
Architectural Reasoning Support
for Product-Lines of Self-adaptive Software

Systems - A Case Study

Nadeem Abbas(B) and Jesper Andersson

AdaptWise Department of Computer Science, Linnaeus University, Växjö, Sweden
{nadeem.abbas,jesper.andersson}@lnu.se

Abstract. Software architecture serves as a foundation for the design
and development of software systems. Designing an architecture requires
extensive analysis and reasoning. The study presented herein focuses on
the architectural analysis and reasoning in support of engineering self-
adaptive software systems with systematic reuse. Designing self-adaptive
software systems with systematic reuse introduces variability along three
dimensions; adding more complexity to the architectural analysis and
reasoning process. To this end, the study presents an extended Architec-
tural Reasoning Framework with dedicated reasoning support for self-
adaptive systems and reuse. To evaluate the proposed framework, we
conducted an initial feasibility case study, which concludes that the pro-
posed framework assists the domain architects to increase reusability,
reduce fault density, and eliminate differences in skills and experiences
among architects, which were our research goals and are decisive factors
for a system’s overall quality.

1 Introduction

Software architecture provides the cornerstones for software system design and
development. A high-quality architecture is a necessary condition if a software
system should satisfy its requirements [6]. This condition becomes more vital
when developing large and complex software systems.

While designing an architecture, software architects have to analyze and rea-
son about design choices. The design choices are analyzed with respect to com-
binations of design parameters and their consequences. The design parameters
affect the architecture decision process and include among others development
time and cost, user goals, application requirements, and the operating environ-
ment. The architects select choices with outcomes that best matches the design
parameters. The difficulty of architectural analysis and reasoning parallels the
complexity growth in projects. To support architecture analysis and reasoning for
complex systems, architects may use architectural reasoning frameworks [8,11].

We encountered several architectural analysis and reasoning challenges in
our research on support for strategic reuse with Software Product Line Engi-
neering (SPLE) [21] for Self-Adaptive Software Systems (SASS) [1]. Our goal

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 20–36, 2015.
DOI: 10.1007/978-3-319-23727-5 2



Architectural Reasoning Support for Product-Lines 21

is to develop assets that can be reused both vertically and horizontally [22]
to support realization of self-management properties across products and prod-
uct domains. The term “self-management” here refers to those characteristics
which enable a software system to adapt itself in response to changes in its
requirements, goals, environment and the system itself [10]. Self-configuration,
self-healing, self-optimization, and self-protection are the four widely known self-
management properties [18]. Realizing self-management properties is known to
be a hard problem for a single self-adaptive system and becomes even more
challenging when combined with reuse across products and products domains.

Self-adaptation combined with the product-line approach introduces vari-
ability along three dimensions. Domain variability, the first dimension, originates
from the SPLE domain. It refers to differences among products in a product line.
Run-time variability, the second dimension, comes from the self-adaptive soft-
ware systems. It refers to run-time changes in a system’s requirements, goals,
environment, and the system itself [10]. The third dimension, cross-domains
variability, stems from horizontal reuse, that is reuse across product domains. It
refers to differences among products in two or more domains. The combination
of three dimensions expands the design space architects have to consider, and
consequently architectural reasoning and analysis become more complex.

In our work, we discovered that this increased complexity affected our pri-
mary goal, reusability, negatively. With increase in complexity, the importance
of architects’ skills and experience was elevated. We hypothesized that the lack of
dedicated support for architecture reasoning with self-adaptation and strategic
reuse was a primary reason. To that end, we adopted existing methods and tech-
niques to develop an extended Architectural Reasoning Framework (eARF) [2].

The framework provides models and techniques that assist architects in anal-
ysis and reasoning in context of the variability described above. In this paper,
we introduce the eARF elements and outline a workflow. The workflow provides
step by step instructions to identify domain requirements along with their vari-
ability, extract design choices to realize requirements, analyze and reason about
design choices, and finally map decisions to a reference architecture.

We have conducted an initial evaluation of the framework in a case study with
final year master students [17]. The goal was to investigate its feasibility. The
results indicate that use of the eARF framework provides better architectural
analysis and reasoning support compared to the reference approach. It helps
architects to design assets with increased reusability and reduced fault density.
By providing architects with required knowledge encapsulated in the form of
tactics and patterns, it also reduces the effect of differences in architects’ skills
and experience. The combined results indicate that our working hypothesis is
correct. However, further evaluation is required to support the findings.

The remainder of this paper is organized as follows. Section 2 introduces the
eARF and some of its artifacts and activities. Section 3 describes the case study.
In Section 4, we analyze data and discuss results, which is followed by Section 4.4
that discusses threats to validity. Section 5 positions our work with respect to
related work. We conclude and discuss future work in Section 6.



