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Abstract In this paper we present a robot supervision system designed to be able
to execute collaborative tasks with humans in a flexible and robust way. Our system
is designed to take into account the different preferences of the human partners,
providing three operation modalities to interact with them. The robot is able to
assume a leader role, planning and monitoring the execution of the task for itself and
the human, to act as assistent of the human partner, following his orders, and also to
adapt its plans to the human actions. We present several experiments that show that
the robot can execute collaborative tasks with humans.
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1 Introduction

In Human-Robot Interaction robots must be equipped with a complex set of skills,
which allows them to reason about human agents intentions and statuses and to
act accordingly. When interacting with a robot, different users will have different
preferences. The robotmust be able to take into account these preferences and provide
different operation modalities to allow more natural interaction with the human. We
have designed a system able to cooperate with humans to complete joint goals.

We present an object manipulation scenario, composed by tasks, such as fetching,
giving objects and other collaborative operations, which are typical of domestic
environments. In this scenario a human and a robot must cooperate to complete a
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joint goal, which is a kind of goal that requires both agents to work together. This
joint goal is known by both partners at the start of the scenario, perhaps because it
has being agreed in a first interaction process. We have identified several ways—
or modalities—to envisage how the robot planning and decisional abilities for task
achievement can be used:

• Human Plans. The robot is not aware of the global plan or does not reason about
the long-term global goal. The human decides when to ask the robot to perform
individual tasks. The robot then acts by performing, in the context, the requested
task. Decisional autonomy here is limited to how the robot refines and performs
the task in the context. The robot is not completely passive when not executing an
operation since it will continuously monitor and update the state of the environ-
ment.

• Robot plans. There is a joint goal between the human and the robot. The robot
builds the ‘best’ plan to achieve this goal, taking into account the world status, the
abilities of the two agents and the preferences of the human, then it verbalizes it
and achieves it by doing its ‘part of the job’ and monitoring the human activity.
This modality corresponds to a fully agreed upon plan that is built on-line or even
predefined and known to both agents.

• Robot adapts. There is a joint goal between the human and the robot. The robot
monitors what the human is doing andwhenever possible, tries to achieve an action
or a set of actions that advances the plan toward the goal. This could be seen as an
intelligent robot reaction to the context including the possibility to have the robot
proactively facilitating the action of the human whenever possible.

We think that the interaction process should be flexible, allowing eventually the
robot to switch modality depending on the task status and of the human actions or
simply upon request. To be able to interact with a human agent in a natural way, the
robot needs to possess a number of different mechanisms, such as joint attention,
actionobservation, task-sharing andaction coordination.Using thesemechanisms the
robot can create shared plans, that take into account the capacities of both agents, and
execute them in a coordinated way.We have developed an architecture and decisional
components which allow us to run these different interaction modalities. The goal
of the paper is not to provide a detailed description of any of these components but
rather to provide a global view of the system and to show its flexibility.

2 Related Work

The topic of joint actions has been studied by different authors in the field of psy-
chology. In [1] Bratman proposes a definition of the topic, giving several conditions
deemed necessary to perform a joint action. Other researchers [17, 23] have studied
a number of key mechanisms necessary to support joint actions between different
partners: joint attention, action observation, task-sharing, action coordination and
perception of agency.
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Individual engaging in joint action use several ways, like language, gaze cues and
gestures to establish a common ground. This mechanism appears to be crucial in
successfully performing joint actions. Perspective taking, which is studied in psy-
chology literature [5, 30], is a critical mechanism when interacting with people by
allowing one to reason on others’ understanding of the world in terms of visual per-
ception, spatial descriptions, affordances and beliefs, etc. In [22] perspective taking
is used to solve ambiguities in a human-robot interaction scenario by reasoning from
the partner’s point of view. In [29] perspective taking is integrated in a robotic system
and applied to several kinds of problems.

Spatial reasoning [20], has been used for natural language processing for applica-
tions such as direction recognition [9, 15] or knowledge grounding [12]. Reference
[26] presented a spatial reasoner integrated in a robot which computes symbolic
positions of objects.

