
© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 105–120, 2015.
DOI: 10.1007/978-3-319-23727-5_9

Software Designers Satisfice

Antony Tang1() and Hans van Vliet2

1 Swinburne University of Technology, Melbourne, Australia
atang@swin.edu.au

2 VU University, Amsterdam, The Netherlands
hans@cs.vu.nl

Abstract. The software architecture community has advocated design rationale
in the last decade. However, there is little knowledge of how much reasoning is
performed when software design judgments are made. In this study, we investi-
gated the amount of design reasoning performed before making a decision. We
recruited 32 students and 40 professionals to participate in this software archi-
tecture design study. We found that most subjects needed only a few reasons
before making their decisions. They considered that giving a few reasons were
good enough to judge despite that more reasons could be found. This result
shows a satisficing behavior in design decision making. We explore the impli-
cations of this common behavior on software architecture design.

Keywords: Satisficing · Design judgment · Design reasoning · Behavioral
software engineering

1 Introduction

Software teams often employ software engineering methodologies and processes dur-
ing development. While the use of methodologies and processes can help, they do not
ensure that good design decisions are made. Curtis suggested that the impact of beha-
vior on software productivity is greater than the use of tools and methods [1]. As Do-
nald Schön eloquently said: “We [professionals] are bound to an epistemology of
[design] practice which leaves us at a loss to explain, or even to describe, the compe-
tences to which we now give overriding importance” [2]. His observation that we
cannot explain how a designer thinks is still an accurate description of the state of
software design. Software architecture design as a series of design decisions and de-
sign rationale have been recognized by many in the software architecture community
[3, 4]. Many studies and methods promoted the capture of design rationale [5, 6].
However, we know little of how much reasoning is performed to create design ratio-
nale for making decisions. This issue has become clear in a recent workshop on soft-
ware design [7]. The amount of reasoning software designers perform is an important
issue to explore as the presence of design rationale is insufficient to ensure that a de-
sign decision is well reasoned.

Software architecture design is a complex business. Architects and designers often
face uncertainties as they explore the problem space and the solution space. Decisions

106 A. Tang and H. van Vliet

are made and reasoning is performed with many unknowns. Simon argues that due to
bounded rationality, i.e. the limitations of our cognitive ability, the idea of maximisa-
tion in design is untenable. Realistically, we cannot consider all possible design op-
tions to achieve an optimal design. As such, complete design exploration by traversing
the entire problem and solution spaces is impossible. Instead, such design approach
should be replaced by the idea of statisficing [8]. Satisficing indicates that a decision
maker makes a decision that is good enough to satisfy the goals [9].

If design optimization is not possible, how much reasoning and explorations do
designers do before making decisions? How much satisficing is good enough? On the
other hand, we know that missing information can potentially cause design flaws [10,
11]. In order to gain some insights on these questions, we set up an experiment to test
how professionals and students reason and judge. In this study, we found no signifi-
cant differences, in terms of the number of reasons and the judgments, between the
students and professionals. We found that our subjects typically stopped reasoning and
made judgment after finding few reasons.

In order to understand why both groups provided so few reasons, we did a follow
up study and asked professional participants when and why they stop reasoning. They
said that they chose to stop as soon as they were convinced that they had enough rea-
sons. This is a satisficing behavior. However, a minority group of professionals are the
exceptions to this reasoning behavior. We call them non-satisficing designers. They
reasoned more thoroughly than most of the students and professionals. They had a
different way of reasoning and we found three judgment characteristics.

2 Software Design Judgment

Design judgment and decision making involves reasoning, but other psychological
elements such as motivation and cognitive limitation also influence reasoning activi-
ties. Software architecture design methodologies typically assume that software de-
signers reason rationally. That is, if a process or a standard is followed and rationale
is provided, the quality of the rationale is not questioned [12, 13]. Several studies,
however, have found that software designers behave opportunistically [14, 15]. These
studies show software designers do not use systematic reasoning to arrive at a design.
In this study, we explore software design reasoning from different perspectives:

• How much reasoning do designers give before making design judgments? Why?
• Do professionals and students reason differently?
• What are the characteristics of designers’ reasoning behavior?

