
Danny Weyns
Raffaela Mirandola
Ivica Crnkovic (Eds.)

 123

LN
CS

 9
27

8

9th European Conference, ECSA 2015
Dubrovnik/Cavtat, Croatia, September 7–11, 2015
Proceedings

Software
Architecture

Lecture Notes in Computer Science 9278

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Danny Weyns • Raffaela Mirandola
Ivica Crnkovic (Eds.)

Software
Architecture
9th European Conference, ECSA 2015
Dubrovnik/Cavtat, Croatia, September 7–11, 2015
Proceedings

123

Editors
Danny Weyns
Department of Computer Science
Linnaeus University
Växjö
Sweden

Raffaela Mirandola
Dipartimento di Elettronica,

Informazione e Biongegneria
Politecnico di Milano
Milano
Italy

Ivica Crnkovic
Chalmers University of Technology
Gothenburg
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23726-8 ISBN 978-3-319-23727-5 (eBook)
DOI 10.1007/978-3-319-23727-5

Library of Congress Control Number: 2015947954

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The European Conference on Software Architecture (ECSA) is the premier European
software architecture conference, providing researchers, practitioners, and educators
with a platform to present and discuss the most recent, innovative, and significant
findings and experiences in the field of software architecture research and practice. The
9th edition of ECSA featured a research track, an educational track, an industrial track,
keynotes, workshops, and tool demonstrations. The conference was held in Cavtat,
Croatia, in September 2015.

Software architecture has become a very prominent topic in software engineering as
testified by the record number of 104 submissions the conference received for the
research track and educational track. In addition, eight workshops were organized in
conjunction with the conference.

The 12 full papers, three education and training papers, and 15 short papers pre-
sented in this volume were carefully reviewed. The research papers span a variety of
topics. Classic topics include design approaches, decisions, and analysis and automa-
tion. The conference also attracted a substantial number of papers on popular and new
emerging topics, such as adaptation, services, cloud, ecosystems, agility and archi-
tecture, and smart systems. Finally, the volume contains three educational papers that
address different challenges and best practices in teaching and training of software
architecture.

We are grateful to all those who contributed to the successful organization of ECSA
2015, in particular, the ECSA Steering Committee, the Program Committee, and the
Local Organizing Committee. We hope that the papers of this volume will stimulate
further research in software architecture and contribute to enhancing engineering
practice.

July 2015 Danny Weyns
Raffaela Mirandola

Ivica Crnkovic

Organization

The 9th European Conference on Software Architecture was organized during
September 7–11, 2015 in Cavtat, Croatia.

Organizing Committee

General Chair

Ivica Crnkovic Chalmers University of Technology, Sweden

Program Chairs

Raffaela Mirandola Politecnico di Milano, Italy
Danny Weyns Linnaeus University, Sweden

Conference Chair

Goran Martinović J.J. Strossmayer University of Osijek, Croatia

Workshop Chair

Matthias Galster University of Canterbury, New Zealand

Tool Demo Chair

Bedir Tekinerdogan Wageningen University, The Netherlands

Industry Chair

Roland Weiss ABB, Germany

Publicity Chair

Patrizia Scandurra University of Bergamo, Italy

Local Chair

Malin Roqvist Mälardalen University, Sweden

Web Chairs

Zdravko Krpić J.J. Strossmayer University of Osijek, Croatia
Josip Maras University of Split, Croatia

Mobile App Chair

Reid Holmes University of Waterloo, Canada

Program Committee

Anna Liu NICTA/UNSW, Australia
Anton Jansen Mälardalen University/ABB Corporate Research,

Sweden
Antonia Bertolino ISTI-CNR, Italy
Carlos E. Cuesta Rey Juan Carlos University, Spain
Claudia Raibulet University of Milano-Bicocca, Italy
Claus Pahl Dublin City University, Ireland
David Garlan Carnegie Mellon University, USA
Dewayne E. Perry ESEL, The University of Texas at Austin, USA
Eduardo Almeida Recife Center for Advanced Studies and Systems,

Brazil
Elena Navarro University of Castilla-La Mancha, Spain
Elisa Yumi Nakagawa University of Sao Paulo, Brazil
Eoin Woods Endava
Flavio Oquendo IRISA (UMR CNRS) - Univ. Bretagne-Sud, France
Gerald Kotonya Lancaster University, UK
Henry Muccini University of L’Aquila, Italy
Ian Gorton SEI, Carnegie Mellon University, USA
Ipek Ozkaya SEI, Carnegie Mellon University, USA
Jan Bosch Chalmers University of Technology, Sweden
Janet Burge Wesleyan University, USA
Jennifer Perez Technical University of Madrid, Spain
Jesper Andersson Linnaeus University, Sweden
John Grundy Swinburne University of Technology, Australia
José Carlos Maldonado ICMC-USP, Brazil
Judith Stafford University of Colorado, USA
Khalil Drira LAAS-CNRS, France
Laurence Duchien University of Lille, France
Len Bass NICTA, Australia
Liming Zhu NICTA, Australia
Luciano Baresi DEIB - Politecnico di Milano, Italy
Mourad Oussalah University of Nantes, France
Muhammad Ali Babar IT University of Copenhagen, Denmark
Olaf Zimmermann HSR FHO, Switzerland
Paola Inverardi Università dell’Aquila, Italy
Paris Avgeriou University of Groningen, Netherlands
Patricia Lago VU University Amsterdam, Netherlands
Rafael Capilla Universidad Rey Juan Carlos, Madrid, Spain
Rainer Weinreich Johannes Kepler University Linz, Austria
Rami Bahsoon University of Birmingham, UK
Riccardo Scandariato Chalmers University of Technology, Sweden
Rich Hilliard Independent Software Systems Architect
Rick Kazman SEI, Carnegie Mellon University, USA
Robert Nord SEI, Carnegie Mellon University, USA

VIII Organization

Rogerio De Lemos University of Kent, UK
Sam Malek George Mason University, USA
Stefan Biffl Technical University Wien, Austria
Steffen Becker University of Technology Chemnitz, Germany
Thais Batista Federal University of Rio Grande do Norte, Brazil
Tomi Mnnist University of Helsinki, Finland
Uwe Van Heesch Fontys University of Applied Sciences, Netherlands
Uwe Zdun University of Vienna, Austria
Volker Gruhn Universität Duisburg-Essen, Germany
Wilhelm Hasselbring Kiel University, Germany
Wouter Joosen KU Leuven, Belgium

Website

http://ecsa-conference.org/2015/

Organization IX

Keynotes Research Track

What Architecture Can Teach
Us About When, Where,

and Why Software Systems Decay

Nenad Medvidovic

Computer Science Department
University of Southern California

Los Angeles, CA, USA
neno@usc.edu

Abstract. Engineers frequently neglect to carefully consider the impact of their
changes to a software system. As a result, the software system’s architecture
eventually deviates from the original designers’ intent and degrades through
unplanned introduction of new and/or invalidation of existing design decisions.
Architectural decay increases the cost of making subsequent modifications and
decreases a system’s dependability, until engineers are no longer able to
effectively evolve the system. At that point, the system’s actual architecture may
have to be recovered from the implementation artifacts, but this is a
time-consuming and error-prone process, and leaves critical issues unresolved:
the problems caused by architectural decay will likely be obfuscated by the
system’s many elements and their interrelationships, thus risking further decay.
In this talk I will focus on pinpointing the locations in a software system’s
architecture that reflect architectural decay, the points in time when that decay
tends to occur, and the reasons why that decay occurs. Specifically, I will
present an emerging catalogue of commonly occurring symptoms of decay —
architectural “smells”. I will illustrate the occurrence of smells identified in the
process of recovering the architectures of a large number of real-world systems.
I will also discuss the relationship between architectural smells and the much
better understood code smells. Finally, I will discuss several undesirable but
common occurrences during the evolution of existing systems that directly
contribute to decay. I will conclude by identifying a number of simple steps that
engineers can undertake to stem software system decay.

Keywords: Software architecture � Architecture recovery � Architectural decay �
Architectural smell � Code smell.

Adaptive Collective Systems
Are We Ready to Let Go of Control?

Maarten van Steen

Centre for Telematics and Information Technology
University of Twente

Enschede, The Netherlands
m.r.vansteen@utwente.nl

Abstract. The field of computer science is rapidly changing, and we often
barely seem to notice it. For years we have been working on the same topics,
and many of us expect to continue do so for still a long time to come. Moore’s
law is no longer determining the speedups of our programs: new algorithms and
insights are pushing us further to an extent that some believe we need to start
worrying about Artificial Intelligence. Computer science is eating the world, and
we are the ones responsible for that. Yet, we want to stay in control. I argue that
we need get into a different mindset: let go of control.

A while back, I joined a team of experts on computational intelligence in an
attempt to write a booklet on adaptive collective systems. It taught me a lot
about how colleagues in the same field were looking at what is important in
computer science. Coming from computer systems research, it now seems to me
that my view is conservative. Many colleagues concentrating on developing
software constructs are often being conservative as well. We need to let a few
things go.

I will talk about adaptive collective systems as being a special type of
distributed computer system in which control, or rather, the lack of control,
plays a crucial role. Control is no longer fixed; it evolves through learning
mechanisms. The take-away message is that our future distributed systems need
to be architected with learning facilities. However, considering that there are so
many different types of computer systems, it is not obvious how learning should
be incorporated.

Keywords: Adaptive collective systems � Distributed computer systems �
Control systems

Contents

Adaptation

High-Level Language Support for Reconfiguration Control
in Component-Based Architectures . 3

Frederico Alvares, Eric Rutten, and Lionel Seinturier

Architectural Reasoning Support for Product-Lines of Self-adaptive
Software Systems - A Case Study . 20

Nadeem Abbas and Jesper Andersson

Towards a Framework for Building Adaptive App-Based Web Applications
Using Dynamic Appification . 37

Ashish Agrawal and T.V. Prabhakar

Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 45
Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, Adam Hujecek,
Frantisek Plasil, and Dominik Skoda

Design Approaches

Revisiting Architectural Tactics for Security . 55
Eduardo B. Fernandez, Hernán Astudillo, and Gilberto Pedraza-García

Improving the Quality of Architecture Design Through Peer-Reviews
and Recombination . 70

Mojtaba Shahin and Muhammad Ali Babar

Modeling RESTful Conversations with Extended BPMN Choreography
Diagrams . 87

Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier

(Automated) Software Modularization Using Community Detection. 95
Klaus Marius Hansen and Konstantinos Manikas

Decisions and Social Aspects

Software Designers Satisfice. 105
Antony Tang and Hans van Vliet

Opening the Ecosystem Flood Gates: Architecture Challenges of Opening
Interfaces Within a Product Portfolio . 121

Slinger Jansen

http://dx.doi.org/10.1007/978-3-319-23727-5_1
http://dx.doi.org/10.1007/978-3-319-23727-5_1
http://dx.doi.org/10.1007/978-3-319-23727-5_2
http://dx.doi.org/10.1007/978-3-319-23727-5_2
http://dx.doi.org/10.1007/978-3-319-23727-5_3
http://dx.doi.org/10.1007/978-3-319-23727-5_3
http://dx.doi.org/10.1007/978-3-319-23727-5_4
http://dx.doi.org/10.1007/978-3-319-23727-5_5
http://dx.doi.org/10.1007/978-3-319-23727-5_6
http://dx.doi.org/10.1007/978-3-319-23727-5_6
http://dx.doi.org/10.1007/978-3-319-23727-5_7
http://dx.doi.org/10.1007/978-3-319-23727-5_7
http://dx.doi.org/10.1007/978-3-319-23727-5_8
http://dx.doi.org/10.1007/978-3-319-23727-5_9
http://dx.doi.org/10.1007/978-3-319-23727-5_10
http://dx.doi.org/10.1007/978-3-319-23727-5_10

On the Social Dimensions of Architectural Decisions. 137
Henry Muccini, Damian A. Tamburri, and V. Smrithi Rekha

A Specialised Social Network Software Architecture for Efficient
Household Water Use Management . 146

Zhenchen Wang and Andrea Capiluppi

Education and Training

An Approach to Software Architecting in Agile Software Development
Projects in Education . 157

Samuil Angelov and Patrick de Beer

Learning Objectives for a Course on Software Architecture 169
Arvind W. Kiwelekar and Hansaraj S. Wankhede

Collecting Requirements and Ideas for Architectural Group
Decision-Making Based on Four Approaches . 181

Iris Groher and Rainer Weinreich

Cloud and Green

Characterization of Cyber-Foraging Usage Contexts 195
Grace A. Lewis and Patricia Lago

Software Architecture for the Cloud – A Roadmap Towards
Control-Theoretic, Model-Based Cloud Architecture 212

Claus Pahl and Pooyan Jamshidi

Model-Based Energy Efficiency Analysis of Software Architectures 221
Christian Stier, Anne Koziolek, Henning Groenda, and Ralf Reussner

An Energy Consumption Perspective on Software Architecture:
A Case Study on Architectural Change . 239

Erik A. Jagroep, Jan Martijn E.M. van der Werf, Ruvar Spauwen,
Leen Blom, Rob van Vliet, and Sjaak Brinkkemper

Agile and Smart Systems

A Lean Automotive E/E-System Design Approach with Integrated
Requirements Management Capability . 251

Harald Sporer, Georg Macher, Christian Kreiner, and Eugen Brenner

Distilling Best Practices for Agile Development from Architecture
Methodology: Experiences from Industrial Application 259

Dominik Rost, Balthasar Weitzel, Matthias Naab, Torsten Lenhart,
and Hartmut Schmitt

XVI Contents

http://dx.doi.org/10.1007/978-3-319-23727-5_11
http://dx.doi.org/10.1007/978-3-319-23727-5_12
http://dx.doi.org/10.1007/978-3-319-23727-5_12
http://dx.doi.org/10.1007/978-3-319-23727-5_13
http://dx.doi.org/10.1007/978-3-319-23727-5_13
http://dx.doi.org/10.1007/978-3-319-23727-5_14
http://dx.doi.org/10.1007/978-3-319-23727-5_15
http://dx.doi.org/10.1007/978-3-319-23727-5_15
http://dx.doi.org/10.1007/978-3-319-23727-5_16
http://dx.doi.org/10.1007/978-3-319-23727-5_17
http://dx.doi.org/10.1007/978-3-319-23727-5_17
http://dx.doi.org/10.1007/978-3-319-23727-5_18
http://dx.doi.org/10.1007/978-3-319-23727-5_19
http://dx.doi.org/10.1007/978-3-319-23727-5_19
http://dx.doi.org/10.1007/978-3-319-23727-5_20
http://dx.doi.org/10.1007/978-3-319-23727-5_20
http://dx.doi.org/10.1007/978-3-319-23727-5_21
http://dx.doi.org/10.1007/978-3-319-23727-5_21

Understanding the Use of Reference Architectures in Agile Software
Development Projects . 268

Matthias Galster and Samuil Angelov

An Architecture-Centric Approach for Dynamic Smart Spaces 277
Luciano Baresi and Adnan Shahzada

Using Feature Models for Distributed Deployment in Extended Smart
Home Architecture . 285

Amal Tahri, Laurence Duchien, and Jacques Pulou

SmartyCo: Managing Cyber-Physical Systems for Smart Environments 294
Daniel Romero, Clément Quinton, Laurence Duchien, Lionel Seinturier,
and Carolina Valdez

Analysis and Automation

Exploiting Traceability Uncertainty Between Software Architectural
Models and Performance Analysis Results . 305

Catia Trubiani, Achraf Ghabi, and Alexander Egyed

Automatic Translation of Architecture Constraint Specifications into
Components . 322

Sahar Kallel, Bastien Tramoni, Chouki Tibermacine, Christophe Dony,
and Ahmed Hadj Kacem

The Layered Architecture Recovery as a Quadratic Assignment Problem 339
Alvine Boaye Belle, Ghizlane El Boussaidi, Christian Desrosiers,
Sègla Kpodjedo, and Hafedh Mili

Services and Ecosystems

Design of a Domain-Specific Language Based
on a Technology-Independent Web Service Framework 357

Florian Rademacher, Martin Peters, and Sabine Sachweh

Tailoring the ATAM for Software Ecosystems . 372
Simone da Silva Amorim, John D. McGregor,
Eduardo Santana de Almeida, and Christina von Flach G. Chavez

Author Index . 381

Contents XVII

http://dx.doi.org/10.1007/978-3-319-23727-5_22
http://dx.doi.org/10.1007/978-3-319-23727-5_22
http://dx.doi.org/10.1007/978-3-319-23727-5_23
http://dx.doi.org/10.1007/978-3-319-23727-5_24
http://dx.doi.org/10.1007/978-3-319-23727-5_24
http://dx.doi.org/10.1007/978-3-319-23727-5_25
http://dx.doi.org/10.1007/978-3-319-23727-5_26
http://dx.doi.org/10.1007/978-3-319-23727-5_26
http://dx.doi.org/10.1007/978-3-319-23727-5_27
http://dx.doi.org/10.1007/978-3-319-23727-5_27
http://dx.doi.org/10.1007/978-3-319-23727-5_28
http://dx.doi.org/10.1007/978-3-319-23727-5_29
http://dx.doi.org/10.1007/978-3-319-23727-5_29
http://dx.doi.org/10.1007/978-3-319-23727-5_30

Adaptation

High-Level Language Support
for Reconfiguration Control

in Component-Based Architectures

Frederico Alvares1(B), Eric Rutten1, and Lionel Seinturier2,3

1 INRIA Grenoble, Montbonnot-saint-martin, France
{frederico.alvares,eric.rutten}@inria.fr

2 University of Lille 1, Villeneuve D’ascq, France
3 INRIA Lille, Lille, France

lionel.seinturier

Abstract. Architecting in the context of variability has become a real
need in todays software development. Modern software systems and their
architecture must adapt dynamically to events coming from the envi-
ronment (e.g., workload requested by users, changes in functionality)
and the execution platform (e.g., resource availability). Component-based
architectures have shown to be very suited for self-adaptation especially
with their dynamical reconfiguration capabilities. However, existing solu-
tions for reconfiguration often rely on low level, imperative, and non for-
mal languages. This paper presents Ctrl-F, a domain-specific language
whose objective is to provide high-level support for describing adaptation
behaviours andpolicies in component-based architectures. It relies on reac-
tive programming for formal verification and control of reconfigurations.
We integrate Ctrl-F with the FraSCAti Service Component Architecture
middleware platform, and apply it to the Znn.com self-adaptive case study.

1 Introduction

From tiny applications embedded in house appliances or automobiles to huge
Cloud services, nowadays software-intensive systems have to fulfill a number of
requirements in terms safety and Quality of Service (QoS) while facing highly
dynamic environments (e.g., varying workloads and changing user requirements)
and platforms (e.g., resource availability). This leads to the necessity to engineer
such software systems with principles of self-adaptiveness, i.e., to equip these
software systems with capabilities to cope with dynamically changes.

Component-Based Architecture. Software architecture and more specifically soft-
ware components have played a very important role in self-adaptiveness. Besides
the usual benefits of modularity and reuse, adaptability and reconfigurability are
key properties which are sought with this approach: one wants to be able to adapt
the component assemblies in order to cope with new requirements and new exe-
cution conditions occurring at run-time. Component-based Architecture defines

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-23727-5 1

4 F. Alvares et al.

the high-level structure of software systems by describing how they are organized
by the means of a composition of components [15], which are usually captured
by an Architecture Description Languages (ADL). In spite of the diversity of
ADLs, the architectural elements proposed in almost all of them follow the same
conceptual basis [13]. A component is defined as the most elementary unit of
processing or data and it is usually decomposed into two parts: the implementa-
tion and the interface. The implementation describes the internal behaviour
of the component, whereas the interfaces define how the component should
interact with the environment. A component can be defined as atomic or
composite, i.e., composed of other components. A connector mediates diverse
forms of interactions of inter-component communications, and configuration cor-
responds to a directed graph of components and connectors describing the appli-
cation’s structure. Other elements like attributes, constraints or architectural
styles also appear in ADLs [13], but for brevity we omit further details on these
elements.

Initial assemblies (or configurations) are usually defined with the help of
ADLs, whereas adaptive behaviours are achieved by programming fine-grained
actions (e.g., to add, remove, connect elements), in either general-purpose lan-
guages within reflective component-based middleware plaforms [20], or with
the support of reconfiguration domain-specific languages (DSLs) [8]. This low
level of abstraction may turn the definition of transitions among configurations
into a very costly task, which consequently may lead to error-prone adaptive
behaviours. In fact, it may be non-trivial, especially for large and complex archi-
tectures, to obtain assurances and guarantees about the result of these reconfig-
uration behaviours. We claim that there is a need for a language, not only for
the definition of configurations in the form of component assemblies, but also for
the explicit specification of the transitions among them and the policies driving
when and under which conditions reconfigurations should be triggered.

This paper presents Ctrl-F, a language that extends classic ADLs with high-
level constructs to express the dynamicity of component-based architectures. In
addition to the usual description of assemblies (configurations), Ctrl-F also com-
prises a set of constructs that are dedicated for the description of: (i) behavioural
aspects, that is, the order and/or conditions under which reconfigurations take
place; and (ii) policies that have to be enforced all along the execution.

Heptagon/BZR. We formally define the semantics of Ctrl-F with Heptagon/BZR
[10], a Reactive Language based on Finite State Automata (FSA). It allows for
the definition of generalized Moore machines, with mixed data-flow equations
and automata. A distinguished characteristics is that its compilation involves
formal tools for Discrete Controller Synthesis (DCS): a controller is automati-
cally generated so as to enforce that a system behaves at runtime in concordance
with the specification. The Heptagon/BZR definition of Ctrl-F programs allows
to benefit from: (i) guarantees on the correctness of adaptive behaviours by either
verification or control (i.e., by DCS); (ii) the compilation of adaptive behaviours
towards executable code in general purpose languages (e.g., Java or C). Due to
space limitation, the detailed definition is reported on elsewhere [1].

High-Level Language Support for Reconfiguration Control in Component 5

In the remainder of this paper, Section 2 presents the self-adaptation case
study Znn.com [7], used all along the paper. Section 3 presents the Ctrl-F
language. Section 4 provides some details on its integration with a real com-
ponent platform as well as the evaluation of its applicability through Znn.com.
Related work is discussed in Section 5 and Section 6 concludes this paper.

2 The Znn.com Example Application

Znn.com [7] is an experimental platform for self-adaptive applications, which
mimics a news website. Znn.com follows a typical client-server n-tiers architec-
ture where a load balancer redirects requests from clients to a pool of replicated
servers. The number of active servers can be regulated in order to maintain a
good trade-off between response time and resource utilization. Hence, the objec-
tive of Znn.com is to provide news content to its clients/visitors within a reason-
able response time, while keeping costs as low as possible and/or under control
(i.e., constrained by a certain budget).

At times, the pool of servers is not large enough to provide the desired
QoS. For instance, in order to face workload spikes, Znn.com could be forced to
degrade the content fidelity so as to require fewer resource to provide the same
level of QoS. For this, Znn.com servers are able to deliver news contents with
three different content fidelity: (i) high quality images, (ii) low quality images,
and (iii) only text. The objectives are: (1) Keep the performance (response time)
as high as possible; (2) Keep content fidelity as high as possible or above a cer-
tain threshold; (3) Keep the number of active servers as low as possible or under
a certain threshold. In order to achieve them, we may tune: (1) The number of
active servers; (2) The content fidelity of each server.

As a running example for our proposal, in the next section, we extend
Znn.com by enabling its replication in presence of different content providers: one
specialized in soccer and another one specialized in politics. These two instances
of Znn.com will be sharing the same physical infrastructure. Depending on the
contract signed between the service provider and his/her clients that establishes
the terms of use of the service, Znn.com Service Provider can give more or less
priority to a certain client. For instance, during the World Cup the content
provider specialized in soccer will always have priority over the other one. Con-
versely, during the elections, the politics-specialized content provider is the one
that has the priority.

3 Ctrl-F Language

3.1 Overview and Common Concepts

Ctrl-F is our proposal for a domain-specific language that extends classic ADLs
with high-level constructs for describing reconfigurations’ behaviour and policies
to be enforced all along the execution of the target system.

6 F. Alvares et al.

The abstract syntax of Ctrl-F can be divided into two parts: a static one,
which is related to the common architectural concepts (components, connec-
tions, configurations, etc.); and a dynamic one, which refers to reconfiguration
behaviours and policies that must be enforced regardless of the configuration.

The static part of Ctrl-F shares the same concepts of many existing ADLs
(e.g., Fractal [6], Acme [13]). A component consists of a set of interfaces, a set of
event ports, a set of attributes and a set of configurations. Interfaces define how
a component can interact with other components. So they are used to express a
required functionality (client interface) that may be provided by another com-
ponent and/or to express a provided functionally (server interface) that might
be used by other components. Event Ports describe the events, of the given
Event Type, a component is able to emit (port out) and/or listen to (port in).
A configuration is defined as a set of instances of components, a set of bindings
connecting server and client interfaces of those instances (i.e., an assembly),
and/or a set of attribute assignments to values.

The dynamic part consists of a behaviour and a set of policies that can be
defined for each component. A behaviour takes the form of orders and conditions
(w.r.t. events and attribute values) under which transitions between configura-
tions (reconfigurations) take place. The policies are high-level objectives/con-
straints, which may imply in the inhibition of some of those transitions.

The Znn.com example application of Section 2 can be modeled as a hierarchi-
cal composition of four components: Main, Znn, LoadBalancer, and AppServer.
These components are instantiated according to execution conditions, the sys-
tem current state (architectural composition), adaptation behaviours and poli-
cies defined within each component. Listing 1.1 shows the definition of such
components with the static part of Ctrl-F.

The Main component (lines 1-14) encompasses two instances of Znn, namely
soccer and politics within a single configuration (lines 7 and 8). The server
interfaces of both instances (lines 9 and 10), which provides access to news
services, are bound to the server interfaces of the Main component (lines 3
and 4) in order for them to be accessed from outside. A policy to be enforced is
defined (line 13) and discussed in Section 3.3.

Component Znn (lines 16-33) consists of one provided interface (line 18)
through which news can be requested. The component listens to events of types
oload (overload) and uload (underload) (lines 20 and 21), which are emitted
by other components. In addition, the component also defines two attributes:
consumption (line 23), which is used to express the level of consumption (in
terms of percentage of CPU) incurred by the component execution; and fidelity
(line 24), which expresses the content fidelity level of the component.

Three configurations are defined for Znn component: conf1, conf2 and conf3.
conf1 (lines 26-33) consists of one instance of each LoadBalancer and AppServer
(lines 27 and 28); one binding to connect them (line 29), another binding to
expose the server interface of the LoadBalancer component as a server interface
of the Znn component (line 30), and the attribute assignments (lines 31 and 32).
The attribute fidelity corresponds to the counterpart of instance as1, whereas

High-Level Language Support for Reconfiguration Control in Component 7

for the consumption it corresponds to the sum of the consumptions of instances
as1 and lb. conf2 (lines 34-39) extends conf1 by adding one more instance of
AppServer, binding it to the LoadBalancer and redefining the attribute values
with respect to the just-added component instance (as2).

In that case, the attribute fidelity values the average of the counterparts of
instances as1 and as2 (line 37), whereas for the consumption the same logics is
applied so the consumption of the just-added instance is incorporated to the sum
expression (line 38). Due to lack of space we omit the definition of configuration
conf3. Nevertheless, it follows the same idea, that is, it extends conf2 by adding
a new instance of AppServer, binding it and redefining the attribute values.

Listing 1.1. Architectural Description of
Components Main, Znn, Load Balancer
and AppServer in Ctrl-F.

1 component Main {
2

3 server interface sis
4 server interface sip
5

6 configuration main {
7 soccer:Znn
8 politics:Znn
9 bind sis to soccer.si

10 bind sip to politics.si
11 }
12

13 policy {...}
14 }
15

16 component Znn {
17

18 server interface si
19

20 port in oload
21 port in uload
22

23 attribute consumption
24 attribute fidelity
25

26 configuration conf1 {
27 lb:LoadBalancer
28 as1:AppServer
29 bind lb.ci1 to as1.si
30 bind lb.si to si
31 set fidelity to as1.fidelity
32 set consumption to sum(as1.

consumption ,lb.consumption
)

33 }
34 configuration conf2 extends conf1

{
35 as2:AppServer
36 bind lb.ci2 to as2.si
37 set fidelity to avg(as1.

fidelity ,as2.fidelity)

38 set consumption to sum(as1.
consumption ,as2.
consumption ,lb.consumption
)

39 }
40

41 configuration conf3 extends conf2
{...}

42

43 behaviour {...}
44 policy {...}
45 }
46

47 component LoadBalancer {
48 server interface si
49 client interface ci1 ,ci2 ,c3
50

51 port out oload
52 port out uload
53

54 attribute consumption =0.2
55 }
56

57 component AppServer {
58 server interface si
59

60 port in oload
61 port in uload
62

63 attribute fidelity
64 attribute consumption
65

66 configuration text {
67 set fidelity to 0.25
68 set consumption to 0.2
69 }
70 configuration img -ld {
71 set fidelity to 0.5
72 set consumption to 0.6
73 }
74 configuration img -hd {...}
75

76 behaviour {...}
77 policy {...}
78 }

Component LoadBalancer (lines 47-55) consists of four interfaces: one pro-
vided (line 48), through which the news are provided; and the others required
(line 49), through which the load balancer delegates each request for balancing
purposes. We assume that this component is able to detect overload and under-
load situations (in terms of number of requests per second) and in order for this

8 F. Alvares et al.

information to be useful for other components we define two event ports that
are used to emit events of type oload and uload (lines 51 and 52). Like for com-
ponent Znn, attribute consumption (line 54) specifies the level of consumption
of the component (e.g., 0.2 to express 20% of CPU consumption). As there is
no explicit definition of configurations, LoadBalancer is implicitly treated as a
single-configuration component.

Lastly, the atomic component AppServer (lines 57-78) has only one interface
(line 58) and listens to events of type oload and uload (lines 60 and 61). It has also
two attributes: fidelity and consumption (lines 63 and 64), just like component
Znn. Three configurations corresponding to each level of fidelity (lines 66-69,
70-73 and 74) are defined, and the attributes are valuated according to the
configuration in question, i.e., the higher the fidelity the higher the consumption.

3.2 Behaviours

A particular characteristic of Ctrl-F is the capability to comprehensively describe
behaviours in component-based applications. We mean by behaviour the process
in which architectural elements are changed. More precisely, it refers to the order
and conditions under which configurations within a component take place.

Behaviours in Ctrl-F are defined with the aid of a high-level imperative lan-
guage. It consists of a set of behavioural statements (sub-behaviours) that can
be composed together so as to provide more complex behaviours in terms of
sequences of configurations. In this context, a configuration is considered as
an atomic behaviour, i.e., a behaviour that cannot be decomposed into other
sub-behaviours. A reconfiguration occurs when the current configuration is ter-
minated and the next one is started. We assume that configurations do not have
the capability to directly terminate or start themselves, meaning that they are
explicitly requested or ended by behaviour statements according to the defined
events and policies. Nevertheless, as components are capable to emit events,
it would not be unreasonable to define components whose objective is to emit
events in order to force a desired behaviour.

Statements. Table 1 summarizes the behaviour statements of the Ctrl-F
behavioural language. During the execution of a given behaviour B, the when-
do statement states that when a given event of event type ei occurs the con-
figuration(s) that compose(s) B should be terminated and that (those) of the
corresponding behaviour Bi are started.

The case-then statement is quite similar to when-do. The difference resides
mainly in the fact that a given behaviour Bi is executed if the corresponding
condition ci holds (e.g., conditions on attribute values), which means that it
does not wait for a given event to occur. In addition, if none of the conditions
holds (c1 ∧ ... ∧ cn = 0), a default behaviour (Be) is executed, which forces the
compiler to choose at least one behaviour. The parallel statement states that two
behaviours are executed at the same time, i.e., at a certain point, there must be
two independent branches of behaviour executing in parallel. This construct is

High-Level Language Support for Reconfiguration Control in Component 9

Table 1. Summary of Behaviour Statements.

Statement Description

B when e1 do B1,
... , While executing B when ei execute Bi

en do Bn end

case c1 then B1,
... , Execute Bi if ci holds, otherwise execute Be

cn then Bn

else Be end

B1 | B2 Execute either B1 or B2

B1 || B2 Execute B1 and B2 in parallel

do B every e Execute B and re-execute it at every occurrence of e

also useful in the context of atomic components like AppServer, where we could,
for instance, define configurations composed of orthogonal attributes like fidelity
and font size/color (e.g., text || font-huge).

The alternative statement allows to describe choice points among configura-
tions or among more elaborated sequential behaviour statements. They are left
free in local specifications and will be resolved in upper level assemblies, in such
a way as to satisfy the stated policies, by controlling these choice points appro-
priately. Finally, the do-every statement allows for execution of a behaviour B
and re-execution of it at every occurrence of an event of type e. It is noteworthy
that behaviour B is preempted every time an event of type e occurs. In other
words, the configuration(s) currently activated in B is (are) terminated, and the
very first one(s) in B is (are) started.

Example in Znn.com. We now illustrate the use of the statements we have
introduced to express adaptation behaviours for components AppServer and Znn
the of Znn.com case study. The expected behaviour for component AppServer is
to pick one of its three configurations (text, img-ld or img-hd) at every occurrence
of events of type oload or uload. To that end, as it can be seen in Listing 1.2,
the behaviour can be decomposed in a do-every statement, which is, in turn,
composed of an alternative one. It is important to mention that the decision on
one or other configuration must be taken at runtime according to input variables
(e.g., income events) and the stated policies, that is, there must be a control
mechanism for reconfigurations that enforces those policies. We come back to
this subject in Section 4.1.

Regarding component Znn, the expected behaviour is to start with the min-
imum number of AppServer instances (configuration conf1) and add one more
instance, i.e., leading to configuration conf2, upon an event of type (oload). From
conf2, one more instance must be added, upon an event of type oload leading to
configuration conf3. Alternatively, upon an event of type uload, one instance

10 F. Alvares et al.

of AppServer must be removed, which will lead the application back to config-
uration conf1. Similarly, from configuration conf3, upon a uload event, another
instance must be removed, which leads the application to conf2. It is notori-
ous that this behaviour can be easily expressed by an automaton, with three
states (one per configuration) and four transitions (triggered upon the occur-
rence of oload and uload). However, Ctrl-F is designed to tackle the adaptation
control problem in a higher level, i.e., with process-like statements over config-
urations.

For these reasons, we describe the behaviour with two embedded do-every
statements, which in turn comprise each a when-do statement, as shown in
Listing 1.3 (lines 6-14 and 8-12). We also define two auxiliary configurations:
emitter1 (line 2) and emitter2 (line 3), which extend respectively configura-
tions conf2 and conf3, with an instance of a pre-defined component Emitter.
This component does nothing but emit a given event (e.g., e1 and e2) so as to
force a loop step and thus go back to the beginning of the when-do statements.
The main do-every statement (lines 6-14) performs a when-do statement (lines
7-13) at every occurrence of an event of type e1. In practice, the firing of this
event allows going back to conf1 regardless of the current configuration being
executed. conf1 is executed until the occurrence of an event of type oload (line
7), then the innermost do-every statement is executed (lines 8-12), which in
turn, just like the other one, executes another when-do statement (lines 9-11)
and repeats it at every occurrence of an event of type e2. Again, that structure
allows the application to go back to configuration conf2. Configuration conf2
is executed until an event of type either oload or uload occurs. For the former
case (line 9), another when-do statement takes place, whereas for the latter (line
10) configuration emitter1 is the one that takes place. Essentially, at this point,
an instance of component Emitter is deployed along with conf2, since emitter1
extends conf2. As a consequence, this instance fires an event of type e1, which
forces the application to go back to conf1. The innermost when-do statement
(line 9) consists in executing conf3 until an event of type uload occurs, then
configuration emitter2 takes place, which makes an event of type e2 be fired in
order to force going back to conf2.

It is important to notice that this kind of construction allows to achieve the
desired behaviour while sticking to the language design principles, that is, high-
level process-like constructs and configurations. It also should be remarked that
while in Listing 1.3 we present an imperative approach to forcibly increase the
number of AppServer instances upon uload and oload events, in Listing 1.3 we
leave the choice to the compiler to choose the most suitable fidelity level accord-
ing to the runtime events and conditions. Although there is no straightforward
guideline, an imperative approach is clearly more suitable when the solution is
more sequential and delimited, whereas as the architecture gets bigger, in terms
of configurations, and less sequential, then a declarative definition becomes more
interesting.

High-Level Language Support for Reconfiguration Control in Component 11

3.3 Policies

Policies are expressed with high-level constructs for constraints on configura-
tions, either temporal or on attribute values. In general, they define a subset
of all possible global configurations, where the system should remain invariant:
this will be achieved by using the choice points in order to control the recon-
figurations. An intuitive example is that two component instances in parallel
branches might have each several possible configurations, and some of them to
be kept exclusive. This exclusion can be enforced by choosing the appropriate
configurations when starting the components.

Constraints/Optimization on Attributes. This kind of constraints are
predicates and/or primitives of optimization objectives (i.e., maximize or mini-
mize) on component attributes. Listing 1.4 illustrates some constraints and opti-
mization on component attributes. The first two policies state that the overall
fidelity for component instance soccer should be greater or equal to 0.75, whereas
that of instance politics should be maximized. Putting it differently, instance soc-
cer must never have its content fidelity degraded, which means that it will have
always priority over politics. The third policy states that the overall consumption
should not exceed 5, which could be interpreted as a constraint on the physical
resource capacity, e.g., the number of available machines or processing units.

Listing 1.2.
AppServer’s
Behaviour.

1 component
2 AppServer {
3 ...
4 behaviour {
5 do
6 text |
7 img -ld |
8 img -hd
9 every

10 (oload
11 or uload)
12 }
13 }

Listing 1.3. Znn’s Behaviour.

1 component Znn {...
2 configuration emitter1 extends conf2 { e:Emitter }
3 configuration emitter2 extends conf3 { e:Emitter }
4

5 behaviour {
6 do
7 conf1 when oload do
8 do
9 conf2 when oload do (conf3 when uload do

emitter2 end),
10 uload do emitter1
11 end
12 every e2
13 end
14 every e1
15 }
16 }

Temporal Constraints. Temporal constraints are high-level constructs that
take the form of predicates on the order of configurations. These constructs
might be very helpful when there are many possible reconfiguration paths (by
either parallel or alternative composition, for instance), in which case the manual
specification of such constrained behaviour may become a very difficult task.

To specify these constraints, Ctrl-F provides four constructs, as follows:

– conf1 precedes conf2: conf1 must take place right before conf2. It does
not mean that it is the only one, but it should be among the configurations
taking place right before conf2.

12 F. Alvares et al.

– conf1 succeeds conf2: conf1 must take place right after conf2. Like in the
precedes constraint, it does not mean that it is the only one to take place
right after conf2.

– conf1 during conf2: conf1 must take place along with conf2.
– conf1 between (conf2, conf3): once conf2 is started, conf1 cannot be

started and conf3, in turn, cannot be started before conf2 terminates.

Listing 1.5 shows an example of how to apply temporal constraints, in which
it is stated that configuration img-ld comes right after the termination of either
configuration text or configuration img-ld. In this example, this policy avoids
abrupt changes on the content fidelity, such as going directly from text to image
high definition or the other way around. Again, it does not mean that no other
configuration could take place along with img-ld, but the alternative statement
in the behaviour described in Listing 1.2 leads us to conclude that only img-ld
must take place right after either text or img-hd has been terminated.

Listing 1.4. Example of Constraint and
Optimization on Attributes.

1 component Main { ...
2 policy { soccer.fidelity >= 0.75 }
3 policy { maximize politics.fidelity }
4 policy { (soccer.consumption +
5 politics.consumption) <= 5 }
6 }

Listing 1.5. Example of Temporal
Constraint.

1 component AppServer { ...
2 policy { img -ld succeeds text }
3 policy { img -ld succeeds img -hd }
4 }

4 Heptagon/BZR Model and Implementation

4.1 Modeling Ctrl-F in Heptagon/BZR

As architectures get larger and more complex, conceiving behaviours that respect
the stated policies becomes a hard and error-prone task. This is the main reason
why we model Ctrl-F behaviours and policies with Heptagon/BZR. Indeed, the
FSA-based model of Heptagon/BZR allows programs to be formally exploited
and verified by model checking tools [10]. The general model of Ctrl-F behaviours
is as surveyed in Figure 1. Basically, each component accommodates an automa-
ton corresponding to its adaptive behaviour, in which states correspond to con-
figurations and transitions to reconfigurations. So, based on a vector of input
events (e.g., oload and uload, in the Znn.com example) and runtime conditions
(e.g., on the attribute values), transitions may be triggered while emitting sig-
nals for stopping the current configuration and starting the new one. In the case
the behaviour contains choice points, that is, alternative statements, we model
the transition conditions to each one of the choice branches as free-variables.
The resulting controller from the DCS, which takes the form of a deterministic
automata, is in charge of the control on those variables such that, regardless of
the input events, the stated policies are enforced. It is noteworthy that although
the DCS algorithms has exponential complexity as any other model checking
approach, the controller is synthesized in an off-line manner and thus with no

High-Level Language Support for Reconfiguration Control in Component 13

impact on the running controlled system. The same structural translation is per-
formed hierarchically for every sub-component, i.e., in every component instan-
tiated within another component. Due to space limitation, we have to omit the
details on the translation schemes, but the full translation of Ctrl-F behaviour
statements and policies to Heptagon/BZR is available in [1].

...

DCS Ctrlr

...

...

DCS Ctrlr

...

...

DCS Ctrlr

...

Current Configuration

Behaviour

Start/Stop
Signals

Input
Events

Controlled Variables

Fig. 1. Role of the Behaviour Automaton over the Transitions.

4.2 Compilation Tool-Chain

As can be seen in Figure 2, the compilation process can be split into two parts: (i)
the reconfiguration logics and (ii) the behaviour/policy control and verification.
The reconfiguration logics is implemented by the ctrlf2fscript compiler, which
takes as input a Ctrl-F definition and generates as output a script containing a
set procedures allowing going from one configuration to another. To this end, we
rely on existing differencing/match algorithms for object-oriented models [23].

The behaviour control and verification is performed by the ctrlf2ept compiler,
which takes as input a Ctrl-F definition and provides as output a synchronous
reactive program in Heptagon/BZR. The result of the compilation of an Hep-
tagon/BZR code is a sequential code in a general-purpose programming language
(in our case Java) comprising two methods: reset and step. The former ini-
tializes the internal state of the program, whereas the latter is executed at each
logical step to compute the output values based on a given vector of input values
and the current state.

These methods are typically used by first executing reset and then by enclos-
ing step in an infinite loop, in which each iteration corresponds to a reaction to
an event (e.g., oload or uload), as sketched in Listing 1.6. The step method
returns a set of signals corresponding to the start or stop of configurations
(line 4). From these signals, we can find the appropriate script that embodies
the reconfiguration actions to be executed (lines 5 and 6).

We wrap the control loop logics into three components, which are enclosed
by a composite named Manager. Component EventHandler exposes a service
allowing itself to be sent events (e.g., oload and uload). The method implement-
ing this service is defined as non-blocking so the incoming events are stored in

14 F. Alvares et al.

a First-In-First-Out queue. Upon the arrival of an event coming from the Man-
aged System (e.g., Znn.com), component EventHandler invokes the step method,
implemented by component Architecture Analyzer. The step method output is
sent to component Reconfigurator, that encompasses a method to find the proper
reconfiguration script to be executed.

Ctrl-F ctrlf2ept *.ept Heptagon/BZR
Executable

Code

Behaviour/Policy Verification and Control

ctrlf2fscript*.fscript

Reconfiguration Logics

Fig. 2. Ctrl-F Compilation Chain.

Listing 1.6. Control Loop Sketch.

1 reset();
2 ...
3 on event oload or uload
4 <...,stop_conf1 ,start_conf2 ,... >= step(oload ,uload);
5 reconfig_script=find_script (..., stop_conf1 ,start_conf2 ,...);
6 execute(reconfig_script);

In this work, we rely on the Java-based Service Component Architecture
(SCA) middleware FraSCAti [20], since it provides mechanisms for runtime
reconfiguration. The FraSCAti Runtime is itself conceived relying on the SCA
model, that is, it consists of a set of SCA components that can be deployed
a la carte, according to the user’s needs. For instance, in our case, the Man-
ager instantiates the frascati-fscript component, which provides services allow-
ing for the execution of an SCA-variant of FPath/FScript [8], a domain-specific
language for introspection and dynamic reconfiguration of Fractal components.
The frascati-fscript component relies on other components integrating the mid-
dleware, inside the FraSCAti Composite, to perform introspection and runtime
reconfiguration on the managed system’s components.

4.3 Adaptation Scenario

We simulated the execution of the two instances of Znn.com application, namely
soccer and politics, under the administration of the Manager presented in last
section, to observe the control of reconfigurations taking into account a sequence
of input events. The behaviours of components AppServer and Znn are stated in
Listings 1.2 and 1.3, respectively, while policies are defined in Listing 1.4 and 1.5.

As it can be observed in the first chart of Figure 3, we scheduled a set of
overload (oload) and underload (uload) events (vertical dashed lines), which
simulate an increase followed by a decrease of the income workload for both
soccer and politics instances. The other charts correspond to the overall resource

High-Level Language Support for Reconfiguration Control in Component 15

W
or

kl
oa

d

Politics Soccer Constraint

 0

 1

 2

 3

 4

 5

R
es

ou
rc

e

 0

 0.5

 0.7

F
id

el
ity

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Step

Idle
Text

LD
HD

as
1

Idle
Text

LD
HD

as
2

Idle
Text

LD
HD

as
3

Idle
Text

LD
HD

as
1

Idle
Text

LD
HD

as
2

Idle
Text

LD
HD

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

as
3

Step

Fig. 3. Execution of the Adaptation Scenario.

consumption, the overall fidelity, and the fidelity level (i.e., configurations text,
img-ld or img-hd) of the three instances of component AppServer contained in
both instances of component Znn.

As the workload of politics increases, an event of type oload occurs at
step 2. That triggers the reconfiguration of that instance from conf1 to conf2,
that is, one more instance of AppServer is added within the Znn instance poli-
tics. We can observe also the progression in terms of resource consumption, as
a consequence of this configuration. The same happens with soccer at step 3,
and is repeated with politics and soccer again at steps 4 and 5. The difference,
in this case, is that at step 4, the politics instance must reconfigure (to conf3)
so as to cope with the current workload while keeping the overall consumption
under control. In other words, it forces the AppServer instances as2 and as3
to degrade their fidelity level from img-hd to img-ld. It should be highlighted
that although at least one of the AppServer instances (as2 or as3) could be
at that time at maximum fidelity level, the knowledge on the possible future
configurations guarantees the maximum overall fidelity for instance soccer to
the detriment of a degraded fidelity for instance politics, while respecting the
temporal constraints expressed in Listing 1.5. Hence, at step 5, when the last
oload event arrives, the fidelity level of soccer instance is preserved by gradually
decreasing that of politics, that is, both instances as2 and as3 belonging to the
politics instance are put in configuration text, but without jumping directly from
from img-hd. At step 9, the first uload occurs as a consequence of the workload
decrease. It triggers a reconfiguration in the politics instance as it goes from
conf3 to conf2, that is, it releases one instance of AppServer (as3). The same
happens with soccer at step 10, which makes room on the resources and there-
fore allows politics to bring back the fidelity level of its as2 to img-ld, and to the
maximum level again at step 11. This is repeated at steps 13 and 14 for instances
politics and soccer respectively, bringing their consumptions at the same levels
as in the beginning.

The adaptation scenario is very useful to understand the dynamics behind an
Manager that is derived from a synchronous reactive programming, which is in
turn, obtained from Ctrl-F. Moreover, the scenario illustrates, in a pedagogical

16 F. Alvares et al.

way, how controllers obtained by DCS are capable to control reconfigurations
based not only on the current events and current/past configurations (states),
but also on the possible future behaviours, that is, how controllers avoid branches
that may lead to configurations violating the stated policies.

5 Related Work

In the literature, there is a large and growing body of work on runtime reconfig-
uration of software components. Our approach focuses on the language support
for enabling self-adaptation in component-based architectures while relying on
reactive systems and the underlying formal control tools for ensuring adaptation
policies. This section summarizes the related work, more detailed elsewhere [1].

Classically, runtime adaption in software architectures is achieved by first
relying on ADLs such as Acme [13] or Fractal [6] for an initial description of the
software structure and architecture, then by specifying fine-grained reconfigura-
tion actions with dedicated languages like Plastik [3] or FPath/FScript [8], or
simply by defining Event-Condition-Actions (ECA) rules to lead the system to
the desired state. A harmful consequence is that the space of reachable configu-
ration states is only known as side effect of those reconfiguration actions, which
makes it difficult to ensure correct adaptive behaviours. Moreover, a drawback
of ECA rules is that, contrary to Ctrl-F, they cannot describe sequences of con-
figurations. Even though, ECA rules can be expressed in Ctrl-F with a set of
when-do (for the E part) and case (for the C and A parts) statements in parallel.

Rainbow [12] is an autonomic framework that comes with Stitch, a domain-
specific language allowing for the description of self-adaptation of Acme-
described applications. It features system-level actions grouped into tactics,
which in turn, are aggregated within a tree-like strategy path. We can draw
an analogy between tactics and the set of actions triggered upon a reconfigura-
tion; as well as strategies and behaviours in the Ctrl-F language. Nonetheless,
alternative and parallel, as well as event-based constructs make Ctrl-F more
expressive. Furthermore, Ctrl-F’s formal model enables to ensure correct adap-
tation behaviours.

A body of work [2][4][5][17][21][22][22] focus on how to plan a set of actions
that safely lead component-based systems to a target configuration. These
approaches are complementary to ours in the sense that our focus is on the
choice of a new configuration and its control. Once a new configuration chosen,
we rely on existing mechanisms to determine the plan of action actually leading
the system from the current to the next configuration.

In [18], feature models are used to express variability in software systems. At
runtime, a resolution mechanism is used for determining which features should
be present so as to constitute configuration. In the same direction, Pascual
et al. [19] propose an approach for optimal resolution of architectural variabil-
ity specified in the Common Variability Language (CVL) [14]. A drawback of
those approaches is that in the adaptation logics specified with feature models or
CVL, there is no way to define stateful adaptation behaviours, i.e., sequences of

High-Level Language Support for Reconfiguration Control in Component 17

reconfigurations. The resolution is performed based on the current state and/or
constraints on the feature model. While in our approach, in the reactive model
based on FSA, decisions are taken also based on the history of configurations
which allows us to define more interesting adaptation behaviours and policies.

W.r.t. formal methods, Kouchnarenko and Weber [16] propose the use of
temporal logics to integrate temporal requirements to adaptation policies. While
in this approach, enforcement and reflection are performed at runtime in order
to ensure correct behaviour, we rely on discrete controller synthesis.

As in our approach, in [11], authors also rely on Heptagon/BZR to model
adaptive behaviours of Fractal components. However, there is no high-level
description (e.g., ADL) like Ctrl-F, and reconfigurations are controlled at the
level of fine-grained reconfiguration actions, which can be considered time-
consuming and difficult to scale. Delaval et al. [9] propose to have modular
controllers that can be coordinated so as to work together in a coherent manner.
The approach is complementary to ours in the sense that it does not provide
high-level language support for describing those managers, although the authors
provide interesting intuitions on a methodology to do so.

6 Conclusion

This paper presented Ctrl-F, a high-level domain-specific language that allows
for the description of adaptation behaviours and policies of component-based
architectures. A distinguished feature of Ctrl-F is its formalization with the
synchronous reactive language Heptagon/BZR, which allows to benefit, among
other things, from formal tools for verification, control, and automatic generation
of executable code. In order to show the language expressiveness, we applied it
to Znn.com, a self-adaptive case study, and we integrated it with FraSCAti, a
Service Component Architecture middleware.

For future work, we intent to address issues of modularity and coordination
of controllers, as well as their distribution. The reactive language and models
we rely on have recent results that can be exploited, and can lead to deploy
controllers taking into account the physical location of components.

References

1. Alvares, F., Rutten, E., Seinturier, L.: Behavioural model-based control for auto-
nomic software components. In: Proc. 12th Int. Conf. Autonomic Computing
(ICAC 2015), Grenoble, France. (extended version available as a Research Report:
https://hal.inria.fr/hal-01103548), July 2015

2. Arshad, N., Heimbigner, D.: A Comparison of Planning Based Models for Com-
ponent Reconfiguration. Research Report CU-CS-995-05, U. Colorado, September
2005

3. Batista, T.V., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in
component-based systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005.
LNCS, vol. 3527, pp. 1–17. Springer, Heidelberg (2005)

https://hal.inria.fr/hal-01103548

18 F. Alvares et al.

4. Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Schäfer, W., Meyer, M.,
Pohlmann, U.: The mechatronicuml method: model-driven software engineering of
self-adaptive mechatronic systems. In: Companion Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE Companion 2014, pp. 614–615.
ACM, New York (2014). http://doi.acm.org/10.1145/2591062.2591142

5. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of component assemblies.
In: Proc. 2013 Int. Conf. on Software Engineering, ICSE 2013, pp. 13–22 (2013)

6. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open com-
ponent model and its support in Java. In: Crnković, I., Stafford, J.A., Schmidt,
H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer,
Heidelberg (2004)

7. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the rainbow
self-adaptive system. In: ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2009, pp. 132–141, May 2009

8. David, P.C., Ledoux, T., Léger, M., Coupaye, T.: FPath & FScript: Language
support for navigation and reliable reconfiguration of Fractal architectures. Annals
of Telecommunications: Special Issue on Software Components (2008)

9. Delaval, G., Gueye, S.M.K., Rutten, E., De Palma, N.: Modular coordination of
multiple autonomic managers. In: Proc. 17th Int. ACM Symp. on Component-
based Software Engineering, CBSE 2014, pp. 3–12 (2014)

10. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller
synthesis. In: ACM International Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES 2010), Stockholm, Sweden, April 2010

11. Delaval, G., Rutten, E.: Reactive model-based control of reconfiguration in the
fractal component-based model. In: Grunske, L., Reussner, R., Plasil, F. (eds.)
CBSE 2010. LNCS, vol. 6092, pp. 93–112. Springer, Heidelberg (2010)

12. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press (2000)

14. Haugen, O., Wasowski, A., Czarnecki, K.: Cvl: common variability language. In:
Proceedings of the 17th International Software Product Line Conference, SPLC
2013, pp. 277–277. ACM, New York (2013)

15. Jacobson, I., Griss, M., Jonsson, P.: Software reuse: architecture process and orga-
nization for business success. ACM Press books, ACM Press (1997)

16. Kouchnarenko, O., Weber, J.-F.: Adapting component-based systems at runtime
via policies with temporal patterns. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS
2013. LNCS, vol. 8348, pp. 234–253. Springer, Heidelberg (2014)

17. Luckey, M., Nagel, B., Gerth, C., Engels, G.: Adapt cases: extending use cases for
adaptive systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2011, pp. 30–39.
ACM, New York (2011). http://doi.acm.org/10.1145/1988008.1988014

18. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming dynamically adaptive sys-
tems using models and aspects. In: Proc. 31st Int. Conf. on Software Engineering,
ICSE 2009, pp. 122–132. IEEE (2009)

19. Pascual, G.G., Pinto, M., Fuentes, L.: Run-time support to manage architectural
variability specified with CVL. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957,
pp. 282–298. Springer, Heidelberg (2013)

http://doi.acm.org/10.1145/2591062.2591142
http://doi.acm.org/10.1145/1988008.1988014

High-Level Language Support for Reconfiguration Control in Component 19

20. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Software: Practice and Experience 42(5), 559–583 (2012)

21. da Silva, C.E., de Lemos, R.: Dynamic plans for integration testing of self-adaptive
software systems. In: Proc. 6th Int. Symp. on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2011, pp. 148–157 (2011)

22. Tichy, M., Klöpper, B.: Planning self-adaption with graph transformations.
In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233,
pp. 137–152. Springer, Heidelberg (2012)

23. Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented design differencing.
In: Proc. 20th IEEE/ACM Int. Conf. on Automated Software Engineering, ASE
2005, pp. 54–65 (2005)

Architectural Reasoning Support
for Product-Lines of Self-adaptive Software

Systems - A Case Study

Nadeem Abbas(B) and Jesper Andersson

AdaptWise Department of Computer Science, Linnaeus University, Växjö, Sweden
{nadeem.abbas,jesper.andersson}@lnu.se

Abstract. Software architecture serves as a foundation for the design
and development of software systems. Designing an architecture requires
extensive analysis and reasoning. The study presented herein focuses on
the architectural analysis and reasoning in support of engineering self-
adaptive software systems with systematic reuse. Designing self-adaptive
software systems with systematic reuse introduces variability along three
dimensions; adding more complexity to the architectural analysis and
reasoning process. To this end, the study presents an extended Architec-
tural Reasoning Framework with dedicated reasoning support for self-
adaptive systems and reuse. To evaluate the proposed framework, we
conducted an initial feasibility case study, which concludes that the pro-
posed framework assists the domain architects to increase reusability,
reduce fault density, and eliminate differences in skills and experiences
among architects, which were our research goals and are decisive factors
for a system’s overall quality.

1 Introduction

Software architecture provides the cornerstones for software system design and
development. A high-quality architecture is a necessary condition if a software
system should satisfy its requirements [6]. This condition becomes more vital
when developing large and complex software systems.

While designing an architecture, software architects have to analyze and rea-
son about design choices. The design choices are analyzed with respect to com-
binations of design parameters and their consequences. The design parameters
affect the architecture decision process and include among others development
time and cost, user goals, application requirements, and the operating environ-
ment. The architects select choices with outcomes that best matches the design
parameters. The difficulty of architectural analysis and reasoning parallels the
complexity growth in projects. To support architecture analysis and reasoning for
complex systems, architects may use architectural reasoning frameworks [8,11].

We encountered several architectural analysis and reasoning challenges in
our research on support for strategic reuse with Software Product Line Engi-
neering (SPLE) [21] for Self-Adaptive Software Systems (SASS) [1]. Our goal

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 20–36, 2015.
DOI: 10.1007/978-3-319-23727-5 2

Architectural Reasoning Support for Product-Lines 21

is to develop assets that can be reused both vertically and horizontally [22]
to support realization of self-management properties across products and prod-
uct domains. The term “self-management” here refers to those characteristics
which enable a software system to adapt itself in response to changes in its
requirements, goals, environment and the system itself [10]. Self-configuration,
self-healing, self-optimization, and self-protection are the four widely known self-
management properties [18]. Realizing self-management properties is known to
be a hard problem for a single self-adaptive system and becomes even more
challenging when combined with reuse across products and products domains.

Self-adaptation combined with the product-line approach introduces vari-
ability along three dimensions. Domain variability, the first dimension, originates
from the SPLE domain. It refers to differences among products in a product line.
Run-time variability, the second dimension, comes from the self-adaptive soft-
ware systems. It refers to run-time changes in a system’s requirements, goals,
environment, and the system itself [10]. The third dimension, cross-domains
variability, stems from horizontal reuse, that is reuse across product domains. It
refers to differences among products in two or more domains. The combination
of three dimensions expands the design space architects have to consider, and
consequently architectural reasoning and analysis become more complex.

In our work, we discovered that this increased complexity affected our pri-
mary goal, reusability, negatively. With increase in complexity, the importance
of architects’ skills and experience was elevated. We hypothesized that the lack of
dedicated support for architecture reasoning with self-adaptation and strategic
reuse was a primary reason. To that end, we adopted existing methods and tech-
niques to develop an extended Architectural Reasoning Framework (eARF) [2].

The framework provides models and techniques that assist architects in anal-
ysis and reasoning in context of the variability described above. In this paper,
we introduce the eARF elements and outline a workflow. The workflow provides
step by step instructions to identify domain requirements along with their vari-
ability, extract design choices to realize requirements, analyze and reason about
design choices, and finally map decisions to a reference architecture.

We have conducted an initial evaluation of the framework in a case study with
final year master students [17]. The goal was to investigate its feasibility. The
results indicate that use of the eARF framework provides better architectural
analysis and reasoning support compared to the reference approach. It helps
architects to design assets with increased reusability and reduced fault density.
By providing architects with required knowledge encapsulated in the form of
tactics and patterns, it also reduces the effect of differences in architects’ skills
and experience. The combined results indicate that our working hypothesis is
correct. However, further evaluation is required to support the findings.

The remainder of this paper is organized as follows. Section 2 introduces the
eARF and some of its artifacts and activities. Section 3 describes the case study.
In Section 4, we analyze data and discuss results, which is followed by Section 4.4
that discusses threats to validity. Section 5 positions our work with respect to
related work. We conclude and discuss future work in Section 6.

22 N. Abbas and J. Andersson

<<
 in

st
an

ce
of

 >
>

ASPL platform

Managed System
Platformn

Managing System
Platformn

Managed System
Platform2

Managing System
Platform2

Managed System
Platform1

Managing System
Platform1

Distributed Game Robotics Automotive

Specialization

Integration

ASPL Domain
Engineering

Feature ModelProduct Line Architecture Variants

Fig. 1. The ASPLe Processes

2 An Extended Architectural Reasoning Framework

Strategic reuse offers improved quality combined with reduced effort, which
would contribute to self-adaptive software engineering practices. However, lit-
tle or no work in this direction has been conducted in the self-adaptive software
systems domain [24].

We have developed the Autonomic Software Product Line (ASPL) [1], an
approach that supports both vertical and horizontal reuse [22] of assets across
domains of self-adaptive software systems. The ASPL is a multi-product line
approach involving three principle components and three development processes
as shown in Figure 1. The first principle component is the ASPL platform, which
is a horizontal platform for managing systems. It includes reusable assets that
target cross-domain reuse, that is, it is independent from the managed system
domain. The second principle component is the Managing System Platform,
which is a vertical platform for a managing system domain. It is derived from
the horizontal platform and specialized for a specific Managed System Platform,
which is the third principle component.

The framework also defines three processes. The first process is a domain engi-
neering process for the managing system domain. It is responsible for managing
the horizontal ASPL platform and its reusable assets. Then in the middle, we have
multiple instances of a specialization process. Each specialization process derives
a vertical managing system platform for a specific application domain by special-
izing the horizontal ASPL platform. The third process integrates a specialized ver-
tical managing system platform with a domain specific managed system platform.
This approach is similar to a multi-product line strategy where the ASPL plat-
form is reusable across products and product domains, which reduces complexity
for both domain and application engineers.

Architects will reason about self-management properties and additional qual-
ity attributes in the three ASPL processes, thus we identified a need for ade-
quate reasoning support, primarily due to the complex interactions of proper-
ties, attributes, variability, and uncertainty. A reasoning framework encapsulates
quality attribute knowledge and techniques required to understand and analyze

Architectural Reasoning Support for Product-Lines 23

General
QAS

domain QAS
domain

Responsibility
Structure

1..*

<<determines>>

Architecture
Tactic

Architecture
Pattern

<<uses>>

packages

<<determines>>

Reasoning
&

Evaluation

Fig. 2. Building Blocks of the eARF

a system’s behavior for a specific quality attribute [7] and provides support for
modeling, analysis, evaluation and interpretation [8]. We found that none of the
existing reasoning frameworks provide sufficient reasoning support for realiz-
ing self-management properties. To that end, we have developed the extended
Architectural Reasoning Framework (eARF).

The extended framework’s structure is based on the architectural concepts
defined by Diaz-Pace et al. [11]. Figure 2 outlines the extended framework and its
elements: (1) Quality Attribute Scenarios (QAS), (2) domain QAS, (3) domain
Responsibility Structure, (4) Architecture Tactics, and (5) Architecture Pat-
terns. As compared to the reasoning framework proposed by Diaz-Pace et al. [11],
the domain QAS and domain responsibility structure elements are the extended
forms of a general QAS and responsibility structure, respectively, whereas the
element “architecture patterns” is a new addition to the extended framework.
We use an illustrative example to explain all these elements.

2.1 Illustrative Example

The PhotoShare Software Product Line (PSPL) contains service based products
that allow users to upload, edit, and share photos. As shown in the feature
model depicted in Figure 3, “uploading” and “sharing” are mandatory features,
whereas “editing” is an optional feature. In addition to the mandatory features,
the products are also required to guarantee performance from self-optimization.
For example, a general self-optimization scenario is: “From time to time, a PSPL
product experiences increase in the number of picture upload requests that it can
not handle adequately. The product can detect unacceptable latencies and adapt
to self-optimize its performance”. More details on PSPL may be found on the
case study home page http://homepage.lnu.se/staff/janmsi/casestudydRS/.

Figure 4 depicts a workflow for how the eARF elements assist architects
to realize self-management properties. The eARF artifacts used and produced
are described below. We illustrate a scenario from the specialization process
that prepares assets from the horizontal ASPL platform for integration with the
vertical PSPL platform.

http://homepage.lnu.se/staff/janmsi/casestudydRS/

24 N. Abbas and J. Andersson

PhotoShare

Uploading

From File
System

Import

Editing

Remove Edit

Sharing

Mandatory Feature Optional Feature
Key

Private Public Friends

Fig. 3. PSPL – Feature Model

2.2 Domain Quality Attribute Scenarios

The identification and characterization of domain requirements and their vari-
ability is a prerequisite for architecture reasoning and design. The eARF uses
quality attribute scenarios dQAS [3], an extension of QAS [6] with support
to characterize domain variability, to specify a domain’s requirements for self-
management.

In �1 in Figure 4, the domain requirements for self-optimization are elicited
and specified. The requirements are analyzed for domain variability in activity �2
and specified as domain scenarios. The ASPL platform provides a repository of
reusable scenarios that may be adopted and reused. The PSPL architects reuse
and adapt scenarios to reduce or expand their scope. For example, PSPL always
schedule subscription users first; this domain specific constraint is specified by
adapting scenarios from the ASPL platform. The domain analysts define new
QAS and dQAS, if the platform contains no matching assets. We continue and
design a domain Responsibility Structure when the dQASs are defined.

2.3 Domain Responsibility Structure

A domain Responsibility Structure (dRS) is an architectural model that con-
sists of a responsibility part and a variability part. The first step, activity �3 in
Figure 4, analyzes domain scenarios and identifies domain responsibilities [28]
and variation points. The responsibilities and variation points are further ana-
lyzed for structure, associations and variants in activity �4 . The responsibility
part of a dRS is defined by mapping responsibilities to responsibility compo-
nents. In this process, architects use tactics and patterns to support reasoning
and decision making. Activity �4 , completes the dRS by defining its variabil-
ity part, i.e., variation points with variants, and connecting variation points to
corresponding responsibility structures. The architects reuse and adapt features,
variants, and variability points from ASPL into PSPL.

Self-management properties are similar to regular quality attributes. Their
system-wide nature with tight coupling makes them difficult to modularize,
which is also a known characteristic for quality attributes [6]. To assist the
architects in reasoning about alternatives and decision making, the framework

Architectural Reasoning Support for Product-Lines 25

Identify Self-management
Requirements

QAS Model Variability dQAS

Extract Responsibilities
and Variability

Responsibilities

Map Responsibilities
to Architecture Elements

dRS

Architecture
Tactics

Architecture
Patterns

1

4 3

2
Work Product

Activity

LegendDomain Requirements

UML
Work Product

ASPL Repository
Reasoning

Reasoning

Fig. 4. Analysis and Design Workflow Using the eARF

provides design reasoning strategies, patterns and tactics for self-adaptive soft-
ware systems. Examples of design strategies include “attribute driven design” [6]
and “responsibility driven design” [28]. For the PSPL example we use the latter.

An architectural tactic encapsulates design decisions that may influence
behavior of a system with respect to a particular quality attribute [6]. The
framework promotes architectural tactics for the self-managing property. For the
PSPL, we have several performance based self-optimization tactics, for example,
resource demand, resource management, and resource arbitration [6].

The ASPL platform includes a set of tactics and patterns used to realize self-
management properties, for instance, MAPE-K control loop tactic, and tactics
for self-healing and for coordinating decentralized self-adaptation [26]. Tactics
and patterns together assists architects to analyze and reason about a system’s
responsibilities and structure. Each tactic represents a design option, i.e., a vari-
ant, and the platform provides responsibility components and variants for the
supported tactics. Tactics assist architects to identify variability and map it to
a variability model for the dRS.

Figure 5 depicts a fragment of a dRS for self-optimization in the PSPL
domain. Responsibilities and their variability were defined in activity �3 . The
resource management performance tactic, and the MAPE-K control loop pattern
are used to identify and reason about sufficient allocation of responsibilities and
possible variants for achieving self-optimization in the application domain.

The resulting dRS in Figure 5 contains a monitor element, the Response
Monitor, from the MAPE-K pattern and a variation point with three variants:
continuous, periodic, and event based. The PSPL products always include the
event-based variant, while the other two variants are optional. The Planner ele-
ment reuses two strategies from the resource management performance tactic:
add threads, and add resources. Both strategies are mandatory for all products.

The Performance Manager subsystem in Figure 5 indicates that the target
domain supports two performance manager variants; (1) centralized, and (2)
decentralized. This is an example of how architects have used patterns in the
process. The detailed design for one of the performance manager variants uses a

26 N. Abbas and J. Andersson

Response
 Monitor

Monitors how long a
PSPL product takes
to respond clients

Executor

Executes the Plan

Performance Manager

Coordinates MAPE
Components

Latency
Analyzer

Analyzes possible
factors behind
latency

Continuous
V

[0..1]

Performance
Manager

VP

[1..1]

Notification

PSPL

Runtime Info.

Analysis
Results

Planner
Prepares an
optimization plan
with the help of
analysis results and
performance tactics

Analysis
Results

Plan

PSPL PSPL

Effectors Runtime Info.

Plan

Key

[name]
[responsibility] [name]

VP

Responsibility
Structure

[name]
V

Variant Variation Point

[min..max]

Alternative
Choice

VP Artifact DependencyMandatory Variant

Optional Variant
provides

requires

Variability Diagram
(OVM)

Variability Diagram
(OVM)

dRS
for Self-Optimization

PSPL

Runtime
Info.

Periodic
V Event

Based

V

Centralized
V De-

Centralized
V

Add
Threads

V Add
Resources

V

Dependency
Analyzer

V
Workload
Analyzer

V

Response
Monitor

VP

Analyzer

VP

Planner

VP

Fig. 5. Domain Responsibility Structure (dRS) for Self-Optimization

decentralization pattern for the managing systems [26], while the other variant
uses a centralized feedback-loop.

The initial PSPL domain architecture for the self-optimization is ready. It
will be further refined, detailed, and reconciled for additional self-management
properties, and integrated with PSPL domain artifacts in the integration process.
That is, however, not the focus for the work presented herein.

3 Evaluation

We conducted a case study to evaluate the eARF approach’s feasibility. For a
full account of the study, we refer to the study home page1. The primary goals
for the study were: (1) to evaluate the eARF approach in comparison to a state-
of-the-art reference approach, and (2) to collect user experiences for improving
the eARF approach. For (1), we performed a case study with final year master
students as a frame of reference [29]. The primary focus was on reusability [15],
and fault density [13]. For (2), we collected qualitative data from interviews and
questionnaires to understand the level of support for architectural reasoning.

We used the evaluation in (1) and user experiences from (2) to answer our
hypothesis that the proposed reasoning framework provides better support for
architectural reasoning and reusability in domains characterized by run-time
variability, and reduces the effects of architects’ skills and experience, and prod-
uct’s fault-density, in comparison to state-of-the-art practices.

1 http://homepage.lnu.se/staff/janmsi/casestudydRS/

http://homepage.lnu.se/staff/janmsi/casestudydRS/

Architectural Reasoning Support for Product-Lines 27

P
ar

t I
: R

ef
er

en
ce

 A
pp

ro
ac

h

Week
1

2

3

4

5

P
ar

t I
I:

 e
A

R
F

A
pp

ro
ac

h 6

7

8

9

Second Preparatory Workshop (3-hours)
!

Introductory Lecture (2-hours)
Distribution of Home Assignment

Home Assignment Discussion (2-hours)

Lecture on the Reference Approach (2-hours)
and the Example SPL

First Preparatory Workshop (3-hours)

Test A1 (Reference) (3-hours)
Test A2 (Reference) (3-hours)

Lecture on Service Reusability (2-hours"!

Lecture on the eARF Approach (2-hours)
& Example SPL

Test A3 (dRS) (3-hours)
Test A4 (dRS) (3-hours)

Final Questionnaires and Interviews

Fig. 6. Overview of the Nine Weeks Course in which the Case Study Took Place

3.1 Design and Planning

We follow a planning template suggested by Wohlin et al. [29]. The objective of
the study is defined above. The eARF framework and a reference approach are
the two cases studied. The reference approach consists of state-of-the-art prac-
tices for self-adaptive software system design, centered around MAPE-K feed-
back loop [18]. The Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-
K) loop was first introduced by IBM [18] to add self-managing properties to
software systems. It monitors and controls one or more underlying managed ele-
ments. The managed element might be a hardware or a software system. The
reason for selecting the MAPE-K as a state-of-the-art reference approach is that,
at present, it is the most widely used approach to realize self-adaptive software
systems.

Test assignments, questionnaires and interviews are used as methods of data
collection. We match the case study’s objective and research questions with data
collection methods to decide which data units we would use in our analysis,
i.e., our selection strategy. Given our setting with a small number of subjects
we adopt an “analyze-all” strategy, that is, data collected from all subjects is
investigated and analyzed.

The case study was performed as a part of a nine weeks course, involving
three researchers and 13 subjects. Most of the preparatory work, data collection,
and analysis were performed by a doctoral student assisted by two senior lectur-
ers, primarily in the role as reviewers and advisors. The subjects were final-year
students on a two year master program in software engineering. As depicted in
Figure 6, the case study was conducted in two parts, one for each case stud-
ied. The first part was concerned with the reference approach, and the second

28 N. Abbas and J. Andersson

SSPL
+

Self-Upgradability-1

SSPL
+

Self-Healing-1

PSPL
+

Self-Healing-2

PSPL
+

Self-Upgradability-2

Group 1 Group 2

5
8

Reference
Approach

dRS
Approach

w
ee

k

A1 A2

A3A4

Fig. 7. Test Assignments - Design

introduced the treatment, i.e., the eARF approach. The case study was com-
pleted with questionnaires and interviews conducted in final week of the part
two.

3.2 Data Collection

The case study involves four test assignments that are performed by dividing
subjects into two groups randomly based on blocked subject-object study classi-
fication [29]. A blocked subject-object study analyzes two or more objects (cases
or units of analysis) using two or more subjects per object. In this type of study,
each subject receives both treatments, i.e., the reference and the dRS approach.
This allows paired comparison of the two approaches.

The test assignments target first two of the three variability dimensions
addressed by the ASPL approach. Domain variability, the first dimension, comes
from the product line engineering domain. Thus, two example SPLs, (1) Soft-
Phones Software Product Line (SSPL) and (2) PhotoShare Software Product
Line (PSPL) were designed for the test assignments. Details about these example
SPLs are given at the case study home page. To cater for the second dimension,
run-time variability, requirements for self-upgradability and self-healing were
added to the product lines’ scope. For each test, Figure 7 depicts a combination
of an example SPL and a self-management property, for example, test A2 uses
SSPL with self-healing as problem domain.

Each test assignment first introduces a problem domain followed by three
tasks. Tasks 1 and 3 are design tasks. Task 1 has two parts: a and b. Each part
requires subjects to extend an initial product design to support a given self-
management property, either self-upgradability, or self-healing. Task 2 requires
subjects to extend the core assets base by adding reusable artifacts from the
Task 1. This represents the third variability dimension, which originates from
reuse across multiple domains, i.e., horizontal reuse. Task 3 requires subjects
to use the extended core assets base from Task 2 and design a new product.
All tests were conducted as regular class assignments. No feedback was given to
subjects on the first part prior to the completion of the second part.

Architectural Reasoning Support for Product-Lines 29

0
0,2
0,4
0,6
0,8

1 2 3 4 5 6 7 8 9 10 11 12 13

T
R

L

Subject

TRL with dRS TRL with Reference

1,0

(a) Total Reuse Level (TRL) in Task 1(a)

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13

T
R

L

Subject

TRL with dRS TRL with Reference
(b) Total Reuse Level (TRL) in Task 3

Fig. 8. Total Reuse Level Achieved Using the Reference and the dRS Approach

Questionnaires and semi-structured interviews were used to collect data for
the study’s second objective. There were two types of questionnaires. The first
type was a combination of “pre” and “post” test questionnaires designed to
identify false positives and false negatives. The second type compares the two
approaches with respect to their support for architectural reasoning. Each sub-
ject was interviewed at the very end of the data collection phase to clarify
responses in questionnaires and collect details. The interviews were conducted
after publishing the course result to assure that the subjects did not adjust their
responses to get a better grade.

4 Analysis of Results

This section presents the data analysis and pinpoints findings that were observed
to confirm or reject our hypothesis. The main objective was to analyze the
eARF approach in comparison to the state-of-the-art reference approach with
respect to three properties: (1) reusability, (2) fault density, and (3) support
for architectural reasoning. We divide the analysis in three parts, one for each
property.

4.1 Support for Reusability

To analyze the two approaches with respect to their support for reusability,
we use quantitative data from the test assignments. The “reuse level” software
metric [15] is used for this analysis. It is defined for hierarchically composed
component system, and is well aligned with the way products are designed and
composed in the test assignments. The metric is defined as:

30 N. Abbas and J. Andersson

Total Reuse Level = External Reuse Level + Internal Reuse Level
External Reuse Level = E/L

Internal Reuse Level = M/L

L – the total number of lower level items in the higher level item.

E – the number of lower level items from an external repository.

I – the number of lower level items not from an external repository.

M – the number of items not from an external repository but used more than once.

All reuse levels will be between 0 and 1, here 0 indicates no reuse. We assume
that the products designed in the tests are the higher level items and compute
the value of L by counting the number of lower level items used in a product. The
core assets base from the example SPLs provides lower level items. We compute
E by counting the number of items from the core assets, and I by counting items
developed specifically for a product. M is computed by counting the items not
belonging to the core assets base but used more than once.

We calculate total reuse level for task 1 and task 3 as depicted in Figure 8.
There is no significant difference in the total reuse level for task 1(a). This is
because this task presents subjects with an initial product design and asks them
to extend it to support a self-management property. The approach is, however,
at least as good as the reference approach for all subjects and sometimes the
total reuse level is better. The results are similar for task 1(b), thus excluded for
space consideration.

The difference between the two approaches in terms of the achieved total
reuse level becomes more clear in task 3. In this task, a new product with support
for a self-management property is designed from scratch. All subjects achieve
maximum total reuse level of 1 with the eARF approach. In comparison only
46% were able to achieve the maximum total reuse level with the reference
approach.

4.2 Fault Density

Fault density is the number of known faults divided by product size [25]. It is
a de-facto measure of user perceived software quality [13]. We use it to analyze
the eARF approach’s support for producing high-quality architectural designs.
We used quantitative data from task 1 and task 3 to calculate the fault density.

Fault Density = Faults / Size (1)

To compute fault density using equation 1, we need to compute values of two
input variables: faults, and size. As the tasks selected for this analysis resulted
in design level artifacts, we were restricted to use methods at design level. We
estimated faults for each task of each subject by comparing subjects’ solutions
(designs) with a reference solution, and counting one fault for each missing or

Architectural Reasoning Support for Product-Lines 31

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9 10 11 12 13

FD

Subject

FD with dRS FD with Reference

(a) Faults Density (FD) for Task 1(a)

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9 10 11 12 13

FD

FD with dRS FD with Reference

Subject

(b) Faults Density(FD) for Task 3

Fig. 9. Faults Density Comparisons Using the Reference and the dRS Approach

incorrect element. The missing or incorrect element can be a component, service,
interface, method, or a method parameter for test assignments A1 and A2 that
use the reference approach. In the test assignments A3 and A4 that require the
eARF approach, the element can be a responsibility component, responsibility
definition, interface, variation point, or a variant.

The size of a software system can be measured in different ways. We used
function point analysis (FPA) [4] method to measure size. As the test assign-
ments involve design artifacts so we searched for an FPA based method that
could be applied to design level artifacts. We could not find a method that
suited the design artifacts created in the selected tasks. However, we found an
FPA based high level analysis approach [20] that targets software requirements
specification. We decided to use this approach. The approach uses independent
assessors to rate each requirement on a scale: low, average, and high. We used
three assessors, two doctoral students and a senior lecturer in software engi-
neering. Following the procedure described by the approach, we computed three
scores for size in terms of function points: minimum, expected, and maximum.
We took average of these scores to get a size estimate. For details about the
computation procedure, we refer to the original work by Peeters et al. [20] and
the case study home page.

Figure 9 depicts the fault density for the approaches. It is clear that for both
tasks the eARF approach results in a reduced fault density.

4.3 Support for Architectural Reasoning

We use qualitative data collected with a questionnaire to analyse the approaches
with respect to their support for architecture analysis and reasoning. As the data
is qualitative, the results are indicative.

In the final questionnaire, subjects were asked to answer six closed questions
targeting support for architectural reasoning. A majority of the subjects rated
the eARF approach as relatively better for the first two questions. In the remain-
ing questions, we gave a statement and asked to select one of five options from

32 N. Abbas and J. Andersson

“Strongly Disagree” to “Strongly Agree”, and a “Don’t Know” option. More
than 90% of the subjects “strongly agreed” or “agreed” to a statement that
declared the eARF to be more assistive than the reference approach. The results
were similar for the other statements, i.e., positive to the eARF approach. The
analysis indicates that the eARF contributes positively to the design process
and the subjects feel more confident with the support provided by the eARF
approach.

4.4 Threats to Validity

We use the classification scheme suggested by Runeson et al. [23] to discuss
threats to validity.

Construct validity ensures that a study actually relates to the problem that
the study aims to address. The eARF focuses on realization of self-management
properties characterized with domain and cross-domains variability. Accordingly,
the study selected two SPLs with requirements for self-management properties as
problem domains. A possible threat to validity is “use of unclear terminology”
that causes subjects and researchers to interpret the used terms or concepts
differently. We reduced this threat by dedicating three weeks in both parts of
the study to lectures and preparatory workshops. Another possible threat is
that subjects may guess what the researchers are looking for and adapt their
answers accordingly. This threat was mitigated by presenting the activities as
coursework. We also gave feedback and grades prior to the questionnaires and
interviews.

Internal validity is a concern for explanatory studies where causal relations
are examined [23]. This study is explorative, and thus less sensitive to this type
of threat. Other potential threats are increased understanding and maturity of
subjects. To mitigate these threats, we took three measures in the case study
design: (1) a comprehensive knowledge base in the first part, (2) use of a new
problem domain (PSPL) and requirements set in the second part, and (3) use
of standards tools and methods such as UML.

External validity is concerned with the extent to which findings can be gen-
eralized and are relevant outside the study. This study uses final year master
students as subjects [17]. The profile for such students is that they are knowl-
edgeable but lack in professional skills and experience. One of the aspects we
were interested in is, “how the experience and knowledge provided by eARF con-
tributes to the design quality”. It is important to note that professional architects
will exhibit similar differences in knowledge and experience as the group of stu-
dents usually have, and thereby, the effect of eARF would be generalizable. The
size of the study’s population is, however, small to generalize the results.

Another potential threat is that the framework and the test assignments are
designed by the same group of researchers. There is a risk that the test assign-
ments were designed in a way that favors the eARF approach. To reduce this
threat, an independent senior researcher was requested to review the assign-
ments. Moreover, a large portion of data collection and analysis was performed
by a single researcher. The data analysis of the test assignments is based on

Architectural Reasoning Support for Product-Lines 33

objective data, except for the size measure. External reviewers were involved for
that particular data point. With opinions from multiple sources the risk of a
biased analysis is mitigated.

Reliability refers to the ability of other researchers to replicate the study. To
support replication, a complete documentation for all activities in this study is
available online at the case study home page.

5 Related Work

Reusable decision models support architectural reasoning by capturing architec-
tural decisions and exchanging these within and between projects in the same or
similar context. Olaf et al. [30] presented a proactive approach to model and reuse
architectural knowledge. The approach need to be investigated in the context of
self-management properties. Bass et al. [7] proposed use of reasoning framework
which encapsulate knowledge and tools needed to analyze behavior of a system
such as the modifiability reasoning framework [11]. A reasoning framework may
help the architects to evaluate an architecture in its early stages, and save lot of
effort and resources in the end. However, none of the existing frameworks target
self-management properties and the three variability dimensions targeted in this
study. An open source project, DiVA [12], provides a tool-supported methodol-
ogy and framework for managing dynamic variability in adaptive systems. The
project claims to contribute with a reasoning framework that takes a context
and adaptation rules as input and does the reasoning to find and rank possi-
ble configurations for the given context. However, there are no details for the
framework elements, which makes it difficult to compare with our work.

A related research theme that addresses development issues for reusable
and dynamically reconfigurable core assets is Dynamic Software Product Lines
(DSPL) [16]. The DSPL community has proposed several approaches to deal
with run-time variability. The MADAM [14] middleware is one such approach
that uses architecture models at run-time to reason about and control adapta-
tions. In its current implementation, it uses a utility function to reason about
and select the design options, this can be supplemented by encapsulating knowl-
edge in the form of a reasoning framework. Thus the eARF framework has a
potential to be integrated with the MADAM middleware to enhance reasoning
support needed to deal with the three variability dimensions investigated in this
study.

Liu et al. [19] proposed a dynamically reconfigurable reference architecture
based approach to develop systems with evolvable run-time variability. The app-
roach uses a dynamic update mechanism which at run-time updates the refer-
ence architecture by adding, removing, and modifying architectural elements.
The authors described a process through which such updates are performed,
however, there is no discussion about what triggers the dynamic update process,
and how the design choices are analyzed and reasoned about at run-time.

Whittle et al. [27] presented RELAX, a requirements specification language
for self-adaptive systems. It may help developers to identify variability in the

34 N. Abbas and J. Andersson

requirements, by specifying requirements that a system could temporarily relax
under certain conditions. However, RELAX does not support design and reason-
ing at the architecture level which is the focus for our work presented herein.

Cetina et al. [9] proposed a Common Variability Language (CVL) for run-
time variability modeling. The CVL approach separates variability modeling
from the base domain modeling. The split between variability modeling and base
domain modeling in the CVL approach is similar to the split between variability
part and responsibilities part in the extended responsibility structure presented
in this study. However, the authors did not explicitly state and address the
architectural reasoning support needed to make decisions and trade off at run-
time.

Bachmann et al. [5] called for the provision of special methods that may assist
in designing an architecture with quality attribute requirements. The authors
require such methods to have three features, (1) knowledge encapsulation, (2)
trade-offs, and (3) traceability from requirements to architecture. The eARF
provides support for all these features through tactics, patterns, domain scenarios
and the responsibility structures.

6 Discussion and Conclusions

Development of self-adaptive software systems with systematic reuse presents
architects with the challenge of extensive architectural analysis and reasoning
needed to analyze, reason about, and trade-off multiple design choices. The
extended architectural reasoning framework supports the architects by provid-
ing them with models and techniques for reasoning, mapping, and structuring
responsibilities with variability into a reference architecture. In addition, it pro-
vides architects with design knowledge and proven best practices encapsulated
in the form of tactics and patterns.

We conducted a case study to investigate the feasibility of the proposed
architectural reasoning framework. We conclude that the results from the study
indicate that the framework offers better support for reuse and reduces fault
density in comparison to the reference approach. We also collected qualitative
data that indicates that the architects appreciate the structure and guidance
provided by the eARF framework. This is also supported by the quantitative
data where we see that skills and experience have less impact on the measured
properties with the eARF approach.

The proposed extensions are the first steps towards a comprehensive design
framework that leverages on reuse to engineer self-adaptive software product-
lines across multiple domains. However, much work remains. For instance, the
framework must include better support for reasoning. We have plans to further
investigate tactics and patterns with the aim to establish a core of best practices
for engineering self-adaptive software systems and include the practices as design
advices for further increase of reusability and reuse levels.

Architectural Reasoning Support for Product-Lines 35

Acknowledgments. Acknowledgments The research was funded by VINNOVA, the
Swedish Agency for Innovation Systems and Innovative Product Development (Grant
No. 2013-03492).

References

1. Abbas, N.: Towards autonomic software product lines. In: Proceedings of the 15th
International Software Product Line Conference, SPLC 2011, vol. 2, pp. 44:1–44:8.
ACM, New York (2011)

2. Abbas, N., Andersson, J.: Architectural reasoning for dynamic software product
lines. In: Proceedings of the 17th International Software Product Line Conference
Co-located Workshops, pp. 117–124

3. Abbas, N., Andersson, J., Weyns, D.: Modeling variability in product lines using
domain quality attribute scenarios. In: Proceedings of the WICSA/ECSA 2012
Companion Volume, pp. 135–142. ACM, New York (2012)

4. Albrecht, A., Gaffney, J.E.: Software function, source lines of code, and develop-
ment effort prediction: A software science validation. IEEE Transactions on Soft-
ware Engineering SE–9(6), 639–648 (1983)

5. Bachmann, F., Bass, L., Klein, M., et al.: Designing software architectures
to achieve quality attribute requirements. IEE Proceedings - Software 152(4),
153–165 (2005)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Professional (2003)

7. Bass, L., Ivers, J., Klein, M., et al.: Encapsulating quality attribute knowledge. In:
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2005, pp. 193–194. IEEE Computer Society, Washington, DC (2005)

8. Bass, L., Ivers, J., Klein, M.H., et al.: Reasoning frameworks. Tech. rep. (2005).
http://www.sei.cmu.edu/library/abstracts/reports/05tr007.cfm

9. Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for vari-
ability transformation at run-time. In: Proceedings of the 13th International Soft-
ware Product Line Conference, SPLC 2009, pp. 61–70. Carnegie Mellon University,
Pittsburgh (2009)

10. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013)

11. Diaz-Pace, A., Kim, H.-W., Bass, L.J., Bianco, P., Bachmann, F.: Integrating
quality-attribute reasoning frameworks in the ArchE design assistant. In: Becker,
S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 171–188.
Springer, Heidelberg (2008)

12. DiVA: Diva-dynamic variability in complex, adaptive systems. http://sites.google.
com/site/divawebsite

13. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the Con-
ference on The Future of Software Engineering, pp. 357–370. ACM, New York
(2000)

14. Floch, J., Hallsteinsen, S., Stav, E., et al.: Using architecture models for runtime
adaptability. IEEE Software 23(2), 62–70 (2006)

15. Frakes, W., Terry, C.: Software reuse: Metrics and models. ACM Computing Sur-
veys 28(2), 415–435 (1996)

http://www.sei.cmu.edu/library/abstracts/reports/05tr007.cfm
http://sites.google.com/site/divawebsite
http://sites.google.com/site/divawebsite

36 N. Abbas and J. Andersson

16. Hallsteinsen, S., Hinchey, M., Park, S., et al.: Dynamic software product lines.
IEEE Computer 41(4), 93–95 (2008)

17. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects-a comparative study
of students and professionals in lead-time impact assessment. Empirical Software
Engineering 5(3), 201–214 (2000). http://dx.doi.org/10.1023/A:1026586415054

18. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

19. Liu, J., Mao, X.: Towards realisation of evolvable runtime variability in internet-
based service systems via dynamical software update. In: Proceedings of the 6th
Asia-Pacific Symposium on Internetware, Internetware 2014, pp. 97–106. ACM,
New York (2014)

20. Peeters, P., van Asperen, J., Jacobs, M., et al.: The application of Function Point
Analysis (FPA) in the early phases of the application life cycle A Practical Man-
ual: Theory and case study, 2.0 edn. Netherlands Software Metrics Association
(NESMA) (2005)

21. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-
dations, principles, and techniques. Springer-Verlag New York Inc. (2005)

22. Prieto-Diaz, R.: Status report: software reusability. IEEE Software 10(3), 61–66
(1993)

23. Runeson, P., Höst, M., Rainer, A., et al.: Case Study Research in Software Engi-
neering: Guidelines and Examples, 1st edn. Wiley Publishing (2012)

24. Weyns, D., Iftikhar, M., Malek, S., et al.: Claims and supporting evidence for
self-adaptive systems: a literature study. In: 2012 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systemsm, pp. 89–98 (2012)

25. Weyns, D., Iftikhar, M.U., Söderlund, J.: Do external feedback loops improve the
design of self-adaptive systems? a controlled experiment. In: Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 3–12. IEEE Press, Piscataway (2013)

26. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke,
J., Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized con-
trol in self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw,
M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475,
pp. 76–107. Springer, Heidelberg (2013)

27. Whittle, J., Sawyer, P., Bencomo, N., et al.: RELAX: a language to address
uncertainty in self-adaptive systems requirement. Requirements Engineering 15(2),
177–196 (2010)

28. Wirfs-Brock, R., McKean, A.: Object design: roles, responsibilities, and collabora-
tions. Addison-Wesley Professional (2003)

29. Wohlin, C., Runeson, P., Höst, M., et al.: Experimentation in Software Engineering,
1st edn. Springer, Heidelberg (2012)

30. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable
architectural decision models for enterprise application development. In: Overhage,
S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 15–32. Springer, Heidelberg (2008)

http://dx.doi.org/10.1023/A:1026586415054

Towards a Framework for Building Adaptive
App-Based Web Applications Using Dynamic

Appification

Ashish Agrawal(B) and T.V. Prabhakar

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

{agrawala,tvp}@cse.iitk.ac.in

Abstract. Appification, the process of building app-based web applica-
tions, can help in improving various quality attributes of the application
and reduce consumption of resources at server side. A major challenge in
ensuring quality attributes of such applications is run-time variations in
availability of client resources like battery power. A generic architecture-
based approach for building applications that can not only accommo-
date the dynamic environments by ensuring multiple quality attributes
but can also opportunistically exploit the client resources, is missing in
the literature. This paper presents a technique called Dynamic Appi-
fication using which an application can manage its expectations on the
environment at run-time. Findings of our investigation on building adap-
tive applications using this technique are formulated as a methodologi-
cal framework called Appification Framework. Using our framework, we
implemented an application that can not only handle the scenarios of low
client resources but can also opportunistically exploit the client resources
to improve its capacity by more than 100% of the initial capacity.

Keywords: Mobile apps ·Dynamic architecture ·Adaptive applications

1 Introduction

Appification, the process of building app-based web applications, can also be seen
as an opportunity to exploit resources available at the mobile clients. However,
mobile devices operate in dynamic environments and availability of resources at
client devices can vary with time like battery level, network connectivity, etc [7].
Such environmental changes cause issues in ensuring quality attributes of the
application and also limit the application’s ability to exploit client resources.
For example, if an application is designed with light computation on client
devices, it will not be able to fully use the client resources when possible. Exist-
ing approaches in the literature to handle dynamic environments at run-time
(e.g., Cyber Foraging [1] and Fidelity Adaption [8]) are focused towards ensuring
only a specific set of quality attributes. Also, these solutions accommodate the
dynamic environments only from the client perspective (low availability of client
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 37–44, 2015.
DOI: 10.1007/978-3-319-23727-5 3

38 A. Agrawal and T.V. Prabhakar

Fig. 1. An example of application adapting using our methodology

resources) and do not consider the server perspective of exploiting the client
resources when possible.

Aim of this work is to provide a generic architecture-based approach that can
accommodate the dynamic environments while considering both client and server
perspectives. Our focus is on investigating the architecture-level decisions that
are specific to the appification process. In this process, an important architectural
decision is to divide the application components into two groups, one to be
executed on the client device and the other to be executed on the server. This
decision has an impact on the quality attributes of the application. We call
this design decision as “Appification Strategy (AS)” for that application.
An application can have several possible ASs which have different impacts on
quality attributes. In current approaches, an AS is decided during the design
phase. This leads to a one-time selection of what the quality attribute trade-offs
are likely to be.

We present a technique called Dynamic Appification where the AS of the
application is not fixed at design-time and can vary at run-time. This technique
can help in handling dynamic environments from both client and server perspec-
tives. From the client perspective, an application can select an AS more suitable
for a particular type of client at that time. From a server perspective, among
possible ASs for a particular client at a given time, an application can choose
the one with maximum reduction in operational load on the server. Thus, at
run-time, the application can have different ASs for different clients and can
migrate from one AS to another AS for any client. Figure 1 depicts an example
of adaptation in the application using our methodology. It shows that AS for
a particular client can be changed by executing more components on the client
device.

Findings of our initial exploration to realize Dynamic Appification for build-
ing adaptive applications are formulated as a methodological framework called
Appificaton Framework. We have also implemented a simple application as a
proof of concept for the Appification Framework and conducted experiments to
accommodate scenarios of low battery power, intermittent network connectivity
and high load on the server. Rest of the paper is structured as follows: Section 2
describes Appification Framework in detail. Section 3 explains implementation

Towards a Framework for Building Adaptive App-Based Web Applications 39

Fig. 2. Steps of the Appification Framework

of our prototype and results of the experiment conducted for handling changes in
the environment. Section 4 concludes the work with directions for future work.

2 Appification Framework

This section presents a methodological framework for building applications with
the ability to adapt in a dynamic environment at run-time using Dynamic Appi-
fication. The framework abstracts out the responsibilities involved in building
such applications, and provides guidelines for architectural design, implementa-
tion and deployment of the application. Figure 2 depicts steps involved in the
framework that are further explained in the following subsections.

2.1 Analyze Quality Requirements

The first step is to analyze the application requirements to identify the quality
attributes that can be changed at run-time during adaptation. An application
may have freedom in parameters of some quality attribute requirements like
performance (response-time) may vary between 0 to 10 seconds. Thus, there
can exist multiple ASs for that application which comply with the restrictions
imposed by the quality attribute requirements. In this step, quality attributes
desired from the application are categorized into two sets: 1) FixedQAs contains
quality attributes for which variations are not allowed; 2) FlexibleQAs contains
quality attributes for which application can have some variations.

2.2 Identify QAS for Variability

In this step, we need to identify the scenarios for which application needs to
adapt. The main idea of our approach is to achieve variability quality attribute [4]
in the application architecture and requirements for the same are captured
through Quality Attribute Scenarios (QAS) [3] for variability. Documenting
QASs for variability helps in identifying in what situations application needs
to adapt and what should be the desired result after adaptation. For example
an application can have the following QAS: “If client battery is less than 30%,
reduce the energy consumption of the application on that client device”.

40 A. Agrawal and T.V. Prabhakar

2.3 Design the Application

In this step, first, all useful ASs of the application are identified by analyzing the
application components. Among all possible ASs, strategies which do not fulfil
the constraints on the execution location of the components (e.g., functional,
dependency on specific hardware/software components), or do not comply with
the quality requirements (FixedQAs and FlexibleQAs), are discarded. An AS
is also discarded if there is another AS which will always give better quality
attributes compared to this one.

Finally, a base architecture model of the application is designed which repre-
sents execution location of the components. If a component has same execution
location (client or server) in all useful ASs, it has a static execution location in
the base model. If a component has different execution location in any two use-
ful ASs, its execution location is modeled as a variation point. Such a variation
point has two choices, either to execute that component on the client device or
on the server. This base architecture model will have a set of possible reconfig-
urations (ASs) for run-time execution. Details of variation points (e.g., choices,
variation-time, etc.) are stored in the variability guide. These strategies are also
evaluated in terms of their impact on quality attributes. Such evaluation results
will be used in the process of selecting the best possible AS. In case it is not
possible to fully quantify such an impact, it is captured in relative terms.

2.4 Build Appification Strategy Selector

In this step, we build a component to facilitate selection of an AS for given qual-
ity attributes. This component will be used to decide initial AS of the application
and which AS to be used during adaptation. Such selection is a complex problem
as there may be a situation in which no single strategy is giving better values for
all quality attributes. For example, one AS may provide poor performance and
better security and another may provide better performance but poor security.
We have formulated this problem as a multi-criteria decision making problem and
used Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) [5] framework as it selects the solution closest to the best possible solution.
Due to page limitation, details of our TOPSIS model are omitted here and the
readers are referred to [2].

Output of the TOPSIS model is an ordered list of ASs, let’s say
ASOrderedlist, where the AS at the top is most preferable (most closest to the
desired quality attributes). The application maintains a copy of ASOrderedlist
for every client and initially, the topmost strategy is selected for current exe-
cution. On the occurrence of a QAS, the application selects an AS with the
highest rank that fulfills the desired QAS response. Such selection will have the
minimum adverse effect on other quality attributes. In case the adaptation is
requested by the server environment (e.g., load on the server), then the appli-
cation might have to change ASs for a set of client devices. Depending on the
desired quality improvement, the number of client users, for whom ASs have to
be changed, is defined using methods like stress-testing.

Towards a Framework for Building Adaptive App-Based Web Applications 41

2.5 Implement the Application

In order to have the ability to dynamically change the AS at run-time, appli-
cation components having variation points, have to be implemented in a way
such that their execution location (client or server) and communication pattern
(local or remote) can be changed at run-time. Our technique for building such
components is based on the following tactics:

1. Code Redundancy: Deploy such components on both server and mobile
device to reduce the overhead of transferring components on the fly. It may
increase implementation cost as such components may have to be built in
both the technology stacks of server and client.

2. Encapsulate: Provide an explicit interface of the components such as appli-
cation programming interface (API). It is required for easy interaction with
other components.

3. Defer Binding: As the exact execution flow of the application will be
decided at run-time, components have to be designed in such a way that
they can dynamically decide whether to make a remote call or a local call.
Thus, to change the AS, application just need to change the call graphs of
the components.

2.6 Build Appification Manager

In this step, we implement the functionality of dynamically changing the AS for
client devices. The application should be able to monitor the environment to
trigger a QAS, select ASs for clients, and migrate the client(s) to their selected
AS. For handling these issues, we present a conceptual architecture of such com-
ponent, Appification Manager. Architecture of Appification Manager is based
on MAPE-K control loop [6] for adaptive systems which clearly abstracts out
the responsibilities of an adaptive system. Following describes components of
Appification Manager in detail.

