Risk Assessment to Support Liability
Allocation Performed by the System GUI
Analysis

R. Cassino, A. Vozella, G. Gigante and D. Pascarella

Abstract Main productive, administrative and social organizations represent
interconnected socio-technical systems, namely, complex systems constituted by
technical artifacts, social artifacts and humans. The Graphical User Interface
(GUD) is a system interaction approach which allows different actors (human,
software, ...) of involved organizations to interact with each other by manipulating
graphical objects. Often, these complex systems require sophisticated interfaces
characterized by dynamic components which can provide information about system
behavior. In this paper we present a research in progress, related to the integration
of a paradigm borrowed by risk theory, within a tool for the evaluation of software
systems through the analysis of visual components of its interface. The idea is to
support organizations to define and properly allocate liability among system actors
in order to identify recurring errors to possibly evaluate a potential reengineering of
the system.

Keywords Systems analysis - Risk assessment - Failure mode effect analysis
(FMEA) - Errors liability - Graphical user interface (GUI) evaluation

R. Cassino
Universita degli Studi della Basilicata, Potenza, Italy
e-mail: rocassino@gmail.com

A. Vozella (04) - G. Gigante - D. Pascarella
Italian Aerospace Research Centre, Capua, CE, Italy
e-mail: a.vozella@cira.it

G. Gigante
e-mail: g.gigante@cira.it

D. Pascarella
e-mail: d.pascarella@cira.it

© Springer International Publishing Switzerland 2016 227
T. Torre et al. (eds.), Empowering Organizations, Lecture Notes in Information
Systems and Organisation 11, DOI 10.1007/978-3-319-23784-8_18

228 R. Cassino et al.

1 Introduction

Information and Communication Technology (ICT) widely spreads over produc-
tive, administrative and social organizations. They represent interconnected
socio-technical systems where interactions are possible among different domains.
Risks of such ICT pervasiveness lie in vulnerability to hazards for systems and
citizens; in fact, malicious attacks and system failures may result is catastrophic
effects. Most of the Critical Infrastructures (Internet, Banks, plants, airports...) are
mainly software related and they are more and more interdependent so a disruption
could lead to a domino effect. Let’s think about Supervisory Control and Data
Acquisition (SCADA) applications that get data about a system in order to control
that system. They are used to automate complex industrial processes where basing
only on human control is impractical. A wide variety of applications exist: Electric
power generation, transmission and distribution is one example. Electric utilities
use SCADA systems to detect current flow and line voltage, to monitor the oper-
ation of circuit breakers, and to take sections of the power grid online or offline.
Another example is the water and sewage industry. State and municipal water
utilities use SCADA to monitor and regulate water flow, reservoir levels, pipe
pressure and other factors.

Air quality control in specific buildings and facilities is another application.

The manufacturing industry uses SCADA systems to manage parts inventories
for just-in-time manufacturing, regulate industrial automation and robots, and
monitor process and quality control.

Mass Transit authorities use SCADA to: provide and control electricity to
subways, trams and buses; automate traffic signals for rail systems; track and locate
transportation; control railroad crossing gates.

In industry, managers need to control multiple factors and the interactions
among them (Management Information Systems—MIS). SCADA systems provide
the sensing capabilities and the computational power to track everything that’s
relevant to operations. Most of these applications require sophisticated interfaces
characterized by dynamic components by which the actors interact with the sys-
tem.). In particular, suitable GUIs are implemented to let end-users of different
systems interacting with each other.

In case of an accident, understanding the cause and the responsibility at the
whole infrastructure level, requires huge efforts, sometimes thwarted by various
attempts of manual search.

This situation has lead society to be cautious in the adoption of new technology
for GUI, especially targeted to safety critical applications [1].

In this perspective, it would be desirable to have an automatic system to support
organizations to define and properly allocate liability among actors, identifying
recurring errors in order to evaluate a potential reengineering of the system and/or
the use of different solutions.

