
© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 157–168, 2015.
DOI: 10.1007/978-3-319-23727-5_13

An Approach to Software Architecting
in Agile Software Development Projects in Education

Samuil Angelov() and Patrick de Beer

Software Engineering, Fontys University of Applied Sciences, Eindhoven, The Netherlands
{s.angelov,p.debeer}@fontys.nl

Abstract. The architecting activities in agile software development methods are
weakly defined and even sometimes neglected. While there is sufficient litera-
ture on how software architectures and the architecting activities could be ap-
proached in agile projects, there is little information on how this topic should be
treated in the education of software engineering students. In this paper, we pro-
pose an approach to the architecting activities in agile software projects in a ba-
chelor software engineering course. The approach is inspired by theoretical and
industry sources and is tailored to fit our educational goals and context. Our
first experiences from the application of the approach show improved and dee-
pened treating of software architectures, clarity on the purpose of the executed
architecting activities, and improved student motivation.

Keywords: Software architecture · Agile · Method · Scrum · Teaching · Education

1 Introduction

The potential tension between software architecting and agile development methods
has been discussed in numerous publications. A general consensus seems to exist
around the value of paying explicit attention to software architectures in agile
projects. Various suggestions have been made on how to approach software architect-
ing in agile projects [1–3]. The introduction of software architectures and architecting
related activities in educational curriculums has been a topic in several publications
and multiple challenges and possible solutions have been outlined [4–6]. The coupl-
ing between agile projects and software architectures in education has not yet been
sufficiently addressed in the literature. In [7], an approach for treating software archi-
tectures in agile projects in education is discussed. The approaches focuses on the
architecture design phase in agile projects and specifically on the role of the stake-
holders in it but does not address the actual dynamics of an agile project.

In our curriculum, we have a course in which software systems are developed by
groups of students using an agile (Scrum-based) method. Among others, the students
need to apply and demonstrate in this course competences in system design. In the
past, we have required the design and documentation of the system’s software archi-
tecture but did not provide any further guidance on how this had to be done in an agile
project, relying on knowledge on software architectures from a previous course. We

158 S. Angelov and P. de Beer

have observed the lack of motivation among students to deepen on the software archi-
tecture aspects, focusing primarily on the development process. The system architec-
ture was hastily and superficially discussed in the teams at the beginning of the
projects and documented at the end of the projects to pass the course, without realiz-
ing the purpose and benefits of architecting in an agile project. To improve the educa-
tional process, we need to redesign the course in a form where software architectures
receive proper attention from the students in a non-enforced manner, ensuring under-
standing of the values of software architecting in agile projects. The challenges are,
however, of dual nature. An approach for treating software architecting in agile stu-
dent projects needs to resolve traditional problems in teaching and applying software
architectures in combination with the challenges introduced by the agile practices
which do not emphasize the architecture topic.

In this paper, we present our approach towards the treatment of software architec-
tures in agile software projects in education. We have reviewed publications in the
area of software architectures, approaches to software architectures in agile software
development, and teaching of software architectures. In parallel, we conducted inter-
views with practitioners to collect data on how software architecting in agile projects
is treated in the industry. The results from these two sources of information provide us
with the basis for the definition of our approach.

The paper is structured as follows. In section 2, we present our context. In Sec-
tion 3, we discuss our finding from the sources reviewed. In Section 4, we present our
approach. In Section 5, we discuss our first experiences and lessons learned. We end
the paper with conclusions.

