
Chapter 10
Video Bioinformatics: A New Dimension
in Quantifying Plant Cell Dynamics

Nolan Ung and Natasha V. Raikhel

Abstract Microscopy of plant cells has evolved greatly within the past 50 years.
Advances in live cell imaging, automation, optics, video microscopy, and the need
for high content studies has stimulated the development of computational tools for
manipulating, managing, and interpreting quantitative data. These tools automati-
cally and semiautomatically determine, sizes, signal intensities, velocities, classes,
and many other features of cells and subcellular structures. Quantitative methods
provide data that is a basis for mathematical models and statistical analyses that lead
the way to a quantitative systems outlook to cell biology. Four-dimensional video
analysis provides vital data concerning the often ignored temporal dynamics within
a cell. Here, we will review studies employing technology to detect regions of
interest using segmentation, classify data using machine learning and track
dynamics in living cells using video analysis. Many of the live cell studies pre-
sented would have been impractical without these advanced computational tech-
niques. These examples illustrate the utility and potential for video bioinformatics
to augment our knowledge of the dynamics of cells and cellular components in
plants.

10.1 Introduction

Video bioinformatics is a relatively new field which can be described as the
automated processing, analysis, and mining of biological spatiotemporal informa-
tion from videos obtained [1]. Advancements in the field of computer vision have
given biologists the ability to quantify spatial and temporal dynamics and to do so
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in a semi automatic and automatic manner. The challenges that arise from bioimage
informatics become increasingly more complicated with the addition of the time
dimension. Both techniques share very similar applications and challenges
including detection of regions of interest (ROIs) via segmentation, registering
images, subcellular localization determination, and dealing with large amounts of
image data. Here we will discuss the challenges in plant cell biology that can be
addressed using automatic quantitative tools such as image and video bioinfor-
matics and the current shortcomings that need to be improved upon as we continue
to discover and describe dynamic biological phenomena at the cellular level.

Most of the image data collected to date have been interpreted subjectively,
allowing for personal interpretation and a loss of objectivity [2]. In the pursuit of
biological discovery, we strive for objectivity and quantitative data that we can
manipulate and use to better uncover genuine biological phenomena versus artifacts
or biased results. Phenotypes can be continuous and cover a large spectrum, for
example, when using chemical genomics to dissect conserved cellular processes [3].
Varying concentrations of bioactive compounds or drugs can illicit proportional
phenotypes [4]. Therefore, the need for quantitative image and video data is
essential when interpreting data on any time scale.

Ultimately, the quantified data demonstrate the most utility when subjected to
statistical analysis. Therefore, it makes sense to quantify enough data to allow for a
statistically valuable sample size. This often requires large amounts of data that
need. Additionally, high-throughput screens have much to gain from using quan-
titative metrics to screen for valuable phenotypes [5]. To meet these challenges in a
practical manner, quantification needs to be automated. Automation provides
decreased analysis time, and allows for reduced inter and intrauser variability. The
ability to provide a consistent analysis from sample to sample provides more
reliable data. Reliable data are essential to fully understand the nature of any
dynamic subcellular process. Dynamic cellular phenomena such as cell division,
lipid dynamics, plant defense processes, and cell wall biosynthesis, often require the
measurement of various static and dynamic features [6, 7, 8]. The automated
detection, tracking, and analysis of these regions of interest summarizes the major
goals of video bioinformatics in a cell biological context.

Live cell imaging has become an indispensable tool for discovery throughout the
basic and applied sciences. This relatively recent technique has allowed for
real-time observation and quantification of dynamic biological processes on the
scale of nanometers to meters and milliseconds to days [9]. The advent of green
fluorescent protein (GFP) has ignited a live cell imaging revolution and has sub-
sequently enabled the capturing of in vivo spatial and temporal dynamics [10].
Because of their versatility, GFP and its derivatives have become ubiquitous in
molecular and cell biology generating large quantities of image and video data.
Many of the technical advancements in bioimaging have come from a prolific
collaboration between the biological sciences and engineering. The cooperation of
these two disciplines has produced indispensable tools to cell biology such as the
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laser scanning confocal microscope [11], spinning disk confocal microscope [12],
mulptiphoton microscope [13], variable-angle epifluorescence microscope (VAEM)
[14], and STORM [15] to name a few. All of these imaging modalities produce
large quantities of complex multidimensional data. Scientists need to work together
with engineers to dissect, manage, manipulate, and ultimately make sense of the
image data collected. Practitioners of both disciplines, while still working to
improve the acquisition hardware, are also working together to manage and analyze
the large amounts of quantifiable image data.

