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Preface

The recent advances in high-throughput technologies for functional genomics and
proteomics have revolutionized our understanding of living processes. However,
these technologies, for the most part, are limited to a snapshot analysis of biological
processes that are by nature continuous and dynamic. Modern visual microscopy
enables video imaging of cellular and molecular dynamic events and provides
unprecedented opportunities to understand how spatiotemporal dynamic processes
work in a cellular and multicellular system. The application of these technologies is
becoming a mainstay of the biological sciences worldwide. To gain a more
mechanistic and systematic understanding of biological processes, we need to
elucidate cellular and molecular dynamic processes and events.

Video Bioinformatics as defined by the first author (BB) is concerned with the
automated processing, analysis, understanding, data mining, visualization,
query-based retrieval/storage of biological spatiotemporal events/data and
knowledge extracted from microscopic videos. It integrates expertise from the life
sciences, computer science and engineering to enable breakthrough capabilities in
understanding continuous biological processes. The video bioinformatics infor-
mation related to spatiotemporal dynamics of specific molecules/cells and their
interactions in conjunction with genome sequences are essential to understand how
genomes create cells, how cells constitute organisms, and how errant cells cause
disease.

Currently, new imaging instrumentation and devices perform live video imaging
to image molecules and subcellular structures in living cells and collect biological
videos for on-line/off-line processing. We can now see and study the complex
molecular machinery responsible for the formation of new cells. Multiple imaging
modalities can provide 2D to 5D (3D space, time, frequency/wavelength) data since
we can image 2D/3D objects for seconds to months and at many different wave-
lengths. However, data processing and analysis (informatics) techniques for han-
dling biological images/videos have lagged significantly and they are at their
infancy. There are several reasons for this, such as the complexity of biological
videos which are more challenging than the structured medical data, and the lack of
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interdisciplinary research at the intersection of life sciences and engineering and
computer science.

We already are at a point where researchers are overwhelmed by myriads of
high-quality videos without proper tools for their organization, analysis, and
interpretation. This is the main reason why video data are currently underutilized.
We believe that the next major advance in imaging of biological samples will come
from advances in the automated analysis of multi-dimensional images. Having tools
that enable processes to be studied rapidly and conveniently over time will, like
Hooke’s light microscope and Ruska’s electron microscope, open up a new world
of analysis to biologists, scientists, and engineers.

This interdisciplinary book on Video Bioinformatics presents computational
techniques for the solution of biological problems of significant current interest
such as 2D/3D live imaging, mild-traumatic brain injury, human embryonic stem
cells, growth of pollen tubes, cell tracking, cell trafficking, etc. The analytical
approaches presented here will enable the study of biological processes in 5D in
large video sequences and databases. These computational techniques will provide
greater sensitivity, objectivity, and repeatability of biological experiments. This will
make it possible for massive volumes of video data to be analyzed efficiently, and
many of the fundamental questions in life sciences and informatics be answered.
The book provides examples of these challenges for video understanding of cell
dynamics by developing innovative techniques. Multiple imaging modalities at
varying spatial and temporal resolutions are used in conjunction with computational
methods for video mining and knowledge discovery.

The book deals with many of the aspects of the video bioinformatics as defined
above. Most of the chapters that follow represent the work that was completed as
part of an NSF-funded IGERT program in Video Bioinformatics at the University
of California in Riverside. Several of the chapters deal with work that keynote
speakers presented at retreats sponsored by this program (Chaps. 14 and 16). Most
other chapters are work done by IGERT Ph.D. fellows who were selected to par-
ticipate in this program. The program emphasizes an interdisciplinary approach to
data analysis with graduate students from engineering and life sciences being paired
to work together as teams. These resulting chapters would likely never have been
produced without cooperation between these two distinct disciplines and demon-
strate the power of this type in interdisciplinary cooperation.

We appreciate the suggestions, support feedback and encouragement received
from the IGERT faculty, IGERT fellows and NSF IGERT Program Directors
Richard Tankersley, M.K. Ramasubramanian, Vikram Jaswal, Holly K. Given, and
Carol Stoel. Authors would like to thank Dean Reza Abbaschian, Dean Joe
Childers, Dallas Rabenstein, David Eastman, Victor Rodgers, Zhenbiao Yang,
Vassilis Tsotras, Dimitri Morikis, Aaron Seitz, Jiayu Liao, David Carter, Jerry
Schultz, Lisa Kohne, Bill Bingham, Mitch Boretz, Jhon Gonzalez, Michael Caputo,
Michael Dang and Benjamin Davis for their support and help with the IGERT
program. Authors would also like to thank Atena Zahedi for the sketch shown on
the inside title page. Further, the authors would like to thank Simon Rees and
Wayne Wheeler of Springer and Priyadarshini Senthilkumar (Scientific Publishing
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Services) for their efforts related with the publication of this book. The first author
(BB) would like to acknowledge the support from National Science Foundation
grants DGE 0903667 video bioinformatics, CNS 1330110 distributed sensing,
learning and control, IIS 0905671 video data mining, IIS 0915270 performance
prediction, CCF 0727129 bio-inspired computation, and DBI 0641076 morpho-
logical databases. The second author (PT) would like to acknowledge support from
the Tobacco Related Disease Research Program of California (18XT-0167;
19XT-0151; 20XT-0118; 22RT-0217), the California Institute of Regenerative
Medicine (CL1-00508), and NIH (R01 DA036493; R21 DA037365).

Riverside, CA, USA Bir Bhanu
June 2015 Prue Talbot
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Part I
Video Bioinformatics: An Introduction



Chapter 1
Live Imaging and Video Bioinformatics

Bir Bhanu and Prue Talbot

Abstract This chapter provides an overview of live imaging and video bioinfor-
matics. It introduces the term of video bioinformatics and provides motivation for a
deeper understanding of dynamic living processes in life sciences. It outlines
computational challenges in understanding dynamic biological processes and a
conceptual way of addressing them. The themes covered in the book range from
oragnaismal dynamics to intercellular and intracellular dynamics with associated
software systems. This chapter gives an overview of different parts of the book and
a synopsis of each subsequent chapter.

1.1 Introduction

The recent advancements in high-throughput technologies for functional genomics
and proteomics have revolutionized our understanding of living processes.
However, these technologies, for the most part, are limited to a snapshot analysis of
biological processes that are by nature continuous and dynamic. Biologists such as
Lichtman (Univ. Washington) and Fraser (CalTech) suggested that bioinformatics
based on static images is like learning about a sport by studying a scrapbook [1]. To
determine the rules of American football one can examine 1000 snapshots taken at
different times during 1000 games—but the rules of the game would probably
remain utterly obscure and the role of the halftime marching band would be a
mystery. Similarly, to gain a more mechanistic and systematic understanding of
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biological processes, we need to elucidate cellular and molecular dynamic events
(e.g., spatiotemporal changes in protein localization and intracellular signals).

One of the most exciting research developments has been the ability to image
molecules and subcellular structures in living cells. Without harming a cell, we can
now see and study the complex molecular machinery responsible for the formation
of new cells. The imaging field is becoming more precise; for example, the reso-
lution attainable by advanced techniques that break the diffraction limit is of the
order of 1–30 nm [1, 2]. Multiple imaging modalities can provide 2D (x, y) to 5D (x,
y, z, t, wavelength) data since we can image 2D/3D objects for seconds to days to
months and at many different wavelengths. This ability, combined with the power
of genetics and novel methods for eliminating individual proteins, will answer
questions that are centuries old.

To quote Murphy et al. [3], “…The unraveling of the molecular mechanisms of
life is one of the most exciting scientific endeavors of the twenty-first century, and it
seems not too daring to predict that, within the next decade, image data analysis will
take over the role of gene sequence analysis as the number one informatics task in
molecular and cellular biology.”

The advances in modern visual microscopy coupled with high-throughput
multi-well plated instrumentation enable video imaging of cellular and molecular
dynamic events from a large number of simultaneous experiments and provide
unprecedented opportunities to understand how spatiotemporal dynamic processes
work in a cellular/multicellular system [1, 4]. The application of these technologies
is becoming a mainstay of the biological sciences worldwide.

We already are at a point where researchers are overwhelmed by myriads of
high-quality videos without proper tools for their organization, analysis, and inter-
pretation. This is the main reason why video data are currently underutilized [5]. We
believe that the next major advance in imaging of biological samples will come from
advancements in the automated analysis of multidimensional images. Having tools
that enable processes to be studied rapidly and conveniently over time will, like
Hooke’s light microscope and Ruska’s electron microscope, open up a new world of
analysis to biologists and engineers. The analytical methods will enable the study of
biological processes in 5D (3D space, time, frequency/wavelength) in large video
databases.

1.2 Video Bioinformatics

Genome sequences alone lack spatial and temporal information, and video imaging
of specific molecules and their spatiotemporal interactions, using various imaging
techniques, are essential to understand how genomes create cells, how cells con-
stitute organisms, and how errant cells cause disease [6]. The interdisciplinary
research field of Video Bioinformatics is defined by Bir Bhanu as the automated
processing, analysis, understanding, data mining, visualization, query-based
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retrieval/storage of biological spatiotemporal events/data and knowledge extracted
from dynamic images and microscopic videos.

The advanced video bioinformatics techniques, fundamental algorithms, and
technology will provide quantitative thinking, greater sensitivity, objectivity, and
repeatability of life sciences experiments. This will make it possible for massive
volumes of video data to be efficiently analyzed, and for fundamental questions in
both life sciences and informatics to be answered. The current technology [1, 7–12]
to analyze biological videos, which are more complex than structured medical data,
is in its infancy. Biological characteristics are not exploited; computer tools are
used only for very low-level analysis; and the process is highly human-intensive.
One cannot simply use standard image processing, computer vision, and pattern
recognition (CVPR) techniques, [3] and expect good results since the domain of
biological videos has its own peculiar characteristics and complexities [13–16].
Algorithmic issues in modeling motion, segmentation, shape, tracking, recognition,
etc., have not been adequately studied. The varying requirements of users dictate an
integrated approach using machine learning rather than handcrafted user-specific
solutions to individual problems [17, 18].

Solving the complex problems described above requires life scientists and
computer scientists and engineers to work together on innovative approaches.
Computer scientists and engineers need greater comprehension of the biological
issues, and biologists must understand the information technology and assumptions
made in the development of algorithms and their parameters.

1.3 Integrated Life Sciences and Informatics

Conceptually integrated life sciences/informatics research requires us to perform
some of the following sample tasks:

1. A single moving biological entity (cell, organelle, protein, etc.) needs to be
detected, extracted from varying backgrounds and tracked.

2. The dynamics of deformable shape (local/global changes) of a single entity (not
in motion) needs to be analyzed and modeled.

3. Entities and their component parts need to recognized and classified.
4. Multiple moving entities need to be tracked and their interaction analyzed and

modeled.
5. Multiple moving entities with simultaneous changes in their global/local shape

need to be analyzed and modeled.
6. The interactions of component parts of an entity and interaction among multiple

entities while in motion need to be analyzed and modeled.
7. Mining of 5D data at various levels of abstractions (e.g., 2D image vs. 1D track)

for understanding and modeling of events and detection of anomalous behavior
needs to be performed.
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The specific computational challenges include algorithmic issues in modeling
complex biological motion, segmentation in the presence of complex nonstationary
background, elastic registration of frames in the video, complex shape changes,
nonlinear movement of biological entities, classification of entities within the cell,
recognition in the presence of occlusion, articulation and distortion of shape,
adaptation and learning over time, recognition of spatiotemporal events and
activities and associated queries and database organization, indexing and search,
and computational (space/time) complexity of video processing. A variety of
imaging techniques are used to handle spatial resolution from micrometer to mil-
limeter range and temporal resolution from a few seconds to months. The varying
requirements of users dictate approaches based on machine learning, rather than
handcrafted user-specific solutions to individual problems. As mentioned by Knuth,
the noted computer scientist, “Biology easily has 500 years of exciting problems to
work on … [19, 20].”

Thus, informatics remains a major challenge. Most of the analysis is done
manually which is very time-consuming, and it is quite often very subjective. It is
expected that video analysis will become one of the key informatics tasks in modern
molecular and cellular biology. The video bioinformatics information related to
spatiotemporal dynamics of specific molecules/cells and their interactions in con-
junction with genome sequences will provide a deeper understanding from genomes
to organisms to diseases.

1.4 Chapters in the Book

Most of the chapters that follow represent work that was completed as part of an NSF
funded IGERT program in Video Bioinformatics at the University of California in
Riverside [21]. Several of the chapters deal with work that keynote speakers pre-
sented at retreats sponsored by this IGERT program (Chaps. 14 and 16). Most other
chapters are work done by IGERT PhD Fellows who were selected to participate in
this program. The program emphasizes an interdisciplinary approach to data analysis
with graduate students from engineering and life sciences being paired to work
together as teams. These resulting chapters would likely never have been produced
without the cooperation between these two distinct disciplines and demonstrate the
power of this type in interdisciplinary cooperation.

The book is divided into six parts. Part 1, which includes the current chapter plus
Chap. 2 by Nirmalya Ghosh, provides an introduction to the field of video bioin-
formatics. Part 2 “Organismal Dynamics: Analyzing Brain Injury and Disease”
includes Chaps. 3–6, which deal with the analysis of brain injury in rodent models
captured using magnetic resonance imaging (MRI) (Chaps. 3–5) and visualization
of cortical brain tissue during seizures in mice using optical coherence tomography
(Chap. 6). Part 3, “Dynamics of Stem Cells,” presents chapters dealing with seg-
mentation of stem cell colonies and analysis of individual stem cells (Chap. 7), as
well as the application of commercially available software to solve problems in
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video bioinformatics related to stem cell behavior in vitro (Chaps. 8–9). Part 4 deals
with “Dynamic Processes in Plant and Fungal Systems.” Chapter 10 reviews video
bioinformatics problems in plant biology, while Chaps. 11 and 12 present specific
examples of problems solved in Arabidopsis, and finally Chap. 13 presents a
method for analyzing growth and development of a fungus. Part 5 “Dynamics of
Intracellular Molecules” presents a high-throughput method for quantifying DNA
damage in cells, while Chap. 15 discusses a method using optogenetics to regulate
protein (cofilin) transport in cultured cells. Part 6 “Software, Systems and
Databases” has four chapters dealing with various software tools and databases that
are available for use with video bioinformatics problems (Chaps. 16–19).

Chapter 1 by Bhanu and Talbot provides an overview of the contents of this
book dealing with Video Bioinformatics. The term video bioinformatics was
introduced by Bir Bhanu [21] to describe the automatic analysis and mining of
information from video data collected from nm to mm of spatial resolution and
picosecond to months/years of temporal resolution. Because video datasets are
usually very large, it is not practical to extract such data manually. Nevertheless,
video data are a rich source of new information and provide opportunities for
discovery, often not recognizable by the human eye due to the complexity, size, and
subtlety of video images. Video bioinformatics software tools not only speedup and
automate analysis and interpretation of data, but also avoid biases that may be
introduced when such analyses are done manually. Video bioinformatics tools can
be applied to any type of video data. In this volume, most examples are of living or
biological samples that range from microscopic, such as the movement of a specific
protein (cofilin) with small cellular extensions (Chap. 15), to damaged areas of the
brain in animal models (Chaps. 3 and 4), to an entire organism such as the analysis
of facial expressions in Chap. 18. The methods of video bioinformatics can be
applied to animals, humans, plants, and fungi as the following chapters demonstrate
or to other types of video data not necessarily covered in this volume.

Chapter 2 by Ghosh introduces the field of video bioinformatics and explains
how automated analysis of microscopic images of biological material has pro-
gressed. Application of various tools and algorithms from the fields of computer
vision, pattern recognition, and machine learning are presented. This chapter dis-
cusses state-of-the art tools and their applications to biological problems in image
analysis. Research areas that will enable future progress in biological image pro-
cessing are also presented.

Chapter 3 by Bianchi, Bhanu, and Obenaus addresses problems in imaging
traumatic brain damage and the development of automated image analysis tools for
extracting information from mild traumatic brain injury images in rodents. Imaging
in live animals was done using magnetic resonance imaging (MRI). Both high and
low-level contextual features were used to gather information from injured brains.
Combining both high and low contextual features provided more accurate seg-
mentation, which can lead to better identification of areas of the brain that have
experienced injury and may lead to better methods of treatment for patients with
traumatic brain injury.
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Chapter 4 by Ghosh, Ashwal, and Obenaus describes methods for the imaging
and analysis of neonatal hypoxic ischemia injury (HII), a devastating disease of
newborns for which there is limited treatment available. Physicians would be aided
by noninvasive imaging information on brain lesions in patients with this disease
and such information could improve management of HII. The authors have worked
in rodent models and developed a tool called hierarchical region splitting (HRS)
that can be used to identify ischemic regions in the brain. This tool is applied to
magnetic resonance images (MRI) collected using living animals. The tool provides
rapid and robust information on brain lesions and allows dynamic changes in the
brain to be followed over time. For example, movement of stem cells into the lesion
can be tracked. The method has application in both translational and clinical work.
The method can potentially be translated to adult stroke victims.

Chapter 5 by Esfahani, McBride, Shafiei, and Obenaus presents a method that
can automatically detect traumatic brain injury (TBI) legions in real time from T2
weighted images collected using magnetic resonance imaging (MRI). The method
was developed using rodents but can also be applied to human patients. TBI occurs
in numerous Americans each year and better methods of imaging TBI legions are
needed. This method agreed well with ground-truth data and did not give any false
positive results. It is relatively inexpensive to perform.

Chapter 6 by Eberle et al. applies video bioinformatics analysis to data collected
with optical coherence topography (OCT), a label free, minimally invasive imaging
technique that can be applied to problems involving visualization of brain activity.
The basic principles of OCT are first described, followed by methods for basic
preprocessing of OCT images. The authors then present data on the application of
this method to the study of seizure progression in vivo in a mouse model. 3D data
were analyzed using video bioinformatics tools to provide better visualization of
changes in the brain during seizures.

Chapter 7 by Guan, Bhanu, Talbot, and Weng reviews prior work dealing with
methods for segmentation and detection of human embryonic stem cells (hESC).
Five categories of cells can be recognized when hESC are freshly plated. Three
approaches for segmenting hESC are reviewed, and all give better than a 90 % true
positive rate with the gradient magnitude distribution method being the most robust
and the most rapid to perform. A method is also reviewed for detecting one type of
cell in freshly plated hESC populations. The unattached single stem cell can be
distinguished from other morphological different types of cells. These tools could
be useful in the future in studying cell health and the effects of environmental
toxicants on stem cells.

Chapter 8 by Weng, Phandthong, and Talbot uses commercially available
software to analyze cultured human embryonic stem cells (hESC). The product,
CL-Quant by DRVision, was used to segment time-lapse videos of hESC colonies
as they were attaching and spreading on a substrate. Two protocols for segmen-
tation were compared. While the professional version created by DR Vision
engineers performed better, the protocol created by an undergraduate with only
1 month of experience was in reasonable agreement with the ground-truth. hESC
were evaluated during attachment and spreading in the presence of a ROCK
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inhibitor or blebbistatin. While spreading occurred faster in the treatment groups,
cells appeared to be stressed. The method described could provide a rapid method
for evaluating cytotoxic effects of chemicals on cells.

Chapter 9 by Lin, Yip, Phandhong, Davis, and Talbot addresses methods that
can be used with commercially available software to extract information from
time-lapse videos on cell motility, colony growth, reactive oxygen species pro-
duction, and neural differentiation. Cells were treated and videos of controls and
treated cells were compared using the tools created by the users with CL-Quant
software. The software tools described in this chapter could have numerous
applications in basic research, toxicological studies, or to monitor quality control in
stem culture laboratories.

Chapter 10 by Ung and Raikhel reviews the application of video bioinformatics
tools to problems in plant cell biology. The chapter discusses the importance of
imaging in understanding plant biology and how imaging methods have evolved.
The chapter then focuses on the topics of segmentation for region of interest
detection, classifying data using machine learning, and tracking dynamic changes in
living plant cells. The chapter concludes with a discussion of the future of plant cell
imaging and the role that video bioinformatics can play in improving visualization
of cell dynamics.

Chapter 11 by Tambo et al. addresses the specific problem of pollen tube
growth in plant cells. Pollen tubes function in the sexual reproduction of plants by
carrying sperm to the ovary of a plant where fertilization can occur. Pollen tube
growth is a complicated process to model as it depends on many different factors
such as interaction of proteins and ions. The chapter begins with a discussion of
existing pollen tube growth models. This is followed by sections dealing with a
comparison of three existing models and the reasons for developing a simple
video-based model. The technical approach used to create the video-based model
and the experimental results obtained with this model are presented. The method
discussed in this chapter uses only those variables that can be seen or measured in
video data to track the growth of the tip of a pollen tube. The model was found
experimentally to be robust and capable of studying factors that could affect the
growth of pollen tubes.

Chapter 12 by Mkrtchyan et al. deals with the development of an automatic
image analysis pipeline for use in studying growth and cell division in the plant
Arabidopsis. To study cell growth in multilayered multicellular plants, a quantita-
tive high-throughput automated pipeline was developed. The pipeline combines cell
image registration, segmentation, tracking, and 3D reconstruction of time-lapse
volumetric stacks of confocal microscope images. For each step in the pipeline, the
authors first describe the motivation for that step followed by the method for
performing the step (e.g., registration) on data collected from the shoot meristem of
Arabidopsis. They then give examples of results for each step in the pipeline. The
automated image pipeline is shown to be capable of handling large volumes of live
imaging data and capable of generating statistics on cell growth and cell division,
which will be valuable in understanding plant developmental biology and
morphogenesis.
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Chapter 13 by Cabrera et al. describes the use of video bioinformatics tools to
analyze growth and development in a multicellular fungus (Neurospora crassa).
The chapter begins with a discussion of the complex life cycle of this fungus, which
has served for many years as a model organism in biological studies, particularly in
genetics. It then describes three assays based on fungal phenotypes and how
automated analysis has been possible with video bioinformatics tools. These phe-
notypes include asexual spore size, hyphal compartment size, and hyphal growth
rate. The methods presented allow rapid quantification and can be applied to other
fungal gene deletion strains or any organism with similar features.

Chapter 14 by Groesser et al. describes how video bioformatics tools can be
used to visualize and quantify DNA damage in cells and the kinetics of DNA repair.
This method depends on immunolabeling cycling or stationary cells with antibodies
to phosphorylated histone gamma-H2AX (which occurs at the sites of double
stranded DNA breaks) and the DNA repair protein 53BP1. Repair kinetics can be
quantified by applying video bioinformatics tools, such as segmentation which
enables co-localization analysis. BioSig software, which is an imaging bioformatics
system, has been adapted for use with this problem. The method described in this
chapter enables detection of foci in nuclei and determination of areas where foci for
H2AX and 53BP1 co-localize, which would be indicative of DNA repair. The
method provides unbiased and rapid handling of large datasets and should be
applicable to different cells types.

Chapter 15 by Zahedi, On, and Ethell studies the transport of an actin-severing
protein, cofilin, in dendritic spines and the effects of cofilin on synapses.
Degeneration of synapses is important in neurological diseases, such as
Alzheimer’s, and cofilin may play a role in this process. A novel optogenetics
approach that generates fluorescent cofilin molecules combined with video bioin-
formatics analysis of high resolution images was used in conjunction with cultured
hippocampal neurons. Cofilin activity was modulated by a photoactivatable probe.
This chapter demonstrates the application of video bioinformatics tools to a chal-
lenging problem requiring high resolution fluorescent images.

Chapter 16 by Merouane, Narayanaswamy, and Roysam describes an open
source toolkit (FARSIGHT) that can be used to perform 5-D cell tracking and
linked analytics. Modern optical microscopes have evolved to the point that they
can collect multiple types of data over time thereby providing 5-D information (3-D
space, time, spectra) that needs to be sorted and analyzed. Realistically, such
analyses will need to be done using computer software designed for extracting
useful information from large complex datasets. This chapter describes both the
algorithms and an open source toolkit for analysis of 5-D microscopy data. The
toolkit enables preprocessing, cell segmentation, automated tracking, linked visu-
alization of image-derived measurements, edit-based validation of cell movement
tracks, and multivariate pattern analysis tools. The FARSIGHT tool kit could be
valuable to any biologist who wishes to achieve rapid experimental and discovery
cycles.
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Chapter 17 by Thakoor, Cruz, and Bhanu reviews video bioinformatics
databases and software. The field of video bioinformatics has been helped by
available datasets for testing as well as software that has been developed for image
analysis. This review chapter gives valuable information on the resources that are
available both in terms of image sets that can be used for analysis or testing and
software programs that are available for preforming analyses. The authors provide
information on 17 databases useful in video bioinformatics analyses. These data-
bases span a broad range of topics such as the cardiac motion challenge dataset,
BITE (the brain images of tumors for evaluation database), the Kahn dynamic
Proteomics Database, and the Plant Organelles Database. In addition, the authors
provide information on eight software packages that are available for image analysis
such as MATLAB, ImageJ, FIJI, and CL-Quant. Each of the databases and software
programs are briefly introduced. This chapter will be a valuable resource for anyone
entering the area of video bioinformatics or anyone in the field who wants broader
knowledge of the resources available.

Chapter 18 by Cruz, Bhanu, and Thakoor deals with the use of video to
understand human emotions that underlie facial expressions. The chapter discusses
how emotion is projected, in particular in facial expressions, how computers can
predict emotion from video data, and some of the difficulties computers have in
predicting authentic emotions. Also included is a section on publically available
datasets of facial expressions with a description of the characteristic of each
example, and explanation of the usefulness of such databases in this type of video
bioinformatics approach.

Chapter 19 by Feng, Bhanu, and Heraty addresses the problem of identifying
moth species from digital images. Traditionally, classifications have been done
manually by examining characteristics of the moth body features and visual char-
acteristics of the wings. With over 160,000 of moths on the planet, manual
classification can be a slow and laborious task. This chapter describes a method for
automatically identifying moth species based on a probabilistic model that infers
Semantically Related Visual (SRV) attributes from low-level visual features of
moth images. While developed for moth species identification based on wing
attributes, the species identification and retrieval system described in this chapter
could be used with other insects.
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Chapter 2
Video Bioinformatics Methods
for Analyzing Cell Dynamics: A Survey

Nirmalya Ghosh

Abstract Understanding cellular and subcellular interrelations, spatiotemporal
dynamic activities, and complex biological processes from quantitative microscopic
video is an emerging field of research. Computational tools from established fields
like computer vision, pattern recognition, and machine learning have immensely
improved quantification at different stages—from image preprocessing and cell
segmentation to cellular feature extraction and selection, classification into different
phenotypes, and exploration of hidden content-based patterns in bioimaging data-
bases. This book chapter reviews state of the art in all these stages and directs
further research with references from the above-established fields, including key
thrust areas like quantitative cell tracking, activity analysis, and cellular video
summarization—for enhanced data mining and video bioinformatics.

2.1 Introduction

In the postgenomic era of computational biology, automatic and objective analysis
of biomolecular, cellular, and proteomic activities is at the center stage of current
bioinformatics research. Microscopes, the prime instrument for observing the cell
and molecular world, have treaded a long path of revolution. Widefield microscopy
with deconvolution, confocal scanning microscopy, and scanning disk confocal
microscopy have facilitated observing cells and their activities and capturing static
image and video data for precise and automated analysis, both in 2D and 3D
[108, 131]—even closing the gap between live cell imaging and atomic resolution
structures in cryo-electron tomography (3–8 nm) [127]. Green fluorescent protein
(GFP) markers in the antibody have acted as illuminant in the molecular world to
visualize cell activities and brought a new era in cell research [36]. Sometimes
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bright field defocused and/or stereo [131] microscopic imaging are utilized to
analyze multiple cells at diverse depth with advantages of low phototoxicity and
minimal sample preparation, though lower contrast poses difficulty in segmentation
and tracking [80].

The challenge has now shifted from automatic capturing of the slow-varying cell
activity in digital media to automated analysis of this vast amount of digital data
being stored every day with minimum human interaction [17, 64, 96]. Even an
expert cell biologist takes hours to preprocess the microscopic images or videos,
analyze numerically the structure of cells, recognize them, recognize the cell activity,
and come to a biological conclusion. Automated computational methods are abso-
lute necessities to avoid human fatigue-related errors, to perform intensive data
mining beyond human tractability and to make results objective and statistically
comparable across international studies [22, 26]. Established techniques in computer
vision, pattern recognition, and machine learning fields often come handy to rescue
from this tremendous information boom in biology in the recent years [28, 36].

Video bioinformatics is a recently burgeoning field of computational biology
that analyzes biological video and image data to automatically detect, quantify, and
monitor complex biological phenomena—at molecular, cellular, and tissue levels,
internal activities and their interactions, in healthy as well as in injured conditions,
and with/without drugs and antibodies injected. A complex end-to-end video
bioinformatics procedure generally requires multiple major steps as follows. (1) At
first, reduction of computational complexity requires detecting video shots and
extracting key frames based on biological activities. This makes established image
processing techniques effectively applicable to the static key frames. (2) Images are
then enhanced by filtering out noise. (3) Biological regions of interests (ROI) are
automatically segmented out and aligned to models if necessary. (4) Different
morphological, signal intensity, contrast, shape, and texture features are extracted
for different biological objects. (5) Based on their discriminative powers, optimal
sets of features are selected to recognize entities. (6) Segmented objects are then
classified as different biological entities. (7) Multiple consecutive static images (key
frames) are considered again to track entities over space and time and to identify
biological activities for an individual entity. (8) Interactions between different
entities are then automatically monitored using advanced video data mining tech-
niques. (9) Image and video-based information is then stored in a structured and
distributed database for availability and query over the Internet. (10) Machine
learning techniques are applied to improve all previous procedures including
content-based retrieval.

A big proportion of research is devoted to thismarriage of quantitativemicroscopy,
computer vision, and machine learning. A number of research groups have concen-
trated on processing static images of the cells and classifying them using pattern
recognition techniques [11, 17, 20, 26, 31, 75, 83, 94, 106].Major steps and associated
tools that are involved in such complete high-content screening and analysis
pipeline have been summarized in recent publications [36, 98, 105, 115, 120]. They
derived numerical features from the 2D images and used feature-based classification
of the biological molecules. Relatively less effort has been exerted for dynamics of
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the cells and recognizing the cell activity. Only a small body of research has studied
cell dynamics, migration, tracking, bacterial movement, and biological events
over the 2D/3D microscopic videos [18, 39, 118, 123, 137, 143] but often lack in
automated analysis of such dynamics. This chapter provides reviews of the compu-
tational tools for above ten steps that have been already applied in biology or
demonstrated potential in mainstream computer vision and pattern recognition
(CVPR) field of research for future biological applications. Broad conceptual diagram
of a typical video bioinformatics system is summarized in Fig. 2.1. Instead of the
mainstream biology, this review chapter is from the perspective of the computational
methods applicable in biology.

Video shot detection and key-frames selection 

Biological video data 

Key-frame 1 Key-frame N 

Image enhancement 

Cell/tissue detection, 
segmentation, alignment

Cell/tissue classification 

Classified cell/tissue 
in key-frame 1 

Classified cell/tissue 
in key-frame N 

Tracking/monitoring of individual cells/tissue dynamics 

Detection of biological dynamic patterns and interactions 
between multiple cells and tissue-structures 

Information storage and searching in biological databases 

Summarized static images 

Dynamic information of the video  

Biological activities in the video  

Fig. 2.1 Conceptual diagram of a typical video bioinformatics system
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2.2 Salient Video Activity: Shot Detection and Key Frame
Extraction

Cell activities are often very slow and corresponding videos often do not contain
enough changes in visual information over a long sequence of frames. Hence to
reduce computational complexity, images are sometimes captured periodically—
i.e., low frames-per-second (fps) video [64, 118, 143] or periodically sampled from
a high fps video [31, 119]. These methods are naïve counterpart of key frame
selection that might ignore some salient quick and transient cell transformation
information.

2.2.1 Shot Detection

Shot detection and key frame selection are two often-used techniques in video
processing to reduce computational complexity without losing details, and more
contextual in cell activity videos with in general slow dynamics with few quick
transients. With low-cost digital storage, taking high-speed (30 fps) cell videos and
detecting shots and key frames to trace salient transient cell activities is more
practical. Although shot detection is now a relatively matured domain in computer
vision, it is surprisingly unused by cell biology community. As cell videos often
have fewer types of cells present in the same videos, established shot detection
techniques from histograms might work well, e.g., global dissimilarity or temporal
changes in different pixel-level features—color components [38], intensity [1, 144],
luminance [112] and their distributions and combinations [1, 16], or regional fea-
tures and likelihood ratios [29, 136] across consecutive video frames.

2.2.2 Key Frame Selection

Key frames are representative frames of a particular video shot, analyzing which
one can safely summarize about the frames they represent. A set of key frames are
generally selected such that these frames contain enough visual information and its
change (dynamics) over the video sequence. The frames acquired periodically or
heuristically [31] and analyzed by the cell biologists in the state-of-the-art systems
are actually a naïve substitute of these key frames. Key frame selection is also a
well-established domain in computer vision. Other than clustering-based techniques
[139], most of the keyframing methods attempt to capture the temporal information
flow with varying computational complexity—starting from simple first and last
frame selection [85], periodic selection [113], after constant amount of change in
visual content [19], by minimization of representational error (distortion) in the
feature space [47], by iterative positioning of break points (like sub-shots) and key
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frames (one in each sub-shot) to minimize distortion [61], and by minima in motion
feature trend [133]. Unlike these previous methods, sometimes psychoanalytical
perception models might be used to automatically decide the number of key frames
to be selected depending on change in visual content from the feature trends [40].
From cell video point of view, specifically with morphological transformation
(morphogenesis), tracking geometric structures and keyframing based on salient
differences [141] might be adopted. Based on complexity and application, similar
methods can be envisaged in cellular videos to decide on which frames are to be
analyzed to reduce computational burden.

Once the shots and corresponding key frames are decided, cell videos can be
analyzed in the same way as single static bioimages as discussed in the following
sections. Even for motion-based tracking the cells over the frames, key frames may
reduce the computational burden by few orders, specifically for slowly changing
cell videos.

2.3 Image Processing and Biological Object Detection

After denoising and preprocessing of static images (from keyframing), cellular and
tissue region of interest (ROI) extraction mainly comprises of three stages: detec-
tion, segmentation, and alignment (sometimes called “registration”). All these
stages are often interrelated, mutually supplementary in nature, and even sometimes
inseparable, as depicted in Fig. 2.2. For the simplicity of understanding, they would
be dealt separately in following subsections. All these stages directly depend on
image features and prior biological models.

Cell/tissue 
detection

(Sub-) cellular 
segmentations 

Alignment / 
registration 

Image 
features and 
cell/tissue 

prior models 

Cell/tissue 
classification 

Fig. 2.2 Interdependency of
different low and midlevel
image processing modules in
bioinformatics
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2.3.1 Preprocessing and Noise Reduction

Even after following recommended techniques for sample preparation and data
acquisition [48, 108], noise in bioimages is ubiquitous and almost always requires
preprocessing and denoising. Though few research works adopt simulated (flat)
background without any explicit noise filtering [118], this is an unrealistic
assumption for in vivo cell images and videos. During the conversion of patterns of
light energy into electrical patterns in the recording device (e.g., CCD camera or
photomultiplier tube) random noise is introduced [39]. Specifically because of the
high-frequency noise, biological cell shapes loose sharpness and affect segmenta-
tion and overall analysis.

For any practical automated analysis of bioimaging data, reduction of random and
speckle noises [11, 28, 115, 138] and variations in illumination (e.g., GFP) [123] are
the first steps. Usual low-pass filters, besides reducing the high-frequency noise, also
reduce the sharpness of the edge and contour features (as they are also high-
frequency components of the image). Nonlinear filters (e.g., median filters) often
resolve this problem [109, 114]. Sometimes sophisticated anisotropic diffusion fil-
ters are used that preserve local characteristics and image qualities [39]. The rational
of this method is that image areas containing structure and strong contrast between
edges will have a higher variance than areas containing noise only. Hence diffusion
algorithms remove noise from an image by modifying the image via partial differ-
ential equation. Homogeneous regions are handled by diffusion equation (heat
equation) equivalent to Gaussian linear filters with varying kernel size. While ani-
sotropic diffusion filter controls the diffusion process by an “edge-stopping function”
that depends on local image features, e.g., magnitude of the edge gradient.

Speckle noise generally comes from small intracell structures that can be
reduced by model-based filtering, e.g., modeling cells as ellipse and removing
outliers not fitting the model [138]. Sometimes nonlinear least-square-designed FIR
filters are used to improve contrast between cell objects and fluid background as
they are immersed and then histogram-based dynamic threshold is applied to deal
with illumination variation due to fluorescence decay [49]. This contrast
improvement might be more effective if some fluorescence decay model is applied
[123]. A series of filters often assists in the overall preprocessing—e.g., histogram
equalization [109] or auto-density filter increases the contrast, morphological filters
(in sequence—dilation, histogram-based intensity threshold and erosion) reduce
model-based outliers and finally median filter removes salt-&-pepper (random)
noise [31].

In recent reviews [108, 127] of different preprocessing steps, potential methods
and pitfalls are provided where starting from selection of particular microscope and
acquisition parameters, preprocessing steps like flat field correction and background
subtraction, intensity normalization, different Gaussian filtering techniques, and
deconvolution strategies are discussed.
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2.3.2 Segmentation

After preprocessing, generally explicit segmentation and feature extraction are
required for classification. Rare exceptions are the data with no intercell occlusion
[31], or where chromosome profiles are extracted using dominant points and
variants [104]. Most of current quantitative microscopy data are from cells that are
immersed in an in vitro biochemical solutions (beneath a coverslip) and imaged
individually [31, 115] or in a nonoverlapping (i.e., without occlusion) situation
[118]. Segmentation might be redundant for bioimages in such controlled envi-
ronment [13]. With the assumption of small roughly uniform background, manual
polygonal cropping and dynamic thresholds work well to identify cells [13]. For
in vivo data with different cell types and intercell occlusion, these methods are too
restrictive and explicit automated segmentation is an absolute necessity. Hence later
researchers from Carnegie Mellon University (CMU) have adopted a seeded
watershed algorithm for segmentation in 3D microscopic data where seed for each
nucleus is created by filtering DNA channel output from the confocal scanning
microscope and 93 % segmentation accuracy is reported [49].