2 Context and Status

Fontys University of Applied Sciences focuses on teaching practice oriented know-
ledge and skills. Upon completion of their studies, students from the software engi-
neering bachelor school are skilled software engineers. The course with an acronym
PTS4 is 6 ECTS credits (European Credit Transfer and Accumulation System credits)
and is given in the second semester of the second year of the software engineering
study. PTS4 is a project-based course, i.e., knowledge from other courses is applied in
this course for the design and development of a software system. PTS4 focuses on
applying agile practices in a Java-based, software development project. PTS4 is pre-
ceded by a project course PTS31. The students work in groups of 5-6 students for 18
weeks. The students are allowed to form the groups themselves, which typically leads
to balanced groups in terms of skills, interests and motivation. Each week, the stu-
dents work one full day on the project in a dedicated project room. On a weekly basis,
the students are visited in the project room by their Product Owner (PO) and Tutor
(typically both roles are performed by one teacher). Scrum masters are students from

1 In PTS3, a waterfall-based software development method is used. The students follow a path for

requirements elicitation and documentation, architecture elicitation and documentation, imple-
mentation, testing. They elaborate an architecture document consisting of use case, class,
sequence, component and deployment diagrams and a list of non-functional requirements.

 An Approach to Software Architecting in Agile Software Development 159

the teams. A commercial tool for agile project management (which also allows time
management) is used by all groups. The project is divided into 4 sprints of 4 weeks
with a couple of weeks left as spare. The project is based on a predefined case (“Pho-
toStore”) for the development of an on-line shop for ordering of customized photos
optionally printed on a product. In terms of quality attributes, the focus in this project
lies mainly on usability, security, and performance. Example architectural choices that
student face are: desktop versus web application, type of clients to the main applica-
tion, communication techniques, security approach, storage and access of photos. The
case lacks novelty and is therefore of a somewhat trivial architecture nature: “most
projects are not novel enough to require a lot of architectural effort” [8]. Typically,
the discussion, evaluation and documentation of a software architecture is a nuisance
for the students. They do not perceive any value in performing these activities and
prefer to focus on software development. Discussions on the architecture take 5-10
minutes, with no attention being paid to the quality attributes. Although, the students
know what quality attributes are, their understanding of the value of architecting and
the role of quality attributes is rather limited. The combination of low architecture
complexity and little attention on quality attributes and architectural choices often
results in functionally satisfactory software products but partially or fully disregarding
crucial quality attributes. Low-level designs (class diagram, database model) are made
by the students primarily influenced by the way of working in PTS3. Due to the lack
of an incentive (no future usages, lack of communication obstacles, and non-
demanding POs), the motivation for documenting a software architecture is low and is
done only to satisfy the course requirements.

3 Sources of Inspiration

To accumulate knowledge for our course re-design, we have studied literature on
software architectures and on approaching them in agile projects and in education.
Furthermore, we have interviewed software companies from the region where our
students get predominantly employed.

3.1 Literature on Software Architectures and their Usage in Agile Projects

On software architectures: The architecting process involves the analysis, synthesis,
documentation, and evaluation activities [15]. The software architecture of a soft-
ware-intensive system is created in the early development phases and evolves
throughout the whole development cycle [16]. An overview of software architecture
methods can be found in [17]. The term software architecture has been attributed
various definitions. For example: “the set of structures needed to reason about the
system, which comprise software elements, relation among them, and properties of
both” [9] focuses on the structure aspect. Other definitions view design decision as
the focus of software architectures [10], stating that a software architecture reflects
“the major design decisions made” [5], and that “the actual structure, or architectural
design, is merely a reflection of those design decisions” [11]. Architectural decisions

160 S. Angelov and P. de Beer

“capture key design issues and the rationale behind chosen solutions” [12]. However,
as argued in [9], in agile projects some decisions are made later on throughout the
project, and it is hard to justify whether a decision is major. Furthermore, as Kruchten
notes, architectural decisions should not be mixed with software design and code
decisions [8]. The study in [13] shows that “compared to senior architects, junior
architects spend a quarter of the time on making a decision”. Documenting decisions
may be highly practical in agile projects: “If an architect doesn’t have time for any-
thing else, these decisions can provide a concrete direction for implementation and
serve as an effective tool for communication to customers and management” [14].
With respect to the documentation of decisions a number of publication propose solu-
tions. The IBM’s e-Business Reference Architecture Framework is used in [14] to
propose a template for the documenting of decisions. It is suggested that if a system
quality is affected by a decision it needs to be documented.