The traditional method of quantifying image data is to manually draw regions of
interest containing the biologically relevant information. This manual measurement
is the most popular method of image quantification. Software tools including
ImageJ and spin-offs of ImageJ such as Fiji are free [16]. Subcellular phenotyping is
time consuming and impractical when performing high-throughput screens, which
are necessary for most cell biologists. This data load is only increased when ana-
lyzing videos. A recent push toward automation has favored the use of automated
microscopes, and robots that perform automated high-throughput sample prepara-
tion [17]. This has lead to the development and implementation of and automated
semiautomated tools that require modest to little user input [18, 19]. Automated
methods can be more consistent and faster since the user does not have to provide
information. However, this lack of user input can also lead to reduced flexibility and
robustness. On the other hand, semiautomated methods are flexible and possibly
more robust due to user input, but can often be slower because the user has to
provide prior information to the software. As this analysis becomes more user
friendly and practical, the ability to apply a single software tool to multiple bio-
logical problems including multidimensional data, will be favored by the biologist
thereby most likely favoring the semiautomated methods.

Bioimage informatics has experienced a recent surge in popularity due to the
advent of automated microscopes and the subsequent burst of image data.
Engineers had to develop methods to manage and interpret large amounts of image
data generated by these automated systems. Bioimage informatics relies on several
engineering disciplines including computer vision, machine learning,
image-processing image analysis and pattern recognition [20]. The application of
theses methods aids biologists is rapid detection, quantification, and classification
of biological phenomena. Bioimage informatics is generally concerned with
two-dimensional data, in the x and y planes, though it is possible to deal with
three-dimensional, X, Y, and Z, and four-dimensional data X, Y, Z, and frequency
domain [21]. Using these dimensions, data can be accurately extracted when
computational techniques are properly applied.

Here we discuss the application of three fields of computer vision as they pertain
to plant cell biology including, segmentation, machine learning, and video analysis,
while highlighting the recent advances that were possible due to the collaboration of
biologists and engineers.
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10.2 Segmentation: Detecting Regions of Interest

Ultimately, biologists want to be able to extract data from acquired multidimen-
sional images. However, the biologist needs to be able to identify those subregions
within the image that hold the most data and that are therefore more important. As
expert biologists, we can accurately identify the interesting regions of an image
intuitively. Segmentation is the process of partitioning the regions of an image into
segments [22]. Before we can extract data, we must first detect the objects or
regions that are biologically meaningful. Biological images are acquired with
various modalities and therefore one segmentation method is not going to be
effective for all cases Specialized methods must be applied to each case. Much
progress has been made in the domain of confocal microscopy. Bright fluorophores
allow for high-contrast images that facilitate robust segmentation. In the realm of
plant cell biology, many organelles and protein localization sites resemble bright
spots or blobs. This is due to the light diffraction limit which limits the resolution of
light microscopy at 250 nm, making small objects appear as fuzzy blobs [23].
Quantifying the number or size of these bright blobs is often done manually and can
take several days. Simple segmentation can greatly improve this process which can
then lead to feature extraction in both static and dynamic datasets.

Static 2D images are by far the most popular type of microscopy data to analyze
because of their relatively short acquisition and analysis time. The majority of
subcellular imaging is focused on the localization of proteins of interest. Using
fluorescent markers fused to proteins of interest and dyes, cell biologists can
understand the proteins that are involved with biological processes by monitoring
the abundance, size shape, and localization within organelles. Organelles are of
interest to cell biologist because of their diverse and extremely important roles in
plant development, homeostasis, and stress responses. Automatic tools are being
developed and used to quantify protein localization and spatial features of discrete
compartments [24]. Organelles often manifest as punctate dots when imaged using
fluorescent confocal laser scanning microscopy. These dots are then quantified per
cell area and features extracted such as area, intensity, and number of compartments
[19]. Salomon et al. used such a tool to quantify the response of various
endomembrane compartment to bacterial infection, cold stress, and dark treatment
[25]. Crucial information can also be garnered from the cells themselves. Cell
borders can be detected when labeled and size as well as shape information ana-
lyzed automatically [25]. This information can then be used to track cell growth and
development. Segmentation is the first crucial step to extracting quantitative
information from live cell imaging data.