An early review paper on interest of image processing in cell biology and
immunology [109] proposes three ways of segmenting cells (illuminated by GFP):
histogram-based bimodal segmentation, background subtraction, and (heuristic)
threshold-based boundary following. Generating outlines of the biological struc-
tures, i.e., image segmentation is a challenging task and influences the subsequent
analysis [53]. This work on analyzing anatomical tissues (conceptually quite similar
to the cell and molecular images) proposes one 2D color image segmentation
method. In the grayscale image, segmentation involves distribution of seed points in
a microscopic image and generating a Voronoi diagram for these seeds. Gradually,
this Voronoi diagram and its associated Delaunay triangulation are modified
according to the intensity homogeneity. For the color images, this region-based
approach is extended with sequential subdivisions of the bioimage, classifying the
subdivisions for foreground (the cell or tissue), or background or both, until each
subdivision is uniquely classified. Voronoi statistics (including HSV mean color
intensities and their variances) of each subdivision are utilized to classify them.
Seed points can be initialized manually or randomly. Then a continuous boundary
of the cell or tissue is obtained by fitting splines. Although this procedure is tested
for anatomical tissues, like segmenting the lungs, the procedure is generic enough
for cell and molecular bioimages and can be extended in 3D using 3D Voronoi
diagrams, of course with increased time complexity.

Another review paper [39] addresses a rather innovative way of segmentation in
cell images. The method applies multiple levels of thresholds to form a confinement
tree that systemizes the knowledge that at what level of threshold, which cells are
merged to a single object. Then morphological filtering reconstructs grayscale
images in various levels. Thus the method is adaptable to the analysis needs. They
also address another edge-based segmentation operating on nonmaximum sup-
pression algorithm and refining the contour by active contours (snakes) with energy
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function associated with curves. Sometimes morphological operations and regional
intensity gradients assist in segmentation. In an application of immunohistochem-
ical stain counting for oesophageal cancer detection [60], the region of interest is
first manually cropped, color image is converted to grayscale image, contrast is
enhanced by histogram equalization, and morphological TopHat (and other) fil-
tering) is performed for initial segmentation. Then watershed algorithm segment out
the nuclei and gradient transform-based edge detection is performed. After
two-stage watershed segmentation nuclei are detected.

In pioneering research of Euro-BioImaging group (http://www.eurobioimaging.
eu/) in clinical wound-healing video, distinct textural difference between the wound
and normal skin is mentioned [67, 77, 107, 118, 147], but for wound segmentation,
histogram equalization (to improve contrast), edge detection, and modal threshold
are utilized. It is rather surprising that no texture feature is utilized. In another
video-based bacterial activity work [118], individual cells are segmented by
seed-based region growing algorithm. But seed initialization process is not clear.
And in presence of occlusion, which is not considered in this work, region growing
procedure may perform poorly. In such cell videos, motion-based segmentation
from tracking across frames [140] might help, specifically when the background
(however complex it is) does not change too fast. One recent work on automated
wound-healing quantification from time-lapsed cell motility video, cascaded
SVM-based initial segmentation, and graph cut-based outlier rejection are applied
on basic image features [143].

Cell population-based studies (in contrast to study on few cells in an image)
sometimes provide more statistical power—specifically for phenotypic changes by
drugs, compounds, or RNAi [64]. Centerline, seeded watershed, and level set
approaches are common in such applications. Except for such rare cases [50, 64],
multicell images are segmented into individual cells before any phenotyping
(classification). Segmentation in cell images in presence of speckle noise (intra-
cellular structures, like nucleus, mitochondria, etc.) are dealt systematically by the
Lawrence Berkley National Laboratory (LBNL) research group [11] by
model-based approach. In multicell images, they model the cells and intracellular
structures as ellipses and mathematically demonstrate that, removing the speckle
noise and interpolating the cell images accordingly can be done by finding solution
to a Laplace equation. They call it “harmonic cut”. The cells touching one another
are segregated by regularized centroid transform, where normal vectors generated
from cell boundaries are clustered to delineate touching cells. This sophisticated
method is a generic up to some extent as long as cells can be modeled as ellipses
(with smooth quadratic splines). Similar approach has been utilized in model-based
detection of cell boundaries and then seeded watershed separation of touching (but
non-occluding) cells in the same image [115]. But in many cases, like data used by
CMU [13], cells are of irregular shapes. Proper extension of the harmonic cut and
regularized centroid transform method for these irregularities is yet to be tested.
Recently, “tribes”-based global genetic algorithm is applied to segment cells with
partial occlusion by part configuration and learning recurring patterns of specific
geometric, topological, and appearance priors in a single type of cell in histology
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and microscopic images [91]. Different cell shapes (without occlusion) are seg-
mented out from defocused image stack of embryonic kidney cells (HEK 293T),
where the best representative slice is first selected by a nonparametric information
maximization of a Kolmogorov complexity measure, then active contours are ini-
tialized and expanded for level set segmentation [80]. A nice level set and active
snake-based multilevel approach segment out core and membrane of cells from
uncontrolled background [86]. Seeded watershed algorithm and level set approa-
ches could successfully segment out Drosophila cells and nuclei and then tracked
across time-lapsed frames to detect cell divisions and migration with and without
drugs [64]. Interested reviewers are encouraged to read CVPR reviews [30] on
fusion of different features like color, texture, motion, and shape and unified
approach of level set segmentation for potential applications in cell images and
videos.

Cellular and subcellular segmentation and colocalization in fluorescence
microscopic images are still very relevant research areas [106]. Recently, Fuzzy
C-means clustering is found better than baseline hard C-means clustering in seg-
menting single pap smear cells as well as separating their nuclei and cytoplasms for
classification and abnormality detection [23]. In another work, for model-based
segmentation of more-confluent (occluded) cell nuclei, predefined patterns in
attributed graphs of connected Sobel edge primitives (in different orientations: top,
bottom, right, left) are iteratively searched and reassigned as needed to localize
nucleus boundaries and then region growing is performed to separate occluded
nuclei [4]. Sometimes 2D segmentation results can enhance 3D segmentation from
stacks of microscopic images of neuronal nuclei—and also correct some of the 2D
under and over segmentation errors by connectivity and centroid clustering [59]. 3D
watershed segmentation is the baseline for comparison in this work. In a neuron
tracing research, morphological features at multiple levels and in different neuronal
parts can successfully segment the entire neuronal cells [76]. Recent review papers
[115, 127] critically discuss many such segmentation techniques along with asso-
ciated advantages and disadvantages.

Texture-based segmentation is one area where future bioimaging research might
gain momentum. Few nice reviews [6, 52, 103, 124, 145] summarize well-
established texture descriptors that are applied in CVPR applications over decades,
including texture-based feature space smoothing that preserves salient edges with
supervised [126] or unsupervised methods [33], split-and-merge segmentation by
facet models, and region adjacency graphs [72] using multiple resolution [99] tex-
ture information measures [100, 101], or region growing segmentation from gra-
dients of textures [45] utilized as inter- and intraclass dissimilarity [130] for random
walk [102, 103] or quadtree-based methods [121]—to name a few. Cellular and
molecular images have distinct textures for different species and this can immensely
enhance segmentation.

Sometimes pixel-, local-, or object-level relations (based in morphology, color,
proximity, local texture, shape, and motion) can be represented graphically with
objects as nodes and weighted links as strength of interrelations [116]. In such cases
graph matching and partitioning methods like normalized graph cut [129] can
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partition highly connected regions as clusters to segment image objects. Except for
few exceptions [4, 143], graph-based segmentation methods are yet to be applied in
cell images to their full potential.

2.3.3 Object Alignment

Though not very common, image registration—i.e., aligning the object with a
template or model is sometimes required for better feature extraction, quantification,
and analysis. This is performed either before the cell segmentation [18, 105] or after
it [115]. Although segmentation and registration are dealt separately in most works,
they are quite interrelated and mutually cooperative (see Fig. 2.2). For examples, in
atlas-based segmentation methods (very common in medical imaging) data model
alignment is a prior requirement, while segmented structures assist in landmark-
based alignment of test object with the model. Specifically, in shape-based methods
segmentation and registration are so similar that a new term “regmentation” is
coined in medical image analysis [37]. Due to high variability of cellular and
subcellular objects, object alignment is not always possible in a reliable manner and
hence not informative for automated analysis. For protein structure alignment—
where similar structures and partial resemblance are of importance—optimal paths
and distances between atoms are successfully utilized in a graph-matching para-
digm [117]. In database search, image registration is required for developing atlas
or representative model from similar cellular datasets [96, 98] or for comparing with
manually annotated reference images for local features (to overcome variations in
sample preparation) before a multireference graph cut [22] or level set [21] does the
nuclear segmentation. Registration might help in detecting eccentricity of a test data
from the model and thus estimating abnormality for further analysis. Classic image
registration algorithms in CVPR [148] or in medical imaging [93] might have
immense potential in cellular image analysis [115], specifically when close-loop
cooperation between segmentation and registration [37] are adopted in a deformable
model approach [44].

2.4 Feature Extraction

A large proportion of the quantitative microscopic analysis research is done with
“static” images of the cells and molecules. In cell classification, static features
dominate, sometimes due to slow biological processes and sometimes to compro-
mise with the computational burden. Three basic steps in static image analysis are
(1) feature extraction, (2) feature selection, and (3) object (cell, biomolecules)
classification. These steps are interdependent. Human perception of the cell images
provides idea on type of classification strategy expected to perform better. The
classifier type influences the selection of features, which in turn guides the image
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processing strategies. Hence the steps are quite overlapping. This chapter attempts
to address these steps individually as far as possible for better understanding.

Image features that are signatures of the object of interest are extracted after the
segmented image is processed through different types of image (morphological,
textural, intensity-based) operators and filters. Sometimes image processing also
covers the occlusion-handling strategy by interpolation or extrapolation of the cells.
Image processing (just like corresponding features) can be classified into:

• Morphological (binary silhouette-based)
• Cell regional (color or intensity-based)
• Differential (or contrast edge-based) and Structural (or shape-based)
• Textural (structural periodicity-based)

Relation between these different types of features is summarized in Fig. 2.3.
Current section describes the example of these image processing types applied in
cell-imaging community, followed by some of the classical CVPR examples to
inspire future research.

Key-frame (static) images or 
prior cellular/tissue model

Extracted features 
ensemble

Feature recombination 
and selection

Component 
analysis 
methods 

Discriminant 
analysis 
methods 

Machine 
learning 
methods 

Final selected features 
ensemble

Morphological 
(binary 

silhouette) 

Cell-regional 
(color or 
intensity) 

Differential 
(contrast edge) 

Structural 
(shape) 

Textural  
(periodic pattern of shape/edge) 

Feature extraction 

Fig. 2.3 Different types of
extraction, recombination,
and selection methods for
static image features and
interrelations between them
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2.4.1 Morphological Features

Morphological image processing techniques basically consider the binary silhouette
(obtained from segmentation) of the cells or biological molecules and find different
geometric properties [114]. These are probably the lowest level image processing
techniques, yet sometimes very useful—especially as different types of cells and
biomolecules generally have significantly different outer shapes (morphology).

After the sequence of the human genome is determined, next task is to determine
genomic functionality. Proteins encoded by novel human cDNA clones cause
morphological changes and/or protein localization at the cellular level which result
in various cellular forms [122]. After histogram equalizations, first-order principle
component analysis (PCA) of manually segmented sub-images is used as models.
They consider 16-bit grayscale images of subcellular compartments like endo-
plasmic reticulum, Golgi complex, plasma membrane, mitochondrion, nucleolu,
peroxisome, etc. Then morphological convolution of the model and original images
are done to get the local maxima that are taken as the focal points.

CMU researchers have used an extensive morphological image processing and
selected number of features [115]. Extensive list can be found in [82]. Some of the
salient ones are: (1) number of subcellular objects per cell, (2) Euler number of the
cell (i.e., number of objects minus number of holes per cell), (3) average pixel size,
(4) average distance of objects to the center of fluorescence, (5) fraction of
fluorescence not included in the objects, (6) fraction of the area of the convex hull
not in the object, (7) eccentricity of the hull, (8) average length of the skeletons (or
medial axis; found by morphological iterative thinning), (9) average ratio of the
skeleton length to the area of the convex hull, (10) average fraction of the object
pixels (or fluorescence) within skeleton, and (11) ratio of branch points to the
skeleton length. Most of these 2D features are also extended for 3D scanning
microscopic data [24, 115]. For images with multiple (same) cells, features like
ratio of largest to smallest cells are also considered [50].

In the research of Euro-BioImaging group [118] simple morphological features
are extracted for solving “correspondence problem” to track the bacterial cells in the
cell motility videos for event detection. The features extracted for each segmented
cells include spatial position in the frame (i.e., the centroid of the cell), its area, its
length, and width (determined by PCA, along major and minor axes, respectively)
and its orientation in the space. These morphological features are used to track and
to detect orientation change over the frame sequence for bacterial “tumbling” and
other behavioral response to the drugs applied. In a medical tissue diagnostic work
from wound-healing video [107], they apply morphological cleaning of the wound
area in the image, and compute application-specific morphological features like
wound length and wound-area-per-unit-length. From the dynamic variation of the
“wound-area-per-unit-length” feature, they decide the healing (or worsening) of
the wound with time as drug is applied periodically. LBNL researchers utilize
detailed morphometric analysis of TCGA glioblastoma multiforme for tumor cat-
egorization from hematoxylin and eosin (H&E) stained tissue where they compute
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cellularity (density of cells), nuclear size, and morphological differences of nuclei
[20].

In recent reviews [25, 105] different morphological operations in cell image
analysis—from segmentation to characterization to abnormal cell identification—
are nicely summarized where different cell morphological features are discussed
including circularity, rectangularity, eccentricity (ratio of minor to major axis
length), morphological texture from gray-level co-occurrence matrix: energy, uni-
formity, entropy, smoothness. These features are also extended to 3D morphology
and deformable models [25].

2.4.2 Color and Intensity Features

Intensity value for grayscale cell images and color component values in different
color spaces like red-green-blue (RGB), hue-saturation-value (HSV), or other
application-specific combinations of them [114] sometimes have the unique
region-based features to segment and classify cell and molecular objects in bio-
chemical fluid—especially when salient portions of the cells are illuminated by
GFP tags. Color decomposition might also reduce computational load, and might
assist thresholding, refinement, and normalization of input image to the base image
[20]. Grayscale intensity-based moment of inertia is successfully applied for
chromosome slice estimation and profile extraction [104]. According to this work,
shape profile is the moment of inertia of the normalized gray value distribution in
each slice relative to the tangent to the longitudinal axis at the subdivision point of
the slice. Similarly, different grayscale-based features such as brightness, histogram,
and amplitude of a region assist in genomic classifications [122].

The prognosis of esophageal cancer patients is related to the portion of MIB-1
positively stained tumor nuclei. An image analysis system is developed on LEICA
Image Processing and Analysis System to reduce the subjective, tedious, and
inaccurate manual counting of nuclei staining [60]. It can analyze in 15 min.
Proliferative activity of tumor is a useful parameter in understanding the behavior of
tumor. Correlation between the proliferation activity and overall prognosis has been
observed in some tumor. MIB-1 score by immunohistochemical method and stain
counting is one affective process. Brown nuclear stain is regarded as cancerous cell
and blue nuclear stain as normal cell. Intensity-based classification is performed in
RGB space: brown nuclei by red-component-higher-than-blue-one and blue nuclei
by the vice versa. Automated systems might suffer from variations in illumination
and focusing problems, mainly due to dynamic nature of the protein molecules.
Heuristic application-specific filtering [60], fluorescence decay models [123], or
illumination-invariant color component-like saturation [53] might overcome such
problems.

Haematococcus pluvialis (Chlorophyte) produces carotenoids that are utilized as
color pigments and analyzing agents for different degenerative diseases in humans.
Haematococcus has two distinct phases in its life cycle: green flagellated motile
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phase and nonmotile nonflagellated cyst phase formed due to stress conditions.
Automated evaluation of red component of imaged cells can give estimate of the
carotenoid content without disrupting the cell wall. One work [56] adopts grayscale
conversion, histogram equalization, and edge-based segmentation for ROI extrac-
tion. Then cell pigment percentage change is detected from hue component by
three-layered artificial neural network (ANN) classifier that classifies into two
classes: Chlorophyll and Carotenoid, for medical diagnostics.

Another work on semiautomated color segmentation method for anatomical
tissue [53], considers mean a variance of color in different voronoi cells dividing the
tissues in segmentation and classification of lungs like organs. They have converted
RGB tissue images into HSV space and reported that saturation plays important role
in distinguishing between biological tissue and cell structures. This coincides with
the well-established fact in CVPR that saturation is relatively invariant to the
illumination changes, and might be even better than explicit modeling of temporal
decay of fluorescence strength (called “leaching effect” of GFP) [123]. Sometimes,
to separate out an actual fluorescent tag from noise in low signal-to-noise ratio
(SNR) data, cell spots are detected by intensity-based local maxima detection where
a “spottiness”-value is computed to characterize the similarity of the intensity signal
in the neighborhood of a local maximum with respect to the intensity signal of a
theoretical spot [123]. This theoretical spot neighborhood has been modeled using
the Gaussian point spread function. Gaussian filtering and interpolation of intensity
features have been extensively used in bioimaging [11].

2.4.3 Edge and Shape Features

Edge and shape features are comparatively higher level features than the last two, as
they have more uniqueness for object recognition (see Fig. 2.3). Naturally, in cell
and biological specimen classification and analysis, edge and shape based features
play significant role. Edges are the convolution output of the images from contrast
differential operators (number of dimensions same as the data), e.g., Sobel, Roberts,
Prewitt, and Canny edge detectors [114]. The edges are connected by boundary-
following algorithms to get the contour of the cells/objects in 2D or 3D. These
contours are low-level representation of shapes for cell classification.

CMU research group extracts number of edge/shape features from differential
operators [82], both in 2D and 3D domain. Salient ones are: (1) fraction of pixels
distributed along the edges, (2) measures of magnitude and directional homogeneity
of the edges, (3) different Zernike moment features (computed by convolving with
Zernike polynomials) to find similarity in shape between the cells and corre-
sponding polynomial. They utilize all these features directly in ANN or other
classifier module without trying to develop any shape models. Probably a middle
level shape model can improve the classification, as is the case for number of
computer vision applications [114].
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In an early work [109], shape features are utilized to study human neutrophils
exposed to chemotactic stimuli, to describe cell polarization and orientation and to
identify chemotactic abnormalities in cells from heavily burnt patients. Information
relevant to the mechanisms of adhesive interaction is extracted from the distribution
of intercellular distances in cell–cell contact areas. This contact area estimation
allows conceptual discrimination between “actual contact” (i.e., with intermem-
brane distance compatible with molecular interactions) and “apparent contact” (i.e.,
apparent membrane apposition with intermembrane distance of 50–100 nm). LBNL
researchers estimate parameters of the elliptical model of individual cells as shape
features [138] and extend their harmonic cut method for iterative tensor voting to
refine ill-defined curvilinear structures and for perceptual regrouping of 3D
boundaries to separate out touching cells [71]. Sometimes cell shapes are utilized
indirectly to classify [31], where the hidden layer of a modular neural network
(MNN) might compute the shape features internally, takes into account the shapes
of the cell at different scales, and maps directly to different cell classes in the output
layer of the MNN. Another work [104] utilizes shape or chromosome boundary and
contour curvature to define the singularities (called dominant points) in the chro-
mosome pattern. Longitudinal axes of the chromosome are found by fitting quad-
ratic splines of the distribution of these dominant points and their variants. These
axes act as the backbones of the grayscale intensity-based slice determination for
extracting chromosome profiles.

In CVPR research shape and boundary-based features are one of the most suc-
cessful ones for decades [3, 8]. These methods are nicely reviewed in [146] and can
be broadly classified under four categories as follows. (1) Scalar boundary trans-
formation techniques: for example, tangents represented as parametric (turning)
function of arc lengths; shape centroid methods with polygonal approximation; radial
distances [70]; Fourier (frequency) domain features or bending energy of
the boundary; circular autoregressive shape models [65]; and central distance of the
boundary from fixed length arc placed at different boundary locations. (2) Spatial
boundary transformation techniques: for example, multilayered chain code for
shapes at different resolution; syntactical coding of strings of primitive shape fea-
tures; split-&-merge spline approximation with minimum error [27]; hierarchical
scale-space representation from multiple-width Gaussian filters [5, 7]; and boundary
decomposition by template contour template matching [68]. (3) Scalar global
transformation techniques: for example, multiple order 2D or generalized polynomial
moments of the silhouette; different shape matrices and vectors from polar raster,
concentric circles or maximum shape radius; and granulometries, morphological
covariance, geometric correlations, residuals [73]. (4) Spatial global transformation
techniques: for example, medial axis, and r-symmetric axis transformations; and
shape decomposition based on convex–concave boundary points and fuzzy likeli-
hood. Among these, only a few methods like Fourier shape descriptors [115], spline
approximation by iterative refinement of curvilinear structure to separate touching
cells [71], elliptical cell shape models [11], Zernike polynomial moments for cellular
matching [28], and shape decomposition for neuron tracing [76] are utilized in
bioimaging research. Accuracy of these results needs to be evaluated more critically
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in classification and image retrieval scenarios [3]. Scale-space shape models and
features [5, 7, 8] from cellular and subcellular images might improve classification in
multicell bioimaging data. One recent work [106] reports a user-friendly freely
available software for colocalization in near real time (<1 min for 2D, <5 min for 3D)
by segmentation and quantification of subcellular shapes (Squass).

2.4.4 Texture Features

Shape features distinguish objects or cells from what is seen from the outside.
Textures are the features of the cells as seen from inside. In cell images, different
cells and biomolecules generally have distinct textures (in 2D patch or 3D surfaces)
compared to the biochemical fluid (in vivo) or solution (in vitro) they are floating
in. Similar is the case for anatomical tissues [107]. These textures are actually
periodicity of similar patterns in visual spectrum and are also affected by bio-
physical and biochemical properties like viscosity, smoothness, fluorescence
absorption, diffuseability, etc. Texture often characterizes the cell or solution when
other surrounding conditions remain the same. Hence, cell-image analyzers also
apply textures as primary features for cell classification [28, 122] and cell video
understanding [118]. Among several texture descriptors utilized by CMU
researchers for subcellular localization [28, 82], the key ones are:

• Haralick texture features [6]: These are computed as gray-level co-occurrence
matrix (might be extended to color co-occurrence matrix for each components)
and then averaged for rotational and translational invariance. Intrinsic statistics
including angular second moment, contrast, correlation, sum of squares, inverse
difference moment, sum average, sum variance, sum entropy, entropy, differ-
ence variance, difference entropy, and information measures are often extracted
as features.

• Gabor wavelet texture features: Spatio-intensity periodicity is extracted using
Gabor kernel with different scales and orientation. Mean and standard deviation
at different abstraction levels are considered as features. Non-orthogonal Gabor
wavelets can capture the derivative information of the images.

• Daubechies four wavelet textures features: Cell images are decomposed up to
level 10. The average energies of the three high-frequency images at each level
are utilized as features. Scales and orientations provide textural fineness and
relative arrangements.

Besides above, Low’s textures and 15-element feature vector describing sym-
metries [114] might be utilized in subcellular localization. Recent bioimage analysis
research starts to look back on some of the established texture descriptors [52, 124,
145] including Haralick’s texture descriptor [6], local binary patterns [87],
co-occurrence matrix-based grayscale textural features [122], and learning-based
local binary patterns [46] in analysis and classification of 2D-Hela databases and
recognition of abnormal smear cells in pap smear medical databases. Multicellular
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textures are found to be excellent descriptors in monitoring wound-healing and
cell-scattering assays in differential interference contrast (DIC) images [143]. There
are inherent differences in tissue and cell textures, and many more such research
efforts in bioimage analysis are expected in the near future.

2.5 Feature Recombination and Selection

Human vision can recognize different biological cells and their activities in
bioimages and videos relatively easily due to complex vision perception experience
cycles. But that is neither well understood nor yet implementable in computer
programs. Human brain automatically selects best features and their different
combinations to analyze the data effortlessly. Automated systems can at the best
extract a very large number of low-level image features with the hope that no
valuable information is lost, sometimes without knowing the actual usefulness of
those features to classify (cells) and recognize (their activities). Cellular and
biomolecular images/videos often capture irregular structures and unknown inter-
dependent dynamics between them. To analyze them often several features are
extracted [82, 115]. But more features mean exponential increase in computational
time. This often leads to overlearned complex model that is good only for the seen
(training) data. Minimum description length (MDL) principle in machine learning
[79] suggests rather simple and generic representation that is valid for unseen (test)
data also. Besides relevance in MDL, feature selection also leads to efficient
learning of classifiers and data mining in growing complex databases [58]. Feature
extraction itself is a dimensional reduction to avoid working with every pixels of
the high-resolution bioimage. Selection of salient features based on their distin-
guishing power is the next step to avoid dimensional explosion [58, 81, 128, 134],
sometimes followed by generating better (often complex) features by recombining
simple features so that the second-level features fit the application better.
Integrating feature from different domains—color, texture, motion, and shape—is
gaining importance in recent image informatics [30, 52]. CMU computational
bioimaging group is among the very few in bioimaging research to address this
major issue in very systemic way [50, 115]. In cell classification domain, classifiers
are sometimes limited by underdetermined classification boundaries due to limited
number of available cell images in comparison to number of features considered.
One solution is feature reduction either by feature recombination or by feature
selection utilizing one or combination of algorithms, as summarized in Fig. 2.3 and
exemplified as follows.
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2.5.1 Component Analysis Methods

Principal Component Analysis (PCA) considers salient eigenvectors of the feature
covariance matrix (in general much fewer than number of features) based on corre-
sponding high eigenvalues (i.e., stronger basis vectors). The strongest eigenvectors
(above a threshold) often define the linear transformation matrix [122]. This trans-
formation provides weighted linear combinations of the original (sometimes nor-
malized) features in least square error sense to fit the actual feature-set variation—but
in a much lower dimensional feature space such that the classes are well separable
(with less overlaps) [105].

Nonlinear PCA (NLPCA) is PCA, but with nonlinear transformation and
combinations of the original features. From infinite possibilities to get such nonlinear
transformations, one way is to learn it from a symmetric neural network [14, 35]. At
the trained state, the first layer of the ANN structure converts the input original
features to a linear combination and the second layer transforms them in a nonlinear
way. Then they are inversely transformed back (first nonlinearly, and then linearly)
to the output features, which are identical (or very close) to the input original
features. Second layer outputs are the NLPCA-recombined features.

Kernel PCA (KPCA) adopts a nonlinear kernel function—like polynomial
function, multilayer perceptron (MLP), radial basis function (RBF) or any other
nonlinear function that first transforms the original feature space to a very
high-dimensional feature space. Thus in a way, KPCA is feature extractor as well.
Then linear PCA reduces the huge ensemble of features to very few recombined
features compared to the original input features.

Independent Component Analysis (ICA) makes use of the fact that less the
dependency among individual features for the acquired dataset, more mutually
cooperative and precise the feature set is to describe the (biological) features of the
(cell) image [105]. Criteria such as non-Gaussian nature are utilized to maximize
the independence among recombined features (sometimes with both linear and
nonlinear transformations) to cover larger area in potentially infinite dimensional
feature space.

2.5.2 Discriminant Analysis Methods

Classification or Decision Trees (DT) is formed with individual original feature
where the effective classification power of each feature is measured by
entropy-based information gain and penalized for too much fragmenting of the data
by a split information feature as defined by C4.5 algorithm [79]. Features with
higher information gain separates different classes better and hence might be
selected for classification.

Fractal Dimensionality Reduction (FDR) works on the principle that few
features are often redundant because same information is shared by multiple
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features, while few other features might be intrinsic because that data points are
cohesive and better classified in the corresponding space. The fractal dimensionality
of the data set, often represented by correlation fractal dimension, describes
self-similarity of the data points and is a good approximation of the intrinsic
dimensionality of the data. Correlation-based fractal dimensionality of the whole
data set is computed first. Partial fractal dimensionality of a feature is measured in
the same way, but without using that particular feature. Feature leading to minimum
decrease in correlation is considered noise and hence not selected for further
consideration. Thus iterative backward elimination is continued to reduce number
of features.

Linear Discriminant Analysis (LDA) selects those features that separate the
classes best (with least classification errors) with linear class boundaries. The cri-
terion to be minimized is directly proportional to intraclass variations and inversely
proportional to interclass distances between means [35]. Thus minimizing this
measure class cohesiveness and as well as interclass separation can be increased.
Feature set that minimizes this criterion is selected [23]. But the number of possible
feature sets explodes with the feature dimensions.

Stepwise Discriminant Analysis (SDA) applies a (split-&-merge like) greedy
search approach to solve computational explosion in LDA. It adopts same criterion
as in LDA for the present feature set and computes F-statistics for each left-out
feature to enter into and for each currently selected feature to exit from the current
set. The feature with highest F-to-enter is added and the feature with lowest
F-to-exit is eliminated in turn based on F-statistics computed in between. Thus
forward selection and backward elimination are iterated till the criterion value
stabilizes [49].

2.5.3 Evolutionary Learning Methods

Genetic Algorithm (GA) attempts to avoid the usual problem of entrapment in
local minima in the feature-dimensional search space inflicting the greedy search
algorithm of SDA. GA follows “survival of the fittest” rule from evolution theory
and utilizes “mutational” randomness to come out of the local minima in the search
of the global minima. It considers a string of bits (1: for feature being selected and
0: for feature being left out) as a species. Systematic variations are applied by
“crossovers” and randomness by “mutations” among the current “chromosomes” to
change the initial populations toward more fitted populations. Defining proper fit-
ness function is critical for evaluation of intermediate populations and individual
species. For feature selection, classification error often defines the fitness function
such that reduced error means better feature sets. To bias the selection toward
minimum possible sets of optimal feature, MDL constraint sometimes works in
parallel with the classification errors [66, 79].
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2.5.4 Performance Analysis and Future Scope

CMU work [115] in recognition of proteomic subcellular location patterns in cel-
lular images reveals that understanding protein functionalities is facilitated by
localization of subcellular compartments as they create unique biochemical envi-
ronment for protein folding and other functionalities [84, 97]. To classify these
patterns with less number of available static images, they start with host of features
(discussed earlier) and then select features with evaluation by above-mentioned
strategies for all ten major subcellular patterns in HeLa cells. Their results reveal
that in this specific application, feature selection procedures (DT, FDR, LDA, SDA,
and GA) perform better than feature recombination procedures (PCA, NLPCA,
KPCA, and ICA). SDA performs the best with reduction of feature dimensionality
by 0.46 factor while increasing the classification accuracy by 2.2 % [50]. GA-based
method is the close second with reduction in dimensionality by 0.51 factor while
increasing the accuracy by 2.3 %.

One possible future research direction for GA-based feature selection might be
cascading a classifier like ANN to evaluate performance of the current set of features.
ANN output is the value of the fitness function that is fed back to GA for crossover
and mutation decisions to reach the fittest set of features in GA output. For feature
recombination, novel ideas of synthetic feature generation adopting genetic pro-
gramming (GP) methods might be successful as in CVPR applications [66]. In GP
method, sequential image operators are represented by tree-like structure and
crossover or mutation of branches (as in GA) leads to generation of novel synthetic
(recombined) features, that might not make sense ordinarily but might define the best
feature to define class boundaries in a lower dimensional feature space. CMU work
[50] underscores the need of proper feature selection procedures before the classi-
fication stage. One recent review [120] discusses different applications of
machine-learning techniques in cell biology—from preprocessing, detection, feature
extraction, feature selection, supervised and unsupervised classification, perfor-
mance optimization, and availability of such software packages for cell biologists.

2.6 Cell Classification

In static image bioinformatics, cellular or subcellular recognition or classification is
often the ultimate goal. As infinite structural variations among cells and intercellular
organelles and molecules are possible, high-throughput automated recognition of
biological structures and distributions requires both robust image feature sets and
accurate classifiers. The dynamic characteristics of the cells and biochemical
activities make classification even more difficult. As an example, the most typical
Golgi images are characterized by compact structure, while prior to mitotic cell
division, Golgi complex undergoes fragmentation to reunite at the later stage in two
offspring cells. This dynamic fragmentation in Golgi complex gives problem in
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simple morphology-based structural classifications even for manual detections,
while computed texture descriptors (imperceptible to human eyes) recognize them
much better [90]. Similarly, in human protein atlas, manual annotations are cor-
rected by automated classification in support vector machine (SVM) classifier
followed by hierarchical clustering [63]. Sometimes, without explicit segmentation,
morphologically preprocessed images themselves are fed to modular neural net-
work [31]. Modularity of the hidden layer considers the image at different scales
and for different regions. As the bioimage data used in this work have no cell-to-cell
occlusion, the different regions of the images generally contain individual cells (i.e.,
segmentation is implicit) and provide good classification results.

CMU group applies several supervised and unsupervised classifiers to recognize
subcellular localizations from multiple biological image sets [50, 115]. They list
links to several proteomic databases that are freely available for comparison, but
notify that unified framework for all expressed proteins in different cell types under
many biological conditions is still a big challenge [90]. Their work reports
recognition accuracy of 95 % for 2D and 98 % for 3D HeLa cell images.
Comparison of results for each image from these classifiers permits estimation of
the lower bound classification error rate for each subcellular pattern, which they
interprets as to reflect the fraction of cells whose patterns are distorted by mitosis,
cell death, or acquisition errors. They claim that sometimes automatic classification
can outperform human visual classification. For easily confused endomembrane
compartments (endoplasmic reticulum, Golgi, endsomes, lysosomes) pattern clas-
sification is improved by 5–15 % over the human classification accuracy [49].
Specifically, cell and organelle characteristics like Gabbor texture features and
Daubechies −4 wavelet features cannot be measured visually for manual classifi-
cation and that makes the difference in favor of statistical pattern classification
strategies. They distinguish ten major eukaryotic subcellular location patterns in 2D
microscopic images and eleven in 3D images, including few that are not discernible
in human eyes.

Some of the image-based cell molecular applications utilize simple histogram-
based thresholds or seed-growing segmentation for classification. For the automated
analysis of epithelial wound-healing process from time-lapsed image sets [107],
simple region-based segmentation and seed-growing technique are used as the
classification between lacerated wound and unaffected skin—although seed ini-
tialized method is not clear. Similar technique is also applied segmenting and
classifying bacteria [118], tracking them individually, estimating spatiotemporal
tracks and recognizing biological activity with and without application of drugs.
When there are similar cellular or subcellular structures in a distinctly different
background (in vitro solutions), segmentation itself is type of pixel-based classifi-
cation, where geometrical models and intensity clustering are adopted in several
works [11]. Sometimes location-based region adjacency graphs could distinguish
lumenal epithelial cells, stromal cells and nuclei from in vitro subcellular images
[20, 22] or sparse features are learnt to classify tumors in histopathology [89].
When several different proteins are present for each location class, local features
information from protein as well as reference marker images (acquired in parallel)
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might be useful to correct classification [28]. In a recent work [23] on classification
and abnormality detection in Pap smear cells, multiclass datasets (4 and 7 classes)
are merged for 2-class problems—normal and abnormal—to compare performance.
Five classifiers are tested—Bayesian classifier, LDA, K-nearest neighbor (KNN),
ANN, and SVM—where ANN performed the best—with >95 % accuracy for
multiclass and >97 % for 2-class problems.

Major pattern classification methodologies used by different bioimaging groups
are depicted in conceptual diagram in Fig. 2.4 and briefly addressed below with
pointers to references for necessary details. Interested readers might review recent
survey papers on complete cell analysis systems that summarize different unsuper-
vised, semi-supervised and supervised machine learning-based classifiers [115, 120].

2.6.1 Artificial Neural Network (ANN)

This are layered directed acyclic graph (DAG) imitating biological neural networks
to transform input signals or features to output activations through linear or com-
plex nonlinear functions. Complex nonlinear multi-input-multi-output (MIMO)
mapping functions are learnt from a training dataset by supervised learning rules
like back-error propagation, reinforcement learning, competitive learning, etc. [14].
This is generally applied when the mapping function might be considered as a black
box and no further structural analysis is warranted. There are number of variants of
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training dataset) 

Unsupervised 
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(without 
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Fig. 2.4 Major pattern recognition techniques utilized in cellular and tissue classification in
biological datasets
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ANN structures [12], although fully connected multilayered-perceptron (MLP) with
sigmoid activation function and back-error propagation learning rule is the most
common and successful [13]. In the feature-based supervised classification of
cellular images, input features and correct output class labels (often visually clas-
sified) are utilized to tune the neuronal connection weights (only changeable
parameters in ANN) over the training cycles and once trained can classify unseen
(test) data [23, 25, 49, 56].

One work [31] adopts a modular neural network (MNN) trained with sets of
confocal sections through cell lines fluorescently stained for markers of key
intracellular structures. MNN is developed as three 2D layers of input. In the
modular structure, MNN input layer obtains monocular pixel-level intensity values,
hidden layer considers different sections of the cellular image at different
resolutions/scale to capture the overlap and the structural relations and the output
layer produces the classes like mitotic nucleus, nucleus, Golgi, etc. Training is done
with standard back-error propagation with 67 % of the randomly sampled data. Key
feature of MNN is capability to capture structure of the organelles in 2D.

2.6.2 Support Vector Machines (SVM)

Unlike ANN, which is a nonlinear classifier, SVM generally is a linear classifier
that finds a hyperplane between the two classes that maximizes the distance
between the plane itself and the data points from different classes closest to the
hyperplane [125]. It is an example of margin-based classifier in pattern recognition.
The plane is supported by multiple pairs of closest data points from different
biological classes, where the plane is at equal distance from both the points in a
particular pair. Actual feature dimension is mapped nonlinearly to a very large
dimensional space with the hope that class overlaps can be nullified or reduced for
better classifications with less error. General two-class SVMs are extended to
multiclass applications by max-win, pairwise, and classifier DAG. SVMs can adopt
different kernel functions for mapping different low-dimension to high-dimension,
like linear, radial basis functions (RBF), exponential RBFs, polynomials, etc. One
way to decide which one to select is to start with complex kernels and gradually
reduce order of complexity and compare performance to stop at an optimum level
for a particular application. In CMU work, SVMs with exponential RBF perform
the best for image-based subcellular location classification [50, 63, 115]. SVM
classifiers are very successful in several bioimaging applications [23, 25].

2.6.3 Ensemble Methods

To avoid the general problem of entrapment in local minima of the error surface
during training (as in ANN) [35, 125], one way of robust classification is
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considering multiple classifiers with different structures and parameters and fusing
the results from these individual classifiers to get the final result. This is the basis of
ensemble methods with many variants based on the technique of fusing the base
classifiers [12]. AdaBoost learning starts with weak classifiers and gradually
increases weights of those classifiers that have made wrong classification in last
iteration. Thus more stress is exerted to learn to classify confusing examples. On the
other hand, Bagging method tries to increase the training dataset by resampling
with replacement and to learn base classifiers with different input sets. Results from
them are combined to get the final result. Mixture of experts is another ensemble
technique that follows divide-and-conquer strategy so that training set is partitioned
by some similarity, classified by different base classifiers for different partitions
(like, gating network) and then combined (e.g., by local expert network). Majority
or consensus voting is one simple ensemble method that, married with Kaplan
Meier test, can effectively perform tumor subtyping [20].

