
(Automated) Software Modularization
Using Community Detection

Klaus Marius Hansen(B) and Konstantinos Manikas

Department of Computer Science (DIKU), University of Copenhagen,
Copenhagen, Denmark

{klausmh,kmanikas}@di.ku.dk

Abstract. The modularity of a software system is known to have an
effect on, among other, development effort, change impact, and technical
debt. Modularizing a specific system and evaluating this modularization
is, however, challenging. In this paper, we apply community detection
methods to the graph of class dependencies in software systems to find
optimal modularizations through communities. We evaluate this app-
roach through a study of 111 Java systems contained in the Qualitas
Corpus. We found that using the modularity function of Newman with
an Erdős-Rényi null-model and using the community detection algorithm
of Reichardt and Bornholdt improved community quality for all sys-
tems, that coupling decreased for 99 of the systems, and that coherence
increased for 102 of the systems. Furthermore, the modularity function
correlates with existing metrics for coupling and coherence.

Keywords: Software architecture · Module structure · Software modu-
larity

1 Introduction

The way a software system is designed and structured influences both the sys-
tem’s development and runtime qualities. In particular, modularity is the qual-
ity that encapsulates interdependence within parts (modules) of a system and
independence among parts of the system. Good modularization also provides
abstraction, information hiding, and specify interfaces [1]. Software modularity
provides more benefits than mere logical structuring. It can arguably reduce
development effort, minimize impact of change, and reduce technical debt [2,3].
In particular low coupling among modules and high coherence within modules
is important.

An optimal (automated) modularization of object-oriented software systems
is perceived as a challenge. In this paper, we use community detection methods
both for optimising module structure and also for measuring modularity. We
apply these methods to a set of open source systems and compare them with
existing validated modularity metrics [3,4] . Our findings show that using com-
munity detection (in particular Newman modularity with an Erdős-Réyni null
model) optimises the modularity of systems and (tentatively) that community
detection metrics may be used to measure modularity.
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 95–102, 2015.
DOI: 10.1007/978-3-319-23727-5 8



96 K.M. Hansen and K. Manikas

2 Background and Related Work

Abdeen et al. [4] define a module as “a group of programs and data structures
that collaborate to provide one or more expected services to the rest of the
software”. Moreover they define a set of modularity principles for object-oriented
systems and propose metrics for quantifying whether the principles are fulfilled.
Li et al. [3] apply the metrics proposed by [4] as a measure of architectural
technical debt.

Several authors have investigated automated modularization. Abdeen
et al. [5] investigated how to automatically improve modularization of a soft-
ware system while preserving original design decisions by through a genetic pro-
gramming approach. Praditwong et al. [6] similarly described modularization as
a multi-objective search problem and empirically demonstrated improvements
over a single-objective optimisation strategy. Barros et al. [7] used a heuristic
search approach to investigate a restructuring of Ant, but found that optimis-
ing according to commonly used coupling and coherence metrics led to complex
designs.

Finally, to our knowledge none have addressed modularization as a commu-
nity detection problem. We discuss this and the existing modularity metrics we
apply in the following two sections.

2.1 Software Modularization Metrics

While a large number of metrics for object-oriented software deal with coupling
and cohesion at the class level, there are few defined metrics that work on the
module or package level [4]. Martin [8], Sarkar et al. [9], and Abdeen et al. [4]
present metrics that do work on package level.

Abdeen et al.’s metrics fulfill Briand et al.’s properties of coupling and coher-
ence metrics [10]. Furthermore, Li et al. [3] showed that one coupling metric of
Abdeen et al. (Index of Package Changing Impact (IPCI)) and one coherence
metric (Index of Package Goal Focus (IPGF)) correlated with a measurement
of architectural debt in a set of open source project. We thus chose IPCI and
IPGF as metrics for coupling and coherence respectively in our study.

In the following, we will briefly review these. Here P is the set of packages
of a system, clients(p) for a package p ∈ P is the set of packages that contain
classes with use/extend dependencies on p, inint(p, q) is the set of classes in
p ∈ P that classes in q ∈ P have use/extends dependencies on, and inint(p) is
the set of classes in p ∈ P that classes in other packages use/extend.