22 N. Abbas and J. Andersson

<<
 in

st
an

ce
of

 >
>

ASPL platform

Managed System
Platformn

Managing System
Platformn

Managed System
Platform2

Managing System
Platform2

Managed System
Platform1

Managing System
Platform1

Distributed Game Robotics Automotive

Specialization

Integration

ASPL Domain
Engineering

Feature ModelProduct Line Architecture Variants

Fig. 1. The ASPLe Processes

2 An Extended Architectural Reasoning Framework

Strategic reuse offers improved quality combined with reduced effort, which
would contribute to self-adaptive software engineering practices. However, lit-
tle or no work in this direction has been conducted in the self-adaptive software
systems domain [24].

We have developed the Autonomic Software Product Line (ASPL) [1], an
approach that supports both vertical and horizontal reuse [22] of assets across
domains of self-adaptive software systems. The ASPL is a multi-product line
approach involving three principle components and three development processes
as shown in Figure 1. The first principle component is the ASPL platform, which
is a horizontal platform for managing systems. It includes reusable assets that
target cross-domain reuse, that is, it is independent from the managed system
domain. The second principle component is the Managing System Platform,
which is a vertical platform for a managing system domain. It is derived from
the horizontal platform and specialized for a specific Managed System Platform,
which is the third principle component.

The framework also defines three processes. The first process is a domain engi-
neering process for the managing system domain. It is responsible for managing
the horizontal ASPL platform and its reusable assets. Then in the middle, we have
multiple instances of a specialization process. Each specialization process derives
a vertical managing system platform for a specific application domain by special-
izing the horizontal ASPL platform. The third process integrates a specialized ver-
tical managing system platform with a domain specific managed system platform.
This approach is similar to a multi-product line strategy where the ASPL plat-
form is reusable across products and product domains, which reduces complexity
for both domain and application engineers.

Architects will reason about self-management properties and additional qual-
ity attributes in the three ASPL processes, thus we identified a need for ade-
quate reasoning support, primarily due to the complex interactions of proper-
ties, attributes, variability, and uncertainty. A reasoning framework encapsulates
quality attribute knowledge and techniques required to understand and analyze



Architectural Reasoning Support for Product-Lines 23

General 
QAS

domain QAS
domain

Responsibility 
Structure

1..*

<<determines>>

Architecture 
Tactic

Architecture 
Pattern

<<uses>>

packages

<<determines>>

Reasoning
&

Evaluation

Fig. 2. Building Blocks of the eARF

a system’s behavior for a specific quality attribute [7] and provides support for
modeling, analysis, evaluation and interpretation [8]. We found that none of the
existing reasoning frameworks provide sufficient reasoning support for realiz-
ing self-management properties. To that end, we have developed the extended
Architectural Reasoning Framework (eARF).

The extended framework’s structure is based on the architectural concepts
defined by Diaz-Pace et al. [11]. Figure 2 outlines the extended framework and its
elements: (1) Quality Attribute Scenarios (QAS), (2) domain QAS, (3) domain
Responsibility Structure, (4) Architecture Tactics, and (5) Architecture Pat-
terns. As compared to the reasoning framework proposed by Diaz-Pace et al. [11],
the domain QAS and domain responsibility structure elements are the extended
forms of a general QAS and responsibility structure, respectively, whereas the
element “architecture patterns” is a new addition to the extended framework.
We use an illustrative example to explain all these elements.

2.1 Illustrative Example

The PhotoShare Software Product Line (PSPL) contains service based products
that allow users to upload, edit, and share photos. As shown in the feature
model depicted in Figure 3, “uploading” and “sharing” are mandatory features,
whereas “editing” is an optional feature. In addition to the mandatory features,
the products are also required to guarantee performance from self-optimization.
For example, a general self-optimization scenario is: “From time to time, a PSPL
product experiences increase in the number of picture upload requests that it can
not handle adequately. The product can detect unacceptable latencies and adapt
to self-optimize its performance”. More details on PSPL may be found on the
case study home page http://homepage.lnu.se/staff/janmsi/casestudydRS/.

Figure 4 depicts a workflow for how the eARF elements assist architects
to realize self-management properties. The eARF artifacts used and produced
are described below. We illustrate a scenario from the specialization process
that prepares assets from the horizontal ASPL platform for integration with the
vertical PSPL platform.

http://homepage.lnu.se/staff/janmsi/casestudydRS/


24 N. Abbas and J. Andersson

PhotoShare

Uploading

From File 
System

Import

Editing

Remove Edit

Sharing

Mandatory Feature Optional Feature
Key

Private Public Friends

Fig. 3. PSPL – Feature Model

2.2 Domain Quality Attribute Scenarios

The identification and characterization of domain requirements and their vari-
ability is a prerequisite for architecture reasoning and design. The eARF uses
quality attribute scenarios dQAS [3], an extension of QAS [6] with support
to characterize domain variability, to specify a domain’s requirements for self-
management.

