e.g. irinotecan, vincristine, melphalan [ 219 ], 
and oxaliplatin [ 220 ] depends on the expression of transporter proteins mediating 
specifi c drug accumulation into target cells [ 219 ]. 

 hOCT3 is more widely expressed than its mouse ortholog [ 34 ]. 
 A  functional discrimination   of the three hOCTs has been demonstrated to be 

attained using the following substances: hOCT1 is selectively inhibited by prazosin, 
reversibly inhibited by phenoxybenzamine (PbA) and it is not sensitive to inhibition 
by (9-fl uorenyl)- N -methyl-beta-chloroethylamine (SKF550) and  O -methyl-
isoprenaline (OMI); hOCT2 is reversibly inhibited by SKF550, irreversibly by PbA 
and not by prazosin, ß-estradiol and OMI, whereas  hOCT3   is selectively inhibited 
by corticosterone, OMI and decynium22 [ 221 ].   
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    Organic Cation Transporter Novel  1   

    Mouse Octn1 

 Mouse Octn1 ( mOctn1     ) has a low, Na + -dependent, carnitine transport activity [ 222 ]. 
mOctn1 is expressed in kidney, smooth muscle, and hematopoietic tissues, such as 
spleen and bone marrow. Here, its expression was shown to be associated with 
myeloid cells of the erythroid-lineage at the differentiation stage from immature 
erythroid cells to peripheral mature erythrocytes [ 223 ]. In mouse kidney, mOctn1 is 
expressed predominantly in the luminal membrane of cortical proximal tubule cells 
[ 163 ]. Moreover, mOctn1 is expressed in infl ammatory joints of mice with colla-
gen-induced arthritis, a model of human arthritis, but not in the joints of normal 
mice [ 224 ]. Together with mOctn2 and -3, mOctn1 is widespread expressed across 
the mouse central nervous system with a distribution pattern indicating a role in 
modulating cerebral bioenergetics and in ACh production for neurotransmission in 
olfactory, satiety, limbic, memory, motor and sensory functions [ 225 ]. Indeed, 
mOctn1 has been demonstrated to play a role in neuronal differentiation and prolif-
eration, which are required for brain development [ 226 ]. 

 The mOctn transporters are also expressed in epithelial ducts, specialized myo-
epithelial cells and fatty stroma of mammary glands. In pregnant and lactating mice 
the expression of these transporters has been shown to be up-regulated compared 
with virginal females, and to be down-regulated 15 days after cessation of lactation, 
probably to provide the suckling infant with adequate carnitine [ 227 ]. Mice with 
genetic deletion of  mOctn1  ( Slc22a4  −/− ) developed normally and did not display any 
gross phenotypic abnormalities [ 228 ]. However, they developed an ergothioneine 
defi ciency (for ergothioneine function see the paragraph human OCTN1 below) and 
were more prone to intestinal infl ammation in the ischemia and reperfusion model. 
Moreover, using  Slc22a4  −/−  mice it has been demonstrated that mOctn1 transports 
the antidiabetic drug metformin [ 229 ], being involved in its oral absorption in small 
intestine, and phenformin, infl uencing its accumulation in mitochondria [ 230 ]. 

  mOctn1  -mediated uptake of ergothioneine in neural progenitor cells was shown 
to inhibit cell proliferation while promoting cellular differentiation by regulating 
the expression of basic helix-loop-helix transcription factors through a still unknown 
process, which is different from antioxidant  action      [ 231 ].  

     Rat Octn1      

 Rat  Octn1  gene codes for a protein of 553 aa with a high homology to human 
OCTN1 (85 % identity) [ 232 ]. rOctn1 has been demonstrated to be a pH-dependent 
polyspecifi c transporter for organic cations, which is expressed in a wide variety of 
tissues in the rat, principally in the liver, intestine, kidney, brain, heart, placenta 
[ 232 ], choroid plexus [ 233 ], and testis Sertoli cells [ 234 ]. Renal rOctn1 mRNA 
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levels were shown to increase gradually from postnatal day 0 through day 45 in both 
genders [ 73 ]. Also rOctn1 was shown to be involved in the Na + -dependent transport 
of ergothioneine [ 235 ]. rOctn1 and also rOctn2 accept oxaliplatin as a substrate and 
are functionally expressed in dorsal root ganglia neurons. rOctn1-mediated trans-
port of oxaliplatin was suggested to contribute to its neuronal accumulation and 
treatment-limiting neurotoxicity [ 236 ].  