Cells exist in four dimensions, X, Y, Z, and time. If cell biologists want the full
complement of information from imaging data, we have to consider all four of these
dimensions. Collecting and processing 3D data is computationally more expensive
and more difficult to manage but can yield a greater understanding of spatial
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information. Most confocal microscopes can easily collect data in the Z direction
and 3D reconstructions are relatively easy to do now with the capable software.
Most of the images captured of dividing plant cell are two-dimensional leaving out
the critical third dimension. Miart et al. used 3D constructions of a growing cell
plate to understand the role of cellulose synthase complexes in cell plate formation
by analyzing time lapse video data of fluorescently labeled cellulose synthase
complexes [26]. Although these analyses did not take advantage of automated
quantification, the visualization of the 3D cell plate greatly contributed to the
understanding of how cellulose synthase complexes (CESAs) are involved in cell
plate formation [26]. Quantifying temporal dynamics in a study such as this would
lend insight into how fast this process happens and perhaps how the population of
CESA complexes shifts from a homeostatic role to an actively dividing role.

Four-dimensional data including 3D movies of cellular phenomena, will become
more popular as the tools to analyze this data become more sophisticated and more
user friendly. Automated 4D analysis tools are already being used by cell biologists
to analyze trichome development [9]. This system extracts the leaf surface, seg-
menting the mid-plane of the young leaf and detects the developing trichomes using
a Hough transform which can detect circles [27]. One 3D image is registered to the
next 3D image in the time series to maintain consistency and to track and compare
its growth over time [28]. These tools will need to be adapted from analyzing gross
morphology to tracking moving cellular structures over time.

10.3 Machine Learning Allows Automatic Classification
of Cellular Components

Machine learning is a subdiscipline of artificial intelligence that is focused on the
development of algorithms that can learn from given data [29]. These methods often
require the use of training data and user input to learn how the data should be
classified. Training the algorithm allows it to correctly identify the class to which
each sample belongs. A simple example is the spam filter on most email accounts
that can discern between those messages that are spam and those that are important.

A logical application of machine learning in cell biology was determining the
subcellular localization of fluorescent markers based on extracted features.
Traditionally, cell biologists have to colocalize their protein of interest and markers
of known localization to determine where the protein is located. Biologists could
simply analyze a confocal micrograph with a machine learning program and receive
the location of their protein of interest. An additional advantage to the machine
learning methods over traditional cellular methods, other than reduced time is that
these methods provide statistics as to how likely the determined localization is to be
true [30]. Though there seems to be reasonable progress in determining subcellular
localization using machine learning, the biological community has yet to adopt the
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methodology. Prediction of subcellular localization will streamline experimental
design and support traditional colocalization assays.

Machine learning is a powerful tool for gene discovery and organelle dynamics.
It can help uncover relationships that we otherwise could not. Because organelle
dynamics can be complex and variable, it is valuable to simplify dynamics. Using
Baysian networks, Collinet et al. found that endosome number, size, concentration
of cargo, and position are mediated by genetic regulation and not random [31].
Furthermore, they used this method to discover novel components regulating en-
docytosis by clustering endocytic phenotypes caused by screening siRNA libraries
[31]. Statistical analysis was similarly used to summarize and classify
organelle movement in Arabidopsis stomata (Higaki 2012). The result is an atlas
of organelle movement in stomata that can be compared to various conditions.
Organelle movement patterns were compared between open and closed stomata
revealing differences in ER position in response to stomatal opening. These new
findings emphasize the need for statistical methods to manage complex data and
present this data in forms we can easily understand and manipulate.

Though we are interested in cell autonomous processes, cells do not exist in a
vacuum. We are also interested in how a cell influences the development and
function of its neighboring cells. To address this challenge, segmentation coupled
with machine learning was used to jointly detect and classify cell types in whole
tissues. three-dimensional images of propidium iodide stained roots were used to
automatically find cell files in longitudinal and transverse sections using watershed
segmentation and a support vector machine to classify cell types [32]. An alter-
native approach used histological sections of Arabidopsis hypocotyls to differen-
tiate tissue layers and predict the location of phloem bundle cells [33]. The true
utility of these tools will be realized when they are used to compare wild-type cell
profiles with mutants, possibly being used in large content screening.