2.6.4 Hierarchical Clustering

When subcellular images cannot be classified by visual inspections (like in Golgi
compartments, due to mitotic cell division), supervised learning is not possible.
Clustering is an unsupervised learning technique to know the classes from unla-
beled training data from proximity in the feature space. After proper normalization
of different features (to give proper weights on different dimensions), proximity can
be measured with any standard distance metric [35], like Euclidean distance or
Mahalanobis distance using feature covariance matrices, etc. Individual classes can
be formed with proximity and multiple discriminant analysis (MDA) of the clusters
in feature space. K-means spectral clustering [25] is one such variant. CMU
researchers adopt bottom-up approach to learn a hierarchical subcellular location
tree (SLT) from clustering, where at first every organelle structure is taken as
individual classes and then classes are iteratively merged by similarity (proximity
and MDA) in layers to form a classification tree [115]. This type of hierarchical
classification tree or SLT is a very high-level tool for cell molecular biology and
can be applied in other medical diagnostic systems as well. A SLT is automatically
developed from cellular and subcellular image sets [90, 115] where classes are
merged correctly as expected from biological knowledge (like first to merge were
giantin and gpp130 as both are the Golgi proteins). In protein regulatory networks,
graphical connectivity-based hierarchical clustering is applied to classify cell lines
and data mine parts of them to categorize whether it is “living” or “dying” [95]. The
biggest problem with unsupervised learning is visual or manual validation of the
classification results is not possible as there is no labeled training set.
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2.6.5 PCA Subspace-Based Classifiers

Classifying cellular forms of proteins encoded by human cDNA clones is a primary
step toward understanding the biological role of proteins and their coding genes.
Classifier surface is successfully estimated in PCA subspace to classify protein
structures with a novel framework I-GENFACE for protein localization [122].
Morphological, geometrical, and statistical features, such as brightness of a region
of pixels, the object boundary, and co-occurrence matrix-based grayscale textural
features, spot and line features, histogram, and amplitude features, etc. are extracted
semiautomatically. Distance-based metric in PCA subspace is adopted to classify
the protein forms and then the corresponding images. Classification accuracy
achieved is approximately 90 % for seven subcellular classes.

2.6.6 Performance Comparison

Beside standard performance evaluation tools in CVPR [12, 35], sometimes
application-specific criteria are defined in cell imaging [49].

(1) Complexity of the decision boundaries that a classifier can generate For a
pair of Golgi proteins, giantin, and gpp130 (ones difficult to classify visually) and
two most informative features derived by SDA-based feature selection (namely,
fraction of fluorescence not in any object and convex hull eccentricity) CMU
research illustrates the complexity on the 2D scatter plot. This is one way to check
the complexity of the classifier needed, like the order of the activation function in
ANN, or polynomial order in kernel-based SVM, etc. Although complex classifiers
sometimes classify small dataset (with less variation) utilizing complex features,
according to minimum description length (MDL) principle [79] these are overfitted
classifiers as they loose generality for the dynamic organic environment.

(2) Dependence of the classifier performance on the size of the training set This
is the capability to learn from limited training set and insensitiveness to the presence
of outliers in the data. In cell molecular biology, complexity of the dynamic
environment might demand multiparameter classifier that in turn needs larger
training sets (to fit the parameters iteratively) which is not always available. CMU
work shows [50] that with more training data classification accuracy improves, as
expected. Even without access of the complete dataset, probabilistic active learning
could model and discover biological response in gene datasets [88]. In this work,
greedy merge structure learning iteratively combines distributions with the
assumption that same conditions affect the unseen variants similarly. Outliers
generally affect in incremental learning modes of different classifiers, like ANN and
reduce accuracy.

(3) Sensitivity of performance to the presence of uninformative features All the
features may not contribute cooperatively toward classification. CMU research
claims that ANN perform better for 3D cell images than 2D images, which is
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somewhat unexpected and underlines the importance of feature selection. They
adopt SDA feature ranking based on information content and gradually add features
according to high-to-low ranking to compare how the classifiers behave [50, 115].
This is a classical pattern recognition method to check how many features are
adequate to work with a particular classifier applied to a particular task [35]. They
also conclude that the ability of a classifier to adapt to more noisy features depends
on the feature space itself.

Above indices are very general for any applications. CMU work also evaluates
classifiers based on statistical paired t-test. They conclude that SVM with expo-
nential RBF kernel performs most consistently for different subcellular location
feature sets [50].

2.6.7 Other Methods and Future Scope

Evolutionary computation a key machine learning paradigm not yet utilized to its
full potential in bioimaging. Methods like genetic algorithms (GA), genetic pro-
gramming (GP) (see Sect. 2.5) and their variant like colony optimization, particle
swarm optimization, “tribe”-based global GA, etc. fall in this class. Only few recent
works report successful usage of such techniques for segmentation [91], feature
selection, and classification [58]. Bayesian learning [57] is another area where very
limited cell classification research is so far invested [23] but might lead to success—
specifically as cellular localizations can easily be represented as cause-and-effect
relations with the surrounding biological processes and injected drugs and antigens.

2.7 Dynamics and Tracking: Cell Activity Recognition

Cellular processes are heterogenous and complex, yet very organized. For under-
standing molecular mechanisms at the systems level, like cell migration and signal
transduction [137], complex spatiotemporal behaviors of cellular processes are
needed to be datamined with objective computational tools. Cell migration, besides
motion, involves shape changes (morphogenesis) and interactions at different
levels, from single cell flagella-driven movement to bacterial swarming to collective
stem cell migration toward chemoattractants. Estimated motion leads to preferred
migratory paths as well as related shape deformations. Sometimes correlation
between signaling events to spatial organization of the biological specimens might
enhance understanding biological processes [105]. One recent work [18] proposes a
complete pipeline of computational methods for analyzing cell migrations and
dynamic events, starting from acquisition, registration, segmentation, and classifi-
cation, and finally addressing cell tracking, event analysis, and interpretation.
Changes in shape and topology are tracked and motion fields are computed.
Another application oriented review [105] of developments and challenges in
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automated analysis summarizes few examples of intracellular dynamics, cell
tracking, and cellular events as follows: (1) Estimation and control of cell cycle
state and its rate of change directly will link to cancer and DNA damage. (2) Very
little is known on intricate dendrite branching pattern unique for each neuronal
class. Tracking of dendrite arbors in 3D microscopy might help estimating dynamic
relationship between dendrite growth and synaptogenesis. (3) Embryonic heart
development and embryogenesis of Zebra fish could be monitored to enhance
understanding and quantifying structural phenotypes in tissue.

The challenge of the postgenomic era is functional genomics, i.e., understanding
how the genome is expressed to produce myriad cell phenotypes [11, 88, 94]. To
utilize genomic information to understand the biology of complex organisms, one
must understand the dynamics of phenotype generation and maintenance. Also
cell signaling and extracellular microenvironment have a profound impact on cell
phenotype. These interactions are the fundamental prerequisites to control cell
cycles, DNA replication, transcription, metabolism, and signal transduction. All the
biological events in the list require some kind of particle tracking and then clas-
sification of the dynamics. Signal transduction is believed to be performed by
protein molecules passing across the cell membrane, carrying some electrochemical
massage to the target cell or organelle, where it initiates some biochemical event
[119]. Hence tracing signals and analyzing their implications also require tracking
over image sequences. Biochemical activities in the molecular (e.g., protein, DNA,
RNA, genes etc.) and atomic levels (e.g., protein folding leads restructured form of
the proteins followed by higher level activities like mitotic fragmentation) in
intracellular compartments (e.g., mitochondria, Golgi bodies, nuclei, cytoplasm
etc.) and intercellular signaling are one of the prime signs of life [97]. Higher level
activities in living organism trace back to these molecular level biochemical
activities [36].

One crucial point in bioinformatics is that the biochemical processes are often
very slow, while few transient processes are very fast—e.g., red blood corpuscles
(RBC) are dying in hundreds every minute, and new RBCs replace them to keep the
equilibrium. After effective shot detection and key frame selection depending on
rate of change of information content of the cellular video (see Sect. 2.2), cell
tracking, and biological activity analysis can be efficiently performed only with
those key frames (see conceptual diagram in Fig. 2.1).

Like RBC lifecycle, many other cellular events are transient in nature—
including plant cell activities. In plant physiology research, cell dynamics analysis
plays a significant role—from monitoring cell morphogenesis [62] to dynamic gene
activity [78] for developmental processes. In one in vivo study of CA2+ in the
pollen grain and papilla during pollination in Arabidopsis in fluorescence and
ratiometric imaging, yellow cameleon protein indicator is utilized to detect change
in CA2+ dynamics over different phases of pollination [54]. Unfortunately, growth
rate of pollen tube is measured manually by the rulers that, unlike in computational
methods, reduces statistical reliability. Similarly, interactions between B and T cells
are essential for most antibody responses, but the dynamics of these interactions are
poorly understood [92]. By two-photon microscopy of intact lymph nodes, it is
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demonstrated that upon exposure to antigen, B cells migrate with directional pref-
erence toward the B-zone-T-zone boundary in a CCR7-dependent manner. There are
salient variations in velocity, speed, and duration of activity based on antigen doses.
These findings provide evidence of lymphocyte chemotaxis in vivo, and can define
similar dynamics associated with T cell-dependent antibody responses. Development
of many vertebrate tissues involves long-range cell migrations that are often quan-
tified from time-lapsed images and few samples of data. One work [132] utilizes
two-photon laser scanning microscopy and quantitative analysis of four-dimensional
cell migration data to investigate the movement of thymocytes through the cortex in
real time. This work tracks the thymocytes over multiple frames of cell video, forms
time-stamped spatiotemporal trajectories to classify into two classes of motility rates
(higher and lower), and concludes that displacement from origin varies differently for
these motility rates (lower motility follows linear rule, while higher ones follow
quadratic rule). And these two distinct migratory behaviors within wild-type cortical
thymocytes are analyzed for further higher level biological decisions. Cell activities
like cell division, cell migration, protein signaling, and protein folding in biological
videos should be computationally analyzed and classified into spatiotemporal pro-
cesses to understand the dynamics behind them.

Euro-BioImaging consortium is one of the very few groups actually analyzing
dynamics in cell videos. They analyze bacterial motility videos taken under light
microscopy and in vitro solutions [118]. They record the trajectories of
free-swimming bacteria of the species Rhodobacter spheroids under a variety of
incubation conditions, and estimated trajectories of the rotations of these bacteria
tethered to glass coverslips using an antiflagellin antibody. The rapid rotations of
helical flagella by proton-powered molecular rotary motors (embedded in the
bacterial membrane) cause free-swimming bacteria to swim forward in curved
trajectories. Brief reversal of the direction of rotation of the motors in a single
bacterium induces its flagellar bundle to fly apart, causing the cells to undergo a
“tumble”, leading to randomizations of the new direction of motion upon
resumption of the normal rotational direction. Bacteria swimming up a concen-
tration gradient of a chemoattractant (e.g., glucose) tumble less frequently than
bacteria entering a hostile (e.g., acidic) environment. Euro-BioImaging group
studies these bacterial responses to environmental stimuli by considering spa-
tiotemporal trajectories of individual bacteria and the times and positions of bac-
terial events, such as tumbles and reverses. It would be impractical and intractable
to undertake such detailed analysis and annotations of events manually.
Image/video processing techniques are indispensable for such analysis. Hence they
track multiple bacterial motions, form spatiotemporal traces (after smoothing and
merging of tracks as in “boundary-tracking” algorithm in CVPR), and detect cell
biological states like “swimming forward” (flagella rotating counterclockwise),
tumbling (flagella rotating clockwise), and stopped. These state transitions are then
mapped to different biochemical ambience and corresponding responses in terms of
bacterial speed, rotational frequency, etc.

Automated monitoring of wound-healing assay in time-lapsed microscopic data
is another application where cell motility dynamics might help clinically [118, 143].
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Euro-BioImaging group performs textural segmentation and quantify healing by
rate of change of dimensional spread with or without drug [118]. In a recent
sophisticated work on wound-healing and cell-scattering data, cascade of SVMs
performs initial classification of local patches, and then graph cut corrects and
reclassifies [143]. Acceleration effect of Hepatocyte growth factor/scatter factor
(HGF/SF) is utilized for monitoring. Few recent works in cellular biology point out
important future application of CVPR strategies to understand cellular events. In
one system pharmacological application [64], cell population is tracked by mor-
phology, proximity, and specifically the motion fields obtained from particle filters
and interacting multiple model filters. Morphological phenotypes help identification
while SVM, factor analysis, and Gaussian mixture models classify the profiling
types. All the above examples demonstrate how CVPR strategies can enhance the
cellular activity analysis, and how understanding several other similar biological
processes, upon computational analysis and exploratory data mining, can enrich our
higher level knowledge (see Fig. 2.1). Different established object tracking [140]
and structure from motion algorithms [12] could be adopted to analyze these
applications.

2.8 Bioimaging Databases and Content-Based Retrieval

Vitality of living cells and their dynamic behaviors separate them from innate rigid
objects [119]. Innate objects generally have same shapes (e.g., rigid objects like a
car can change its 2D projection due to motion and viewpoint change, but always
have same 3D structure [43]) or shape changes in few discrete predictable ways
(e.g., flexible objects like a military fighter jet changes its 3D structure due to
different missile attachments, wing positions, and other artillery manipulations; but
definitely in a few discrete and predictable ways [32]). In case of living cells and
their intracellular molecules, environmental effects are more complex and often not
yet understood and cause the cell shapes to change in very unpredictable ways
[17, 115]. Like a motile cilium changes its shape unpredictably to extend one part
(like a leg), get hold (like a hand) and then shifts the body organisms toward that
direction. Its shapes have sharp differences, yet it is a cilium [119]. Time-lapsed
imagery demonstrates wide variations that are to be stored in a dynamic database
for future search, research, and analysis. Additionally proper content-based image
retrieval schemes are to be adopted so that mere shapes cannot misguide the
retrieval [26, 88]. Even a single type of cell might have high variability as different
biologists study it at different conditions [22]. Distributed databases and web-based
querying facilities increase cooperative efforts of experts from different parts of the
world [77]. But at the same time this underscores demanding requirements of
necessary mapping between different nomenclatures and formats [147],
content-based indexing strategies [26], and machine learning methods for improved
retrieval [36, 96, 98, 120]. Besides phenotyping and understanding dynamics,
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database might be useful for building atlas for model organisms or for 3D recon-
struction of brain wiring from international data with wide variability [96].

Feature-based image representation, dynamic database maintenance,
content-based indexing, content-based image retrieval (CBIR), and learning-based
improvement of retrieval performance are relatively matured subfields in CVPR.
Interrelations between these broad CVPR modules in bioinformatics context are
summarized in Fig. 2.5. In cell biological image processing, only few works are
reported in this direction, mostly for static images [22, 26, 88, 98] and rarely for cell
dynamics in videos [77, 147]. These efforts are summarized below with relevant
pointers to future research directions.

2.8.1 Data Representation

The first step of any database design is the determination of the scope of the data to
be stored, i.e., together with their complete description, taking into account the
targeted group of users and the applications of interest. To determine these gen-
erally biologists and microscopy experts develop a list of biological descriptors for
data representation and database querying. These descriptors guide modules down
the line including image processing, feature extraction, classification, database
management, and structural query systems.

Organisms express their genomes in a cell-specific manner, resulting in a variety
of cellular phenotypes or phenomes [22]. Mapping cell phenomes under a variety of
experimental conditions is necessary in order to understand the responses of
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Fig. 2.5 Bioinformatics modules in large-scale biological dynamic databases that are often
distributed across the globe and datamined by complex content-based queries over the Internet
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organisms to stimuli. Representing such data requires an integrated view of
experimental and informatics protocols. This is more critical when experimental
procedure varies [22] or even nomenclature differs between research groups [147].
BioSig system developed in LBNL [20, 94] adopts a hierarchical data model to
capture experimental variables and map them to light microscopic image collections
and their computed representations (features) at different levels—sample tissues,
cells, and organelles. At each layer, information content is represented with an
attributed graph of cellular morphology, protein localization, and cellular organi-
zation in tissue or cell culture.

There are two kinds of information associated with visual objects (image or
video): information about the object, called its metadata, and information contained
within the object, called visual features [34, 67]. Metadata (such as the name of a
protein) is alphanumeric and generally expressible as a schema of a relational or
object-oriented database [147]. Visual features, in contrast, are mathematical
properties of the image derived by computational tools from image processing,
CVPR, or geometric routines discussed in earlier sections [11, 105, 115]. A database
system that allows a user to search for objects based on contents quantified by
above-mentioned features is said to support content-based image retrieval (CBIR).

Euro-BioImaging group [34, 147] utilizes following (quite generic) data repre-
sentation covering wide information variability including the rare support to cell
video data.

• General information: administration and organizations: submitter’s name, title,
funding, references, and contacts.

• General information: microscopic data: metadata on location, format, and size,
channel and axes information (coordinate system), annotated figures.

• Biological data: details of the biological specimens (taxonomic information and
parameters that depend on the type of specimen) and observable biological
features.

• Experimental details: sample preparation: experiment, preparation steps, their
biochemical and physical parameters, instruments used (e.g., for microinjec-
tion). Free-text comments for nonstandard information can be provided as well.

• Experimental details: data acquisition and instrumentation: for reproducibility,
microscopic settings, and image-recording schemes are stored.

• Experimental details: image processing: ranging from simple enhancement to
complex 3D reconstruction algorithmic information.

The need of unified data representation comes from the diversity of experimental
procedures followed by biological researchers around the globe [22], like different
application-specific microscopic systems are used: all kinds of light, electron and
scanning probe microscopy with different resolutions. The biological targets are
also diverse, ranging from entire organisms as observed by developmental biolo-
gists to the macromolecules studied by structural biologists [36, 98]. Datasets are
also of quite different sizes ranging from less than 1 MB for many electron
microscopic datasets to hundreds of MB for scanning microscopic videos in cellular
dynamics contexts [67]. Dimensionality of the datasets also differs a lot [108].
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Atomic force microscopy (AFM) images are two-dimensional. Three-dimensional
density distributions are reconstructed from 2D electron microscopy data. Video
microscopy generates 3D files with two spatial axes and one time axis. And con-
focal light microscopes can even record 3D datasets as a function of time. In
addition complementary information may be stored in several channels in multil-
abeling fluorescence microscopy [28]. Sometimes infrared high-spectral frequen-
cies are utilized as an additional dimension for lung cancer tissue diagnosis [2].
Dynamic database should have flexibility to handle such multidimensional data.
Even recent reviews on spatiotemporal dynamics of cellular processes inform that
representation of behavioral knowledge in biological database is still a great
challenge [137]. For distributed and web-based databases that is being accessed by
hundreds of researchers around the globe with diverse datasets, unified data rep-
resentation needs number of seemingly trivial information to be stored and incor-
porated in the relational database model [77].

2.8.2 Database and Indexing

Database indexing is an established field with enormous success in text-based
systems. Success of these systems stands upon the general user-independent defi-
nitions or meanings of text-based database elements. Images and videos often
contain richer information than textual explanations and informatics researchers
work on content-based indexing and querying the image/video databases [10, 55].
There are also specialized databases like those with neuronal morphology [76].
Indexing and CBIR in relational database management systems (RDBMS) with
multidimensional biological and cellular images are very challenging [26].

In biological databases, querying should be based on implicit information content,
rather than by their textual annotations only. “Query-by-content” generally makes
reference to those data modeling techniques in which user-defined functions aim at
“understanding” the informational content of the datasets (at least to some extent)
from the quantified descriptors (features). Euro-BioImaging consortium of multiple
European nations is engaged in a pioneering effort (http://www.eurobioimaging.eu/)
of developing one such web-based distributed database prototype [34, 77]. There are
number of similar web-based biological databases, not necessarily image databases,
like databases of sequences of nucleic acids (GenBank and EMBL Data Library) and
those for protein sequences (SWISS-PROT and PIR). A digital neuronal database can
help neuromorphological pattern analysis and brain atlas modeling (a significant
paradigm shift) from advanced microscopy and image processing. A recent critical
review discusses challenges in such applications—including dynamics, machine
learning, and associated computations [98].

The complexity of stored information sometimes requires a unique database
modeling tool, like Infomodeler used by the Euro-BioImaging group [67] to form a
entity–relation (E-R) diagram with biological entities, their attributes, and relation-
ships (like generic: “is related to”, aggregations: “is composed of”, and inheritance:
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“is a” relations). Infomodeler provides database design in two abstraction levels.
First, it allows an object-oriented approach (object role modeling; ORM) and second,
it allows design in a logical model (E-R diagram). They also mention a denormal-
ization step where redundancy is introduced to improve database performance.
Among many entities already entered and several attributes defined among them, not
all of them are relevant for a particular submission, since some of them depend on the
microscopy technique or on the specimen [77]. As an example a commercial
microscope can have number of optional laser beam, objective lens, and filter set-
tings, only few of which are available at a particular location, and still fewer selective
ones are actually used for a particular biological experiment. Hence to reduce the
burden on the submitter, inheritance-based schemes are utilized just to specify the
personal settings, and then the submission database fills out the rest with the default
values (if entered earlier).

Euro-BioImaging database provides pointers and links to relevant databases at
appropriate place, like SWISS-PROT protein database, EMBL Nucleotide database,
protein data bank (PDB), etc. Their database comprises of three primary interfaces:
submission interface, query interface, and visualization interface and two database
modules: submission database and production database (they are independent to
ensure security) [67]. Submission interface is the most complex one as, beside
handling queries and incorporating results for visualization, it should also normalize
incomplete datasets (by itself or by forcing the user to provide mandatory infor-
mation) and interact integratively with the database in the background. The data is
temporarily stored in submission database. Database curator modules then review
the input, complete the unfilled format if necessary and migrate the data to pro-
duction database. Query interface converts the submission into a structural query
language (SQL) code with logical operations. Visualization interface handles the
results from the SQL code converting to user-understandable forms to incorporate
with the display page.

The backbone of any database system is the RDBMS. Due to high complexity of
the cell video data in biological dynamics, and due to the semantic level queries
preferred by the experts [26, 77], biological databases require Object-Relational
Database Management System (ORDBMS), as it supports complex relationships
between the biological entities [67, 147]. The complexity of the queries demands
extension of the standard SQL for 3D data handling, named SQL-3. Queries are
often needed to be modified for unified framework before actual database search.

2.8.3 Content-Based Querying

In contrast to other databases, the term “query-by-content” (QBC) is seldom used in
the context of biological databases. However, some of the functionality implied by
this term is in common usage in biological databases [34, 67, 77]. When a new gene
sequence is searched for similar sequences in GenBank without using textual
annotations, algorithms like Fast-All (FASTA) will provide a rank-ordered similar
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gene sequence list. Besides textual descriptions, structural databases (e.g., PDB)
store thousands of atomic resolution structures of proteins and nucleic acids with a
list of coordinates of the atoms. In such databases, alongside keywords, queries
might contain organisms, resolution, etc. as structural information and hence con-
sidered QBC. Searching 3D structural similarity could help discovering novel
biologically active molecules and investigating the relationship between proteins’
structures and their functions. Web-based QBC system by Euro-BioImaging group
[34, 147] is one such protocol which searches for similar 3D structures of the
macromolecules where similarity is measured in terms of features like 3D bounding
size, multiscale shapes, channels of low density areas, internal cavity, and geo-
metric symmetry. First two features are generic ones, while others are
application-specific. Last type of features, although constrains the applicability and
query space, makes the search space more dense with potential match and increases
precision and accuracy. These are more relevant for database querying in terms of
features like run lengths, velocities, and frequencies, and events like durations and
patterns of bacterial tumbles, and correlated bacterial stops and reversals with
changes in environmental conditions [118].

One of the most challenging issues is to choose an effective measure of structural
resemblance (i.e., biological similarity) between two biological objects [26, 67, 77].
To align a pair of proteins, inter-atom distances of a 3D structure are often repre-
sented as 2D matrices and found useful for comparison since similar 3D structures
have similar inter-residue distances. So, the problem of matching two proteins
structures boils down to graph-matching problem where fundamental graph-
partitioning and graph-matching methods [116, 129] can be applied to partition the
proteins into smaller subgroups by forming hierarchical structural relations and
quantifying matching percentages. One similar hierarchical graph cut method
represents eXtended Markup Language (XML) data of complex protein regulatory
networks as connected graphs, decomposes it spectrally into cohesive subnets at
different abstraction levels and then data-mines for hidden cell motifs and cancerous
activities [95]. Another graph-based similarity measure [117] applies combinatorial
extension (CE) of the optimal path to find an optimal 3D alignment of two
polypeptide chains and utilizes characteristics of local geometry (defined by vectors
between C-alpha positions) of the compared peptides. In this web-based system,
users submit complete or partial polypeptide chains in PDB format. Then, statistical
results are returned along with the aligned sequence resulting from the structure
alignment. Similar protocols are adopted for 3D searching in databases of small
molecules to facilitate drug and pesticide discovery [84].

There are two different styles for providing examples or queries [10, 12]:
(1) pictorial example (Virage Image Engine and NETRA system) and (2) feature
value (like color, region area, texture, etc.) and expected percentage similarity as
example (QBIC engine from IBM). In the first style of querying, features are first
computed for the query example and the target images in the database and then it
boils down to the second method. Distance metric is defined as a monotonically
increasing function (e.g., weighted Euclidean measure) of these features to give a
unique value and this metric should satisfy axioms of validity [79]. Generally CBIR
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focuses more on 2D images, less on videos [118] and still lesser for 3D images. In a
content-based 3D neuroradiologic image retrieval system [69], a multimedia data-
base contains a number of multimodal images—namely magnetic resonance and
computer tomography (MR/CT) images as well as patient information (patient’s
age, sex, symptom, etc.). With proper CBIR tool, such a system could help medical
doctors to confirm diagnoses, as well as for exploring possible treatments by
comparing the image with those stored in the medical knowledge databank.

2.8.4 Learning in Content-Based Image Retrieval

When a content-based retrieval system is applied to any specific domain it needs to
answer two pivotal questions discussed earlier in details: (1) feature selection: of the
extended list of features discussed in earlier sections, which computable features are
sufficient to describe all images in the domain and (2) classification: what mathe-
matical function should be used to find a measure of similarity between two objects.
The second one poses more problems due to subjectivity of perceptual similarity
among the observers. Two cells in two biological images can be decided as
“similar” by one biologist due to their partwise structural similarity (e.g., they
consists of a central cell body and cilia projections with the same pattern), while
another biologist may classify them as different due to their functionalities. This
dynamic nature of similarity measure makes CBIR more challenging. Machine
learning strategies based on relevance feedback [12, 110] might help in such cases
where the similarity measure (or even weights for combining different features)
could be learned from user feedback (interactive manual inputs) regarding rele-
vance of the result. This method learns the user query, structures the query and the
search space to take into consideration more potential matches and incrementally
improves the retrieval results over multiple iterations for the same user (see
Fig. 2.5). Moreover, this method is extended for short-term learning from a single
user and long-term learning from multiple users using the system several times to
improve the overall retrieval performance [10]. Query-by-content in biological
databases is yet to adopt this type of practical learning strategies.

2.8.5 Distributed Databases and Web-Based Querying

Distributed computation and web-based dissemination strategies are required [77]
because of several necessary qualities of large dynamic databases: (1) flexibility to
enter new data and update RDBMS continuously and incrementally with streaming
data from users around the world; (2) integration of apparently diverse frameworks
to analyze data and results including cross-database search in a seamless unified
way; (3) fault tolerance of multiserver systems for computationally expensive
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database manipulations that can be split into parallel and multithreaded modules.
More is the complexity and abstractness of the data (like images, videos, cell
activities), more is such requirements. For emerging field like bioinformatics, where
hundreds of research groups are working globally on similar (but not exactly the
same) biochemical processes, distributed database systems, web-based querying
and platform-independent visualization tools are absolute necessities [77, 96].
These will give the researcher facilities to enrich the database, share their results
with international community, statistically compare their results with existing
knowledge and cooperatively work toward better results [36, 105].

A very nice overview of web database operation, implementation, scalability,
interoperability, and future directions are discussed by the Euro-BioImaging group
[77], including methods to cope up with mapping different names used for the same
entities, integrating the data diversity, and updating the web database incrementally
while the storage location, experimentation and associated parameters are contin-
uously changing [147]. This consortium does a pioneering research in developing a
web-based online biological database system. It describes the ongoing research on
developing the dynamic database on an Informix Dynamic Server with Universal
Data Option [67, 77]. This object-relational system allows handling complex data
using features such as collection types, inheritance, and user-defined data types.
Informix databases are used to provide additional functionality: the Web Integration
Option enables World Wide Web (WWW) access to the database; the Video
Foundation Blade handles video functionality. WWW facility provides the neces-
sary structure for worldwide collaboration and information sharing and dissemi-
nation [34, 147]. Future scopes lie in incorporating new microscopy techniques,
customizing WWW visualization interface that depends on user profile, and tighter
interaction with collaborating databases [147]. Current biomolecular databases
[20, 26] basically follow similar RDBMS structures, just from different providers.

Database over the web has to bear extra burden of providing simple interfaces for
the (sometimes computer-naïve) biologists and at the same time ensure security and
integrity of the distributed and dynamic database from intrusion and misleading
submissions. Hence it is better to separate out submission module and actual data-
base by a buffer database. The standard approach to connect with a database involves
calling a CGI application (a program running on the web server) through calls from
flat files containing HTML text [67, 94]. The alternative approach involves making a
direct call to a database program with the page names and all relevant parameters. In
both cases, SQL code is incorporated into standard HTML code. When the WWW
browser requests the HTML file, the SQL code segment is extracted, passed to the
RDBMS, and interpreted [147]. The result is formatted in standard HTML for
visualization. Web pages are created dynamically, i.e., some template formats are
modified based on user needs to create a specific web page. It also reduces the
development time. Other domain-specific creation is stressed with user-defined web
tags. Importantly, all the semantic web standards can still be combined and this
generic framework can be extended to many other web database applications (e.g.,
medicine, arts) [77]. BioSig system developed in LBNL [94] also makes their
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computational biology framework distributed and platform-independent using
eXtended Markup Language (XML) protocol generated by biological experiment
and handling those to reach bioinformatics decisions [20].

2.9 Future Research Directions

Many future research scopes are already discussed under individual sections fol-
lowed by relevant pointers toward related works from CVPR and other research
fields. To summarize, cell video analysis can be immensely enhanced by future
research areas including: (1) cell video summarization methods [40], (2) texture
[52] and graph cut-based segmentation [116], (3) close-loop cooperation between
segmentation and object alignment with deformable models [37, 44], (4) synthe-
sizing combinatorial features by genetic programming [66], (5) evolutionary
learning in feature selection and classification [91, 120], (6) utilizing hyperspectral
image features beyond currently applied frequency ranges [2, 9], (7) application of
Bayesian classifiers [57], (8) improvement of performance even from small training
dataset often encountered in bioimaging [10, 84, 88], (9) motion-based segmen-
tation [15, 111, 135, 142, 143] and tracking [140] in cell videos, and (10) contin-
uous learning by relevance feedback to improve database retrieval [10].

Learning enumerable phenotypes and distinguishing them requires parametric
models that can capture cell and nuclear shapes as well as nonparametric models to
capture complex shapes and relationships between them. Such generative models
could be learned from static datasets [17]. Interesting future direction will be making
those generative models dynamic—to capture temporal evolutions—possibly by
dynamic Bayesian networks [57]. But unified framework of generative models to
handle behavior of cells from diverse pedigree is still a very challenging task [84]—
as model topology itself need to change within and across time. Morphogenesis and
cell fragmentation complicate the Bayesian graphical analysis even more.
Expectation maximization (EM) learning [35] cannot handle such flexibility to learn
widely varying cell shapes, protein distributions within organelles and subcellular
location patterns [97]. Recently an evolvable Bayesian graph has been proposed in
incremental 3D model building application [43]. This generic probabilistic graphical
model has flexibility [41] to represent unpredictable structural changes of the same
cells, replication, and effects of drug or antigen applications over time. This
framework also has potential [42] of modeling cellular behavior caused by different
biochemical environments, analyzing interrelations among neighboring organelles
in uncontrolled unpredictable environment, and even handling content-based video
querying in complex database search engines.
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2.10 Conclusions

Automated analysis of microscopic bioimages is making significant progresses with
application of established tools and algorithms from computer vision, pattern
recognition, and machine learning. Quantification and exploration of dynamic
activities and evolving interrelations between them from cellular and biomolecular
videos are the current key frontiers [36, 98, 105, 120, 137]. More cohesive and
cooperative merger between computational and biological sciences [51] are
expected to overcome these challenges toward achieving better understanding of
the hidden patterns in living universe [74].
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Chapter 3
High- and Low-Level Contextual
Modeling for the Detection of Mild
Traumatic Brain Injury

Anthony Bianchi, Bir Bhanu and Andre Obenaus

Abstract Traumatic brain injury (TBI) can lead to long-term neurological decre-
ments. While moderate and severe TBI are readily discernable from current medical
imaging modalities, such as computed tomography and magnetic resonance imaging
(MRI), mild TBI (mTBI) is difficult to diagnose from current routine imaging. At the
present time there no routine computational methods for the evaluation of mild
traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). The
development of automated analyses has been hindered by the subtle nature of mTBI
abnormalities, which appear as low contrast MR regions. One solution to better
identify mTBI injuries from MRI is to use high-level and low-level contextual
information. We describe methods and results for using high-level contextual fea-
tures using a Bayesian network that simulated the evolution of the mTBI injury over
time. We also utilized low-level context to obtain more spatial (within the brain)
information. The low-level context utilized a classifier to identify temporal infor-
mation which was then integrated into the subsequent time point being evaluated.
We found that both low- and high-level context provided novel information about
the mTBI injury. These were in good agreement with manual methods. Future work
could combine both low- and high-level context to provide more accurate mTBI
segmentation. The results reported herein could ultimately lead to better identifi-
cation of regions of mTBI injury and thus when treatments become available they
can be directed for improved therapy.
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3.1 Introduction

Annually, millions of people in the United States are affected by mild traumatic
brain injury (mTBI) often as a consequence of an event including but not limited to
sports, military activities (blast), automobile accidents, assaults, and falls [1].
Recently, the short and long-term symptoms associated with mTBI have become
more apparent and include: loss of memory, loss of reasoning, neuropsychiatric
alterations including decrements in social interactions [2]. Clinically, the Glasgow
Coma Scale (GCS) is the current standard method for evaluating acute neurological
injuries, which evaluates the patient’s consciousness level through a series of
mobile, verbal, and, visual stimuli. The GCS is a qualitative scale that is used
extensively, in part due to its ease in delivery by a variety of health professionals.
However, advances in medical imaging, such as computed tomography and mag-
netic resonance imaging (MRI) are used extensively to confirm the severity of
injury [3]. The presence of altered brain structure(s) or small hemorrhages is a
common occurrence in moderate to severe TBI but is rarely seen in mild TBI [4]. In
fact, recent clinical practice guidelines define mild TBI as having no overt alter-
ations on standard structural imaging [5]. mTBI suffers from no dramatic GCS or
imaging observations, making diagnosis difficult. Thus, newer and more sophisti-
cated methods for identifying emerging brain injury after mTBI from neuroimaging
are needed.

Clinical studies along with research in animal models clearly demonstrate no
overt structural changes within the brain following mTBI at the acute time point but
are now starting to identify long-term neuropsychological disruptions (i.e., anxiety,
depression etc.) [6, 7]. The physiological basis in many of these mTBI cases
appears to be a disruption in white matter tracts within the brain [8–10].
Computational methods and approaches can be used to identify emerging abnor-
malities within the brain following TBI, particularly mild injury on MRI where
visual alterations are difficult to observe. Recently, we undertook such a study
where we used computational analysis of the injury site to determine increased
vulnerability to the brain following repeated mTBI [11]. Using these computational
approaches, we reported that there was increased extravascular bleeding when
animals received a second mTBI to the contralateral hemisphere within 7 days after
a first mTBI. Thus, computational analyses of MRI data can identify physiological
alterations that would be virtually impossible using either visual or manual methods
of detection.

Currently, visual and manual detection of abnormalities in many neurological
diseases, including mTBI, is considered the “gold standard” in neuroimaging.
Numerous studies have used manual detection to identify lesion location and size
from MRI with correlative histology and assessment of long-term neurological
effects [12–14]. Manual detection has numerous deficiencies that include, hours of
analysis per scan, requires a trained operator, inter- and intra-operator error, and
difficulty in multimodal analysis. These deficiencies identify the need for a rapid
and consistent automated approach.
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To automate mTBI detection from magnetic resonance images (MRI), we for-
mulated the problem as a voxel-based classification problem, where we find the
probabilities of a voxel being a lesion based on features of the voxel’s local
neighborhood. Recent studies in other neurological diseases have formulated the
problem in a similar manner by utilizing the discriminatory potential of texture in
MRI [15, 16]. Texture analysis allows for the identification of changes within the
tissues of interest. Holli and colleagues showed significant differences in the texture
of brain structures in patients with mTBI and healthy controls, suggesting that use
of texture in mTBI analysis could identify alterations not found by other methods
[17, 18]. Therefore, visual assessment of mTBI alone does not provide sufficient
information for lesion identification or accurate segmentation of the injury site,
particularly in mTBI.

To improve the segmentation of mTBI lesions, we have introduced an additional
analysis feature, contextual information. We use the following definition of context,
“any information that might be relevant to object detection, categorization and
classification tasks, but not directly due to the physical appearance of the object, as
perceived by the image acquisition system” [19]. Contextual image types that have
been described include: local pixels, 2D scene gist, 3D geometric, semantic, pho-
togrammetric, illumination, weather, geographic, temporal, and cultural [20].
Context can also be split into two types, low-level and high-level, where:
(a) low-level context includes spatial relationships learned at the pixel/region level
and has been used in conditional random fields [21] and autocontext [22].
(b) high-level context can be thought of as an estimation of the spatial location of an
object. We have previously exploited low (voxel) level context to identify mTBI
lesions, where our approach uses a contextually driven generative model to estimate
the lesion location [23]. We now describe our efforts to explore a high-level context
approach followed by use of our previously successful application of low-level
context to improve detection of mTBI injury sites.