     Human OCTN1      

 Human  OCTN1  gene encodes a 551 aa protein with 11 transmembrane domains and 
one nucleotide binding site motif [ 162 ]. hOCTN1 works as a polyspecifi c, bidirec-
tional proton antiporter [ 11 ], transporting several cationic compounds, including 
ACh, TEA + , pyrilamine, quinidine, verapamil, donepezil, betonicine, ergothioneine 
and stachydrine [ 11 ,  168 ,  169 ]. Human OCTN1 is strongly expressed in kidney, 
trachea, bone marrow and fetal liver and in several human cancer cell lines, but not 
in adult liver [ 162 ]. A discrete expression of hOCTN1 has been also detected in 
cardiomyocites [ 164 ]. In the intestine, hOCTN1 is expressed at the same level in all 
gut sections [ 175 ]. hOCTN1 is highly expressed in ocular tissues, especially in the 
iris-ciliary-body [ 237 ] and in the apical membrane of human corneal and conjunc-
tival epithelial cells [ 165 ]. hOCTN1 together with hOCTN2 is also expressed in 
human airway epithelia, with a predominant localization to the apical portion of 
epithelial cells [ 238 ]. Lactating mammary epithelial cells (MEC) express more than 
fourfold higher RNA levels of hOCTN1 relative to nonlactating MEC [ 166 ]. 
hOCTN1, together with hOCTN2 and hOCTN3 is expressed in sperm, where they 
possibly mediate carnitine uptake [ 176 ]. hOCTN1 is expressed in immunological 
and hematological organs and tissues, and expression of its mRNA is induced by 
proinfl ammatory stimuli [ 224 ], suggesting that SLC22A4 functions as a transporter 
in lymphoid organs or infl ammatory milieu. Interestingly, polymorphisms of 
 hOCTN1  in a gene region, where the transcription factor RUNX1 binds, and poly-
morphisms of RUNX1 itself were suggested to be associated with susceptibility to 
rheumatoid arthritis [ 224 ]. However, these fi ndings are strongly debated (see for 
example [ 239 ]). A localization of hOCTN1 in mitocondria has been also demon-
strated [ 167 ]. Here, the transporter should mediate the uptake of  L -carnitine [ 167 ]. 
Ergothioneine ( ET     ), a substance that is biosynthesized exclusively by fungi and 
mycobacteria and is captured by plants through their roots, has been identifi ed as 
key substrate of hOCTN1 (K m  = 21 μM) [ 169 ]. In humans, ET is of dietary origin 
(high levels of ET are present in mushrooms) and accumulates in erythrocytes, bone 
marrow, and seminal fl uid [ 169 ]. ET is considered to be an intracellular antioxidant 
[ 169 ]. Indeed, epidermal keratinocytes express hOCTN1, which enables them to 
internalize and accumulate  L -ergothioneine conferring to the cells a resistance to 
oxidative damage [ 240 ]. In blood cells, hOCTN1 is involved in the transport of 
physiological compounds that are important for cell proliferation and erythroid dif-
ferentiation [ 241 ]. hOCTN1 mediates the cellular extrusion of  ACh      [ 168 ].  
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     Mouse Octn2      