In �1 in Figure 4, the domain requirements for self-optimization are elicited
and specified. The requirements are analyzed for domain variability in activity �2
and specified as domain scenarios. The ASPL platform provides a repository of
reusable scenarios that may be adopted and reused. The PSPL architects reuse
and adapt scenarios to reduce or expand their scope. For example, PSPL always
schedule subscription users first; this domain specific constraint is specified by
adapting scenarios from the ASPL platform. The domain analysts define new
QAS and dQAS, if the platform contains no matching assets. We continue and
design a domain Responsibility Structure when the dQASs are defined.

2.3 Domain Responsibility Structure

A domain Responsibility Structure (dRS) is an architectural model that con-
sists of a responsibility part and a variability part. The first step, activity �3 in
Figure 4, analyzes domain scenarios and identifies domain responsibilities [28]
and variation points. The responsibilities and variation points are further ana-
lyzed for structure, associations and variants in activity �4 . The responsibility
part of a dRS is defined by mapping responsibilities to responsibility compo-
nents. In this process, architects use tactics and patterns to support reasoning
and decision making. Activity �4 , completes the dRS by defining its variabil-
ity part, i.e., variation points with variants, and connecting variation points to
corresponding responsibility structures. The architects reuse and adapt features,
variants, and variability points from ASPL into PSPL.

Self-management properties are similar to regular quality attributes. Their
system-wide nature with tight coupling makes them difficult to modularize,
which is also a known characteristic for quality attributes [6]. To assist the
architects in reasoning about alternatives and decision making, the framework



Architectural Reasoning Support for Product-Lines 25

Identify Self-management 
Requirements

QAS Model Variability dQAS

Extract Responsibilities 
and Variability

Responsibilities

Map Responsibilities 
to Architecture Elements

dRS

Architecture
Tactics

Architecture
Patterns

1

4 3

2
Work Product

Activity

LegendDomain Requirements

UML 
Work Product

ASPL Repository
Reasoning

Reasoning

Fig. 4. Analysis and Design Workflow Using the eARF

provides design reasoning strategies, patterns and tactics for self-adaptive soft-
ware systems. Examples of design strategies include “attribute driven design” [6]
and “responsibility driven design” [28]. For the PSPL example we use the latter.

An architectural tactic encapsulates design decisions that may influence
behavior of a system with respect to a particular quality attribute [6]. The
framework promotes architectural tactics for the self-managing property. For the
PSPL, we have several performance based self-optimization tactics, for example,
resource demand, resource management, and resource arbitration [6].

The ASPL platform includes a set of tactics and patterns used to realize self-
management properties, for instance, MAPE-K control loop tactic, and tactics
for self-healing and for coordinating decentralized self-adaptation [26]. Tactics
and patterns together assists architects to analyze and reason about a system’s
responsibilities and structure. Each tactic represents a design option, i.e., a vari-
ant, and the platform provides responsibility components and variants for the
supported tactics. Tactics assist architects to identify variability and map it to
a variability model for the dRS.

Figure 5 depicts a fragment of a dRS for self-optimization in the PSPL
domain. Responsibilities and their variability were defined in activity �3 . The
resource management performance tactic, and the MAPE-K control loop pattern
are used to identify and reason about sufficient allocation of responsibilities and
possible variants for achieving self-optimization in the application domain.

The resulting dRS in Figure 5 contains a monitor element, the Response
Monitor, from the MAPE-K pattern and a variation point with three variants:
continuous, periodic, and event based. The PSPL products always include the
event-based variant, while the other two variants are optional. The Planner ele-
ment reuses two strategies from the resource management performance tactic:
add threads, and add resources. Both strategies are mandatory for all products.

The Performance Manager subsystem in Figure 5 indicates that the target
domain supports two performance manager variants; (1) centralized, and (2)
decentralized. This is an example of how architects have used patterns in the
process. The detailed design for one of the performance manager variants uses a



26 N. Abbas and J. Andersson

Response
 Monitor

Monitors how long a 
PSPL product takes
to respond clients

Executor

Executes the Plan

Performance Manager

Coordinates MAPE
Components

Latency
Analyzer

Analyzes possible 
factors behind 
latency 

Continuous
V

[0..1]

Performance
Manager

VP

[1..1]

Notification

PSPL

Runtime Info.

Analysis
Results

Planner
Prepares an 
optimization plan 
with the help of 
analysis results and 
performance tactics 

Analysis
Results

Plan

PSPL PSPL

Effectors Runtime Info.

Plan

Key

[name]
[responsibility] [name]

VP

Responsibility 
Structure

[name]
V

Variant Variation Point

[min..max]

Alternative 
Choice

VP Artifact DependencyMandatory Variant

Optional Variant
provides

requires

Variability Diagram
(OVM)

Variability Diagram
(OVM)

dRS
for Self-Optimization

PSPL

Runtime
Info.