On software architectures in agile development: In [15], the editors predict that
“Software architecture will be recognized as a key foundation to agile software devel-
opment”. Few years later, this line is continued in a special issue of IEEE Software
focused on the relationship between software architectures and agile practices. In its
editorial, Abrahamsson et al. [2] provide a number of advises on the usage of software
architectures in agile projects: making the architectural decisions “early enough”,
defining an architecture owner who is part of the team, usage of architectures for im-
proving communication and coordination in complex projects and settings (e.g.
distributed teams). They also state: “If agile developers don’t consider software archi-
tecture relevant to their day-to-day activities, it would be difficult, even impossible, to
convince them to use architectural principles and integrate artifacts in agile develop-
ment”. In [8], Kruchten binds the need for architectural activities and their size with
the project context (e.g., project size, criticality, risks). In [16], the authors conclude
that practices of software architectures and especially the focus on quality attributes
can lead to improvement of projects executed with agile methods. They recommend
focus on the overall system structure (shaped by the quality attributes) in the first
iteration and subsequently in later iterations when changes are needed. In [17], the
value of an architecting team in large-scale agile projects is reported. In [18], a study
among IBM professionals reveals that architecting activities are highly relevant for
agile developers. Communication, assumptions documentation, validation are sup-
ported through architectures. The project complexity also influences the architecture
relevance (distribution, size, number of stakeholders).

On documenting software architectures in agile projects: Architecture documenta-
tion (and time associated with it) in agile projects is one of the roots of the tension
between agile development methods and software architecting: “In an agile process,
the team doesn’t have time to wait for the architect to completely develop and docu-
ment the architecture” [14]. In [19], the values and impediments of documenting
software architectures in agile projects are discussed. Architecture documentation
may serve to: get on board new project members quickly, for future usage (project
transfer to another team/phase), quality assurance, or as domain knowledge reposito-
ry. However, documenting of changing issues can be a wasted effort. Boehm [20]
notes that for unpredictable projects decreasing the documentation effort may work,

 An Approach to Software Architecting in Agile Software Development 161

while for projects with predictable requirements this approach may miss useful archi-
tectural practices and may have even negative impact by not allowing external re-
viewers to detect mistakes due to the lack of documentation. An approach to the usage
of the SEI method for documenting software architectures in agile methods is pro-
posed in [21]. Initially, the views to be documented and the project stakeholders inter-
ested in them are identified. Then, documentation is done on the need-to basis with
minimum need for rework. It is advised to document rationale early and throughout
the project as postponing this for the end of the project may lead to omissions of
choices made, insights, etc. Kruchten considers all possibilities for architecture docu-
mentation: documentation in code, with metaphors, diagrams, complete architecture
document, etc. depending on the project context [8]. In [22], the documentation was
reduced to component diagrams and design decisions published on a wiki.

On architects in agile projects: A study among 10 professionals [22] revealed the
existence of three types of architects: one on the client side (software architect), one
with management functions (solution architect), and one responsible for the actual
implementation in the team (management architect). The first and the latter roles are
proposed also in [2,8]. The high-level architecture would be drafted by the software
architects and the design decisions and concrete architecture by the implementation
and solution architects.