3.2 High-Level Contextual Modeling for MTBI

3.2.1 Description of Our High-Level Contextual Modeling
for MTBI

Our proposed system uses a combination of visual and high-level contextual
modeling. We utilized a database of known mTBI cases (rodent model of TBI) that
includes multimodal MRI where the lesion volumes have been manually detected.
These and other associated contexts were used to build the model. The visual model
uses 3D texture features to build a Probabilistic Support Vector Machine (pSVM)
that describes the lesion and normal appearing brain matter (NABM) space. pSVM
is a discriminative model which performs well with a large amount of data and can
describe complex decision spaces. A voxel-based classifier satisfies both of these
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conditions. The resultant output is a probability map that is combined with the
contextual model, where higher probabilities signify an increased chance for a
particular voxel being part of a lesion. Lesion components were further defined to
consist of both blood and edema, similar to our previously published findings [11].
One strength of this approach is that if a lesion is not contiguous, that is, if the
lesion is not located in only a one focal brain region but rather multiple locations,
we are still be able to capture the lesion entirety as a voxel-based classifier is used.
This is achieved by adding all the locations together to identify total lesion.

The contextual model uses a Bayesian network (BN) to estimate the location(s)
of the mTBI lesions (Fig. 3.1). This model uses prior knowledge about the subject,
where both temporal and spatial information are used to describe the development
of the mTBI over time. An advantage of using a BN is that it is a generative model
that is able to extrapolate based on little information when the underlying distri-
bution and assumptions hold. Generative models are used to simulate cause and
effect relationships and processes, while discriminative models such as SVM do not
have this ability. Our computational system combines the advantages from both
discriminative and generative models.

Fig. 3.1 Graphical representation of the Bayesian network showing the dependencies of random
variables. Intuitive definition of distributions: A—anatomical constraints, L1, L2—central location
of injury for injury one and two, H1—time since the first event, H2—time between first and second
injury, Q—volume (quantity) of injury with time, S1, S2—spread for first and second injury, M—
max operator, V—visual information, I—estimated injury. Where I = 1 is absolute certainty of
injury and I = 0 is absolute certainty of NABM (normal appearing brain matter)
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When an MRI data volume enters the system, the texture features are extracted
and then the BN is implemented to evaluate the dependencies of the variables
(Fig. 3.1). Contextual information about the mTBI is also utilized by the system
including an estimated location of the focal points of impact (L1, L2), time since the
first injury (H1), and time interval between the two injuries (H2) (Fig. 3.1). In this
particular model, we are identifying the effects of repeated mTBI. These additional
contextual inputs can be exact (e.g., 1 day since injury) or a range of values (e.g.,
5–14 days since injury).

Like many other neurological injuries, mTBI evolves with time, so our con-
textual model (Fig. 3.1) includes multiple random variables (H, L, Q, etc.) that also
evolve with time. H1 is the distribution of the time since the first injury, which can
be learned directly from the data or it can be modeled as an exponential distribution
since it is most probable that a patient will arrive soon after a mild injury. The
random variable Q is the volume of injury over time. This distribution can also be
learned from the data directly or modeled as a lognormal distribution. This distri-
bution follows the natural progression of the mild brain injury where there is an
initial peak of an abnormality that slowly resolves over time. H2 is the time between
the first and second injury (i.e., repeated mTBI). After an initial injury, metabolic
and cellular injury cascades occur which may lead to a window of increased vul-
nerability whereby a second mTBI may worsen ongoing pathology [24]. We have
reported similar effects in mTBI previously [11]. The H2 function can also be
modeled directly from the data or using an exponential distribution from the time
since first injury. The process of subsequent injuries can be thought of as a Poisson
process, which has the time between injuries as an exponential distribution. H1 and
H2 are variables that would be dependent on location and can be estimated through
a regional epidemiological study, since regions will have different medical response
times (i.e., time to see a physician).

The components of the BN that capture the evolution of the lesion over time are
S1 and S2. In our model, Eq. (3.1) is used to describe the injury progression given all
the contextual inputs. This function is a sigmoid like function, known as the
Gompertz function [25], which has parameters (m, n) to control the shape and
displacement. The Gompertz function has more flexibility than a logistic function
and less number of parameters than the generalized logistic function. In Eq. (3.1)
parameter m determines the displacement of the function and n determines the
decay rate.

p SjL;A;H;Qð Þ ¼ Ae
�mH
Q e

nH
Q dðx;LÞ ð3:1Þ

The shape and displacement parameters (m, n) are not the only variables that
affect the shape of the curve; Q (quantity of lesion) also determines the shape. When
Q is large, the function will shift to the right and have a more gradual slope. This
represents a potentially larger area for injury and increases the uncertainty of the
lesion location. When Q is small, the opposite is observed, the area is small and
there is more certainty in the injury location. Q is estimated by taking the average
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lesion size at each time point for all the volumes in the database. There are a
separate set of parameters for each H2 value because the shape of the injury can be
different when the repeated injuries are at distinct times from each other (i.e., 1 day
apart vs. 7 days apart) (see [11]). When the first mTBI occurs, there are many
cellular cascades that take place throughout the progression of the injury potentially
leaving the brain vulnerable to subsequent mTBIs [24], similar to what has been
found in animal models of TBI [11, 26].

As described in Eq. (3.2), d is a distance function weighted by Σ, where Σ
weights the 3D space so it accounts for rotation and scaling. Equation (3.2) also
measures the distance from L (location of injury) to every other point in the 3D
space. The parameters described in Eqs. (3.2–3.6) describe the rotation and scaling
in the coronal space, and σz describes the scaling in the z space. The parameters that
need to be set in these functions are σx and σy, which control the scaling in the
direction of the tangent and the direction of the normal, respectively. Finding the
tangent angle θ at L is done by utilizing the Fourier descriptor of the closed
perimeter of the brain slice [27]. In addition, when converting to Fourier space a
low-pass filter is applied that cuts off the upper twenty percent of the frequencies,
which smoothens the low resolution noise at the brain boundary. Finally, the
parameters, a, b, and c, control the rotation in the coronal plane using θ, to create a
new “axis” for the distance function. Equation (3.1) models the progression of
mTBI, since the injury is assumed to more likely spread along the perimeter of the
brain than migrate into the center of the brain. This is a valid assumption as there
are physical and physiological barriers within the brain to prevent significant
migration into deeper brain tissues. Hence, the distance function is weighted more
along the tangent of the perimeter.

dðx; LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� Lð ÞTR x� Lð Þ

q
ð3:2Þ

R ¼
a b 0
b c 0
0 0 rz

2
4

3
5 ð3:3Þ

a ¼ cos2 h
2r2x

þ sin2 h
2r2y

ð3:4Þ

b ¼ sin 2h
4r2x

þ sin 2h
4r2y

ð3:5Þ

c ¼ sin2 h
2r2x

þ cos2 h
2r2y

ð3:6Þ

The final contextual model is shown in Eq. (3.7). This function takes the
maximum of the two spread functions evaluated over each value in the range of
each contextual input. The contextual model output is an estimate of the lesion
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extent. If a contextual input is known then the probability has a value of 1. For
example, if H1 is known to be 3 days then p(H1,3) = 1 and all other values in the
distribution equal zero. Another example is when a ranged input is given. If H1 is
known to be between 5 and 14 days, the distribution becomes the priors known at
those values normalized by the sum of the probabilities at those values (all other
values are set to zero). When one of the contextual inputs is not known, all values in
the prior distribution are considered.

p MjS1; S2ð Þ ¼
X

8ijPðLiÞ[ 0;

X
8jjPðQjÞ[ 0;

X
8kjPðH2kÞ[ 0

maxðp Lið Þp Qj
� �

p H2kð Þp S1ijk
� �

;

p Lið Þp Qj
� �

p H2kð Þp S2ijk
� �Þ

ð3:7Þ

p IjM;Vð Þ ¼ p Mð ÞpðVÞ ð3:8Þ

An estimation of the total lesion volume is finally given by Eq. (3.8). The
contextual model and visual model are independent. This assumption has been
made by other approaches using context [19]. The final output is a probability map
giving a probability of each voxel being part of the lesion.

The visible model is the probability of an injury based on the visual appearance
of a sample voxel within the MR image. While our approach lends itself to any MR
imaging modality, for simplicity we have chosen to utilize a standard MR image
based on physical relaxation properties within the tissues, T2-weighted imaging
(T2WI). The actual physical relaxation values (in milliseconds) can be obtained
from the quantitative T2 map, removing any computational issues related to use of
signal intensities. T2WI allows for observation of both edema (increased signal
intensities and T2 values) and the presence of extravascular blood (decreased signal
intensities and T2 values). Both edema and blood are potentially at the site of
injury, but are dependent upon the time post mTBI [11, 14].

Since edema and blood are known to have local tissue effects, the textures around
known lesions can be used in our computational model. The texture features that
were used in this study were 3D local mean, variance, skewness, kurtosis, entropy,
range, gradient x, gradient y, gradient z. These local statistics were incorporated as
they are able to describe small local neighborhoods at every voxel, which gives a
description of the tissue type. We found that a local neighborhood feature size of
5 × 5 × 5 was the most discriminative for our dataset. In our current mTBI dataset,
the MRI features that were selected from the T2WI and maps were: T2 value,
entropy, variance, skewness, gradient in x-direction, gradient in y-direction and the
mean T2 value. A sample of the output from the combined visual and contextual
models as well as their fusion is shown in Fig. 3.2.
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3.2.2 Acquisition of MRI Data in a Rat Model of MTBI

Mild TBI experiments were undertaken in adult Sprague Dawley rats that were
randomly assigned to three experimental groups: Single mTBI, and repeated mTBI
(rmTBI) induced 3 or 7 days apart. A mild controlled cortical impact (CCI) was
used to induce mild injury, as previously described [11, 14]. The CCI model
induces a focal injury that can be modified easily for induction of mild, moderate, or
severe traumatic injuries. Briefly, a craniectomy (5 mm) was performed over the
right hemisphere (3 mm lateral, 3 mm posterior to bregma) where a mild CCI was
induced using an electromagnetically driven piston (4 mm diameter, 0.5 mm depth,
6.0 m/s). These parameters result in a mild cortical deformation and we confirmed
that the dura is not ruptured. The overlying skin is then sutured closed after the
injury is induced followed by the appropriate postoperative care [11]. For those
animals that received a repeated mTBI at 3 or 7 days after the initial injury, a
second craniotomy on the contralateral hemisphere was performed and a CCI using
the identical parameters was induced (Fig. 3.3). Again, the overlying skin was
suture closed followed by the appropriate postoperative care. Animals in which the
dura was ruptured were excluded from the study.

Fig. 3.2 A typical example
of the fusion between visual
and contextual models in a rat
mTBI. In this example, the rat
experienced two mTBIs
several days apart to opposite
brain hemispheres. Top
Probability map after pSVM.
Middle Probability map from
the contextual model. Bottom
Fusion of the contextual and
visual models. Note that this
illustrates that the contextual
model for repeated injuries
progress at different rates
(compare hemispheres, where
the right hemisphere was
injured first)
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Neuroimaging was obtained and in vivo T2WI were collected as multiple 2D
slices as previously described [14] (Fig. 3.3). T2WI data were obtained using a 4.7T
Bruker Avance (Bruker Biospin, Billerica, MA). T2WI sequences were comprised
of the following parameters: TR/TE = 3453 ms/20 ms, 25 slices at 1 mm thickness
were collected with a field of view of 3 cm and with a 256 × 256 matrix. The
resultant resolution of each voxel is 0.12 × 0.12 × 1 mm. On average 12 coronal
slices covered the entire cerebrum.

MRI data from all three groups were collected at 1, 4, 8, 14, 21, 30, and 60 days
after the first TBI (Fig. 3.3). After data were acquired T2 maps were computed
using custom written software. Trained individuals then manually drew regions-
of-interest (ROIs) using Cheshire imaging software (Haydan Image/Processing
Group) to denote regions of TBI lesions on the T2 images and maps [11]. An
outline of the whole brain was also drawn. Thus, ROIs were comprised of normal
appearing brain matter (NABM) and cortical tissues that contained T2-observable
abnormalities using criteria previously described [11]. Skull stripping was per-
formed by drawing manual outlines to separate the brain from the skull and other
tissues. Based on our dataset we obtained a total of 81 rodent brain volumes to test
our computational models.

3.2.3 Results of High-Level Contextual Modeling for MTBI

Our derived experimental data on repeated mTBI were tested using contextual
inputs to verify the effects they have in our model using our real MRI data. Testing
was conducted using the leave-one-out approach to validate the learned parameters.
The following cases were examined: all contexts known, L1 and L2 (location),
unknown position (unkPOS), H1 unknown time (unkTIME), L1 L2 H1 unknown
(unkALL), and V alone (Probabilistic SVM). ROC plots for each of the afore-
mentioned contextual tests were obtained after thresholding the output probability

(a) 3 4 5 6 87 14 >6021

 Single mTBI

 rmTBI 3d

 rmTBI 7d

Day 0 1 2

= mTBI

(b)

Fig. 3.3 Experimental design. a Illustration of the mTBI locations for the first (right) and second
(left) injuries. b Experimental mTBI and neuroimaging timeline. A single mTBI was induced to the
right cortex on day 0 (denoted as an *) in all animals. A second mTBI was induced to the left
cortex at either 3 or 7 days later (*). MR imaging was performed 1 day post-first (1d), 1 day
post-last (4 day rmTBI 3 day, 8 day rmTBI 7 day) and 14 day post-injury (17 day rmTBI 3 day,
21 day rmTBI 7 day) (red circles)
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maps to get a hard classification (i.e., nonprobabilistic) (Fig. 3.4). When all the
contexts are known we observed an equal error rate of 0.93. Not surprisingly, with
missing contextual information there is a decrease in the performance of the model.

The Dice plot results followed similar trends as found in the ROC plot (Fig. 3.4).
With unknown position (unkPOS) and unknown time (unkTIME), a similar per-
formance in the contextual model is observed since each of these cases results in a
smoothing of the output. This smoothing effect is clearly seen in Fig. 3.5.
Essentially, when the context is not known, the model considers a wider area of
brain tissue. In the case of unknown position, smoothing is experienced along the
edges of a brain as the focal point is shifted along the perimeter of the brain. The
case of unknown time results in smoothing in all directions, which is due to those
time points with a larger volume of TBI lesion having the largest effect on the
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Fig. 3.4 a ROC plot with
multiple contextual inputs.
Results were evaluated after
thresholding the output
probability map. b Dice plot
with multiple contextual
inputs. The peak of the Dice
curve (maximum dice
coefficient) is used to
threshold the output
probability map. Legends in
(b) are the same as in (a)
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output from the contextual model. When all of the parameters are unknown
(unkALL) smoothing due to lack of time and position occur. Thus, it is optimal to
provide some context to the model, but optimal results occur when all contexts can
be provided (Figs. 3.4, 3.5).

3.3 Low-Level Contextual Approach

We now extend the high-level contextual model by examining a low-level con-
textual model that allows the classifiers to directly estimate the posterior probability
of TBI lesion and normal appearing brain matter.

3.3.1 Description

A discriminative approach is used where the classifiers estimate the probability that
a voxel contains either injured tissue or NABM, only performs well when there is a
large amount of training data and if it can be used for a complex decision space.
A voxel-level classifier has a large amount of data to evaluate considering the 3D
nature of MR images. The appearance of lesions in MRI can be very complex
(blood, edema, time, location, etc.), which leads to a complex decision space. It is
important to note that the ground-truth was obtained from expert segmentation of
the mTBI lesion from the experimental data.

In our low-level contextual model, we use a cascade of classifiers to estimate the
detected lesion at each time point. Here, we also use information from a previous
time point that is propagated forward. The first classifier in the cascade estimates
the lesion using only the visual features. Then context features are computed from
the posterior probability map that is estimated by the classifier. These features are
recalculated for each iteration in the process and results in a given number of

Fig. 3.5 Example outputs from the thresholded probability maps (for single and repeated mTBI)
with varying levels of contextual input. The thresholds were selected at the highest point on the
dice curve for each respective level of context. Each row is a coronal slice, where the top is from a
single mTBI and the bottom is from a repeated mTBI. The colors represent the following: Green
true positive, Teal true negative, Red false positive, Brown false negative
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classifiers at each time point (Fig. 3.6). Spatial information is propagated by the
contextual features leading to improved classification. This process has been pre-
viously used successfully for brain MR images [22].

The contextual features used by Tu and Bai [22] were point samplings of the
posterior estimates. Their features demonstrated good segmentation performance on
objects that were rigid in shape. However, when the shape was distorted their
performance faltered. Given that MR images of the brain are often not rigid either
between patients or at different imaging time points, an alternate solution is
required. To overcome the shape distortion weakness, we propose two new features
that generalize the static contextual information, thus allowing contextual compo-
nents to work well with deformable objects.

Dynamic contextual features are calculated from the final classifier at a single
time point (Fig. 3.6). Also, in our approach these features are used by the classifier
at each subsequent time point where they make use of spatial and lesion growth
information. Tu and Bai used spatiotemporal volumes with their basic point features
in the higher dimensional space [22]. However, their approach would require
extreme amounts of data and the entire sequence has to be known before seg-
mentation. In contrast, our approach only considers pairs of brain volumes at a time,
which allows for estimation at every time point.

The contextual features come from the posterior probability estimated by an
already learned classifier. Previous approaches have directly sampled a dense
neighborhood around an observed voxel, making each location a potential feature
[22]. As noted above, this dense sampling method can lead to large feature sizes
and subsequently result in over fitting due to the specific locations that are learned.

Fig. 3.6 Overview of the
proposed system where
context information is sent
from one classifier to the next
at each time point. This
information is then
propagated to the next time
point
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Here, we propose two new static features to overcome the problem of oversam-
pling. One incorporates a sense of the surrounding without a predefined direction,
while the other gives a general sense of direction.

The first feature gives the average posterior probability at various distances
around the observed voxel. This can be thought of as a proximity feature where:
what is close, medium and far away in distance is estimated. The distance function
used here is the Manhattan distance allowing for a cuboidal region. These features
are directionally invariant and can lead to better generalization since they describe a
general area. By having a nesting of boxes the integral image can be utilized for rapid
computation of the features. In 3D, only eight points are needed to find the average
of a cuboidal region, using integral images [28]. Equation 3.9 provides these fea-
tures, where fxyz is the proximity feature, R1xyz;R2xyz are square neighborhoods
around the voxel at xyz and where size denotes the size of the bounding box.

fxyz ¼
X

R1xyz �
X

R2xyz

� � 1
size R1xyz
� �� size R2xyz

� �
 !

ð3:9Þ

Directional information is important for classification since the TBI brains are
rigidly registered to the brain of a naïve animal. The second contextual feature
describes the posterior probability in various directions from the observed voxel
(Fig. 3.7). Rays are sampled at various distance ranges and angles from the observed
voxel (see Fig. 3.7b). From the distance ranges along the rays the mean is calculated
leading to a refined sense of the surrounding. An example would be what is close and
above the observed voxel. The integral image is also used to calculate these features.
Both features can be computed at coarse or fine distance bins without a significant
increase in computational time. Equation 3.9 can also be used for the direction
context features, the shape of the features are changed to a rectangle with width 1.

The posterior marginal edge distance (PMED) feature is the distance a voxel is
from the perimeter of objects of a class found by the maximum posterior marginal
(MPM) estimate. To create this feature, first the MPM at a voxel is obtained from
the output of a classifier (Eq. 3.11). This gives a binary image for each class. The

(a) (b)

Fig. 3.7 a Illustration of the proximity feature. V is the observed voxel and the feature is the
average probability of the regions (R1, R2, R3). b Illustration of the distance features. V is the
observed voxel and an example feature is the average probability between P1 and P2 along the 45°
ray

3 High- and Low-Level Contextual Modeling … 71



distance transform is applied to the image and the inverse image and the feature is
given by Eq. 3.10.

PMED ¼ d MPMð Þ � dð�MPMÞ ð3:10Þ

MPM ¼ argmax
c

p x ¼ cjFð Þ ð3:11Þ

Here d is the Euclidean distance transform. This gives an image that is increasing
as the voxels become farther away from the edge and smaller (more negative) as the
voxels get further into the object. Where ω is the estimated class, c is a specific class
(lesion or normal brain in our case), and F is the feature set at a given voxel (Fig. 3.8).

3.3.2 Data

Data to test the contribution of the low-level context features used the same data set
as described in Sec. 2.2 above. (see also [11, 14]). In this test, we limited the dataset
to 3 MR imaging time points: acute (1st day post mTBI), subacute (8th day
post-first mTBI), and chronic (14th day post-first mTBI). MRI data were acquired
and processed as noted in Sec. 2.2. Right and left hemispheres and injured tissue
volumes were defined as abnormal (i.e., lesion) when they included either hyper- or
hypointense signal intensities within the cortex. All remaining tissues were desig-
nated as NABM. The data set was comprised of a total of six sequences, each with
three time points.

3.3.3 Results

We examined the effect of our proposed features and effects of the dynamic infor-
mation. For the training/testing split leave-one-out validation was used where a

Fig. 3.8 a Example MPM estimate. b Corresponding PMED feature. Note that the values become
more negative toward the center of the object and more positive farther away from the object
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whole sequence was left out (resulting in six cross-folds). Three temporally con-
secutive volumes remained for testing and the remaining data were used for training.
The training parameters were: 300 weak learners, learning rate 1, and 4 cascaded
classifiers. We tested three approaches: the original autocontext features [22], our
proposed approach with only the static features, and our proposed approach with the
static and dynamic features.

Our proposed dynamic approach clearly outperforms the other methods as can
be seen in the Dice coefficient curves (Fig. 3.9). These data illustrate the importance
of using dynamic information when these data types are available. The original
autocontext [22] tends to over fit due to the specific locations the features represent,
as we noted above. The same feature locations proposed by Tu and Bai [22] were
used for the original autocontext testing. During the training phase it obtained a
Dice score above 0.9, but interestingly it did not generalize well to our testing data,
perhaps due to the mild nature of the injury.

Our proposed static features give a good generalization compared to the original
autocontext [22]. Our proposed approach has a very flat Dice curve, suggesting that
it is not sensitive to a particular chosen threshold on the output probability
map. Thus, the selection of a threshold becomes less critical. The qualitative results
clearly demonstrate that our proposed low-level contextual approach works well on
small to medium size lesions (Fig. 3.10). The qualitative results also show that false
positives are only close to the lesion mass without having erroneous spatial outliers.
A caveat we found is that the proposed low-level context appears to have some
difficulties at the edges of the lesions, but we feel that this could be rectified in
future work using shape constraints on the thresholded probability maps.

Fig. 3.9 Dice coefficients
after thresholding the
posterior probability map at
the end of each cascade of
classifier (i.e., at each time
point). This is the average of
all the tests in the
leave-one-out validation

3 High- and Low-Level Contextual Modeling … 73



3.4 Conclusions

Methods for integration of high- and low-level contextual features are demonstrated
in a data set from mTBI rodents. The high-level context integration was done using
a Bayesian network that simulated the evolution of lesion over time with infor-
mation gathered from each patient. For the low-level context, spatial information of
the lesion was gathered from a cascade of classifiers, where information from one
time point is integrated into the next allowing for patient specific information to be
used in segmentation of the injured area. Thus, both high- and low-level contexts
could be combined leading to a more accurate segmentation. This accurate seg-
mentation will lead to better identification of the location of the TBI which can
ultimately improve the choice of treatments in brain trauma.
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Chapter 4
Automated Identification of Injury
Dynamics After Neonatal
Hypoxia-Ischemia

Nirmalya Ghosh, Stephen Ashwal and Andre Obenaus

Abstract Neonatal hypoxic ischemic injury (HII) is a devastating brain disease for
which hypothermia is currently the only approved treatment. As new therapeutic
interventions emerge there is a significant need for noninvasive objective quan-
tification of the spatiotemporal lesion dynamics combined with precise information
about lesion constituents (ischemic core and penumbra). These metrics are
important for deciding treatment parameters (type, time, site, and dose) and for
monitoring injury-therapy interactions. Such information provided ‘on-line’ in a
timely fashion to the clinician could revolutionize clinical management. Like other
spatiotemporal biological processes, video bioinformatics can assist objective
monitoring of injury–therapy interactions. We have been studying the efficacy of
various potential treatments in translational (rodent) HII models using magnetic
resonance imaging (MRI). We have developed a novel computational tool, hier-
archical region splitting (HRS) to rapidly identify ischemic lesion metrics. HRS
detects similar lesion volumes compared to manual detection methods and is fast,
robust, and reliable compared to other computational methods. HRS also provides
additional information about the location, size, and evolution of the core and
penumbra, which are difficult to ascertain with manual methods. This chapter
summarizes the ability of HRS to identify lesion dynamics and ischemic
core-penumbra evolution following neonatal HII. In addition, we demonstrate that
HRS provides information about lesion dynamics following different therapies
(e.g., hypothermia, stem cell implantation). Our findings show that computational
analysis of MR images using HRS provides novel quantitative approaches that can
be applied to clinical and translational stroke research using data mining of standard
experimental and clinical MRI data.
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Acronyms

ADC Apparent diffusion coefficient
CP Core-penumbra
CVPR Computer vision and pattern recognition
DPM Diffusion-perfusion mismatch
DWI Diffusion-weighted imaging
EM Expectation-maximization
HII Hypoxic ischemic injury
HRS Hierarchical region splitting
HT Hypothermia
IHC Immunohistochemistry
MR Magnetic resonance
MRI Magnetic resonance imaging
MWS Modified watershed
NIH National Institute of Health
NSC Neural stem cell
NT Normothermia
PWI Perfusion-weighted imaging
ROI Region of interest
RPSS Rat pup severity score
SIRG Symmetry-integrated region growing
SWI Susceptibility weighted imaging
T2WI T2-weighted imaging

4.1 Introduction

Neonatal hypoxic ischemic injury (HII) is a devastating brain disease with long-term
complications (e.g., cerebral palsy, cognitive impairments, epilepsy) and currently
early treatment with hypothermia is the only approved therapy [23]. As new
emerging treatments undergo clinical trials, it will be critically important to objec-
tively identify and precisely quantify the spatiotemporal dynamics of the HII lesion
(s) and its internal composition of salvageable (penumbra) and non-salvageable
(core) tissues. Clinically, rapid computational quantification of injury from neu-
roimaging data, such as magnetic resonance imaging (MRI) can guide clinical
therapeutic decisions about whether treatments are indicated, when such interven-
tions should be implemented and whether or not they are effective. HII-induced
neurodegeneration is a very slow biological process. For analyzing lesions, video
bioinformatics with conventional 30 frames per second video data, or periodic data
collected even at 1 frame per second is impractical and unnecessary. Instead, serial
MRI data are acquired at salient time points (based on prior knowledge) to monitor
spatiotemporal dynamics of ischemic injury (lesion, core and penumbra). Different
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computational tools discussed in this book for video bioinformatics applications can
be then applied to such longitudinal biomedical data.

We have developed novel computational tools to identify total HII lesion,
ischemic core, and penumbral volumes from standard MRI data and their quanti-
tative parameters. Specifically, we have developed a hierarchical region splitting
(HRS) approach [10], an automated MRI analysis method that has been applied to a
rat pup model of neonatal HII [4, 57]. Herein, we demonstrate that HRS can
outperform other methods such as watershed and asymmetry approaches that have
also been applied to stroke/ischemic injury; specifically HRS is robust, generic for
different MRI modalities and it extracts more information compared to others [20].
Ongoing research within the field of computational analysis of HII includes auto-
mated detection of the ischemic core and penumbra, monitoring of implanted
neuronal stem cells in the ischemic brain, injury localization specific to different
brain anatomical regions, and altered regional dynamics following treatment with
hypothermia. We believe that computational analysis of MR images opens a vast
new horizon in current preclinical and clinical translational stroke research using
data mining of serial MRI data. These advancements have the ability to improve
clinical management of neonatal hypoxic ischemic injury.

4.2 Ischemic Injury Dynamics

In animal studies, HII lesions observed onMR imaging modalities are generally seen
as regions of abnormal signal intensity within normal brain tissues that vary in
location, size, and shape depending on the duration of hypoxia [4]. Lesions also
evolve spatiotemporally as the injured brain responds, and the lesion dynamics often
vary depending on the individual brain’s response to injury [40]. There is also an
enormous clinical literature on post-HII MRI changes in term and preterm newborns
[10, 22, 41]. HII leads to edema and altered water mobility inside and adjacent to the
lesions that are reflected in T2—and diffusion-weighted MR images (T2WI, DWI).
The quantitative computed MR physical properties––namely T2 relaxation times (in
milliseconds), and apparent diffusion coefficients (ADC; in mm2/s) can be assessed
to provide inferences about underlying tissue structure/compositions [17, 18, 60].
MRI visualizes regions or boundaries of interest (ROI) and allows separation of the
HII lesion from healthy brain tissues. In clinical trials, MRI indices are used as
outcome measures to assess pathological changes and to monitor treatment efficacy
[48, 59]. Traditionally, ROIs in MRI are manually traced and can be fraught with
intra- and inter-observer variability, difficulty in replicating results, and low
throughput [38]. Even if lesion detection is manually feasible, quantifying lesion
evolution over time and from different brain anatomical regions is unreliable and
extremely labor-intensive and objective computational methods are an absolute
necessity. Such computational advances are important for (1) efficient injury diag-
nosis, (2) assessment of treatment effectiveness, and (3) experimental and clinical
research.
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4.2.1 State of the Art in Computational Methods

The first step in quantification of lesion dynamics is automated lesion detection.
Computer vision and pattern recognition (CVPR) techniques have facilitated
automated injury detection from MRI [9, 11, 17, 18, 25, 30, 32, 49, 56]. Most
methods rely heavily on using ‘a priori’ models of brain tissue or specific brain
diseases and 2D/3D registration between model and subjects to classify healthy
tissues into different anatomical regions [8, 25]. A single normal tissue classifica-
tion is compared to outlier regions that do not satisfy any normal tissue class which
are then designated as abnormal (i.e. lesion) [9, 11, 56]. These a priori models
require large training datasets which are often not available for age-matched neo-
nates due to scarcity of perinatal control data and structural/maturation differences
in the developing brain [17]. In addition, model-subject registration [49] generally
suffers from partial-volume effects, occasional low contrast, and motion artifacts in
MRI. Even after normalization [25], noisy MRI data may severely affect compu-
tational methods utilizing low-level features like image intensity [25], texture [30],
and shape/connectivity [32]. Model-subject registration also suffers when injury
crosses anatomical boundaries [17].

The second step is quantifying spatiotemporal changes in the HII lesion over serial
MRI data. Digital image/volume subtractions to detect changes in serial MR data are
occasionally utilized [34, 47]. However, accurate subtraction again relies on 2D/3D
registration among serial MRI datasets [27, 63, 64]. In addition to registration-related
challenges discussed above, these methods often suffer from registering MRI of the
same brain from different neuroimaging time points—specifically in the rapidly
maturing neonatal brains when neuroimaging time points are too far apart. Issues
related to differences in structure and maturation among healthy developing brains
(for comparison) as well as greater and more variable responses of the neonatal brain
to HII (and many other brain injuries) result in difficulty of reliable anatomical
co-registration in image-subtraction-based methods.

In summary, the majority of current lesion quantification methods depend heavily
on large amounts of training data (often not available), significant preprocessing
(time-consuming), complex prior models (often not reliable, specifically for neo-
nates), model-subject registration (labor-intensive), and significant user intervention
(human bias) that reduce their practical applicability in real-time medical image
analysis [37]. Therefore, MRI-based automated detection of neonatal brain injury
and its spatiotemporal evolution remains extremely challenging. We have addressed
this challenge by undertaking a comparative study of different computational tech-
niques that assist in identifying specific applications and/or a potential fusion of the
best computational approaches to identify not only the lesion, but also lesion
characteristics.
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4.2.2 Lesion Dynamics: Comparative Results

We compared the performance of our HRS method with two other state-of-the-art
approaches, one is based on brain-symmetry, and the other utilizes intensity
topology in MRI data. None of these three methods require model-subject align-
ment or co-registration, thus eliminating many of the issues discussed above. It
further significantly reduces computational complexity as required for practical
real-time clinical applications.

The uniformity of the MR properties of the underlying brain tissue plays a key
role in our hierarchical region splitting (HRS) method [16]. In brief, HRS method:
(1) takes a computed map from MRI; (2) finds its global histogram; (3) fits the
histogram to a bimodal distribution with two distinct and distant peaks; (4) estimates
the valley-point between these two peaks as an adaptive threshold; (5) segments the
entire image into two sub-images, one with the values below this threshold and the
other with values above it; (6) continues this bipartite splitting recursively, to form a
hierarchical tree of sub-images until the sub-images are too uniform or too small for
further splitting; and finally (7) utilizes MR physical properties of the healthy and
injured tissue to separate them out.

In the symmetry-integrated region growing (SIRG) method, inherent symmetry
of the healthy brain is utilized to segment out the injured tissue, which is
hypothesized to be asymmetric [55]. The SIRG method: (1) starts with MR
intensity images; (2) finds the axis of symmetry of the brain; (3) computes a
symmetry affinity matrix; (4) extracts asymmetric regions from regional skewness-
kurtosis values and clustering by 3D relaxation; and finally (4) detects brain injury
by an unsupervised expectation-maximization (EM) classifier that uses 3D con-
nectivity of the regions across 2D MRI slices for outlier rejection.

A standard watershed segmentation method considers intensity images as geo-
graphical altitude maps to find local maxima–minima to segment out different
regions in the image [45]. In a modified watershed (MWS) method: (1) multiple
parameters are fused to compute altitude maps; (2) multiple initial locations with
different altitudes are selected; (3) intensity gradients are followed as the paths
taken by water droplets to reach different catchment basins (regional minima);
(4) closely-located regions with similar feature are merged to counter over-
segmentation; and finally (5) injured brain regions are detected by a supervised
classifier trained with manually segmented examples.

4.2.2.1 Volumetric and Location Comparison

We recently reported on translational longitudinal MRI over the course of 1 year,
wherein we undertook repeated MRI following neonatal HII [40]. Using these data
we have compared HRS, SIRG, MWS results to manually detected ground-truth
data to test for volumetric accuracy and locational overlap [19]. All three methods,
HRS, SIRG, and MWS, detected lesion volume completely automatically from
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serial T2 data (Fig. 4.1a) and their volumetric (Fig. 4.1b) and location-overlap
(Fig. 4.1c–e) performance were comparable with respect to the manually detected
ground-truth data. Key results are: (1) SIRG performed marginally better than HRS
in detecting lesion volumes and locations; (2) HRS had the greatest robustness (i.e.,
lowest standard deviation) and stability over individual 2D anterior-to-posterior MR
slices across the whole brain; (3) SIRG and HRS outperformed MWS in all aspects.
Overall these methods are objective and robust for real-time clinical applications as
they do not require labor-intensive preprocessing or complex prior-models for
model-subject alignment.

4.2.2.2 Why HRS Is Ultimately Superior

MWS [45] was outperformed (Fig. 4.1) by the other two methods due to an inherent
over-segmentation problem [19]. The SIRG approach [55] utilized symmetry as a
high level feature and 3D connectivity-based outlier rejection that significantly
improved its power for injury discrimination. However, limitations of SIRG are:
(a) extensive refining of many parameters (two region growing and five asymmetry
detection criteria) which might be injury-specific, (b) inadequacy when brain
structure lacks defined symmetry or the injury itself is symmetric (bilateral; [16]),
and (c) dependence of T2WI intensities rather than T2 relaxation times (optimal).
On the other hand, HRS [16] has (1) comparable performance with SIRG (Fig. 4.1),

Fig. 4.1 Comparative HII lesion dynamics results between HRS, SIRG and MWS computational
methods. a The ischemic lesion detected (red-border) by manual and compared methods from
representative serial T2 data are similar. b Lesion volumes at later time points are similar, but there
are clear differences at the earlier imaging time points between computational methods. c, d, and
e Overall computational performances for lesion location are compared for sensitivity, specificity,
and similarity. HRS and SIRG performances were similar while MWS was not as accurate in all
respects
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(2) has fewer parameters to optimize (three region splitting and one lesion detection
criteria), (3) capability of handling actual MR properties (e.g., T2 relaxation times,
ADC), (4) quick and robust lesion detection over different 2D MR slices [19],
(5) the added benefit of separating ischemic core from penumbra (Sect. 4.3), and
(6) potential of detecting implanted iron-labeled stem cells (Sect. 4.4.2). HRS
limitations including small ROI detection might be resolved in the future by uti-
lizing asymmetry cues for small regions and 3D connectivity-based outlier rejection
as implemented in SIRG [55]. Hence we have extended and utilized our HRS
method for detailed lesion composition analysis and therapeutic interactions, and
these results are summarized in the rest of this chapter.

4.2.3 Long-Term Lesion Dynamics: HRS Performance

Neuronal and cellular tissues impacted by an HII undergo several cellular and
molecular cascades that can modify lesion volumes in a complex manner. From the
manually derived lesions from serial MRI rat pup data up to 1 year post HII [40] we
found that as the initial large edema event (at 1–3 days post HII) subsides, manually
derived lesion volumes are reduced at 4–7 days post HII (Fig. 4.2; the sharp initial
drop in injury volume). As the HII lesion “matures” normal tissues are then
incorporated into the lesion as the core/penumbra expands and at later time points
(>1 month), lesion volume increases and then plateaus at the final ischemic infarct
size at approximately 3 months. Lesion volumes detected by HRS closely match

Fig. 4.2 Long term lesion dynamics from serial T2 weighted MRI data: HRS detected lesion
volumes closely matched with the ground-truth of manually derived results. Lesion volume
initially decreases at 4–7 days post HII (see the initial sharp drop in injury volume) and then
gradually increases and reaches its final size by 15–18 weeks. Note that, HRS includes ventricular
hypertrophy (5–10 %) in late imaging time-points, which human observers typically ignore
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with these manually derived results (Fig. 4.2). These results also support the
efficiency of HRS which detects lesions from a skull-stripped brain within 15s—
making HRS potentially usable for real-time clinical applications.

4.3 Ischemic Core-Penumbra Dynamics

Generally brain tissues inside an HII lesion are not equally injured. Traditionally,
the ischemic core consists of necrotic tissue that is dead or dying and is irrecov-
erable, while the ischemic penumbra contains more apoptotic tissue that is injured
by the ischemic impact but which can potentially recover either spontaneously or in
response to treatment [39, 53]. Lesion salvageability is partly related to differences
in regional blood flow and mitochondria-mediated metabolism within neurons and
glia [33], and interdigitated nature of (mini-) core and (mini-) penumbra changes
that occur differentially over space and time [12]. Core-penumbra composition of
the HII lesion is very dynamic and with time, part of the penumbral tissue
undergoes necrosis and becomes core, while other parts might recover to become
nearly normal healthy tissue. As the core is unsalvageable, from the therapeutic
point of view, the ischemic penumbra––its presence, location, and spatiotemporal
evolution is pivotal to any effective and safe intervention––specifically in a sensi-
tive population like neonates with HII.