Periodic
V Event

Based

V

Centralized
V De-

Centralized
V

Add
Threads

V Add
Resources

V

Dependency
Analyzer

V
Workload
Analyzer

V

Response
Monitor

VP

Analyzer

VP

Planner

VP

Fig. 5. Domain Responsibility Structure (dRS) for Self-Optimization

decentralization pattern for the managing systems [26], while the other variant
uses a centralized feedback-loop.

The initial PSPL domain architecture for the self-optimization is ready. It
will be further refined, detailed, and reconciled for additional self-management
properties, and integrated with PSPL domain artifacts in the integration process.
That is, however, not the focus for the work presented herein.

3 Evaluation

We conducted a case study to evaluate the eARF approach’s feasibility. For a
full account of the study, we refer to the study home page1. The primary goals
for the study were: (1) to evaluate the eARF approach in comparison to a state-
of-the-art reference approach, and (2) to collect user experiences for improving
the eARF approach. For (1), we performed a case study with final year master
students as a frame of reference [29]. The primary focus was on reusability [15],
and fault density [13]. For (2), we collected qualitative data from interviews and
questionnaires to understand the level of support for architectural reasoning.

We used the evaluation in (1) and user experiences from (2) to answer our
hypothesis that the proposed reasoning framework provides better support for
architectural reasoning and reusability in domains characterized by run-time
variability, and reduces the effects of architects’ skills and experience, and prod-
uct’s fault-density, in comparison to state-of-the-art practices.

1 http://homepage.lnu.se/staff/janmsi/casestudydRS/

http://homepage.lnu.se/staff/janmsi/casestudydRS/


Architectural Reasoning Support for Product-Lines 27

P
ar

t I
: R

ef
er

en
ce

 A
pp

ro
ac

h

Week 
1

2

3

4

5

P
ar

t I
I:

 e
A

R
F

A
pp

ro
ac

h 6

7

8

9

Second Preparatory Workshop (3-hours)
!

Introductory Lecture (2-hours)
Distribution of Home Assignment

Home Assignment Discussion (2-hours)

Lecture on the Reference Approach (2-hours)
and the Example SPL

First Preparatory Workshop (3-hours)

Test A1 (Reference) (3-hours)
Test A2 (Reference) (3-hours)

Lecture on Service Reusability (2-hours"!

Lecture on the eARF Approach (2-hours)
& Example SPL

Test A3 (dRS) (3-hours)
Test A4 (dRS) (3-hours)

Final Questionnaires and Interviews

Fig. 6. Overview of the Nine Weeks Course in which the Case Study Took Place

3.1 Design and Planning

We follow a planning template suggested by Wohlin et al. [29]. The objective of
the study is defined above. The eARF framework and a reference approach are
the two cases studied. The reference approach consists of state-of-the-art prac-
tices for self-adaptive software system design, centered around MAPE-K feed-
back loop [18]. The Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-
K) loop was first introduced by IBM [18] to add self-managing properties to
software systems. It monitors and controls one or more underlying managed ele-
ments. The managed element might be a hardware or a software system. The
reason for selecting the MAPE-K as a state-of-the-art reference approach is that,
at present, it is the most widely used approach to realize self-adaptive software
systems.

Test assignments, questionnaires and interviews are used as methods of data
collection. We match the case study’s objective and research questions with data
collection methods to decide which data units we would use in our analysis,
i.e., our selection strategy. Given our setting with a small number of subjects
we adopt an “analyze-all” strategy, that is, data collected from all subjects is
investigated and analyzed.

The case study was performed as a part of a nine weeks course, involving
three researchers and 13 subjects. Most of the preparatory work, data collection,
and analysis were performed by a doctoral student assisted by two senior lectur-
ers, primarily in the role as reviewers and advisors. The subjects were final-year
students on a two year master program in software engineering. As depicted in
Figure 6, the case study was conducted in two parts, one for each case stud-
ied. The first part was concerned with the reference approach, and the second



28 N. Abbas and J. Andersson

SSPL
+

Self-Upgradability-1

SSPL
+

Self-Healing-1

PSPL
+

Self-Healing-2

PSPL
+

Self-Upgradability-2

Group 1 Group 2

5
8

Reference 
Approach

dRS
Approach

w
ee

k

A1 A2

A3A4

Fig. 7. Test Assignments - Design

introduced the treatment, i.e., the eARF approach. The case study was com-
pleted with questionnaires and interviews conducted in final week of the part
two.

3.2 Data Collection

The case study involves four test assignments that are performed by dividing
subjects into two groups randomly based on blocked subject-object study classi-
fication [29]. A blocked subject-object study analyzes two or more objects (cases
or units of analysis) using two or more subjects per object. In this type of study,
each subject receives both treatments, i.e., the reference and the dRS approach.
This allows paired comparison of the two approaches.

The test assignments target first two of the three variability dimensions
addressed by the ASPL approach. Domain variability, the first dimension, comes
from the product line engineering domain. Thus, two example SPLs, (1) Soft-
Phones Software Product Line (SSPL) and (2) PhotoShare Software Product
Line (PSPL) were designed for the test assignments. Details about these example
SPLs are given at the case study home page. To cater for the second dimension,
run-time variability, requirements for self-upgradability and self-healing were
added to the product lines’ scope. For each test, Figure 7 depicts a combination
of an example SPL and a self-management property, for example, test A2 uses
SSPL with self-healing as problem domain.

