
Opening the Ecosystem Flood Gates:
Architecture Challenges of Opening Interfaces

Within a Product Portfolio

Slinger Jansen(B)

Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
slinger.jansen@uu.nl

Abstract. Technology firms are increasingly opening up their products
to develop an active ecosystem of developing partners around it. Both
opening up products and organizing a developer ecosystem around an
organization are non-trivial. In this paper we provide a case study of
a leading communications technology firm that opened up and plat-
formized 11 product lines. First, we identify and describe four archi-
tecture patterns that are applied multiple times across these product
lines. Also, the software ecosystems initiative is centralized in one central
department, which has created a central knowledge hub for the creation
of a software ecosystem. We highlight the guidelines collected by the cen-
tral department, to assist technology firms in the platformization process
and support them in their own software ecosystem creation efforts.

Keywords: Software platforms · Software ecosystems · APIs · Case
study · Extendible product lines · Extension patterns

1 Introduction

The creation of partner and developer ecosystems around IT companies is gain-
ing interest rapidly. IT companies observe the successes that can be achieved
with app stores, hackathons, open source developer communities, and other ini-
tiatives that drive software ecosystems. The creation of an ecosystem around a
traditional IT product, however, is far from trivial and IT companies are looking
for approaches to open up their products and have them adopted by communi-
ties of active developers who wish to co-innovate and share in the wealth created
by the products and its auxiliary materials.

IT companies aim to create active developer communities and ecosystems
around their products. We define developer ecosystems as a set of software
developers functioning as a unit and interacting with a shared market for soft-
ware artefacts. We ask the reader to observe the parallels between the definition
on developer ecosystems and the definition on software ecosystems: a software
ecosystem is a set of actors functioning as a unit and interacting with a shared
market for software and services, together with the relationships among them [7].

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 121–136, 2015.
DOI: 10.1007/978-3-319-23727-5 10



122 S. Jansen

We also state that the term (open source) developer ecosystem is a synonym for
(open source) developer community [2].

The research domain of software ecosystems is still in its infancy [10].
Researchers and IT companies are curious about new theories, methods, and
techniques for the initiation, development, and grooming of software ecosystems.
As such, there is an urgent need for examples and case studies that exemplify
excellent practices, for theory formation and for teaching practitioners lessons.

Large IT companies are currently launching and running developer ecosys-
tems. The challenges for a large IT company compared to a web start-up, how-
ever, are much larger, as large IT firms typically have many products organized
in product lines, whereas a small web start-up will only have one or two domain
APIs that need to be opened up. From this crucial difference, many new chal-
lenges arise. First, a small web start-up will start with a blank slate, whereas
a large IT company has different product lines that may already be involved in
supporting a software ecosystem of its own, with varying success and stages of
maturity. Furthermore, due to the large range of different technologies that are
adopted by a large IT firm over time, different entry points are required for each
product, different types of participants are active in the ecosystem, and different
business models need to be applied over those different products.

In this paper a case study is presented of an IT firm with a large product
portfolio that with one initiative is hoping to open up ecosystems around a large
set of its products. The lessons provided stem mostly from the software archi-
tecture domain: we illustrate how a product portfolio can be opened up using
a generic platformization approach. Enabling an ecosystem requires a level of
openness for a platform: without any extension mechanisms for third parties it
is practically impossible for a software ecosystem to exist [1,6]. The openness
level of a software platform is also a powerful tool for platform owners, as their
choices determine the flexibility and extendibility of the platform, and subse-
quently of the ecosystem. A platform that is too open runs the risk of giving
away its competitive uniqueness for free, whereas a platform that is too closed
risks not being interesting enough for platform extenders in the ecosystem. The
platformization approach is explained using four architectural extension patterns
that were applied 21 times across 21 products.

We continue this paper with a description of the case study and the use
of grounded theory for explorative research in Section 2. In Section 3 the case
of NetComp is described. A detailed description is provided of the implementa-
tion of the software ecosystems initiative at NetComp: the managerial approach,
the technical approach, and the developer ecosystem approach are discussed. In
Section 4, four product extension patterns are described and details are provided
of the historical background of the technologies provided at NetComp and on
how the patterns were influenced by technological and strategical advancement
of NetComp. To illustrate the observed patterns, NetComp’s Telepresence prod-
uct line is used to illustrate the observed patterns in Section 5. In Sections 6
and 7 we analyze the efforts at NetComp and identify the challenges of under-
taking such an initiative: both from the architecture and managerial perspective.