Usability theory techniques are normally used to drive requirements of GUI for
SCADA systems [2]. Safety assessment approaches, derived by risk theory, have

Risk Assessment to Support Liability Allocation ... 229

rarely been applied to the design of Human Machine Interfaces (HMI) of Nuclear
Power Plant [3].

On the other hand, several automatic approaches, based on the analysis of the
system through its interface, exist in literature. Information on occurred errors on
GUI usage can be found in log files which need to be post processed it in order to
properly identify the wrong behaviour of the actors and to allocate its liability. An
approach that combines different techniques—including formal analysis of models,
simulation and analysis of log data—in a model-based environment is described in
[4]. The log data at model level can be used not only to identify usability problems
but also to identify where to operate changes to these models in order to fix
usability problems [5]. On the other hand, a reverse engineering approach is used to
automatically recover models of the GUI by dynamically “traversing” all its win-
dows and extracting all the widgets, properties and values [6].

The proposed research integrates two approaches to identify liability in case of
system failure:

1. the analysis of the software through the interactions of its graphical user
interface;

2. a technique by risk theory based on the analysis of the failure modes (failure
mode effect analysis, FMEA).

In particular, through automatic detection of the dynamic components of the
interface the corresponding wrong tasks are identified and characterized in details,
also in terms of liability allocation.

In this perspective, the innovation of the presented research is twofold:

1. To evaluate the correctness of the interaction mechanisms of a software system
by the FMEA, as described in Sect. 2.

2. To characterize and record system malfunctions by the analysis of the GUI
screen shots and the interaction with the system actors.

The paper is organized as follows. Section 2 presents an introduction to the risk
assessment technique (FMEA); Sect. 3 describes the target application domain of
the SCADA systems which represent safety critical applications for the GUL
Section 4 presents the integration of the FMEA module, within a tool for the
evaluation of software through the analysis of visual components of the interface.
Section 5 shows some conclusions and further research.

2 FMEA Technique by Risk Theory to Support Liability
Allocation

The FMEA technique, is generally used to drive software requirements at design
stage or to test the system [7]. In scenarios where several operators/controller and
several automated support systems interact together for the fulfilment of a task,
humans and technology represent a joint (cognitive) system. The term “joint

230 R. Cassino et al.

cognitive system” means that control is accomplished by an ensemble of cognitive
systems and (physical and social) artefacts which cooperate towards a common
goal. Under this perspective, a still open question is that of how to deal with cases
in which (as in some recent aviation accidents) conflicting information is provided
to operators by humans (controllers) and automated systems, and more generally
what kind of priorities should be given to different signals, and when humans may
override automatic devices.

The question concerns how to properly analyse and manage the shift of liability
due to automation, in order to achieve an optimal allocation of burdens. This will
imply reconsidering the role of liability, not only as a tool to redistribute risks and
allocate sanctions for errors and accidents, but above all as a means to prevent those
accidents and to increase levels of safety and performance fostering the develop-
ment of a safety culture within organizations. Thus, it will be essential:

1. to identify error tasks and roles of operators and automated tools by the inter-
action mechanisms of the system interface;

2. to identify violations of the expected level of performance for each task;

3. to consider different kinds of errors (unintentional rule violations, reckless
behaviours, intentional violations);

4. to allow automatic recording with all the necessary details of different errors,
risks and accidents.

Safety—critical industries and organizations have built paradigms and guidance
on a so-called “just culture” to learn from failure with appropriate accountability.

The aim consists in no longer seeing such accidents as meaningless, uncon-
trollable events, but rather as failures of risk management, and behind these failures
are many different actors.

A just culture, then, asks for the sustainability of learning from failure through
the reporting of errors, adverse events, incidents [8].

Among the different analysis techniques available in the Risk assessment theory,
the one which can support in characterizing the error is FMEA.

Considering that some forms of accountability, and accountability relationships
between stakeholders, can be more constructive for safety than others we propose to
integrate a module to trace failures in terms of: failure mode description, cause,
actor, effects (local and global), detection mode (parameters, time constraints...),
associated mitigation actions.