1. Context Monitor: This component monitors the contextual variables (e.g.,
CPU load) and reports the data to the Analyzer.

2. QAS Analyzer: By analyzing the data provided by the Context Monitor,
this component checks if any variability QAS has occurred in the system.
For example, it notifies the Planner component if CPU load on the server
becomes more than 80% continuously for 15 minutes.

3. Strategy Planner: This component decides what changes should be incor-
porated in the application. By using the results from Appification Strategy
Selector, it identifies the number of users and their new ASs.

4. Executor: This component is responsible for finally changing the ASs of
the clients identified by Planner. For each user, depending upon the AS,
it selects the call graph (stored in the Knowledge Base), and updates both
server and client with this information.

5. Knowledge Base: This component maintains a repository of architectural
information used by other components of the manager.

42 A. Agrawal and T.V. Prabhakar

3 Case Study

We have implemented a simple application as a proof of concept for the Appifica-
tion Framework and conducted experiments to show the feasibility of two kinds
of adaptations: 1) Server-driven adaptation in which server changes ASs of a
set of clients to handle high operational load, and 2) Client-driven adaptation in
which a single client adapts its AS to handle low availability of resources at the
client-side. Our application facilitates image-based searching of products and has
mainly three components; TakeImage for capturing an image, ImageToText
for extracting text from an image, and Search for searching the textual content
in a product database. We identified two ASs for the application as:

– as1: Component TakeImage executes on mobile client; ImageToText and
Search execute on server.

– as2: Components TakeImage and ImageToText execute on client; Search
executes on server.

For client devices, components are implemented in Java for the Android
platform. For server, components are implemented in Python using Django
framework. ImageToText is build using Tesseract-OCR library [9] for both
the Android platform and the server. The server part is deployed on a virtual
machine with 1 CPU core and 2 GB RAM. Here, the application can have some
variations in performance, energy-efficiency on the clients, and capacity. How-
ever, the average response-time of requests should not be more than 10 seconds.
Following sections explain the two kinds of adaptations investigated by us:

3.1 Server-Driven Adaptation

We demonstrate the ability of the application to accommodate dynamic changes
in server environment (user-load) by opportunistically exploiting the resources
available at the client devices. QAS for such adaptation is:

– QAS1: “If the server reaches 85% of its capacity, reduce the load on the
server”.

In our case, capacity is represented as the number of clients the application
can serve while maintaining the average response-time to less than 10 seconds.
We selected as1 as the initial AS for the application in order to minimize the
energy consumed on client devices. Without dynamic appification, the server has
a capacity to handle around 46 simultaneous users. Compared to as1, strategy
as2 has less operational load on the server as ImageToText is executed on
client. Thus, to accommodate high user-load, the application changes the ASs
for a set of clients. In order to identify the number of such clients for a given user-
load, we performed profiling of the application. For a given user-load, average
response time is calculated with varying number of users moved to as2, as shown
in Figure 3(a) and 3(b). For example, in case of 60 users, for reducing average
response time to less than 10 seconds, at least 10 users should be moved to as2.

Towards a Framework for Building Adaptive App-Based Web Applications 43

Fig. 3. Experimental results: (a) & (b) depict profiling results for different user-load.
Here, average response-time is depicted with varying number of users appified to as2
strategy. (c) depicts application behaviour with and without dynamic appification

Figure 3(c) presents results of dynamically varying capacity of the appli-
cation to 100 users. Here, with static appification (with strategy as1), average
response-time goes more than 10 seconds after 46 users. With dynamic appifica-
tion, the application behaves similar to static appification till 40 users. After 40
users, the application dynamically scales to increase its capacity. In case of 100
users, application changes ASs of 50% users to maintain the average response-
time to less than 10 seconds. This adaptation has an adverse impact on energy
consumptions of the client devices. By changing AS dynamically, an application
can increase its capacity only up to a limit. For example, in our case, the applica-
tion can not handle more than 165 users even by using as2 strategy for all users.
Here, contrary to the traditional/cloud approach, capacity is improved without
adding new server-side resources. Thus it does not increase operational-cost of
the application. One thing to note here is that the improvement in the capacity
will directly depend upon the amount of computation off-loaded to the client
devices. Aim of this experiment was to show feasibility of our approach. Exact
improvement in capacity may vary with application.

3.2 Client-Driven Adaptation

Here, to handle the environmental changes, a client adapts its AS at run-time.
The QASs for such adaptations are:

– QAS2: “If the battery power at a client is less than 30% of full power, reduce
energy consumption at the client device”. To test this scenario, initially the
client is configured with as2 strategy. By moving to as1, client can reduce
the energy consumption by removing the overhead (0.95 seconds of execution
time) of executing component ImageToText.

– QAS3: “If the client is having intermittent network connectivity, reduce
response-time from the server so that the dependency on a stable network
is narrowed”. To test this scenario, initially the client is configured with
as1 strategy. By moving to as2, the application can reduce server part of
response-time from 0.24 seconds to 0.11 seconds.

44 A. Agrawal and T.V. Prabhakar

4 Conclusion and Future Work

Dynamic Appification can help in solving various quality related issues such as;
unpredicted and dynamic quality requirements, energy constraints, intermittent
network connectivity, etc. In this paper, we explored how to realize Dynamic
Appification in the application. In our approach, variability is introduced in the
application architecture by modeling the appification-specific design decisions as
variation points. Such architecture supports multiple variants that differ in terms
of their impact on the quality attributes and consumption of resources. Thus,
depending upon the environmental context, an application can adapt at run-
time by migrating to a suitable variant. Selection of the best suitable variant
is done in a manner such that the adverse effects on other quality attributes
are minimum. We presented a methodological framework, called Appification
Framework to provide guidance on building adaptive applications with Dynamic
Appification. Experiments conducted on a prototype implementation showed
that the application can not only handle scenarios of low client resources, but
can also dynamically scale by exploiting resources available at the client devices.
In the future, we would like to explore on automating the framework activities
in order to reduce the design and development overhead.

Acknowledgments. Acknowledgments The authors gratefully acknowledge the finan-
cial support from Tata Consultancy Services and MHRD, Govt. of India for this work.

References

1. Avgeriou, Paris, Zdun, Uwe (eds.): ECSA 2014. LNCS, vol. 8627. Springer,
Heidelberg (2014)

2. Agrawal, A., Prabhakar, T.V.: Using topsis for decision making in software architec-
ture. http://www.cse.iitk.ac.in/users/agrawala/topsis.html (retrieved June 2015)

3. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward
methodical architectural design, technical report, CMU/SEI-2003-TR-004 (2003)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional (2012)

5. Hwang, C., Yoon, K.: Multiple Attribute Decision Making: Methods and Applica-
tions. Springer, New York (1981)

6. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A practical guide to the to
the ibm autonomic computing toolkit, April 2004

7. Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T.J., Gu, X.:
Towards a distributed platform for resource-constrained devices. In: Proceedings
of the 22 nd International Conference on Distributed Computing Systems (ICDCS
2002), p. 43 (2002)

8. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker,
K.R.: Agile application-aware adaptation for mobility. In: Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles, SOSP 1997 (1997)

9. Smith, R.: An overview of the tesseract ocr engine. In: ICDAR, vol. 7, pp. 629–633
(2007)

http://www.cse.iitk.ac.in/users/agrawala/topsis.html

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 45–52, 2015.
DOI: 10.1007/978-3-319-23727-5_4

Meta-Adaptation Strategies
for Adaptation in Cyber-Physical Systems

Ilias Gerostathopoulos(), Tomas Bures, Petr Hnetynka,
Adam Hujecek, Frantisek Plasil, and Dominik Skoda

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
{iliasg,bures,hnetynka,plasil,skoda}@d3s.mff.cuni.cz

Abstract. Modern Cyber-Physical Systems (CPS) not only need to be dependa-
ble, but also resilient to and able to adapt to changing situations in their
environment. When developing such CPS, however, it is often impossible to an-
ticipate all potential situations upfront and provide corresponding tactics. Situa-
tions that lie out of this “envelope of adaptability” can lead to problems that
range from single component malfunctioning to complete system failure. The
existing approaches to self-adaptation cannot typically cope with such situations
as they still rely on a fixed set of tactics, which in case of complex systems does
not guarantee achieving correct functionality. To alleviate this problem, we
propose the concept of meta-adaptation strategies, which extends the limits of
adaptability of a system by constructing new tactics at runtime to reflect the
changes in the environment. The approach is demonstrated on an existing archi-
tecture-based self-adaptation method and exemplified by two concrete meta-
adaptation strategies.

Keywords: Meta-adaptation strategies · Adaptation tactics · Cyber-Physical
systems

1 Introduction

An important feature of efficient and dependable CPS is self-adaptivity, i.e., the abili-
ty to change their behavior or structure in response to changes in their environment.
Self-adaptation in software systems is usually achieved in three fundamental ways: (i)
by relying on a detailed application model, e.g., Markov Decision Processes (MDP),
and employing simulations or other means of state-space traversal to infer the best
response of the system, (ii) by identifying control parameters and employing feed-
back-based control techniques from control theory, and (iii) by reconfiguring architec-
ture models, typically with the help of Event-Condition-Action rules – architecture-
based self-adaptation.

Existing approaches. A common denominator for all these three fundamental ways is
that they monitor the state of the environment and select an operation to perform from a
pre-designed fixed set of actions. In (i), a model of the environment is assumed to be
available (either known or learned) and the self-adaptation selects an action (e.g., “go

46 I. Gerostathopoulos et al.

straight”, “turn left”, “turn right”) to maximize future reward. In (ii) a fixed set of control
parameters is given and the actions consist of setting (increasing/decreasing) a parameter
value (e.g., Java heap size). In (iii), self-adaptation rules are expressed as actions involv-
ing particular architecture reconfigurations applicable under certain conditions in the
presence of certain events or situations [1, 2]. The combination of Rainbow framework
with the Stitch language is representative of (iii). In Stitch, a tactic is a specification of an
activity with a pre- and post-condition and an associated action. The self-adaptation in
(iii) can be thus seen as selecting one or more tactics from a fixed set.

These three ways have also been used both combined and together with learning-
based approaches. For example, control theory has been employed in the runtime
modification of the probabilities of a MDP [3]. Learning-based approaches have been
proposed to deduce the impact of adaptation actions at runtime [4], and to mine the
application model from system execution traces [5].

In the realm of CPS, where we deal with large complex distributed systems, the
high level view of architecture-based self-adaptation (i.e., (iii)) is generally favored
[1, 2, 6, 7]. At the same time, due to external uncertainty [8] (e.g., hardware failures,
temporary network unavailability), anticipating all potential situations upfront is not
an option. As a result, adapting by switching between available tactics applicable in
different situations is problematic, as the CPS may arrive in a situation where no
combination of tactics applies. A similar problem of selecting only from fixed actions
and parameters applies also to (i) and (ii).

Goals. As a remedy, focusing specifically on architecture-based self-adaptation, we
propose to generate new tactics at runtime to reflect the changes in the environment
and increase the overall system utilities, in particular safety, performance, and availa-
bility. We do so by introducing the concept of meta-adaptation strategies (MAS).
MAS allow us to enrich the adaptation logic of the system (thus the “meta” prefix) by
systematically generating new tactics. This provides a dynamic space of actions and
effectively extends the limits of adaptability of the system.

In particular, we present the idea of MAS and define their structure similar to de-
sign and adaptation patterns. On top of this basis, we show two examples of MAS and
demonstrate their applicability. The two MAS examples of course do not cover the
whole space of potential MAS, however, we believe that by introducing the idea of
MAS as means for dynamically extending the limits of systems adaptability, we pro-
vide helpful inspiration for future research on self-adaptive systems.

2 Running Example and Background

To demonstrate the concept of MAS, we briefly overview below the running example
and the IRM-SA self-adaptation method along with the DEECo component model,
which serve as the model and technological basis we use to exemplify MAS.

Running Example: Firefighter Coordination System. Firefighters belonging to tactical
groups are deployed on the emergency field and communicate via low-power nodes

 Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 47

integrated into their personal protective equipment. Each of these nodes is configured
at runtime depending on the task assigned to its bearer. For example, a hazardous
situation might need closer monitoring of a certain parameter (e.g., temperature).

In the setting of the complete case study [9], firefighters have to communicate with
the officers (their group leaders), who are equipped with tablets; the software running on
these tablets provides a model of the current situation (e.g., on a map) based on data
measured at and aggregated from the low-power nodes. Parameters measured at each
low-power node are position, external temperature, battery level, and oxygen level. The
data aggregation on the side of the group leaders is done with the intention that each
leader can infer whether any of his/her group members is in danger and take strategic
decisions. Such a coordination system has increased safety and performance require-
ments. It needs to operate on top of opportunistic ad-hoc networks, where no guarantees
for end-to-end response time exist, with minimum energy consumption, and without
jeopardizing its end-users. It also needs to respond to a number of challenging situa-
tions: What if the temperature sensor starts malfunctioning or completely fails at run-
time? What if firefighters are deployed inside a building where GPS readings are not
available? What if the communication between members and their leader is lost?

In all these situations, each node has to adapt its behavior according to the latest in-
formation available. For example, if a firefighter node detects that it is in the situation
“indoors”, it has to switch from the tactic of determining the position via the GPS to
the tactic of using an indoors tracking system. Other tactics include increasing the
sensing rate in face of a danger or even relying on the nearby nodes for strategic ac-
tions when communication with the group leader is lost.

Obtaining an exhaustive list of situations that trigger adaptations in the firefighter
coordination system is not a realistic option, as the environment is highly dynamic
and unpredictable. We rather need to be able to build a system that would dynamical-
ly change its behavior by (i) generating new tactics on demand, and (ii) using them in
the adaptation actions in order to deal with unanticipated situations.

IRM-SA and DEECo. The Invariant Refinement Method for Self-Adaptivity (IRM-
SA) [9, 10] is a requirements-oriented design method tailored for the CPS domain.
IRM-SA captures goals and requirements of the systems as invariants that describe
the desired state of the system-to-be at every time instant. For example, consider inva-
riant (1) in Fig. 1, which specifies that the leader of each firefighter group should have
an up-to-date view (encapsulated in the positionMap field) of his/her group members.
This “necessity” is AND-decomposed into invariants (2) and (3), which specify the
necessities of propagating the position from each member to the leader and determin-
ing the position on the side of each member, respectively. The refinement is finished
when each leaf invariant of the refinement tree is either an assumption or is a compu-
tation activity corresponding to a process or knowledge exchange. Alternative designs
are captured by the OR-decomposition pattern, where each variant is guarded by an
assumption capturing the state of the environment. For example, invariant (3) can be
satisfied either by determining the position through an indoors tracking system – inva-
riant (5) – or a global positioning system – invariant (7). At runtime, the system moni-
tors the satisfaction of assumptions (4) and (6) and activates the activity correspond-
ing to the chosen branch in the tree.

48 I. Gerostathopoulos et al.

Although IRM-SA is a method that can be used independently, it is very well
aligned with the DEECo component model [11]. DEECo features autonomous com-
ponents forming dynamic goal-driven collaboration groups – ensembles. Components
contain knowledge (their data) and processes, whose periodic execution results in
periodic updates in their knowledge. Components are not bound to each other; they
can only indirectly communicate within an ensemble. The communication takes the
form of mapping a component’s knowledge field into another component’s know-
ledge field – knowledge exchange. Membership of a component in an ensemble is not
static, but periodically evaluated at runtime based on a condition specified over en-
semble-specific interfaces that provide partial views over the components’ know-
ledge.

In the IRM-SA–to–DEECo mapping, IRM-SA components correspond to DEECo
components; process invariants to component processes; exchange invariants to ensem-
bles; and assumptions to DEECo runtime monitors. The IRM-SA graph corresponds to
the adaptation logic that DEECo applications use in order to switch on and off certain
features (according to the branches selected at runtime on the IRM-SA graph). In this
frame, an adaptation action is choosing an applicable configuration by choosing among
the branches in the IRM-graph, whereas a tactic corresponds to an individual leaf inva-
riant. An adaptation action thus consists of selecting a set of tactics.

3 Meta-Adaptation Strategies

As already discussed in the previous sections, a system, even a self-adaptive one, can
be designed to handle a limited number of runtime situations. Interestingly, the num-
ber of new distinct tactics that can be devised in response to an unanticipated situation
is in principle infinite. Hence, apart from being able to devise new tactics, it is impor-
tant to be able to rank them according to their effect on the system, in order to be able

Fig. 1. Excerpt from the IRM-SA model of the running example.

 Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 49

to select the most promising one, or, at least, to select the ones that are worth trying.
(Here, we assume the general adaptation loop in which the adaptation mechanism
activates a tactic, observes its effect on the system and, depending on its impact, ei-
ther keeps it or tries another tactic.)

To systematize the creation of new tactics, we rely on the concept of meta-
adaptation strategies (MAS). MAS serve as patterns for extending the limits of adap-
tability of the system, with each strategy extending the limits in a certain way. The
goal of such a strategy is twofold:

1. To provide an algorithm to systematically generate a set of tactics at runtime.
2. To provide a metric on the generated set according to which the tactics can be

ranked.

In the rest of the section, we exemplify our proposal by describing two MAS. Note
that the two strategies can be applied sequentially or in parallel in the running system,
since they are by design orthogonal to each other. Due to space constraints, we omit a
third strategy that we have so far developed – details on that can be found in [12].

Tactics Generated by Data Classification. In CPS, exploiting the interdependencies
between sensed data is an opportunity for introducing specific meta-adaptation strate-
gies. A particular case is the location-dependency of data, i.e., the fact that the value
of certain measurable system attributes depends on the physical location of the sen-
sors that provide the data. Below we describe a strategy providing a way to automati-
cally create knowledge exchange specifications (ensemble specifications in DEECo)
that introduce “collaborative sensing” (when direct sensing is not possible anymore)
and feed them into the running system. Hence, such new ensembles represent new
tactics.

Strategy Name: Knowledge Exchange by Data Classification
Intent: To increase the robustness of the system, prolong its acceptable function-

ing, or achieve graceful degradation in face of data unavailability and outdatedness.
Context: The strategy targets the case when values of a knowledge field of a com-

ponent become outdated to the extent that they cannot be relied upon in terms of cor-
rect behavior of the component. For instance, there is a sensor malfunction that pre-
vents value updates.

Behavior: To make up for losing the ability to obtain the actual value of an out-
dated knowledge field, create a new ensemble specification through which the field is
assigned an approximated value based on the up-to-date related knowledge values of
other components. This specification consists of (i) a membership condition, which
prescribes the condition under the components should interact, and (ii) a knowledge
exchange function, which specifies the knowledge exchange that takes place between
the collaborating components. (For simplicity, we consider the knowledge exchange
that just copies the data without manipulating them in any other way.)

To be able to construct the membership condition when the situation targeted by
the strategy happens, observe first the system when it is healthy and log components’
knowledge (as a time series of the knowledge evolution). Analyze (typically offline)
the logged knowledge and find conditional correlations indicating that when values of

50 I. Gerostathopoulos et al.

some knowledge fields ܣଵ, ,ଵܤ … , ,௡ܣ ௡ܤ are pairwise “close” then other values of
other knowledge fields ܥ, -are “close” as well. Formulate an ensemble (to be instan ܦ
tiated when the situation targeted by the strategy happened), which uses the pairwise
“closeness” of ܣଵ, ,ଵܤ … , ,௡ܣ ܦ ௡ as the membership condition and has the assignmentܤ ؔ .as the knowledge exchange ܥ

Generate a number of possible membership conditions corresponding to different
tactics. Then, select a tactic by applying the metric of selecting the tactic which pro-
vides the most general condition given the target confidence level.

Contraindications: The analysis of the collected time series can be very resource
demanding and therefore a dedicated hardware infrastructure should be used. Similar-
ly, the data collection may be a rather resource-intensive process, especially when
components’ knowledge is big or changes frequently. Also, introducing superfluous
new ensembles can overload the system with unnecessary replicated data.

Example: In the firefighter coordination case study, each firefighter component
features the knowledge fields of position and temperature. Suppose that the tempera-
ture values are used to control the suit cooling system. Obviously, when the tempera-
ture sensor breaks, a real-life threat arises. Since firefighters are usually moving in
groups so that those close to each other obtain similar temperature readings, the tem-
perature value of one component can be approximated based on the temperature val-
ues of the others, when their positions are close. Technically, the threshold of temper-
ature proximity can be set (e.g., 20°C).

Tactics Generated by Period Adjusting. A CPS typically brings real-time require-
ments that are reflected in schedulability parameters of component processes. The
schedulability parameters can be typically inferred by real-time design via schedula-
bility analysis. However, when schedulability parameters influence the systems in a
complex manner (e.g., when there is a tradeoff between CPU utilization, battery, net-
work utilization), it is not possible to infer them by systematic analysis. Rather, the
schedulability parameters are set manually, based on the experience of the system’s
architect. The strategy below addresses the case when the manually set schedulability
parameters cannot cope with an unanticipated situation.

Strategy Name: Process Period Adjusting
Intent: To optimize the scheduling of processes with respect to overall system

(application-specific) performance in a system where processes are scheduled period-
ically.

Context: The strategy targets situations when the system starts failing due to vi-
olated timing requirements and the schedulability parameters cannot be inferred a
priori because they influence the system in a complex manner.

Behavior: Let R be the set of all active real-time processes in the system. To be
able to identify the situation when a requirement for a process ri in R with period pi is
not satisfied anymore, equip each ri with a runtime monitor returning a fitness value fi
(real number in [0-1]). Generate tactics that correspond to a new real-time processes
ri’ created from ri by adjusting (reducing or enlarging within pre-defined permissible
bounds) pi to pi’, when fi drops below an acceptable threshold. To explore the search
space of possible period adjustments, employ the genetic algorithm (1+1)-ONLINE

 Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems 51

EA [13]. Changing pi can be interpreted as generating a new tactic ri’ and using it to
substitute the tactic ri in the system. Terminate the period adjusting procedure when
the adjustment of each pi has been exercised in both directions and there is no further
benefit.

In this strategy, tactics (new processes) are compared by substituting them to the
running system and calculating the overall system fitness as a function of fi’s.

Contraindications: Reducing periods (a usual action) may have a negative impact
on other resources (CPU, battery, network). In such a case, the impact would have to
be modelled and taken into consideration in the state-space search.

Example: Consider extending the design of our running example by a root inva-
riant that specifies that “battery consumption should be kept minimized”. In order to
satisfy this invariant, the system will try at runtime to tweak the processes’ periods to
invoke them as scarcely as possible. At the same time, when there is high inaccuracy
in the GPS readings (e.g., less than 3 satellites in sight), the GPS process may need to
be invoked more often to make sure the cumulative inaccuracy of the estimated posi-
tion of a moving firefighter is within certain bounds. (The cumulative inaccuracy is
essentially the sum of the initial inaccuracy of the GPS reading and the distance a
firefighter has moved since the last GPS reading.) It is thus a dynamic trade-off be-
tween availability and dependability that has to be resolved at runtime.

4 Experimental Evaluation and Conclusion

In order to evaluate the feasibility of the proposed MAS, we implemented them as
extensions of the IRM-SA jDEECo plugin1. Our evaluation scenario consisted of
three firefighters moving in a building, periodically monitoring their battery level,
position, and external temperature. The objective of the system was to obtain accurate
enough values of position and temperature, while keeping battery consumption mi-
nimal. Two malfunctions were introduced: (i) the GPS of one of the firefighters be-
came inaccurate, and (ii) the temperature sensor of the firefighter was broken com-
pletely.

The MAS described in the paper were able to successfully cope these unanticipated
malfunctions – the “Process Period Adjusting” reduced the inaccuracy stemming from
knowledge outdatedness thus compensating the inaccuracy of the GPS reading; the
“Knowledge Exchange by Data Classification” created and deployed a new ensemble,
which provided a temperature estimation to compensate for the broken sensor. The
evaluation, together with all the measurements, is described in detail in [12].

Conclusion. In this paper, we suggested a way to address the problem of limited adap-
tability caused by a fixed set of tactics. To this end, we have introduced the concept of
meta-adaptation strategies (MAS) as a means for creating new tactics by observing
the behavior of a system at runtime. In addition to laying out the general concept of
MAS, we have exemplified the concept by two instances of MAS. Generally, if a

1 https://github.com/d3scomp/IRM-SA/tree/ECSA2015

52 I. Gerostathopoulos et al.

system is subject to environment uncertainty, the extent of the problem space that
should be covered by systems adaptability is unknown. This makes it impossible to
devise all adaptation tactics at design time. It of course makes it also impossible to
presume all necessary meta-adaptation strategies, as each strategy covers only a cer-
tain sub-space of the problem space. However, compared to pre-designed tactics, the
meta-adaptation strategy involves observation of system’s and environment’s evolu-
tion at runtime and utilizes this to formulate new tactics. As such, it has the potential
to carry through higher expressive power than pre-designed tactics and consequently
achieve significantly higher coverage of the problem space.

Acknowledgements. The work on this paper has been supported by Charles University institu-
tional funding SVV-2015-260222.

References

1. Cheng, S.-W., Garlan, D., Schmerl, B.: Stitch: A language for architecture-based self-
adaptation. J. Syst. Softw. 85, 1–38 (2012)

2. David, P.-C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language support
for navigation and reliable reconfiguration of Fractal architectures. Ann. Telecommun. 64,
45–63 (2009)

3. Filieri, A., Ghezzi, C., Leva, A., Maggio, M., Milano, P.: Self-adaptive software meets
control theory: a preliminary approach supporting reliability requirements. In: Proc. of
ASE 2011, pp. 283–292. IEEE (2011)

4. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering self-tuning
self-adaptive software systems. In: Proc. of FSE 2010, pp. 7–16. ACM (2010)

5. Yuan, E., Esfahani, N., Malek, S.: Automated mining of software component interactions
for self-adaptation. In: Proc. of SEAMS 2014, pp. 27–36. ACM (2014)

6. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architec-
ture-Based Self-Adaptation with Reusable Infrastructure. Computer 37, 46–54 (2004)

7. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures. In: Gruhn,
V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126. Springer, Heidelberg
(2006)

8. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive software. In:
Proc. of SIGSOFT/FSE 2011, pp. 234–244. ACM (2011)

9. Gerostathopoulos, I., Bures, T., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F., Plouzeau, N.:
Self-Adaptation in Cyber-Physical Systems: from System Goals to Architecture Configu-
rations. Department of Distributed and Dependable Systems, D3S-TR-2015-02 (2015)

10. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.: Design of
ensemble-based component systems by invariant refinement. In: Proc. of CBSE 2013,
pp. 91–100. ACM (2013)

11. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECo – an
ensemble-based component system. In: Proc. of CBSE 2013, pp. 81–90. ACM (2013)

12. Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A., Plasil, F., Skoda, D.: Meta-
adaptation strategies for adaptation in cyber-physical systems. Department of Distributed
and Dependable Systems, D3S-TR-2015-01 (2015)

13. Bredeche, N., Haasdijk, E., Eiben, A.E.: On-line, on-board evolution of robot controllers.
In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009.
LNCS, vol. 5975, pp. 110–121. Springer, Heidelberg (2010)

Design Approaches

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 55–69, 2015.
DOI: 10.1007/978-3-319-23727-5_5

Revisiting Architectural Tactics for Security

Eduardo B. Fernandez1(), Hernán Astudillo2, and Gilberto Pedraza-García3,4

1 Florida Atlantic University, Boca Raton, FL, USA
ed@cse.fau.edu

2 Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile
hernan@inf.utfsm.cl

3 Universidad de Los Andes, Bogotá, Colombia
g.pedraza56@uniandes.edu.co

4 Programa de Ingeniería de Sistemas, Universidad Piloto de Colombia, Bogotá, Colombia

Abstract. Architectural tactics are design decisions intended to improve some
system quality factor. Since their initial formulation, they have been formalized,
compared with patterns and associated to styles, but the initial set of tactics for
security has only been refined once. We have examined this tactics set and clas-
sification from the viewpoint of security research, and concluded that some tac-
tics would be better described as principles or policies, some are not needed,
and others do not cover the functions needed to secure systems, which makes
them not very useful for designers. We propose here a refined set and classifica-
tion of architectural tactics for security, which we consider more appropriate
than the original and the previously refined sets. We also suggest how to realize
them using security patterns.

Keywords: Architecture tactics · Secure architectures · Security patterns ·
Secure software development

1 Introduction

Secure systems are notoriously hard to build; like most global system quality criteria,
a piecemeal approach based on securing system elements is simply inappropriate.
Design decisions have a global effect on other quality attributes, e.g. availability, and
thus local optimizations are not possible. From a security research standpoint, lacking
quantitative measures, a secure system is one that can be shown to withstand a variety
of attacks; although many approaches to build secure systems have been proposed
[25], they usually focus on some specific aspect, e.g. authorization, and address only
one type of threat.

The security research literature describes many ways to secure specific parts of a
system, to build secure systems, or to stop specific attacks, but few studies exist about
how to make a whole system secure [8, 17, 25, 30]. On the other hand, the software
architecture literature addressed security as one of several global quality properties,
and proposes using “architectural tactics” [2, 3]; however, the specific proposed tac-
tics are not justified on coverage or parsimony grounds, thus largely ignoring the
existing research work on security. Also, security tactics give general guidance but

56 E.B. Fernandez et al.

not detailed construction advice; in fact, tactics are not mentioned in any of the best-
known secure development methodologies [25].

Since their initial formulation, tactics have been formalized [1], compared with
patterns [19], associated to the Common Criteria [18], and associated to styles [15].
However, the initial set of tactics for security [2, 3] has been refined only once [21].
This article presents a reasoned examination, pruning and reclassification of architec-
tural tactics for security, considering both the original set and the refined set and ap-
plying security knowledge. We also consider a possible realization using security
patterns; tactics require a convenient realization to provide detailed guidance to archi-
tects. Patterns are encapsulated solutions to recurrent problems in specific contexts,
security patterns define solutions to handle threats or to fix a vulnerability [10]. Pat-
terns are considered a good way to build secure systems and several methodologies
based on them exist [7, 10, 25]. Patterns include several sections that define in addi-
tion to a solution, their use, applicability, advantages, and disadvantages. Other soft-
ware architecture quality factors such as reliability, availability, and safety are also
important, but we concentrate on security in this paper.

This article contributions include:

• A discussion of the correspondence of some security and software architec-
ture concepts to understand them better. The security and software architec-
ture communities are rather disjoint and we attempt to help bridge their gap.

• A revised set of tactics, based on security knowledge, which is our main con-
tribution

• A detailed consideration of the use of security patterns as a way for realizing
tactics.

The remainder of the article is organized as follows: Section 2 describes architecture
tactics; Section 3 discusses security patterns; Section 4 defines security principles and
policies, and other terms used for secure systems design; Section 5 examines the initial
(and still used) tactics tree and indicates its problems; Section 6 presents some new tac-
tics based on security knowledge; Section 7 proposes a realization for tactics using secu-
rity patterns; Section 8 discusses related work; and Section 9 summarizes and concludes.

2 Architectural Tactics to Build Secure Systems

Architectural tactics, originally introduced in 2003 [2], are “measures” or “decisions”
taken to improve some quality factor, a definition later refined to “architectural build-
ing blocks from which architectural patterns are created” [3]. Each tactic corresponds
to a design decision with respect to a quality factor; i.e., tactics codify and record best
practices for achieving that factor.

Rozanski and Woods [30, 31] defined architectural tactics as architectural design
guidance, i.e. strategies or advice on how to drive a general design issue related to
improving required quality attributes without imposing a particular software structure.
They also suggest (but give little operational detail) that the application of security
tactics may be expressed in the software architecture as adding, modifying, or delet-
ing architectural elements with specific responsibilities, introducing security technol-
ogies, or describing new operational procedures to support secure operation.

 Revisiting Architectural Tactics for Security 57

The literature records a few approaches to use architectural tactics to build secure
systems [15, 16]. Harrison and Avgeriou [15] proposed (see Figure 1) that the archi-
tecture be first defined using architecture patterns to determine the structural aspects
of the functional requirements, and then apply tactics to introduce non-functional
aspects such as security and reliability. Their article does not attempt to evaluate the
actual level of security or reliability thus obtained, or whether different realizations
may yield unnecessary security mechanisms. In fact, this work does not indicate any
realization of the selected tactics. They do not consider specific threats either. How-
ever, this is a comprehensive treatment of how security tactics can be applied and as
such is an important paper for software architecture security.

Fig. 1. Producing secure or reliable architectures from tactics.

In Woods and Rozanski [30], security tactics are part of a wider framework to im-
prove quality attributes, which defines a set of activities, checklists, tactics and guide-
lines. They also suggest that the impact of security tactics in software architecture may be
described on architectural views (context, functional, information, concurrency, devel-
opment, deployment and operational). In order to achieve security quality attribute in
software architecture, they propose to identify sensitive resources, define the security
policy, identify threats to the system, design the security implementation and assess the
security risks. These steps correspond to a security methodology such as the one de-
scribed in [26]. Although they do not describe how architects can apply the security tac-
tics catalog, this work is be a good basis for a more complete security methodology.

3 Building Secure Systems with Patterns

An extensive literature exists on how to build secure systems using patterns, formal
methods, and other approaches [25]. A recent approach [26] uses patterns for incorpo-
rating security solutions but also for modeling threats; patterns are applied using secu-
rity solution frames, which are groups of related patterns. This methodology is the
only one which explicitly uses tactics.

58 E.B. Fernandez et al.

There has been also a good amount of work on finding appropriate realizations for
tactics. An attempt to make tactics more precise is by formalizing them [1]. Formaliz-
ing a vague concept is misleading since there can be many ways to do it and the for-
malizer needs to make many assumptions. Real systems need to be designed and de-
sign is not a mathematical or formal process but it requires experience and intuition
from the designer. Often, system designers are not experts on security, and selecting
precise solutions is too hard for them; thus, premature formalization is not a good
practical idea. However, we can formalize specific parts separable from the rest of the
system; for most of them, a semi-formal approach like UML is enough, and heuristics
like patterns are a promising direction.

Patterns are encapsulated solutions to recurrent system problems and define a vo-
cabulary that concisely expresses requirements and solutions without getting prema-
turely into implementation details [4]. Security patterns are a type of architecture
pattern in that they usually describe global software architecture concepts, although
some consider security patterns to be a type of design pattern as well. Finally, some
security patterns are a type of analysis pattern in the sense that security constraints
should be defined at the highest possible (semantic) level of the system where no
implementation details are present to obscure conceptual solutions [11]. While there
is no “official” template for security patterns, we use a variation of the POSA tem-
plate [4], which is composed of a thumbnail of the problem it solves (a threat to the
system), the context where the pattern is applicable, a brief description of how it
solves the problem (stops or mitigates the threat), the static structure of the solution
(usually UML class diagrams), the dynamic structure of the solution (usually UML
sequence diagrams or possibly activity or state diagrams), and guidelines for the im-
plementation of this pattern. The contents of all the sections of the template are fun-
damental for the correct use of the pattern. Patterns are not just solutions and are not
plug-ins. However, their solutions require some level of concreteness to be useful,
vague or too general concepts are not much guidance to designers.

The effect of a pattern on security, performance, or any other factor depends on
how it is used; for example, applying authentication in many places in a system may
increase security but reduces performance if users or processes need to re-authenticate
themselves each time they access resources. There are tradeoffs when improving any
quality factor. “Encrypt data” is a tactic that can be realized in more than one way, i.e.
symmetric or asymmetric encryption. Depending on the application, one is more con-
venient than the other. If the architect is not experienced or knowledgeable about
security, it is important to provide him with more detailed guidance.

Good security design requires that security is enforced at the system (platform)
level. Several applications may be sharing a common platform. Policies about access
must cover all applications sharing system resources. This means that, if there are
several applications sharing the same platform, all of them should share intrusion
detection, authentication, authorization enforcement, and logging; i.e., all the availa-
ble defenses. When a user of the application attempts to access some resource the
system functions enforce that this access satisfies the security constraints of the whole
system. Additional security constraints may be placed in applications but a base set of
security mechanisms controls the execution of all applications. Even if there is only

 Revisiting Architectural Tactics for Security 59

one application using the platform, this separation is important because of the need to
decouple those aspects which are not intrinsic to a specific application. This was the
same motivation that lead to aspect-oriented design [19]. All this means that a soft-
ware architect only needs to verify that the system implements some tactics and does
not need to include them in her design; only calls to those functions are needed so
they are enforced during the application execution. If the platform is designed on its
own, all these tactics would be implemented there. An architect should make sure that
all the corresponding tactics are in place and can support all applications.

4 Security Principles and Policies

Security differs from other quality factors, like availability or scalability, in its close
tie to the application or system semantics; e.g., “only the owner of an account can
withdraw money from it”, or “a process cannot write outside its own virtual address
space”. Also, external regulations may prescribe (directly or indirectly) specific in-
formation protection needs, leaving little space for possible tradeoffs among tactics.

To be able to analyze tactics we need to discuss first some related concepts.
Principles are general statements that define ways to produce good designs, they

are fundamental laws or assumptions. The classical paper of Saltzer and Schroeder
[22], defined a set of security principles that included among others: least privilege,
separation of duty, and least common mechanism. Later, more principles have been
added, including “Defense in depth”, “Start from semantic levels”, and others [23].
Principles are very general and have many possible realizations; they are guidelines
that must be explicitly or implicitly followed when building systems if we want these
systems to be of high quality.

Policies are high-level guidelines defining how an institution conducts its activities
in its business, professional, economic, social, and legal environment [14]. The insti-
tution security policies include laws, rules, and practices that regulate how an institu-
tion uses, manages and protects resources. Regulations are legal or government poli-
cies that must be reflected in the implemented system.

More concretely, policies are management instructions indicating a predetermined
course of action or a way to handle a problem or situation. Every institution has a set
of policies, explicit or implicit, some of which are security policies. Security policies
are essential to build secure systems since they indicate what to protect and how much
effort to invest in this protection. In general, policies come from regulations, institu-
tion practices, or just good principles of design, i.e., prescribing some quality aspects
for the final product.

Policies are also used to indicate a way to avoid or mitigate threats; for example, a
mutual authentication policy avoids impostors from either side. Each system uses a
combination of policies according to its objectives and environment. As an example,
two of the most common security policies used in practice are:

• Open/closed systems —in a closed system, nothing is accessible unless explicitly
authorized, whereas in an open system everything is accessible unless explicitly
denied. Institutions where information security is very important, such as banks,

60 E.B. Fernandez et al.

use a closed policy (e.g. “only an account’s owner can access it”); institutions
whose objective is disseminating information, such as libraries, use an open policy
(e.g. “all books are accessible except rare books”).

• Least privilege (need to know) —people or any active entity that needs to access
computational resources must be given authorization only for those resources
needed to perform their functions; e.g. “a secretary should only have access to em-
ployees’ addresses”; it also applies to the institution (e.g. “it should not collect
more information than strictly necessary about its members”). This policy can be
considered a refinement of the closed system policy as well as a principle.

Fig. 2. From policies to security patterns.

Policies are prescriptive, and can be thought of as directions for designers. Policies
can be structured into hierarchies, and more specific policies apply to the components
of a system. It is possible to express individual policies using UML class diagrams
with constraints.

In software architecture terms, policies are guidelines to apply tactics, which in
turn may be realized using for example security patterns, as shown in Figure 2. The
associations are many-to-many: a policy may be applied using several tactics, which
in turn can be realized using several security patterns; conversely, a security pattern
may realize more than one tactic, and a tactic may come from several policies. For
example, Figure 3 indicates a policy which prescribes that “only owners of accounts
can access their accounts”, which is translated into two more specific policies, for
Authentication and for Content-Dependent Authorization, which can be realized by
corresponding security patterns. In this example, the “content-dependent authoriza-
tion” policy can prescribe the use of the tactic “Authorize actors”, which would be
realized by a “Content-dependent Authorizer” security pattern [12]. Broad policies or
tactics are usually obtained by applying several patterns; e.g. “Authorize actors” can
be obtained combining the patterns Authenticator, Authorizer, Identity Management
and Security Logger/Auditor [10].

Policy

Tactic

Security
Pattern

*

*

*

*

appliedAs

isRealizedBy

 Revisiting Architectural Tactics for Security 61

Fig. 3. Hierarchies of policies.

5 Evaluating the Current Tactic Set from Security Standpoint

The original list of tactics is structured as a classification tree (see Figure 4); the tac-
tics are the tree leaves and most of them are at the same level. Although security pat-
terns can be classified [28, 29] to cover all concerns, all the architectural levels

Fig. 4. Classification of security tactics according to Bass et al. [3].

Account
1*

Content_dependent
authorization

Customer

Only owners of accounts
can access their accounts

Authentication

owns

Security Tactics

Detect
Attacks

Detect
Intrusion

Detect
Service
Denial

Verify
Message
Integrity

Detect
Message

Delay

Resist
Attacks

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access

Limit
Exposure

Encrypt Data

Separate
Entities

Change
Default
Settings

React to
Attacks

Revoke
Access

Lock
Computer

Inform
Actors

Recover from
Attacks

Maintain
Audit Trail

Restore

See
Availability

62 E.B. Fernandez et al.

of a system, and other facets with a multidimensional matrix, tactics are simpler and
we will keep their tree structure. The branches of the current tree correspond to one of
the dimensions in [28]. And we have changed “Resist attacks” to “Stop or mitigate
attacks”, which is closer to what security designers do. We start by removing some
tactics considered not useful and later we add some new ones. This selection is based
on our experience and security knowledge, supported by concepts introduced in Sec-
tion 5 and our security methodology [26]. We also looked at a variety of methodolo-
gies for secure design to see what concepts they use in building their secure systems
[25]. There is no formal way to prove that ours is an optimal or minimal set, but based
on our survey (which is quite comprehensive) we can have some level of confidence
that our set is appropriate [25]. We do not indicate how to perform the operations to
realize tactics now; security patterns, discussed later in the paper, indicate possible
ways of realizing for example, “authenticate users”.

Some security tactics are really security principles. As indicated in Section 3, prin-
ciples are not specific enough to become patterns or even tactics; there may be mil-
lions of solutions that satisfy a given principle. Thus, tactics that correspond to prin-
ciples are not useful; they are good recommendations, but the designer has no con-
crete guide about their realization. In the tactic set of Figure 4 we can then eliminate
tactics “Limit exposure”, “Limit access”, and “Separate entities”. They are useful but
can be implemented in many ways; also, they are not complete: Why apply only these
principles and not others?

“Need-to-know (least privilege)” is another very important security principle, but it
is not included, “use a closed system” is another basic security principle not included
either. We also can eliminate “Detect message delay”, which is a way to detect some
attacks, but if we include it we also need to include “detect abnormal behavior”,
“match traffic events to known attacks”, and many others. In other words, it is really a
specific way to detect attacks. DoS (Denial of Service) is just another type of attack,
so “Detect service denial” is included in “Detect intrusion”; most Intrusion Detection
products can detect DoS. “Identify actors” is not a tactic to resist attacks, it is a fun-
damental mechanism in distributed systems, necessary to implement authentication,
authorization, secure channel, and logging.

As indicated, some of the proposed tactics are functions that apply to all applica-
tions, not to specific application architectures; as such, they don’t need to be incorpo-
rated in each individual application. Some like “Verify message integrity” could be
left in the set if the application needs to have its own way of applying verification
checks. Which security mechanisms remain in the application and which ones are left
to the system requires experience and depends on the specific application; to imply
that all application architectures need to incorporate these tactics is inappropriate.

Similarly, tactics for reacting to attacks should include system functions, which are
implemented independently of any application, and application-specific policies.
“Maintain audit trail” is clearly a system function that can be used to detect attacks
and to recover from attacks, although there may be logging specific to an application.
“Change default settings” is about reconfiguration and boot up; these are operational
system functions, and do not belong in an application or platform design. “Lock com-
puter” may not always be possible, e.g., in a flight control system we would instead to
reconfigure it to work in degraded mode. Finally, we eliminated “Change default
settings” because it is a system-operational function.

 Revisiting Architectural Tactics for Security 63

6 New or Modified Tactics

As a design principle, a tactic should not be too general or too specific. If too general,
the designer is confused because of the variety of alternatives, which is the reason we
eliminated principles to start with; if too specific, the designer gets mechanisms in-
stead of tactics and their options are restricted.

Fig. 5. A new set of tactics.

Figure 5 describes the modified set of security tactics, which are organized in four
branches, similarly to the original set [2]: detect attacks, stop or mitigate attacks, react
to attacks, and recover from attacks.

6.1 Detect Attacks

The tactic “Verify message integrity” was left, but we added “Verify storage integri-
ty” to indicate the need to define checks to ensure that data have not been modified.
“Maintain audit trail” was moved from the branch “recover from attacks” because it
allows identifying an attacker. We also split “Identify intrusions” into “by signature”
and “by behavior”, the two standard ways to apply intrusion detection, in order to
replace “Detect intrusion”.

6.2 Stop or Mitigate Attacks

According to standard security terminology [14], a subject is an active entity that can
request resources and includes humans and executing processes; thus, we changed the
words “user” and “actor” for “subject” in “Authenticate actor” and “Authorize actor”,
and eliminated “Identify actors”. To enforce the rules defined in “Authorize
users (subjects)”, we introduce a “Control access” tactic for the security concept of

Security tactics

Detect attacks Stop or mitigate
attacks

React to attacks Recover from

Verify message integrity

Verify storage integrity

Identify intrusions

by signature by behavior

Authenticate subject

Authorize subject

Hide data

by encryption by steganography

Verify origin of message

Alert subjects

Apply institution

attacks

policies

Audit actions

policies
Apply institution

Manage security information

Filter data

Establish secure channel

Maintain audit trail

64 E.B. Fernandez et al.

Reference Monitor [14], which enforces authorization rules. We assume here that
authorization enforcement is part of Authorize subjects.

We eliminated “Limit exposure”, “Limit access”, and “Separate entities” as tactics
because these are security principles. We added “Manage security information”,
which includes the management of keys for cryptography, the secure storage of autho-
rization rules, and other ways to handle security information. Also, “Filter data” is
necessary to avoid attacks based on abnormal inputs or from untrusted sources.

We added “Verify origin of message”, a form of data authenticity verification. The
tactic “Establish secure channel” is required before we can hide data content. Once
the secure channel is established, messages content can be hidden; the tactic “Encrypt
data” was renamed to “Hide data”, with the two varieties “Use cryptography” and
“Use steganography”, namely, the two basic ways to hide data content.

6.3 React to Attacks

The specific functions to react to attacks depend on institutional policies and the type
of application, and are performed by the system for all applications or for each specif-
ic application, depending on these policies; no general functions can be defined.

We added “Apply institution policies”, and eliminated “Revoke access” and “Lock
computer” because these are mechanisms for limiting access to sensitive resources
and depend heavily on the specific platform. Also, we renamed “Inform actors” as
“Alert subjects”.

6.4 Recover from Attacks

We moved “Maintain audit trail” from this branch to “detect attacks” because it is
related to tracing and identifying attackers. We also added “Audit actions” (to indicate
the recovery system task) and “Apply institution policies”. Finally, we eliminated
“Restore” because this action is not related to security.

7 Realizing Tactics with Security Patterns

The previous discussion shows that patterns and tactics are not equivalent: patterns
are well-defined structured entities, whereas tactics are recommendations without
prescribed implementation. This are complementary rather than alternative concepts.
We propose to see tactics application as a step previous to patterns’, but selecting the
right pattern takes more detailed knowledge, represented in the contents of the pattern
itself and some in the pattern classification; in fact, several methods exist to help de-
signers use them appropriately [25].

Other realizations for tactics are possible, e.g., generic security architectures and
components [16], aspects [19], and S&D patterns [13]. Our own experience leads us
to believe that the most convenient realization of tactics is by using security patterns,
but more experience with their use is needed to prove this point. To illuminate this
point, [10] and [27] show examples of complete applications implemented using
patterns.

 Revisiting Architectural Tactics for Security 65

Also, Table 1 shows a correspondence between tactics and security patterns indi-
cating possible realizations of the new tactics. Some of those patterns have not been
yet written, and are ongoing work. Note also that detailed design is required; e.g. it is
not enough to select Authenticator, but also its type (password, biometric, etc.); exist-
ing techniques like [25] and [26] can guide the designer.

Since tactics do not prescribe any realization, several researchers have introduced
their own realizations. Kim at al. [16] reified tactics as reusable UML building blocks
that can be plugged in the architecture according to a list of non-functional require-
ments (NFRs). A similar approach was used by Bagheri et al. [1] to detect faults, with
tactics like “ping echo”, which is clearly a specific mechanism (realizable using pat-
terns). These approaches are in line with [19] and rely on plug-ins or templates to
apply realizations, whereas security patterns are generic solutions that stipulate condi-
tions to apply as well as consequences.

Tactics also have value for other purposes besides design. Cañete [5] used tactics
to annotate Jackson’s problem frames; the annotations provide arguments for satisfac-
tion of quality factors. Harrison and Avgeriou [15] also used tactics for annotations
about design decisions.

Table 1. Security pattern realizations of tactics

Tactic Security pattern realization

Verify message integrity Secure Channel

Verify storage integrity Authenticator and Authorizer

Maintain audit trail Security Logger/Auditor

Identify intrusions by signature Signature-based IDS

Identify intrusions by behavior Behavior-based IDS

Authenticate subject Authenticator (Remote), credential

Authorize subject Policy, Role and Attribute based Access Control

Manage security information Authorizer, Generation and distribution of public
keys

Filter data Filter, Packet Filter Firewall

Verify origin of message Digital Signature with hashing

Establish secure channel Secure Channel

Hide data by encryption Symmetric and Asymmetric Encryption

Hide data by steganography Steganographic Encoding

Alert subjects Abstract IDS

Apply institution policies Policy-based Enforcement

Audit actions Security Logger/Auditor

66 E.B. Fernandez et al.

8 Related Work and Validation

As indicated earlier, several authors have found relationships among security tactics
and security patterns, in particular [15, 16, 17, 20].

Thus, Kim et al. [16] proposed architectural tactics as reusable UML architectural
building blocks that offer generic solutions to specific problems related to quality
attributes. Tactics are represented as feature models to support decision making for
non-functional requirements through a set of explicit solutions. Unfortunately, this
approach introduces rigidity and does not give the designer the freedom provided by
patterns. The choice of blocks is also limited, since no extensive catalogs of these
building blocks exist.

Ray et al. [19] proposed tactics as an intermediate architectural concept between
high-level decisions and patterns of architecture, so architectural patterns implement
architectural tactics.

Ryoo et al. [20] defined a methodology to extract tactics from security patterns
through activities such as reclassification of architectural patterns, decomposition of
patterns, derivation of tactics hierarchies applying reasoning and intuition over pat-
terns, and realization or instantiation of existing tactics. It evaluated several sets of
security architectural patterns and applied a Delphi technique to yield a new security
tactics hierarchy, shown in Figure 6. It includes tactics “Limit exposure” and “Limit
access”, which we argued for removal, and redundancies like “Maintain confidentiali-
ty” (shown as a separate tactic, but which requires Authentication and Authorization,
which are also tactics).

Fig. 6. Classification of security tactics according to [20]

How should tactics be validated? The original proposal [2] did not explicitly vali-
date the initial set of tactics (it did not include published examples), and indeed to
formal or argued parsimony and completeness arguments have been given; converse-
ly, mentioning support from a Delphi approach seems too weak a rationale. The
proposed modified set of tactics rests on our combined experience on security and
software architecture, as well as background knowledge on security requirements, like
the NFR Framework [6].

 Revisiting Architectural Tactics for Security 67

In particular, we surveyed [25] several best known methodologies to build secure
systems to determine which concepts are secured as part of the whole system design;
we have already [26] used these techniques in two non-trivial examples.

The modified set of tactics also gets some validation from the fact that it covers all
assets that need to be protected in a system, as shown in Figure 7 at several architec-
tural levels. The use of operations in the application can be controlled by Authentica-
tion and Authorization, and similarly access to data in the database system. Data in an
application could be sent out to another application through a channel; this can be
protected by encryption. The database usually includes the authorization rules and
related system procedures, which are also protected by protecting the database sys-
tem. As further verification, we point that in [26] we used a different system decom-
position, along functional instead of architectural layers, and arrived to a similar tactic
set.

Although there is no formal way to prove that this is an optimal or minimal set, our
recent work lends us some confidence that it is appropriate [25, 26]. Acknowledging
that ultimate validation can only come from practice, we remark that have not seen
any report of practical systems being built using security tactics but several examples
have been produced using security patterns [10, 26].

Fig. 7. Assets that must be protected (op=operation, p=process) in security tactics

9 Conclusions

Building secure systems demands an approach where security can be specified from
the start of software development, considering the semantics of the application, and
iterating between requirements and design. Architectural tactics and security patterns
are among the many proposed approaches (in [25] alone we identified 17).

We addressed some confusion in terminology, definitions, and relationships among
security patterns and tactics, which has led to methodologies that are difficult to com-
bine with each other and with unclear impact on security. In time, precise definition

Application

DBMS

OS

Comm

Hardware

op

data

filep

channel

storage

data

68 E.B. Fernandez et al.

of these concepts should lead to better architectural knowledge and better methodolo-
gies to build secure systems. We have tried here to clarify these concepts by examin-
ing the original set of tactics according to established security knowledge, and show-
ing some well-reasoned ways to realize them. A modified set of tactics was derived
by combining architectural and security knowledge; we do not claim they are com-
plete or optimal, but we believe that they are more useful than previous sets, especial-
ly when complemented with a catalog of security patterns like [10]. In particular,
unlike previous tactic sets, these can be directly realized with existing security pat-
terns.

Acknowledgements. This work was partially supported by CONICYT (grant FONDECYT
1140408 and CCTVal FB0821). We thank the anonymous referees for their comments that
improved the paper quality.

References

1. Bagheri, H., Sullivan, K.: A formal approach for incorporating architectural tactics into the
software architecture. In: Procs. of SEKE, pp. 770–775 (2011)

2. Bass, L., Clements, P., Kazman, R.: Software architecture in practice, 2nd edn. Addison-
Wesley (2003)

3. Bass, L., Clements, P., Kazman, R.: Software architecture in practice, 3rd edn. Addison-
Wesley (2012)

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., Stal, M.: Pattern-oriented
Software Architecture. Wiley (1996)

5. Cañete, J.M.: Annotating problem diagrams with architectural tactics for reasoning on
quality requirements. Information Proc. Letters 112, 656–661 (2012)

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: NFRs in software engineering. Kluwer
Acad. Publ., Boston (2000)

7. Fernandez, E.B., Larrondo-Petrie, M.M., Sorgente, T., VanHilst, M.: A methodology to
develop secure systems using patterns. In: Mouratidis, H., Giorgini, P. (eds.) Integrating
Security and Software Engineering: Advances and Future Vision, chapter 5, pp. 107–126.
IDEA Press (2006)

8. Fernandez, E.B., Yoshioka, N., Washizaki, H., VanHilst, M.: An approach to model-based
development of secure and reliable systems. In: Procs. Sixth International Conference on
Availability, Reliability and Security (ARES 2011), Vienna, Austria, August 22–26

9. Fernandez, E.B., Astudillo, H.: Should we use tactics or patterns to build secure systems?
In: First International Symposium on Software Architecture and Patterns, in conjunction
with the 10th Latin American and Caribbean Conference for Engineering and Technology,
Panama City, Panama, July, 23–27, 2012

10. Fernandez, E.B.: Security patterns in practice - Designing Secure Architectures Using
Software Patterns, Wiley Series on Software Design Patterns (June 2013)

11. Fernandez, E.B., Yoshioka, N., Washizaki, H., Yoder, J.: Abstract security patterns
for requirements specification and analysis of secure systems. In: Procs. of the WER 2014
Conference, a Track of the 17th Ibero-American Conf. on Soft. Eng. (CIbSE 2014), Pucon,
Chile, April 2014

 Revisiting Architectural Tactics for Security 69

12. Fernandez, E.B., Monge, R., Carvajal, R., Encina, O., Hernandez, J., Silva, P., R.: Patterns
for Content-Dependent and Context-Enhanced Authorization. In: Proceedings of 19th Eu-
ropean Conference on Pattern Languages of Programs, Germany, July 2014

13. Gallego, B., Muñoz, A., Maña, A., Serrano, D.: Security patterns, towards a further level.
In: Procs. SECRYPT, pp. 349–356 (2009)

14. Gollmann, D.: Computer security, 2nd edn. Wiley (2006)
15. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? A model

and annotation. The Journal of Systems and Software 83, 1735–1758 (2010)
16. Kim, S., Kim, D.-K., Lu, L., Park, S.: Quality-driven architecture development using arc-

hitectural tactics. Journal of Systems and Software (2009)
17. Neumann, P.G.: Principled assuredly trustworthy composable architectures. Final SRI

report to DARPA, December 28, 2004
18. Preschern, C.: Catalog of Security Tactics linked to Common Criteria Requirements.

In: Procs. of PLoP (2012)
19. Ray, I., France, R.B., Li, N., Georg, G.: An aspect-based approach to modeling access con-

trol concerns. Inf. & Soft. Technology 9, 575–587 (2004)
20. Ryoo, J., Laplante, P., Kazman, R.: A methodology for mining security tactics from securi-

ty patterns. In: Procs. of the 43rd Hawaii International Conference on System Sciences
(2010). http://doi.ieeecomputersociety.org/10.1109/HICSS.2010.18

21. Ryoo, J., Laplante, P., Kazman, R.: Revising a security tactics hierarchy through decom-
position, reclassification, and derivation. In: 2012 IEEE Int. Conf. on Software Security
and Reliability Companion, pp. 85–91

22. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Procs.
of the IEEE 63(9), 1278–1308 (1975)

23. Shapiro, J.S., Hardy, N.: EROS: A Principle-Driven Operating System from the Ground
Up. IEEE Software, January/February 2002

24. Taylor, R.N., Medvidovic, N., Dashofy, N.: Software Architecture: Foundation, Theory,
and Practice. Wiley (2010)

25. Uzunov, A.V., Fernandez, E.B., Falkner, K.: Engineering Security into Distributed
Systems: A Survey of Methodologies. Journal of Universal Computer Science 18(20),
2920–3006

26. Uzunov, A.V., Fernandez, E.B., Falkner, K.: ASE: A Comprehensive Pattern-Driven Secu-
rity Methodology for Distributed Systems. Journal of Computer Standards & Interfaces
(2015). http://dx.doi.org/10.1016/j.csi.2015.02.011

27. Uzunov, A.V., Fernandez, E.B.: Cryptography-based security patterns and security solu-
tion frames for networked and distributed systems (submitted for publication)

28. VanHilst, M., Fernandez, E.B., Braz, F.: A multidimensional classification for users of se-
curity patterns. Journal of Res. and Practice in Information Technology 41(2), 87–97
(2009)

29. Washizaki, H., Fernandez, E.B., Maruyama, K., Kubo, A., Yoshioka, N.: Improving the
classification of security patterns. In: Procs. of the Third Int. Workshop on Secure System
Methodologies using Patterns (SPattern 2009)

30. Woods, E., Rozanski, N.: Using architectural perspectives. In: Procs. of the 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA 2005)

31. Rozanski, N., Woods, E.: Software systems architecture: working with stakeholders using
viewpoints and perspectives, 2nd edn. Addison-Wesley Educational Publishers (2012)

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 70–86, 2015.
DOI: 10.1007/978-3-319-23727-5_6

Improving the Quality of Architecture Design
Through Peer-Reviews and Recombination

Mojtaba Shahin() and Muhammad Ali Babar

CREST – The Centre for Research on Engineering Software Technologies,
The University of Adelaide, Adelaide, Australia

{mojtaba.shahin,ali.babar}@adelaide.edu.au

Abstract. Software architecture reviews help improve the quality of architec-
ture design decisions. Traditional reviews are considered expensive and time-
consuming. We assert that organizations can consider leveraging peer-reviews
and recombination (i.e., promoting design improvement through sharing design
ideas) activities to improve the quality of architectures and getting staff trained.
This paper reports a case study aimed at exploring the potential impact of com-
bining peer-review and recombination on the quality of architecture design and
design decisions made by novice architects, who usually have limited practical
experience of architecture design. The findings show that the use of peer-review
and recombination can improve both the quality of architecture design and do-
cumented decisions. From the decision-making perspective, this study also
identifies the main types of challenges that the participants faced during archi-
tectural decision making and reasoning. These findings can be leveraged to
focus on the types of training novice architects may need to effectively and effi-
ciently address the types of challenges identified in this study.

Keywords: Software architecture design · Design quality · Peer-review ·
Recombination · Architectural design decision

1 Introduction

With the increasing size and complexity of software-intensive systems, the role of
software architecture (SA) as a means of understanding and managing large-scale
software intensive systems is considered very critical. The high level design descrip-
tion of a large system can help a system’s stakeholders to understand and reason
about the designed architecture with regards to architecturally significant require-
ments (ASRs) of a software-intensive system [23]. Software architecting is a know-
ledge-intensive activity, in which a large amount of knowledge is being continuously
consumed and produced. A poor quality architecture can lead to project failure that
usually costs an organization dearly. Software development organizations pay signifi-
cant attention and allocate resources to design an appropriate architecture that can
help achieve the functional and quality requirements expected of a system by all the
stakeholders. That is why organizations focus on building their competencies in de-
signing and evaluating architectures before committing substantial resources to build-

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 71

ing a system [12, 13, 15]. Software architecture reviews are usually performed infor-
mally by architects themselves or formally by quality assurance teams [13].

An architecture review is considered as an effective way to ensure the quality of
software architecture design [12, 15]. However, the current architecture review me-
thods and processes have not been widely adopted by industry due to a large number
of limitations [12, 14]. Historically, (formal) architecture review processes rely on
time-consuming, tedious and expensive face-to-face meetings [12, 14]. Given the
increasing trend to leveraging crowdsourcing in knowledge-intensive activities, we
assert that software architecture community should explore the potential role of
crowdsourcing as an alternative method in designing and evaluating software archi-
tectures and getting novice architects to gain the required knowledge, skills, and expe-
rience by soliciting the contributions from the online communities [16]. We argue that
two concepts peer-review and recombination can be leveraged simultaneously to im-
prove the quality of architecture design. Peer-review is a reciprocal process, in which
people working in groups comment on the work of peers and provide feedback on the
reviewed work [9]. Peer-reviews have been applied to several disciplines for identify-
ing the potential defects and improve the quality of the final product [9]. It is demon-
strated that crowdsourcing can help reduce development cost, faster time to market
and increase the quality through soliciting diverse expertise and creativities from a
large workforce [16].. In the recombination process, a specific type of crowdsourcing,
the designers should share their designs to others and then they are encouraged to use
the ideas from the shared designs if appropriate for revising their own design [3]. The
recombination can be interpreted as an indirect collaboration [25]

The main goal of this study is to investigate the role of peer-review process in
combination with recombination on the quality of architecture design and design deci-
sion. We were also interested in identifying and classifying the types of challenges
that the participants faced when asked to deign an architecture for a non-trivial system
to be developed using state-of-the-art technologies of mobile cloud computing. We
have conducted a case study involving students in an academic context. The findings
provide preliminary evidence to support our assertion that combining peer-review and
recombination can help improve the quality of architecture design and design deci-
sions as the participants took inspirations and borrowed ideas from designs of their
peers and got engaged in intense design reasoning discussions. We have also identi-
fied four main categories of challenges that the participants of our study faced. The
findings are expected to encourage further studies of leveraging crowdsourcing in
software architecture design and guide the future training programs that can prepare
the future architects to effectively and efficiently address the types of architecture
design challenges faced by the participants of our study.

The rest of the paper is organized as follows: section 2 gives a summary of
background and motivation. Section 3 provides the details of the case study. The
quantitative and qualitative results of the study are described in Section 4. The section
5 reports a discussion on findings. Finally, we present our conclusions with future
work in Section 6.

72 M. Shahin and M.A. Babar

2 Background and Motivation

Whilst there has been significant research on improving the quality of software archi-
tecture through architecture evaluation (i.e., reviews) [12], there has been little work
on exploring the impact of peer-reviews on software design quality. Other design
disciplines have devoted significant amount of efforts to investigate how feedback,
(self) critique, and peer-review can improve design [1, 2]. Dow et al. [1] studied the
impact of feedback on the quality of web advertisement designs when created in pa-
rallel and serially. They found that the parallel feedback on design led to better quality
and more divergence in design. Dow et al. [2] showed that designing and sharing
multiple designs for group discussion increases the quality of design rather than shar-
ing the best design for discussion. Moreover, they also found that sharing and discuss-
ing multiple designs can also lead participants to explore more concepts.

Mao et al. conducted a survey of using crowdsourcing to support software engi-
neering activities [24]. The results of the survey reveal that although crowdsourcing
has been widely employed for supporting coding and maintenance activities, it has
been rarely used for software design. TopCoder1, as one of a few commercial crowd-
sourcing platforms, supports crowdsourcing software design in which competitors are
allowed to provide software design specification based on given user requirements
[24]. However, very little research exists on how architecture design, review and evo-
lution can be performed by multiple designers’ solutions (i.e., crowd) [3, 24]. To the
best of our knowledge, there has been only one paper [3], recently published, that
reports a study similar to our line of research. LaToza et al have investigated the role
of “recombination” in software design by Crowd [3]. In the “Recombination” process,
designers are encouraged to share their designs with others and take ideas and inspira-
tion through such sharing of design for improving their own. LaToza et al studied the
impact of “Recombination” on the quality of two types of software design, user expe-
rience design and architecture design, through a design competition in which the par-
ticipants (i.e., graduate students) were asked to share their initial design. The authors
organized two separate studies of user experience design and software architecture
design. Each of the participants was asked to produce an initial version and a revised
version design. For the revised design, the participants were encouraged to take inspi-
ration from other designs and the lessons learned from the crowd (i.e., other partici-
pants). The study concluded that the quality of software design can be improved
through competitions and “Recombination” as almost all the participants borrowed at
least one idea from other participants, who are considered “Crowd” in the study. One
of the most interesting findings of the study was that even the strong designers used
the ideas from the weak designs and improved their designs.

We came across the work of LaToza et al. [3], while analyzing our data. That study
increases our confidence in the importance of exploring the potential benefits of
crowdsourcing in design and training architects how to leverage the power of peer
review and recombination for improving the quality of software design. Our study
investigates the roles of peer-reviews and recombination together on the quality of

1 http://www.topcoder.com/

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 73

architecture design. We are especially interested in comparing the quality of design
decisions documented by novice architects before and after peer review and recombi-
nation. Thirdly, our study design promoted extensive discussions involving technical
arguments in favor and against the reported design and counter justifications. These
discussions provided huge amount of qualitative data that helped us to discover the
types of challenges novice architects can face when designing architectures.

3 Research Design and Logistical Details

Our long term goal is to empirically build a body of knowledge about the dynamics
and potential benefits involved in applying crowdsourcing for improving software
architecture design when traditional architecture review have been proven too expen-
sive to be widely adopted [12]. Based on the body of knowledge, we were also inter-
ested in training future software architects by identifying and classifying the types of
common challenges they face during architecture design. This particular study pur-
ported to empirically study and understand the potential impact of crowd level re-
views and discussions on the quality of design using peer-reviews and recombination.
We identified two research questions for this work.

RQ1. How do peer-review and recombination affect the quality of architecture de-
sign? We planned to answer this question by analyzing the quality of the architecture
design decisions and architecture designs submitted by each group of the participants
before and after the peer reviews and recombination phases. The quality of the archi-
tecture designs and decisions has been quantified by applying the evaluation criteria
(see sections 4.1.1 and 4.1.2). We also analyze the qualitative data from the discus-
sions and the feedback of the teaching assistant who had observed the whole process
and assessed the architecture designs.

RQ2. What challenges do the novice architects experience in architectural decision-
making and design reasoning? We envisioned to answer this question by analyzing
the discussions on the design decisions made available for review, students’ reflec-
tions summaries in the submitted design reports, and the feedback of the teaching
assistant on the students’ performance on design decisions before and after the peer-
review and recombination phases and the recurring challenges reported to her.

3.1 Research Method

An empirical study should be carried out using a suitable research method chosen based
on the nature of the studied problem and the research questions to be answered. Since
there has been scant research on the impact of peer-reviews and recombination on the
quality of software design, we decided to carry out an exploratory case study in an aca-
demic setting. Case study is considered a suitable research method to investigate a con-
temporary phenomenon within its real-life context. Our study was an exploratory case
study as it mainly deals with the “What” questions. Apart from the guidelines provided
by Yin [8], we followed the checklist provided by Kitchenham et al. on case study re-
search [27]. The unit of analysis is group consisting of 4 participants.

74 M. Shahin and M.A. Babar

3.2 The Participants and The System

This study was carried out through the software architecture design and evaluation
activities and submitted artifacts of 31 students who doing a senior level semester
long (i.e., 14 weeks) software architecture course in 2014 at the University of Ade-
laide. Designing and evaluating architecture of a non-trivial software intensive sys-
tem, healthcare emergency support, were the major assessment tasks (i.e., 50% of the
final grade). The design activities were supposed to be carried out by groups of 4
members (one consisted of 3 members). The main training topics included quality
attributes, architectural personas, concepts, principles, methods, and best practices of
software architecture design, and documentation approaches.

The main goal of the system is to support Australian healthcare workers when res-
ponding to emergency situations away from the hospitals. The emergency response
team can consist of paramedics, doctors and medical staff located at hospitals. The
system is supposed to provide mobile and reliable access to the required information
about the patients. The system was to be designed to leverage mobile cloud compu-
ting technologies using Service Oriented Architecture (SOA) principles. Security and
privacy were identified as the most important quality attributes. The system is ex-
pected to be able to integrate with other systems of Australian health care system to
become a part of a healthcare ecosystem.

3.3 Case Study Process

The case study process (i.e., shown in Figure 1) consisted of following steps:

1. Each group was given a set of requirements of a distributed emergency health-
care system and asked to design and document software architecture. Each
group was supposed to provide following materials at the first phase:

a. Concrete scenarios and reasons for the key quality attributes.
b. A set of services to support different features of the system. The deci-

sions made for identifying the services along with the rationale.
c. Documented design decisions using suitable architectural styles and pat-

terns along with the rationale for the choices made (in a given template).
Table 1 shows the decision template along with an example of the do-
cumented design decision by group B.

d. Model the Service Oriented Architecture (SOA) of the system by using
SoaML [17] and show the use of patterns. The designed SOA was ex-
pected to contain the Service (including composed services) and Com-
ponent layers.

2. The research team evaluated the quality of software architecture designs and
design decisions made by each group in the first phase based on predefined
criteria. The submitted architecture designs were evaluated by a senior Teach-
ing Assistant (TA) who had more than 10 years of industry experience. The
TA did not know about the study. Later the two authors evaluated the quality
of the documented design decisions.

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 75

Fig. 1. The steps of case study

Table 1. A design decision captured using the template by group B.

Concern How to develop the application to adapt to different devices?
Ranking criteria 1. Portability

2. Modifiability
Option(s) Name MVC pattern

Description MVC pattern divides an interactive application into three
components and separates the data from presentation. The
model contains the core functionality and data. Views dis-
play information to the user. Controller handle user input.

Status This option is decided

Relationship(s) -
Evaluation 1. Portability is achieved by making the View an indepen-

dent part and the system. GUI is not interwoven with func-
tionality, so to adapt to different devices; we only need to
change the View.
2. Modifiability is achieved by separating Model, View and
Controller. Each part is independent and can be modified
without affecting other parts.

Rationale of
decision

This option is decided because it provides a good solution to
the quality attributes required.

76 M. Shahin and M.A. Babar

3. In phase 2, each of the participants had two tasks:
a. Individual task (i.e., participating in peer-review and recombination):

each participant was expected to carefully and critically evaluate an as-
signed architectural solution submitted by one of the eight groups. The
participants were expected to prepare a 1-2 pages summary of his/her
evaluation and understating of the key architecture design decisions,
their strengths, and weakness, and missing artifacts and post the individ-
ual summaries on the assigned Moodle forum that was viewable by all
the participants. Each of them was expected to actively discuss and re-
flect upon the evaluation summaries submitted by other students and
provide solid reasons and justification for the strengthens and weak-
nesses of different design choices and appropriateness of the architectur-
al concepts and methods used. The participants were encouraged to iden-
tify and use the ideas from the design of their peers (i.e., the crowd) for
revising their group designs for the second phase of the architecture de-
sign task. It should be noted that the participants were not given any
clues by research team to learn which architecture designs were good
candidates for recombination.

b. Each group was required to improve their design by taking into consid-
eration their own assessment of their architecture or the architecture that
they would have found more suitable, and the feedbacks provided to
them by other students through Moodle discussion forum and teaching
assistant.

4. Like step 3, the TA and the authors again evaluated the quality of architecture
designs and documented decisions submitted in the second phase.

5. The authors analyzed the quantitatively data based on all the evaluations of the
architectures submitted in two phases for answering the RQ1 and qualitatively
analyzed the students’ discussions and reflections and feedback by the TA to
answer the RQ2.

4 Results

Following sections report the results from the analysis of different types of data ga-
thered for answering the two research questions that motivated this study.

4.1 Findings from Analyzing Quantitative Data

4.1.1 The Quality of Architecture Design
We quantitatively evaluated the quality of architecture design submitted by each
group. We asked all the groups to submit two versions of their architecture designs.
We expected that the second version submitted in second phase has been influenced
by (i) the groups’ assessment on their architecture; (ii) the architecture that they
would have reviewed and (iii) the feedback and critiques provided to them by their
peers through Moodle discussion forum and teaching assistant. For commenting and

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 77

critiquing other’s designs, we encouraged the participants to follow the sequential
critiquing framework [4] that is expected to help improve the quality of the critique.
We had an independent evaluator (i.e., TA) to score the quality of architecture designs
submitted in phase 1 and 2 separately. It is worth nothing that the evaluator did not
know about this study. The submitted architectures were evaluated based on the fol-
lowing criteria; any group could have received 10 points if they satisfied each crite-
rion (i.e., the maximal score can be 60 points)

1. Description of the Personas of doctors, paramedics, and other members of an
emergency response team located at a hospital.

2. Three concrete scenarios and associated rationale for 2 quality attributes.
3. Five design decisions and rationale for achieving the identified quality attributes by

applying suitable architecture and/or design patterns.
4. SOA models using SoaML to show different services, their interactions.
5. Provide components/service diagrams using any 3 views of the 4+1 views.
6. Provide the details of some services by showing the class diagrams (application of

design patterns) and the sequence diagrams.

Table 2. The summary of architecture design scores

Groups Score of Phase 1 Score of Phase 2 Changes in scores

Group A 47 50 3
Group B 60 62 2
Group C 47 48 1
Group D 49 51 2
Group E 38 41 3
Group F 48 50 2
Group G 58 60 2
Group H 47 49 2
Mean 49.25 51.38 2.13

A comparison of the two architecture designs provided by each group is shown in

Table 2 that clearly shows that all of the groups got better score in the second phase.
It is interesting to note that the increment obtained after peer review and recombina-
tion could be between 0 and 3 points (i.e., 3 as the largest improvement). Each
group’s score on architecture design improved by approximately 2.2 points on aver-
age. We applied Wilcoxon signed-rank test as a nonparametric statistical method to
assesses whether or not the improvement was statistically significant [5]. We chose
this type of statistical method as the outputs of those participants had to be evaluated
twice [10]. The dependable variable is the quality of architecture designs before and
after peer-review and recombination process. The application of the Wilcoxon signed-
rank test revealed that the quality of the architecture designs submitted in phase 2 was
significantly better than the quality of the architecture designs submitted in the first
phase at the level of confidence of 95% (see Table 3). These findings provide the
evidence that the peer-review and recombination help improve the quality of architec-
ture design. The feedback and critique provided by the participants to each other

78 M. Shahin and M.A. Babar

helped the participants to fix their decisions, reasoning and design flaws, but also it
encouraged them to explore broadly design space and think more critically [1, 2].

Table 3. Descriptive statistics of the results on quality of architecture design

 Phase 1 Phase 2 p-value

Mean SD Mean SD

 49.25 6.92 51.38 6.72 p=0.011

4.1.2 The Quality of Design Decisions
Previous section reports the findings from our investigation of the impact of peer
review and recombination activities on the quality of all the artefacts submitted as part
of architecture design, i.e., all sorts of decisions and documentation. This section re-
ports the findings from particularly investigating whether or not the peer review
process has an impact on the quality of design decisions. The participants had been
asked to document each of the key design decisions using a given template along with
the rationale for that design decision. We noticed that the participants documented the
design decisions using the template (i.e., see Table 1, we name them as template-
based decision) as well as without using the template (i.e., unstructured decision). In
order to evaluate the quality of both types of design decisions, we extended the crite-
ria proposed in [11] by adding three elements, which are expected to reflect architec-
tural decision’s quality. The quality of each decision was evaluated by the first author
and the doubtful situations were discussed and agreed upon with the second author.
Each criterion used a three points Likert scale: “Yes”=1, “No”=0 and “Partially”=0.5.
The accumulated quality score for each decision was expected to range from 0 and 7.
The following criteria have been employed:

 C1: Is the decision stated clearly?
 C2: Is the rationale of the decision stated clearly?
 C3: Is the documented decision is a viable solution with regard to the de-

scribed?
 C4: Are multiple design options considered?
 C5: Are the pros and cons of decision compared?
 C6: Does the documented decision reuse any patterns/tactics /reference archi-

tectures?
 C7: Are quality attribute, constraints and business goal considered during de-

cision making process?

We found that the number of template-based design decisions increased from 31 to
42 decisions from first phase to second phase and an average quality score per deci-
sion improved by 0.5 point. A comparison of the number of documented decisions
along with the average quality score in phase 1 and phase 2 is shown in Table 4. It is
clear from Table 4 that the average quality score for unstructured decisions increased
by 0.3 point. Since we wanted to find out if the improvement in the quality of design
decisions before and after the peer-reviewing process was statistically significant, we

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 79

used the Wilcoxon signed-rank test. Two paired tests (e.g., Wilcoxon signed-rank
test) need the same number of samples in each condition. That was why we randomly
selected 31 template-based decisions from phase 2 in order to make the samples equal
(i.e., the number of decisions) with phase 1. Tables 5 and 6 contain the p-values for
the template-based and unstructured decisions respectively. With a p-value of 0.003,
we conclude that applying the peer-review process led to statistically significant im-
provement in the quality of template-based decisions. The investigation of the used
criteria revealed that the design decisions documented by the participants in both
phases 1 and 2 satisfied the criteria C1, C3 and C7 to a very large extent. The im-
proved quality of the design decisions in phase 2 compared to phase 1 was mainly due
to the increased scores in C2, C5 and C6. It appears that the peer review forced the
novice architects (i.e., study’s participants) to better justify their decisions in the
second step. During the peer review phase, most of the participants were challenged
by their peers with such kinds of questions: “what was your rationale for this given
decision”. These questions encouraged the participants to document the positive
points of their decisions in the revised version of architecture documents (i.e., C5).
However, the novice architects rarely talked about the drawbacks of the choices they
made. In phase 2, the students applied more architectural patterns and tactics for satis-
fying the architectural issues. One possible reason for this trend could be that the par-
ticipants learnt how to employ architectural patterns for architectural problems and
understood that justifying the design decision with architectural patterns is easier.
There was no statistical significance in the improvement over criterion C4 between
phases 1 and 2.

Table 4. The summary of the number of and quality scores of template-based and unstructured
decisions

 Phase 1 Phase 2
Number of template-based decisions 31 42
Number of unstructured decisions 11 18
Average quality per template-based decision 4.64 5.19
Average quality per unstructured decision 3.50 3.83

Table 5. Descriptive statistics of the results on quality of template-based decisions

 Phase 1 Phase 2 p-value
Mean SD Mean SD

 4.64 1.03 5.19 0.88 p=0.003

Having done the same analysis for the unstructured decision, we could not find a

significant deference between the quality of the unstructured decisions before and
after the peer reviewing process (i.e., p-value>0.05). Similar to the template-based
decisions, the unstructured decisions positively fulfilled the criteria C1 and C3 in both
phases 1 and 2. The scores of other criteria except C4 improved from first phase to the
second one, however, it was not sufficient to have a statistical significance.

80 M. Shahin and M.A. Babar

Table 6. Descriptive statistics of the results on quality of unstructured decisions

 Phase 1 Phase 2 p-value

Mean SD Mean SD

 3.50 1.09 3.86 0.83 p=0.29

4.2 Findings from Analyzing Qualitative Data

Our study design and execution also included several means of collecting qualitative
data, which is considered an important source of evidence and can supplement the
findings from analyzing quantitative data. We gathered qualitative data from dozens
of pages of design decisions discussions by students on Moodle forum, students’ ref-
lections notes in the submitted design reports, and teaching assistant’s feedback. For
analyzing the qualitative data, we employed thematic analysis [6], a qualitative data
analysis method for identifying, analyzing, and reporting patterns (themes) from the
collected data. We decided to analyze the data to identify the challenges that the par-
ticipants faced and shared with their peers. Following are the main categories of chal-
lenges that were reported through discussions.

Service Decisions: One of the key tasks was to decide and reason about the types of
services required of the system to be designed. Our analysis revealed that the partici-
pants found it quite challenging to determine what services and sub-services were
required. It was also difficult for the participants to decide about the levels of abstrac-
tions to be used for describing the identified services and justifications for them. This
situation made it difficult for others to easily understand the reported service. One of
the participants described this challenges: “This report should give more detail of the
connections of each service. One of the important thing is they should give the details
of the task manager service. How can this service integrated with other service, and
how the services communicate in the system?”

Design Decisions: Our analysis revealed that the participants faced many problems in
making and documenting design decisions as well as in understanding the decisions
made by other groups. It was also revealed that the participants did not consider and
reasoned about more than one design option when making the design decisions; nor
did they document all the decisions made. There was a significant difference between
the number of documented decisions in architecture document (AD) and that of we
derived from the discussion forum. This situation changed during the peer review
process as the participants frequently asked questions like “what your rationale is for
decision X or pattern Y”. This types of questions and peer critiques of the reported
design decisions and the rationale provided resulted in detailed and intense discus-
sions about design decisions, rationale and the design options that could have been
considered. The simulants for such discussions were questions like “what is your
rationale for this decision?” and “how can you ensure that your decision reaches
quality X?” “how the system can avoid attacks such DDoS attacks?”

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 81

These types of questions made the participants talked about the design options that
they thought about, their pros and cons, and why those design options had been re-
jected. One participant shared that “We can also add some measures which can help
reduce the impact of DoS attacks, such as using 2-factor authentication and rejection
of any further requests from a device until it has been confirmed. With the rejection
being done on a separate cluster with redundancy to reduce the chance that this ser-
vice will be taken down from such an attack.” Another participant replied, “The main
concern that I see with using 2-factor authentication is that in the high-pressure envi-
ronment of an emergency accident scene or in a hospital emergency room, authenti-
cation can be time consuming and stressful for emergency staff. As such, it is very
important to ensure that the authentication methods chosen are as simple to use as
possible. One idea would be to use a staff member's NFC access card….our group is
considering the option of having the device itself as a possible token, where that de-
vice is registered to the system for approved access by a specific user”

Despite the participants complaining about not having sufficient documented in-
formation about design decisions shared for peer review, the situation did not improve
in the second phase either. Albeit the quality of the overall design and design deci-
sions improved, but most of the documented design decisions lacked sufficient ratio-
nale. Compared with the phase 1, some students did mention about the difficulty in
ranking different design options and selecting the best solution based on the required
quality attributes, constraints, and patterns’ forces. We found that participants had
more difficulty to justify the decisions related to the whole structure of the system
(i.e., architectural decision [20]) than those used to meet component-level design
issue (i.e., low-level decision [20]). Our analysis also revealed that the participants
found it hard to maps the individually reported design decisions onto overall architec-
tural views. For example, they frequently asked “where we can find the impact of this
decision on architecture design”. It became clear that a general lack of established
traceability between the architectural decisions and the overall architecture designs
submitted by different groups made it difficult to gain a good understanding of the
designed architectures. Moreover, a large majority of the groups did not document
execution decisions (i.e., tool, technology, process, organization as per Kruchten’s
classification of decisions [7]) using decision template. However, some of the partici-
pants did mention such decisions in their comments. For example, one participant
commented, “It is sure that we need more work on the multi-platform. As we use
MVC design pattern and SOA software architecture, it is just an easy work move to
other platform, we will use HTML 5 to design the GUI, So that all the devices can
access to the system. We will make the description more clear and specific.”

Quality Attributes Decisions: Our analysis revealed that most of the groups did not
provide any details about the trade-offs among quality attributes in the documented
design decisions in the phase 1, however, they demonstrated a reasonable understand-
ing of considering tradeoff decisions among quality attributes when prompted. For
example, one participant remarked, “… the design decision of data encryption is sig-
nificantly correct and necessary here. However, the performance issue that may be
caused by encryption is not taken into consideration in this decision”. The response to
this comment was: “You're right that we didn't mention anything about performance

82 M. Shahin and M.A. Babar

here. We were aware of the issue, but we'll make sure to put it in writing for phase 2”.
On another group’s submission, a participant commented, “… you put a central serv-
er, which is the cloud in one location, and it only handles the logic process. It needs
to retrieve data from data servers distributed in different locations. If this is the case,
… it increases the data communication between central server and data servers a lot.
Latency may increase here”. The response was, “As you can see, we did not mention
this decision in the design decision section which we definitely should. The problem
you raised, the latency, is a problem indeed… we pay more attention to the security
part than the latency… we shall document this design decision in the next phase… we
will regard it as a trade-off point and further discuss it in detail”.

Pattern Challenges: the analysis of the qualitative data also indicated that the partic-
ipants were having challenges in understanding the goals and suitability of patterns
reported to be used in software architecture design diagrams. One reason for that situ-
ation appeared to be missing information about the names of the patterns used. For
example, one participant commented, “…What is the name of the design pattern or
patterns being employed in this design?..strictly the Model-View-Controller (MVC)
pattern or is it a hybrid of MVC and the repository pattern. This was not clearly
stated and looking at their diagrams and architectural design I would make the as-
sumption of the Model-View-Controller pattern but it is not always easy to tell.”

5 Discussion and Limitations

Peer Review and Crowdsourcing in Architecture Design and Review: The find-
ings from our exploratory case study provide preliminary evidence to support the
assertion that peer-review and recombination approaches can improve architecture
design and decisions quality. Such an improvement can possibly be examined as fol-
lows: (i) Once the novice architects participated in the peer review process, they were
motivated to justify the rationale of their architecture design and the decisions made;
(ii) most of the feedback and critique provided by the participants to each others were
constructive; (iii) reviewing and looking at the architecture designs of peers enabled
the participants to explore broadly the design space and consider the possible design
alternatives. Since designing and reviewing an architecture of a complex software
systems heavily rely on knowledge and expertise from different fields as well as expe-
rience and intuitions, which is usually beyond the possession of a given organization,
we believe that organizations can employ the peer-review and recombination through
crowdsourcing for improving the quality of final architecture design. Linus’s law (i.e.,
“given enough eye balls, all bugs are shallow” [18]) has shown the effectiveness of a
peer-review process and it has been adopted as an effective practice for quality im-
provement by Open Source Software communities [19]. Since a peer-review through
crowdsourcing can leverage the experiences and expertise of a large number of indi-
viduals, we assert that it can result in better architecture design quality. An organiza-
tion can use the method as an effective approach to reviewing software designs. It is
different to traditional architecture review, which involves formal, time-consuming
and expensive meetings. It can also reduce the tension raised during the face-to-face

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 83

meetings. There needs to be more research to examine the opportunities and perils of
a design peer-review process by crowdsourcing.

More Training and (Semi) Automated Decision Making Support: The results
have revealed that novice architects, who are supposed to be the next generation of
architects, had many problems during decision-making process. Although they were
successful in capturing and documenting the design decisions and their rationale to a
satisfactory extent, but they experienced many challenges in other steps of the deci-
sion making process such as proposing design alternative, evaluating the alternatives,
tradeoff analysis between conflicting quality attributes and selecting the best solution.
We can assert these challenges may partially stem from lack of enough expertise and
experience. These findings are similar to the results reported in [20], which revealed
that the personal experience is a major influencing factor in making and documenting
architectural decisions. It can be said that there needs to be more focus on providing
the future architects with sufficient training and experience in different aspects of
designing and evaluating design decisions and providing appropriate support for
(semi) automate decision-making to improve the efficiency and effectiveness of the
architecture design and evaluation activities. In a recent study, it was found that most
of the existing design decision tools just focus on modeling, capturing and document-
ing decisions without providing sufficient automation support for decision-making
[11]. We assert that the areas for automation support can be ranking design options,
generating design alternatives, and supporting quality attributes trade-off analysis.

Limitations: One of the key limitations of this study can be the process and evalua-
tors of the architecture design and decisions. Albeit the external evaluator was not
aware of the study when evaluating the submitted artifacts, it would be better to apply
double-blinded evaluation process to reduce the impact of potential bias in the evalua-
tion of architecture design and decisions. We tried to alleviate this threat by intensive
discussions between the two authors to reach a consensus on different evaluations
performed on the artifacts used in this study. The other validity threat could be the
participants of this study and system (i.e., healthcare emergency support system) be-
ing studied. Since there has been a little research on the impact of peer-review and
recombination on the quality of software design and decisions, we decided to start this
exploratory research by studying students’ design and evaluation activities in an aca-
demic context as those students can be considered the future generation of software
architecture professionals [21]. Researchers have found that students are suitable re-
placements for industry professionals if performing small tasks of judgment [22]. We
plan to extend this research in a number of ways including the possibility of conduct-
ing a study with software architects from industry.

The third validity treat is how to ensure the improved quality of architecture de-
signs and decisions in phase 2 was indeed due to peer review and recombination, not
simply because of knowledge acquired by the participants (i.e., learning factor)
through the study. We agree that the learning factor has the potential to be a con-
founding factor in our study as well as it is closely intertwined to peer-review and
recombination techniques, but we argue that the participants as novice architects did
not have the tendency to self-question and self-critique on their own designs and they

84 M. Shahin and M.A. Babar

preferred to start self-question and self-critique after getting external feedbacks and
comments from the teaching assistant and peers (i.e., crowd). We assert that our sug-
gested techniques and particularly peer-review process can challenge “Law of Least
Effort” [26].

6 Conclusion and Future Work

We have carried out an exploratory case study to investigate how peer-review and
recombination affect the quality of architecture design. The quality of designed archi-
tectures and documented decisions by software architecture students, as novice archi-
tects, before (as a first version) and after the peer-reviews and recombination (as
second version) were examined and the results have enabled us to conclude that: (1)
the peer-review and recombination activities can potentially improve quality of soft-
ware architecture design and decisions (i.e., particularly decisions documented by
template). (2) The novice architects can face specific types of challenges in design
decision making process: (i) determining the required levels of abstractions to be used
for describing the identified services and justifying them. (ii) Reporting the rationale
for decisions made and proposing and ranking design options. (iii) Performing tra-
deoff decisions among conflicting quality attributes. (iv) Understanding the goals and
suitability of patterns reported to be used software architecture design diagrams. We
conclude that these findings can lead to design and execution of better training pro-
grams for novice architects to help them to gain the required knowledge and expe-
rience in relatively short amount of time as the technological advancement and in-
creasing complexity require software development organization to have highly skilled
and experienced architects.

Our ongoing future work can be outlined as follows: (1) we plan to replicate our
case study in different settings and different sizes of population and with practitioners
to explore if similar findings can be achieved with different contexts attributes. (2)
We plan to further investigate the qualitative data from the Moodle forum to find out
the types of design decision that were mentioned and discussed in the forum.

References

1. Dow, P.S., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L., Klemmer, S.R.: Parallel
Prototyping Leads to Better Design Results, More Divergence, and Increased Self-
efficacy. ACM Transactions on Computer-Human Interaction 17(4) (2010)

2. Dow, P.S., Fortuna, J., Schwartz, D., Altringer, B., Schwartz, D.L., Klemmer, S.R.: Proto-
typing dynamics: sharing multiple designs improves exploration, group rapport, and re-
sults. In: The SIGCHI Conference on Human Factors in Computing Systems, pp. 2807–
2816 (2011)

3. LaToza, T.D., Chen, M., Jiang, L., Zhao, M., van der Hoek, A.: Borrowing from the
crowd: a study of recombination in software design competitions. In: 37th International
Conference on Software Engineering (2015)

Improving the Quality of Architecture Design Through Peer-Reviews and Recombination 85

4. Xu, A., Bailey, B.P.: A crowdsourcing model for receiving design critique. In: CHI 2011
Extended Abstracts on Human Factors in Computing Systems, pp. 1183–1188 (2011)

5. Armitage, P., Berry, G.: Statistical Methods in Medical Research, 3rd edn. Blackwell
(1994)

6. Braun, V., Clarke, V.: Using Thematic Analysis in Psychology. Qual. Res. Psychol. 3(2),
77–101 (2006)

7. Kruchten, P.: An ontology of architectural design decisions in software intensive systems.
In: 2nd Groningen Workshop on Software Variability, pp. 54–61 (2004)

8. Yin, R.: Case Study research: Design and methods, Sage Publications, Inc. (2003)
9. Nicol, D., Thomson, A., Breslin, C.: Rethinking Feedback Practices in Higher Education: a

Peer Review Perspective. Assessment & Evaluation in Higher Education 39(1), 102–122k
(2014)

10. McCrum-Gardner, E.: Which is the Correct Statistical Test to Use? British Journal of Oral
and Maxillofacial Surgery 46(1), 38–41 (2008)

11. Lytra, I., Gaubatz, P., Zdun, U.: Two Controlled Experiments on Model-based Architec-
tural Decision Making. Information and Software Technology 63, 58–75 (2015)

12. Ali Babar, M., Gorton, I.: Software Architecture Review: The State of. Practice 42(7), 26–
32 (2009)

13. Tang, A., Lau, M.F.: Software Architecture Review by Association. Journal of Systems
and Software 88, 87–101 (2014)

14. Tang, A., Kuo, F.-C., Lau, M.F.: Towards independent software architecture review. In:
Morrison, R., Balasubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp.
306–313. Springer, Heidelberg (2008)

15. Maranzano, J.F., Rozsypal, S.A., Zimmerman, G.H., Warnken, G.W., Wirth, P.E., Weiss,
D.M.: Architecture Reviews: Practice and Experience. IEEE Software 22(2), 34–43 (2005)

16. Klaas-Jan Stol, K., Fitzgerald, B.: Two’s company, three’s a crowd: a case study of crowd-
sourcing software development. In: 36th International Conference on Software Engineer-
ing, pp. 187–198 (2014)

17. Service Oriented Architecture Modeling Language (SoaML) Specification, OMG.
http://www.omg.org/spec/SoaML/1.0.1/PDF

18. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly (2001)

19. Wang, J., Shih, P.C., Carroll, J.M.: Revisiting Linus’s Law: Benefits and Challenges of
Open Source Software Peer Review. International Journal of Human-Computer Studies 77,
52–65 (2015)

20. Weinreich, R., Groher, I., Miesbauer, C.: An Expert Survey on Kinds, Influence Factors
and Documentation of Design Decisions in Practice. Future Generation Computer Systems
47, 145–160 (2015)

21. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., Rosenberg,
J.: Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transac-
tions on Software Engineering 28(8), 721–734 (2002)

22. Host, M., Regnell, B., Wohlin, C.: Using Students as Subjects - A Comparative Study of
Students and Professionals in Lead-time Impact Assessment. Empirical Software Engi-
neering 5(3), 201–214 (2000)

23. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison
Wesley, Boston (2012)

86 M. Shahin and M.A. Babar

24. Mao, K., Capra, L., Harman, M., Jia, Y.: A Survey of the Use of Crowdsourcing in Soft-
ware Engineering. Technical Report RN/15/01, Department of Computer Science, Univer-
sity College London (2015)

25. Jiang, L.: Recombination Contest: Crowdsourcing Software Architecture and Design.
Master Thesis, University of Amsterdam (2014)

26. Kahneman, D.: Thinking, Fast and Slow. Penguin (2011)
27. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case Studies for Method and Tool Evaluation.

IEEE Software 12(4), 53–62 (1995)

Modeling RESTful Conversations with Extended
BPMN Choreography Diagrams

Cesare Pautasso1, Ana Ivanchikj1(B), and Silvia Schreier2

1 Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
c.pautasso@ieee.org, ana.ivanchikj@usi.ch

2 innoQ Deutschland GmbH, Monheim, Germany
silvia.schreier@innoq.com

Abstract. RESTful Web APIs often make use of multiple basic HTTP
interactions to guide clients towards their goal. For example, clients may
get redirected towards related resources by means of hypermedia con-
trols such as links. Existing modeling approaches for describing RESTful
APIs expose low-level HTTP details that help developers construct indi-
vidual requests and parse the corresponding responses. However, very
little attention has been given to high-level modeling of RESTful con-
versations, which abstracts the structure of multiple HTTP interactions.
To address such issue in this paper we introduce an extension of the
notation used in BPMN choreography diagrams. Its purpose is to rep-
resent concisely all possible interaction sequences in a given RESTful
conversation.

Keywords: RESTful web services · Conversations · BPMN choreogra-
phy · Modeling notation extension

1 Introduction

In traditional messaging systems, conversations involve a set of related messages
exchanged by two or more parties [1,2]. Web services borrowed the notion of con-
versation [3] to indicate richer forms of interactions going beyond simple message
exchange patterns [4]. As more and more Web services [5] adopt the constraints
of the REpresentational State Transfer (REST) architectural style [6], conversa-
tions remain an important concept when reasoning about how clients make use
of RESTful Web APIs over multiple HTTP request/response cycles [7].

In this paper we introduce an extended version of the choreography diagrams
of the Business Process Model and Notation (BPMN) 2.0 standard [8, Chap.5].
Our goal is to provide a concise and yet expressive visualization of all possi-
ble interactions that may occur in a given RESTful conversation, in order to
facilitate the communication among RESTful APIs’ architects and developers.
The extension emphasizes details found when using the HTTP protocol, such
as hypermedia controls [9], headers and status codes. They are all relevant for
defining the salient properties of the request and response messages composing a
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 87–94, 2015.
DOI: 10.1007/978-3-319-23727-5 7

88 C. Pautasso et al.

RESTful conversation. To illustrate the expressiveness of the proposed notation
we model an example of a frequently reoccurring conversation.

The BPMN for REST [10] extension we have proposed earlier in 2011 targeted
the modeling of RESTful Web service invocations from business process models
and the invocation of resources published from within business processes. In this
paper we target a different viewpoint focusing on the interactions between clients
and resources, while abstracting away the processes that represent the internal
logic of the two (or more) parties involved in the conversation.

The rest of the paper is structured as follows. In Section 2 we define the main
properties of RESTful conversations. We survey related work in Section 3. We
introduce the extension for BPMN choreography diagrams and use it to model
a well known conversation in Section 4 and conclude in Section 5.

2 RESTful Conversations

REST is a hybrid architectural style, which combines the layered, client-server,
virtual machine and replicated repository styles with additional constraints
(i.e., the uniform interface, statelessness of interactions, caching and code-on-
demand) [6]. As a consequence, interactions within a RESTful architecture
are always initiated by clients. They send request messages addressed to the
resources hosted on servers which are globally identified by Uniform Resource
Identifiers (URIs). Requests are always followed by response messages, whose
representation may change depending on the current state of the correspond-
ing resource. Relationships between resources can be expressed and resources
can refer clients to related resources. This way, URIs are dynamically discov-
ered by clients. The mechanism whereby hyperlinks (or resource references) are
embedded into resource representations or sent along in the corresponding meta
data [11] is one of the core tenets of REST, known as Hypermedia.

RESTful conversations thus can be seen as a specific kind of message-based
conversation defined by the following characteristics: 1. Interactions are client-
initiated; 2. Requests are addressed to URIs; 3. A request message is always
followed by a response, however there may be different possible responses to the
same request message; 4. Hypermedia: responses embed related URIs, which may
be used to address subsequent requests; 5. Statelessness: every request is self-
contained and therefore independent of the previous ones; 6. Uniform Interface:
there is a fixed set of request methods a resource can support. Furthermore, it
is possible to distinguish safe or idempotent requests from unsafe ones.

These characteristics make it possible to share the responsibility for the con-
versation’s direction between clients and servers. Servers guide the client towards
the next possible steps in the conversation by choosing to embed zero, one or
more related URIs as hyperlinks in a response. Clients may choose which hyper-
link to follow, if any (they may decide to stop sending requests at any time).
This way, clients decide how to continue the conversation by selecting the next
request from the options provided by the server in previous responses. In general,
clients can accumulate URIs discovered during the entire conversation or may

Modeling RESTful Conversations 89

remember them from previous conversations. Zuzak et al. call this the Link Stor-
age in their finite-state machine model for RESTful clients [12]. Additionally,
responses may be tagged as cacheable and thus clients will not need to contact
the server again when re-issuing the same request multiple times. The discussion
so far assumes that servers are available and always reply to client’s requests1.
In case of failures, either due to loss of messages or the complete unavailability
of servers, an exception to the response-request rule must be made.

3 Related Work

The necessity of conceptual modeling of interactions has resulted in different
modeling language proposals such as Let’s Dance [13] or iBPMN [14], and has
led to the introduction of the Choreography Diagram in version 2.0 of the BPMN
standard [8, Chap.5]. Since the main targeted domain of these languages is mod-
eling interactions involving traditional Web services, their capability of depicting
effectively and efficiently RESTful interactions is limited, which has motivated
our work on extending the BPMN choreography. RESTful Conversations have
been introduced in [7], where they are used as an abstraction mechanism to sim-
plify the modeling of individual RESTful APIs making use of them. In this paper
we model the conversations themselves, which in some cases, may span across
multiple APIs. Whereas in [7] UML sequence diagrams are used to visually rep-
resent the selected sample of conversations, in this paper we use extended BPMN
choreography diagrams, following the fast-growing adoption of the BPMN stan-
dard which became an ISO standard in 2013 (ISO/IEC 19510).