Each test assignment first introduces a problem domain followed by three
tasks. Tasks 1 and 3 are design tasks. Task 1 has two parts: a and b. Each part
requires subjects to extend an initial product design to support a given self-
management property, either self-upgradability, or self-healing. Task 2 requires
subjects to extend the core assets base by adding reusable artifacts from the
Task 1. This represents the third variability dimension, which originates from
reuse across multiple domains, i.e., horizontal reuse. Task 3 requires subjects
to use the extended core assets base from Task 2 and design a new product.
All tests were conducted as regular class assignments. No feedback was given to
subjects on the first part prior to the completion of the second part.



Architectural Reasoning Support for Product-Lines 29

0
0,2
0,4
0,6
0,8

1 2 3 4 5 6 7 8 9 10 11 12 13

T
R

L

Subject

TRL with dRS TRL with Reference

1,0

(a) Total Reuse Level (TRL) in Task 1(a)

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13

T
R

L

Subject

TRL with dRS TRL with Reference
(b) Total Reuse Level (TRL) in Task 3

Fig. 8. Total Reuse Level Achieved Using the Reference and the dRS Approach

Questionnaires and semi-structured interviews were used to collect data for
the study’s second objective. There were two types of questionnaires. The first
type was a combination of “pre” and “post” test questionnaires designed to
identify false positives and false negatives. The second type compares the two
approaches with respect to their support for architectural reasoning. Each sub-
ject was interviewed at the very end of the data collection phase to clarify
responses in questionnaires and collect details. The interviews were conducted
after publishing the course result to assure that the subjects did not adjust their
responses to get a better grade.

4 Analysis of Results

This section presents the data analysis and pinpoints findings that were observed
to confirm or reject our hypothesis. The main objective was to analyze the
eARF approach in comparison to the state-of-the-art reference approach with
respect to three properties: (1) reusability, (2) fault density, and (3) support
for architectural reasoning. We divide the analysis in three parts, one for each
property.

4.1 Support for Reusability

To analyze the two approaches with respect to their support for reusability,
we use quantitative data from the test assignments. The “reuse level” software
metric [15] is used for this analysis. It is defined for hierarchically composed
component system, and is well aligned with the way products are designed and
composed in the test assignments. The metric is defined as:



30 N. Abbas and J. Andersson

Total Reuse Level = External Reuse Level + Internal Reuse Level
External Reuse Level = E/L

Internal Reuse Level = M/L

L – the total number of lower level items in the higher level item.

E – the number of lower level items from an external repository.

I – the number of lower level items not from an external repository.

M – the number of items not from an external repository but used more than once.

All reuse levels will be between 0 and 1, here 0 indicates no reuse. We assume
that the products designed in the tests are the higher level items and compute
the value of L by counting the number of lower level items used in a product. The
core assets base from the example SPLs provides lower level items. We compute
E by counting the number of items from the core assets, and I by counting items
developed specifically for a product. M is computed by counting the items not
belonging to the core assets base but used more than once.

We calculate total reuse level for task 1 and task 3 as depicted in Figure 8.
There is no significant difference in the total reuse level for task 1(a). This is
because this task presents subjects with an initial product design and asks them
to extend it to support a self-management property. The approach is, however,
at least as good as the reference approach for all subjects and sometimes the
total reuse level is better. The results are similar for task 1(b), thus excluded for
space consideration.

The difference between the two approaches in terms of the achieved total
reuse level becomes more clear in task 3. In this task, a new product with support
for a self-management property is designed from scratch. All subjects achieve
maximum total reuse level of 1 with the eARF approach. In comparison only
46% were able to achieve the maximum total reuse level with the reference
approach.

4.2 Fault Density

Fault density is the number of known faults divided by product size [25]. It is
a de-facto measure of user perceived software quality [13]. We use it to analyze
the eARF approach’s support for producing high-quality architectural designs.
We used quantitative data from task 1 and task 3 to calculate the fault density.

Fault Density = Faults / Size (1)

To compute fault density using equation 1, we need to compute values of two
input variables: faults, and size. As the tasks selected for this analysis resulted
in design level artifacts, we were restricted to use methods at design level. We
estimated faults for each task of each subject by comparing subjects’ solutions
(designs) with a reference solution, and counting one fault for each missing or



Architectural Reasoning Support for Product-Lines 31

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9 10 11 12 13

FD

Subject

FD with dRS FD with Reference

(a) Faults Density (FD) for Task 1(a)

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9 10 11 12 13

FD

FD with dRS FD with Reference

Subject

(b) Faults Density(FD) for Task 3

Fig. 9. Faults Density Comparisons Using the Reference and the dRS Approach

incorrect element. The missing or incorrect element can be a component, service,
interface, method, or a method parameter for test assignments A1 and A2 that
use the reference approach. In the test assignments A3 and A4 that require the
eARF approach, the element can be a responsibility component, responsibility
definition, interface, variation point, or a variant.