We propose to adopt FMEA techniques to implement a module which can
support the identification of run time errors and their complete characterization
improving a tool for software system evaluation through the analysis of its
graphical user interface.

FMEA is mostly used to drive system component reliability requirement or to
assess the system reliability of integrated products. It goes through the following
steps:

e Identification of each component and related function/functions;
e Identification of the system boundary;

Risk Assessment to Support Liability Allocation ... 231

e Identification of the potential failures and the probability of that failure
(occurrence) for each component;
e Definition of the system impact of each failure (severity).

We extend the previous scheme by adding the following features:

Failure cause, actor, effects (local and global);
Detection mode (parameters, time constraints...);
e Associated mitigation actions.

A GUI component of a software system allows operators to perform some tasks
in a defined process.

A “dynamic” graphical widget is the element of the interface with which it is
possible to interact triggering the associated function. Each interaction corresponds
to a specific workflow aimed at implementing steps in a process. This workflow
may have some constraints in terms of steps to be followed, time to complete the
interaction, input to be fed to the system etc. Our approach consists in defining, for
each workflow and for each interaction on the GUI, the following information:

Component Id

Component Name

Function

Potential Failure modes

Effect of Failure

Probability of Failure (Occurrence)
Severity

Failure cause

Actor

Detection mode (parameters, time constraints...)
Associated mitigation actions

A function is a specific process, action or task that the system is able to perform.

Failure is the loss of an intended function of a device under stated conditions.
Severity is the consequences of a failure mode. It considers the worst potential
consequence of a failure determined by the degree of injury, property damage or
system damage which could ultimately occur.

Occurrence is defined as how often or how likely a failure mode will occur.

Cause is a circumstance that may result in a failure think of the cause as why it
would go wrong.

Failure effect is the immediate consequence of a failure on operation, function or
functionality, including impact on a customer, both internal and external, if a failure
mode is not prevented or corrected.

Then, it is necessary to define the impact that each failure would cause (severity)
to the system. In this sense, the next step is to determine the severity of the failures
identified in the previous step. Severity is determined in the same manner as
occurrence:

232 R. Cassino et al.

No effect

Very minor (only noticed by discriminating customers)

Minor (very little impact on the system, but noticed by average customer)
Moderate (most customers are annoyed)

High (causes a loss of primary function; customers are dissatisfied)

Very high and hazardous (the failure may result in unsafe operation and possible
injury/death).

An example will be provided in next section.

3 SCADA and GUI

This paragraph introduces the main parts of a SCADA system and its functional-
ities, to characterize it as a complex system in terms of heterogeneity of its com-
ponents and interactions of different actors. A SCADA system performs four main
functions: data acquisition, networked data communication, data presentation and
control. These functions are performed by four kinds of system components to
operate in a cohesive fashion.

The first are sensors (either digital or analog) and control relays which directly
interface with the managed system. These report to Remote Telemetry Units
(RTUs). These are small computerized units deployed in the field at specific sites
and locations. RTUs serve as local collection points for gathering reports from
sensors and delivering commands to control relays. These RTU’s report to SCADA
master units. These are larger computer consoles that serve as the central processor
for the SCADA system. Master units provide a human interface to the system and
automatically regulate the managed system in response to sensor inputs. These
master units use the communications network to control the RTUs in the field.

A real-life SCADA system needs to monitor hundreds or thousands of sensors.
Some sensors measure inputs into the system (for example, water flowing into a
reservoir), and some sensors measure outputs (like valve pressure as water is
released from the reservoir). A real SCADA system reports to human operators over
a specialized computer that is variously called a master station, an HMI
(Human-Machine Interface) or an HCI (Human-Computer Interface).

The SCADA master station has several different functions. The master continu-
ously monitors all sensors and alerts the operator when there is an “alarm”—that is,
when a control factor is operating outside what is defined as its normal operation. The
master presents a comprehensive view of the entire managed system, and presents
more detail in response to user requests. The master also performs data processing on
information gathered from sensors—it maintains report logs and summarizes his-
torical trends. In advanced SCADA systems master can add a great deal of intelli-
gence and automation to system management, making operator job much easier.