To study these aspects of design decision making, we prepared vignettes, or scena-
rios, to describe software system scenarios. Reasoning with scenarios is one of the
things that software designers do, and more so for software architects. Software de-
signers and architects are often presented with functional and quality requirements,
use cases, system goals and other information. From this information, they have to
explore the problem space, reason with the situations and synthesize solutions [16].
In this study, each scenario describes a software system, its requirements and context

 Software Designers Satisfice 107

at a high level. A conclusion is provided to allow the participants to reason with the
scenario. The conclusion is worded in a controversial way to provoke reasoning and
argument. For example, in one scenario (scenario 5), we described a proposed smart-
card ticketing system to be built in Pakistan. We provided a controversial conclusion
that says: “It is viable to implement this system in Pakistan”. The participants were
asked to do two things. First, they were asked to provide written reasons for disagree-
ing or agreeing with the given conclusion. The controversial conclusions were worded
such that many reasons can be found to object them. The number of reasons, the na-
ture of the reasons and the judgments given by the participants on software design
scenarios allowed us to study how a participant uses reasoning and make judgments
with software scenarios.

Second, the participants were asked to indicate their level of agreement with the con-
clusion. A seven-point Likert-like scale was used to indicate their level of agreement. As
the conclusions are controversial and deliberately contain many arguments against them,
the experiment setup allows us to examine the relationships between reasoning and disa-
greement conviction. We expected issues to be found in each scenario, and we wanted to
observe what reasons the participants would give. The data also allowed us to analyse
the given reasons, and relate them with their judgments, i.e. the level of disagreement.
An online survey tool was used to gather the data.

2.1 Research Approach

In this research, we provided design scenarios as stimuli to gather designers’ res-
ponses. The use of vignette to do this kind of study is a valid approach in the fields of
social and cognitive psychology [17]. For our research goals, this research approach is
appropriate as it would allow us to measure reasoning responses of participants using
the same stimuli that are relevant to software architecture design.

 In the experiment, we asked our participants to write down those reasons, to simu-
late the process stipulated by many rational design methods where designers are
required to provide design rationale. We collected the data and encoded all unique
reasons given. We counted those reasons and performed statistical analysis. We first
tested if professionals would produce more reasons to support their design judgments
than students. Second, we investigated their design judgements to compare how much
disagreement they had with the conclusions. Third, we used a questionnaire to find out
how some of our professionals carried out the exercises.

We did two rounds of study, with 61 participants in the first round comprising 32
students and 29 professionals. They were asked to do the exercises only. In the second
round, the 11 participants had to do the exercises and then they were questioned about
the process of their reasoning as well. When analysing the data from both rounds, we
took a constructivist approach [12] in which we interpreted the data collected to build
a theory of how software designers reason.

108 A. Tang and H. van Vliet

2.2 Scenario Preparation

We developed ten scenarios based on some actual system development cases. We
worded the scenarios to allow issues to be embedded within the scenarios. Due to the
controversial conclusions, we anticipated that there would be many reasons to chal-
lenge the conclusions, especially in complex cases. We wanted to discover what rea-
sons the participants would find. We devised the scenarios such that possible reasons
would be typical of the types of issues identified by Meyer [8]. For each scenario,
there is a vignette that describes the scenario. A conclusion is given to stipulate rea-
soning and argumentation. The participants were asked to judge the conclusions and
give reasons/issues for why they (dis)agree. Ten scenarios were developed and six of
them were chosen to be used in the study. From these six scenarios, two were consi-
dered common (scenario 1 and 10) in that it was possible that the professionals had
had a chance to encounter them in the work place; the other four scenarios (scenario
5, 6, 7 and 9) were complex and uncommon in that few people would have had the
chance to work with such systems. This means that it is highly likely that these scena-
rios were new, in terms of making design judgment, to most participants. Uncommon
and complex scenarios mean that the participants had to carefully question the
scenarios [14].

We used an online survey to show the vignettes and the conclusions. The online
survey tool gathered the reasons and the level of agreement given. There was no time
limit on how long the participants could take to complete the online survey.

2.3 Pilot Testing

We invited four people to participate in our trials. They were given all ten scenarios.
We found ambiguous wording in some scenarios and they were rectified. Out of the
ten scenarios, we chose six scenarios for the actual study because we found that these
six scenarios already contained all the different types of issues that we might find, and
the pilot participants were able to identify them.

2.4 Participants’ Demographics

We invited students and software professionals to participate. The first group con-
tained 32 second year Bachelor Computer Science students from the Web-systems
Project at VU University Amsterdam. There were 40 software professional partici-
pants, 29 in the first round and 11 in the second round. We used availability and
snowballing sampling methods to recruit them. Many of the industry participants
were either known to the researchers through work-related contacts or were col-
leagues of software developers known to the researchers. There were 6 architects, 1
academic, 16 software engineers and designers, 6 in IT and software management, 4
analysts, 6 consultants and 1 Database Administrator. This group of software profes-
sionals had an average industry experience of 16 years.