The size of a software system can be measured in different ways. We used
function point analysis (FPA) [4] method to measure size. As the test assign-
ments involve design artifacts so we searched for an FPA based method that
could be applied to design level artifacts. We could not find a method that
suited the design artifacts created in the selected tasks. However, we found an
FPA based high level analysis approach [20] that targets software requirements
specification. We decided to use this approach. The approach uses independent
assessors to rate each requirement on a scale: low, average, and high. We used
three assessors, two doctoral students and a senior lecturer in software engi-
neering. Following the procedure described by the approach, we computed three
scores for size in terms of function points: minimum, expected, and maximum.
We took average of these scores to get a size estimate. For details about the
computation procedure, we refer to the original work by Peeters et al. [20] and
the case study home page.

Figure 9 depicts the fault density for the approaches. It is clear that for both
tasks the eARF approach results in a reduced fault density.

4.3 Support for Architectural Reasoning

We use qualitative data collected with a questionnaire to analyse the approaches
with respect to their support for architecture analysis and reasoning. As the data
is qualitative, the results are indicative.

In the final questionnaire, subjects were asked to answer six closed questions
targeting support for architectural reasoning. A majority of the subjects rated
the eARF approach as relatively better for the first two questions. In the remain-
ing questions, we gave a statement and asked to select one of five options from



32 N. Abbas and J. Andersson

“Strongly Disagree” to “Strongly Agree”, and a “Don’t Know” option. More
than 90% of the subjects “strongly agreed” or “agreed” to a statement that
declared the eARF to be more assistive than the reference approach. The results
were similar for the other statements, i.e., positive to the eARF approach. The
analysis indicates that the eARF contributes positively to the design process
and the subjects feel more confident with the support provided by the eARF
approach.

4.4 Threats to Validity

We use the classification scheme suggested by Runeson et al. [23] to discuss
threats to validity.

Construct validity ensures that a study actually relates to the problem that
the study aims to address. The eARF focuses on realization of self-management
properties characterized with domain and cross-domains variability. Accordingly,
the study selected two SPLs with requirements for self-management properties as
problem domains. A possible threat to validity is “use of unclear terminology”
that causes subjects and researchers to interpret the used terms or concepts
differently. We reduced this threat by dedicating three weeks in both parts of
the study to lectures and preparatory workshops. Another possible threat is
that subjects may guess what the researchers are looking for and adapt their
answers accordingly. This threat was mitigated by presenting the activities as
coursework. We also gave feedback and grades prior to the questionnaires and
interviews.

Internal validity is a concern for explanatory studies where causal relations
are examined [23]. This study is explorative, and thus less sensitive to this type
of threat. Other potential threats are increased understanding and maturity of
subjects. To mitigate these threats, we took three measures in the case study
design: (1) a comprehensive knowledge base in the first part, (2) use of a new
problem domain (PSPL) and requirements set in the second part, and (3) use
of standards tools and methods such as UML.

External validity is concerned with the extent to which findings can be gen-
eralized and are relevant outside the study. This study uses final year master
students as subjects [17]. The profile for such students is that they are knowl-
edgeable but lack in professional skills and experience. One of the aspects we
were interested in is, “how the experience and knowledge provided by eARF con-
tributes to the design quality”. It is important to note that professional architects
will exhibit similar differences in knowledge and experience as the group of stu-
dents usually have, and thereby, the effect of eARF would be generalizable. The
size of the study’s population is, however, small to generalize the results.

Another potential threat is that the framework and the test assignments are
designed by the same group of researchers. There is a risk that the test assign-
ments were designed in a way that favors the eARF approach. To reduce this
threat, an independent senior researcher was requested to review the assign-
ments. Moreover, a large portion of data collection and analysis was performed
by a single researcher. The data analysis of the test assignments is based on



Architectural Reasoning Support for Product-Lines 33

objective data, except for the size measure. External reviewers were involved for
that particular data point. With opinions from multiple sources the risk of a
biased analysis is mitigated.

Reliability refers to the ability of other researchers to replicate the study. To
support replication, a complete documentation for all activities in this study is
available online at the case study home page.

5 Related Work

Reusable decision models support architectural reasoning by capturing architec-
tural decisions and exchanging these within and between projects in the same or
similar context. Olaf et al. [30] presented a proactive approach to model and reuse
architectural knowledge. The approach need to be investigated in the context of
self-management properties. Bass et al. [7] proposed use of reasoning framework
which encapsulate knowledge and tools needed to analyze behavior of a system
such as the modifiability reasoning framework [11]. A reasoning framework may
help the architects to evaluate an architecture in its early stages, and save lot of
effort and resources in the end. However, none of the existing frameworks target
self-management properties and the three variability dimensions targeted in this
study. An open source project, DiVA [12], provides a tool-supported methodol-
ogy and framework for managing dynamic variability in adaptive systems. The
project claims to contribute with a reasoning framework that takes a context
and adaptation rules as input and does the reasoning to find and rank possi-
ble configurations for the given context. However, there are no details for the
framework elements, which makes it difficult to compare with our work.