4.3.1 Current Methods and MRI Challenges and Potential
of HRS

In translational studies, post-mortem tissue immunohistochemistry (IHC) is the best
way to identify core and penumbra and their dynamics [12]. But IHC is not possible
in living patients where the most feasible technique is a noninvasive method such as
MRI. Presumably MRI can be used clinically if previous experimental studies have
confirmed correspondence between MRI-based lesion characteristics and IHC.
Ischemic stroke typically results in arterial constriction or blockade and hence
blood-perfusion deficits that are first visualized in perfusion weighted MR images
(PWI). Ischemic injury leads to the development of cytotoxic/vasogenic edema [7]
and cellular swelling [12], which restrict water diffusivity in an HII lesion that is
reflected as an early hyperintensity in DWI and hypointensity in ADC [60]. With
injury progression and excessive cellular swelling, membranes finally collapse and
dead cells lead to increased water content that is detectable as increased T2
relaxation times within the lesion. Thus, the ischemic core is expected to have
higher T2 relaxation times and lower diffusion coefficients than the ischemic
penumbra (*10 ms in T2 maps and *10 × 10−5 mm2/s in ADC maps), although
these subtle signal differences are not often visually discernible. Visual segregation
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of core and penumbra suffers from significant inter- and intra-observer variability
and potential user-fatigue-related errors [17, 18]. Diffusion-perfusion mismatch
(DPM) is the standard of care in adult stroke [54]. Unfortunately DPM requires
multi-modality registration (between DWI and PWI) with the associated problems
as discussed above (Sect. 4.2.1) and other pitfalls [60]. More importantly, PWI is
still not routinely used or available for assessments of neonates with HII due to
potential side effects associated with the use of contrast infusions as well as the
technical challenges in performing such studies and further underscores why serial
PWI, as needed for core-penumbra evolution by DPM, are not clinically acquired in
this age group.

4.3.2 HRS Based Core-Penumbra Evolution

We have searched for a single MRI-modality-based method that eliminates the need
for multi-modality registration and studied HRS-based detection of core-penumbra
and their evolution from a single MRI modality data (either T2 or ADC maps) of
10-day-old rat pups with HII. We have further validated the HRS results with
translational ground-truth using IHC and DPM [17, 18]. HRS splits lesion regions
hierarchically into subregions and prior knowledge of MR ranges are utilized to
classify subregions as ischemic core and penumbra. Over time HII penumbra was
found to convert into core and new tissue regions were included into penumbra due
to cellular toxicity affecting neighboring healthy tissues (Fig. 4.3a). Like variations
in anatomical (location) involvement, core-penumbra percentage compositions also
evolve over time (Fig. 4.3b) as penumbra reduces in size and the entire lesion
gradually becomes ischemic core.

Fig. 4.3 Spatiotemporal evolution of ischemic core-penumbra. a Temporal HRS detections of
ischemic core (red) and penumbra (blue) from serial T2-weighted MRI at representative brain
depth (from anterior-to-posterior scan) demonstrate evolving anatomical involvement over time.
b HRS extracted volumetric lesion components identifies the proportional compositions of
core-penumbra within the entire lesion over time post HII. Large proportion of salvageable
penumbra is quickly converted into non-salvageable necrotic core by 7 days post HII
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4.3.3 Potential of Core-Penumbra Dynamics

Post-HII necrotic and apoptotic processes vary with age, severity, anatomical
location and type of injury. There is further intra-population variability in
anatomical structure, rate of maturation, and inherent plasticity in developing
brains. Hence core-penumbra evolution is expected to vary widely following
neonatal HII. This makes core-penumbra quantification even more important for
candidate/treatment selection––e.g., determining whether restoration of perfusion or
neuroprotective interventions might be more successful. Also, assessment of core
penumbra volumes/locations is of potential significant importance in deciding
treatment details––site, time, and dose. As an example, neural stem cell implan-
tation for HII treatment could be assayed for therapeutic efficacy and critical con-
cerns might be: (1) where to implant (near core, penumbra, or contralateral
cortex/ventricle), (2) when to implant (based on significant presence of salvageable
penumbra and its anatomical location for viability of stem cells), and (3) how many
stem cells are to be implanted (small core and large penumbra might suggest the
requirement of implanting a greater number of cells). Also, core-penumbra com-
position, anatomical location and their rate of evolution might alter or augment
estimates of injury severity based on lesion volumes or specific locations of injury.
Serial multi-modality MRI data (e.g., T2 and ADC; without need for multi-modality
registration) might potentially demonstrate gradual transition of healthy tissue to
ischemic penumbra and penumbra to core [17, 18] and guide selection of the site of
treatment at a particular time. Thus, accurately identifying the ischemic
core-penumbra and its spatiotemporal evolution are of paramount importance.

4.4 Monitoring Therapeutic Interactions in Ischemic
Injury

Clinically, there are few therapies available for neonatal HII. Currently hypothermia
(HT) has proven to be modestly effective in mild and moderate HII [50]. Other
clinical trials are either in progress or being considered to augment the effects of
hypothermia (e.g., using Xenon inhalation, topiramate, or erythropoietin as a sec-
ond therapy or extending the time frame for initiating HT, etc.). In addition, there
are many other pharmacological investigations in experimental models that are
pursuing alternative therapies including the use of stem cells of various lineages and
several studies have been published on the use of mesenchymal stem cells after
neonatal HII [24, 43]. For any treatment that is to be used, translational studies can
be particularly effective in examining the severity of injury and its interaction with a
particular treatment with the goal of improving candidate selection for therapy and
optimizing outcomes. But such research is often bottlenecked by the scarcity of
effective computational tools [28].
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4.4.1 Effect of Hypothermia Therapy on Core-Penumbra
Evolution

Neuroinflammation is well known to play a major role in neonatal HII evolution
primarily by altered inflammatory signaling of biomolecules and proteins (e.g.
cytokines, chemokines). The neonatal brain often reacts differently to injury com-
pared to adult brains, particularly in how it responds to HII [35, 58]. Post-HII
hypothermia is known to reduce the inflammatory response [50] and is likely to
change the course of ischemic core-penumbra evolution. It will be interesting to
analyze this change between hypothermia (HT) and normothermia (NT) groups
over time and assess the short-term and long-term therapeutic implications of HT in
neonatal HII, whether core-penumbra compositions and their spatiotemporal evo-
lutions correlate with biomolecular protein dynamics [3] and thus help understand
injury progression––specifically as recent research reports that different injury
biomarkers (e.g., cytokines) fluctuate over time post HII [2].

We recently examined in a short-term longitudinal rat pup model, the changes in
cytokine/chemokine expression in two groups of animals (hypothermia vs. nor-
mothermia) for the first 24 h post HII and in addition to testing neurological
behavior, we evaluated core-penumbra evolution at 0, 24, 48, and 72 h post HII
using serial DWI and HRS quantification [62]. In comparison to 0 h data (imme-
diately after HII, before HT/NT), the increase in core-penumbra volume at 24 h post
HII (just after completion of HT/NT treatment) was significantly diminished in HT
compared to NT treated animals (Fig. 4.4a). This reduction was maintained until
48 h post HII (24 h post HT) after which a rebound effect was observed at 72 h post
HII when the core and penumbra began to gradually increase in HT animals
(Fig. 4.4b, c). This result was further supported by a semi-quantitative estimation of
imaging injury severity based on a rat pup severity score (RPSS) [46] from the same
serial DWI data. While the RPSS cannot differentiate core-penumbra volumes it
does provide an assessment of regional involvement of the entire HII lesion (core
+penumbra). We have previously reported that the RPSS correlates well with HRS
derived lesion volumes [16]. Concordance between RPSS and HRS, and their
correlations with weight-loss, behavioral, and cytokine/chemokine data [62]
demonstrate that the effect of hypothermia on the volume of ischemic injury may be
transient or reversible during and after rewarming suggesting that a secondary
treatment started later after treatment may be beneficial.

We also observed that pups with mild or moderate injury showed a greater
potential for improvement with hypothermia. What was helpful was that when we
used our HRS method on the initial MRI data (i.e., 0 h HRS lesion volume), we
classified lesion severity on an ‘a priori’ estimate of severity. Mild injury was
defined as less than 5 % and moderate injury as between 5–15 % of the entire brain.
Both groups (mild, Fig. 4.4b; moderate, Fig. 4.4c) showed an improvement in the
core-penumbra evolution after treatment with hypothermia. Mild HII neonates often
recover with no apparent lesions on MRI while severely affected neonates often
have large cystic lesions that are irreversible. Hence, it is likely that the moderate
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HII group is the group that has the greatest chance for benefiting from treatment and
hence the results in Fig. 4.4c is encouraging. It was also observed that HT neuro-
protection was mediated primarily by reducing penumbral injury, further supporting
the notion that salvageable tissue even after HT therapy might be susceptible to
inflammatory exacerbation (after 48 h post HII) without further treatment (Fig. 4.4),
just like ‘reperfusion injury’ in clinical and translational HII [31].

Fig. 4.4 Effect of hypothermia treatment in core-penumbra (CP) evolution. Hypothermia or
normothermia (control group) treatment was applied for 24 h immediately post HII and serial DWI
data was acquired to evaluate efficacy of HT therapy. a HRS derived core-penumbra superimposed
on DWI data at 0 and 24 h clearly demonstrate that HT restricted lesion expansion. Comparative
HRS/ADC result in b mild and c moderate injury show delayed injury progression in HT group
with both severities until 72 h when volume of HII lesion (and ischemic core) rapidly increases and
thus overall reducing potential salvageability
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In one recent clinical trial HT could be safely and reproducibly maintained
during MRI acquisition suggesting that obtaining scans during treatment could
better estimate the severity of injury allowing clinicians the opportunity to consider
additional treatments [61]. Future clinical research is expected to increase the utility
of serial neuroimaging of seriously ill newborns more readily and safely and
potentially could be incorporated into the evaluation of candidate selection for
treatment and for early outcome assessment of specific combinatorial therapies.
Core-penumbra evolution also suggests a potential window (Fig. 4.4b, c) when a
secondary treatment like stem-cell implantation might be beneficial.

4.4.2 Effect of Stem Cell Therapy on Core-Penumbra
Evolution

As with many other neurological disorders, stem cell transplantation for neonatal
HII has enormous potential. Neuronal stem cells (NSC) whether endogenous (al-
ready present in the brain) or exogenous (implanted) inhibit scar formation,
diminish inflammation, promote angiogenesis, provide neurotrophic and neuro-
protective support, and stimulate host regenerative processes within the brain [5,
52]. Behavioral and anatomical improvements (lesion volume reduction) after NSC
implantation in ischemic brain have been reported and immunohistochemical data
have shown that NSCs integrate into injured tissues and develop functionally active
connections [42]. For clinical applications, where a noninvasive imaging method is
an absolute necessity, it will be critical to analyze the core-penumbra evolution over
time (post NSC implantation) using computational quantitative methods.
Core-penumbra separation may be helpful in optimizing selection of where stem
cells should be implanted as it may help determine the optimal environment for
implantation and for testing the efficacy of different NSC implantation sites––e.g.,
contralateral injections at ventricle or parenchyma [40], or ipsilateral injections in
lesion and peri-lesion sites [51]. The concept behind these studies is that NSCs
implanted too far from HII might not react/migrate quickly enough, while those
implanted too close to the lesion might die from cellular toxicity even before having
any type of ‘bystander effect’ (i.e., paracrine type of effect on tissue repair) of the
underlying brain tissues. Ischemic penumbral tissue is the primary target for rescue,
where implantation either directly into the penumbra or into the contralateral
ventricle (for optimal exposure to most of the brain) is a logical site. Interestingly,
due to spatiotemporal evolution, existing penumbral tissues might transform into
core and hence rapid automated quantification of core-penumbra dynamics
(Fig. 4.3) is important.

Serial MRI data from our initial studies [40] on 10-day-old rat pups implanted
with iron-labeled NSCs (into the contralateral ventricle or parenchyma) at 3 days post
HII have demonstrated NSC reparative effects. When serial T2-weighted MRI data
were quantitatively reevaluated with our HRS method, core-penumbra evolution was
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detected (Fig. 4.5a). Interestingly, NSC transplantation restricted lesion progression
to some extent as reflected in the higher proportion of penumbral tissue even at
14 days post NSC implantation, i.e., 17 days post HII (Fig. 4.5b). In our ongoing
detailed study on the therapeutic efficacy of NSC, HRS derived core-penumbra
evolutions are currently being analyzed for different implantation sites (core,
penumbra, and contralateral ventricle), doses (150 or 250 K cells), translational HII
models (unilateral and bilateral) and injury severities (mild, moderate and severe).
Noninvasive assessments of core-penumbra evolution in such studies are expected to
be proven as a very important index for monitoring NSC therapeutic efficacy.

4.4.3 Potential of Combinatorial Therapies:
Hypothermia + Stem Cells

Our recent HT/NT recent studies suggest that the effects of HT on core-penumbra
evolution may be transient and that adding a second treatment at this time point may
be helpful [62]. It appears that HT restricts penumbral volume growth as we
observed a greater increase in the conversion of penumbra to core between 48 and
72 h (Fig. 4.4). Reduced penumbral growth suggests that there may be a better
microenvironment for adding an additional treatment that could modify the post-HII
inflammatory response. Stem cells may be of particular benefit as they could provide
a multifaceted approach to treating the multiple post-HII injury cellular cascades that
contribute to injury progression. Advanced imaging techniques could also be used to
monitor the migration and replication of transplanted stem cells as other investiga-
tors and our own previously published studies have suggested [5, 29].

Fig. 4.5 Therapeutic effect of stem cells implanted in contralateral cortex 3 days post HII. a HRS
derived ischemic core (red) and penumbra (blue) in serial T2-weighted MRI data demonstrate
partial restriction of HII expansion as implanted NSC migrates from injection site (downward
yellow arrow) to the tissues close to HII (rightward yellow arrow). b Volumetric summary of
core-penumbra evolution suggests presence of penumbra even 7–17 days post HII (4–14 days post
NSC implantation)
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4.5 Future Research Directions

As computational methods like HRS demonstrate the potential to quantify detailed
spatiotemporal evolution of neonatal HII with implanted NSC, the next logical step
is to detect, quantify and track NSC and their evolution over serial MRI and then to
objectively evaluate dynamic interactions between HII and NSC to better under-
stand and monitor therapeutic effects. Finally, if one can parse the brain anatomy
utilizing a brain atlas, biological information could be separated to analyze
region-specific details like (1) susceptibility to HII, (2) potential tissue salvage-
ability, (3) the migrational pathway of implanted NSCs and their degree of repli-
cation and (4) the preferred regions in which NSCs appear to have reparative
effects. Without computational tools like HRS, scalable machine learning or pattern
recognition techniques, handling and quantifying such complexity would be
extremely difficult to accomplish [15].

4.5.1 Stem Cell Dynamics and Interactions with HII
Evolution

In translational stem cell therapy, contrast-labeled NSCs [1, 40, 44] are implanted in
the injured brain to boost endogenous (unlabeled) NSCs and to better understand
the reparative NSC activities like migration, proliferation and differentiation by
immunohistochemistry (IHC) and serial MRI [40]. These contrast agents assist in
visualizing implanted stem cells for MRI which can monitor them across serial
imaging data.

In our studies we have used a superparamagnetic iron-oxide (SPIO) label as the
contrast agent which has been found to have no toxicity effects [6, 36]. In addition,
these iron oxide labeled NSCs could be visualized for up to 1 year after HII using
serial T2 and susceptibility weighted images (T2WI, SWI) [40]. The next frontier is
to detect implanted stem cells computationally, track their migration from im-
plantation site to the HII location, quantify their proliferation in response to repair
signals and analyze their interactions with the HII evolution. Our earlier studies on
migration and proliferation are encouraging [40], but suffer from manually derived
data that might have human bias and does not consider important information like
cell-density, individual NSC cluster volumes, etc. An earlier review on NSC
therapy noted that the lack of computational NSC monitoring tools has hindered
finding spatiotemporal characteristics of implanted cells [28].

Our initial results to quantify iron-labeled NSC clusters and its evolution using
T2WI using HRS was partially successful [17, 18]. However, we also noted a
weakness of HRS in detecting small ROI from T2WI and suggested that it might be
improved by using symmetry cues [55]. SWI and associated quantitative maps are
reported to enhance visualization by blooming effect and facilitate measuring iron
content and hence number of Fe-labeled stem cells [29]. Our preliminary results on
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using HRS based NSC detection from SWI (Fig. 4.6a) are encouraging and we
expect significant improvement from our previous T2-based detection methods
(Fig. 4.6b)—specifically by increasing sensitivity (true positive) and reducing
outliers (false positives). Beyond simple detection of NSCs and the peri-lesional
locations to which they migrate (Fig. 4.6b), we are currently pursuing automated
quantification of detailed NSC characteristics like leading edge, rate of migration
and proliferation over time, cell-density and internal/external gradient for each NSC
clusters.

Perhaps of greater importance will be quantifying dynamic interactions between
HII evolution and NSC activities. This is specifically relevant when it is reported
that (1) HII tissues release chemoattractant cellular and molecular cues, called
‘homing signals’ [42, 52] for NSC migration and activities; (2) a proportion of
NSCs migrate, proliferate and differentiate to recover penumbral tissues in an
attempt to restore brain function, (3) the majority of NSCs do not survive but still
may have some form of reparative ‘chaperone’ effect [52]. Such spatiotemporal
interactions are reported from qualitative and visual observations [14] but need to
be objectively quantified and verified as highlighted in an earlier review [26]. We
have found that NSC volumes from HRS using T2 weighted data are high when
lesion volumes temporarily subsides in the sub-acute HII and thus there is more
viable tissue for NSC proliferation [17, 18]. HRS quantified NSC activities from
serial SWI data are expected to discover similar interactions. Unfortunately SWI
data cannot effectively capture HII lesion information (Fig. 4.6a) and thus needs to
be combined with serial T2-weighted data for quantifying NSC-HII interactions.
Extensive computational research is needed to find relative distances between HII
and NSC clusters, their relations with core-penumbra location as well as
injury-gradients across the HII boundary and how these affect migratory path of
NSCs.

Fig. 4.6 Stem cell detection using Susceptibility weighted imaging (SWI). a SWI data at different
brain levels (at a single imaging time-point) visualized Fe-labeled NSCs (hypointensity regions)
implanted in contralateral ventricles and migrated to the lesion (right) site though cerebrospinal
fluid. HRS could detect small NSC regions that, in future studies can be tracked in serial SWI data
to monitor NSC activity. b Superimposed NSC locations derived by HRS from serial T2-data (in
Fig. 4.5) demonstrated a clear migration of NSC from injection site in contralateral cortex towards
lesion location—even as early as 4d post implantation
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4.5.2 Anatomy-Specific Spatiotemporal Evolutions:
Implications

The final frontier is incorporating anatomical brain information and associated prior
knowledge to better understand regional effects of injury and therapy. Different
diseases and their translational models affect individual brain regions differently
(Fig. 4.3) and the same is true for different therapies (Figs. 4.4a and 4.5a).
Clinically, anatomically parcellated brain maps have been developed from
age-matched healthy newborn children (control data)––specifically relevant for the
developing brain [21] and then co-registered [13] with the injured brain in an
attempt to quantify regional effects. Unlike those templates for the adult human
brain, digital age-matched neonatal brain maps are not readily available, specifically
for animals and this is one important direction of current research. Once a proper
animal brain atlas is automatically co-registered using established computational
tools [17, 18], HRS detected ischemic core-penumbra and NSC locations could be
rapidly segregated based on brain anatomy and region-specific injury progression,
NSC activity and HII–NSC interactions can be studied in translational (rodent or
other species) models. Combining lesion and NSC dynamic information from serial
neuroimaging with other biological information (e.g., immunohistochemistry)
could lead to a large-scale information fusion that is intractable by any manually
derived methods. To handle such complexity video bioinformatic methodologies
from the fields of computer vision and pattern recognition need to be integrated
with scalable data-mining and continuously adaptive machine learning techniques
[15, 19].

4.6 Conclusions

Computational identification and quantification of lesion dynamics and
core-penumbra evolution from serial neuroimaging provide a new horizon of injury
assessment, deciding candidate/treatment, planning new combinatorial therapies
and continuous noninvasive monitoring of therapeutic success. Post-mortem im-
munohistochemistry and molecular analysis at a single time point might validate
computational MRI results in translational studies, but often has no direct clinical
application. On the other hand, objective image/video bioinformatics from serial
MRI data and computational tools like HRS have great potential to translate
experimental studies to clinical use. Extending HRS based core-penumbra detection
to adult stroke might also have direct clinical application for example by (a) pro-
viding an additional method to currently used selection criteria of using the time of
stroke-onset for urgent treatment; (b) measuring core-penumbra composition as an
alternative index of injury severity, complementing traditional National Institute of
Health (NIH) stroke scale score measurements and use of methods such as
diffusion-perfusion mismatch; (c) serving as a potential (online) monitoring tool for
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immediate recanalization post-thrombosis; and (d) becoming a reliable tool to
evaluate potential of post-stroke neuroprotective agents. Specifically, for critical
population like neonates with HII, computational assessment of lesion evolution
before and after therapy is likely to be a significant step towards enhancing health
care and reducing long-term complications of a devastating disease.
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Chapter 5
A Real-Time Analysis of Traumatic Brain
Injury from T2 Weighted Magnetic
Resonance Images Using
a Symmetry-Based Algorithm

Ehsan T. Esfahani, Devin W. McBride, Somayeh B. Shafiei
and Andre Obenaus

Abstract In this chapter, we provide an automated computational algorithm for
detection of traumatic brain injury (TBI) from T2-weighted magnetic resonance
(MRI) images. The algorithm uses a combination of brain symmetry and 3D
connectivity in order to detect the regions of injury. The images are preprocessed by
removing all non-brain tissue components. The ability of our symmetry-based
algorithm to detect the TBI lesion is compared to manual detection. While manual
detection is very operator-dependent which can introduce intra- and inter-operator
error, the automated detection method does not have these limitations and can
perform skull stripping and lesion detection in real-time and more rapidly than
manual detection. The symmetry-based algorithm was able to detect the lesion in all
TBI animal groups with no false positives when it was tested versus a naive animal
control group.
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5.1 Introduction

Traumatic brain injury (TBI) is the foremost cause of morbidity and mortality in
persons between 15 and 45 years of age, with an estimated 1.7 million individuals
affected each year in United State [5, 8, 34]. It is estimated that up to 75 % of all
reported TBI are considered mild and/or concussive types of injuries. While often
TBI symptoms may appear mild or moderate, there is convincing evidence that
even subtle brain injury can lead to significant, life-long impairment in an indi-
vidual’s ability to function physically, cognitively, and psychologically [27, 35].
Among these incidents, approximately 7 % are fatal [8], and approximately 90 % of
these fatal TBIs occur within 48 h of injury, thus successful treatment of TBI lies in
early detection of brain damage after trauma [26]. At the present time there are no
therapeutic interventions approved for TBI.

Clinically and in experimental models of TBI, Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) are widely utilized to noninvasively diagnose
and evaluate the extent of injury. Conventional MRI, such as T2 weighted imaging
(T2WI) is able to identify brain injury within the brain parenchyma, based on the
presence of edema and hemorrhagic contusions [17, 18]. Dependent upon the severity
of injury, peak edema is typically observed 24–48 h following injury and resolves by
approximately 4–7days,while hemorrhagic lesions can occurwithin thefirst 3–4 days
and resolution can take months [17, 23, 24]. Given that T2WI is sensitive to various
injury components (edema, blood), it is often used for detecting abnormalities in brain
tissue, as well as the severity of brain damage in human [9] and animal studies [14].

The diagnosis of TBI is traditionally based on radiological visual inspection of CT
orMRI scans. In quantitative animal and clinical studies, typically,manual delineation
of the boundary or region of an injury ismanually selected.Although an abnormality is
easily identifiedon imaging by a trained person,manual regiondrawingof an injury, to
determine the exact lesion size and tissue characteristics, is arduous and time con-
suming. Furthermore, large deviations in lesion size can occur due to intra- and
inter-operator performance. Therefore, a sensitive and reliable algorithm for assessing
lesion size andclassificationof theTBI is anessential part inproviding rapid evaluation
of patient status and allowing more effective and timely treatment.

5.2 Current Algorithms for Detecting TBI Lesions

Computational assessment of TBI lesions and TBI tissue characteristics has not
been well studied, in contrast to other brain injury/diseases, such as multiple
sclerosis, tumors and stroke. There are only a small handful of reports that illustrate
the usefulness of computational analysis of TBI imaging data in human [15] and
our own work in experimental animals [4, 7]. A caveat of these reported studies is
that they are not fully automated and not in real time, thus potentially limiting their
immediate translation to the clinic.
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However, there is an emerging body of literature utilizing computational analysis
for identification of brain lesions, for example in stroke and multiple sclerosis.
Several recent reviews provide an overview of the state of the art of computational
techniques for lesion detection [4, 20, 22]. A brief state of the art in computational
assessment is summarized in [4] (see Table 5.1). Many of the proposed methods are
based on MRI image segmentation of anatomical brain structures [1]. For example,
[28] used an EM (Expectation-Maximization) algorithm to segment anatomical
brain structures where the outliers of the normal tissue models were classified as a
lesion [28]. In another study, [29] developed an automatic technique to detect white
matter lesions in multiple sclerosis [29]. Using 3D gradient echo T1 weighted and
FLAIR images the authors identified tissue class outliers that were termed lesion
beliefs. These beliefs were then expanded computationally to identify the lesion
area based on a voxel-based morphometric criterion.

Recently, [10] introduced Hierarchical Region Splitting (HRS) as an automated
ischemic lesion detection schema for neonatal hypoxic ischemic injury [10]. They
used normalized T2 values to recursively split the MR images, wherein each seg-
ment had a uniform T2 value associated with each tissue class. This constituted
either normal tissues or regions with putative ischemic lesions. Each region was
then further recursively split until the region of interest (i.e. lesion) could be
detected based on T2 values along with other criteria for stopping the algorithm.
This method has also been compared to symmetry-integrated region growing
(SIRG) [32] in human and animal magnetic resonance imaging datasets. While the
SIRG method has been shown to be more accurate in detecting the lesion volume, it
was more sensitive to the tuning parameters [11].

Many of the existing computational methods, irrespective of the disease state,
typically rely either on large amount of training data or a prior model to identify
putative lesions. Therefore, current automatic lesion detection methods are com-
putationally intensive and not clinically useable due to the lack of real-time
detection. Herein, we outline an automatic computational algorithm for detection
and classification of TBI lesions from T2WI MR images. The algorithm utilizes the
symmetrical structure of the brain to identify abnormalities and which is compu-
tationally inexpensive, thus allowing for real-time detection with accuracy

Table 5.1 T2 values determined by manual detection

Tissue type T2 value 95 % confidence 95 % confidence

(Mean ± SD) Lower T2 value (ms) Upper T2 value (ms)

Grey matter 73.8 ± 8.33 T2LGM ¼ 70:03 T2UGM ¼ 77:61

CSF 159.7 ± 29.14 T2LCSF ¼ 132:8 T2UCSF ¼ 186:7

Skull 34.1 ± 0.62 T2LSK ¼ 38:74 T2USK ¼ 43:54

Edema 132.2 ± 12.09 T2LED ¼ 117:2 T2UED ¼ 129:2

Blood 58.4 ± 4.78 T2LBL ¼ 56:23 T2UBL ¼ 60:58

Superscripts L and U represent the lower and upper T2 values
Subscripts of T2 represents the tissue type: (GM gray matter, SK skull, ED edema, BL blood, CSF
cerebrospinal fluid)
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comparable to manual detection. The performance of the proposed algorithm is
evaluated in an animal model of TBI and is compared to the manual lesion
detection method (gold standard).

5.3 Methods

An experimental model of TBI in adult rats was used to obtain the MRI images
utilized for development and validation of our automatic lesion detection method.

5.3.1 Experimental Model of Traumatic Brain Injury

A total of 18 adult male Sprague-Dawley rats (72–93 days old at the time of TBI)
were randomized into three groups: (1) mild repetitive TBI, where the injury was
induced 3 days apart (n = 10), (2) sham animals that received a craniotomy but no
TBI (n = 6), and (3) control animals that were without any surgical intervention
(n = 2). All animal experiments were in compliance with federal regulations and
approved by the Loma Linda University Animal Health and Safety Committees.

TBIwasmodeledusing thewell-establishedcontrolledcortical impact (CCI)model
[12, 23]. Briefly, anesthetized rats (Isoflurane: 3 % induction, 1–2 % maintenance)
were secured into a stereotactic frame and amidline incision exposed the skull surface.
A craniotomy (5 mm diameter) was performed over the right hemisphere 3 mm pos-
terior and 3mm lateral from bregma, to expose the right cortical surface. The CCI was
delivered using an electromagnetically driven piston with a 4 mm tip diameter at a
depthof2mm,speedof6.0m/s, andcontactdurationof200ms (LeicaBiosystems Inc.,
Richmond, Il). In the repetitive TBI group, a secondCCIwas delivered 3 days after the
initial injury at to the same location. The animals in the sham group went through the
same surgical procedure but with no CCI (surgical shams).

5.3.2 Magnetic Resonance Imaging and Manual TBI
Lesion Detection

Animals were anesthetized (isoflurane: 3 % induction, 1 % maintenance) for MRI
using a 30 cm bore 4.7 Tesla Bruker Advance MRI scanner (Bruker Biospin,
Billerica, MA). T2-weighted imaging was obtained with the following parameters:
25 coronal slices, 1 mm thick spanning the entire brain, TR/TE = 2850 ms/20 ms,
number of echoes = 6 that were 10.2 ms apart, field of view = 3 × 3 cm, 2 averages.
T2 maps were generated using in-house software [23]. Each animal was imaged on
days 1 (24 h-post first injury), 4 (72 h-post first injury and 24 h-post second injury),
and 14 (14 days-post first injury) similar to our previous report [12].
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Manual TBI lesionswere drawnonT2WIwhere regions of hyper-intensities reflect
increased water content (bright = edema) and hypo-intensities delineate regions of
extravascular blood (dark = hemorrhage). Once these regions of interest (ROI) were
delineated on the T2WI they were transferred to the quantitative T2 maps and addi-
tional visual inspection was used to confirm that the ROIs encompassed the MR
observable abnormalities (Fig. 5.1a). To minimize the limitations of inter-observer
manual lesiondetection, a single operatorwasused for all analysis, including the lesion
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Fig. 5.1 Representative T2-weighted MR images and pseudo-code for the automatic algorithm.
a Representative Sham (surgery, no TBI) and a repetitive TBI. The MR images were obtained
1 day after the first (1st TBI) and the second (2nd TBI) injury. The injured hemisphere (dotted line,
sham) is expanded to illustrate the manual ROI that were used to delineate the brain injury lesion.
After the first TBI there was primarily edema present but after the 2nd TBI there appeared
significant amounts of blood (see also Fig. 5.5). b Pseudo code for our automated algorithm that is
composed of two primary components, skull stripping (see Fig. 5.2) followed by lesion detection
(see Fig. 5.3)
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area, and was considered as the gold-standard. From the manual ROI we extracted T2
relaxation values (ms) for normal tissues and lesion components (edema, blood, see
Fig. 5.1a) that were used in the belief maps for the automated computational detection
algorithm we describe below. These T2 values are outlined in Table 5.1.

5.3.3 Automated Computational TBI Lesion Detection

Our proposed automatic algorithm for real-time TBI lesion detection from T2WI is
created by the combination of two algorithms. The first algorithm removes the skull
and all tissue not associated with the brain tissue (Skull Stripping) by comparing the
T2 values. The second algorithm (Lesion Detection) detects the lesion (if present)
based on the brain symmetry for the T2 values (Fig. 5.1b). Additional details of the
two algorithms are outlined in the Sect. 5.4.

5.4 Analysis and Results

The proposed computational method is composed of two parts: skull stripping and
lesion detection. Skull stripping is used for extracting brain-only tissues by
removing the surrounding muscle and skull. In the lesion detection, first the axis of
symmetry of the brain structure is found, and then using the symmetry criteria with
respect to this axis, any lesion which is present is detected. The lesions are defined
by a difference in the T2 values (see Table 5.1) across the axis of symmetry.

5.4.1 Skull Stripping

Numerous studies which have been developed to extract human brain tissue from
an MR image using methods such as pulse coupled neural networks [21] or geo-
metrical and statistical 3D modeling of the brain [2]. However there are still no
robust and fully automatic methods for extracting rat brain tissue which can be used
in real-time.

Skull-stripping methods can generally be divided into three types: intensity based,
morphology based, and deformable model based [19]. In intensity-based methods the
distribution of image intensity is used for multiple or iterative binary classification
(thresholding) to separate brain from non-brain materials. The main drawback of
intensity based methods is their sensitivity to intensity bias caused by magnetic field
inhomogeneities, sequence variations, scanner drift, or random noise [36].

Morphology-basedmethodsoftenconsistof twosteps: (1) initialclassificationof the
brain area in eachMRI slice, and (2) refining the extracted result throughout 2D or 3D
connectivity-based criteria [13, 30]. intensity-based [13] implemented an

104 E.T. Esfahani et al.



intensity-based thresholding to separate high intensity regions (e.g. background, skull
and cavities) from brighter regions such as brain, skin, and facial tissues.
A morphological-based operation was then implemented to identify brain regions.
MarrHildreth [30]usedaMarrHildrethedgedetector incombinationwithconnectivity
criteria toextractanatomicboundaries inanMRimageandthenselect the largestcentral
connected component as the brain region.Themain drawback of thesemethods is their
dependency on large set of parameterswhich are sensitive to small changes in the data.

Finally, deformable models are iterative methods where in each step an active
curve evolves and deforms till it reaches the stopping criteria [33, 36]. Active
contour models are very common methods for image segmentation which were
introduced by Active contour [16]. The idea behind these models is to evolve a
curve to detect sudden changes in gradient intensity (which describes the edges of a
shape) in that image.

In this study, we approach skull stripping problem by implementing an improved
level set method proposed by Li et al. [19]. This method considers an energy
function defined by using image properties and a potential function that forces the
zero level set function to the desired brain edge.

The level set method is an implicit interface tracking technique. Consider a
contour U which expands with speed F in its normal direction till it reaches the
edges of an object in an arbitrary image I in domain X. Lets denote an edge
indicator g function by Eq. 5.1.

gI ¼ 1

1þ jrGr � Ij2
; ð5:1Þ

where, Gσ is Gaussian kernel with a standard deviation σ. The convolution term is
used to smooth the image. Function g has its minimum value at object boundaries
which ensures the stopping of curve evolution as it reaches the boundary of an
object.

To calculate the evolution of the level set function U : X ! R, an energy
function EðUÞ can be defined as Eq. 5.2 [19]

EðUÞ ¼ lRpðUÞþ kLgðUÞþ aAgðUÞ; ð5:2Þ

where l is the coefficient of the regularization term (Rp), k and α are the coefficient
of energy term Lg and Ag defined by Eqs. 5.3–5.5.

RpðUÞ ¼
Z

PðjrUjÞdx; ð5:3Þ

LgðUÞ ¼
Z

gdðUÞjrUjÞdx; ð5:4Þ

AgðUÞ ¼
Z

gHð�UÞdx; ð5:5Þ
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where P(s) is an energy density function represented by Eq. 5.6. H and δ are the
Heaviside and Dirac delta functions, respectively.

PðsÞ ¼
1
2p ð1� cos2psÞ s� 1
1
2 ðs� 1Þ2 s[ 1

�
; s ¼ jrUj; ð5:6Þ

Based on calculus of the variance, the energy function in Eq. 5.2 can be opti-
mized by solving the following Eq. 5.7.

@U
@t

¼ ldivðdpðjrUjÞjrUjÞ þ kdðUÞdiv g
rU
jrUj þ agdðUÞ

� �
; ð5:7Þ

where, dpðsÞ ¼ P0ðsÞ
s . For numerical analyses we considered the 2D level set as a

function of time and position. We used a central difference method to approximate
@U
@x ;

@U
@y and forward difference for @U

@t .

Because adding the distance regularization term, an improved level set method
can be implemented using a central difference scheme which is more accurate and
stable compared to a first order upwind scheme used in conventional formulation.
In our numerical solution, Dx and Dy are set to be equal to 1. Therefore, numerical
formulation of Eq. 5.7 can be written as:

Ukþ 1
i;j ¼ Uk

i;j þDtLðUk
i;jÞ; k ¼ 0; 1; 2. . .; ð5:8Þ

where, LðUk
i;jÞ is the numerical approximation of the right hand side of the Eq. 5.7.

In order to have a stable solution, the choice of time step should satisfy the
Courant-Friedrichs-Lewy (CFL) condition: lDt\0:25.

One of the advantages of this level set formulation, besides eliminating the
re-initialization necessity, is that it allows the use of a general set of initial functions
as the initial level set. As shown in Fig. 5.2, the initialization of level set for skull
stripping consists of three main steps: foreground separation, finding the brain
bounding box and assessment of the 3D connectivity.

Step One:
Foreground separation is achieved by applying two separate thresholds, one on

the quantitative T2 map and the other on the 2nd Echo image of T2WI. Let Ii,j
denote each pixel value of the gray scaled image of the 2nd Echo T2WI and Ti,j is
its associated T2 value from the T2 Map. The foreground extraction can be
described by Eq. 5.9.

I 0i;j ¼ Ii;j Ii;j [ r2I and 36\Ti;j\450
0 other

�
; ð5:9Þ
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where r2I is an adaptive threshold calculated based on Otsu's method [25] and I 0i;j is
the result of foreground separation. Otsos method maps an arbitary image into a
binary one by selecting a threshold value which minimizes the intra-class variance.
The threshold value for the T2 map is calculated based on the T2 belief map
(Table 5.1). The result of foreground separation is shown in Fig. 5.2b.
Step Two:
Removing the foreground from all the MR slices, the cumulative roundness index
(CRI) is calculated for the 3D image. CRI is an estimate of the likelihood of I 0i;j to be
part of the brain tissue. It combines 2D geometrical constrains (roundness) and 3D
connectivity.

Lets assume that after foreground separation, the sth MR slice has M clusters in
which I 0i;j belongs to the mth cluster (Cm,s) with an area, Am,s, and perimeter, Pm,s,
associated with it. CRI can be represented by Eqs. 5.10 and 5.11.