Opening the Ecosystem Flood Gates 123

Finally, we summarize our findings in Section 8 and hint towards a catalog of
extensibility patterns that describes the different methods that can be used to
extend a software product into a platform.

2 Case Study Method

Context: The context of the case study is NetComp (company and depart-
ment names anonymized), a relatively young international firm that produces
hardware and software products for enterprise and carrier communications. The
firm has around 200,000 employees and is growing rapidly. The company has a
worldwide presence.

Case Study Type: The case study can be seen as a participant case: the first
author has worked alongside the FloodGate Department, a department that is
burdened with the ecosystem initiative of the company. The main responsibility
of the FloodGate Department is to expose current products to the developer
ecosystem of NetComp and to build out the developer ecosystem. Please note
that alongside the FloodGate Department are more commercial departments
oriented around partnering, business models, etc. The FloodGate Department
mostly deals with technical issues, development documentation, and the devel-
oper ecosystem. Please also note that the researcher was not involved in any of
the decisions described in this paper, as his work focused more on the growth
and grooming of the developer ecosystem.

Unit of Analysis: The units of analysis for this study are the architectures
and extension points for each of the products in the product lines. Furthermore,
the FloodGate Department and its responsibilities have been a unit of analysis
as well.

Method: The data about the products and architectures has been collected
through interactions with the FloodGate Department and in some cases through
direct interaction with the product units. Also, several interviews with extending
partners have taken place. The case study has been exploratory: multiple topics
for study have been extracted. The current report (i.e., this paper) is the first in
a set of reports. The methods followed were document study, interviews, inter-
actions through the in-company chat system, and frequent e-mail interaction.
The communication through digital channels helped solve translation issues. In
all of the interviews different translators were present. The interviews have been
recorded. Through inductive reasoning, topics have been extracted, highlighted,
and grouped, using a digital folder system. For the study at hand, document
study has been the main source of the material that is presented.

3 Case Report: Studying 11 Product Lines in NetComp

The starting point for this research has been the FloodGate Department. The
FloodGate Department is a horizontal department in NetComp that is respon-
sible for the ecosystem initiative of NetComp. The FloodGate Department was



124 S. Jansen

founded to create one unit within the company that is dedicated towards enabling
partners to extend the most successful products of NetComp. As NetComp has
a huge product portfolio, the unification of these efforts results in a knowledge
hub on the creation of extendible interfaces for software and hardware products.
The end goal of the FloodGate Department is to create welcoming and open
software ecosystems for partners to participate in.

The FloodGate Department has been built upon several loose initiatives
in the product lines to make their products extendible. The product lines for
unified communications, for instance, had been creating extendible products and
platforms for several years already. Currently, the FloodGate Department opens
up capabilities in 11 product lines, in more than 20 products. These product lines
have amassed between tens and hundreds of ISV and implementation partners
(i.e., extension builders) that are dependent on NetComp products for their
revenues.

As the FloodGate Department has executive backing, many product units
have found a strategic partner in the FloodGate department: their resources are
not influenced by one product’s success and they have the knowledge on how
to open up any kind of product. Some product lines were reluctant to support
the FloodGate initiative at first, but as time progresses, they too see that the
FloodGate Department plays an important and strategic role in enabling product
units to build their own partner network.

The FloodGate Components consist of the different software components that
are managed by the FloodGate Department. These components are FloodGate
servers, which are typically installed alongside NetComp products, extension
libraries (JARs and other SDKs), and controls (like OCX controls). Another
important concept in the case study are the FloodGate Labs, where partners can
remotely test their software against NetComp hardware. These labs are located
in one office building and contain hardware test set-ups that can be worked with
in a timesharing manner. The FloodGate Labs are described in Section 3.2.

3.1 Joining the FloodGate Initiative

The FloodGate Department supports eight programming platforms (.Net,
C(++), Java(script), Ruby, Delphi, JSP, PHP, and Python) and six operating
systems (iPhone, Android, Linux, OpenSuse, Windows, and Mac OS X). This
variation has mostly been evolutionary: as new product lines join the FloodGate
initiative they are bringing in new domain specific technologies. It is important
to note that in many cases the FloodGate Department does little more than
provide documentation and an open interface for the products. The responsi-
bility for the product and its interfaces remains with the product departments,
although in quite some cases the FloodGate Department has inherited the soft-
ware development of complex extension servers (more on this in Section 4).

