
© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 45–52, 2015.
DOI: 10.1007/978-3-319-23727-5_4

Meta-Adaptation Strategies
for Adaptation in Cyber-Physical Systems

Ilias Gerostathopoulos(), Tomas Bures, Petr Hnetynka,
Adam Hujecek, Frantisek Plasil, and Dominik Skoda

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
{iliasg,bures,hnetynka,plasil,skoda}@d3s.mff.cuni.cz

Abstract. Modern Cyber-Physical Systems (CPS) not only need to be dependa-
ble, but also resilient to and able to adapt to changing situations in their
environment. When developing such CPS, however, it is often impossible to an-
ticipate all potential situations upfront and provide corresponding tactics. Situa-
tions that lie out of this “envelope of adaptability” can lead to problems that
range from single component malfunctioning to complete system failure. The
existing approaches to self-adaptation cannot typically cope with such situations
as they still rely on a fixed set of tactics, which in case of complex systems does
not guarantee achieving correct functionality. To alleviate this problem, we
propose the concept of meta-adaptation strategies, which extends the limits of
adaptability of a system by constructing new tactics at runtime to reflect the
changes in the environment. The approach is demonstrated on an existing archi-
tecture-based self-adaptation method and exemplified by two concrete meta-
adaptation strategies.

Keywords: Meta-adaptation strategies · Adaptation tactics · Cyber-Physical
systems

1 Introduction

An important feature of efficient and dependable CPS is self-adaptivity, i.e., the abili-
ty to change their behavior or structure in response to changes in their environment.
Self-adaptation in software systems is usually achieved in three fundamental ways: (i)
by relying on a detailed application model, e.g., Markov Decision Processes (MDP),
and employing simulations or other means of state-space traversal to infer the best
response of the system, (ii) by identifying control parameters and employing feed-
back-based control techniques from control theory, and (iii) by reconfiguring architec-
ture models, typically with the help of Event-Condition-Action rules – architecture-
based self-adaptation.

Existing approaches. A common denominator for all these three fundamental ways is
that they monitor the state of the environment and select an operation to perform from a
pre-designed fixed set of actions. In (i), a model of the environment is assumed to be
available (either known or learned) and the self-adaptation selects an action (e.g., “go

46 I. Gerostathopoulos et al.

straight”, “turn left”, “turn right”) to maximize future reward. In (ii) a fixed set of control
parameters is given and the actions consist of setting (increasing/decreasing) a parameter
value (e.g., Java heap size). In (iii), self-adaptation rules are expressed as actions involv-
ing particular architecture reconfigurations applicable under certain conditions in the
presence of certain events or situations [1, 2]. The combination of Rainbow framework
with the Stitch language is representative of (iii). In Stitch, a tactic is a specification of an
activity with a pre- and post-condition and an associated action. The self-adaptation in
(iii) can be thus seen as selecting one or more tactics from a fixed set.

These three ways have also been used both combined and together with learning-
based approaches. For example, control theory has been employed in the runtime
modification of the probabilities of a MDP [3]. Learning-based approaches have been
proposed to deduce the impact of adaptation actions at runtime [4], and to mine the
application model from system execution traces [5].

In the realm of CPS, where we deal with large complex distributed systems, the
high level view of architecture-based self-adaptation (i.e., (iii)) is generally favored
[1, 2, 6, 7]. At the same time, due to external uncertainty [8] (e.g., hardware failures,
temporary network unavailability), anticipating all potential situations upfront is not
an option. As a result, adapting by switching between available tactics applicable in
different situations is problematic, as the CPS may arrive in a situation where no
combination of tactics applies. A similar problem of selecting only from fixed actions
and parameters applies also to (i) and (ii).

Goals. As a remedy, focusing specifically on architecture-based self-adaptation, we
propose to generate new tactics at runtime to reflect the changes in the environment
and increase the overall system utilities, in particular safety, performance, and availa-
bility. We do so by introducing the concept of meta-adaptation strategies (MAS).
MAS allow us to enrich the adaptation logic of the system (thus the “meta” prefix) by
systematically generating new tactics. This provides a dynamic space of actions and
effectively extends the limits of adaptability of the system.

