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Abstract Natural language provides a flexible, intuitive way for people to command
robots, which is becoming increasingly important as robots transition to working
alongside people in our homes and workplaces. To follow instructions in unknown
environments, robots will be expected to reason about parts of the environments that
were described in the instruction, but that the robot has no direct knowledge about.
However, most existing approaches to natural language understanding require that
the robot’s environment be known a priori. This paper proposes a probabilistic frame-
work that enables robots to follow commands given in natural language, without any
prior knowledge of the environment. The novelty lies in exploiting environment
information implicit in the instruction, thereby treating language as a type of sensor
that is used to formulate a prior distribution over the unknown parts of the envi-
ronment. The algorithm then uses this learned distribution to infer a sequence of
actions that are most consistent with the command, updating our belief as we gather

The first four authors contributed equally to this paper.

F. Duvallet (B) · J. Oh · A. Stentz
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: felixd@cmu.edu

J. Oh
e-mail: jeanoh@cmu.edu

A. Stentz
e-mail: tony@cmu.edu

M.R. Walter · T. Howard · S. Hemachandra · S. Teller · N. Roy
CS & AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: mwalter@csail.mit.edu

T. Howard
e-mail: tmhoward@csail.mit.edu

S. Hemachandra
e-mail: sachih@csail.mit.edu

S. Teller
e-mail: teller@csail.mit.edu

N. Roy
e-mail: nickroy@csail.mit.edu

© Springer International Publishing Switzerland 2016
M.A. Hsieh et al. (eds.), Experimental Robotics, Springer Tracts
in Advanced Robotics 109, DOI 10.1007/978-3-319-23778-7_25

373



374 F. Duvallet et al.

more metric information. We evaluate our approach through simulation as well as
experiments on two mobile robots; our results demonstrate the algorithm’s ability to
follow navigation commands with performance comparable to that of a fully-known
environment.

1 Introduction

Robots are increasingly performing collaborative tasks with people at home, in the
workplace, and outdoors, and with this comes a need for efficient communication
between human and robot teammates. Natural language offers an effective means for
untrained users to control complex robots, without requiring specialized interfaces or
extensive user training. Enabling robots to understand natural language instructions
would facilitate seamless coordination in human-robot teams. However, interpreting
instructions is a challenge, particularlywhen the robot has little or no prior knowledge
of its environment. In such cases, the robot should be capable of reasoning over the
parts of the environment that are relevant to understanding the instruction, but may
not yet have been observed.

Oftentimes, the command itself provides information about the environment that
can be used to hypothesize suitable worldmodels, which can then be used to generate
the correct robot actions. For example, suppose a first responder instructs a robot to
“navigate to the car behind the building,” where the car and building are outside
the robot’s field-of-view and their locations are not known. While the robot has no a
priori information about the environment, the instruction conveys the knowledge that
there is likely one or more buildings and cars in the environment, with at least one
car being “behind” one of the buildings. The robot should be able to reason about the
car’s possible location, and refine its prior as it carries out the command (by updating
the car’s possible location when it observes a building).

This paper proposes a method that enables robots to interpret and execute nat-
ural language commands that refer to unknown regions and objects in the robot’s
environment. We exploit the information implicit in the user’s command to learn an
environment model from the natural language instruction, and then solve for the pol-
icy that is consistent with the command under this worldmodel. The robot updates its
internal representation of the world as it makes new metric observations (such as the
location of perceived landmarks) and updates its policy appropriately. By reasoning
and planning in the space of beliefs over object locations and groundings, we are able
to reason about elements that are not initially observed, and robustly follow natural
language instructions given by a human operator.

