
Towards a Framework for Building Adaptive
App-Based Web Applications Using Dynamic

Appification

Ashish Agrawal(B) and T.V. Prabhakar

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

{agrawala,tvp}@cse.iitk.ac.in

Abstract. Appification, the process of building app-based web applica-
tions, can help in improving various quality attributes of the application
and reduce consumption of resources at server side. A major challenge in
ensuring quality attributes of such applications is run-time variations in
availability of client resources like battery power. A generic architecture-
based approach for building applications that can not only accommo-
date the dynamic environments by ensuring multiple quality attributes
but can also opportunistically exploit the client resources, is missing in
the literature. This paper presents a technique called Dynamic Appi-
fication using which an application can manage its expectations on the
environment at run-time. Findings of our investigation on building adap-
tive applications using this technique are formulated as a methodologi-
cal framework called Appification Framework. Using our framework, we
implemented an application that can not only handle the scenarios of low
client resources but can also opportunistically exploit the client resources
to improve its capacity by more than 100% of the initial capacity.

Keywords: Mobile apps ·Dynamic architecture ·Adaptive applications

1 Introduction

Appification, the process of building app-based web applications, can also be seen
as an opportunity to exploit resources available at the mobile clients. However,
mobile devices operate in dynamic environments and availability of resources at
client devices can vary with time like battery level, network connectivity, etc [7].
Such environmental changes cause issues in ensuring quality attributes of the
application and also limit the application’s ability to exploit client resources.
For example, if an application is designed with light computation on client
devices, it will not be able to fully use the client resources when possible. Exist-
ing approaches in the literature to handle dynamic environments at run-time
(e.g., Cyber Foraging [1] and Fidelity Adaption [8]) are focused towards ensuring
only a specific set of quality attributes. Also, these solutions accommodate the
dynamic environments only from the client perspective (low availability of client
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 37–44, 2015.
DOI: 10.1007/978-3-319-23727-5 3



38 A. Agrawal and T.V. Prabhakar

Fig. 1. An example of application adapting using our methodology

resources) and do not consider the server perspective of exploiting the client
resources when possible.

Aim of this work is to provide a generic architecture-based approach that can
accommodate the dynamic environments while considering both client and server
perspectives. Our focus is on investigating the architecture-level decisions that
are specific to the appification process. In this process, an important architectural
decision is to divide the application components into two groups, one to be
executed on the client device and the other to be executed on the server. This
decision has an impact on the quality attributes of the application. We call
this design decision as “Appification Strategy (AS)” for that application.
An application can have several possible ASs which have different impacts on
quality attributes. In current approaches, an AS is decided during the design
phase. This leads to a one-time selection of what the quality attribute trade-offs
are likely to be.

We present a technique called Dynamic Appification where the AS of the
application is not fixed at design-time and can vary at run-time. This technique
can help in handling dynamic environments from both client and server perspec-
tives. From the client perspective, an application can select an AS more suitable
for a particular type of client at that time. From a server perspective, among
possible ASs for a particular client at a given time, an application can choose
the one with maximum reduction in operational load on the server. Thus, at
run-time, the application can have different ASs for different clients and can
migrate from one AS to another AS for any client. Figure 1 depicts an example
of adaptation in the application using our methodology. It shows that AS for
a particular client can be changed by executing more components on the client
device.

Findings of our initial exploration to realize Dynamic Appification for build-
ing adaptive applications are formulated as a methodological framework called
Appificaton Framework. We have also implemented a simple application as a
proof of concept for the Appification Framework and conducted experiments to
accommodate scenarios of low battery power, intermittent network connectivity
and high load on the server. Rest of the paper is structured as follows: Section 2
describes Appification Framework in detail. Section 3 explains implementation



Towards a Framework for Building Adaptive App-Based Web Applications 39

Fig. 2. Steps of the Appification Framework

of our prototype and results of the experiment conducted for handling changes in
the environment. Section 4 concludes the work with directions for future work.

2 Appification Framework

This section presents a methodological framework for building applications with
the ability to adapt in a dynamic environment at run-time using Dynamic Appi-
fication. The framework abstracts out the responsibilities involved in building
such applications, and provides guidelines for architectural design, implementa-
tion and deployment of the application. Figure 2 depicts steps involved in the
framework that are further explained in the following subsections.