NetComp supplies funding to both the product team and the FloodGate
Department for each new product that starts creating FloodGate Components.
There is no formal procedure for joining the FloodGate initiative, but the pro-
cess is based on common practices. The process consists of the following steps:



Opening the Ecosystem Flood Gates 125

(1) Assess suitability of the product, (2) design new architecture for the prod-
uct to enable an open extendible platform, (3) publish the products’ FloodGate
Components (typically an SDK). In the case of some strategic products, the
FloodGate Department has initiated the collaboration themselves. The organi-
zation does currently not evaluate the financial results of opening up parts of
products. The ecosystem initiative is strategic and is assumed to be useful for
the whole firm. As it is hard to predict whether some of the products are going
to be successful as platforms, NetComp mostly works on feedback from partners
and channel managers.

In a typical case, the FloodGate Department is approached by a product
unit first. They will explain their needs for extension, the (potential) size of
the partner network, and the efforts they think are required to open up their
products and platforms. The FloodGate Department assigns a project leader
to the product unit, who from then on is responsible for all contact with the
product unit. The project is started and an inventory is made of the efforts
required to open up the products. Ideally, the FloodGate Department deploys
their FloodGate server software next to the products and platforms and uses
this server as an abstraction layer between the product unit’s products and the
extensions built by partners. The FloodGate Department and the product unit
develop the capabilities in lock step: first the product is opened up further,
and then the FloodGate components (more on these later) are evolved. When
the software is considered ready for publication documentation is created on the
FloodGate ecosystem hub, a web site where partners are gathered and supported.

As the platform is adopted by partners new responsibilities are introduced.
The FloodGate Department remains responsible for the maintenance and devel-
opment of the extension software, its co-evolution with the products, and partner
support. The product units remain responsible for the development and mainte-
nance of the products and the support of partners from a commercial perspective.

The commercial departments of specific products are responsible for man-
aging partners. The FloodGate Department is responsible for solving technical
problems that partners face. Unfortunately, there is little to no sharing contact
data between the business departments and the FloodGate Department, which
leads to two separate databases with partners, i.e., those that collect incentives
from the business departments versus those that ask questions to the Flood-
Gate Department. Both the business departments and FloodGate Department
are calling for a unified partner management system. The responsibilities are
mapped out in Table 1.

The FloodGate Department is responsible for receiving extensibility and prod-
uct requests from partners. The project leaders in the FloodGate Department
forward the product related questions to the product units and implement the
extensibility requirements where possible. Product management is in the hands
of the product units. The FloodGate Department is responsible for opening up
the architecture, but the interfaces have typically been prepared by the product
departments. Interestingly, some of the product units are no longer independently



126 S. Jansen

Table 1. Responsibilities divided between product units versus the FloodGate Dept.

FloodGate Department Product Departments
Product management
Release planning One week after each product

release.
The product departments release
their versions independently.

Requirements engineering From the product departments and
partners.

From partners and end-customers.

Extendibility requirements From the product departments. From partners.
Software delivery Independently delivers compo-

nents.
Independently delivers products.

Development and Support
Architecture development Gives guidelines in regards to inter-

faces required.
Develop their own product based
architecture.

Error messages From the FloodGate Components. From the internal components.
Documentation About FloodGate Components. About the product.
Support To the product departments and to

partners.
To the partners (product related)
and customers.

FloodGate Labs Completely responsible. Helps FloodGate Dept. setting up
the products in the labs.

Business aspects
Partner management Developer community. Partner community.
Financial responsibility Centrally coordinated. Revenue based.

planning new features for their products, but involve a mixed team with members
from the FloodGate Department.

When a new version of a product is released, the FloodGate Department typ-
ically responds within one week with an update to the extensible components as
well. As the FloodGate Department is kept up to date of a product’s progress
and release schedule, they are developing the extensibility components parallel
to the product development. In many cases they FloodGate Department can
release on the same day as the product unit does. The FloodGate Department
is somewhat hard to manage because of this: as the product release schedules
are not coordinated, the FloodGate Department has different work loads at dif-
ferent times. The FloodGate Department and the product department organize
meetings between once and twice per month to coordinate new releases, new
development efforts, and ecosystem challenges.

3.2 FloodGate Labs

The ecosystem enablers that may be beneficial for one product are not beneficial
for another. For example, some of the products in NetComp, such as IP Cameras
and routing equipment, require access to test hardware. NetComp prides itself
for providing access to a large laboratory in the cloud, that can be approached
by partners at specific times (effectively timesharing the lab). Partners positively
evaluate this practice, as they do not need to procure expensive test setups for
their own development. NetComp leverages its own IP camera system to show
that the hardware controls being called from the lab actually have the desired
effect by pointing IP cameras at the hardware, such as servers, switches, and
ironically, IP cameras. Please see figure 1 for an example of a movable IP camera
that is used to monitor servers in the FloodGate Labs.