Index of Package Changing Impact (IPCI). IPCI measures coupling as the
average proportion of packages that do not change if a package changes. A value
close to 0 implies a high degree of coupling among packages while a value close
to 1 indicates the opposite. IPCI can be calculated as 1 minus the density of the
graph in which each vertex represent a package and edges represent dependencies
among packages (induced by use/extends dependencies among classes):



(Automated) Software Modularization Using Community Detection 97

IPCI =

⎧
⎨

⎩

∑
p∈P 1− clients(p)|

|P |−1

|P | = 1 −
∑

p∈P |clients(p)|
|P |(|P |−1) if |P | > 1,

1 if |P | = 1.

(1)

Index of Package Goal Focus (IPGF). IPGF measures cohesion as the aver-
age package focus where the package focus for p ∈ P is the average proportion of
classes in inint(p) that other packages use/extends. A value close to 0 indicates
that q ∈ clients(p) tend to use different sets of classes in p whereas a value close
to 1 indicates that q ∈ clients(p) tend to use the same set of classes in p. Given

role(p, q) =

⎧
⎨

⎩

|inint(p,q)|
|inint(p)| if |inint(p)| > 0,

1 if |inint(p)| = 0.

IPGF may be calculated as

IPGF =

∑
p∈P

∑
q∈clients(p) role(p,q)

|clients(p)|
|P | (2)

2.2 Community Detection

Many graphs/networks describing real-life phenomena exhibit community struc-
ture [11]. The structures are partitions of the graph into groups in which there
are many edges among vertices in the group, but few edges to vertices outside
the group. Community detection methods for finding community structures have
been applied in many domains of graph analyses including literary networks, vot-
ing patterns, and biology [11,12]. Recently, Gentea and Madsen applied commu-
nity detection to automated architectural recovery [13], showing improvements
over specialized automated software architecture recovery methods.

Community detection algorithms often combine a quality function that score
a partition and an optimisation method that heuristically finds partitions where
the quality function is optimal [14]. Our initial idea was to use the Louvain algo-
rithm [14] to find optimal modularizations optimising IPCI and IPGF respec-
tively. However, this is not appropriate since both IPCI and IPGF are degenerate
in the sense that they yield a maximum score of 1 for a modularization with all
classes in one package (or in one package and with one empty package). We
thus focus on more general community detection methods within the Louvain
algorithm framework.

Newman’s original modularity quality function [15] counts edges within a
community and compares this to what would be expected at random:

Q =
1

2m

∑

i,j

(
Aij − Pij

)
δ(gi, gj) (3)

Here, m is the number of edges in the graph, A is the incidence matrix for the
graph (i.e., Aij > 0 if there is an edge between node i and j), Pij is the expected



98 K.M. Hansen and K. Manikas

number of edges between i and j and represents a null model, gi is the community
that node i belongs to, and δ(gi, gj) is Kronecker’s δ (i.e., δ(gi, gj) = 1 if gi = gj ,
0 otherwise). Thus, Q becomes high (close to 1) if communities have many intra-
edges compared with the random model.

In our study, we consider an Erdős-Réyni null model in which random graphs
G(n, p) with n vertices are created by linking pairs of vertices, i, j, with proba-
bility p. This is a simple null model that essentially models that vertices within
a community are linked at random. If d is the density of a graph and n is the
number of vertices in the graph, then the null model of the graph is G(n, d).

3 Experimental Design

In the following section we explain the design of our study. We conducted a
technology-oriented quasi-experiment [16].

3.1 Research Questions

The aim of this study can be summarized by the following research questions:

RQ1: How can we modularize an object-oriented software system in an
automated way such that this modularity is optimised?

To address this, we find communities that optimise Newman modularity given
an Erdős-Réyni null model (NMER; cf. Section 2.2) and compare this to IPCI
and IPGF (cf. Section 2.1). Our second research question builds on this use of
community detection methods:

RQ2: Can community detection quality functions be useful as software
modularity metrics?

To address this research question, we test to which extent NMER correlates with
IPCI and IPGF and to which extent changes in NMER correlates with changes
in IPCI and IPGF.

3.2 Data Collection

To study modularity, we chose to study the software systems contained in the
Qualitas Corpus [17], a collection of curated, open-source Java systems. The
reason we chose this is that it is a curated set of open-source systems for which
well-defined versions are available for download and because the systems are
medium- to large-sized and thus, arguably, modularity is important for them.
We studied the latest release 20130901 containing 111 systems The 111 systems
have a median NCLOC of 51,860 and standard deviation of 307,473 NCLOCs.