 Software Designers Satisfice 109

2.5 Data Gathering

We analysed the reasons given by the participants and identified unique reasons in
each scenario to count them. We call this collection of reasons for each scenario a
normative set of reasons. These reasons were typically assumptions, constraints and
risks stated to argue against the conclusions. Analogies were also used to reason for or
against a conclusion. We call them For-Analogy and Against-Analogy. In the second
round, we used a questionnaire to get more information from the participants after
they had completed the exercise. The purpose hereof was to find out how they rea-
soned and when they stopped reasoning.

3 Results and Analysis

3.1 Limited Amount of Reasoning by Students and Professionals

First, we analyzed the total number of issues provided for all six scenarios. Students
on average found 6.56 issues for all 6 cases taken together, and professionals found
7.55 issues for the 6 cases. We performed an independent sample t-test to compare the
mean issues found between the two groups and the results showed insignificant differ-
ence. In conclusion, professionals on average did not provide more reasons than stu-
dents when they made their design judgments.

Second, the number of issues given by both the students and the professionals in
each scenario were low as compared with the normative set. The number of issues
given, as a percentage of the normative set, was between 9% to 13% in complex sce-
narios, and about 18% for scenario 10, and 30% (students) and 40% (professionals) in
scenario 1. Scenario 1 has only two issues in the normative set. In most cases, al-
though many reasons could have been given, only a small number of reasons were.

Third, participants found different reasons. Some participants said that they found
the important reasons and stopped. However, there are many other valid reasons and
it is somewhat subjective and arbitrary to argue that some reasons are more important
than others. Let us examine the possible reasons for Scenario 5 (see vignettes and
normative set of reasons1). In Scenario 5, the vignette is “A new contactless smart-
card system is designed to be used in the public transport in Pakistan. Each traveller
would need to pay a deposit to obtain a personalized smart-card. Each card costs
US$4.50. With the smart-card, a passenger can travel on all public transport system
such as bus, train and mini-bus throughout the country. The smart-card can be re-
loaded at ATM machines or over the counter at a bank. This system will replace all
cash tickets in 18 month”. The conclusion suggests that “It is viable to implement this
system in Pakistan”. Issue 1 challenges the affordability of a travel card in a poor
country. Issue 1 was found by 6 students and 13 professionals. Issue 2 challenges the
viability of building the infrastructure. Identification of this issue requires system
construction experience. It was found by 2 students and 12 professionals. Issue 6

1 http://www.ict.swin.edu.au/personal/atang/documents/Design%20Reasoning%20Experiment-

V1.5.pdf

110 A. Tang and H. van V

states the limitation of the p
was found by 11 students
found these three popular i
for the researchers to say w
we see that all the issues are

Fig. 1. Average Number of Re
with the Total Number of Nom

If these are valid issues
them before making their j
and as a percentage of the n
fessionals. Both students an
for the simpler Case 1. A
cognitive efforts [18]. The
and they decided that these
is an indication of their sa
they stopped reasoning (see

Table 1. Average Re

 All Cases

Normative Set of

Reasons

51

Students Average

Reasons

6.56

(12.8%)

Professional Average

Reasons

7.55

(14.8%)

Vliet

people having access to bank accounts and ATMs. Issu
s and 15 professionals. Many students and professio
ssues. Other issues were not commonly cited. It is diffi

which issue is more important. However, using this exam
e equally valid but participants found different ones.

easons Identified by Student and Professional Groups Compa
minal Reasons

s, why did most participants not continue to find more
judgments? Table 1 shows the average number of reas
normative set of reasons found by the students and the p
nd professionals found only a fraction of the issues exc
viable explanation was that they had been using the l
se professionals, and all the students, found some reas

e reasons were good enough to make their judgments. T
atisficing behavior. We verified this result by asking w
e Section 3.4).

easons Identified and As A Proportion of Normative Set

s Case 1 Case 5 Case 6 Case 7 Case 9 Case

2 12 13 11 8 5

0.59

(29.6%)

1.46

(12.2%)

1.5

(11.5%)

1.37

(12.5%)

0.71

(8.9%)

0.9

(18.1%

0.8 (40%) 1.86

(15.4%)

1.52

(11.7%)

1.47

(13.4%)

1.05

(13.1%)

0.85

(17%)

ue 6
nals
icult

mple,

ared

e of
sons
pro-
cept
least
sons
This
why

10

%)

)

 Software Designers Satisfice 111

3.2 Judgment Conviction

We expected that professionals having more experience than students would have
been more convicted about their disagreement. This is because they could see the
many issues in the given conclusions. Instead, the professionals did not totally object
the conclusions. They objected to the conclusions in three cases and they were not
totally convicted to the disagreement (see Table 2).