4 Extension for RESTful BPMN Choreographies

The graphical representation of all the possible interactions, that may occur
as part of a RESTful conversation, facilitates its comprehension. While UML
sequence diagrams can be a good starting point when dealing with simple con-
versations [7], they are limited in concisely presenting conversations that can
follow alternative paths. Therefore we propose using BPMN choreographies to
visualize RESTful conversations. They focus on the exchange of messages with
the purpose of coordinating the interactions between participants [15, pg. 315],
while at the same time showing the order in which the interactions may occur.

As Lindland et al. [16] claim in their framework for understanding the qual-
ity in conceptual modeling, a very important aspect of a modeling language is
its domain appropriateness. Cortes-Cornax et al. [17] emphasize the same when
evaluating the quality of BPMN choreographies. They state that “the language
must be powerful enough to express anything in the domain but no more”.
Therefore, to render the BPMN choreography diagrams more concise when tar-
geting the modeling of RESTful conversations, we propose minor changes to
their notation.
1 Servers may indicate their unavailability by sending responses carrying the 503 Ser-
vice Unavailable status code.

90 C. Pautasso et al.

Fig. 1. RESTful conversation modeled with standard BPMN choreography

Fig. 2. RESTful BPMN choreography: proposed notation extension

As it happens often in high-level conceptual modeling [18, pg. 93], various
assumptions and simplifications need to be introduced in order to avoid over-
whelming the reader with too many visual elements. This usually results in

Modeling RESTful Conversations 91

the exclusion of certain details from the models. We introduce the following
list of assumptions and simplifications for the RESTful BPMN choreographies:
1. While a hyperlink that has been discovered by the client can be used at any
time in the future, to avoid decreased readability due to line-crossing we only take
into consideration the hyperlink from the last received response; 2. While clients
may decide to stop sending requests at any time, we model a path as finished (by
using an end event), only if an initially intended goal has been achieved; 3. While
servers may send responses that include many different HTTP status codes, we
only include the status codes which are relevant for the specific conversation. For
example, 5xx status codes can occur at any time. The client will need to decide
how to react to such errors depending on the domain and error details; 4. While
clients may choose to resend idempotent requests an arbitrary number of times,
we only model situations where the client retries sending non-idempotent request
(POST, PATCH) after a response timeout event occurs.

Figures 1 and 2 show the same generic conversation in order to illustrate the
proposed extension of the notation and its conciseness. In contrast to business
processes where it is important to highlight which participant is responsible for
initiating the interaction, in a RESTful conversation the initiator is always the
client, and there is no one-way informative interaction. The content of the mes-
sages is of a particular interest, because it defines the action to be taken by the
server and the future direction of the conversation. To comply with these differ-
ences, we replace the BPMN activity comprised of an optional incoming/outgo-
ing message with a text annotation to depict the message content and a three
band choreography task containing the names of the participants, with a two
band request/response element with embedded message content (Fig. 2, no. 1).
Moreover, since in RESTful conversations the focus is not on the activities but
on their request/response content, we consider a vertical flow direction more
intuitive to follow, with a starting event leading directly to client’s request and
the server’s response leading directly to the following request or an end event.

The remaining extensions that we propose capture distinct tenets of REST-
ful APIs. The hyperlink flow indicates how URIs are discovered from hyperlinks
embedded in the preceding response to clarify how clients discover and navigate
among related resources (Fig. 2, no. 2). In RESTful conversations it is impor-
tant to distinguish between: 1. Path divergence due to client’s decisions, e.g., to
navigate to a given resource or to end the process, in which case any type of
gateway (exclusive, inclusive, parallel or complex) can be used (Fig. 2, no. 3);
and 2. Path divergence due to different possible responses from the server to a
given client’s request, in which case only exclusive gateway can be used, since
the server always sends exactly one response (Fig. 2, no. 4). In the latter case,
the exclusive gateway is introduced between a given request and the alternative
response messages. This is the only situation in which a request and its response
are not aggregated in the same element. Response timeouts may occur when
the server takes too long to respond and thus the client decides to resend the
request. To model them we use an interrupting boundary timer event attached to

92 C. Pautasso et al.

Fig. 3. Long running request modeled with standard BPMN choreography

Fig. 4. Long running request modeled with the proposed extension

Modeling RESTful Conversations 93

the request element. Such an event breaks the normal request-response sequence
by introducing a request-timeout-request-response sequence (Fig. 2, no. 5).

In addition to the generic conversation shown in Fig. 1 and 2, in Fig. 4 we have
applied our notation to a conversation that can be found in many RESTful APIs,
e.g., Amazon Glacier’s API for long term storage of infrequently used data2.
Retrieving such data can take several hours (usually 3 to 5 hours 3). Therefore
to avoid having the client wait for such a long time, the operation is turned into a
job resource, which is created using the original request. Assuming that creating
the job twice has no side effects and the client does not receive a response to
the job creation request within a given time frame, it can decide to send the
POST request again. Once the job has been created the client may poll the job
resource to GET its current progress and will eventually be redirected to another
resource representing the output, once the long running operation has completed.
Since the output has its own URI, it becomes possible to GET it multiple times,
as long as it has not been deleted. Additionally, the long running job can be
cancelled at any time with a DELETE request, thus implicitly stopping the
operation on the server or deleting its output if it had already completed in the
meanwhile. Fig. 3 and 4 show the conversation covering the whole lifecycle of a
long running operation using the standard BPMN and our proposed extended
BPMN notation, respectively. They illustrate how concisely this conversation can
be visualized with our extension by emphasizing the important REST tenets.

5 Conclusion

Conversations are relevant in the context of RESTful Web APIs because multiple
basic HTTP interactions are combined by clients navigating through the API’s
resources guided by the hyperlinks provided by the server. Thus, the design of
RESTful APIs always consists of conversations and not only, for example, of the
URI patterns and supported media types of its resources. Giving a visual rep-
resentation of RESTful conversations is an important first step towards under-
standing and improving how RESTful APIs are designed.

The contribution of this paper is the graphical representation of RESTful
conversations by proposing minimal extension to the standard BPMN choreog-
raphy diagrams. The goal is to render the conversations more precise by focusing
on the specific facets of RESTful APIs (e.g., hyperlink flow, request-response
sequencing). We have illustrated the expressiveness of the proposed notation by
modeling a typical conversation found in many RESTful APIs.

In the future we plan to design and conduct a survey among both design-
ers of RESTful APIs and developers of client applications consuming them, to
validate that the proposed notation enhances the understandability of RESTful
conversations. Furthermore based on our experience and existing literature we
plan to model a collection of frequently used RESTful conversation patterns and

2 http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html
3 http://aws.amazon.com/glacier/

http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html
http://aws.amazon.com/glacier/

94 C. Pautasso et al.

to explore how to compose together individual reusable patterns to simplify the
modeling of larger conversations.

Acknowledgments. The work is partially supported by the Hasler Foundation
(Switzerland) with the Liquid Software Architecture (LiSA) project.

References

1. Hohpe, G.: Let’s have a conversation. IEEE Internet Computing 11(3), 78–81
(2007)

2. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

3. Benatallah, B., Casati, F., et al.: Web service conversation modeling: A cornerstone
for e-business automation. IEEE Internet Computing 8(1), 46–54 (2004)

4. Völter, M., Kircher, M., Zdun, U.: Remoting patterns: foundations of enterprise,
internet and realtime distributed object middleware. Wiley, Chichester (2013)

5. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly, Sebastopol
(2013)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

7. Haupt, F., Leymann, F., Pautasso, C.: A conversation based approach for modeling
REST APIs. In: 12th WICSA, Montreal, Canada, pp. 1–9. ACM, May 2015

8. Weske, M.: Business Process Management: Concepts, Languages, and Architec-
tures, 2nd edn. Springer, Heidelberg (2012)

9. Amundsen, M.: Building Hypermedia APIs with HTML5 and Node. O’Reilly,
Sebastopol (2011)

10. Pautasso, C.: BPMN for REST. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.)
BPMN 2011. LNBIP, vol. 95, pp. 74–87. Springer, Heidelberg (2011)

11. Nottingham, M.: Web linking. Internet RFC 5988, October 2010
12. Zuzak, I., Budiselic, I., Delac, G.: A finite-state machine approach for modeling

and analyzing RESTful systems. J. Web Eng. 10(4), 353–390 (2011)
13. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: a language for

service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

14. Decker, G., Barros, A.: Interaction modeling using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 208–219. Springer, Heidelberg (2008)

15. Jordan, D., Evdemon, J.: Business process model and notation (BPMN) version
2.0. OMG (2011). http://www.omg.org/spec/BPMN/2.0/

16. Lindland, O., Sindre, G., Solvberg, A.: Understanding quality in conceptual mod-
eling. IEEE Software 11(2), 42–49 (1994)

17. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., Dumas, M.: Evaluating chore-
ographies in BPMN 2.0 using an extended quality framework. In: Dijkman, R.,
Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 103–117.
Springer, Heidelberg (2011)

18. Robinson, S., Brooks, R., Kotiadis, K., Van Der Zee, D.J.: Conceptual modeling
for discrete-event simulation. CRC Press Inc., Boca Raton (2010)

http://www.omg.org/spec/BPMN/2.0/

(Automated) Software Modularization
Using Community Detection

Klaus Marius Hansen(B) and Konstantinos Manikas

Department of Computer Science (DIKU), University of Copenhagen,
Copenhagen, Denmark

{klausmh,kmanikas}@di.ku.dk

Abstract. The modularity of a software system is known to have an
effect on, among other, development effort, change impact, and technical
debt. Modularizing a specific system and evaluating this modularization
is, however, challenging. In this paper, we apply community detection
methods to the graph of class dependencies in software systems to find
optimal modularizations through communities. We evaluate this app-
roach through a study of 111 Java systems contained in the Qualitas
Corpus. We found that using the modularity function of Newman with
an Erdős-Rényi null-model and using the community detection algorithm
of Reichardt and Bornholdt improved community quality for all sys-
tems, that coupling decreased for 99 of the systems, and that coherence
increased for 102 of the systems. Furthermore, the modularity function
correlates with existing metrics for coupling and coherence.

Keywords: Software architecture · Module structure · Software modu-
larity

1 Introduction

The way a software system is designed and structured influences both the sys-
tem’s development and runtime qualities. In particular, modularity is the qual-
ity that encapsulates interdependence within parts (modules) of a system and
independence among parts of the system. Good modularization also provides
abstraction, information hiding, and specify interfaces [1]. Software modularity
provides more benefits than mere logical structuring. It can arguably reduce
development effort, minimize impact of change, and reduce technical debt [2,3].
In particular low coupling among modules and high coherence within modules
is important.

An optimal (automated) modularization of object-oriented software systems
is perceived as a challenge. In this paper, we use community detection methods
both for optimising module structure and also for measuring modularity. We
apply these methods to a set of open source systems and compare them with
existing validated modularity metrics [3,4] . Our findings show that using com-
munity detection (in particular Newman modularity with an Erdős-Réyni null
model) optimises the modularity of systems and (tentatively) that community
detection metrics may be used to measure modularity.
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 95–102, 2015.
DOI: 10.1007/978-3-319-23727-5 8

96 K.M. Hansen and K. Manikas

2 Background and Related Work

Abdeen et al. [4] define a module as “a group of programs and data structures
that collaborate to provide one or more expected services to the rest of the
software”. Moreover they define a set of modularity principles for object-oriented
systems and propose metrics for quantifying whether the principles are fulfilled.
Li et al. [3] apply the metrics proposed by [4] as a measure of architectural
technical debt.

Several authors have investigated automated modularization. Abdeen
et al. [5] investigated how to automatically improve modularization of a soft-
ware system while preserving original design decisions by through a genetic pro-
gramming approach. Praditwong et al. [6] similarly described modularization as
a multi-objective search problem and empirically demonstrated improvements
over a single-objective optimisation strategy. Barros et al. [7] used a heuristic
search approach to investigate a restructuring of Ant, but found that optimis-
ing according to commonly used coupling and coherence metrics led to complex
designs.

Finally, to our knowledge none have addressed modularization as a commu-
nity detection problem. We discuss this and the existing modularity metrics we
apply in the following two sections.

2.1 Software Modularization Metrics

While a large number of metrics for object-oriented software deal with coupling
and cohesion at the class level, there are few defined metrics that work on the
module or package level [4]. Martin [8], Sarkar et al. [9], and Abdeen et al. [4]
present metrics that do work on package level.

Abdeen et al.’s metrics fulfill Briand et al.’s properties of coupling and coher-
ence metrics [10]. Furthermore, Li et al. [3] showed that one coupling metric of
Abdeen et al. (Index of Package Changing Impact (IPCI)) and one coherence
metric (Index of Package Goal Focus (IPGF)) correlated with a measurement
of architectural debt in a set of open source project. We thus chose IPCI and
IPGF as metrics for coupling and coherence respectively in our study.

In the following, we will briefly review these. Here P is the set of packages
of a system, clients(p) for a package p ∈ P is the set of packages that contain
classes with use/extend dependencies on p, inint(p, q) is the set of classes in
p ∈ P that classes in q ∈ P have use/extends dependencies on, and inint(p) is
the set of classes in p ∈ P that classes in other packages use/extend.

Index of Package Changing Impact (IPCI). IPCI measures coupling as the
average proportion of packages that do not change if a package changes. A value
close to 0 implies a high degree of coupling among packages while a value close
to 1 indicates the opposite. IPCI can be calculated as 1 minus the density of the
graph in which each vertex represent a package and edges represent dependencies
among packages (induced by use/extends dependencies among classes):

(Automated) Software Modularization Using Community Detection 97

IPCI =

⎧
⎨

⎩

∑
p∈P 1− clients(p)|

|P |−1

|P | = 1 −
∑

p∈P |clients(p)|
|P |(|P |−1) if |P | > 1,

1 if |P | = 1.

(1)

Index of Package Goal Focus (IPGF). IPGF measures cohesion as the aver-
age package focus where the package focus for p ∈ P is the average proportion of
classes in inint(p) that other packages use/extends. A value close to 0 indicates
that q ∈ clients(p) tend to use different sets of classes in p whereas a value close
to 1 indicates that q ∈ clients(p) tend to use the same set of classes in p. Given

role(p, q) =

⎧
⎨

⎩

|inint(p,q)|
|inint(p)| if |inint(p)| > 0,

1 if |inint(p)| = 0.

IPGF may be calculated as

IPGF =

∑
p∈P

∑
q∈clients(p) role(p,q)

|clients(p)|
|P | (2)

2.2 Community Detection

Many graphs/networks describing real-life phenomena exhibit community struc-
ture [11]. The structures are partitions of the graph into groups in which there
are many edges among vertices in the group, but few edges to vertices outside
the group. Community detection methods for finding community structures have
been applied in many domains of graph analyses including literary networks, vot-
ing patterns, and biology [11,12]. Recently, Gentea and Madsen applied commu-
nity detection to automated architectural recovery [13], showing improvements
over specialized automated software architecture recovery methods.

Community detection algorithms often combine a quality function that score
a partition and an optimisation method that heuristically finds partitions where
the quality function is optimal [14]. Our initial idea was to use the Louvain algo-
rithm [14] to find optimal modularizations optimising IPCI and IPGF respec-
tively. However, this is not appropriate since both IPCI and IPGF are degenerate
in the sense that they yield a maximum score of 1 for a modularization with all
classes in one package (or in one package and with one empty package). We
thus focus on more general community detection methods within the Louvain
algorithm framework.

Newman’s original modularity quality function [15] counts edges within a
community and compares this to what would be expected at random:

Q =
1

2m

∑

i,j

(
Aij − Pij

)
δ(gi, gj) (3)

Here, m is the number of edges in the graph, A is the incidence matrix for the
graph (i.e., Aij > 0 if there is an edge between node i and j), Pij is the expected

98 K.M. Hansen and K. Manikas

number of edges between i and j and represents a null model, gi is the community
that node i belongs to, and δ(gi, gj) is Kronecker’s δ (i.e., δ(gi, gj) = 1 if gi = gj ,
0 otherwise). Thus, Q becomes high (close to 1) if communities have many intra-
edges compared with the random model.

In our study, we consider an Erdős-Réyni null model in which random graphs
G(n, p) with n vertices are created by linking pairs of vertices, i, j, with proba-
bility p. This is a simple null model that essentially models that vertices within
a community are linked at random. If d is the density of a graph and n is the
number of vertices in the graph, then the null model of the graph is G(n, d).

3 Experimental Design

In the following section we explain the design of our study. We conducted a
technology-oriented quasi-experiment [16].

3.1 Research Questions

The aim of this study can be summarized by the following research questions:

RQ1: How can we modularize an object-oriented software system in an
automated way such that this modularity is optimised?

To address this, we find communities that optimise Newman modularity given
an Erdős-Réyni null model (NMER; cf. Section 2.2) and compare this to IPCI
and IPGF (cf. Section 2.1). Our second research question builds on this use of
community detection methods:

RQ2: Can community detection quality functions be useful as software
modularity metrics?

To address this research question, we test to which extent NMER correlates with
IPCI and IPGF and to which extent changes in NMER correlates with changes
in IPCI and IPGF.

3.2 Data Collection

To study modularity, we chose to study the software systems contained in the
Qualitas Corpus [17], a collection of curated, open-source Java systems. The
reason we chose this is that it is a curated set of open-source systems for which
well-defined versions are available for download and because the systems are
medium- to large-sized and thus, arguably, modularity is important for them.
We studied the latest release 20130901 containing 111 systems The 111 systems
have a median NCLOC of 51,860 and standard deviation of 307,473 NCLOCs.

(Automated) Software Modularization Using Community Detection 99

3.3 Analysis Procedures

We first used the Java ASM byte code manipulation and analysis framework
[18] to extract dependencies in Rigi Standard Format (RSF; [19]) using the
binary version of each system in the Qualitas Corpus. Classes recorded were
classes defined in the system or depended upon by the system. Dependencies
were found in .class files (superclass, implemented interface, accessed attribute
types, classes defining invoked method etc.) using a modification of ASM’s
org.objectweb.asm.depend.DependencyVisitor.

From the RSF file, we created a dependency graph using Igraph with classes
as vertices and dependencies as edges. The package structure, i.e., the original
modularization, was used to create an original partitioning of the graph. Since
the system architects only have control over the modularity of classes included
in the system, we included only those classes in the graph. The classes belonging
to the system were determined as being the ones that were defined in the source
folder.

We next computed an optimised modularization of the system. The optimised
modularization was detected using the Louvain framework1 for Igraph. We used
the Reichardt-Bornholdt quality function [20] with an Erdős-Réyni null model.
This is a generalization of Newman modularity that includes a resolution param-
eter. We set the resolution to 1, thus effectively optimising a Newman modularity
function with an Erdős-Réyni null model.

For the original and optimised modularization, we calculated the quality of
the modularization using a Newman modularity function with an Erdős-Réyni
null model (NMER) using the Igraph Louvain framework and the IPCI and
IPGF metrics using our own Python implementation.

To answer Research Question 1, we used three Wilcoxon paired signed-rank
test to determine if there was a statistically significant difference between the
original and optimised NMER, IPCI, and IPGF measures respectively. We used
a Wilcoxon test because measurements on software is not usually normally dis-
tributed. We used a paired test because the original and optimised modular-
izations are paired. For the statistically significant differences, we computed an
absolute effect size (i.e., difference in means) and a relative effect size using
Cohen’s d.

To answer Research Question 2, we computed correlation between original
NMER and original IPCI, between original NMER and original IPGF, between
optimised NMER and optimised IPCI, and between optimised NMER and opti-
mised IPGF. To do this, we used Spearman’s ρ. We used Spearman’s ρ (instead
of, e.g., Pearson’s r) again because data is not expected to be normally dis-
tributed.

4 Results

Table 1 shows the p value of Wilcoxon, indicating that the population mean ranks
of NMER, IPCI, IPGF respectively differ highly significantly. The differences in
1 https://github.com/vtraag/louvain-igraph

https://github.com/vtraag/louvain-igraph

100 K.M. Hansen and K. Manikas

0 20 40 60 80 100 120
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NMER
IPCI
IPGF

Fig. 1. Plot of the delta of NMER, IPCI, and IPGF after and before optimisation.

mean are 0.3259 for NMER, 0.0529 for IPCI, and 0.1631 for IPGF. Thus, the
NMER, IPCI, and IPGF values improve in general even though there are deltas
that are negative. Figure 1 shows this as the plot of the delta for NMER (NMER
optimised minus NMER original), IPCI, and IPGF. We note that there are some
systems with negative delta IPCI (12) and delta IPGF (9). In terms of effect
size, calculated as Cohen’s d, as can be seen in Table 1, the effect of optimisation
is high. In total, we have answered Research Question 1 affirmatively.

To address Research Question 2 we investigate how the IPCI and IPGF met-
rics correlate with NMER for the original and optimised values. We measure the
correlation using Spearman’s rank correlation coefficient. The results are shown
in Table 2. Except for correlation for original NMER–IPGF, the correlations are
highly significant. In terms of the original intent that NMER can be used to
measure coupling and coherence, the optimised values are the most relevant and
here the correlation is significant.

4.1 Threats to Validity

The software systems that we studied may not be representative samples of the
whole population (i.e. all object-oriented open source systems). Moreover, while

Table 1. Significance and effect evaluation for NMER, IPCI, and IPGF.

Score Wilcoxon p Mean of original Mean of optimised Cohen’s d

NMER 5.9863 × 10−20 0.4301 0.7560 1.6438
IPCI 5.3375 × 10−14 0.9008 0.9537 0.5150
IPGF 3.2317 × 10−18 0.7251 0.8882 1.5006

(Automated) Software Modularization Using Community Detection 101

Table 2. Spearman’s evaluation for NMER–IPCI, and NMER–IPGF for original and
optimised values

Score
Spearman’s for original Spearman’s for optimised

ρ p-value ρ p-value

IPCI 0.2310 0.0147 0.7116 2.0686 × 10−18

IPGF 0.1316 0.1685 0.4055 1.0103 × 10−05

IPCI and IPGF have been validated (for correlation with technical debt in a set
of open-source C# software systems [3]), these may not correlate with externally
interesting measures for the software systems in the Qualitas Corpus.

5 Conclusion

The modularity and the module structure is an important part of the software
architecture of software systems. It has an effect on, among other, development
effort, change impact, and technical debt. In this paper we investigate means of
optimising software modularity by automated partitioning the classes of object-
oriented software systems using community detection methods. Moreover, we
investigate the use of quality functions of community detection methods to mea-
sure software modularity.

In particular, we propose the use of Newman modularity with an Erdős-Rényi
null-model for measuring software modularity and the Reichardt and Bornholdt
community detection algorithm that propose a convenient framework for com-
munity detection and thus for optimised software modularity. We investigate
this in the context of 111 systems contained in the Qualitas Corpus. Our results
reveal that our optimisation improved Newman modularity for all systems, that
coupling decreased for 99 of the systems, and that coherence increased for 102
of the systems.

References

1. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity, vol. 1. MIT
Press, Cambridge (2000)

2. Wilkie, F., Kitchenham, B.: Coupling measures and change ripples in C++ appli-
cation software. Journal of Systems and Software 52(23), 157–164 (2000)

3. Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical investi-
gation of modularity metrics for indicating architectural technical debt. In: Pro-
ceedings of the 10th International ACM Sigsoft Conference on Quality of Software
Architectures, QoSA 2014, New York, NY, USA, pp. 119–128. ACM (2014)

4. Abdeen, H., Ducasse, S., Sahraoui, H.: Modularization metrics: Assessing pack-
age organization in legacy large object-oriented software. In: 2011 18th Working
Conference on Reverse Engineering (WCRE), pp. 394–398, October 2011

5. Abdeen, H., Sahraoui, H., Shata, O., Anquetil, N., Ducasse, S.: Towards auto-
matically improving package structure while respecting original design decisions.
In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp. 212–221.
IEEE (2013)

102 K.M. Hansen and K. Manikas

6. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering 37(2),
264–282 (2011)

7. de Oliveira Barros, M., de Almeida Farzat, F., Travassos, G.H.: Learning from
optimization: A case study with apache ant. Information and Software Technology
57, 684–704 (2015)

8. Martin, R.C.: The tipping point: Stability and instability in OO design. Dr Dobb’s,
March 2005

9. Sarkar, S., Kak, A.C., Rama, G.M.: Metrics for measuring the quality of modu-
larization of large-scale object-oriented software. IEEE Transactions on Software
Engineering 34(5), 700–720 (2008)

10. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering 3(1), 65–117 (1998)

11. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

12. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Commu-
nity structure in time-dependent, multiscale, and multiplex networks. Science
328(5980), 876–878 (2010)

13. Gentea, A., Madsen, T.: Using community detection methods for automated soft-
ware architecture recovery. Master’s thesis, Department of Computer Science, Uni-
versity of Copenhagen, September 2014

14. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

15. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Physical Review E 74(3), 036104 (2006)

16. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer (2012)

17. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: Qualitas corpus: A curated collection of java code for empirical studies.
In: 2010 Asia Pacific Software Engineering Conference (APSEC 2010), pp. 336–345,
December 2010

18. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to
implement adaptable systems. In: Adaptable and Extensible Component Systems,
Grenoble, France, November 2002

19. Wong, K.: Rigi Users Manual. Department of Computer Science, University of
Victoria, July 1996. http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html

20. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys-
ical Review E 74(1), 016110 (2006)

http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html

Decisions and Social Aspects

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 105–120, 2015.
DOI: 10.1007/978-3-319-23727-5_9

Software Designers Satisfice

Antony Tang1() and Hans van Vliet2

1 Swinburne University of Technology, Melbourne, Australia
atang@swin.edu.au

2 VU University, Amsterdam, The Netherlands
hans@cs.vu.nl

Abstract. The software architecture community has advocated design rationale
in the last decade. However, there is little knowledge of how much reasoning is
performed when software design judgments are made. In this study, we investi-
gated the amount of design reasoning performed before making a decision. We
recruited 32 students and 40 professionals to participate in this software archi-
tecture design study. We found that most subjects needed only a few reasons
before making their decisions. They considered that giving a few reasons were
good enough to judge despite that more reasons could be found. This result
shows a satisficing behavior in design decision making. We explore the impli-
cations of this common behavior on software architecture design.

Keywords: Satisficing · Design judgment · Design reasoning · Behavioral
software engineering

1 Introduction

Software teams often employ software engineering methodologies and processes dur-
ing development. While the use of methodologies and processes can help, they do not
ensure that good design decisions are made. Curtis suggested that the impact of beha-
vior on software productivity is greater than the use of tools and methods [1]. As Do-
nald Schön eloquently said: “We [professionals] are bound to an epistemology of
[design] practice which leaves us at a loss to explain, or even to describe, the compe-
tences to which we now give overriding importance” [2]. His observation that we
cannot explain how a designer thinks is still an accurate description of the state of
software design. Software architecture design as a series of design decisions and de-
sign rationale have been recognized by many in the software architecture community
[3, 4]. Many studies and methods promoted the capture of design rationale [5, 6].
However, we know little of how much reasoning is performed to create design ratio-
nale for making decisions. This issue has become clear in a recent workshop on soft-
ware design [7]. The amount of reasoning software designers perform is an important
issue to explore as the presence of design rationale is insufficient to ensure that a de-
sign decision is well reasoned.

Software architecture design is a complex business. Architects and designers often
face uncertainties as they explore the problem space and the solution space. Decisions

106 A. Tang and H. van Vliet

are made and reasoning is performed with many unknowns. Simon argues that due to
bounded rationality, i.e. the limitations of our cognitive ability, the idea of maximisa-
tion in design is untenable. Realistically, we cannot consider all possible design op-
tions to achieve an optimal design. As such, complete design exploration by traversing
the entire problem and solution spaces is impossible. Instead, such design approach
should be replaced by the idea of statisficing [8]. Satisficing indicates that a decision
maker makes a decision that is good enough to satisfy the goals [9].

If design optimization is not possible, how much reasoning and explorations do
designers do before making decisions? How much satisficing is good enough? On the
other hand, we know that missing information can potentially cause design flaws [10,
11]. In order to gain some insights on these questions, we set up an experiment to test
how professionals and students reason and judge. In this study, we found no signifi-
cant differences, in terms of the number of reasons and the judgments, between the
students and professionals. We found that our subjects typically stopped reasoning and
made judgment after finding few reasons.

In order to understand why both groups provided so few reasons, we did a follow
up study and asked professional participants when and why they stop reasoning. They
said that they chose to stop as soon as they were convinced that they had enough rea-
sons. This is a satisficing behavior. However, a minority group of professionals are the
exceptions to this reasoning behavior. We call them non-satisficing designers. They
reasoned more thoroughly than most of the students and professionals. They had a
different way of reasoning and we found three judgment characteristics.

2 Software Design Judgment

Design judgment and decision making involves reasoning, but other psychological
elements such as motivation and cognitive limitation also influence reasoning activi-
ties. Software architecture design methodologies typically assume that software de-
signers reason rationally. That is, if a process or a standard is followed and rationale
is provided, the quality of the rationale is not questioned [12, 13]. Several studies,
however, have found that software designers behave opportunistically [14, 15]. These
studies show software designers do not use systematic reasoning to arrive at a design.
In this study, we explore software design reasoning from different perspectives:

• How much reasoning do designers give before making design judgments? Why?
• Do professionals and students reason differently?
• What are the characteristics of designers’ reasoning behavior?

To study these aspects of design decision making, we prepared vignettes, or scena-
rios, to describe software system scenarios. Reasoning with scenarios is one of the
things that software designers do, and more so for software architects. Software de-
signers and architects are often presented with functional and quality requirements,
use cases, system goals and other information. From this information, they have to
explore the problem space, reason with the situations and synthesize solutions [16].
In this study, each scenario describes a software system, its requirements and context

 Software Designers Satisfice 107

at a high level. A conclusion is provided to allow the participants to reason with the
scenario. The conclusion is worded in a controversial way to provoke reasoning and
argument. For example, in one scenario (scenario 5), we described a proposed smart-
card ticketing system to be built in Pakistan. We provided a controversial conclusion
that says: “It is viable to implement this system in Pakistan”. The participants were
asked to do two things. First, they were asked to provide written reasons for disagree-
ing or agreeing with the given conclusion. The controversial conclusions were worded
such that many reasons can be found to object them. The number of reasons, the na-
ture of the reasons and the judgments given by the participants on software design
scenarios allowed us to study how a participant uses reasoning and make judgments
with software scenarios.

Second, the participants were asked to indicate their level of agreement with the con-
clusion. A seven-point Likert-like scale was used to indicate their level of agreement. As
the conclusions are controversial and deliberately contain many arguments against them,
the experiment setup allows us to examine the relationships between reasoning and disa-
greement conviction. We expected issues to be found in each scenario, and we wanted to
observe what reasons the participants would give. The data also allowed us to analyse
the given reasons, and relate them with their judgments, i.e. the level of disagreement.
An online survey tool was used to gather the data.

2.1 Research Approach

In this research, we provided design scenarios as stimuli to gather designers’ res-
ponses. The use of vignette to do this kind of study is a valid approach in the fields of
social and cognitive psychology [17]. For our research goals, this research approach is
appropriate as it would allow us to measure reasoning responses of participants using
the same stimuli that are relevant to software architecture design.

 In the experiment, we asked our participants to write down those reasons, to simu-
late the process stipulated by many rational design methods where designers are
required to provide design rationale. We collected the data and encoded all unique
reasons given. We counted those reasons and performed statistical analysis. We first
tested if professionals would produce more reasons to support their design judgments
than students. Second, we investigated their design judgements to compare how much
disagreement they had with the conclusions. Third, we used a questionnaire to find out
how some of our professionals carried out the exercises.

We did two rounds of study, with 61 participants in the first round comprising 32
students and 29 professionals. They were asked to do the exercises only. In the second
round, the 11 participants had to do the exercises and then they were questioned about
the process of their reasoning as well. When analysing the data from both rounds, we
took a constructivist approach [12] in which we interpreted the data collected to build
a theory of how software designers reason.

108 A. Tang and H. van Vliet

2.2 Scenario Preparation

We developed ten scenarios based on some actual system development cases. We
worded the scenarios to allow issues to be embedded within the scenarios. Due to the
controversial conclusions, we anticipated that there would be many reasons to chal-
lenge the conclusions, especially in complex cases. We wanted to discover what rea-
sons the participants would find. We devised the scenarios such that possible reasons
would be typical of the types of issues identified by Meyer [8]. For each scenario,
there is a vignette that describes the scenario. A conclusion is given to stipulate rea-
soning and argumentation. The participants were asked to judge the conclusions and
give reasons/issues for why they (dis)agree. Ten scenarios were developed and six of
them were chosen to be used in the study. From these six scenarios, two were consi-
dered common (scenario 1 and 10) in that it was possible that the professionals had
had a chance to encounter them in the work place; the other four scenarios (scenario
5, 6, 7 and 9) were complex and uncommon in that few people would have had the
chance to work with such systems. This means that it is highly likely that these scena-
rios were new, in terms of making design judgment, to most participants. Uncommon
and complex scenarios mean that the participants had to carefully question the
scenarios [14].

We used an online survey to show the vignettes and the conclusions. The online
survey tool gathered the reasons and the level of agreement given. There was no time
limit on how long the participants could take to complete the online survey.

2.3 Pilot Testing

We invited four people to participate in our trials. They were given all ten scenarios.
We found ambiguous wording in some scenarios and they were rectified. Out of the
ten scenarios, we chose six scenarios for the actual study because we found that these
six scenarios already contained all the different types of issues that we might find, and
the pilot participants were able to identify them.

2.4 Participants’ Demographics

We invited students and software professionals to participate. The first group con-
tained 32 second year Bachelor Computer Science students from the Web-systems
Project at VU University Amsterdam. There were 40 software professional partici-
pants, 29 in the first round and 11 in the second round. We used availability and
snowballing sampling methods to recruit them. Many of the industry participants
were either known to the researchers through work-related contacts or were col-
leagues of software developers known to the researchers. There were 6 architects, 1
academic, 16 software engineers and designers, 6 in IT and software management, 4
analysts, 6 consultants and 1 Database Administrator. This group of software profes-
sionals had an average industry experience of 16 years.

 Software Designers Satisfice 109

2.5 Data Gathering

We analysed the reasons given by the participants and identified unique reasons in
each scenario to count them. We call this collection of reasons for each scenario a
normative set of reasons. These reasons were typically assumptions, constraints and
risks stated to argue against the conclusions. Analogies were also used to reason for or
against a conclusion. We call them For-Analogy and Against-Analogy. In the second
round, we used a questionnaire to get more information from the participants after
they had completed the exercise. The purpose hereof was to find out how they rea-
soned and when they stopped reasoning.

3 Results and Analysis

3.1 Limited Amount of Reasoning by Students and Professionals

First, we analyzed the total number of issues provided for all six scenarios. Students
on average found 6.56 issues for all 6 cases taken together, and professionals found
7.55 issues for the 6 cases. We performed an independent sample t-test to compare the
mean issues found between the two groups and the results showed insignificant differ-
ence. In conclusion, professionals on average did not provide more reasons than stu-
dents when they made their design judgments.

Second, the number of issues given by both the students and the professionals in
each scenario were low as compared with the normative set. The number of issues
given, as a percentage of the normative set, was between 9% to 13% in complex sce-
narios, and about 18% for scenario 10, and 30% (students) and 40% (professionals) in
scenario 1. Scenario 1 has only two issues in the normative set. In most cases, al-
though many reasons could have been given, only a small number of reasons were.

Third, participants found different reasons. Some participants said that they found
the important reasons and stopped. However, there are many other valid reasons and
it is somewhat subjective and arbitrary to argue that some reasons are more important
than others. Let us examine the possible reasons for Scenario 5 (see vignettes and
normative set of reasons1). In Scenario 5, the vignette is “A new contactless smart-
card system is designed to be used in the public transport in Pakistan. Each traveller
would need to pay a deposit to obtain a personalized smart-card. Each card costs
US$4.50. With the smart-card, a passenger can travel on all public transport system
such as bus, train and mini-bus throughout the country. The smart-card can be re-
loaded at ATM machines or over the counter at a bank. This system will replace all
cash tickets in 18 month”. The conclusion suggests that “It is viable to implement this
system in Pakistan”. Issue 1 challenges the affordability of a travel card in a poor
country. Issue 1 was found by 6 students and 13 professionals. Issue 2 challenges the
viability of building the infrastructure. Identification of this issue requires system
construction experience. It was found by 2 students and 12 professionals. Issue 6

1 http://www.ict.swin.edu.au/personal/atang/documents/Design%20Reasoning%20Experiment-

V1.5.pdf

110 A. Tang and H. van V

states the limitation of the p
was found by 11 students
found these three popular i
for the researchers to say w
we see that all the issues are

Fig. 1. Average Number of Re
with the Total Number of Nom

If these are valid issues
them before making their j
and as a percentage of the n
fessionals. Both students an
for the simpler Case 1. A
cognitive efforts [18]. The
and they decided that these
is an indication of their sa
they stopped reasoning (see

Table 1. Average Re

 All Cases

Normative Set of

Reasons

51

Students Average

Reasons

6.56

(12.8%)

Professional Average

Reasons

7.55

(14.8%)

Vliet

people having access to bank accounts and ATMs. Issu
s and 15 professionals. Many students and professio
ssues. Other issues were not commonly cited. It is diffi

which issue is more important. However, using this exam
e equally valid but participants found different ones.

easons Identified by Student and Professional Groups Compa
minal Reasons

s, why did most participants not continue to find more
judgments? Table 1 shows the average number of reas
normative set of reasons found by the students and the p
nd professionals found only a fraction of the issues exc
viable explanation was that they had been using the l
se professionals, and all the students, found some reas

e reasons were good enough to make their judgments. T
atisficing behavior. We verified this result by asking w
e Section 3.4).

easons Identified and As A Proportion of Normative Set

s Case 1 Case 5 Case 6 Case 7 Case 9 Case

2 12 13 11 8 5

0.59

(29.6%)

1.46

(12.2%)

1.5

(11.5%)

1.37

(12.5%)

0.71

(8.9%)

0.9

(18.1%

0.8 (40%) 1.86

(15.4%)

1.52

(11.7%)

1.47

(13.4%)

1.05

(13.1%)

0.85

(17%)

ue 6
nals
icult

mple,

ared

e of
sons
pro-
cept
least
sons
This
why

10

%)

)

 Software Designers Satisfice 111

3.2 Judgment Conviction

We expected that professionals having more experience than students would have
been more convicted about their disagreement. This is because they could see the
many issues in the given conclusions. Instead, the professionals did not totally object
the conclusions. They objected to the conclusions in three cases and they were not
totally convicted to the disagreement (see Table 2).

The two groups had very similar level of agreement in all scenarios. We performed
a non-parametric test of significance on the median of agreement between the two
groups and found no statistical difference between them in any of the cases. As dis-
cussed earlier, the level of agreement and the number of reasons of both groups in
each of the cases shows no statistical difference. Thus, the two groups judge these
cases in the same way. They found similar number of reasons to support their deci-
sions and made similar judgments.

Table 2. Median Level of Agreement

3.3 Amount of Time Spent on Reasoning

We tested the difference in time spent between students and professionals using Inde-
pendent Sample t-Test. We found that there is no significant difference in the time
spent by the students and the professionals in any of the cases (see Table 3).

Table 3. Average Time Spent by Subjects

Almost all of the participants did not have hands-on experience with any of the

scenarios. This precludes the chance that someone could reason with the scenarios
based on intimate working domain knowledge. Despite the lack of domain knowledge,
participants only spent a small amount of time on reasoning and judging. This could
mean that reasoning is a function of time. After our participants spent a certain amount
of time which they consider as enough and found what they thought were reasonable
reasons to judge, they stopped.

3.4 Questionnaire Results

Following the first round of experiments, we found that professionals reasoned simi-
larly to students. They stopped reasoning after finding few reasons. They had similar

 Case 1 Case 5 Case 6 Case 7 Case 9 Case 10

Students : Median Level Agrmnt 4.0 2.0 2.0 4.0 5.0 5.0

Professionals: Median Level Agrmnt 2.0 2.0 2.0 5.0 4.5 5.0

 Case 1 Case 5 Case 6 Case 7 Case 9 Case 10

Students Avg Time 4.68m 4.87m 5.03m 4.43m 4.68m 4.68m

Professionals Avg Time 4.23m 4.23m 4.41m 3.70m 4.46m 3.84m

112 A. Tang and H. van Vliet

judgments with the students and the judgments were non-convicting despite that more
reasons could have been found. The professionals also spent a similar amount of time
as the students. In order to understand these phenomena, we invited more profession-
als to participate in this experiment in the second round. In addition to the design rea-
soning exercises, these professionals had to answer some questions afterwards. In the
questionnaire, we asked them if they had an urge to complete the task quickly.
The median in a 7-point Likert scale is 5, indicating a tendency wanting to complete
the task quickly. We asked the professionals if they wanted to complete the task tho-
roughly. The median in a 7-point Likert scale is 5.5, meaning they wanted to do a
thorough job.

We checked if any of the professionals had hands-on experienced in the domain in
any of the cases. There was only one developer who did some work with Case 10.
There were no domain familiarities with any of the other cases by any professionals.
This helps to reduce the risk that hands-on development experience and prior domain
knowledge might have biased the results in that judgments are based on prior know-
ledge rather than explicit reasoning. We asked the professionals to estimate the num-
ber of possible reasons for each case. The results were mixed. For professionals who
had guessed that there are more reasons, why did they not find more of them? The
following are some of the answers they gave.

• “I stopped when I found the main reasons. I did not need to find more reasons.”
• “I drew a line at the time I spent in each case.”
• “Gut feeling, based on experience and projects I have seen.”

We asked the professionals if they were to find more reasons, would they have
been more disagreeable with the conclusions. The following are the answers
they gave.

• “YES. I would need to do more analysis. If I did, I would come up with more
reasons. But when I saw a red flag, that was enough for me to disagree.”

• “POTENTIALLY YES. If I spent more time, I would come up with more in-
formation to argue against the conclusion.”

• “YES. I would have gone into more depth. The reasons I gave were important.”
• “YES. To explore more techniques and to measure their feasibility according to

risk and trade-offs.”

These answers basically show that (a) the professionals knew that they could have
found more reasons; (b) they stopped because there is no need; (c) they said they
would have been more disagreeable had they found more reasons.

4 Satisficing Behavior

Software design is said to be a wicked problem [19] because it is complex and the
situations that a designer faces are often new and unfamiliar. In a complex environ-
ment, the solutions, the problems and the reasoning behind them are not obvious. We

 Software Designers Satisfice 113

designed the scenarios to be complex and so they require careful reasoning. The re-
sults of this study show that (a) students and professionals provided few reasons be-
fore judging; (b) students and professionals spent a similar amount of time before
judging; (c) the level of agreement of students and professionals on the conclusions
was similar and their judgments were non-convicting; (d) some professionals said that
they could have found more reasons but they stopped because they thought it was
enough. Given these results, we examined a number of theories to explain our results.

4.1 Explaining the Results

First, designers might behave in an opportunistic way when designing [15]. Instead of
analysing a design systematically and thoroughly, they use information that is readily
available. This behavior could be due to the limited cognitive capacity of designers to
process all requirements and design information simultaneously, but there is no extra
information from our study to support the theory of cognitive overload. Comments by
some participants partially supported the opportunistic behavior, like “solution that
pops up in the mind”.

Second, psychologists have suggested two modes of thinking: System 1 and Sys-
tem 2. System 1 operates automatically and quickly with little effort. System 2 allo-
cates attention and effortful mental activities. In one experiment, it was shown that
more than 50% of Harvard, MIT and Princeton students used intuitive thinking to
solve a problem but they gave the wrong answer [20]. Other studies have shown that
as people become more skilled in a certain task, the mental efforts they spend on that
task are reduced. The Law of Least Effort asserts that people will gravitate to the least
demanding course to accomplish the same goals. This law applies to cognitive efforts
as well, it shows that people are inclined to use less of System 2, even in a situation
that demands analysis [18]. In our experiment, we cannot show which system our
participants used. But there were hints, based on the comments made by our partici-
pants, that participants engaged in both intuition (System 1 thinking) and effortful
analysis (System 2 thinking).

Klein suggests “we need to blend systematic analysis and intuition. Neither gives
us a direct path to the truth. Each has its limitations” [20]. Hammond suggests that
judgments is an exercise to cope with uncertainty [21], and if judgment is a rivalry
between intuition and analysis, then if a person’s uncertainty is somewhat satisfied, by
intuition or by analysis or both, the cognitive process stops and a judgment is made.
Zannier et al. found a similar blend of Rational Decision Making (RDM) and Natura-
listic Decision Making (NDM) when studying software designers [14]. These two
theories point to the same decision making process: intuition vs. analysis. Our partici-
pants told us that they did some analysis, but they also used their intuition.

Third, Simon suggested that it is not possible to find an optimal solution. Instead,
designers design systems incrementally and if a design appears to work, that design is
selected and a designer moves on. Therefore, designers do not maximise or optimise a
design. S/he chooses a good enough design. Simon suggested that maximisation is
untenable and should be replaced by the idea of satisficing. That is, we cannot have a
perfect solution, but instead we have a good enough solution [8, 9].

114 A. Tang and H. van Vliet

Finding as many reasons as one can achieve is maximization or optimization be-
havior. Our participants clearly opted to find just-enough reasons before judging. Al-
though there is enough evidence to demonstrate designers are satisficed with their
judgments, we do not know why satisfaction occurred, whether it was due to using
System 1 thinking, or a laziness in System 2 thinking, or bounded rationality, or cog-
nitive overloading. With the establishment of the satisficing behavior of software de-
signers and software architects, we examine its implications on software architecting.

4.2 Satisficing in Software Architecture Design

Using the results that we gathered, we triangulate the evidence to conclude that soft-
ware designers use satisficing when making decisions. We summarise our arguments
below and discuss their implications:

Student and Professionals Satisfice to the Same Degree. There is no statistically
significant difference to how much students or professionals reason or when they stop
finding more reasons. This shows that, irrespective of experience, software designers
are satisficed at similar points. Implications: As satisficing is a natural thing for most
software designers, it is important to recognize such and train software architects and
designers to investigate a problem deeper when dealing with complex issues.

Satisficing and Time Bounded Decision Making. All professionals who participated
in the second round said they had an urge to complete the tasks quickly, even though
they wanted to do a thorough analysis. We don’t know where that urge to complete
the tasks came from. A number of these professionals commented that they could
have spent more time but they did not. Implications: This result seems to indicate that
satisficing behavior and time bounded decision making are intertwined. Judgments
are made quickly because of finding good-enough reasons or a designer has judged
that enough time has been spent. Ward interprets satisficing as “choosing among a
subset of behavior when information processing or time constraints limit the ability of
a decision maker to make an optimal decision” [22]. There is no explicit time con-
straint in the experiment, but the designers implicitly considered time as a factor.
Time is shown to be a cost factor in the study of purchasing behavior [23]. As such,
time is like cost, it is spent in order to gain something. In software decision making,
the perception of how much time spent on a problem becomes a cost function that is a
trade-off with the potential gains of spending that time.

Satisficed Reasoning. Many issues had been identified in the normative set of issues
in the experimental scenarios. However, most participants typically found few of them
before judging. Out of the 51 unique issues identified for all 6 scenarios, students
found an average of 6.5 and professionals found an average of 7.5 issues. Some partic-
ipants commented they had found the main reasons and so they stopped, and yet they
were not convicted to their judgments. This seems to indicate they knew they did not
have all the reasons to make judgments but they thought that it was good-enough.
Implications: The potential issue of such satisficing behavior is that the resulting
judgments based on partial reasoning may be incomplete and flawed. As software

 Software Designers Satisfice 115

designers often face new and unfamiliar situations, like the scenarios provided in the
experiments, and if these situations require careful analysis in order to consider the
many intricate and interrelated scenarios and requirements, then the reasoning before
judgment is inadequate. If the result of this study is a general reflection of the way
software designers make decisions, then there is a potential software design thinking
issue to consider. Satisficing may work fine when a designer is experienced and famil-
iar with the domain, but it may be risky in complex and unfamiliar design situations
that require thorough analysis [24]. The question is how we may recognize satisficing,
and that it may be causing design risks?

5 Non-Satisficing Professionals

In the student group, the number of issues found was evenly distributed, and there
were no outliers (see Figure 2). However, in the professional group, we discovered a
sub-group of 4 professionals who reasoned differently. These are the outliers who
appear not to use satisficing judgments. We contrast these non-satisficing profession-
als with satisficing software designers by comparing the following evidence: number
of reasons given, judgment conviction, time spent and the use of analogy. The exis-
tence of this group of designers is a contrast to the satisficing designers, and the ways
they differ help to characterize satisficing behaviors.

5.1 Non-Satisficing Professionals Reason More

Non-satisficing professionals cited many more reasons than the other two groups.
They found almost double the number of reasons. They also considered a broader
context of the design situations to challenge the given conclusions. The reasons that
these professionals identified were not very obvious and they could not have been
found without careful thinking. They were also more thorough in their analysis.

As shown in Fig. 2, the average number of reasons this non-satisficing group iden-
tified is double that of the student group and the rest of the professionals. We ran an
independent samples Kruskal-Wallis test to compare the number of reasons found
between the three groups. We found that the non-satisficing group found significantly
more reasons than the other groups (p=0.004).

We further analysed these four professionals in the non-satisficing group for each
of the six scenarios, and found that they were clearly outliers in every scenario. In
each scenario, the average number of reasons they found was typically double that of
the students and the other professionals. This result highlighted that they reason dif-
ferent from the rest of their peers and the students. We found statistical significant
difference between this group and all the other participants. However, with such a
small number, the power of the statistical tests is limited.

116 A. Tang and H. van Vliet

Fig. 2. Reasons Identification by Non-Satisficing Group (N), Satisficing Professional Group (P)
and Student Group (S)

5.2 Non-Satisficing Professionals Use Less Analogy

Examining the reasons given by the participants, we noticed that analogies were often
used to support or refute the conclusions. Typical arguments were “XXX is successful,
so it should also be applicable to YYY”. But often software design is situated within
particular contexts [25], so analogy as an argument would work only when the situa-
tions of the cases are very similar.

Analogies are patterns that are used to simplify learning [26]. It is an intuitive way
to allow matching solutions to problems that are similar. The use of analogies by stu-
dents and some professionals suggest that intuitions were used in their design thinking
style. Non-satisficing professionals appeared to use far fewer analogies than the other
two groups. Table 4 summarizes the number of reasons by analogies given by the
three groups. The number in each cell indicates (a) the number of analogies given; and
(b) the average number of analogies (within brackets) given by the participants in a
group. Let us examine a couple of example analogies found by the participants in
Case 5: “There are some good examples of smart-card systems implemented in other
countries' public transport. I don't see why there should be any more difficulties in a
country such as Pakistan.” and “The description of the system is very similar to Lon-
don's Oyster card. However, Pakistan's economy is less developed than that of Great
Britain. It is very likely that equipment will fail to work after a while and so travellers
will be forced to find ways to circumvent the ticket barriers.”

The analogies given were somewhat relevant to the reasoning and argument of the
Pakistani situation. However, one could point out many differences between Pakistan,
London and The Netherlands. If we examine them we see they are not very good rea-
sons. Non-satisficing professionals hardly used analogy in their argumentation. When
they used analogy, they gave reasons to support them. On the other hand, the other
two groups used more analogies on average in 4 different scenarios. Many were not
substantiated by sound arguments. The use of unsupported analogy is a characteristic
of satisficing reasoning.

 Software Designers Satisfice 117

Table 4. Analogies per Participant (analogy counts and averages within brackets)

 Case 5 Case 7 Case 9 Case 10

Students 12 (0.375) 8 (0.25) 1 (0.03) 1 (0.03)

Satisficing Professionals 6 (0.24) 7 (0.28) 0 (0) 2 (0.08)

Non-Satisficing Professionals 2 (0.25) 0 (0) 0 (0) 0 (0)

5.3 Non-Satisficing Professionals are More Convicted to their Judgments
and Spend More Time Reasoning

We note that the non-satisficing professionals are more convicted to their judgment.
This contrasts with the average results reported in Table 2. We argue that non-
satisficing professionals disagreed more because they found more reasons to support
their arguments and refuted the conclusions. They were also more confident with their
judgments. Dörner studied the habits of good and bad decision makers. One observa-
tion he made was that a good decision maker asks many why questions to explore
reasons, challenges the assumptions, and poses different scenarios [27]. Non-
satisficing professionals have these traits as well. They identified more issues and
were more certain of their judgments.

The non-satisficing professionals spent significantly more time than the other pro-
fessionals (Table 5). The cost of time did not appear to affect them as they focused on
the reasoning tasks. In every case, they spent more time and found more reasons to
support their judgment conviction.

Table 5. Average Time Spent by Professionals

 Case 1 Case 5 Case 6 Case 7 Case 9 Case 10

Satisficing Professionals 3.87m 3.76m 4.07m 3.44m 4.21m 3.64m

Non-Satisficing Professionals 6.75m 7.5m 6.75m 5.5m 6.25m 5.25m

6 Threats to Validity

There are a number of limitations in our study. One might argue that, in a real-life
situation, one would do more reasoning but many of the professionals we surveyed
after the experiment said that they stopped because they felt that there were enough
reasons to convince them (Section 3.4). The results obtained here could reflect how
these participants reason and judge.

Second, one potential construct validity issue is that the participants might not
want to spend a lot of time to work on the scenarios, and inadvertently limited the
amount of reasons given. However, many professionals indicated they stopped be-
cause they felt they had identified enough reasons, and did not say that they ran out of
time.

Third, this experiment had a limited number of scenarios. The scenarios are short
and the participants knew that they were dealing with an experiment albeit that they
did not know its purpose. This is potentially a construct validity issue and limits our

118 A. Tang and H. van Vliet

ability to generalize the results. We only conducted the survey with the second round
of 11 participants, the number of responses was limited and as such it limits what we
can generalize from these responses. Fourth, the way vignette is used in this study is
similar to how information is communicated with software designers although in real-
life there are often opportunities for further questioning, and other environmental fac-
tors such as time-allowance and presence of expertise that may influence designer
reasoning behavior. As such, we cannot claim general representativeness.

Finally, we interpret the experimental results using the theory of satisficing. In the
experimental construct and the interpretation of the results, we assume that (a) the
kind of reasoning embedded in the scenarios are close to real-life; (b) there is little
familiarity of our participants with the domains; (c) our participants are motivated to
provide us good information. In these regards, the evidence that we gathered appear to
be consistent based on the results that we collected: the reasons given, the judgments
and the time-spent. The comments made by the second round of professionals clearly
point to satisficing behavior. We found an outlier group, and use their behavior to
contrast the behavior exhibited by the student group and most of the professionals.

7 Conclusions

In this work, we study how much reasoning designers do when they are asked to pro-
vide design rationale in different design scenarios. We asked designers to provide
design reasons before making design judgements. We had 72 participants in our expe-
riment. We provided six scenarios for them to reason with. The results show that most
students and professionals provided few reasons before they make a judgment. Their
judgments were non-convicting, i.e. they did not totally disagree with the conclusions.
They told us that when they found enough reasons, they stopped looking for more
reasons and made their judgments. This result shows general satisficing behavior in
design reasoning. A small portion of professionals are non-satisficing designers. We
identify three characteristics that contrast with the behaviour of satisficing designers:
(a) these professionals seldom used analogy; (b) they provided twice as many reasons
than the others before judging; (c) when they judged, they were more convicted to
their judgments and willing to spend more time to reason before judging.

This study has shown that software designers and architects use satisficing in judg-
ing design scenarios. If this practice is representative of the everyday practice of soft-
ware architecting, then it has significant implications. The software architecture com-
munity generally assumes that the presence of rationale is good enough to improve
design quality. This study shows that designers only provide a fraction of design ra-
tionale. The amount of reasoning and the level of their satisficing could impact on the
quality of design decisions, especially in unfamiliar design situations [24]. In a differ-
ent situation, satisficing could work if the design complexity is low. As such, it is
important to recognize satisficing behavior and its potential risks to design quality.
Potential solutions to address the issue of premature satisficing lie in the recognition
of this human behavior during design. Reflective design thinking [28], better design
time management, reasoning techniques [29], architecture design and analysis

 Software Designers Satisfice 119

techniques that include recognition and critical appraisal of satisficing behavior, de-
biasing [30] and managing design complexities [24] are some of the related approach-
es that could improve software design practice, and all of them need further explora-
tion.

Acknowledgments. We thank Patricia Lago for her initial contribution to this work. We thank
Alice Yip for encoding the data. We also thank our participants.

References

1. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Commun. ACM 31, 1268–1287 (1988)

2. Schön, D.A.: The reflective practitioner : how professionals think in action. Basic Books,
Nueva York (1983)

3. Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P.: The value of design ratio-
nale information. ACM Transactions on Software Engineering and Methodology
(TOSEM) 22, 21 (2013)

4. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In:
Proceedings 5th IEEE/IFIP Working Conference on Software Architecture, pp. 109−120
(2005)

5. Dutoit, A., McCall, R., Mistrik, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer (2006)

6. Tang, A., Barbar, M.A., Gorton, I., Han, J.: A Survey of Architecture Design Rationale.
Swinburne University of Technology (2005)

7. Petre, M., Van Der Hoek, A. (eds.): Software Designers in Action: A Human-Centric Look
at Design Work. CRC Press (2013)

8. Simon, H.A.: The Sciences of the Artificial. The MIT Press (1996)
9. Simon, H.A.: Satisficing. The New Palgrave: a Dictionary of Economics 4, 243–245

(1987)
10. Meyer, B.: On Formalism in Specifications. IEEE Software 2, 6–26 (1985)
11. Tang, A., Lau, M.F.: Software architecture review by association. Journal of Systems and

Software 88, 87–101 (2014)
12. Perry, D.E., Wolf, A.L.: Foundation for the Study of Software Architecture. ACM

SIGSOFT Software Engineering Notes 17, 40–52 (1992)
13. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2010 Systems and software engineering - Architecture

description, March 2010
14. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on em-

pirical results of interviews with software designers. Information and Software Technology
49, 637–653 (2007)

15. Guindon, R.: Designing the design process: exploiting opportunistic thoughts. Hum.-
Comput. Interact. 5, 305–344 (1990)

16. Kruchten, P.: What do software architects really do? Journal of Systems and Software 81,
2413–2416 (2008)

17. Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice.
Science 211, 453–458 (1981)

18. Kahneman, D.: Thinking, fast and slow. Penguin (2011)
19. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sciences

4, 155–169 (1973)

120 A. Tang and H. van Vliet

20. Klein, G.: Streetlights and shadows: Searching for the keys to adaptive decision making.
The MIT Press (2009)

21. Hammond, K.R.: Human judgement and social policy: Irreducible uncertainty, inevitable
error, unavoidable injustice. Oxford University Press (1996)

22. Ward, D.: The role of satisficing in foraging theory. Oikos 63, 312–317 (1992)
23. Fasolo, B., Carmeci, F.A., Misuraca, R.: The effect of choice complexity on perception of

time spent choosing: When choice takes longer but feels shorter. Psychology & Marketing
26, 213–228 (2009)

24. Tang, A., van Vliet, H.: Design Strategy and Software Design Effectiveness. IEEE
Software 29, 51–55 (2012)

25. Gero, J.S., Kannengiesser, U.: The situated function–behaviour–structure framework.
Design Studies 25, 373–391 (2004)

26. Clement, J.: Using bridging analogies and anchoring intuitions to deal with students’ pre-
conceptions in physics. Journal of Research in Science Teaching 30, 1241–1257 (1993)

27. Dörner, D.: The Logic Of Failure: Recognizing And Avoiding Error In Complex Situa-
tions. Basic Books (1996)

28. Babb, J., Hoda, R., Norbjerg, J.: Embedding Reflection and Learning into Agile Software
Development (2014)

29. Tang, A., Lago, P.: Notes on Design Reasoning Techniques (V1.4). Swinburne University
of Technology (2010)

30. Kahneman, D., Lovallo, D., Sibony, O.: Before you make that big decision. Harvard Busi-
ness Review 89, 50–60 (2011)

Opening the Ecosystem Flood Gates:
Architecture Challenges of Opening Interfaces

Within a Product Portfolio

Slinger Jansen(B)

Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
slinger.jansen@uu.nl

Abstract. Technology firms are increasingly opening up their products
to develop an active ecosystem of developing partners around it. Both
opening up products and organizing a developer ecosystem around an
organization are non-trivial. In this paper we provide a case study of
a leading communications technology firm that opened up and plat-
formized 11 product lines. First, we identify and describe four archi-
tecture patterns that are applied multiple times across these product
lines. Also, the software ecosystems initiative is centralized in one central
department, which has created a central knowledge hub for the creation
of a software ecosystem. We highlight the guidelines collected by the cen-
tral department, to assist technology firms in the platformization process
and support them in their own software ecosystem creation efforts.

Keywords: Software platforms · Software ecosystems · APIs · Case
study · Extendible product lines · Extension patterns

1 Introduction

The creation of partner and developer ecosystems around IT companies is gain-
ing interest rapidly. IT companies observe the successes that can be achieved
with app stores, hackathons, open source developer communities, and other ini-
tiatives that drive software ecosystems. The creation of an ecosystem around a
traditional IT product, however, is far from trivial and IT companies are looking
for approaches to open up their products and have them adopted by communi-
ties of active developers who wish to co-innovate and share in the wealth created
by the products and its auxiliary materials.

IT companies aim to create active developer communities and ecosystems
around their products. We define developer ecosystems as a set of software
developers functioning as a unit and interacting with a shared market for soft-
ware artefacts. We ask the reader to observe the parallels between the definition
on developer ecosystems and the definition on software ecosystems: a software
ecosystem is a set of actors functioning as a unit and interacting with a shared
market for software and services, together with the relationships among them [7].

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 121–136, 2015.
DOI: 10.1007/978-3-319-23727-5 10

122 S. Jansen

We also state that the term (open source) developer ecosystem is a synonym for
(open source) developer community [2].

The research domain of software ecosystems is still in its infancy [10].
Researchers and IT companies are curious about new theories, methods, and
techniques for the initiation, development, and grooming of software ecosystems.
As such, there is an urgent need for examples and case studies that exemplify
excellent practices, for theory formation and for teaching practitioners lessons.

Large IT companies are currently launching and running developer ecosys-
tems. The challenges for a large IT company compared to a web start-up, how-
ever, are much larger, as large IT firms typically have many products organized
in product lines, whereas a small web start-up will only have one or two domain
APIs that need to be opened up. From this crucial difference, many new chal-
lenges arise. First, a small web start-up will start with a blank slate, whereas
a large IT company has different product lines that may already be involved in
supporting a software ecosystem of its own, with varying success and stages of
maturity. Furthermore, due to the large range of different technologies that are
adopted by a large IT firm over time, different entry points are required for each
product, different types of participants are active in the ecosystem, and different
business models need to be applied over those different products.

In this paper a case study is presented of an IT firm with a large product
portfolio that with one initiative is hoping to open up ecosystems around a large
set of its products. The lessons provided stem mostly from the software archi-
tecture domain: we illustrate how a product portfolio can be opened up using
a generic platformization approach. Enabling an ecosystem requires a level of
openness for a platform: without any extension mechanisms for third parties it
is practically impossible for a software ecosystem to exist [1,6]. The openness
level of a software platform is also a powerful tool for platform owners, as their
choices determine the flexibility and extendibility of the platform, and subse-
quently of the ecosystem. A platform that is too open runs the risk of giving
away its competitive uniqueness for free, whereas a platform that is too closed
risks not being interesting enough for platform extenders in the ecosystem. The
platformization approach is explained using four architectural extension patterns
that were applied 21 times across 21 products.

We continue this paper with a description of the case study and the use
of grounded theory for explorative research in Section 2. In Section 3 the case
of NetComp is described. A detailed description is provided of the implementa-
tion of the software ecosystems initiative at NetComp: the managerial approach,
the technical approach, and the developer ecosystem approach are discussed. In
Section 4, four product extension patterns are described and details are provided
of the historical background of the technologies provided at NetComp and on
how the patterns were influenced by technological and strategical advancement
of NetComp. To illustrate the observed patterns, NetComp’s Telepresence prod-
uct line is used to illustrate the observed patterns in Section 5. In Sections 6
and 7 we analyze the efforts at NetComp and identify the challenges of under-
taking such an initiative: both from the architecture and managerial perspective.

Opening the Ecosystem Flood Gates 123

Finally, we summarize our findings in Section 8 and hint towards a catalog of
extensibility patterns that describes the different methods that can be used to
extend a software product into a platform.

2 Case Study Method

Context: The context of the case study is NetComp (company and depart-
ment names anonymized), a relatively young international firm that produces
hardware and software products for enterprise and carrier communications. The
firm has around 200,000 employees and is growing rapidly. The company has a
worldwide presence.

Case Study Type: The case study can be seen as a participant case: the first
author has worked alongside the FloodGate Department, a department that is
burdened with the ecosystem initiative of the company. The main responsibility
of the FloodGate Department is to expose current products to the developer
ecosystem of NetComp and to build out the developer ecosystem. Please note
that alongside the FloodGate Department are more commercial departments
oriented around partnering, business models, etc. The FloodGate Department
mostly deals with technical issues, development documentation, and the devel-
oper ecosystem. Please also note that the researcher was not involved in any of
the decisions described in this paper, as his work focused more on the growth
and grooming of the developer ecosystem.

Unit of Analysis: The units of analysis for this study are the architectures
and extension points for each of the products in the product lines. Furthermore,
the FloodGate Department and its responsibilities have been a unit of analysis
as well.

Method: The data about the products and architectures has been collected
through interactions with the FloodGate Department and in some cases through
direct interaction with the product units. Also, several interviews with extending
partners have taken place. The case study has been exploratory: multiple topics
for study have been extracted. The current report (i.e., this paper) is the first in
a set of reports. The methods followed were document study, interviews, inter-
actions through the in-company chat system, and frequent e-mail interaction.
The communication through digital channels helped solve translation issues. In
all of the interviews different translators were present. The interviews have been
recorded. Through inductive reasoning, topics have been extracted, highlighted,
and grouped, using a digital folder system. For the study at hand, document
study has been the main source of the material that is presented.

3 Case Report: Studying 11 Product Lines in NetComp

The starting point for this research has been the FloodGate Department. The
FloodGate Department is a horizontal department in NetComp that is respon-
sible for the ecosystem initiative of NetComp. The FloodGate Department was

124 S. Jansen

founded to create one unit within the company that is dedicated towards enabling
partners to extend the most successful products of NetComp. As NetComp has
a huge product portfolio, the unification of these efforts results in a knowledge
hub on the creation of extendible interfaces for software and hardware products.
The end goal of the FloodGate Department is to create welcoming and open
software ecosystems for partners to participate in.

The FloodGate Department has been built upon several loose initiatives
in the product lines to make their products extendible. The product lines for
unified communications, for instance, had been creating extendible products and
platforms for several years already. Currently, the FloodGate Department opens
up capabilities in 11 product lines, in more than 20 products. These product lines
have amassed between tens and hundreds of ISV and implementation partners
(i.e., extension builders) that are dependent on NetComp products for their
revenues.

As the FloodGate Department has executive backing, many product units
have found a strategic partner in the FloodGate department: their resources are
not influenced by one product’s success and they have the knowledge on how
to open up any kind of product. Some product lines were reluctant to support
the FloodGate initiative at first, but as time progresses, they too see that the
FloodGate Department plays an important and strategic role in enabling product
units to build their own partner network.

The FloodGate Components consist of the different software components that
are managed by the FloodGate Department. These components are FloodGate
servers, which are typically installed alongside NetComp products, extension
libraries (JARs and other SDKs), and controls (like OCX controls). Another
important concept in the case study are the FloodGate Labs, where partners can
remotely test their software against NetComp hardware. These labs are located
in one office building and contain hardware test set-ups that can be worked with
in a timesharing manner. The FloodGate Labs are described in Section 3.2.

3.1 Joining the FloodGate Initiative

The FloodGate Department supports eight programming platforms (.Net,
C(++), Java(script), Ruby, Delphi, JSP, PHP, and Python) and six operating
systems (iPhone, Android, Linux, OpenSuse, Windows, and Mac OS X). This
variation has mostly been evolutionary: as new product lines join the FloodGate
initiative they are bringing in new domain specific technologies. It is important
to note that in many cases the FloodGate Department does little more than
provide documentation and an open interface for the products. The responsi-
bility for the product and its interfaces remains with the product departments,
although in quite some cases the FloodGate Department has inherited the soft-
ware development of complex extension servers (more on this in Section 4).

NetComp supplies funding to both the product team and the FloodGate
Department for each new product that starts creating FloodGate Components.
There is no formal procedure for joining the FloodGate initiative, but the pro-
cess is based on common practices. The process consists of the following steps:

Opening the Ecosystem Flood Gates 125

(1) Assess suitability of the product, (2) design new architecture for the prod-
uct to enable an open extendible platform, (3) publish the products’ FloodGate
Components (typically an SDK). In the case of some strategic products, the
FloodGate Department has initiated the collaboration themselves. The organi-
zation does currently not evaluate the financial results of opening up parts of
products. The ecosystem initiative is strategic and is assumed to be useful for
the whole firm. As it is hard to predict whether some of the products are going
to be successful as platforms, NetComp mostly works on feedback from partners
and channel managers.

In a typical case, the FloodGate Department is approached by a product
unit first. They will explain their needs for extension, the (potential) size of
the partner network, and the efforts they think are required to open up their
products and platforms. The FloodGate Department assigns a project leader
to the product unit, who from then on is responsible for all contact with the
product unit. The project is started and an inventory is made of the efforts
required to open up the products. Ideally, the FloodGate Department deploys
their FloodGate server software next to the products and platforms and uses
this server as an abstraction layer between the product unit’s products and the
extensions built by partners. The FloodGate Department and the product unit
develop the capabilities in lock step: first the product is opened up further,
and then the FloodGate components (more on these later) are evolved. When
the software is considered ready for publication documentation is created on the
FloodGate ecosystem hub, a web site where partners are gathered and supported.

As the platform is adopted by partners new responsibilities are introduced.
The FloodGate Department remains responsible for the maintenance and devel-
opment of the extension software, its co-evolution with the products, and partner
support. The product units remain responsible for the development and mainte-
nance of the products and the support of partners from a commercial perspective.

The commercial departments of specific products are responsible for man-
aging partners. The FloodGate Department is responsible for solving technical
problems that partners face. Unfortunately, there is little to no sharing contact
data between the business departments and the FloodGate Department, which
leads to two separate databases with partners, i.e., those that collect incentives
from the business departments versus those that ask questions to the Flood-
Gate Department. Both the business departments and FloodGate Department
are calling for a unified partner management system. The responsibilities are
mapped out in Table 1.

The FloodGate Department is responsible for receiving extensibility and prod-
uct requests from partners. The project leaders in the FloodGate Department
forward the product related questions to the product units and implement the
extensibility requirements where possible. Product management is in the hands
of the product units. The FloodGate Department is responsible for opening up
the architecture, but the interfaces have typically been prepared by the product
departments. Interestingly, some of the product units are no longer independently

126 S. Jansen

Table 1. Responsibilities divided between product units versus the FloodGate Dept.

FloodGate Department Product Departments
Product management
Release planning One week after each product

release.
The product departments release
their versions independently.

Requirements engineering From the product departments and
partners.

From partners and end-customers.

Extendibility requirements From the product departments. From partners.
Software delivery Independently delivers compo-

nents.
Independently delivers products.

Development and Support
Architecture development Gives guidelines in regards to inter-

faces required.
Develop their own product based
architecture.

Error messages From the FloodGate Components. From the internal components.
Documentation About FloodGate Components. About the product.
Support To the product departments and to

partners.
To the partners (product related)
and customers.

FloodGate Labs Completely responsible. Helps FloodGate Dept. setting up
the products in the labs.

Business aspects
Partner management Developer community. Partner community.
Financial responsibility Centrally coordinated. Revenue based.

planning new features for their products, but involve a mixed team with members
from the FloodGate Department.

When a new version of a product is released, the FloodGate Department typ-
ically responds within one week with an update to the extensible components as
well. As the FloodGate Department is kept up to date of a product’s progress
and release schedule, they are developing the extensibility components parallel
to the product development. In many cases they FloodGate Department can
release on the same day as the product unit does. The FloodGate Department
is somewhat hard to manage because of this: as the product release schedules
are not coordinated, the FloodGate Department has different work loads at dif-
ferent times. The FloodGate Department and the product department organize
meetings between once and twice per month to coordinate new releases, new
development efforts, and ecosystem challenges.

3.2 FloodGate Labs

The ecosystem enablers that may be beneficial for one product are not beneficial
for another. For example, some of the products in NetComp, such as IP Cameras
and routing equipment, require access to test hardware. NetComp prides itself
for providing access to a large laboratory in the cloud, that can be approached
by partners at specific times (effectively timesharing the lab). Partners positively
evaluate this practice, as they do not need to procure expensive test setups for
their own development. NetComp leverages its own IP camera system to show
that the hardware controls being called from the lab actually have the desired
effect by pointing IP cameras at the hardware, such as servers, switches, and
ironically, IP cameras. Please see figure 1 for an example of a movable IP camera
that is used to monitor servers in the FloodGate Labs.

Opening the Ecosystem Flood Gates 127

Fig. 1. An IP camera is pointed at a piece of hardware to show API users that the
device status changed according to their calls. The IP camera can be moved to look at
other adjacent devices as well with simple controls.

For some of the software intensive systems this is not beneficial, however,
as it can be less cumbersome to just buy the required hardware or create a
virtualized test setup. Partners complain that many of the platforms in the
organization can be tested in a virtualized environment or through simulators
as well. NetComp is currently building such simulators, to make partners less
dependent on FloodGate Labs.

4 Product Extension Patterns

NetComp has always specialized in manufacturing hardware devices, such as
routers, switches, and IP cameras. As time progressed and the organization
became more mature, multiple abstraction layers have been required over the
devices. This can be found in, for instance, the telepresence system that has
an advanced management interface that can plan telepresence meetings across
a network of telepresence devices, or the abstract datacenter management layer
that can control several storage servers simultaneously. In NetComp four levels of
abstraction have been observed. The levels of abstraction are found in Figure 2.

– Server Level - NetComp has traditionally manufactured servers. The soft-
ware interfaces to those servers were always of concern, but as in the early
years many of the implementation projects were in fact done by NetComp,
these interfaces were usually in poor shape in terms of software quality.
As the market for software has become more commoditized, however, these
interfaces to servers have become better managed, higher quality, and acces-
sible by third parties through APIs.

– Server Management Level - As NetComp grew, there was an increasing
need for management infrastructures that controlled large numbers of device
servers, such as IP cameras, routers, and storage servers. These management

128 S. Jansen

infrastructures typically use existing protocols for controlling devices, such as
the Simple Network Management Protocol, and can interface with hardware
from other suppliers as well.

– Federated Servers Level - As NetComp started orienting towards more
advanced markets and specifically targeting larger enterprises, new require-
ments were introduced for telepresence, single sign-on, and device man-
agement. Whereas before it could focus on building the best IP camera,
it now has to focus on providing “the best” federated infrastructures for
heterogeneous hardware, both from NetComp and third party hardware
providers. NetComp currently provides several such federated infrastruc-
tures, for instance for unified communications, equipment dedicated to com-
munication in a specific communication bandwidth, and IP cameras. These
federated infrastructures typically consist of several software solutions on
different servers, but are conceptually unified into one coordinating server.

– Advanced UIs Level - At the highest level of abstraction, NetComp
enables mobile and other advanced interfaces to the federated infrastruc-
tures. This, for instance, enables the creation of NetComp applications for
Smart Cities, such as a mobile app that can control a set of federated IP
cameras or desktop apps that can control alarms across server federations.

Server A.1

FloodGate API

FloodGate API

Coordinating Server

Server A.2

FloodGate API

Mobile App

FloodGate SDK

Pattern A

Pattern B

Pattern D

FloodGate API
Federated

Coordination Server
Pattern C

FloodGate API

Coordinating Server

Server B.1

FloodGate APIServer
Level

Servers
Management
Level

Federated
Servers Level

Advanced UIs
Level

Fig. 2. Three extension patterns are found multiple times in the products of NetComp.
The patterns are applied multiple times across different products and product lines.

Figure 2 shows more than just the levels of product abstraction that Net-
Comp offers. It also models the four different extension patterns that are
employed by the FloodGate Department to open up NetComp’s products. In the

Opening the Ecosystem Flood Gates 129

following overview, each of the extension patterns is described. The overview is
summarized in Table 2.

– Extension Pattern A: Simple Server Extension - To provide third
parties with opportunities for controlling and interacting with NetComp
hardware, many of the hardware products can be extended with a simple
server. Several different mechanisms are applied to open up the servers. In
some cases a software switch can be flipped, but more frequently, a separate
JAR needs to be deployed on the hardware to open up its capabilities.

– Extension Pattern B: Coordinating Server Extension - In the case
of coordinating servers, the patterns and technologies used are similar to
that of Pattern A. In many cases, however, this feature is provided and
switched on automatically. It is interesting to see that for Pattern A the
technologies used are technologically close to the device (i.e., JARs for Java
servers, DLLs for Windows based servers, etc.) whereas for Pattern B more
abstract technologies are used, such as SOAP and REST.

– Extension Pattern C: Federated Server Extension - Federated
servers are powerful mechanisms that can abstractly control heterogeneous
devices in a network. These federated servers are even more frequently used
for extension by customers and partners, as these are able to control all the
customer’s devices. These “servers” also are closer to the end-user. An exam-
ple is the Bring Your Own Device solution, which provides access to different
features in that domain, such as a single-sign on server, an asset manage-
ment solution, and a software repository for mobile devices, also known as
enterprise app stores.

– Extension Pattern D: Advanced User Interface Extension - To
provide access to the different infrastructures in the enterprise, NetComp
supplies different SDKs and even reference implementations for customers
and partners. Examples of such SDKs are the telepresence control SDK for
Android and iOS, enabling the development of apps that allow for initiation,
planning, execution, and termination of telepresence calls. Many of the apps
built by partners are geared towards end-users, even though the SDKs are
typically open and allow for much more.

One extra way of extending NetComp products is through third party plat-
forms and products, such as Outlook, VMWare, OpenStack, Microsoft Lync, etc.
NetComp supplies software that already extends these platforms. It is interesting
to see that as we move up to higher levels of abstraction, more abstract proto-
cols and technology-agnostic extension mechanisms are found. Whereas at the
lowest level controls are typically built in highly technologically native environ-
ments (Java SDKs, linux libraries, etc.), at the higher levels mechanisms become
increasingly abstract (REST, SOAP). This is in part caused by the time at which
these higher level abstractions were built, but also because more partners require
different types of technologies for integration at higher levels.

130 S. Jansen

Table 2. The observed extension patterns, their occurrences (in a total of 21 extendible
components), and the observed technologies at NetComp. Please note that for some
product lines multiple extension patterns are observed. In Section 5 all four are observed
in one product line.

Occur. Extension mechanism Extension technol-
ogy

Pattern A:
6

1. Turn on software switch Standalone executable,
JARs, .so libraries,
powershell libs, DLLs

Simple Server Extension
2. Deploy server on device
3. Deploy server on another device

Pattern B:
3

1. Turn on software switch
Standalone executable,
JARs, SOAP, RESTCoordinating Server Extension

2. Deploy server on device
3. Deploy server on another device

Pattern C:
4

1. Deploy server on another device Standalone executable,
JARs, SOAP, REST,
SNMP, Python

Federated Server Extension 2. Buy secondary dedicated device

Pattern D:
8

1. SDKs for (mobile) apps
Android, iOS, OCXAdv. User Interface Extension 2. Provide client controls

5 Illustrative Case: The Telepresence Product Line

One of NetComp’s most successful product lines is the telepresence. Net-
Comp manufactures many different systems for this domain: from HD television
mounted cameras to smart microphone and speaker interfaces. These systems
are most effective when they integrate well with the infrastructure of a cus-
tomer organization. Meetings must be planned through office applications such
as Outlook, for instance.

Traditionally, managers of telepresence systems performed their operation
and maintenance tasks through the NetComp Service Management Center
(SMC), a server that is dedicated to the detection and management of telepres-
ence devices. The SMC can directly access features of the telepresence devices
and execute device-specific commands, such as start, stop, and record commands.

As customers started developing their systems, however, they also attempt
to integrate other NetComp (generic IP cameras) and third party hardware (HD
videoconferencing). NetComp added a component to their SMC called the Con-
verged Gateway: a product that enables interaction through a unified interface
with other (sometimes non-telepresence) devices.

In the scope of the FloodGate initiative, the capabilities of the devices, the
SMC, and the converged gateway are opened up for extension by third parties.
This is done through the FloodGate server, which is independently deployed in
the IP network. The FloodGate server can be approached directly with SOAP
calls. Furthermore, there are JAR libraries available to quick start third par-
ties with the development of the advanced choreographies that are necessary to
negotiate advanced telepresence scenarios. The JARs available concern mostly
the SMC, but also contain more high-level abstractions, with the most inter-
esting one being the eHealth JAR, containing specific capabilities for remote
health care.

The network deployment of the telepresence components is modeled in
Figure 3. Extenders have the option to approach the FloodGate server through
the SDK or through its direct API, using SOAP. There exists a link between the

Opening the Ecosystem Flood Gates 131

FloodGate server and endpoint telepresence devices in the network, but this is no
longer documented, as extenders are advised to use the SMC interface. It is inter-
esting to observe that the extension patterns identified in Section 4 are all found
in the telepresence product line. First, the simple server extension pattern
is found in the fact that it used to be possible to directly address endpoint devices
in the telepresence deployment. Secondly, the coordinating server exten-
sion pattern is found in the SMC extension possibilities. The SMC controls the
whole deployment of telepresence devices and through its FloodGate interface
can be controlled by a third party application. Thirdly, the federated server
extension pattern is found in the converged gateway, enabling hardware from
others and non-telepresence devices, such as simple IP cameras, to also be con-
trolled by third parties. It must be mentioned that the converged gateway and
SMC are no longer deployed separately and are always deployed together. At
the highest level we observe the advanced user interface extension pat-
tern, as the JARs provided give third parties the opportunity to quick start the
development process and develop domain specific solutions, like the telemedicine
library offered.

FloodGate
Server

Converged
Gateway
Interface

SMC
Interface

Device
Interface

Third Party
Product

FloodGate
SDK (JAR)

Fourth Party
Product

SOAP

SOAP

HTTPS/JSON

IP Network
SMC

SOAP

Converged Gateway

Non-Telepresence
NetComp Hardware and
Hardware from Others

SOAP

NetComp Telepresence Hardware

Any protocol

Fig. 3. A typical telepresence network deployment and its extension possibilities. The
dotted line indicates that it is still possible to address telepresence devices directly, but
it is no longer supported or documented. Lines without a label indicate proprietary
protocols that are not visible to third parties.

6 Openness and Architecture Challenges

The FloodGate Department initiative is generally experienced positively by the
product departments. Product units get to focus on their product innovations,
while extensibility questions and partner support are delegated to the FloodGate
Department. Furthermore, as the FloodGate Department has strategic support
in the organization, much needed resources in the product units can be used for
“regular” product innovation. The centralized approach results into (architec-
tural) challenges that are experienced across different product units.

132 S. Jansen

How open is open enough? There is a constant discussion between part-
ners and NetComp about how open products are. For example, there is a rich
tool suite for unified communications, that provides features such as instant
messaging, document sharing, voice chat, video chat, and screen sharing. The
tool suite is packaged into an extendible client. Partners are calling for modu-
larization, as they do not wish to use the client, but embed smaller features in
their own tooling, such as mobile applications. NetComp needs to strategically
evaluate such requests: is the call for such modularization going to add value for
customers? Will security be compromised? And can profit still be made when
partners can replace components so easily? These decisions are typically made
by the product lines, with support from the FloodGate department.

How must documentation be standardized for partners? One of the
biggest challenges for NetComp has been to standardize across the product units.
When looking at the documentation for 3rd parties, for instance, some of the
documents are supplied in .chm format (a documentation format that is specific
to Microsoft) whereas other documents are supplied through online web con-
tent management systems, and as Word documents. Furthermore, the look and
feel of the documentation is different across different products and sometimes
even for different documents (Java documentation versus C++ documentation,
in one instance) about the same product. An improvement initiative has been
undertaken to bring all documentation to the web.

How must error messages be handled, communicated, and sup-
ported for partners? One of the more interesting discussions at NetComp
is about error messages. As we were discussing the quality, findability, and
reproducibility of the error messages, it was quickly uncovered that there are
actually two different classes of error message: those that come from the Flood-
Gate Components and those that are generated by the products. The FloodGate
Department is responsible for the error messages generated by the FloodGate
Components, whereas the product units are responsible for the error messages
that are generated by these lower layers. The FloodGate Department is running
into problems with these: partners call with questions about product error mes-
sages, whereas they are only capable of answering questions in regards to the
FloodGate Components and their error messages. The FloodGate Department
needs a mandate to force product units to regularly update error message doc-
umentation and improve them where necessary. Simultaneously, the FloodGate
Department is responsible for providing the product units with an infrastructure
in which they can publish their error messages and documentation.

How must crashes propagate through the systems? When one of
the products crashes, the FloodGate Components, typically a separate server,
keeps running. The product units have not been instructed on how to inform
the FloodGate Components about crashes and the like. Partners are expected
to solve this problem themselves. Should a product crash, it simply becomes
unavailable to the FloodGate Components.

How must extensions be secured? In the communications industry secu-
rity is a major concern. The FloodGate Department architects are responsible for

Opening the Ecosystem Flood Gates 133

executing and checking security guidelines. These guidelines are well documented
and well managed in NetComp. The architects have three levels of security check
in place, which we cannot share for reasons of confidentiality. However, we are
allowed to illustrate some of the guidelines that are used by the architects. At
the first level, the architects look at data leaks, unlawful interception, and pri-
vacy protection. At the second level, the architects have more advanced steps,
like data encryption, attack and integrity protection, and log auditing. At the
third level, the architects apply tools like virus protection, security hardening,
protected installations, database hardening, and some guidelines for partners on
security. An interesting observation is that NetComp presently shares little of
this knowledge with partners, whereas partners can greatly benefit from security
audits. There are many ecosystem opportunities here: partners can be audited,
certified, and trained in the domain of security. NetComp is evaluating these
different options presently.

How must partners be convinced to deploy newer versions? As the
hardware running for customers is generally deployed and then left alone, so
are the FloodGate Components. This results in situations where the Flood-
Gate Components running on extendible hardware is running far behind the
most recent version, making it harder to develop against. It is, however, a chal-
lenge to convince partners to update the software running on the hardware and
its accompanying FloodGate servers without any business incentive. Simultane-
ously, however, when a customer wishes to acquire extended features through a
NetComp partner, all hardware drivers must first be brought up to date. The
FloodGate Department is working on a policy to incentivize partners to upgrade
software, even when there is no direct need for the partner to do so.

7 Analysis, Discussion, and Related Work

The FloodGate Department is relatively new: many product lines developed
similar interfaces before the FloodGate Department was implemented in full. It
is impossible to say whether the extension patterns were implemented indepen-
dently by the product units, although we have good reason to believe this to
be the case. It is even more interesting then, that such similar patterns evolved.
Parallels must be drawn to other systems for further research, but for now we
observe a common theme in software architecture: with the growth and expan-
sion of systems and offerings, so do the abstractions on top of them.

As the challenges are unfolded in this paper, one could even wonder what the
advantages are of having one large ecosystem initiative for all different product
lines. After all, there are so many challenges, that it may feel like trying to trap all
the different animals on earth unwillingly onto an ark. However, the participants
in the initiative indicate that their expertise at this point is unparalleled in the
company and that none of the product units would have the resources available to
undertake the initiative at its current speed. Another trend that keeps surfacing
is the “one organization, one ecosystem”: if a large partner extends different
products from different product lines, NetComp wants to be aware of this, as
that partner is playing a strategic role in the ecosystem.

134 S. Jansen

In earlier work, we have conducted similar studies. In the work on the extensi-
bility of mobile operating systems [1] we observed that mobile operating systems
are open and extendible, but that restrictions, rules, and abstraction layers pro-
tect the inner cores of mobile operating systems. This is true for NetComp to
a lesser extent: partners are expected to be ‘more responsible’ than mobile app
developers. Also, as there are simply fewer extending partners than there are
mobile app developers, NetComp does not have the resources to test and harden
every interface, albeit with an exception for security aspects.

In the work on pragmatic reuse [4,5] in start-up companies, we observed eight
different pragmatic extension patterns. The pragmatism is found, for instance,
in the fact that these start-ups would sometimes simply hack the database of
another product and read and write to it directly to extend it. None of this
pragmatism is found in the extension mechanisms provided by NetComp: the
extension mechanisms used most are traditional SDKs that communicate with
independent “service providers”, typically running on the hardware itself. As
NetComp is active in the communications industry, this is not surprising: hard-
ware deployments need to be easy to extend, loosely coupled, quick to deploy,
easy to manage, and above all secure.

In the work of Kabbedijk [8] he presents a multitude of patterns that enable
variability in multi-tenant environments. The pattern catalog created there is an
inspiration for the current work on extensible software platforms. In the future
we hope to create a similar overview to provide insight into the most common
patterns used to enable and support software ecosystems.

Wnuk et al. present several case reports about Axis [12,13], a company that
is equally dependent on hardware as NetComp, but where the ecosystem ini-
tiative is currently less mature. Parallels that can be drawn are the need for
standardization from partners, the need for partners to be informed regularly
about platform developments, and the actual response to change requests from
partners. Finally, Axis too is having difficulty opening up the platform for several
different products, although this is not further specified in the case reports.

A large body of work is available on software product lines. Although seem-
ingly this work focuses on product lines, the real contribution lies in the view
on a coordinated effort in opening up products in several product lines. In that
sense this work is close to product lines, but perhaps even more about orga-
nizational boundaries surrounding product lines, as for instance illustrated by
Hanssen [3]. Toft also highlights the challenges of central collaboration between
departments in a software product line [11]. Contrary to this work, they propose
a decentralized mode of working, that forces departments to collaboratively share
architecture and components.

8 Conclusion

The paper provides four contributions. First, four patterns are provided that
illustrate typical scenarios for opening up a portfolio of hardware-based software
products, with the goal of creating extendible software platforms. The four pat-
terns are Simple Server Extension, Coordinating Server Extension,

Opening the Ecosystem Flood Gates 135

Federated Server Extension, and Advanced UI Extension. We provide
a background on the history of the creation of the four patterns to illustrate their
history and use. Secondly, the (architecture) challenges of doing so in a large
company like NetComp, in a centralized fashion, are highlighted and provide
interesting insights and challenges. The insights presented illustrate the advan-
tages of centrally coordinating platformization and ecosystem efforts and the
division of responsibilities in an organization that has a large product portfolio.
Thirdly, several challenges of launching a platform around a hardware and soft-
ware product portfolio are presented: how to open up different systems, how to
document their extendible interfaces, how product and extension error messages
must be propagated through the systems and organization, how crashes must
be handled, and how extendible interfaces must be secured without becoming
useless.

The FloodGate Department still has a large amount of work in front of
it. Although the architectures are now ready for extension, the management
of the ecosystem and the coordination practices of partners are still immature
and varying across product departments. Secondly, the FloodGate Department
would like to unify the code bases as much as possible, which is introducing
an interesting architectural challenge of supporting different technologies, while
keeping all in one code base and collection of software artifacts.

On the academic side, there are challenges as well. First, we plan to create a
collection of platform extensibility patterns, i.e., patterns that aim to enable the
creation of an ecosystem around a product, similar to our work in multi-tenant
patterns [9]. Secondly, we are working on a software ecosystem management
maturity matrix (SEM3) that enables companies to evaluate their ecosystem
management practices and advance them based on a set of strategic require-
ments, based on our earlier work [7].

References

1. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software plat-
forms. In: Proceedings of the Fourth European Conference on Software Architec-
ture: Companion Volume, pp. 85–92. ACM (2010)

2. Goeminne, M., Mens, T.: A framework for analysing and visualising open source
software ecosystems. In: Proceedings of IWPSE-EVOL, pp. 42–47 (2010)

3. Hanssen, G.K.: Opening up software product line engineering. In: Proceedings of
the 2010 ICSE Workshop on Product Line Approaches in Software Engineering,
pp. 1–7. ACM (2010)

4. Jansen, S., Brinkkemper, S., Finkelstein, A.: Component assembly mechanisms and
relationship intimacy in a software supply network. In: 15th International Annual
EurOMA Conference, Special Interest Session on Software Supply Chains (2008)

5. Jansen, S., Brinkkemper, S., Hunink, I., Demir, C.: Pragmatic and opportunistic
reuse in innovative start-up companies. IEEE Software 25(6), 42–49 (2008)

6. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7), 1495–1510 (2012)

136 S. Jansen

7. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar Pub-
lishing (2013)

8. Kabbedijk, J.: Variability in Multi-Tenant Enterprise Software. Utrecht University,
Department of Information and Computing Sciences (2014)

9. Kabbedijk, J., Salfischberger, T., Jansen, S.: Comparing two architectural patterns
for dynamically adapting functionality in online software products. In: The Fifth
International Conferences on Pervasive Patterns and Applications, PATTERNS
2013, pp. 20–25 (2013)

10. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

11. Toft, P., Coleman, D., Ohta, J.: A cooperative model for cross-divisional product
development for a software product line. In: Software Product Lines, pp. 111–132.
Springer (2000)

12. Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., Munir, H.: Evaluating
the governance model of hardware-dependent software ecosystems – a case study
of the axis ecosystem. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 212–226. Springer, Heidelberg (2014)

13. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barriers to hardware-
dependent software ecosystem participation – a case study. Information and Soft-
ware Technology 56(11), 1493–1507 (2014)

On the Social Dimensions of Architectural
Decisions

Henry Muccini1(B), Damian A. Tamburri2, and V. Smrithi Rekha3

1 DISIM Department, University of L’Aquila, L’Aquila, Italy
henry.muccini@univaq.it

2 Politecnico di Milano, Milano, Italy
damianandrew.tamburri@polimi.it

3 Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, India
v smrithirekha@cb.amrita.edu

Abstract. An architecture is recognised to be the output of a (group)
design decision process. This process typically involves multiple stake-
holders composed into a group with a socio-technical connotation.

From a group decision making perspective, the various stakeholders
involved in a design decision process analyze a given problem, propose
alternate solutions, indicate their preferred alternative, and arrive at
a consensus on the best possible solution. From an organisational and
social perspective, the various stakeholders involved in a decision process
form an organisational social structure (OSS). These structures have a
significant impact on project success.

In this work, we explore the overlaps and interconnections between
group decision-making dynamics and the corresponding social and
organisational dimensions, in the context of architectural knowledge
management. We use a meta-model to illustrate these overlaps and
interconnections.

1 Introduction

In addition to technical aspects, the human and social aspects of projects play
a significant role in determining the quality of software systems. James Herbsleb,
in his keynote at ICSE 2014 the 36th International Conference on Software
Engineering), has emphasized the significance of socio-technical coordination in
software projects. It is clearly visible through empirical and observational studies
that the way people work together, the information they exchange, the number
of people interacting and the specific rules they employ has a direct impact on
group productivity and outcome [1].

In this context, we have been studying the influence of Group Decision Mak-
ing (GDM) principles on the Software Architecture (SA) decision making pro-
cess. In the past few years, SA has evolved from being a diagrammatic represen-
tation to comprehensive set of Group Design Decisions [2,3].

In parallel, along the line of social aspects of software architectures and
decision making thereof consists in what we refer as OSS, that is, organisa-
tional social structure. An OSS is the set of interactions, patterned relations
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 137–145, 2015.
DOI: 10.1007/978-3-319-23727-5 11

138 H. Muccini et al.

and social arrangements emerging between individuals part of the same endeav-
our [4]. The emerging web of relations, dependencies, collaborations and social
interactions they will be part of, is a set of non-trivial patterns (therefore a
“structure”) which entails people (therefore “social”). These people act as an
organised whole, focusing on a particular goal (therefore “organisational”) [4].
Empirical software engineering already pointed out the considerable importance
of looking at organisational structure as a proxy for software quality [5] avoiding
both technical and social debt [6]. Though some of these have been adopted
by the Software Engineering community, a large part is yet to be studied and
applied when architecting software systems, especially in the industry.

Stemming from these premises, in this paper we elaborate on the dimensions
added by looking at organisational and social structures jointly to group decision-
making.

We found that there are several concepts in GDM that can be further
expanded with additional dimensions of complexity if organisational and social
structures come into play. For example, how does the social dynamics between
formal (or informal) members in a working group change the decision-making
process? Similarly, do Problem-Solving Communities [4] assist in the creation
of good-quality and resilient architectures? Also, GDM literature typically piv-
ots around internal (i.e., decision internalising factors on software architectures)
and external (i.e., decisions to allow architecture to cope with external factors)
decisions.

2 Background on Group Decision-Making
and Organisational-Social Structures

Group Decision Making (GDM) in management research has received good
amount of attention and has found application in several domains including soft-
ware engineering. GDM involves a group of stakeholders analyzing a given prob-
lem, proposing alternate solutions, indicating their preferred alternative through
voting or ranking and arriving at a consensus on the best possible solution [7].
Risks, uncertainty and conflicts are inherent to any GDM process. These issues
have also been observed when we studied real-world software architects in [3].
Also, in practice it has been observed that as the number of alternatives increases,
the uncertainty also increases and this is more so when several stakeholders are
involved. Hence minimizing uncertainty is a key aspect of any GDM process
[8]. There are several GDM techniques both formal and informal. Some of them
include brainstorming, voting, delphi, nominal group technique and consensus
based method. As reported in [3], practitioners are used to mix them.

Conversely, our research on Organisational Social Structures (OSS) for soft-
ware engineering is motivated by work such as Nagappan et al. [5] that shows
in practice the influence of organisational structure and other “human” aspects
on software quality. We started elaborating on the role that organisational and
social structures play in software engineering. In [4] we elaborated a System-
atic Literature Review (SLR) on OSSs and ways in which they can be detected.

On the Social Dimensions of Architectural Decisions 139

In addition, motivated by works in organisational decision-making (e.g., off-
shoring) we found sample arenas in which organisational and social structures
can assume sub-optimal forms and social debt emerges [6]. We found that know-
ing whether the organisational layout of a company is performant (or even com-
patible) with certain decision is vital, e.g., to measure the social debt [9] for
relevant decisions.

3 GDM and OSS: Annotated Metamodels

Inspired by our previous works on GDM in Software Architecture [3] and the
General Group Problem-Solving Model [10], we have generated a metamodel for
Group Decision Making as shown in Figure 1. Group represents a collection of

Fig. 1. Group Decision Making Metamodel

stakeholders who are from different hierarchical levels in the organization. The
Group is defined by attributes name, type and colocation. Group Membership
denotes the participation of stakeholder in a specific group. Each member of the
group has a specific role in the group. The rank attribute denotes the position
of a stakeholder in the group. The period for which the members work together
is recorded in lifetime. Stakeholder denotes the people who are active members
of the group and organization. The role, experience and the expertise attributes
are related to the profile of the stakeholder. At the end of the GDM process, the
satisfaction level of the stakeholder with respect to the various aspects of GDM
is recorded with the help of a questionnaire and the responses are summed up.
A GroupDecisionSession represents a single continuous meeting, or a series of
meetings of a group of stakeholders. Each group decision session has a set of objec-
tives. The experienceHomogenity and expertiseHomogenity attributes indicate
whether the group members have homogeneous or heterogeneous experience and

140 H. Muccini et al.

expertise. Group size plays a significant role in the performance and efficiency
of group. There are different ways that groups use to transfer and share knowl-
edge amongst its members. The knowledgeSharingMode attribute is explained
in the ensuing section. There are different leadership styles and some popular
ones include Directive Participatory, Facilitative, Evocative and Provocative1.
Each session has a specific task to execute and this keeps the group focused on
the task. Conflicts and issues are common to the group which are recorded in
groupIssues and the resolution method is indicated in conflictResolutionStrategy.
The total number of alternatives in a session is recored under noofAlternatives.
The time taken to arrive at a consensus varies from session to session and this
can be indicated in convergenceTime. Each session could use a different GDM
method i.e GDMMethod depending on the task at hand. If the group prefers, they
could use the same method throughout the lifecycle of the project. Each GDM
method is associated with a specific gdmRule which decides how the preferences
are computed and the final decision is made. Several Alternatives are gen-
erated in a specific GDM session. The alternatives are given a qualityScore by
domain experts and the stakeholders can also rank/score/vote the alternatives
under stakeholderScore. These scores play an important role in the final decision.

Consider the Organisational and Social Structures metamodel in Figure 22.
The metamodel stems from reinterpreting the taxonomy proposed in [4] as seen
through a GDM lens, i.e., by focusing on concepts relevant to GDM and within
the community definition framework in [4].