Opening the Ecosystem Flood Gates 127

Fig. 1. An IP camera is pointed at a piece of hardware to show API users that the
device status changed according to their calls. The IP camera can be moved to look at
other adjacent devices as well with simple controls.

For some of the software intensive systems this is not beneficial, however,
as it can be less cumbersome to just buy the required hardware or create a
virtualized test setup. Partners complain that many of the platforms in the
organization can be tested in a virtualized environment or through simulators
as well. NetComp is currently building such simulators, to make partners less
dependent on FloodGate Labs.

4 Product Extension Patterns

NetComp has always specialized in manufacturing hardware devices, such as
routers, switches, and IP cameras. As time progressed and the organization
became more mature, multiple abstraction layers have been required over the
devices. This can be found in, for instance, the telepresence system that has
an advanced management interface that can plan telepresence meetings across
a network of telepresence devices, or the abstract datacenter management layer
that can control several storage servers simultaneously. In NetComp four levels of
abstraction have been observed. The levels of abstraction are found in Figure 2.

– Server Level - NetComp has traditionally manufactured servers. The soft-
ware interfaces to those servers were always of concern, but as in the early
years many of the implementation projects were in fact done by NetComp,
these interfaces were usually in poor shape in terms of software quality.
As the market for software has become more commoditized, however, these
interfaces to servers have become better managed, higher quality, and acces-
sible by third parties through APIs.

– Server Management Level - As NetComp grew, there was an increasing
need for management infrastructures that controlled large numbers of device
servers, such as IP cameras, routers, and storage servers. These management



128 S. Jansen

infrastructures typically use existing protocols for controlling devices, such as
the Simple Network Management Protocol, and can interface with hardware
from other suppliers as well.

– Federated Servers Level - As NetComp started orienting towards more
advanced markets and specifically targeting larger enterprises, new require-
ments were introduced for telepresence, single sign-on, and device man-
agement. Whereas before it could focus on building the best IP camera,
it now has to focus on providing “the best” federated infrastructures for
heterogeneous hardware, both from NetComp and third party hardware
providers. NetComp currently provides several such federated infrastruc-
tures, for instance for unified communications, equipment dedicated to com-
munication in a specific communication bandwidth, and IP cameras. These
federated infrastructures typically consist of several software solutions on
different servers, but are conceptually unified into one coordinating server.

– Advanced UIs Level - At the highest level of abstraction, NetComp
enables mobile and other advanced interfaces to the federated infrastruc-
tures. This, for instance, enables the creation of NetComp applications for
Smart Cities, such as a mobile app that can control a set of federated IP
cameras or desktop apps that can control alarms across server federations.

Server A.1

FloodGate API

FloodGate API

Coordinating Server

Server A.2

FloodGate API

Mobile App

FloodGate SDK

Pattern A

Pattern B

Pattern D

FloodGate API
Federated 

Coordination Server
Pattern C

FloodGate API

Coordinating Server

Server B.1

FloodGate APIServer 
Level

Servers 
Management 
Level

Federated 
Servers Level

Advanced UIs 
Level

Fig. 2. Three extension patterns are found multiple times in the products of NetComp.
The patterns are applied multiple times across different products and product lines.

Figure 2 shows more than just the levels of product abstraction that Net-
Comp offers. It also models the four different extension patterns that are
employed by the FloodGate Department to open up NetComp’s products. In the



Opening the Ecosystem Flood Gates 129

following overview, each of the extension patterns is described. The overview is
summarized in Table 2.

– Extension Pattern A: Simple Server Extension - To provide third
parties with opportunities for controlling and interacting with NetComp
hardware, many of the hardware products can be extended with a simple
server. Several different mechanisms are applied to open up the servers. In
some cases a software switch can be flipped, but more frequently, a separate
JAR needs to be deployed on the hardware to open up its capabilities.

– Extension Pattern B: Coordinating Server Extension - In the case
of coordinating servers, the patterns and technologies used are similar to
that of Pattern A. In many cases, however, this feature is provided and
switched on automatically. It is interesting to see that for Pattern A the
technologies used are technologically close to the device (i.e., JARs for Java
servers, DLLs for Windows based servers, etc.) whereas for Pattern B more
abstract technologies are used, such as SOAP and REST.