The two groups had very similar level of agreement in all scenarios. We performed
a non-parametric test of significance on the median of agreement between the two
groups and found no statistical difference between them in any of the cases. As dis-
cussed earlier, the level of agreement and the number of reasons of both groups in
each of the cases shows no statistical difference. Thus, the two groups judge these
cases in the same way. They found similar number of reasons to support their deci-
sions and made similar judgments.

Table 2. Median Level of Agreement

3.3 Amount of Time Spent on Reasoning

We tested the difference in time spent between students and professionals using Inde-
pendent Sample t-Test. We found that there is no significant difference in the time
spent by the students and the professionals in any of the cases (see Table 3).

Table 3. Average Time Spent by Subjects

Almost all of the participants did not have hands-on experience with any of the

scenarios. This precludes the chance that someone could reason with the scenarios
based on intimate working domain knowledge. Despite the lack of domain knowledge,
participants only spent a small amount of time on reasoning and judging. This could
mean that reasoning is a function of time. After our participants spent a certain amount
of time which they consider as enough and found what they thought were reasonable
reasons to judge, they stopped.

3.4 Questionnaire Results

Following the first round of experiments, we found that professionals reasoned simi-
larly to students. They stopped reasoning after finding few reasons. They had similar

 Case 1 Case 5 Case 6 Case 7 Case 9 Case 10

Students : Median Level Agrmnt 4.0 2.0 2.0 4.0 5.0 5.0

Professionals: Median Level Agrmnt 2.0 2.0 2.0 5.0 4.5 5.0

 Case 1 Case 5 Case 6 Case 7 Case 9 Case 10

Students Avg Time 4.68m 4.87m 5.03m 4.43m 4.68m 4.68m

Professionals Avg Time 4.23m 4.23m 4.41m 3.70m 4.46m 3.84m

112 A. Tang and H. van Vliet

judgments with the students and the judgments were non-convicting despite that more
reasons could have been found. The professionals also spent a similar amount of time
as the students. In order to understand these phenomena, we invited more profession-
als to participate in this experiment in the second round. In addition to the design rea-
soning exercises, these professionals had to answer some questions afterwards. In the
questionnaire, we asked them if they had an urge to complete the task quickly.
The median in a 7-point Likert scale is 5, indicating a tendency wanting to complete
the task quickly. We asked the professionals if they wanted to complete the task tho-
roughly. The median in a 7-point Likert scale is 5.5, meaning they wanted to do a
thorough job.

We checked if any of the professionals had hands-on experienced in the domain in
any of the cases. There was only one developer who did some work with Case 10.
There were no domain familiarities with any of the other cases by any professionals.
This helps to reduce the risk that hands-on development experience and prior domain
knowledge might have biased the results in that judgments are based on prior know-
ledge rather than explicit reasoning. We asked the professionals to estimate the num-
ber of possible reasons for each case. The results were mixed. For professionals who
had guessed that there are more reasons, why did they not find more of them? The
following are some of the answers they gave.

• “I stopped when I found the main reasons. I did not need to find more reasons.”
• “I drew a line at the time I spent in each case.”
• “Gut feeling, based on experience and projects I have seen.”

We asked the professionals if they were to find more reasons, would they have
been more disagreeable with the conclusions. The following are the answers
they gave.

• “YES. I would need to do more analysis. If I did, I would come up with more
reasons. But when I saw a red flag, that was enough for me to disagree.”

• “POTENTIALLY YES. If I spent more time, I would come up with more in-
formation to argue against the conclusion.”

• “YES. I would have gone into more depth. The reasons I gave were important.”
• “YES. To explore more techniques and to measure their feasibility according to

risk and trade-offs.”

These answers basically show that (a) the professionals knew that they could have
found more reasons; (b) they stopped because there is no need; (c) they said they
would have been more disagreeable had they found more reasons.

4 Satisficing Behavior

Software design is said to be a wicked problem [19] because it is complex and the
situations that a designer faces are often new and unfamiliar. In a complex environ-
ment, the solutions, the problems and the reasoning behind them are not obvious. We

 Software Designers Satisfice 113

designed the scenarios to be complex and so they require careful reasoning. The re-
sults of this study show that (a) students and professionals provided few reasons be-
fore judging; (b) students and professionals spent a similar amount of time before
judging; (c) the level of agreement of students and professionals on the conclusions
was similar and their judgments were non-convicting; (d) some professionals said that
they could have found more reasons but they stopped because they thought it was
enough. Given these results, we examined a number of theories to explain our results.

4.1 Explaining the Results

First, designers might behave in an opportunistic way when designing [15]. Instead of
analysing a design systematically and thoroughly, they use information that is readily
available. This behavior could be due to the limited cognitive capacity of designers to
process all requirements and design information simultaneously, but there is no extra
information from our study to support the theory of cognitive overload. Comments by
some participants partially supported the opportunistic behavior, like “solution that
pops up in the mind”.