A related research theme that addresses development issues for reusable
and dynamically reconfigurable core assets is Dynamic Software Product Lines
(DSPL) [16]. The DSPL community has proposed several approaches to deal
with run-time variability. The MADAM [14] middleware is one such approach
that uses architecture models at run-time to reason about and control adapta-
tions. In its current implementation, it uses a utility function to reason about
and select the design options, this can be supplemented by encapsulating knowl-
edge in the form of a reasoning framework. Thus the eARF framework has a
potential to be integrated with the MADAM middleware to enhance reasoning
support needed to deal with the three variability dimensions investigated in this
study.

Liu et al. [19] proposed a dynamically reconfigurable reference architecture
based approach to develop systems with evolvable run-time variability. The app-
roach uses a dynamic update mechanism which at run-time updates the refer-
ence architecture by adding, removing, and modifying architectural elements.
The authors described a process through which such updates are performed,
however, there is no discussion about what triggers the dynamic update process,
and how the design choices are analyzed and reasoned about at run-time.

Whittle et al. [27] presented RELAX, a requirements specification language
for self-adaptive systems. It may help developers to identify variability in the



34 N. Abbas and J. Andersson

requirements, by specifying requirements that a system could temporarily relax
under certain conditions. However, RELAX does not support design and reason-
ing at the architecture level which is the focus for our work presented herein.

Cetina et al. [9] proposed a Common Variability Language (CVL) for run-
time variability modeling. The CVL approach separates variability modeling
from the base domain modeling. The split between variability modeling and base
domain modeling in the CVL approach is similar to the split between variability
part and responsibilities part in the extended responsibility structure presented
in this study. However, the authors did not explicitly state and address the
architectural reasoning support needed to make decisions and trade off at run-
time.

Bachmann et al. [5] called for the provision of special methods that may assist
in designing an architecture with quality attribute requirements. The authors
require such methods to have three features, (1) knowledge encapsulation, (2)
trade-offs, and (3) traceability from requirements to architecture. The eARF
provides support for all these features through tactics, patterns, domain scenarios
and the responsibility structures.

6 Discussion and Conclusions

Development of self-adaptive software systems with systematic reuse presents
architects with the challenge of extensive architectural analysis and reasoning
needed to analyze, reason about, and trade-off multiple design choices. The
extended architectural reasoning framework supports the architects by provid-
ing them with models and techniques for reasoning, mapping, and structuring
responsibilities with variability into a reference architecture. In addition, it pro-
vides architects with design knowledge and proven best practices encapsulated
in the form of tactics and patterns.

We conducted a case study to investigate the feasibility of the proposed
architectural reasoning framework. We conclude that the results from the study
indicate that the framework offers better support for reuse and reduces fault
density in comparison to the reference approach. We also collected qualitative
data that indicates that the architects appreciate the structure and guidance
provided by the eARF framework. This is also supported by the quantitative
data where we see that skills and experience have less impact on the measured
properties with the eARF approach.

The proposed extensions are the first steps towards a comprehensive design
framework that leverages on reuse to engineer self-adaptive software product-
lines across multiple domains. However, much work remains. For instance, the
framework must include better support for reasoning. We have plans to further
investigate tactics and patterns with the aim to establish a core of best practices
for engineering self-adaptive software systems and include the practices as design
advices for further increase of reusability and reuse levels.



Architectural Reasoning Support for Product-Lines 35

Acknowledgments. Acknowledgments The research was funded by VINNOVA, the
Swedish Agency for Innovation Systems and Innovative Product Development (Grant
No. 2013-03492).

References

1. Abbas, N.: Towards autonomic software product lines. In: Proceedings of the 15th
International Software Product Line Conference, SPLC 2011, vol. 2, pp. 44:1–44:8.
ACM, New York (2011)

2. Abbas, N., Andersson, J.: Architectural reasoning for dynamic software product
lines. In: Proceedings of the 17th International Software Product Line Conference
Co-located Workshops, pp. 117–124

3. Abbas, N., Andersson, J., Weyns, D.: Modeling variability in product lines using
domain quality attribute scenarios. In: Proceedings of the WICSA/ECSA 2012
Companion Volume, pp. 135–142. ACM, New York (2012)

4. Albrecht, A., Gaffney, J.E.: Software function, source lines of code, and develop-
ment effort prediction: A software science validation. IEEE Transactions on Soft-
ware Engineering SE–9(6), 639–648 (1983)