– Extension Pattern C: Federated Server Extension - Federated
servers are powerful mechanisms that can abstractly control heterogeneous
devices in a network. These federated servers are even more frequently used
for extension by customers and partners, as these are able to control all the
customer’s devices. These “servers” also are closer to the end-user. An exam-
ple is the Bring Your Own Device solution, which provides access to different
features in that domain, such as a single-sign on server, an asset manage-
ment solution, and a software repository for mobile devices, also known as
enterprise app stores.

– Extension Pattern D: Advanced User Interface Extension - To
provide access to the different infrastructures in the enterprise, NetComp
supplies different SDKs and even reference implementations for customers
and partners. Examples of such SDKs are the telepresence control SDK for
Android and iOS, enabling the development of apps that allow for initiation,
planning, execution, and termination of telepresence calls. Many of the apps
built by partners are geared towards end-users, even though the SDKs are
typically open and allow for much more.

One extra way of extending NetComp products is through third party plat-
forms and products, such as Outlook, VMWare, OpenStack, Microsoft Lync, etc.
NetComp supplies software that already extends these platforms. It is interesting
to see that as we move up to higher levels of abstraction, more abstract proto-
cols and technology-agnostic extension mechanisms are found. Whereas at the
lowest level controls are typically built in highly technologically native environ-
ments (Java SDKs, linux libraries, etc.), at the higher levels mechanisms become
increasingly abstract (REST, SOAP). This is in part caused by the time at which
these higher level abstractions were built, but also because more partners require
different types of technologies for integration at higher levels.



130 S. Jansen

Table 2. The observed extension patterns, their occurrences (in a total of 21 extendible
components), and the observed technologies at NetComp. Please note that for some
product lines multiple extension patterns are observed. In Section 5 all four are observed
in one product line.

Occur. Extension mechanism Extension technol-
ogy

Pattern A:
6

1. Turn on software switch Standalone executable,
JARs, .so libraries,
powershell libs, DLLs

Simple Server Extension
2. Deploy server on device
3. Deploy server on another device

Pattern B:
3

1. Turn on software switch
Standalone executable,
JARs, SOAP, RESTCoordinating Server Extension

2. Deploy server on device
3. Deploy server on another device

Pattern C:
4

1. Deploy server on another device Standalone executable,
JARs, SOAP, REST,
SNMP, Python

Federated Server Extension 2. Buy secondary dedicated device

Pattern D:
8

1. SDKs for (mobile) apps
Android, iOS, OCXAdv. User Interface Extension 2. Provide client controls

5 Illustrative Case: The Telepresence Product Line

One of NetComp’s most successful product lines is the telepresence. Net-
Comp manufactures many different systems for this domain: from HD television
mounted cameras to smart microphone and speaker interfaces. These systems
are most effective when they integrate well with the infrastructure of a cus-
tomer organization. Meetings must be planned through office applications such
as Outlook, for instance.

Traditionally, managers of telepresence systems performed their operation
and maintenance tasks through the NetComp Service Management Center
(SMC), a server that is dedicated to the detection and management of telepres-
ence devices. The SMC can directly access features of the telepresence devices
and execute device-specific commands, such as start, stop, and record commands.

As customers started developing their systems, however, they also attempt
to integrate other NetComp (generic IP cameras) and third party hardware (HD
videoconferencing). NetComp added a component to their SMC called the Con-
verged Gateway: a product that enables interaction through a unified interface
with other (sometimes non-telepresence) devices.

In the scope of the FloodGate initiative, the capabilities of the devices, the
SMC, and the converged gateway are opened up for extension by third parties.
This is done through the FloodGate server, which is independently deployed in
the IP network. The FloodGate server can be approached directly with SOAP
calls. Furthermore, there are JAR libraries available to quick start third par-
ties with the development of the advanced choreographies that are necessary to
negotiate advanced telepresence scenarios. The JARs available concern mostly
the SMC, but also contain more high-level abstractions, with the most inter-
esting one being the eHealth JAR, containing specific capabilities for remote
health care.