In particular, we present the idea of MAS and define their structure similar to de-
sign and adaptation patterns. On top of this basis, we show two examples of MAS and
demonstrate their applicability. The two MAS examples of course do not cover the
whole space of potential MAS, however, we believe that by introducing the idea of
MAS as means for dynamically extending the limits of systems adaptability, we pro-
vide helpful inspiration for future research on self-adaptive systems.

2 Running Example and Background

To demonstrate the concept of MAS, we briefly overview below the running example
and the IRM-SA self-adaptation method along with the DEECo component model,
which serve as the model and technological basis we use to exemplify MAS.

Running Example: Firefighter Coordination System. Firefighters belonging to tactical
groups are deployed on the emergency field and communicate via low-power nodes

 Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 47

integrated into their personal protective equipment. Each of these nodes is configured
at runtime depending on the task assigned to its bearer. For example, a hazardous
situation might need closer monitoring of a certain parameter (e.g., temperature).

In the setting of the complete case study [9], firefighters have to communicate with
the officers (their group leaders), who are equipped with tablets; the software running on
these tablets provides a model of the current situation (e.g., on a map) based on data
measured at and aggregated from the low-power nodes. Parameters measured at each
low-power node are position, external temperature, battery level, and oxygen level. The
data aggregation on the side of the group leaders is done with the intention that each
leader can infer whether any of his/her group members is in danger and take strategic
decisions. Such a coordination system has increased safety and performance require-
ments. It needs to operate on top of opportunistic ad-hoc networks, where no guarantees
for end-to-end response time exist, with minimum energy consumption, and without
jeopardizing its end-users. It also needs to respond to a number of challenging situa-
tions: What if the temperature sensor starts malfunctioning or completely fails at run-
time? What if firefighters are deployed inside a building where GPS readings are not
available? What if the communication between members and their leader is lost?

In all these situations, each node has to adapt its behavior according to the latest in-
formation available. For example, if a firefighter node detects that it is in the situation
“indoors”, it has to switch from the tactic of determining the position via the GPS to
the tactic of using an indoors tracking system. Other tactics include increasing the
sensing rate in face of a danger or even relying on the nearby nodes for strategic ac-
tions when communication with the group leader is lost.

Obtaining an exhaustive list of situations that trigger adaptations in the firefighter
coordination system is not a realistic option, as the environment is highly dynamic
and unpredictable. We rather need to be able to build a system that would dynamical-
ly change its behavior by (i) generating new tactics on demand, and (ii) using them in
the adaptation actions in order to deal with unanticipated situations.

IRM-SA and DEECo. The Invariant Refinement Method for Self-Adaptivity (IRM-
SA) [9, 10] is a requirements-oriented design method tailored for the CPS domain.
IRM-SA captures goals and requirements of the systems as invariants that describe
the desired state of the system-to-be at every time instant. For example, consider inva-
riant (1) in Fig. 1, which specifies that the leader of each firefighter group should have
an up-to-date view (encapsulated in the positionMap field) of his/her group members.
This “necessity” is AND-decomposed into invariants (2) and (3), which specify the
necessities of propagating the position from each member to the leader and determin-
ing the position on the side of each member, respectively. The refinement is finished
when each leaf invariant of the refinement tree is either an assumption or is a compu-
tation activity corresponding to a process or knowledge exchange. Alternative designs
are captured by the OR-decomposition pattern, where each variant is guarded by an
assumption capturing the state of the environment. For example, invariant (3) can be
satisfied either by determining the position through an indoors tracking system – inva-
riant (5) – or a global positioning system – invariant (7). At runtime, the system moni-
tors the satisfaction of assumptions (4) and (6) and activates the activity correspond-
ing to the chosen branch in the tree.

48 I. Gerostathopoulos et al.

Although IRM-SA is a method that can be used independently, it is very well
aligned with the DEECo component model [11]. DEECo features autonomous com-
ponents forming dynamic goal-driven collaboration groups – ensembles. Components
contain knowledge (their data) and processes, whose periodic execution results in
periodic updates in their knowledge. Components are not bound to each other; they
can only indirectly communicate within an ensemble. The communication takes the
form of mapping a component’s knowledge field into another component’s know-
ledge field – knowledge exchange. Membership of a component in an ensemble is not
static, but periodically evaluated at runtime based on a condition specified over en-
semble-specific interfaces that provide partial views over the components’ know-
ledge.