(a)

(d)

3D BrainFinal Brain Area

Bounding box

Source: Single Slice Target: Single Slice

Source: All Slices Target: Single Map

Source: Multiple neighboring Slices Target: Single Slice

Source: Single Map Target: All Slices

T
2M

A
P

2nd
E

ch
o

(b) 

Initial CRI

Update CRI

(c)

Final CRI

Level set initialization

Level set Algorithm

Fig. 5.2 Primary skull stripping components. Level set initialization: a inputs for skull stripping
included both T2-weighted MR images and the quantitative T2 map (T2 values, ms). b Foreground
separations, c Morphological cleaning composed of cumulative roundness index (CRI) and
delineation of the brain bounding box. d 2D results were validated using 3D connectivity testing.
Level set algorithm: here the final brain area is found for each slice and then summed to identify
the brain volume in 3D (see manuscript for additional details)
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Rs
i;j ¼

4pAm;s

P2
m;s

I 0i;j 2 Cm;s

0 other

(
; ð5:10Þ

CRIi;j ¼
X
s

½ðRs
i;jÞ1:5� ; ð5:11Þ

Rs
i;j is the roundness index which is zero for a straight line, and one for a circle.

The brain has almost a round geometry and therefore, the area with a higher
roundness index has a higher probability that it is brain tissue. The power of 1.5 is
used to increase the sensitivity of CRI to the roundness index. Since the clusters in
I 0i;j are calculated based on T2 values, CRI takes both the physical and the geo-
metrical properties of the cluster into account. Hence, the CRI is a good measure for
the probability of the area being in the brain tissue. After calculating CRI, a
recursive adaptive threshold is implemented to select the most probable location of
the brain. The termination criteria, is that the calculated threshold should remain
under 0.9.

The result is a bounding box indicating the most probable location of brain tissue
in each slice (Fig. 5.2c). This bounding box is used for morphological cleaning by
only keeping the largest cluster of pixels in its region. The new calculated images,
I 00i;j, are used to calculate the 3D connectivity and to update the CRI value. The
evolution of CRI can be seen in Fig. 5.2c.
Step Three:
The level set initial template is found by applying two adaptive thresholds (r2CON
and r2CRI) on 3D connectivity and CRI as described by Eq. 5.12.

I 00i;j ¼ I 00i;j CONi;j [ sigma2CON and CRIi;j [ sigma2CRI
0 other

�
; ð5:12Þ

For each brain slice, 3D connectivity (CONi,j) considers the previous three slices
and next the three slices, and is defined as the number of slices in which I 00i;j is not zero.

The net outcome from these three steps is an initial template (zero level set
contour) that is used by the level set algorithm for identification of brain-only
tissues from the surrounding skull and muscle tissues (Fig. 5.2, Final Brain Area).
After this step is completed and verified, the 2nd component of our algorithm,
lesion detection, can be implemented.

5.4.2 Lesion Detection

Our lesion detection method consists of two main parts: seed selection and region
growing. The seed selection part identifies a set of pixels which have a higher
probability of being abnormal brain tissue rather than normal tissue. The growth of
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the lesion uses the initialized seed points to either expand or shrink the seeded
region based on the distribution of seeds and the abnormality value of their
neighboring pixels. The seed selection, and therefore region growing, is undertaken
independently for both detection of blood and edema. The final lesion is the
combination of the two (as shown in Fig. 5.3).

Correct seed point selection is a critical and basic requirement for region
growing. The main criteria for selecting the seed points are the T2 values for the
region (i.e. blood, edema, see Table 5.1) and T2 map asymmetry in brain structure.

In normal brain tissue there is a high degree of bilateral symmetry. This bilateral
symmetry can be altered by underlying pathology, leading to deviations in sym-
metry. The various types of brain tissue (white matter, gray matter, cerebrospinal
fluid etc.) have different T2 values, such that a uniform region likely represents a
single brain tissue type. This is due to the variation in water content of the tissue
types that is mediated by the underlying brain structure. Therefore, a T2 map of
normal brain should have a high degree of bilateral symmetry with respect to its
axis of symmetry. In our algorithm seed point selection is based on the assumption
that TBI lesions are generally not symmetrical in both hemispheres, while the whole
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Axis of symmetry 
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Fig. 5.3 Lesion detection components for naive, 1st TBI 1 day post injury, and 2nd TBI 3 days
post injury examples. a Firstly, the algorithm identifies the axis of symmetry. b Seed point
selections for edema and blood using asymmetry. c Region growing/shrinking based on the
intensity of asymmetry for edema and blood. d Final lesion area(s) of brain tissues that contain
edema and blood. Black line demarcates the brain bound found from skull stripping
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brain is approximately symmetrical. Therefore, the automatic detection of these
initial seed points in the brain images is the first step in detecting brain abnor-
malities (Fig. 5.3).

To find the axis of symmetry, the bounding box of the brain region is calculated
for each slice. The averaged center point of all bounding boxes is selected as the
point of origin. Finally, the projection of the brain along the vertical axis of
the image is found. The local minimum within 20 pixels of the center is selected as
the second point where the axis of symmetry is passed through (Fig. 5.3a). A line of
symmetry is drawn using these two points.

The fact that TBI is typically associated with blood and edema, a discrete label,
Li,j, is used to separate pixels with T2 values (Table 5.1) close to blood (T2BL) and
edema (T2ED) from that of the normal appearing brain tissue (NABT) using the
criteria shown in Eq. 5.13.

Li;j ¼
Blood (BL) Ti;j\T2UBL
Edema (ED) 0:9T2LED\Ti;j\1:1T2UED

NABT Other

8<
: ; ð5:13Þ

Ti,j and T 0
i;j denote the T2 value of (i, j)th pixel and of its symmetric pixel

respectively. Asymmetrical values are then equal to the absolute value of their
difference, di;j ¼ jTi;j � T 0

i;jj. The final sets of seed points for blood (SBL) and edema
(SED) are selected based on the following criteria (Eqs. 5.14 and 5.15):

SBL ¼ Ii;jjIi;j 2 BL; di;j\ð1:1 � T2UBL � T2LSKÞ; ð5:14Þ

SED ¼ Ii;jjIi;j 2 ED; ð1:1 � T2UCSF � T2LEDÞ\di;j\ð1:1 � T2UED � T2LSKÞ; ð5:15Þ

where, in Eqs. 5.13–5.15, T2UED represent the upper limit of T2 value (with 95 %
confidence) of edema. The selected blood and edema seed points are shown in
Fig. 5.3c. In this figure, seeds are shown in gray scale, in which the brightness of
the seeds corresponds to a higher difference in the T2 values.

Upon seed selection, a diffusion based region growing is then implemented to
group the similar pixels in the region. The main criterion used in the region growing
is region homogeneity. Pixels, or groups of pixels, are included in a region only if
their characteristics are sufficiently similar to the characteristics of the pixels already
in the region (seeds).

Similar to seed selection, the characteristics of interest in our approach is the T2
value of the pixel and the abnormality in brain symmetry structure which results in
a significant difference between the T2 value of a pixel and the mirrored pixel
across the axis of symmetry. It should be noted that in any diffusion problem,
depending on the local statistics of a characteristics of interest, the diffusion tech-
nique may act as region shrinking. In this case, the selected seeds are essentially the
captured noise in T2 values and are not consistent with the neighboring pixels.
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The region growing algorithm allows the asymmetric value to diffuse across the
neighboring pixels. Wherever, there are neighboring seeds with a higher T2 value
difference, δ, (white seeds in Fig. 5.3c), the concentration of abnormal T2 values
will be relatively higher. However, if the difference in the T2 value of the seeds is
relatively small (dark points in Fig. 5.3c), or there are smaller seed points around
them, the overall concentration of lesion values will be smaller than threshold (see
below). This in turn will result in growing or shrinking of the abnormal tissue
region around the seed points.

To implement two-dimensional diffusion, an implicit method is used (Eq. 5.16),

dnþ 1
i;j ¼ ð1� 4DtÞdni;j þDtðdni;jþ 1 þ dni;j�1 þ dniþ 1;jþ 1 þ dniþ 1;jÞ; ð5:16Þ

where dnþ 1
i;j is the asymmetric value evaluated at (n + 1)th iteration and Δt is the

time step and is selected to be 0.2 s (Eq. 5.16 is numerically stable for Dt\0:25).
The diffusion was terminated based on the number of pixels set to diffuse. This

region was set as a circle with a radius of 25 pixels. Since the radial diffusion rate
for Eq. 5.16 is approximately 5 pixels/s, the diffusion time is set to be 5 s.

The final lesion area is detected by comparing the final asymmetric value of
blood and edema with their corresponding threshold (15 for edema and 0.6 for
blood) (Fig. 5.3d). Figure 5.4 illustrates the lesion growing at different iterations

5.4.3 Validation of Our Lesion Detection Method

Our T2 symmetry method was tested on three TBI, two sham, and two naive data
sets. Figure 5.4 compares the asymmetry cloud and detected lesion in a represen-
tative TBI data set. Our method is robust over the temporal course of the imaging
data, in these datasets, 14 days post TBI (Fig. 5.5). Visual comparisons between the
original data (left panels, Fig. 5.5) reveal excellent concordance with the automated
identification of injured tissues data (right panels, Fig. 5.5). It can be readily
appreciated that lesion area is correctly classified in the majority of cases prior to
checking the 3D connectivity of lesion area. The lesion area determined using
manual detection was compared to that of the T2 symmetry-based method in
Fig. 5.5.

Validation metrics, accuracy, similarity, sensitivity, and specificity were used to
determine the performance between our T2 symmetry-based algorithm and the
manual method. Similarity measures the similarities between the lesion location and
area for both methods. Sensitivity measures the degree to which the lesions overlap
between the two methods. Specificity measures the overlap in the normal brain
tissue between the two methods. The sensitivity determines the positive detection
rate, while the specificity determines the negative detection rate.
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These performance indices are defined as [29, 31]:

Similarity ¼ 2TP
2TPþ FPþ FN

; ð5:17Þ

Sensitivity ¼ TP
TPþ FN

; ð5:18Þ

Specificity ¼ TN
FPþ FN

; ð5:19Þ
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Accuracy ¼ TNþTP
TNþTPþ FPþ FN

; ð5:20Þ

where TP and TN are true positive and true negative, respectively. FP and FN stand
for false positive and false negative, respectively. The similarity index is the same as
the Dice Coefficient [6]. It measures location and volume similarities between
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Fig. 5.5 Comparison of lesion visualization. Temporal (1, 3 and 14 days post injury) of repetitive
TBI and sham animals where compared to naive animals in which no lesion was identified. Both
T2 maps and T2-weighted image (T2WI) illustrate the raw data with the results of our automated
algorithm shown in the two right panels. As can be seen, the algorithm allows accurate
demarcation of evolving blood and edema in brain tissues that were validated against the
gold-standard manual lesion detection
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lesions derived from both methods. Note that the similarity index actually measures
the accuracy of automatic detection in comparison to the gold standard, in terms of
location, size, and overlap of the detected lesion. All the measured indexes range
between [0–1] and higher values indicate better performance of the algorithm. The
similarity and sensitivity indexes for TBI were 0.49 ± 0.32 and 0.52 ± 0.28,
respectively. The similarity, sensitivity, and specificity indices were compared to the
results reported by HRS algorithm for similar brain injury cases [11] (Table 5.2).

The lesion T2 values are extremely different for the 1 day and 3 day post injury
images. The 1 day post injury T2 values reflect predominately edema that develops
immediately following TBI (within a day) [3, 37]. The observed edema T2 values
are similar to those for CSF. After several days, the edema slowly resolves and
blood within tissues becomes visible. This is observed in the 3 day post injury
images. We have recently documented the occurrence of hemorrhagic progression
in a similar mild TBI model [7]. Interestingly, extravascular blood within the brain
parenchyma undergoes degradation into other components that may alter the T2WI
and T2 Map signatures [3]. Blood from the initial TBI and any hemorrhage that
occurs is thus observed in the 14 day-post injury images. The T2 values of blood
are very low (due to iron composition and its dephrasing of the magnetic field)
compared to the surrounding T2 values of normal appearing grey matter.

In summary, the use of our T2 symmetry method was found to accurately
identify TBI lesions in all TBI animals, while no lesion was detected in the naive
animals. Furthermore, the T2 symmetry method is able to detect a lesion area
similar to that of the manual detection method. This computational algorithm
operates in real-time which can provide immediate identification of TBI lesions to
clinicians using only T2-weighted MRI.

5.5 Conclusion

Herein, a computationally inexpensive and yet effective method for automatic,
real-time TBI lesion detection in T2 weighted images was developed. Our algo-
rithm uses the T2 values of edema and blood, as well symmetrical structures of the
brain, to detect all possible abnormalities. This method was evaluated in a series of
TBI, sham, and naive subjects. Comparison of the results with manual detection

Table 5.2 Similarity, sensitivity, specificity, and accuracy indices

Similarity Sensitivity Specificity Accuracy

1 day post-TBI 0.60 ± 0.18 0.56 ± 0.23 0.99 ± 0.00 0.99 ± 0.01

3 day post-TBI 0.40 ± 0.32 0.32 ± 0.30 0.99 ± 0.00 0.99 ± 0.00

14 day post-TBI 0.43 ± 0.22 0.50 ± 0.32 0.99 ± 0.00 0.99 ± 0.00

Total 0.48 ± 0.24 0.46 ± 0.28 0.99 ± 0.00 0.99 ± 0.00

HRS 0.40 ± 0.25 0.47 ± 0.12 0.87 ± 0.02 NA

The automatic algorithm and HRS are compared

114 E.T. Esfahani et al.



method shows a high level of similarity, sensitivity, and specificity between the two
methods. Furthermore, no false positives were observed. Although, the proposed
lesion detection algorithm is evaluated on animal MRI data, it can also be used for
lesion detection in human subjects.
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Chapter 6
Visualizing Cortical Tissue Optical
Changes During Seizure Activity
with Optical Coherence Tomography

M.M. Eberle, C.L. Rodriguez, J.I. Szu, Y. Wang, M.S. Hsu,
D.K. Binder and B.H. Park

Abstract Optical coherence tomography (OCT) is a label-free, high resolution,
minimally invasive imaging tool, which can produce millimeter depth-resolved
cross-sectional images. We identified changes in the backscattered intensity of
infrared light, which occurred during the development of induced seizures in vivo
in mice. In a large region of interest, we observed significant decreases in the OCT
intensity from cerebral cortex tissue preceding and during generalized tonic-clonic
seizures induced with pentylenetetrazol (PTZ). We then leveraged the full spa-
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tiotemporal resolution of OCT by studying the temporal evolution of localized
changes in backscattered intensity in three dimensions and analyzed the seizure
propagation in time-resolved 3D functional images. This allowed for a better
understanding and visualization of this biological phenomenon.

6.1 Introduction

Imaging techniques that are high resolution and noninvasive have been vital in
understanding and localizing the structure and function of the brain in vivo.
However, there is a trade-off between resolution and imaging depth (Fig. 6.1).
Functional MRI (fMRI) provide millimeter resolution with centimeter imaging
depth and high-frequency ultrasound can obtain a higher resolution (micrometers),
but with higher frequencies limiting the imaging depth to millimeters (Fig. 6.1)
[1–3]. Confocal microscopy can achieve submicron resolution but its use in in vivo
imaging is restricted due to the limited imaging depth [4].

Techniques are being developed to achieve functional imaging in order to capture
real-time biological dynamics in vivo. Positron emission tomography (PET) and
genetically encoded calcium indicators (GECIs) are two such techniques [2, 5–7].
PET can acquire millimeter resolution with functionally labeled substrates but lacks
structural image information if not paired with another imaging modality such as
MRI [2]. Furthermore, the labeling agents are positron-emitting radionuclides that
can have toxic side effects. GECIs can achieve single-cell resolution with

Fig. 6.1 Comparison of resolution and imaging depth for functional magnetic resonance imaging
(fMRI), ultrasound, OCT, and confocal microscopy
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fluorescent, confocal, or two-photon imaging and can functionally control the
activation and deactivation of select groups of cells. However, degradation due to
optical scattering limits the imaging depth to a few hundred micrometers and
genetically engineered proteins are required altering the native biology [5–7].

Then there is a need for a label-free method for detecting neural activity. Optical
coherence tomography (OCT) is a label-free, high resolution, minimally invasive
imaging tool, which can produce depth-resolved, cross-sectional, three-Dimensional
(3D) volumes, filling the gap between ultrasound and microscopy techniques
(Fig. 6.1) [8–11]. These combined traits make OCT an ideal imaging technique for
functional localization of brain activity in the cerebral cortex in vivo. This chapter
describes the utilization of OCT and the development of visualization tools for
studying, with high resolution, video 3D image data of the spatiotemporal changes in
backscattered intensity during the progression of induced seizures.

6.2 Optical Coherence Tomography

6.2.1 Basic Principles

OCT is an optical analog of ultrasound imaging, in which the magnitude and delay
of backscattered waves reflected from within a sample are used to generate images.
The fact that light travels much faster than sound makes direct differentiation of
light “echoes” from different depths within a biological tissue impossible. This
necessitates the use of low-coherence interferometry to detect the intensity and
optical path delay in OCT [11]. Interferometry creates interference patterns between
light that is backscattered from a sample and light reflected from a known reference
path length. In a Michelson interferometer, light is split between a reference path
Er(t) and a sample path Es(t) before being reflected, interfered, and sent to a detector
arm (Fig. 6.2). The intensity (Io) at the detector as a function of DL, the path length
difference between the sample and reference arms, [11] is given by

Io � Erj j2 þ Esj j2 þ 2ErEs cos 2kDLð Þ

Fig. 6.2 Michelson
interferometer with a beam
splitter
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In OCT, gating in the axial direction is achieved by the use of a low-coherence,
broad-bandwidth light source. In time domain-OCT (TD-OCT), the reference arm is
scanned to obtain a depth profile from the sample, which is generated by demod-
ulation of the resulting time-resolved interferogram. By collecting sequential depth
profiles, cross-sectional imaging can be performed. Due to limited sensitivity and
physical limitations of the mirror scanning speed, depth profile acquisition with this
methodology is limited to several thousand hertz [12], making video-rate image
acquisition difficult.

6.2.2 Spectral Domain Optical Coherence Tomography

Spectral domain-OCT (SD-OCT) uses a broadband, continuous wave source and
the reference and sample arms are fixed at the same path length. The interference
pattern is detected in a spectrally resolved manner. Fourier transformation of the
interferogram yields a depth-resolved intensity profile. This has a number of sig-
nificant advantages over TD-OCT detection: an order of magnitude improvement in
detection sensitivity that can be used to increase acquisition speed, simultaneous
acquisition of information at all depths, and improved system stability resulting
from a stationary reference arm configuration [13–16]. This increase in acquisition
speed is of particular importance to video bioinformatics applications as it enables
video-rate visualization of cross-sectional tissue behavior.

An SD-OCT system schematic is illustrated in Fig. 6.3 with a light source com-
posed of two superluminescent diodes (SLDs) centered at 1298 nm, the longer
wavelength allowing for deeper imaging depth due to a local minimum in the water
absorption spectrum. This provides an imaging depth of 2 mm with high spatial
resolution [17]. The axial resolution is dependent on the coherence length of the
source and the lateral resolution is dependent on the incident beam width; thus a
source bandwidth of 120 nm results in a calculated axial and lateral resolution of 8
and 20 μm, respectively [18]. From the source, the light is split with an 80/20 fiber
coupler between the sample and reference arm. The reflected light from both arms is
then recombined and now the interfered light is sent to a spectrometer, producing
spectral lines, which are incident on a 1024 pixel line scan camera (lsc, Goodrich SUI
SU-LDH linear digital high speed InGaAs camera). An axial scan line (A-line) is one
spectral measurement and cross-sectional images are composed of multiple A-lines,
which are acquired by scanning the incident beam transversely across the tissue using
galvanometers. 3D volume data sets are acquired by raster scanning the incident
beam creating 3D-OCT “optical biopsy” data of tissue microstructure (Fig. 6.3a)
[11]. OCT cross-sectional images of cortical tissue are displayed by plotting the
intensities on a logarithmic inverse grayscale and the cerebral cortex and the corpus
callosum are visible (Fig. 6.3b). After raster scanning a 3D volume rendering can be
made of 200 consecutive cross-sectional images (Fig. 6.3c).
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6.2.3 Basic Image Preprocessing

In SD-OCT, each A-line, containing the structural information, is calculated from
the interferogram measured by the spectrometer and the wavenumbers (k) are not
evenly distributed across the pixels, which is necessary in order to perform a
Fourier transform that relates physical distance (z) with wavenumber (k = 2π/λ) [19,
20]. An accurate A-line requires preprocessing to obtain data that is evenly spaced
in k-space. Proper wavelength assignment can be achieved by introducing a perfect
sinusoidal modulation as a function of k by passing light through a coverslip in the
source arm. This spectral modulation is important in assigning the correct wave-
length to each pixel of the lsc. The wavelength mapping is determined by mini-
mizing the nonlinearity of the phase of the perfect sinusoid through an iterative
process [21]. The initial wavelength array W is used to interpolate the spectral
interference fringes to equally spaced k values. The phase of the zero-padded,
k-space interpolated spectrum is determined and fitted with a third-order polyno-
mial. The nonlinear part σ(k) of the polynomial fit is used for correcting the
wavelengths W. Thus a new k-array, k′, is calculated from the previous k = 2π/W
array and σ(k), using the equation:

Fig. 6.3 a SD-OCT System Diagram: superluminecent diodes (SLDs), line scan camera (lsc),
mirror (m), galvanometers (gm), grating (gr). Image of a mouse skull with raster scanning pattern
for volume data acquisition represented by solid and dashed arrows. b dB grayscale OCT image:
thinned skull (s), cerebral cortex (ctx), corpus callosum (cc), scale bar: 0.5 mm. c 3D 4 × 2 × 2 mm
volume rendering of 200 grayscale images
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k0 ¼ kþ r kð Þ=zpeak

where zpeak is given by

zpeak ¼ 2pPI=ðkmax � kminÞ

PI, or peak index, is the location of the coherence peak and kmax and kmin are the
extremes of k. This correction, applied iteratively to the original spectrum, results in
the wavelength array

W 0 ¼ 2p=k0

The wavelength array W′ (Fig. 6.4b) can be used to map the spectrum (Fig. 6.4a)
to the correct k values for each A-line (Fig. 6.4c) [21]. After interpolation, the fast
Fourier transform (FFT) is taken (Fig. 6.4d).

Also, in SD-OCT, the sensitivity of the system decreases as a function of depth
due to the finite resolution of the spectrometer and because of this, a
depth-correction function is applied, during image processing by multiplying each
A-line by the calculated correction curve [22].

Fig. 6.4 A-line preprocessing schematic. a Fringe magnitude with respect to the pixel array for
one A-line. b Wavelength array W ′with respect to wavenumber used to correct wavenumber
assignment in each pixel in (a). IP: Interpolation step of A with respect to B. c Resulting dB
intensity A-line with depth (mirror image removed). d Resulting fringe magnitude plot post-IP
with correct wavenumber assignment. FFT: Fast Fourier Transform
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6.3 Utilizing OCT to Identify Cortical Optical Changes
for In Vivo Seizure Progression Studies

Previous studies used optical techniques to study changes in backscattered light
associated with changes in the electrical properties of cortical tissue [23–26].
Previous research identified that a decrease in intensity of backscattered light is
observed during tissue activation, which is due to changes in the cortical tissue
composition, specifically hemodynamic responses and glial cell swelling associated
with the reduction in the extracellular space [23–27]. OCT has shown to be a
promising method for in vivo imaging in highly scattering tissues such as the
cerebral cortex and several groups have demonstrated that changes in tissue com-
position can be detected optically during stimulation [28–32]. OCT was used to
visualize these changes in average backscattered intensity during seizure progres-
sion as well as visualize and further localize, in three dimensions (3D), regions of
tissue exhibiting changes in intensity through functional OCT (fOCT) data pro-
cessing of video data.

6.3.1 Detection of Average Changes in Backscattered
Intensity

Utilizing the SD-OCT system described previously, it has been demonstrated that
by inducing a generalized seizure, changes in the backscattered intensity from
cortical tissue during seizure progression in vivo can be detected and quantified
[33].

6.3.1.1 Experimental Protocol

6–8 week old, CD1 female mice (25–35 g) (n = 4) were initially anesthetized
intraperitoneally (i.p.) with a combination of ketamine and xylazine (80 mg/kg
ketamine, 10 mg/kg xylazine). Baseline Imaging was performed for 10 min and
then a saline injection was administered to ensure an injection alone does not cause
a change in backscattered intensity. After 25 min, a generalized tonic-clonic seizure
was induced with pentylenetetrazol (PTZ) in vivo. Imaging was performed through
a thinned skull cortical window with 6 mW of incident power obtaining a 2 mm
imaging depth [34]. Scanning was performed 1.5 mm lateral from midline of the
right hemisphere centered over the corpus callosum at a 15 kHz A-line rate with
each cross-sectional image consisting of 2048 A-lines spanning a 4 mm imaging
plane. Images were continuously acquired through the onset of a full seizure where
the animal was sacrificed with an anesthesia overdose. All experimental procedures
were approved by the University of California, Riverside Institutional Animal Care
and Use Committee [33].
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6.3.1.2 Analysis of the Average Change in Intensity

To analyze the changes in backscattered intensity resulting from changes in tissue
composition during seizure progression, the average intensity (A) from a region of
interest (ROI) was calculated over a designated A-line range (ao:an) and depth
range (zo:zn) from intensity matrix (I) and included only pixels with signal above
10 dB to exclude noise.

A ¼
Pn

t¼0 I ao : an; zo : znð Þ
n

N ¼ A=b

An image was analyzed every 10 s and the average intensity, which was nor-
malized to an average 10 min baseline matrix (b), was plotted versus time as well as
its two standard deviation (2SD) interval, which was calculated from the mean of
the baseline (Fig. 6.5).

There was no significant deviation in intensity out of the interval during the
controls. However, once the PTZ injection was administered there was a significant
20 % decrease in intensity from baseline that is persistent through full seizure. From
this study, it was observed that a decrease in intensity during seizure progression
can be detected with OCT [33]. By leveraging the high spatiotemporal resolution of
OCT, it is possible to visualize the localized intensity changes during seizure
progression through the cerebral cortex in vivo with increased spatial specificity.

6.3.2 Spatial Localization of Backscattered Intensity
Changes

To study the localized changes in backscattered intensity, SD-OCT volumetric data
acquisition was performed. The previously outlined in vivo animal model was used
and data acquisition was modified with raster scanning in the X and Y direction for

Fig. 6.5 Normalized average intensity (N) from an ROI plotted over time. The three arrows from
left to right represent saline injection, PTZ injection, and initiation of full seizure, respectively. The
shaded region is the 2SD of the 10 min baseline
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volume collection with X representing the image length of 2048 A-lines spanning
4 mm and Y representing the 200 images in the volume spanning 2 mm (Fig. 6.3c).
Volumes were acquired every 2 min and 16 baseline volumes were collected with
PTZ injection occurring at 30 min. Volumes were acquired through the onset of full
seizure and until the animal expired, 66 min after the start of the experiment. To
spatially localize the changes in backscattered intensity during seizure progression,
time-resolved, fOCT volumes were developed along with two visualization
techniques.

6.3.3 Development of fOCT Volumes and Visualization
Techniques

6.3.3.1 Volume Registration

Accurate volume registration was crucial in developing the fOCT volumes because,
unlike the previous technique where large ROIs were analyzed, here small localized
changes in intensity are being considered and it is extremely important that the
same localized areas are being compared from one volume to the next. The first step
used to register the volumes was volumetric cross-correlation. The 3D volume
matrices were all registered to the first acquired volume through the following
algorithm: Initially, the correlation matrices were calculated for each preceding
volume matrix G with the initial volume matrix F (rC) and with its self (rFrG) using
the Fourier transform (F ) method for matrix F and the complex conjugate matrix �G.

rc ¼ F�1 F Fð Þ � F �Gð Þ½ �

Next, the matrix location of the maximum of the correlation matrix rC was
found, the volumes were shifted in all three dimensions with respect to the location
of the maximum, and the correlation coefficient was calculated for each
cross-correlation.

R ¼ rC=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rF � rGp

Once the volumes were correlated in all three dimensions, a surface correction
was applied to correct for surface tilt during the experiment. The skull surface was
mapped using a threshold algorithm where the maximum intensity point was
subtracted from the minimum intensity point in each A-line and then was multiplied
by a defined threshold value. The calculated value was then subtracted from each
A-line and the location of the value that was greater than zero became the surface
location. Once the volume surface was identified, it was subtracted from an average
baseline surface and each A-line was shifted with respect to the difference from the
average baseline ensuring the surface remained at its initial location and that the
pixels in each A-line represented the same area of tissue throughout the experiment.
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Once the series of volumes were registered, a median filter of 16 × 64 pixels was
applied maintaining the correct aspect ratio as well as the structural information.
They were then analyzed for functional intensity changes.

6.3.3.2 Calculation of Spatially Resolved fOCT Volumes

In order to determine the changes in backscattered intensity during seizure pro-
gression from a pre-seizure state for each pixel, an average baseline volume matrix
(B) was calculated (average of 16 volumes). Pixel intensity ratio matrices (R) were
then calculated by dividing each volume matrix (F) by the average baseline volume.

R ¼ ðlog F=Bð ÞÞ2

The square of the logarithm of the fractional changes were then computed in
order to better visualize all changes in intensity from baseline, with the sign of the
original logarithm reapplied after squaring. To visualize the changes from baseline
intensity, color scales were assigned to the ratio values in each pixel. Blue repre-
sented ratios below baseline and red represented ratios above baseline. The color
was scaled from black to full color saturation at a predetermined threshold ratio
value representing a greater than ±0.5 or 50 % change from baseline (Fig. 6.6).
Visualization techniques were then developed to assist in analyzing the changes in
intensity in each pixel during seizure progression in time as well as throughout the
3D sampled volume of the cerebral cortex.

6.3.3.3 Maximum Intensity Projection (MIP) of fOCT Volumes

Maximum intensity projection (MIP) images of the functional map volumes is a
technique developed to visualize the overall intensity changes and their spatial
specificity with regard to the X and Y orientation of the cerebral cortex. The MIPs

Fig. 6.6 SD-OCT grayscale intensity volume (4 × 2 × 2 mm) of mouse cortical tissue (left) and its
fOCT volume (48 min) (right). Color bar represents ratio values ± 50 % away from a 0 % change
at baseline
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were created by finding the largest change from baseline in each A-line across the
entire volume and assigning a pixel the corresponding color scale value located at
that A-line position in a 2048 × 200 pixel image. This collapses the z-axis of a
512 × 2048 × 200 pixel volume into a 2D en face image representing the largest
change from baseline at each pixel (Fig. 6.7). However, this technique does limit
the full spatial resolution provided by SD-OCT volume acquisition.

6.3.3.4 3D Visualization of fOCT Volumes

To get a full 3D visualization of the changes in intensity through the cerebral cortex
during seizure progression, Amira, a 3D visualization tool from FEI Visualization
Sciences Group, was used for high resolution volume rendering of the calculated

Fig. 6.7 MIP frames of cortical volumes. Numbers are time (min) of volume. 0–32: Control, 4–
56: Seizure activity, 64: post-overdose. Color is scaled to the color bar in Fig. 6.6 and represents
ratio values ±50 % away from a 0 % change at baseline. Scale bar 1 mm. See Media 1: https://
www.youtube.com/watch?v=3ylu3oHZEC4
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functional volumes. After the first five baseline volumes, there is a large decrease in
backscattered intensity, which is apparent due to the accumulation of blue pixels
(Figs. 6.7 and 6.8). The global nature of the decrease verifies the generalized nature
of PTZ seizure progression.

Both visualization techniques were developed to display the calculated ratio
fOCT volumes in a way that preserved spatial specificity and accurately conveyed
the intensity trends that occur during seizure progression. In both techniques, there
was a consensus that a large decreasing trend in the backscattered intensity occurred
during seizure progression throughout the cortical tissue. This coincided well with
the large decrease found in the average ROI method [33]. Although the PTZ animal
model displays a global trend, these results are a preliminary demonstration that
more localized detection and visualization of intensity change is possible in other
less severe pathologies of neural activity.

Fig. 6.8 Frames of cortical tissue volumes with functional maps applied. Volumes are
4 × 2 × 2 mm Numbers are time (min) of volume. 0–32: Control, 40–56: Seizure activity, 64:
post-overdose. Color bar percent change from baseline (0 %) saturating at ±50 %. Scale bar 1 mm.
See Media 2: https://www.youtube.com/watch?v=sfNhuK9JSxA
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6.4 Conclusion

This chapter demonstrated the capability of OCT to identify intensity changes
during seizure progression in vivo with spatial specificity. Functional processing
was applied to the time-resolved, volumetric data enabling the development of
visualization techniques in order to accurately convey the intensity trends occurring
during seizure progression in three dimensions in time. Large decreases in intensity
were found in all of the analysis methods presented and the visualization techniques
displayed the global nature of PTZ onset through large decreases in intensity
throughout the imaged volume of cortical tissue. Video analysis of these 3D data
sets allows for a far better understanding and visualization of these biological
phenomena would be possible with isolated volumes.

SD-OCT is a powerful imaging technology that can achieve micrometer reso-
lution with millimeter imaging depth, producing depth-resolved, volumetric image
data. It is a versatile tool with many additional processing techniques such as
Doppler OCT [35], which allow for simultaneous imaging of tissue structure and
blood flow, which can be incorporated with no system modifications. Due to its
many advantages and continued advancements, OCT is dynamic tool with many
promising applications in furthering fundamental research and clinical medicine.
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Chapter 7
Bio-Inspired Segmentation and Detection
Methods for Human Embryonic Stem
Cells

Benjamin X. Guan, Bir Bhanu, Prue Talbot and Nikki Jo-Hao Weng

Abstract This paper is a review on the bio-inspired human embryonic stem cell
(hESC) segmentation and detection methods. Five different morphological types of
hESC have been identified: (1) unattached; (2) substrate-attached; (3) dynamically
blebbing; (4) apoptotically blebbing; and (5) apoptotic. Each type has distin-
guishing image properties. Within each type, cells are also different in size and
shape. Three automatic approaches for hESC region segmentation and one method
for unattached stem cell detection are introduced to assist biologists in analysis of
hESC cell health and for application in drug testing and toxicological studies.

7.1 Introduction

In recent years, human embryonic stem cells (hESCs) have been used to assay
toxicity of environmental chemicals [1–5]. The hESCs are one of the best models
currently available for evaluating the effects of chemicals and drugs on human
prenatal development [6]. The hESCs also have the potential to be a valuable model
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for testing drugs before clinical trial. Equally important, the hESCs can potentially
be used to treat cancer and degenerative diseases such as Parkinson’s disease,
Huntington’s disease, and type 1 diabetes mellitus [6, 7].

Figure 7.1 shows five different morphological types of hESCs: (1) unattached
single stem cell; (2) substrate-attached single stem cell; (3) dynamically blebbing
stem cell; (4) apoptotically blebbing stem cell; and (5) apoptotic stem cell. As
shown in Fig. 7.1, the inconsistency in intensities and shapes make the segmen-
tation difficult when more than two types of cells are present in a field. Therefore,
we have used bio-inspired segmentation and detection method to automate the
analysis of hESCs.

Despite the enormous potential benefits of the hESC model, large-scale analysis
of hESC experiments presents a challenge. Figure 7.2 shows an example of stem
cell images at different magnifications. The analysis of hESCs is either
semi-automated or manual [8]. CL-Quant software (DRVision Technologies) is an
example of current state-of-the-art software for cell analysis, and it offers a
semi-automatic approach. It requires users to develop protocols which outline or
mask the positive and negative samples of stem cells using a soft matching pro-
cedure [9]. It usually takes an expert biologist 5–6 min of protocol making. The

Fig. 7.1 a Unattached single stem cell; b substrate-attached single stem cell; c dynamically
blebbing stem cell; d apoptotically blebbing stem cell; e apoptotic stem cell
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protocols are generally more accurate in the sample videos where the positive and
negative samples are derived [8]. The segmentation accuracy of the software is also
depended on the number of positive and negative samples. Although the software
requires users to make protocols, it is a better alternative than analyzing the stem
cells manually. Since there is no existing software for bleb detection and bleb
counts, biologists often analyze frame by frame to determine the number of blebs in
a video. Therefore, automatic segmentation and detection methods are essential for
the future development of fast quantifiable analysis of hESCs.

Fig. 7.2 a Image of hESCs
taken with 10× objective;
b Image of hESCs taken with
20× objective; c Image of
hESCs taken with 40×
objective
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In this paper, we will review bio-inspired automatic hESC region segmentation
and unattached stem cell detection methods. Segmentation is a gateway to auto-
mated analysis of hESCs in biological assays. For example, the segmented results
from those methods make automatic unattached single stem cell detection possible
[10]. The detection of unattached stem cells is important in determining whether the
cell is reactive to test chemicals. If the percentage of unattached stem cells is higher
than attached stem cells, then the test chemical inhibited attachment and probably
killed the cells that are unattached.

7.2 Related Work

There are two previous works for cell region detection in phase contrast images [11,
12]. Ambriz-Colin et al. [11] discuss two segmentation methods in this paper:
(1) segmentation by pixels intensity variance (PIV); and (2) segmentation by gray
level morphological gradient (GLMG). The PIV method performs pixel classifi-
cation on the normalized image. It recognizes the probable cell regions and labels
the rest as the background in the normalized image. The GLMG method detects the
cell regions using morphological gradient that is calculated from the dilation and
erosion operations, and by a threshold that separates the pixels belonging to a cell
and to the background. Li et al. [12] use a histogram-based Bayesian classifier
(HBBC) for segmentation. Li et al. [12] discuss a combined use of morphological
rolling-ball filtering and a Bayesian classifier that is based on the estimated cell and
background gray scale histograms to classify the image pixels into either the cell
regions or the background.

In this paper, we also touch upon segmentation methods such as k-means and
mixture of Gaussians by expectation–maximization (EM) algorithm. These
approaches are widely used techniques in image segmentation. The k-means seg-
mentation by Tatiraju et al. [13] considers each pixel intensity value as an indi-
vidual observation. Each observation is assigned to a cluster with the mean intensity
value nearest to the observation [14, 15]. The intensity distribution of its clusters is
not considered in the partition process. However, the mixture of Gaussians seg-
mentation method by the EM (MGEM) algorithm proposed by Farnoosh et al. [16]
uses intensity distribution models for segmentation. The MGEM method uses
multiple Gaussians to represent intensity distribution of an image [7, 13, 17, 18].
However, it does not take into account the neighborhood information. As the result,
segmented regions obtained by these algorithms lack connectivity with pixels
within their neighborhoods. Their lack of connectivity with pixels within their
neighborhoods is due to the following challenges:

(1) incomplete halo around the cell body.
(2) intensity similarity in cell body and substrate.
(3) intensity sparsity in cell regions.
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Our proposed method is intended to solve these problems using spatial infor-
mation of the image data. We evolve the cell regions based on the spatial infor-
mation until the optimal optimization metric value is obtained. The proposed
methods are developed with three criteria: (1) robustness; (2) speed; and
(3) accuracy.