The network deployment of the telepresence components is modeled in
Figure 3. Extenders have the option to approach the FloodGate server through
the SDK or through its direct API, using SOAP. There exists a link between the



Opening the Ecosystem Flood Gates 131

FloodGate server and endpoint telepresence devices in the network, but this is no
longer documented, as extenders are advised to use the SMC interface. It is inter-
esting to observe that the extension patterns identified in Section 4 are all found
in the telepresence product line. First, the simple server extension pattern
is found in the fact that it used to be possible to directly address endpoint devices
in the telepresence deployment. Secondly, the coordinating server exten-
sion pattern is found in the SMC extension possibilities. The SMC controls the
whole deployment of telepresence devices and through its FloodGate interface
can be controlled by a third party application. Thirdly, the federated server
extension pattern is found in the converged gateway, enabling hardware from
others and non-telepresence devices, such as simple IP cameras, to also be con-
trolled by third parties. It must be mentioned that the converged gateway and
SMC are no longer deployed separately and are always deployed together. At
the highest level we observe the advanced user interface extension pat-
tern, as the JARs provided give third parties the opportunity to quick start the
development process and develop domain specific solutions, like the telemedicine
library offered.

FloodGate 
Server

Converged 
Gateway 
Interface

SMC 
Interface

Device 
Interface

Third Party 
Product

FloodGate 
SDK (JAR)

Fourth Party 
Product

SOAP

SOAP

HTTPS/JSON

IP Network
SMC

SOAP

Converged Gateway

Non-Telepresence 
NetComp Hardware and 
Hardware from Others

SOAP

NetComp Telepresence Hardware

Any protocol

Fig. 3. A typical telepresence network deployment and its extension possibilities. The
dotted line indicates that it is still possible to address telepresence devices directly, but
it is no longer supported or documented. Lines without a label indicate proprietary
protocols that are not visible to third parties.

6 Openness and Architecture Challenges

The FloodGate Department initiative is generally experienced positively by the
product departments. Product units get to focus on their product innovations,
while extensibility questions and partner support are delegated to the FloodGate
Department. Furthermore, as the FloodGate Department has strategic support
in the organization, much needed resources in the product units can be used for
“regular” product innovation. The centralized approach results into (architec-
tural) challenges that are experienced across different product units.



132 S. Jansen

How open is open enough? There is a constant discussion between part-
ners and NetComp about how open products are. For example, there is a rich
tool suite for unified communications, that provides features such as instant
messaging, document sharing, voice chat, video chat, and screen sharing. The
tool suite is packaged into an extendible client. Partners are calling for modu-
larization, as they do not wish to use the client, but embed smaller features in
their own tooling, such as mobile applications. NetComp needs to strategically
evaluate such requests: is the call for such modularization going to add value for
customers? Will security be compromised? And can profit still be made when
partners can replace components so easily? These decisions are typically made
by the product lines, with support from the FloodGate department.

How must documentation be standardized for partners? One of the
biggest challenges for NetComp has been to standardize across the product units.
When looking at the documentation for 3rd parties, for instance, some of the
documents are supplied in .chm format (a documentation format that is specific
to Microsoft) whereas other documents are supplied through online web con-
tent management systems, and as Word documents. Furthermore, the look and
feel of the documentation is different across different products and sometimes
even for different documents (Java documentation versus C++ documentation,
in one instance) about the same product. An improvement initiative has been
undertaken to bring all documentation to the web.

How must error messages be handled, communicated, and sup-
ported for partners? One of the more interesting discussions at NetComp
is about error messages. As we were discussing the quality, findability, and
reproducibility of the error messages, it was quickly uncovered that there are
actually two different classes of error message: those that come from the Flood-
Gate Components and those that are generated by the products. The FloodGate
Department is responsible for the error messages generated by the FloodGate
Components, whereas the product units are responsible for the error messages
that are generated by these lower layers. The FloodGate Department is running
into problems with these: partners call with questions about product error mes-
sages, whereas they are only capable of answering questions in regards to the
FloodGate Components and their error messages. The FloodGate Department
needs a mandate to force product units to regularly update error message doc-
umentation and improve them where necessary. Simultaneously, the FloodGate
Department is responsible for providing the product units with an infrastructure
in which they can publish their error messages and documentation.

How must crashes propagate through the systems? When one of
the products crashes, the FloodGate Components, typically a separate server,
keeps running. The product units have not been instructed on how to inform
the FloodGate Components about crashes and the like. Partners are expected
to solve this problem themselves. Should a product crash, it simply becomes
unavailable to the FloodGate Components.