2.1 Analyze Quality Requirements

The first step is to analyze the application requirements to identify the quality
attributes that can be changed at run-time during adaptation. An application
may have freedom in parameters of some quality attribute requirements like
performance (response-time) may vary between 0 to 10 seconds. Thus, there
can exist multiple ASs for that application which comply with the restrictions
imposed by the quality attribute requirements. In this step, quality attributes
desired from the application are categorized into two sets: 1) FixedQAs contains
quality attributes for which variations are not allowed; 2) FlexibleQAs contains
quality attributes for which application can have some variations.

2.2 Identify QAS for Variability

In this step, we need to identify the scenarios for which application needs to
adapt. The main idea of our approach is to achieve variability quality attribute [4]
in the application architecture and requirements for the same are captured
through Quality Attribute Scenarios (QAS) [3] for variability. Documenting
QASs for variability helps in identifying in what situations application needs
to adapt and what should be the desired result after adaptation. For example
an application can have the following QAS: “If client battery is less than 30%,
reduce the energy consumption of the application on that client device”.



40 A. Agrawal and T.V. Prabhakar

2.3 Design the Application

In this step, first, all useful ASs of the application are identified by analyzing the
application components. Among all possible ASs, strategies which do not fulfil
the constraints on the execution location of the components (e.g., functional,
dependency on specific hardware/software components), or do not comply with
the quality requirements (FixedQAs and FlexibleQAs), are discarded. An AS
is also discarded if there is another AS which will always give better quality
attributes compared to this one.

Finally, a base architecture model of the application is designed which repre-
sents execution location of the components. If a component has same execution
location (client or server) in all useful ASs, it has a static execution location in
the base model. If a component has different execution location in any two use-
ful ASs, its execution location is modeled as a variation point. Such a variation
point has two choices, either to execute that component on the client device or
on the server. This base architecture model will have a set of possible reconfig-
urations (ASs) for run-time execution. Details of variation points (e.g., choices,
variation-time, etc.) are stored in the variability guide. These strategies are also
evaluated in terms of their impact on quality attributes. Such evaluation results
will be used in the process of selecting the best possible AS. In case it is not
possible to fully quantify such an impact, it is captured in relative terms.

2.4 Build Appification Strategy Selector

In this step, we build a component to facilitate selection of an AS for given qual-
ity attributes. This component will be used to decide initial AS of the application
and which AS to be used during adaptation. Such selection is a complex problem
as there may be a situation in which no single strategy is giving better values for
all quality attributes. For example, one AS may provide poor performance and
better security and another may provide better performance but poor security.
We have formulated this problem as a multi-criteria decision making problem and
used Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) [5] framework as it selects the solution closest to the best possible solution.
Due to page limitation, details of our TOPSIS model are omitted here and the
readers are referred to [2].

Output of the TOPSIS model is an ordered list of ASs, let’s say
ASOrderedlist, where the AS at the top is most preferable (most closest to the
desired quality attributes). The application maintains a copy of ASOrderedlist
for every client and initially, the topmost strategy is selected for current exe-
cution. On the occurrence of a QAS, the application selects an AS with the
highest rank that fulfills the desired QAS response. Such selection will have the
minimum adverse effect on other quality attributes. In case the adaptation is
requested by the server environment (e.g., load on the server), then the appli-
cation might have to change ASs for a set of client devices. Depending on the
desired quality improvement, the number of client users, for whom ASs have to
be changed, is defined using methods like stress-testing.



Towards a Framework for Building Adaptive App-Based Web Applications 41

2.5 Implement the Application

In order to have the ability to dynamically change the AS at run-time, appli-
cation components having variation points, have to be implemented in a way
such that their execution location (client or server) and communication pattern
(local or remote) can be changed at run-time. Our technique for building such
components is based on the following tactics:

1. Code Redundancy: Deploy such components on both server and mobile
device to reduce the overhead of transferring components on the fly. It may
increase implementation cost as such components may have to be built in
both the technology stacks of server and client.

2. Encapsulate: Provide an explicit interface of the components such as appli-
cation programming interface (API). It is required for easy interaction with
other components.

3. Defer Binding: As the exact execution flow of the application will be
decided at run-time, components have to be designed in such a way that
they can dynamically decide whether to make a remote call or a local call.
Thus, to change the AS, application just need to change the call graphs of
the components.