3.2 Literature on Teaching Software Architectures

A course focusing on the analysis and evaluation of software architectures and building
a knowledge-base for their design is presented in [4]. The course is targeted at master
level students and presents the main ingredients of classical software architecture
courses. The authors of [5] classify the courses on software architectures as either focus-
ing on the “tools” to design software systems (patterns, languages, etc.) or focusing on
communication aspects of software architectures. They discuss their experiences from
two master-level courses focusing on the communication aspects. The objectives of the
courses are to teach selection and development of architecture views and architecture
assessing and do not incorporate system development activities. The courses follow an
architecture-centric approach, where stakeholders should be involved and functional and
non-functional requirements are simultaneously addressed during the architecture de-
sign process. In [6], the problems of teaching software architectures in academic, non-
industrial settings are identified. As main challenges are seen the isolated nature of an
academic course and therefore the lack of realistic context (starting from scratch, non-
existent stakeholders) and the lack of the inherent fuzziness and complexity of industrial
scenarios. Furthermore, as the authors point out, the students lack the experience of
solving complex design problems and profound knowledge for the application domain.
The authors describe an advanced master-level course designed to teach software archi-
tecting as a team effort in a complex problem environment. The architecting team re-
ports to a “Board” (formed by staff members) which considers the solutions and makes
choices. The board exemplifies to some extend the multiple stakeholders, working in
context challenges delineated above. In [7], a course on tackling software architectures
in agile projects is presented. The approach in [7] provides us with valuable directions

162 S. Angelov and P. de Beer

on architecting in agile projects. However, our course setup leads to different pedagogi-
cal goals and challenges (which we discuss in Section 4.1). In [23], an agile software
development project course is described, where architecting activities take place in
week 3. However, the architecting issues in agile projects are not extensively discussed.

3.3 Industry Study

In total, 12 companies implementing some form of agile software development (pre-
dominantly Scrum) were interviewed by students using a standardized questionnaire.
The companies were small (3-4 developers), medium, and large (e.g., a bank). Inter-
views were held with developers, scrum masters, and project leaders. Naturally, the
architecting practices varied substantially among the companies, depending on their
domain, maturity, size, etc. Ten of the companies spend dedicated time in the begin-
ning of the project to shape the overall architecture. One company does it on the fly
and one does not spend time on architecting. One company has a two-step process of
architecting. They discuss first a “functional architecture” with the Product Owner
and then they elaborate a “technical architecture”. Documenting of architectures va-
ries from documenting at the beginning of a project (3 companies), per sprint (5 com-
panies), or at the end if necessary (2 companies). Generally, the aim is to minimize
documentation effort. One company stated that documentation effort depended on the
project client and the team. As minimum companies document components/structures
and their relations. One company stated explicitly that they document the architecture
design choices. At one company is made use of a wiki for the architecture documenta-
tion. In [24], the experiences of a partner company of our school (among those inter-
viewed) are reported. It is strongly advocated that quality attributes, architecture envi-
sioning and system architecting are paid substantial attention from the beginning of
the project, having in mind to only document what needs to be documented.

4 Course Design

Next, we present our main pedagogical considerations, the decisions that we made,
rationale behind them, and the course setup.

4.1 Considerations

Our course design was influenced by a set of situational factors (as defined in [25]):

• General context: Our curriculum implied the application of an architecture-centric
approach in the course (similar to the approaches in [5] and [7]).

• Characteristics of the learners (second year bachelor students):
─ capabilities: The Dutch education system predefines the students of applied

universities as students predominantly interested in applying knowledge. This
opens opportunities for students who are less inclined to reflect on the theoreti-
cal aspects of a problem, but it does not exclude students with capabilities for
deeper reflections.

 An Approach to Software Architecting in Agile Software Development 163

─ motivation: A student needs to be motivated during the course for achieving best
learning results. Our students motivation is heavily influenced by the project
case (realism, comprehension), degree of challenge (too easy or too difficult
projects demotivate students), practical relevance of the course activities, and
direct knowledge application.

─ maturity: As indicated in literature, junior developers (and even more bachelor
students in an applied university) have difficulties in reflecting on architectural
decisions due to their lack of experience and knowledge [6,13].

• Nature of the subject (architecting in agile projects): The project context defines
the reasons to conduct architecting activities explicitly and in an organized manner
[8,18]. To create an architecting suitable context, a project needs to be of sufficient
complexity [6]: big enough, involving several quality attributes and should offer
room for taking non-trivial architectural decisions (non-stable architecture) [8,16].
The project needs to be with relatively predictable requirements [20]. A desired
contextual factor is team distribution or other communication or coordination hin-
dering factors [2].