 Because of the function of hOCTN2 as a carnitine transporter (see below), expres-
sion of Octn2 has been investigated in wild-type (WT)- and in the juvenile visceral 
steatosis (JVS)-mice, so called because of accumulation of fat in viscera due to 
defects in fatty acid oxidation caused by carnitine defi ciency (for this reason this is 
an animal model of human systemic carnitine defi ciency) [ 242 ]. In JVS mice, a mis-
sense mutation in  mOctn2  gene from CTG (Leu) to CGG (Arg) at codon 352 located 
within the sixth transmembrane transporter domain was identifi ed, suggesting that 
 mOctn2  is a candidate gene responsible for the JVS and that JVS mice can be con-
sidered to be  mOctn2  −/−  mice [ 242 ]. The JVS mice spontaneously develop intestinal 
villous atrophy, breakdown and infl ammation with intense lymphocytic and macro-
phage infi ltration, leading to ulcer formation and gut perforation [ 243 ]. Using this 
animal model, it has been demonstrated that the Na + -dependent carnitine transporter 
Octn2 is responsible for carnitine transfer from the mother to the fetus and to supply 
the placenta with carnitine for its own metabolic needs [ 244 ] and that carnitine is 
necessary to maintain normal intestinal and colonic structure and morphology 
[ 243 ]. mOctn2 was found to be also expressed in pancreatic A-cells [ 245 ]. In mice, 
PPARα transcriptionally up-regulates mOctn2 and enzymes involved in hepatic car-
nitine biosynthesis [ 246 ]. Also fasting and caloric restriction were demonstrated to 
activate PPARα leading to an upregulation of mOctn2 in several tissues [ 247 ]. The 
pharmacological importance of mOctn2 has been suggested in studies with mice, 
demonstrating that the uptake of the organic cation ipratropium bromide, an anti-
cholinergic drug used to treat chronic obstructive pulmonary disease, is mediated by 
mOctn2 expressed at the apical portions of ciliated epithelial cells of   trachea       [ 248 ].  

     Rat Octn2      

 Rat  Octn2  encodes a 557 amino acid protein with 12 putative membrane-spanning 
domains, which mediates the high-affi nity, Na + -dependent transport of  L -carnitine 
(K m  = 25 μM) [ 249 ]. rOctn2 is expressed in the testis, colon, kidney (in the proximal 
and distal tubules and in the glomeruli), heart (in myocardium, valves, and arteri-
oles) and liver and also in the skeletal muscle (where it is involved in the import of 
carnitine for fatty acid oxidation, especially in highly oxidative muscles [ 250 ]), in 
the labyrinthine layer of the placenta, small intestine, and brain (in the cortex, hip-
pocampus, and cerebellum) [ 249 ,  251 ]. Rat Octn2 is also expressed in the basolat-
eral membrane of epithelial cells in the distal caput, corpus, and proximal cauda 
epididymides, where it is likely to be responsible for the transport of  L -carnitine into 
the cells of the epididymal epithelium [ 252 ] and also in the Sertoli cells, which are 
part of the blood-testis barrier [ 253 ]. Expression of rOctn2 has been also detected in 
astrocytes [ 254 ] and in brain capillary endothelial cells at the basolateral membrane 
and in the cytoplasmic region [ 255 ], suggesting an important role of rOctn2 in 
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removal of carnitine esters from the brain. Renal mRNA expression of rOctn2 
increased by a factor of 1.7 in carnitine defi cient rats, whereas rOctn2 mRNA 
expression remained unchanged in gut, liver or skeletal muscle [ 256 ]. Muscle con-
traction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-
induced translocation of rOctn2 to the plasma membrane [ 257 ]. Two splicing 
variants of rOctn2 have been identifi ed in  rats   [ 258 ].  

     Human OCTN2      

 Human  OCTN2  encodes for a polyspecifi c, pH-dependent transporter for OCs of 
557 aa with twelve putative transmembrane domains and with 75.8 % similarity to 
OCTN1 [ 12 ,  172 ]. The physiological importance of OCTN2 derives from its func-
tion as a high affi nity Na + -carnitine cotransporter [ 12 ]. Indeed, mutations, which 
produced a missfunctioning hOCTN2, have been associated with primary systemic 
carnitine defi ciency, an autosomal recessive disease, whose manifestations are pro-
gressive cardiomyopathy, skeletal myopathy, hypoglycaemia and hyperammonae-
mia [ 259 – 261 ]. Importantly, Na +  does not change the affi nity of hOCTN2 for OCs, 
but it strongly increases the hOCTN2 affi nity for carnitine [ 251 ,  262 ]. hOCTN2 
showed a stereospecifi c transport activity:  D -carnitine was transported with slightly 
lower affi nity (K m  = 10.9 μM) than the  L -isomer (K m  = 4.3 μM) [ 182 ]. The fl uxes of 
 L -carnitine and Na +  have been demonstrated to be coupled with 1:1 stoichiometry 
and to be electrogenic processes [ 263 ]. The transmembrane domains 1–7 of 
hOCTN2 were shown to be responsible for organic cation transport and for Na +  
dependence in carnitine transport, with glutamines 180 and 207 as critical amino 
acids for the Na +  dependence [ 264 ]. The hOCTN2 is physiologically glycosylated 
but glycosylation does not affect maturation of hOCTN2 to the plasma membrane. 
The three asparagines that have been demonstrated to be normally glycosylated are 
located in a region important for substrate recognition and turnover rate [ 265 ]. The 
C terminus of hOCTN2 has been shown to interact directly with PSD-95-Dlg-ZO-1 
domain-containing protein K1 and 2 (PDZK1 and 2), which resulted to be func-
tional regulators of hOCTN2 [ 266 ,  267 ]. 