Understanding what other agents are doing is necessary to perform a joint action.
In [7] the authors allow a robot tomonitor users’ actions by simulating their behaviors
with the robot’s motor, goal and perceptual levels. In [4] the authors present the
HAMMER architecture, based on the idea of using inverse and forward models
arranged in hierarchical and parallel manners. With this architecture the authors are
able to use the samemodel to execute and recognize actions, an idea compatible with
several biological evidences.

Other agents’ actions can be predicted in differentways. By observing other agents
we can predict the outcomes of their actions and understand what they’re going to
do next. Participants in a joint action form a shared representation of a task, used to
predict other partners’ actions. In [8] human intentions are estimated using a POMDP
(Partially ObservableMarkovDecision Process) and a set ofMDP (MarkovDecision
Process), that simulate human policies related to different intentions.

However, predicting other agents’ actions is not enough to participate in a joint
action, because the agent needs also to choose appropriate complementary actions,
adapting them to the capability of the participants. The agents need to create a coor-
dinated plan, giving particular care to timing information. In [19] the idea of cross-
training is applied to shared-planning. A human and a robot iteratively switch roles
to learn a shared plan for a collaborative task. This strategy is compared to standard
reinforcement learning techniques, showing improvements in performances. These
results support the idea of modeling practices for human teamwork in human robot
interaction. In [24] a shared plan is executed using Chaski, a task-level executive
which is used to adapt the robot’s actions to the human partners. Plans can be exe-
cuted in two different modalities: equal partners or leader and assistant. The authors
show that this system reduces human idle time. In [10] an anticipatory temporal
conditional random field is used to estimate possible users’ actions, based on the
calculation of object affordances and possible user trajectories. With this knowl-
edge the robot can anticipate users’ actions and react accordingly. In [2] the authors
present a framework for human aware planning where the robot can observe and
estimate human plans to coordinate its activites with those of the human partners.
The framework doesn’t support direct human-robot interaction.
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Communication between partners in a joint task is crucial. The robot needs to
be able to give information to its partners in a clear and socially acceptable way.
Reference [27] proposes different strategies to modulate robot speech in order to
producemore socially acceptablemessages. In [13] the authors study how to generate
socially appropriate deictic behaviors in a robot, balancing understandability and
social appropriateness.

Few robotic architectures take humans into account to allow the execution of
human-robot joint actions. Reference [28] presents ACT-R/E, a cognitive architec-
ture, based on the ACT-R architecture, used for human robot interaction tasks. The
architecture aims at simulating how humans think, perceive and act in the world.
ACT-R/E has being tested in different scenarios, such as theory of mind and hide and
seek, to show its capacity of modeling human behaviors and tought. In [6] the authors
present HRI/OS, an agent-based system that allows humans and robots to work in
teams. The system is able to produce and schedule tasks to different agents, based on
their capacities, and allows the agents to interact mostly in a parallel and independent
way, with loose coordination between them. Cooperation mainly takes place when
one agent asks for help while dealing with a situation. In this case the HRI/OS will
look for the best agent to help, based on their availability and capacities. In [3] the
authors build SHARY, a supervision system for human robot interaction, tested in
domestic environments to perform tasks such as serving a drink to a person. Our
system is an evolution of Shary which includes new aspects, like spatial reasoning
and modeling of joint actions.

3 Technical Approach

Our robot is controlled by an architecture composed of different components as
shown in Fig. 1.
Supervision System. The component in charge of commanding the other compo-
nents of the system in order to complete a task. After receiving a goal the supervision
system will use the various planners of the system to obtain a list of actions for the
robot and for the human. It will then be in charge of executing the robot actions and
to monitor the human part of the plan. Specific treatment is reserved to joint actions
(see Collaboration Planners). The supervision system aims at being flexible enough
to be used in different robotic systems and robust so that it can recover from plan
failures and adapt to human behaviors that are not expected, according to the current
plan.
HATP. The Human-Aware Task Planner [11], based on a Hierarchical Task Network
(HTN) refinement which performs an iterative task de-composition into sub-tasks
until reaching atomic actions [18]. HATP is able to produce plans for the robot as
well as for the other participants (humans or robots). By setting a different range
of parameters the plans can be tuned to adapt the robot behavior to the desired
level of cooperation. HATP is able to take into account the different beliefs of each
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Fig. 1 System architecture