-Goal [0..*] {unique}
-CriticalSuccessFactor [0..*] {unique}
-Openness [0..*] {unique}
-ContextChange [0..*] {unique}
-OrganizationalCulturePractice [0..*] {unique}

OrganizationalSocialStructure

-SupportTool [1..*] {unique}
-OrganizationalGoal [1..*] {unique}

Network Community

-CohesionPractice [1..*] {unique}
-TargetedBusinessProblem [1..*] {uni...
-GovernancePractice [1..*] {unique}

Group

-FixedLongevity [1] {unique}

Team

-BarrierMitigation [0..*] {unique}

OrganizationalSocialBarrier

-TrustPractice [0..*] {unique}

ManagementPractice

-KnowledgeRepository [0..*] {unique}
-BoundaryObject [0..*] {unique}

BoundaryCrossingPractice

-GeodispersionOfPractice [0..*] {unique}
-SituatednessOfPractice [0..*] {unique}

LocalisationOfPractice

-LifespanTrackingPractice [0..*] {unique}
-FormalityPractice [1..*] {unique}
-Lifecycle [0..1] {unique}
-MembershipSelectivityPractice [1..*] {unique}
-HierarchyDegree {unique}

CommunityCreation

-KnowledgeExchangeActivity [1..*] {unique}

KowledgeSharingModel

0..*
0..*

0..*

Fig. 2. Organizational Social Structure Metamodel

In essence, an Organisational-Social Structure is a super type of four essential
community types, namely Networks, Communities, Groups and Teams, charac-
terised by a series of attributes common to any OSS as well as attributes peculiar
to a type. For example, all Communities are made for sharing, especially shar-
ing of knowledge and possibly experience. Also, Networks suggest the presence

1 http://www.co-intelligence.org/leadership-5styles.html
2 A larger Figure is available here: http://tinyurl.com/ngka39t.

http://www.co-intelligence.org/leadership-5styles.html
http://tinyurl.com/ngka39t.

On the Social Dimensions of Architectural Decisions 141

of digital or technological support tools to overcome great distance (geoloca-
tional and/or cultural) however we found this [4] explicitly only for Networks
of Practice [4]. In addition, Groups are tightly knit sets of people or agencies
that pursue an organisational goal. The goal/objective is usually dictated by
an organisational sponsor who enforces a number of governance practices (more
or less formal) e.g., for selecting and appointing members. Finally, Teams are
specifically assembled (ad-hoc) sets of people with a diversified and complemen-
tary set of skills working on a specific mission for a quantified period of time,
i.e., they constitute a community with fixed longevity.

This not withstanding, all the above types may be further elaborated into addi-
tional levels of granularity. For example, “network” community types may con-
sist (and, in fact, do consist of hybrids of formal networks, informal networks or
networks of practice. Similarly, a “Community” may assume the shape, form and
characteristics of communities of practice, Informal communities, knowledge com-
munities or learning communities. In essence, the challenge lies in striking the right
combination of community attributes such that an equilibrium is reached between
GDM, software development and operations requirements. Frameworks such as
the one we presented in [4] may assume the role of rudimentary compasses to help
managers assess and establish said equilibrium of characteristics (e.g., formality
levels, ROI, competitiveness, knowledge-sharing, knowledge protection, etc.).

Besides the previously mentioned characteristics, any OSS can be exposed to
one or more organisational barriers, i.e., impediments, social, organisational or
otherwise that hinder the harmonious operation across the OSS. For example,
formal knowledge exchange protocols constitute a barrier to activities across the
OSS. In overcoming barriers, organisations employ specific management or miti-
gation strategies, aimed at resolving or relaxing the limitations and impediments
connected to the barrier.

Finally, all OSS types typically involve a number of boundary crossing prac-
tices, i.e., aimed at disseminating to the OSS external environment and context,
whatever practice, knowledge or contribution is produced inside the OSS. Said
knowledge exchange can take place by means of specific boundary objects. For
example, IFIP workgroups3 publish internal proceedings, news or similar.

3.1 GDM-OSS Interconnections as Social Dimensions
for Architecture Decisions

We found four essential overlaps revolving around the concept of “Groups”,
“Decisions”, ”Stakeholder” and “Membership”. It seems that these overlaps
are essentially new dimensions orthogonal to GDM but extremely related and
impactful w.r.t. relying on resilient GDM practices, e.g. to achieve anti-fragility
at the architecture level. Also, these dimensions seem to suggest the following
points of discussion.

Since “Groups” and “Membership” are social network concepts, it seems
that exploring the use of social network analysis in achieving group fitness, e.g.,

3 http://www.ifip.org/

http://www.ifip.org/

142 H. Muccini et al.

with the selected GDM approach might be a first step in establishing what
social aggregation means is most efficient for decision-making. Since “Decisions”
and “Groups” imply a number of social and cognitive concepts (e.g., cognitive
distance, cognitive biases, etc.) it is reasonable to start exploring the variables
connected to complex organisational structures involved in decision-making since
complex structures complicate cognitive processes within [4]. Lastly, “Decision”
and “Membership” and the emergent relations in-between, seem to imply some
sort of decision ownership and, similarly, accountability. Perhaps GDM dynamics
should be studied in combination with OSSs as mechanisms that represent the
structure of accountability within development networks [11]. What’s more, this
problem would assume global proportions in distributed scenarios. In addition,
there are at least 3 areas of the extended Architecture Design Decisions meta-
model, in which Organisational and Social structures play a major role when
combined with GDM, as evident from Figure 3.

Fig. 3. Extended ADD Metamodel with GDM and OSS

� The Group metaclass. Looking at the metamodel through the looking glass
of organizations research, managers and researchers might wonder: “what kind
of group are we talking about?”, that is, there are several group layouts that vary
considerably in terms of organisational norms, or adopted decision culture and
processes. For example, literature summarised in [4] reports at least three such
types, namely, “ProfessionalDevelopmentGroup”, “WorkGroup” and “Interest-
Group”. In essence, establishing the best-fitting group structure is key to max-

On the Social Dimensions of Architectural Decisions 143

imise efficiency in terms of decision-making and/or problem-solving regarding
architecture resilience. We observe that the location of group members vary with
OSS, while some Communities involve colocated members, Networks involve
dispersed members. Hence we have added a colocation attribute indicating
Yes/No. Also, in terms of system architecting, there might be group-structures
that are best-fit to solving problems (e.g., Problem-Solving Communities, as
reported in literature [4]), and for which architecture and system failure is a
means to generate new best-practices towards resilience and overall system archi-
tecting.

� The GroupDecisionSession metaclass. Looking at the definition and con-
cerns behind this metaclass from a knowledge-creation standpoint, managers and
researchers might wonder: “Does the decision session map onto the typical pat-
tern(s) in knowledge creation? if so, how can the pattern be supported in soft-
ware engineering? if not, how can conformance be improved?”. GDM researchers
clearly indicate that the amount and mode of knowledge sharing influences the
quality of decisions and hence the resultant systems. How knowledge is transferred
from the various quadrants of the Nonaka model [12] and which quadrant yields
most effective knowledge passages functional to achieving resilience might be use-
ful in identifying successful GDM patterns. The mode of knowledge sharing will
also be impacted by the GDM Method and tools used. For instance, the Socialization
mode may be more predominant in Brainstorming sessions, Externalization may
be more seen incase of more structured methods like Delphi technique, Combina-
tion may be possible while using Group Decision Support Systems (GDDSS) and
Internalization may be seen in several of these methods. We have also added a size
attribute since size of group varies depending on the OSS. The leadershipStyle
attribute will highlight the nature of leadership in a particular group decision ses-
sion. Some OSS requires Strong/Directive style of leadership while some oth-
ers may require facilitative style. Inorder to account for the Social Debt that
may occur during group meetings, we have added issueFactors that document
the issues that arise in a particular session. We observe that each OSS has dif-
ferent composition and hence taking clues from GDM literature, we have added
homogeneous to indicate whether the group is a homogeneous or hetergeneous in
composition. The number of alternatives is key to the quality of system designed,
hence the addition of attribute textttnoOfAlternatives.

� The GroupMembership metaclass. We found that, in order to assume an
organisational perspective, the metamodel needs to include constructs for the
experience and expertise of the stakeholder(s). Experience refers to the number
of years in the organization or in a particular role. Expertise refers to the skill
sets of a stakeholder and domain expertise. Both these are key aspects in differen-
tiating organizational structures adopted. For instance, Strategic Communities
and Communities of Practice require high level of experience and expertise from
stakeholders. GroupMembership will also include lifetime of group to indicate if
the group members are together for a specfic task for a short period of time or for
a longer period of time. The role and ranking attributes have been expanded to

144 H. Muccini et al.

include hierarchical levels depending on the OSS. For example, Problem Solving
Communities involve organizational sponsors themselves as members.

� The GDMMethod metaclass indicates the method used by the group.
Depending on the OSS, the procedure used to make the final decision varies.
Some OSS may use aggregation of votes while some may use pairwise compari-
son. We have added the gdmRule to take care of the rules that are used to make
the final decision.

4 Conclusions and Research Roadmap

The objective of this paper was to look ahead at the overlaps and additional
dimensions stemming from combining theories on GDM with concepts and find-
ings from organisations and social networks research and how these impact GDM
processes.

From our preliminary analysis, we observed that organizations and social-
networks research models such as the one elaborated in [4] represent a parallel
universe with important overlapping dimensions and restrictions to be applied
on GDM. Also, we learned that the four dimensions across which the overlaps
were identified, namely, Groups, Sessions, Decisions and Membership, reflect
a number of interesting well-established concepts from social-networks analysis
(SNA) such as group cohesion [13] or cognitive distance [14].

In the future we plan to elaborate further on these preliminary insights thor-
ough solid empirical research, e.g., focusing on understanding which group struc-
ture from [4] may be more successful in GDM or, conversely, which group struc-
ture is more widely adopted in (self-)organised groups for decision-making4.

In so doing, key research questions may have to be addressed, such as the
following:

• What is the best-fit OSS combination for effective GDM? Empirically estab-
lishing the effectiveness of multiple organisational and social structure types
blended together may be critical for showing that certain GDM practices are
effective when enacted within those community blends.

• How can we quantify the efficiency of GDM in certain OSS? Much study
in social networks and organisations research remains qualitative in nature.
Managers seldom conduct such expensive studies, relying more on numbers
and practical metrics. More research may be needed to find and validate said
metrics.

References

1. Saaty, T.L., Vargas, L.G.: Decision making with the analytic network process.
Springer (2006)

2. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop Software Variability, pp. 54–61 (2004)

4 The work of one of the authors has been partially supported by the European Com-
mission grant no. 610531 (FP7 ICT Call 10), SeaClouds.

On the Social Dimensions of Architectural Decisions 145

3. Rekha, V.S., Muccini, H.: A study on group decision-making in software archi-
tecture. In: Proc. WICSA 2014 the 11th Working IEEE/IFIP Conf. on Software
Architecture (2014)

4. Tamburri, D.A., Lago, P., van Vliet, H.: Organizational social structures for soft-
ware engineering. ACM Computing Surveys, 1–35 (2012)

5. Nagappan, N., Murphy, B., Basili, V.: The influence of organizational structure on
software quality: an empirical case study. In: International conference on Software
Engineering, Leipzig, Germany, pp. 521–530. IEEE (2008)

6. Tamburri, D.A., Kruchten, P., Lago, P., van Vliet, H.: What is social debt in
software engineering? In: 2013 6th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), pp. 93–96 (2013)

7. Nutt, P.C., Wilson, D.C.: Handbook of decision making. John Wiley & Sons (2010)
8. Marian-Mihai, C.: Collaborative decision-making platform for participatory struc-

tures and group decision-making bodies. Business Excellence and Management
2(1), 31–40 (2012)

9. Tamburri, D.A., Di Nitto, E.: When architecting leads to social debt. In: Proceed-
ings of the 2015 IEEE/IFIP Conference on Software Architecture, WICSA 2015,
Washington, DC, USA, pp. 247–250. IEEE Computer Society (2015)

10. Aldag, R.J., Fuller, S.R.: Beyond fiasco: A reappraisal of the groupthink phe-
nomenon and a new model of group decision processes. Psychological Bulletin
113(3), 533 (1993)

11. de Souza, C.R.B., Redmiles, D.F.: The Awareness Network, To Whom Should I
Display My Actions? And, Whose Actions Should I Monitor? IEEE TSE 37(3),
325–340 (2011)

12. Nonaka, I., Toyama, R., Konno, N.: SECI, ba and leadership: A unified model of
dynamic knowledge creation. Long Range Planning 33, 5–34 (2000)

13. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the
information sciences. Journal of Information Science 28(6), 441–453 (2002)

14. Gallagher, S.: Introduction: The arts and sciences of the situated body. Janus Head
9(2), 1–2 (2006)

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 146–153, 2015.
DOI: 10.1007/978-3-319-23727-5_12

A Specialised Social Network Software Architecture
for Efficient Household Water Use Management

Zhenchen Wang() and Andrea Capiluppi

Brunel University London, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
{zhenchen.wang,andrea.capiluppi}@brunel.ac.uk

Abstract. Specialised, or vertical, social networks (SSN) are emerging as a use-
ful tool to address practical issues such as household water use management.
Despite the perceived benefits, the design of such systems is still not fully
aware of the social interactions or the incentives that could be used to change
user’s behaviours when engaging with the network and peers. In this work, we
propose and demonstrate the software architecture of a social network aimed at
the efficient management of water in households, defining and connecting spe-
cialised system components. Three aspects are relevant in this work: first, the
architecture explicitly defines components that support social interactions, in
the context of existing water management instruments. Second, the architecture
defines components addressing openness, which enable easy communication
with external resources. Third, as part of a gamification ecosystem, universal
and transferable rewards are proposed to incentivise the expected online and of-
fline behaviours.

Keywords: Software architecture · Software engineering · Specialised social
network · Social interaction

1 Introduction

A system architecture is usually the result of a set of decisions, taking into account multi-
ple factors such as the input of expert knowledge, technical constraints and available
resources. Before finalising a system architecture, the designing process can be problem-
atic especially when 1) the software is specialised but needs to target audiences with
different expertises and 2) its interfaces may require to be open to heterogeneous sys-
tems. SSN (Specialised social network) software is one of such kind. The recent devel-
opments of SSN software enables existing specialised software to address the practical
issues of niche, specialised groups, addressing broader issues concerning the whole soci-
ety. As an example, in the FP7 EU Project ISS-EWATUS1 a SSN software is used to
manage the efficient household water use. The SSN allows users to interact with the
communities via a range of activities such as i) sharing water bill with friends, ii)
monitoring municipal water use statistics, iii) asking and answering water use ques-
tions, and iv) entering competitions sponsored by external stakeholders by completing

1 http://issewatus.eu

 A Specialised Social Network Software Architecture for Efficient Household Water 147

specific water conservation tasks offline. While this SSN paradigm is becoming popular,
there are also concomitant software design challenges when designing such systems.

1. Aligning User Interactions with System's Objectives: One of the features of a
SSN software is that it allows users to interact with other users. The interactions need
to be clearly defined, so that the social interactions between users can support the
overall system objectives, such as achieving the household water-use efficiency. This
task can be tricky especially when considering the SSN system objectives and user
preferences or approaches in online social interactions.

2. SSN Ecosystems and Incentives: Since a SSN can be used to help users to posi-
tively change behaviours such as in a more efficient water use, the system should
define a set of “incentives” to encourage positive change in user behaviours. Existing
approaches to incentives for users include obtaining reputation, points, prizes etc.,
which can be designed and deployed to motivate users to engage more and more often
in a SSN. However, planning and delivering these incentives means proposing to the
users a set of instruments to support their online and offline tasks, which can be spe-
cific to a problem domain. Moreover, these incentives can be SSN specific which
makes these problematic to be reused, accumulated or redeemed within other social
networks.

3. Interface Openness: Addressing a global issue like the efficient water usage is a
concern of the whole society, and it requires the participation of many (if not all)
water stakeholders. An SSN, even if specialised, should be designed to reach as many
audiences as possible, and part of these audiences can be also using other social net-
work systems, or expertise systems. As a result, the openness of interfaces is required
for transparency and integration between social networks. However, this poses an
inherent difficulty, in particular when the external system interfaces are unknown or
incompatible with the designed SN system interfaces (e.g., when finding a match
between user names and identities in the various SNs, etc.).

In this paper, we explore the possibility of a SSN architecture to address the above
three challenges, i.e. 1) to model and define the social interactions used in a SSN
targeting the efficient water use management at household level; 2) to model and
define the incentives that support a user’s behavioural change in online and offline
water usage; 3) to allow the system to be easily accessed or integrated within an
heterogeneous ecosystem.

The presented system architecture is currently being used in the ISS-EWATUS
project. We expect that the work presented here can serve as an additional system
architecture modelling method, on top of existing software engineering processes. We
also expect that our work can be extended and customised for designing and
implementing a SNN in other social problem domains.

The rest of the paper is organised as follows. In section 2, related works are
reviewed in terms of SSN interactions, social network’s implications on user behaviour
change and SSN access and openness. The proposed architecture is presented and
discussed in Section 3. Section 4 concludes and outlooks the work.

148 Z. Wang and A. Capiluppi

2 Related Works

2.1 Specialised Social Networks and Online Social Interactions

The reasons for why social networks are becoming one of the most popular topics
studied by both authorities and researchers can partly be attributed to the growing
number of users and different types of features made available for interacting with
users [10]. There are privacy regulations and grouping methods specially designed for
social network such as in [5] and [1], and there are also implications found from using
social networks. For example, users of social network sites are more likely to enact a
certain behaviour if they could observe their contacts exhibiting the same behaviour
before [2,3]. SSN further extends the common social network to target a niche group
of users concerning certain specialised issues. Existing SSNs from related works are
more often used as a platform to improve the quality of engineering tasks and to target
group of expert users. For example, in [11], a SSN is used to help software developers
gaining awareness of relevant software tools by enabling them to learn from their
peers. In [4] and [7], the SSN was used to empower communities to discuss and ex-
tract high-level design features or design patterns. In this work, we use a newly
developed SSN to target common users and specially defined online interactions as
a set of instruments supporting the efficient household water use management.

2.2 SSN Incentives and Behaviour Change

Incentives are often used to encourage people to engage in the activities available on
social networks. In [8] it was found that behavioural change was more likely to occur
if physical (i.e. real) rewards were offered. A virtual reward system (such as scores,
stars, reputations and badges), as one of the incentives, is a common practice in many
social networks. Gamification is a further recent development of virtual rewards and
the gamification here refers to the use of game design elements in non-game contexts
[15]. Reasons for why such a reward system is successful can be explained by using
the behavioural model proposed in [6], the model argued that activities requiring dif-
ferent difficulty levels, will also correspondingly require different motivation levels
for a person to do it.

Another type of reward is the private personal rewards which are strongly depend-
ent upon individuals and they do not have explicit forms. Individual can only expect
to receive private personal rewards by participating in social network interactions
[12,16] and these rewards cannot be measured objectively. Here, we propose to use
universal virtual rewards to be collected, reused and redeemed in an ecosystem of
SSNs, in order to encourage more quickly the expected behaviours.

2.3 SSN Access and Openness

The main challenge for SSNs thus is to share content with heterogeneous systems
including other social network systems and mobile terminals software. This is
difficult when there are a variety of candidate technical options for developing a SSN,

 A Specialised Social Network Software Architecture for Efficient Household Water 149

e.g. technologies used to build a SSN can include Java, JavaScript, AJAX, PHP,
HTML, MySQL, FOAF, SPARQL, RSS, ATOM, etc. Existing solutions are mainly
relying on communication protocol specific Web services e.g. SOAP [9] is used to
communicate with external systems for service discovery and invocation. In [17] and
[18] Restful Service is used for external systems communications. In the proposed
system architecture, Restful Web services are chosen to support data exchange be-
tween loosely coupled components including infrastructural resources such as smart
water meters and external social networks.

3 Towards a SSN Software Architecture for Efficient
Household Water Use

There are different ways to create a system architecture. The system architecture
presented here is component-based and it supports high cohesions within the compo-
nents. This allows the system to perform well-defined functions and to loose the cou-
pling between components. A component can be any software package, Web service
or module that encapsulates a related set of functions or data [13]. The advantages of
using a component based architecture include: Ease of development and deployment,
reduced cost (e.g. free third party components) and reusability.

The ISS-EWATUS SSN system architecture consists of a set of components, work-
ing together in a distributed configuration. The ISS-EWATUS social media platform
also uses resources offered by external components that are not themselves part of the
platform, e.g., smart water meters in households to monitor water consumption. Users
can interact with the system through application(s) on their mobile phone, or by using
a more traditional web browser. The architecture (see Fig. 1) groups the ISS-
EWATUS components into three categories, i.e. the ISS-EWATUS social media ser-
vice, a Web portal, and external resources. After deploying the system, we envision
the SSN will be able to provide the following features:

• Online social interactions for efficient water use: the social interactions will be
used as instruments managing efficient water use and they are defined by referring
to the efficient water use theory.

• Universal Rewards for online and offline behaviours: the expected interactive
behaviours including online interactions and offline water saving activities will be
rewarded. The metrics are based upon the data retrieved from external and internal
components handling the user activities.

• Openness: The platform will make its interfaces open for integration with other
social networking applications to share content. And its reward system will also
simplify the communication between different social networking applications.

150 Z. Wang and A. Capiluppi

Fig. 1. ISS-EWATUS social media platform system architecture

3.1 ISS-EWATUS Social Media Service

There are four subcomponents within the ISS-EWATUS social media services: the
Social Networking Data Sensing, the Reward Store, evaluation support and the Water
Use Visualisation.

Social Networking Data Sensing
The Social Networking Data Sensing is primarily used to handle the data from user
input and the data from external monitoring systems. These data include user identity,
user online activities and those from other social networks. Apart from identifying
and validating these data, the component also logs the data and dispenses the vali-
dated data to the expected components so that related components within the ISS-
EWATUS social media service can always get the expected input.

ISS-EWATUS defines a set of social networking interactions in two steps. The
first step is to define them based upon existing popular online social network interac-
tions (including sharing information; getting recommendations; organising social
events; playing games and keeping in touch with friends); The second step is to clas-
sified and tailored to support the efficient water use by referencing to the WCM (wa-
ter conservation management) theory [14]. In the WCM, there are five categories of
instruments used for efficient water use, they are: a) engineering (i.e. physical WCM
equipment); b) economics (i.e. water price related information); c) enforcement (i.e.
penalty measurements on water waste); d) encouragement (i.e. endorsement on water
conservation behaviour); e) education (i.e. distribution on water conservation knowl-
edge). Table 1 shows a set of social networking interactions defined in the ISS-
EWATUS.

 A Specialised Social Network Software Architecture for Efficient Household Water 151

Table 1. Social networking interactions in ISS-EWATUS in terms of WCM theory

Instruments Social Networking Interactions
Engineering Completing a gamification offline task and win a physical prize
Economics Sharing water readings with friends

Enforcement/
Encouragement

Reviewing information/recommendations with comments

Education Sharing tips on water conservation;
Take part in discussion;
Reviewing information/recommendations with comments;
Organising wise water use discussion;
Playing water saving educational games

Reward Store
The Reward Store plays a key role in designing the social network tasks for the users.
It is responsible for the user task design, rewards definitions, user task monitoring and
reward calculations. The system will offer a GUI (graphical user interface) for design-
ing task in terms of a set of task properties and the required time frame to complete
the tasks and rewards for the tasks. The rewards can be defined in terms of points,
badges and other virtual objects. Upon completion of tasks, the reward store will as-
sign calculated rewards to the users.

In ISS-EWATUS, the rewards are designed to be universally recognised by lever-
aging the open credit systems such as credly.com2. The benefits of doing this are two-
fold. First, this enables users to further use the rewards gained, e.g. to reuse or redeem
the rewards gained from ISS-EWATUS for other services or goods elsewhere. Sec-
ondly, this, to an extent, helps promote the integration in an ecosystem consisted of
systems of different domains especially if they share the same target users.

Evaluation Support
The Evaluation Support collects data from the reward store and the ISS-EWATUS
Data sensing. It can produce the summative results of rewarding and other social
network activities occurred within a defined time frame. The Evaluation Support is
also designed to facilitate researchers to perform scientific functions such as statistical
hypothesis tests. The stats indicators can be defined from inside or outside the ISS-
EWATUS systems depending on the system goal. For example if the system goal is to
reduce household water consumption lever by 5 %, then the indicator will be the
readings of the water meter. There are different options to retrieve the information
required by an indicator. Furthering the example above, other than asking a user to
input the readings to the social network system, the meter readings can be
automatically read by an external system, e.g. as a smart metering system used in ISS-
EWATUS where fewer human interventions are required.

2 http://credly.com/

152 Z. Wang and A. Capiluppi

Water Visualisation
The Water Use Visualizer defines the information required for describe water use
pattern such as temporal, spatial, activity and cost. Water user visualizer will offer
interfaces to receive defined data from other external components, it will also offer
interface to end users to allow them to input information that cannot be obtained from
external resources.

3.2 Web Portal

The Web Portal allows users with different access terminals such as smart phones,
PCs to access the services offered by the platform. Apart from the authentication
process provided by the ISS-EWATUS platform, users can also log in with third party
social networks credentials, such as Facebook, Twitter etc.

3.3 External Resources

The External Resources include the smart water meters and external social networks
that the platform will communicate with and they also include the household decision
support systems and water companies decision support systems. The user profiles and
water use related information can be shared among all these resources. The ISS-
EWATUS platform is able to offer anonymous online user profiles and rewarding
information to heterogeneous systems. The data exchanges are done via Restful Web
services.

4 Conclusion and Further Work

We presented a software architecture with the aim of supporting the design and the im-
plementation of a specialized social network system for managing efficient household
water use. We demonstrated how the architecture addresses the related challenges by
defining and orchestrating the proposed components. A special attention is given to the
openness of the interfaces and the interaction of the proposed architecture with an eco-
system of related platforms, with which our platform will be able to share the results of
the interactions between users as well as the points gained in the proposed activities.

The next steps are to implement and to evaluate the proposed approach in the context
of the ISS-EWATUS European project. We aim to find out how effective the social in-
teractions and incentives can influence users’ behaviours. This will be done via two
methods, one is via continuous collecting and analysing the quantitative data from the
systems including both within the platform and associated external systems; and the other
is to analyse the qualitative data periodically retrieved from questionnaires and focus
groups on using the system within and outside the project consortium.

Acknowledgement. This work has been undertaken within the framework of the ISS-
EWATUS, Integrated Support System for Efficient Water Usage and Resources Management,
FP7 project (grant no. 619228), funded by the European Community.

 A Specialised Social Network Software Architecture for Efficient Household Water 153

References

1. Borcea, C., Gupta, A., Kalra, A., Jones, Q., Tftode, L.: The MobiSoC middleware for mo-
bile social computing: challenges, design, and early experiences. In: Proceedings of Mo-
bile Wireless Middleware, Operating Systems, and Applications (2008)

2. Burke, M., Marlow, C., Lento, T.: Feed me: motivating newcomer contribution in social
network sites. In: Proceedings of the 27th International Conference on Human Factors in
Computing Systems, pp. 945–954. ACM (2009)

3. Centola, D.: The spread of behavior in an online social network experiment. Science
329(5996), 1194 (2010)

4. Dietrich, J., Jones N.: Using social networking and semantic web technology in software
engineering–use cases, patterns, and a case study. In: 18th Australian Software Engineer-
ing Conference, ASWEC 2007, pp. 129−136, April 10−13, 2007

5. Directive 2002/58/EC of the European Parliament and of the Council, July 12, 2002
6. Fogg, B.: A behavior model for persuasive design. In: Proceedings of the 4th International

Conference on Persuasive Technology (Persuasive 2009), Article 40, 7 p. ACM,
New York (2009)

7. Greenwood, P., Rashid, A., Walkerdine, J.: UDesignIt: towards social media for communi-
ty-driven design. In: 2012 34th International Conference on Software Engineering (ICSE),
pp. 1321−1324, June 2−9, 2012

8. Grizzell, J.: Behaviour Change Theories and Models: relating to health promotion and
education efforts. American College Health Association (2003)

9. Michlrnayr, A., Leitner, P., Rosenberg, F., Dustdar, S.: Publish/subscribe in the VRESCo
SOA runtirne. In: Proceedings of Distributed Event-Based Systems (2008)

10. Miklas, A.G., Gollu, K.K., Chan, K.K., Saroiu, S., Gummadi, K.P., de Lara, E.: Exploiting
social interactions in mobile systems. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 409–428. Springer, Heidelberg
(2007)

11. Murphy-Hill, E.: Continuous social screencasting to facilitate software tool discovery.
In: 2012 34th International Conference on, Software Engineering (ICSE), pp. 1317−1320,
June 2–9, 2012

12. Olson, M.: The logic of collective action: Public goods and the theory of groups. Harvard
University Press, Cambridge (1971)

13. Rainer, N.: Software Component Architecture [PDF]. http://congress.cimne.upc.es/cfsi/
frontal/doc/ppt/11.pdf

14. Savenjie, H., Van, Z.: Water as an economic good and demand management, paradigms
with pitfalls. International Water Resources Association, Water International 27(1),
98–104 (2002)

15. Sebastian, D., Dan, D., Rilla, K., Lennart, N.: From game design elements to gamefulness:
defining “Gamification”. In: Proceedings of MindTrek 2011. ACM (2011)

16. Tullock, G.: The paradox of revolution. Public Choice 11, 89–99 (1971)
17. Zhang, C., Cheng, C., Ji, Y.: Architecture design for social web of things. In: Proceedings

of the 1st International Workshop on Context Discovery and Data Mining (ContextDD
2012). ACM, New York (2012)

18. Zhong, Y., Zhao, W., Yang, J.: Personal-hosting RESTful web services for social network
based recommendation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 661–668. Springer, Heidelberg (2011)

Education and Training

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 157–168, 2015.
DOI: 10.1007/978-3-319-23727-5_13

An Approach to Software Architecting
in Agile Software Development Projects in Education

Samuil Angelov() and Patrick de Beer

Software Engineering, Fontys University of Applied Sciences, Eindhoven, The Netherlands
{s.angelov,p.debeer}@fontys.nl

Abstract. The architecting activities in agile software development methods are
weakly defined and even sometimes neglected. While there is sufficient litera-
ture on how software architectures and the architecting activities could be ap-
proached in agile projects, there is little information on how this topic should be
treated in the education of software engineering students. In this paper, we pro-
pose an approach to the architecting activities in agile software projects in a ba-
chelor software engineering course. The approach is inspired by theoretical and
industry sources and is tailored to fit our educational goals and context. Our
first experiences from the application of the approach show improved and dee-
pened treating of software architectures, clarity on the purpose of the executed
architecting activities, and improved student motivation.

Keywords: Software architecture · Agile · Method · Scrum · Teaching · Education

1 Introduction

The potential tension between software architecting and agile development methods
has been discussed in numerous publications. A general consensus seems to exist
around the value of paying explicit attention to software architectures in agile
projects. Various suggestions have been made on how to approach software architect-
ing in agile projects [1–3]. The introduction of software architectures and architecting
related activities in educational curriculums has been a topic in several publications
and multiple challenges and possible solutions have been outlined [4–6]. The coupl-
ing between agile projects and software architectures in education has not yet been
sufficiently addressed in the literature. In [7], an approach for treating software archi-
tectures in agile projects in education is discussed. The approaches focuses on the
architecture design phase in agile projects and specifically on the role of the stake-
holders in it but does not address the actual dynamics of an agile project.

In our curriculum, we have a course in which software systems are developed by
groups of students using an agile (Scrum-based) method. Among others, the students
need to apply and demonstrate in this course competences in system design. In the
past, we have required the design and documentation of the system’s software archi-
tecture but did not provide any further guidance on how this had to be done in an agile
project, relying on knowledge on software architectures from a previous course. We

158 S. Angelov and P. de Beer

have observed the lack of motivation among students to deepen on the software archi-
tecture aspects, focusing primarily on the development process. The system architec-
ture was hastily and superficially discussed in the teams at the beginning of the
projects and documented at the end of the projects to pass the course, without realiz-
ing the purpose and benefits of architecting in an agile project. To improve the educa-
tional process, we need to redesign the course in a form where software architectures
receive proper attention from the students in a non-enforced manner, ensuring under-
standing of the values of software architecting in agile projects. The challenges are,
however, of dual nature. An approach for treating software architecting in agile stu-
dent projects needs to resolve traditional problems in teaching and applying software
architectures in combination with the challenges introduced by the agile practices
which do not emphasize the architecture topic.

In this paper, we present our approach towards the treatment of software architec-
tures in agile software projects in education. We have reviewed publications in the
area of software architectures, approaches to software architectures in agile software
development, and teaching of software architectures. In parallel, we conducted inter-
views with practitioners to collect data on how software architecting in agile projects
is treated in the industry. The results from these two sources of information provide us
with the basis for the definition of our approach.

The paper is structured as follows. In section 2, we present our context. In Sec-
tion 3, we discuss our finding from the sources reviewed. In Section 4, we present our
approach. In Section 5, we discuss our first experiences and lessons learned. We end
the paper with conclusions.

2 Context and Status

Fontys University of Applied Sciences focuses on teaching practice oriented know-
ledge and skills. Upon completion of their studies, students from the software engi-
neering bachelor school are skilled software engineers. The course with an acronym
PTS4 is 6 ECTS credits (European Credit Transfer and Accumulation System credits)
and is given in the second semester of the second year of the software engineering
study. PTS4 is a project-based course, i.e., knowledge from other courses is applied in
this course for the design and development of a software system. PTS4 focuses on
applying agile practices in a Java-based, software development project. PTS4 is pre-
ceded by a project course PTS31. The students work in groups of 5-6 students for 18
weeks. The students are allowed to form the groups themselves, which typically leads
to balanced groups in terms of skills, interests and motivation. Each week, the stu-
dents work one full day on the project in a dedicated project room. On a weekly basis,
the students are visited in the project room by their Product Owner (PO) and Tutor
(typically both roles are performed by one teacher). Scrum masters are students from

1 In PTS3, a waterfall-based software development method is used. The students follow a path for

requirements elicitation and documentation, architecture elicitation and documentation, imple-
mentation, testing. They elaborate an architecture document consisting of use case, class,
sequence, component and deployment diagrams and a list of non-functional requirements.

 An Approach to Software Architecting in Agile Software Development 159

the teams. A commercial tool for agile project management (which also allows time
management) is used by all groups. The project is divided into 4 sprints of 4 weeks
with a couple of weeks left as spare. The project is based on a predefined case (“Pho-
toStore”) for the development of an on-line shop for ordering of customized photos
optionally printed on a product. In terms of quality attributes, the focus in this project
lies mainly on usability, security, and performance. Example architectural choices that
student face are: desktop versus web application, type of clients to the main applica-
tion, communication techniques, security approach, storage and access of photos. The
case lacks novelty and is therefore of a somewhat trivial architecture nature: “most
projects are not novel enough to require a lot of architectural effort” [8]. Typically,
the discussion, evaluation and documentation of a software architecture is a nuisance
for the students. They do not perceive any value in performing these activities and
prefer to focus on software development. Discussions on the architecture take 5-10
minutes, with no attention being paid to the quality attributes. Although, the students
know what quality attributes are, their understanding of the value of architecting and
the role of quality attributes is rather limited. The combination of low architecture
complexity and little attention on quality attributes and architectural choices often
results in functionally satisfactory software products but partially or fully disregarding
crucial quality attributes. Low-level designs (class diagram, database model) are made
by the students primarily influenced by the way of working in PTS3. Due to the lack
of an incentive (no future usages, lack of communication obstacles, and non-
demanding POs), the motivation for documenting a software architecture is low and is
done only to satisfy the course requirements.

3 Sources of Inspiration

To accumulate knowledge for our course re-design, we have studied literature on
software architectures and on approaching them in agile projects and in education.
Furthermore, we have interviewed software companies from the region where our
students get predominantly employed.

3.1 Literature on Software Architectures and their Usage in Agile Projects

On software architectures: The architecting process involves the analysis, synthesis,
documentation, and evaluation activities [15]. The software architecture of a soft-
ware-intensive system is created in the early development phases and evolves
throughout the whole development cycle [16]. An overview of software architecture
methods can be found in [17]. The term software architecture has been attributed
various definitions. For example: “the set of structures needed to reason about the
system, which comprise software elements, relation among them, and properties of
both” [9] focuses on the structure aspect. Other definitions view design decision as
the focus of software architectures [10], stating that a software architecture reflects
“the major design decisions made” [5], and that “the actual structure, or architectural
design, is merely a reflection of those design decisions” [11]. Architectural decisions

160 S. Angelov and P. de Beer

“capture key design issues and the rationale behind chosen solutions” [12]. However,
as argued in [9], in agile projects some decisions are made later on throughout the
project, and it is hard to justify whether a decision is major. Furthermore, as Kruchten
notes, architectural decisions should not be mixed with software design and code
decisions [8]. The study in [13] shows that “compared to senior architects, junior
architects spend a quarter of the time on making a decision”. Documenting decisions
may be highly practical in agile projects: “If an architect doesn’t have time for any-
thing else, these decisions can provide a concrete direction for implementation and
serve as an effective tool for communication to customers and management” [14].
With respect to the documentation of decisions a number of publication propose solu-
tions. The IBM’s e-Business Reference Architecture Framework is used in [14] to
propose a template for the documenting of decisions. It is suggested that if a system
quality is affected by a decision it needs to be documented.

On software architectures in agile development: In [15], the editors predict that
“Software architecture will be recognized as a key foundation to agile software devel-
opment”. Few years later, this line is continued in a special issue of IEEE Software
focused on the relationship between software architectures and agile practices. In its
editorial, Abrahamsson et al. [2] provide a number of advises on the usage of software
architectures in agile projects: making the architectural decisions “early enough”,
defining an architecture owner who is part of the team, usage of architectures for im-
proving communication and coordination in complex projects and settings (e.g.
distributed teams). They also state: “If agile developers don’t consider software archi-
tecture relevant to their day-to-day activities, it would be difficult, even impossible, to
convince them to use architectural principles and integrate artifacts in agile develop-
ment”. In [8], Kruchten binds the need for architectural activities and their size with
the project context (e.g., project size, criticality, risks). In [16], the authors conclude
that practices of software architectures and especially the focus on quality attributes
can lead to improvement of projects executed with agile methods. They recommend
focus on the overall system structure (shaped by the quality attributes) in the first
iteration and subsequently in later iterations when changes are needed. In [17], the
value of an architecting team in large-scale agile projects is reported. In [18], a study
among IBM professionals reveals that architecting activities are highly relevant for
agile developers. Communication, assumptions documentation, validation are sup-
ported through architectures. The project complexity also influences the architecture
relevance (distribution, size, number of stakeholders).

On documenting software architectures in agile projects: Architecture documenta-
tion (and time associated with it) in agile projects is one of the roots of the tension
between agile development methods and software architecting: “In an agile process,
the team doesn’t have time to wait for the architect to completely develop and docu-
ment the architecture” [14]. In [19], the values and impediments of documenting
software architectures in agile projects are discussed. Architecture documentation
may serve to: get on board new project members quickly, for future usage (project
transfer to another team/phase), quality assurance, or as domain knowledge reposito-
ry. However, documenting of changing issues can be a wasted effort. Boehm [20]
notes that for unpredictable projects decreasing the documentation effort may work,

 An Approach to Software Architecting in Agile Software Development 161

while for projects with predictable requirements this approach may miss useful archi-
tectural practices and may have even negative impact by not allowing external re-
viewers to detect mistakes due to the lack of documentation. An approach to the usage
of the SEI method for documenting software architectures in agile methods is pro-
posed in [21]. Initially, the views to be documented and the project stakeholders inter-
ested in them are identified. Then, documentation is done on the need-to basis with
minimum need for rework. It is advised to document rationale early and throughout
the project as postponing this for the end of the project may lead to omissions of
choices made, insights, etc. Kruchten considers all possibilities for architecture docu-
mentation: documentation in code, with metaphors, diagrams, complete architecture
document, etc. depending on the project context [8]. In [22], the documentation was
reduced to component diagrams and design decisions published on a wiki.

On architects in agile projects: A study among 10 professionals [22] revealed the
existence of three types of architects: one on the client side (software architect), one
with management functions (solution architect), and one responsible for the actual
implementation in the team (management architect). The first and the latter roles are
proposed also in [2,8]. The high-level architecture would be drafted by the software
architects and the design decisions and concrete architecture by the implementation
and solution architects.

3.2 Literature on Teaching Software Architectures

A course focusing on the analysis and evaluation of software architectures and building
a knowledge-base for their design is presented in [4]. The course is targeted at master
level students and presents the main ingredients of classical software architecture
courses. The authors of [5] classify the courses on software architectures as either focus-
ing on the “tools” to design software systems (patterns, languages, etc.) or focusing on
communication aspects of software architectures. They discuss their experiences from
two master-level courses focusing on the communication aspects. The objectives of the
courses are to teach selection and development of architecture views and architecture
assessing and do not incorporate system development activities. The courses follow an
architecture-centric approach, where stakeholders should be involved and functional and
non-functional requirements are simultaneously addressed during the architecture de-
sign process. In [6], the problems of teaching software architectures in academic, non-
industrial settings are identified. As main challenges are seen the isolated nature of an
academic course and therefore the lack of realistic context (starting from scratch, non-
existent stakeholders) and the lack of the inherent fuzziness and complexity of industrial
scenarios. Furthermore, as the authors point out, the students lack the experience of
solving complex design problems and profound knowledge for the application domain.
The authors describe an advanced master-level course designed to teach software archi-
tecting as a team effort in a complex problem environment. The architecting team re-
ports to a “Board” (formed by staff members) which considers the solutions and makes
choices. The board exemplifies to some extend the multiple stakeholders, working in
context challenges delineated above. In [7], a course on tackling software architectures
in agile projects is presented. The approach in [7] provides us with valuable directions

162 S. Angelov and P. de Beer

on architecting in agile projects. However, our course setup leads to different pedagogi-
cal goals and challenges (which we discuss in Section 4.1). In [23], an agile software
development project course is described, where architecting activities take place in
week 3. However, the architecting issues in agile projects are not extensively discussed.

3.3 Industry Study

In total, 12 companies implementing some form of agile software development (pre-
dominantly Scrum) were interviewed by students using a standardized questionnaire.
The companies were small (3-4 developers), medium, and large (e.g., a bank). Inter-
views were held with developers, scrum masters, and project leaders. Naturally, the
architecting practices varied substantially among the companies, depending on their
domain, maturity, size, etc. Ten of the companies spend dedicated time in the begin-
ning of the project to shape the overall architecture. One company does it on the fly
and one does not spend time on architecting. One company has a two-step process of
architecting. They discuss first a “functional architecture” with the Product Owner
and then they elaborate a “technical architecture”. Documenting of architectures va-
ries from documenting at the beginning of a project (3 companies), per sprint (5 com-
panies), or at the end if necessary (2 companies). Generally, the aim is to minimize
documentation effort. One company stated that documentation effort depended on the
project client and the team. As minimum companies document components/structures
and their relations. One company stated explicitly that they document the architecture
design choices. At one company is made use of a wiki for the architecture documenta-
tion. In [24], the experiences of a partner company of our school (among those inter-
viewed) are reported. It is strongly advocated that quality attributes, architecture envi-
sioning and system architecting are paid substantial attention from the beginning of
the project, having in mind to only document what needs to be documented.

4 Course Design

Next, we present our main pedagogical considerations, the decisions that we made,
rationale behind them, and the course setup.

4.1 Considerations

Our course design was influenced by a set of situational factors (as defined in [25]):

• General context: Our curriculum implied the application of an architecture-centric
approach in the course (similar to the approaches in [5] and [7]).

• Characteristics of the learners (second year bachelor students):
─ capabilities: The Dutch education system predefines the students of applied

universities as students predominantly interested in applying knowledge. This
opens opportunities for students who are less inclined to reflect on the theoreti-
cal aspects of a problem, but it does not exclude students with capabilities for
deeper reflections.

 An Approach to Software Architecting in Agile Software Development 163

─ motivation: A student needs to be motivated during the course for achieving best
learning results. Our students motivation is heavily influenced by the project
case (realism, comprehension), degree of challenge (too easy or too difficult
projects demotivate students), practical relevance of the course activities, and
direct knowledge application.

─ maturity: As indicated in literature, junior developers (and even more bachelor
students in an applied university) have difficulties in reflecting on architectural
decisions due to their lack of experience and knowledge [6,13].

• Nature of the subject (architecting in agile projects): The project context defines
the reasons to conduct architecting activities explicitly and in an organized manner
[8,18]. To create an architecting suitable context, a project needs to be of sufficient
complexity [6]: big enough, involving several quality attributes and should offer
room for taking non-trivial architectural decisions (non-stable architecture) [8,16].
The project needs to be with relatively predictable requirements [20]. A desired
contextual factor is team distribution or other communication or coordination hin-
dering factors [2].

4.2 Course Design Decisions and Rationale

Based on the literature and industry input, and the situational factors discussed in
Section 4.1, we have taken a number of decisions for our approach.

• Project case: We have decided to offer several cases to address the motivation
factor. Students are allowed to choose the case that motivates them the best. The
cases differ in degree of complexity (to address the diversity of student capabili-
ties) and in types of architectural challenges offered (team distribution, room for
architectural decisions, number of quality attributes, etc.).

• Process organization: We have decided to introduce an architecture role (as sug-
gested in [2,22,26]) in order to anchor the architecting activities with clear respon-
sibilities and to stimulate the professional development of students (related to the
general context factors). This role is assigned to a volunteering student from the
group for the project duration.

• Architecture elicitation:
Similar to the approach in [7], we have decided to dedicate explicit time for the ar-
chitecture design activities in the beginning of the project as there architecting
would take place anyway [8] (see Section 4.3, week 1 and 2). In addition, in each
sprint, the teams revisit their architecture and if needed adapt it.

• Documenting:
─ When: We have decided to dedicate time in the beginning of the project for the

documentation of the initial architecture design (document rationale early and
throughout the project [21]) and to stimulate documentation of architectural
changes at the end of each iteration.

─ What: As minimum, we require documentation of a list of stakeholders identi-
fied, their concerns (based on [27]), a high-level architecture and rationale for
the decisions made [14]. This content was selected as it is of direct value for the

164 S. Angelov and P. de Beer

Product Owner [8] and is therefore realistic requirement (related to the motiva-
tion factors). Following the agile principles, the teams could (but not necessari-
ly) document detailed design aspects (class diagrams, sequence diagrams, data-
base models, etc.) if they perceive this as relevant and useful for the team or
needed in the context of the project.

─ Why: To motivate documenting in addition to the practical relevance stimuli, we
introduced a number of stimulating contextual factors. As part of the school in-
ternational activities, one project case involved co-operation on the project with
Finish students (introducing team distribution [8]). A second project case stimu-
lated the involvement of two or more groups working on it, introducing com-
munication and synchronization challenges (which foster documenting). A third
case involved a real client, which makes documenting a needed activity. Last
but not least, the need was introduced for the PO to be able to quickly look-up
architectural choices per group (as the PO has to switch between numerous
groups loosing track of the group choices).

─ Where: We offered the teams to document either in a traditional document or in
wiki page in the agile management tool aiming at reducing the risk of decoupl-
ing the development process from the architecture document [22,28]. We did
not offer to include the stakeholders’ concerns in sprint backlogs as concerns
live beyond a sprint.

─ How: The teams were allowed to document minimalistic and efficient (e.g. pho-
tos of drawings instead of diagrams) in alignment with the agile lean principles.

• Backlog content: To support the team in managing their workload, we allowed
them to put in the sprint backlog architecting activities [29]. As students are unex-
perienced in having options to consider and in making choices, we encouraged
them to plan architecture and technology spikes (related to the maturity factor).

4.3 Course Organization for the Architecting Activities

Next, we describe the organization of the architecting activities within PTS4.

1. In week 1 (4h), the students form groups, familiarize themselves with the set of
available cases, select a scrum master and an architect. The existing knowledge on
software architectures is revisited, focusing on stakeholders, non-functional re-
quirements and their interplay with the architectural decisions. After the selection
of a case, each group, in a discussion with the PO, identifies and lists the stake-
holders and their business goals. Next, in a discussion with the PO, the project
backlog is populated with user stories. Throughout the week, the architects in col-
laboration with the rest of the team need to elaborate an architectural proposal with
rationale for the choices made. The reason to expand this activity beyond the les-
son is that students need time to reflect on the problem, to research possible solu-
tions and their advantages and disadvantages. Team members may be involved in
elaborating detailed designs when a team decides to do so.

2. In week 2 (4h), the architects present their proposals to the PO (the high-level ar-
chitecture and the rationale for the choices made). The PO reflects on the proposal.

 An Approach to Software Architecting in Agile Software Development 165

The discussion is centered around the interplay between the stakeholders’ goals
and the architecture proposed. In the rest of the lesson time, the team works on the
scrum-related activities (e.g., estimates user stories, prepares sprint 1).

3. In week 3, the PO may make certain adaptation to the sprint backlog and the team
can begin working on the sprint tasks.

4. During the sprint or at its end, the team is allowed to adapt the architecture if
needed. The rationale for a change is recorded and is discussed with the PO.

5. At the end of the sprint and the beginning of the next one, the PO reviews the ar-
chitecture document (and if there were changes applied to it in the last sprint). The
team and the PO reflect on the architecture and the stakeholders concerns - are
changes needed, are the architecture choices still in compliance with the goals, etc.

Steps 4 and 5 are repeated for each sprint. The final architecture document/wiki is
handed in in week 18 and the architecting process and decisions are revisited in a
discussion with the Tutor.

5 Initial Experiences and Lessons Learned

We have applied our approach for the first time in the beginning of 2015. 64 students
in 12 groups with 2 teachers acting in the role of PO were involved in the experiment.
The students were offered three cases: CIMS (Crisis Information Management Sys-
tem) representing an architecturally complex case, PhotoStore (representing an archi-
tecturally less challenging case), and The Hub (a system comparable to the PhotoS-
tore system but requested by an actual client). The international project planned as a
distributed effort was not included in the experiment due to organizational problems
in it. Five groups have chosen to work on the CIMS case (of which 3 in a collabora-
tive project), 1 group executed a project for a real client and 6 groups selected the
PhotoStore case. Currently, the project is in its 10th week.

The explicit focus in week 1 and 2 on the architecting activities had a clear, posi-
tive effect. Compared to earlier course executions, the students spent time on the
software architecture and the decisions were made in a conscious way in discussions
with the PO. Input and questions from the PO resulted in changes of initial choices or
in their better argumentation. The students have realized (and stated this) that stake-
holders have different perspectives and may have conflicting concerns. One PhotoS-
tore group and 2 CIMS groups needed also week 3 for architecture elicitation activi-
ties. Our conclusion is that the work on the major architectural choices may be given
space also in week 3 of the project. The CIMS groups left architectural choices open
for later sprints where more time would be available to accumulate knowledge and
where the context would be better known (e.g., push/pull strategy between certain
components). The three collaborating CIMS groups stated explicitly that the architect-
ing activities helped them in coming to a common understanding of the system struc-
ture and for the work division among the teams. In Sprint 2, several of the groups
needed to revisit their initial choices. For example, in a CIMS group a new type of
client application had to be added and in a PhotoStore group, a desktop client needed
to be added to the initially envisioned web solution.

166 S. Angelov and P. de Beer

In terms of documentation, the needs of the PO and the team needs were the main
driving factor to document. Several teams have documented class diagrams and one
group has discussed classes but did not document them. The general feeling among
students was that class diagrams had little value for them and only one group using
the Spring framework needed them. They have acknowledged that they have docu-
mented them influenced by previous school requirements. Most groups made ERD
diagrams claiming that this was important for the team synchronization and commu-
nication. All CIMS and PhotoStore teams had difficulties in communicating their
architectural choices to the PO and documenting them. They found it difficult to
translate the desired quality attributes into relevant architectural decisions. At the end,
all groups used some variant of deployment diagrams accompanied by textual clarifi-
cations as a means to communicate their major architectural choices. However, dep-
loyment diagrams were unsuitable to express many of their choices which introduced
a communication gap with the PO. We conclude that the refreshing lecture needs to
focus on the high-level nature of architectures and be extended with information on
functional modeling [30] and with architectural patterns that address certain project
related quality attributes. In a discussion with the students, they have all approved this
conclusion. They have also pointed out that for the PhotoStore case the functional
modeling and patterns knowledge would be less crucial. The majority of groups have
documented their architecture decisions in a word document. One group used an ar-
chitecture wiki and one group resorted to photos in combination with diagram pic-
tures. The group working for an actual client did not document any of their decisions
in their first sprint. They were focused on making the decisions and discussing them
with the stakeholders instead of documenting them. The omission to document their
choices led to a misunderstanding with the PO and a delay of their project.

All groups embraced the inclusion of architectural activities in the backlog which
they saw as protective mechanism, explicating their work on non-coding activities to
the PO. The introduction of the architect role led to the explicit allocation of responsi-
bility in the group on the architecting activities and served as an additional stimuli for
the students to focus on architecting. The collaborating CIMS groups decided to have
architecting discussion with a limited number of team representatives. They have
involved the group architect and a second team member, limiting the discussions to a
group of 6 people (instead of 15 they started off with).

The offering of cases of higher and lower architectural complexity has proven a
valuable experiment. All groups felt sufficiently motivated. They could also work
within the scope of their architectural capabilities and interests. Clearly, the PhotoS-
tore case offers less architectural challenges than the CIMS case. This differentiation
in the architecting competences demonstrated by the students in the project would be
reflected in their personal development portfolios, currently adapted to reflect differ-
ences in competences demonstrated in a course.

6 Conclusions

We present an approach to introducing architecting activities in agile software devel-
opment projects in education. Our approach is based on industry and academic ap-
proaches to architecting in agile projects. The application of the approach has led to

 An Approach to Software Architecting in Agile Software Development 167

an improved and deepened treating of software architectures in the agile projects per-
formed by the students. The strategies selected to introduce and motivate architecting
activities in agile projects have proven to be effective and students have performed
the activities (e.g., deliberating, designing, documenting) with the realization of their
value for the project and in a non-enforced manner. We observed a knowledge gap in
our education which hindered the students in producing architectural views relevant
for the PO. This omission will be remedied in the next course execution.

The results presented in this paper are of value to other educational institutions
where agile software development projects are part of the curriculum. Our approach is
targeted to second year, applied study, software engineering students but it can be also
used in higher years with minor modifications.

References

1. Breivold, H.P., Sundmark, D., Wallin, P., Larsson, S.: What does research say about agile
and architecture? In: 2010 Fifth International Conference on Software Engineering Ad-
vances (ICSEA), pp. 32−37 (2010)

2. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and Architecture: Can They Coexist?
IEEE Software 27, 16–22 (2010)

3. Sharifloo, A.A., Saffarian, A.S., Shams, F.: Embedding architectural practices into
extreme programming. In: 19th Australian Conference on Software Engineering, ASWEC
2008, pp. 310−319 (2008)

4. Garlan, D., Shaw, M., Okasaki, C., Scott, C., Swonger, R.: Experience with a course on
architectures for software systems. In: Sledge, C. (ed.) Software Engineering Education,
vol. 640, pp. 23–43. Springer, Heidelberg (1992)

5. Lago, P., Van Vliet, H.: Teaching a course on software architecture. In: 18th Conference
on Software Engineering Education & Training, pp. 35−42 (2005)

6. Mannisto, T., Savolainen, J., Myllarniemi, V.: Teaching software architecture design.
In: Seventh Working IEEE/IFIP Conference on Software Architecture, WICSA 2008,
pp. 117−124 (2008)

7. Cleland-Huang, J., Babar, M.A., Mirakhorli, M.: An inverted classroom experience: en-
gaging students in architectural thinking for agile projects. In: Companion Proceedings of
the 36th Int. Conf. on Software Engineering, pp. 364−371. ACM, Hyderabad (2014)

8. Kruchten, P.: Software architecture and agile software development: a clash of two
cultures? In: ACM/IEEE 32nd Int. Conf. on Software Engineering, pp. 497−498 (2010)

9. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional (2012)

10. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions.
In: 5th Working IEEE/IFIP Conference on, Software Architecture, WICSA 2005, pp.
109−120 (2005)

11. de Boer, R.C., van Vliet, H.: On the similarity between requirements and architecture.
Journal of Systems and Software 82, 544–550 (2009)

12. Zimmermann, O.: Architectural Decisions as Reusable Design Assets. IEEE Software
28, 64–69 (2011)

13. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of architectural decisions – A survey with
professional architects. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 192–199.
Springer, Heidelberg (2013)

168 S. Angelov and P. de Beer

14. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE Software
22, 19–27 (2005)

15. Kruchten, P.: The past, present, and future for software architecture. In: Henk, O., Judith,
S. (eds.) IEEE Software, vol. 23, pp. 22−30 (2006)

16. Nord, R.L., Tomayko, J.E.: Software architecture-centric methods and agile development.
IEEE Software 23, 47–53 (2006)

17. Lindvall, M., et al.: Empirical findings in agile methods. In: Wells, D., Williams, L. (eds.)
XP 2002. LNCS, vol. 2418, pp. 197–207. Springer, Heidelberg (2002)

18. Davide, F.: Peaceful coexistence: agile developer perspectives on software architecture. In:
Giovanni, C., Salvatore Alessandro, S., Giuseppe, C., Paolo, S., Cristiana, D.A. (eds.)
IEEE Software, vol. 27, pp. 23−25 (2010)

19. Coram, M., Bohner, S.: The impact of agile methods on software project management. In:
12th IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS 2005, pp. 363−370 (2005)

20. Boehm, B.: Get ready for agile methods, with care. Computer 35, 64–69 (2002)
21. Clements, P., Ivers, J., Little, R., Nord, R., Stafford, J.: Documenting Software Architec-

tures in an Agile World. Technical Note CMU/SEI-2003-TN-023, Carnegie Mellon
University (2003)

22. Babar, M.A.: An exploratory study of architectural practices and challenges in using agile
software development approaches. In: Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture, WICSA/ECSA 2009,
pp. 81−90 (2009)

23. Lee, J., Kotonya, G., Whittle, J., Bull, C.: Software design studio: a practical example. In:
37th Int. Conference on Software Engineering (ICSE 2015), pp. 47−55. IEEE (2015)

24. Schoeber, G.: Architecture and agile, friends or enemies? (presentation). In: SATURN
2010, Minneapolis, MN (2010)

25. Fink, L.D.: Creating Significant Learning Experiences: An Integrated Approach to Design-
ing College Courses, 2nd edn. Jossey-Bass (2013)

26. Faber, R.: Architects as Service Providers. IEEE Software 27, 33–40 (2010)
27. Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures. Technical

Report CMU/SEI-2005-TR-021, ESC-TR-2005-021, Carnegie Mellon University (2005)
28. Clerc, V., Vries, E.D., Lago, P.: Using wikis to support architectural knowledge manage-

ment in global software development. In: Proceedings of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge, pp. 37−43. ACM, Cape Town (2010)

29. Madison, J.: Agile Architecture Interactions. IEEE Software 27, 41–48 (2010)
30. Brinkkemper, S., Pachidi, S.: Functional architecture modeling for the software product

industry. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 198–213.
Springer, Heidelberg (2010)

Learning Objectives for a Course
on Software Architecture

Arvind W. Kiwelekar(B) and Hansaraj S. Wankhede

Department of Computer Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere,

Raigad 402103, Maharashtra, India
{awk,hswankhede}@dbatu.ac.in

Abstract. Many universities have started to offer a course on the emerg-
ing discipline of Software Architecture at either graduate or under-
graduate levels. As a result, educators are facing many challenges with
respect to which topics to be included in a course on Software Archi-
tecture and for which architectural abilities students should be trained
and assessed. One way of addressing these challenges is to clearly specify
learning objectives for a course on Software Architecture. In this paper,
we present a set of learning objectives and its classification using Revised
Bloom’s Taxonomy (RBT). The analysis brings out the generic cognitive
skills required for architecture modeling. One of the potential benefits of
classification of learning objectives is that different educational processes
such as instruction, learning and assessment can be effectively aligned
using the classification of learning objectives presented in the paper.

1 Introduction

Learning objectives play a central role in outcome-based education. A set of learn-
ing objectives helps instructors to systematically plan the course delivery. Instruc-
tors can also use them to set realistic targets to be achieved during the limited
span of an academic semester. In addition to this, demonstrating the achieve-
ment of learning objectives is one of the mandatory requirements of accreditation
bodies (e.g., National Board of Accreditation in India). Hence, a set of learning
objectives needs to be specified during the process of course development. In this
paper, we present a course on Software Architetcure (Section 3) along with its
learning objectives. The course design, is based on knowledge areas specified in
Software Engineering Body Of Knowledge (SWEBOK) [1]. The course includes
software architecture related topics from the SWEBOK ’s knowledge areas. Fur-
ther, Bloom’s Taxonomy [2] (Section 2) of educational objectives is used to orga-
nize the learning objectives. The analysis presented in Sections from 4 to 6 is useful
to instructors in two different ways. Firstly, the analysis of learning objectives will
help instructors to select an appropriate instructional methodology (e.g. Collab-
orative Learning, Experiential learning). Secondly, analysis will also be useful to
design assessment instruments (e.g., quizzes and examinations) thus co-relating
student’s performance with learning objectives.
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 169–180, 2015.
DOI: 10.1007/978-3-319-23727-5 14

170 A.W. Kiwelekar and H.S. Wankhede

Remember Understand Apply Analyze Evaluate Create

Factual Knowledge

Conceptual Knowledge

Procedural Knowledge

Meta-Cognitive Knowledge

Fig. 1. Classification categories in Revised Bloom’s Taxonomy

2 Bloom’s Taxonomy: Background

Bloom’s taxonomy was originally defined by Benjamin Bloom [3] to organize
educational objectives. Later it has been revised by Anderson et al. [2] and the
taxonomy is referred to as Revised Bloom’s Taxonomy (RBT). In the RBT,
educational objectives are organized along two dimensions of cognitive processes
and knowledge categories. The columns of the table represent cognitive dimen-
sion while rows represent knowledge dimension. Six cognitive process categories
are: Remember, Understand, Apply, Analyze, Evaluate and Create [2]. The four
knowledge categories are: Factual, Conceptual, Procedural and Meta-Cognitive.
[2]. Figure 1 shows the organization of educational objectives in a tabular form.

Some of the other alternative taxonomies which can also be used to orga-
nize educational objectives are the taxonomies of King and Kitchener [4] and
Structure of Observed Learning Outcome [5]. These taxonomies are reviewed
and compared with RBT in [6]. In this paper, we use RBT mainly because it
is the predominately used taxonomy for specifying learning objectives, course
design and assessment activities in the field of Computer Science Education [6].

2.1 Learning Objectives

Learning objectives are typically associated with an instructional activity to
make it as an outcome-based activity. Learning objectives are broadly classified
based on its scope into three categories namely global, educational or instruc-
tional. Global objectives are broad in its scope such as the objective: Students will
be able to develop architectural thinking and they will apply it to build large and
complex software systems. The time required to achieve a global objective spans
over a long period. Educational objectives can be achieved during a semester or a
month or a week. For example, the objective: Students will acquire the knowledge
of various approaches to document a software system. An instructional objec-
tive is very narrow in its scope and can be used either to prepare lesson plans
or to schedule instructional activities. An example of instructional objective is:
Students will be able to classify requirements into functional and non-functional
categories. Most of the learning objectives described in this paper fall in the
categories of instructional and educational objectives. They are formulated with
an intention to schedule instructional activities and to design examinations.

Learning objectives essentially capture two aspects of educational processes.
First, a learning objective specifies behavior to be developed in a student out

Learning Objectives for a Course on Software Architecture 171

of an educational activity. This behavioral aspect is known as cognitive dimen-
sion in RBT. Second, a learning objective captures the type of content to be
acquired during an educational activity. This content aspect is referred to as
knowledge dimension in RBT. Grammatically speaking, a verb in a learning
objective captures the cognitive dimension and corresponding noun captures the
knowledge dimension. For example, in the learning objective Students will be
able to classify requirements into functional and non-functional categories. The
verb classify captures the cognitive dimension and the noun-phrase functional
and non-functional requirements represent knowledge dimension.

2.2 Cognitive Processes in RBT

The cognitive process dimension in RBT is broadly organized in six different
categories namely Remember, Understand, Apply, Analyze, Evaluate and Cre-
ate [2]. The category Remember captures the activity of retrieving knowledge
from long-term memory. The activities of recognizing and recalling information,
objects and events belong to the Remember category. The category Understand
means to construct the meaning out of the learning material presented in the
form of either lectures or notes. The acts of interpreting, exemplifying, classify-
ing, summarizing, inferring, comparing, and explaining belong to the category
Understand. The third category Apply refers to carry out or use a procedure in
a given situation and it includes the acts of executing and implementing. The
fourth category of Analyze refers to breaking down the learning material into
its part and to relating parts to establish overall structure. The acts of differ-
entiating, organizing and attributing are considered as analytic processes. The
fifth category Evaluate means the acts of checking and making judgments based
on some criteria. The last cognitive process category from RBT is Create and
it means the acts of generating, planning and producing some product.

2.3 Knowledge Dimension RBT

The knowledge dimension in RBT is classified into four categories of Factual,
Conceptual, Procedural and Meta-cognitive knowledge [2]. The factual infor-
mation about specific terminologies (e.g., component, modules, views) and basic
elements that students must be well versed with are captured under the factual
knowledge. The conceptual knowledge category includes the knowledge about
classification categories, principles, models and theories. Some examples of con-
ceptual knowledge from software architecture are knowledge about patterns,
styles, and design rules. The knowledge about procedures, methods, algorithms
are included under the category of Procedural Knowledge. Few examples of pro-
cedural knowledge are methods for architecture reconstruction and methods for
mapping programming elements to architectural elements. The last category
meta-cognitive knowledge corresponds to knowledge about cognition itself and
understanding one’s own cognitive abilities.

172 A.W. Kiwelekar and H.S. Wankhede

Table 1. Software Architecture: Course Content

Knowledge Areas Topics Subtopics

Requirements
Engineering

Requirements
Analysis

Architectural Design and Requirements
Allocation

Software Design Key issues in Software
Design

Concurrency, Control and Handling of
events, data persistence, distribution
of components, error and exception
handling, interaction and presentation,
Security.

Software Structure
and Architecture

Architectural Structures and View-
points, Architectural Styles, design
patterns, architecture design decisions,
families of programs and frameworks

Software Design Nota-
tions

Structural and behavioral descriptions

Software Design Qual-
ity Analysis and Eval-
uation

Quality Attributes, Quality Analysis and
Evaluation Techniques, Measures

Software Engineer-
ing Management

Initiation and Scope
definition

Determination and negotiation of
requirements, feasibility analysis

Software Project Plan-
ning

Risk and Quality Management

3 Course Design

The course design includes two activities namely defining course content and
defining learning objectives. First, Table 1 describes the course content. The
course is designed with reference to the Knowledge Areas (KA) described in the
SWEBOK. The course includes three different KAs that are relevant to design,
document, analyze and evaluate software intensive systems. The selection of a
particular KA is based on the criteria that the topics included a KA are also
covered by leading conferences on Software Architecture (e.g., ECSA, WICSA)
and availability of learning resources in the form of technical papers and books.
Being the nature of the course is an introductory one, the course content aims to
achieve broad-ness in terms of range of topics. Second, the learning objectives are
defined to achieve, in general, ABET’s (Accreditation Board of Engineering and
Technology) attribute of an engineering graduate [7] and particularly hard-core
engineering skills [8] such as problem solving and system design.

4 Requirements Engineering

The topic on Requirements Analysis from the Requirements Engineering KA is
included in the course. Students require the knowledge of requirements analysis
to identify architecturally significant requirements. At the end of this unit, stu-
dents are expected to acquire the skills to classify requirements under various

Learning Objectives for a Course on Software Architecture 173

Table 2. Requirements Analysis: Learning Objectives

Identifier Learning Objectives Cognitive
Category

Knowledge
Category

LO1 To detect and resolve conflicts between require-
ments.

Analyze Conceptual

LO2 To discover the bounds of the software in terms
of organizational and operational environment.

Analyze Conceptual

LO3 To describe software requirements through con-
ceptual models.

Create Conceptual

LO4 To classify requirements into functional and non-
functional requirements

Understand Conceptual

LO5 To classify requirements into product require-
ments and process requirements

Understand Conceptual

LO6 To classify requirements into volatile and stable
requirements

Understand Conceptual

LO7 To define the scope of requirements i.e. global ver-
sus component specific requirements.

Understand Conceptual

LO8 To prioritize requirements. Understand Conceptual

LO9 To allocate requirements to architectural compo-
nents.

Create Conceptual

categories such as functional vs non-functional, global vs component specific,
volatile vs stable requirements. Students will also be in a position to demon-
strate their understanding of software requirements by creating conceptual mod-
els for an application. For a given application, students are asked to represent
requirements through various models such as use-case model in UML, entity-
relationship model, data-flow models, and goal-task analysis in i∗ model [9].
Table 2 depicts the learning objectives and their categorization for the course
unit on Requirements Analysis. Most of the learning objectives are inferred as
Understand type under the cognitive dimension and as Conceptual type under the
knowledge dimension. The learning objective LO9 is inferred under Create cate-
gory because the task of allocation i.e. resource allocation is normally performed
under planning process and it comes under the cognitive category Create.

5 Software Design

Four topics from the knowledge area Software Design are included. These are
(i) Key issues in software design and design methods, (ii) software structure
and architecture, (iii) software design notations, and (iv) software design qual-
ity analysis and evaluation. This section describes the learning objectives for
software design.

5.1 Key Issues in Software Design and Design Methods

This topic intends to provide knowledge to students about the quality con-
cerns that need to be addressed while specifying architectural solution. The

174 A.W. Kiwelekar and H.S. Wankhede

Table 3. Key Issues in Software Design and Design Methods: Learning Objectives

Identifier Learning Objectives Cognitive
Category

Knowledge
Category

LO10 To decompose a software system in terms of pro-
cesses, tasks, and threads which will meet the
design requirements of efficient, synchronization,
scheduling and atomicity.

Create Conceptual

LO11 To differentiate between information presentation
and processing concerns for the given application.

Analyze Conceptual

LO12 To specify data and control flow through various
mechanisms such as implicit invocations and call
backs.

Apply Conceptual

LO13 To specify a scheme of allocation of software com-
ponents across various hardware platforms han-
dling issues of fault tolerance, heterogeneity and
dependability.

Create Conceptual

LO14 To recognize application domain data elements. Understand Conceptual

LO15 To specify interactions between information pro-
cessing and presentation concerns.

Analyze Conceptual

LO16 To specify the mechanisms to be used for ensuring
security of application specific information such as
access controls, and authorization.

Apply Conceptual

LO17 To apply a design methodologies specific to
architecture design such as Attribute-Driven
design(ADD), pattern-oriented software architec-
ture, model-driven architecture, and DRAMA.

Apply Procedural

sub-topic on quality attribute in the topic on Requirements Analysis helps to
get an insight about various generic quality attributes that customers expect to
be implemented in a software system. This topic mainly covers decomposition
of a system considering the issues of performance, synchronization among pro-
cesses, how to separate business logic from information presentation etc. One
way of providing this knowledge is to illustrate various architectural patterns
(e.g., Model-View-Controller [10], Active-Object [10]) addressing these design
issues. Table 3 depicts the learning objectives and their categorization for the
course unit on Software Design and Design Methods. The knowledge category
Conceptual is assigned to all learning objectives except LO17. The category
assigned to the learning objective LO17 is Procedural because it is concerned
with the application of design methodologies which are procedural in nature.

5.2 Software Structure and Architecture

In this unit, students are introduced with the abstractions to capture the struc-
ture of software systems. These abstractions include views, styles and viewpoint
frameworks (e.g., SEI’s Viewpoint framework, Kruchten’ 4+ 1 Framework). The
main purpose of this course unit is to emphasize the fact that high-level archi-
tectural abstractions achieve design reuse across various applications. They also

Learning Objectives for a Course on Software Architecture 175

Table 4. Software Structure and Architecture: Learning Objectives

Identifier Learning Objectives Cognitive
Category

Knowledge
Category

LO18 To differentiate between high-level architectural
design vs detailed design.

Analyze Conceptual

LO19 To create architectural description in multiple
viewpoints.

Create Conceptual

LO20 To apply techniques of recovering design informa-
tion from low-level system implementation.

Apply Procedural

LO21 To acquire the knowledge of various architectural
styles.

Understand Conceptual

LO22 To apply the knowledge of various architectural
tactics and styles in given scenario.

Apply Procedural

LO23 To comprehend an architectural style described in
a pattern language.

Understand Conceptual

LO24 To apply architectural styles for designing soft-
ware systems.

Apply Conceptual

allow us to build a complex system by composition of architectural styles. Table 4
depicts the learning objectives and their categorization for the course unit on
Software Structure and Architecture.

5.3 Software Design Notations

The purpose of this course unit is to introduce students with various notations
for representing and visualizing the structure of a software system. Notations
for representing structure and behavior of a system are covered under this unit.
Students will also be able to interpret an existing architectural models described
in ADLs (e.g., ACME) and UML. Table 5 depicts the learning objectives and
their categorization for the course unit on Software Design Notations.

Table 5. Software Design Notations: Learning Objectives

Identifier Learning Objectives Cognitive
Category

Knowledge
Category

LO25 To differentiate between structural and behavioral
aspects of a software system.

Analyze Conceptual

LO26 To create structural and behavioral models in
design notations such as ADL and UML.

Create Conceptual

LO27 To interpret structural and behavioral models of
a software system.

Analyze Conceptual

176 A.W. Kiwelekar and H.S. Wankhede

Table 6. Quality Analysis and Evaluation Techniques: Learning Objectives

Identifier Learning Objectives Cognitive
Category

Knowledge
Category

LO28 To Provide the definitions of various quality
attributes such as modifiability, dependability,
portability etc.

Understand Factual

LO29 To classify quality attributes as run-time, non-
run-time and intrinsic quality attributes.

Analyze Factual

LO30 To apply evaluation techniques such as static
analysis, simulation and prototyping and design
reviews to ascertain design quality.

Apply Procedural

LO31 To remember and recognize architectural ele-
ments in a reference architecture such as CORBA.

Remember Factual

LO32 To check the compliance of a given software sys-
tem such as a light-weight implementation of an
Object Request Broker (ORB) (eg., Mico) against
its reference architecture CORBA.

Evaluate Conceptual

5.4 Quality Analysis and Evaluation Techniques

The course unit deals with qualitative analysis and evaluation of software sys-
tem using architectural models. The unit intends to develop analytical abilities
among students to recognize the quality instances in software requirement doc-
ument, map the requirements on architectural models, and to identify trade-off
or sensitivity points for quality attributes. Knowledge of definitions of various
quality attributes, their classifications as run-time and non-runtime categories is
expected to be provided. Table 6 depicts the learning objectives and their cate-
gorization for the course unit on Quality Analysis and Evaluation Techniques.

6 Software Engineering Management

The main intention of this course unit is to explain the role of software architec-
ture in the broader context of software engineering. One way of achieving this
objective is to describe the application of architectural models for doing risk
management and requirements traceability. The unit intends to give exposure to
students with the standards for managing architectural knowledge (e.g., OMG’s
KDM [11]). Table 7 depicts the learning objectives and their categorization for
the course unit on Software Engineering Management.

7 Course Implementation

Two different variants of the course are offered at Under-Graduate (UG) and
Post-Graduate levels to the Computer Engineering students at Dr. B. A. Tech.
University (DBATU), India. When the course is offered at PG level, students
are asked to present a term paper in a specialized area of software architecture.

Learning Objectives for a Course on Software Architecture 177

Table 7. Software Engineering Management: Learning Objectives

Identifier Learning Objectives Cognitive
Category

Knowledge
Category

LO33 To build an architectural prototype for require-
ments negotiation and feasibility analysis.

Create Conceptual

LO34 To perform risk management activi-
ties(e.g.,Identifications and prioritize of risk
factors and risk mitigation strategies.) using
architectural models.

Apply Procedural

Table 8. Organization of Learning Objectives in RBT Framework

Remember Understand Apply Analyze Evaluate Create

Factual
Knowledge

LO31 LO28 LO29

Conceptual
Knowledge

LO4, LO5,
LO6, LO7,
LO8, LO14,
LO21, LO22,
LO23

LO12,
LO16,
LO24

LO1, LO2,
LO11, LO15,
LO18, LO25,
LO27

LO32 LO3, LO9,
LO10, LO13,
LO19, LO26,
LO33

Procedural
Knowledge

LO17,
LO20,
LO30,
LO34

Meta-
Cognitive
Knowledge

At UG level students are assigned with two case studies as course projects for
software architecture design and software architecture documentation.

Table 8 organizes the learning objectives in RBT framework. We can observe
from the table that the course offered at DBATU predominantly contains the
Concepual type of knowledge. As majority of the learning objectives fall in
the cognitive domain of Undersatnd, Apply and Analysis, students are mainly
trained for these skills. From the initial experience of course offerings, we observe
that achievement of some of the learning objectives such as those that falls in the
categories Conceptual and Analyze is comparatively easier. Assessment of these
objectives is also comparatively simpler by conducting quizzes and examinations.
The learning objectives that fall in the categories of Evaluate and Create pose
challenges in terms of the time taken for achieving the objectives and for creating
small-sized learning case studies that will assess student’s performance during a
12-week course time.

178 A.W. Kiwelekar and H.S. Wankhede

8 Related Work

This section reviews some of the earlier work in the field of Software Architecture
Education in the context of the work presented in this paper. As such Software
Architecture is still an emerging discipline and universities have recently started
offering a course on Software Architecture.

One of the earliest course content for a course on Software Architecture is
reported in the works of Garlan et al. [12]. The course includes the topics such
as architectural idioms, module interconnection languages, formal methods for
software architectures, domain specific software architecture and tools for archi-
tectural modeling. The paper also suggests to put emphasis on enough prac-
tice on architectural modeling than mere knowledge of high-level architectural
abstractions.

The paper [13] by Lago et al. describe the experiences of offering two varieties
of a course on Software Architetcure. The first course referred to as an intensive
course emphasize programming in the large aspects of Software Architecture.
The second course referred to as a regular course emphasize communication
aspect of architecture to various stakeholders. The paper observes that a reg-
ular course emphasizing communication aspect is more successful in terms of
developing architectural thinking.

Ewan Tempero [14] adopts Quality Attributes Scenarios (QAS) to teach a
course on Software Architecture. The paper identifies constructing a valid and
useful QAS as one of the challenges faced when one adopts QAS to teach a course
on software architecture. The benefits of the approach includes that it emphasize
equipping students with concrete theory rather than hands on experiences on
some “real-world” problems.

Methodological issues of teaching a course on Software Architecture is
addressed by Fraga et al. [15] and Boer et al. [16]. Fraga et al. suggest a teaching
methodology based on use of ontology and case based reasoning. The method-
ology trains the student on how to apply the acquired architectural knowledge
in some practical situations. In the methodology adopted by Boer et al. focus
on building up architectural knowledge through exchanges in the community of
learners rather than reusing and applying architectural knowledge represented
through ontologies.

The earlier work discussed in this section mainly focus on either describ-
ing the course content for a typical course on Software Architetcure or sharing
experiences of adopting a teaching methodology during a course on Software
Architecture. We have presented an analysis of learning objectives in this paper
using RBT. This activity is usually performed at the time of course design and
planning. RBT as an organizational framework of learning objectives is also
useful to align other educational processes such as instruction, assessment, and
selecting an appropriate teaching methodology.

Learning Objectives for a Course on Software Architecture 179

9 Discussion

This section discusses some of the issues that have been addressed at the time of
course design. Firstly, is it appropriate to design a course on Software Architec-
ture using the knowledge areas specified in SWEBOK? This question is impor-
tant because earlier researchers have raised arguments against SWEBOK. While
reflecting on the state of software engineering education [17], Hans van Vliet men-
tions that to assume SWEBOK represents the state of the practice is one of five
assumptions that can trap software engineering educators. It also insufficiently
covers software architecture related topics. We think that the latest version of
SWEBOK published in the year 2014 covers topics on software architecture in
sufficient depth. We have referred SWEBOK to design a course on software archi-
tecture owing to the fact that a separate software architecture body of knowledge
is yet to be standardized.

Secondly, is it appropriate to adopt the Bloom’s Taxonomy to organize the
learning objectives for a course on Software Architecture? The Bloom’s taxon-
omy has also been criticized mainly for its ordering of cognitive process cat-
egories. We used Bloom’s taxonomy in its revised form in which the issue of
ordering of cognitive processes has been addressed by changing the ordering of
Synthesis and Evaluataion. In the RBT, all cognitive processes are renamed
from noun form to its verb form. As mentioned in Section 2, the Bloom’s tax-
onomy has been also applied in the field of Computer Science Education.

10 Conclusion and Future Work

We have described the design of a course on Software architecture in this paper.
The course content are drawn from the architecture related topics included in
SWEBOK. We found that SWEBOK as a useful reference guide to identify and
organize the content of a course on Software Architecture considering its emerg-
ing nature. A set of learning objectives for a course on Software Architecture is
also defined with an intention to plan systematic instruction delivery. The learn-
ing objectives are analyzed using RBT. The analysis shows that the nature of
the course described in this paper includes mainly Conceptual knowledge. The
analysis also shows that students need to be trained on diverse cognitive abilities
that range from the level of Undersatnd to Evaluate. The work presented in
this paper can be extended to select an appropriate teaching methodology(e.g.,
Collaborative learning) and to devise small-sized architectural case-studies for
collecting evidences for achievements of learning objectives.

References

1. Bourque, P., Fairley, R.E., et al.: Guide to the Software Engineering Body of Knowl-
edge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press (2014)

180 A.W. Kiwelekar and H.S. Wankhede

2. Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E.,
Pintrich, P.R., Raths, J., Wittrock, M.C.: A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, Abridged
Edition, 2 edn. Pearson, December 2000

3. Bloom, B., Englehart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R.: Taxonomy
of Educational Objectives: The Classification of Educational Goals - Handbook 1:
Cognitive Domain. David McKay Company Inc., New York (1956)

4. King, P.M., Kitchener, K.S.: Developing Reflective Judgment: Understanding and
Promoting Intellectual Growth and Critical Thinking in Adolescents and Adults.
Jossey-Bass Higher and Adult Education Series and Jossey-Bass Social and Behav-
ioral Science Series. ERIC (1994)

5. Biggs, J.B., Collis, K.F.: Evaluating the quality of learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome). Academic Press (2014)

6. Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I.,
Jackova, J., Lahtinen, E., Lewis, T.L., Thompson, D.M., Riedesel, C., et al.: Devel-
oping a computer science-specific learning taxonomy. ACM SIGCSE Bulletin 39(4),
152–170 (2007)

7. Shuman, L.J., Besterfield-Sacre, M., McGourty, J.: The ABET “professional
skills”-can they be taught? can they be assessed? Journal of Engineering Edu-
cation 94(1), 41–55 (2005)

8. Felder, R.M., Brent, R.: Designing and teaching courses to satisfy the ABET engi-
neering criteria. Journal of Engineering Education 92(1), 7–26 (2003)

9. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE International Symposium on Requirements Engineering
(RE 1997), Annapolis, MD, USA, January 5–8, pp. 226–235 (1997)

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented Software Architecture, vol. 1 (1996)

11. Pérez-Castillo, R., De Guzman, I.G.R., Piattini, M.: Knowledge discovery
metamodel-iso/iec 19506: A standard to modernize legacy systems. Computer
Standards & Interfaces 33(6), 519–532 (2011)

12. Garlan, D., Shaw, M., Okasaki, C., Scott, C.M., Swonger, R.F.: Experience with a
course on architectures for software systems. In: Sledge, C. (ed.) SEI 1992. LNCS,
vol. 640, pp. 23–43. Springer, Heidelberg (1992)

13. Lago, P., van Vliet, H.: Teaching a course on software architecture. In: CSEET
2005: Proceedings of the 18th Conference on Software Engineering Education &
Training, pp. 35–42. IEEE Computer Society, Washington, DC (2005)

14. Tempero, E.: Experiences in teaching quality attribute scenarios. In: Proceed-
ings of the Eleventh Australasian Conference on Computing Education, vol. 95,
pp. 181–188. Australian Computer Society, Inc. (2009)

15. Fraga, A., Lloréns, J.: The challenge of training new architects: an ontological and
reinforcement-learning methodology. JSW 2(5), 24–28 (2007)

16. de Boer, R.C., Farenhorst, R., van Vliet, H.: A community of learners approach to
software architecture education. In: Proceedings of the 2009 22nd Conference on
Software Engineering Education and Training, CSEET 2009, pp. 190–197. IEEE
Computer Society, Washington, DC (2009)

17. van Vliet, H.: Reflections on software engineering education. IEEE Softw. 23(3),
55–61 (2006)

Collecting Requirements and Ideas
for Architectural Group Decision-Making Based

on Four Approaches

Iris Groher(B) and Rainer Weinreich

Johannes Kepler University Linz, Linz, Austria
{iris.groher,rainer.weinreich}@jku.at

Abstract. To collect requirements and ideas for architectural group
decision-making (GDM), we present and analyze four different
approaches to GDM that were developed by master’s students in a prac-
tical course at our university. The students involved had about five years
of practical experience on average, and roughly 80 % of the students
were working as software engineers while enrolled. We analyze the four
approaches based on the criteria for evaluating approaches to architec-
tural GDM defined by Rekha and Muccini; nearly all approaches fulfilled
most criteria. Two criteria – support for conflict resolution and revisiting
information – were partly addressed. The criterion of prioritizing group
members was not addressed at all. The student-developed approaches
provided some new ideas for architectural GDM, such as communication
between stakeholders directly in the GDM tool and review of decisions
after they have been made.

Keywords: Software architecture · Software architecture knowledge
management · Group decision-making

1 Introduction

Group decision-making (GDM) has been extensively studied in the business
domain since the 1970s [1,2]. Various existing approaches have been successfully
used in practice to collaboratively find solutions by selecting among different
alternatives, such as brainstorming, the Delphi method, or the Nominal Group
Technique [3]. We recently conducted an international survey on architectural
decision-making with software architects and lead developers in Europe and the
United States [4], which revealed that architectural decision-making is to a large
extent a group effort. Architectural decisions with a high impact, especially, are
made in teams. This is in line with another survey among practitioners and
researchers [5], which shows that most companies view architectural decision-
making as a GDM process. Teams are usually distributed and heterogeneous,
and involve people with different roles and responsibilities. Arrival at consen-
sus seems to be more important than individual opinions. Farenhorst et al. [6]
define architecting as consensus decision-making, seeking the agreement of most
stakeholders.
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 181–192, 2015.
DOI: 10.1007/978-3-319-23727-5 15

182 I. Groher and R. Weinreich

Established GDM techniques have not yet found their way into the software-
architecture domain, and there is but little research regarding software archi-
tecture decision-making as a group process [5]. Only a few existing Software
Architecture Knowledge Management (SAKM) tools provide support for GDM
[7], even though support for collaboration has been identified as an important
property of SAKM tools [6]. Rekha and Muccini [8] analyze how current archi-
tectural decision-making techniques support GDM, revealing that the current
methods are not fully suitable for GDM because they are missing important
aspects like stakeholder preference indication and group decision rules, among
others.

To collect ideas and requirements for an approach to architectural GDM,
four different prototype approaches to GDM were developed as part of a practi-
cal course at our university. After a short introduction, four groups of master’s
students were assigned the task to develop web-based tools specifically intended
for architectural GDM. Nearly all students were working part-time as software
developers or project managers. The groups also included very experienced stu-
dents with several years of experience in professional software development. We
asked the students explicitly to develop GDM approaches based on their practical
experience. We evaluated the resulting approaches based on the criteria for evalu-
ating architectural GDM approaches defined by Rekha and Muccini [8], revealing
that nearly all approaches fullfilled most criteria. Two criteria – provisioning for
conflict resolution and revisiting information – were only partly addressed. The
criterion of prioritizing group members was not addressed at all. Analyzing the
four approaches resulted in a number of new ideas and requirements for architec-
tural GDM, such as communication between stakeholders directly in the GDM
tool and rating of decisions after they have been made.

2 Study Setup

In a practical course on Service Engineering for master’s students in Business
Informatics at our university, students were given the task of developing a proto-
type GDM approach. The eighteen students enrolled in the course were divided
into four teams (two teams of five students each and two teams of four students
each).

We questioned the students about their working experience, the domains in
which they had worked, technologies with which they were familiar, roles they
had had in previous projects, and their current employment status. Over three-
quarters of the students were currently working in addition to their studies (14
out of 18 students). They had worked in various domains, such as industrial
automation, automotive, finance, insurance, logistics, customs, ERP systems,
customer relationship management, mobile development, and voice and image
recognition. The students had mainly worked as developers, but some had also
worked as project and product managers, operations managers, CEOs, consul-
tants, administrators, testers, and in sales and support.

Requirements and Ideas for Architectural GDM 183

The students had, on average, about five years of working experience. Two
of the groups included very experienced people with 15 and 22 years of pro-
fessional experience. In Team 1, one student had little experience (up to two
years of working experience), one had medium experience (up to five years of
experience), and two team members were highly experienced (more than five
years of experience). In Team 2, three students had little experience, one stu-
dent had medium experience, and one student had high experience. In Team 3,
two students had little experience, two students had medium experience, and
one student had high experience. In Team 4, one student had little experience,
two students had medium experience, and one student had high experience. In
total, seven students had little experience, six students had medium experience,
and five students were highly experienced.

We presented the general idea of GDM and architectural decision-making
to the students and provided them with basic literature regarding GDM and
SAKM.1 We explicitly asked them to extend the basic GDM functionality
described in the literature with functionality they regarded as useful according
to their practical experience. The students were instructed to use a web-based
approach but were free in the selection of technologies.

Each team was required to create a project diary and a time account for each
team member. They were asked to document the requirements and to create a
small prototype to explore the chosen technologies. At the end of the course, the
teams created a video2 presenting their system from a user perspective, as well
as documents describing the system architecture and test process.

The teams had bi-weekly meetings with the course instructors (the authors
of this paper) and weekly meetings with two teaching assistants. During the
meetings, we discussed their progress; the teaching assistants helped in case of
technical problems.

3 Four Approaches to Architectural Group
Decision-Making

The four approaches to architectural GDM that were developed in the course
are called Decide2Gether (Team 1), TeamDecision (Team 2), CollaboDecision
(Team 3), Collaborative Design Decision Support System or CDDSS (Team 4).
In the following, we describe the main features of the developed approaches in
more detail.

Basic Elements and Relationships. The Decide2Gether approach supports
projects at the highest level. Projects contain topics and subtopics. Both top-
ics and subtopics can have associated alternatives. Alternatives can require or
exclude each other. The main concepts of TeamDecision and CollaboDecision

1 The list of papers provided to the students during the course is available at: http://
www.se.jku.at/wp-content/uploads/2015/06/gdm-papers.zip

2 The videos of the four approaches are available at: http://www.se.jku.at/
wp-content/uploads/2015/06/gdm-videos.zip

http://www.se.jku.at/wp-content/uploads/2015/06/gdm-papers.zip
http://www.se.jku.at/wp-content/uploads/2015/06/gdm-papers.zip
http://www.se.jku.at/wp-content/uploads/2015/06/gdm-videos.zip
http://www.se.jku.at/wp-content/uploads/2015/06/gdm-videos.zip

184 I. Groher and R. Weinreich

are issues, decisions, and alternatives. In TeamDecision, requires and excludes
relationships can be defined between alternatives and between decisions. If a
decision requires other decisions, those decisions have to be made first. In Colla-
boDecision, issues can be tagged. Users can search for issues with matching tags
when creating new issues. Similar tags indicate potential relationships between
issues. Supported relationships are: depends on, resolved by, and related to. The
main concepts of CDDSS, finally, are issues and alternatives. Arbitrary types of
relationships between issues can be defined. Similar to CollaboDecision, issues
can be tagged. CDDSS provides a set of predefined tags; new tags can be defined
as needed.

Stakeholders. All approaches support basic user and rights management, but
the supported roles are different. Decide2Gether distinguishes between team
members and project managers, where team members can add and rate alterna-
tives, while project managers can make decisions. Additional kinds of stakehold-
ers can be defined if necessary. In TeamDecision, issues have associated users
and specific users (responsibles) can make decisions. In CollaboDecision, issues
and decisions have an owner and a set of users. In CDDSS, issues have associated
users with roles (contributor, viewer) and different rights.

Documents. All four approaches support adding documents to various ele-
ments. In Decide2Gether, documents can be associated with projects, topics,
and alternatives. In TeamDecision, documents can be added to issues, decisions,
alternatives, and positions. In CollaboDecision, documents can be attached to
decisions and alternatives. CDDSS supports adding documents to issues and
provides a set of predefined document types; new types can be added as needed.

Comments and Discussion. In Decide2Gether, team members can comment
on projects, topics, and alternatives; comments are associated with the respective
team member. In CollaboDecision, users can comment on decisions and alter-
natives; other users can also reply to each others’ comments. In TeamDecision,
users can discuss a decision using a chat feature, and the chat is stored and
linked to the respective decision.

Lifecycle. All approaches provide a lifecycle for issues; the three main states
are open (after creating issues), in progress (creating and rating alternatives),
and closed (after deciding for a particular alternative). CollaboDecision provides
an explicit lifecycle (visible in the UI) with the states of new, in progress (when
decisions and their alternatives are created and ranked), resolved (when all deci-
sions are made), obsolete, and rejected. CDDSS defines a workflow that guides
users through collecting alternatives and criteria, weighting criteria, and rating
alternatives.

History. TeamDecision logs all actions users perform, such as the creation of
new issues and the rating of alternatives, in an activity history. Users can search
or filter this history by user, modification date, type of modification, issue, or
decision.

Requirements and Ideas for Architectural GDM 185

Rating Alternatives. All four approaches support the rating of alternatives.
In Decide2Gether, team members rate the captured alternatives by agreeing or
disagreeing with each one. Different colors are used to indicate the percentage
of votes already submitted for a specific topic or subtopic. In TeamDecision,
users can take positions (positive, neutral, or negative) on alternatives. In Col-
laboDecision, alternatives can be ranked (from 1 to n, where n is the number of
alternatives). Based on the individual rankings of the users an overall ranking of
the alternatives is calculated. CDDSS supports the rating of alternatives based
on predefined criteria. Each contributor first needs to weight each criterion by
how important they believe it is for the issue. Then, each alternative needs to
be rated (from 1 to 10) for each criterion. Based on the individual ratings and
the weights of the criteria, an overall ranking of the alternatives is calculated.

Reviewing and Rating Decisions. In all four approaches decisions taken can
be reviewed afterwards so that stakeholders are able to provide comments on the
usefulness and adequacy of the chosen decision later in the development process.
This may lead to the development team revisiting and reevaluating decisions.
In Decide2Gether, stakeholders can rate decisions by agreeing or disagreeing
with the chosen alternative. In TeamDecision, decisions can be rated as positive,
neutral, or negative. In CollaboDecision, decisions can be rated from 1 to 10;
based on the individual ratings of the stakeholders, an overall rating for the
decision is calculated. CDDSS also supports reviewing already taken decisions.
Each decision allows comments and ratings from 1 to 5. Based on the individual
ratings of the stakeholders, an overall rating is calculated.

Dashboard. All four approaches provide a dashboard to present the cur-
rent state of the decision-making process to users. Decide2Gether presents the
projects in which a user is involved, including a summary of the current rat-
ings for each topic and its alternatives. The user also gets an overview of all
alternatives that he/she has not yet rated. TeamDecision shows summaries of
all decisions that have been made and all positions taken on the available alter-
natives. It also supports making a decision by selecting one of the alternatives
directly in the dashboard. The dashboard also supports the rating and closing of
issues. CollaboDecision provides a dashboard that presents issues and decisions
assigned to the user, as well as decisions that need to be ranked or rated.

Final Decision. In all four approaches, the final decision is made by manually
selecting one of the alternatives. The calculated rating may be used for guidance,
but when making the final decision, the responsible persons with the right to
make a particular decision can choose freely among the identified alternatives.

4 Evaluation of Approaches

We evaluate the four approaches to GDM presented in the previous section
using the evaluation framework of Rekha and Muccini [8]. This framework has
been developed to assess how well current software architecture decision-making
methods support GDM. It is based on the group-problem-solving model proposed

186 I. Groher and R. Weinreich

by Aldag and Fuller [9] and has been adapted to suit software architectural
decision-making. In the following, we describe the evaluation criteria and how
the four approaches address these in detail. Table 1 summarizes the evaluation
of the four approaches based on the eight criteria, which are as follows:

1. Problem Identification: This criterion evaluates whether groups are
involved right from the problem-identification stage, during which problems
are identified, broken into sub-problems, and mapped to requirements. All
four approaches support concepts like issues or topics for describing problems.
Decide2Gether supports the management of projects, topics, and subtopics.
TeamDecision, CollaboDecision, and CDDSS support the management of issues
and their associated decisions. The hierarchical decomposition into problems and
sub-problems is only provided by the Decide2Gether approach. CollaboDecision
and CDDSS support tagging issues and establishing relationships between them.
Tags and relationships can also be used for structuring the problem space. All
approaches provide basic user and rights management in such a way that stake-
holders with different rights can be assigned to the identified problems. Typi-
cally, one role (e.g., decision owner, project manager) takes the responsibility
for a specific issue or problem. While all other stakeholders may propose alter-
native solutions, comment on issues and alternatives, and rank the proposed
alternatives, the final decision is typically made by the responsible stakeholder.

2. Development of Alternatives: This criterion evaluates whether the devel-
opment and identification of alternatives is integrated into the GDM process.
The group should be supported in discussing, identifying, and evolving alterna-
tives. All approaches support the collaborative development of alternatives and
the inclusion of additional material, such as uploaded documents. Relationships
between alternatives can be established in Decide2Gether and TeamDecision.
Discussing alternatives by adding comments and answering other users’ com-
ments is supported in Decide2Gether and CollaboDecision. The TeamDecision
approach provides a chat function linked to each respective alternative. Alter-
natives can be iteratively added and changed in all approaches, which supports
their evolution.

3. Preference Indication: This criterion evaluates whether stakeholders can
indicate preferences through ranking or scoring. Preferences should be based on
the requirements to be fulfilled by the system or on other organizational criteria.
All approaches support some form of preference indication. In Decide2Gether,
stakeholders can agree or disagree with each of the available alternatives and
comment on each of them. In TeamDecision, stakeholders can take positions
(positive, neutral, or negative) on alternatives. CollaboDecision supports the
ranking of alternatives. CDDSS supports adding criteria and weighting them.

4. Prioritizing Group Members: This criterion evaluates whether the app-
roach supports prioritizing decision-makers, as not all group members may be
equally important. None of the approaches supports the explicit prioritization of
group members. However, all approaches provide basic user and rights man-
agement. Decide2Gether and TeamDecision restrict final decision-making to

Requirements and Ideas for Architectural GDM 187

certain users. CollaboDecision provides the concept of decision ownership, where
the decision owner makes the final decision by selecting one of the alternatives.
CDDSS distinguishes between contributors and viewers; viewers are not allowed
to edit information.

5. Provision for Conflict Resolution: This criterion evaluates whether an
approach provides explicit mechanisms for avoiding or resolving conflicts in the
group during decision-making. Avoidance and resolution of conflicts due to diver-
gent views and preferences is supported by different means of communication
among stakeholders. Decide2Gether and CollaboDecision provide means to com-
ment on alternatives and answer comments made by other users. The TeamDeci-
sion approach provides a chat feature. Conflicts can also occur between decisions
and/or alternatives (e.g., because of an excludes relationship). Some approaches
support the definition of relationships between decisions that could be used for
automatically detecting such conflicts. However, none of the approaches provides
explicit conflict detection or resolution mechanisms.

6. Group-Decision Rules: This criterion evaluates how a decision is finally
made by taking the preferences of the various stakeholders into account. Colla-
boDecision and CDDSS calculate an overall rating for each alternative based on
the individual ratings of the stakeholders. Decide2Gether and TeamDecision
present charts for visualizing stakeholders’ ratings of each alternative. None
of the approaches automatically selects an alternative based on these ratings.
Instead, the preferred alternative is presented to the stakeholder making the
final decision, who then manually selects one of the alternatives based on the
proposed results and comments provided by the other stakeholders.

7. Information Exchange and Recall: This criterion evaluates how the app-
roach supports balanced information exchange and representation so that opti-
mal decisions are made. All four approaches support information exchange and
recall. Issues, decisions, and alternatives can be freely described, along with
users’ rationale. Artifacts that provide additional information can be uploaded
and linked to issues, decisions, and alternatives. All approaches provide a dash-
board that presents an overview of all information relevant to the current user,
including tasks that need completion such as alternatives to rank or decisions to
make. Group discussions can occur in comments or chats about issues, decisions,
and alternatives. Decide2Gether uses different colors to support the visualization
of agreement and disagreement regarding alternatives. Color codes also indicate
how many stakeholders have already rated the alternatives. Different icons are
used to visualize closed and open topics. CollaboDecision uses different colors to
mark alternatives that need to be ranked and decisions that need to be reviewed
by the current user.

8. Revisiting Information: This criterion evaluates how the approach sup-
ports later revisiting alternatives, preferences, and decisions made. Revisiting
information is partly supported by all approaches, because not all information
can be changed at any time. Decide2Gether supports the revoking of decisions.
TeamDecision supports editing information, but the information is locked from

188 I. Groher and R. Weinreich

changes once a decision has been made. In CollaboDecision and CDDSS, issues
and related information can only be revisited within the same stage of the life-
cycle or workflow. It is not possible to go back to an earlier stage.

All approaches support rating and reviewing decisions after they have
been made in order to reflect on the usefulness and adequacy of the selected
alternative.