More specifically, we describe in our approach (Sect. 3) a probabilistic frame-
work that first extracts annotations from a natural language instruction, consist-
ing of the objects and regions described in the command and the given relations
between them (Fig. 1a). We then treat these annotations as noisy sensor observations
in a mapping framework, and use them to generate a distribution over a semantic
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(a) (b)
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Fig. 1 Visualization of one run for the command “go to the hydrant behind the cone,” showing the
evolution of our beliefs (the possible locations of the hydrant). The robot begins with the cone in
its field of view, but does not know the hydrant’s location. a First, we receive a verbal instruction
from the operator. b Next, we infer the map distribution from the utterance and prior observations.
c We then take an action (green), using the map and behavior distributions. d This process repeats
as the robot acquires new observations, refining its belief

model of the environment that also incorporates observations from the robot’s sensor
streams (Fig. 1b). This prior is used to ground the actions and goals from the com-
mand, resulting in a distribution over desired behaviors. This is then used to solve
for a policy that yields an action that is most consistent with the command, under the
map distribution so far (Fig. 1c). As the robot travels and senses new metric infor-
mation, it updates its map prior and inferred behavior distribution, and continues to
plan until it reaches its destination (Fig. 1d). This framework in outlined in Fig. 2.

We evaluate our algorithm (Sect. 4) through a series of simulation-based and phys-
ical experiments on two mobile robots that demonstrate its effectiveness at carrying
out navigation commands, aswell as highlight the conditions underwhich it fails. Our
results indicate that exploiting the environment knowledge implicit in the instruc-
tion enables us to predict a world model upon which we can successfully estimate
the action sequence most consistent with the command, approaching performance
levels of complete a priori environment knowledge. These results suggest that uti-
lizing information implicitly contained in natural language instructions can improve
collaboration in human-robot teams.
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Fig. 2 Framework outline

2 Related Work

Natural language has proven to be effective for commanding robots to follow route
directions [1–5] andmanipulate objects [6]. Themajority of prior approaches require
a complete semantically-labeled environmentmodel that captures the geometry, loca-
tion, type, and label of objects and regions in the environment [2, 5, 6]. Under-
standing instructions in unknown environments is often more challenging. Previous
approaches have either used a parser that maps language directly to plans [1, 3, 4], or
trained a policy that reasons about uncertainty and can backtrack when needed [7].
However, none of these approaches directly use the information contained in the
instruction to inform their environment representation or reason about its uncer-
tainty. We instead treat language as a sensor that can be used to generate a prior
over the possible locations of landmarks by exploiting the information implicitly
contained in a given instruction.

State-of-the-art semantic mapping frameworks focus on using the robot’s sensor
observations to update its representation of the world [8–10]. Some approaches [10]
integrate language descriptions to improve the representation but do not extend the
maps based on natural language. Our approach treats natural language as another
sensor and uses it to extend the spatial representation by adding both topological
and metric information, which is then used for planning. Williams et al. [11] use
a cognitive architecture to add unvisited locations to a partial map. However, they
only reason about topological relationships to unknown places, do not maintain mul-
tiple hypotheses, and make strong assumptions about the environment limiting the
applicability to real robot systems. In contrast, our approach reasons both topologi-
cally and metrically about objects and regions, and can deal with ambiguity which
allows us to operate in challenging environments.

As we reason in the space of distributions over possible environments, we draw
from strategies in the belief-space planning literature. Most importantly, we rep-
resent our belief using samples from the distribution, similar to work by Platt et
al. [12]. Instead of solving the complete Partially-Observable Markov Decision
Process (POMDP), we instead seek efficient approximate solutions [13, 14].
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3 Technical Approach

Our goal is to infer the most likely future robot trajectory xt+1:T up to time horizon T ,
given the history of natural language utterances Λt , sensor observations zt , and
odometry ut (we denote the history of a variable up to time t with a superscript):

arg max
xt+1:T ∈�n

p
(
xt+1:T |Λt , zt , ut

)
. (1)

Inferring the maximum a posteriori trajectory (1) for a given natural language utter-
ance is challenging without knowledge of the environment for all but trivial appli-
cations. To overcome this challenge, we introduce a latent random variable St that
represents the world model as a semantic map that encodes the location, geometry,
and type of the objects within the environment. This allows us to factor the distribu-
tion as:

arg max
xt+1:T ∈�n

∫

St

p(xt+1:T |St ,Λ
t , zt , ut ) p(St |Λt , zt , ut ) d St . (2)

As we maintain the distribution in the form of samples S(i)
t , this simplifies to:

arg max
xt+1:T ∈�n

∑

i

p(xt+1:T |S(i)
t ,Λt , zt , ut ) p(S(i)

t |Λt , zt , ut ). (3)

Based upon the robot’s sensor and odometry streams and the user’s natural language
input, our algorithm learns this distribution online. We accomplish this through a
filtering process whereby we first infer the distribution over the worldmodel St based
upon annotations identified from the utteranceΛt (second term in the integral in (2)),
uponwhichwe then infer the constraints on the robot’s action that aremost consistent
with the command given the current map distribution. At this point, the algorithm
solves for the most likely policy under the learned distribution over trajectories (first
term in the integral in (2)). During execution, we continuously update the semantic
map St as sensor data arrives and refine the policy according to the re-grounded
language.