agents when producing a plan, eventually including actions that help creating joint
attention [31].
Collaboration Planners. This set of planners are based on POMDP models used in
joint actions, such as handovers, to estimate the user intentions and select an action
to perform. In order to mantain a simple and flexible domain, the POMDP selects
high level actions (like continue plan or wait for the user), which are adapted by the
supervision system to the current situation. We can picture the interaction between
HATP, the collaborative planners and the supervision system in the following way.
HATP creates a plan composed by different actions to achieve a goal. The supervision
system refines and executes each action in the plan, using the collaborative planners
to adapt its actions to those of the other agents during a joint action.
SPARK. The Spatial Reasoning and Knowledge component, responsible for geo-
metric information gathering [16]. SPARK embeds a number of decisional activities
linked to abstraction (symbolic facts production) and inference based on geometric
and temporal reasoning. SPARK maintains all geometric positions and configura-
tions of agents, objects and furniture coming from perception and previous or a priori
knowledge. SPARK computes perspective taking, allowing the system to reason on
other agents’ beliefs and capacities.
Knowledge Base. The facts produced by SPARK are stored in a central symbolic
knowledge base. This base mantains a different model for each agent, allowing to
represent divergent beliefs. For example, the fact representing the position of an
object could point to a different location in two agent models in our knowledge base,
representing the different information that the two agents possess.
A set of Human aware motion, placement and manipulation planners. These
planners are in charge of choosing trajectories for the robot, taking into account the
environment and the present agents [14, 21, 25].
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4 Results

By using the capacities of its different components, our system is able to produce
several results in human-robot interaction.

1. Situation Assesment and Planning. Using SPARK and its sensors, the robot is
able to create different representations of the world for itself and for the other
agents, which are then stored in the Knowledge Base. In this way the robot can
take into account what it and the other agents can see, reach and know when
creating plans. Using HATP the robot can create a plan constituted by different
execution streams for every present agent.
As said before, there are three operation modalities in the system: robot plans,
user plans and robot adapts.
Robot plans. In the first modality the robot will, using information present in
the Knowledge Base and HATP, produce a plan to complete the joint goal. After
that the robot will verbalize the plan to the user, explaining which actions will be
performed by each agent and in which order. The robot will monitor the execution
process, informing the human of which actions it’s about to execute and also on
when the human should execute its part of the plan. This modality, where the
robot is the leader, can be helpful when interacting with naive users or in tasks
where the robot has a better knowledge of the domain or of the environment than
the other agents.
Human plans. The human can also create plans, interacting with the robot by
using a tablet application. This application allows the user to select different
actions and parameters. The user can issue both high level goals (e.g. clean the
table) and simpler actions (e.g. take the grey tape, give me the walle tape, stop
your current action). The robot will simply observe the surroundings and wait for
user inputs. This modality is always available and has a priority over the other
two modalities. If the robot receives a command from the application while it is
in another modality, it will abandon its current plan, stopping its actions at a safe
point, and then execute the users’ command.We feel that this interactionmodality
is important for two different reasons. First, some users will simply prefer to be
in charge of the execution process, for a matter of personal preference or because
they feel they have a deeper knowledge on how to realize the current task than
the robot. We can picture, for example, industrial or medical scenarios, where
the human is the leader and asks the robot to perform different tasks to help
him, when needed. A second use of this modality is in situations where the robot
doesn’t have a clear estimation of the users’ intentions and goals. For example,
in a domestic environment, a user could decide to order a robot to bring him a
drink, a need that the robot can’t always anticipate.
Robot adapts. In the last presented operation modality the robot will try to help
the human to complete a task. At the start of the scenario, the robot will stand
still and observe the environment. After the user takes an action the robot will
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calculate a plan and try to help as it can, by performing actions related to that task
and by giving helpful information to the user. In our implementation the robot
will start this modality in a ‘passive’ role, simply observing the human until he
takes the first action. We could also picture a more pro-active role for the robot,
where the robot chooses a goal on its own and starts acting toward its completion,
eventually asking for the help of the human when he can’t complete an action.
This modality corresponds to what we feel is a very natural way of interaction
between different partners, in particular in non-critical tasks, where defining an
accurate plan between the partners is not fundamental. This situation relates quite
easily to the scenario we will present in details in Sect. 5, where the two partners
must clean a set of furnitures together. In this situation the two partners could
simply choose to start executing the actions that they prefer, continuously adapting
their plans to the other partners’ actions.
The robot is able to switch from one modality to another during execution. For
example, if the robot is in the ‘robot plans’ modality and the users’ actions differ
from the calculated plan the robot will interrupt its current action, create a new
plan, and switch to the ‘robot adapts’ modality.