 hOCTN2 is strongly expressed in kidneys on the apical membrane of renal tubu-
lar epithelial cells, skeletal muscle, heart, and placenta in adult humans [ 12 ,  263 ]. 
Expression of hOCTN2 has been also detected in primary cultured brain capillary 
endothelial cells [ 173 ], on the apical side of nasal epithelium [ 174 ], in the brush-
border membrane of intestinal Caco-2 cells [ 268 ] and in the colon [ 175 ]. In the 
intestine, hOCTN2 was shown to transport the “competence and sporulation factor” 
from  Bacillus subtilis  into intestinal epithelial cells, protecting these cells from oxi-
dative stress [ 269 ]. The production of such a factor by  Bacillus subtilis  probably 
provides the host with the ability to respond or adapt to changes in the microbiome 
in order to  maintain   intestinal homeostasis [ 269 ]. 
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 Because of its expression in brain capillary endothelial cells, hOCTN2 is sug-
gested to be involved in transport of  L -carnitine and acetyl- L -carnitine from the 
circulating blood to the brain across the blood brain barrier [ 173 ]. 

 hOCTN2 seems also to be expressed in sperm, where carnitine is important for 
spermatozoan maturation, motility, and fertility [ 176 ]. hOCTN2 is also present in 
brush border membranes from human term placentas, where it may mediate most 
maternofetal carnitine transport [ 270 ]. 

 Insulin can acutely increase muscle total carnitine content in humans during 
hypercarnitinemia, which is associated with an increase in  hOCTN2   transcription   
[ 271 ]. 

    hOCTN2 is expressed in the endothelial cells of human heart and its expression 
can be modulated by drug administration. Moreover, hOCTN2 can contribute to the 
cardiac uptake of cardiovascular drugs [ 183 ]. hOCTN2 is also expressed in cultured 
human limbal corneal and conjunctival epithelial cells, where it mediates carnitine 
uptake [ 272 ]. 

 Therapeutic use of cephaloridine, a beta-lactam antibiotic, in humans is associ-
ated with carnitine defi ciency. This fact has been explained by inhibition of 
hOCTN2-mediated carnitine transport by beta-lactam antibiotics such as cephalori-
dine, cefoselis, cefepime, and cefl uprenam. These antibiotics possess a quaternary 
nitrogen as carnitine does. Several other beta-lactam antibiotics that do not possess 
this structural feature did not interact with hOCTN2 [ 179 ]. Even though hOCTN2 
is a transporter for organic cations, it is highly specifi c for carnitine and closely 
related molecules, such as the cardioprotective agent  mildronate   [ 181 ]. 

 The high carbohydrate consumption observed in vegetarians was associated with 
a signifi cant stimulation of hOCTN2 expression in oral mucosa, probably to com-
pensate lower carnitine levels in the alimentation [ 273 ]. 

 Lactating mammary epithelial cells (MEC) express more than fourfold lower 
RNA levels of hOCTN2 relative to nonlactating  MEC      [ 166 ].  

     Mouse and rat Octn3     ,  Human OCT6   

 An  Octn3  clustered on mouse chromosome 11 with  mOctn1  and  mOctn2  has been 
identifi ed in the mouse brain (mainly in the grey matter, specifi cally in anterior horn 
cell bodies) [ 225 ], kidney and testis, where carnitine is required to maintain sperm 
cell motility [ 222 ]. The mouse Octn3 mediates a specifi c, Na +   independent  uptake 
of carnitine with a K m  of 3 μM [ 222 ] in peroxisomes [ 274 ], suggesting a role of 
carnitine in peroxisomal lipid metabolism. PPARα mediates transcriptional upregu-
lation of mOctn3 [ 246 ]. In the rat, Octn3 protein is mainly expressed in the basolat-
eral membrane of enterocytes [ 275 ], in the apical membrane of the kidney epithelia 
[ 276 ], and in astrocytes [ 277 ]. In humans, Octn3 has not been found. However, 
another high-affi nity carnitine transporter called hCT2 or hOCT6 has been identi-
fi ed in sperm, where it mediates the uptake of carnitine with a K m  of 26  μM         [ 176 ].   
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    Multidrug and Toxin Extrusion Transporters ( MATEs)   