The HMI Toolkit is the collection of all of the design elements for the displays
(all of the static and dynamic objects) and the related operating console. The toolkit

Risk Assessment to Support Liability Allocation ... 233

is a separate element, since one set will exists for each control or SCADA system in
use.

All aspects of the HMI is intended for a specific set of purposes (primary and
secondary) and a set of users (again primary and secondary). The actual tasks to be
performed by the users are identified and put on a sequence diagram.

The HMI is conceptually designed to contain the following concepts.

. Equipment Model -> Models site/equipment and linkage of SCADA values

. Events -> Conditional expressions or time based events that trigger workflows

3. Workflow Templates -> Configured Templates that contain automated process
and manual steps

4. Schedules -> Combines events with workflow templates to initiate workflows

N =

The model of site and equipment stores real time SCADA values for evaluation.

The Conditional Expressions use values stored in Equipment to evaluate
expressions.

Events can be triggered based on multiple criteria e.g. Time Based Expression
when it uses date/time expression to determine when event should be triggered.
Events can be set so one or all criteria must be met. Expressions can also evaluate
criteria stored in the workflow process such as a process already running.

The workflow templates contain configured steps and processes which are
executed automatically and/or with user interaction. Those steps can be modified by
workflow authors and services can be added by administrator. The Workflow
Schedule combines workflow template with events, either conditional or time based
to determine if a workflow should be generated. When a workflow is triggered,
either manually or automatically as part of a conditional or time based event, a
series of processes occur an email is triggered, notifying appropriate personnel of
the workflow and supplying a work order number if generated Information from
SCADA is displayed in the workflow, along with specific information for trou-
bleshooting. Steps guide users through resolution of the issue. They have expiration
timers, if steps are not processed in time escalation processes occur (notifications).
Besides the logged and recorded information we propose to extend the recorded
information by the interactions and the changes on the system interface in terms of
screen images for identified failure modes. Table 1 shows an example of FMEA
performed for a component on a GUI of a SCADA system.

4 The Proposed Research

In this paper we propose a methodology for assessing the responsibilities of system
errors by analyzing the software through the mechanisms of interaction of its
graphical user interface.

Cassino and Tucci [9] presents a tool that implements an automatic evaluation
system to measure some of the canonical usability parameters of the graphical
interface of an application. As described in the cited paper, after the components of

234 R. Cassino et al.

Table 1 Example of FMEA workflow

Component name Push button

Function To activate Display RTU# numeric data with facility
internal temperature

Failure mode No activating Display RTU# numeric data with facility
internal temperature

Wrong Activating Display RTU# numeric data with wrong
facility internal temperature

Effect of failure (local and Wrong understanding of the state of some temperature
global) sensor

Worst case effect: wrong decision to go on powering the
system with fire which breaks out

Probability of failure Depending on the reliability of the system

Severity Can be catastrophic

Failure cause Error due to: GUI; Communication link; RTU; Sensor
Actor Humans, automatic system...

Detection mode (parameters, Inconsistent parameters in the shown string (no values, out
time constraints...) of range values, less values then expected...) Visual

feedback not matching the expectations...

Associated mitigation actions Upload pictures for clarification and fast recognition

To activate deeper control on the specific sensor, RTU,
communication link

the GUI are identified, the system determines the type of each element (label,
button, link, text-area, menus, etc.) by means of the changes to the interface itself
which are activated by interacting with it. An automatic interaction process is
implemented. As a matter of fact, the task is carried out by two modules: an
automatic interaction module that simulates the input events generation, and a
decision algorithm that chooses the interface element to interact with (and what type
of input is to generate) and deduces, according to the observed changes in the
graphics output, the class of object. Depending on the type of input and on the
detected visual feedback, the following typologies of elements are determined:

e Input/output: dynamic element (it is possible interact with it);
Pause: the system provides a description of the item;
Press and release of left button of the mouse: the element is a button or a menu
item;

e Double click: if the visual feedback is isolated to a neighbourhood of the point
with which you interacted, the element is a character and all pixels affected by
the change form a group (string);

o C(lick and double click: the item is a link;

e Insertion of a character: the element is a text field or a text-area.