In the IRM-SA–to–DEECo mapping, IRM-SA components correspond to DEECo
components; process invariants to component processes; exchange invariants to ensem-
bles; and assumptions to DEECo runtime monitors. The IRM-SA graph corresponds to
the adaptation logic that DEECo applications use in order to switch on and off certain
features (according to the branches selected at runtime on the IRM-SA graph). In this
frame, an adaptation action is choosing an applicable configuration by choosing among
the branches in the IRM-graph, whereas a tactic corresponds to an individual leaf inva-
riant. An adaptation action thus consists of selecting a set of tactics.

3 Meta-Adaptation Strategies

As already discussed in the previous sections, a system, even a self-adaptive one, can
be designed to handle a limited number of runtime situations. Interestingly, the num-
ber of new distinct tactics that can be devised in response to an unanticipated situation
is in principle infinite. Hence, apart from being able to devise new tactics, it is impor-
tant to be able to rank them according to their effect on the system, in order to be able

Fig. 1. Excerpt from the IRM-SA model of the running example.

 Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 49

to select the most promising one, or, at least, to select the ones that are worth trying.
(Here, we assume the general adaptation loop in which the adaptation mechanism
activates a tactic, observes its effect on the system and, depending on its impact, ei-
ther keeps it or tries another tactic.)

To systematize the creation of new tactics, we rely on the concept of meta-
adaptation strategies (MAS). MAS serve as patterns for extending the limits of adap-
tability of the system, with each strategy extending the limits in a certain way. The
goal of such a strategy is twofold:

1. To provide an algorithm to systematically generate a set of tactics at runtime.
2. To provide a metric on the generated set according to which the tactics can be

ranked.

In the rest of the section, we exemplify our proposal by describing two MAS. Note
that the two strategies can be applied sequentially or in parallel in the running system,
since they are by design orthogonal to each other. Due to space constraints, we omit a
third strategy that we have so far developed – details on that can be found in [12].

Tactics Generated by Data Classification. In CPS, exploiting the interdependencies
between sensed data is an opportunity for introducing specific meta-adaptation strate-
gies. A particular case is the location-dependency of data, i.e., the fact that the value
of certain measurable system attributes depends on the physical location of the sen-
sors that provide the data. Below we describe a strategy providing a way to automati-
cally create knowledge exchange specifications (ensemble specifications in DEECo)
that introduce “collaborative sensing” (when direct sensing is not possible anymore)
and feed them into the running system. Hence, such new ensembles represent new
tactics.

Strategy Name: Knowledge Exchange by Data Classification
Intent: To increase the robustness of the system, prolong its acceptable function-

ing, or achieve graceful degradation in face of data unavailability and outdatedness.
Context: The strategy targets the case when values of a knowledge field of a com-

ponent become outdated to the extent that they cannot be relied upon in terms of cor-
rect behavior of the component. For instance, there is a sensor malfunction that pre-
vents value updates.

Behavior: To make up for losing the ability to obtain the actual value of an out-
dated knowledge field, create a new ensemble specification through which the field is
assigned an approximated value based on the up-to-date related knowledge values of
other components. This specification consists of (i) a membership condition, which
prescribes the condition under the components should interact, and (ii) a knowledge
exchange function, which specifies the knowledge exchange that takes place between
the collaborating components. (For simplicity, we consider the knowledge exchange
that just copies the data without manipulating them in any other way.)

To be able to construct the membership condition when the situation targeted by
the strategy happens, observe first the system when it is healthy and log components’
knowledge (as a time series of the knowledge evolution). Analyze (typically offline)
the logged knowledge and find conditional correlations indicating that when values of

50 I. Gerostathopoulos et al.

some knowledge fields , , … , , are pairwise “close” then other values of
other knowledge fields , are “close” as well. Formulate an ensemble (to be instan-
tiated when the situation targeted by the strategy happened), which uses the pairwise
“closeness” of , , … , , as the membership condition and has the assignment

 as the knowledge exchange.
Generate a number of possible membership conditions corresponding to different

tactics. Then, select a tactic by applying the metric of selecting the tactic which pro-
vides the most general condition given the target confidence level.