10.4 Quantifying Temporal Dynamics Adds a New
Dimension of Data

Once an object has been detected and classified, it is often very important to follow
its movement through time and space. This extremely important problem of
tracking has been tackled by many engineers developing the field of computer
vision. A multitude of tools are available for tracking cells and organelles, most of
these being manual and semi automated [19]. Tracking organelles are difficult
because rarely do they have a straight forward movement model. It is because of the
diversity and variability of tracking problems that semiautomated methods are the
most widely used. Common problems include object moving out of the plane of
focus when using 2D images. It is because of this issue that 3D movies are such
valuable data sets [34]. Therefore, automatically tracking object in a 3D image set is
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an invaluable tool [35]. Other challenges include maintaining identity when two
objects fuse or break off from one another, and maintaining multiple tracks at the
same time. A perfect tracking algorithm would overcome all of these problems,
while maintaining minimal user input and accurate segmentation.

The purpose of quantifying movement and movement patterns is to gain useful
biological insight such as diffusion rates, types of motion including Brownian
motion, non-Brownian motion, confined motion, directed motion, or anomalous
diffusion [36]. Ung et al. correlated multiple dynamic features which suggested that
when tobacco pollen tubes where treated with specific bioactive compounds the
contained Golgi bodies increased in size and this increase in size was correlated to
an increase in signal intensity and a decrease in straightness suggesting that these
were possibly multiple fused Golgi and that this fusion disrupted movement [19].
Similar correlations were made by collinet et al. when examining endocytosis in
mammalian cells [31]. Indeed these data are consistent with the hypothesis pro-
posed by Hamilton et al. (2007) including conservation of surface area, measure-
ment of volume, flux across a membrane, the role of pressure and tension and
vesicle fusion. These biological details would not be obtainable without quantitative
video analysis.

Although each challenge was presented separately, they are by no means
mutually exclusive. The vast majority of image analysis problems require identi-
fication of regions of interest before they can be quantified, tracked, or classified.

10.5 Opportunities for Innovation in Cellular Video
Bioinformatics

As video bioinformatics tools become increasingly accurate and biologist friendly,
they will be more widely used in biological studies. The future of video analysis is
moving toward automatic quantification of cellular dynamics in four dimensions
(3D time lapse images). The amount of data that can be extracted from 3D movies
will increase with the availability and ease of use of software. Biologists will be
able to quantify difference in movement possibly identifying underlying principals
of movement and other components essential to cellular dynamics. As these video
analysis tools become more fully automated, it will be more practical to screen for
factors that influence dynamics. In this manner, biologists will be able to directly
screen for changes in cellular dynamics.

Creating the tools to quantify cellular dynamics is futile unless biologists use
them to produce data. The pipeline from engineer to the biological community
needs to be stronger. This could be enhanced by taking advantage of open source
repositories of image analysis tools. A small pool of these repositories currently
available and will grow in popularity as the need for these programs becomes
greater [37]. As we take advantages of quantitative methods we will produce large
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amounts of data that has the potential to fuel mathematical models or other future
studies [38]. Many mathematical models require know numerical parameters to be
of use.

As live cell imaging modalities and acquisition methods become more advanced
including super resolution methods and as biological systems change, our analysis
methods will to have to adapt. In the future, these efforts will be spearheaded by a
handful of interdisciplinary scientists that will be trained in biological principals,
experimental design, computer programming, and image analysis’s tool design.
Future biologists will have to be well-versed in computer programming basics and
be able to design tools that are applicable to their specific research topic, while
having a basic understanding of the appropriate algorithms all while being able to
communicate with engineers. Engineers on the other hand, will have to understand
biological limitations, know which features are useful, experimental design, and
acquisition methods (Figs. 10.1, 10.2 and 10.3).

Fig. 10.1 Pattern recognition of membrane compartments in leaf epidermal tissue at cellular and
subcellular resolution. Merged confocal laser microscopic images show Arabidopsis leaf
epidermal cells. Top section GFP-2xFYVE plants were imaged at 403 magnification (scale bar
= 20 mm) and images analyzed by the endomembrane script. Bottom section GFP-PEN1 plants
were imaged at 203 magnification (scale bar = 50 mm) and images analyzed by the plasma
membrane microdomain script. a and b, Merged pseudo images. c and d, Recognition of
epidermal cells is shown by colored lines. e, Recognition of GFP-2xFYVE-labeled endosomal
compartments is shown by colored circles. f, Recognition of (b). Graminis induced GFP-PEN1
accumulation beneath attempted fungal entry sites (indicated by arrowheads) is shown by colored
circles. Color coding is random, different colors indicate individual cells compartments [25]
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