4.2 Course Design Decisions and Rationale

Based on the literature and industry input, and the situational factors discussed in
Section 4.1, we have taken a number of decisions for our approach.

• Project case: We have decided to offer several cases to address the motivation
factor. Students are allowed to choose the case that motivates them the best. The
cases differ in degree of complexity (to address the diversity of student capabili-
ties) and in types of architectural challenges offered (team distribution, room for
architectural decisions, number of quality attributes, etc.).

• Process organization: We have decided to introduce an architecture role (as sug-
gested in [2,22,26]) in order to anchor the architecting activities with clear respon-
sibilities and to stimulate the professional development of students (related to the
general context factors). This role is assigned to a volunteering student from the
group for the project duration.

• Architecture elicitation:
Similar to the approach in [7], we have decided to dedicate explicit time for the ar-
chitecture design activities in the beginning of the project as there architecting
would take place anyway [8] (see Section 4.3, week 1 and 2). In addition, in each
sprint, the teams revisit their architecture and if needed adapt it.

• Documenting:
─ When: We have decided to dedicate time in the beginning of the project for the

documentation of the initial architecture design (document rationale early and
throughout the project [21]) and to stimulate documentation of architectural
changes at the end of each iteration.

─ What: As minimum, we require documentation of a list of stakeholders identi-
fied, their concerns (based on [27]), a high-level architecture and rationale for
the decisions made [14]. This content was selected as it is of direct value for the

164 S. Angelov and P. de Beer

Product Owner [8] and is therefore realistic requirement (related to the motiva-
tion factors). Following the agile principles, the teams could (but not necessari-
ly) document detailed design aspects (class diagrams, sequence diagrams, data-
base models, etc.) if they perceive this as relevant and useful for the team or
needed in the context of the project.

─ Why: To motivate documenting in addition to the practical relevance stimuli, we
introduced a number of stimulating contextual factors. As part of the school in-
ternational activities, one project case involved co-operation on the project with
Finish students (introducing team distribution [8]). A second project case stimu-
lated the involvement of two or more groups working on it, introducing com-
munication and synchronization challenges (which foster documenting). A third
case involved a real client, which makes documenting a needed activity. Last
but not least, the need was introduced for the PO to be able to quickly look-up
architectural choices per group (as the PO has to switch between numerous
groups loosing track of the group choices).

─ Where: We offered the teams to document either in a traditional document or in
wiki page in the agile management tool aiming at reducing the risk of decoupl-
ing the development process from the architecture document [22,28]. We did
not offer to include the stakeholders’ concerns in sprint backlogs as concerns
live beyond a sprint.

─ How: The teams were allowed to document minimalistic and efficient (e.g. pho-
tos of drawings instead of diagrams) in alignment with the agile lean principles.

• Backlog content: To support the team in managing their workload, we allowed
them to put in the sprint backlog architecting activities [29]. As students are unex-
perienced in having options to consider and in making choices, we encouraged
them to plan architecture and technology spikes (related to the maturity factor).

4.3 Course Organization for the Architecting Activities

Next, we describe the organization of the architecting activities within PTS4.

1. In week 1 (4h), the students form groups, familiarize themselves with the set of
available cases, select a scrum master and an architect. The existing knowledge on
software architectures is revisited, focusing on stakeholders, non-functional re-
quirements and their interplay with the architectural decisions. After the selection
of a case, each group, in a discussion with the PO, identifies and lists the stake-
holders and their business goals. Next, in a discussion with the PO, the project
backlog is populated with user stories. Throughout the week, the architects in col-
laboration with the rest of the team need to elaborate an architectural proposal with
rationale for the choices made. The reason to expand this activity beyond the les-
son is that students need time to reflect on the problem, to research possible solu-
tions and their advantages and disadvantages. Team members may be involved in
elaborating detailed designs when a team decides to do so.