Contraindications: The analysis of the collected time series can be very resource
demanding and therefore a dedicated hardware infrastructure should be used. Similar-
ly, the data collection may be a rather resource-intensive process, especially when
components’ knowledge is big or changes frequently. Also, introducing superfluous
new ensembles can overload the system with unnecessary replicated data.

Example: In the firefighter coordination case study, each firefighter component
features the knowledge fields of position and temperature. Suppose that the tempera-
ture values are used to control the suit cooling system. Obviously, when the tempera-
ture sensor breaks, a real-life threat arises. Since firefighters are usually moving in
groups so that those close to each other obtain similar temperature readings, the tem-
perature value of one component can be approximated based on the temperature val-
ues of the others, when their positions are close. Technically, the threshold of temper-
ature proximity can be set (e.g., 20°C).

Tactics Generated by Period Adjusting. A CPS typically brings real-time require-
ments that are reflected in schedulability parameters of component processes. The
schedulability parameters can be typically inferred by real-time design via schedula-
bility analysis. However, when schedulability parameters influence the systems in a
complex manner (e.g., when there is a tradeoff between CPU utilization, battery, net-
work utilization), it is not possible to infer them by systematic analysis. Rather, the
schedulability parameters are set manually, based on the experience of the system’s
architect. The strategy below addresses the case when the manually set schedulability
parameters cannot cope with an unanticipated situation.

Strategy Name: Process Period Adjusting
Intent: To optimize the scheduling of processes with respect to overall system

(application-specific) performance in a system where processes are scheduled period-
ically.

Context: The strategy targets situations when the system starts failing due to vi-
olated timing requirements and the schedulability parameters cannot be inferred a
priori because they influence the system in a complex manner.

Behavior: Let R be the set of all active real-time processes in the system. To be
able to identify the situation when a requirement for a process ri in R with period pi is
not satisfied anymore, equip each ri with a runtime monitor returning a fitness value fi
(real number in [0-1]). Generate tactics that correspond to a new real-time processes
ri’ created from ri by adjusting (reducing or enlarging within pre-defined permissible
bounds) pi to pi’, when fi drops below an acceptable threshold. To explore the search
space of possible period adjustments, employ the genetic algorithm (1+1)-ONLINE

 Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 51

EA [13]. Changing pi can be interpreted as generating a new tactic ri’ and using it to
substitute the tactic ri in the system. Terminate the period adjusting procedure when
the adjustment of each pi has been exercised in both directions and there is no further
benefit.

In this strategy, tactics (new processes) are compared by substituting them to the
running system and calculating the overall system fitness as a function of fi’s.

Contraindications: Reducing periods (a usual action) may have a negative impact
on other resources (CPU, battery, network). In such a case, the impact would have to
be modelled and taken into consideration in the state-space search.

Example: Consider extending the design of our running example by a root inva-
riant that specifies that “battery consumption should be kept minimized”. In order to
satisfy this invariant, the system will try at runtime to tweak the processes’ periods to
invoke them as scarcely as possible. At the same time, when there is high inaccuracy
in the GPS readings (e.g., less than 3 satellites in sight), the GPS process may need to
be invoked more often to make sure the cumulative inaccuracy of the estimated posi-
tion of a moving firefighter is within certain bounds. (The cumulative inaccuracy is
essentially the sum of the initial inaccuracy of the GPS reading and the distance a
firefighter has moved since the last GPS reading.) It is thus a dynamic trade-off be-
tween availability and dependability that has to be resolved at runtime.

4 Experimental Evaluation and Conclusion

In order to evaluate the feasibility of the proposed MAS, we implemented them as
extensions of the IRM-SA jDEECo plugin1. Our evaluation scenario consisted of
three firefighters moving in a building, periodically monitoring their battery level,
position, and external temperature. The objective of the system was to obtain accurate
enough values of position and temperature, while keeping battery consumption mi-
nimal. Two malfunctions were introduced: (i) the GPS of one of the firefighters be-
came inaccurate, and (ii) the temperature sensor of the firefighter was broken com-
pletely.