 Multidrug and toxic compound extrusion (MATE) proteins are widely distributed in 
all  kingdoms of living organisms  . Plant MATE-type transporters are involved in the 
detoxifi cation of secondary metabolites, including alkaloids [ 278 ]. Human and 
mouse MATE1 have been identifi ed as the transporters involved in the H + -coupled 
electroneutral exchange of endogenous and exogenous OCs as their fi nal excretion 
step in the luminal membranes of the renal tubules and bile canaliculi [ 184 ]. 

    MATE1 (SLC47A1) 

     Mouse Mate1         

 In addition to the localization in kidneys and liver, mMate1 is also expressed in 
other cells, including brain glia-like cells and capillaries, pancreatic duct cells, uri-
nary bladder epithelium, adrenal gland cortex, α cells of the islets of Langerhans, 
Leydig cells, and vitamin A-storing Ito cells [ 279 ]. The expression of mMate1 
mRNA in the kidneys of both male and female mice has been shown to increase 
steadily from prenatal day −2 to 45 days of age. Pregnancy signifi cantly reduced 
mMate1 renal expression by 20–40 %. At day 30 appeared a gender difference, with 
higher expression in kidneys from male than female animals [ 280 ]. Pyrimethamine 
has revealed as a potent and specifi c inhibitor of mMate1 (K i  = 145 nM) and can be 
useful to discriminate transport of OCs by this transporter [ 281 ]. mMate1 was sug-
gested to play an important role for cisplatin nephrotoxicity, since its genetic dele-
tion ( Slc47a1  −/− ) or inhibition by pyrimethamine in mice increases renal toxicity of 
cisplatin, probably because of decreased cisplatin effl ux from the tubular cells into 
the urine [ 282 ]. Since the treatment with the antidiabetic drug metformin can cause 
the fatal adverse effect lactic acidosis, and since metformin is an organic cation, 
which is substrate for mOct1 and also mOct2, it has been investigated whether 
mMate1 is linked to lactic acidosis. Indeed, treatment of  Slc47a1  −/−  mice with met-
formin resulted in a high hepatic metformin concentration and in lactic acidosis, 
suggesting that the homozygous  mMate1  variant could be one of the risk factors for 
metformin-induced lactic acidosis [ 283 ]. [ 11 C]metformin has been synthesized as a 
positron emission tomography (PET) probe and used to study the role of mMate1 
for its hepatobiliary transport in mice treated or not with pyrimethamine. Indeed, an 
increased concentration of [ 11 C]metformin was observed in the livers of mice pre-
treated with pyrimethamine, confi rming the  import  ance of mMate1 for hepatic 
secretion of  metformin   [ 284 ]. 

 A variant of mMate1, mMate1b, with a long carboxyl terminal hydrophobic tail, 
but with similar transport characteristics, organ and cell distribution has been identi-
fi ed [ 285 ]. The carboxyl terminal hydrophobic tail seemed not to determine trans-
port properties of  mMa   te1b     .  
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     Rat Mate1         

 The rat Mate1 has been demonstrated to be abundantly expressed in the renal proxi-
mal convoluted and straight tubules, and in the placenta and to a lower level also in 
the spleen, while it is not expressed in the liver [ 286 ]. Also rMate1 works as a pH-
dependent transporter and accepts organic cations such as cimetidine (K m  = 3 μM) 
[ 287 ] and metformin but also the zwitterionic compound cephalexin as substrates 
[ 286 ]. The Cys-62 and Cys-126 residues of rMate1, which are located in the fi rst 
and the third transmembrane domain, respectively, were shown to play an important 
role as substrate-interaction sites, while the His-385 residue in the fi fth extracellular 
loop functions as an H + -binding site [ 288 ]. 