Second, psychologists have suggested two modes of thinking: System 1 and Sys-
tem 2. System 1 operates automatically and quickly with little effort. System 2 allo-
cates attention and effortful mental activities. In one experiment, it was shown that
more than 50% of Harvard, MIT and Princeton students used intuitive thinking to
solve a problem but they gave the wrong answer [20]. Other studies have shown that
as people become more skilled in a certain task, the mental efforts they spend on that
task are reduced. The Law of Least Effort asserts that people will gravitate to the least
demanding course to accomplish the same goals. This law applies to cognitive efforts
as well, it shows that people are inclined to use less of System 2, even in a situation
that demands analysis [18]. In our experiment, we cannot show which system our
participants used. But there were hints, based on the comments made by our partici-
pants, that participants engaged in both intuition (System 1 thinking) and effortful
analysis (System 2 thinking).

Klein suggests “we need to blend systematic analysis and intuition. Neither gives
us a direct path to the truth. Each has its limitations” [20]. Hammond suggests that
judgments is an exercise to cope with uncertainty [21], and if judgment is a rivalry
between intuition and analysis, then if a person’s uncertainty is somewhat satisfied, by
intuition or by analysis or both, the cognitive process stops and a judgment is made.
Zannier et al. found a similar blend of Rational Decision Making (RDM) and Natura-
listic Decision Making (NDM) when studying software designers [14]. These two
theories point to the same decision making process: intuition vs. analysis. Our partici-
pants told us that they did some analysis, but they also used their intuition.

Third, Simon suggested that it is not possible to find an optimal solution. Instead,
designers design systems incrementally and if a design appears to work, that design is
selected and a designer moves on. Therefore, designers do not maximise or optimise a
design. S/he chooses a good enough design. Simon suggested that maximisation is
untenable and should be replaced by the idea of satisficing. That is, we cannot have a
perfect solution, but instead we have a good enough solution [8, 9].

114 A. Tang and H. van Vliet

Finding as many reasons as one can achieve is maximization or optimization be-
havior. Our participants clearly opted to find just-enough reasons before judging. Al-
though there is enough evidence to demonstrate designers are satisficed with their
judgments, we do not know why satisfaction occurred, whether it was due to using
System 1 thinking, or a laziness in System 2 thinking, or bounded rationality, or cog-
nitive overloading. With the establishment of the satisficing behavior of software de-
signers and software architects, we examine its implications on software architecting.

4.2 Satisficing in Software Architecture Design

Using the results that we gathered, we triangulate the evidence to conclude that soft-
ware designers use satisficing when making decisions. We summarise our arguments
below and discuss their implications:

Student and Professionals Satisfice to the Same Degree. There is no statistically
significant difference to how much students or professionals reason or when they stop
finding more reasons. This shows that, irrespective of experience, software designers
are satisficed at similar points. Implications: As satisficing is a natural thing for most
software designers, it is important to recognize such and train software architects and
designers to investigate a problem deeper when dealing with complex issues.

Satisficing and Time Bounded Decision Making. All professionals who participated
in the second round said they had an urge to complete the tasks quickly, even though
they wanted to do a thorough analysis. We don’t know where that urge to complete
the tasks came from. A number of these professionals commented that they could
have spent more time but they did not. Implications: This result seems to indicate that
satisficing behavior and time bounded decision making are intertwined. Judgments
are made quickly because of finding good-enough reasons or a designer has judged
that enough time has been spent. Ward interprets satisficing as “choosing among a
subset of behavior when information processing or time constraints limit the ability of
a decision maker to make an optimal decision” [22]. There is no explicit time con-
straint in the experiment, but the designers implicitly considered time as a factor.
Time is shown to be a cost factor in the study of purchasing behavior [23]. As such,
time is like cost, it is spent in order to gain something. In software decision making,
the perception of how much time spent on a problem becomes a cost function that is a
trade-off with the potential gains of spending that time.