2.6 Build Appification Manager

In this step, we implement the functionality of dynamically changing the AS for
client devices. The application should be able to monitor the environment to
trigger a QAS, select ASs for clients, and migrate the client(s) to their selected
AS. For handling these issues, we present a conceptual architecture of such com-
ponent, Appification Manager. Architecture of Appification Manager is based
on MAPE-K control loop [6] for adaptive systems which clearly abstracts out
the responsibilities of an adaptive system. Following describes components of
Appification Manager in detail.

1. Context Monitor: This component monitors the contextual variables (e.g.,
CPU load) and reports the data to the Analyzer.

2. QAS Analyzer: By analyzing the data provided by the Context Monitor,
this component checks if any variability QAS has occurred in the system.
For example, it notifies the Planner component if CPU load on the server
becomes more than 80% continuously for 15 minutes.

3. Strategy Planner: This component decides what changes should be incor-
porated in the application. By using the results from Appification Strategy
Selector, it identifies the number of users and their new ASs.

4. Executor: This component is responsible for finally changing the ASs of
the clients identified by Planner. For each user, depending upon the AS,
it selects the call graph (stored in the Knowledge Base), and updates both
server and client with this information.

5. Knowledge Base: This component maintains a repository of architectural
information used by other components of the manager.



42 A. Agrawal and T.V. Prabhakar

3 Case Study

We have implemented a simple application as a proof of concept for the Appifica-
tion Framework and conducted experiments to show the feasibility of two kinds
of adaptations: 1) Server-driven adaptation in which server changes ASs of a
set of clients to handle high operational load, and 2) Client-driven adaptation in
which a single client adapts its AS to handle low availability of resources at the
client-side. Our application facilitates image-based searching of products and has
mainly three components; TakeImage for capturing an image, ImageToText
for extracting text from an image, and Search for searching the textual content
in a product database. We identified two ASs for the application as:

– as1: Component TakeImage executes on mobile client; ImageToText and
Search execute on server.

– as2: Components TakeImage and ImageToText execute on client; Search
executes on server.

For client devices, components are implemented in Java for the Android
platform. For server, components are implemented in Python using Django
framework. ImageToText is build using Tesseract-OCR library [9] for both
the Android platform and the server. The server part is deployed on a virtual
machine with 1 CPU core and 2 GB RAM. Here, the application can have some
variations in performance, energy-efficiency on the clients, and capacity. How-
ever, the average response-time of requests should not be more than 10 seconds.
Following sections explain the two kinds of adaptations investigated by us:

3.1 Server-Driven Adaptation

We demonstrate the ability of the application to accommodate dynamic changes
in server environment (user-load) by opportunistically exploiting the resources
available at the client devices. QAS for such adaptation is:

– QAS1: “If the server reaches 85% of its capacity, reduce the load on the
server”.

In our case, capacity is represented as the number of clients the application
can serve while maintaining the average response-time to less than 10 seconds.
We selected as1 as the initial AS for the application in order to minimize the
energy consumed on client devices. Without dynamic appification, the server has
a capacity to handle around 46 simultaneous users. Compared to as1, strategy
as2 has less operational load on the server as ImageToText is executed on
client. Thus, to accommodate high user-load, the application changes the ASs
for a set of clients. In order to identify the number of such clients for a given user-
load, we performed profiling of the application. For a given user-load, average
response time is calculated with varying number of users moved to as2, as shown
in Figure 3(a) and 3(b). For example, in case of 60 users, for reducing average
response time to less than 10 seconds, at least 10 users should be moved to as2.