 Transcriptional regulation of the human and rat  MATE1  gene is mediated by 
binding of Sp1 to the gene regions spanning −65/−25 and −146/−38 [ 289 ]. rMate1 
is also expressed in the rat placenta in the labyrinth area predominantly on the api-
cal, i.e., maternal side of the placenta, where it can mediate the effl ux of OCs from 
placenta to the maternal  circulation         [ 212 ].  

     Human MATE1         

 In human kidney, hMATE1 is expressed at the brush-border membranes of proximal 
tubular epithelial cells and in human liver on the apical membrane of hepatocytes 
[ 184 ,  290 ]. As already proposed for rOct1 [ 195 ], also the hMATE1 seems to interact 
with its ligands at multiple sites within a larger binding surface [ 291 ]. It has been 
suggested that the kinetics of interaction between inward-facing hMATE1 and intra-
cellular H +  are not signifi cantly different from the kinetics of the interaction between 
outward-facing hMATE1 and extracellular H +  [ 292 ]. In hMATE1, the conserved 
Glu273, Glu278, Glu300, and Glu389 of transmembrane regions seem to be 
involved with different individual roles in binding and/or transport of TEA +  and 
cimetidine [ 293 ]. hMATE1 and also hMATE2 (K m  3.5 and 3.9 μM, respectively) are 
responsible for the renal effl ux of thiamine and perhaps carnitine as well as drugs 
into the urine [ 156 ]. Immunofl uorescence analysis suggested that hMATE1 is pri-
marily expressed in the plasma, endoplasmic reticulum, and peroxisomal mem-
branes in cultured hepatocytes, hMATE1 cells, and both mouse and human liver 
 tissues         [ 294 ].   

    MATE2 (SLC47A2) 

     Mouse Mate2         

 mMate2 mediates a pH-dependent transport with substrate specifi city similar to, but 
distinct from that of mMate1 [ 295 ]. In male mice, mMate2 is specifi cally expressed 
in testicular Leydig [ 295 ] and Sertoli [ 280 ] cells. In female mice, mMate2 mRNA 
levels are expressed most highly in the colon          [ 280 ].  
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     Human MATE2         

  hMATE2  is a kidney-specifi c isoform of  hMATE1  [ 184 ], which has a splicing variant, 
 hMATE2K , where an exon of  hMATE2  is deleted [ 191 ]. Both hMATE2 and 
hMATE2K are expressed in the kidneys, with hMATE2K having the higher expres-
sion level [ 296 ].  hMATE2K  cDNA encodes a 566 aa protein, which shows 94, 52, 
and 52 % identity with the hMATE2, hMATE1, and rat MATE1, respectively [ 191 ]. 
The affi nities of several OCs for hMATE1, hMATE2, and hMATE2K are similar [ 13 , 
 296 ]; however, the zwitterionic cephalexin and cephradine are specifi c substrates of 
hMATE1, but not of hMATE2K [ 13 ]. Pyrimethamine is a potent competitive inhibi-
tor also of the uptake  by   hMATE2K with an inhibition  constant      (K i ) of 56 nM [ 146 ]. 

 In conclusion, OCTs play an important physiological role for neurotransmitter 
balance in the body. Moreover, they are also important uptake routes for intracel-
lular drug delivery and, considering their high expression in excretory organs, 
together with MATEs are responsible for drug excretion. For this reason, OCTs and 
MATEs can be important determinants of drug effi cacies and also toxicities. OCTNs 
are transporters involved in the cellular uptake of substances, which are important 
in cell metabolism and in signal transmission, such as the antioxidant ergothionein 
and the neurotransmitter ACh (substrates of OCNT1) and the quaternary ammo-
nium compound  L -carnitine (substrate of OCNT2), which is of pivotal importance 
for cell energy production. Even though the expression and function of orthologs of 
transporters for OCs is generally similar, still there are important differences (e.g. 
hOCT1 is not expressed in the basolateral membrane of renal proximal tubules, in 
contrast with what observed for mOct1 and rOct1) that have to be considered for a 
proper interpretation of translational studies. Paralogs of transporters for organic 
cations often display similar characteristics, however they show also important dif-
ferences e.g. with regard to interaction with substrates and to regulation. Other 
important functional aspects of transporters for organic cations, such as the molecu-
lar correlates of polyspecifi city, regulation, interaction with drugs, genetic varia-
tions, role in the central nervous system, and distribution in the plants are discussed 
in the other sections of this book.       
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