Table 1. Comparison of Approaches

Criteria Decide2Geth. TeamDecis. CollaboDecis. CDDSS

1. Problem
Identification

projects, topics,
subtopics

issues issues,
relationships,
tagging

issues,
relationships,
tagging

2. Development
of Alternatives

alternatives,
relationships,
comments,
attachments

alternatives,
relationships,
attachments,
chat

alternatives,
comments,
attachments

alternatives

3. Preference
Indication

agree/disagree
with
alternatives

positions
(positive,
neutral,
negative) for
alternatives

ranking of
alternatives

criteria and
their weighting
for rating
alternatives

4. Prioritizing
Group Members

not supported not supported not supported not supported

5. Provision for
Conflict
Resolution

comments and
answers

chat comments and
answers

not supported

6. Group
Decision Rules

visualization of
individual
ratings

visualization of
individual
ratings

overall rating
based on
individual
ratings

overall rating
based on
individual
ratings

7. Information
Exchange and
Recall

issues,
attachments,
dashboard,
comments

issues,
attachments,
dashboard, chat

issues,
attachments,
dashboard,
comments

issues,
dashboard

8. Revisiting
Information

editing and
revoking
decisions,
review of
decisions

editing allowed,
but decisions
made cannot be
changed, review
of decisions

editing only
allowed within a
lifecycle stage,
review of
decisions

editing only
allowed within
workflow stage,
review of
decisions

5 Discussion

In total, seven out of eight criteria from the evaluation framework of Rekha and
Muccini [8] are at least partially supported by the students’ four approaches.

Requirements and Ideas for Architectural GDM 189

This result also serves to evaluate the criteria themselves, because the master’s
students who developed these approaches were not aware of the criteria.

Regarding problem identification, the approaches mainly differ with respect
to the naming of the provided concepts (e.g., topics versus issues). Hierar-
chical structuring and tagging of issues and decisions is provided by some of
the approaches; these seem to be valuable concepts. The tagging feature, par-
ticularly, can be very helpful when establishing relationships and constraints
between issues and/or alternatives. Development of alternatives is similar in
all approaches. Preference indication is also supported by all approaches, the
simplest form of which is agreement or disagreement with alternatives. A more
advanced strategy for preference indication is ranking of alternatives. One app-
roach supports the definition and weighting of criteria. Prioritizing group mem-
bers is not supported by any of the four approaches. This is also the case in
the study of Rekha and Muccini [8], in which all evaluated approaches treated
stakeholders equally. This could be an indicator that the criterion of prioritizing
group members is not that important because, as Rekha and Muccini had already
speculated, group members expect fairness during decision-making. Conflict res-
olution in the sense of commenting on and discussing issues and alternatives is
provided by most approaches. Conflict resolution in the sense of resolving con-
flicts between dependent decisions is not provided, perhaps because of the limited
time the students had to implement their approaches. Group-decision rules in
the simplest form are supported by visualizations of results, such as charts. Two
approaches also calculate overall ratings based on the individual ratings of stake-
holders. Automated decision-making seems not to be desired but would easily
be possible based on these rating results. This is in line with our recent survey
[4], which revealed that typically a dedicated person or group of people makes a
final decision. Information exchange and recall is supported by all approaches,
but fulfillment of this criterion could surely be improved by spending more devel-
opment time on UI features. Revisiting information is partly supported by all
approaches but could definitely be improved. Only one approach supports revok-
ing decisions. Two approaches support editing only within a stage of the lifecy-
cle or workflow. One approach does not support changing decisions that have
been made.

An additional feature that is not among the criteria but has been provided by
all approaches is a dedicated rating and review of made decisions. This feature
can be used for judging the appropriateness of a decision over time, and this
feedback may be an input for revisiting decisions as a system evolves, as well as
for making decisions in other projects.

In the following, we reflect on our experiences in supervising this project with
master’s students at our university.

Teams in the course did not see the intermediate results of other teams.
This proved valuable because teams developed their own ideas without being
influenced by the features or UI design of the approaches developed by the other
teams.

190 I. Groher and R. Weinreich

As outlined in Section 2, the teams had different levels of professional expe-
rience. All in all, it seems that experience did not significantly influence the
overall quality and feature sets of the teams’ approaches. Still, it is interesting
that the approach of the most experienced team, Team 1, provides the fewest
features, focusing more on usability than on functionality, while the approaches
of the teams with less experience provide a richer feature set with more com-
plex interaction. The most experienced team obviously decided to provide a less
restrictive workflow than did the other teams, and it was the only team whose
approach allows revisiting and revoking decisions at any time. Having persons
with high experience as part of the team also proved to be beneficial in general,
since the highly experienced team members drove the project, were respected,
and also raised the level of motivation.

We had originally planned to let the teams document their own decisions and
later capture them using their own approaches, but this did not work as intended.
This was because students needed some time and work on their approach to more
deeply understand what to capture and when. They were not motivated enough
to capture their decisions without tool support. We plan to use and evaluate
the tools in future courses with software-engineering projects and also with our
industrial partners.

In general, the project drew student interest on the topic of SAKM and the
documentation of decisions and their rationales. Students emphasized that they
had already experienced problems due to a lack of decision management in their
previous projects and that they would push for systematic decision-making in
their future work.

6 Related Work

The Software Architecture Warehouse (SAW) tool [10] provides support for both
co-located and distributed design workshops through an argumentation view-
point and live design documents. The argumentation viewpoint integrates issues,
alternatives, and positions, which are subjective opinions of team members on
design alternatives. A position can be captured together with a rationale and
a weight, which indicates the confidence level of the position. Decisions and
alternatives have an associated lifecycle. SAW provides so-called live design doc-
uments in which changes are immediately propagated to all team members. Dif-
ferent color codes are used to visualize the state of decisions and positions, and
relationships (influence) between issues and/or alternatives can be defined. SAW
does not support prioritizing group members or provide tools for conflict resolu-
tion. Group-decision rules are partly supported, as SAW provides an overview of
all positions for each captured alternative. Review of decisions is not supported
in SAW.

The CoCoADvISE approach [11] supports collaborative architectural
decision-making based on reusable decision models. Documented, reusable deci-
sions defined for recurring design situations can be instantiated and used as
guidance for architectural decision-making. CoCoADvISE integrates consistency

Requirements and Ideas for Architectural GDM 191

constraints that are automatically enforced during decision-making. Roles and
permissions are also supported and enforced. The approach only partially sup-
ports problem identification and development of alternatives, because it restricts
decision-making to already documented, reusable decision models. Preferences
cannot be indicated, and group-decision rules are not supported. Prioritizing
group members is supported by the roles and permissions features. Conflict res-
olution is partly supported by an automatic constraint-enforcement feature. In
general, the approach more emphasizes a final decision rather than developing,
discussing, and rating alternatives as a team.

The Repertory Grid Tool (RGT) [12] is a web-based tool for group decision-
making based on the Repertory Grid Technique, a methodology for knowledge
capture. RGT supports the capturing of decisions, alternatives, and concerns.
Concerns have an associated priority to indicate their importance. Alternative-
concern pairs are rated to express how well a concern is addressed by an alter-
native. RGT enables analysis of each decision, its alternatives, and its concerns
in order to support decision-making. RGT is based on a Delphi-like, iterative
approach to structuring group interactions, in which decision-makers are shown
the priorities and ratings of other decision-makers. In addition, RGT produces
viewpoint-based documentation of the captured information. RGT does not sup-
port prioritizing group members and does not provide explicit support for conflict
resolution. Review of made decisions is also not supported in RGT.

7 Conclusion

Architectural decision-making is a group effort in many organizations [4,5]. How-
ever, the domain of software architecture has not yet applied established GDM
techniques, and support for GDM has not yet been fully integrated into existing
tools for SAKM.

In this paper, we presented four GDM tools developed as part of a practical
course at our university, collecting requirements and ideas for architectural GDM
by evaluating these approaches using the eight criteria published in [8].

This evaluation suggested that the criteria seem to fit, because seven out of
eight criteria are at least partly supported by approaches that were developed
without the criteria in mind. One criterion, prioritization of group members, is
generally questionable because it is not supported by any of the four approaches,
nor was it supported by the approaches reviewed in [8]. Revisiting information
during decision-making by returning to previous stages or reverting already made
decisions is important but not fully supported by the approaches presented in
this paper. More studies are necessary in this case to identify which information
should be revisitable and when. Strategies for rating alternatives were quite dif-
ferent among the four approaches. Some provided simple strategies while others
supported the definition of weighted criteria. More studies are also necessary in
this case to identify suitable strategies for preference indication during architec-
tural GDM. Automated decision-making does not seem to be a desirable feature
of GDM tools; in all four approaches, final decision-making is a manual activity.

192 I. Groher and R. Weinreich

Some approaches put more focus on UI design than do others by, for example,
using color codes and icons to indicate stakeholder preferences and to visualize
the status of decisions. As usability is important for GDM tools, more work in
this direction is needed.

Acknowledgments. Acknowledgements We would like to thank the master’s students
who participated in the course and developed the four GDM approaches described in
this paper.

References

1. Janis, I.: Victims of Groupthink: A Psychological Study of Foreign-Policy Decisions
and Fiascoes. Houghton Mifflin Company (1972)

2. Myers, D., Lamm, H.: The group polarization phenomenon. Psychological Bulletin
83(4), 602–627 (1976)

3. Van de Ven, A., Delbecq, A.: The effectiveness of nominal, delphi, and interacting
group decision making processes. Academy of Management Journal 17(4), 605–621
(1974)

4. Weinreich, R., Groher, I., Miesbauer, C.: An expert survey on kinds, influence fac-
tors and documentation of design decisions in practice. Future Generation Com-
puter Systems 47, 145–160 (2015)

5. Rekha, V.S., Muccini, H.: A study on group decision-making in software archi-
tecture. In: 2014 IEEE/IFIP Conference on Software Architecture (WICSA),
pp. 185–194, April 2014

6. Farenhorst, R., Lago, P., van Vliet, H.: Effective tool support for architectural knowl-
edge sharing. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 123–138.
Springer, Heidelberg (2007)

7. Shahin, M., Liang, P., Khayyambashi, M.R.R.: Architectural design decision: Exist-
ing models and tools. In: Joint Working IEEE/IFIP Conference on Software Archi-
tecture & European Conference on Software Architecture, WICSA/ECSA 2009, pp.
293–296. IEEE (2009)

8. Rekha, V.S., Muccini, H.: Suitability of software architecture decision making
methods for group decisions. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS,
vol. 8627, pp. 17–32. Springer, Heidelberg (2014)

9. Aldag, R., Fuller, S.: Beyond fiasco: A reappraisal of the groupthink phenomenon
and a new model of group decision processes. Psychological Bulletin 113(3),
533–552 (1993)

10. Nowak, M., Pautasso, C.: Team situational awareness and architectural decision
making with the software architecture warehouse. In: Drira, K. (ed.) ECSA 2013.
LNCS, vol. 7957, pp. 146–161. Springer, Heidelberg (2013)

11. Gaubatz, P., Lytra, I., Zdun, U.: Automatic enforcement of constraints in real-time
collaborative architectural decision making. Journal of Systems and Software 103,
128–149 (2015)

12. Tofan, D., Galster, M.: Capturing and making architectural decisions: an open
source online tool. In: Proceedings of the 2014 European Conference on Software
Architecture Workshops, ECSAW 2014, pp. 33:1–33:4. ACM, New York (2014)

Cloud and Green

Characterization of Cyber-Foraging
Usage Contexts

Grace A. Lewis1,2(B) and Patricia Lago2

1 Carnegie Mellon Software Engineering Institute, Pittsburgh, USA
glewis@sei.cmu.edu

2 VU University Amsterdam, Amsterdam, The Netherlands
p.lago@vu.nl

Abstract. Cyber-foraging is a technique to enable mobile devices to
extend their computing power and storage by offloading computation or
data to more powerful servers located in the cloud or in single-hop prox-
imity. There are many domains and applications that can benefit from
the longer battery life and better application performance on mobile
devices that is typically associated to the use of cyber-foraging, such as
field operations, sensor systems, and entertainment. However, obtain-
ing these benefits in operational systems requires meeting functional
and non-functional requirements that vary depending on the usage con-
text of the cyber-foraging system. This paper presents a characterization
of usage contexts for cyber-foraging defined in terms of functional and
non-functional requirements for cyber-foraging systems. The goal of the
characterization is to provide context for software engineering life cycle
activities for cyber-foraging systems, such as requirements engineering,
software architecture and quality assurance, with the intent of developing
systems that fully realize the benefits of cyber-foraging.

1 Introduction

Cyber-foraging is an area of work within mobile cloud computing that leverages
external resources (i.e., cloud servers, or local servers called surrogates) to aug-
ment the computation and storage capabilities of resource-limited mobile devices
while extending their battery life. There are two main forms of cyber-foraging.
One is computation offload, which is the offload of expensive computation in
order to extend battery life and increase computational capability. The second
is data staging to improve data transfers between mobile devices and the cloud
by temporarily staging data in transit.

While computation offload and data staging can be done between mobile
devices and cloud resources, this work focuses on offloading computation and data
to proximate servers called surrogates, as shown in Figure 1, as opposed to a
remote cloud server. The offload operation is synchronous to a surrogate that is
in single-hop proximity, over a likely high bandwidth connection. The commu-
nication between the surrogate and the cloud resource is multi-hop and either
synchronous or asynchronous depending on the quality of the link and mobile
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 195–211, 2015.
DOI: 10.1007/978-3-319-23727-5 16

196 G.A. Lewis and P. Lago

Fig. 1. Surrogate-Based Cyber-Foraging

application needs. If we assume that tsurrogate is less than tcloud, nearby surro-
gates are a better option from an energy consumption and latency perspective [1].

This paper presents the characterization of the usage domains and contexts
that benefit from surrogate-based cyber-foraging, defined in terms of functional
and non-functional requirements. The goal of this characterization is to provide
context for software engineering life cycle activities for cyber-foraging systems,
such as requirements engineering, software architecture and quality assurance,
with the intent of developing systems that fully realize the benefits of cyber-
foraging. The next section describes the analysis that led to the characterization
of usage contexts for cyber-foraging. Sections 3, 4, and 5 contain the details of
each identified usage context. Section 6 presents the related work in this area.
Finally, Section 7 concludes the paper and outlines next steps.

2 Analysis

In previous work we conducted a systematic literature review (SLR) on architec-
tures for cyber-foraging [2] that identified 57 primary studies and 60 cyber-foraging
systems.Commondesign decisions present in the cyber-foraging systems described
in the primary studies were codified into architectural tactics for cyber-foraging
and then grouped into functional and non-functional architectural tactics [3][4].
For this work we started with the same set of primary studies identified in the SLR.
In the first phase, for each primary study we extracted the names of the environ-
ments and types of applications that were being targeted in the cyber-foraging
systems presented either as examples or case studies. We then clustered these
results based on similarity. The results of the mapping between usage contexts and
primary studies is shown in Table 1. In the second phase we revisited the primary
studies in each usage context extracting functional requirements (FRs) and non-
functional requirements (NFRs) explicitly and implicitly stated in each study, with

Characterization of Cyber-Foraging Usage Contexts 197

the goal of identifying recurring requirements in each usage context. Each FR and
NFR that was stated in at least three of the primary studies was considered a recur-
ring requirement. The exception is the Mobile Applications in Hostile Environ-
ments usage context which only has two studies, in which case we considered it
recurring if it was stated in both.

The identified FRs and NFRs for each usage context are shown in the con-
ceptual model in Figure 2, inspired by UML class diagrams and the inheritance
relationship. The rectangles with the rounded top corners represent a context
characterization and include FRs and NFRs that are common across more than
one usage context. The rectangles marked with UC# represent the usage con-
texts derived from Table 1 and include FRs and NFRs that are unique to that
usage context. Each usage context inherits FRs and NFRs from context charac-
terizations and other usage contexts, as defined by the inheritance relationship
between elements. Some FRs, such as FR1, appear in several context character-
izations and usage contexts. In this case, the inheriting element is “overriding”
the FR with specific details for the context characterization or usage context.

3 Cyber-Foraging Usage Contexts

Cyber-foraging systems in all usage contexts need to satisfy:

– (NFR1) Energy efficiency: Offloading computation should consume less
energy than local execution based on the premise that offloading is beneficial
when large amounts of computation are needed with relatively small amounts
of communication [5].

– (NFR2) Faster response time: Offloading computation should lead to a
faster response time that local execution.

– (NFR3) Increased computing power: Offloading computation and data
should take advantage of the greater computing power of surrogates.

4 Computation Offload Usage Contexts

Cyber foraging systems that perform computation offload need to satisfy:

– (FR1) Offload of computation-intensive operations: A cyber-foraging-
enabled application, upon encountering computation-intensive code explic-
itly marked for offload, the mobile application determines if the conditions
are appropriate for offload (e.g., surrogate availability, network conditions,
remaining battery). If so, the mobile device locates a surrogate for offload,
offloads the computation, and waits for a response from the surrogate.

4.1 Usage Context 1: Computation-Intensive Mobile Applications
(Short Operations)

The systems in this usage context are mobile applications that contain computa-
tion-intensive operations which if executed on a mobile device would take in the

198 G.A. Lewis and P. Lago

order of tens of seconds, but if offloaded could improve response time consider-
ably. These are typically request-response, synchronous operations such as:

– Image, audio and video processing and manipulation
– Face detection and recognition
– Speech recognition and translation
– Antivirus/Anti-malware
– Gaming (typically AI-based)

Table 1. Cyber-Foraging Usage Contexts: Mapping of Primary Studies

Usage Context Example Applica-
tions and Domains

Systems in Primary Studies

Computation-
Intensive
Mobile
Applications
(Short
Operations)

- Image, audio and
video processing and
manipulation
- Face detection and
recognition
- Speech recognition
- Speech translation
- Antivirus/Anti-
malware
- Gaming (AI-based)

31 Systems: Chroma [Balan2007],
Computation and Compilation Offload
[Chen2004a], Cloud Media Services
[Cheng2013], CloneCloud [Chun2009],
HPC-as-a-Service [Duga2011],
OpenCL-Enabled Kernels [Endt2011],
Real Options Analysis [Esteves2011],
Collective Surrogates [Goyal2011], Virtual
Phone [Hung2011], Single-Server
Offloading [Imai2012], Android Extensions
[Iyer2012], ThinAV [Jarabek2012], Cuckoo
[Kemp2012], ThinkAir [Kosta2012], MACS
[Kovachev2012], Scavenger
[Kristensen2010], AMCO [Kwon2013],
MCo [Lee2012], PowerSense
[Matthews2011], AIDE [Messer2002],
PARM [Mohapatra2003], Resource
Furnishing System [Ok2007], SOME
[Park2012], SmartVirtCloud [Pu2013],
MAPCloud [Rahimi2012], VM-Based
Cloudlets [Satyanarayanan2009], IC-Cloud
[Shi2013], Heterogeneous Auto-Offloading
Framework for Mobile Web Browsers
[Zhang2009], Weblets [Zhang2011],
DPartner [Zhang2012], Elastic HTML5
[Zhang2012a]

Mobile
Applications
in Low
Coverage
Environ-
ments

- Resource-challenged
environments
- Field operations (e.g.,
researchers, medics,
sales and marketing)

7 Systems: Mobile Agents [Angin2013],
Edge Proxy [Armstrong2006], Mobile
Information Access Architecture for
Occasionally Connected Computing
[Bahrami2006], MAUI [Cuervo2012],
3DMA [Fjellheim2005], Spectra
[Flinn2002]

Continued on next page

Characterization of Cyber-Foraging Usage Contexts 199

Table 1. (Continued)

Usage Context Example Applica-
tions and Domains

Systems in Primary Studies

Computation-
Intensive
Mobile
Applications
(Long
Operations)

- Service-based
applications
- Workflow-based
applications
- Search-based
applications

4 Systems: Cloud Operating System to
Support Multi-Server Offloading
[Imai2012], Odessa [Ra2011], SPADE
[Silva2008], Offloading Toolkit and Service
[Yang2008]

Mobile
Applications
in Hostile
Environ-
ments

- Emergency response
- Military operations

2 Systems: Cloudlets [Ha2011],
Application Virtualization on Cloudlets
[Messinger2013]

Public
Surrogates

Everyday use 4 Systems: Collaborative Applications
[Chang2011], Roam [Chu2004], Trusted
and Unmanaged Data Staging Surrogates
[Flinn2003], Slingshot [Su2005]

Sensing
Applications

- Healthcare
- Intelligent transport
systems
- Ambient intelligence
- Environmental
monitoring
- Context-aware
applications
- Participatory sensing
(Crowdsensing)

8 Systems: mHealthMon [Ahnn2013], C2C
[Aucinas2012], Grid-Enhanced Mobile
Devices [Guan2008], Feel The World
[Phokas2013], Smartphone-Based Social
Sensing [Rachuri2012], Large-Scale Mobile
Crowdsensing [Xiao2013], Sonora
[Yang2012], Mobile Data Stream
Application Framework [Yang2013a]

Data-
Intensive
Mobile
Applications

- Mobile cloud
applications
- Online gaming
- Data-rich domains

4 Systems: Kahawai [Cuervo2012], AlfredO
[Giurgiu2009], Telemedik [Kundu2007],
Cloud Personal Assistant [OSullivan2013]

In addition to FR1, NFR1, NFR2, and NFR3, cyber-foraging systems in this
usage context need to satisfy:

– (NFR4) Maintainability and Evolvability: Systems may perform a run-
time decision to offload. In this case, two versions of the same code (local
and remote) need to be maintained and evolved over time.

Benefits: The main benefit of cyber-foraging in this usage context is augmented
execution due to computation offload (FR1) to more powerful resources (NFR3).
Computation offload also reduces battery consumption (NFR1) which leads to
longer battery life and provides better response times (NFR2) due to offload to
proximate resources instead of remote cloud resources [1].

Constraints: Systems that make runtime decisions in this usage context to exe-
cute locally or remotely have the advantage of additional battery savings because

200 G.A. Lewis and P. Lago

F
ig
.
2
.

C
o
n
ce

p
tu

a
l
M

o
d
el

fo
r

C
y
b
er

-F
o
ra

g
in

g
U

sa
g
e

C
o
n
te

x
ts

Characterization of Cyber-Foraging Usage Contexts 201

offload only occurs when conditions are conducive to battery savings based on
code characteristics, surrogate availability, and environment conditions (e.g. net-
work quality, available bandwidth). Also, because operations take seconds to
execute, restarting an operation locally due to a disconnected surrogate may not
have a large negative effect on user experience if recovering does not exceed an
acceptable wait time and user is informed of the situation. However, care has
to be given to maintainability and evolvability (NFR4) because it is likely that
two versions of the code have to be maintained: one for the mobile device and
one for the surrogate. If not managed carefully it can lead to increased effort in
parallel code maintenance and evolution.

4.2 Dynamic Environments

Cyber-foraging systems often operate in dynamic environments where connec-
tivity between mobile devices and surrogates, or between surrogates and the
cloud, cannot be guaranteed. These systems need to be able to detect and react
to periods of disconnection.

– (NFR5) Fault tolerance: Mobile devices leveraging surrogates, and surro-
gates connected to the cloud, should be able to detect and react appropriately
to periods of disconnection.

In situations in which connectivity between the surrogates and the cloud
cannot be guaranteed (Dynamic Surrogate Environment), there is a need for
surrogates to continue supporting the computational and data needs of mobile
devices even during periods of disconnection.

– (FR2) Access to data residing in the cloud: Surrogates serve as caches
for data located in the cloud that is required by mobile applications.

– (FR3) Support for disconnected operations between surrogates
and the cloud: Surrogates should take advantage of available connectivity
to the cloud to synchronize with master data sources and cache data that
might be required given changes in context, user preferences, or user actions.

In situations in which connectivity between the mobile devices and surrogates
cannot be guaranteed (Dynamic Mobile Device Environment), there is a need
for surrogates to save results of offload operations until connectivity is restored,
or where computation can move as mobile devices move.

– (FR4) Support for disconnected operations between mobile
devices and surrogates: If a mobile device loses contact with the sur-
rogate before it can obtain a result, the surrogate should save the results
until the mobile device is reachable.

– (NFR7) Code/Data mobility: If multiple connected surrogates are avail-
able the system should be able to move code and data to other surrogates
to fulfill application needs and continuity of operations.

202 G.A. Lewis and P. Lago

Usage Context 2: Mobile Applications in Low Coverage Environments.
Low coverage environments are characterized by disconnection, or occasional
connectivity, between surrogates and the cloud, but potentially good connectivity
between mobile devices and surrogates. Examples of applications and domains
include:

– Resource-challenged environments: Less-privileged regions characterized by
limited Internet access, limited electricity and network access, and poten-
tially low levels of literacy can leverage surrogates, deployed in for example
kiosks, to obtain information to support their communities.

– Field operations: People that spend time away from their main offices or
labs, such as researchers, medics, and sales personnel, can leverage portable
surrogates to support their computation and data needs.

In addition to FR1, FR2, FR3, NFR1, NFR2, NFR3, and NFR5, cyber-
foraging systems in this usage context need to satisfy:

– (NFR6) Ease of configuration: Surrogates should contain capabilities
that enable administrators to load surrogates with the computation and data
needed to support the mobile applications that will be using it, especially in
areas where they might not be technical staff available.

Benefits: Mobile applications in low coverage environments can benefit from
cyber-foraging for augmented execution due to computation offload (FR1) to
more powerful resources (NFR3). In the case of resource-challenged environ-
ments, surrogates can execute computation-intensive operations such as speech,
image or gesture recognition as alternate forms of input to account for low levels
of literacy. Reduced battery consumption (NFR1) due to offload of computation-
intensive operations leads to longer battery life, especially in environments
where recharging mobile devices is difficult. In addition, applications have bet-
ter response times (NFR2) as well as lower energy consumption (NFR1) due
to offload to proximate surrogates instead of remote cloud servers. Finally, pre-
provisioned surrogates (FR2) can carry all computation and data that is needed
by surrogate users and can function disconnected from the cloud (FR3).

Constraints: The benefits of cyber-foraging are only possible if surrogates are
properly pre-provisioned, that is, they contain all the data and computation
required by the mobile applications that use them. Processes that predict com-
putation and data usage based on user profiles, workflows, or access history are
necessary to support ease of configuration (NFR6). In addition, cyber-foraging
systems operating in low coverage environments require fault tolerance (NFR5)
mechanisms to be able to detect periods of connection and disconnection between
surrogates and the cloud and seamlessly switch between operating in connected
and disconnected mode. Surrogates should continue supporting mobile applica-
tions when disconnected from the cloud, even if in degraded mode.

Characterization of Cyber-Foraging Usage Contexts 203

Usage Context 3: Computation-Intensive Mobile applications (Long
Operations). The systems in this usage context are mobile applications that
contain computation-intensive operations which if executed on a mobile device
would take minutes to hours, but if offloaded could improve response time con-
siderably. In most cases there is not an option for local execution given the com-
puting requirements of the offloaded operations, which are likely greater than
what is available locally, or would drain the battery before returning a result.
The types of applications that contain long operations — that are also typically
asynchronous to avoid blocking — include:

– Service-based applications: Applications that are composed of a number of
possibly independent services which may perform long operations.

– Workflow-based applications: Applications that execute a workflow that may
include steps that are long-running, such as business applications in which
the mobile application initiates a long-running business process.

– Search-based applications: Applications that require searching through large
data sets, such as data analytics applications or applications that combine
data from different sources. These applications can be composed of discrete
tasks or single replicated tasks (i.e., executing the same search against dif-
ferent data sources).

While systems in this usage context still need to satisfy FR1 (computation
offload), it would have to be redefined as Offload of very computation-intensive
operations. What this means is that upon encountering very computation-
intensive code marked for offload, the mobile application locates a surrogate
for offload, offloads the code, and either waits for a response from the surro-
gate (synchronous) or is notified by the surrogate that the operation is complete
(asynchronous).

In addition to the redefined FR1, FR4, NFR1, NFR2, NFR3 NFR5, and
NFR7, cyber-foraging systems in this usage context need to satisfy:

– (FR5) Parallel offload: If surrogates are connected to other surrogates
and operations are parallelizable, the cyber-foraging system should attempt
to leverage the combined computing power of the set of available surrogates.

– (NFR8) Scalability: If multiple connected surrogates are available, and
offloaded operations are parallelizable, the system should be able to deter-
mine the optimal amount of surrogates to utilize for execution of the
offloaded computation.

Benefits: Mobile applications that contain long computation-intensive operations
can benefit from cyber-foraging from augmented execution due to computation
offload (FR1) to more powerful resources (NFR3), and longer battery life (NFR1)
due to offload of long computation-intensive operations. In addition, applications
have better response times (NFR2) as well as lower energy consumption (NFR1)
due to offload to proximate resources instead of remote cloud resources.

Constraints: Very-computation intensive operations may require the resources
of more than one surrogate in order to achieve the benefits of cyber-foraging. If

204 G.A. Lewis and P. Lago

possible, due to parallelization of these long computation-intensive operations,
multiple connected surrogates would need to implement load balancing for scal-
ability (NFR8, FR5). However, load balancing requires moving computation and
data between surrogates, which in turn requires execution containers such as vir-
tual machines that support code and data mobility (NFR7). In addition, given
that a mobile device may lose contact with a surrogate before the operation fin-
ishes, mechanisms such as caching data until the mobile device is reconnected,
or using alternative communication mechanisms to reach the mobile device (e.g.,
SMS) are necessary (FR4). A user should be informed when this happens so that
he/she knows that the results will not be available until reconnection (NFR5).

Usage Context 4: Computation-Intensive Mobile Applications in Hos-
tile Environments. Hostile environments, such as those in which emergency
responders or military personnel operate in, are characterized by very dynamic
environments in which disconnected operations — or occasionally-connected
operations — between surrogates and the cloud, and between mobile devices
and surrogates, are highly likely. In addition to FR1, FR2, FR3, FR4, NFR1,
NFR2, NFR3, NFR5 and NFR6, systems in this usage context need to satisfy:

– (NFR9) Ease of deployment: It should be easy to deploy surrogates in
the field to support a mission (e.g., on vehicles, in tents, or in provisional
operations centers).

– (NFR10) Survivability: Surrogates and mobile applications should be
able to continue operating in spite of disruptions caused by the operational
environment.

Benefits: Mobile applications in hostile environments can benefit from augmented
execution due computation offload (FR1) to more powerful resources (NFR3).
Reduced battery consumption (NFR1) due to offload of computation-intensive
operations which leads to longer battery life is another benefit, especially in these
environments where recharging mobile devices may be difficult. Applications also
benefit from better response times (NFR2) as well as lower energy consumption
(NFR1) due to offload to proximate resources instead of remote cloud resources.
To deal with dynamic environments, pre-provisioned surrogates (FR2) can carry
all data that is needed by surrogate users executing a mission and can func-
tion disconnected from the cloud (FR3). Offload decisions can be based on a
basic algorithm that simply detects surrogate availability such that operations
execute locally if a surrogate is not available (FR4). In case of disconnection,
surrogates can cache offload operation results (FR4) until the mobile device is
reconnected. Finally. if computation is self-contained (e.g., in a VM) and more
than one surrogate is available, computation can migrate between surrogates
due to mobile device mobility (i.e., mobile device moves beyond the range of a
surrogate) and/or surrogate mobility (e.g., in case surrogates reside in vehicles)
(FR4, NFR7).
Constraints: The benefits of cyber-foraging are only possible if surrogates are
properly pre-provisioned, that is, they contain all the data and computation

Characterization of Cyber-Foraging Usage Contexts 205

required by the mobile applications that use them. Processes that predict com-
putation and data usage based on mission profiles, user profiles, workflows, or
access history are necessary to support ease of configuration (NFR6). In addition,
cyber-foraging systems operating in hostile environments require fault tolerance
mechanisms (NFR5) to be able to detect periods of connection and disconnec-
tion, and seamlessly switch between operating in connected and disconnected
mode. Because of the uncertainty of connections between mobile devices and
surrogates, fallback to local execution is required in case of unavailable surro-
gates or disconnection during offload operations (FR4). Finally, hostile environ-
ments require systems to continue operating in spite of the uncertainly of the
environment in order to ensure the success of missions. Mechanisms to ensure
ease of deployment (NFR9) and configuration (NFR6) such as self-contained
capabilities and management consoles can support quick setup of surrogates and
capabilities to support a mission. In addition, mechanisms that promote surviv-
ability (NFR10) such as multiple discoverable, connected surrogates that can
load balance or transfer offloaded computation in case of disconnection (NFR7),
are key to reaching the benefits of cyber-foraging in these environments.

Usage Context 5: Public Surrogates. Publicly-available surrogates on which
any user can offload computation-intensive operations is a vision for cyber-
foraging cited by the studies listed in Table 1 for this usage context. The goal of
mobile applications that leverage public surrogates is seamless mobility, that is,
the capability to move code (and data) between mobile devices and surrogates
with minimal human intervention.

Although this usage context falls under Dynamic Environments, it is differ-
ent from the other usage contexts in this group because computation offload is
opportunistic instead of user-triggered. This is why FR1 is redefined as Oppor-
tunistic offload of computation-intensive operations. What this means is that
upon discovery of an available surrogate, running mobile applications that are
determined to be computation-intensive migrate their execution to the discov-
ered surrogate (either manually or automatically). When the mobile device leaves
the vicinity of the surrogate (or because of termination actions such as expira-
tion time or manual intervention), the computation on the surrogate migrates
back to the mobile device.

In addition to the redefined FR1, NFR1, NFR2, NFR3 and NFR5 cyber-
foraging systems in this usage context need to satisfy:

– (FR6) Discoverable surrogates: Surrogates should broadcast their pres-
ence to cyber-foraging-enabled mobile applications for discovery.

– (NFR11) Trust: When a mobile device discovers a surrogate it expects a
trustworthy surrogate execution environment, meaning that once an offload
operation starts, code and data are not maliciously modified or stolen, and
that it provides trustful services. In the same way, a surrogate expects that
a mobile device is a valid client and that it will not offload malicious code or
use it as a vehicle to other code and data offloaded by other mobile devices.

206 G.A. Lewis and P. Lago

– (NFR12) Portability: Offloaded computation should be able to run on a
variety of surrogate platforms.

– (NFR13) Lossless user experience The migration of computation (and
data) between a mobile device and a surrogate should cause minimal dis-
ruption to a user, other than what is defined in the migration process or
protocol (e.g, authentication, manual disconnection).

Benefits: A benefit of cyber-foraging using public surrogates is augmented exe-
cution due to opportunistic computation offload (FR1) to more powerful, dis-
coverable resources (FR6, NFR3). Reduced battery consumption (NFR1) due to
offload of computation-intensive operations, which leads to longer battery life,
is also a benefit. Finally, faster response times (NFR2) as well as lower energy
consumption (NFR1) are expected due to offload to proximate, more powerful
resources.

Constraints: Offload to public surrogates implies that the mobile user does not
own the surrogate. Trust (NFR11) has to be built into the cyber-foraging system
such that the mobile user trusts that code and data offloaded to the surrogate
is not going to be compromised, and the surrogate trusts that the user will
not use it to install malicious code. In addition, given that the relationship
between the mobile device and the surrogate is transient, fault tolerance (NFR5)
mechanisms are required to detect when a mobile device is in proximity of a
surrogate and when it is not such that it can seamlessly switch between local
execution and remote execution (NFR13). Finally, in public surrogates there is
likely no control over their configuration. Portability of offloaded code and data
(NFR12) is required in order to adapt to multiple execution environments.

5 Data Staging Usage Contexts

Cyber foraging systems that perform data staging need to satisfy:

– (FR7) Staging data in transit to/from the cloud: Surrogates should
act as intermediate data caches between mobile devices and the cloud.

– (NFR14) Bandwidth efficiency: Mobile devices should offload data to
surrogates, and surrogates should send data to mobile devices, only when
conditions are conducive to bandwidth efficiency, such as when network qual-
ity is above an established threshold, when network traffic is below an estab-
lished threshold, or when cached data reaches an established bundle size for
sending.

5.1 Usage Context 6: Sensing Applications

The systems in this usage context are mobile applications that perform context,
environment or urban sensing using on-board sensors (e.g., camera, microphone,
accelerometer) or connected sensors (e.g. gas, ambient temperature). The sensing

Characterization of Cyber-Foraging Usage Contexts 207

applications collect data from these sensors and send to surrogates as these
become available. Examples of domains and applications in this usage context
include:

– Context-aware applications: A mobile application uses sensors to acquire
contextual information and send to surrogates for processing to perform for
example complex activity or scene recognition

– Healthcare: A mobile application is used by patients carrying body sensors
to gather data from these sensors and send on to surrogates for analysis.

– Intelligent transport systems: A mobile application integrated into a vehicle
can obtain readings from multiple sensors and send on to surrogates located
at various points throughout the city to for example perform traffic analysis
and control, surveillance, or emergency management.

– Ambient intelligence: Ambient intelligence can be supported by mobile appli-
cations that sense contextual data and send to surrogates for rapid processing
to provide personalized, adaptive and anticipatory services such as ambient
control (e.g., lighting, music, temperature) and calendar management.

– Environmental monitoring: Mobile applications equipped with environmen-
tal sensors such as gas, pressure or temperature collect data to send to surro-
gates for processing for disaster prevention, detection and response activities.

– Participatory sensing (Crowdsensing): Crowdsensing refers to individuals
using mobile devices with sensors that share information about an event
or task of interest such as environmental monitoring, public safety, traffic
monitoring, or collaborative searches.

In this usage context, surrogates typically act as intermediaries as sensed
data flows from the mobile devices to the cloud, which is why FR7 (data staging)
needs to be redefined as Staging data in transit to the cloud. This means that
data collected on surrogates is stored for upload to the enterprise cloud when
possible.

In addition to the redefined FR7, NFR1, NFR2, NFR3, and NFR14, cyber-
foraging systems in this usage context need to satisfy:

– (FR8) Sensor and/or continuous data stream processing: As surro-
gates become available, sensor data collected by the mobile device is sent to
the surrogate for processing and storage.

– (FR9) Local data sharing and collaboration: Surrogates store and
process collected data to make it available to mobile devices that it is serving.

– (NFR15) Availability: Surrogates should be available for data offload from
mobile devices. A corollary to this requirement is that mobile devices need
to be able to deal with unavailable surrogates.

Benefits: Offloading data (FR7) to surrogates releases storage space on mobile
devices to continue data collection activities (the surrogate storage can be consid-
ered an extension to mobile device storage (NFR3)). Data staging on surrogates
(FR8) enables data sharing and collaboration (FR9) between mobile devices

208 G.A. Lewis and P. Lago

leveraging the same surrogate and eventual upload of that data to the enter-
prise cloud (FR7). Similar to computation offload systems, offloading data pro-
cessing operations to surrogates minimizes battery consumption (NFR1) on the
mobile device. Proximate surrogates also enable faster response times (NFR2)
for data processing and queries than sending data/queries to remote clouds.
Finally, implementing a runtime decision mechanism for offloading data to sur-
rogates optimizes available bandwidth (NFR14) and minimizes data transfers
thereby minimizing battery consumption (NFR1).

Constraints: Availability (NFR14) of the surrogate is key to realizing most of the
stated benefits of cyber-foraging for sensing applications. In addition to imple-
menting availability tactics on the surrogate, such as fault detection, recovery
and prevention [6], a sensing application needs to detect surrogate unavailability,
cache data when the surrogate is unavailable, and make decisions on what to do
when operating in disconnected mode and storage capacity limits are reached
(e.g., perform local data processing, discard data, or stop operations).

5.2 Usage Context 7: Data-Intensive Mobile Applications

Data-intensive mobile applications rely on large sets of data to provide their
functionality. Data typically resides in data centers or in the enterprise cloud.
Examples of data-intensive applications and domains include:

– Mobile cloud applications: These applications provide a front end to data
residing in the cloud, such as social media apps, map and navigation apps,
and e-commerce applications.

– Online gaming: Online gaming requires continuous streaming of data to and
from the cloud in order to synchronize with other players.

– Data-rich domains: Healthcare and other data-rich domains are character-
ized by large sets of connected data, which means that queries for one type
of data typically trigger queries for other sets of related data.

Data-intensive mobile applications require large amounts of data that resides
in the cloud and surrogates serve as intermediaries between mobile devices and
the cloud to avoid direct communication to the cloud for every data operation.
FR7 (data staging) is therefore redefined as Staging data in transit from the
cloud. In addition to the redefined FR7, NFR1, NFR2, NFR3 and NFR14, cyber-
foraging systems in this usage context need to satisfy:

– (FR10) Display of prioritized/relevant information: Mobile devices
have small(er) screen sizes that limit the amount of information that can be
displayed at a time. Surrogates pre-process data that is retrieved or pushed
from the cloud, such that mobile devices receive data that is ready to be
displayed, or filtered such that they only receives data of interest or relevance.

– (NFR16) Query Efficiency: Queries should be executed against data
located proximate surrogates instead of data residing in the cloud.

Characterization of Cyber-Foraging Usage Contexts 209

Benefits: For data-intensive mobile applications, surrogates can cache data from
the cloud (FR7) to minimize high latency communication between mobile devices
and the cloud, which decreases response time (NFR2); provides extended, prox-
imate data storage for applications (NFR3); and reduces battery consumption
(NFR1). Surrogates can perform data filtering and priorization (FR10) so that
mobile devices users receive only the data that they need (NFR2).

Constraints: Data-intensive mobile applications only benefit from cyber-foraging
if the data that they need is already on the surrogate, in order to avoid direct
communication to the cloud. This means that there have to be mechanisms on
the surrogate to predict what data will be needed next by mobile applications
(NFR16). Data may be pre-fetched based on mobile device context (e.g., loca-
tion), user profile (e.g., preferences), access history (i.e., data that the user has
accessed in the past), or data relations (e.g., querying a purchase order also
fetches vendor, product and other data related to that order).

6 Related Work

There is a large amount of work in cyber-foraging, which includes the primary
studies identified in the SLR that are listed in Table 1. One of the findings
of the SLR reported in [2] is the the lack of focus on system-level concerns
such as fault tolerance, ease of configuration and deployment, survivability, and
security, that would be necessary to implement operational systems in many
of the identified usage contexts. There are also multiple surveys on the future
and benefits of mobile cloud computing and cloud-based augmentation such as
[7] and [8]. However, to the best of our knowledge we are the first to develop
architectural tactics for cyber-foraging and further to characterize usage contexts
for cyber-foraging in this manner.

7 Summary and Next Steps

The paper presented a characterization of usage contexts for cyber-foraging
defined in terms of functional and non-functional requirements for cyber-foraging
systems. Each usage context showed that NFRs can be both benefits and con-
straints — there are NFRs that enable a system to achieve the benefits of cyber-
foraging, and there are other NFRs that if not met will compromise the benefits
of cyber-foraging for mobile systems. As cyber-foraging becomes a standard fea-
ture for computation- and data-intensive mobile systems, it will become even
more important to have models such as the one presented in this paper. These
usage contexts combined with the architectural tactics for cyber-foraging iden-
tified in [3] and [4] provide a standard language and set of reusable design deci-
sions that will help in developing better and more standard mobile systems that
leverage all the potential benefits of cyber-foraging, as well as mobile devices
and operating systems that enable and facilitate these benefits.

210 G.A. Lewis and P. Lago

The goal of the model is to provide context for software engineering life cycle
activities for computation- and data-intensive mobile systems, with the intent
of developing systems that fully realize the benefits of cyber-foraging.

– Requirements engineers can use the model to determine if cyber-foraging is
the appropriate paradigm for reaching desired functional and non-functional
requirements

– Software architects and designers can use the model to better understand
the requirements that need to be met to realize the full benefits of cyber-
foraging, as well as the constraints for realizing those benefits

– Quality assurance personnel can develop scenarios and test cases that can
be used to determine if system requirements are being met.

We are in the process of documenting case studies to validate the archi-
tectural tactics identified in [3] and [4]. The case studies in combination with
the defined usage contexts will be used as input to define a decision model for
cyber-foraging systems that will guide system architects and developers to build
systems that fully realize the benefits of cyber-foraging now and in the future.

Online Material. The references for the primary studies can be found in [2]
and are also available at http://goo.gl/ZLC1to.

Acknowledgments. Acknowledgements. This material is based upon work funded
and supported by the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Insti-
tute, a federally funded research and development center. This material has been
approved for public release and unlimited distribution (DM-0002352). This research
also received partial funding by project SIA RAAK MKB Greening the Cloud.

References

1. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consump-
tion in mobile phones: a measurement study and implications for network applica-
tions. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure-
ment Conference, IMC 2009, pp. 280–293. ACM, New York (2009)

2. Lewis, G.A., Lago, P., Procaccianti, G.: Architecture strategies for cyber-foraging:
preliminary results from a systematic literature review. In: Avgeriou, P., Zdun, U.
(eds.) ECSA 2014. LNCS, vol. 8627, pp. 154–169. Springer, Heidelberg (2014)

3. Lewis, G., Lago, P.: A catalogue of architectural tactics for cyber-foraging, Tech.
rep., VU University Amsterdam (2014). http://goo.gl/rDCt3V

4. Lewis, G.,Lago, P.: A catalogue of architectural tactics for cyber-foraging. In: Pro-
ceedings of the 11th International ACM Sigsoft Conference on the Quality of Soft-
ware Architectures (QoSA 2015) (2015)

5. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: Can offloading computa-
tion save energy? Computer 43(4), 51–56 (2010)

6. Bass, L., Clements, P., Kazman, R.: Software architecture in practice, 3rd edn.
Addison-Wesley (2012)

http://goo.gl/ZLC1to
http://goo.gl/rDCt3V

Characterization of Cyber-Foraging Usage Contexts 211

7. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: A survey. Future
Generation Computer Systems 29, 84106 (2012)

8. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R.: Cloud-based augmentation
for mobile devices: Motivation, taxonomies, and open challenges. IEEE Communi-
cations Surveys Tutorials 16(1), 337–368 (2014)

Software Architecture for the Cloud –
A Roadmap Towards Control-Theoretic,

Model-Based Cloud Architecture

Claus Pahl1(B) and Pooyan Jamshidi2

1 IC4 & Lero, School of Computing, Dublin City University, Dubin, Ireland
Claus.Pahl@dcu.ie

2 Department of Computing, Imperial College London, London, UK

Abstract. The cloud is a distributed architecture providing resources
as tiered services. Through the principles of service-orientation and gen-
erally provided using virtualisation, the deployment and provisioning
of applications can be managed dynamically, resulting in cloud plat-
forms and applications as interdependent adaptive systems. Dynamically
adaptive systems require a representation of requirements as dynami-
cally manageable models, enacted through a controller implementing a
feedback look based on a control-theoretic framework. We argue that a
control theory and model-based architectural framework for the cloud
is needed. While some critical aspects such as uncertainty have already
been taken into account, what has not been accounted for are challenges
resulting from the cloud architecture as a multi-tiered, distributed envi-
ronment. We identify challenges and define a framework that aims at a
better understanding and a roadmap towards control-theoretic, model-
based cloud architecture – driven by software architecture concerns.

Keywords: Cloud computing · Control theory · Adaptive system · Soft-
ware architecture · Microservice · Model-based controller · Uncertainty

1 Introduction

Adapting systems to changing requirements is often a necessity to guarantee
on-going correct and satisfying performance. Self-adaptive systems are systems
that are able to adjust their behaviour in response to their perception of the
environment and the system itself [3]. The software engineering community has
approached this from the requirements engineering perspective [11], but has
recognised the need for software architecture to play a major role in a solution.

Requirements need to have a representation at runtime to allow self-adaptive
systems to interact with the environment, i.e., reflect this through models that
also link in the decision-making process necessary to change the underlying
system itself [1,2,6]. Dynamically adaptive systems require a representation of
requirements as dynamically manageable models, enacted through a controller
implementing a feedback look based on a control-theoretic framework [5].
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 212–220, 2015.
DOI: 10.1007/978-3-319-23727-5 17

Software Architecture for the Cloud 213

The cloud is moving towards a distributed, often federated architecture of
many individual cloud services [10], providing resources as services in a tiered
fashion. The configuration, deployment and provisioning of application architec-
tures can be managed dynamically as a response to changes in requirements and
changes in the execution platform environment, resulting in cloud platforms and
the applications in them as interdependent adaptive systems. Microservices are
emerging as a new architectural style, aiming at realising software systems as a
package of small services, each deployable on a different platform. These run in
their own process while communicating through lightweight mechanisms without
any centralized control1. We argue that a cloud-specific control-theoretic, model-
based architectural framework is needed. While critical aspects such as uncer-
tainty have been investigated [4,8,9] for the cloud, what has not been accounted
for are the challenges resulting from the cloud architecture as a multi-tiered,
distributed environment for increasingly fragmented application architectures.

We identify the challenges and define a conceptual framework. The target is
a roadmap towards control-theoretic, model-based cloud architecture in which
software architecture concerns play the central role.

2 Cloud Architecture – Definition and Scenario

Our view on cloud systems from an architectural perspective addresses the key
shortcomings of the current discussion of control-theoretic approaches to adap-
tive systems, and cloud in particular. We will also argue for a model-based app-
roach to controller definition later on as well. The cloud allows the distributed,
tiered deployment of software. The underlying architecture links infrastructure
and platform providers with the software applications running in them. Software
is usually logically architected in a layered format, but in the cloud mapped onto
(virtualised) physical tiers.

– Logical layers organise code. Typical layers include presentation, business
logic and data management and storage. However, this does not imply that
the layers run on different computers or in different processes.

– Physical tiers are about the location of the application execution. Tiers are
places where layers are deployed and where layers run.

The cloud services provided as infrastructure-as-a-services (IaaS), platform-as-
a-service (PaaS) or software-as-a-service (SaaS) realise these tiers, albeit in a
virtualised form accessed through services.

A further complication arises through clouds as distributed, often federated
systems, even if providing the same or similar services, will operate differently.
Interaction between the layers, but also horizontally is possible and necessary,
which we capture in the following architectural scenario in Figure 1.

Let us illustrate a common problem. An infrastructure server might have the
capacity to deal with 100 user applications at the same time, but the workload

1 http://martinfowler.com/articles/microservices.html.

http://martinfowler.com/articles/microservices.html

214 C. Pahl and P. Jamshidi

Fig. 1. Tiered and Distributed Cloud Architecture.

might temporarily reduce significantly. Load balancing would allow the system
architecture to be adapted and applications relocated to one server, thus scaling
down the deployment of servers. Here, the system reacts to external factors –
the reduced load – and adapts the configuration to reduce the costs (a non-
functional requirement) while still maintaining adequate performance (also a
non-functional requirement). Two observations emerge.

– Workload and QoS dictate the adaptation. Cost and quality as drivers for
decisions – i.e., decisions are made based on non-functional requirements.

– In the cloud as a tiered architecture, where user applications might run
on third-party provided infrastructure servers. Factors that influence here
down-scaling as the adaptation include (i) application performance at the
user tier/layer and (ii) system workload at the infrastructure tier/layer.

Other scenarios here could involve changing non-functional requirements rather
than changing environment factors. The performance requirement might need
to be tightened, resulting in an up-scaling of the infrastructure.

Recently, microservice architectures have been discussed, which aim to break
up application architectures into independently deployable services that can be
rapidly deployed to any infrastructure resource as required. Microservices are
independently deployable, usually supported by a fully automated deployment
and orchestration framework. They require the ability to deploy often and inde-
pendently at arbitrary schedules, instead of requiring synchronized deployments
at fixed times. The microservice deployment and orchestration across the vertical
and horizontal dimensions of the cloud are central architecture concerns. Clouds
provide a management tool for their flexible deployment schedules and provi-
sioning orchestration needs, particularly, if these are to be PaaS-provisioned.

3 Dynamic Requirements and Models

As the example above has indicated, both requirements (the user-facing tiers)
and the platform (the infrastructure-facing tiers) can change dynamically. What

Software Architecture for the Cloud 215

is needed first is a review of modelling concerns for this context. Drivers of
change are often requirements to maintain quality-of-service at the user end to
maintain within the limits (non-functional requirements) possible stated in a
service-level agreement. In [3], a number of model dimensions are identified that
help to frame the adaptivity problem:

– Goals as system objectives: evolution, flexibility, multiplicity, dependency
– Change captures causes of adaptation: source, type, frequency, anticipation.
– Mechanism implements adaptation: type, autonomy, organisation, scope,

duration, timeliness, triggering
– Effects define adaptation impact: criticality, predictability, overhead,

resilience

A challenges here is the mapping of requirements to the underlying architecture.
The solution is a control loop, based on control-theoretic foundations [11], but
importantly, the layering of the application architecture onto the tiered cloud.
The run-time representation of requirements in the form of application require-
ments and cloud infrastructure models needs to provide model manipulation and
access features to allow introspection and reasoning about these models [1,6].

A specific challenge is the uncertainty that arises in the interaction between
models and the system architecture – the latter possibly at different tiers/layer,
all interacting with one another along their interfaces, cf. Figure 1. Respective
models that capture uncertainty and can map this as actions within the control
loop are needed. The models themselves need to reflect the adaptation approach,
requiring to capture the non-functional properties, but more significantly allow
prediction and reasoning to take place in an environment prone to uncertainty.

4 Measurement, Prediction and Uncertainty

The state of a system is characterised by a range of non-functional properties
that need to be aligned with non-functional requirements. Due to the layering,
mapping and managing these across layers, but also within one layer, is chal-
lenging. In general, we need to measure at different layers and map between the
different tiers in the cloud.

– The upper level represents the application service-level qualities.
– The lower level are the loads of infrastructure resources that run the service.

Furthermore, there is a mapping of the infrastructure loads into a cost model –
which can of course be a major driver of adaptation decisions.

Measurement and Uncertainty. Ideally, system state attributes can be reli-
ably measured. However, the cloud adds a high degree of uncertainty here [11]:

– Uncertainty Level 1: general confidence about the shape of the future, but
some key variables do not have precise values.

216 C. Pahl and P. Jamshidi

– Uncertainty Level 2: there are a variety of possible future scenarios, that can
be listed and are mutually exclusive and exhaustive.

– Uncertainty Level 3: it is feasible to construct future scenarios, but these are
mere possibilities and are unlikely to be exhaustive.

– Uncertainty Level 4: it is not even possible to frame possible future scenarios.

Uncertainty emerges from various sources in cloud systems – as uncertainty
from different interpretations and decisions in the adaptation definition process
or as uncertainty arising from possible different, distributed monitoring systems
resulting in partially unreliable and incomplete data [9]:

– Uncertainty in Adaptation Definition. Adaptation policies need a careful
determination of thresholds. This relies on a users knowledge of system
behaviour and how resources are managed. Therefore, the accuracy of poli-
cies remains subjective, making the effect of adaptations prone to uncer-
tainty. Unpredictable changes in environment or application demand may
require adaptation models to be continuously re-evaluated and revised.

– Uncertainty in Dynamic Resource Provisioning. Acquiring and releasing vir-
tual resources in the cloud is not instantaneous. A cloud controller uses the
platform services to initiate the acquisition process and has to wait until
resources are available. During this time, which may take minutes for VMs,
the cloud application is vulnerable to workload increases, causing uncer-
tainty.

– Uncertainty in Monitoring Data. The cloud controller needs to continuously
monitor the state of the application as well as of the resources in which the
application is deployed in order to timely react to load variations. Monitoring
involves a distribution of data collected by measurement-specific probes or
sensors, which are not immune to measurement deviations (so-called sensory
noise). This sensory noise is another source of uncertainty, as it results in
oscillations that may affect how the controller allocates resources.

Formal Models for Uncertainty. Models captures the state, its behaviour
and the adaptation rules. Models of different types can reflect how we deal with
uncertainty in dynamic systems. The dynamics of a system are often based on
state models, describing sequences of possible actions as a protocol. In [1], a
Markovian model is used (DTMC – Discrete Time Markov Chains; alternatives
could include continuous time models), formalising specific properties in logics
such as a probabilistic logics [2] to reason in uncertain spaces – in an uncertain
space, the probability of the next state is included in the model.

Others propose fuzzy logic [9], where fuzziness is expressed as a varying,
non-binary truth value. This allows the uncertainty of a system situation to
be expressed through a membership functions on fuzzy sets. For instance, a
fuzzification of adaptation rules [9] can be done. As an example, qualitative
values for infrastructure workload and service performance (such as ‘very low’
or ‘very high’ for workload) are presented as membership functions in a fuzzy
set model, resulting in smoother controller responses.

Software Architecture for the Cloud 217

Analysis and Prediction – Cross-Tier Mapping and Uncertainty. Unre-
liable or incomplete data causes uncertainty, which can be alleviated to some
extent by prediction. Furthermore, the delay in providing resources, as discussed
above, also makes prediction a suitable approach. Two aspects emerge:

– Analysing measure system data allows us to predict behaviour, reducing
uncertainty and increasing the robustness of the adaptation.

– Prediction also helps to link the layers and tiers in the architecture, as for
instance infrastructure tier metrics can be used to predict service-level qual-
ity. Prediction captures dependencies and becomes a link between the tiers.

Through predication and analysis of monitored data, we can e.g. identify stable
quality utilisation patterns. We can map infrastructure workload patterns for
CPU, storage and network utilisation at the infrastructure tier to service-level
performance patterns, thus linking models (here pattern-based) across tiers [12].

We can implement a prediction technique for the same workload and perfor-
mance prediction context, based on simple and double exponential smoothing
to smoothen outliers and to anticipate trends. Here the aim is the robustness of
the prediction and overall adaptation process (by looking ahead in vulnerable
moments when the system is about to change).

5 Control Theory and Controller Architecture

Control theory and control engineering can be applied to build self-adaptive
systems. Control theory can help to build the models and the reasoning about
them to inform the decision making [3]. Decision making is a multi-objective
process [11]. Constructing a utility function that involves all stakeholders (such
as end-users and the providers of the various tiers of the system in question) is a
challenging task [7]. This utility function is implemented by the cloud controller.
This construction of utility function (the model) and the controller is a process
involving the following steps [5]: identify goals, identify knobs (measure), devise
model and design controller, complemented by validation and verification steps.

A key property of this controller is robustness. Robustness tells how resilient
the controller is against noise and uncertainty. Prediction, as discussed above,
is in addition to a proper calibration of the model a contributor to robustness.
Prediction across layers has already addressed the challenges arising from the
tiered cloud. architecture. Techniques such as horizontal scaling can deal with
the distribution dimension at each tier.

All concerns need to be managed by a control loop. Often, the MAPE-K
model is utilised [1], cf. Fig. 2, as the structure of a controller: Monitor applica-
tion and environment (in control-theoretic terms disturbances such as workload).
Analyse the input data and detect any possible violation. Plan corrective actions
in terms of adding resources or removing existing unutilized ones. Execute the
plan according to a specific platform. Uitilise a shared Knowledge (model).

It is the task of the controller to synchronise models with run-time archi-
tecture [11]. The model part of the controller needs to be implemented and

218 C. Pahl and P. Jamshidi

Fig. 2. MAPE-K Control Loop for the Cloud.

integrated with the cloud architecture in order to allow a model-driven cloud
control of non-functional aspects [5].

Controller construction still faces a number of problems [4], including uncer-
tainty, synthesize controllers, heterogeneity, unpredictable workloads, resource
bottlenecks, multi-tier applications, multi-cloud resources and scalability. We
have already discussed uncertainty and unpredictability. The last few points
indicate the importance of the cloud as a problem from the software architecture
perspective, i.e., an architecture onto which the concerns need to be projected:

– Measurement: the controller integrates different models representing the
application and infrastructure models at the different tiers – vertical dimen-
sion.

– Actuating/executing: typically within a tier, but across services, e.g., based
on scalability actions as adaptations – the horizontal dimension.

Uncertainty [5,8] could also be addressed by reducing the dependency on
human stakeholders. Here, machine learning can serve to learn adaptation rules
rather than relying on uncertain, possibly erroneous or inconsistent user input.
Again, the software architecture perspective can clarify this. A suitable archi-
tecture would add a meta-model layer on top of the MAPE-K control loop,
representing the learning loop on the models. Models can provide prediction
and the feedback loop can correct it, e.g., a queuing model provide how much
resources are needed to guarantee an SLA. Since the model is not precise, then
it can be augmented with a feedback to correct the error, called feedforwarding.

6 Conclusion

The cloud is a distributed, multi-tiered platform onto which layered, modular
software application architectures are mapped. The virtualisation of the cloud
resources causes this to be an adaptive system, that is, however, subject to
uncertainty and other challenges. Our contribution is the discussion from a soft-
ware architecture perspective and to propose a roadmap towards a model-based
control-theoretic solution that defines some core contributors to future solutions:

Software Architecture for the Cloud 219

– models for uncertainty, allowing prediction and enforcing robustness in a
control-theoretic framework,

– a model-driven multi-tier cloud controller to manage layered built from easily
deployable microservices,

– adapting the architectural configuration in the cloud, but also re-architecting
the application for the cloud.

There is a need for a controller framework that addresses the layered architecture
of an application mapped onto tiered cloud resource services through a set of
linked models for robust control-theoretic uncertainty management. Challenges
for this framework include big data and real-time analytics for the a dynamic
adaptation as well as stream processing.

Acknowledgments. This work was supported by Science Foundation Ireland grant
13/RC/2094 to Lero (www.lero.ie) and by the Irish Centre for Cloud Computing and
Commerce (IC4), a Technology Centre funded by Enterprise Ireland and the IDA.

References

1. Baresi, L., Ghezzi, C.: A journey through smscom: self-managing situational com-
puting. Computer Science - Research and Development 28(4), 267–277 (2013)

2. Chan, K., Poernomo, I.H., Schmidt, H., Jayaputera, J.: A model-oriented frame-
work for runtime monitoring of nonfunctional properties. In: Reussner, R., Mayer, J.,
Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA 2005 and
SOQUA 2005. LNCS, vol. 3712, pp. 38–52. Springer, Heidelberg (2005)

3. de Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., et al.: Software engineering for self-adaptive systems:
a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013)

4. Farokhi, S., Jamshidi, P., Brandic, I., Elmroth, E.: Self-adaptation challenges for
cloud-based applications: a control theoretic perspective. In: 10th International
Workshop on Feedback Computing 2015 (2015)

5. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I.,
Hempel, A., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F.,
Misailovic, S., Papadopoulos, A., Ray, S., Sharifloo, A., Shevtsov, S., Ujma, M.,
Vogel, T.: Software engineering meets control theory. In: Intl Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems SEAMS 2015 (2015)

6. Ghezzi, C., Pinto, L., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: Inl. Conf. on Soft. Eng. (2013)

7. van Hoorn, A., Rohr, M., Gul, A., Hasselbring, W.: An adaptation framework
enabling resource-efficient operation of software systems. In: Proceedings of the
Warm Up Workshop for ACM/IEEE ICSE 2010, WUP 2009. ACM (2009)

8. Iftikhar, M., Weyns, D.: Assuring system goals under uncertainty with active for-
mal models of self-adaptation. In: Companion Proceedings of the 36th International
Conference on Software Engineering. ACM (2014)

9. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-
based software. In: Intl. Symp. on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2014 (2014)

220 C. Pahl and P. Jamshidi

10. Pahl, C.: Containers and clusters for edge cloud architectures - a technology review.
In: Intl. Conference on Future Internet of Things and Cloud, FiCloud 2015 (2015)

11. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
aware systems: a research agenda for re for self-adaptive systems. In: International
Requirements Engineering Conference, RE 2010, pp. 95–103 (2010)

12. Zhang, L., Zhang, Y., Jamshidi, P., Xu, L., Pahl, C.: Workload patterns for quality-
driven dynamic cloud service configuration and auto-scaling. In: International Con-
ference on Utility and Cloud Computing, UCC 2014 (2014)

Model-Based Energy Efficiency Analysis
of Software Architectures

Christian Stier1(B), Anne Koziolek2, Henning Groenda1, and Ralf Reussner2

1 FZI Research Center for Information Technology, Karlsruhe, Germany
{stier,groenda}@fzi.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{koziolek,reussner}@kit.edu

Abstract. Design-time quality analysis of software architectures eval-
uates the impact of design decisions in quality dimensions such as per-
formance. Architectural design decisions decisively impact the energy
efficiency (EE) of software systems. Low EE not only results in higher
operational cost due to power consumption. It indirectly necessitates
additional capacity in the power distribution infrastructure of the tar-
get deployment environment. Methodologies that analyze EE of software
systems are yet to reach an abstraction suited for architecture-level rea-
soning. This paper outlines a model-based approach for evaluating the
EE of software architectures. First, we present a model that describes
the central power consumption characteristics of a software system. We
couple the model with an existing model-based performance prediction
approach to evaluate the consumption characteristics of a software archi-
tecture in varying usage contexts. Several experiments show the accuracy
of our architecture-level consumption predictions. Energy consumption
predictions reach an error of less than 5.5% for stable and 3.7% for vary-
ing workloads. Finally, we present a round-trip design scenario that illus-
trates how the explicit consideration of EE supports software architects
in making informed trade-off decisions between performance and EE.

1 Introduction

Software architects design enterprise software systems to meet quality require-
ments in multiple dimensions, e.g., performance and reliability. In designing
a software system they have to make trade-off decisions to address contra-
dictory goals of stakeholders. System users are interested in having sufficient
Quality of Service (QoS) at an acceptable price. System providers aim to reduce
the cost incurred from hosting the software system. Power consumption is a
major operating cost factor. It is responsible for over 15% of a data center’s
Total Cost of Ownership (TCO) [9].

The power consumption of servers varies strongly depending on the load
induced on the servers. If the utilization of a server increases (e.g. because more
software components are deployed to it, or because more users use its services),
its power consumption increases.

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 221–238, 2015.
DOI: 10.1007/978-3-319-23727-5 18

222 C. Stier et al.

In addition to the amount of power consumed by the servers, the costs
induced by power consumption also include the costs of power distribution equip-
ment. The degree by which system operators consolidate load depends not only
on QoS requirements but also on the available power distribution infrastructure.
Power distribution infrastructure in data centers is organized in a hierarchical
manner [1]. Power distribution units (PDUs) distribute power to racks which
in turn provide power to the connected servers. As servers rarely all simulta-
neously reach peak utilization, the power distribution infrastructure is usually
over-subscribed [1]. Whether this over-subscription will lead to problems depends
upon the workload mix and the deployed software components.

The software system’s architecture impacts these power consumption costs:
First, design decisions may influence the power consumption directly, for example
the decision how to distribute the system to how many servers, or the decision
what architecture-level communication style to use [19]. Second, to assess the
costs of the expected power consumption, architects additionally need to consider
what power distribution infrastructure is needed and when power is consumed.
Thus, software architects need to consider the influence of architecture design
on power consumption to make informed trade-off decisions between the QoS of
offered services and power consumption costs.

Software engineering approaches are yet to reach an abstraction suitable for
supporting the design of energy efficient software systems on an architectural
level. Seo et al. perform energy consumption analysis for specific architectural
styles [19]. Their work cannot be applied to predict the impact of other design
decisions on energy efficiency (EE). Brunnert et al. analyze the EE of software
systems on the basis of average-case analysis [6]. This is not sufficient to deter-
mine the peak power consumption the deployed software causes on the infras-
tructure. Approaches from the embedded systems and cloud/grid computing
domain make limiting assumptions on the behavior of users [12,14] or disregard
parametric dependencies between software components [7,12].

In this paper, we propose an approach for analyzing the EE of software
architectures. It accounts for variations in user load and allows to identify periods
with high power consumption. Thereby it not only enables software architects to
determine whether the planned deployment of a software system meets average-
case QoS and energy consumption goals, but also whether the system violates
QoS and consumption limits during temporary workload spikes.

The contributions of this paper are as follows. First, it outlines an approach
for modeling the power consumption characteristics of software systems on the
architectural design layer. Second, an analysis methodology for energy efficiency,
i.e. as a trade-off between power consumption and performance, is presented. Our
approach extends an architecture-level approach for performance prediction by
power consumption predictions. It does not require software component-specific
consumption annotations. Rather, it uses component-independent consumption
characterizations of the deployment environment and component-specific perfor-
mance annotations to reason on the consumption characteristics of a deployed
software system.

Model-Based Energy Efficiency Analysis of Software Architectures 223

In our evaluation, we investigated the accuracy of the power consumption pre-
dictions for a media hosting system (evaluation question Q1). The architectural
power consumption predictions reached an average-case error of less than 5.5%.
We evaluated whether the approach could accurately predict power consumption
trends (Q2). Furthermore, we showcased the potential benefits of applying power
consumption analysis as part of the architecture design by investigating a design
decision (Q3) and a deployment decision (Q4) that affect both performance and
power consumption in a nontrivial manner. Our approach predicted the abso-
lute effect of using an alternative encoder with an error lower than 18.9% (Q3).
A deployment decision scenario illustrated the effect that power infrastructure
sizing has on the degree by which a system can be horizontally scaled (Q4)).

The paper is structured as follows: Section 2 provides foundations on power
models used for power consumption predictions and Palladio. Section 3 presents
the state of research and highlights the gaps. Section 4 introduces the architec-
ture of the running example. Section 5 presents our power consumption model
and 6 our analysis methodology. Finally, Section 7 presents the evaluation results
and Section 8 concludes.

2 Foundations

This section presents methodologies and concepts that our approach is built
upon. Section 2.1 discusses models to estimate the power consumption of hard-
ware components. Palladio’s Architectural Description Language (ADL) and
performance prediction approach are presented in Section 2.2.

2.1 Power Models

Power models estimate the power consumption of hardware components or sets of
hardware components. Power models correlate power consumption with measur-
able metrics. They are constructed based on power measurements, which are col-
lected as part of a benchmark. A wide variety of power models exists. They range
from models that rely on system-level metrics [8,11], i.e., CPU utilization, to mod-
els that consider performance counters [5] and other hardware internals [10].

Fan et al. [8] propose and evaluate a linear as well as a non-linear regression-
based power model for predicting the power consumption of single servers. Their
models correlate power consumption solely with CPU utilization. Non-linear
power models exceed the accuracy of linear power model across a wide range of
different workloads, as is confirmed by Rivoire et al. [18]. Nevertheless, existing
power consumption predictions most commonly build upon linear power models
[6,7,17].

2.2 Palladio

Palladio [4] supports the analysis of quality characteristics of a component-
based software architecture. Software architectures are specified in the

224 C. Stier et al.

Palladio Component Model (PCM) ADL. Palladio evaluates the performance
characteristics of an architecture either using analytical approaches or
Discrete Event Simulation (DES) [4].

PCM is a meta-model for modeling component-based software archi-
tectures and the factors that influence the performance of a software
system. PCM consists of different views that abstract distinct modeling con-
cerns. The central view of PCM is Component Specification. In the Com-
ponent Specification view the interfaces and behavior of services offered by
each component are described. The behavior of a service is specified in
a Resource Demanding Service Effect Specification (RDSEFF). The RDSEFF
correlates the input parameters of a service call with the demands it issues on
resources such as CPU or HDD. Furthermore, the RDSEFF specifies parametric
dependencies of the service’s performance on the performance of service calls
to its required components. The Assembly Model view defines an assembly of
component instances. Figure 1b provides an example Assembly and RDSEFF
instance. Besides the description of components and their assembly, the views
include the definition of the system’s deployment environment and usage con-
text. The Resource Environment view describes the deployment environment of
components. It describes the performance characteristics of the available com-
pute and network infrastructure. The Allocation view maps the components in
the assembly to the deployment environment. PCM’s Usage Model separately
models the behavior and arrival rate of users that interact with the system.

The advantage of PCM’s performance abstraction over the direct specifica-
tion of performance models using formalisms such as Queueing Networks (QNs)
lies in its composability. The performance model of each component is defined
as a set of RDSEFFs of its provided services. The RDSEFFs of a component are
parametrized over the component’s assembly, deployment and usage, so that it
can be reused for different contexts in which the component itself shall be reused
(e.g. in a different system, a different deployment, or a different usage profile).
Figure 1b shows an example RDSEFF parametrized over the size of the input
values in bytes. Once the assembly, deployment and usage of the components in
the architecture have been specified, the Palladio tool composes the performance
models and analyzes it via simulative or analytical approaches from the domain
of queueing theory [4].

3 Related Work

Over the years many design patterns [16] have been proposed to increase the
EE of software systems. Little work, however, has been done on quantitatively
evaluating the EE of software systems on an architectural level at design time.

Seo et al. [19] evaluate the impact of architectural communication styles on
energy consumption. The authors outline consumption models for specific com-
munication styles such as client-server and publish-subscribe. Their approach
disregards power consumption resulting from computation as the authors argue
that application behavior is independent from the communication style. While

Model-Based Energy Efficiency Analysis of Software Architectures 225

the approach proposed by Seo et al. can be applied to compare the power con-
sumption of specific communication styles, it consequently cannot be leveraged
to evaluate the overall energy consumption of a software system.

Meedenyia et al. [14] propose a multi-objective architecture optimization
approach for embedded component-based systems. The authors focus on the
trade-off between energy consumption and reliability. Their approach annotates
each component with an estimate of the energy consumption incurred by calling
one of its services. Meedeniya et al. assume that all calls to a component consume
the same amount of energy. The authors do not differentiate energy consumption
for different input parameters. This limits the applicability of their approach to
enterprise software systems where the resource demand of services largely depend
upon its input parameters.

Brunnert et al. [6] capture performance and power consumption character-
istics of software systems for systematic capacity planning. Their approach pre-
dicts energy consumption using linear power models [8]. Non-linear power models
are not supported. The authors evaluate energy consumption via an average-case
system analysis. Their approach does not support identifying peaks in power
consumption and the violation of consumption constraints.

The previously discussed approaches [6,14,19] focus on EE analysis of soft-
ware systems on an architectural level. A number of consumption modeling and
prediction approaches have been developed to evaluate the power consumption
of cloud and High Performance Computing (HPC) systems.

The cloud data center simulator CloudSim developed by Calheiros et al.
[7] supports the prediction of power consumption in data centers using power
models. Virtual Machines (VMs) and not software components form the central
first-level entities. CloudSim does not consider dependencies in the behavior of
VMs. The resource demand of each VM is described as a fixed function over
time. DCWorms by Kurowski et al. [12] is a simulator aimed at performance
and energy consumption predictions for HPC systems. Their model assumes that
all computational tasks have predetermined durations. This assumption is often
violated for systems outside of the HPC domain.

Basmadjian et al. [2] outline a power consumption estimation methodology
for servers. Their approach estimates a data center’s power consumption by
aggregating the consumption of individual resources such as CPUs and fans.
Since the authors assume all resources of one type to follow the same power
model, their approach is unsuited for evaluating the energy consumption of het-
erogeneous computer systems.

4 Running Example

Media Store is a reference implementation of a light-weight media hosting service.
Users can download and upload media files using its services. Media Store has
been used to empirically validate Palladio’s applicability for design-time perfor-
mance predictions [13]. The accuracy of Palladio’s performance predictions has
also been evaluated for a specification of Media Store in PCM [4].

226 C. Stier et al.

(a) MediaStore architecture (b) Encoding Service RDSEFF

Fig. 1. Media Store architecture and RDSEFF of Encoding service offered by Encoder

Figure 1 shows the Assembly view on Media Store. The assembly consists of
a GUI frontend (WebGUI), a business logic layer for organizing users and media
files (MediaStore), and a persistence layer. For the sake of simplicity, we deploy
all three Media Store layers on one high-capacity server.

The MediaStore component offers download and upload services. It re-
encodes media files to a specific bit rate using the Encoder component. The
RDSEFF characterization of the Encoder’s download service is depicted in
Figure 1. It correlates the file’s input size with the number of CPU cycles needed
to process one byte.

5 Power Consumption Model

In order to reason on a software system’s EE at the architecture level, it is
necessary to describe its consumption characteristics on a suitable abstraction
level. ADLs like PCM enable the design-time analysis of QoS characteristics
such as performance [4]. Quality analysis approaches built upon ADLs rely on
a characterization of fundamental factors that impact the system’s QoS in the
set of considered quality dimensions. Existing ADLs that describe the power
consumption characteristics abstract from fundamental characteristics of power
distribution infrastructure design [6]. Although more comprehensive abstractions
of power distribution infrastructure have been proposed [2,15], they have thus
far not been integrated with an architecture-level approach for the design of
software systems.

This section outlines our proposed modeling of a software system’s power
consumption characteristics as part of an ADL. Even though this paper applies
the modeling concepts to PCM, the chosen modeling abstraction is independent
of it. A detailed description of the models and the integration with PCM is
available in [20].

Figure 2 provides an overview of our proposed model of power consumption
characteristics as an extension to the PCM ADL. The Power Consumption model

Model-Based Energy Efficiency Analysis of Software Architectures 227

Fig. 2. Overview of the Power Consumption model

annotates PCM’s Resource Environment model with the consumption charac-
teristics of the software system. The Power Consumption model is subdivided
into three orthogonal model views. These views are presented in the following
sections.

5.1 Infrastructure

The Infrastructure view describes the power distribution infrastructure of a soft-
ware system. Its abstraction is based on the power distribution infrastructure
of data centers and enterprise-scale software systems. Power distribution infras-
tructure in data centers is structured hierarchically [8]. For example, data center-
level uninterruptible power supplies (UPSs) distribute power to PDUs mounted
to racks. UPSs provide backup power and correct irregularities such as voltage
spikes. The rack-mounted PDUs then supply the power supply units (PSUs) of
individual servers with power.

Figure 3 depicts the Infrastructure’s meta-model. PowerInfrastructureRepos-
itory hosts a set of power distribution infrastructure definitions. The power in
each distribution infrastructure originates from a common PowerProvidingEn-
tity, e.g. the PDU of a group of racks. The PowerProvidingEntity supplies power
to a set of connected PowerConsumingEntities. PowerConsumingEntities are dis-
tinguished into entities that consume power, e.g. PowerConsumingResource, and
entities which both consume and provide power (PowerConsumingProvidingEn-
tity). This modeling allows to capture the conversion losses that may incur for
UPSs. PowerConsumingResource annotates the processing resources in PCM’s
Resource Environment and puts them into context with the power distribution
infrastructure.

Figure 3 shows the Infrastructure instance of our running Media Store exam-
ple. It enhances PCM’s performance-centric Resource Environment model with
power consumption and distribution characteristics. The server onto which the
Media Store application is deployed hosts a set of CPUs. The CPUs all con-
tribute to the power consumption of the server. Thus, they are modeled as a
PowerConsumingResource. All CPUs draw their power from the same PSU.

228 C. Stier et al.

(a) Infrastructure meta-model

(b) Infrastructure model instance of
the Media Store server

Fig. 3. Infrastructure meta-model and example instance of the Media Store server

Fig. 4. Specification meta-model used for defining power models

5.2 Specification

The Specification view allows to capture power models as introduced in Section
2. Power models are defined in terms of their input parameters. We opted against
including the evaluation semantics of power models in the Specification meta-
model in order to support the inclusion of power models of arbitrary computa-
tional complexity. The evaluation semantics of each power model are specified
as part of extensible plugins to our analysis tool.

Figure 4 depicts the Specification meta-model. Software architects can
use a common PowerModelRepository instance to manage recurring types of
power models. Every PowerModelSpecification represents a power model. The
model distinguishes between power models of infrastructure elements that dis-
tribute power (DistributionPowerModelSpecification) and models of resources

Model-Based Energy Efficiency Analysis of Software Architectures 229

(ResourcePowerModelSpecification). Power consumption of resources results
from their utilization as part of a task. For example, a CPU draws power when it
performs mathematical operations. A PDU’s power consumption depends solely
on the power draw of connected resources.

ConsumptionFactors form the input parameters of each power model. An
instance of ConsumptionFactor specifies an input parameter type and not its
concrete value. Type and value definition are separated to enable reuse of the
power model specifications. Section 5.3 explains how the types are instantiated. A
FixedFactor represents a fixed consumption characteristic that does not change
with the load of a PDU or resource. The power consumption of a CPU under idle
load (Pidle) falls into this category. A MeasuredFactor expresses a dependency
of the power consumption to a measured system metric such as CPU utilization.
All MeasuredFactors come with semantic information on their type and the unit
in which they are measured (NumericalBaseMetricDescription). In the context
of this paper, MeasuredFactors are gauged on the basis of metrics extracted
from simulation. However, real measurements could also be a source of these
measurements if the Power Consumption model were to be applied to runtime
power consumption evaluations. The right hand side of Figure 5 provides an
example on how a linear power model can be defined using the Specification
model.

5.3 Binding

PowerBinding links the power consumption characteristics of elements in the
Infrastructure with Specification’s abstract, type-level definition of power mod-
els. A PowerBinding instance specifies how a specific resource type consumes
power. Figure 5 shows an example Binding for the Media Store server. The
PowerBinding ties the server to the linear power model. The server’s consump-
tion is characterized to follow a linear power model with PIdle = 332 W and
PBusy = 477 W. Every FixedFactor in the Specification is matched with a Fixed-
FactorValue. The PowerBinding of the server binds the values 332 W and 477 W

Fig. 5. Excerpt from Specification and Binding instance of the Media Store server

230 C. Stier et al.

to Pidle and PBusy. The utilization parameter u of the linear power model does
not need to explicitly get instantiated in the Binding view. It can be implic-
itly resolved for all servers in the Infrastructure since it does not depend on
server-specific consumption characteristics.

6 Evaluating Energy and Power Consumption

In the following, we present our approach for evaluating power and energy con-
sumption of a software system. Section 2.1 outlined that the power consumption
of individual servers can be estimated using power models. In order to apply
power models to estimate the consumption of a software system, a source for
system metrics it depends upon is needed.

System metrics can be extracted from software architectures described in
an ADL using analytical or simulation-based approaches. Analytical approaches
offer fast evaluation times with a good average-case accuracy. They do, however,
make simplifying assumptions to achieve acceptable computational complexity.
Analytical approaches commonly disregard temporal effects in user load, such
as strong bursts during a specific interval. As we are interested in an analysis
that accounts for these effects, we opted to employ Discrete Event Simulation
(DES) as the basis of the power consumption predictions presented in this paper.
Palladio’s DES provides utilization metrics for a specified software system and
usage profile. We use these utilization metrics as input for our post-simulation
analysis. The implementation is available on our website1.

Our analysis evaluates the power consumption of the resources in the power
distribution infrastructure. It calculates power consumption using the consump-
tion characteristics specified in the Binding view. Subsequently, the analy-
sis aggregates power consumption for the elements provisioning power to the
resources. As part of the aggregation, conversion losses can be factored in.

The energy consumption Es of a software system s between two points in
time a and b is calculated by integrating its power consumption Ps over the
investigated interval [a, b]. Once power consumption predictions are available
for a software system, we evaluate energy consumption by means of numerical
integration.

7 Evaluation

We evaluated our approach for architecture-level power consumption predictions
using the Media Store system described in Section 4. The evaluation investigated
the following evaluation questions:

– Q1: Is our approach suited to accurately predict energy consumption on an
architectural level?

– Q2: Does the approach support the identification of power consumption
trends and peaks under varying workloads?

1 https://sdqweb.ipd.kit.edu/wiki/Power Consumption Analyzer.

https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Analyzer

Model-Based Energy Efficiency Analysis of Software Architectures 231

– Q3: Is the approach applicable to evaluate the energy efficiency (EE) of
architectural design decisions?

– Q4: Is the approach applicable to evaluate the impact of deployment deci-
sions on EE?

7.1 Deployment Environment

We conducted our evaluation on a Dell PowerEdge R815 server equipped with
four Opteron 6174 CPUs. The Media Store implementation used as part of this
case study was realized in Java EE. We deployed Media Store on a Glassfish 3.1
server running on an Ubuntu 12.04 VM. The VM was running atop a Xen hyper-
visor controlled by XenServer 6.2. 16 out of the server’s 48 available cores were
assigned to the VM. No other VMs besides the Ubuntu VM and the XenServer
instance were deployed onto the server. Media Store’s DB component was real-
ized as a MySQL 5.5 server instance, Encoder used LAME 3.99.3 for encoding
MP3s. The Vorbis Encoder variant introduced in Section 7.4 used libvorbis 1.3.2
bundled within the ffmpeg framework.

7.2 Power Model Extraction

In order to reason on power consumption we measured the server’s power con-
sumption in relation to its load. We derived a power model from the measure-
ments by correlating power consumption and load. The Linux microbenchmarks
stress and lookbusy were used to put varying degrees of load on the server.
For each load level a monitoring utility measured power consumption using the
server’s built-in power meter. The utility collected the measurements through
Intelligent Platform Management Interface (IPMI)1. While the power meter’s
accuracy and resolution is limited when compared to a dedicated external meter,
it is sufficient to derive a full-system power model. The server was operated in
a maximum performance mode for all the experiments to exclude side-effects
induced by switching server components into low power states.

First, we investigated how the number of busy cores affected the power con-
sumption of the server. The dots in Figure 6a represent the average-case power
consumption when 0 to 16 cores were stressed. The linear function Pmult(u) mod-
els the relation between power consumption and the number of used cores with
an R-squared error of 0.996 for 1 to 16 busy cores (c.f. Figure 6a).

As the idle power consumption significantly deviated from the overall trend
we further investigated the power consumption for utilization increments of 10%
between zero and one utilized core. Figure 6b shows the power model Psingle(u)
for utilization in this range. Putting both power models together, we derived a
piecewise-defined function for the whole utilization domain:

Pfull(u) =

{
Psingle(u) if u ≤ 1
Pmult(u) if 1 < u ≤ 16

, u ∈ [
0, 16

]
.

1 http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html,
retrieved 19.12.2014.

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html

232 C. Stier et al.

(a) Power measurements with model built
on the basis of multi-core measurements

(b) Single-core measurements with poly-
nomial power model

Fig. 6. Power measurements and models based on CPU utilization of the R815 server

Finally, we modeled this function using our Power Consumption model.

7.3 Accuracy of Architecture-Level Consumption Predictions

A power model can only be as accurate as the system metrics with which it is
parametrized. In order to warrant sufficient accuracy of the CPU utilization, we
calibrated the Media Store performance model using end-to-end service mea-
surements extracted via perf4j. We employed a single-user workload to calibrate
the performance model.

As expected, performance predictions for the calibration scenario
match the performance measurements from the real system. The average
response time (RT) prediction error of the calibrated model was 0.05%.

Our analysis derives power consumption predictions from the system metrics
that are produced by the simulation, as is discussed in section 6. Due to the low
RT prediction error of 0.05% the calibration scenario is well-suited as a bench-
mark for evaluating the accuracy of the energy consumption predictions. We
measured the power consumption of our Media Store server using the built-in
power meter while it was processing W1. Applying the power model to our cali-
bration scenario, we achieved an error of 0.17% for the total energy consumption
in the single-user scenario (workload W1).

Subsequently, we evaluated the accuracy of energy consumption predictions
under workloads different from the calibration scenario. In the evaluation work-
load W2 16 users repeatedly downloaded a random song from Media Store. The
model we had calibrated with a single-user workload managed to predict the RT
under the increased load with an error of 2.31%. Energy consumption predictions
under the increased load reached an error of less than 5.5% when compared to
actual measurements.

Finally, we investigated the accuracy gained from using a piecewise-defined
power model Pfull over strictly linear models as applied by Brunnert et al. [6]. If

Model-Based Energy Efficiency Analysis of Software Architectures 233

we were to use a linear power model for the full domain instead of the piecewise-
defined Pmult the energy consumption prediction error would go up to 1.41% for
W1, and 7.65% for W2.

In summary, our approach produced accurate energy consumption predic-
tions with an error of less than 5.5%. This indicates that the approach has
suitable accuracy (Q1).

7.4 Consumption Peaks and Trends

Besides an average-case energy consumption analysis our approach also supports
the evaluation of power consumption under changing user load. This enables
software architects to assess the suitability and efficiency of the software system’s
power distribution infrastructure under changing load.

Instead of the previously examined closed workloads W1 and W2 we now
compared power consumption measurements with the predictions for a grad-
ually increasing open workload. In W3 initially no users submitted download
requests onto Media Store. For every 160 seconds that had passed, the users’
interarrival rate was increased by an additional user request per 16 seconds.
Since Palladio’s baseline simulative analysis [4] does not support the evaluation
of dynamic workloads we used the alternative SimuLizar [3].

The energy consumption prediction error for W3 amounted to 3.68%. Figure
7 depicts both measured and predicted power consumption for W3. It can be
seen that measured and predicted consumption values differ from each other.
However, our prediction managed to identify the power consumption trend with
reasonable accuracy (Q2).

7.5 Impact of Design Decisions on Energy Consumption

Encoding is the most resource-intensive service in the Media Store architecture.
We thus investigated whether we could save by exchanging the LAME MP3

Fig. 7. Power consumption under incrementally increasing load

234 C. Stier et al.

Table 1. Predicted and measured power consumption for LAME and libvorbis encoder

(a) Workload W4 with interarrival time
of 16s

Energy Consumption

Encoder Measured Predicted Error

LAME 173.77 Wh 171.00 Wh -1.60%
libvorbis 129.11 Wh 133.10 Wh +2.78%

Saved Energy 44.67 Wh 37.91 Wh -15.14%

(b) Workload W5 with interarrival time
of 1s

Energy Consumption

Encoder Measured Predicted Error

LAME 215.30 Wh 223.06 Wh +3.60%
libvorbis 195.05 Wh 198.97 Wh +2.01%

Saved Energy 20.25 Wh 24.09 Wh +18.94%

encoder with a Vorbis encoder (libvorbis) using comparable audio quality set-
tings. First, we estimated the resource demand caused by encoding a music file
based on measurements for the Vorbis encoder. These measurements were con-
ducted in isolation of the original calibration. Second, we modeled the Vorbis
encoder in Palladio and integrated it into Media Store’s architectural model. We
then predicted the effect of using the Vorbis instead of the MP3 encoder using
Palladio’s simulation in combination with our consumption analysis. Finally, we
compared our predictions to actual measurements.

First, we investigated energy consumption under the open workload W4 with
an interarrival time of 16 seconds that was run for 30 minutes. Table 1a com-
pares the energy consumption of the MP3 Encoder component implementation
with the Vorbis Encoder. The total predicted energy consumption error was less
than 2.8%. To estimate the effect of using an alternative Encoder component
on the EE of the Media Store architecture we determined the saved energy as
the difference between the predicted consumption for both architecture variants.
Our approach was able to predict the saved energy consumption with an error
of 15.14% (c.f. Table 1a, Saved Energy row).

Table 1b depicts predicted and measured energy consumption under workload
W5. W5 is an open workload with an interarrival time of 1 second. Prediction
errors of both encoder variants amounted to less than 3.6%. The gained EE
was predicted with an error of 18.94% (c.f. Table 1b, Saved Energy row). Even
though the error of the predicted saved energy was noticeable, the saved energy
could still be assessed both qualitatively and quantitatively. The results thus
positively answer Q3.

7.6 Architectural Sizing Decisions

Multi-user load put onto Media Store so far could be handled while maintaining
QoS close to a single-user scenario by hosting all components on a single server.
When load rises, the simple single-node deployment of Media Store becomes
infeasible.

Workload W6 varies between 5 and 16 users per second. When they are
put onto the Media Store system, the system is overloaded. In order to achieve

Model-Based Energy Efficiency Analysis of Software Architectures 235

Fig. 8. Aggregate consumption of scaled-out Media Store

performance close to the single-user scenario under W6, the software architect
considers to scale the architecture horizontally and use storage with higher per-
formance. He or she realizes the horizontal scaling by adding a load balancer
to Media Store’s architecture that distributes the encoding tasks across multi-
ple Encoder instances. Now, a possible solution is to balance load between ten
Encoder components deployed on ten servers. However, the predicted worst-case
RT of this solution is more than twice as high as the worst-case RT in the sin-
gle user scenario W1. Thus, the software architect might consider to increase the
number of Encoder instances and servers to eleven. This improves the worst-case
RTs to only 23.3% more than in the single user case.

Software architects may consider the cost of adding a new server as a flat
fee when evaluating the trade-off between gained QoS and cost. This does not,
however, account for the step fixed cost induced by surpassing certain power con-
sumption thresholds. Power distribution infrastructure such as PDUs and UPSs
can supply power up to a certain peak power threshold. Once the peak power
threshold is surpassed the infrastructure either breaks down or the connected
servers are forced into lower power states. Both scenarios result in inferior QoS
and should therefore be avoided.

Figure 8 shows that the critical peak power of a UPS supplying 4600 W
would be surpassed if eleven Encoder instances were deployed. Consequently,
the software architect would have to request a larger-scale power infrastructure
from the infrastructure operator. An infrastructure upgrade might be warranted
if the architect expects a further increase in future load. Otherwise, the architect
may favor balancing load between ten Encoder instances to avoid a significant
additional investment. In summary, the scale-out scenario illustrates effects of
power distribution infrastructure sizing decisions on deployment decisions (Q4).

236 C. Stier et al.

7.7 Threats to Validity

Our evaluation focused on a specific application deployed on one specific server.
It does not address whether the proposed energy efficiency analysis methodology
applies to different software systems. The use of an internal power meter instead
of a dedicated certified power meter potentially results in inaccuracies. Further-
more, the consumption trend analysis experiment was only conducted once. All
other experiments were conducted in steady states in which we monitored the
system for more than 25 minutes.

8 Conclusions

This paper presents a model-based approach that supports the analysis of
energy efficiency (EE) of software architectures. The proposed hierarchical Power
Consumption model extends existing architecture models by central power con-
sumption and distribution characteristics of targeted deployment environments.
We extend an architecture-level performance analysis to predict the energy con-
sumption of a modeled software system. The evaluation illustrates that our app-
roach accurately predicts the power consumption of software systems in different
usage contexts (Q1, Q2). The average energy consumption predictions from our
approach reached errors below 5.5% for all experiments. The consumption pre-
dictions were accurate enough to assess how individual architectural design deci-
sions affect EE for a specific system and usage context (Q3). We validated this by
predicting the effect that the use of an alternative music encoder would have on
EE. Our approach predicted the increase in efficiency with an error of less than
18.94%. A horizontal scaling scenario in which we replicated the encoder com-
ponent illustrated how the explicit consideration of power consumption affects
deployment decisions (Q4).

The approach proposed in this paper enables software architects to make
systematic trade-offs between EE and other quality dimensions. Software archi-
tects do not need to rely solely on best practices and design patterns that have
been shown to improve EE. Our approach allows to quantify the effect of design
decisions on EE. It uses power models to evaluate the power consumption of
software architectures. The power models are extracted via microbenchmarks,
and characterize the consumption characteristics of resources independent of
specific software architectures. This allows software architects to evaluate the
EE of arbitrary software architectures without relying on architecture-specific
consumption measurements.

In future work, we plan to extend our approach in three main areas. First,
we will integrate our approach with the analysis of self-adaptive software sys-
tems to evaluate the effect of energy-conscious self-adaptation tactics (c.f. [16])
on the EE of a designed system. We further intend to include transient perfor-
mance and energy cost with the analysis. Examples for such costs are the energy
consumption and performance degradation caused by VM migration. Second,
we aim to reduce the required effort for applying our approach by automating
the extraction of power models. Finally, we plan to reduce the effort to identify

Model-Based Energy Efficiency Analysis of Software Architectures 237

optimal trade-offs between EE and other quality dimensions using approaches
for automated design space exploration.
Acknowledgments. This work is funded by the European Union’s Seventh Frame-
work Programme under grant agreement 610711.

References

1. Barroso, L.A., Clidaras, J., Hölzle, U.: The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, 2 edn. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers (2013)

2. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A method-
ology to predict the power consumption of servers in data centres. In: e-Energy
2011: Proc. of the 2nd International Conf. on Energy-Efficient Computing and
Networking, pp. 1–10. ACM, New York (2011)

3. Becker, M., Becker, S., Meyer, J.: SimuLizar: design-time modelling and perfor-
mance analysis of self-adaptive systems. In: Proc. of the Software Engineering
Conf. (SE 2013), February 2013

4. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3–22 (2009)

5. Bircher, W., John, L.: Complete System Power Estimation Using Processor Per-
formance Events. IEEE Transactions on Computers 61(4), 563–577 (2012)

6. Brunnert, A., Wischer, K., Krcmar, H.: Using architecture-level performance mod-
els as resource profiles for enterprise applications. In: Proc. of the 10th Interna-
tional ACM SIGSOFT Conf. on Quality of Software Architectures (QoSA 2014),
pp. 53–62. ACM, New York (2014)

7. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environ-
ments and Evaluation of Resource Provisioning Algorithms. Softw. Pract. Exper.
41(1), 23–50 (2011)

8. Fan, X., Weber, W.D., Barroso, L.A.: Power Provisioning for a Warehouse-sized
Computer. SIGARCH Computer Architecture News 35(2), 13–23 (2007)

9. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The Cost of a Cloud: Research
Problems in Data Center Networks. SIGCOMM Comput. Commun. Rev. 39(1),
68–73 (2008)

10. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: method-
ology and empirical data. In: Proc. of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, Washington (2003)

11. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.A.: Virtual machine
power metering and provisioning. In: Proc. of the 1st ACM Symposium on Cloud
Computing, pp. 39–50. ACM, New York (2010)

12. Kurowski, K., Oleksiak, A., Pia̧tek, W., Piontek, T., Przybyszewski, A., Wȩglarz, J.:
DCworms - A tool for simulation of energy efficiency in distributed computing infras-
tructures. Simulation Modelling Practice and Theory 39, 135–151 (2013)

13. Martens, A., Koziolek, H., Prechelt, L., Reussner, R.: From monolithic to
component-based performance evaluation of software architectures. Empirical Soft-
ware Engineering 16(5), 587–622 (2011)

14. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Architecture-driven reliabil-
ity and energy optimization for complex embedded systems. In: Heineman, G.T.,
Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 52–67. Springer,
Heidelberg (2010)

238 C. Stier et al.

15. Memari, A., Vornberger, J., Marx Gómez, J., Nebel, W.: A Data center simula-
tion framework based on an ontological foundation. In: EnviroInfo 2014 - ICT for
Energy Efficiency, pp. 461–468. BIS-Verlag (2014)

16. Procaccianti, G., Lago, P., Lewis, G.A.: Green architectural tactics for the cloud.
In: Working IEEE/IFIP Conf. on Software Architecture (WICSA 2014), pp. 41–44,
April 2014

17. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “Power”
Struggles: Coordinated Multi-level Power Management for the Data Center.
SIGARCH Comput. Archit. News 36(1), 48–59 (2008)

18. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. In: Proc. of the 2008 Conf. on Power Aware Computing and Systems.
HotPower 2008. USENIX Association, Berkeley (2008)

19. Seo, C., Edwards, G., Malek, S., Medvidovic, N.: A framework for estimating the
impact of a distributed software system’s architectural style on its energy con-
sumption. In: Working IEEE/IFIP Conf. on Software Architecture (WICSA 2008),
pp. 277–280, February 2008

20. Stier, C., Groenda, H., Koziolek, A.: Towards Modeling and Analysis of Power
Consumption of Self-Adaptive Software Systems in Palladio. Tech. rep., University
of Stuttgart, Faculty of CS, EE, and IT, November 2014. ftp://ftp.informatik.
uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR2014-05/TR-2014-05.pdf

ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/TR2014-05/TR-2014-05.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/TR2014-05/TR-2014-05.pdf

An Energy Consumption Perspective
on Software Architecture

A Case Study on Architectural Change

Erik A. Jagroep1,2(B), Jan Martijn E.M. van der Werf1, Ruvar Spauwen1,
Leen Blom2, Rob van Vliet2, and Sjaak Brinkkemper1

1 Department of Information and Computing Science,
Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{e.a.jagroep,j.m.e.m.vanderwerf,r.a.spauwen,s.brinkkemper}@uu.nl

2 Centric Netherlands B.V., P.O. Box 338, 2800 AH Gouda, The Netherlands
{leen.blom,rob.van.vliet}@centric.eu

Abstract. The rising energy consumption of the ICT industry has trig-
gered a quest for more sustainable, i.e. energy efficient, ICT solutions.
Software plays an essential role in finding these solutions, as software is
identified as the true consumer of power. However, in this context, soft-
ware is often treated as a single, complex entity which fails to provide
detailed insight in the elements that invoke specific energy consumption
behavior.

In this paper, we propose an energy consumption perspective on soft-
ware architecture as a means to provide this insight and enable anal-
ysis on the architectural elements that are the actual drivers behind
the energy consumption. In a case study using a commercial software
product, the perspective is applied and its potential demonstrated by
achieving an energy consumption saving of 67.1 %.

Keywords: Software architecture · Energy consumption perspective ·
Sustainability

1 Introduction

The energy consumption of the Information and Communication Technology
(ICT) sector is a booming topic of interest. Recent figures indicate that at least
a tenth of the world’s electricity use is on behalf of ICT [8]; a figure that has kept
growing over the years. As a result of the increased awareness on the subject, the
term ‘sustainability’ has emerged which is to “meet the needs of the present with-
out compromising the ability of future generations to satisfy their own needs”
[9]. Within the research community this has resulted in much attention going
towards increasing the energy efficiency of ICT.

Only recently the role of green software is stressed in finding sustainable ICT
solutions [7]. While energy is directly consumed by hardware, the operations are
directed by software which is argued to be the true consumer of power [14].
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 239–247, 2015.
DOI: 10.1007/978-3-319-23727-5 19

240 E.A. Jagroep et al.

In current research on the Energy Consumption (EC) of software (cf. [3,4]), the
software is often treated as a single, complex entity (i.e. considered on application
level) instead of the inter-related elements it actually consists of. A breakdown
into hardware components and ‘units of work’ is made, but this does not pro-
vide insight into which modules and functions invoke specific energy consuming
behavior. Consequently, a stakeholder can not direct sustainability efforts to
where they are needed.

We argue Software Architecture (SA) is able to fill this gap and in this paper
we investigate how EC can be positioned within the scope of SA. An Architec-
ture Description (AD) complemented with EC measurements, has the poten-
tial to help determine appropriate adjustments, identify where they should be
applied and help to simplify the context by limiting the scope. Using a commer-
cial software product, we construct an EC perspective on SA and validate the
perspective through a case study. The potential of our research is demonstrated
by realizing a reduction in energy consumption of 67.1%.