Satisficed Reasoning. Many issues had been identified in the normative set of issues
in the experimental scenarios. However, most participants typically found few of them
before judging. Out of the 51 unique issues identified for all 6 scenarios, students
found an average of 6.5 and professionals found an average of 7.5 issues. Some partic-
ipants commented they had found the main reasons and so they stopped, and yet they
were not convicted to their judgments. This seems to indicate they knew they did not
have all the reasons to make judgments but they thought that it was good-enough.
Implications: The potential issue of such satisficing behavior is that the resulting
judgments based on partial reasoning may be incomplete and flawed. As software

 Software Designers Satisfice 115

designers often face new and unfamiliar situations, like the scenarios provided in the
experiments, and if these situations require careful analysis in order to consider the
many intricate and interrelated scenarios and requirements, then the reasoning before
judgment is inadequate. If the result of this study is a general reflection of the way
software designers make decisions, then there is a potential software design thinking
issue to consider. Satisficing may work fine when a designer is experienced and famil-
iar with the domain, but it may be risky in complex and unfamiliar design situations
that require thorough analysis [24]. The question is how we may recognize satisficing,
and that it may be causing design risks?

5 Non-Satisficing Professionals

In the student group, the number of issues found was evenly distributed, and there
were no outliers (see Figure 2). However, in the professional group, we discovered a
sub-group of 4 professionals who reasoned differently. These are the outliers who
appear not to use satisficing judgments. We contrast these non-satisficing profession-
als with satisficing software designers by comparing the following evidence: number
of reasons given, judgment conviction, time spent and the use of analogy. The exis-
tence of this group of designers is a contrast to the satisficing designers, and the ways
they differ help to characterize satisficing behaviors.

5.1 Non-Satisficing Professionals Reason More

Non-satisficing professionals cited many more reasons than the other two groups.
They found almost double the number of reasons. They also considered a broader
context of the design situations to challenge the given conclusions. The reasons that
these professionals identified were not very obvious and they could not have been
found without careful thinking. They were also more thorough in their analysis.

As shown in Fig. 2, the average number of reasons this non-satisficing group iden-
tified is double that of the student group and the rest of the professionals. We ran an
independent samples Kruskal-Wallis test to compare the number of reasons found
between the three groups. We found that the non-satisficing group found significantly
more reasons than the other groups (p=0.004).

We further analysed these four professionals in the non-satisficing group for each
of the six scenarios, and found that they were clearly outliers in every scenario. In
each scenario, the average number of reasons they found was typically double that of
the students and the other professionals. This result highlighted that they reason dif-
ferent from the rest of their peers and the students. We found statistical significant
difference between this group and all the other participants. However, with such a
small number, the power of the statistical tests is limited.

116 A. Tang and H. van Vliet

Fig. 2. Reasons Identification by Non-Satisficing Group (N), Satisficing Professional Group (P)
and Student Group (S)

5.2 Non-Satisficing Professionals Use Less Analogy

Examining the reasons given by the participants, we noticed that analogies were often
used to support or refute the conclusions. Typical arguments were “XXX is successful,
so it should also be applicable to YYY”. But often software design is situated within
particular contexts [25], so analogy as an argument would work only when the situa-
tions of the cases are very similar.

Analogies are patterns that are used to simplify learning [26]. It is an intuitive way
to allow matching solutions to problems that are similar. The use of analogies by stu-
dents and some professionals suggest that intuitions were used in their design thinking
style. Non-satisficing professionals appeared to use far fewer analogies than the other
two groups. Table 4 summarizes the number of reasons by analogies given by the
three groups. The number in each cell indicates (a) the number of analogies given; and
(b) the average number of analogies (within brackets) given by the participants in a
group. Let us examine a couple of example analogies found by the participants in
Case 5: “There are some good examples of smart-card systems implemented in other
countries' public transport. I don't see why there should be any more difficulties in a
country such as Pakistan.” and “The description of the system is very similar to Lon-
don's Oyster card. However, Pakistan's economy is less developed than that of Great
Britain. It is very likely that equipment will fail to work after a while and so travellers
will be forced to find ways to circumvent the ticket barriers.”

The analogies given were somewhat relevant to the reasoning and argument of the
Pakistani situation. However, one could point out many differences between Pakistan,
London and The Netherlands. If we examine them we see they are not very good rea-
sons. Non-satisficing professionals hardly used analogy in their argumentation. When
they used analogy, they gave reasons to support them. On the other hand, the other
two groups used more analogies on average in 4 different scenarios. Many were not
substantiated by sound arguments. The use of unsupported analogy is a characteristic
of satisficing reasoning.

 Software Designers Satisfice 117

Table 4. Analogies per Participant (analogy counts and averages within brackets)

 Case 5 Case 7 Case 9 Case 10

Students 12 (0.375) 8 (0.25) 1 (0.03) 1 (0.03)

Satisficing Professionals 6 (0.24) 7 (0.28) 0 (0) 2 (0.08)

Non-Satisficing Professionals 2 (0.25) 0 (0) 0 (0) 0 (0)

5.3 Non-Satisficing Professionals are More Convicted to their Judgments
and Spend More Time Reasoning

We note that the non-satisficing professionals are more convicted to their judgment.
This contrasts with the average results reported in Table 2. We argue that non-
satisficing professionals disagreed more because they found more reasons to support
their arguments and refuted the conclusions. They were also more confident with their
judgments. Dörner studied the habits of good and bad decision makers. One observa-
tion he made was that a good decision maker asks many why questions to explore
reasons, challenges the assumptions, and poses different scenarios [27]. Non-
satisficing professionals have these traits as well. They identified more issues and
were more certain of their judgments.