5. Bachmann, F., Bass, L., Klein, M., et al.: Designing software architectures
to achieve quality attribute requirements. IEE Proceedings - Software 152(4),
153–165 (2005)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Professional (2003)

7. Bass, L., Ivers, J., Klein, M., et al.: Encapsulating quality attribute knowledge. In:
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2005, pp. 193–194. IEEE Computer Society, Washington, DC (2005)

8. Bass, L., Ivers, J., Klein, M.H., et al.: Reasoning frameworks. Tech. rep. (2005).
http://www.sei.cmu.edu/library/abstracts/reports/05tr007.cfm

9. Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for vari-
ability transformation at run-time. In: Proceedings of the 13th International Soft-
ware Product Line Conference, SPLC 2009, pp. 61–70. Carnegie Mellon University,
Pittsburgh (2009)

10. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013)

11. Diaz-Pace, A., Kim, H.-W., Bass, L.J., Bianco, P., Bachmann, F.: Integrating
quality-attribute reasoning frameworks in the ArchE design assistant. In: Becker,
S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 171–188.
Springer, Heidelberg (2008)

12. DiVA: Diva-dynamic variability in complex, adaptive systems. http://sites.google.
com/site/divawebsite

13. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the Con-
ference on The Future of Software Engineering, pp. 357–370. ACM, New York
(2000)

14. Floch, J., Hallsteinsen, S., Stav, E., et al.: Using architecture models for runtime
adaptability. IEEE Software 23(2), 62–70 (2006)

15. Frakes, W., Terry, C.: Software reuse: Metrics and models. ACM Computing Sur-
veys 28(2), 415–435 (1996)

http://www.sei.cmu.edu/library/abstracts/reports/05tr007.cfm
http://sites.google.com/site/divawebsite
http://sites.google.com/site/divawebsite


36 N. Abbas and J. Andersson

16. Hallsteinsen, S., Hinchey, M., Park, S., et al.: Dynamic software product lines.
IEEE Computer 41(4), 93–95 (2008)

17. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects-a comparative study
of students and professionals in lead-time impact assessment. Empirical Software
Engineering 5(3), 201–214 (2000). http://dx.doi.org/10.1023/A:1026586415054

18. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

19. Liu, J., Mao, X.: Towards realisation of evolvable runtime variability in internet-
based service systems via dynamical software update. In: Proceedings of the 6th
Asia-Pacific Symposium on Internetware, Internetware 2014, pp. 97–106. ACM,
New York (2014)

20. Peeters, P., van Asperen, J., Jacobs, M., et al.: The application of Function Point
Analysis (FPA) in the early phases of the application life cycle A Practical Man-
ual: Theory and case study, 2.0 edn. Netherlands Software Metrics Association
(NESMA) (2005)

21. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-
dations, principles, and techniques. Springer-Verlag New York Inc. (2005)

22. Prieto-Diaz, R.: Status report: software reusability. IEEE Software 10(3), 61–66
(1993)

23. Runeson, P., Höst, M., Rainer, A., et al.: Case Study Research in Software Engi-
neering: Guidelines and Examples, 1st edn. Wiley Publishing (2012)

24. Weyns, D., Iftikhar, M., Malek, S., et al.: Claims and supporting evidence for
self-adaptive systems: a literature study. In: 2012 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systemsm, pp. 89–98 (2012)

25. Weyns, D., Iftikhar, M.U., Söderlund, J.: Do external feedback loops improve the
design of self-adaptive systems? a controlled experiment. In: Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 3–12. IEEE Press, Piscataway (2013)

26. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke,
J., Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized con-
trol in self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw,
M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475,
pp. 76–107. Springer, Heidelberg (2013)

27. Whittle, J., Sawyer, P., Bencomo, N., et al.: RELAX: a language to address
uncertainty in self-adaptive systems requirement. Requirements Engineering 15(2),
177–196 (2010)

28. Wirfs-Brock, R., McKean, A.: Object design: roles, responsibilities, and collabora-
tions. Addison-Wesley Professional (2003)

29. Wohlin, C., Runeson, P., Höst, M., et al.: Experimentation in Software Engineering,
1st edn. Springer, Heidelberg (2012)

30. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable
architectural decision models for enterprise application development. In: Overhage,
S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 15–32. Springer, Heidelberg (2008)

http://dx.doi.org/10.1023/A:1026586415054

	Architectural Reasoning Support for Product-Lines of Self-adaptive Software Systems - A Case Study
	1 Introduction
	2 An Extended Architectural Reasoning Framework
	2.1 Illustrative Example
	2.2 Domain Quality Attribute Scenarios
	2.3 Domain Responsibility Structure

	3 Evaluation
	3.1 Design and Planning
	3.2 Data Collection

	4 Analysis of Results
	4.1 Support for Reusability
	4.2 Fault Density
	4.3 Support for Architectural Reasoning
	4.4 Threats to Validity

	5 Related Work
	6 Discussion and Conclusions
	References