To efficiently convert unstructured natural language to symbols that represent the
spaces of annotations and behaviors, we use the Distributed Correspondence Graph
(DCG) model [5]. The DCG model is a probabilistic graphical model composed
of random variables that represent language λ, groundings γ , and correspondences
between language and groundings φ and factors f . Each factor fi j in the DCGmodel
is influenced by the current phrase λi , correspondence variable φi j , grounding γi j ,
and child phrase groundings γci j

. The parameters in each log-linear model υ are
trained from a parallel corpus of labeled examples for annotations and behaviors in



378 F. Duvallet et al.

Fig. 3 A DCG used to infer annotations or behaviors from the utterance “go to the hydrant behind
the cone.” The factors fi j , groundings γi j , and correspondence variables φi j are functions of the
symbols used to represent annotations and behaviors

the context of a world model Υ . In each, we search for the unknown correspondence
variables that maximize the product of factors:

arg max
φ ∈Φ

∏

i

∏

j

fi j

(
φi j , γi j , γci j

, λi , Υ, υ
)

. (4)

An illustration of the graphical model used to represent Eq. 4 is shown in Fig. 3.
In this figure, the black squares, white circles, and gray circles represent factors,
unknown random variables, and known random variables respectively. It is impor-
tant to note that each phrase can have a different number of vertically aligned factors
if the symbols used to ground particular phrases differ. In this paper we use a binary
correspondence variable to indicate the expression or rejection of a particular ground-
ing for a phrase. We construct the symbols used to represent each phrase using only
the groundings with a true correspondence and take the meaning of a utterance as
the symbol inferred at the root of parse tree.

Figure2 illustrates the architecture of the integrated system that we consider for
evaluation. First, the natural language understanding module infers a distribution
over annotations conveyed by the utterance (Annotation Inference). The semantic
map learning method then uses this information in conjunction with the prior anno-
tations and sensor measurements to build a probabilistic model of objects and their
relationships in the environment (Semantic Mapping). We then formulate a distri-
bution over robot behaviors using the utterance and the semantic map distribution
(Behavior Inference). Next, the planner computes a policy from this distribution
over behaviors and maps (Policy Planner). As the robot makes more observations or
receives additional human input, we repeat the last three steps to continuously update
our understanding of the most recent utterance. We now describe in more detail each
of these components.
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3.1 Annotation Inference

The space of symbols used to represent the meaning of phrases in map inference is
composed of objects, regions, and relations. Since no world model is assumed when
inferring linguistic annotations from the utterance, the space of objects is equal to
the number of possible object types that could exist in the scene. Regions are some
portion of state-space that is typically associated with a relationship to some object.
Relations are a particular type of association between a pair of objects or regions (e.g.,
front, back, near, far). Since any set of objects, regions, and relations may be inferred
as part of the symbol grounding, the size of the space of groundings formap inference
grows as the power set of the sum of these symbols. We use the trained DCG model
to infer a set of annotations αt from the positively expressed groundings at the root
of the parse tree.

3.2 Semantic Mapping

We treat the annotations inferred from the utterance as noisy observations α that
specify the existence and spatial relations between labeled objects in the environment.
We use these observations along with those from the robot’s sensors to learn the
distribution over the semantic map St = {Gt , Xt }:

p(St |Λt , zt , ut ) ≈ p(St |αt , zt , ut ) (5a)

= p(Gt , Xt |αt , zt , ut ) (5b)

= p(Xt |Gt , α
t , zt , ut )p(Gt |αt , zt , ut ), (5c)

where the last line expresses the factorization into a distribution over the environment
topology (graph Gt ) and a conditional distribution over the metric map (Xt ). Owing
to the combinatorial number of candidate topologies [10], we employ a sample-
based approximation to the latter distribution and model the conditional posterior
over poses with a Gaussian, parametrized in the canonical form. In this manner, each
particle S(i)

t = {G(i)
t , X (i)

t , w
(i)
t } consists of a sampled topology G(i)

t , a Gaussian
distribution over the poses X (i)

t , and a weight w(i)
t . We note that this model is similar

to that of Walter et al. [10], though in this work we don’t treat the labels as being
uncertain.