The non-satisficing professionals spent significantly more time than the other pro-
fessionals (Table 5). The cost of time did not appear to affect them as they focused on
the reasoning tasks. In every case, they spent more time and found more reasons to
support their judgment conviction.

Table 5. Average Time Spent by Professionals

 Case 1 Case 5 Case 6 Case 7 Case 9 Case 10

Satisficing Professionals 3.87m 3.76m 4.07m 3.44m 4.21m 3.64m

Non-Satisficing Professionals 6.75m 7.5m 6.75m 5.5m 6.25m 5.25m

6 Threats to Validity

There are a number of limitations in our study. One might argue that, in a real-life
situation, one would do more reasoning but many of the professionals we surveyed
after the experiment said that they stopped because they felt that there were enough
reasons to convince them (Section 3.4). The results obtained here could reflect how
these participants reason and judge.

Second, one potential construct validity issue is that the participants might not
want to spend a lot of time to work on the scenarios, and inadvertently limited the
amount of reasons given. However, many professionals indicated they stopped be-
cause they felt they had identified enough reasons, and did not say that they ran out of
time.

Third, this experiment had a limited number of scenarios. The scenarios are short
and the participants knew that they were dealing with an experiment albeit that they
did not know its purpose. This is potentially a construct validity issue and limits our

118 A. Tang and H. van Vliet

ability to generalize the results. We only conducted the survey with the second round
of 11 participants, the number of responses was limited and as such it limits what we
can generalize from these responses. Fourth, the way vignette is used in this study is
similar to how information is communicated with software designers although in real-
life there are often opportunities for further questioning, and other environmental fac-
tors such as time-allowance and presence of expertise that may influence designer
reasoning behavior. As such, we cannot claim general representativeness.

Finally, we interpret the experimental results using the theory of satisficing. In the
experimental construct and the interpretation of the results, we assume that (a) the
kind of reasoning embedded in the scenarios are close to real-life; (b) there is little
familiarity of our participants with the domains; (c) our participants are motivated to
provide us good information. In these regards, the evidence that we gathered appear to
be consistent based on the results that we collected: the reasons given, the judgments
and the time-spent. The comments made by the second round of professionals clearly
point to satisficing behavior. We found an outlier group, and use their behavior to
contrast the behavior exhibited by the student group and most of the professionals.

7 Conclusions

In this work, we study how much reasoning designers do when they are asked to pro-
vide design rationale in different design scenarios. We asked designers to provide
design reasons before making design judgements. We had 72 participants in our expe-
riment. We provided six scenarios for them to reason with. The results show that most
students and professionals provided few reasons before they make a judgment. Their
judgments were non-convicting, i.e. they did not totally disagree with the conclusions.
They told us that when they found enough reasons, they stopped looking for more
reasons and made their judgments. This result shows general satisficing behavior in
design reasoning. A small portion of professionals are non-satisficing designers. We
identify three characteristics that contrast with the behaviour of satisficing designers:
(a) these professionals seldom used analogy; (b) they provided twice as many reasons
than the others before judging; (c) when they judged, they were more convicted to
their judgments and willing to spend more time to reason before judging.

This study has shown that software designers and architects use satisficing in judg-
ing design scenarios. If this practice is representative of the everyday practice of soft-
ware architecting, then it has significant implications. The software architecture com-
munity generally assumes that the presence of rationale is good enough to improve
design quality. This study shows that designers only provide a fraction of design ra-
tionale. The amount of reasoning and the level of their satisficing could impact on the
quality of design decisions, especially in unfamiliar design situations [24]. In a differ-
ent situation, satisficing could work if the design complexity is low. As such, it is
important to recognize satisficing behavior and its potential risks to design quality.
Potential solutions to address the issue of premature satisficing lie in the recognition
of this human behavior during design. Reflective design thinking [28], better design
time management, reasoning techniques [29], architecture design and analysis

 Software Designers Satisfice 119

techniques that include recognition and critical appraisal of satisficing behavior, de-
biasing [30] and managing design complexities [24] are some of the related approach-
es that could improve software design practice, and all of them need further explora-
tion.

Acknowledgments. We thank Patricia Lago for her initial contribution to this work. We thank
Alice Yip for encoding the data. We also thank our participants.