In this paper we first present related work on energy consumption and SA
(Sect. 2). After this brief introduction we continue with constructing the per-
spective alongside a case study (Sect. 3). Finally, we provide a conclusion, discuss
the results and directions for future research (Sect. 4).

2 Green Software and Software Architecture

Our approach to analyze the EC of software on architectural level is not unique.
The node map presented in [3] for example, closely resembles what could be
labeled as a deployment view which, after including EC figures, provides a ‘heat
map’ of the system. Following this same line [4] presents the ‘ME3SA’ model
in which again the deployment and functional components of the software are
investigated. In relation to green software, a limitation of both approaches is
that most recommendations relate to hardware aspects and only provide ‘strong
clues’ on software level.

One of the main issues with respect to green software [7] is to perform detailed
EC measurements. Specialized environments, e.g. [4], enable detailed measure-
ments but often lack the ability to expand to more complex environments (e.g.
data center) where other approaches, e.g. ‘E-Surgeon’ [10], are required that
have their own limitations. Consequently, the EC of software is often measured
by relating the hardware EC to computational resource usage on behalf of the
software [3].

To perform EC measurements we expand on the call for sustainability to
become a Quality Attribute (QA) with resource consumption, greenhouse gas
emissions, social sustainability, and recycling as subcharacteristics [7]. Contin-
uing on the path of EC we focus specifically on resource consumption which,
following the ISO 25010 standard, can be quantified using quality properties
and quality measures. From literature [2–6] three potential quality properties
can be identified; Software utilization (the degree to which hardware resource
utilization on the account of software meets requirements), Energy usage (the

An Energy Consumption Perspective on Software Architecture 241

degree to which the amount of energy used by the software meets requirements)
and Workload energy (the degree to which the EC related to performing a specific
task using software meets requirements). In Table 1 the properties are broken
down into quality measures complemented with a definition and measurement
function. Although further research is required, for now we assume that these
quality properties cover the resource consumption subcharacteristic.

Green Architectural Tactics. To address concerns for a software product on
the level of the SA, tactics are applied. A tactic is a decision that influences the
control of a QA [1] and is a design option that helps the architect in realizing a
desired property for a system. In relation to EC, there is still work to be done
to find a set of tactics that are able to satisfy EC concerns. Consequently, the
presented tactics are by no means definitive and should be considered as a source
of inspiration for green software efforts.

Table 1. Quality measures for to the resource consumption subcharacteristic.

Resource consumption
Software utilization
CPU Utilization
(CPUU)

Measure of the CPU load related to running the soft-
ware.
current CPU load− idle CPU load

Memory Utilization
(MU)

Measure of the memory usage related to running the
software.
allocated memory

total memory
× 100%

Network Throughput
(NT)

Measure of the network load related to running the soft-
ware.
Packages, sent/received bytes per second

Disk Throughput (DT) Measure of the disk usage induced by running the soft-
ware.
Disk I/O per second

Energy usage
Software Energy Con-
sumption (SEC)

Measure for the total energy consumed by the software.

EC while operating− idle EC
Unit Energy Consump-
tion (UEC)

Measure for the energy consumed by a specific unit of
the software.
(Unit CPUU

CPUU
× Unit MU

MU
× Unit NT

NT
× Unit DT

DT
) × SEC

Relative Unit Energy
Consumption (RUEC)

Measure for the energy consumed by a specific unit com-
pared to the entire software instance.
UEC
SEC

× 100%
Workload energy
Task Energy Consump-
tion (TEC)

Measure for the energy consumed when a task is per-
formed.

SEC
of tasks performed

Unit Task Energy Con-
sumption (UTEC)

Measure for the energy consumed when a task is per-
formed by a specific unit of the software.

UEC
of tasks performed

242 E.A. Jagroep et al.

In [11] a catalog is presented consisting of three categories, including tactics,
that address energy efficiency in the cloud. The energy monitoring category tactics
are aimed at collecting power consumption information and estimating infrastruc-
ture and software component power consumption. Tactics in the self-adaptation
category present possibilities for optimization during run-time. Finally, the cloud
federation tactics are aimed at respectively finding and switching to the most
energy efficient services to perform a task. Although the tactics are explained
specifically in a cloud computing context, they could prove valuable for software
in general.

Increase hardware utilization [3]; Ineffective use of hardware is a common
source for energy inefficiency and is one of the triggers to consolidate the number
of active servers. From an EC point of view less hardware reduces the idle energy
consumption.

Concurrency architecture variation [16]; In this specific case the Half Syn-
chronous / Half Asynchronous and the Leader / Followers concurrency architec-
tures are compared and a significant difference was found in the advantage of
the first. However, further investigation is required to test the generalizability of
this finding.

Increase modularity ; In terms of database calls, software consisting of fewer
modules could require less calls while significantly more data is transferred per
call. When software consists of more modules, an increase in database calls could
be observed with the potential that less data is transferred per call, i.e. the calls
are more fitted to the process. Assuming that increased disk usage has a marginal
impact on the EC figures, less CPU capacity is required for processing the call
thereby lowering the EC per call.

Network load optimization; Although modularity can positively affect the
EC of software [15], more modules also implies a higher communication load. A
positive effect on the EC is expected with a reduced communication load.

3 Energy Consumption Perspective on Software
Architecture

To address the EC of software on an architectural level we propose to construct
an EC perspective, which is ‘a collection of activities, tactics, and guidelines ...
used to ensure that a system exhibits a particular set of related quality properties
that require consideration across a number of the systems architectural views’
[12]. In order to create a comprehensive EC perspective, the perspective catalog
[12] (Fig. 1) is used where for each viewpoint a key issue is formulated that
addresses the relation to EC and a suggestion is provided on how the AD can
be altered to adhere to the perspective. Note that the original catalog contains
six viewpoints, but a seventh viewpoint, the ‘context view’, was added to define
societal and economical aspects.

To increase the practical applicability of the perspective, it was created along-
side a case study using Document Generator (DG). DG is a commercial software

An Energy Consumption Perspective on Software Architecture 243

product, used as a service with other commercial software products, to gener-
ate over 30 million documents per year by over 300 customers. The case study
was performed in a test environment (Fig. 2) that allowed for EC measurements
using a WattsUp? Pro (WUP), a device capable of measuring the total power
drawn by an entire system with a one second interval between measurements,
and performance measurements using Perfmon, a standard performance moni-
toring tool with Microsoft Windows. As DG was installed on the test server1

measurements were performed on this system and data was collected with the
loggin server. Finally, the client system was used to perform a task with DG.

Perspective Activities. Using a perspective a stakeholder has a means to
analyze and validate qualities of an architecture and drive architectural decision
making. Following [12], we provide a set of activities (Fig. 3) to apply the EC
perspective to the views.

1. Capture Energy Requirements: Requirements form the basis for change
in relation to SA [1] and should be considered when strategical, economical
or customer motives are present. For the case study we focused on DG’s core
functionality and investigate an activity encompassing the generation of 5000
documents, where each single document generation is considered a separate task.
In relation to EC we formulate the requirement for DG to consume less energy
while performing the specified task.

2. Create Energy Profile: An energy profile of the software provides the
stakeholder with a starting point and a benchmark to evaluate results. The pro-
file for DG was created with the following protocol; (1) Clear internal WUP
memory, (2) Close unnecessary applications and services on the test server,
(3) Start WUP and Perfmon measurements, (4) Perform specified task using

Fig. 1. Viewpoint catalog to apply an EC perspective, after [12], including key issues
and AD alteration suggestions.

1 HP Proliant DL380 G5, Intel Xeon E5335 CPU, 800GB local storage (10.000 rpm),
64GB PC2-5300, 64 bit MS Windows Server 2008R2 (Restricted to 2 cores), VMware
vSphere 5.1

244 E.A. Jagroep et al.

Fig. 2. Setup of the test environment used to perform the case study.

Fig. 3. The activities to apply the EC perspective to software architecture.

client and (5) Collect and check Perfmon and WUP data from logging server. In
total 22 measurements were performed divided over six series. After checking, 19
out of these 22 measurements were considered valid. For the energy profile, DG
on average required 41 minutes and 49 seconds to generate the documents and
with a SEC of 17560 Joule (J) (standard deviation 3577 J). An average TEC
was found of 3.51 J (175605000) per generated document.

The AD for DG (Fig. 5), including the functional, concurrency and deploy-
ment view, learned that DG consists of the Document.exe, Config.exe and Con-
nector.exe processes. The ‘Generator’ element (Document.exe) is responsible for
the actual document generation, ‘Utilities’ (Config.exe) provides configuration
options and the ‘Composer’, ‘Interface’ and ‘Connector’ elements (Connector.exe)
handle communications. Mapping the measurements on the AD, performance
data shows a 49% CPUU of Document.exe, with an average utilization rate of
50.7% and 7.4% for the two available cores, whereas the other processes (Config-
uration.exe and Connector.exe) did not appear active. Consequently only the the
TEC for Document.exe was added in the AD.

3. Assess against Requirements: Using the energy profile an assessment
should be performed on whether the software meets the requirements. Since
we did not formulate a quantitative goal for the requirement, e.g. consume at
most X Joule per document, we could not assess the requirements against the

Fig. 4. Comparison of CPU activity of the test server during a measurement.

An Energy Consumption Perspective on Software Architecture 245

energy profile. Hence the profile was labeled as benchmark and we proceeded to
determining adjustments.

4. Determine Adjustments: Based on the assessment, the adjustments should
be determined that are to be applied to the software or its context. From the
previous activities we learned that the energy consumption during the activity
was mainly caused by the ‘Generator’ element. Looking at the performance data,
we argued that applying the increase hardware utilization tactic had the poten-
tial to let us meet the requirement. In collaboration with the DG developer the
‘balancer’ was added, operating according to the broker pattern, changing the
SA as shown on the right hand side of Fig. 5.

5. Evaluate Adjustments: After adjustment, an evaluation should be per-
formed to determine whether the requirements are met and assure that no
unwanted effects are brought about. After adjustment, 33 (out of 36) valid
measurements were obtained (divided over seven series) following the earlier
described protocol. On average the new version of DG required 39 minutes and
14 seconds to generate the documents with a SEC of 5782 J (std. dev. 1647
J). In this new situation, TEC was reduced with 67.1% to an average 1.16 J
per generated document and a significant decrease in CPU activity was per-
ceived (Fig. 4). The CPUU for Document.exe decreased to an average 19.2%,
whereas the utilization rates of the cores appeared evenly divided (12.6% and
15.1% respectively). A note should be made though, as the database server was
considered out of scope we did not include any effects on this hardware.

Threats to Validity. With regard to the validity of the case study, an eval-
uation is performed following the threats as identified in [13]. The construct
validity considers whether the correct measures were identified for the object
under study. With investigating EC, there is little discussion on the relevant
measures. To relate these measurements to the software or elements thereof,
established performance indicators were used; a common method that is also
applied by others in this field of research.

Fig. 5. Functional, concurrency and deployment view of DG for subsequent releases.

246 E.A. Jagroep et al.

In light of the internal validity, despite careful preparations, due to the behav-
ior of services we can not be 100% certain that DG was solely responsible for the
load on the test server. Therefore each individual measurement was checked for
such processes using performance data. Another threat is the lack of experience
with configuring DG, e.g. we experienced firewall issues, resulting in a lower
number of measurements at the start. For the evaluation we were more familiar
with the case and relatively more valid measurements were obtained per series.

A threat to the external validity is the fact that the case study was performed
in a separate test environment containing specific hardware. Given the relation
between hardware and EC, different hardware could provide different findings in
absolute terms. However, since an actual commercial software product was used,
we argue that the proposed improvement is not specific to our environment.

Finally, reliability is concerned with the data and analysis thereof being
dependent on the specific researchers. The measurements within the case study
were performed by following a strict protocol, of which the activities are openly
described. We therefore argue that following the described protocol should yield
similar results.

4 Conclusion

In this paper we set out to investigate how EC can be positioned within the
scope of software architecture through an EC perspective. In its current form
the perspective enables stakeholders to identify, measure and analyze the EC of
architectural elements, direct green efforts with regard their software product
to where they are needed and verify the results. Using the perspective and the
measures presented with the sustainability QA, a stakeholder has a means to
quantitatively consider EC during the the design phase.

Alongside constructing the perspective, a case study was performed using
a commercial software product (DG). The energy profile for DG directed our
efforts and through an architectural change we reduced the energy consumption
with 67.1% per generated document. Considering the frequency at which this
task is performed, the savings could add up significantly from an organizational
dimension.

However, we do acknowledge that the EC perspective is by no means as
mature as other perspectives related to QAs. To further complete the perspec-
tive, among others by providing guidelines, more case studies are required for
which the current perspective can serve as a starting point. Therefore the per-
spective should be considered as a step in the right direction to structurally
consider the EC of a software product on SA level.

Based on the results presented in this paper, several directions for future
research can be identified. First is a deeper investigation into the EC perspec-
tive and improvement by application in practice. For example improve on the
visualization of EC aspects in the AD. Second is to investigate architecture vari-
ations, design patterns and tactics to find what actually comprises a sustainable
software architecture. A final direction is to investigate, in depth, how insights

An Energy Consumption Perspective on Software Architecture 247

gained from the architectural perspective can be translated to guidelines for
software development.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series
in Software Engineering. Pearson Education (2012)

2. Bozzelli, P., Gu, Q., Lago, P.: A systematic literature review on green software
metrics. Technical report, Technical Report. VU University Amsterdam (2013)

3. Grosskop, K., Visser, J.: Identification of application-level energy optimizations.
In: Proceeding of ICT for Sustainability (ICT4S), pp. 101–107 (2013)

4. Kalaitzoglou, G., Bruntink, M., Visser, J.: A practical model for evaluating the
energy efficiency of software applications. In: ICT for Sust. (ICT4S 2014). Atlantis
Press (2014)

5. Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T.: Green software and
green software engineering-definitions, measurements, and quality aspects. In: On
Information and Communication Technologies, p. 87 (2013)

6. Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators.
Future Generation Computer Systems 28(2), 478–489 (2012)

7. Lago, P., Kazman, R., Meyer, N., Morisio, M., Müller, H.A., Paulisch, F.,
Scanniello, G., Penzenstadler, B., Zimmermann, O.: Exploring initial challenges
for green software engineering: summary of the first greens workshop, at icse 2012.
ACM SIGSOFT Software Engineering Notes 38(1), 31–33 (2013)

8. Mills, M.P.: The cloud begins with coal: an overview of the electricity used by the
global digital ecosystem. Technical report, Digital Power Group, August 2013

9. Murugesan, S.: Harnessing green it: Principles and practices. IT Prof. 10(1), 24–33
(2008)

10. Noureddine, A., Rouvoy, R., Seinturier, L.: Monitoring energy hotspots in software.
Automated Software Engineering, pp.1–42 (2015)

11. Procaccianti, G., Lago, P., Lewis, G.A.: A catalogue of green architectural tactics
for the cloud. In: 2014 IEEE 8th Int’l Symp. on the Maint. and Evol. of Service-
Oriented and Cloud-Based Systems (MESOCA), pp. 29–36, September 2014

12. Rozanski, N., E. Woods, E.: Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley (2011)

13. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

14. Sun, Y., Zhao, Y., Song, Y., Yang, Y., Fang, H., Zang, H., Li, Y., Gao, Y.: Green
challenges to system software in data centers. Frontiers of Comp. Sc. in China 5(3),
353–368 (2011)

15. te Brinke, S., Malakuti, S., Bockisch, C., Bergmans, L., Akşit, M.: A design method
for modular energy-aware software. In: Proceedings of the 28th Annual ACM Sym-
posium on Applied Computing, pp. 1180–1182. ACM (2013)

16. Zhong, B., Feng, M., Lung, C.-H.: A green computing based architecture compar-
ison and analysis. In: Proc. of the 2010 IEEE/ACM Int’l Conf. on Green Comput-
ing and Communications & Int’l Conf. on Cyber, Physical and Social Computing,
pp. 386–391. IEEE Computer Society (2010)

Agile and Smart Systems

A Lean Automotive E/E-System Design
Approach with Integrated Requirements

Management Capability

Harald Sporer(B), Georg Macher, Christian Kreiner, and Eugen Brenner

Institute of Technical Informatics, Graz University of Technology,
Inffeldgasse 16/1, 8010 Graz, Austria

{sporer,georg.macher,christian.kreiner,brenner}@tugraz.at
http://www.iti.tugraz.at/

Abstract. Replacing former pure mechanical functionalities by mecha-
tronics-based solutions, introducing new propulsion technologies, and
connecting cars to their environment are only a few reasons for the
still growing E/E-System complexity at modern passenger cars. Smart
methodologies and processes are necessary during the development life
cycle to master the related challenges successfully. In this paper, a lean
approach for a model-based domain-specific E/E-System architectural
design is presented. Furthermore, an integrated requirements manage-
ment methodology is shown, satisfying the needs for a full traceability
between the requirements and design artifacts. The novel model-based
language allows domain experts, with limited knowledge of the de-facto
system design standard SysML, to describe the mechatronics-based sys-
tem easily and unambiguously. The lean tool chain orchestration makes
the presented approach, especially but not limited to, interesting for
small project teams.

Keywords: Automotive embedded E/E-systems · System architectural
design · Domain-specific modeling · Requirements management

1 Introduction

The number of functionalities realized through electrical and/or electronic sys-
tems (E/E-Systems) at modern cars, and therefore the overall complexity, will
keep increasing over the next years. Connecting the cars with their environ-
ment, as well as new propulsion technologies will foster this trend. The potential
concerning product differentiation between competing companies as well as the
possibility to optimize existing E/E-System functionalities is enormous.

High quality standards along the whole product life cycle are crucial to cope
with the upcoming challenges. To achieve this, methods and techniques from
concepts like Automotive SPICE [1] are strongly recommended. Some of the key
aspects of these concepts are bidirectional traceability, as well as consistency
between the different development artifacts. Regardless what kind of tool chain
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 251–258, 2015.
DOI: 10.1007/978-3-319-23727-5 20

252 H. Sporer et al.

is chosen to facilitate the product development life cycle, these key concepts
must be supported.

In the automotive industry, the E/E-System design models are usually cre-
ated with techniques based on the Unified Modeling Language (UML). To enable
this de facto standard for the embedded automotive system design, either the
meta-model is extended or a profile is created. A wide-spread example of an
UML2 profile is the Systems Modeling Language (SysML), which reuses many of
the original diagram types (State Machine Diagram, Use Case Diagram, etc.),
uses modified diagram types (Activity Diagram, Block Definition Diagram, etc.),
and adds new ones (Requirement Diagram, Parametric Diagram) [2].

Even if the UML-based methodologies are valuable for projects with empha-
sis on software, for the embedded automotive system design, sometimes they
are too powerful due to the numerous representation options. In particular for
domain experts who have no or limited knowledge about software development,
the high number of elements available for modeling, turns the system architec-
tural design into an awkward task. However, it is not the intention of this work
to decry the SysML approaches created so far. They are a good choice for a
multitude of tasks. Instead, this paper showcases an extension to these SysML
approaches, which eases the architectural design of embedded mechatronics sys-
tem designs for UML-non-natives, and provides a comfortable integration of the
requirements management processes at the different design abstraction levels. To
achieve these goals, a domain-specific modeling (DSM) for the particular needs
at the embedded automotive mechatronics-based system development has been
created. Moreover, the described design approach has been complemented by a
lean requirements management strategy.

In the course of this document, Section 2 presents an overview of the related
approaches, as well as of domain-specific modeling and requirements manage-
ment. In Section 3, a description of the proposed modeling approach with inte-
grated requirements capability is provided. An application of the described
methodology is presented in Section 4. Finally, this paper is concluded with
an overview of the presented work in Section 5.

2 Related Work

In recent years, a lot of effort has been made to improve the automotive model-
based E/E-System design methods and techniques. Traceability, as well as con-
sistency, between the development artifacts has always been an important topic.
However, due to the increasing number of electronic- and electric-based func-
tionality, these properties have become vital.

If it comes to safety-critical functionalities, according to the 2011 released
international standard ISO 26262, traceability between the relevant artifacts is
mandatory [9]. A description of the common deliverables along an automotive
E/E-System development, and a corresponding process reference model is pre-
sented by the de facto standard Automotive SPICE [1]. Neither the functional

A Lean Automotive E/E-System Design Approach 253

safety standard nor the process reference model enforces a specific methodol-
ogy, how the development artifacts have to be linked to each other. However,
connecting the various work products manually is a tedious and error-prone task.

In [4] a seamless model-based tool chain orchestration for the automotive sys-
tem and software engineering domain is described by the authors. As in other
contributions in this field ([5], [6], [7]), SysML is utilized for the system archi-
tectural design.

To agree with Broy et al. [8], the drawbacks of the UML-based design are still
the low degree of formalization, and the lack of technical agreement regarding
the proprietary model formats and interfaces. The numerous possibilities of how
to customize the UML diagrams, to get a language for embedded system design,
drive these drawbacks. This scenario does not provide an optimal base for the
engineer who has to design the embedded automotive system from a mecha-
tronics point of view. Ideally, the tool should be intuitive and easily operated
also without specific UML knowledge. These findings led the authors to the idea
to create a more tailored model-based language for the stated domain. In [3] a
detailed description of this domain specific modeling approach can be found.

Regarding the needs for an appropriate requirement handling, Mäder et al.
[10] provide evidence that standards like the ISO 26262, which demand full
traceability, are not the only argument for implementing a proper requirements
management strategy. They conducted an experiment with more than 50 sub-
jects performing maintenance tasks on two projects. Half of the tasks with and
the other half without traceability. The result was unambiguous: the subjects
with requirements traceability performed on average 21% faster and delivered
60% more correct solutions.

Based on functionality classification, Chemuturi [11] primarily categorize
requirements into Core Functionality Requirements and Ancillary Functionality
Requirements, instead of the in the automotive field wide-spread types Functional
Requirements and Non-Functional Requirements. In his opinion, the term Non-
Functional connotes that the corresponding requirements do not function or do
not serve any function. However, even if they may not serve a business process
function directly, they are serving a useful purpose in the product. Therefore,
he labels requirements corresponding to topics like Safety, Response Time, and
Memory Constraints as ancillary functionality requirements. At this approach,
the requirements classification of Chemuturi is utilized and adapted to the needs
of mechatronics-based systems.

Herrmann et al. [12] depict requirement attributes for different phases during
the product development cycle. Additionally, recommendations on their usage
are given, supported by the categorization of the attributes into mandatory,
reflective, optional, and not required. Most of the presented attributes are also
used at comprehensive requirements management (RM) tools like IBM Rational
DOORS1 and PTC Integrity Lifecycle Manager2. In this work, the recommen-

1 http://www.ibm.com/
2 http://www.ptc.com/

http://www.ibm.com/
http://www.ptc.com/

254 H. Sporer et al.

dations of Hermann et al. are taken into account and necessary adjustments,
evoked by the automotive E/E-System development domain, are made.

3 Approach

In this section, the domain specific modeling methodology for automotive mecha-
tronics-based system development, with a focus on the integrated requirements
management capability, is presented. As mentioned in Section 2, details on the
domain specific modeling can be found in [3]. Therefore, just a quick overview
is given in the following subsection.

3.1 Domain Specific Modeling Approach

The established SysML-based design method from [4] is extended by the newly
developedEmbeddedMechatronics SystemDomain-SpecificModeling (EMS-DSM)
for the automotive embedded system design. The main goal of this methodology
is to provide a lean approach for engineers to facilitate an embedded automotive
mechatronics system modeling on a high abstraction level. The focus of the app-
roach is on the model-based structural description of the E/E-System under devel-
opment. Additionally, the signals and interfaces are an essential part of the mod-
eling.

The definition of the newly developed model-based domain specific language
is shown in Figure 1. The top node EMS-DSM Component is the origin of all
other classes at the language definition. Therefore, each of the derived classes
inherits the five properties (ID, Name, Requirement, Verification Criteria, and
Specification) from the base class.

The language definition in Figure 1 represents the meta-domain of the model-
based language. Subsequently, the EMS-DSM is tailored to the needs of the
domain at the particular project or company. That is, design elements of possible
types Mechnical, Compartment, Sensor, Control Unit, Actuator, External Control
Unit, Basis Software, and Application Software, are specified for the particular
field of application. E.g. the domain of the presented application in Section 4 is
Embedded Mechatronics E/E-System Design for Compressed Natural Gas (CNG)
Fuel Tank Systems.

The EMS-DSM can be supported by a various number of tools, but at the
time when the research project was initiated, a highest possible flexibility, as
well as full access to the tools source code was desired. To achieve this, an own
model editor (Embedded Automotive System Design) has been developed, based
on the open source project WPF Diagram Designer [13].

3.2 Requirements Classification and Attributes

As mentioned in Section 2, the requirements are primarily categorized into Core
Functionality Requirements and Ancillary Functionality Requirements. Typical

A Lean Automotive E/E-System Design Approach 255

Fig. 1. EMS-DSM Definition (UML)

examples for ancillary functionality topics are Software Footprint, Memory Con-
straints, Response Time, Reliability, and Safety [11]. By introducing new require-
ment (issue) attributes, the utilized web-based tool Redmine3 can be adapted to
these needs for requirements categorization easily.

The de facto standard Automotive SPICE [1] defines three different types of
requirements at the engineering process group: Customer Requirements, System
Requirements, and Software Requirements. Out of the embedded E/E-System
view, at least the hardware focus is missing. Additionally, requirements and
design items regarding the mechanical components, have to be introduced for
the design of an embedded mechatronics-based E/E-System. Similar to the Auto-
motive SPICE methodology on system and software level, engineering processes
has been defined for these missing artifacts. Summing up, the available require-
ment and test case types at this work are: Customer Req, System Req, System
TC, System Integration TC, Software Req, Software TC, Software Integration
TC, Hardware Req, Hardware TC, Mechanics Req, and Mechanics TC.

By reconfiguring the project management tool Redmine, all mentioned
requirement types have been implemented. The most important attributes which
have been added are Core Functionality (artifact can be marked as contributing
to the products core functionality), ASIL (shows the automotive safety integrity
level of the artifact), and Verification criteria. In Figure 2 a system requirement
at Redmine is shown. The link to the corresponding costumer requirement is
located at the top of the definition. At Subtasks the subsequent requirements,
e.g. software requirements are listed and to satisfy the demand for full traceabil-
ity, a link to the corresponding test cases can be added at Related issues.

3 http://www.redmine.org/

http://www.redmine.org/

256 H. Sporer et al.

Fig. 2. System Requirement at Redmine

3.3 Bridging the Gap between Design and Requirements

Section 3.1 contains the description of how the different types of designs (system
level, software level, etc.) are created corresponding to the novel domain specific
modeling. To achieve full traceability, these designs, respectively the various com-
ponents at the designs, have to be linked to the corresponding requirements. This
can be done by the Requirements Linker at EASy Design, which establishes a con-
nection to the MySQL database, and therefore has full access to the requirements
data at Redmine. By utilizing theADO.Net driver for MySQL4, the Requirements
Linker can easily execute all kinds of MySQL commands on the database.

4 Application

In this section, the EMS-DSM approach with integrated requirements manage-
ment capability, is applied to the development of an automotive fuel tank sys-
tem for compressed natural gas (CNG). For an appropriate scale of the use-case,
only a small part of the real-world system is utilized. The application should be
recognized as an illustrative material, reduced for internal training purpose for
students. Therefore, the disclosed and commercially non-sensitivity use-case is
not intended to be exhaustive or representing leading-edge technology.

In figure 3 the EMS-DSM tool EASy-Design including the System Design
Model, as well as the Requirements Linker dialogue is shown. The CNG fuel
tank system consists of seven mechanical components, which are blue coloured
(Tank Cylinder, Filter, etc.) The medium flow between mechanical components,
which is CNG in this use case, is displayed by blue lines with an arrow at the end.
Furthermore, five hardware components are placed at the System Design Model
level, which are yellow coloured (In-Tank Temperature Sensor, Tank ECU, etc.)
The signal flow between the components is displayed by yellow lines, ending with
an arrow. Between the Control Unit and the External Control Unit component,
4 https://dev.mysql.com/

https://dev.mysql.com/

A Lean Automotive E/E-System Design Approach 257

Fig. 3. Self-developed tool EASy Design with Integrated Requirements Management
Capability

a communication bus is inserted, characterized by the double compound line
type and arrows on both ends.

Software Components can not be placed on the System Design Level. With
a double-click on a Hardware Component, the next modeling level is opened
(named E/E Item Design Level). Here, the green coloured Basis Software Com-
ponents and Application Software Components are put in place.

By double-clicking a connection between two components, a dialogue is
opened and the signal, or in case of a communication bus, the signals can be spec-
ified. By selecting a model element and a click on the button Link Requirements,
the elements requirements dialogue is opened (shown in Figure 3). Already linked
requirements from the Redmine database are listed with their ID, Type, Title,
ASIL, and Core functionality attribute. By a click on the button Add Req, a
connection to the database is established as described in Section 3.3 and a new
requirement from the database can be added.

5 Conclusions

In the previous sections, a lean method for the design of embedded automotive
mechatronics-based E/E-Systems, with full requirements traceability character-
istic, was presented. This approach has the potential to bring together the dif-
ferent engineering disciplines along the E/E-System development. Moreover, it’s
feasible for automotive domain experts with limited knowledge of UML/SysML.

258 H. Sporer et al.

First use case implementations show promising results. However, there are
at least two important functionalities which has to be implemented in a next
step. On the one hand, the M2M-Transformator between the EMS-DSM and the
SysML model has to be developed. On the other hand, the so far hard coded tool
box at EASy Design has to be transferred to a library file that can be adapted
also during run time.

References

1. Automotive SIG: Automotive SPICE R©Process Assessment Model. Technical
report, Version 2.5, The SPICE User Group (2010)

2. Friedenthal, S., Moore, A., Steiner, R.: OMG systems modeling language (OMG
SysMLTM) tutorial. In: INCOSE International Symposium. INCOSE, Orlando
(2006)

3. Sporer, H., Macher, G., Kreiner, C., Brenner, E.: A model-based domain-specific
language approach for the automotive E/E-System design. In: International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) (2015) (under review)

4. Macher, G., Armengaud, E., Kreiner, C.: Bridging automotive systems, safety and
software engineering by a seamless tool chain. In: 7th European Congress Embed-
ded Real Time Software and Systems Proceedings, pp. 256–263, Toulouse, France
(2014)

5. Boldt, R.: Modeling AUTOSAR systems with a UML/SysML profile. IBM Software
Group (2009)

6. Andrianarison, E., Piques, J.: SysML for embedded automotive Systems: a prac-
tical approach. In: Conference on Embedded Real Time Software and Systems,
Toulouse, France (2010)

7. Giese, H., Hildebrandt, S., Neumann, S.: Model synchronization at work: keeping
SysMLandAUTOSARmodels consistent. In: Engels,G., Lewerentz,C., Schäfer,W.,
Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven Engi-
neering. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg (2010)

8. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless
model-based development: from isolated tools to integrated model engineering envi-
ronments. Proceedings of the IEEE 98(4), 526–545 (2010)

9. International Organization for Standardization: ISO 26262. Road vehicles - Func-
tional safety. International Standard, Geneva, Switzerland (2011)

10. Mäder, P., Egyed, A.: Assessing the effect of requirements traceability for software
maintenance. In: 28th IEEE International Conference on Software Maintenance
(ICSM), pp. 171–180. IEEE (2012)

11. Chemuturi, M.: Requirements Engineering and Management for Software Devel-
opment Projects. Springer Science & Business Media (2012)

12. Herrmann, A., Knauss, E.: Requirements Engineering und Projektmanagement.
Xpert.press, Springer (2013)

13. Code Project - WPF Diagram Designer - Part 4. http://www.codeproject.com/
Articles/24681/WPF-Diagram-Designer-Part

http://www.codeproject.com/Articles/24681/WPF-Diagram-Designer-Part
http://www.codeproject.com/Articles/24681/WPF-Diagram-Designer-Part

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 259–267, 2015.
DOI: 10.1007/978-3-319-23727-5_21

Distilling Best Practices for Agile Development
from Architecture Methodology

Experiences from Industrial Application

Dominik Rost1(), Balthasar Weitzel1, Matthias Naab1,
Torsten Lenhart1, and Hartmut Schmitt2

1 Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
{dominik.rost,balthasar.weitzel,

matthias.naab,torsten.lenhart}@iese.fraunhofer.de
2 HK Business Solutions, Sulzbach, Germany

schmitt@hk-bs.de

Abstract. Agile development and software architecture are not the enemies any
more they seemed to be some years ago. It is agreed that agile development
needs some form of architecting, too. However, how this architecting should
look like is widely unclear. In this paper, we further characterize the relation-
ship of agile development and architecting. We present our key idea to distill
practically applicable and accessible architecture best practices from existing
architecture approaches and tailor them for agile development. We describe the
identification and template-based documentation of architecting best practices
and present an example, which were already successfully applied in industry.
Additionally, we share experiences we made in industrial development projects
regarding the combination of architecting and agile development.

Keywords: Agile development · Software architecture · Experience report

1 Introduction

In industrial practice, agile development has become the leading software develop-
ment process in many industries and companies in recent years [1]. In the earlier days
of agile development, a lot of discussions were ongoing: are agile development and
software architecture contradicting [2]? This discussion seems to be over now: Agile
development and software architecture are no opposite ends of a spectrum anymore,
both in the perception of practitioners and researchers [3]. However, there is still the
question of how to actually do architecting work in agile development projects. The
main goal of this paper is to introduce the idea of distilling architecture best
practices from established architecture methods to improve agile development. Thus,
the next sections look a bit deeper into characteristics of architecture and agile
development.

260 D. Rost et al.

Characteristics of Architecture
Every software system has an architecture, independent of the development process
with which it was developed [4]. That is, the discussion how to combine agile devel-
opment and architecture has to focus on engineering aspects around architecture, i.e.
architecting. We decompose architecting into three main aspects for further discus-
sion:

• Architecture activities: operationalization of architecting in engineering activities
• Architecture documentation: manifestation of architectural work
• Architecture responsibilities: assignment of architecture activities to roles or per-

sons

Characteristics of Agile Development
Agile development approaches like SCRUM are much more rigorous than they appear
on a first glance. Rules apply to follow a strictly iterative and incremental develop-
ment approach that regularly delivers working software. However, neither project
management-related agile practices like SCRUM nor implementation-related practic-
es like XP offer engineering-style support for architecting.

Successful agile development projects often share the same characteristics: a small
team of experienced and skilled developers build a system of limited size and life time.
These characteristics are the foundation of success, since the challenges that are typical-
ly addressed by architecting (like complexity of the product and the teams, quality
attributes, …) can be compensated by the skills and experience of the developers.

Agile Development needs more Architecting Practices
Agile development is not only applied when the characteristics described above ap-
ply. That often leads to misinterpretations of agile practices [5]. Either agile practices
are dogmatically followed (due to the lack of deeper understanding of required cus-
tomizations) or they are followed in a too informal way (agile rather as an excuse for
not following an approach). Since most agile processes do not come with engineering
guidance, it has to be added. Our main idea to provide architecting guidance is to
distill best practices from the existing body of knowledge (see Section 3)

Contributions of this Paper
• Characterization of the combination of agile development and architecting practic-

es, with a separation of the aspects architecture activities, architecture documenta-
tion, and architecture responsibilities (see Section 2)

• Our idea of architecting best practices for agile development, how we document
them in a template, and an illustrative example (see Section 3)

• Lessons learned and experiences from the industrial application of the best practic-
es and from architecting in agile development in general (see Section 4)

2 Software Architecture and Agile

In the following, we characterize each of the aforementioned aspects architecture
activities, documentation and responsibilities in an agile development setting, as we

 Distilling Best Practices for Agile Development from Architecture Methodology 261

observed them in many industrial settings. We conclude this section with an overview
of related work in the area of architecture and agile.

2.1 Characterization of the Relationships between Agile and Architecture

Architecture Activities in Agile Development
This aspect comprises not only making architectural decisions and documenting them,
but also analyzing architectural requirements, evaluating architectural solutions, sup-
porting the derivation of code and checking compliance of the realization. We addi-
tionally distinguish two dimensions of characteristics, not meant to be mutually ex-
clusive:

When is the activity performed?
• Upfront: A separate “architecting phase” is used to come up with initial architec-

ture.
• Sprint zero: An initial sprint or iteration aiming at a coarse-grained architecture.
• In iteration: The iteration itself is used to do architecture work, in the form of:
─ Spikes: Limited time slots, often considered like special tasks, are used during

the iteration to solve issues that have been considered architecturally significant.
─ Planning: Existing planning meetings or sprint preparations, where traditionally

an upcoming iteration is planned, are used to plan on an architectural level, too.
─ While coding: Architectural decisions are made on the fly.

• Separate team, in parallel: The architecture work is decoupled from the actual
development, for example by having a separate architecture team.

What is the target of the activity?
• Selected aspects: Only aspects that are considered as architecturally significant are

targeted within the architecture work, e.g. a critical part of an important story.
• Every story: Every story is examined from an architectural perspective.
• Every epic: Larger epics are targeted with the architecture work.
• Every delta of a sprint: All required changes done in a sprint are covered.
• The overall product: The architecture work is focused on the overall product.

Architecture Documentation in Agile Development
Architecture documentation is the manifestation of architectural work in terms of
decisions, views, and the resulting documentation. We list options of architectural
documentation as they occur in agile development projects, typically as a mixture:

How is the documentation done?
• None: No explicit documentation of architectural decisions is available.
• Knowledge of developers is considered as the only architecture documentation.
• Whiteboard: Creating architectures in a collaborative way with the whole team can

be done efficiently on whiteboards, but the semantic of these sketches is short-
lived.

• Wiki: A wiki enables collaboration in the team, but requires continuous mainten-
ance.

262 D. Rost et al.

• Architecture document: An agile architecture document should focus on the main
concepts and be accompanied with a lightweight documentation of detailed design.

• Models require expertise in creation, maintenance and usage to exploit benefits.

Architecture Responsibilities in Agile Development
This aspect reflects the assignment of architecture activities to certain roles or persons
in the development team. They perform these architectural activities or are responsi-
ble that the team does it.

Who is responsible for an architectural activity?
• The complete team: No dedicated architect role is defined, the team organizes itself

by having architectural tasks for potentially many team members.
• Separate group in team: There is a group within the team dealing with architectur-

al activities. Having an implicit group is a typical situation in practice if some de-
velopers are more interested in architectural considerations than others.

• Separate role in team: A dedicated architect role is defined, that works to a major
degree on architectural aspects, thus relieving the team from the conceptual work.

• Separate team: A separate architecture team works as a kind of consultant for the
development team and delivers architectural solutions for it.

2.2 Related Work

Nowadays most practitioners agree that it is possible to combine both advantages from
architecture planning and agile development [6]. Nevertheless some approaches are too
abstract to be directly applied in practice [7]. On the other side, there are approaches like
[8], [9] especially covering architecture responsibilities and activities in large scale devel-
opment organizations. Works like [10] also aim at changing the development process,
but more from a technical perspective, aiming at changing and introducing architectural
activities. The intention is to come up with architectural paradigms that are more suited for
agile development. A crucial barrier for applying such approaches in practice is the need
to invest into an organizational change to clarify architectural responsibilities [11,12]
without having a guarantee that the expected benefit will be higher than the investments. A
work that explicitly targets self-organizing development teams is [13], aiming to provide
directly applicable best practices for solving common issues, mainly in form of architec-
tural activities and documentation practices. We aim at extending this work, especially in a
collaborative way with the architecture and agile community, so that experiences from
different organizational settings are reflected.

3 Software Architecture Best Practices for Agile Development

In many projects with our customers, we experienced that the integration of software
architecture practices and agile development has the potential to significantly improve
the achievement of product quality attributes in a more systematic and predictable man-
ner. To package the techniques we applied in projects and make them available to devel-
opers in agile projects we have set up the project PQ4Agile (Product Quality for Agile).

 Distilling Best Practices for Agile Development from Architecture Methodology 263

It helps us to refine, elaborate and document the practices to create usable support for
other developers. PQ4Agile also helps us to create a basis for discussion with the
community and provides a frame for evaluation, as illustrated in Fig. 1.

In PQ4Agile, we aim at providing support for developers in agile projects to
achieve product qualities in a systematic and predictable manner. This exactly is also
the focus of software engineering methods. Many of these methods come with years
of experience in practice and are continuously improved. However, compatibility to
agile processes is not inherently given. To make this integration possible, software
engineering practices need to be adapted to account for the specifics of agile devel-
opment, like short iteration cycles, close interaction with stakeholders, etc.

Fig. 1. Creation of Software Engineering Best Practices

Our key idea to tackle this is to subdivide coherent methodologies from software
engineering into activity blocks that developers in agile projects can select and apply
in an easy and efficient manner. To achieve this, we distill the essence from activities
in software engineering methodology to create well packaged best practices, with
which agile development processes can be enhanced. The result of this project is a
compendium from which developers can select software engineering best practices
fitting to their respective project setting.

3.1 Best Practice Development, Documentation, and Evaluation

By analyzing the development processes of our industry partners, we identified similar
activities and grouped them into coherent categories. The categories are requirements,
planning and design, evaluation, realization, control, and project planning and control.
Activities of these groups are typically performed continuously and iteratively.

The selection of suitable activities to create best practices is mainly based on our
experiences from industry projects. The experiences of the respective communities
were additional information sources. We generated ideas in workshops and by study-
ing relevant literature (cf. Section 2). Our experiences and lessons learned (cf. Section
4) strongly indicate positive effects on the development of software in agile settings.
Quality requirements become more explicit, are addressed with more engagement,
rework is reduced and development velocity kept constantly high. To confirm our

Sof tware Engineering
Act ivit ies

Indust rial Agile
Development Projects

apply in

Experiences

g
en

-
er

at
ep

ac
ka

g
e

an
d

d
o

cu
m

en
t

Sof tware Engineering
Best Pract ices

package
and document

PQ4Agile

Indust rial
Experience

Indust rial Agile
Development Projects

evaluate in

264 D. Rost et al.

qualitative experiences and get an additional indication of quantitative effects of
practices, we will perform a dedicated evaluation in PQ4Agile.

3.2 Best Practice Examples

In the following, we give an example of an architecture best practice. This is only an
excerpt. The full descriptions will continuously be published on http://pq4agile.org.

Collaborative Development of Architecture Solutions in the Team Architecture Activities
Goals: (1) Explicit elaboration of solution concepts, (2) distribution of knowledge in the development
team, (3) all team members can identify themselves with the developed solutions, (4) consolidated
architecture definition and description
Motivation: In agile development teams, architecture decisions are often made implicitly, which can
lead to inconsistency or inadequate solutions. Also, the team members might not know all solutions and
therefore lack understanding and be skeptical. Teams can benefit from the experiences of all developers.
Team members identify themselves more with solutions to which they have contributed. Also, know-
ledge about the solution concepts is distributed better, leading to more sustainable solutions.
Inputs: System requirements with a concrete
problem, for which an architecture concept is
needed.

Outputs: An architecture concept for which the
experiences of the team have been considered.

Description: The selection of a story or an epic, which needs a coherent concept or arising of new
requirements for which the solution is still unclear are typical starting points for this best practice.
Questions like the backup strategy or ensuring high availability are examples. The team selects a mem-
ber responsible for the concept. The team selects members to be involved in the solution development.

The responsible person decomposes the problem into smaller parts that can be worked on as separate
architecting tasks. According to this separation, he elaborates solution ideas and a first vision of the
architecture concept, together with information about relevant technologies, open and critical aspects,
etc. as the basis for the discussion in the team.

As soon as the concept vision has been elaborated, the responsible team member organizes the first
meeting in which the selected team members participate. The concept meeting consists of:

• Presentation: The responsible developer presents the topic together with its decomposition, the
architecture vision, and the elaborated aspects to the team.

• Discussion: The team discusses the presented topics. Needs for change, inconsistencies, and im-
provement suggestions are discussed until a consent is found. The discussed changes are docu-
mented and integrated in the initial solution proposal. The result is an aligned concept draft.

• Task distribution: According to the topic decomposition, the team distributes the single architecting
tasks. The according members are responsible for the further elaboration of the architecture topics.

After the first concept meeting the team members elaborate the detail solutions for their respective
subtasks. These solutions should be elaborated to a degree that allows realization. When all team mem-
bers have completed their respective tasks, the responsible developer organizes the next meeting, in
which the contributing members present and discuss their detail solutions for their respective tasks. If
certain aspects need to be elaborated further, new architecting tasks are defined and distributed until the
architecture concept is sufficiently elaborated. Based on this, realization tasks are defined and carried
out.

As a post processing step, the responsible developer consolidates the detail solutions and adds criti-
cal aspects to the documentation, so that the solution can be understood by the whole team afterwards.
Recommendations and Risks: Acknowledging architecting work as a relevant development activity is a
necessary prerequisite. The elaboration of architecture concepts does not result in immediate customer
benefit, but is an investment that pays off at a later point in time. Therefore it might be difficult to be
able to allocate the necessary time, in particular in situations with high time pressure.

All team members having the same rights can complicate decision making in certain situations.
Here, the responsible team member should moderate. Also, the right selection of contributors might be a
challenge. Team members with prior experience in a relevant area are good candidates to involve.
Duration: Diverse, depending on the complexity of the task and the experiences of the development
team. No longer than one iteration, otherwise subdividing into smaller sub-concepts.

 Distilling Best Practices for Agile Development from Architecture Methodology 265

4 Lessons Learned

Lessons Learned on Architectural Activities in Agile

Reserve Time for Planning & Architectural Work at the Start of a New Project
Despite a common misconception, agile methodologies do not force you to skip any
planning and always jump in at the deep end – they only want you to not try to become
a perfect swimmer before going into the water. Therefore concepts like Sprint Zero in
SCRUM [14] should be used to define the architectural basis for the new product.

Check Compliance with Architectural Decisions While Doing Code Reviews
Though systematic code reviews are often an integral part of agile setups, in practice
they are often solely focused on the code itself and disregard checking the compliance
with architectural decisions taken by the team before.

Don’t Introduce Too Many Additional Meetings
Agile methodologies are often quite meeting-heavy and this is one of the most heard
critiques on them. Though some of our best practices encourage addressing specific
topics in meetings, this does not necessarily mean that you have to introduce separate
meetings for them, instead existing meetings should be used if possible.

Lessons Learned on Architectural Responsibilities in Agile

The Value of Software Engineering Best Practices Has to Be Conveyed
In agile development, close and constant collaboration between agile teams and
stakeholders is indispensable. It’s therefore crucial to convince stakeholders or their
representatives of the overall benefit of investing some extra effort for applying soft-
ware engineering best practices. Otherwise they probably always will be postponed.

Make Quality Attributes Explicit by Adding them to Stories or the Definition
of Done
Often quality attributes and non-functional requirements are not explicitly defined in
agile projects but rather expected that everybody implicitly is aware of them. Making
them explicit is crucial to prevent misunderstandings or that they are simply forgotten.

In Multi-team Setups, the Teams Need to Align – Especially on Architecture
The size of agile teams is often restricted by the concrete methodology in use. Thus,
typically multiple teams have to work together in bigger software projects. In those
cases especially architecture topics have to be aligned very well across all teams.
There are different approaches for achieving this (e.g. scrum of scrums), but all of
them have shown some issues in practice. Thus we think further research in this area
is necessary.

Lessons Learned on Architectural Documentation in Agile

Make Clear that Documentation and Agile Development Are not a Contradiction.
We often were confronted with the belief that agile software development means that
documentation is unnecessary and could be ignored. Indeed the Agile Manifesto

266 D. Rost et al.

states working software over comprehensive documentation, but this only emphasizes
that too comprehensive documentation should be avoided. An expressive and smart
documentation is not only recommendable, but inevitable for a successful software
product.

Use Existing and Standard Tools for Documentation
Documentation is often one of the first things disregarded in the course of agile soft-
ware projects because of the focus on working software. Therefore the hurdles for
documentation have to be kept as low as possible. One way to achieve this is to use
existing standard tools for documentation whenever possible.

Add “Documentation Created/Adapted” to Your Definition of Done
Another way of encouraging the team to not disregard documentation is to explicitly
extend the definition of done with an appropriate check point on documentation. This
guarantees that at the end of each iteration the documentation has been extended.

5 Conclusion

In this paper, we described our three contributions to advance the integration of soft-
ware architecture methodology and agile processes: First, we characterized aspects of
the relationship of architecture and agile in three main aspects: architecture activities,
documentation and responsibilities in agile development. Secondly, we introduced our
idea of creating software architecture best practices by distilling the essence from
architecture methods and adapting it to the specifics of agile development. We focus
on practices that we successfully applied in industry projects and package them to
provide easily selectable and applicable support for developers in agile teams, to
achieve product qualities in a systematic and predictable manner. Finally, we pro-
vided an insight into experiences we made with applying architecture practices in
agile development settings. We hope the lessons we learned provide helpful advice
for practitioners and ideas for the community for further research, to shape the inte-
gration of architecture and agile development.

Acknowledgement. We would like to thank the German Ministry of Education and Research for
funding parts of this work in the program “KMU Innovativ” under grant number 01IS13032.

References

1. VersionOne: The 9th Annual State of AgileTM Survey. http://info.versionone.com/state-of-
agile-development-survey-ninth.html

2. Kruchten, P.: Software architecture and agile software development: a clash of two
cultures? In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE 2010, p. 497. ACM Press, New York (2010)

3. Bachmann, F., Nord, R., Ozkaya, I.: Architectural Tactics to Support Rapid and Agile
Stability (2012)

 Distilling Best Practices for Agile Development from Architecture Methodology 267

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional (1998)

5. Krogmann, K., Naab, M., Hummel, O.: Agile Anti-Patterns - Warum viele Organisationen
weniger agil sind, als sie denken (2014)

6. Nord, R.L., Tomayko, J.E.: Software architecture-centric methods and agile development.
IEEE Softw. 23, 47–53 (2006)

7. Eloranta, V.-P., Koskimies, K.: Aligning architecture knowledge management with scrum.
In: Proceedings of the WICSA/ECSA 2012 Companion Volume on - WICSA/ECSA 2012,
p. 112. ACM Press (2012)

8. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise (Agile Software Development Series). Addison-Wesley
Professional (2011)

9. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley Professional (2007)

10. Reenskaug, T., Coplien, J.O.: The DCI Architecture: A New Vision of Object-Oriented
Programming. http://www.artima.com/articles/dci_vision.html

11. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and Architecture: Can They Coexist?
IEEE Softw. 27, 16–22 (2010)

12. Madison, J.: Agile Architecture Interactions. IEEE Softw. 27, 41–48 (2010)
13. Toth, S.: Vorgehensmuster für Softwarearchitektur: Kombinierbare Praktiken in

Zeiten von Agile und Lean. Carl Hanser Verlag GmbH & Co. KG (2013)
14. Schwaber, K., Sutherland, J.: Scrum Guide. Scrum Alliance. 19, 21 (2009)

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 268–276, 2015.
DOI: 10.1007/978-3-319-23727-5_22

Understanding the Use of Reference Architectures
in Agile Software Development Projects

Matthias Galster1() and Samuil Angelov2

1 Department of Computer Science and Software Engineering,
University of Canterbury, Christchurch, New Zealand

mgalster@ieee.org
2 Department of Software Engineering,

Fontys University of Applied Sciences, Eindhoven, The Netherlands
s.angelov@fontys.nl

Abstract. Software reference architectures potentially constrain the flexibility
of software design by imposing and sometimes even fixing architectural deci-
sions and structures early. This seems to contradict agile values, principles and
practices which acknowledge flexible and changing software requirements and
the need to adapt architectural designs accordingly. To increase our understand-
ing of how reference architectures are used in agile software development
projects, we conducted an exploratory case study in two Dutch software devel-
oping organizations. Both organizations use Scrum as their agile framework.
Preliminary findings reported in this short paper indicate that a) some aspects of
reference architectures are not specific to using them in agile development
projects with Scrum (e.g., types of reference architectures used; limited design
choices), and b) reference architectures can support cross-functional and self-
organizing teams, and help increase architectural focus in contexts where archi-
tectural thinking tends to be neglected.

Keywords: Software reference architectures · Agile · Scrum

1 Introduction

1.1 Background

Agile software development practices have become popular in the software industry.
Many, if not most, practitioners follow some sort of agile software development, with
Scrum as the most frequently used agile process framework [1]. Agile software devel-
opment approaches are defined in terms of four basic ideas about values (e.g., individu-
als and interactions over processes and tools; working software over comprehensive
documentation; responding to change over following a plan), twelve basic principles
(e.g., highest priority is to satisfy customer through early and continuous delivery of
software), and practices depending on specific projects (e.g., XP, pair programming,
test-driven development) [2]. All agile approaches (e.g., Scrum, Lean, Kanban, Crystal)

 Understanding the Use of Reference Architectures in Agile 269

define their own practices but follow the ideas described in the “Agile Manifesto1”, e.g.,
incremental and iterative development, close customer collaboration, empowered and
co-located teams, continuous product and process improvement, and frequent delivery
of value to customers.

Software reference architectures (RAs) have been utilized in industry to help de-
sign concrete architectures in a particular application or technology domain. A RA is
not designed for highly specialized requirements, but provides designs and design
decisions independent of a particular product. Architects use the RA as a starting
point and specialize it for their project context [3]. Therefore, a RA provides partially
or completely instantiated design artefacts, designed for particular business and tech-
nical contexts, together with support to enable the use of these design artefacts [4].
In this sense, RAs represent reusable architecture knowledge in form of generic
artefacts, design guidelines, best practices, standards, architectural styles, domain
vocabulary, documentation, etc. [5]. Furthermore, RAs facilitate standardization and
interoperability within an application or technology domain since systems within such
domain can be based on the same RA. General benefits and problems of RAs have
been explored previously [6, 7], including the use of RAs in practice [8].

1.2 Research Problem, Motivation and Contributions

In contrast to a concrete software architecture which emerges and evolves (either explic-
itly or implicitly) during agile development and subsequent agile iterations (“sprints” in
Scrum), a RA already imposes constraints on architectural designs and the development
process from the product inception phase and at the very beginning of development.
While RAs determine certain design choices at an early stage, agile development defers
choices to accommodate changing requirements and maximizing value delivered to cus-
tomers. On the other hand, RAs may help speed up development by avoiding making the
same design decisions for products in a domain over and over again. This may be useful
in agile projects that are under pressure to deliver value (in terms of a potentially usable
product, rather than system analysis and documentation) to customers. Therefore, in this
paper we aim at understanding if the potential conflict of flexibility (agile) and imposed
design decisions and constraints (RA) is perceived in practice, or if RA and agile prac-
tices are seen as rather complementary. In this paper, we present preliminary results from
work-in-progress on improving our understanding of using RAs in agile software devel-
opment projects. Rather than targeting agile processes and practices in general, we focus
on Scrum, the most frequently used agile process framework [1]. The research questions
put forward in this paper are the following:

• RQ1: How are RAs used in agile projects that use Scrum?
• RQ2: What are benefits and limitations of using RAs with Scrum?

Based on a case study in two Dutch software developing organizations, this paper
contributes a) a description of the use of RAs in agile projects in organizations that

1 http://agilemanifesto.org/

270 M. Galster and S. Angelov

use Scrum, and b) preliminary insights into whether RAs can potentially threaten or
complement agile values, principles and practices. Note that there are on-going de-
bates in the architecture community about how agile development affects software
architecture practice, and vice versa. In this paper, we do not aim to contribute to
general discussions of software architecture in agile contexts but focus on RAs and
Scrum. The reader may refer to discussions in other works, e.g., [9, 10].

In Section 2, we discuss our research approach. Results are introduced in Section 3
and validity issues discussed in Section 4. We conclude in Section 5.

2 Research Approach

We apply case study research as an “in-the-wild” method, rather than “in the lab”
methods (e.g., controlled experiments) since our research is motivated by a practical
problem that cannot be studied in isolation from its context. When investigating RAs
in agile projects (that use Scrum) in industry, we have little control over all variables
(e.g., people, organizational structures). Also, case studies offer an in-depth under-
standing of practices by allowing “how”, “why” and “what” questions [11].

Case Study Design: Our study is a multiple-case study and follows an exploratory
approach [12] since it “looks for patterns, ideas, or hypotheses” rather than trying to
test or confirm hypotheses [13]. We currently cannot form hypotheses since we lack
an understanding of how RAs are used in agile projects. We follow case study guide-
lines proposed in [14]. Our unit of analysis is an organization and projects.

Case Selection: We selected large software developing organizations based on the
availability of individuals and other information sources in these organizations [15].
Furthermore, organizations must use RAs and follow the same agile development
framework, i.e., Scrum. This includes implementing Scrum ceremonies (e.g., sprint
planning and review, retrospectives, sprints) and Scrum roles (e.g., Scrum team,
Product Owner, Scrum Master). Differences in the cases lie in the domains.

Data Collection: We collected qualitative data using semi-structured interviews with
lead architects in each organization. Furthermore, we reviewed architecture and proc-
ess documentation. We took extensive notes (for interviews and documentation re-
views) and recorded interviews. We explained to organizations the goal of the study
and ensured a common understanding of Scrum and RA. We used open questions to
discuss a broad range of issues and answers related to projects and three topic areas:
1) how the RAs are used (related to RQ1), 2) benefits of RAs in agile projects (related
to RQ2), 3) limitations of RAs in agile projects with Scrum (related to RQ2). To
avoid misunderstandings, we summarized major findings for organizations.

Data Analysis: We transcribed interviews and added manual notes and information
from architecture and process documentation to obtain a full record for each case.
Then, we used open coding [16] where one code can be assigned to many pieces of
text, and one piece of text can be assigned to more than one code [17]. After initial
coding, we looked at groups of code phrases and merged them into concepts and

 Understanding the Use of Reference Architectures in Agile 271

related them to the research questions [18]. Since our data was collected within a case
study, the data is context sensitive. Thus, we performed iterative content analysis to
make inferences from collected data in its context [19]. Analysing qualitative data
requires integrating data where different interviewees might have used terms and
concepts with different meanings or different terms and concepts to express the same
thing [20]. We noticed that this was particularly true for the concept of RA. To ad-
dress this problem, we use reciprocal translation [20].

3 Results

3.1 Cases

The study included the following cases:

• Case 1: Case 1 is a large Dutch organization with more than 500 engineers in the
Netherlands and offices overseas. The organization develops embedded systems
software for four domains: consumer electronics and telecommunication, life sci-
ence and health, automotive, and professional equipment manufacturing. Software
needs to comply with standards for the quality of medical devices (e.g., ISO
13485). Many projects are done at the customer site to ensure close customer in-
volvement.

• Case 2: Case 2 is one of the largest health insurance providers in the Netherlands
with offices all across the country. Software is developed for internal (e.g., other
departments) and external clients (e.g., health care partners, customers). Most
software projects develop web-based applications rather than desktop applications.

3.2 RQ1: How are RAs used in Agile Projects that use Scrum?

We present the answers to RQ1 based on four categories that emerged after open
coding and during data analysis:

1. What Types of RAs Are Used: A classification of five types of RA was pre-
sented by Angelov et al. [7]. This classification was identified independent from
agile practices. In both cases of our study, we found that organizations use exist-
ing and externally defined RAs (prescribed by the domain, such as AUTOSAR for
automotive software), but also define their own company-specific RAs that are
used across projects within the organizations. Case 1 stated that the organization
developed an internal RA to “avoid reinventing the wheel”. In the classification
proposed in [7], this would be a classical facilitation architecture implemented in a
single organization. Case 2 uses RAs centred on development platforms (Java,
.NET) designed by external software providers. According to [7], this would be a
classical facilitation architecture designed for multiple organizations by an inde-
pendent organization with partially concrete implementation artefacts. Case 2 also
uses internally defined RAs, supervised by the enterprise architect who defines
high-level architectural visions for the domain, including goals and basic design
principles. The fact that we are able to classify RAs in case 1 and 2 based on an

272 M. Galster and S. Angelov

existing classification that describes RAs independent of agile implies that the
types of RAs are not different in agile projects compared to non-agile projects.
Also, organizations not necessarily adapt RAs to make them more suitable for ag-
ile development projects.

2. At What Stage of Development Are RA Applied: The decision of using a RA
may be taken at different stages of a project, i.e., at the very beginning of a pro-
ject, later after an initial scoping exercise and domain analysis, or even later when
evaluating a designed system against domain regulations. In our cases, we noticed
that RAs are used from the very beginning of the project. These findings suggest
that selecting RAs is a conscious decision made at the beginning of the project and
after some initial analysis and architecture envisioning, rather than a decision that
emerges based on the needs related to particular sprint goals or sprint backlogs. In
case 2, the RA is also heavily used later for compliance checking. In this case, a
RA helps identify tasks related to compliance checking when breaking down user
stories from the product and sprint backlog during Scrum sprint planning sessions.

3. Who Is the Driver for Using RAs: Scrum encourages self-organizing teams em-
powered to make decisions that they think are best for achieving the sprint goal
that has been set together with the Product Owner. Since RAs impose high-level
constraints on the software design, there may be different drivers who advocate
the use of a RA. We found that in case 1, choosing a RA is a team decision, rather
than the decision of a team or product lead, who only suggests the use of the RA.
This means, case 1 truly empowers self-organizing teams. This is different to non-
agile projects which tend to have team or project leads who decide on the use of
RAs. On the other hand, for case 2, the decision about using a RA is not made by
the team, but by a software architect. In contrast to case 1, this shows that that in
despite of empowered and self-organizing teams in Scrum, some decisions are
made by leading roles in an organization.

4. Why Are RAs Used in Agile Projects: Based on industrial practice (independent
of using agile or non-agile development approaches), a list of more than ten poten-
tial reasons for using RAs has been proposed by Angelov et al. [8]. Mapping our
findings to items from this list, for case 1 we noted that RAs in agile projects are
used because of the following: experience of developers with RA; easy access to
best practices; to speed up design work; to ensure reusability of designs; to reduce
cost; education and training of engineers; risk reduction. Similarly, for case 2 we
noticed the following reasons: standardization in domain; easy access to best prac-
tices; to speed up design work; to ensure reusability of designs; to ensure interop-
erability with other systems; to reduce cost. This diversity indicates that the rea-
sons for using a RA depend on the project context rather than the development
method (agile or non-agile). In other words, using Scrum (or agile in general) does
not imply reasons for using a RA.

3.3 RQ2: What Are Benefits and Limitations of Using RAs with Scrum?

We identified the following benefits (emerged after categorizing and grouping codes
during data analysis):

 Understanding the Use of Reference Architectures in Agile 273

1. RAs Simplify Design Tasks: Some tasks are simplified because of RAs. In case
1, initial architecture setup and design was mentioned as the task that was heavily
supported by RAs. In case 2, we found that the RA helps compliance checking in
sprint reviews and delivery meetings with customers. Furthermore, in case 2 the
RA helps engineers experiment with different design solutions within the scope of
the RA (i.e., during sprints, the RA provides a harness for the agile teams to ex-
periment with different design solutions as long as the final solution complies with
the RA).

2. Degrees of Freedom in Development Teams: In case 1, we found that the RA
helps engineers move between different projects or work on more than one project
at the same time since the RA is the same across projects. Furthermore, it supports
communication within teams since there is a shared understanding of common ar-
chitectural ideas. This facilitates cross-functional teams, as promoted by agile
practices. This benefit, however, was not mentioned in case 2, where RAs may
vary per team and project.

3. Focus on Architectural Aspects: In case 1, we found that the RA helps focus on
architectural aspects which are often neglected in agile contexts. It helps inject ar-
chitectural thinking into the agile process. This benefit is considered significant
and learning about the RA and related efforts are outweighed by these benefits.
According to case 2, overheads using the RA are not significant but instead the
RA helps avoid a lot of additional and redundant architecture documentation.
Similar to case 1, projects benefit from a clear picture that describes core architec-
tural issues and that communicates the shared architectural vision as a “reference
point” within a Scrum team during and across sprints.
We identified the following limitations:

1. Personal Preference of Developers: In case 1, some developers “do not like”
using RAs since they feel restricted in their creativity and freedom in making de-
cision decisions. However, this is a personal or project-related observation and not
related to using or not using agile methodologies. This limitation was not found in
case 2.

2. Maintenance of RAs: In case 1, maintenance and updating the RA is hard due to
the required speed and focus on creating a potentially shippable release of the
product at the end of each sprint. In case 2, however, the organization applies an
initial step to support the “translation” of the RA to a concrete product architecture
and creates a so called “solution picture”. This step requires some preliminary
work to “adjust” the RA for a project before designing a concrete product archi-
tecture. In case 2 this is not considered as maintenance of the RA per se. Also,
RAs in case 2 are externally defined (see Section 3.2, “What types of RAs are
used in agile projects”). Thus, maintenance is not a significant issue in case 2.

We acknowledge that there may be more benefits and limitations of RAs in agile
contexts. However, above, we list those that emerged from our case organizations.

274 M. Galster and S. Angelov

4 Validity

Our study is subject to three validity threats [11, 21]. With regards to construct validity
(did we measure what is intended), our study is limited since we gathered data only
from a limited number of sources. However, we obtained insights from different organi-
zations and projects. Also, we used extended semi-structured interviews together with
architecture and process documentation. We included control questions and checked
the accuracy of data with the organizations. Furthermore, we ensured that all partici-
pating organizations shared the same notion of what is a RA (see our notion of RA
described in Section 1.1). Also, some companies we discarded for this study used
other agile process frameworks. On the other hand, the fact that we studied more than
30 companies but only two resulted in cases for this study (i.e., used Scrum and RAs)
could be an indicator that indeed there is a tension between using RAs and agile prac-
tices. However, this would be subject to further study. With regards to external validi-
ty (extend to which findings are of interest outside the investigated cases) we ac-
knowledge that we focus on an analytical generalization (i.e., our results are genera-
lizable to other organizations that have similar characteristics as the cases in our case
study and use Scrum, instead of other agile frameworks with even less architecture
focus, such as Kanban). In future work, a comparison with similar literature can shar-
pen generalizability. However, the presented study is a first of its kind. With regards
to reliability (how data analysis depends on researchers), we recorded interviews and
interview data, and reviewed data collection and analysis procedures before conduct-
ing the study. Internal validity is not a concern since our exploratory case study does
not make any claims about causal relationships [22].

5 Conclusions

We investigated the use of RAs in agile projects through an industrial case study in
two Dutch software developing organizations. Many findings from do not seem to be
agile-specific (e.g., what types of RAs are used in agile projects) but indicate the RAs
could complement agile principles and practices (e.g., cross-functional teams; free-
dom of developers when moving between projects). Furthermore, RAs help focus on
architectural aspects despite the need to deliver value fast. Maintenance of internally
defined RAs is a potential problem if the organization is heavily agile oriented (case
1) as there may not be enough and explicit resources for RA maintenance. This is
because RA maintenance offers no immediate business value for customers, but is
more a benefit for the software developing organization.

Future work includes more detailed case studies in industry to increase the validity
of the findings presented in this paper. Furthermore, based on the findings from this
study, we can conduct a survey to obtain a broad overview of the perception of practi-
tioners about RAs in agile projects. Finally, we need to compare our findings to other
studies that investigate agile principles in regulated industries, since many regulated
industries (government, medical device industry, or aviation) impose regulations,
policies, standards, etc. on software products, often in form of RAs, reference models,
or architecture frameworks.

 Understanding the Use of Reference Architectures in Agile 275

Acknowledgments. We thank the participating organizations and individuals for their support.
We thank Patrick de Beer for his help is arranging and performing one of the interviews.

References

1. VersionOne Inc.: 8th Annual State of Agile Survey (2014)
2. Diaz, J., Perez, J., Alarcon, P.P., Garbajosa, J.: Agile Product Line Engineering - A Syste-

matic Literature Review. Software - Practice and Experience 41, 921–941 (2011)
3. Governor, J., Hinchcliffe, D., Nickull, D.: Web 2.0 Architectures - What entrepreneurs and

information architects need to know. O’Reilly Media / Adope Developer Library, Newton,
MA (2009)

4. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Boston,
MA (2004)

5. Nakagawa, E.Y., Oliveira Antonino, P., Becker, M.: Reference architecture and product
line architecture: a subtle but critical difference. In: Crnkovic, I., Gruhn, V., Book, M.
(eds.) ECSA 2011. LNCS, vol. 6903, pp. 207–211. Springer, Heidelberg (2011)

6. Martínez-Fernández, S., Ayala, C.P., Franch, X., Martins Marques, H.: Benefits and draw-
backs of reference architectures. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957,
pp. 307–310. Springer, Heidelberg (2013)

7. Angelov, S., Grefen, P., Greefhorst, D.: A Framework for Analysis and Design of Soft-
ware Reference Architectures. Information and Software Technology 54, 417–431 (2012)

8. Angelov, S., Trienekens, J., Kusters, R.: Software reference architectures - exploring their
usage and design in practice. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 17–24.
Springer, Heidelberg (2013)

9. Ali Babar, M., Brown, A., Mistrik, I.: Agile Software Architecture - Aligning Agile
Processes and Software Architectures. Morgan Kaufman (2013)

10. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and Architecture: Can they Coexist?
IEEE Software 27, 16–22 (2010)

11. Yin, R.K.: Case Study Research - Design and Methods. Sage Publications, London (2009)
12. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner-

researchers. Blackwell Publishers, Oxford (2002)
13. Vogt, P.: Dictionary of Statistics and Methodology - A Non-technical Guide for the Social

Sciences. Sage Publications, Thousand Oaks (2005)
14. Runeson, P., Hoest, M.: Guidelines for Conducting and Reporting Case Study Research in

Software Engineering. Empirical Software Engineering 14, 131–164 (2009)
15. Gerring, J.: Case Study Research - Principles and Practices. Cambridge University Press,

Cambridge (2006)
16. Strauss, A.C., Corbin, J.: Basics of Qualitative Research: Grounded Theory Procedures

and Techniques. Sage Publications, Thousand Oaks (1990)
17. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis. Sage Publications, Thousand

Oaks (1994)
18. Adolph, S., Hall, W., Kruchten, P.: Using Grounded Theory to Study the Experience of

Software Development. Empirical Software Engineering 16, 487–513 (2011)
19. Krippendorff, K.: Content Analysis: An Introduction to its Methodology. Sage

Publications, Thousand Oaks (2003)

276 M. Galster and S. Angelov

20. Noblit, G.W., Hare, R.D.: Meta-Ethnography: Synthesizing Qualitative Studies. Sage
Publications, Newbury Park (1988)

21. Wohlin, C., Hoest, M., Henningsson, K.: Empirical research methods in software engineer-
ing. In: Conradi, R., Wang, A.I. (eds.) Empirical Methods and Studies in Software
Engineering. LNCS, vol. 2765, pp. 7–23. Springer, Heidelberg (2003)

22. Easterbrook, S., Singer, J., Storey, M.-A., Damian, D.: Selecting empirical methods for
software engineering research. In: Shull, F., Singer, J., Sjoberg, D.I.K. (eds.) Guide to
Advanced Empirical Software Engineering, pp. 285–311. Springer, Heidelberg (2008)

An Architecture-Centric Approach for Dynamic
Smart Spaces

Luciano Baresi and Adnan Shahzada(B)

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy

{luciano.baresi,adnan.shahzada}@polimi.it

Abstract. The development of sound and reliable dynamic smart
spaces is a complex task. Many researchers have already addressed
the problem from different angles. The autonomic computing commu-
nity has been focusing on super-imposed adaptation mechanisms by
adding further dedicated components to the (software) architecture of the
system. In contrast, bio-inspired solutions provide inherent support to
self-organization but they fail to guarantee the desired level of reliability
and control.

This paper aims to blend the two views and proposes an architecture-
centric solution that merges component-based control and bio-inspired
(fireflies-based) mechanisms. Suitable abstractions help conceive self-
organizing ad-hoc collaborations among the —virtual and physical—
components of a space. An example public park is used throughout the
paper to explain and exemplify the key features of the proposed solution.

1 Introduction

Pervasive computing has allowed us to move towards technology-augmented
intelligent environments, often called smart spaces. These spaces provide users
with ubiquitous access to contextualized services to ease the interaction with
the physical world. Most of the existing solutions are targeted to solve problems
related to static and fixed spaces such as smart homes and offices. Dynamic
smart spaces such as public parks, train stations, bus terminals and airports,
on the other hand, differ in terms of functional purposes, spatial attributes, and
offered services [6]. These spaces require pretty dynamic solutions where the
actual number and type of components vary while the system is in operation,
and different protocols must be blended together to make the whole system work.

Many solutions have been proposed for conceiving highly adaptable ser-
vice frameworks. The autonomic computing community has been working on
solutions which embed adaptation logic within the architecture to monitor

Luciano Baresi is partially supported by project EEB - Edifici A Zero Consumo
Energetico In Distretti Urbani Intelligenti (Italian Technology Cluster For Smart
Communities) - CTN01 00034 594053.
Adnan Shahzada is funded by the Joint Open Lab S-Cube, sponsored by Telecom
Italia S.p.A. - Innovation division, Milan, Italy.

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 277–284, 2015.
DOI: 10.1007/978-3-319-23727-5 23

278 L. Baresi and A. Shahzada

the changes in the system and to suggest re-configuration (through control
loops) accordingly. For example, Gurgen et al. [5] propose an approach for
building self-aware cyber-physical systems for smart buildings and cities, while
AlfredO [7] and SOCRADES [3] exploit service-oriented infrastructures to
provide abstractions over device heterogeneity and configuration alternatives.
Unfortunately most of these adaptation solutions are external, that is, they are
super-impositions over existing systems. Moreover, the spatial information and
situatedness, which are core requirements for dynamic spaces, are not first-class
abstractions in these solutions. Therefore, adaptation logic would have to be
very complex and heavyweight to ensure the capability of adapting to any fore-
seeable situation, and the extraction of proximity related information would be
costly [11].

The inability of the existing frameworks motivated researchers to find alter-
native solutions that are radically different in their design philosophy. To this
end, Agha [1] suggests the use of natural systems as inspiration to re-model
the architectural design of these systems instead of complicating existing solu-
tions. The autonomous components of natural systems (e,g., ant colonies [4], or
flower pollination [10]) are inherently situated in the space and their behavior
is guided through the interaction with other components around them under
natural laws. Zambonelli and Viroli [11] highlight that biological metaphors are
suitable for modeling the spatial relationships of components and enable both
localized and distributed social behaviors. However, these local decision making
and self-organization fail to guarantee the desired control over self-* mechanisms
to ensure reliable contextualized services to the users.

Therefore, this paper claims the need for —and proposes— an architec-
tural solution that synthesizes the conventional component-based control and
the internal and inherent self-adaptive capabilities of bio-inspired ecosystems
together to exploit the best characteristics of the two paradigms. The architec-
ture must be able to provide: (i) appropriate design abstractions to design a
space, (ii) a mechanism to form ad-hoc collaborations, and (iii) self-adaptation
mechanisms sufficient to ensure the reliability, self-configuration, and scalability
of the system. The proposed solution offers a role-oriented collaboration that
groups the heterogeneous components of a space according to user-supplied
heuristic functions and lets the components evolve towards more and more effi-
cient topologies of the system. This self-organization process is inspired by and
borrows some concepts from fireflies [9]. The architecture also provides mech-
anisms for re-configuration in case components fail or leave the system unex-
pectedly. In addition, the support for the co-existence of physical and virtual
(simulated) components enables seamless and incremental development of the
space.

The rest of the paper is organized as follows. Section 2 introduces the key
characteristics of the proposed architecture. Section 3 presents and analyzes our
preliminary experiments to design and simulate the park case-study. Section 4
concludes the paper.

An Architecture-Centric Approach for Dynamic Smart Spaces 279

2 Proposed Solution

We present an architectural solution that allows the developer to build dynamic
smart spaces through abstractions that support both the control loops from auto-
nomic systems and the inherent self-* mechanisms from bio-inspired systems.

We use a public park scenario to illustrate our solution and to evaluate its
key features. The park is divided into sections; each section comprises differ-
ent attractions (e.g., ferris wheel, kids rail, and cafeteria). Thousands of visitors
enter the park every day; each visitor carries a mobile device and is interested in
different points of interest (POI). The park is equipped with proximity sensors
and large interactive screens that also work as access points for the users to
connect to the space. The park space groups the visitors with similar interests
—within a certain distance— together by exploiting user profiles and contex-
tual information. This special-purpose grouping can enable effective cooperation
among the users with similar interests and location by providing efficient data
dissemination. Visitors can interact with the screens to receive information about
nearby attractions in the park.

Figure 1 shows the proposed architecture. It provides role-oriented abstrac-
tions, a collaboration model for integrating components, and fireflies-based self-
adaptation mechanisms for the development of dynamic smart spaces.

2.1 Abstractions

The basic architectural unit is a component, that is, any physical or virtual
entity that provides/requires capabilities to/from other components. The com-
ponents in our park are thus the interactive screens, which display information,
and the users’ devices, which interact with each other and with the big screens.
Components capture the essential attributes of space entities and maintain their
state over time. Sensors, actuators, controllers, devices, and external systems
(within layer Physical Space) are all modeled as components. This abstraction
allows the developer to concentrate on the properties of interest and define suit-
able behaviors accordingly. The same component can act as proxy of both a
physical entity and a simulated one with no external changes. The same archi-
tecture is kept throughout the whole development process: it can evolve by both
decomposing existing components and replacing simulated behaviors with real
ones.

Roles are scenario-specific behaviors of components. The rationale for
employing role-oriented modeling in our framework is the following: roles provide
dynamic views on a component (which are typed entities) in a specific context,
and thus they are useful for creating contextualized behaviors and specializing
data exchange among components. Roles also provide separation of concerns
between the component identity (and data) and its behavior and collabora-
tions. They are superimposed on components and can be changed or removed at
runtime according to contextual needs. The collaborations set between compo-
nents on the basis of their roles help control domain dependencies and provided/
required features in a finer-grained manner.

280 L. Baresi and A. Shahzada

Fig. 1. Proposed architectural framework

A role comprises a type and behaviors. There are two types: follower, which
means worker, and supervisor, which oversees workers. For instance, there can
be a supervisor and a follower role for each POI in the park and they can
be played by the user (device) components. Behaviors are application-specific
functionality that a component performs in certain situations. A behavior can be
either periodic (repeated every n time units), or triggered (executed when certain
events take place). Moreover, a behavior can refer to the normal activities carried
out by the followers, or to the control activities that belong to supervisors.

2.2 Collaboration Model

The Collaboration Layer is responsible for coordinating and integrating hetero-
geneous components. Components collaborate with each other through groups
based on their functionality, location, or other logical factors and dependencies.
A group acts as a facilitator to integrate various components and forms ad-hoc
collaborations. In each group (corresponding to a collaboration), one component
is chosen (dynamically by the framework) to play the role of supervisor while the
other components are followers [2]. The supervisor component is responsible for
managing the group whereas followers act upon the directives they receive from
the supervisor. Each component can play different roles in diverse collaborations
(groups) and hence enables information sharing across multiple ad-hoc collabo-
rations. To understand this, let us consider the park example where we may have

An Architecture-Centric Approach for Dynamic Smart Spaces 281

Fig. 2. Example park topology

the following types of collaborations (as shown in Figure 2): (i) screen to screen
collaboration, which enables screens to exchange localized data (ii) screen to user
collaboration, which enables users to connect to a screen and get personalized
information, and (iii) user to user interest-based collaboration, which allows users
with similar interests to connect together and exchange helpful information.

To achieve this, first all the smart space entities and their roles are abstracted
(as described above), and then, the collaboration layer integrates them in var-
ious self-organizing groups according to collaboration rules. These rules define
the topological and organizational directives for group management and they
comprise collaboration types (along with their role dependencies), space prox-
imity definition, and heuristic functions for ad-hoc group formation. Heuristic
functions are used first to bootstrap a newly joined component and later to
optimize the topology of the system by finding the best group for each compo-
nent according to the specific needs. The flexibility of the architecture makes
it possible to “plug” heuristic functions for the collaboration policies of these
components through any adaptation mechanism; in this paper we describe how
we have incorporated fireflies-based self-organization.

2.3 Self-Adaptation Capabilities

The Self-adaptation Layer of the proposed architecture is inspired by the fire-
fly algorithm [9] and mimics the behavior of fireflies to form groups. Fireflies
are characterized by the flashing light they produce through bio-luminescence.
Such flashing light serves as primary courtship signals for mating. Females
are attracted by behavioral differences in courtship signals and typically pre-
fer brighter male flashes. The flash intensity varies with the distance from the
source.

Unlike the original firefly algorithm, we consider bi-sex species of flies. Com-
ponents and roles are mapped to the firefly metaphor as follows: (i) roles are
abstracted as flies and role types are male (supervisor) and female (follower)
flies, (ii) flies live in nests (components) that are used to represent all the entities
of a system, (iii) light flashes, which are generated (as brightness by male flies)

282 L. Baresi and A. Shahzada

Algorithm 1 Self-organization algorithm
1: Define functions for brightness and attraction
2: Define initial nests for fireflies Ni, i := 1, 2, . . . , n � define components
3: Assign fireflies (male/female and color) to each nest � define roles for components
4: for each nest n ∈ N do
5: Call BootStrap(n)
6: end for
7: while System.state := running do
8: Check for new nests and fireflies and update population
9: for each nest n ∈ N do

10: if n[male] := ∅ then � if component has no supervisor
11: Call BootStrap(n)
12: else
13: Call Adapt(n)
14: end if
15: end for
16: end while

and perceived (as attraction by female flies), guide the interaction mechanism,
and (iv) rules —such as: “brighter fly will be more attractive, and brightness
decreases with distance”— provide policies to form ad-hoc collaborations.

The self-organization algorithm (Algorithm 1) consists of two phases: (i)
bootstrapping for new or orphan (with no supervisor) components and (ii) adap-
tation for the components with an active collaboration. The self-organization
algorithm requires that the functions for calculating brightness and attraction
be defined. We have used the following heuristics for our park scenario:

βk(t) =
c1

∑n
i=1 Lik

+ c2 × Pk (1)

where βk(t) is the brightness value for supervisor (male fly) k at time t, n is the
number of followers (female flies) for node k, Pk is the energy of supervisor k,
Lik is the communication load (average no. of messages per unit time) between
follower i and supervisor k, and c1 and c2 are the constants used to assign
weights to the corresponding parameters (L and P).

αik(t) =
c3
d2ik

+ c4 × βk (2)

where αik(t) is the attraction of supervisor k towards follower i at time t, βk is the
brightness of supervisor k, dik is the distance between follower i and supervisor
k, and c3 and c4 are constants used to assign weights to distance and brightness.

Whenever a new component joins the system, the BootStrap procedure
is called upon which iterates over the set of roles the component can play. It
calculates the brightness for all the supervisor roles and attraction for its follower
roles. It then searches for the best possible collaboration for each role according
to calculated heuristics (brightness and attraction) values.

An Architecture-Centric Approach for Dynamic Smart Spaces 283

The second step of self-organization is the Adapt procedure. It first checks
and if the component is not part of any collaboration, it bootstraps it. Otherwise,
it does the following: (i) for each supervisor, it checks whether there is another
supervisor available with better suitability, and if it is the case, it changes its role
to follower, and (ii) for each follower, it performs the aforementioned procedure
and calculates the suitability of the supervisors around. It switches the group if
it finds a better supervisor then the current one.

3 Analysis

This section describes and analyzes our preliminary experiments to design and
simulate the park case-study. The park is set up and simulated1 through the Net-
logo simulator [8]. The environment in Netlogo is spatially organized in patches
and the individuals that live in the simulated environment are termed breeds.
The park is structured around a grid of 30 × 30 patches, where each patch can
be a pathway, a screen, or an attraction. Components (breeds) can be of three
types: people, screens and POIs. We started the simulation with a population
size of 120 and decided that 5 new people had to join, and 1 person had to leave
the system every 25 time units. People move towards the directives received from
the screen 50% of the time and take random movements otherwise.

We have run the simulation for the example scenario by considering the role
and collaboration types described in Section 2.2. Algorithm 1 is then used to
form optimized (in terms of distribution of communication load and energy level
for each device) ad-hoc collaborations. The goal is to evaluate the ability of the
proposed structure to handle dynamism and mobility of the users within the
space while keeping the reliability of the services. Reliability of services refers to
the ability of architecture to re-organize the followers (in new groups) when the
supervisor component fails or leaves their proximity.

The simulations were run for 1000 time units (simulation cycles) and the
population was initialized with 120 components and dynamically increased to
280 elements. We recorded that in case of supervisor failure, all corresponding
follower components of the group are re-assigned to a new group within 3 time
units. We have also measured the energy and communication load (dependent on
the group size) for each (user) supervisor component. The energy consumption of
each device is measured as a (constant) penalty for each message sent or received
by the device. The proposed solution was able to balance both the energy con-
sumption and the size of different user groups (communication load). Throughout
the simulation, we observed that the variability of energy consumption for each
device remains within standard deviation of 1% whereas the difference in group
size has deviation of less then 1 component across all groups.

The results highlight that the proposed architecture maintains reliable service
provision in a scenario with highly dynamic and mobile components. Moreover, it

1 The simulation video is available online at: http://home.deib.polimi.it/shahzada/
ParkSimulation/NetLogo-ParkSim.mov

http://home.deib.polimi.it/shahzada/ParkSimulation/NetLogo-ParkSim.mov
http://home.deib.polimi.it/shahzada/ParkSimulation/NetLogo-ParkSim.mov

284 L. Baresi and A. Shahzada

distributes the communication load uniformly across components by delegating
supervision to some users and hence reduces the overall network congestion.

4 Conclusions and Future Work

This paper presents an architectural solution that synthesizes component-based
control, from autonomic computing, and fireflies-based self-organization, from
self-adaptive biological systems. The architecture eliminates the shortcomings
of these approaches, that is, lack of inherent situated awareness and mobility
for autonomic approaches, and lack of control over the self-organization in bio-
inspired systems. The paper presents a first evaluation of the effectiveness of the
solution with the help of a public park case study. As future work, we plan to
extend the experiments to have a more comprehensive evaluation of the solution
with complex smart spaces.

References

1. Agha, G.: Computing in Pervasive Cyberspace. Communications of the ACM
51(1), 68–70 (2008)

2. Baresi, L., Guinea, S., Shahzada, A.: SeSaMe: towards a semantic self adaptive
middleware for smart spaces. In: Post-Proceeding of the Workshop on Engineering
Multi-agent Systems, pp. 169–178 (2013)

3. Cannata, A., Gerosa, M., Taisch, M.: SOCRADES: a framework for developing
intelligent systems in manufacturing. In: Proceedings of International Conference
on Industrial Engineering and Engineering Management, pp. 1904–1908 (2008)

4. Dorigo, M., Blum, C.: Ant Colony Optimization Theory: A Survey. Theoretical
Computer Science 344(2), 243–278 (2005)

5. Gurgen, L., Gunalp, O., Benazzouz, Y., Gallissot, M.: Self-aware cyber-physical
systems and applications in smart buildings and cities. In: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1149–1154 (2013)

6. Ma, J., Yang, L.T., Apduhan, B.O., Huang, R., Barolli, L., Takizawa, M.: Towards
a Smart World and Ubiquitous Intelligence: A Walkthrough From Smart Things to
Smart Hyperspaces and UbicKids. International Journal of Pervasive Computing
and Communications 1(1), 53–68 (2005)

7. Rellermeyer, J.S., Riva, O., Alonso, G.: AlfredO: an architecture for flexible inter-
action with electronic devices. In: Issarny, V., Schantz, R. (eds.) Middleware 2008.
LNCS, vol. 5346, pp. 22–41. Springer, Heidelberg (2008)

8. Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity.
In: Proceedings of International Conference on Complex Systems, pp. 16–21 (2004)

9. Yang,X.-S.: Firefly algorithms formultimodal optimization. In:Watanabe,O., Zeug-
mann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg
(2009)

10. Yang, X.-S.: Flower pollination algorithm for global optimization. In: Durand-
Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 240–249. Springer,
Heidelberg (2012)

11. Zambonelli, F., Viroli, M.: A Survey on Nature-Inspired Metaphors for Pervasive
Service Ecosystems. International Journal of Pervasive Computing and Communi-
cations 7(3), 186–204 (2011)

Using Feature Models for Distributed
Deployment in Extended Smart Home

Architecture

Amal Tahri1,2(B), Laurence Duchien2, and Jacques Pulou1

1 Orange Labs, Meylan, France
2 INRIA Lille-Nord Europe, CRISTAL Laboratory,

University Lille 1, Villeneuve-d’Ascq, France
amal.tahri@orange.com

Abstract. Nowadays, smart home is extended beyond the house itself
to encompass connected platforms on the Cloud as well as mobile per-
sonal devices. This Smart Home Extended Architecture (SHEA) helps
customers to remain in touch with their home everywhere and any time.
The endless increase of connected devices in the home and outside within
the SHEA multiplies the deployment possibilities for any application.
Therefore, SHEA should be taken from now as the actual target plat-
form for smart home application deployment. Every home is different and
applications offer different services according to customer preferences. To
manage this variability, we extend the feature modeling from software
product line domain with deployment constraints and we present an
example of a model that could address this deployment challenge.

1 Introduction

Smart Home Extended Architecture (SHEA) expands the Smart Home (SH)
deployment environment to the Cloud and mobile personal devices to host the SH
applications. Different domains contribute to the SHEA such as home security,
comfort and energy efficiency to offer services to customers. A service is delivered
as a component-based application [11]. The deployment of a SH application is a
mapping of a set of components onto a set of deployment nodes. These nodes hold
computational resources that must satisfy the component requirements deployed
on them.

The variability of the SHEA comes from different points of views as it is related
to the multitude of involved stakeholders for the SH market and different hard-
ware and software resources. This variability is very challenging and has to be
managed to enumerate all the deployment configurations within the SHEA. The
effective deployment between the SH and the Cloud is chosen from the analysis
results according to specific criteria, e.g., service availability, reduced cost.

Software Product Line (SPL) [9] is a promising methodology to handle the
variability. SH applications are defined with Feature Models (FMs) [6], which
are tools of SPL principles. FM is a variability modeling technique for a compact
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 285–293, 2015.
DOI: 10.1007/978-3-319-23727-5 24

286 A. Tahri et al.

representation of all possible products, hereafter variants, and the definition of
compositional and dependency constraints, e.g., implies, excludes, among fea-
tures. Features are assets describing external properties of a product and their
relationships. Constraints clarify which feature combinations are valid, named
valid configurations, using the Constraint Satisfaction Problem (CSP) solvers [1].
For the deployment purpose, non-functional requirements must be expressed to
verify the adequacy of component requirements and node resources. FMs lack
tools to express such information. Extended Feature Models (EFMs) [3] overcome
the FM limits by introducing non-boolean variables using attributes, cardinali-
ties and complex constraints. Attributes describe non-functional and quantified
properties, e.g., CPU, RAM. Cardinalities allow the multiplication of features
and thus feature attributes such as CPU, RAM.

However, FM can not represent all deployment constraints. Deployment con-
straints refer to component placement indication among nodes, e.g., colloca-
tion, separation, or component requirement adequacy with the deployment node
resources. EFMs are not adapted to be used in the deployment purpose as EFMs
do not offer enough technical operators to express deployment constraints. With-
out a clear identification of deployment constraints, EFMs generate huge con-
figuration spaces and often few convenient for the deployment purpose.

Our approach uses feature modeling to match the component requirements
and the deployment node resources using CSP solver analysis.

The organization of the paper is the following. Motivation behind the dis-
tributed deployment across the SHEA is detailed in Section 2. The deployment
oriented feature analysis is introduced in Section 3. Preliminary validation is
given in Section 4. Related work is described in Section 5. Finally, conclusion
and future works are presented in Section 6.

2 Motivations and Challenges

2.1 Motivating Example

A customer purchases a Control Admittance application for smart door (un)-
locking based on identification mechanisms. Different application variants are
available. The basic variant represents the service of door (un)locking using
the keypad identification mechanism. The person is asked to enter a pin code
in the keypad to open manually the door. The medium variant offers the face
recognition service using one recognition algorithm. When the motion detector
senses a presence outdoor, the camera forwards images or video frame for face
identification. This process matches the camera flow with the customer data base
of authorized persons. If the person is recognized, the door opens automatically.
The premium variant offers a powerful recognition performance using multiple
algorithms. The keypad is available as a degraded mode for all variants, when
Internet connection fails as it is deployed in the SH.

Different deployment possibilities are offered to the customers between the
SH and the Cloud as in Fig. 1. The Home Automation Box (HAB) is an
embedded environment that can host components or even a whole application.

Using Feature Models for Distributed Deployment 287

Fig. 1. Deployment possibilities in the SHEA.

We assume that the HAB is the only node in the SH and the Cloud offers one
or multiple deployment nodes, e.g., virtual machines on top of the Platform as
a Service (PaaS).
Case 1: Deployment on the SH embedded nodes Application deployment in the
SH confines all application components into the HAB which may lead to perfor-
mance degradation because of the HAB limited resources. To satisfy component
requirements, a hardware upgrade is required which raises the Bill of Material
(BOM)1 and, therefore, the application acquisition cost.
Case 2: Deployment on the Cloud The Cloud is “a model for enabling conve-
nient and on-demand network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal manage-
ment effort” [8]. The Cloud offers deployment nodes, e.g., virtual machines with
on-demand resource allocation that overcome the limited capacities of the HAB.
However, the deployment on the cloud may increase the latency and response
time of an application. Connection failure compromises the service availability
and user experience.

Fig. 2. Control Admittance Extended Feature Model.

1 http://en.wikipedia.org/wiki/Bill of materials

http://en.wikipedia.org/wiki/Bill_of_materials

288 A. Tahri et al.

Case 3: Deployment across the SHEA nodes The deployment between the HAB
and the Cloud offers an attractive trade-off that overcomes the limitation pre-
sented in cases 1 and 2. As the Cloud offers on-demand resources that extend the
HAB resources and reduces the application cost presented in case 1, the HAB
ensures service availability when connection fails.

2.2 Challenges

Two challenges are tackled using feature modeling in this paper:

– Challenge 1 (C1) Bridge the gap between feature modeling and deployment
analysis by introducing deployment constraints in EFM.

– Challenge 2 (C2) Automate the verification of deployment constraints to
enumerate all the valid deployment configurations within the SHEA.

3 Feature Analysis Oriented Deployment

3.1 Feature Modeling

We refer to EFM to model the application and each deployment node. In the
application EFM in Fig. 2(a), the components are the deployment units and
represented as features. This model encompasses all the application variants
presented in Section 2.1. In Fig. 2(b), we present all variant for deployment
nodes where features are the offered resources. The same ontology is used to
declare the requirements and the resources, respectively, in the application and
deployment nodes EFMs. Mandatory feature, e.g., face extractor, represents a
core functionality in the application and is always present if its parent is selected
in the configuration. Optional feature, e.g., live streaming, introduces the vari-
ability aspect as it may be included or not in a configuration. The exclusive
group of the images feature indicates that only one sub-feature can be selected
in a configuration. The or group of the face matcher feature allows the selection
of none, one or several sub-features in the configuration. Bayesian implies high
signifies that when the feature Bayesian is selected, the feature high must be
present in this configuration. Attributes (dotted rectangles) are linked to feature
to express quantified requirements, e.g., CPU and RAM. Feature cardinality
(integer range [m,n], m <= n) determines the number of feature instances and
thus the corresponding attributes allowed in the product configuration, e.g., live
streaming can be present up to three times in the same configuration. The root
feature control admittance and the keypad feature are the basic variant. When
adding face recognition feature and choosing from the face matcher group the
PCA feature, we obtain the medium variant.

3.2 Approach

Deployment Node Feature are a new feature category representing the deploy-
ment nodes in the application EFM. This new category allows the separation

Using Feature Models for Distributed Deployment 289

between component features and deployment node features to declare Deploy-
ment Constraints. Then, we validate whether a deployment node is a suitable
host for application components using feature modeling analysis.

HostedBy(NF ,F)where F ∈ AF, NF ∈ LNF (1)

Colocated(F ,F ′
) , Separated(F ,F ′

)where F ,F ′ ∈ AF (2)

ResourceConstraint(rj) :=
ki∑

l=1

R
rj
Fil

≤ R
rj
NFi

(3)

HostedBy constraint, in (1), is a binary relation between the List of deployment
Node Features LNF and the set of Application Features AF. The couple (NF , F)
implies that if the deployment node feature NF is selected in a configuration,
then, the feature F is deployed on this node.

Colocated and Seperated constraints, in (2), are binary relations between
two features in AF. When both features F and F ′

are selected in the same
configuration, (i) if Colocated, they must be on the same deployment node. (ii)
If Separated, they must be deployed on different deployment node. Colcated may
be identified between (i) features of the same package that need to be deployed on
the same node, (ii) features of different packages but with mutual dependencies
and high coupling, (iii) all the features that contribute to the same service and
should be deployed in the same network area to ensure high availability of this
service in case of connection failure.

Separated constraint can refer to (i) high availability when two features
duplicate important data that must not be lost during a single node failure,
(ii) potential parallelism when features operating independently are dispatched
among different nodes to improve the throughput of the whole application, (iii)
resource greedy features when two features require a large amount of resources
such as CPU or RAM, they are deployed on different nodes.

The ResourceConstraint, in (3), ensures that the sum of the attributes for
all the selected features to be hosted on embedded nodes does not exceed the
node available resources. Fi is a feature to be deployed on NF i. ki is the size of
the selected list of features on NF i and ∀rj ⊂ Rj , j is the resource type where
j ∈ [1, n] n being the resource types taken into account. In our example, n = 2
as only two resource types are considered: r1 = CPU , r2 = RAM .

These constraints are added in the application EFM and translated to the
constraint programming Choco solver [5] to check the configuration validity.

The PossibleHost function below finds all NF that satisfy the feature
attributes of AF and returns the analysis solution set. This function should be
preceded by an initialization step that inserts the deployment constraints, i.e.,
Hostedby, Colocated and Separated predefined by the application developer
in AF. The algorithm takes as inputs the AF and the deployment node EFMs
from which it constructs the list LNF (here LNF = {HAB,CloudVM}). The
algorithm has two nested For loops. The outer loop covers the list LNF. The
addFeature creates a mandatory feature NF from LNF under the root feature
of AF. For each node, the inner loop examines successively all the features with

290 A. Tahri et al.

attributes in AF. If no predefined Hostedby constraint is found for the given NF
and F , the FindMatch method searches the NF related EFM, e.g., Fig. 2 (b),
for an equivalent attribute of this F . If match found, the addConstraint method
introduces a Hostedby constraint to AF between the F of this attribute and the
given NF . If no match found, the addConstraint creates notHostedBy con-
straint between the given F and NF .

The ResourceV erification procedure verifies ResourceConstraint (3) and
thus is only carried out for embedded nodes, e.g., in our example only HAB
node is involved with the selected features hosted on them. The AF with these
new constraints is translated into constraint programming and introduced to
the solver (i.e., addSolver) that automatically outputs the valid configurations
from where we feed the SolutionSet SS. The outer loop enters a new step and
continues to scan the NF list until its end.

This section tackles the challenges in Section 2.2. The deployment constraints
help bridge the gap between feature modeling and deployment analysis of the
C1 and the algorithm automates the verification of these constraints as in C2
to enumerate the valid deployment configurations within the SHEA.

Algorithm 1 Matching Algorithm
1: REQUIRE FeatureModelAF, list < FeatureModel > LNF

2: ENSURE PossibleHost
3: function SolutionSetPossibleHost(AF,LNF)
4: SolutionSet SS = empty
5: Copy AF in AF

′

6: for all NF ∈ LNF do
7: if NF /∈ AF

′
then addFeature(AF

′
, NF)

8: for all F with attributes ∈ AF
′
do

9: if HostedBy(NF , F)) /∈ AF
′

then
10: if FindMatch(F with attributes in NF) then

11: addConstraint to AF
′

(HostedBy(NF , F))
12: add F to FinNF � list of F hosted on NF used in line 17
13: else addConstraint to AF

′
(notHostedBy(NF , F))

14: end if
15: end if
16: end for
17: if ResourceV erification(NF ,FinNF) then � check constraint (3)

18: addSolver(AF
′
) to SS � solver invocation

19: end if
20: end if
21: end for
22: return SS
23: end function

Using Feature Models for Distributed Deployment 291

4 Preliminary Validation

EFMs of the application and the deployment nodes are defined using the
SALOON framework [10], for SoftwAre product Lines for clOud cOmputiNg.
This framework relies on SPL principles for selecting and configuring cloud
environments according to given requirements. SALOON offers the modeling and
analysis tools to manage cloud variability using cardinality-based feature models
and relies on the Eclipse Modeling Framework (EMF)2 to present a meta-model
of features. We have extended this meta-model by introducing deployment node
features and deployment constraints. We translate the features, attributes and
deployment constraints to Choco solver [5] constraint programming to check the
configuration validity. The solution evaluation computes the valid deployment
configurations of the control admittance EFM on the HAB and the Cloud EFM
in Fig. 2. Deployment constraints are introduced as follows: HostedBy(HAB,
keypad), Colocated (Baysien, live streaming), and Separated (smart phone,
Baysien) and the algorithm 1 is applied to the application EFM. Table 1 shows
the results where the valid configuration number is reduced notably for a simple
example of 16 features. In the future, realistic application set including several
hundred of components will be used to characterize the limits of this method.