2. In week 2 (4h), the architects present their proposals to the PO (the high-level ar-
chitecture and the rationale for the choices made). The PO reflects on the proposal.

 An Approach to Software Architecting in Agile Software Development 165

The discussion is centered around the interplay between the stakeholders’ goals
and the architecture proposed. In the rest of the lesson time, the team works on the
scrum-related activities (e.g., estimates user stories, prepares sprint 1).

3. In week 3, the PO may make certain adaptation to the sprint backlog and the team
can begin working on the sprint tasks.

4. During the sprint or at its end, the team is allowed to adapt the architecture if
needed. The rationale for a change is recorded and is discussed with the PO.

5. At the end of the sprint and the beginning of the next one, the PO reviews the ar-
chitecture document (and if there were changes applied to it in the last sprint). The
team and the PO reflect on the architecture and the stakeholders concerns - are
changes needed, are the architecture choices still in compliance with the goals, etc.

Steps 4 and 5 are repeated for each sprint. The final architecture document/wiki is
handed in in week 18 and the architecting process and decisions are revisited in a
discussion with the Tutor.

5 Initial Experiences and Lessons Learned

We have applied our approach for the first time in the beginning of 2015. 64 students
in 12 groups with 2 teachers acting in the role of PO were involved in the experiment.
The students were offered three cases: CIMS (Crisis Information Management Sys-
tem) representing an architecturally complex case, PhotoStore (representing an archi-
tecturally less challenging case), and The Hub (a system comparable to the PhotoS-
tore system but requested by an actual client). The international project planned as a
distributed effort was not included in the experiment due to organizational problems
in it. Five groups have chosen to work on the CIMS case (of which 3 in a collabora-
tive project), 1 group executed a project for a real client and 6 groups selected the
PhotoStore case. Currently, the project is in its 10th week.

The explicit focus in week 1 and 2 on the architecting activities had a clear, posi-
tive effect. Compared to earlier course executions, the students spent time on the
software architecture and the decisions were made in a conscious way in discussions
with the PO. Input and questions from the PO resulted in changes of initial choices or
in their better argumentation. The students have realized (and stated this) that stake-
holders have different perspectives and may have conflicting concerns. One PhotoS-
tore group and 2 CIMS groups needed also week 3 for architecture elicitation activi-
ties. Our conclusion is that the work on the major architectural choices may be given
space also in week 3 of the project. The CIMS groups left architectural choices open
for later sprints where more time would be available to accumulate knowledge and
where the context would be better known (e.g., push/pull strategy between certain
components). The three collaborating CIMS groups stated explicitly that the architect-
ing activities helped them in coming to a common understanding of the system struc-
ture and for the work division among the teams. In Sprint 2, several of the groups
needed to revisit their initial choices. For example, in a CIMS group a new type of
client application had to be added and in a PhotoStore group, a desktop client needed
to be added to the initially envisioned web solution.

166 S. Angelov and P. de Beer

In terms of documentation, the needs of the PO and the team needs were the main
driving factor to document. Several teams have documented class diagrams and one
group has discussed classes but did not document them. The general feeling among
students was that class diagrams had little value for them and only one group using
the Spring framework needed them. They have acknowledged that they have docu-
mented them influenced by previous school requirements. Most groups made ERD
diagrams claiming that this was important for the team synchronization and commu-
nication. All CIMS and PhotoStore teams had difficulties in communicating their
architectural choices to the PO and documenting them. They found it difficult to
translate the desired quality attributes into relevant architectural decisions. At the end,
all groups used some variant of deployment diagrams accompanied by textual clarifi-
cations as a means to communicate their major architectural choices. However, dep-
loyment diagrams were unsuitable to express many of their choices which introduced
a communication gap with the PO. We conclude that the refreshing lecture needs to
focus on the high-level nature of architectures and be extended with information on
functional modeling [30] and with architectural patterns that address certain project
related quality attributes. In a discussion with the students, they have all approved this
conclusion. They have also pointed out that for the PhotoStore case the functional
modeling and patterns knowledge would be less crucial. The majority of groups have
documented their architecture decisions in a word document. One group used an ar-
chitecture wiki and one group resorted to photos in combination with diagram pic-
tures. The group working for an actual client did not document any of their decisions
in their first sprint. They were focused on making the decisions and discussing them
with the stakeholders instead of documenting them. The omission to document their
choices led to a misunderstanding with the PO and a delay of their project.