(Automated) Software Modularization Using Community Detection 99

3.3 Analysis Procedures

We first used the Java ASM byte code manipulation and analysis framework
[18] to extract dependencies in Rigi Standard Format (RSF; [19]) using the
binary version of each system in the Qualitas Corpus. Classes recorded were
classes defined in the system or depended upon by the system. Dependencies
were found in .class files (superclass, implemented interface, accessed attribute
types, classes defining invoked method etc.) using a modification of ASM’s
org.objectweb.asm.depend.DependencyVisitor.

From the RSF file, we created a dependency graph using Igraph with classes
as vertices and dependencies as edges. The package structure, i.e., the original
modularization, was used to create an original partitioning of the graph. Since
the system architects only have control over the modularity of classes included
in the system, we included only those classes in the graph. The classes belonging
to the system were determined as being the ones that were defined in the source
folder.

We next computed an optimised modularization of the system. The optimised
modularization was detected using the Louvain framework1 for Igraph. We used
the Reichardt-Bornholdt quality function [20] with an Erdős-Réyni null model.
This is a generalization of Newman modularity that includes a resolution param-
eter. We set the resolution to 1, thus effectively optimising a Newman modularity
function with an Erdős-Réyni null model.

For the original and optimised modularization, we calculated the quality of
the modularization using a Newman modularity function with an Erdős-Réyni
null model (NMER) using the Igraph Louvain framework and the IPCI and
IPGF metrics using our own Python implementation.

To answer Research Question 1, we used three Wilcoxon paired signed-rank
test to determine if there was a statistically significant difference between the
original and optimised NMER, IPCI, and IPGF measures respectively. We used
a Wilcoxon test because measurements on software is not usually normally dis-
tributed. We used a paired test because the original and optimised modular-
izations are paired. For the statistically significant differences, we computed an
absolute effect size (i.e., difference in means) and a relative effect size using
Cohen’s d.

To answer Research Question 2, we computed correlation between original
NMER and original IPCI, between original NMER and original IPGF, between
optimised NMER and optimised IPCI, and between optimised NMER and opti-
mised IPGF. To do this, we used Spearman’s ρ. We used Spearman’s ρ (instead
of, e.g., Pearson’s r) again because data is not expected to be normally dis-
tributed.

4 Results

Table 1 shows the p value of Wilcoxon, indicating that the population mean ranks
of NMER, IPCI, IPGF respectively differ highly significantly. The differences in
1 https://github.com/vtraag/louvain-igraph

https://github.com/vtraag/louvain-igraph


100 K.M. Hansen and K. Manikas

0 20 40 60 80 100 120
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
NMER
IPCI
IPGF

Fig. 1. Plot of the delta of NMER, IPCI, and IPGF after and before optimisation.

mean are 0.3259 for NMER, 0.0529 for IPCI, and 0.1631 for IPGF. Thus, the
NMER, IPCI, and IPGF values improve in general even though there are deltas
that are negative. Figure 1 shows this as the plot of the delta for NMER (NMER
optimised minus NMER original), IPCI, and IPGF. We note that there are some
systems with negative delta IPCI (12) and delta IPGF (9). In terms of effect
size, calculated as Cohen’s d, as can be seen in Table 1, the effect of optimisation
is high. In total, we have answered Research Question 1 affirmatively.

To address Research Question 2 we investigate how the IPCI and IPGF met-
rics correlate with NMER for the original and optimised values. We measure the
correlation using Spearman’s rank correlation coefficient. The results are shown
in Table 2. Except for correlation for original NMER–IPGF, the correlations are
highly significant. In terms of the original intent that NMER can be used to
measure coupling and coherence, the optimised values are the most relevant and
here the correlation is significant.

4.1 Threats to Validity

The software systems that we studied may not be representative samples of the
whole population (i.e. all object-oriented open source systems). Moreover, while

Table 1. Significance and effect evaluation for NMER, IPCI, and IPGF.