To efficiently maintain the semantic map distribution over time as the robot
receives new annotations and observations during execution, we use a Rao-Black-
wellized particle filter [15]. This filtering process has two key steps: First, the algo-
rithm proposes updates to each sampled topology that express object observations
and annotations inferred from the utterance. Next, the algorithm uses the proposed
topology to perform a Bayesian update to the Gaussian distribution over the node
(object) poses, and updates the particle weights so as to approximate the target
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distribution. We perform this process for each particle and repeat these steps at each
time instance. The following paragraphs describe each operation in more detail.

During the proposal step, we first augment each sample topology with an addi-
tional node and edge that model the robot’s motion ut , resulting in a new topology
S(i)−

t . We then sample modifications to the graph Δ
(i)
t = {Δ(i)

αt
,Δ(i)

zt
} based upon the

most recent annotations (αt ) and sensor observations (zt ):

p(S(i)
t |S(i)

t−1, αt , zt , ut ) = p(Δ(i)
αt

|S(i)−
t , αt ) p(Δ(i)

zt
|S(i)−

t , zt ) p(S(i)−
t |S(i)

t−1, ut ). (6)

This updates the proposed graph topology S(i)−
t with the graph modifications Δ

(i)
t

to yield the new semantic map S(i)
t . The updates can include the addition of nodes

to the graph representing newly hypothesized or observed objects. They also may
include the addition of edges between nodes to express spatial relations inferred from
observations or annotations.

The graph modifications are sampled from two similar but independent proposals
for annotations and observations in a multi-stage process:

p(Δ(i)
αt

|S(i)−
t , αt ) =

∏

j

p(Δ(i)
αt, j

|S(i)−
t , αt, j ) (7a)

p(Δ(i)
zt

|S(i)−
t , zt ) =

∏

j

p(Δ(i)
zt, j

|S(i)−
t , zt, j ). (7b)

For each language annotation component αt, j , we use a likelihood model over the
spatial relation to sample landmark and figure pairs for the grounding (7a). This
model employs a Dirichlet process prior that accounts for the fact that the annotation
may refer to existing or new objects. If the landmark and/or the figure are sampled as
new objects, we add these objects to the particle, and create an edge between them.
We also sample the metric constraint associated with this edge, based on the spatial
relation. Similarly, for each object zt, j observed by the robot, we sample a grounding
from the existing model of the world (7b). We add a new constraint to the object
when the grounding is valid, and create a new object and constraint when it is not.

After proposing modifications to each particle, we perform a Bayesian update to
their Gaussian distribution. We then re-weight each particle by taking into account
the likelihood of generating language annotations, as well as positive and negative
observations of objects:

w
(i)
t = p(zt , αt |St−1) w

(i)
t−1 = p(αt |St−1) p(zt |St−1) w

(i)
t−1. (8)

For annotations, we use the natural language grounding likelihood under the map
at the previous time step. For object observations, we use the likelihood that the
observations were (or were not) generated based upon the previous map. This has
the effect of down-weighting particles for which the observations are unexpected.
We normalize the weights and re-sample if their entropy exceeds a threshold [15].
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3.3 Behavior Inference

Given the utterance and the semantic map distribution, we now infer a distribution
over robot behaviors. The space of symbols used to represent the meaning of phrases
in behavior inference is composed of objects, regions, actions, and goals. Objects
and regions are defined in the same manner as in map inference, though the presence
of objects is a function of the inferred map. Actions and goals specify how the robot
should perform a behavior to the planner. Since any set of actions and goals can be
expressed to the planner, the space of groundings also grows as the power set of the
sum of these symbols. For the experiments discussed later in Sect. 4 we assume a
number of objects, regions, actions, and goals that are proportional to the number of
objects in the hypothesized world model. We use the trained DCG model to infer a
distribution of behaviors β from the positively expressed groundings at the root of
the parse tree.