2. Human Intention Estimation and Reactive Action Execution. Using the Col-
laboration Planners we can execute joint actions in a reactive way. For example,
in the case of an handover, a POMDP receives as input a set of observations,
representing the distance between the human and the robot, the posture of the
human arm and the user’s orientation, used to estimate the current user intentions
(i.e. user engaged, not engaged, not interested in the task). Using this informa-
tion and the other variables that model the task status, the POMDP selects high
level actions that are adapted by the supervisor. For example, the POMDP could
decide to wait for an user that is not currently engaged in the joint action, but
hasn’t abandoned the task yet. The supervision system at this point will decide
in which posture and for how long to wait for the user. If the user shows again
interest in the task, the POMDP could select a ‘continue plan’ action, and the
supervision system could choose to extend the robot arm as response.

3. Human Action Monitor. Using SPARK, the system is able to monitor human
actions by creating Monitor Spheres associated to items considered interesting in
a given context. A monitor sphere is a spheric area surrounding a point that can
be associated to different events, like the hand of a human entering into it. Using
this system and the vision capabilities of the robot we can monitor interesting
activities, like the fact that a human takes an object or throws it into a trashbin.
The monitor spheres for a human agent are created when he enters the scene,
considering object affordances. If the human doesn’t have items in his hands,
the supervision system will use SPARK to create a monitor sphere associated to
every pickable object. After a user takes an item, monitor spheres for pickable
objects will be erased and the robot will create new spheres for containers, such
as thrashbins, where the user can throw its items. For the moment we consider
only these two kind of affordances, but we plan to include others in the future,
allowing, for example, users to place objects on furnitures, such as tables.
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4. Robustness and Safety. Our system incorporates different robustness and safety
mechanisms. The robot can deal with failed actions by updating its knowledge
of the environment and replanning accordingly. For example, if the robot tries to
take an item and fails, it will update its knowledge introducing the information
that the item is not reachable from the current position. The robot can then replan,
for example by asking the user to take the item. The robot has the ability to stop its
current action, for example because of unexpected changes in the environment.
The robot is also able to pause and resume the execution of an action, for example
because the arm of the human is in its planned trajectory.

5. Flexibility. Our system is designed to be generic and easily expanded. New
scenarios can be added by creating a new planning domain (for HATP and the
Collaboration Planners), and eventually adding new actions to the system reper-
toire.

5 Experiments

For our experiments, we present a scenario where the robot and a human have a joint
goal: cleaning a set of furniture. The two partners must place the tapes present on the
furniture in a trashbin. We will use two pieces of furniture, identified as TABLE_4
and IKEA_SHELF and three tapes, identified as GREY_TAPE, LOTR_TAPE and
WALLE_TAPE.Wewill use one trashbin, named PINK_TRASHBIN.Wewill place
these items differently in each example, depending on our needs and won’t necessary
use all of them together.

We will present a set of runs of the system, which show its capacities1:

• Robot adapts: In this scenario (Fig. 2) the user is asked to clean the table, without
agreeing before the start on a clear plan with the robot. The user is informed that
the robot will try to help as it can. The user moves to the table and takes the
WALLE_TAPE. At this point the robot notices that the user has completed an
action and understands that he wants to clean the table.
The robot creates a plan and executes its part of it while monitoring the human,
which executes its part without deviating from the plan calculated by the robot.