Score Wilcoxon p Mean of original Mean of optimised Cohen’s d

NMER 5.9863 × 10−20 0.4301 0.7560 1.6438
IPCI 5.3375 × 10−14 0.9008 0.9537 0.5150
IPGF 3.2317 × 10−18 0.7251 0.8882 1.5006



(Automated) Software Modularization Using Community Detection 101

Table 2. Spearman’s evaluation for NMER–IPCI, and NMER–IPGF for original and
optimised values

Score
Spearman’s for original Spearman’s for optimised

ρ p-value ρ p-value

IPCI 0.2310 0.0147 0.7116 2.0686 × 10−18

IPGF 0.1316 0.1685 0.4055 1.0103 × 10−05

IPCI and IPGF have been validated (for correlation with technical debt in a set
of open-source C# software systems [3]), these may not correlate with externally
interesting measures for the software systems in the Qualitas Corpus.

5 Conclusion

The modularity and the module structure is an important part of the software
architecture of software systems. It has an effect on, among other, development
effort, change impact, and technical debt. In this paper we investigate means of
optimising software modularity by automated partitioning the classes of object-
oriented software systems using community detection methods. Moreover, we
investigate the use of quality functions of community detection methods to mea-
sure software modularity.

In particular, we propose the use of Newman modularity with an Erdős-Rényi
null-model for measuring software modularity and the Reichardt and Bornholdt
community detection algorithm that propose a convenient framework for com-
munity detection and thus for optimised software modularity. We investigate
this in the context of 111 systems contained in the Qualitas Corpus. Our results
reveal that our optimisation improved Newman modularity for all systems, that
coupling decreased for 99 of the systems, and that coherence increased for 102
of the systems.

References

1. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity, vol. 1. MIT
Press, Cambridge (2000)

2. Wilkie, F., Kitchenham, B.: Coupling measures and change ripples in C++ appli-
cation software. Journal of Systems and Software 52(23), 157–164 (2000)

3. Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical investi-
gation of modularity metrics for indicating architectural technical debt. In: Pro-
ceedings of the 10th International ACM Sigsoft Conference on Quality of Software
Architectures, QoSA 2014, New York, NY, USA, pp. 119–128. ACM (2014)

4. Abdeen, H., Ducasse, S., Sahraoui, H.: Modularization metrics: Assessing pack-
age organization in legacy large object-oriented software. In: 2011 18th Working
Conference on Reverse Engineering (WCRE), pp. 394–398, October 2011

5. Abdeen, H., Sahraoui, H., Shata, O., Anquetil, N., Ducasse, S.: Towards auto-
matically improving package structure while respecting original design decisions.
In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp. 212–221.
IEEE (2013)



102 K.M. Hansen and K. Manikas

6. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering 37(2),
264–282 (2011)

7. de Oliveira Barros, M., de Almeida Farzat, F., Travassos, G.H.: Learning from
optimization: A case study with apache ant. Information and Software Technology
57, 684–704 (2015)

8. Martin, R.C.: The tipping point: Stability and instability in OO design. Dr Dobb’s,
March 2005

9. Sarkar, S., Kak, A.C., Rama, G.M.: Metrics for measuring the quality of modu-
larization of large-scale object-oriented software. IEEE Transactions on Software
Engineering 34(5), 700–720 (2008)

10. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering 3(1), 65–117 (1998)

11. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

12. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Commu-
nity structure in time-dependent, multiscale, and multiplex networks. Science
328(5980), 876–878 (2010)

13. Gentea, A., Madsen, T.: Using community detection methods for automated soft-
ware architecture recovery. Master’s thesis, Department of Computer Science, Uni-
versity of Copenhagen, September 2014

14. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

15. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Physical Review E 74(3), 036104 (2006)

16. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer (2012)

17. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: Qualitas corpus: A curated collection of java code for empirical studies.
In: 2010 Asia Pacific Software Engineering Conference (APSEC 2010), pp. 336–345,
December 2010

18. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to
implement adaptable systems. In: Adaptable and Extensible Component Systems,
Grenoble, France, November 2002

19. Wong, K.: Rigi Users Manual. Department of Computer Science, University of
Victoria, July 1996. http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html

20. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys-
ical Review E 74(1), 016110 (2006)

http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html

	(Automated) Software Modularization Using Community Detection
	1 Introduction
	2 Background and Related Work
	2.1 Software Modularization Metrics
	Index of Package Changing Impact (IPCI).
	Index of Package Goal Focus (IPGF).

	2.2 Community Detection

	3 Experimental Design
	3.1 Research Questions
	3.2 Data Collection
	3.3 Analysis Procedures

	4 Results
	4.1 Threats to Validity

	5 Conclusion
	References