How must extensions be secured? In the communications industry secu-
rity is a major concern. The FloodGate Department architects are responsible for



Opening the Ecosystem Flood Gates 133

executing and checking security guidelines. These guidelines are well documented
and well managed in NetComp. The architects have three levels of security check
in place, which we cannot share for reasons of confidentiality. However, we are
allowed to illustrate some of the guidelines that are used by the architects. At
the first level, the architects look at data leaks, unlawful interception, and pri-
vacy protection. At the second level, the architects have more advanced steps,
like data encryption, attack and integrity protection, and log auditing. At the
third level, the architects apply tools like virus protection, security hardening,
protected installations, database hardening, and some guidelines for partners on
security. An interesting observation is that NetComp presently shares little of
this knowledge with partners, whereas partners can greatly benefit from security
audits. There are many ecosystem opportunities here: partners can be audited,
certified, and trained in the domain of security. NetComp is evaluating these
different options presently.

How must partners be convinced to deploy newer versions? As the
hardware running for customers is generally deployed and then left alone, so
are the FloodGate Components. This results in situations where the Flood-
Gate Components running on extendible hardware is running far behind the
most recent version, making it harder to develop against. It is, however, a chal-
lenge to convince partners to update the software running on the hardware and
its accompanying FloodGate servers without any business incentive. Simultane-
ously, however, when a customer wishes to acquire extended features through a
NetComp partner, all hardware drivers must first be brought up to date. The
FloodGate Department is working on a policy to incentivize partners to upgrade
software, even when there is no direct need for the partner to do so.

7 Analysis, Discussion, and Related Work

The FloodGate Department is relatively new: many product lines developed
similar interfaces before the FloodGate Department was implemented in full. It
is impossible to say whether the extension patterns were implemented indepen-
dently by the product units, although we have good reason to believe this to
be the case. It is even more interesting then, that such similar patterns evolved.
Parallels must be drawn to other systems for further research, but for now we
observe a common theme in software architecture: with the growth and expan-
sion of systems and offerings, so do the abstractions on top of them.

As the challenges are unfolded in this paper, one could even wonder what the
advantages are of having one large ecosystem initiative for all different product
lines. After all, there are so many challenges, that it may feel like trying to trap all
the different animals on earth unwillingly onto an ark. However, the participants
in the initiative indicate that their expertise at this point is unparalleled in the
company and that none of the product units would have the resources available to
undertake the initiative at its current speed. Another trend that keeps surfacing
is the “one organization, one ecosystem”: if a large partner extends different
products from different product lines, NetComp wants to be aware of this, as
that partner is playing a strategic role in the ecosystem.



134 S. Jansen

In earlier work, we have conducted similar studies. In the work on the extensi-
bility of mobile operating systems [1] we observed that mobile operating systems
are open and extendible, but that restrictions, rules, and abstraction layers pro-
tect the inner cores of mobile operating systems. This is true for NetComp to
a lesser extent: partners are expected to be ‘more responsible’ than mobile app
developers. Also, as there are simply fewer extending partners than there are
mobile app developers, NetComp does not have the resources to test and harden
every interface, albeit with an exception for security aspects.

In the work on pragmatic reuse [4,5] in start-up companies, we observed eight
different pragmatic extension patterns. The pragmatism is found, for instance,
in the fact that these start-ups would sometimes simply hack the database of
another product and read and write to it directly to extend it. None of this
pragmatism is found in the extension mechanisms provided by NetComp: the
extension mechanisms used most are traditional SDKs that communicate with
independent “service providers”, typically running on the hardware itself. As
NetComp is active in the communications industry, this is not surprising: hard-
ware deployments need to be easy to extend, loosely coupled, quick to deploy,
easy to manage, and above all secure.

In the work of Kabbedijk [8] he presents a multitude of patterns that enable
variability in multi-tenant environments. The pattern catalog created there is an
inspiration for the current work on extensible software platforms. In the future
we hope to create a similar overview to provide insight into the most common
patterns used to enable and support software ecosystems.

Wnuk et al. present several case reports about Axis [12,13], a company that
is equally dependent on hardware as NetComp, but where the ecosystem ini-
tiative is currently less mature. Parallels that can be drawn are the need for
standardization from partners, the need for partners to be informed regularly
about platform developments, and the actual response to change requests from
partners. Finally, Axis too is having difficulty opening up the platform for several
different products, although this is not further specified in the case reports.

A large body of work is available on software product lines. Although seem-
ingly this work focuses on product lines, the real contribution lies in the view
on a coordinated effort in opening up products in several product lines. In that
sense this work is close to product lines, but perhaps even more about orga-
nizational boundaries surrounding product lines, as for instance illustrated by
Hanssen [3]. Toft also highlights the challenges of central collaboration between
departments in a software product line [11]. Contrary to this work, they propose
a decentralized mode of working, that forces departments to collaboratively share
architecture and components.