Now, we extend the interaction analysis performed on the dynamic components
of the GUI by the FMEA method to identify and allocate malfunction liability
among system actors.

Risk Assessment to Support Liability Allocation ... 235

Fig. 1 System model GUI EVALUATION
View Controller Model
Manager of the |< Manager of the |=—=| Manager of the
application view application flow system state
T N
Segmentation Evaluation Interaction
Engine Engine Engine
\
FMEA

l

[Evalustion results]

SOTWARE INFRASTRUCTURE

Figure 1 shows the system model designed. The view module includes the
functionalities related to the rendering of the system. It sends the controller each
user requests and allows the controller to select a particular view.

The controller module defines the flow of execution. Its classes map user
requests into actions performed on the model and select a view related to user
requests. For each input event, a specific class describes the action to be performed
on the model and selects the next view.

The model module encapsulates the application state.

Below a formal description of the FMEA module is provided.

Given a set of workflows on the HMI, we build a set of corresponding nominal
(due to correct interactions) visual feedbacks by running the system for GUI
evaluation.

For each WFi let G(WFi)j be the corresponding visual feedback j.

Then we generate the corresponding off nominal visual feedbacks by associating
wrong visual feedbacks to the specific workflow.

Specifically, for each defined workflow, a list of associated failure modes are
identified with all the necessary attributes in terms of actors, causes, effects,
parameters, associated visual feedbacks- and recorded in a database. Then:

(WFi) — [Fk(G(WFi)j), .. .Fn(G(WFi)j)]

236 R. Cassino et al.

With Fk(G(WFi)j) we mean a string made by the description of the Failure Mode
k for Visual feedback j of Workflow WHFi, the cause of Failure Mode k for Visual
feedback j of Workflow WFi, the actor of the Failure Mode k for Visual feedback j
of Workflow WFi, the effect of the Failure Mode k for Visual feedback j of
Workflow WFi.

We use the tool with the FMEA module to generate for a specific workflow all
the set of possible nominal and off nominal visual feedbacks for it, completed with
the corresponding information. Each workflow with its related information will be
stored in a database.

When an interaction is performed within a specific workflow, the decision
algorithm will identify and deduce, according to the observed changes in the
graphics output, the class of object according to the observed changes in the
graphics output. If this object corresponds to an off nominal visual feedback for that
workflow, within the database all the related information about liability and other
attributes is already available for further use.

5 An Example

Let us start the example by considering the first following case: a complex interface
adopted in a mission control centre to command and control the on board pro-
cessing of an unmanned vehicle. The interface allows the operator to implement
different mission procedures (Fig. 2).

During the execution of a mission a failure occurs. Only the GUI execution trace
and the GUI FMEA are available to the operator for processing. The generation of
FMEA is completely automatic and independent on the application usage of the GUL

In a preliminary off-line phase the software tool is executed by giving the GUI
under study as input to the View module. The GUI is processed by the segmentation
engine and the evaluation engine [9] and the relative hierarchical tree is built (Fig. 3).

The interaction module feeds the tree to the FMEA module. The module
identifies:

e For each node the direct child that is the expected next widget to be stimulated
in the nominal sequence;

e Any off nominal workflow by considering any combination of widgets different
from those represented by the tree.

The identified pair (parent, child) represents a record in the FMEA table for
which the failure modes are all the combination of parent with all other widgets
different from child.

Let:

e W;={wi,..,wi} a nominal sequence of widgets on the GUI.
® (Wim, w;,) the current pair parent—child
e A= {(w,-m, w,:,-) I # n} the set of off-nominal pairs

Risk Assessment to Support Liability Allocation ... 237

£ MOC Comtrol MM

CIRA EGCE
_ | HIGH LEVEL CONTROL SYSTEM

EXECUTION STATUS

STH_1 AmaT
Master Allarms s

v I

| Corerol Procadure Mame E T T —— -

Fig. 2 Mission control center main GUI

The module automatically generates the FMEA table storing it into the database.