The MAS described in the paper were able to successfully cope these unanticipated
malfunctions – the “Process Period Adjusting” reduced the inaccuracy stemming from
knowledge outdatedness thus compensating the inaccuracy of the GPS reading; the
“Knowledge Exchange by Data Classification” created and deployed a new ensemble,
which provided a temperature estimation to compensate for the broken sensor. The
evaluation, together with all the measurements, is described in detail in [12].

Conclusion. In this paper, we suggested a way to address the problem of limited adap-
tability caused by a fixed set of tactics. To this end, we have introduced the concept of
meta-adaptation strategies (MAS) as a means for creating new tactics by observing
the behavior of a system at runtime. In addition to laying out the general concept of
MAS, we have exemplified the concept by two instances of MAS. Generally, if a

1 https://github.com/d3scomp/IRM-SA/tree/ECSA2015

52 I. Gerostathopoulos et al.

system is subject to environment uncertainty, the extent of the problem space that
should be covered by systems adaptability is unknown. This makes it impossible to
devise all adaptation tactics at design time. It of course makes it also impossible to
presume all necessary meta-adaptation strategies, as each strategy covers only a cer-
tain sub-space of the problem space. However, compared to pre-designed tactics, the
meta-adaptation strategy involves observation of system’s and environment’s evolu-
tion at runtime and utilizes this to formulate new tactics. As such, it has the potential
to carry through higher expressive power than pre-designed tactics and consequently
achieve significantly higher coverage of the problem space.

Acknowledgements. The work on this paper has been supported by Charles University institu-
tional funding SVV-2015-260222.

References

1. Cheng, S.-W., Garlan, D., Schmerl, B.: Stitch: A language for architecture-based self-
adaptation. J. Syst. Softw. 85, 1–38 (2012)

2. David, P.-C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language support
for navigation and reliable reconfiguration of Fractal architectures. Ann. Telecommun. 64,
45–63 (2009)

3. Filieri, A., Ghezzi, C., Leva, A., Maggio, M., Milano, P.: Self-adaptive software meets
control theory: a preliminary approach supporting reliability requirements. In: Proc. of
ASE 2011, pp. 283–292. IEEE (2011)

4. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering self-tuning
self-adaptive software systems. In: Proc. of FSE 2010, pp. 7–16. ACM (2010)

5. Yuan, E., Esfahani, N., Malek, S.: Automated mining of software component interactions
for self-adaptation. In: Proc. of SEAMS 2014, pp. 27–36. ACM (2014)

6. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architec-
ture-Based Self-Adaptation with Reusable Infrastructure. Computer 37, 46–54 (2004)

7. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures. In: Gruhn,
V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126. Springer, Heidelberg
(2006)

8. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive software. In:
Proc. of SIGSOFT/FSE 2011, pp. 234–244. ACM (2011)

9. Gerostathopoulos, I., Bures, T., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F., Plouzeau, N.:
Self-Adaptation in Cyber-Physical Systems: from System Goals to Architecture Configu-
rations. Department of Distributed and Dependable Systems, D3S-TR-2015-02 (2015)

10. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.: Design of
ensemble-based component systems by invariant refinement. In: Proc. of CBSE 2013,
pp. 91–100. ACM (2013)

11. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECo – an
ensemble-based component system. In: Proc. of CBSE 2013, pp. 81–90. ACM (2013)

12. Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A., Plasil, F., Skoda, D.: Meta-
adaptation strategies for adaptation in cyber-physical systems. Department of Distributed
and Dependable Systems, D3S-TR-2015-01 (2015)

13. Bredeche, N., Haasdijk, E., Eiben, A.E.: On-line, on-board evolution of robot controllers.
In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009.
LNCS, vol. 5975, pp. 110–121. Springer, Heidelberg (2010)

	Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems
	1 Introduction
	2 Running Example and Background
	3 Meta-Adaptation Strategies
	4 Experimental Evaluation and Conclusion
	References