All groups embraced the inclusion of architectural activities in the backlog which
they saw as protective mechanism, explicating their work on non-coding activities to
the PO. The introduction of the architect role led to the explicit allocation of responsi-
bility in the group on the architecting activities and served as an additional stimuli for
the students to focus on architecting. The collaborating CIMS groups decided to have
architecting discussion with a limited number of team representatives. They have
involved the group architect and a second team member, limiting the discussions to a
group of 6 people (instead of 15 they started off with).

The offering of cases of higher and lower architectural complexity has proven a
valuable experiment. All groups felt sufficiently motivated. They could also work
within the scope of their architectural capabilities and interests. Clearly, the PhotoS-
tore case offers less architectural challenges than the CIMS case. This differentiation
in the architecting competences demonstrated by the students in the project would be
reflected in their personal development portfolios, currently adapted to reflect differ-
ences in competences demonstrated in a course.

6 Conclusions

We present an approach to introducing architecting activities in agile software devel-
opment projects in education. Our approach is based on industry and academic ap-
proaches to architecting in agile projects. The application of the approach has led to

 An Approach to Software Architecting in Agile Software Development 167

an improved and deepened treating of software architectures in the agile projects per-
formed by the students. The strategies selected to introduce and motivate architecting
activities in agile projects have proven to be effective and students have performed
the activities (e.g., deliberating, designing, documenting) with the realization of their
value for the project and in a non-enforced manner. We observed a knowledge gap in
our education which hindered the students in producing architectural views relevant
for the PO. This omission will be remedied in the next course execution.

The results presented in this paper are of value to other educational institutions
where agile software development projects are part of the curriculum. Our approach is
targeted to second year, applied study, software engineering students but it can be also
used in higher years with minor modifications.

References

1. Breivold, H.P., Sundmark, D., Wallin, P., Larsson, S.: What does research say about agile
and architecture? In: 2010 Fifth International Conference on Software Engineering Ad-
vances (ICSEA), pp. 32−37 (2010)

2. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and Architecture: Can They Coexist?
IEEE Software 27, 16–22 (2010)

3. Sharifloo, A.A., Saffarian, A.S., Shams, F.: Embedding architectural practices into
extreme programming. In: 19th Australian Conference on Software Engineering, ASWEC
2008, pp. 310−319 (2008)

4. Garlan, D., Shaw, M., Okasaki, C., Scott, C., Swonger, R.: Experience with a course on
architectures for software systems. In: Sledge, C. (ed.) Software Engineering Education,
vol. 640, pp. 23–43. Springer, Heidelberg (1992)

5. Lago, P., Van Vliet, H.: Teaching a course on software architecture. In: 18th Conference
on Software Engineering Education & Training, pp. 35−42 (2005)

6. Mannisto, T., Savolainen, J., Myllarniemi, V.: Teaching software architecture design.
In: Seventh Working IEEE/IFIP Conference on Software Architecture, WICSA 2008,
pp. 117−124 (2008)

7. Cleland-Huang, J., Babar, M.A., Mirakhorli, M.: An inverted classroom experience: en-
gaging students in architectural thinking for agile projects. In: Companion Proceedings of
the 36th Int. Conf. on Software Engineering, pp. 364−371. ACM, Hyderabad (2014)

8. Kruchten, P.: Software architecture and agile software development: a clash of two
cultures? In: ACM/IEEE 32nd Int. Conf. on Software Engineering, pp. 497−498 (2010)

9. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional (2012)

10. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions.
In: 5th Working IEEE/IFIP Conference on, Software Architecture, WICSA 2005, pp.
109−120 (2005)

11. de Boer, R.C., van Vliet, H.: On the similarity between requirements and architecture.
Journal of Systems and Software 82, 544–550 (2009)

12. Zimmermann, O.: Architectural Decisions as Reusable Design Assets. IEEE Software
28, 64–69 (2011)

13. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of architectural decisions – A survey with
professional architects. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 192–199.
Springer, Heidelberg (2013)

168 S. Angelov and P. de Beer

14. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE Software
22, 19–27 (2005)

15. Kruchten, P.: The past, present, and future for software architecture. In: Henk, O., Judith,
S. (eds.) IEEE Software, vol. 23, pp. 22−30 (2006)

16. Nord, R.L., Tomayko, J.E.: Software architecture-centric methods and agile development.
IEEE Software 23, 47–53 (2006)

17. Lindvall, M., et al.: Empirical findings in agile methods. In: Wells, D., Williams, L. (eds.)
XP 2002. LNCS, vol. 2418, pp. 197–207. Springer, Heidelberg (2002)

18. Davide, F.: Peaceful coexistence: agile developer perspectives on software architecture. In:
Giovanni, C., Salvatore Alessandro, S., Giuseppe, C., Paolo, S., Cristiana, D.A. (eds.)
IEEE Software, vol. 27, pp. 23−25 (2010)

19. Coram, M., Bohner, S.: The impact of agile methods on software project management. In:
12th IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS 2005, pp. 363−370 (2005)

20. Boehm, B.: Get ready for agile methods, with care. Computer 35, 64–69 (2002)
21. Clements, P., Ivers, J., Little, R., Nord, R., Stafford, J.: Documenting Software Architec-

tures in an Agile World. Technical Note CMU/SEI-2003-TN-023, Carnegie Mellon
University (2003)

22. Babar, M.A.: An exploratory study of architectural practices and challenges in using agile
software development approaches. In: Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture, WICSA/ECSA 2009,
pp. 81−90 (2009)

23. Lee, J., Kotonya, G., Whittle, J., Bull, C.: Software design studio: a practical example. In:
37th Int. Conference on Software Engineering (ICSE 2015), pp. 47−55. IEEE (2015)

24. Schoeber, G.: Architecture and agile, friends or enemies? (presentation). In: SATURN
2010, Minneapolis, MN (2010)

25. Fink, L.D.: Creating Significant Learning Experiences: An Integrated Approach to Design-
ing College Courses, 2nd edn. Jossey-Bass (2013)

26. Faber, R.: Architects as Service Providers. IEEE Software 27, 33–40 (2010)
27. Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures. Technical

Report CMU/SEI-2005-TR-021, ESC-TR-2005-021, Carnegie Mellon University (2005)
28. Clerc, V., Vries, E.D., Lago, P.: Using wikis to support architectural knowledge manage-

ment in global software development. In: Proceedings of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge, pp. 37−43. ACM, Cape Town (2010)

29. Madison, J.: Agile Architecture Interactions. IEEE Software 27, 41–48 (2010)
30. Brinkkemper, S., Pachidi, S.: Functional architecture modeling for the software product

industry. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 198–213.
Springer, Heidelberg (2010)

	An Approach to Software Architecting in Agile Software Development Projects in Education
	1 Introduction
	2 Context and Status
	3 Sources of Inspiration
	3.1 Literature on Software Architectures and their Usage in Agile Projects
	3.2 Literature on Teaching Software Architectures
	3.3 Industry Study

	4 Course Design
	4.1 Considerations
	4.2 Course Design Decisions and Rationale
	4.3 Course Organization for the Architecting Activities

	5 Initial Experiences and Lessons Learned
	6 Conclusions
	References