Table 1. Valid Configurations for Admittance Control

Feature
Model

Features Config
Config with
1 Colocated

Config with
1 Seperated

Config with
1 Colocated

&1 Seperated

Application 16 25 11 16 8

Execution
Time (ms)

- 2926 2897 3639 2895

5 Related Work

The authors, in [7], propose an approach for managing and verifying deployment
constraints. This approach is based on Model-Driven Engineering to include
deployment constraints at earlier stage of application development. The execu-
tion context includes the home devices, the mobile phones and the Cloud. The
authors introduce FM to manage applications and execution context variability
taking into account deployment constraints. Close to this research, our work is
an extension with some differences: (i) we only consider deployment time and
(ii) use CSP solver to verify the deployment configurations based on deployment
constraints in feature modeling. Druilhe et al. in [4] present a deployment model
to reduce energy consumption of the home device set (Set Top Box, Gateway).
They stand a distribution plan that maps the applications components on the
devices considering resources and quantity of resources constraints, e.g., CPU,
2 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

292 A. Tahri et al.

RAM. Quinton et al. [10] focus on the deployment on the Cloud considering
SPL techniques. They propose an extended feature models framework named
SALOON to configure Cloud environments to host applications. EFM repre-
sents the Cloud environment resources, e.g., web server, data base, execution
environment. This framework helps developers selecting the best solution based
on specific customer criteria. We extend these previous results to include SH
environment to SALOON and adapt feature modeling for the deployment pur-
pose. In [2], the authors analyze the deployment of health monitoring application
variants in different Cloud platforms using SPL in order to select the possible
deployment with the lower price. Our work focus on introducing deployment
constraints to adapt feature modeling for deployment analysis.

6 Conclusion

Our approach proposes to include deployment constraint in EFM that is not
proposed by other researches. We have used and extended the SALOON frame-
work [10] to introduce a new process for mapping application components onto
deployment nodes using feature modeling. This paper raises a preliminary vali-
dation of how to adapt feature modeling for the deployment purpose. However, it
does not characterize the limits of this method. The given example is restricted to
SHEA with only one SH node, e.g., HAB and other examples should be checked
to get better insight in the approach added value.

References

1. Apt, K.: Principles of constraint programming. Cambridge University Press (2003)
2. Cavalcante, E., Almeida, A., Batista, T., Cacho, N., Lopes, F., Delicato, F.C.,

Sena, T., Pires, P.F.: Exploiting software product lines to develop cloud comput-
ing applications. In: Proceedings of the 16th International Software Product Line
Conference, vol. 2, pp. 179–187. ACM (2012)

3. Czarnecki, K., Hwan, C., Kim, P., Kalleberg, K.: Feature models are views
on ontologies. In: 2006 10th International Software Product Line Conference,
pp. 41–51. IEEE (2006)

4. Druilhe, R., Anne, M., Pulou, J., Duchien, L., Seinturier, L.: Energy-driven con-
solidation in digital home. In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pp. 1157–1162. ACM (2013)

5. Jussien, N., Rochart, G., Lorca, X.: Choco: an open source java constraint pro-
gramming library. In: CPAIOR’08 Workshop on Open-Source Software for Integer
and Contraint Programming (OSSICP’08), pp. 1–10 (2008)

6. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report, DTIC Document (1990)

7. Lee, K.C.A., Segarra, M.T., Guelec, S.: A deployment-oriented development pro-
cess based on context variability modeling. In: 2014 2nd International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD),
pp. 454–459. IEEE (2014)

Using Feature Models for Distributed Deployment 293

8. Mell, P., Grance, T.: The nist definition of cloud computing. National Institute of
Standards and Technology 53(6), 50 (2009)

9. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering,
vol. 10. Springer (2005)

10. Quinton, C.: Cloud Environment Selection and Configuration: A Software Product
Lines-Based Approach. PhD thesis, Université Lille 1 (2014)

11. Szyperski, C.: Component Software: Beyond Object-oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York (2002)

SmartyCo: Managing Cyber-Physical Systems
for Smart Environments

Daniel Romero1(B), Clément Quinton2, Laurence Duchien1, Lionel Seinturier1,
and Carolina Valdez3

1 Université Lille 1 & Inria, CRIStAL (UMR CNRS 9189) Laboratory,
Villeneuve-d’Ascq, France

{daniel.romero,laurence.duchien,lionel.seinturier}@inria.fr
2 Politecnico di Milano, DEIB, Piazza L. Da Vinci, 32, 20133 Milano, Italy

clement.quinton@polimi.it
3 Media.lab, Instituto Pladema, UNCPBA, Tandil, Argentina

Cvaldezgandara@alumnos.exa.unicen.edu.ar

Abstract. Cyber-Physical Systems (CPS) are composed of heteroge-
neous devices, communicating with each other and interacting with the
physical world. Fostered by the growing use of smart devices that are per-
manently connected to the Internet, these CPS can be found in smart
environments such as smart buildings, pavilions or homes. CPS must
cope with the complexity and heterogeneity of their connected devices
while supporting end-users with limited technical background to config-
ure and manage their system. To deal with these issues, in this paper we
introduce SmartyCo, our approach based on Dynamic Software Product
Line (DSPL) principles to configure and manage CPS for smart environ-
ments. We describe its underlying architecture and illustrate in the con-
text of smart homes how end-users can use it to define their own CPS in
an automated way. We then explain how such an approach supports the
reconfiguration of smart devices based on end-users rules, thus adapting
the CPS w.r.t. environment changes. Finally, we show that our approach
is well-suited to handle the addition and removal of CPS devices while
the system is running, and we report on our experience in enabling home
inhabitants to dynamically reconfigure their CPS.

1 Introduction

Nowadays, the definition of Cyber-Physical Systems (CPS), i.e., systems control-
ling physical elements in the real world from software applications, is a reality.
This is due to the emerging Internet of Everything paradigm, where smart-
phones, tablets, PCs and different devices are connected to the Internet. These
CPS enable a ‘smart everywhere society’, where roads, cars, trains, offices, pub-
lic spaces or homes interact smartly. CPS must thus be context-aware, i.e., able
to react to environment changes by considering the technological heterogeneity,
concurrency and availability of connected devices.

For instance, homes have recently been considered as smart environments
and several works [5,7,13] focus on the Do-It-Yourself Smart Home paradigm.
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 294–302, 2015.
DOI: 10.1007/978-3-319-23727-5 25

SmartyCo: Managing Cyber-Physical Systems for Smart Environments 295

However, these approaches do not provide enough flexibility in terms of services
that can be used, produce technological lock-in, or introduce additional costs.
Thus, allowing end-users to configure, control and update their own CPS is a
challenging task, as it requires a solution managing the variability of such CPS at
design and runtime, while enabling these users to easily cope with this variability.

In order to face this challenge, we present in this article SmartyCo, our
Dynamic Software Product Line (DSPL) [6] based approach to capture smart
environment configurations via extended feature models [1] and define smart
CPS. In particular, SmartyCo provides three main contributions: (1) A soft-
ware product line for deriving the system configuration according to user require-
ments and available devices, (2) a support for runtime adaptation via end-user
rules and (3) a bidirectional mechanism for keeping the software product line
and the cyber-physical system synchronized in presence of adaptations. The
context-awareness and the reactivity of the system are reified by defining event-
condition-action rules, which execute tasks required by users under given condi-
tions while maintaining the consistency of the whole system. The rules together
with the possibility to incorporate new services into the system represent the
dynamic part of the product line.

The next section presents the technologies that makes possible the defini-
tion of our approach. Then, Section 3 provides an overview of SmartyCo and
explains the rule definition mechanism. Sections 4 describes a prototype, while
related work is discussed in Section 5. Section 6 concludes the paper.

2 Background Information and Enabling Technologies

As already mentioned, smart environments are equipped with several devices:
Set-top boxes, that provide interactive services such as search and config-

uration services. In recent years, these boxes have gained computation power
by increasing their storage and processing capabilities, and have become more
user-friendly by relying on well-designed interfaces. For instance, the Minix Neo
X-7, an Android-based box, can be used to install, configure and control new
software to manage cyber-physical systems.

Smartphones, that are permanently connected to the Internet through the
3G, 4G and Wi-Fi spots. Thanks to dedicated applications, smartphones can
also be used to interact with physical equipments, e.g., switching channels on
television or listening to music on external loudspeakers.

Appliances and devices, which can be controlled via PC, smartphones and
tablets. For example, light switches, thermostats, and cameras from the Belkin
WeMo and Z-Wave families can be controlled via Internet services such as If-
This-Then-That (IFTTT) [8] which is based on event-condition-action rules.

This variability in terms of technologies requires an approach enabling their
coordination to run as a unified system. Furthermore, an automation solution has
to consider different environment designs, has to be flexible, extensible, intuitive,
trustworthy and has to make end-users feel that they are gaining control [14].
In the next section we introduce our approach to deal with these issues.

296 D. Romero et al.

3 Managing Cyber-Physical Systems With SmartyCo

3.1 Overview

SmartyCo relies on Dynamic Software Product Line (DSPL) principles [2].
A software product line reduces the efforts for producing a family of software
products, e.g., CPS. Within this family, products share common functionalities
(i.e., commonalities) and differ according to variable ones (i.e., variability) [10].
A domain expert identifies this variability, which is reflected into a variability
model, e.g., a feature model [9]. Features from this variability model are mapped
to concrete reusable software artifacts, or assets, which are bound together to
yield the software product. In SmartyCo DSPL, each CPS is thus a prod-
uct. A DSPL supports binding variability at runtime, thus enabling a system
to reconfigure itself while running. Such principles allow SmartyCo to deal
with the static configuration of CPS for smart environments while supporting
the adaptation of such systems when required. The SmartyCo DSPL generates
controllers that are deployed on Android-based set-top boxes. Such controllers
allow the definition of rules to manage the CPS as well as rules to deal with
the context-awareness of the devices in use. Those controllers share a generic
common configuration, but differ in some variation points according to the rules
defined by the end-user and the available devices. SmartyCo copes with this
technological variability by describing CPS using feature models. Figure 1 pro-
vides an overview of SmartyCo.

End-users rely on the Configurator for defining a CPS configuration by
selecting the required devices and their location . The Generator, deployed
on the SmartyCo Server running in a private Cloud to ensure data privacy,
processes such a configuration to check its validity. To do that, it translates
extended feature models into a constraint satisfaction problem and solves it rely-
ing on the Choco solver [3], as described in [11]. Then, the Generator combines
assets related to selected devices to produce the CPS Controller , which is
deployed on the set-top box . Assets in SmartyCo are channels (i.e., sensors
and actuators) and rules. End-users define rules when needed via the Controller

Fig. 1. Overview of the SmartyCo DSPL

SmartyCo: Managing Cyber-Physical Systems for Smart Environments 297

, which orchestrates the CPS . Channel developers also define rules to keep
the system consistent. With such an approach, the SmartyCo DSPL provides
a customized CPS based on available devices.

3.2 Extended Feature Models to Manage CPS Variability

In SmartyCo, we rely on model driven engineering principles [12] to define the
feature models of smart environments. Figure 2 depicts our metamodels for such
environments. These metamodels rely on and extend the metamodel we proposed
in [11] to define feature models with cardinalities and attributes.

The Channel Type metamodel (cf. gray boxes) enables the definition of
actuators and sensors providing actions and triggers (or events). Inspired by
IFTTT [8], our approach allows smart objects to work for end-users through
simple rules. Each rule has a trigger, an action and a priority to deal with con-
flicts. Rules with higher priority are executed and if two or more rules have the
same priority, they will be executed in the order of their definition. Examples of
channel types are smartphones and Belkin WeMo thermostats, while if someone
turns on the thermostat, send me a SMS is a rule. The CPS metamodel (cf. blue
boxes) is used to specify concrete channels. They can be fixed with a location
(e.g., a crock-pot is in the kitchen) or mobile (e.g., smartphones). We also intro-
duce Fixed Controllers that are installed on set-top boxes to control channels
and rules. Finally, the Smart Environment metamodel (cf. degraded salmon
boxes) enables the definition of the environment that hosts the CPS. The CPS
metamodel uses the Smart Environment metamodel to specify the location of
Fixed Controllers. Each smart environment can be configured independently
by instantiating these metamodels. Below, we explain and illustrate their use.

Why extended feature models? The Configurator (cf. Figure 1) enables the
user to deal with the variability of CPS and smart environments. This physical
and software variability is reflected in the feature models, which are extended
with cardinalities and attributes [1]. Feature models enhanced with such exten-
sions allow the definition of (1) multiple instances for the same feature, and (2)
complex constraints over these features. For example, several instances of the

Fig. 2. Metamodels to manage variability in smart environments

298 D. Romero et al.

Fig. 3. CPS configuration in a smart home (Excerpt)

same feature (e.g., a channel or a room) can be defined and configured, while
attributes provide additional information about features such as location or type.
Finally, these extended feature models support the definition of complex rela-
tionships involving cardinality and attribute values such as the configuration of
one or more Z-Wave Switches requires the configuration of at least one Z-Stick
Controller (to enable the definition of a Z-Wave device network).

Figure 3 depicts the use of these extensions with instances of the CPS and
Smart Environment metamodels. The related Channel Type model (not shown
here) contains types related to WeMo and Z-Wave devices. The lower part of the
figure depicts the feature model of MyHome, an instance of a smart environment.
This smart home is made up of a bedroom, a living room, a bathroom and a
kitchen. The upper part depicts a CPS feature model (HomeCPS) that is composed
by several devices. In particular, it describes two different cases involving the
use of features whose cardinality upper bound is greater than one. On one hand,
two different instances of the WeMo Switch feature are configured. Indeed, several
devices of the same type may be present in the same home. On the other hand,
two identical instances of Smartphone are also configured, meaning that two
home inhabitants have the same smartphone model.

For the CPS to be consistent, some constraints must be defined. In this exam-
ple, the configuration of an Aeotec Z-Stick Controller requires the presence
of at least one Z-Wave device. This kind of constraints is properly handled by
extended feature models and the related reasoning tools, e.g., the Choco solver.

3.3 Dynamic Adaptation for CPS

In this section, we explain how rule definition and channel addition are used to
modify running configurations of SmartyCo cyber-physical systems.

Rules. In SmartyCo, event-condition-action rules keep DSPL products con-
sistent at runtime. In particular, SmartyCo distinguishes between CPS rules
and User rules. Both rules use channels as providers of events and actions. The
difference between these rules is related to permissions and priorities. End-users
cannot modify CPS rules, while User rules are defined and modified by end-users.
Regarding priorities, CPS ones are specified by the channel developers while the

SmartyCo: Managing Cyber-Physical Systems for Smart Environments 299

User rules are defined by the end-users. We provide below examples of CPS rules
(CPS-R) and User Rules (User-R) for the scenario depicted in Figure 3.

CPS-R if(bedroomSwitch.state != available) then androidSetTopBox.disableRules(bedroomSwitch); priority = 10;
User-R1 if (bedroomTemperatureSensor.value >= 20) then bedroomSwitch.turnOff; priority = 10;
User-R2 if (time.value == 22:00) then bedroomSwitch.turnOn; priority = 5;

For instance, the rule User-R1 indicates that if the temperature in the bed-
room is greater or equal to 20 degrees, then the bedroom switch is turned off.
Some defined rules can conflict when dealing with the same actuator. For exam-
ple, User-R1 and User-R2 can both be triggered at the same time. In such a case,
the state of the switch would be on because of User-R2, the last executed rule.
Such a state could be the one expected by the end-user or not. To avoid such an
uncertainty, the end-user defines priorities on the rules as natural numbers. For
instance, User-R1 has 10 as priority and User-R2 has 5. Thus, whenever both
rules are triggered, the priority is given to User-R1. To process such priorities,
we use a simplified version of the rule composition algorithm presented by Zave
et al. [14]. We also consider the rule type to evaluate priorities. CPS rules have
a higher priority than User rules, independently of the priority.

In order to avoid dysfunctions related to unreachable channels, when an end-
user configures a cyber-physical system, three CPS rules are set for each channel:
(1) a rule that disables the User rules related to the channel, so that they cannot
be modified or executed. CPS-R is an example of this rule for bedroomSwitch;
(2) a rule that notifies the end-users through their smartphone about the channel
unavailability; (3) a rule that enables again the channel rules once the channel
is available, i.e., when an end-user solves the issue related to the channel.

As previously described, these default CPS rules avoid incorrect behaviors
of the system at runtime. Additionally, each User rule checks the availability of
channels before condition or trigger validation. To do this, SmartyCo relies on a
state trigger related to each channel. As most of rule triggers, the channel state
is polled every 15 minutes by default, value that can be changed by the user.

Channel Addition. The SmartyCo DSPL also enables end-users to change
from one Controller configuration to another one through the removal and
addition of channels at runtime. That is why SmartyCo requires that end-
users define the evolution of the cyber-physical system with these modifications.
To integrate new channels into the system, end-users select from a list of chan-
nels the one related to the new device. If the channel functionality is already
installed, the SmartyCo Controller detects the new device and asks the end-
user to configure the new channel by selecting the correct appliance and location.
However, when a channel needs to be installed, an update is required through
the SmartyCo Server, which computes and executes the required changes on
the current Controller configuration. After this, the end-user configures the
new channel. Whether an update is required or not, a new channel cannot be
available for rule definition if SmartyCo cannot check its state. To remove a
channel from the system, such a channel must not be required anymore. In such
a case, all rules related to the removed channel are deleted.

300 D. Romero et al.

4 Experience

We developed a prototype of SmartyCo. The Server, implemented in Java,
exposes the Configurator as a REST service deployed in a private Cloud based
on OpenStack. Once generated by the DSPL, the Android-based Controller is
installed manually in the set-top box. For our experiments, we used a smart-
phone based on the Android 4.2 version and a MiniX Neo X7 as set-top box. We
also used an Aeotec Z-Stick Controller connected to this set-top box to interact
with Z-Wave devices. This configuration was then deployed in a smart environ-
ment made of 4 rooms. In the current implementation, 5 Z-Wave devices and
their channels are available, as well as a channel for Android phones. In the
SmartyCo DSPL, the extended feature model reflecting this configuration is
translated into a constraint satisfaction problem with 14 constraints, leading to
20 different configurations. Even with a limited number of devices (i.e., 6), end-
users already have to deal with an important number of system configurations.

For the first experiment, we evaluate the time required to access devices
when using channels. For this evaluation, we selected an On/Off switch and we
performed 50 runs to turn it on and off using the dedicated channel deployed in
the set-top box. We computed the average time for the two operations, which
was measured at 824 ms for turnOn and 888 ms for turnOff. These low values
show that our CPS rules can be executed in a reasonable time and that the
state verification has a negligible impact on the execution time of user rules.
The second experiment checks the correctness of the system’s behavior when
some devices become unreachable. A 3-in-1 motion-temperature-luminance sen-
sor together with a switch are part of the system, and each one is configured
with a User rule and the default CPS rules. These rules are desynchronized,
which means that the system rules are executed first, and the end-user rule 2
minutes later (this last value was defined arbitrarily for testing purposes). Both
devices are then turned off. The system rules successfully detect the problem
and disable the user rule. Once the devices are turned back on, the Controller
detects the presence of the devices and the system continues running properly.

5 Related Work

SPOK [4] is an End-User Development Environment for smart homes. The envi-
ronment, based on OSGi, provides a middleware layer enabling interactions with
different kind of devices and a pseudo natural language to define event-condition-
action rules. The language proposed by SPOK could be integrated into Smar-
tyCo to provide a textual definition of event-condition-action rules including
the loops usage. The Controller in SmartyCo can play the middleware role by
enabling access and control of the physical world via the channels.

Humle et al. [7] present a user-oriented approach based on JavaBean com-
ponents that encapsulate sensors and actuators. Authors also propose a jigsaw-
based editor, where each JavaBean component is represented as a jigsaw puzzle
piece that can be composed with other pieces. On the other hand, CAMP [13] is

SmartyCo: Managing Cyber-Physical Systems for Smart Environments 301

a system enabling the definition of home applications without focusing on target
devices. CAMP allows users to specify the application tasks and goals by means
of a subset of natural language. We can exploit ideas related to GUIs proposed
by these approaches in order to improve the SmartyCo user interface.

Dey et al. [5] introduce iCAP, a system enabling end-users to build context-
aware applications without writing any code. The users define if-then rules and
spatial, temporal and personal relationship-based rules, together with the devices
to be used. iCAP proposes an approach similar to SmartyCo, where end-users
can build and configure their system via rules. However, it is not clear how the
system can be extended to include new devices, how they are configured or which
actual devices available in the environment can be controlled. The dynamic part
of SmartyCo enables the inclusion of new devices when they become available.

6 Conclusions

In this paper we presented SmartyCo, our solution for dealing with the variabil-
ity of smart environment systems managed by end-users. SmartyCo is based
on DSPL principles to manage the variability of such systems at design and run-
time. In particular, the runtime adaptations are twofold. First, they are defined
via end-user rules requiring the activation or deactivation of certain devices
under certain conditions, and validated by checking the related feature model
configuration. Second, it is possible to easily add new devices when they become
available. In such a case, the consistency of the DSPL is ensured by predefined
rules avoiding the usage of unavailable devices.

Our experience in building a prototype confirms that we are close to enable
an easy and partially automated configuration of dynamic CPS complying with
any smart environments. Issues related to privacy and security as well as vulnera-
bilities related to devices must also be considered when modeling and generating
the CPS. We also need to further consider conflicts between rules and their pri-
orities by putting the accent in the behavior of the system regarding possible
end-user behavior overriding action rules.

References

1. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models
20 Years Later: A Literature Review. Inf. Syst. 35(6), 615–636 (2010)

2. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Corts, A., Hinchey, M.: An overview of
Dynamic Software Product Line architectures and techniques: Observations from
research and industry. Journal of Systems and Software 91, 3–23 (2014)

3. Choco Team: Choco: an Open Source Java Constraint Programming Library.
Research report 10–02-INFO, École des Mines de Nantes (2010)

4. Coutaz, J., Demeure, A., Caffiau, S., Crowley, J.L.: Early lessons from the devel-
opment of SPOK, an end-user development environment for smart homes. In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp’14, pp. 895–902 (2014)

302 D. Romero et al.

5. Dey, A.K., Sohn, T., Streng, S., Kodama, J.: iCAP: interactive prototyping of
context-aware applications. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A.
(eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 254–271. Springer, Heidelberg
(2006)

6. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product
Lines. Computer 41(4), 93–95 (2008)

7. Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.-P., Koleva, B., Rodden, T.,
Hansson, P.: “Playing with the bits” user-configuration of ubiquitous domestic
environments. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003.
LNCS, vol. 2864, pp. 256–263. Springer, Heidelberg (2003)

8. IFTTT: Put the internet to work for you (2015). https://ifttt.com/, (accessed April
16 2015)

9. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute, November1990

10. Pohl, K., Böckle, G., Linden, F.J.V.D.: Software Product Line Engineering: Foun-
dations, Principles and Techniques (2005)

11. Quinton, C., Romero, D., Duchien, L.: SALOON: a platform for selecting and
configuring cloud environments. In: Software - Practice and Experience P, January
2015. doi:10.1002/spe.2311

12. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2), 25–31 (2006)

13. Truong, K.N., Huang, E.M., Abowd, G.D.: CAMP: a magnetic poetry interface
for end-user programming of capture applications for the home. In: Mynatt, E.D.,
Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 143–160. Springer, Heidelberg
(2004)

14. Zave, P., Cheung, E., Yarosh, S.: Toward User-Centric Feature Composition for
the Internet of Things. Tech. rep., AT&T Laboratories Research (2014)

https://ifttt.com/
http://dx.doi.org/10.1002/spe.2311

Analysis and Automation

Exploiting Traceability Uncertainty
Between Software Architectural Models and

Performance Analysis Results

Catia Trubiani1(B), Achraf Ghabi2, and Alexander Egyed2

1 Gran Sasso Science Institute, L’Aquila, Italy
catia.trubiani@gssi.infn.it

2 Johannes Kepler University, Linz, Austria
a@ghabi.net, alexander.egyed@jku.at

Abstract. While software architecture performance analysis is a well-
studied field, it is less understood how the analysis results (i.e., mean
values, variances, and/or probability distributions) trace back to the
architectural model elements (i.e., software components, interactions
among components, deployment nodes). Yet, understanding this trace-
ability is critical for understanding the analysis result in context of
the architecture. The goal of this paper is to automate the traceability
between software architectural models and performance analysis results
by investigating the uncertainty while bridging these two domains. Our
approach makes use of performance antipatterns to deduce the logical
consequences between the architectural elements and analysis results and
automatically build a graph of traces to identify the most critical causes
of performance flaws. We developed a tool that jointly considers SOft-
ware and PErformance concepts (SoPeTraceAnalyzer), and it automati-
cally builds model-to-results traceability links. The benefit of the tool is
illustrated by means of a case study in the e-health domain.

Keywords: Traceability · Uncertainty · Software modelling · Perfor-
mance analysis

1 Introduction

In the software development domain there is a very high interest in the early vali-
dation of performance requirements because this ability avoids late and expensive
repairs to consolidated software artifacts [1]. One of the proper ways to manage
software performance is to systematically predict the performance of the soft-
ware system throughout the development process. It is thus possible to make
informed choices among architectural and design alternatives; and knowing in
advance if the software will meet its performance objectives [2].

Advanced Model-Driven Engineering (MDE) techniques have successfully
been used in the last few years to introduce automation in software perfor-
mance modeling and analysis [3]. Nevertheless, the problem of interpreting the
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 305–321, 2015.
DOI: 10.1007/978-3-319-23727-5 26

306 C. Trubiani et al.

performance analysis results is still quite critical. A large gap exists between
the representation of performance analysis results and the software architectural
model provided by the engineers. In fact, the former usually contains numbers
(e.g., mean response time, throughput variance, etc.), whereas the latter embeds
architectural choices (e.g., software components, interaction among components,
deployment nodes). Today, such activities are exclusively based on the analysts’
experience and therefore their effectiveness often suffers from lack of automation.

In [4] we proposed a language capable of capturing model-to-code trace-
ability while considering typical uncertainties in its domain. For example, the
engineer knows that some given piece of code may implement an architectural
element; however, not whether this piece of code also implements other architec-
tural elements; or whether other pieces of code also implement this architectural
element. This paper adapts this language to provide model-to-results traceabil-
ity links while considering typical uncertainties from the performance analysis
domain. We presume that engineers know when a given performance result is
affected by an architectural element. However, they may not know whether this
performance result is also affected by other architectural elements or whether
other performance results are also affected by this architectural element.

The knowledge of the engineer is interwoven with software performance
antipatterns [5] that represent bad practices in architectural models negatively
affecting performance indices. A performance antipattern definition includes the
description of a bad practice occurring in the architectural model (e.g., a soft-
ware component sending an excessive number of messages), along with the solu-
tion that can be applied to avoid negative consequences (e.g., high network
utilization). In previous work [6] we provided a more formal representation of
performance antipatterns by introducing first-order logic rules that express a
set of system properties under which an antipattern occurs. The benefit of this
representation is that it already includes architectural elements (e.g., software
components) and performance results (e.g., utilization) hence it can be used to
make the knowledge of engineers less uncertain.

The contribution of this paper is to provide support in the process of identify-
ing the architectural model elements that most likely contribute to the violation
of performance requirements by jointly considering knowledge from engineers
and performance antipatterns. To this end, we developed a tool, namely SoPe-
TraceAnalyzer [7], that jointly considers SOftware and PErformance concepts:
it takes as input a set of statements specifying the relationships between soft-
ware elements and performance results, and provides as output model-to-results
traceability links. The language defined in [4] is extended by adding a weight-
ing methodology that quantifies the performance requirements’ violation, thus
to highlight the criticality of model elements despite performance results. The
key feature of our tool is that the knowledge of performance antipatterns can be
embedded in the specification of uncertainties to deduce the logical consequences
between architectural elements and analysis results, thus to disambiguate the
limited knowledge of engineers.

Exploiting Traceability Uncertainty 307

The paper is organized as follows: Section 2 presents related work; Section 3
describes our approach; Section 4 illustrates the case study; Section 5 discusses
the threats to validity of the approach; Section 6 concludes the paper and outlines
future research directions.

2 Related Work

The work presented in this paper relates to two main research areas and builds
upon our previous results in these areas: (i) software performance engineering
(SPE), and (ii) model-driven traceability.

Software performance engineering. SPE represents the entire collection of
software engineering activities and related analyses used throughout the soft-
ware development cycle, which are directed to meeting performance require-
ments [8]. Performance antipatterns [5] are very complex (as compared to other
software patterns) because they are founded on different characteristics of soft-
ware systems, spanning from static through behavioral to deployment. Antipat-
terns include features related to architectural model elements (e.g., many usage
dependencies, excessive message traffic) as well as to performance results (e.g.,
high, low utilization). Our logic-based formalization [6] has been experimented
to benefit across different modelling languages [9–11].

Model-driven traceability. In [4] we introduced a language for expressing
uncertainties in traceability relationships between models and code, which is
the main benefit of this technique compared with other traceability approaches.
There are many other techniques exploiting the automatic recovery of different
types of trace links [12] [13] [14]. Our work [4] out-passes these techniques by
introducing a flexible methodology to express uncertainties. We proved in our
recent work [15] that the same uncertainty expressions could be applied to trace
arbitrary kinds of software artifacts.

In literature there are some approaches that work towards the specification
of traceability links between model elements and performance results.

In [16] a mechanism to annotate performance analysis results back into the
original performance models (provided by the domain experts) is presented. On
the contrary, our approach includes the software models for traceability, and
it supports the interpretation of analysis results by providing weights on the
basis of requirements’ violation. In [17] traceability links are maintained between
performance requirements and Use Case Map (UCM) scenarios, however these
links are used to build Layered Queueing Network (LQN) models only. In [18]
traceability links are used to propagate the results of the performance model back
to the original software model, however it applies to UML and LQN models only.
Our approach instead aims to automatically build model-to-results traceability
links to point out the architectural elements affecting the stated requirements.

The problem of dealing with uncertainty in early requirements and archi-
tectural decisions has been recognized by several works in literature. In [19]
a language (i.e., RELAX) has been proposed to explicitly address uncertainty
for specifying the behaviour of dynamically adaptive systems. In [20] a tool

308 C. Trubiani et al.

(i.e., GuideArch) has been presented to guide the exploration of the architec-
tural solution space under uncertainty. In [21] a tool (i.e., Moda) has been intro-
duced for multi-objective decision analysis by means of Monte-Carlo simulation
and Pareto-based optimisation methods. However, all these works [19–21] do
not explicitly consider performance analysis results and their traceability with
software architectural elements.

3 Our Approach

Figure 1 illustrates the process we envisage to automate the traceability between
architectural model elements and performance analysis results. Ovals in the
figure represent operational steps whereas square boxes represent input/output
data. Dashed vertical lines divide the process in four different phases.

Fig. 1. Deriving automatically model-to-results traceability links by means of perfor-
mance antipatterns.

We assume that a set of performance requirements, among others, is defined.
Some examples of performance requirements are as follows: the response time
of a service has to be less than 3 seconds, the throughput of a service has to
be greater than 10 requests/second, the utilisation of a hardware device shall
not be higher than 80%, etc. Performance requirements will be used to interpret
the results from the model-based performance analysis. In the modelling phase,
an annotated1 software architectural model is built. In the analysis phase, a
performance model is obtained through model transformation, and such model
is solved to obtain the performance results of interest.

The focus of this paper is on the interpretation phase where the performance
results must be interpreted in order to detect, if any, performance flaws2 and
1 Annotations are aimed at specifying information to execute performance analysis

such as the incoming workload, service demands, hardware characteristics, etc.
2 A performance flaw originates from a set of unfulfilled requirement(s), such as “the

estimated average response time of a service is higher than the required one”.

Exploiting Traceability Uncertainty 309

highlight the software architectural model elements responsible for that bad
values. In fact, in case of unsatisfactory results a set of architectural refactoring
actions can be introduced to generate new software architectural models3 that
undergo the same process shown in Figure 1.

The goal of our approach is to trace model elements vs analysis results, see
shaded boxes of Figure 1. It starts with an automatic trace generation oper-
ational step that provides as output a weighted footprint graph (from input),
i.e., a graph containing a node for every result element (called RE nodes) and a
node for each model element (called ME nodes). The connections between these
nodes describe the certainties of the input (trace or no-trace), and are refined
with an automatic uncertainty reduction operational step aimed at generating
a weighted foot print graph (after antipattern-based rules). This latter step is
supported by performance antipatterns [5] that are suitable to deduce the logi-
cal consequences of the uncertainties, and contribute to automatically generate
traces joining architectural elements and performance results.

3.1 Automatic Trace Generation

The automatic trace generation operational step (see Figure 1) takes as input:
(i) performance requirements, (ii) annotated software architectural model, and
(iii) performance results. It provides as output a weighted footprint graph.

Performance requirements are classified on the basis of the performance
indices they address and the level of abstraction they apply. Here we consider
the requirements that refer to the following performance indices [23]: Response
time (RT) is defined as the time interval between a user request of a service
and the response of the system; Throughput (TH) is defined as the rate at which
requests can be handled by a system, and is measured in requests per unit of
time; Utilization (U) is defined as the ratio of busy time of a resource and the
total elapsed time of the measurement period; Queue length (QL) is defined as
the number of users waiting for a resource; Waiting time (WT) is defined as the
time interval required to access to a resource starting from when the resource is
required up to when it is accessed.

Usually, RT requirements are upper bounds defined in “business” require-
ments by the end users of the system. TH requirements can be both “business”
and “system” requirements, they can represent either an upper or a lower bound.
U, QL and WT requirements are upper bounds defined in “system” requirements
by system engineers on the basis of their experience, scalability issues, or con-
straints from other concurrent software systems.

Various levels of abstraction can be defined for a requirement: system, pro-
cessor, etc. However, we do not consider all possible combinations of indices and
levels of abstraction, we focus on the most common ones that are: RT and TH of
services, U, QL, and WT of hardware devices.

3 We do not detail the refactoring process here, as it is out of this paper focus. However,
readers interested to this part can refer to [22].

310 C. Trubiani et al.

Performance results represent the analysis values of the indices we consider
for traceability. Note that such values are affected by a set of features such as
system workload and operation profile that represent how the software system
is used [23].

Annotated software architectural models may be constituted by elements
belonging to different views [24]: Static/Software View (SW) includes the soft-
ware elements, e.g., operations (SWop), components (SWcomp), services, and the
static relationships among them; Dynamic/Interaction View (DY) includes the
specification of the interaction, e.g., messages (DYmsg), that occurs between the
software components to provide services; Deployment/Hardware View (HW)
includes the hardware devices, e.g., processing nodes (HWnode), and communica-
tion networks (HWnet), and the mapping of software components and iteractions
onto hardware devices. Summarizing, SWop, SWcomp, DYmsg, HWnode, and HWnet
represent the architectural elements we consider for traceability.

Language for Expressing Traceability. This paper adapts the language for
model-to-code traceability introduced in [4] and extends it to express model-to-
results traceability considering some of the unique aspects of this domain. The
main benefit of our approach is that our language allows the engineer to express
uncertainty constructs to the level of detail she or he is comfortable with.

Each construct is defined as {m*} relationship {r*} where {m*} is the set
of model elements and {r*} is the set of results elements. The star symbol (*)
expresses multiplicity in that m* stands for multiple model elements and r* for
multiple results elements. The relationship term declares how the first set is
related to the second one.

We distinguish between three major relationships: affectAtLeast, affectAt-
Most, affectExactly.

1) AffectAtLeast Construct : the input {m*} affectAtLeast {r*} defines that
the model elements in {m*} affect all of the result elements in {r*} and possibly
more. This input has a correctness constraint ensuring that every model element
in {m*} individually must be affecting a subset of {r*}. One example of this
relationship is provided by the software components SWcomp and the subset of
operations SWop involved in a service S that affect at least the response time
(RT) and the throughput (TH) of the service S.
Input: {SWop*, SWcomp*} affectAtLeast {RT, TH}

2) AffectAtMost Construct : the input {m*} affectAtMost {r*} defines that
the model elements in {m*} affect some of the result elements in {r*} but cer-
tainly not more. This input expresses the certainty that every other model ele-
ment not in {m*} must not affect any result element in {r*}. One example of
this relationship is provided by the software components SWcomp and the sub-
set of operations SWop involved in a service S as well as the deployment nodes
HWnode where the SWcomp components are deployed that affect at most the
response time (RT) and the throughput (TH) of the service S.
Input: {SWop*, SWcomp*, HWnode*} affectAtMost {RT, TH}

3) AffectExactly Construct : the input {m*} affectExactly {r*} defines that
every model element in {m*} affects one or more result elements in {r*} and

Exploiting Traceability Uncertainty 311

that the results elements in {r*} are not affected in any other model element
not in {m*}. This input defines no-trace between each result element in {r*}
and each model element in the remaining M-{m*} (where M is the set of all
input model elements), since each model element in {m*} affects only a subset
of {r*}. However, this does not mean that these result elements could not be
affected by other model elements in M-{m*}. One example of this relationship is
provided by an hardware device HWnode and the performed operations SWop
that affect exactly its utilization (U).
Input: {SWop*, HWnode} affectExactly {U}

Weighted Footprint Graph. The language we provided to express the uncer-
tainty constructs between a set of architectural model elements and a set of
analysis results elements is very flexible. Listing 1.1 reports one abstract exam-
ple for the specification of the input. For example, the hardware devices HWnode
and HWnet affect exactly the performance indices related to them, i.e., utiliza-
tion (U), queue length (QL), and waiting time (WT). As another example, the
software components SWcomp and the subset of operations SWop involved in
a service S affect at least the response time (RT) and the throughput (TH) of
the service S.

{HWnode, HWnet} affectExactly {U, QL, WT} ;
{SWop, SWcomp} affectAtLeast {RT, TH} ;
{SWop, DYmsg} affectAtMost {RT, TH, QL} ;
{SWcomp, DYmsg} affectAtMost {RT, TH, QL} ;

Listing 1.1. Input to trace generation.

The goal of our SoPeTraceAnalyzer tool [7] is to interpret these traceability
expressions and automatically build (certainties and uncertainties) in a graph
structure, which we call the weighted footprint graph (from input).

Figure 2 reports one abstract example of this graph and it refers to the input
specified in Listing 1.1. The graph contains a node for every result element
(called RE nodes) and a node for each model element (called ME nodes). RE
nodes are: response time (RT), throughput (TH), utilization (U), queue length
(QL), and waiting time (WT). ME nodes are: software operations (SWop), software
components (SWcomp), dynamic interactions (DYmsg), hardware nodes (HWnode),
and communication networks (HWnet).

The connections between RE nodes and ME nodes describe the certainties of
the input (trace or no-trace) which are generated out of the logical consequences
of the uncertainties. A trace (m, r) is depicted by a bold line between the ME
node of m and the RE node of r. In Figure 2 no such lines are depicted because
the logical interpretation of the input did not yield any traces. On the contrary,
no-traces are depicted by dashed lines. Furthermore, the graph contains nodes to
capture model element groups (MEG nodes) and results element groups (REG
nodes). These two kinds of nodes describe the uncertainties of the input.

Note that each result element node RE has a weight (ω) that represents
a value indicating how much the requirement is far from the analysed index,
whereas each model element node ME has a weight that is a function (

∑
F(ω))

312 C. Trubiani et al.

Fig. 2. Weighted Footprint Graph (from Input).

indicating how much the architectural element is critical for the violated require-
ments. Different heuristics (ω) and functions (

∑
F(ω)) can be used to weight

RE and ME nodes in footprint graphs. Furthermore, the human intervention
of engineers may help to add priorities to performance results and to specify
legacy constraints for architectural elements. We provide preliminary heuristics
in Section 4, and we intend to further investigate this aspect in the near future.

3.2 Automatic Uncertainty Reduction

The weighted footprint graph is the foundation for automatic trace generation,
and several propagation rules can be introduced to reduce the initial uncertainty.
Our approach makes use of performance antipatterns [5] to deduce the logical
consequences between architectural elements and analysis results.

In our previous work [6] we provided a logic-based representation of per-
formance antipatterns that supports the specification of further input to trace
generation. Listing 1.2 reports the traceability rules while considering the spec-
ification of some performance antipatterns, i.e., Concurrent Processing Systems
(CPS), Pipe & Filter (P&F), God Class/Component (BLOB), Extensive Pro-
cessing (EP), Empty Semi Trucks (EST), One-Lane Bridge (OLB), and The
Ramp (TR), respectively.

CPS: {HWnode} affectExactly {QL, U} ;
BLOB: {SWop, DYmsg} affectAtLeast {U} ;
P&F: {SWop, DYmsg} affectAtLeast {TH, U} ;
EP: {SWop, DYmsg} affectAtLeast {RT, U} ;
EST: {DYmsg} affectAtLeast {RT, U} ;
OLB: {SWcomp, SWop, DYmsg} affectAtMost {RT, WT} ;
TR: {SWop} affectExactly {RT, TH} ;

Listing 1.2. Antipattern-based rules to reduce model-to-results uncertainty.

Exploiting Traceability Uncertainty 313

Fig. 3. Weighted Footprint Graph (after Antipattern-based Rules).

For example, detecting a CPS antipattern indicates that HWnode affects
exactly QL and U. This rule comes from the logic-based formula of the CPS
antipattern that has been defined in [6], and an excerpt is reported in Equation
(1) where P represents the set of all the hardware devices. CPS is an antipat-
tern that occurs when processes cannot make effective use of available hard-
ware devices to a non-balanced assignment of tasks. The over-utilized hardware
devices are detected by checking if the queue length and the utilization overcome
pre-defined thresholds4.

∃Px ∈ P | FmaxQL(Px) ≥ ThmaxQL∧
FmaxHwUtil(Px) ≥ ThmaxUtil

(1)

Figure 3 reports the weighted footprint graph (after introducing antipattern-
based rules) and, for figure readibility, it is built considering CPS and TR rules
only (see Listing 1.2). The inclusion of these two antipatterns generates five
additional traces (bold lines) and two no-traces (dashed lines) between MEs and
REs. Note that the specification of antipattern-based rules may also contribute
to increase the overall uncertainty of the system since no logical consequences
can be deduced while considering the addition of further constructs.

4 Illustrative Example

The proposed approach is illustrated on a case study in the e-health domain.
Figure 4 depicts an excerpt of the E-Health System (EHS) software architectural
4 A specific characteristic of performance antipatterns is that they contain numeri-

cal parameters representing thresholds (e.g., high utilization, excessive number of
messages). For further details refer to [6].

314 C. Trubiani et al.

model. The system supports the doctors’ everyday activities, such as the retrieval
of information of their patients. On the basis of such data doctors may send an
alarm in case of warning conditions. Patients are allowed to retrieve information
about the doctor expertise and update some vital parameters (e.g., heart rate)
to monitor their health status.

The Component

(a) Component Diagram.

(b) Deployment Diagram.

Fig. 4. EHS- Software Architectural Model.

Diagram shown in
Figure 4(a) describes
the software compo-
nents: PatientApp
and DoctorApp
components are con-
nected to the Dis-
patcher component
that forwards users’
requests to the DB-
data component and/
or retrieves images
from the DB-images
component. The
Deployment Diagram
depicted in Figure
4(b) shows that both
the doctor’s and the
patient’s applications
have been deployed
on a Personal Digi-
tal Assistant (PDA),
i.e., a mobile device.

Hardware devices communicate through different networks, i.e., wide and local
area networks.
The system workload has been defined as follows: (i) a closed workload is defined
for the getPatientInfo service, with a population of 50 doctors and an average
thinking time of 5 minutes; (ii) a closed workload is defined for the updateVital-
Parameters service, with a population of 2500 patients and an average thinking
time of 1 hour.

The performance requirements that we consider, under the stated workload
of 2550 users (i.e., 50 doctors and 2500 patients), are:

RT : The average response time of the UpdateVitalParameters service has to
be less than 60 sec;

TH: The throughput of the UpdateVitalParameters service has to be greater
than 4 requests/sec;

U : The utilization of the hardware devices has to be lower than 70%.
The performance analysis has been conducted by transforming the software

architectural model into a Queueing Network (QN) performance model [25] and

Exploiting Traceability Uncertainty 315

by solving the latter with two well-assessed techniques [23], i.e., mean value
analysis (MVA) and simulation. Both solution techniques are supported by Java
Modeling Tools (JMT) [26]. Table 1 shows the resulting performance results for
the EHS software architectural model. In particular, the average response time
(RT) and throughput (TH) for the UpdateVitalParameters service, and the
utilization (U), queue length (QL), and waiting time (WT) for the hardware
devices. Shaded entries of Table 1 highlight the violated performance require-
ments. For example, the RT of UpdateVitalParameters service is predicted to be
83.51 seconds, whereas it is required to be no more than 60 seconds.

Table 1. EHS- performance analysis results.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 83.51 - - -
TH[reqs/sec] 3 - - -
U [%] - 0.18 0.93 0.32
QL[users] - 0.22 12.92 0.46
WT [sec] - 0.69 43.72 4.99

4.1 EHS: Automatic Trace Generation

Listing 1.3 reports one example of the set of statements that can be specified
by an engineer to express the relationships between software elements and per-
formance results in EHS, and it is provided as input to our SoPeTraceAnalyzer
tool [7]. Note that such statements represent one example of engineer under-
standing of the system, and other feasible specifications of traceability links can
be provided as well. This unavoidable gap, that recurs in any specification task,
requires a wider investigation to consolidate the definition of traceability links
and is left for future work.
{HWdbDataHost , HWwan} affectExactly

{UdbDataHost , QLdbDataHost , WTdbDataHost } ;
{SWuVP, SWdbData} affectAtLeast {RTuVP, THuVP} ;
{SWuVP, DYsetVP} affectAtMost

{RTuVP, THuVP, QLdbDataHost } ;
{SWdbData , DYsetVP} affectAtMost

{RTuVP, THuVP, QLdbDataHost } ;

Listing 1.3. EHS- Input to trace generation.

The weighted footprint graph (from input) for EHS has been automatically
obtained with the SoPeTraceAnalyzer tool [7], according to the provided specifi-
cation. In particular, RE nodes are all the performance results elements of inter-
est: response time and throughput of the UpdateVitalParameters service (RTuVP,
THuVP), utilization, queue length, and waiting time of the DB-dataHost device
(UdbDataHost, QLdbDataHost, WTdbDataHost). ME nodes are all the architec-
tural model elements involved in the UpdateVitalParameters service: software
operations and components (SWuVP, SWdbData), dynamic interactions (DYsetVP),
hardware nodes (HWdbDataHost), and communication networks (HWwan).

316 C. Trubiani et al.

4.2 EHS: Automatic Uncertainty Reduction

Performance antipatterns have been detected by means of our rule-based engine
[6], and we found the following two instances: (i) Concurrent Processing System
(CPS) antipattern, i.e., DB-dataHost hardware device is over-utilized; (ii) The
Ramp (TR) antipattern, i.e., the response time of the UpdateVitalParameters
service is quite unstable along simulation time.

Listing 1.4 reports the set of statements specifying the relationships between
software elements and performance results in EHS, as captured by performance
antipatterns. Such statements contribute to the input provided to our SoPe-
TraceAnalyzer tool [7].

CPS: {HWdbDataHost} affectExactly
{QLdbDataHost , UdbDataHost } ;

TR: {SWuVP} affectExactly {RTuVP, THuVP} ;

Listing 1.4. EHS- Antipattern-based rules.

Figure 5 reports the weighted footprint graph (after antipattern-based rules)
for EHS that has been automatically obtained with the SoPeTraceAnalyzer tool
[7], after elaborating the rules provided by performance antipatterns.

The weight of RE nodes contribute to indicate the severity of the corre-
sponding requirement’s violation by quantifying the percentage gap between the
requirement and the analysed index. Figure 5 shows that: RTuVP is 28% larger
than the defined requirement of 60 seconds, THuVP is 25% lower than the defined
requirement of 4 requests/sec, and UdbDataHost is 25% larger than the defined
requirement of 70%. In fact, the UpdateVitalParameters service has an average
response time of 83.51 sec, an average throughput of 3 requests/sec, and the
utilization of the DB-dataHost device is 93% (see Table 1).

{SWdbData,SWuVP}
SWuVP

SWdbData

DYsetVP

HWdbData
Host

RTuVP

THuVP

UdbDataHost

QLdbDataHost

WTdbDataHost

HWwan

{HWdbDataHost,
HWwan}

{RTuVP, THuVP}

{RTuVP,THuVP,QLdbDataHost}

{RTuVP, THuVP}

{UdbDataHost, QLdbDataHost,
WTdbDataHost}

RE ME

0

0

0.25

0.25

0.28

0.53

0.37

0

0.25

0

{UdbDataHost, QLdbDataHost}

{RTuVP,THuVP,QLdbDataHos}

{RTuVP,THuVP,QLdbDataHost}

{UdbDataHost, QLdbDataHost,
WTdbDataHost}

{SWdbData,SWuVP}

{HWdbDataHost,
HWwan}

{HWdbDataHost,
HWwan}

Fig. 5. EHS- Weighted Footprint Graph (after Antipattern-based Rules).

Exploiting Traceability Uncertainty 317

For sake of readability Figure 5 does not report the weights on the traceability
links connecting RE and ME elements, however their values contribute to the
weights of architectural model elements as follows. The SWuVP node is weighted
with the value 0.53 (calculated as 0.28 ∗ 1 + 0.25 ∗ 1) where the weight of 1 is
assigned to the two links connecting the SWuVP node with RTuVP and THuVP nodes,
respectively. Similarly, the HWdbDataHost node is weighted with the value 0.25
(calculated as 0.25 ∗ 1) where the weight of 1 is assigned to the link connecting
HWdbDataHost with the UdbDataHost node. The SWdbData node is weighted
with the value 0.37 (calculated as 0.28 ∗ 0.44 + 0.25 ∗ 1) where the weights of
0.44 and 1 are assigned by using the guilt-based approach we defined in our
previous work [11]. In particular, each model element is ranked on the basis of
how much it contributes to the performance index under analysis: we calculate
the index of the corresponding model element and we estimate how much it is
participating. In EHS the RT of the SWdbData component is equal to 46.14 sec
(i.e., 44% of RTuVP is provided by such component), whereas the TH is equal
to 3 requests/sec, hence it is fully involved in the TH requirement. We recall
that the UpdateVitalParameters service has an average response time of 83.51
sec and throughput of 3 requests/sec (see Table 1).

Table 2. EHS- performance analysis results while refactoring software model elements.

(a) SWuVP refactoring.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 35.75 - - -
TH[reqs/sec] 6 - - -
U [%] - 0.35 0.51 0.17
QL[users] - 0.56 1.05 0.2
WT [sec] - 0.87 1.63 4.37

(b) SWdbData refactoring.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 41.23 - - -
TH[reqs/sec] 5 - - -
U [%] - 0.18 0.77 0.04
QL[users] - 0.22 3.52 0.03
WT [sec] - 0.7 11.3 3.72

(c) HWdbDataHost refactoring.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 82.9 - - -
TH[reqs/sec] 3 - - -
U [%] - 0.22 0.36 0.32
QL[users] - 0.22 0.58 0.46
WT [sec] - 0.71 1.82 48.3

318 C. Trubiani et al.

RE and ME nodes related to undefined and/or inviolate requirements are
weighted with a value equal to zero (e.g., QLdbDataHost, HWwan).

Several strategies can be devised to use the weighted footprint graph:
(i) RE-based traceability, i.e., looking at RE nodes only it is possible to identify
the ME that most likely contribute to each requirement violation by selecting the
traceability link with the highest weight; (ii) ME-based traceability, i.e., looking
at ME nodes only it is possible to identify the most critical causes of performance
flaws by providing a link coverage for all the violated requirements.

We performed a preliminary validation of these traceability strategies while
separately refactoring all the model elements with a consistent weight.

Table 2 shows the performance analysis results we obtained: Table 2(a)
demonstrates that the SWuVP refactoring is actually beneficial to solve perfor-
mance flaws, since all the stated requirements have been fulfilled; Table 2(b)
shows that refactoring the SWdbData element is beneficial for the requirements
to which it is strictly connected (see Figure 5) but there is still one requirement
that is not satisfied and the SWuVP refactoring outperforms this refactoring; Table
2(c) finally reports that refactoring the HWdbDataHost element is beneficial only
for the requirement to which it is strictly connected (see Figure 5).

We are aware that this is far from being a rigorous proof of the weighted
footprint graph output soundness, but first validation results seem promising to
track a direction for this goal.

5 Discussion

Besides inheriting all limitations of the underlying software performance engi-
neering and model-driven traceability techniques [27,28], our approach exhibits
the following threats to validity:

- Correctness: input is given by the engineer that defines uncertainty con-
structs to the level of detail she or he is comfortable with. This means that
not every input combination is valid and it becomes increasingly unlikely
that the input remains consistent, especially if the input is provided by dif-
ferent engineers.

- Granularity: it is difficult to establish at what level of granularity traces
between model and results should be generated. Performance indices can be
estimated at different levels of granularity, e.g. the response time index can
be evaluated at the level of a cpu device, or at the level of a service that
spans on different devices. Then, the engineer has the choice to establish
traceability between the model elements and it is unrealistic to keep under
control all performance results at all levels of abstraction.
An important aspect of future work is to provide correctness checks based

on the consistency of the input, in fact consistency does not imply correctness.
We can identify the input that is responsible for incorrectness and granularity
problems, and provide support to engineers for resolving the detected issues.

Note that our approach makes use of performance antipatterns to deduce
the logical consequences between the architectural elements and analysis results,

Exploiting Traceability Uncertainty 319

however it does not a priori guarantee uncertainty reduction. As future work, we
plan to integrate other approaches to derive model-to-results traceability links,
e.g. bottleneck analysis [29] and model optimization methods [30] can be used
to improve the uncertainty reduction.

6 Conclusion

This paper presents a new approach to automate the traceability between archi-
tectural model elements and performance analysis results, thus to support soft-
ware architects in the identification of the causes that most likely contribute
to the violation of performance requirements. To this end, we developed a tool
(SoPeTraceAnalyzer) that is able to interpret a language capable of interpreting
uncertainties while capturing model-to-results traceability links. The approach
is illustrated by means of a case study in the e-health domain.

The benefit of the tool is that it allows to automatically visualize the depen-
dencies between modelling elements in architectural models (e.g., software com-
ponents) and performance analysis results (e.g., response time, throughput, and
utilization). As input the tool takes on the one hand possible influences already
known to the domain expert, and on the other hand performance antipatterns
which express further such dependencies. The detection of performance antipat-
terns is used to make the domain expert dependencies more precise, e.g., by
ruling out certain influences.

As future work we intend to apply our approach to other case studies, possibly
coming from industrial experiences and different domains. This wider experimen-
tation will allow us to deeply investigate the usefulness of performance antipat-
terns to reduce traceability uncertainty, thus studying the effectiveness and the
scalability of our approach.

References

1. Smith, C.U., Woodside, M.: Performance validation at early stages of software
development. In: System Performance Evaluation: Methodologies and Applica-
tions. CRC Press (1999)

2. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley (2002)

3. Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance
Analysis. Springer (2011)

4. Ghabi, A., Egyed, A.: Exploiting traceability uncertainty between architectural
models and code. In: Joint Working IEEE/IFIP WICSA/ECSA. pp. 171–180
(2012)

5. Smith, C.U., Williams, L.G.: More new software antipatterns: even more ways to
shoot yourself in the foot. In: International CMG Conference, pp. 717–725 (2003)

6. Cortellessa, V., Di Marco, A., Trubiani, C.: An approach for modeling and detect-
ing software performance antipatterns based on first-order logics. Software and
System Modeling 13, 391–432 (2014)

320 C. Trubiani et al.

7. Trubiani, C., Ghabi, A., Egyed, A.: (SoPeTraceAnalyzer). http://www.sea.
uni-linz.ac.at/tools/TraZer/SoPeTraceAnalyzer.zip

8. Woodside, C.M., Franks, G., Petriu, D.C.: The future of software perfor-
mance engineering. In: Workshop on the Future of Software Engineering FOSE,
pp. 171–187 (2007)

9. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Digging
into UML models to remove performance antipatterns. In: ICSE Workshop QUO-
VADIS, pp. 9–16 (2010)

10. Cortellessa, V., De Sanctis, M., Di Marco, A., Trubiani, C.: Enabling performance
antipatterns to arise from an adl-based software architecture. In: Joint Working
IEEE/IFIP Conference WICSA/ECSA, pp. 310–314 (2012)

11. Trubiani, C., Koziolek, A., Cortellessa, V., Reussner, R.: Guilt-based handling
of software performance antipatterns in palladio architectural models. Journal of
Systems and Software 95, 141–165 (2014)

12. Antoniol, G.: Design-code traceability recovery: selecting the basic linkage proper-
ties. Science of Computer Programming 40, 213–234 (2001)

13. Egyed, A., Grunbacher, P.: Automating requirements traceability: beyond the
record & replay paradigm. In: International Conference on Automated Software
Engineering (ASE), pp. 163–171. IEEE (2002)

14. Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best prac-
tices for automated traceability. Computer 40, 27–35 (2007)

15. Ghabi, A., Egyed, A.: Exploiting traceability uncertainty among artifacts and code.
accepted for Journal of Systems and Software (JSS) (to appear, 2014)

16. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, E.: Application
of tracing techniques in model-driven performance engineering. In: European Con-
ference on Model Driven Architecture - Foundations and Applications (ECMDA-
FA) (2008)

17. Petriu, D.B., Amyot, D., Woodside, C.M., Jiang, B.: Traceability and evaluation
in scenario analysis by use case maps. In: Leue, S., Systä, T.J. (eds.) Scenar-
ios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 134–151. Springer,
Heidelberg (2005)

18. Alhaj, M., Petriu, D.C.: Traceability links in model transformations between soft-
ware and performance models. In: Khendek, F., Toeroe, M., Gherbi, A., Reed, R.
(eds.) SDL 2013. LNCS, vol. 7916, pp. 203–221. Springer, Heidelberg (2013)

19. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: Relax: Incorpo-
rating uncertainty into the specification of self-adaptive systems. In: IEEE Inter-
national Conference on Requirements Engineering, pp. 79–88 (2009)

20. Esfahani, N., Malek, S., Razavi, K.: Guidearch: guiding the exploration of archi-
tectural solution space under uncertainty. In: International Conference on Software
Engineering (ICSE), pp. 43–52 (2013)

21. Letier, E., Stefan, D., Barr, E.T.: Uncertainty, risk, and information value in soft-
ware requirements and architecture. In: International Conference on Software Engi-
neering (ICSE), pp. 883–894 (2014)

22. Arcelli, D., Cortellessa, V., Trubiani, C.: Antipattern-based model refactoring for
software performance improvement. In: International Conference on Quality of
Software Architectures (QoSA), pp. 33–42 (2012)

23. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. SIGMETRICS
Performance Evaluation Review 19, 5–11 (1991)

http://www.sea.uni-linz.ac.at/tools/TraZer/SoPeTraceAnalyzer.zip
http://www.sea.uni-linz.ac.at/tools/TraZer/SoPeTraceAnalyzer.zip

Exploiting Traceability Uncertainty 321

24. Clements, P.C., Garlan, D., Little, R., Nord, R.L., Stafford, J.A.: Documenting
software architectures: views and beyond. In: International Conference on Software
Engineering (ICSE), pp. 740–741 (2003)

25. Cortellessa, V., Mirandola, R.: Prima-uml: a performance validation incremental
methodology on early uml diagrams. Sci. Comput. Program. 44, 101–129 (2002)

26. Casale, G., Serazzi, G.: Quantitative system evaluation with java modeling tools.
In: International Conference on Performance Engineering (ICPE), pp. 449–454
(2011)

27. Smith, C.U.: Introduction to software performance engineering: origins and out-
standing problems. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS,
vol. 4486, pp. 395–428. Springer, Heidelberg (2007)

28. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grünbacher, P.,
Antoniol, G.: The quest for ubiquity: a roadmap for software and systems traceabil-
ity research. In: IEEE International Requirements Engineering Conference (RE),
pp. 71–80 (2012)

29. Franks, G., Petriu, D.C., Woodside, C.M., Xu, J., Tregunno, P.: Layered bot-
tlenecks and their mitigation. In: International Conference on the Quantitative
Evaluation of Systems (QEST), pp. 103–114 (2006)

30. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architec-
ture optimization methods: A systematic literature review. IEEE Trans. Software
Eng. 39, 658–683 (2013)

Automatic Translation of Architecture
Constraint Specifications into Components

Sahar Kallel1,2(B), Bastien Tramoni1, Chouki Tibermacine1(B),
Christophe Dony1, and Ahmed Hadj Kacem2

1 Lirmm, Montpellier University, Montpellier, France
{sahar.kallel,bastien.tramoni,chouki.tibermacine,dony}@lirmm.fr

2 ReDCAD, Sfax University, Sfax, Tunisie
sahar.kallel@redcad.org, ahmed.hadjkacem@fsegs.rnu.tn

Abstract. Architecture constraints are specifications defined by devel-
opers at design-time and checked on design artifacts (architecture
descriptions, like UML models). They enable to check, after an evolu-
tion, whether an architecture description still conforms to the conditions
imposed by an architecture pattern, style or any design principle. One
possible language for specifying such constraints is the OMG’s OCL.
Most of these architecture constraints are formalized as “gross” specifica-
tions, without any structure or parameterization possibilities. This causes
difficulties in their reuse. We propose in this work a process for trans-
lating architecture constraints into a special kind of components called
constraint-components. This makes these specifications reusable (easily
put and checked out in/from repositories), parametrizable (generic and
applicable in different contexts) and composable with others. We imple-
mented this process by considering the translation of OCL constraints
into constraint-components described with an ADL called CLACS.

Keywords: Architecture constraint · UML metamodel · CLACS ·
Constraint-component · Reusability · OCL definition · Automatic
translation

1 Introduction: Context and Problem Statement

Architecture constraints are specifications of invariants that are checked by ana-
lyzing architecture descriptions. This kind of constraints should not be confused
with functional constraints, which are checked by analyzing the state of the run-
ning components constituting the architecture. For example, if we consider a
UML model (an architecture description) containing a class Employee (a com-
ponent in that architecture) which has an integer attribute age, a functional
constraint presenting an invariant in this class could impose that the values of
this attribute (slot of an object) must be included in the interval [16-70] for all
instances of this class. This kind of constraints is inherently dynamic. They can
be checked only at runtime.

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 322–338, 2015.
DOI: 10.1007/978-3-319-23727-5 27

Automatic Translation of Architecture Constraint Specifications 323

On the other side, architecture constraints are specifications where archi-
tecture descriptions, and not component states, are analyzed [28]. They define
invariants imposed by the choice of a particular design principle, architectural
style or pattern, like the layered architecture style [25], where “components in
non-adjacent layers must not be directly connected together”. This is an example
of an architecture constraint. OCL(Object Constraint Language) [16] is an OMG
standard which specify two types of constraints : functional (constraints navigate
in UML models) and architectural (constraints navigate in MOF metamodels).

Functional constraints are used in Design by Contract for ensuring the defi-
nition of accurate and checkable interfaces for software components [21]. Archi-
tecture constraints are used during the evolution of a software architecture for
guaranteeing that changes do not have bad side effects on the applied architec-
ture patterns or styles, and thus on the quality [29].

Many architecture constraints have been formalized for the existing archi-
tecture patterns proposed in the literature and practice of software engineer-
ing [3,14,33]. But unfortunately, most of them are “gross” textual specifications.
They do not offer any structure. Therefore, it is difficult to reuse them in oth-
er/different contexts. This is the reason why we propose in this paper a process
to transform them into more structured assets in order to facilitate their reuse.
In addition, our experience with architecture constraint specification leads us
to say that most of the time, architecture constraints are composed of many
“independent” parts that are assembled together via logical operators. Some of
these parts are shared between several architecture constraints and have their
own semantics. The idea of this paper is to propose a way to build OCL basic
constraints as entities embedded in a special kind of software components, that
can be reused, assembled, composed into higher-level ones and customized using
standard component-based techniques.

In this paper, we propose to translate automatically architecture constraints
specified in design stage into “constraint-components”. We propose a two-step
process which takes as input a gross OCL architecture constraint specification
expressed in the UML metamodel, and which provides as output constraints-
components expressed with CLACS Architecture Description Language. We pro-
pose to generate architecture constraints as “constraint-components” [31] so that
we can put them on “shelves” and thereafter make them reusable, customizable
and composable with others to produce more complex constraints.

The remaining of this paper is organized as follows. In the following section,
we give an illustrative example of the input and the output of the proposed pro-
cess. These will serve as running examples throughout the paper. In Section 3,
we describe in detail the steps of our process. In Section 4, we expose an eval-
uation of the approach. Before concluding and presenting the future work, we
discuss the related work in Section 5.

2 Illustrative Example

To better understand the context of this work, we introduce an example of an
architecture constraint (Listing 1.1) enabling the checking of the topological

324 S. Kallel et al.

conditions imposed by the “Service Bus Architecture Pattern” [5]. This pat-
tern introduces three kinds of components: the customers, the producers and
the bus. The bus is defined as an adapter that establishes the communication
between customers and producers as they may have mismatching interfaces. The
architecture constraint which specifies the conditions imposed by this pattern is
expressed in OCL using the UML metamodel [28] in the following listing.

1 context Component inv :
2 l e t bus : Component
3 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
4 −>s e l e c t (c : C l a s s i f i e r | c . oc l I sKindOf (Component)
5 and c . oclAsType (Component) . name=’esbImpl ’)
6 customers : Set (Component)
7 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
8 −>s e l e c t (c : C l a s s i f i e r | c . oc l I sKindOf (Component)
9 and (c . oclAsType (Component) . name=’ cust1 ’

10 or c . oclAsType (Component) . name=’cust2 ’
11 or c . oclAsType (Component) . name=’cust3 ’))
12 producers : Set (Component)
13 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
14 −>s e l e c t (c : C l a s s i f i e r | c . oc l I sKindOf (Component)
15 and (c . oclAsType (Component) . name= ’ prod1 ’
16 or c . oclAsType (Component) . name=’prod2 ’
17 or c . oclAsType (Component) . name=’prod3 ’))
18 in
19 −− The bus should have at l e a s t one input port
20 −− and one output port
21 bus . ownedPort−>e x i s t s (p1 , p2 : Port |
22 p1 . provided−>notEmpty () and p2 . requ i red−>notEmpty ())
23 and
24 −−Customers should have output por t s only
25 customers−>f o rA l l (c : Component |
26 c . ownedPort−>f o rA l l (requ i red−>notEmpty ()
27 and provided−>isEmpty ()))
28 and
29 −−Customers should be connected to the bus only
30 customers−>f o rA l l (com : Component |
31 com . port−>f o rA l l (p : Port | p . end−>notEmpty ()
32 implies
33 s e l f . ownedConnector −>e x i s t s (con : Connector |
34 bus . ownedPort−>e x i s t s (pb : Port |
35 con . end . ro l e−>i n c l ud e s (pb)) and
36 con . end−>i n c l ud e s (p . end))))
37 and
38 −−Producers should have input por t s only
39 producers−>f o rA l l (c : Component |
40 c . ownedPort−>f o rA l l (provided−>notEmpty ()
41 and requ i red−>isEmpty ()))
42 and
43 −−Producers should be connected to the bus only
44 producers−>f o rA l l (com : Component |
45 com . port−>f o rA l l (p : Port | p . end−>notEmpty ()
46 implies
47 s e l f . ownedConnector−>e x i s t s (con : Connector |
48 bus . ownedPort−>e x i s t s (pb : Port |
49 con . end . ro l e−>i n c l ud e s (pb)) and
50 con . end−>i n c l ud e s (p . end))))

Listing 1.1. Bus architecture pattern constraint in OCL/UML

Automatic Translation of Architecture Constraint Specifications 325

When applying our proposed approach, we change the format of the con-
straint (Listing 1.1) from a textual “gross” specification into an architecture
description made of “constraint-components” and ”query-components”. These
components are described with an ADL named CLACS [31] (pronounced Klax).
By “gross” specification, we mean a specification that does not offer enough
structure, reusability and parameterization.

In the literature, there are many languages enabling the specification of archi-
tecture constraints (see [28] for a survey). Each one has its advantages and its
particular application context. However, CLACS is the only language that pro-
vides a component model for software architecture constraint specification. The
architecture constraints modeled with this language are constraint-components
in which the checked invariants are still specified using OCL. But these OCL con-
straints navigate in CLACS metamodel and not in the UML’s one. The choice
of UML is simply motivated by the fact that it is an industrial standard1, and
that OCL is its original constraint language. We can consider here a repository
of architecture constraints that can be fed by the software architecture commu-
nity, by using these general modeling languages, which are UML and OCL. The
result of our translation process is shown in Fig. 1. We notice the presence of
two kinds of component descriptors (query and constraint). Query-components
embed OCL definition constraints that return a value whose type is different
from Boolean and constraint-components embed OCL definition constraints
that return only Boolean values. Indeed, our architecture constraint specifica-
tion will be decomposed in a set of OCL definition constraints and these
constraints will be embedded in these two kinds of components to reuse them.

There are three let expressions in the architecture constraint (Listing 1.1).
Each one (Lines 2–5, 6–11, 12–17) is supposed to be defined basically in
a separate query-component descriptor. But let expressions 2 and 3 are
similar according to a similarity measure which is defined in the follow-
ing section. That is why they are represented by only one query-component
(ParticipantsIdentification).

There are five constraint-components on the right of the figure. These com-
ponents represent the OCL definitions that are extracted from our initial
constraint and then parametrized. These definitions are called throughout
the constraint and they will potentially serve other constraints.

There are in total five sub-constraints in the architecture constraint (List-
ing 1.1). Each one (Lines 21–22, 25–27, 30–36, 39–41 and 44–50) is supposed
to be defined basically in a separate component descriptor. But in this exam-
ple, sub-constraints 2 and 4 can be grouped in the same component descriptor
(PortConstraint) because they check similar “aspects”. They check if all the
components in a given set of instances (customers in the first sub-constraint
and producers in the second) have specific kinds of ports (input or output).

1 Even if a recent empirical study [23] found out that UML is not fully (but selectively)
used by developers in industry, and that it is used informally, there is a general
agreement that UML is the de facto standard modeling language known by a large
number of developers.

326 S. Kallel et al.

Fig. 1. Sample of approach results

PortConstraint descriptor provides two operations which enable the checking
of these two sub-constraints. On the other side, sub-constraints 3 and 5 check
exactly the same invariant (in contrast to sub-constraints 2 and 4), except that
they apply on different sets of components (customers for sub-constraint 3 and
producers for sub-constraint 5). Thus, there is a single component descriptor
(ConnectToBusConstraint) which is generated for these two sub-constraints.
This constraint-component provides a single operation which is parameterized
with the set of components on which the constraint should be checked.

We can see (on the top of the figure) the constraint checked by the composite,
in which there are five operation invocations to the three internal components
(on the left of the figure). These internal components (that constitute our initial
constraint) call the operations that are declared in the others components using
the name of the provided port. These later descriptors will be registered in a
repository and will be potentially useful for other constraints. In other words,
for each new “gross” constraint specification to decompose, we will measure the
similarity between the OCL definitions extracted from it i.e. after applying

Automatic Translation of Architecture Constraint Specifications 327

the decomposition and the paramterization (see Section 3, subsection 3.1), and
the registered OCL definitions embedded in the components, According to
the similarity result, we can reuse an existing OCL definition constraint and
also modify it, if necessary.

For this example, we will obtain, in addition to the descriptor of the “main”
component (BusPatternArchitecture), three constraint-component descrip-
tors (instead of five) corresponding to our initial constraint. These three com-
ponents are connected to the two query-components (BusIdentification and
ParticipantsIdentification) and five other constraint-components. These
query-components provide queries that are shared between the constraint- com-
ponents.

Through this “componentization”, CLACS constraint-component and query-
component descriptors can be reusable (instantiated many times in different
contexts), composable (instances of them can be connected together or con-
nected within a composite component to build complex constraint-components)
and parameterizable (to check that customers or producers are connected
only to the bus, we can pass the right arguments to the operation of
ConnectToBusConstraint descriptor).

In the following section, we describe in detail the steps of the constraint
translation process illustrated with examples.

3 Transformation of Constraints into Components

Our process is composed of two main steps. The first one consists in extracting
sub-constraints from the constraint. These sub-constraints will be specified as
parametrized OCL definitions. The second step consists in embedding these
generated OCL definitions into components in order to make them reusable.
We will detail these two steps in the following subsections.

Note that OCL constraints are predicates in the first order logic. They have
a simple and intuitive concrete syntax. Even if the transformations presented in
this paper apply on OCL, the proposed work can be generalized to any equivalent
predicate logic language. This is not demonstrated experimentally in our work,
but as the reader can notice, the syntactic tokens handled in our transformations
are general to predicate logic.

3.1 Constraint Refactoring

We propose first to extract sub-constraints as OCL definitions and then we
identify parameters for them and we will obtain at the end an invariant which
uses these definitions. These definitions are parametrizable and will be regis-
tered in a repository to be used by other constraints. To obtain this new form of
our invariant, we propose a multi-step transformation micro-process. All steps
use as input the abstract syntax tree of the initial constraint.

328 S. Kallel et al.

Variable Declaration Extraction. Sometimes a sub-expression is used sev-
eral times in an OCL constraint. The operator let allows to report and set the
value (i.e initialize) a variable that can be used in the expression which follows
the inv. def is a type of constraints which is used to declare and define the values
of attributes or returned values of operations. The first step in our approach is
to extract the let expressions from our textual constraint specification and define
them as constraints stereotyped with def. These OCL definition constraints
must return a value whose type is different from Boolean. At the same time,
we modify our textual constraint i.e, the constraint undergoes changes and call
these generated OCL definitions in their appropriate places. At this level, our
initial constraint will be as follows:

1 context Component
2 −− l e t e xp r e s s i on s ex t r a c t i on
3 def : l e tBus () : Component = s e l f . r e a l i z a t i o n .
4 r e a l i z i n gC l a s s i f i e r −>s e l e c t (c : C l a s s i f i e r | c . oc l I sKindOf (

Component)
5 and c . oclAsType (Component) . name = ’ esbImpl ’)
6 def : l etCustomers () : Set (Component) = s e l f . r e a l i z a t i o n .
7 r e a l i z i n gC l a s s i f i e r −>s e l e c t (c : C l a s s i f i e r | c . oc l I sKindOf (

Component)
8 and (c . oclAsType (Component) . name = ’ cust1 ’ or
9 c . oclAsType (Component) . name = ’ cust2 ’ or

10 c . oclAsType (Component) . name = ’ cust3 ’))
11 def : l e tProduce r s () : . . .
12 inv :
13 l e tBus () . ownedPort −>i n c l ud e s (p1 , p2 : Port | p1 . provided
14 −>notEmpty () and p2 . r equ i r ed −>notEmpty ())
15 and
16 l etCustomers ()−>f o rA l l (c : Component | c . ownedPort
17 −>f o rA l l (requ i red−>notEmpty ()and provided−>isEmpty ()))
18 and . . .
19 and . . .
20 and . . .

Listing 1.2. Constraint after extracting let expressions

Constraint Decomposition. Second, we decompose automatically the
obtained constraint into a set of sub-constraints. This decomposition is primary
based on logical operators used at the top level (Lines 15, 18, 19 and 20 in
Listing 1.2). Operands of these operators are considered here as sub-constraints.
This set of sub-constraints is refined recursively into a tree of sub-constraints if
these sub-constraints can be decomposed again. The stopping condition of the
recursion is that no logic operator is found in the sub-constraint. All these sub-
constraints will be represented as OCL definition constraints. The refactoring
of the constraint (i.e modification of the constraint invariant) is performed every
time we generate a new definition. At this level we obtain a bag of OCL
definition constraints that return a Boolean value. Listing 1.3 represents an
excerpt of our constraint during the decomposition stage.

Automatic Translation of Architecture Constraint Specifications 329

1 context Component
2 def : de f1 (c : C l a s s i f i e r) : Boolean = c . oc l IsKindOf (Component)
3 def : de f2 (c : C l a s s i f i e r) : Boolean = c . oclAsType (Component) . name
4 = ’ esbImpl ’
5 def : l e tBus () : Component = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
6 −>s e l e c t (c : C l a s s i f i e r | def1 (c) and def2 (c))
7 def : de f3 (c : C l a s s i f i e r) : Boolean = c . oc l IsKindOf (Component)
8 def : de f4 (c : C l a s s i f i e r) : Boolean = c . oclAsType (Component) . name
9 = ’ cust1 ’ or c . oclAsType (Component) . name = ’ cust2 ’ or

10 c . oclAsType (Component) . name = ’ cust3 ’
11 def : l etCustomers () : Set (Component) = s e l f . r e a l i z a t i o n .
12 r e a l i z i n gC l a s s i f i e r −>s e l e c t (c : C l a s s i f i e r | def3 (c) and def4 (c))
13 . . .
14 def : part1 () : Boolean = letBus () . ownedPort
15 −>i n c l ud e s (p1 , p2 : Port | def7 (p1) and def8 (p2))
16 def : part2 () : . . .
17 def : de f11 (p : Port) : Boolean = p . end−>notEmpty ()
18 def : de f12 (p : Port) : Boolean = s e l f . ownedConnector
19 −>e x i s t s (con : Connector | l e tBus () . ownedPort −>e x i s t s (pb : Port |
20 con . end . r o l e −>i n c l ud e s (pb)) and con . end −>i n c l ud e s (p . end))
21 def : part3 () : Boolean = letCustomers ()
22 −>f o rA l l (com : Component | com . port
23 −>f o rA l l (p : Port | def11 (p) implies def12 (p)))
24 def : part4 () : . . .
25 def : part5 () : . . .
26 inv :
27 part1 () and part2 () and part3 () and part4 () and part5 ()

Listing 1.3. Bus architecture pattern Constraint during the decomposition stage

In Listing 1.3, the constraint is composed of five “main” OCL sub-constraints
(part1(), part2(), part3(), part4() and part5()). These sub-constraints can be
decomposed again into other sub-constraints due to the recursive process2. For
instance def4() contains the operator or, so it will be decomposed again. All
these sub-constraints are defined as OCL definitions (def:) presented before
the inv:. We can observe that there are some OCL definitions that have
parameters. The reason to make some parameters at this stage (the decompo-
sition) is to have the possibility to define all the generated OCL definitions
with the same context as that of the constraint (Line 1).

Redundancy Removal. After the constraints decomposition, we obtain a bag
of OCL definitions. In this step, we remove all redundant definitions and then
we update the constraint. For instance, in Listing 1.3 def1() and def3() are
syntactically identical. Now we have a set of OCL definition constraints that
constitute our textual constraint.

Constraint Parameterization. When creating the signature of the operation
that wraps a constraint, we add a parameter in this signature everywhere we find
a literal value of a given data type. The type of these parameters is obtained from
the abstract syntax tree of the constraint. For instance def2() in Listing 1.3 will
be defined as follows:

2 In Listing 1.3, the decomposition is stopped in part4().

330 S. Kallel et al.

1 context Component
2 def : de f2 (c : C l a s s i f e r , name : S t r ing) : Boolean = c . oclAsType (Component

) . name = name

Listing 1.4. OCL definition constraint paramatrizable

In this stage, we need to measure the similarity between the OCL
definitions. This measure allows to optimize our process, i,e. remove some
redundant OCL definitions (obtained in the parametrization stage). For exam-
ple def4() in Listing 1.3 will be defined at this stage as follows:

1 context Component
2 def : de f17 (c : C l a s s i f i e r , name1 : S t r ing) : Boolean =
3 c . oclAsType (Component) . name = name1
4 def : de f18 (c : C l a s s i f i e r , name2 : S t r ing) : Boolean =
5 c . oclAsType (Component) . name = name2
6 def : de f19 (c : C l a s s i f i e r , name3 : S t r ing) : Boolean =
7 c . oclAsType (Component) . name = name3
8 def : de f4 (c : C l a s s i f i e r , name1 : Str ing , name2 : Str ing , name3 : S t r ing) :
9 Boolean = def17 (c , name1)and def18 (c , name2) and def19 (c , name3) .

Listing 1.5. Example of parametrization

We remark that def2() (see Listing 1.4), def17(), def18() and def19()
are similar. They are different only by the name of the parameter (the same
type of the parameter). Then, we remove def17(), def18() and def19() and
replace them by def2() presented in Listing 1.4. We also optimize the def4()
definition which will take as parameter c:Classifier and consumersNames:
Set(String). This is performed when comparing the OCL expressions before
the “=” (c.name) in each literal value. This comparison is done using the AST
of the OCL constraint. Concerning how we measured the similarity between
OCL definitions, we implemented an automated process by analyzing the
abstract syntax trees of definitions body. Each pair of trees is compared. These
should share a common root and a minimal sub-tree (obtained in a breadth-first
traversal). This ensures, to some extent, that constraints define predicates on
the same kind of architectural elements, which are obtained through navigations
in the OCL definition (reflected by these sub-trees). For the remaining sub-tree,
an edit distance [27] is measured between each pair of sub-trees. If this measure
is less than a threshold3, we consider that the two definitions are similar.

At the end of this step, our invariant is completely decomposed in OCL
definition constraints. These constraints will be registered in a repository in
order to reuse them to create others constraint specifications.

3 The value of this threshold will be fixed empirically.

Automatic Translation of Architecture Constraint Specifications 331

3.2 Constraint Transformation into CLACS Components

In this section, we describe the transformation of OCL definitions generated
in the first step into CLACS components. A CLACS component is an instance
of a component descriptor (like an object is an instance of a class). A component
has a name, a description and a kind (business or constraint). It declares ports,
which are characterized by a direction (required or provided) and a visibility
(internal or external). Each port has an interface which specifies a set of opera-
tion signatures. Ports are linked via connectors. A connector receives operation
invocations through its source port and transmits them through its target port.
For generating CLACS components, we proposed a multi-step transformation
micro-process:

Operation Grouping. Each CLACS query-component descriptor will embed
an OCL definition which returns a value whose type is different from Boolean
and each CLACS constraint-component will embed an OCL definition which
returns only boolean values. From the other side, among the generated OCL
definitions, each one that corresponds to a let in the constraint (Subsec-
tion 3.1, like letConsumers()) will be embedded in a query-component descrip-
tor and each one among the others will be embedded in a constraint-component.
In this case, we can obtain a large number of components. Therefore, we pro-
pose to put together OCL definitions that check similar “aspects” in the
same component descriptors. By checking similar aspects, we mean checking
the connection, testing the kind, or some other property of a given architec-
tural element (a port or a connector for example). For that we use the same
technique of similarity measurement described before (Subsection 3.1, step Con-
straints Parametrization). For example, the OCL definitions part2() and
part4() check the same aspect which is the kind of an architectural element
(a Port). The two trees of these two sub-constraints have a common root
which is a component and a common sub-tree generated from the expression
.ownedPort->includes(p1,p2:Port|). For the remaining sub-trees generated
from the remaining expressions of the two sub-constraints, we can observe that
there is a similarity between them (only two edit operations (node substitu-
tions): required and provided tokens are inverted). So these are grouped as
two operations in the same component descriptor.

Metamodel Migration. In this step, we transform constraint navigations writ-
ten in OCL/UML into OCL/CLACS. This is performed using a simple set of
declarative mappings that we have specified between the two metamodels (UML
and CLACS). These have been defined using the same template as in [30]. For
reasons of space limitation, we do not show these mappings. But note that, the
self keyword 4 is replaced by context, which is resolved to an implicit required
port connected to a meta-descriptor of the business component on which the con-
straint is checked. This connection resolution is made (lazily) when the checking
is launched.

4 self is located in the initial constraint written in UML metamodel.

332 S. Kallel et al.

CLACS Architecture Description Generation. Starting from the tree
obtained in the first step, a component-based architecture description in CLACS
is generated. This architecture description contains all the necessary constraint-
components and query-components (instances) connected together. These
components embed the refactored 5 architecture constraints that navigate hence-
forth in CLACS metamodel. These generated components will be instantiated
and then connected to the business components in order to be verified.

4 Process Evaluation

We collected 25 architecture constraints that characterize patterns which con-
cern only structural allure of the architecture. In order to measure the reusability
obtained in the result of our transformation process, we choose the metric pro-
posed by Gaffney and Durek in [13]. It allows to calculate the proportion and
the number of the reuse constraints. This metric is defined as follows:

C =
(

b +
(
E

n

)

− 1
)

R + 1

where:

– C: is the cost of software development (specification of an architecture con-
straint)

– b: is the cost of integrating the reused elements into the new artifact (inte-
gration of constraint-components in a composite)

– E: is the cost of developing a reusable element (a constraint-component)
– n: is the number of uses of reused elements
– R: is the proportion of reused elements

C is an important indicator of the effectiveness of the reuse obtained in the final
result of our transformation process. If there is no reuse at all, C is equal to 1.
The more effective the reuse is, the less C is. b and E relate to the estimated cost
of incorporating and developing, respectively, the reused elements. b is supposed
to be greater than 0 because it always takes effort to reuse an element. E is sup-
posed to be greater than 1 because the creation of a reusable element requires an
extra effort. E is the sum of the costs of developing a new element (without reuse
support) and reusing elements. For our experiment, R represents the proportion
of the patterns (constraint’s) structure which is reused to construct other pat-
terns (constraints). R is the number of the reused constraints divided by the total
number of constraints in the same pattern.

Fig 2 shows the values of R for all patterns. As we can observe, the R value
is in the range 20-100. We can also observe that there are 13 (out of 25) patterns
having 100 % of their structure reused elsewhere. This reinforces our idea to
transform architectural constraints into a reusable structure.

5 A constraint is refactored when the different steps described above have been applied
on it.

Automatic Translation of Architecture Constraint Specifications 333

Fig. 2. R values for all patterns

Another value that we have measured is n, which represents how many times
a structure is reused in the whole set of evaluated constraints. Fig. 3 depicts
the frequency of reusable constraints in each pattern. This demonstrates the
potential to promote the reusability of pattern structure in the construction
of a pattern library. We can see in Fig. 3 that the pattern P8 is composed of
constraint-components that are reused 55 times by other patterns. We have six
patterns that have a reusable structure called more than 50 times.

Fig. 3. n values for all patterns

b and E are difficult to measure because of various reasons as explained
in [12]. We take the b and E values estimated by [10] since our evaluation falls
into the polylithic category6. Thus, b and E are equal to 0.15 and 1.2 respectively
in our experiment.
6 This category concerns structures that can be divided into individual parts and each

of them can be independently manipulated.

334 S. Kallel et al.

Fig. 4 shows the cost of constructing the 25 patterns. C is in the range of 18
to 89. As we can observe, all of the patterns have a cost less than 1 which means
that the obtained reuse really has an effect in reducing pattern construction cost.

5 Related Works

Works related to our approach can be classified in different categories: i) lan-
guages and tools for the specification of architecture constraints, ii) techniques
for predicate/constraint transformations, iii) techniques for OCL constraints
refactoring and iv) methods for constraint reuse.

Fig. 4. C values for all patterns

A state of the art on languages used for the specification of architecture con-
straints at design and at implementation stages is given in [28]. These languages
vary from embedded notations in existing ADLs, like Armani [22] for Acme [15],
to notations with a logic programming style, like LogEn [9] or Spine [2], or nota-
tions with (or for) object-oriented programming style, like CDL [19]or SCL [18].
In practice there are several tools for static code quality analysis that enable
the specification of architecture constraints, like Sonar [26], Lattix [20], among
others. All these languages and tools do not provide any way for transforming
or generating code starting from specifications in OCL or any other predicate
language. In addition, they provide either no or a limited parameterization and
reusability of architecture constraints.
Hassam et al. [17] proposed a method for transforming OCL constraints during
UML model refactoring, using model transformations. Their approach uses first
an annotation method for marking the initial UML model in order to obtain an
annotated target model. Then, a mapping table is created from these two annota-
tions in order to use it for transforming OCL constraints of the initial model into
OCL constraints of the target one. Their solution of constraint transformation
cannot be used straightforwardly because it needs some knowledge about model

Automatic Translation of Architecture Constraint Specifications 335

transformation languages and tools. In our work, constraint transformation is
performed in a simple an ad-hoc way without using additional modeling and
transformation languages. In [11], the authors propose an approach for generat-
ing (instantiate) models from metamodels taking into account OCL constraints.
Their approach is based on CSP (Constraint Satisfaction Problem). They defined
some formal rules to transform models and constraints associated to them. Cabot
et al. [4] worked also on UML/OCL transformation into CSP in order to check
quality properties of models. These approaches are similar to our transformation
process since the transformed/handled artifacts are the same (OCL specifications
and metamodels). They use the same OCL compiler as us (DresdenOCL [8]) to
analyze constraints. In contrast to CSP, this does not require an external tool
for the interpretation of constraints. In addition, in our approach, we transform
only constraints. In the other approaches, everything should be transformed
into a CSP to be solved (the constraints + the models/metamodels). Moreover,
Bajwa and Lee presented in [1] a two-step process for transforming SBVR rules
(Semantics of Business Vocabulary and Business Rules) into OCL constraints.
The first step consists in realizing a mapping between SBVR rules elements and
UML model elements. This step ensures that the OCL constraint that will be
generated is semantically checkable in a UMl model. The second step consists in
transforming an OCL model instance from SBVR model instance using a map-
ping between the two metamodels (OCL and SBVR). This paper uses model
transformations techniques. Their process is troublesome when the constraints
have a gross specification (very large models). The generated constraints are
complex, not reusable and parametrizable.

OCL refactoring consists in simplifying the constraints and making them
more expressive. In [7], Correa et al. have as goal to improve the readability and
the comprehensibility of the constraint. Therefore, they prepared a catalog of
smells. They proposed refactorings for removing a given smell in the constraint.
It is true that this refactoring allows a greater comprehensibility of the con-
straints (validation in the paper) but these do not consider reuse. Besides, the
authors consider in their approach only the functional constraints and not archi-
tectural ones. In [24], Reimann et al. complete the previous work of Correa et
al., they proposed new smells and new refactorings like a decomposition of OCL
constraints in atomic sub-constraints. These new refactorings does not address
the parameterization of the constraint which enables more reuse.

In [6], Chimak-Opoka proposed a library OCLLib which contains a group
of valid OCL constraints. The main objective of this library is to offer a set of
OCL constraints that are reliable, tested and can be reusable. But, no method
explain how to make the constraints customizable is presented. In [32], Ton
That et al. proposed a catalog of architecture pattern as constraint-components.
They defined for each pattern its architectural constraints, they decomposed
the constraints manually and embarked them in components. The component-
constraints built are reusable and parametrizable. In our approach, we realized
these transformations automatically and we use the result of this paper as an
oracle for our experimentation.

336 S. Kallel et al.

6 Conclusion and Future Work

Architecture constraints are predicates that bring a valuable help for preserving
architecture styles, patterns or general design principles in a given application
after having evolved its architecture description. Such kind of specifications is
subject to reuse. They are frequently assembled together to build more complex
architecture constraints [31]. We have presented in this paper a process for trans-
lating architecture constraints into components. Our process is composed of two
main steps. The first one consists in describing OCL constraints, extracted from
“gross” textual constraint specifications, as OCL definitions. The second step
consists in generating automatically constraint-components from these defini-
tions. These components provide operations for checking the constraints. They
are specified in an ADL named CLACS.

As a future work, we plan first to demonstrate the generality of our approach
studying other predicate logic language than OCL and then we propose to make
these generated constraint-components checkable in the implementation stage
on component-based programs. We would like to automatically translate these
constraint-components into checkable descriptors at runtime.

References

1. Bajwa, I.S., Lee, M.G.: Transformation rules for translating business rules to
OCL constraints. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.)
ECMFA 2011. LNCS, vol. 6698, pp. 132–143. Springer, Heidelberg (2011)

2. Blewitt, A., Bundy, A., Stark, I.: Automatic verification of design patterns in java.
In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2005), pp. 224–232. ACM (2005)

3. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture. On Patterns and Pattern Languages, vol. 5. Wiley, April 2007

4. Cabot, J., Clarisó, R., Riera, D.: Umltocsp: a tool for the formal verifica-
tion of uml/ocl models using constraint programming. In: Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering,
pp. 547–548. ACM (2007)

5. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
6. Chimiak-Opoka, J.: OCLLib, OCLUnit, OCLDoc: pragmatic extensions for the

object constraint language. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 665–669. Springer, Heidelberg (2009)

7. Correa, A., Werner, C., Barros, M.: Refactoring to improve the understandability of
specifications written in object constraint language. IET Software 2, 69–90 (2009)

8. Demuth, B.: The dresden OCL toolkit and its role in information systems devel-
opment. In: ISD 2004 (2004)

9. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous
checking of structural program dependencies. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE 2008). ACM (2008)

10. Favaro, J.: What price reusability?: a case study. In: ACM SIGAda Ada Letters,
vol. 11. ACM (1991)

Automatic Translation of Architecture Constraint Specifications 337

11. Ferdjoukh, A., Baert, A.-E., Chateau, A., Coletta, R., Nebut, C.: A CSP approach
for metamodel instantiation. In: IEEE Internationnal Conference on Tools with
Artificial Intelligence, ICTAI 2013, pp. 1044–1051 (2013)

12. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Computing Sur-
veys (CSUR) 28 (1996)

13. Gaffney, J.E., Durek, T.A.: Software reuse key to enhanced productivity: some
quantitative models. Information and Software Technology 31(5) (1989)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, October 1994

15. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press (2000)

16. OMG: Object Management Group. Object constraint language (ocl), v2.4, speci-
fication: Omg document formal/2014-02-03, February 2014. http://www.omg.org/
spec/OCL/2.4/

17. Hassam, K., Sadou, S., Fleurquin, R., et al.: Adapting OCL constraints after a
refactoring of their model using an mde process. In: BElgian-NEtherlands software
eVOLution seminar (BENEVOL 2010), pp. 16–27 (2010)

18. Hou, D., Hoover, H.J.: Using scl to specify and check design intent in source code.
IEEE Transactions on Software Engineering 32(6), 404–423 (2006)

19. Klarlund, N., Koistinen, J., Schwartzbach, M.I.: Formal design constraints. In: Pro-
ceedings of the 11th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, San Jose, CA, USA, pp. 370–383.
ACM Press (1996)

20. Lattix. http://lattix.com/
21. Meyer, B.: Touch of Class. Springer, June 2013
22. Monroe, R.T.: Capturing software architecture design expertise with armani. Tech-

nical report, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA (2001)

23. Petre, M.: Uml in practice. In: Proceedings of the 35th International Conference
on Software Engineering (ICSE 2013), pp. 722–731. IEEE Press, May 2013

24. Reimann, J., Wilke, C., Demuth, B., Muck, M., Aßmann, U.: Tool supported OCL
refactoring catalogue. In: Proceedings of the 12th Workshop on OCL and Textual
Modelling, pp. 7–12. ACM (2012)

25. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall (1996)

26. Sonar. http://www.sonarqube.org/
27. Tai, K.-C.: The tree-to-tree correction problem. Journal of the ACM 26(3),

422–433 (1997)
28. Tibermacine, C.: Software Architecture 2, chapter Architecture Constraints. John

Wiley and Sons, New York (2014)
29. Tibermacine, C., Fleurquin, R., Sadou, S.: On-demand quality-oriented assistance in

component-based software evolution. In: Gorton, I., Heineman, G.T., Crnković, I.,
Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2006. LNCS,
vol. 4063, pp. 294–309. Springer, Heidelberg (2006)

30. Tibermacine, C., Fleurquin, R., Sadou, S.: Simplifying transformations of architec-
tural constraints. In: Proceedings of the ACM Symposium on Applied Computing
(SAC 2006), Track on Model Transformation, Dijon, France. ACM Press. April
2006

http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://lattix.com/
http://www.sonarqube.org/

338 S. Kallel et al.

31. Tibermacine, C., Sadou, S., Dony, C., Fabresse, L.: Component-based specifica-
tion of software architecture constraints. In: Proceedings of the 14th ACM Sigsoft
Symposium on Component Based Software Engineering (CBSE 2011). ACM (2011)

32. That, T.M.T., Tibermacine, C., Sadou, S.: Catalogue of architectural patterns
characterized by constraint components, Version 1.0. Technical report, July 2013,
53p

33. Zdun, U., Avgeriou, P.: A catalog of architectural primitives for modeling archi-
tectural patterns. Information and Software Technology 50(9) (2008)

© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds): ECSA 2015, LNCS 9278, pp. 339–354, 2015.
DOI: 10.1007/978-3-319-23727-5_28

The Layered Architecture Recovery as a Quadratic
Assignment Problem

Alvine Boaye Belle1, Ghizlane El Boussaidi1(), Christian Desrosiers1,
Sègla Kpodjedo1, and Hafedh Mili2

1 Department of Software and IT Engineering, École de Technologie Supérieure,
Montreal, Canada

ghizlane.elboussaidi@etsmtl.ca
2 Department of Computer Science, Université du Québec à Montréal, Montreal, Canada

Abstract. Software architecture recovery is a bottom-up process that aims at
building high-level views that support the understanding of existing software
applications. Many approaches have been proposed to support architecture re-
covery using various techniques. However, very few approaches are driven by
the architectural styles that were used to build the systems under analysis. In
this paper, we address the problem of recovering layered views of existing
software systems. We re-examine the layered style to extract a set of fundamen-
tal principles which encompass a set of constraints that a layered system must
conform to at design time and during its evolution. These constraints are used to
guide the recovery process of layered architectures. In particular, we translate
the problem of recovering the layered architecture into a quadratic assignment
problem (QAP) based on these constraints, and we solve the QAP using a heu-
ristic search algorithm. In this paper, we introduce the QAP formulation of the
layering recovery and we present and discuss the results of the experimentation
with the approach on four open source software systems.

Keywords: Software architecture · Architecture recovery · Layered style ·
Architecture evolution · Quadratic assignment problem

1 Introduction

Software architects rely on a set of patterns, commonly named architectural styles [1],
to design systems. An architectural style embodies design knowledge [2] that applies
to a family of software systems [1]. Common architectural styles include layered,
pipes and filters, and service-oriented styles [1-3]. Each style has its own vocabulary
and constraints, and it promotes some specific quality attributes. However, research-
ers observed that the as-built architecture of a software system does not conform to
the initial style that guided its design. This is mainly due to: 1) the continuous
changes undergone by the system, which increase its complexity and lead to a devia-
tion from its initial design; and 2) violations of the style constraints due to the concep-
tual gap between the elements defined by the style and the constructs provided by

340 A.B. Belle et al.

programming languages [4]. Therefore, understanding and properly evolving a soft-
ware system often require recovering its architecture as it is implemented.

Architecture recovery may be achieved using a bottom-up process that starts from
source code to progressively construct a more abstract representation of the system
[5]. In this context, various clustering-based approaches have been proposed and dis-
cussed [5 and 7]. However, these approaches generally rely on properties such as
high-cohesion and low-coupling to reconstruct architectures (e.g., [6, 8]) and they do
not consider the architectural style of the analyzed system. Our focus in this paper is
the recovery of layered architectures as the layered style is a widely used pattern to
structure large software systems. Some approaches were proposed to reconstruct
layered architectures (e.g., [9-15]). However, most of these approaches propose gree-
dy algorithms that partition elements of the analyzed system into layers using some
heuristics or some particular criterion (e.g., the number of fan-in and fan-out depen-
dencies of a module [12, 13]). This may result in partitions with very few layers (e.g.,
in case of a heuristic based on highly connected modules [10, 15]) or too many layers
(e.g., in case of heuristics to resolve cyclic dependencies [11]) which may be too per-
missive with violations of the style’s constraints.

In this paper, we propose an approach that aims at recovering the layered architec-
ture of object oriented systems while relying on: 1) a set of constraints that convey the
essence of the layered architectures and 2) the user’s input which reveals how strictly
he applied the layered principles when designing a given system. Thus, we analyze
the layered style and extract a set of principles that we use to define cost factors cor-
responding to possible types of assignments of dependent packages to the layers of a
given system. These cost factors were used to formulate the layering recovery prob-
lem as a quadratic assignment problem (QAP), a well-established combinatorial opti-
mization formulation which has been used to model problems such as layout design or
resource allocation. Experimentation with the approach on four open source projects
yielded interesting results and observations.

The main contributions of this paper are: 1) the formalization of a layered architec-
ture as a special case of a QAP; 2) an algorithm that solves the QAP to recover
layered architectures; and 3) an evaluation on four open source projects. The paper is
organized as follows. Section 2 discusses the layered style and the limitations of exist-
ing approaches to recover such architectures. Section 3 introduces the layering prin-
ciples that we retained from our analysis of this style. In accordance with these prin-
ciples, we define in section 4 a set of cost factors related to layers’ assignments of
dependent packages and we formulate the layering recovery problem as a special case
of the QAP. Section 5 discusses the experimentation results. Related works are dis-
cussed in section 6 and we conclude and outline some future works in section 7.

2 Background and Limitations of Existing Approaches

2.1 Analysis of the Layered Style

To analyze the layered style, we studied many reference books and papers (e.g.,
[1-3, 10-18]). The layered style promotes a set of quality attributes which include
reuse, portability and maintainability [1-3]. It is an organized hierarchy where each

 The Layered Architecture Recovery as a Quadratic Assignment Problem 341

layer is providing services to the layer above it and serves as a client to the layer be-
low [1]. Different strategies can be used to partition a software system into layers.
The most common layering strategies are the responsibility-based and the reuse-based
layering strategies [16]. The responsibility-based strategy aims at grouping compo-
nents of the system according to their responsibility and assigning each responsibility
group to a layer. The reuse-based layering strategy aims at grouping components of
the system according to their level of reuse and assigning the most reusable compo-
nents (through applications) to the bottom layers.

In an ideal layered architecture, a layer may only use services of the next lower
layer. This is referred to as strict [3] or closed [17] layering and is often violated in
practice. For example, the dependence of a layer to much lower layers is a violation
(named a skip-call violation in [10] and layer bridging in [2]) that is considered as a
regular feature in open [17] or relaxed [3] layering. On the other hand, intra-
dependencies, which are dependencies between services of the same layer, are not
recommended [2, 18] but can be implemented under considerations such as portability
[2]. Exceptionally, a layer may need to rely on a service offered by an upper layer.
These back-calls [10] are discussed in [2] as “upward usage” and should be rare as
they threaten the quality attributes promoted by the layered style.