3.4 Policy Planner

Since it is difficult to both represent and search the continuum for a trajectory that
best reflects the entire instruction in the context of the semantic map, we instead learn
a policy that predicts a single action that maximizes the one-step expected value of
taking the action at from the robot’s current pose xt . This process is repeated until
the policy declares it is done following the command using a separate action astop.

As the robot moves in the environment, it builds and updates a graph of locations
it has previously visited, as well as frontiers that lie at the edge of explored space.
This graph is used to generate a candidate set of actions that consists of all frontier
nodes F as well as previously-visited nodes V that the robot can travel to next:

At = F ∪ V ∪ {astop}. (9)

The policy selects the action with the maximum value under our value function:

π(xt ) = arg max
at ∈At

V (xt , at ). (10)

The value of a particular action is a function of the behavior and the semantic map,
which are not observable. Instead, we solve this using the QMDP algorithm [13] by
taking the expected value under the distributions of the semantic map St and inferred
behavior β j :

V (xt , at ) ≈
∑

S(i)
t

∑

β j

V
(
xt , at ; S(i)

t , β j
)

p
(
β j |S(i)

t

)
p
(
S(i)

t

)
. (11)
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t = 0 t = 4 t = 8

Fig. 4 Visualization of the value function over time for the command “go to the hydrant behind
the cone,” where the triangle denotes the robot, squares denote observed cones, and circles denote
hydrants that are sampled (empty) and observed (filled). The robot starts off having observed the
two cones, and hypothesizes possible hydrants that are consistent with the command (a). The robot
first moves towards the left cluster, but after not observing the hydrant, the map distribution peaks
at the right cluster (b). The robot then moves right and observes the actual hydrant (c)

There are many choices for the particular value function to use, in this work we
define the value for a semantic map particle and behavior as an analogue of the MDP
cost-to-go:

V
(
xt , at ; S(i)

t , β j
) = γ d(at ,gs ), (12)

where γ is the MDP discount factor and d is the Euclidean distance between the
action node and the behavior’s goal position gs . Our belief space policy π then picks
the maximum value action. We re-evaluate this value function as the semantic map
and behavior distributions improve with new observations. Figure4 demonstrates the
evolution of the value function over time.

4 Results

To analyze our approach, we first evaluate the ability of our natural language under-
standing module to independently infer the correct annotations and behaviors for
given utterances. Next, we analyze the effectiveness of our end-to-end framework
through simulations that consider environments and commands of varying complex-
ity, and different amounts of prior knowledge. We then demonstrate the utility of our
approach in practice using experiments run on two mobile robot platforms. These
experiments provide insights into our algorithm’s ability to infer the correct behavior
in the presence of unknown and ambiguous environments.
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Table 1 Natural language understanding results with 95% confidence intervals

Model Accuracy (%) Training Time (sec) Inference Time (sec)

Annotation 62.50 (10.83) 145.11 (7.55) 0.44 (0.03)

Behavior 55.77 (6.83) 18.30 (1.02) 0.05 (0.00)

4.1 Natural Language Understanding

We evaluate the performance of our natural language understanding component in
terms of the accuracy and computational complexity of inference using holdout val-
idation. In each experiment, the corpus was randomly divided into separate training
and test sets to evaluate whether the model can recover the correct groundings from
the utterance and the world model. Each model used 13,716 features that checked
for the presence of words, properties of groundings and correspondence variables,
and relationships between current and child groundings and searched the model with
a beam width of 4. We conducted 8 experiments for each model type using a corpus
of 39 labeled examples of instructions and groundings. For annotation inference we
assumed that the space of groundings for every phrase is represented by 8 object
types, 54 regions, and 432 relations. For behavior inference we assumed that noun
and prepositions ground to hypothesized objects or regions while verbs ground to 2
possible actions, 3 possible modes, goal regions, and constraint regions. In the exam-
ple illustrated in Fig. 3 with a world model composed of seven hypothesized objects
the annotation inference DCG model contained 5,934 random variables and 2,964
factors while the behavior inference DCG model contained 772 random variables
and 383 factors. In each experiment 33% of the labeled examples in the corpus were
randomly selected for the holdout. The mean number of log-linear model training
examples extracted from the 26 randomly selected labeled examples for annotation
and behavior inference was 83,547 and 9,224 respectively. Table1 illustrates the
statistics for the annotation and behavior models.