References

1. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Commun. ACM 31, 1268–1287 (1988)

2. Schön, D.A.: The reflective practitioner : how professionals think in action. Basic Books,
Nueva York (1983)

3. Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P.: The value of design ratio-
nale information. ACM Transactions on Software Engineering and Methodology
(TOSEM) 22, 21 (2013)

4. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In:
Proceedings 5th IEEE/IFIP Working Conference on Software Architecture, pp. 109−120
(2005)

5. Dutoit, A., McCall, R., Mistrik, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer (2006)

6. Tang, A., Barbar, M.A., Gorton, I., Han, J.: A Survey of Architecture Design Rationale.
Swinburne University of Technology (2005)

7. Petre, M., Van Der Hoek, A. (eds.): Software Designers in Action: A Human-Centric Look
at Design Work. CRC Press (2013)

8. Simon, H.A.: The Sciences of the Artificial. The MIT Press (1996)
9. Simon, H.A.: Satisficing. The New Palgrave: a Dictionary of Economics 4, 243–245

(1987)
10. Meyer, B.: On Formalism in Specifications. IEEE Software 2, 6–26 (1985)
11. Tang, A., Lau, M.F.: Software architecture review by association. Journal of Systems and

Software 88, 87–101 (2014)
12. Perry, D.E., Wolf, A.L.: Foundation for the Study of Software Architecture. ACM

SIGSOFT Software Engineering Notes 17, 40–52 (1992)
13. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2010 Systems and software engineering - Architecture

description, March 2010
14. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on em-

pirical results of interviews with software designers. Information and Software Technology
49, 637–653 (2007)

15. Guindon, R.: Designing the design process: exploiting opportunistic thoughts. Hum.-
Comput. Interact. 5, 305–344 (1990)

16. Kruchten, P.: What do software architects really do? Journal of Systems and Software 81,
2413–2416 (2008)

17. Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice.
Science 211, 453–458 (1981)

18. Kahneman, D.: Thinking, fast and slow. Penguin (2011)
19. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sciences

4, 155–169 (1973)

120 A. Tang and H. van Vliet

20. Klein, G.: Streetlights and shadows: Searching for the keys to adaptive decision making.
The MIT Press (2009)

21. Hammond, K.R.: Human judgement and social policy: Irreducible uncertainty, inevitable
error, unavoidable injustice. Oxford University Press (1996)

22. Ward, D.: The role of satisficing in foraging theory. Oikos 63, 312–317 (1992)
23. Fasolo, B., Carmeci, F.A., Misuraca, R.: The effect of choice complexity on perception of

time spent choosing: When choice takes longer but feels shorter. Psychology & Marketing
26, 213–228 (2009)

24. Tang, A., van Vliet, H.: Design Strategy and Software Design Effectiveness. IEEE
Software 29, 51–55 (2012)

25. Gero, J.S., Kannengiesser, U.: The situated function–behaviour–structure framework.
Design Studies 25, 373–391 (2004)

26. Clement, J.: Using bridging analogies and anchoring intuitions to deal with students’ pre-
conceptions in physics. Journal of Research in Science Teaching 30, 1241–1257 (1993)

27. Dörner, D.: The Logic Of Failure: Recognizing And Avoiding Error In Complex Situa-
tions. Basic Books (1996)

28. Babb, J., Hoda, R., Norbjerg, J.: Embedding Reflection and Learning into Agile Software
Development (2014)

29. Tang, A., Lago, P.: Notes on Design Reasoning Techniques (V1.4). Swinburne University
of Technology (2010)

30. Kahneman, D., Lovallo, D., Sibony, O.: Before you make that big decision. Harvard Busi-
ness Review 89, 50–60 (2011)

	Software Designers Satisfice
	1 Introduction
	2 Software Design Judgment
	2.1 Research Approach
	2.2 Scenario Preparation
	2.3 Pilot Testing
	2.4 Participants’ Demographics
	2.5 Data Gathering

	3 Results and Analysis
	3.1 Limited Amount of Reasoning by Students and Professionals
	3.2 Judgment Conviction
	3.3 Amount of Time Spent on Reasoning
	3.4 Questionnaire Results

	4 Satisficing Behavior
	4.1 Explaining the Results
	4.2 Satisficing in Software Architecture Design

	5 Non-Satisficing Professionals
	5.1 Non-Satisficing Professionals Reason More
	5.2 Non-Satisficing Professionals Use Less Analogy
	5.3 Non-Satisficing Professionals are More Convicted to their Judgments and Spend More Time Reasoning

	6 Threats to Validity
	7 Conclusions
	References