2.2 Limitations of Existing Approaches to Recover Layered Architectures

Based on the above analysis of the layered style, the structure of a layered architecture
must be a directed acyclic graph or at least a directed graph with very few cycles con-
necting different layers. The existence of cyclic dependencies between entities of the
system (i.e., packages) makes it difficult to identify its layers [11]. Hence most of the
approaches that were proposed to recover software layers focused their effort on pro-
posing methods and heuristics to handle entities involved in cyclic dependencies (e.g.,
[10, 11, 15]). To illustrate the limitations of these approaches, we will use as an ex-
ample the software system illustrated by Fig. 1(a). The latter displays a dependency
graph where nodes are packages of the system and edges are dependencies between
these packages. The weight of a dependency between two packages is derived from
the number of dependencies between their respective classes.

(a)

(b)

(c)

(d)

Fig. 1. An example of a system, its architecture and the layering obtained applying different
existing approaches

342 A.B. Belle et al.

Fig. 1(b) shows the expected layered architecture of our example system. Using a
clustering algorithm that relies on modularity (e.g., [6, 8]), the recovered architecture
of the system is depicted in Fig. 1(c). The clustering, in this case, puts all packages
involved in a cyclic dependency in the same layer/cluster as they are tightly coupled.
This is also the case for approaches relying on strongly connected components (e.g.,
[10, 15]). Other approaches use some heuristic to resolve cyclic dependencies and
then assign packages to layers using a depth traversal of the resulting dependency
graph. Using such approach as in [11], the recovered architecture of our example
system is depicted in Fig. 1(d): it possesses too many layers and may be too permis-
sive with violations such as skip-calls and back-calls.

In our example system, the architect defined three responsibilities embodied in the
sets {P1, P2}, {P3, P4} and {P5}. He then assigned each set to a layer according to its
abstraction level (Fig. 1(b)). In doing so, the architect applied the responsibility-based
strategy while trying to best comply with the layered style constraints. Hence, to ob-
tain the most accurate results (i.e., a layering as in Fig. 1(b)), the layering recovery
approach proposed in this paper is based on the principles of the layering style and on
how strictly the architect applied them when designing his system.

3 Principles for Layers Recovery

Applying the layered style means partitioning the system into a set of layers that must
be ordered according to the abstraction criterion that rules the flow of communication
between components of the system. This observation encompasses two fundamental
principles that should guide both design and recovery of layered architectures. These
two principles are discussed in details in [27]:

• The Layer Abstraction Uniformity: This principle states that components of the
same layer must be at the same abstraction level so that the layer has a precise
meaning. The level of abstraction of a component often refers to its conceptual dis-
tance from the “physical” components of the system [3], i.e. hardware, database,
files and network. Components at the highest levels are application specific; they
generally contain the visible functionalities provided by the system. This principle
led to many algorithms that build layered architectures based on a depth-traversal
of dependency graphs built from the studied system (e.g., [10-12, 19]).

• The Incremental Layer Dependency: This principle is related to the “ideal layer-
ing” property that states that a component in a layer (j) must only rely on services
of the layer below (j-1) [3]. This principle is the one that is mostly violated, either
through back-calls, skip-calls or intra-dependencies. It is worth pointing out that
there is no clear consensus among researchers on the use of intra-dependencies
which are accepted by some [20] and not recommended by others [2, 18]. Our
analysis of the various descriptions of the layered style and several open source
projects led us to conclude that the acceptance of the intra-dependencies depend on
the granularity of the components (e.g., packages) of the layer: the higher the gra-
nularity, the lower the number of intra-dependencies. The incremental dependency
property should thus be stated in a way that allows the intra-dependencies and the

 The Layered Architecture Recovery as a Quadratic Assignment Problem 343

skip-calls and—to some extent—back-call violations. Hence, we formulate this
property as “components of layer j-1 are mainly geared towards offering services
to components of layer j”. This means that, for a given layered system, the number
of skip-call and back-call dependencies must be much lower than the number of
downward dependencies between adjacent layers and intra-dependencies.

In the context of this paper, we focus on object oriented systems and we work at
the package level; i.e., we rely on existing decomposition of object oriented systems
into packages. To comply with the first principle, the packages of the same layer
should be at the same distance from the “physical” components of the system. How-
ever, the existence of back-call and skip-call dependencies introduces a discrepancy
between the packages’ distances, even when they belong to the same layer. Hence,
compliance with the first principle derives largely from compliance with the second
principle (i.e., incremental layer dependency). The latter will be used to formulate the
layered architecture recovery problem as a QAP in the following section.

4 Translating the Layering Recovery into a Quadratic Semi-
Assignment Problem

To formalize the incremental layer dependency principle, we define a number of cost
factors related to layers assignment of two dependent packages. These cost factors are
used to formulate the problem of recovering layered architectures as a special case of
the QAP known as the Quadratic Semi-Assignment Problem (QSAP) [21].

4.1 Cost Factors for Layers Assignment

Let packages i and j be two distinct packages of the system with a directed dependen-
cy from i to j. The dependency between two packages is derived from the dependen-
cies between their respective classes and it includes class references, inheritance,
method invocation and parameters. Let ckl be the cost of assigning packages i and j to
layers k and l, respectively. Following the incremental layer dependency principle, we
distinguish four possible types of layers’ assignments for packages i and j:

• Adjacent layers assignment: in this case k = l+1; this is the optimal and desirable
assignment of two dependent packages and thus, has no cost attached to it (ckl = 0).

• Same layer assignment: in this case k = l; this introduces an intra-dependency
which is not recommended, unless there is a system portability concern, and has a
non-zero cost ckl = γ attached to it.

• Skip layers assignment: in this case k ≥ l+2; i.e., this introduces a skip-call depen-
dency that can be tolerated (e.g., for performance reasons [4]) in small numbers
and has a non-zero cost ckl = α attached to it.

• Back layers assignment: in this case k ≤ l-1; this introduces a back-call dependency
that can hamper the quality attributes promoted by the layered style and is thus as-
signed a non-zero cost ckl = β.

344 A.B. Belle et al.

Consider the layered system illustrated in Fig. 2(a). The assignment of packages P1
and P2 to layers L4 and L3, respectively, has a cost value of β because of the back-call
dependency relating P2 to P1. The assignment of packages P1 and P5 to layers L4 and
L1, respectively, has a cost value of 2*α because it introduces a skip-call dependency
having a weight of 2. The assignment of packages P2 and P3 to the same layer L3, has
a cost value of γ because of the intra-dependency relating P2 to P1. The other assign-
ments do not introduce any additional skip-calls, back-calls or intra-dependencies.
Hence, the total cost of this layered system is: (γ + 2*α + β).

In accordance with the incremental layer dependency principle, we want to minim-
ize the number of skip-calls and back-calls and the number of intra-dependencies.
This means that, apart from the adjacent layers assignment as described above, we
must minimize the number of the other assignment types. However, in practice, intra-
dependencies and skip-calls are more accepted than back-calls which lead to a poorly
structured system. Furthermore, according to the analysis of the open or relaxed layer-
ing ([3, 17]), skip-calls are more often used and tolerated in practice than intra-
dependencies. Accordingly, we make the assumption that the values of the cost fac-
tors γ, α and β should be constrained as follows: α < γ < β. This assumption should be
validated through experimentation by analyzing a number of software systems pur-
ported to be all 1) of a layered style, and 2) of good quality.

P1

P2

L4

P3

P4

P5

L3

L2

L1

5

1

22

3

2

1

(a) A layered system example

 L1 L2 L3 L4

P1 0 0 0 1

P2 0 0 1 0

P3 0 0 1 0

P4 0 1 0 0

P5 1 0 0 0

(b) Package assignment
matrix for the example

 L1 L2 L3 L4

L1 γ β β β

L2 0 γ β β

L3 α 0 γ β

L4 α α 0 γ

(c) Layers assignment cost
matrix for the example

 P1 P2 P3 P4 P5

P1 0 5 0 0 2

P2 1 0 1 2 0

P3 0 0 0 2 0

P4 0 0 0 0 3

P5 0 0 0 0 0

(d) Weight matrix for the example

Fig. 2. An example of a layered system and its related matrices

4.2 Layers Recovery as a Quadratic Semi-Assignment Problem

Recovering the layered architecture of a given system consists in finding a mapping
function that assigns each package to a given layer while minimizing the intra-, skip-
call and back-call dependencies as discussed in the previous section. Let m be the
number of packages and n the number of layers of the system under analysis. Let wij

 The Layered Architecture Recovery as a Quadratic Assignment Problem 345

be the weight of the directed dependency relating package i to package j. Recall that
the dependency between two packages derives from the dependencies between their
respective classes. Let W ([W]ij = wij) be the m × m dependency weight matrix, and C
([C]kl = ckl) be the n × n matrix of layer assignment costs. Fig. 2(c) displays the layer
assignment cost matrix and Fig. 2(d) displays the weight matrix corresponding to the
system of Fig. 2(a). Let xik be the binary decision variable representing the assignment
of package i to layer k (i.e., xik is set to 1 if package i is assigned to layer k, otherwise
to 0), and let X ([X]ik = xik) be the m × n package assignment matrix. Fig. 2(b) dis-
plays the package assignment matrix corresponding to the system of Fig. 2(a).

The layering recovery problem can be expressed as the following QSAP:

(1)

 (2)

(3)

The quadratic cost function of Eq. 1, called the layering cost in our context, defines
a penalty for each possible set of assignments of packages to layers. Thus, the penalty
of assigning package i to layer k, if a package j is assigned to layer l corresponds to
wij * ckl. Eq. 3 constrains the possible solutions to Eq. 1 by stating that a package may
be assigned only to one layer.

4.3 Solving the Layers Recovery Problem

Because the NP-hard clustering problem is a particular case of the QSAP, finding a
globally optimal solution for this problem is also a difficult task. However, since it
plays a central role in many applications, much effort has been spent to solve this
problem efficiently. Exact methods proposed for the QSAP, which guarantee the
global optimum, include the cutting-plane and branch-and-bound algorithms. Howev-
er, these methods are generally unable to solve large problems (i.e., m ≥ 20). For large
problem instances, heuristic algorithms like tabu search, local improvement methods,
simulated annealing and genetic algorithms have been proposed [21]. Among these,
the tabu search method [22] and the local improvement method are known to be the
most accurate heuristic methods to solve the QAP. Hence, to solve the layering recov-
ery problem, we adapted the tabu search method using our layering cost (Eq.1) as a
fitness function. Briefly, the tabu search [23] starts with a feasible solution as the
current solution. At each iteration, neighbors of the current solution are explored
through some moves and the best neighbor is accepted as the current solution pro-
vided the related move does not belong to a tabu list. The latter records moves which
are marked as tabu (i.e. forbidden) to prevent cycling and to escape from local optima.
The search process stops when a termination criterion is met.

346 A.B. Belle et al.

Fig. 3 gives a simplified view of our adaptation of the tabu search technique to the
layering problem. The algorithm, takes as input: 1) an initial layered partition of the
system under analysis; 2) a set of values for the cost factors; and 3) the maximum
number of iterations (max_it) after which the algorithm terminates. The initial parti-
tion is a 3-layer solution where packages are randomly assigned to these layers. The
initial partition is then considered as the current and the best solution of the algorithm
(lines 1 to 2). In the following iterations (lines 5 to 18), all the neighboring solutions
of the current solution are explored to find a better layering. A neighbor is computed
by moving a single package from a layer A to a layer B, provided these two layers are
different (line 7). This neighbor is considered as a candidate solution if it is produced
using a package move that does not belong to the tabu list (lines 8 to 10). Note that a
package move may introduce an additional layer (i.e., the final layering may have
more than 3 layers). The candidate solution having the lowest layering cost value is
the best candidate solution and it is accepted as the current solution (line 12) to be
used for the next iteration. In this case, the tabu list is updated to include the package
move that led to this solution (line 13). It is also accepted as the best solution if its
cost is lower than the current best-known solution (lines 14 to 16).

Fig. 3. A high level view of the layering algorithm

5 Experimentation with the Approach

To experiment our QSAP formulation of the layering recovery problem, we
implemented a tool within the EclipseTM IDE. This tool is made of two modules. The
first module was built on top of the MoDisco open source tool [24] which enables to

Input: initialLayeredPartition, max_it, γ, α, β
Output: LayeredSolution
1. currentSolution ← initialLayeredPartition
2. bestSolution ← currentSolution
3. tabuList ← null
4. K ← 0
5. while (K < max_it){
6. candidates ← null
7. for each neighborSolution of currentSolution {
8. if (neighborSolution is produced using a move not belonging to
tabuList){
9. candidates ← candidates + neighborSolution
10. }
11. } //end for
12. currentSolution ← locateBestSolution(candidates)
13. tabuList ← updateTabuList(currentSolution.move)
14. if (LC(currentSolution) < LC(bestSolution)) {
15. bestSolution ← currentSolution
16. }
17. K ← K +1
18. } //end while
19. return bestSolution

 The Layered Architecture Recovery as a Quadratic Assignment Problem 347

analyze source code files of the system under study and to generate platform indepen-
dent representations that are compliant with the Knowledge Discovery Metamodel
(KDM). The KDM was introduced by the OMG as a standard and platform-
independent meta-model for representing legacy systems [25]. In our context, the
KDM representation is used by our module to extract the system’s facts, i.e. packages
and their dependencies. These facts are used to build the initial partition that is the
input to the second module. This module implements our layering algorithm for
which we set the maximum number of iterations to 1000 and the tabu list length to 10
(i.e., the tabu list records the last ten best packages’ moves). Results were computed
on a 2.8 GHz Intel octo-core CPU with 16Gb of RAM and took less than a second for
any of the systems. For each system and setup, we ran 50 times the algorithm and
retained the best (lowest layering cost) result.

5.1 Research Questions and Experimental Setup

Experimentations with our approach aimed at answering the following questions:
1) What are the (relative) values of the cost factors (γ, α, β) that best correspond to

the common understanding of the layered style? For any given layered software sys-
tem, assuming we already know its layered architecture, we look for the values of the
cost factors that yield a set of layers that best match the known architecture of the
system. However, as the system may be an imperfect application of the layered style,
we need to look into a set of well-designed software systems that are known to be
layered systems. The answer to this question will help assessing the extent to which
the layering principles, as discussed in section 3, are applied by designers.

2) How does the layering cost evolve across revisions of a software system and
what does it tell us about the architectural evolution of the system? This question is
related to two aspects: 1) the stability of our layering recovery algorithm and 2) the
stability of the set of values of the cost factors that yield the layering that matches the
known architecture of the system across its revisions. The latter aspect can be reph-
rased into “when a layered system evolves, does it maintain the same level of confor-
mity to the layering principles?”.

To answer these questions, we carried out an experiment on four different open
source projects and four different versions of one of these projects. Some characteris-
tics of these projects are given in Table 1. All the projects (Apache Ant, JUnit, JFree-
Chart and JHotDraw) are purported layered systems that are actively maintained and
that were analyzed in related work (e.g., [11, 12]). We performed several executions
on each of these projects using different values for the layering cost factors γ, α, β.
For lack of space, we present the results for 5 setups. Recall that downward adjacent
dependencies are rewarded and, hence, no cost factor was associated to them. Briefly,
setups 1 and 2 penalize more skip-calls than intra-dependencies while setups 3, 4 and
5 penalize more intra-dependencies than skip-calls. Thus setups 1 and 2 are appropri-
ate for systems that favor portability over reuse. Conversely, setups 3, 4 and 5 are
appropriate for systems that comply with a reuse-based layering strategy where the
most (re)used packages are assigned to bottom layers. Setups 3, 4 and 5 differ in the
value they assign to the back-call cost β and they are meant to analyze the extent to

348 A.B. Belle et al.

which the back-calls are tolerated in the analyzed systems. It should be noted that we
performed tests using other setups where the cost γ of intra-dependencies was set to
zero. However, in this case, the algorithm behaves as a modularity-based clustering
algorithm and it assigns all highly dependent packages to the same layer.

To find out which ones of the setups return layered solutions that best match the
actual layered organizations of the analyzed systems, we compare the returned solu-
tion for each setup and system with an authoritative decomposition of the system. We
rely on previous works (e.g. [15 and 26]) to specify the authoritative decomposition of
the analyzed systems (e.g., Apache Ant and JUnit). For systems for which the authori-
tative decomposition was not available (e.g., JHotDraw and JFreeChart), we had 3
PhD students with intensive experience in software design and with a good know-
ledge of these systems to manually decompose them. We used the harmonic mean (F-
measure) of precision and recall as introduced in [12] to evaluate each solution with
respect to both correctness and completeness of its layers compared to the authorita-
tive decomposition. Thus, we compute the precision as the number of packages cor-
rectly assigned by our tool over the total number of packages assigned by our tool.
We compute the recall as the number of packages correctly assigned by our tool over
the number of the packages assigned to layers in the authoritative decomposition.

Table 1. Statistics of the analyzed open source projects

Project Number of files LOC Numb. of packages Package dependencies

Apache Ant 681 171 491 67 229

JUnit 4.10 162 10 402 28 106

JFreeChart 1.0.14 596 209 711 37 207

JHotDraw 6.0.b1 498 68 509 17 72

JHotDraw 7.0.6 310 51 801 24 89

JHotDraw 7.4.1 585 111 239 62 365

JHotDraw 7.6 680 118 938 65 358

5.2 Results and Discussions

Table 2 summarizes the results of executing our layering algorithm on the analyzed
projects using 5 setups. The first column indicates for each setup the values of the
cost factors. For each solution returned by the algorithm, Table 2 displays: 1) the
layering cost (LC); 2) the number of layers (NL); 3) the total weight of all dependen-
cies relating adjacent layers (Adj); 4) the total weight of all intra-dependencies (Intra);
5) the total weight of all skip-calls (Skip); 6) the total weight of all back-calls (Back);
and 7) the F-measure. Recall that the layering cost is the value of the quadratic func-
tion in Eq. 1. Cells that are greyed in Table 2 correspond to the solutions with the
highest F-measures.

As shown by Table 2, for Apache Ant and JUnit, the layering solution that best
matches the actual layering of the system is returned using setup 2. In general, the
most accurate results are produced by our algorithm for these two systems when using
setups where the intra-dependencies cost γ is less than the skip-calls cost α (e.g., se-

 The Layered Architecture Recovery as a Quadratic Assignment Problem 349

tups 1 and 2). This means that the designers of these two systems have favored intra-
dependencies over skip-calls and back-calls. This is consistent with the fact that both
Apache Ant and JUnit are frameworks that target different platforms and, thus, porta-
bility is one of the concerns that drive their design. As for JFreeChart, we obtained the
best match using setup 5. JFreeCHart contains several subsystems that are composed

Table 2. Results returned by the layering recovery algorithm

 Ant JFreeC JUnit JHD.60b1 JHD.706 JHD.741 JHD.76

Setup 1

γ=1 α=2

β=4

LC 569 1069 152 383 385 1176 1089

NL 3 3 3 3 3 3 3

Adj 153 1018 234 864 623 1547 1522

Intra 521 629 110 335 353 1036 909

Skip 0 64 3 4 8 12 6

Back 12 78 9 10 4 29 42

F-measure 74 35.97 57 58 29 22 21

Setup 2

γ=1 α=2

β=15

LC 692 1411 247 493 429 1316 1245

NL 3 3 3 3 3 3 3

Adj 150 450 168 864 623 1362 1325

Intra 557 1332 181 335 353 1247 1141

Skip 0 2 3 4 8 12 7

Back 9 5 4 10 4 3 6

F-measure 76 59 67 58 29 12 12

Setup 3

γ=2 α=1

β=4

LC 102 1476 234 587 572 1910 1719

NL 4 4 3 3 4 4 5

Adj 156 998 248 887 665 1622 1580

Intra 417 409 78 213 222 455 526

Skip 48 290 14 97 92 396 275

Back 36 92 16 16 9 151 98

F-measure 59 13 53 82 87 51 60

Setup 4

γ=2 α=1

β=15

LC 120 2368 357 715 589 2263 2039

NL 4 4 4 3 4 4 4

Adj 152 870 234 891 647 1396 1398

Intra 494 637 109 239 234 993 874

Skip 36 224 4 72 106 232 201

Back 12 58 9 11 1 3 6

F-measure 65 18 53 76 91 75 70

Setup 5

γ=2 α=1

β=20

LC 137 2725 402 770 594 2278 2069

NL 3 3 4 3 4 4 4

Adj 149 474 234 891 647 1396 1398

Intra 533 1277 109 239 234 993 874

Skip 36 31 4 72 106 232 201

Back 9 7 9 11 1 3 6

F-measure 23 65 53 76 91 75 70

350 A.B. Belle et al.

of subsets of highly dependent packages; i.e., it includes a high number of cyclic
dependencies. In this case, the layering result that matches best the authoritative
architecture is produced using a setup where the back-calls cost β is set to a very high
value compared to the intra-dependencies cost γ (e.g., setup 5). Finally, in the case of
JHotDraw, we hypothesized that the best matches for the 4 analyzed versions would
be produced using the same setup. As displayed by Table 2, this is the case for
JHotDraw 7.0.6, 7.4.1 and 7.6 for which the best results are generated using both
setups 4 and 5. But, for JHotDraw 60b1, the best match is generated using setup 3.
This is due to: 1) JHotDraw 60b1 containing more layering violations compared to the
3 other versions; and 2) each of the subsequent versions 7.0.6 and 7.4 introducing
substantial changes to the framework. Yet, the setups producing the best matches for
all JHotDraw versions are the setups that enforce more strictly the layering principles
as discussed in this paper (i.e., α < γ < β).

Based on these observations and on the fact that JHotDraw was designed as an ex-
ample for a well-designed framework, we hypothesized that the setup that produces
the best matches for most of the versions of JHotDraw is the one that corresponds to
the common understanding of the layered style constraints. This is the case of Setup 4
(i.e., the results of setup 4 and 5 are the same but we consider the first setup that gives
most of the best results). To verify our hypothesis, we analyzed the density of viola-
tions found in each project. To do this, for each solution that best matches the sys-
tem’s architecture (greyed cells in Table 2), we compared the number of each type of
dependency (i.e., intra-dependencies, skip-calls and back-calls) to the total number of
dependencies in the system. Fig. 4 displays the dependencies by type for the
best matched solution of each project. JFreeChart have the highest percentage of
intra-dependencies (71%) relative to the other dependencies. JHotDraw 6.0.b1 has the
lowest percentage of intra-dependencies (17%) while JHotDraw 7.0.6 has the lowest
percentage of back-calls (0.1%). For the four versions of JHotDraw, the density of
violations relative to the project size is smaller than the density of violations in the
two of the three projects (i.e., JUnit and JFreeChart). These findings confirm our
hypothesis which is consistent with the fact that JHotDraw is known to be
well-designed. They also strongly suggest that setup 4 is the one that most corres-
ponds to the common understanding of the styles constraints with respect to our first
research question. This will be investigated more in future works.

Fig. 4. Dependencies by type for the best matched solution of each project

0
500

1000
1500
2000
2500
3000

JUnit JHotDraw
6.0.b1

JHotDraw.
7.0.6

JFreeChart Apache
Ant

JHotDraw.
7.4.1

JHotDraw.
7.6

Back

Skip

Intra

Adj

 The Layered Architecture Recovery as a Quadratic Assignment Problem 351

Regarding our second question, the analysis of four versions of JHotDraw led us to
some interesting observations. The best solutions for both versions 6.0.b1 and 7.0.6
have approximately the same layering cost (LC). Furthermore, the layering solutions
are stable, i.e., an existing package in both versions is assigned to the same layer in
the two best layering solutions. The same observations were made when we compared
the results for versions 7.4.1 and 7.6. This confirms the stability of our layering re-
covery algorithm. Moreover, for the versions 7.0.6, 7.4.1 and 7.6., the best results are
returned by the same setup. This suggests the stability of the set of cost values that
yield the layering that matches best the architecture of the system across its revisions.
It also suggests that JHotDraw maintains the same level of conformity to the layering
principles through its evolution. To confirm this, we analyzed eight (8) versions of
JHotDraw. Fig. 5 displays for each of these versions their layering cost (LC) using
setup 4 and their total weight of package dependencies. Interestingly, Fig. 5 reveals
that the evolution of the layering cost of JHotDraw through these 8 versions followed
a linear trend line. This strongly suggests that JHotDraw maintains the same level of
conformity to the layering principles through its evolution. Future work will investi-
gate whether this trend line applies or not to other layered systems.

Fig. 5. Evolution of the layering cost of JHotDraw using setup 4

5.3 Threats to Validity

Conclusion Validity: To find out which setups return the most accurate layered solu-
tions, we compared these solutions to authoritative architectures which come in part
from the manual work of students. This issue is related to the lack of comparison
baselines in the software architecture community. However, the students who partici-
pated to the experimentation were chosen based on their experience and knowledge of
the analyzed systems.

Internal Validity: The parameters of the tabu search were set through preliminary
tests and may not have the best possible values. In any case, as a meta-heuristic, tabu
search cannot guarantee a global optimal solution. We were however able to confirm
that for the smallest system (JHotDraw 60b1), the algorithm was returning the global
optimum. Indeed, with 3 layers and 17 packages, it was possible to examine and eva-
luate (with a run time of about half an hour) each of the 317 possible solutions.

v.6.0b1
v.7.0.6 v.7.0.9

v.7.2
v.7.3

v.7.4.1
v.7.5.1v.7.6

0
500

1000
1500
2000
2500

500 1000 1500 2000 2500 3000

La
ye

ri
ng

 C
os

t

Total weight of dependencies

352 A.B. Belle et al.

External Validity: The experiment has been conducted on a sample of four open
source Java projects. While all these projects are known to be layered systems, the
observed results may not be generalizable to other projects. To minimize the threats,
we have analyzed several versions of a layered system that is purported to be of good
quality (i.e., JHotDraw). We plan as a future work to analyze other existing layered
systems including commercial software systems.

6 Related Work

The work in this paper is related to the approaches proposed to recover layered archi-
tectures (e.g., [9-15]). Most of these approaches rely on some criterion or heuristics
(e.g. [10-14]) in the process. Muller et al. [9] propose an approach aiming at support-
ing users in discovering, restructuring and analyzing subsystem structures using a
reverse engineering tool. The proposed process involves the identification of the
layered subsystem structures. The layered structure is obtained through the aggrega-
tion of system's entities into building blocks using composition operations based on
principles such as low coupling and high cohesion. Schmidt et al. [28] introduced a
framework that supports the reconstruction of software architectures. A greedy algo-
rithm is used to generate clusters based on low coupling and high cohesion criteria.
These clusters are then assigned to layers based on their ratio of fan-in and fan-out.
Unlike [9] and [28], our approach does not include an aggregation phase since we
work at the package level. However, our approach can be applied at a lower level of
granularity (i.e., at class level).

Hassan and Holt [14] propose a semi-automatic approach to reconstruct the archi-
tecture of web applications. For this purpose, they analyze the source code to extract
artifacts which are clustered according to some heuristics and refined using human
expertise. Andreopoulos et al [13] propose a clustering algorithm which exploits both
static and dynamic information to recover layered architectures. This approach as-
signs highly interdependent files to top layers and less interdependent files to bottom
layers. Laval et al. [11] propose an approach which resolves cyclic dependencies and
decomposes a system into layers. They rely on two heuristics to find undesired cyclic
dependencies which are ignored when building layers of the system. In [10], the au-
thors proposed 3 layering principles (skip-call, back-call and cyclic dependency) and
a set of metrics that measure the violation of these principles. Although these prin-
ciples are focused on detecting violations, they are related to the principles discussed
in this paper. In [12], a semi-automatic approach is proposed to identify software
layers. Classes that are used by many other classes are grouped in the lowest layer
while classes that rely on many other classes are grouped in the highest layer. The
remaining classes are assigned to a middle layer. The same technique is used in [29]
where a lexical-based clustering is performed to further decompose each layer into
modules. In [11, 12, 13 and 29], it is assumed that a module that does not have fan-out
dependencies belongs to the lowest-level layer and conversely a module that does not
have fan-in dependencies belongs to the highest-level layer. However, a module en-
capsulating a common subtask exclusive to components of a middle-level layer, will

 The Layered Architecture Recovery as a Quadratic Assignment Problem 353

not have any fan-out dependency but still belongs to this middle-level layer. Like-
wise, a module that starts some specific service of a middle-layer may not have any
fan-in dependency but still belongs to this middle-level layer. Unlike all these ap-
proaches, we do not rely on any heuristic or criteria. Our approach relies on the con-
straints of the layering style and a set of parameters that express how rigorously the
designer applied these constraints.

7 Conclusion

Recovering architectural views from existing software systems remains a challenging
problem and will remain a topical issue in software engineering. In this paper, we
proposed an approach to recover the layered architecture of object oriented systems
using the principles of the layering style and the designer’s input which describes how
strictly he applied these principles when designing the analyzed system. We revisited
and analyzed the layered style and retained two important principles. These principles
were translated into a set of layers assignment cost factors that help formulating the
layering recovery problem as a specific case of QAP, namely a Quadratic Semi-
Assignment Problem (QSAP). To experiment this formulation, we implemented a tool
that extracts packages’ dependencies from object oriented java systems, and an algo-
rithm to solve the layering recovery QSAP. We tested the approach on four open
source Java projects using several setups with different sets of values for the layering
cost factors. This experimentation yielded interesting results.

While the results of the approach are promising, we plan to extend it in different
ways. In the short-term, we want to handle issues related to library components also
called omnipresent modules. Library components obscure the system’s structure if
considered during the decomposition of the system [9]. These components may be
clustered into a vertical layer (called transversal layer in [2]) to ease the recovery of
the layered architecture. In the mid- to long-term, we need to perform more experi-
ments and analysis to properly tune the cost factors. We would also like to experiment
on domain-specific systems and find out if particular setups (i.e., a set of cost factors)
are related to specific domains or classes of systems. In this context, the availability
of such systems and some architecture description of these systems is a challenging
issue. As a future work, we plan to investigate how a given setup can be enforced so
that an architect is notified when some changes made to the system introduce a “devi-
ation” from that setup. Finally, we plan to strategy to experiment the approach on
software systems implemented using other programming languages and paradigms.

References

1. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall (1996)

2. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley (2003)

354 A.B. Belle et al.

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad P., Stal, M.: Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons (1996)

4. Harris, D.R., Reubenstein, H.B., Yeh, A.S.: Recognizers for Extracting Architectural
Features from Source Code. The 2nd WCRE, pp. 252–261 (1995)

5. Ducasse, S., Pollet, D.: Software Architecture Reconstruction: A Process-Oriented
Taxonomy. IEEE Trans. on Soft. Eng. 35(4), 573–591 (2009)

6. Mitchell, B.S., Mancoridis, S.: On the Evaluation of the Bunch Search-Based Software
Modularization Algorithm. Soft Comput. 12(1), 77–93 (2007)

7. Maqbool, O., Babri, H.A.: Hierarchical Clustering for Software Architecture Recovery.
IEEE Transactions on Software Engineering 33(11), 759–780 (2007)

8. Lung, C.H., Zaman, M., Nandi, A.: Applications of Clustering Techniques to Software
Partitioning, Recovery and Restructuring. JSS Journal 73, 227–244 (2004)

9. Muller, H.A., Orgun, M.A., Tilley, S.R., Uhl, J.S.: A reverse engineering approach to
subsystem structure identification. Journal of Software Maintenance 5(4), 181–204 (1993)

10. Sarkar, S., Maskeri, G., Ramachandran, S.: Discovery of architectural layers and
measurement of layering violations in source code. JSS Journal 82(11), 1891–1905 (2009)

11. Laval, J., Anquetil, N., Bhatti, M.U., Ducasse, S.: OZONE: Layer Identification in the
presence of Cyclic Dependencies. submitted to Science of Computer Programming (2012)

12. Scanniello, G., D’Amico, A., D’Amico, C., D’Amico, T.: Architectural layer recovery for
software system understanding and evolution. SPE Journal 40(10), 897–916 (2010)

13. Andreopoulos, B., Aijun, A., Tzerpos, V., Wang, X.: Clustering large software systems at
multiple layers. Information and Software Technology 49(3), 244–254 (2007)

14. Hassan, AE., Holt, RC.: Architecture recovery of web applications. In: The 24th Interna-
tional Conference on Software Engineering, pp. 349–359. ACM Press, New York (2002)

15. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proceedings of OOPSLA 2005, pp. 167–176 (2005)

16. Eeles, P.: Layering Strategies. Rational Software White Paper, TP 199, 08/01 (2002)
17. Szyperski, C.A.: Component Software. Addison Wesley (1998)
18. Bourquin, F., Keller, R.K.: High-impact refactoring based on architecture violations. In:

The 11th CSMR, pp. 149–158 (2007)
19. El-Boussaidi, G., Boaye-Belle, A., Vaucher, S., Mili, H.: Reconstructing architectural

views from legacy systems. In: The 19th WCRE (2012)
20. Avgeriou, P., Zdun, U.: Architectural patterns revisited-a pattern language. In: EuroPlop

(2005)
21. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem-a survey and

recent developments. In: DIMACS. Americ. Mathemat. Society, vol. 16, pp. 1–42 (1994)
22. Skorin-Kapov, J.: Tabu search applied to the quadratic assignment problem. ORSA

Journal on Computing 2(1), 33–45 (1990)
23. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
24. MoDisco site. http://www.eclipse.org/MoDisco/
25. OMG Specifications. http://www.omg.org/
26. Barros, MdO, Farzat, FdA, Travassos, G.H.: Learning from optimization: A case study

with Apache Ant. Information and Software Technology 57, 684–704 (2015)
27. Boaye, B.A., El-Boussaidi, G., Desrosiers, C., Mili, H.: The layered architecture revisited

is it an optimization problem. In: Proc. 25th Int. Conf. SEKE, pp. 344–349 (2013)
28. Schmidt, F., MacDonell, S.G., Connor, A.M.: An automatic architecture reconstruction

and refactoring framework. In: SERA 2011, pp. 95–111 (2011)
29. Scanniello, G., D’Amico, A., D’Amico, C., D’Amico, T.: Using the Kleinberg algorithm

and vector space model for software system clustering. In: ICPC, pp. 180–189 (2010)

Services and Ecosystems

Design of a Domain-Specific Language Based
on a Technology-Independent Web Service

Framework

Florian Rademacher(B), Martin Peters, and Sabine Sachweh

Department of Computer Science, University of Applied Sciences
and Arts Dortmund, Dortmund, Germany

{florian.rademacher,martin.peters,sabine.sachweh}@fh-dortmund.de

Abstract. Nowadays web services gain more and more importance in
allowing a standardized access to remote information without being tied
to a specific form of presentation. The majority of such data interfaces is
either based on the architectural REST style following World Wide Web
specifications or the more protocol-oriented SOAP, which allows the def-
inition of XML transfer structures.

In this paper we introduce an extensible framework for the abstraction
of technological differences between service technologies like REST and
SOAP. It provides the basis for the design of a domain-specific language
(DSL), which allows the technology-independent declaration of web ser-
vices. A code generator derived from the DSL grammar translates the
service declarations into corresponding framework elements and creates
stub methods for the implementation of the services’ business logic.

Keywords: Domain-specific languages · Code generation · Service-
oriented architectures · Web services

1 Introduction

The Internet becomes more and more heterogeneous in the way its information
are retrieved and processed by users and applications. Web services constitute
one established mechanism to provide interfaces to online resources. Clients can
access the supplied data in a specified way, process it and propagate changes back
to the web service host. REST [1] and SOAP [2] are the web service technologies
most commonly applied [3].

REST stands for Representational State Transfer and denotes an architec-
tural style for distributed hypermedia systems. It abstracts from the concrete
architectural elements within such systems and introduces resources as time
dependent mappings to a set of information entities. A resource may be refer-
enced by a Uniform Resource Identifier (URI) like http://www.example.com/
resource. Additionally, REST defines a generic interface to resources, consisting
of methods like GET for requesting and POST for creating resource representa-
tions. Within the World Wide Web (WWW), client applications like browsers
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 357–371, 2015.
DOI: 10.1007/978-3-319-23727-5 29

http://www.example.com/resource
http://www.example.com/resource

358 F. Rademacher et al.

or mobile apps may invoke one of these methods, for example via the Hypertext
Transfer Protocol (HTTP), and retrieve a representation from a server hosting
a certain resource. XML or JavaScript Object Notation (JSON) [4] are widely
used to encode the transmitted representation.

SOAP is another mechanism used to implement web services. Information is
solely structured in XML and mostly sent to clients via HTTP. The content of
a SOAP message is embraced by an <Envelope>-element, which itself consists
of at least one <Body>-element.

When implementing a web service, the choice of a concrete service technology
is crucial from the beginning. Regardless of the purpose a web service may
serve, its implementation heavily depends on the applied service technology and
thus on how data is transferred between a client and a server. Providing a web
service for both, REST and SOAP clients, often results in redundant service
implementations, although the semantic of the service is the same.

In this paper we address the problem of semantically equivalent web services,
which need to be provided using different service technologies for different types
of clients. To do so, an extensible framework that allows the implementation
of REST, SOAP and any other kind of web service technology is presented in
Section 3. Its utilization automatically leads to reusable code within all pro-
vided service interfaces. Starting from the framework, a DSL for the concise
and efficient definition of service interfaces is designed in Section 4. Section 5
describes the implementation of a code generator that translates service decla-
rations expressed with the DSL into Java code based on the framework. Service
developers only need to implement the declared services’ business logic within
generated stub methods, which then are accessible for clients through the differ-
ent service technologies supported by the framework. We show the framework’s
specification, the DSL design and its usage by means of a case study described
in the next section.

2 Case Study

The case study involves a scenario taken from a research project, which focused,
among others, on providing a Java EE based infrastructure for the remote main-
tenance of wastewater treatment systems (WTS). Each WTS communicates with
a server platform using a custom communication protocol. WTS owners can mon-
itor their systems’ state and change the parameters of a WTS using a mobile
app. The server platform acts as an intermediate between mobile clients and
WTSs. Figure 1 shows the structure and the participants of the case study in a
SoaML diagram [5].

The server platform offers web services for the retrieval and update of a
WTS’s parameters. These parameters control the behavior of the WTS, e.g. the
pressure of its valves. A ParameterType is associated with a ParameterValue
indicating the value’s allowed range. The MobileApp participant may use the
Parameters interface to retrieve and update the current parameters of a WTS.

Design of a Domain-Specific Language Based on a Technology-Independent 359

Case Study

Result
+ returnCode : Integer

ParameterType
+ typeName : String
+ rangeFrom : Double
+ rangeTo : Double

ParameterValue
+ paramName : String
+ t imestamp : Date
+ value : String«RequestPoint»

parameters : Parameters
«Participant»

WTS

«RequestPoint»
parameters : Parameters

«Participant»
MobileApp

«Participant»
WTSPlatform

«ServicePoint»
parameters : Parameters

«interface»
IParameters

+ retrieveParameterValues(wtsId : Long) : ParameterValue[*]
+ updateParameterValue(wtsId : Long, newValue : ParameterValue) : Result

«ServiceInterface»
Parameters

Fig. 1. Structure of the case study. A mobile app and a set of WTSs interact with a
server platform for monitoring and maintenance of WTSs via web services.

It communicates with the server platform via REST because of its better inte-
gration with the mobile operating system. The control unit of the WTS partici-
pant will call updateParameterValue when it was forced to adjust a parameter
value due to changing environmental conditions such as temperature variations.
WTSs use SOAP for platform interaction due to its advanced QoS support
concerning security and reliability of exchanged information [6]. The platform is
accessible at http://www.example.com/wts. In case of RESTful communication,
an HTTP GET request is issued to www.example.com/wts/{wtsId} to retrieve
a WTS’s current parameter values. A parameter update is performed by send-
ing PUT to www.example.com/wts/{wtsId}/{paramName} together with the new
value. The REST services use JSON as transfer format. In the case of SOAP-
based communication, XML packets are transmitted to the server platform via
HTTP. Listing 1 and 2 show the data transferred when performing REST- and
SOAP-based parameter updates in contrast.

{"new value": "{new value}"}

Listing 1. REST request to update a
WTS parameter’s value. The new value
is sent within a JSON packet.

<Envelope><Body><updateParameterValue>
<wtsId>{wtsId}</wtsId>
<paramName>{paramName}</paramName>
<new value>{new value}</new value>

</updateParameterValue></Body></Envelope>

Listing 2. Structure of a SOAP packet
sent to update a parameter’s value.

3 Specification of a Technology-Independent Web Service
Framework

Following, an analysis of the WTS platform’s architectural requirements and
technology-specific aspects of the involved web services is undertaken. Based
on the results abstractions are defined, which hide characteristics specific to a
certain web service technology from a service developer. The main goal of this
section is the specification of a framework that allows the reusable, technology-
independent implementation of a web service’s business logic, which then may
be provided for client access by REST, SOAP or any other kind of technology-
dependent service interface.

http://www.example.com/wts

360 F. Rademacher et al.

3.1 Reusable Business Logic

The service framework has to support the reusability of business logic in
web services provided by different technologies. For example, the updatePara-
meterValue service of the case study has to be available via REST (for the mobile
app) and SOAP (for a WTS). However, its semantic and functionality is indepen-
dent of a concrete service technology. To model reusable service implementations,
a technology-independent interface for the invocation of a web service’s business
logic is introduced. It is based on the Command pattern described in [7].

Figure 2 shows the abstract Command-class Operation whose logic method
has to be implemented by a subclass to realize a service’s behavior. The
technology-independent generalization of the information exchange between an
Operation and its invokers is realized by two data transfer objects (DTOs).
Depending on its communication direction, a DTO implements one of the marker
interfaces ItoI (inbound transfer object for service requests) or OtoI (outbound
transfer object for service responses). An Operation and its DTOs are always
specific to a certain web service.

«interface»
OtoI

«interface»
I to I

Operat ion
+ logic(request : ItoI) : OtoI

«interface»
OtoI

«interface»
I to I

Operat ion
+ logic(request : ItoI) : OtoI

Web Service Operation

Fig. 2. Technology-independent abstraction of a web service’s logic. The Operation

class contains a service’s business logic. The marker interfaces ItoI and OtoI subsume
DTOs used for information exchange between service invoker and business logic.

3.2 Support for Arbitrary Web Service Technologies

The case study demands the provisioning of web services following the REST
and SOAP paradigms. In Java EE based applications like the WTS platform
this is achieved by JAX-RS [8] and JAX-WS [9] compliant implementations.
Both specifications define rules on how to implement web services. JAX-RS
utilizes class and method annotations like @Path and @GET for the specification
of a REST service’s URI and the HTTP method for business logic invocation.
In contrast, JAX-WS relies on a Java interface annotated with @WebService,
which defines the contract for calling a SOAP service’s business logic in form
of a method marked with @WebMethod. This Service Endpoint Interface (SEI)
needs to be implemented by a Service Implementation Bean (SIB), i.e. a Java
class annotated with @WebService. While the SEI specifies the name of the port
type, the SIB defines further SOAP-characteristics such as port name, service
name and endpoint interface.

However, the service framework has to allow the realization of web service
technologies without relying on the existence of frameworks implementing spec-
ifications like JAX-RS or JAX-WS. For example, it is conceivable that the WTS

Design of a Domain-Specific Language Based on a Technology-Independent 361

Source > OtoI
ResponseMapper

Target > ItoI
RequestMapper

Source, Target
Mapper

+ map(source : Source) : Target
Source > OtoI

ResponseMapper

Target > ItoI
RequestMapper

Source, Target
Mapper

+ map(source : Source) : Target

Request and Response Mappers

«bind» <Target -> java::io::InputStream>

«bind» <Source -> java::io::InputStream>

Fig. 3. The abstract Mapper class and its subclasses. Request mappers create inbound
DTOs from input streams, whereas response mappers map outbound DTOs to
technology-dependent client responses.

platform will offer a service interface based on the WebDAV1 protocol allow-
ing clients to browse connected WTSs and view their current parameters in the
form of virtual files. This would require the RetrieveParameterValues service
described in Section 2 being able to understand requests sent by WebDAV clients
and produce corresponding responses.

To support arbitrary web service technologies, the framework applies the
Mapper concept as suggested by [10]. Figure 3 shows all components the frame-
work provides for the utilization of the Mapper concept.

An abstract Mapper is responsible for the transformation of a Source object
into a Target instance. The depicted subclasses limit the types applicable for
both generic parameters in the cases of inbound and outbound traffic conversion.
Thus, an inbound request, in the form of a “raw” Java InputStream, has to be
deserialized into a DTO implementing the ItoI interface so that the business
logic of a service, located in the appropriate Operation subclass, is able to handle
it. This conversion is done by a concrete mapper inheriting from RequestMapper.
The outbound response, resulting from business logic execution, will be serialized
from an OtoI-marked DTO instance into an InputStream and sent back to the
requesting client. A technology-dependent subclass of ResponseMapper performs
the serialization.

Concrete mappers are associated with a set of service Operations by an
@Mapper annotation. It specifies the mapper’s direction, i.e. inbound or out-
bound, the name of the service technology the mapper supports, e.g. “WebDAV”,
and the Multipurpose Internet Mail Extensions (MIME) type [11] being inter-
preted or produced. The annotation enables the framework to find and invoke the
appropriate mappers when clients access the business logic via different service
technologies.

3.3 Service Interfaces

Service interfaces are the key abstractions of the service framework. These classes
act as façades between a service client, such as the mobile app or a WTS, and an
Operation like UpdateParameterValue. Figure 4 shows the ServiceInterface
class.

1 http://www.webdav.org

http://www.webdav.org

362 F. Rademacher et al.

ServiceInterface
+ serve(stream : java::io::InputStream, mime : String) : java::io::InputStreamOperat ion

ServiceInterface
+ serve(stream : java::io::InputStream, mime : String) : java::io::InputStreamOperat ion

Service Interface
-operation

Fig. 4. A service interface launches a service’s business logic. It further handles the
traffic conversion between client and business logic by calling appropriate mappers.

Each class that receives data directly from a service client has to extend
ServiceInterface and call the predefined serve() method. In case of JAX-
RS, this would be all classes annotated with @Path. For services compliant with
JAX-WS, the SIBs need to derive from ServiceInterface and call serve().
WebDAV service interfaces would have to be located on a lower level of the
communication stack where it is possible to retain the raw network request in
the form of a Java InputStream.

The serve() method takes an inbound stream and a MIME type as its argu-
ments. Depending on this information, the framework invokes the Mapper appro-
priate for technology-dependent inbound and outbound traffic conversion. Every
derived ServiceInterface class has to be annotated with @ServiceInterface
to specify the name of the web service technology and the associated Operation
to handle client requests.

3.4 Framework Overview

Figure 5 shows the interactions between the different framework elements. The
interactions are consecutively numbered in their order of occurrence. Three
clients issue requests to the WTS platform via REST, WebDAV and SOAP. The
eponymous service interfaces forward the raw requests to the framework, which
may utilize the appropriate RequestMappers to create instances of inbound
DTOs. After the mapping process has finished, the ServiceInterface will exe-
cute the requested service’s Operation. A resulting outbound DTO is then sent
back to the client after it has been mapped to a stream by a technology-specific
ResponseMapper.

4 Design of a Web Service DSL

To improve the efficiency of implementing web services with the framework and
to let a service developer focus on the business logic, a DSL that can be used
to declare web services and their technology-dependent interfaces, is introduced.
Based on its definition and the framework, infrastructural code for the provision-
ing of semantically equivalent web services through interfaces of different service
technologies can be generated.

In this section, a design model, which outlines the semantic concepts of the
language and their relations, is presented first. It is expressed in the form of a
“mixed” UML diagram shown in Figure 6. The model utilizes classes to present
language concepts and inheritance to cluster sub-concepts, which may be used

Design of a Domain-Specific Language Based on a Technology-Independent 363

Fig. 5. Interactions between the different framework elements using the example of
three clients issuing REST, WebDAV and SOAP requests. Solid arrowheads represent
communication directions, whereas the semantics of all other kinds of arrowheads and
lines follow UML notations for inheritance and dependencies.

TypeInstance
name : String
type : Type

** *

«enumeration»
Ht tpMethod

GET
POST
PUT
DELETE

RestInterface
method : HttpMethod
path : String
mimeType : String

SoapInterface

Mapping
request : Boolean
response : Boolean
both : Boolean

ServiceInterface

Service Interfaces

TypeInstance
name : String
type : Type

*
BasicType

*
ListTypeStructureType

Type
name : String

Types

Response

RequestService
name : String

Services

TypeInstance
name : String
type : Type

«enumeration»
Ht tpMethod

GET
POST
PUT
DELETE

RestInterface
method : HttpMethod
path : String
mimeType : String

SoapInterface

Mapping
request : Boolean
response : Boolean
both : Boolean

ServiceInterface

Service Interfaces ** *

TypeInstance
name : String
type : Type

*
BasicType

*
ListTypeStructureType

Type
name : String

Types

Response

RequestService
name : String

Services

Design Model of the Web Service DSL

field type>

0..1

1..*

1..*

1..*

nested l ist>

0..1

0..1

Fig. 6. Design model of the web service DSL. Different concepts of the language are
expressed as classes and clustered in separate packages.

synonymously when declaring web services with the DSL. Associations connect
different semantic concepts. Additionally, packages are used to group concepts for
a better separation of concerns in the process of language implementation. The
model was derived from the framework’s specification and determines the basis
for the DSL’s grammar, syntactic rules and linkage between language expressions
and generated code.

4.1 Service Generalization

Creating the DSL, the complexity of the service framework and its concrete uti-
lization is hidden from the service developer keeping the language as expressive
and concise as possible. For that purpose, in the design model a web service is
viewed as a “black box” receiving a service request as stimulus and producing
a suitable response. At this level, the service’s business logic implementation
is irrelevant. Instead, a Service is identified by a name and the information
it receives and produces. Thus, the DSL allows the declaration of web ser-
vices and their interfaces only, excluding concrete implementations. Request

364 F. Rademacher et al.

and Response may be any kind of composite object or even empty. For exam-
ple, the UpdateParameterValue service from the case study takes an identifier
unique for each WTS and the parameter’s new value if a Request is performed.
The method produces a Result, informing the client about the outcome of its
request, represented in Figure 6 by the Response class.

Furthermore, the design model describes the type-system of the DSL, which
for example contains constraints about the texture of the mentioned compos-
ite Request and Response objects. The case study was modeled using Java’s
built-in primitive types [12] as well as object types like String and Date. In
the following, both kinds of types are subsumed under the term “basic types”.
More complex structures like the case study’s ParameterValue are assembled
of basic types. Additionally, the RetrieveParameterValues service returns a
list of ParameterValues. Thus, the DSL needs to support a variety of types,
namely (i) basic types, (ii) lists, possibly nested, representing sets of named
TypeInstances, i.e. variables storing data of a certain type, and (iii) struc-
tured types, which themselves may contain structure typed fields, i.e. named
TypeInstances of other structured types.

4.2 Representation of Technology-Specific Service Interfaces

As described in Section 3, the framework communicates with clients using service
interfaces. These façades bridge the gap between characteristics specific to a
concrete web service technology and the technology-independent business logic
of a service’s Operation. New technologies may be “attached” to the framework
in the form of specialized mapper classes, which perform inbound and outbound
traffic conversion. Both, service interfaces and mappers, need to be covered by
the design model.

A service interface is modeled in the form of an abstract ServiceInterface
extended by concrete REST- and SOAP-specific concepts. While the latter is
characterized only by the name of its assigned Service, a RestInterface has
to be specified in more detail by further properties, e.g. the HttpMethod for its
invocation. Alternative service approaches, like the already mentioned WebDAV,
may be integrated in the design model by inheriting from ServiceInterface
and declaring the attributes needed for its specification.

A Mapping may be assigned to a ServiceInterface, given a mapping direc-
tion, which may be inbound only, outbound only or both, as the eponymous
attributes of the Mapping concept imply.

4.3 Derivation of the DSL Grammar

The introduced design model already specifies some of the DSL’s characteristics.
The structure of each language concept is defined by the depicted classes, their
attributes and the associations, which link two different concepts. Multiplicities
mark optional or mandatory language elements. For example, a Service has to
be specified by a name. A Request and a Response may be assigned, which them-
selves need to be assembled from a number of named type instances. Inheritance

Design of a Domain-Specific Language Based on a Technology-Independent 365

Service: ’service’ name = ID ’:’
otoName = ’receives’ otoVariables = TypeInstances itoName = ’returns’
itoVariables = TypeInstances interfaces += ServiceInterface
(interfaces += ServiceInterface)∗ ’;’ ;

ServiceInterface: name = ’interface’
type = (RestInterface | SoapInterface) (mapping = MappingSpec)? ;

RestInterface: name = ’rest’
’method’ method = HttpMethod ’path’ path = STRING ’handles’ mime = MimeSpec ;

HttpMethod: name = (’get’ | ’post’ | ’put’ | ’delete’) ;
SoapInterface: {SoapInterface} name = ’soap’ ;
MappingSpec: name = ’maps’ (request ?= ’request’ | response ?= ’response’ | both ?= ’both’) ;

Listing 3. Excerpt from the Xtext-based grammar of the DSL. It shows those parts
relevant for the definition of REST- and SOAP-based service interfaces.

is used to cluster semantic concepts: At least one concrete ServiceInterface,
acting as an adapter for a certain service technology, is linked to a Service
and thus enables technology-dependent clients to invoke a web service’s business
logic.

Listing 3 shows the substantial part of the grammar definition derived from
the design model. The excerpt specifies how REST and SOAP services may be
declared using the DSL. The grammar is expressed using Xtext2, a Java-based
framework we employed to implement the web service DSL. Definitions targeting
the type-system and MIME types are omitted due to lack of space.

The Service concept of the design model is represented by the eponymous
grammar rule and syntactically introduced by the service keyword, the service’s
name and a colon. The Request and Response concepts of the design model are
linked with a service through the receives and returns keywords, followed by
a number of TypeInstances.

Furthermore, in the design model the Service concept is associated with
the ServiceInterface concept. This allows the service developer to provide
web services leveraging different technologies. Within the grammar, the link-
age between a service and its technology-dependent interfaces is realized by the
ServiceInterface rule. Each interface declaration starts with the interface
keyword and one of the identifiers rest or soap, representing the RestInterface
and SoapInterface sub-concepts.

As shown in the design model, a RestInterface consists of attributes for the
HTTP method it may be invoked by, its URI path and the handled MIME type.
These attributes are grammatically expressed by the keywords method, path and
handles of the RestInterface rule. The SoapInterface sub-concept doesn’t
have any attributes and thus the eponymous grammar rule hasn’t either. In fact,
a SOAP interface is solely assigned to a service through the soap identifier.

A mapping for inbound requests, outbound responses or both may be
attached to a REST or SOAP service interface, allowing the service developer to
implement custom mappers in environments where automatic traffic conversion,
e.g. by specialized frameworks, may not be available.

Using the grammar the case study’s UpdateParameterValue service offering
REST and SOAP access might be declared as shown in Listing 4.

2 http://www.eclipse.org/Xtext

http://www.eclipse.org/Xtext

366 F. Rademacher et al.

1 service UpdateParameterValue:
2 receives long wtsId, String paramName, Date timestamp, String value
3 returns int returnCode
4 interface rest method put path "wts/{wtsId}/{paramName}" handles "application/json"
5 interface soap;

Listing 4. Declaration of UpdateParameterValue with the DSL. The service is
accessible via REST and SOAP.

5 Implementation of a Code Generator for the DSL

Based on the design model of the web service DSL and the derived grammar,
the implementation of a code generator becomes straightforward. It has to parse
service declarations like the one in Listing 4 and create an Abstract Syntax Tree
(AST). An AST consists of a number of subtrees, each representing a collection of
instances of the design model elements. However, at the stage of code generation,
the Request and Response concept instantiations contain no values. This is
because in the DSL both concepts are used to describe composite type structures,
whose AST “instances” are classes composed of the declared fields.

Figure 7 shows the subtree corresponding to the UpdateParameterValue
service expressed in Listing 4 in the form of a UML object diagram.

5.1 Mapping Between AST Elements and Java Code

The code generator traverses the AST and translates each subtree into a piece of
Java code leveraging the framework introduced in Section 3 to gain reusability
of business logic across different service technologies. Thus, the code genera-
tor is used to bridge the gap between service modeling and implementation.
As already stated, the DSL only allows the declaration of web services. For
each declared service the code generator produces a stub method wherein the
technology-independent business logic needs to be implemented. This lets a ser-
vice developer focus on the correctness of a service’s concrete realization instead
of its provisioning by different service technologies for different clients. As the
stub methods are generated only once to prevent existing business logic imple-
mentations from being overwritten, all other framework-related code is generated
every time a new service interface is declared. This provides a better maintenance
of the generated code as outdated versions of the framework may immediately
be replaced by new ones.

:RestInterface
method = PUT
path = "wts / {wts Id} / {paramName}"
mimeType = "application/json" :SoapInterface

:Response
returnCode : Integer

:Request
wtsId : Long
paramName : String
timestamp : Date
value : String

:Service
name = "UpdateParameterValue"

:RestInterface
method = PUT
path = "wts / {wts Id} / {paramName}"
mimeType = "application/json" :SoapInterface

:Response
returnCode : Integer

:Request
wtsId : Long
paramName : String
timestamp : Date
value : String

:Service
name = "UpdateParameterValue"

Parsed Representation of the UpdateParameterValue Service Declaration

Fig. 7. AST subtree for the UpdateParameterValue service.

Design of a Domain-Specific Language Based on a Technology-Independent 367

Table 1. Coherences between concepts of the DSL’s design model and generated Java
code based on the web service framework.

Language Concept Generated Java Code

StructureType Java class, consisting of the assigned TypeInstances in the form
of attributes with getters and setters.

ListType Java class, containing a generic java.util.List attribute whose
type parameter is a class composed of the TypeInstances stored
in the list.

BasicType Attribute of the assigned type in either a ListType,
StructureType, Request or Response.

Request Java class, marked with ItoI containing getters and setters for
the assigned TypeInstances.

Response Like Request, but marked with OtoI.

Service Class, extending Operation and providing a stub method for
business logic implementation by a service developer.

RestInterface JAX-RS class, extending ServiceInterface. The class contains
a request handler method, which is annotated with @Path speci-
fying the service URI and @Consumes/@Produces for MIME type
handling. The method calls ServiceInterface.serve().

SoapInterface JAX-WS compliant SEI and SIB. The latter extends
ServiceInterface and invokes ServiceInterface.serve().

Mapping Class, extending either RequestMapper or ResponseMapper and
containing a stub method for the mapping logic yet to be imple-
mented by a service developer.

Table 1 shows the coherences between the language concepts defined in the
design model and the framework-based code produced by the generator. A map-
ping isn’t defined for abstract concepts, which cluster concrete ones, depicted in
the design model in the form of super classes.

5.2 Evaluation of the Generator’s Efficiency

All boilerplate code demanded by the service framework is automatically gen-
erated as listed in Table 1 from a service declaration based on the DSL. This
leads to an increased developer productivity being one of the advantages of a
code generator [13].

For the case study’s UpdateParameterValue service the corresponding dec-
laration using the proposed DSL was already given in Listing 4. The five lines
of DSL code (LODC) result in the following Java-based classes produced by the
code generator (the arabic numerals in brackets determine the generated lines of
boilerplate code): (i) a Request class (46), (ii) a Response class (21), (iii) a JAX-
RS handler class (35), (iv) a JAX-WS SEI and SIB (44), (v) an Operation class
(12) containing a stub method for subsequent business logic implementation. All
generated classes comprise 158 lines of boilerplate code (LOBC) excluding empty
lines. To measure the generator’s efficiency, the quotient of the LOBC and LODC
metrics, denoting the average number of LOBC each line of DSL code produces

368 F. Rademacher et al.

(ALOBC), is calculated first. A second measure is the difference between LOBC
and LODC, denoting the LOBC a service developer need not to implement and
maintain (NLOBC). Both metrics are only used to assess changes made in the
context of the framework and the DSL. Thus, their values are not comparable
to those of other DSLs. When applying them to the UpdateParameterValue
declaration expressed in the service DSL, the ALOBC is 31.6 and the NLOBC
is 153.

To make an even more reliable statement on the efficiency of the code genera-
tor and to take a wider range of web services into account for a measurement, the
DSL was used to implement 25 web services for a more complex case study. At
first, 20 structured types were declared. These types contained 114 fields in total,
which results in an average of 5.7 fields per declared type. Of these 114 fields
the types of 17 fields corresponded to one of the 20 structured types, seven rep-
resented lists of the structured types and the remaining 90 were declared using
basic types. Each of the defined 25 web services provided a REST and a SOAP
interface. 15 services expected a Request object with an average of two fields
per object each of a basic type. Ten out of 25 services didn’t expect a Request,
as these only returned a list of predefined, immutable master data. Overall, 21
out of 25 services returned a Response object. 13 Responses were lists com-
prising one of the 20 structured types. This resulted in each list containing an
average of 7.85 basic typed fields. Seven Responses corresponded to one of the
20 structured types with an average field count of 6.43. One service returned a
Response consisting of a single String. For the type and service declarations
252 LODC were needed. The generator produced the following Java-based classes
(LOBC stated by bracketed arabic numerals): (i) 20 type classes (919), (ii) 15
Request classes (504), (iii) 21 Response classes (559), (iv) 25 JAX-RS handler
classes (939), (v) 25 JAX-WS SEIs and SIBs (1104), (vi) 25 Operation classes
(359). The generated code consisted of 4384 LOBC. Thus, the ALOBC measure
amounted to 17.4, the NLOBC measure to 4132.

6 Related Work

In this section, we first present related work concerning web service DSLs. Fol-
lowing, we give an overview of papers targeting the simultaneous provisioning
of REST- and SOAP-based web services. The section closes with a placement of
the service DSL in the field of DSL-based web engineering.

In [3] a model-driven approach for the generation of REST interfaces is intro-
duced. A presentation layer is applied to an application, condensing a number of
existing web services from the latter, using “Use Case-specific interfaces”. Service
developers may declare these interfaces utilizing a DSL whose statements will be
translated into JAX-RS-based code. However, SOAP isn’t taken into account as
the modeled services target clients with limited resources. In [14] Nguyen et al.
describe a DSL called SWSM (Simple Web Service Modeling) for the modeling
of SOAP services and propose a methodology for its usage. [15] presents a DSL
for web service mashups based on different technologies. The paper involves an

Design of a Domain-Specific Language Based on a Technology-Independent 369

example of combining a SOAP-based service for web searching and a RESTful
photo API, both hosted by different companies. [16] and [17] discuss the simul-
taneous integration of REST and SOAP by converting services based on one
technology into services based on the other technology. With such an approach
developers don’t have to learn a new language to provide the same business logic
via different technologies. However, for each new service technology transforma-
tion rules have to be defined for each possible direction of conversion, while with
the introduced framework and DSL there are always only two mapping direc-
tions no matter how many service technologies have already been integrated:
from service protocol to Java objects and vice versa. In [18] Shi introduces an
approach for defining service semantics requester-oriented, i.e. independent from
concrete technologies like REST and SOAP. The framework and DSL introduced
above may serve as the technological basis behind a requester-oriented service
interface that abstracts from different information exchange formats demanded
by different web service technologies. The utilization of DSLs in the domain of
web applications is described in [19] by means of a case study. The presented
WebDSL allows the definition of data models and simple web pages. As web
services aren’t considered, combining WebDSL and the introduced service DSL
would allow a web engineer to efficiently design web pages and provide data
exchange with clients.

7 Conclusion and Future Work

In this paper, we first presented a framework for the provisioning of semantically
equivalent business logic via different web service technologies. Furthermore, we
introduced a DSL for the technology-independent declaration of web services and
showed the implementation of a code generator, which creates all necessary boil-
erplate code for subsequent business logic implementation. We bridged the gap
between framework model and language design by means of a design model, that
was used to derive the DSL grammar regarding associations between different
language concepts.

The DSL enables a service developer to concentrate on the correct imple-
mentation of business logic without keeping requirements of different web ser-
vice technologies in mind. In addition, the code generator not only increases
developer productivity, but guarantees a certain quality of the framework-based
boilerplate code, which surrounds the business logic.

However, there are some limitations concerning the DSL. At first, the DSL
implementation isn’t as extensible as the underlying design model and the frame-
work. Both allow the rapid integration of additional service interfaces, e.g. for
the WebDAV protocol. The DSL’s architecture may not be extended in a flex-
ible manner, yet. In future work, we plan to enhance the design model in a
way that enables the automatic inheritance of the DSL’s grammar and architec-
ture through model transformation. Another shortcoming is the DSL’s limited
expressiveness concerning SOAP. Currently there are no language constructs for

370 F. Rademacher et al.

standards defined in the WS-* stack of W3C’s Web Services Activity3. They
might act as case studies when applying model transformation to inherit parts
of the DSL from its design model. In addition, in the future the code generator
shall be extended to produce code, which clients like mobile apps may leverage
to invoke the declared services’ interfaces.

References

1. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine (2000)

2. Gudgin,M.,Hadley,M.,Mendelsohn,N.,Moreau, J.J., Nielsen,H.F.,Karmarkar,A.,
Lafon, Y.: Soap version 1.2. W3C Recommendation 24 (2003)

3. Gulden, M., Kugele, S.: A concept for generating simplified restful interfaces.
In: Proceedings of the 22nd International Conference on World Wide Web,
pp. 1391–1398. ACM (2013)

4. Crockford, D.: The application/json media type for javascript object notation
(json). The Internet Society, Request for Comments 4627 (2006)

5. Object Management Group: Service oriented architecture modeling language
(soaml). OMG Formal Versions Of SoaML (ptc/2009-04-01) (2009)

6. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web
services: making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, pp. 805–814. ACM (2008)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
Reusable Object-Oriented Software, 40th edn. Addison-Wesley, Boston (2012)

8. Hadley, M., Sandoz, P.: Jax-rs: Java api for restful web services. Java Specification
Request 311 (2009)

9. Kotamraju, J.: The java api for xml-based web services (jax-ws) 2.2. Java Specifi-
cation Request 224 (2011)

10. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley, Boston (2011)

11. Freed, N., Borenstein, N.: Multipurpose internet mail extensions (mime) part two:
Media types. Network Working Group, Request for Comments 2046 (1996)

12. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 2nd
edn. Addison-Wesley, Reading (2000)

13. Kieburtz, R.B., McKinney, L., Bell, J.M., Hook, J., Kotov, A., Lewis, J., Oliva, D.P.,
Sheard, T., Smith, I., Walton, L.: A software engineering experiment in software
component generation. In: Proceedings of the 18th International Conference on
Software Engineering, pp. 542–552. ACM (1996)

14. Nguyen, V.C., Qafmolla, X., Richta, K.: Domain specific language approach on
model-driven development of web services. Acta Polytechnica Hungarica 11(8),
121–138 (2014)

15. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain-specific language
for web APIs and services mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

16. Peng, Y.Y., Ma, S.P., Lee, J.: Rest2soap: a framework to integrate soap services and
restful services. In: IEEE International Conference on Service-Oriented Computing
and Applications, pp. 106–109. IEEE (2009)

3 http://www.w3.org/2002/ws

http://www.w3.org/2002/ws

Design of a Domain-Specific Language Based on a Technology-Independent 371

17. Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., Lau, A.: Migration of soap-based ser-
vices to restful services. In: 13th IEEE International Symposium on Web Systems
Evolution, pp. 105–114. IEEE (2011)

18. Shi, X.: Sharing service semantics using soap-based and rest web services. IT
Professional 8(2), 18–24 (2006)

19. Visser, E.: WebDSL: a case study in domain-specific language engineering. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235,
pp. 291–373. Springer, Heidelberg (2008)

Tailoring the ATAM for Software Ecosystems

Simone da Silva Amorim1,4(B), John D. McGregor2,
Eduardo Santana de Almeida3,4, and Christina von Flach G. Chavez4

1 Federal Institute of Education, Science and Technology of Bahia,
Salvador, Bahia, Brazil

simone.amorim@ifba.edu.br
2 Clemson University, Clemson, SC, USA

johnmc@cs.clemson.edu, esa@dcc.ufba.br
3 Fraunhofer Project Center for Software & Systems Engineering,

Federal University of Bahia, Salvador, Bahia, Brazil
4 Federal University of Bahia, Salvador, Bahia, Brazil

flach@dcc.ufba.br

Abstract. Software ecosystems often form around a platform which is
defined by a reference architecture. None of the existing architecture
evaluation methods evaluate the unique aspects of the architectures that
drive a software ecosystem. These architectures emphasize properties,
such as Extensibility, Flexibility, and Scalability, that should be consid-
ered during an architecture evaluation. An evaluation method must also
allow stakeholders, who are spread around the world, to participate in the
evaluation. To address these issues, this paper proposes a method, Archi-
tectural Analysis Method for Evolving Ecosystems (AAMEE), to evalu-
ate the architecture that is the basis for a software ecosystem. AAMEE,
a variant of ATAM, analyzes architectural scenarios covering both the
platform and product architectures in the ecosystem. The method has
been piloted through its application to the architecture of the Noosfero
ecosystem. We report some lessons learned.

Keywords: Software ecosystems · Software architecture · Architectural
evaluation

1 Introduction

The ecosystem strategy is based on an organization developing a partial product
and exposing its interfaces to the outside world. This partial product, referred
to as a platform, is defined by a reference architecture that describes a complete
product. For the ecosystem to be successful a product architecture should be able
to be derived from the reference architecture quickly and easily [8]. If the product
architecture can be quickly and easily derived from the reference architecture
future product builders will be encouraged to use the platform and the ecosystem
thrives.

Previous research and experience have shown that having an effective and
efficient architecture evaluation method is critical to success. The Architecture
c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 372–380, 2015.
DOI: 10.1007/978-3-319-23727-5 30

Tailoring the ATAM for Software Ecosystems 373

Tradeoff Analysis Method (ATAM) evaluates architecture-level designs that con-
sider multiple quality attributes [9]. ATAM has been tailored in several ways to
meet specific evaluation objectives and differing architecture patterns [12]. In
this paper we present the Architectural Analysis Method for Evolving Ecosys-
tems (AAMEE), a specialization of ATAM that is effective in the context of the
ecosystem strategy.

In our previous research on ecosystem architectures [1–3] we identified sev-
eral issues that an architecture evaluation method should be able to address to
be effective in an ecosystem. The evaluation method must accommodate this
multi-purpose environment with a community making decisions about the plat-
form architecture and multiple business strategies defined by the different orga-
nizational contributors to the ecosystem. AAMEE is designed to address the
issues described above. It works with ecosystems of different granularity levels,
analyzes the point view of different roles in the community, and operates through
asynchronous communication channels. To make the evaluation efficient, as well
as effective, we will narrow the evaluation technique to only consider the high
priority attributes of Extensibility, Flexibility, and Scalability, identified in our
previous work [1–3].

The remainder of this paper is organized as follows: Section 2 presents related
work; Section 3 describes characteristics of ecosystem architectures, their view-
points and the quality attributes used in this evaluation; Section 4 presents
the AAMEE approach and explains some differences from the ATAM approach;
Section 5 shows a pilot experience of an application of to a real-world ecosystem;
and Section 6 presents conclusions and perspectives for future directions.

2 Related Work

Kazman et al. developed the Architecture Tradeoff Analysis Method (ATAM),
which evaluates quality attribute requirements by examining the consequences of
architectural decisions [9]. It also identifies risks, sensitive points and tradeoffs,
besides evaluating multiple quality attributes and can be used in different envi-
ronments. However, ATAM does not address directly some ecosystem character-
istics such as having numerous external developer organizations with conflicting
requirements and strategies; a community that influences directly the platform
architecture; and a varied, perhaps conflicting, set of business strategies resulting
from the diversity of organizations participating in the ecosystem.

Several variations on ATAM have been defined. Bengtsson et al. [4] introduced
the Architecture Level Modifiability Analysis (ALMA). This is a scenario-based
software architecture analysis method that focuses only on the modifiability qual-
ity attribute. It can be used to achieve one of three goals: comparing software
architectures, predicting maintenance effort or doing risk assessment.

Knodel et al. [10] proposed Rapid ArchiTecture Evaluation (RATE). RATE
also works with architectural scenarios that are used to identify risks, sensi-
tivity points, tradeoffs, strengths, and weaknesses. Besides, it verifies the suit-
ability of the documentation to development process and how it is readable

374 S. da Silva Amorim et al.

and updated, and validates the conformity of implementation with the designed
architecture. RATE can evaluate different quality attributes, however, it does
not define strategies to support ecosystem architectures and their community
environment with multiple concrete architectures and applications and develop-
ers spread around world.

Graff et al. [6] reported on a modification of ATAM to address reference
architectures similar to that for an ecosystem. They used a scenario approach
similar to that reported here but only from a single abstract perspective. We will
analyse the reference architecture as it is defined for the ecosystem of products
and as it is used for individual products.

3 Quality Attributes

The software architecture for an ecosystem is a reference architecture for a set
of products. That architecture is the basis for both the platform and for apps
built on the platform. These architectures are developed in a shared market to
meet community needs [7]. Regarding the characteristics of these architectures,
AAMEE analyzes three quality attributes:

– Extensibility reflects how easily the architecture will accommodate the future
growth, e.g. adding new requirements, of the system [5].

– Scalability is the effort required to adapt the system to new requirement
that modify the size and scope of the computation[13].

– Flexibility expresses how easy, cheap, and fast necessary changes to software
systems, i.e. existing requirements, can be accomplished [11].

Our previous work [1–3] indicate the significant impact of these quality
attributes on evolving ecosystems architectures, so we chose them as the primary
considerations when evaluating an evolving ecosystem architecture.

4 AAMEE Approach

AAMEE is an adaptation of the ATAM for ecosystem architectures. The main
ATAM steps are retained but the way in which they are applied supports both
the ecosystem platform and the applications built on the platform. The specific
goal of AAMEE is to promote a rational evaluation and analysis of ecosystem
architectures covering three quality attributes. The evaluation identifies risks
and problems with respect to these attributes and gathers suggestions from
application developers for architectural improvement. AAMEE can be applied
during any stage of software development; however, it is most effective when
the software architecture is already implemented and applications have been
created using the platform. AAMEE can be applied to small, medium and large
ecosystems; to ecosystems with different sizes of modules from micro-services to
subsystems used in systems-of-systems, and different governance models from
proprietary to open source.

Tailoring the ATAM for Software Ecosystems 375

Benefits of the AAMEE are: classification of quality attributes state, detec-
tion of risks and problems, and analysis of two-sided view (applications and
platform developers) of the platform. AAMEE has different roles: evaluators,
application developers, and platform developers. Evaluators are responsible for
conducting all steps of the method. Application developers participate evaluating
interactions between platform and applications. Lastly, evaluators and platform
developers evaluate the platform, analyze all scenarios and generate a list of
risks and problems of the architecture. Moreover, they analyze feedback col-
lected from application developers about relevant architectural points regarding
the three quality attributes. Templates of AAMEE artifacts can be found at
http://homes.dcc.ufba.br/∼ssamorim/aamee/.

Fig. 1. AAMEE Steps

The AAMEE activities are divided into two phases and 9 steps. The first
phase, encompassing the first 6 steps, involves the evaluation conducted with
application developers and the second phase, consisting of 3 steps, presents the
evaluation conducted with platform developers. Figure 1 shows the complete
flow of the AAMEE.

4.1 Phase 1

Step 1 - Preparation. In this first step, some stakeholders prepare all the
material to be used during the application of the method. The evaluative team
prepares a presentation of the AAMEE, a questionnaire for application develop-
ers, and forms, which we describe later. Concurrently, the lead architects of the
platform prepare an architecture presentation.

http://homes.dcc.ufba.br/~ssamorim/aamee/

376 S. da Silva Amorim et al.

Step 2 - Presentation to Application Developers. The second step is the
lead evaluators’ AAMEE presentation to application developers. This presen-
tation explains the goals of AAMEE, roles and responsibilities of participants,
and the steps in the method. Moreover, the evaluators explain the outputs for
the evaluation and define outlines according to available time of the application
developers.

Step 3 - Identification of Scenarios with Application Developers. The
third step includes processes for the identification of evolution scenarios. These
scenarios are created based on interactions between the platform’s architecture
and application’s architecture. Application developers define present day and
future scenarios that impact the three quality attributes. They also can indicate
problems found and workarounds.

Step 4 - Prioritization of Scenarios with Application Developers. In
this step, the application developers order the scenarios according to their impor-
tance. Priority is determined by application developer knowledge and listed in
descending order. The most important scenario is numbered 1, and so on.

Step 5 - Questionnaire with Application Developers. In this step, a
questionnaire is developed for the specific evaluation and distributed to applica-
tion developers. It is intended to identify architectural issues about ecosystem
architectures that impact on progress of the work.

Step 6 - Presentation for Platform Developers. This step consists of
the AAMEE presentation to platform developers conducted by the lead evalu-
ators. Similar to the presentation for applications developers, this presentation
explains the goals of AAMEE, roles and responsibilities of participants, and the
steps in the method. The focus of the presentation is on the platform core and
the platform team is presented questions that help to identify scenarios related
specifically to quality attributes of the platform.

4.2 Phase 2

Step 7 - Identification of Scenarios with Platform Developers. In
this step, platform developers identify scenarios that impact the three quality
attributes. These scenarios encompass different situations which influence design
decisions and can increase or decrease the level of the quality attributes focusing
on the platform core.

Step 8 - Prioritization of Scenarios with Platform Developers. This step
consist of prioritizing the scenarios according to the level of impact on the qual-
ity attributes. Platform developers determine the ordering by considering all the

Tailoring the ATAM for Software Ecosystems 377

scenarios created by both groups. Application developers prioritized their sce-
narios previously, but platform developers analyze that classification and judge
if these prioritizations should be kept or modified in accordance with the view of
the platform core. At the end, all scenarios are prioritized regarding descending
order starting by the most important scenario is assigned with number 1.

Step 9 - Scenario Evaluation and Results. This final step consists of rec-
ognizing and analyzing limitations imposed by the current platform architecture
on the scenarios and identifying risks to successful implementation of the pri-
oritized scenarios. These scenarios populate an result matrix and are classified
in accordance with its influence degree for each quality attribute. The influence
degree can be ranked as negative, positive or neutral. Besides, the negative and
positive scale can be categorized as low, medium and high depending on its
impact. These values are gathered through scenario forms for application and
platform developers. Evaluation team analyzes limitations and risks found by
both groups, summarizes results eliminating duplicative information, and makes
recommendations for future versions of the platform. These results are available
for all participants of AAMEE process.

4.3 Tailoring ATAM

ATAM is a well-established method and have been used to evaluate software
architectures over time. We designed AAMEE to take advantage of the ATAM’s
strengths and changed some aspects to address weaknesses. AAMEE’s heavier
reliance on scenarios allows sessions to be held remotely and even asynchronously.
Presentations, discussions, voting, etc. are conducted online in response to
ecosystem characteristics such as having people around the world collaborat-
ing. Meetings can be scheduled and conducted using social media tools and
collaborative meeting tools, as well as making videos of the presentations of the
approach and architecture available online for all members of the community.
Discussions occur via forums or mailing lists and scenario voting is available in
specific forms accessible on the Internet. Regarding the quantity of participants
and distance among them, AAMEE can be conducted in a period from 1 to 3
months in order for all interested parties to have time to share their vision and
experience.

5 Experience

We illustrate how to use AAMEE for architectural evaluation with a pilot expe-
rience performed in the Noosfero ecosystem (http://Noosfero.org). Noosfero is
an open source web platform for social and solidarity economy networks. It was
created and has been maintain by Colivre (http://colivre.coop.br/). Noosfero is
a young and small ecosystem that has a community of around 219 developers
and 475,000 lines of code (https://www.openhub.net/p/noosfero).

http://Noosfero.org
http://colivre.coop.br/
https://www.openhub.net/p/noosfero

378 S. da Silva Amorim et al.

5.1 Applying AAMEE

The Noosfero architecture was presented by the lead architect in an online meet-
ing. He introduced all the main components of the system, business drivers,
and technologies used such as database management systems and middleware
servers. Due to the large number of components and lines of code, the evaluator
and architect, decided to reduce the scope of the evaluation. A small component
of Noosfero core called Conteudo was chosen as the target of the case study.
This component was chosen because of the important tasks it performs and its
interaction with several external applications.

Scenario elicitation occurs in two phases of the AAMEE. In step 3, our case
study had the participation of two application developers belonging to different
organizations outside of Colivre. Developers identified 15 scenarios of interac-
tions with their application and answered the questionnaire. In step 7, we had
participation of one platform developer, who is also the leader architect of Noos-
fero. He identified 4 scenarios.

5.2 Noosfero Results

The questionnaire answered by applications developers offered data about their
level of work experience, their activities, and their opinions about Noosfero archi-
tecture. These answers were used to complement the list of problems and risks
gathered by scenario elicitation. Furthermore, the evaluator conducted the pro-
cess of voting for all scenarios elicited to establish the priority for each scenario.
Only platform developers voted and prioritized scenarios. In the Noosfero case,
the leader architect considered all scenarios important and agreed with the pri-
ority defined previously by application developers. Using the scenario priorities
and information collected from the questionnaire, the evaluator built a result
matrix for all scenarios and created lists composed by risks and problems that
influence the three quality attributes. Analyzing all scenarios, it was concluded
that the majority of the scenarios were viewed positively for the Extensibility and
Scalability attributes. However, the Flexibility attribute was viewed negatively,
requiring actions and changes by Noosfero team to improve the architecture with
respect to this quality attribute.

6 Conclusion and Future Work

In this paper, we propose AAMEE, a method for evaluation of software ecosys-
tem architectures focusing on Extensibility, Scalability and Flexibility quality
attributes. This method is an adaptation of ATAM and addresses the two dis-
tinct audiences in an ecosystem: platform developers and application developers.
The approach is based on scenarios analysis, but it is adapted to support devel-
opment processes of the large distributed communities present in ecosystems. We
applied this approach in a component of a real-world ecosystem, the Noosfero
ecosystem, for validation.

Tailoring the ATAM for Software Ecosystems 379

The next step is to extend the application of the AAMEE to the whole Noos-
fero ecosystem. Furthermore, apply the AAMEE in medium and large ecosystems
to validate this approach for ecosystems with different size, scope, and granu-
larity. Going forward, we will adapt and apply an evaluation considering other
quality attributes.

Acknowledgments. The authors would like to thank to Victor Costa, Arthur Del
Esposte and Antonio Terceiro, application and platform developers of the Noosfero
ecosystem. Their contribution in the evaluation process was essential for the accom-
plishment of this work. This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES - http://www.ines.org.br),
funded by CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08 and
CNPq grants 305968/2010-6, 559997/2010-8, 474766/2010-1 and FAPESB. McGregors
work was partially funded by the National Science Foundation grant #ACI-1343033.

References

1. Amorim, S.d.S., de Almeida, E.S., McGregor, J.D.: Extensibility in ecosystem
architectures: an initial study. In: Proceedings of the 2013 International Workshop
on Ecosystem Architectures, WEA 2013, pp. 11–15, August 2013

2. Amorim, S.d.S., de Almeida, E.S., McGregor, J.D.: Scalability of ecosystem archi-
tectures. In: Proceedings of the 11th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2014, pp. 49–52, April 2014

3. Amorim, S.d.S., de Almeida, E.S., McGregor, J.D., Chavez, C.v.F.G.: Flexibility
in ecosystem architectures. In: Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW 2014, pp. 14:1–14:6 (2014)

4. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability
analysis (ALMA). Journal of Systems and Software 69, 129–141 (2004)

5. Buschmann, F., Meunier, R., Rohnert, H., Stal, M.: vol. 1. Wiley (1996)
6. Graaf, B., Van Dijk, H., Van Deursen, A.: Evaluating an embedded software refer-

ence architecture. In: Proceedings of the Ninth European Conference on Software
Maintenance and Reengineering, CSMMR 2005, pp. 354–363, March 2005

7. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: Proceedings of the 31st International
Conference on Software Engineering: Companion Volume, ICSE 2009, pp. 187–190,
May 2009

8. Jansen, S.: How quality attributes of software platform architectures influence soft-
ware ecosystems. In: Proceedings of the 2013 International Workshop on Ecosystem
Architectures, WEA 2013, pp. 6–10 (2013)

9. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
architecture tradeoff analysis method. In: Proceedings of the Fourth IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, ICECCS 1998,
pp. 68–78, August 1998

10. Knodel, J., Naab, M.: Software architecture evaluation in practice - retrospective
on more than 50 architecture evaluations in industry. In: Proceedings of the 2014
IEEE/IFIP Conference on Software Architecture, WICSA 2014, pp. 115–124, April
2014

http://www.ines.org.br

380 S. da Silva Amorim et al.

11. Naab, N., Stammel, J.: Architectural flexibility in a software-systems life-cycle:
systematic construction and exploitation of flexibility. In: Proceedings of the 8th
international ACM SIGSOFT conference on Quality of Software Architectures,
QoSA 2012, pp. 13–22, June 2012

12. Ram, N.S., Rodrigues, P.: Enhanced quantitative trade-off analysis in quality
attributes of a software architecture using bayesian network model. JDCA 3(4)

13. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Wiley, January 2009

Author Index

Abbas, Nadeem 20
Agrawal, Ashish 37
Alvares, Frederico 3
Amorim, Simone da Silva 372
Andersson, Jesper 20
Angelov, Samuil 157, 268
Astudillo, Hernán 55

Babar, Muhammad Ali 70
Baresi, Luciano 277
Belle, Alvine Boaye 339
Blom, Leen 239
Brenner, Eugen 251
Brinkkemper, Sjaak 239
Bures, Tomas 45

Capiluppi, Andrea 146
Chavez, Christina von Flach G. 372

de Almeida, Eduardo Santana 372
de Beer, Patrick 157
Desrosiers, Christian 339
Dony, Christophe 322
Duchien, Laurence 285, 294

Egyed, Alexander 305
El Boussaidi, Ghizlane 339

Fernandez, Eduardo B. 55

Galster, Matthias 268
Gerostathopoulos, Ilias 45
Ghabi, Achraf 305
Groenda, Henning 221
Groher, Iris 181

Hansen, Klaus Marius 95
Hnetynka, Petr 45
Hujecek, Adam 45

Ivanchikj, Ana 87

Jagroep, Erik A. 239
Jamshidi, Pooyan 212
Jansen, Slinger 121

Kacem, Ahmed Hadj 322
Kallel, Sahar 322
Kiwelekar, Arvind W. 169
Koziolek, Anne 221
Kpodjedo, Sègla 339
Kreiner, Christian 251

Lago, Patricia 195
Lenhart, Torsten 259
Lewis, Grace A. 195

Macher, Georg 251
Manikas, Konstantinos 95
McGregor, John D. 372
Mili, Hafedh 339
Muccini, Henry 137

Naab, Matthias 259

Pahl, Claus 212
Pautasso, Cesare 87
Pedraza-García, Gilberto 55
Peters, Martin 357
Plasil, Frantisek 45
Prabhakar, T.V. 37
Pulou, Jacques 285

Quinton, Clément 294

Rademacher, Florian 357
Reussner, Ralf 221
Romero, Daniel 294
Rost, Dominik 259
Rutten, Eric 3

Sachweh, Sabine 357
Schmitt, Hartmut 259
Schreier, Silvia 87
Seinturier, Lionel 3, 294
Shahin, Mojtaba 70
Shahzada, Adnan 277
Skoda, Dominik 45
Smrithi Rekha, V. 137
Spauwen, Ruvar 239

Sporer, Harald 251
Stier, Christian 221

Tahri, Amal 285
Tamburri, Damian A. 137
Tang, Antony 105
Tibermacine, Chouki 322
Tramoni, Bastien 322
Trubiani, Catia 305

Valdez, Carolina 294
van der Werf, Jan Martijn E.M. 239
van Vliet, Hans 105
van Vliet, Rob 239

Wang, Zhenchen 146
Wankhede, Hansaraj S. 169
Weinreich, Rainer 181
Weitzel, Balthasar 259

382 Author Index

	Preface
	Organization
	Keynotes Research Track
	What Architecture Can TeachUs About When, Where,and Why Software Systems Decay
	Adaptive Collective SystemsAre We Ready to Let Go of Control?
	Contents
	Adaptation
	High-Level Language Support for Reconfiguration Control in Component-Based Architectures
	1 Introduction
	2 The Znn.com Example Application
	3 Ctrl-F Language
	3.1 Overview and Common Concepts
	3.2 Behaviours
	3.3 Policies

	4 Heptagon/BZR Model and Implementation
	4.1 Modeling Ctrl-F in Heptagon/BZR
	4.2 Compilation Tool-Chain
	4.3 Adaptation Scenario

	5 Related Work
	6 Conclusion
	References

	Architectural Reasoning Support for Product-Lines of Self-adaptive Software Systems - A Case Study
	1 Introduction
	2 An Extended Architectural Reasoning Framework
	2.1 Illustrative Example
	2.2 Domain Quality Attribute Scenarios
	2.3 Domain Responsibility Structure

	3 Evaluation
	3.1 Design and Planning
	3.2 Data Collection

	4 Analysis of Results
	4.1 Support for Reusability
	4.2 Fault Density
	4.3 Support for Architectural Reasoning
	4.4 Threats to Validity

	5 Related Work
	6 Discussion and Conclusions
	References

	Towards a Framework for Building Adaptive App-Based Web Applications Using Dynamic Appification
	1 Introduction
	2 Appification Framework
	2.1 Analyze Quality Requirements
	2.2 Identify QAS for Variability
	2.3 Design the Application
	2.4 Build Appification Strategy Selector
	2.5 Implement the Application
	2.6 Build Appification Manager

	3 Case Study
	3.1 Server-Driven Adaptation
	3.2 Client-Driven Adaptation

	4 Conclusion and Future Work
	References

	Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems
	1 Introduction
	2 Running Example and Background
	3 Meta-Adaptation Strategies
	4 Experimental Evaluation and Conclusion
	References

	Design Approaches
	Revisiting Architectural Tactics for Security
	1 Introduction
	2 Architectural Tactics to Build Secure Systems
	3 Building Secure Systems with Patterns
	4 Security Principles and Policies
	5 Evaluating the Current Tactic Set from Security Standpoint
	6 New or Modified Tactics
	6.1 Detect Attacks
	6.2 Stop or Mitigate Attacks
	6.3 React to Attacks
	6.4 Recover from Attacks

	7 Realizing Tactics with Security Patterns
	Tactic Security pattern realization

	8 Related Work and Validation
	9 Conclusions
	References

	Improving the Quality of Architecture Design Through Peer-Reviews and Recombination
	1 Introduction
	2 Background and Motivation
	3 Research Design and Logistical Details
	3.1 Research Method
	3.2 The Participants and The System
	3.3 Case Study Process

	4 Results
	4.1 Findings from Analyzing Quantitative Data
	4.1.1 The Quality of Architecture Design
	4.1.2 The Quality of Design Decisions
	4.2 Findings from Analyzing Qualitative Data

	5 Discussion and Limitations
	6 Conclusion and Future Work
	References

	Modeling RESTful Conversations with Extended BPMN Choreography Diagrams
	1 Introduction
	2 RESTful Conversations
	3 Related Work
	4 Extension for RESTful BPMN Choreographies
	5 Conclusion
	References

	(Automated) Software Modularization Using Community Detection
	1 Introduction
	2 Background and Related Work
	2.1 Software Modularization Metrics
	Index of Package Changing Impact (IPCI).
	Index of Package Goal Focus (IPGF).

	2.2 Community Detection

	3 Experimental Design
	3.1 Research Questions
	3.2 Data Collection
	3.3 Analysis Procedures

	4 Results
	4.1 Threats to Validity

	5 Conclusion
	References

	Decisions and Social Aspects
	Software Designers Satisfice
	1 Introduction
	2 Software Design Judgment
	2.1 Research Approach
	2.2 Scenario Preparation
	2.3 Pilot Testing
	2.4 Participants’ Demographics
	2.5 Data Gathering

	3 Results and Analysis
	3.1 Limited Amount of Reasoning by Students and Professionals
	3.2 Judgment Conviction
	3.3 Amount of Time Spent on Reasoning
	3.4 Questionnaire Results

	4 Satisficing Behavior
	4.1 Explaining the Results
	4.2 Satisficing in Software Architecture Design

	5 Non-Satisficing Professionals
	5.1 Non-Satisficing Professionals Reason More
	5.2 Non-Satisficing Professionals Use Less Analogy
	5.3 Non-Satisficing Professionals are More Convicted to their Judgments and Spend More Time Reasoning

	6 Threats to Validity
	7 Conclusions
	References

	Opening the Ecosystem Flood Gates: Architecture Challenges of Opening Interfaces Within a Product Portfolio
	1 Introduction
	2 Case Study Method
	3 Case Report: Studying 11 Product Lines in NetComp
	3.1 Joining the FloodGate Initiative
	3.2 FloodGate Labs

	4 Product Extension Patterns
	5 Illustrative Case: The Telepresence Product Line
	6 Openness and Architecture Challenges
	7 Analysis, Discussion, and Related Work
	8 Conclusion
	References

	On the Social Dimensions of Architectural Decisions
	1 Introduction
	2 Background on Group Decision-Makingand Organisational-Social Structures
	3 GDM and OSS: Annotated Metamodels
	3.1 GDM-OSS Interconnections as Social Dimensionsfor Architecture Decisions

	4 Conclusions and Research Roadmap
	References

	A Specialised Social Network Software Architecture for Efficient Household Water Use Management
	1 Introduction
	1. Aligning User Interactions with System's Objectives:
	2. SSN Ecosystems and Incentives:
	3. Interface Openness:

	2 Related Works
	2.1 Specialised Social Networks and Online Social Interactions
	2.2 SSN Incentives and Behaviour Change
	2.3 SSN Access and Openness

	3 Towards a SSN Software Architecture for Efficient Household Water Use
	3.1 ISS-EWATUS Social Media Service
	3.2 Web Portal
	3.3 External Resources

	4 Conclusion and Further Work
	References

	Education and Training
	An Approach to Software Architecting in Agile Software Development Projects in Education
	1 Introduction
	2 Context and Status
	3 Sources of Inspiration
	3.1 Literature on Software Architectures and their Usage in Agile Projects
	3.2 Literature on Teaching Software Architectures
	3.3 Industry Study

	4 Course Design
	4.1 Considerations
	4.2 Course Design Decisions and Rationale
	4.3 Course Organization for the Architecting Activities

	5 Initial Experiences and Lessons Learned
	6 Conclusions
	References

	Learning Objectives for a Course on Software Architecture
	1 Introduction
	2 Bloom's Taxonomy: Background
	2.1 Learning Objectives
	2.2 Cognitive Processes in RBT
	2.3 Knowledge Dimension RBT

	3 Course Design
	4 Requirements Engineering
	5 Software Design
	5.1 Key Issues in Software Design and Design Methods
	5.2 Software Structure and Architecture
	5.3 Software Design Notations
	5.4 Quality Analysis and Evaluation Techniques

	6 Software Engineering Management
	7 Course Implementation
	8 Related Work
	9 Discussion
	10 Conclusion and Future Work
	References

	Collecting Requirements and Ideas for Architectural Group Decision-Making Based on Four Approaches
	1 Introduction
	2 Study Setup
	3 Four Approaches to Architectural Group Decision-Making
	4 Evaluation of Approaches
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Cloud and Green
	Characterization of Cyber-Foraging Usage Contexts
	1 Introduction
	2 Analysis
	3 Cyber-Foraging Usage Contexts
	4 Computation Offload Usage Contexts
	4.1 Usage Context 1: Computation-Intensive Mobile Applications (Short Operations)
	4.2 Dynamic Environments

	5 Data Staging Usage Contexts
	5.1 Usage Context 6: Sensing Applications
	5.2 Usage Context 7: Data-Intensive Mobile Applications

	6 Related Work
	7 Summary and Next Steps
	References

	Software Architecture for the Cloud -- A Roadmap Towards Control-Theoretic, Model-Based Cloud Architecture
	1 Introduction
	2 Cloud Architecture -- Definition and Scenario
	3 Dynamic Requirements and Models
	4 Measurement, Prediction and Uncertainty
	5 Control Theory and Controller Architecture
	6 Conclusion
	References

	Model-Based Energy Efficiency Analysis of Software Architectures
	1 Introduction
	2 Foundations
	2.1 Power Models
	2.2 Palladio

	3 Related Work
	4 Running Example
	5 Power Consumption Model
	5.1 Infrastructure
	5.2 Specification
	5.3 Binding

	6 Evaluating Energy and Power Consumption
	7 Evaluation
	7.1 Deployment Environment
	7.2 Power Model Extraction
	7.3 Accuracy of Architecture-Level Consumption Predictions
	7.4 Consumption Peaks and Trends
	7.5 Impact of Design Decisions on Energy Consumption
	7.6 Architectural Sizing Decisions
	7.7 Threats to Validity

	8 Conclusions
	References

	An Energy Consumption Perspective on Software Architecture
	1 Introduction
	2 Green Software and Software Architecture
	3 Energy Consumption Perspective on Software Architecture
	4 Conclusion
	References

	Agile and Smart Systems
	A Lean Automotive E/E-System Design Approach with Integrated Requirements Management Capability
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Domain Specific Modeling Approach
	3.2 Requirements Classification and Attributes
	3.3 Bridging the Gap between Design and Requirements

	4 Application
	5 Conclusions
	References

	Distilling Best Practices for Agile Development from Architecture Methodology
	Experiences from Industrial Application
	1 Introduction
	2 Software Architecture and Agile
	2.1 Characterization of the Relationships between Agile and Architecture
	2.2 Related Work

	3 Software Architecture Best Practices for Agile Development
	3.1 Best Practice Development, Documentation, and Evaluation
	3.2 Best Practice Examples

	4 Lessons Learned
	5 Conclusion
	References

	Understanding the Use of Reference Architectures in Agile Software Development Projects
	1 Introduction
	1.1 Background
	1.2 Research Problem, Motivation and Contributions

	2 Research Approach
	3 Results
	3.1 Cases
	3.2 RQ1: How are RAs used in Agile Projects that use Scrum?
	3.3 RQ2: What Are Benefits and Limitations of Using RAs with Scrum?

	4 Validity
	5 Conclusions
	References

	An Architecture-Centric Approach for Dynamic Smart Spaces
	1 Introduction
	2 Proposed Solution
	2.1 Abstractions
	2.2 Collaboration Model
	2.3 Self-Adaptation Capabilities

	3 Analysis
	4 Conclusions and Future Work
	References

	Using Feature Models for Distributed Deployment in Extended Smart Home Architecture
	1 Introduction
	2 Motivations and Challenges
	2.1 Motivating Example
	2.2 Challenges

	3 Feature Analysis Oriented Deployment
	3.1 Feature Modeling
	3.2 Approach

	4 Preliminary Validation
	5 Related Work
	6 Conclusion
	References

	SmartyCo: Managing Cyber-Physical Systems for Smart Environments
	1 Introduction
	2 Background Information and Enabling Technologies
	3 Managing Cyber-Physical Systems With SmartyCo
	3.1 Overview
	3.2 Extended Feature Models to Manage CPS Variability
	3.3 Dynamic Adaptation for CPS

	4 Experience
	5 Related Work
	6 Conclusions
	References

	Analysis and Automation
	Exploiting Traceability Uncertainty Between Software Architectural Models and Performance Analysis Results
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Automatic Trace Generation
	Language for Expressing Traceability.
	Weighted Footprint Graph.

	3.2 Automatic Uncertainty Reduction

	4 Illustrative Example
	4.1 EHS: Automatic Trace Generation
	4.2 EHS: Automatic Uncertainty Reduction

	5 Discussion
	6 Conclusion
	References

	Automatic Translation of Architecture Constraint Specifications into Components
	1 Introduction: Context and Problem Statement
	2 Illustrative Example
	3 Transformation of Constraints into Components
	3.1 Constraint Refactoring
	3.2 Constraint Transformation into CLACS Components

	4 Process Evaluation
	5 Related Works
	6 Conclusion and Future Work
	References

	The Layered Architecture Recovery as a Quadratic Assignment Problem
	1 Introduction
	2 Background and Limitations of Existing Approaches
	2.1 Analysis of the Layered Style
	2.2 Limitations of Existing Approaches to Recover Layered Architectures

	3 Principles for Layers Recovery
	4 Translating the Layering Recovery into a Quadratic Semi- Assignment Problem
	4.1 Cost Factors for Layers Assignment
	4.2 Layers Recovery as a Quadratic Semi-Assignment Problem
	4.3 Solving the Layers Recovery Problem

	5 Experimentation with the Approach
	5.1 Research Questions and Experimental Setup
	5.2 Results and Discussions
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Services and Ecosystems
	Design of a Domain-Specific Language Based on a Technology-Independent Web Service Framework
	1 Introduction
	2 Case Study
	3 Specification of a Technology-Independent Web Service Framework
	3.1 Reusable Business Logic
	3.2 Support for Arbitrary Web Service Technologies
	3.3 Service Interfaces
	3.4 Framework Overview

	4 Design of a Web Service DSL
	4.1 Service Generalization
	4.2 Representation of Technology-Specific Service Interfaces
	4.3 Derivation of the DSL Grammar

	5 Implementation of a Code Generator for the DSL
	5.1 Mapping Between AST Elements and Java Code
	5.2 Evaluation of the Generator's Efficiency

	6 Related Work
	7 Conclusion and Future Work
	References

	Tailoring the ATAM for Software Ecosystems
	1 Introduction
	2 Related Work
	3 Quality Attributes
	4 AAMEE Approach
	4.1 Phase 1
	4.2 Phase 2
	4.3 Tailoring ATAM

	5 Experience
	5.1 Applying AAMEE
	5.2 Noosfero Results

	6 Conclusion and Future Work
	References

	Author Index