The existing papers often detect cells in phase contrast images in a simple
environment [19, 20]. Eom et al. [19] discuss two methods for cell detection:
detection by circular Hough transform (CHT) and detection by correlation.
However, those methods do not work on the complex environment where the
occurrence of dynamic blebbing and existence of overlapping cells are prevalent.
The CHT is sensitive to the shape variations, and the correlation method in [20]
does not work on cell clusters. Therefore, a detection method based on the features
derived from inner cell region is developed to solve the aforementioned problem in
unattached single stem cells detection.

7.3 Technical Approach

The segmentation approaches reviewed in this paper range from simple to complex
and efficient to inefficient. Even though spatial information is used in all three
segmentation methods, the derivation of spatial information in each method is
different. In addition, we also provide a review on the unattached single stem cell
detection method. The segmentation and detection methods are discussed in the
following order.

1. Gradient magnitude distribution-based approach
2. Entropy-based k-means approach
3. Median filter-induced texture-based approach
4. Unattached single stem cell detection

7.3.1 Gradient Magnitude Distribution-Based Approach

The approach in [21] iteratively optimizes a metric that is based on foreground
(F) and background (B) intensity statistics. The foreground/hESC region, F, is a
high intensity variation region while the background/substrate region, B, is a low
intensity variation region. Therefore, we can use the magnitude of gradients of the
image to segment out the cell region from the substrate region. Equations (7.1) and
(7.2) show the calculation of spatial information.
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G ¼ dI
dx

� �2

þ dI
dy

� �2

ð7:1Þ

Img ¼ loge
�1þ e1ð Þ � G

maxðGÞ þ 1
� �

� 255 ð7:2Þ

where G is the squared gradient magnitude of image, I. dIdx and
dI
dy are gradients of

image, I, in the x and y directions. Img is the spatial information and the log
transform further emphasizes the difference between cell and substrate region.
Equation (7.2) normalizes G as well as transforms the image into a bimodal image.
Therefore, a single threshold can segment the transformed image into cell region
and substrate region.

The proposed approach uses a mean filter on Img iteratively to evolve the cell
regions. It is able to group the interior cell region pixels together based on the local
information. The method updates Img and evolves the cell region until optimization
metric in [21] is maximized. The window size of the mean filter contributes to how
fast the cell region is evolved. The transformed image is iteratively thresholded by
Otsu’s algorithm. The parameters for the optimization metric are also updated
iteratively.

7.3.2 Entropy-Based K-Means Approach

The approach mentioned in [22] utilizes the k-mean algorithm with weighted
entropy. The cell regions generally have higher entropy values than the substrate
regions due to their biological properties. However, not all cell regions have high
entropy values. Therefore, the approach exploits intensity feature to solve the fol-
lowing problems: (1) intensity uniformity in some stem cell bodies; and (2) inten-
sity homogeneity in stem cell halos. Since high entropy values happen in areas with
high varying intensities, the aforementioned properties can greatly affect the cell
region detection. Therefore, the method in [22] proposed a weighted entropy for-
mulation. The approach uses the fact that stem cell image has an intensity histogram
similar to a Gaussian distribution. Moreover, the stem cell consists of two essential
parts: the cell body and the halo [6]. The cell bodies and halos’ intensity values are
located at the left and right end of the histogram distribution, respectively. As the
result, regions with low or high intensity values have a higher weight. The back-
ground distribution is represented by the following equation:

Dbg �N256ðl; r2Þ ð7:3Þ

where Dbg is a Gaussian distribution of background with mean, l, and variance, r2,
and Dbg 2 R256. The foreground distribution is shown in Eq. (7.4).
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W ¼ Max Dð Þ � D ð7:4Þ

The weighted entropy is calculated by Eq. (7.5):

Iwe r; cð Þ ¼ log 1þ E r; cð Þ �
X

ðy;xÞ2W
W I y; xð Þð Þ2

0
@

1
A ð7:5Þ

where Iweðr; cÞ is the weighted entropy at the location ðr; cÞ with r; c 2 R. Eðr; cÞ is
the un-weighted entropy value of the image’s gradient magnitude at location ðr; cÞ,
and Iðy; xÞ is the intensity value at location ðy; xÞ. x; y 2 R, and W is the set of
neighboring coordinates of ðr; cÞ. Pðy;xÞ2W W I y; xð Þð Þ2 is the spatial energy term.
Equation (7.5) enhances the separation between cell/foreground and
substrate/background regions. The normalization of Iwe back into a 8-bit image is
shown in Eq. (7.6):

Iwen ¼ Iwe �min Iweð Þð Þ
max Iweð Þ �min Iweð Þð Þ � 255 ð7:6Þ

7.3.3 Median Filter-Induced Texture-Based Approach

The segmentation method by Guan et al. [23] combines the hESC spatial infor-
mation and mixture of Gaussians for better segmentation. The mixture of Gaussians
alone does not able to segment the cell regions from the substrate due to its lack of
spatial consistency. The cell region intensities lie on both left and right end of the
image histogram. However, the mixture of Gaussians can accurately detect frag-
ments of the cell regions. Therefore, it can serve as a good template to find the
optimal threshold, Topt, and filter window size, m, in the spatial transformed image
for cell region detection. As a result, we exploited the spatial information due to the
biological properties of the cells in the image and used the result from the mixture
of Gaussians as a comparison template [23].

With the spatial information, we can easily distinguish the cell region from the
substrate region. The spatial information is generated with the combination of
median filtering. A spatial information image IS at scale m in [23] is calculated by
the following equation:

Imf mð Þ ¼ med I � med I;mð Þj j;mþ 2ð Þ ð7:7Þ

where med �;mð Þ denotes the median filtering operation with window size m. The
operation I � med I;mð Þj j yields low values in the substrate region and high values
in the cell regions. The larger median filter window connects the interior cell
regions while preserving the edges. The transformation of the image, I, by Eq. (7.7)
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generates a bimodal image from an original image that contains three intensity
modes. Therefore, we can use the result from the mixture of Gaussians to find Topt
and mopt. The cell region detection is done by finding the maximum correlation
coefficient value between the results from the mixture of Gaussian and the spatial
information at various T and m. The filter window size, m, varies from 3 to 25 with
a step size of 2. The threshold T is from the minimum to the maximum of the spatial
information image in steps of 0.5.

7.3.4 Unattached Single Stem Cell Detection

The unattached single stem cell detection by Guan et al. [10] is a feature-based
classification that utilizes detected inner cell region features. The inner cell region is
derived from thresholding the normalized probability map. The feature vector
contains area size, eccentricity, and convexity of the inner cell region. We use the
Euclidean distance as the classification measure. The Euclidean distances of the
target’s feature vector and the feature vectors in the training data are calculated by

Kf ið Þ ¼ 1
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j KCoef i; jð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j KCoef i; jð Þ2

q
� J

1 else

(
ð7:8Þ

The symbol Kf ðiÞ is the Euclidean distance of the target feature vector and
feature vectors from the training data where i 2 R. KCoefði; jÞ is a matrix that
contains the differences of the target feature vector and feature vectors in the
training data. Variable J is equal to

ffiffiffi
3

p
and j 2 f1; 2; 3g since we have three

features in our classification method.

7.4 Experimental Result

In this subsection, we briefly discuss the experimental results for each aforemen-
tioned approach.

7.4.1 Data

All time lapse videos were obtained with BioStation IM [1]. The frames in the
videos are phase contrast images with 600 × 800 resolutions. The videos are
acquired using three different objectives: 10×, 20×, and 40×.
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7.4.2 Metrics

The true positive, TP, is the overlapped region between the binary image of detected
cell regions and its ground-truth. True negative, TN, is the overlapped region
between the binary image of detected background region and its ground-truth. The
false positive, FP, is the detected background in the background binary image that is
falsely identified as part of the cell region in cell region binary image. The false
negative, FN, is the detected cell region in cell region binary image that is falsely
identified as part of the background in the background binary image [24].

The true positive rate or sensitivity, TPR, measures the proportion of actual
positives which are correctly identified.

TPR ¼ TP
ðTPþ FNÞ ð7:9Þ

The false positive rate, FPR, measures the proportion of false positives which are
incorrectly identified.

FPR ¼ FP
ðFPþ TNÞ ð7:10Þ

7.4.3 Gradient Magnitude Distribution-Based Approach

The gradient magnitude distribution approach has more than 90 % average sensi-
tivity and less than 15 % average false positive rate for all datasets that are not
corrupted by noise [21]. The high performance remained after filtering is done on
the noisy dataset. The dataset taken with 40× objective is corrupted by noise, and
the proposed method has lower performance without filtering as shown in
Tables 7.1 and 7.2. Tables 7.1 and 7.2 also show comparison of the proposal

Table 7.1 Average
sensitivity

Method 10× (%) 20× (%) 40× (%) 40×a (%)

Guan [21] 95.85 95.65 75.09 90.42

KM 51.92 51.83 79.66 40.26

M2G 79.27 80.54 63.56 80.99
a
filtered data

Table 7.2 Average false
positive rate

Method 10× (%) 20× (%) 40× (%) 40×a (%)

Guan [21] 14.64 13.33 3.18 7.22

KM 4.41 5.95 30.18 0.46

M2G 11.57 14.10 3.63 9.37
a
filtered data
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method with k-means (KM) and mixture of two Gaussians (M2G). KM method
performs the worst in all three methods. The proposed method’s average sensitivity
is higher than M2G by at least 10 % in all datasets.

7.4.4 Entropy-Based K-Means Approach

In this approach, we also compare the proposed method with k-means. However,
the initial means for each cluster are assigned based on our knowledge for each
cluster. Therefore, KM in this approach has significant lower false positive rate in
all datasets. The entropy and k-means based on segmentation has more than 80 %
average sensitivity and less than 16 % average false positive rate [22]. Table 7.3
shows that the proposed method has above 96 % average sensitivity except for the
unfiltered 40× dataset. Table 7.4 shows that KM has lower average false positive
rate, but it is due to the fact that it detect all pixels as background.

7.4.5 Median Filter-Induced Texture-Based Approach

The median filter-induced texture-based approach has tested only on the six datasets
taken with 20× objective. The approach has more than 92 % average sensitivity and
less than 7 % average false positive rate [23]. The means of all six datasets in
average sensitivity and average false positive rate are 96.24 and 5.28 %. As shown
in Table 7.5, mixture of two Gaussians and mixture of three Gaussians methods
have the lowest average sensitivities. Even though other methods have the mean
average sensitivities above 94 %, they have high false positive rate as shown in
Table 7.6. Their mean average false positive rates are above 17 %.

7.4.6 Unattached Single Stem Cell Detection

The unattached single stem cell detection approach was tested on four datasets
taken under 20× objective [10]. Figure 7.3 shows an ROC plots for four different

Table 7.3 Average
sensitivity

Method 10× (%) 20× (%) 40× (%) 40×a (%)

Guan [22] 98.09 96.73 80.82 96.18

KM 37.76 38.37 40.28 40.28
a
filtered data

Table 7.4 Average false
positive rate

Method 10× (%) 20× (%) 40× (%) 40×a (%)

Guan [22] 19.21 17.81 5.83 15.68

KM 1.77 2.51 0.61 0.61
a
filtered data
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Table 7.5 Average sensitivity

Video HBBC
(%)

GLMG
(%)

PIV
(%)

M2G
(%)

M3G
(%)

Guan [23]
(%)

1 92.08 97.08 98.90 43.52 53.16 94.30

2 84.95 93.80 97.37 29.88 42.18 92.31

3 98.46 98.89 99.80 70.46 78.14 97.67

4 99.27 98.78 99.54 79.85 87.33 98.38

5 97.07 97.66 98.82 77.38 84.40 97.25

6 97.81 98.17 99.23 74.88 81.15 97.54

Table 7.6 Average false positive rate

Video HBBC
(%)

GLMG
(%)

PIV
(%)

M2G
(%)

M3G
(%)

Guan [23]
(%)

1 19.71 22.47 19.86 2.83 5.16 4.41

2 26.67 21.82 18.83 2.65 4.39 6.57

3 16.62 22.47 18.50 4.80 7.22 4.78

4 14.19 15.91 16.69 4.77 7.52 5.74

5 12.34 16.42 15.10 4.39 6.86 5.51

6 16.33 22.07 20.33 5.06 8.09 4.69

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

o
si

ti
ve

 R
at

e

Video #1

Video #2

Video #3

Video #4

Fig. 7.3 True positive rate versus false positive rate (ROC curves) (Note the red squares are the
optimal results of the proposed method)
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experiments. The proposed method achieves above 70 % in true positive while
keeping the false positive rate below 2.5 %. Figure 7.4 shows the result of the
proposed method on a sequence of images. The proposed method captured majority
of the unattached single stem cells.

Fig. 7.4 A sample of results of unattached single stem cell detection approach
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7.5 Performance Analysis

In this subsection, we evaluate the three aforementioned segmentation approaches
mentioned above in terms of robustness, speed, and accuracy.

7.5.1 Robustness

The median filter-induced texture-based method in [23] was tested only on a 20×
dataset with a set of parameters. Since the parameters are tuned for the 20× datasets,
it is not reliable for datasets collected using different objectives as shown in
Fig. 7.5. Most importantly, its performance is heavily depended on initial seg-
mentation result of the mixture of Gaussians. The entropy-based k-means approach
in [22] and the gradient magnitude distribution-based approach in [21] are more

Fig. 7.5 a–c Median filter-induced texture-based method results for 10×, 20×, and 40× images
respectively; (d–f) entropy-based k-means method results for 10×, 20×, and 40× images,
respectively; (g–i) gradient magnitude distribution-based method results for 10×, 20×, and 40×
images, respectively
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robust with different objectives. Since both methods do not need a template to
obtain the optimal segmentation, they are robust under different objectives with a
same set of parameters.

7.5.2 Speed

The entropy-based k-means in [22] and gradient magnitude distribution-based in
[21] approaches have only one optimization step. The median filter-induced
texture-based method in [23] requires two optimization steps. However, the
entropy-based k-means approach has higher time complexity than the other
methods. The reason it is slow is because the method performs k-means clustering
and entropy filtering for segmentation. The operations of k-means clustering and
entropy filtering are extremely time consuming. Consequently, the approach’s
processing time is about 28 s/frame.

Since the median filter-induced texture-based method has two optimization
steps, it also has high time complexity. The first optimization step is done to
determine the initial segmentation result by the mixture of Gaussians. The second
optimization step is done with the mixture of Gaussians result to obtain the final
segmentation. Therefore, the approach’s processing time is about 26 s/frame.

The gradient magnitude distribution-based approach only uses mean filtering
and the Otsu’s algorithm. Since mean filtering and Otsu’s algorithm are faster
operations, the method is the fastest among the aforementioned approaches. The
gradient magnitude distribution-based segmentation only requires 1.2 s/frame of
processing time. All experiments for each method are done on a laptop with an Intel
(R) Core™ 2 Duo CPU processor that run at 2.53 GHz.

7.5.3 Accuracy

The entropy-based k-means approach has the highest average true positive rate
(TPR) as well as the highest average false positive rate (FPR) [24]. It has a mean of
about 97 % average TPR and near 18 % average FPR. Both median filter-induced
texture-based and gradient magnitude distribution-based approaches have less than
12 % average false positive rate. However, the median filter-induced texture-based
approach was only tested on the dataset taken with a 20× objective, and it had a
mean of 96.24 % in average TPR. The gradient magnitude distribution-based
method has a mean near 94 % in average TPR. Both entropy-based k-means and
gradient magnitude distribution-based approaches were tested on datasets under
different objectives.
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7.6 Conclusion

This paper provides a brief review of three existing bio-inspired segmentation
methods as well as a concise discussion on the unattached single stem cell detection
method. All three segmentation approaches mentioned in this paper have above
90 % average true positive rate and less than 18 % average false positive rate in
segmentation. However, the gradient magnitude distribution-based approach out-
performs the other methods in the overall measures of robustness, speed, and
accuracy. The gradient magnitude distribution-based approach has good detection
results for images collected with all three objectives. It has smoother detected result
than the other methods as shown in Fig. 7.5. In terms of speed, the method requires
processing time of 1.2 s/frame. Compared to its counterparts, it is about 20 times
faster when run in the same machine. In terms of accuracy, the gradient magnitude
distribution-based method still has a mean near 94 % in average TPR and less than
12 % in average FPR. The unattached single stem cell detection makes possible
with the accurate cell region segmentation. Therefore, the gradient magnitude
distribution-based method is significant for the future development of fast quanti-
fiable analysis of stem cells. The methods described in this chapter could be used to
evaluate the health and viability of hESC cultures and the response of hESC to
environmental changes or toxicants.
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Chapter 8
A Video Bioinformatics Method
to Quantify Cell Spreading and Its
Application to Cells Treated
with Rho-Associated Protein Kinase
and Blebbistatin

Nikki Jo-Hao Weng, Rattapol Phandthong and Prue Talbot

Abstract Commercial software is available for performing video bioinformatics
analysis on cultured cells. Such software is convenient and can often be used to
create suitable protocols for quantitative analysis of video data with relatively little
background in image processing. This chapter demonstrates that CL-Quant soft-
ware, a commercial program produced by DRVision, can be used to automatically
analyze cell spreading in time-lapse videos of human embryonic stem cells (hESC).
Two cell spreading protocols were developed and tested. One was professionally
created by engineers at DRVision and adapted to this project. The other was created
by an undergraduate student with 1 month of experience using CL-Quant. Both
protocols successfully segmented small spreading colonies of hESC, and, in gen-
eral, were in good agreement with the ground-truth which was measured using
ImageJ. Overall the professional protocol performed better segmentation, while the
user-generated protocol demonstrated that someone who had relatively little
background with CL-Quant can successfully create protocols. The protocols were
applied to hESC that had been treated with ROCK inhibitors or blebbistatin, which
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tend to cause rapid attachment and spreading of hESC colonies. All treatments
enabled hESC to attach rapidly. Cells treated with the ROCK inhibitors or bleb-
bistatin spread more than controls and often looked stressed. The use of the
spreading analysis protocol can provide a very rapid method to evaluate the
cytotoxicity of chemical treatment and reveal effects on the cytoskeleton of the cell.
While hESC are presented in this chapter, other cell types could also be used in
conjunction with the spreading protocol.

8.1 Introduction

Live cell imaging has been widely used in our laboratory for many years to study
dynamic cell processes [9, 18, 20, 40–42] and has more recently been applied to
toxicological problems [10, 12, 22, 23, 27, 32–36, 39]. Analysis of dynamic events,
such as cell attachment, migration, division, and apoptosis, can provide mechanistic
insight into normal cellular processes [28, 37] as well as how toxicants affect cells
[2, 5, 23, 42]. Collection of video data has recently improved due to the intro-
duction of commercial incubators with built-in microscopes and cameras for col-
lecting time-lapse data during short- and long-term experiments [8, 30, 37].

After videos are collected, it is important to extract quantitative data from them.
A challenging but important issue until recently has been how to analyze large
complex data sets that are produced during live cell imaging. When video data
analyses are done manually by humans, many hours of personnel time are usually
required to complete a project, and manual analysis by humans is subject to vari-
ation in interpretation and error. Video bioinformatics software can be used to speed
the analysis of large data sets collected during video imaging of cells and can also
improve the accuracy and repeatability of analyses [37]. Video bioinformatics,
which involves the use of computer software to mine specific data from video
images, is concerned with the automated processing, analysis, understanding,
visualization, and knowledge extracted from microscopic videos. Several free video
bioinformatics software packages are available online such as ImageJ and
Gradientech Tracking Tool (http://gradientech.se/tracking-tool-pro/). Also, some
advanced video bioinformatics software packages, such as CL-Quant, Amira, and
Cell IQ, are now commercially available and can be used to generate customized
protocols or libraries to analyze video data and determine quantitatively how cells
behave during experimental conditions.

This chapter presents a new application of CL-Quant software to automatically
analyze cell spreading in time-lapse videos of human embryonic stem cells (hESC)
(WiCell, Madison, WI). While hESC are presented in this chapter, other cell types
could also be used in conjunction with these protocols.
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8.2 Instrumentation Used to Collect Live Cell Video Data

8.2.1 BioStation IM

Data were collected with a BioStation IM. The BioStation IM or its newer version
the IM-Q, manufactured by Nikon, is a bench top instrument that houses a
motorized inverted microscope, an incubator with a built-in high sensitivity cooled
CCD camera, and software for controlling exposures, objectives, and the type of
imaging (e.g., phase contrast or fluorescence). The components of this instrument
are fully integrated and easy to set up. In a BioStation IM, cells are easily main-
tained at a constant temperature (37 °C) and relative humidity (85 %) in a 5 % CO2

atmosphere. The BioStation IM enables time-lapse data to be collected reliably over
hours or days without focus or image drift. In time-lapse experiments, images can
be collected as quickly as 12 frames/s. In a BioStation IM, imaging can be also
performed in the X-, Y-, and Z-direction. The unit comes with a well-designed
software package and a GUI for controlling the instrument and all experimental
parameters.

The BioStation IM is available in two models, the BioStation II and BioStation
II-P, optimized for either glass bottom or plastic bottom culture dishes, respectively,
and the magnification range is different in the two models. Both models accom-
modate 35 and 60 mm culture dishes. A four-chambered culture dish, the Hi-Q4
sold by Nikon, can be used for examining four different conditions of culture in the
same experiment.

8.3 Software Used for Video Bioinformatics Analysis
of Stem Cell Morphology and Dynamics

8.3.1 CL-Quant

CL-Quant (DRVision, Seattle, WA) provides tools for developing protocols for
recognition and quantitative analysis of images and video data [1]. The software is
easy to learn and does not require an extensive knowledge of image processing.
CL-Quant can be used to detect, segment, measure, analyze, and discover cellular
behaviors in video data. It can be used with both phase contrast and fluorescent
images. Several basic protocols for cell counting, cell proliferation, wound healing,
and cell migration have been created by DRVision engineers and can be obtained
when purchasing CL-Quant software. Protocols can be created by DRVision at a
user’s request, or users can create their own protocols. Later in this chapter, we will
describe how to create a protocol in CL-Quant, show the difference between a
professional protocol and user-generated protocol, and also show an example in
which CL-Quant was used to measure hESC spreading in experimental time-lapse
videos.
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8.3.2 ImageJ

ImageJ is a public domain Java-based image-processing program, which was
developed at the National Institutes of Health. ImageJ was designed with an open
architecture that provides extensibility via plug-ins and recordable macros.
A number of tutorials are available on YouTube and are helpful for beginners
learning to use this software. ImageJ is compatible with major operating systems
(Linux, Mac OS X, and Windows), works with 8-bit color and grayscale, 16-bit
integer, and 32-bit floating point images. It is able to read many image formats, and
it supports time-lapse or z-stacks. There are numerous plug-ins that can be added to
ImageJ to help solve many imaging processing and analysis problems. ImageJ is
able to perform numerous standard image-processing operations that may be useful
in labs dealing with image analysis and video bioinformatics. For example,
researchers have used ImageJ to quantify bands in western blots and also to
quantify the fluorescent intensity on the images. One of the advantages of using
ImageJ is that it enables rapid conversion of images to different formats. For
example, ImageJ can convert tif images to avi, it can create 3D images from
z-stacks with 360° rotation, and it can be used to obtain ground-truth information
when setting up a new video bioinformatics protocol.

8.4 Protocols for Cell Attachment and Spreading

In toxicological assays using stem cells, endpoints of interest often occur days or
sometimes a month after the experiment begins [27, 37]. There has been interest in
shortening such assays, often by using molecular biomarkers to obtain endpoints
more rapidly [6]. In the mouse embryonic stem cells test, endpoints can now be
obtained in 7 days using biomarkers for heart development. While this significantly
reduces the time to reach an endpoint, it is still a relatively long time to obtain data
on cytotoxicity.

Pluripotent hESC model the epiblast stage of development [31] and are
accordingly a valuable resource for examining the potential effects of chemicals at
an early stage of human prenatal development [38]. We are developing video assays
to evaluate cellular processes in hESC in short-term cultures, and we then use these
assays to identify chemicals that are cytotoxic to young embryos. One hESC-based
assay involves evaluation of cell spreading, a dynamic process dependent on the
cytoskeleton. When a treatment alters the cytoskeleton or its associated proteins,
cells are not able to attach and spread normally. We have used two video bioin-
formatics protocols to analyze these parameters during 4 h of in vitro culture. At the
beginning of cell plating, hESC are round and unattached. Usually, hESC attach to
their substrate and begin spreading within 1 h of plating. As cells attach and start
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spreading, their area increases, and this can be measured in time-lapse images using
video bioformatics tools, thereby providing a rapid method to evaluate a process
dependent on the cytoskeleton. Two parameters can be derived from the time-lapse
data: rate of cell spreading (slope) and fold increase in cell area. These two
parameters were compared in control and treated groups using the linear regression
and 2-way ANOVA analysis (GraphPad Prism, San Diego).

We will compare two protocols for measuring cell spreading in this chapter.
Both protocols are performed using CL-Quant software. One, which we term a
professional protocol, was created by DRVision engineers for quantifying cell
proliferation. Even though the professional protocol was not created specifically for
hESC spreading, we were able to use the segmentation portion of the protocol for
measuring spreading (area) of hESC during attachment to Matrigel. In addition, we
created our own protocol using CL-Quant for analyzing the area of hESC colonies
during attachment and spreading. Our method, which we refer to as the
user-generated protocol, was created by an undergraduate student with a basic
background in biology and 1 month of experience with CL-Quant software.

hESC were cultured using methods described in detail previously [29]. To create
time-lapse videos for this project, small colonies of hESC were incubated in mTeSR
medium at 37 °C and 5 % CO2 in a BioStation IM for 4 h. Frames were captured
every minute from 4–5 different fields. When applying either the professional or
user-generated protocol, the first step was to segment the image so as to select
mainly hESC. During segmentation, we used the DRVision’s soft matching pro-
cedure, which allowed us to identify the objects of interest. The second step was to
remove noise and small particles/debris that were masked during segmentation. In
the third step, the area of all cells in a field was measured in pixels. The protocol
was applied to all images in time-lapse videos to obtain the area occupied by hESC
when plated on Matrigel and incubated for 4 h. Because the survival efficiency is
low for single cells [43], hESC were plated as small colonies, which normally
attach, spread, and survive well. Figure 8.1a shows phase contrast images of several
small hESC colonies plated on Matrigel at different times over 4 h. In the first
frame, the cells were unattached, as indicated by the bright halo around the
periphery of some cells. During 4 h of incubation, the cells attached to the Matrigel
and spread out. By the last frame, all cells in the field have started to spread.
Figure 8.1a also shows the same images after segmentation, enhancement, and
masking using the professional protocol supplied by DRVision. Comparison of the
phase contrast and segmented sequences shows that the masks fit each cell well.

To determine if the measurement data obtained from the professional CL-Quant
protocol were accurate, ground-truth was obtained by tracing each hESC in all of
the video images using the freehand selection tool in ImageJ, and then measuring
the pixel area for each frame. The ground-truth (dotted line) and CL-Quant derived
area were very similar for hESC grown in control conditions (mTeSR medium)
(Fig. 8.1b). For most videos, CL-Quant slightly overestimated the area of the cells
due to difficulty in fitting a perfect mask to each cell.
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8.5 Application of Video Bioinformatics Protocols
to hESC Cell Spreading in the Presence of Rock
Inhibitors and Blebbistatin

In 2007, ROCK inhibitor (Y27632) was shown to increase the efficiency of hESC
survival in culture [43]. However, ROCK is involved in numerous signaling
pathways, and therefore may affect many cell properties [25]. ROCK inhibitors
decrease non-muscle myosin II activity, and this decrease helps attachment of
hESC. However, when single hESC are plated with ROCK inhibitor, they do not
adhere to each other due to downregulation of e-cadherin [19]. In addition, hESC
treated with Y27632, a potent ROCK inhibitor, appeared stressed and less healthy
than untreated controls [3]. Finally, the use of ROCK inhibitor (Y27632) in a
toxicological study with methyl mercury decreased the IC50 [11]. Blebbistatin, an

Fig. 8.1 Comparison of CL-Quant segmentation protocol and ground-truth. hESC were plated in
mTeSR medium in a 35 mm dish and incubated in a BioStation IM for 4 h. a Phase contrast
images modified with ImageJ to remove text labels and the same images with masks applied using
the professional CL-Quant protocol. b Graph showing cell area (spreading) in pixels for CL-Quant
derived data and the ground-truth. The areas obtained from the two methods were in good
agreement
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inhibitor of myosin II which is downstream of ROCK, can also be used to increase
attachment of hESC and thereby improve plating efficiency [19] and may also alter
cell morphology [21].

In this study, time-lapse data were collected on hESC treated with different
ROCK inhibitors or blebbistatin, and two CL-Quant protocols were used to
quantitatively compare spreading of treated cells to controls. H9 hESC were seeded
on Hi-Q4 dishes coated with Matrigel and incubated using different treatment
conditions. Cells were then placed in a BioStation IM and cultured as described
above for 4 h during which time images were taken at three or four different fields
in each treatment/control group at 1 min intervals.

The protocols described in Sect. 1.4 for quantifying hESC area were used to
compare spreading of cells subjected to different ROCK inhibitors (Y27632,
H1152) or to blebbistatin. First, the written data that was stamped on each image by
the BioStation software was removed using the remove outlier’s feature in
ImageJ. The professional CL-Quant protocol was applied to the resulting time-lapse
videos. Examples of phase contrast and masked images are shown in Fig. 8.2 for
treatment with the two ROCK inhibitors and blebbistatin. Cells in each group were
masked accurately by the segmentation protocol, and even thin surface cell pro-
jections were masked with reasonable accuracy. The measurement protocol was
then applied to each frame to determine the area (pixels) of the masked cells. To
establish the accuracy of this protocol, the ground-truth for control and treated
groups was determined using ImageJ in two separate experiments (Fig. 8.3a, b).
Each point in Fig. 8.3 is the mean of 3 or 4 videos. As shown in Fig. 8.3, the
ground-truth and the CL-Quant derived data were in good agreement for all groups
in both experiments.

In the first experiment, the fold increase in spread area was elevated by Y27632
and blebbistatin relative to the control (p < 0.0001 for Y27632 and p < 0.05 for
blebbistatin 2-way ANOVA, Graphpad Prism), while H1152 was not significantly
different than the control (p > 0.05). The rate of spreading, as determined by the slope
for each group, was greater in the three treated groups than in the control; however,
only the slope for Y27632 was significantly different than the control (p < 0.0001)
(slopes = 0.124 control; 0.135 H1152; 0.142 blebbistatin; 0.245 Y27632). In this
experiment, the Y27632 group was distinct from all other groups in both its rate of
spreading and fold increase in spread area. The morphology of the control cells was
normal; cells had smooth surfaces with relatively few projections. In contrast, all
treated cells had irregular shapes and more projections than the controls (Fig. 8.3a).

In the second experiment, the three treated groups spread faster and more
extensively than the control group. All three treated groups were significantly
different than the control with respect to fold change in spread area (by 2-way
ANOVA p < 0.05 for Y27632 and H1152; p < 0.0001 for blebbistatin). In contrast
to the first experiment, the Y27632 group was similar to the other two treatments
(Fig. 8.3d). The rate of spreading was greater in the three treated groups than in the
control (slope = 0.084 control; 0.117 H1152; 0.150 blebbistatin; 0.136 Y27632),
and both Y27632 (p < 0.01) and blebbistatin (p < 0.001) were significantly different
than the control. As seen in the first experiment, all treated cells were
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morphologically distinct from the controls. Treated cells appeared attenuated and
had long thin projections extending from their surfaces, while control cells were
compact and had smooth surfaces (Fig. 8.3c). It is possible that CL-Quant under-
estimated the area of the Y27632 inhibitor treated cells in the second experiment
due to the attenuation of the surface projections, which were more extensive than in
the first experiment and were difficult to mask accurately.

Fig. 8.2 Cell area (spreading) was successfully masked by the professional CL-Quant protocol in
different experimental conditions. hESC were treated with ROCK inhibitors (Y27632 and H1152)
or blebbistatin, incubated in a BioStation IM for 4 h, and imaged at 1 min intervals. Phase contrast
images and the corresponding masked images are shown for hESC treated with: a control medium,
b Y27632, c H1152, and d blebbistatin

158 N.J.-H. Weng et al.



Videos showing the effect of ROCK inhibitors and blebbistatinon hESC
spreading can be viewed by scanning the bar code.

8.6 Comparison of Professional and User-Generated
Protocols

We also compared the professional and user-generated protocols to each other. The
cells in both the control and treated groups were well masked by the professional
protocol, and the mask included the thin surface projections characteristic of the
treated group (Fig. 8.4a). To validate the quantitative data obtained with the pro-
fessional protocol, ground-truth was determined using ImageJ (Fig. 8.4b). Both the

Fig. 8.3 The morphology and spreading of hESC was affected by treatment with ROCK inhibitors
(Y27632 and H1152) and blebbistatin in two experiments. Spreading was measured using the
professional CL-Quant protocol. a Phase contrast images from the first experiment showed that
treated cells were morphologically different than the control. b The rate of spreading and the fold
increase in spread area was greater in Y27632 and blebbistatin treated cells than in controls.
c Phase contrast images of control and treated cells in the second experiment showed
morphological changes in the treated groups. d The fold increase in spread area was greater in
the treated cells than in the controls in the second experiment; however, the effect of Y27632 was
not as great as previously seen. Data in (b) and (d) are plotted as a percentage of the area in the first
frame. Each point is the mean ± the SEM
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control and treated groups were in good agreement with the ground-truth
(Fig. 8.4b).

An advantage CL-Quant is that users can generate their own protocols without a
programming background. Our user-generated protocol, which was created by an
undergraduate student with 1 month of experience using CL-Quant, was applied to
the control and treated groups. The resulting masks did not cover the surface
projections of the treated group as well as the professional protocol; however, the
user-generated protocol did include single cells, some of which were filtered out by
the professional protocol (Fig. 8.4a). The user-generated protocol did not filter out
the small debris as well as the professional protocol (Fig. 8.4a). The data obtained
with the user-generated protocol were close to ground-truth for the control group,
but not for the treated group (Fig. 8.4c). Phase contrast images showed that the cells
treated with Y27632 had many more attenuated surface projections than the control
cells (Fig. 8.5a, d). Our user-generated protocol and the professional protocol were

Fig. 8.4 Comparison of the professional and user-generated cell spreading protocols. a Phase
contrast micrographs of hESC treated with Y27632 and the corresponding masks created with the
professional and user-generated protocols. b Comparison of ground-truth to area (spreading) data
obtained with the professional protocol in control and treated groups. c Comparison of
ground-truth to area (spreading) data obtained with the user-generated protocol in control and
treated groups
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able to mask the control cells well (Fig. 8.5b, c). However, the user-generated
protocol was not able to mask the thin projections on treated cells as well as the
professional protocol (Fig. 8.5e, f). Neither protocol recognized gaps between cells
in the treated group. Overall, the professional protocol was more similar to the
ground-truth than the user-generated protocol in this experiment; however, with
more experience, the user could improve the protocol to include surface projections
more accurately.

8.7 Discussion

In this chapter, we introduced a video bioinformatics protocol to quantify cell
spreading in time-lapse videos using CL-Quant image analysis software, and we
validated it against ground-truth. A professionally developed version of the protocol
was then compared to a protocol developed by a novice user of CL-Quant. We also
applied this protocol to hESC treated with blebbistatin and ROCK inhibitors, which
are commonly used during in vitro passaging of hESC [43].

Most evaluations of cells in culture have involved processes such as cell divi-
sion, confluency and motility, but not spreading. Cell attachment and spreading
depend on the interaction between cells and the extracellular matrix to which they

Fig. 8.5 Differences in cell morphology showing why treated hESC are more difficult to segment
than control cells. a Phase contrast image of hESC colonies taken at 60 min of incubation.
Segmentation of the image in “(a)” created with the user-generated protocol (b) and the
professional protocol (c). d Phase contrast image of hESC colonies treated with Y27632 for
60 min. The cells have many thin surface projections not present on controls. Segmentation of the
image in “(c)” with the user-generated protocol (e) and the professional protocol (f)
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attach. When cells are plated on a substrate, they first attach, then flatten and spread.
At the molecular level, spreading depends on the interaction of membrane-based
integrins with their extracellular matrix and the engagement of the cytoskeleton,
which initiates a complex cascade of signaling events [7]. This in turn leads to the
morphological changes observed during spreading and enables cultured cells to
flatten out and migrate to form colonies [24, 44].

Changes in cell behavior that depend on the cytoskeleton often indicate that cell
health is being compromised by environmental conditions [2, 27]. Because
spreading depends on the cytoskeleton, it can be used to evaluate the effect of
chemical treatments on cytoskeletal health. Cell spreading is a particularly attractive
endpoint in toxicological studies as it occurs soon after plating and does not require
days or weeks of treatment to observe. Many types of cells, such as fibroblasts can
attach and spread in 10–15 min. hESC require about 1–2 h to spread, and therefore
can be plated and data collected in 4 h or less time depending on the experimental
design.

The application of the spreading protocol to hESC enables chemical treatments
to be studied using cells that model a very early stage of postimplantation devel-
opment. hESC are derived by isolating and culturing the inner cell mass from
human blastocysts. As these cells adapt to culture, they take on the characteristics of
epiblast cells which are found in young post-implantation embryos [31]. Embryonic
cells are often more sensitive to environmental chemicals than differentiated adult
cells, and it has been argued that risk assessment of environmental chemicals should
be based on their effects on embryonic cells, as these represent the most vulnerable
stage of the life cycle [13]. The sensitivity of hESC to environmental toxicants may
be due to mitochondrial priming which occurs in hESC and makes them more prone
to apoptosis than their differentiated counterparts [26].

A major advantage of the cell spreading assay is that it requires relatively little
time to perform. A complete spreading assay can be done in as little as 4 h, while
other endpoints such as cell division and differentiation require days or weeks to
evaluate. The rapidity of the spreading assay makes it valuable in basic research on
the cytoskeleton or in toxicological studies involving drugs or environmental
chemicals. Moreover, this tool could be used in the future as a quality control check
when evaluating stem cell health for clinical applications.

The cell spreading assay introduced in this chapter provides a rapid method for
evaluating the cytoskeleton and assessing the quality of cells. Using bioinformatics
tools to analyze the video data significantly reduces the time for data analysis [14–
17]. If an experiment is done for 4 h with 1 min intervals between frames, 240
frames would be collected for each video by the end of the experiment. Each group
could have 4–10 different videos. Before we used bioinformatics tools to analyze
our data, cell spreading was analyzed by measuring cell area manually. ImageJ was
used to calculate cell area for each frame. The total time for cell spreading analysis
for each video was about 24 h. The CL-Quant bioinformatics protocol, which we
introduced in this chapter, greatly reduces this time. In general, it takes about 30–
60 min to create a protocol for a specific purpose. Once the protocol is created, it
takes 5 min to run the protocol using CL-Quant. The protocol can be batch run on
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multiple videos without requiring users to tie up valuable time performing analysis
of spreading.