• Modality switch and user plans: In this scenario (Fig. 3) the robot is the only
agent able to reach both tapes, but it can’t reach the trashbin, which can instead be
reached by the human.We tested this scenario in two different runs. In the first one
we start with the robot in ‘robot plans’ modality. After exploring the environment
the robot produces a plan and starts its execution.
While the robot is taking the LOTR_TAPE the human moves to take theWALLE_
TAPE. This deviates from the robot plan, so it switches to the ‘robot adapts’modal-
ity, communicating the change to the user. The user throws the WALLE_TAPE

1Videos from our experiments can be seen at http://homepages.laas.fr/mfiore/iser2014.html.

http://homepages.laas.fr/mfiore/iser2014.html
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Fig. 2 Robot adapts.This figure shows the robot’s representation of the scenario. The white tape
is the WALLE_TAPE, while the blue one is the LOTR_TAPE. The round shapes represent the
agents’ rechabilities, with red shapes representing robot reachabilities and green shapes human
reachabilities. In this case only the human can reach the WALLE_TAPE while both agents can
reach the LOTR_TAPE and the PINK_TRASHBIN. After the human takes the WALLE_TAPE the
robot produces a plan where the human must throw the tape in the thrashbin while the robot can
take the LOTR_TAPE and throw it in the trashbin

in the PINK_TRASHBIN and meanwhile the robot takes the LOTR_TAPE and
handles it to the user. The user takes the LOTR_TAPE and throws it in the
PINK_TRASHBIN, completing the task.
In the second run the robot is in the ‘user plans’ mode. The user is asked to clean
the table as he wishes. The user asks the robot to take each tape and give it to him,
throwing them in the trashbin.

• Replanning after failed action: In this scenario (Fig. 4) the robot is the only
agent able to reach the trashbin, while both agents can reach the two tapes. The
robot is in ‘robot plans’ modality and, after examining the environment, produces
a plan.
After taking and throwing the LOTR_TAPE, the robot tries to take the WALLE_
TAPE, but fails because it’s too far. The robot informs the user and replans. The
agents execute the plan, completing the task.

• Replanning after human inactivity: In this run the robot computes that the
GREY_TAPE and PINK_TRASHBIN are reachable only by the human, while
the WALLE_TAPE is reachable only by the robot. The robot computes a plan and
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Fig. 3 Modality switch and user plans. Another configuration of the environment, where the robot
can reach the two tapes and the human can reach the thrashbin. The robot generates an initial
plan from this situation. The block surrounding the give and receive actions means that they are
considered a single joint action

starts executing it, observing the human reactions. After an initial stage when the
human is commited to the task, he doesn’t execute a part of the plan (taking the
final tape and throwing it), so the robot looks for another plan. The only solution
to the problem is the one already computed at the beginning, so the robot decides
to ask the human to take the tape and throw it. A run of this scenario is shown in
Fig. 5.

6 Conclusions

The studied experiment shows that our system is able to exhibit the capacities dis-
cussed in Sect. 3. Also, an interesting aspect of our system is that it’s generic enough
to be adapted to other manipulation scenarios, even involving more than one human.
We review some of the main results of our experiments:

• The system is able to handle joint goals. The system is able to create shared
plans with different users, taking into account the capabilities of each agent. When
unexpected changes in the world or task status arise, the system is able to quickly
replan, adapting to new scenarios. The system is able to execute this joint goal in
a human aware way.
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Fig. 4 Replanning after failed action. Here we can see a first plan, produced at the start of the
scenario, and a second, produced after the robot fails to take the WALLE_TAPE

• The system is able to handle joint actions. The system is able to estimate user
intentions in collaborative tasks and to choose appropriate actions, using a set of
POMDP models.

• The system is able to handle user preferences. The system is able to adapt itself
to user preferences, allowing the human partner to give commands or to be more
passive in its role and switching from one modality to the other.

• The system is able to handle each agent beliefs. The system is able to represent
different belief states for different agents and to take into accout what users can
see, reach and know when creating a plan.

• The system is able to monitor human actions. The system is able to monitor
human actions using a mechanism that is simple, but fast and efficient for the
studied scenarios.

To further understand the advantages and disadvantages of these different modal-
ities, and also in which conditions one or the others are pertinent, we need to conduct
user studies, which will be done in the near future.
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Fig. 5 The picture shows a run of our ‘replanning after human inactivity scenario’. The different
rows show, starting from top to bottom: the real world picture, the world state representation built
by the robot, symbolic facts input in the knowledge base at each time step, action taken by each
agent at each time step, the current plan calculated by the robot
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