In post-processing phase a software program can process the trace log and
checks for each pair of stimulated widgets if they are in the failure mode column. In
the positive case a possible deviation point from the nominal workflow has been
detected identifying also the correct sequence that should have been executed.

Let us follow on the example by considering a second case: The generation of
FMEA is partially automatic and dependent on the application usage of the GUL
This means that the FMEA module allows an operator to associate each path in the
tree with a specific procedure to be executed by the operators during mission.

Let {Py,...,P,} the set of procedures to be executed. Each procedure can be
described in terms of a sequence of widgets to be stimulated addressing its nominal
execution. For each procedure information as actors and the consequence on the
system of the failure of each step can be described.

In this case in post processing the software analyser could intercept the deviation
point and also other important information as the mission procedure failed, the
relative step and the actors involved.

238 R. Cassino et al.

A B
By By
B
[) - a x
B) i
c D
G S

Dy

dg{&b 'Y

Fig. 3 Hierarchical tree built up from the abstract view of the GUI

\-
N
-

6 Conclusions

In the domain of productive, administrative and social organizations, the inter-
connection and the interactions among different actors can expose the system to
serious risks with critical consequences. Supervisory Control and Data Acquisition
(SCADA) applications get data about a system in order to control those critical
system allowing different actors to operate on its Human Machine Interface (HMI).
In case of accident it is not so easy to properly identify liability and failure causes.

In this paper we propose to integrate a technique by risk theory, FMEA (Failure
Mode Effect Analysis), to support the identification and allocation of liability in
case of critical system accidents within an existing automatic tool for software
system evaluation through the analysis of interaction performed by its graphical

Risk Assessment to Support Liability Allocation ... 239

user interface. The visual feedback of the tasks allows identification and charac-
terization of possible failure modes of the system through “this visual approach”, so
to drive system requirement definition.

Medium term research work will involve the deepening of the integration fea-
tures between the two control systems, the implementation of the related envi-
ronment and the following use of this mechanism to analyse errors in system
interactions with the GUI at run time, to build statistical data and derive whole
system improvement issues.

References

1. Vozella, A.: Promoting trust protecting citizens’ rights in digital citizenship. In: AICA 2013
proceedings

2. Vozella, A. et al.: Usability issues for an aerospace digital library. In: AVI 2012 proceedings

3. Orekhova, V.K.: Safety case-oriented assessment of human-machine interface for NPP 1&C
systems. Integrated HMI safety assessment methodology for safety-critical 1&C sytems, RT&A
03 (26) (vol. 7) (2012)

4. Palanque, P., Barboni, E., Martinie, C., Navarre, D., Winckler, M.: A model-based approach for
supporting engineering usability evaluation of interaction techniques. In: Proceedings of the 3rd
ACM SIGCHI symposium on engineering interactive computing systems, pp. 21-30. ACM
(2011)

5. Melody, Y., Ivory, Marti, A.H.: The state of the art in automating usability evaluation of user
interfaces. J. ACM Comput. Surv (CSUR) Surveys Homepage Arch. 33(4) (2001)

6. Atif M.M.: Using reverse engineering for automated usability evaluation of GUI-based
applications. Human-Centered Software Engineering: Human-Computer Interaction Series,
pp 335-355 (2009)

7. Kraig, S.: Using FMEA to improve software reliability. In: PNSQC 2013 proceedings

. Sidney, W., Dekker, A.: Just culture: who gets to draw the line? Springer, London (2008)

9. Cassino, R., Tucci, M.: Automatic usability evaluation of GUI: a front-side approach using no
source code information. Lecture Notes in Information Systems and Organization, vol. 2,
pp. 439-447A (2013)

[e e}

	18 Risk Assessment to Support Liability Allocation Performed by the System GUI Analysis
	Abstract
	1 Introduction
	2 FMEA Technique by Risk Theory to Support Liability Allocation
	3 SCADA and GUI
	4 The Proposed Research
	5 An Example
	6 Conclusions
	References