Towards a Framework for Building Adaptive App-Based Web Applications 43

Fig. 3. Experimental results: (a) & (b) depict profiling results for different user-load.
Here, average response-time is depicted with varying number of users appified to as2
strategy. (c) depicts application behaviour with and without dynamic appification

Figure 3(c) presents results of dynamically varying capacity of the appli-
cation to 100 users. Here, with static appification (with strategy as1), average
response-time goes more than 10 seconds after 46 users. With dynamic appifica-
tion, the application behaves similar to static appification till 40 users. After 40
users, the application dynamically scales to increase its capacity. In case of 100
users, application changes ASs of 50% users to maintain the average response-
time to less than 10 seconds. This adaptation has an adverse impact on energy
consumptions of the client devices. By changing AS dynamically, an application
can increase its capacity only up to a limit. For example, in our case, the applica-
tion can not handle more than 165 users even by using as2 strategy for all users.
Here, contrary to the traditional/cloud approach, capacity is improved without
adding new server-side resources. Thus it does not increase operational-cost of
the application. One thing to note here is that the improvement in the capacity
will directly depend upon the amount of computation off-loaded to the client
devices. Aim of this experiment was to show feasibility of our approach. Exact
improvement in capacity may vary with application.

3.2 Client-Driven Adaptation

Here, to handle the environmental changes, a client adapts its AS at run-time.
The QASs for such adaptations are:

– QAS2: “If the battery power at a client is less than 30% of full power, reduce
energy consumption at the client device”. To test this scenario, initially the
client is configured with as2 strategy. By moving to as1, client can reduce
the energy consumption by removing the overhead (0.95 seconds of execution
time) of executing component ImageToText.

– QAS3: “If the client is having intermittent network connectivity, reduce
response-time from the server so that the dependency on a stable network
is narrowed”. To test this scenario, initially the client is configured with
as1 strategy. By moving to as2, the application can reduce server part of
response-time from 0.24 seconds to 0.11 seconds.



44 A. Agrawal and T.V. Prabhakar

4 Conclusion and Future Work

Dynamic Appification can help in solving various quality related issues such as;
unpredicted and dynamic quality requirements, energy constraints, intermittent
network connectivity, etc. In this paper, we explored how to realize Dynamic
Appification in the application. In our approach, variability is introduced in the
application architecture by modeling the appification-specific design decisions as
variation points. Such architecture supports multiple variants that differ in terms
of their impact on the quality attributes and consumption of resources. Thus,
depending upon the environmental context, an application can adapt at run-
time by migrating to a suitable variant. Selection of the best suitable variant
is done in a manner such that the adverse effects on other quality attributes
are minimum. We presented a methodological framework, called Appification
Framework to provide guidance on building adaptive applications with Dynamic
Appification. Experiments conducted on a prototype implementation showed
that the application can not only handle scenarios of low client resources, but
can also dynamically scale by exploiting resources available at the client devices.
In the future, we would like to explore on automating the framework activities
in order to reduce the design and development overhead.

Acknowledgments. Acknowledgments The authors gratefully acknowledge the finan-
cial support from Tata Consultancy Services and MHRD, Govt. of India for this work.

References

1. Avgeriou, Paris, Zdun, Uwe (eds.): ECSA 2014. LNCS, vol. 8627. Springer,
Heidelberg (2014)

2. Agrawal, A., Prabhakar, T.V.: Using topsis for decision making in software architec-
ture. http://www.cse.iitk.ac.in/users/agrawala/topsis.html (retrieved June 2015)

3. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward
methodical architectural design, technical report, CMU/SEI-2003-TR-004 (2003)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional (2012)

5. Hwang, C., Yoon, K.: Multiple Attribute Decision Making: Methods and Applica-
tions. Springer, New York (1981)

6. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A practical guide to the to
the ibm autonomic computing toolkit, April 2004

7. Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T.J., Gu, X.:
Towards a distributed platform for resource-constrained devices. In: Proceedings
of the 22 nd International Conference on Distributed Computing Systems (ICDCS
2002), p. 43 (2002)

8. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker,
K.R.: Agile application-aware adaptation for mobility. In: Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles, SOSP 1997 (1997)

9. Smith, R.: An overview of the tesseract ocr engine. In: ICDAR, vol. 7, pp. 629–633
(2007)

http://www.cse.iitk.ac.in/users/agrawala/topsis.html

	Towards a Framework for Building Adaptive App-Based Web Applications Using Dynamic Appification
	1 Introduction
	2 Appification Framework
	2.1 Analyze Quality Requirements
	2.2 Identify QAS for Variability
	2.3 Design the Application
	2.4 Build Appification Strategy Selector
	2.5 Implement the Application
	2.6 Build Appification Manager

	3 Case Study
	3.1 Server-Driven Adaptation
	3.2 Client-Driven Adaptation

	4 Conclusion and Future Work
	References