8 Conclusion

The paper provides four contributions. First, four patterns are provided that
illustrate typical scenarios for opening up a portfolio of hardware-based software
products, with the goal of creating extendible software platforms. The four pat-
terns are Simple Server Extension, Coordinating Server Extension,



Opening the Ecosystem Flood Gates 135

Federated Server Extension, and Advanced UI Extension. We provide
a background on the history of the creation of the four patterns to illustrate their
history and use. Secondly, the (architecture) challenges of doing so in a large
company like NetComp, in a centralized fashion, are highlighted and provide
interesting insights and challenges. The insights presented illustrate the advan-
tages of centrally coordinating platformization and ecosystem efforts and the
division of responsibilities in an organization that has a large product portfolio.
Thirdly, several challenges of launching a platform around a hardware and soft-
ware product portfolio are presented: how to open up different systems, how to
document their extendible interfaces, how product and extension error messages
must be propagated through the systems and organization, how crashes must
be handled, and how extendible interfaces must be secured without becoming
useless.

The FloodGate Department still has a large amount of work in front of
it. Although the architectures are now ready for extension, the management
of the ecosystem and the coordination practices of partners are still immature
and varying across product departments. Secondly, the FloodGate Department
would like to unify the code bases as much as possible, which is introducing
an interesting architectural challenge of supporting different technologies, while
keeping all in one code base and collection of software artifacts.

On the academic side, there are challenges as well. First, we plan to create a
collection of platform extensibility patterns, i.e., patterns that aim to enable the
creation of an ecosystem around a product, similar to our work in multi-tenant
patterns [9]. Secondly, we are working on a software ecosystem management
maturity matrix (SEM3) that enables companies to evaluate their ecosystem
management practices and advance them based on a set of strategic require-
ments, based on our earlier work [7].

References

1. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software plat-
forms. In: Proceedings of the Fourth European Conference on Software Architec-
ture: Companion Volume, pp. 85–92. ACM (2010)

2. Goeminne, M., Mens, T.: A framework for analysing and visualising open source
software ecosystems. In: Proceedings of IWPSE-EVOL, pp. 42–47 (2010)

3. Hanssen, G.K.: Opening up software product line engineering. In: Proceedings of
the 2010 ICSE Workshop on Product Line Approaches in Software Engineering,
pp. 1–7. ACM (2010)

4. Jansen, S., Brinkkemper, S., Finkelstein, A.: Component assembly mechanisms and
relationship intimacy in a software supply network. In: 15th International Annual
EurOMA Conference, Special Interest Session on Software Supply Chains (2008)

5. Jansen, S., Brinkkemper, S., Hunink, I., Demir, C.: Pragmatic and opportunistic
reuse in innovative start-up companies. IEEE Software 25(6), 42–49 (2008)

6. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7), 1495–1510 (2012)



136 S. Jansen

7. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar Pub-
lishing (2013)

8. Kabbedijk, J.: Variability in Multi-Tenant Enterprise Software. Utrecht University,
Department of Information and Computing Sciences (2014)

9. Kabbedijk, J., Salfischberger, T., Jansen, S.: Comparing two architectural patterns
for dynamically adapting functionality in online software products. In: The Fifth
International Conferences on Pervasive Patterns and Applications, PATTERNS
2013, pp. 20–25 (2013)

10. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

11. Toft, P., Coleman, D., Ohta, J.: A cooperative model for cross-divisional product
development for a software product line. In: Software Product Lines, pp. 111–132.
Springer (2000)

12. Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., Munir, H.: Evaluating
the governance model of hardware-dependent software ecosystems – a case study
of the axis ecosystem. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 212–226. Springer, Heidelberg (2014)

13. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barriers to hardware-
dependent software ecosystem participation – a case study. Information and Soft-
ware Technology 56(11), 1493–1507 (2014)


	Opening the Ecosystem Flood Gates: Architecture Challenges of Opening Interfaces Within a Product Portfolio
	1 Introduction
	2 Case Study Method
	3 Case Report: Studying 11 Product Lines in NetComp
	3.1 Joining the FloodGate Initiative
	3.2 FloodGate Labs

	4 Product Extension Patterns
	5 Illustrative Case: The Telepresence Product Line
	6 Openness and Architecture Challenges
	7 Analysis, Discussion, and Related Work
	8 Conclusion
	References