This experiment demonstrates that we are able to learn many of the relationships
between phrases, groundings, and correspondences with a limited number of labeled
instructions, and infer a distribution of symbols quickly enough for the proposed
architecture. As expected the training and inference time for the annotation model
is much higher because of the difference in the complexity of symbols. This is
acceptable for our framework since the annotation model is only used once to infer
a set of observations, while the behavior model is used continuously to process the
map distributions as new observations are integrated.

4.2 Monte Carlo Simulations

Next, we evaluate the entire framework through an extended set of simulations in
order to understand how the performance varies with the environment configuration
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Table 2 Monte Carlo simulation results with 1σ confidence intervals (Hydrant, Cone)

Success Rate (%) Distance (m)

World Range (m) Relation Known Ours Known Ours

1H, 1C 3.0 null 100.0 93.9 8.75 (1.69) 16.78 (7.90)

1H, 1C 3.0 “behind” 100.0 98.3 8.75 (1.69) 13.43 (7.02)

1H, 2C 3.0 null 100.0 100.0 11.18 (1.38) 32.54 (18.50)

1H, 2C 3.0 “behind” 100.0 99.5 11.18 (1.38) 40.02 (29.66)

2H, 1C 3.0 null 100.0 54.4 10.49 (1.81) 21.56 (10.32)

2H, 1C 3.0 “behind” 100.0 67.4 10.38 (1.86) 18.72 (10.23)

2H, 1C 5.0 “nearest” 100.0 46.2 9.19 (1.54) 12.05 (5.76)

and the command. We consider four environment templates, with different numbers
of figures (hydrants) and landmarks (cones). For each configuration, we sample ten
environments, each with different object poses. For these environments, we issued
three natural language instructions “go to the hydrant,” “go to the hydrant behind
the cone,” and “go to the hydrant nearest to the cone.” We note that these commands
were not part of the corpus that we used to train the DCG model. Additionally,
we considered six different settings for the robot’s sensing range (2, 3, 5, 10, 15,
and 20m) and performed approximately 100 simulations for each combination of
environment, command, and range. As a ground-truth baseline, we performed ten
runs of each configuration with a completely known world model.

Table2 presents the success rate and distance traveled by the robot for these 100
simulation configurations. We considered a run to be successful if the planner stops
within 1.5m of the intended goal. Comparing against commands that do not provide a
relation (i.e., “go to the hydrant”), the results demonstrate that our algorithm achieves
greater success and yields more efficient paths by taking advantage of relations in the
command (i.e., “go to the hydrant behind the cone”). This is apparent in environments
consisting of a single figure (hydrant) as well as more ambiguous environments that
consist of two figures. Particularly telling is the variation in performance as a result
of different sensing range. Figure5 shows how success rate increases and distance
traveled decreases as the robot’s sensing range increases, quickly approaching the
performance of the system when it begins with a completely known map of the
environment.

One interesting failure case is when the robot is instructed to “go to the hydrant
nearest to the cone” in an environment with two hydrants. In instances where the
robot sees a hydrant first, it hypothesizes the location of the cone, and then identifies
the observed hydrants and hypothesized cones as being consistent with the command.
Since the robot never actually confirms the existence of the cone in the real world,
this results in the incorrect hydrant being labeled as the goal.
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Fig. 5 Distance traveled (top) and success rate (bottom) as a function of the sensor range for the
commands “go to the hydrant behind the cone” (left) and “go to the hydrant nearest to the cone”
(right) in simulation

4.3 Physical Experiments

We applied our approach to two mobile robots, a Husky A200 mobile robot (Fig. 6a)
and an autonomous robotic wheelchair [16] (Fig. 6b). The use of both platforms
demonstrates the application of our algorithm to mobile robots with different vehicle
configurations, underlying motion planners, and sensor configurations. The actions
determined by the planner are translated into lists of waypoints that are handled by
each robot’s motion planner. We used AprilTag fiducials [17] to detect and estimate
the relative pose of objects in the environment, subject to self-imposed angular and
range restrictions.

Fig. 6 The setup for the experiments with the a Husky and b wheelchair platform.s
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In each experiment, a human operator issues natural language commands in the
form of text that involve (possibly null) spatial relations between one or two objects.
The results that follow involve the commands “go to the hydrant,” “go to the hydrant
behind the cone,” and “go to the hydrant nearest to the cone.” As with the simulation-
based experiments, these instructions did not match those from our training set. For
each of these commands, we consider different environments by varying the number
and position of the cones and hydrants and by changing the robot’s sensing range.
For each configuration of the environment, command, and sensing range, we perform
ten trials with our algorithm. For a ground-truth baseline, we perform an additional
run with a completely known world model. We consider a run to be a success when
the robot’s final destination is within 1.5m of the intended goal.

Table3 presents the success rate and distance traveled by the wheelchair for these
experiments. Compared to the scenario in which the command does not provide a
relation (i.e., “go to the hydrant”), we find that our algorithm is able to take advantage
of available relations (“go to the hydrant behind the cone”) to yield behaviors closer
to that of ground truth. The results are similar for the Husky platform, which resulted
in an 83.3% success rate when commanded to “go to the hydrant behind the cone”
in an environment with one cone and one hydrant. These results demonstrate the
usefulness of utilizing all of the information contained in the instruction, such as the
relation between various landmarks in the environment that can be helpful during
navigation.

The robot trials exhibited a similar failure mode as the simulated experiments: if
the environment contains two figures (hydrants) and the robot only detects one, the
semantic map distribution then hypothesizes the existence of cones in front of the
hydrant, which leads to a behavior distribution peaked around this goal and plans that
do not look for the possibility of another hydrant in the environment. As expected,
this effect is most pronounced with shorter sensing ranges (e.g., a 3m sensing range
for the command “go to the hydrant nearest to the cone” resulted in the robot reaching
the goal in only half of the trials compared to a 4m sensing range).

Table 3 Experimental results with 1σ confidence intervals (Hydrant, Cone)

Success Rate (%) Distance (m)

World Range (m) Relation Known Ours Known Ours

1H, 1C 2.5 null 100.0 100.0 4.69 16.56 (7.20)

1H, 1C 2.5 “behind” 100.0 100.0 4.69 9.91 (3.41)

1H, 2C 3.0 “behind” 100.0 100.0 4.58 7.64 (2.08)

2H, 1C 2.5 “behind” 100.0 80.0 5.29 6.00 (1.38)

2H, 1C 4.0 “nearest” 100.0 100.0 4.09 4.95 (0.39)

2H, 1C 3.0 “nearest” 100.0 50.0 6.30 7.05 (0.58)
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5 Conclusions

Enabling robots to reason about parts of the environment that have not yet been visited
solely from a natural language description serves as one step towards effective and
natural collaboration in human-robot teams. By treating language as a sensor, we are
able to paint a rough picture of what the unvisited parts of the environment could
look like. We utilize this information during planning, and update our belief with
actual sensor information during task execution.

Our approach exploits the information implicitly contained in the language to
infer the relationship between objects that may not be initially observable, without
having to consider those annotations as a separate utterance.By learning a distribution
over the map, we generate a useful prior that enables the robot to sample possible
hypotheses, representing different environment possibilities that are consistent with
both the language and the available sensor data. Learning a policy that reasons in the
belief space of these samples achieves a level of performance that approaches full
knowledge of the world ahead of time.

We have evaluated our approach in simulation and on two robot platforms. These
evaluations provide a preliminary validation of our framework. Future work will test
the algorithm’s ability to scale to larger environments (e.g., rooms and hallways), and
handle utterances that present complex relations and more detailed behaviors than
those considered so far. Additionally, we will focus on handling streams of com-
mands, including those that are given during execution (e.g., “go to the other cone”
uttered as the robot is moving towards the wrong cone). An additional direction for
following work is to explicitly reason over exploratory behaviors that take informa-
tion gathering actions to resolve uncertainty in the map. Currently, any exploration
on the part of the algorithm is opportunistic, which might not be sufficient in more
challenging scenarios.
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