Our data show that the professionally developed protocol performed better than
the one developed by the novice user. However, the novice was able to rapidly learn
to use CL-Quant software, and he obtained accurate control data as shown by
comparison to the ground-truth. It was clear that the novice had difficulty masking
the fine projections on the hESC surfaces, but with additional training, he would
likely be able to create a better segmentation protocol and achieve more accurate
masking of the treated group data.

We also examined the effect of ROCK inhibitors and blebbistatin on hESC
spreading. The ROCK inhibitors and blebbistatin improved cell attachment and
spreading, as reported by others [19, 43]. However, those hESC treated with ROCK
inhibitors or blebbistatin appeared stressed, had thin attenuated projections off their
surfaces, and did not seem as healthy as control cells. ROCK inhibitor or bleb-
bistatin are often used to improve cell survival, especially when plating single cells.
ROCK inhibitor and blebbistatin allow cells to be accurately counted and plated.
Cell survival is also improved by the efficient attachment observed when these
ROCK inhibitors and blebbistatin are used. Cells are stressed during nucleofection,
so ROCK inhibitors are often used to improve cell survival when nucleofected cells
are ready to plate. ROCK inhibitors and blebbistatin inhibit ROCK protein and
downregulate myosin II activity which accelerates cell attachment and cell
spreading [43]. Our analysis shows that both ROCK inhibitors and blebbistatin alter
the morphology of spreading cells. Moreover, Y27632 and blebbistatin significantly
increased the rate of spreading and the fold change in spread area when compared to
untreated controls, which may be a factor in why they are more commonly used
than H1152. While the full significance of the above changes in cell morphology
and behavior are not yet known, these inhibitors do either indirectly or directly
decrease myosin II activity, which may lead to the stressed appearance of the
treated cells. It has not yet been established why decreasing myosin II activity leads
to more rapid and extensive spreading of hESC.

Use of ROCK inhibitors is not recommended in toxicological applications of
hESC as they can alter IC50s [11]. A spectrophotometer method has been estab-
lished to determine cell number when hESC are in small colonies [4]. This method
enables an accurate number of cells to be plated without the use of ROCK inhibitors
and may generally be applicable to hESC culture and would avoid the morpho-
logical stress observed in ROCK inhibitor treated cells.

The protocols reported in this chapter can be used to quantify two parameters of
cell spreading, rate and fold change. The use of spreading as an assay for
cytoskeletal responses and cell health is attractive as it takes relatively little time to
collect data and analyze data with the application of video bioformatics tools. In the
future, the segmentation and filtering aspects of these protocols may be improved to
gather more accurate data on the challenging cell surface projections, but these
protocols in their current form can be reliably applied to spreading of hESC
colonies. In the future, improvements in software could include more advanced
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preprocessing tools, tools for analyzing 3-dimensional data, and tools for analyzing
different cell morphologies.
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Chapter 9
Evaluation of Dynamic Cell Processes
and Behavior Using Video Bioinformatics
Tools

Sabrina C. Lin, Henry Yip, Rattapol Phandthong, Barbara Davis
and Prue Talbot

Abstract Just as body language can reveal a person’s state of well-being, dynamic
changes in cell behavior and morphology can be used to monitor processes in
cultured cells. This chapter discusses how CL-Quant software, a commercially
available video bioinformatics tool, can be used to extract quantitative data on:
(1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species
(ROS) production, and (4) neural differentiation. Protocols created using CL-Quant
were used to analyze both single cells and colonies. Time-lapse experiments in
which different cell types were subjected to various chemical exposures were done
using Nikon BioStations. Proliferation rate was measured in human embryonic stem
cell colonies by quantifying colony area (pixels) and in single cells by measuring
confluency (pixels). Colony and single cell migration were studied by measuring
total displacement (distance between the starting and ending points) and total dis-
tance traveled by the colonies/cells. To quantify ROS production, cells were
pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator,
treated with various chemicals, then total intensity of the red fluorescence was
measured in each frame. Lastly, neural stem cells were incubated in differentiation
medium for 12 days, and time lapse images were collected daily. Differentiation of
neural stem cells was quantified using a protocol that detects young neurons.
CL-Quant software can be used to evaluate biological processes in living cells, and
the protocols developed in this project can be applied to basic research and toxi-
cological studies, or to monitor quality control in culture facilities.
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9.1 Introduction

Evaluation of dynamic cell processes and behavior is important in basic research
[11, 40, 43, 46], in the application of stem cell biology to regenerative medicine
[29, 41], and in studies involving the toxicity of drug candidates and environmental
chemicals [13, 24, 25, 31, 32, 35–38, 42]. Prior work in basic and toxicological
research has often involved microscopic observation of cells or assays that evaluate
single endpoints after chemical exposure (e.g., [4, 6–8, 25, 33]). However, much
additional insight can be learned about a cells response to its environment by
comparing dynamic processes, such as cell growth and motility, in treated and
control cells [30, 31, 44]. Just as human body language can reveal information
about human mood and well-being, cellular dynamics can often reveal information
about the mode of action and the cellular targets of chemical exposure. For
example, impairment of cell motility would likely be correlated with an adverse
effect on the cytoskeleton. Such an effect can be quantified in video data without
using any labels or genetic transformation of the cells [25, 31, 36, 49]. In addition,
fluorescent labels can be used to report the condition of cells in time-lapse data
thereby revealing more information about a treatment than a single endpoint assay
[27]. Finally, multiple endpoints can be multiplexed and mined from video data to
gain additional insight from a single experiment [2, 34].

The interest and importance of video data in cellular studies has led to the
commercialization of a number of instruments (e.g., BioStation CT/IM, Cell IQ,
Tokai Hit) optimized for collecting live cell images over time [10, 44]. Videos can
now be made for hours, days, or even months using conditions that support in vitro
cell culture and experimentation. However, while dynamic video data are rich with
information about cell health and cell processes, they are often difficult to analyze
quantitatively. This is due to the complexity of the data and the generally large size
of the data sets. Moreover, video analysis can be very time-consuming and is
error-prone due to subjectivity of the human(s) performing the analysis. The recent
interest in live cell imaging has been accompanied by a need for software tools for
extracting information from video data. This field of study has been termed “video
bioinformatics” (http://www.cris.ucr.edu/IGERT/index.php). Video bioinformatics
includes the development and application of software tools for extraction and
mining of information and knowledge from video data. The advantages of using
video bioinformatics tools are enormous. Tremendous amounts of time can be
saved, and when properly applied, video bioinformatics tools will extract more
accurate reproducible data than would generally be the case for a human performing
the same task. Video bioinformatics tools are available commercially [3] and are
also being developed in research laboratories to solve specific problems such as
quantification of cells in colonies, cell identification, and prediction of successful
development of human embryos to the blastocyst stage [14–17, 21, 51].

In this chapter, four applications of video bioinformatics tools to toxicological
problems are presented. First, cell colony and individual cell growth were
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monitored using time-lapse data. Second, single cell and colony migration were
analyzed to provide information on rate of migration, distance traveled, and total
displacement. Third, a method is presented for direct observation and quantification
of ROS production in cultured cells. Finally, quantification of differentiating neu-
rons was accomplished by evaluating time-lapse videos collected over a period of
10 days. Video data were collected in either a BioStation CT or BioStation IM, both
available from Nikon. Analyses were done using protocols created using a com-
mercial software package (CL-Quant). Each application can be used with either
single cells or colonies.

9.2 Collection of Time-Lapse Data

The BioStation IM is a fully motorized, automated, environmentally controlled
microscope and imaging system that captures images using a cooled monochrome
CCD camera. It was designed to enable live cell imaging using optimal in vitro
conditions. It can accommodate 35 mm culture dishes including HiQ4 dishes
(Nikon Instruments Inc., Melville, NY) that allow four different treatments to be
monitored in a single experiment. Cells are incubated at 37 °C in a CO2 controllable
atmosphere with a high relative humidity. Multiple magnifications are possible for
capturing phase contrast and/or fluorescence images using software that controls
point selection and collection of data. Perfusion is an option to allow for real-time
addition or subtraction of cell culture media and to enable longer-term observation.
The BioStation IM robotics are capable of precise cell registration so the resultant
movies can be analyzed quantitatively.

The BioStation CT is a much larger incubation unit that can perform high
content work ideal for live cell screening. The culture conditions inside the
BioStation CT can be regulated. While our unit is usually operated at 5 % CO2,

85 % relative humidity and 37 °C, hypoxic conditions are also possible if needed.
The BioStation CT is especially suitable for data collection in long-term experi-
ments, in which cells are studied over weeks or months. It has a robotic arm for
transfer of plates to and from a microscope stage which enables complete
automation of the time-lapse experiment. The BioStation CT holds up to 30
experimental samples in various plate formats (6, 12, 24, 48, 96 well plate formats,
35, 60 and 100 mm dish formats, and 25 and 75 cm2 flask formats). A cooled
monochrome CCD camera collects phase and/or fluorescence images at defined
intervals and points of interests. Large montages of the entire well area can be taken
over the magnification range of 2×–40× which allows for complete cell charac-
terization over the life of the cell culturing period.
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9.3 CL-Quant Software

All video analyses were performed using CL-Quant software, a live-cell image
analysis program produced for Nikon by DRVision Technologies (Bellevue,
Washington). It can either be purchased from Nikon as CL-Quant or from
DRVision under the name SVCell. The current version of the software is user
friendly, features an intuitive GUI to manage high content imaging experiments,
and comes with webinar instruction. All ground-truth evaluations of CL-Quant
were done using either ImageJ or Photoshop.

CL-Quant comes with several modules professionally developed by DRVision
for basic processing of videos. For example, bioinformatics tools for measuring cell
confluency, cell migration, and cell counting can be obtained from Nikon and
applied to users’ videos. CL-Quant also provides tools that end users can work with
to develop protocols for recognition and quantitative analysis of microscopic video
data [3]. CL-Quant protocols can be applied with user directed learning and do not
require image processing knowledge. Although the software has great depth, basic
analyses can be done with relatively little training. CL-Quant can be used to detect,
segment, measure, classify, analyze, and discover cellular phenotypes in video data.
Preconfigured modules are available for some applications such as cell counting,
confluency, cell division, wound healing, cell motility, cell tracking, and measuring
neurite outgrowths. Moreover, the software has significant depth and can be con-
figured for other more complex applications by the user.

In this chapter, examples will be shown for adapting CL-Quant to measure
cell/colony growth rate, cell/colony migration, ROS production, and neural dif-
ferentiation. Protocols, developed by DRVision and Nikon software engineers and
those created by novices learning to use the CL-Quant software, will be compared
and used to study cell behavior. The above parameters can be useful in toxico-
logical studies, in work that requires knowledge of cell health, in clinical appli-
cations of stem cells to regenerative medicine, or in basic studies of cell biology.

9.4 Cell and Colony Growth

9.4.1 Growth of Human Induced Pluripotent Stem Cells
(hiPSC)

Human-induced pluripotent stem cells (hiPSC; RivCAG-GFP), created in the UCR
Stem Cell Core Facility and grown in 12-well plates as described previously [28]
were either incubated in control medium (mTeSR, Stem Cell Technologies) or in
mTeSR containing 0.1 puff equivalents (PE) of sidestream cigarette smoke
(PE = the amount of smoke in one puff that dissolves in 1 ml). This concentration
was shown previously to inhibit human embryonic stem cells (hESC) colony
growth [31]. Cells were imaged at 10× magnification for 48 at 6 h intervals in a
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BioStation CT maintained at 37 °C, 5 % CO2 and a relative humidity of 85–90 %.
Phase contrast images show the growth of a single control and treated colony over
48 h (Fig. 9.1a–c and g–i). All colonies analyzed were selected to be relatively close
in size before treatment. During incubation, the sizes of the treated colonies
appeared to be smaller than the control colonies. Some treated colonies did not
grow, and some eventually died due to treatment (as shown in Fig. 9.1i). To obtain
quantitative information on colony growth rates, a protocol, which was developed
in our lab with the CL-Quant software (version 3.0) and used previously with hESC
[31], was applied to these iPSC video data. The protocol first segmented images of
control and treated colonies and overlaid each colony with a mask (Fig. 9.1d–f and
j–l). The fidelity of the mask was excellent for both control and treated groups.
After images were segmented, small objects, dead cells, and debris were removed
with an enhancement module, and finally the size of each colony was measured in
pixels in each frame of each video. Because each colony is slightly different at the
start of an experiment, resulting data for each set of videos were normalized to the
size of the colony in frame 1, then data were averaged and growth curves were
graphed (Fig. 9.1m). Results showed a clear difference in growth rates between the
control and treated colonies. In fact, the treated colonies decreased in size and
appeared not to grow over the 48 h incubation period. Treatment was significantly
different than the control (2-way ANOVA, p ≤ 0.05), and the iPSC were more
sensitive to sidestream smoke treatment than the hESC studied previously [32]. The
protocol used for this analysis had previously been compared to ground-truth
derived using Adobe Photoshop, and excellent agreement was found between the
data obtained with CL-Quant analysis and the ground-truth [31].

The data shown in Fig. 9.1 involved analysis of 60 images. To perform this
analysis by hand would require approximately 3–4 h. CL-Quant was able to per-
form this analysis in about 1 h, and it can be run in a large batch so that the users’
time is not occupied during processing. With a larger experiment having more
frames, the difference between CL-Quant and manual analysis would be much
greater.

Video examples of iPSC colony growth and CL-Quant masking can be viewed
by scanning the bar codes.

9.4.2 Growth of Mouse Neural Stem Cells (mNSC)

Monitoring the growth of single cells can be more challenging than monitoring
hiPSC or hESC colony growth. Some single adherent cells grow very flat and do
not differ much in contrast from the background making segmentation difficult.
However, images can be enhanced by adjusting the brightness, the contrast, and/or
the gamma parameters using CL-Quant software or other image processing soft-
ware (e.g., Photoshop and ImageJ). CL-Quant comes with some professionally
developed modules for use with some types of single cells. Investigators can try
these protocols to see if one works well with their cell type or, alternatively, they
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Fig. 9.1 Growth of hiPSC colonies over 48 h. a–c Phase contrast images of control iPSC colonies
at various times during growth. d–f The same control images segmented using a CL-Quant
protocol developed in our lab. g–i Phase contrast images of smoke treated iPSC colonies at various
times during growth. j–l The same treatment group images masked using the same CL-Quant
protocol as applied to control colonies. m Graph of control and treated cells showing growth rate.
Data are means and standard errors of three experiments. CN control
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can use the CL-Quant software to develop their own protocol and tailor it to the
specific requirements of the cells they are using. However, one should not assume
that the protocols are accurate and should check them against ground-truth.

In our experiments, the effect of cigarette smoke treatment on mNSC prolifer-
ation was examined. mNSC were plated in 12-well plates at 2,500 cells/well, and
cells were allowed to attach for 24 h before treatment, incubation, and imaging.
Various fields of interests were imaged over 48 h in the BioStation CT in 5 % CO2

and 37 °C. The collected video data (Fig. 9.2a–c) were then processed and analyzed

Fig. 9.2 Growth of single mNSC. a–c Phase contrast images of control mNSC at various times
during growth over 48 h. d–f The same images after segmentation using a protocol developed by
DR Vision. g Graph showing analysis for growth rate of control and treated cells (solid lines) and
ImageJ ground-truth for each group (dotted lines). h Graph of control and treated mNSC showing
confluency rate. Data are means and standard errors of three experiments. CN control
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using the confluency module provided by DRVision Technologies for use with
CL-Quant software. The confluency module masked the cells in each field, and
mNSC growth was determined by measuring the number of pixels in each frame
(Fig. 9.2d–f). Ground-truth was obtained to verify the validity of the CL-Quant
confluency analysis tool using ImageJ. To obtain ground-truth, each cell was
carefully outlined and colored to measure area (pixels), and a comparison of
CL-Quant and ImageJ data showed CL-Quant was reliable over the first 34 h with
some divergence at the latest times (Fig. 9.2g). A complete mNSC growth exper-
iment was analyzed in which the growth of cigarette smoke treated cells was
compared to nontreated control cells (Fig. 9.2h). Smoke treatment of mNSC sig-
nificantly inhibited their proliferation from 20 to 44 h (2-way ANOVA, p ≤ 0.001).

Video examples of mNSC proliferation (control and smoke treatment) can be
viewed by scanning the bar code.

9.5 Cell Migration

9.5.1 Migration of hESCColonies

Evaluation of cell motility can be important in determining if the cytoskeleton of
treated cells has been affected. The data in Fig. 9.3 were collected using hESC
colonies that were incubated in a BioStation CT for 48 h, and images were collected
of each colony at 10 min intervals. Colonies, which were grown on Matrigel, were
incubated in either control medium (mTeSR) or mTeSR containing cigarette smoke.
Normally, hESC show motility when grown on Matrigel.

CL-Quant provides a number of readouts for motility. The two that were most
useful are total distance traveled and total displacement. Total distance traveled is
the measurement of how far the colony has migrated over time, and total dis-
placement is the difference in distance between the beginning point and the end-
point. Figure 9.3a–c shows examples of hESC colonies that have been masked and
tracked by a motility protocol. Within a population of hESC colonies, three
behaviors were observed: (1) growing, (2) shrinking, and (3) dying. The tracking
module traces the path of the colonies, and those that showed growth had longer
paths than colonies that were shrinking or dying.

In Fig. 9.3d, e, displacement and total distance traveled were measured for
individual colonies in control and cigarette smoke treatment groups. All colonies in
the control group were healthy and growing, but 2 of 12 treated colonies (red
circles) were dead by the end of 48 h. For total distance traveled, measurements for
control colonies appeared to be clustered, while the treated colonies were more
variable, in part due to the presence of two dead colonies. For both the control and
treated groups, the total displacement was quite variable, suggesting there was no
directional movement in either group. A t test was performed on both parameters,
after removing measurements of dying colonies, and the results showed that the

174 S.C. Lin et al.



distance traveled and displacement of control and treated colonies were not sig-
nificantly different (p > 0.05).

hESC migration is an important process during development, as derivatives of
these cells must migrate during gastrulation to form the three germ layers properly
[22]. Therefore, although our cigarette smoke treatment did not affect migration of
hESC colonies, these two parameters can be useful in determining the effects of
other toxicants on pluripotent cell migration. Observed effects on total distance
traveled and displacement of colonies can be the first signs of potent chemical
effects on the cytoskeletal integrity of the cells.

Growing Shrinking Dying

(a) (b) (c)

Dying Colonies

p>0.05

(d)

Dying Colonies

p>0.05

(e)

Fig. 9.3 Migration of hESC colonies. a Masked phase contrast image of a growing hESC colony
during migration. b Masked phase contrast image of a shrinking hESC colony during migration.
c Masked phase contrast image of a dying hESC colony during migration. d, e Graphs showing
total displacement/distance traveled for each control and treated colonies. All CL-Quant masking
and tracking of colonies were done by applying a tracking recipe developed by our lab. CN control
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Video examples of hESC colony migration and CL-Quant masking can be
viewed by scanning the bar codes.

9.5.2 Migration and Gap Closure of mNSC and NTERA2
Cells

Single cell migration can be analyzed using a gap closure assay. This assay is
performed by growing a monolayer of cells, creating a gap in the middle of the
monolayer, and monitoring the time required for cells to migrate into the gap and
close it. The gap can be made using a pipette to remove a band of cells, but the sizes
of the gaps are not always uniform. As a result, the rate of closure may not be as
accurate and comparable among control and treated groups. We have used Ibidi
wound healing culture inserts (Fig. 9.4, Ibidi, cat#80241, Verona, WI) to make
uniform gaps. First, inserts were adhered to culture plates. Second, cells were plated
in each well of the insert, and when cells in the wells were confluent, the insert was
removed leaving a uniform gap (500 μm) between cells in each well. This method
works well with cells grown on plastic or glass, but not with cells grown on wet
coating substrates (e.g., Matrigel, poly-D-lysine, poly-L-lysine, and laminin)
because the adhesive at the bottom of the inserts will not stick.

Experiments using two types of cells, mNSC and NTERA2, are shown in
Fig. 9.5. Both cell types can be grown on plastic, and time-lapse videos of both cell
types were collected in the BioStation CT for 44 h. Images were collected every 4 h
and CL-Quant analysis was done for each frame by measuring the number of pixels
in the gap. The gap closure module, developed by our lab using the CL-Quant
software, includes a segmentation recipe to identify the gap between the two
populations of cells and a measurement recipe that counts the number of pixels in
the gap. An example of mNSC gap closure images is shown in Fig. 9.5a–c, and
CL-Quant masking of the same gap is shown in Fig. 9.5d–f. In the filmstrip, the gap
became smaller as the cells migrated toward each other. Gap closure analysis using
the CL-Quant software was validated using ground-truth obtained from the ImageJ
software for control and treated NTERA2 (Fig. 9.5g, h). While CL-Quant tended to

Ibidi Insert

Fig. 9.4 Diagram of Ibidi gap closure culture inserts
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overestimate area slightly due to some extension of the mask beyond the gap,
ImageJ and CL-Quant analyses produced similar results for both control and treated
groups. mNSC and NTERA2 cell migration experiments were analyzed with the
CL-Quant gap closure module (Fig. 9.5i, j). Gap closure was completed in about
16 h for the mNSC, while the NTERA2 cells required about 40 h to completely
close the gap. Migration of mNSC, but not the NTERA2, was significantly
inhibited by cigarette smoke (p ≤ 0.001 for 2-way ANOVA of mNSC data).

Although our gap closure analysis was done by measuring the pixels within the
gap, it can also be monitored by masking the cells. For certain cells that produce a
clear phase contrast image, this option may be easier and more accurate than
monitoring the gap.

Video examples of control and smoke treated single cell migration can be
viewed by scanning the bar codes.

9.6 Detection of Reactive Oxygen Species (ROS)
in Human Pulmonary Fibroblasts (HPF)

Exposure to environmental chemicals can lead to stress [9, 12, 26, 47], and ROS are
often produced in stressed cells [1, 19, 45]. ROS can damage macromolecules in
cells including proteins and DNA, and any factor that increases ROS would be
potentially damaging to a cell. It is possible to observe the production of ROS in
cells using fluorescent probes such as MitoSOX Red™ (Life Technologies, Grand
Island, NY). MitoSOX Red™ readily enters cells and is rapidly targeted to the
mitochondria. When oxidized by superoxide, it emits red fluorescence
(absorption/emission maxima = 510/580). MitoSOX Red™ can be preloaded in
cells and will fluoresce as levels of superoxide increase. Its fluorescent intensity is
related to the amount of superoxide in the cells.

In this example, hPF were disassociated from a culture vessel using 0.05 %
trypsin and then plated in the HiQ4 dishes coated with poly-D-lysine. After hPF
were allowed to attach for 24 h, cells were preloaded with 5 μM MitoSOX Red™
for 10 min at 37 °C in a cell culture incubator. Preloaded cells were washed with
culture medium and then either treated with cigarette smoke which induces ROS
production [47] or were left untreated (control). Dishes were placed in a BioStation
IM, which was programmed to capture images every 4 min for 10 h using both the
phase and red fluorescence channels.

b Fig. 9.5 Gap closure for mNSC and NTERA2 cells. a–c Phase contrast images of mNSC at
various 3 times during gap closure. d–f The same images after segmentation using a protocol
developed in our lab with CL-Quant software. g, h Graph showing rate of gap closure for control
(blue) and treated NTERA2 cells (red) and the corresponding ground-truth (dotted lines) obtained
using ImageJ. i Graph of mNSC migration by monitoring percent of gap closure over 44 h. j Graph
of NTERA2 cell migration by monitoring percent of gap closure over 44 h. Data are means and
standard errors of three experiments
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A protocol was developed using CL-Quant to analyze the level of MitoSOX
Red™ fluorescence in living cells. This was done by first developing a segmen-
tation procedure to identify fluorescence. An enhancement program was then used
to remove all debris and dead cells. The dead cells are highly fluorescent but round
and easily excluded from the analysis with a size-based enhancement filter.

Fig. 9.6 Production of reactive oxygen species in hPF. a–dMerged phase contrast and fluorescent
images at various times during incubation of control and treated hPF with MitoSox Red. e Graph
showing fluorescence intensity in control and treated cells over time. CN control
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The background was flattened, and the mask was applied and observed to determine
if it accurately covered each cell in the entire video. If the mask was not accurate,
the segmentation was refined until masking accurately covered all living cells in
each frame. CL-Quant was then used to measure the level of fluorescence in each
field of each video.

The above protocol was applied to time-lapse videos of control and cigarette
smoke treated hPF that were preloaded with MitoSOX Red™. Merged phase
contrast and fluorescent images of control and treated cells are shown at various
times in Fig. 9.6a–d. There are usually some highly fluorescent dead cells present in
each field at the start of an experiment. It is important to filter out the dead cells
before performing the analysis as they would contribute significantly to the
intensity measurements. The graph shows the intensity of the MitoSOX Red™
fluorescence in control and treated cells over 10 h of incubation (Fig. 9.6e). Control
levels remained low and relatively constant throughout incubation in agreement
with direct observation of the videos. In contrast, fluorescence increased signifi-
cantly in the treated cells. This increase begins at about 300 min of incubation and
continues until the end of the experiment. This method is useful for direct moni-
toring of ROS production in time-lapse images. It reports which cells produce ROS,
the relative amounts of ROS in control and treated groups, and the time at which
ROS is elevated. Statistical analysis showed that cigarette smoke treatment sig-
nificantly increased hPF ROS production over time (2-way ANOVA, p ≤ 0.001).

Video examples of hPF ROS production in control and treated cells can be
viewed by scanning the bar codes.

9.7 Detection and Quantification of Spontaneous Neural
Differentiation

Differentiation of stem cell populations is an essential and important process of
normal development. Many in vitro differentiation protocols have been established
to derive various cell types that can then be used for degenerative disease therapy,
organ regeneration, and models for drug testing and toxicology research [42]. In all
cases, the health, morphology, and differentiation efficiency of the cells are
important parameters that should be closely observed and evaluated. Here, we
provide an example of how differentiating mNSC are monitored over time and
derived neurons are quantified using the CL-Quant software. mNSC were plated in
12-well plates in NeuroCult™ Differentiation Medium (Stem Cell Technologies,
Vancouver, Canada) for 12 days. The plate was incubated in the Nikon BioStation
CT, and several fields of interest were randomly chosen for imaging every 24 h.
The NeuroCult™ Differentiation Medium supports the differentiation of three brain
cell types: (1) neurons, (2) astrocytes, and (3) oligodendrocytes. The morphologies
of these three cell types are very different in that neurons have long axons and small
cell bodies, and astrocytes and oligodendrocytes are flatter in appearance. As seen
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in Fig. 9.7a–c, phase contrast microscopy of the differentiating neural stem cell
population showed small, dark neurons sitting on top of a layer of flat cells. The
stark morphological differences can be used to quantify the number of neurons in
each frame. A segmentation recipe was developed using the CL-Quant software to

Fig. 9.7 Quantification of neurons in neural differentiation assay. a–c Phase contrast images of
mNSC at various times during incubation. d–f CL-Quant software masking of mNSC phase
contrast images to identify the neurons within each frame. g Graph showing quantification results
obtained using the CL-Quant software was similar to the ground-truth obtained using the ImageJ
software
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identify the darker and smaller neurons (Fig. 9.7d–f), and a measurement recipe was
used to count the number of neurons in each frame. We further validated our recipe
with ground-truth generated using the ImageJ software (Fig. 9.7g), and the number
of neurons identified in each frame using the video bioinformatics tool agreed
closely to the ground-truth data. Automation of the identification process is a
critical component for making future stem cell research more efficient and effective.

9.8 Discussion

This chapter gives four examples of how video bioinformatics tools can be applied
to experimental time-lapse data thereby enabling quantification of dynamic cellular
processes with attached cells that grow as colonies or single cells. Live cell imaging
is easily obtainable with modern instrumentation designed for culturing cells in
incubators equipped with microscopes [44]. Analysis of such data, as shown above,
can be done using professionally developed software tools [3] or tools developed by
end users with software such as CL-Quant [31, 44, 49]. However, any commercial
software may be limited in its ability to segment difficult subjects, in which case
custom software would need to be created [14–16, 21, 51]. In all of the examples
mentioned, use of video bioinformatics tools significantly reduced the time for
analysis and provided greater reproducibility than would normally be obtained with
manual human analysis. Although not demonstrated in this chapter, the power of
live cell imaging can be increased by multiplexing several endpoints together in one
experiment. For example, hESC or iPSC colony growth and migration can be
evaluated from the same set of video data, thereby conserving time and resources.

We demonstrated how video bioinformatics tools were used to evaluate the
effects of cigarette smoke on dynamic processes (growth, migration, and ROS
production) in cultured cells. Many in vitro toxicological assays (e.g., MTT, neutral
red, and lactic dehydrogenase assays) are useful and effective in evaluating
chemical potency. Several recent studies from our lab effectively used the MTT
assay to screen the toxicity of various electronic cigarette fluids with embryonic
stem cells, mNSC, and hPF [4, 6, 7, 50]. Due to the sensitive nature of hESC
cultures, a new 96-well plate MTT protocol was also established for pluripotent
cells, which allows exact numbers of cells (in small clumps) to be plated from well
to well [6, 7]. While these in vitro assays are relatively quick and efficient, they
provide a single endpoint at one time/experiment, and the cells are often killed to
obtain the endpoint. As a result, dynamic changes in cell behavior and morphology
are not observed, and potential data are lost. In both basic research and toxico-
logical applications, examination of video data can reveal changes in cell dynamics
as well as rate data that are not gathered by single time point analysis. By deter-
mining specific processes that are altered during treatment, the mode of action and
cellular targets may be identified. As an example, motility of mNSC, but not of
NTERT-2 cells, was affected by cigarette smoke, suggesting that the cytoskeleton is
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more sensitive to smoke exposure in the former cells. Observations made from
time-lapse video data also provide insight on when during exposure chemicals
affect dynamic cellular processes.

Although this chapter presented toxicological applications of video bioinfor-
matics tools, other biological disciplines can benefit from this approach. For
example, Auxogyn, Inc. has established a method to determine the health of early
human embryos using time-lapse microscopy and an automated embryo stage
classification procedure [48, 51]. The protocol employs a set of learned embryo
features that allow 88 % classification accuracy of embryos that will develop to the
blastocyst stage. This advancement is being used in in vitro fertilization (IVF)
clinics to help physicians transfer only healthy embryos with the capacity to
develop into blastocysts. This not only increases IVF success rates, but decreases
the chance for multiple births that often result in unhealthy children. In June 2013,
Auxogyn announced the birth of the first baby to be born in an IVF clinic that used
the “Early Embryo Viability Assessment” (Eeva) test to select the best embryos for
transfer (http://www.auxogyn.com/news.2013-06-14.first-auxogyn-baby-born-in-
scotland.php).

The use of video bioinformatics tools will also be important when monitoring
the health of cells that will eventually be used in stem cell therapy. In the future,
stem cells grown for transfer to patients will be cultured over long periods during
passaging and differentiation making them costly in time and resources. Therefore,
it is important to monitor the culturing process using time-lapse data to verify that
cells are healthy and robust throughout in vitro culture and differentiation. It will be
important to have noninvasive monitoring systems for stem cell applications in
regenerative medicine. If a problem develops during expansion and culturing of
cells used in therapy, experiments can be terminated and restarted to assure that
only cells of excellent quality are transferred to patients.

Time-lapse data are also used in basic studies of cell biology. Qualitative and
quantitative analysis of video data have revealed information on dynamic cellular
processes [18, 20, 27], such as spindle formation during mitosis, actin protein
dynamics in cells, and gamete fusion [5, 23, 39]. Video data can also be used to
study cell processes that occur rapidly and are not easily understood by direct
observation, such as the acrosome reaction of lobster sperm [46]. Frame-by-frame
analysis of the acrosome reaction enabled each step during acrosomal eversion to be
analyzed and further enabled quantitative measurement of the forward movement of
sperm during the reaction. Time-lapse video microscopy has also been used to
study the process and rate of oocyte cumulus complexes pick-up by explants of
hamster oviducts [43].

New instrumentation, such as the Nikon BioStation CT/IM, provide long-term
stable incubation conditions for live cell imaging and enable acquisition of better
quality data than possible in the past. Improved methods for live cell imaging
coupled with video bioinformatics tools provide a new technology applicable to
numerous fields in the life sciences.
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Chapter 10
Video Bioinformatics: A New Dimension
in Quantifying Plant Cell Dynamics

Nolan Ung and Natasha V. Raikhel

Abstract Microscopy of plant cells has evolved greatly within the past 50 years.
Advances in live cell imaging, automation, optics, video microscopy, and the need
for high content studies has stimulated the development of computational tools for
manipulating, managing, and interpreting quantitative data. These tools automati-
cally and semiautomatically determine, sizes, signal intensities, velocities, classes,
and many other features of cells and subcellular structures. Quantitative methods
provide data that is a basis for mathematical models and statistical analyses that lead
the way to a quantitative systems outlook to cell biology. Four-dimensional video
analysis provides vital data concerning the often ignored temporal dynamics within
a cell. Here, we will review studies employing technology to detect regions of
interest using segmentation, classify data using machine learning and track
dynamics in living cells using video analysis. Many of the live cell studies pre-
sented would have been impractical without these advanced computational tech-
niques. These examples illustrate the utility and potential for video bioinformatics
to augment our knowledge of the dynamics of cells and cellular components in
plants.

10.1 Introduction

Video bioinformatics is a relatively new field which can be described as the
automated processing, analysis, and mining of biological spatiotemporal informa-
tion from videos obtained [1]. Advancements in the field of computer vision have
given biologists the ability to quantify spatial and temporal dynamics and to do so
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in a semi automatic and automatic manner. The challenges that arise from bioimage
informatics become increasingly more complicated with the addition of the time
dimension. Both techniques share very similar applications and challenges
including detection of regions of interest (ROIs) via segmentation, registering
images, subcellular localization determination, and dealing with large amounts of
image data. Here we will discuss the challenges in plant cell biology that can be
addressed using automatic quantitative tools such as image and video bioinfor-
matics and the current shortcomings that need to be improved upon as we continue
to discover and describe dynamic biological phenomena at the cellular level.

Most of the image data collected to date have been interpreted subjectively,
allowing for personal interpretation and a loss of objectivity [2]. In the pursuit of
biological discovery, we strive for objectivity and quantitative data that we can
manipulate and use to better uncover genuine biological phenomena versus artifacts
or biased results. Phenotypes can be continuous and cover a large spectrum, for
example, when using chemical genomics to dissect conserved cellular processes [3].
Varying concentrations of bioactive compounds or drugs can illicit proportional
phenotypes [4]. Therefore, the need for quantitative image and video data is
essential when interpreting data on any time scale.

Ultimately, the quantified data demonstrate the most utility when subjected to
statistical analysis. Therefore, it makes sense to quantify enough data to allow for a
statistically valuable sample size. This often requires large amounts of data that
need. Additionally, high-throughput screens have much to gain from using quan-
titative metrics to screen for valuable phenotypes [5]. To meet these challenges in a
practical manner, quantification needs to be automated. Automation provides
decreased analysis time, and allows for reduced inter and intrauser variability. The
ability to provide a consistent analysis from sample to sample provides more
reliable data. Reliable data are essential to fully understand the nature of any
dynamic subcellular process. Dynamic cellular phenomena such as cell division,
lipid dynamics, plant defense processes, and cell wall biosynthesis, often require the
measurement of various static and dynamic features [6, 7, 8]. The automated
detection, tracking, and analysis of these regions of interest summarizes the major
goals of video bioinformatics in a cell biological context.

Live cell imaging has become an indispensable tool for discovery throughout the
basic and applied sciences. This relatively recent technique has allowed for
real-time observation and quantification of dynamic biological processes on the
scale of nanometers to meters and milliseconds to days [9]. The advent of green
fluorescent protein (GFP) has ignited a live cell imaging revolution and has sub-
sequently enabled the capturing of in vivo spatial and temporal dynamics [10].
Because of their versatility, GFP and its derivatives have become ubiquitous in
molecular and cell biology generating large quantities of image and video data.
Many of the technical advancements in bioimaging have come from a prolific
collaboration between the biological sciences and engineering. The cooperation of
these two disciplines has produced indispensable tools to cell biology such as the
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laser scanning confocal microscope [11], spinning disk confocal microscope [12],
mulptiphoton microscope [13], variable-angle epifluorescence microscope (VAEM)
[14], and STORM [15] to name a few. All of these imaging modalities produce
large quantities of complex multidimensional data. Scientists need to work together
with engineers to dissect, manage, manipulate, and ultimately make sense of the
image data collected. Practitioners of both disciplines, while still working to
improve the acquisition hardware, are also working together to manage and analyze
the large amounts of quantifiable image data.

The traditional method of quantifying image data is to manually draw regions of
interest containing the biologically relevant information. This manual measurement
is the most popular method of image quantification. Software tools including
ImageJ and spin-offs of ImageJ such as Fiji are free [16]. Subcellular phenotyping is
time consuming and impractical when performing high-throughput screens, which
are necessary for most cell biologists. This data load is only increased when ana-
lyzing videos. A recent push toward automation has favored the use of automated
microscopes, and robots that perform automated high-throughput sample prepara-
tion [17]. This has lead to the development and implementation of and automated
semiautomated tools that require modest to little user input [18, 19]. Automated
methods can be more consistent and faster since the user does not have to provide
information. However, this lack of user input can also lead to reduced flexibility and
robustness. On the other hand, semiautomated methods are flexible and possibly
more robust due to user input, but can often be slower because the user has to
provide prior information to the software. As this analysis becomes more user
friendly and practical, the ability to apply a single software tool to multiple bio-
logical problems including multidimensional data, will be favored by the biologist
thereby most likely favoring the semiautomated methods.

Bioimage informatics has experienced a recent surge in popularity due to the
advent of automated microscopes and the subsequent burst of image data.
Engineers had to develop methods to manage and interpret large amounts of image
data generated by these automated systems. Bioimage informatics relies on several
engineering disciplines including computer vision, machine learning,
image-processing image analysis and pattern recognition [20]. The application of
theses methods aids biologists is rapid detection, quantification, and classification
of biological phenomena. Bioimage informatics is generally concerned with
two-dimensional data, in the x and y planes, though it is possible to deal with
three-dimensional, X, Y, and Z, and four-dimensional data X, Y, Z, and frequency
domain [21]. Using these dimensions, data can be accurately extracted when
computational techniques are properly applied.

Here we discuss the application of three fields of computer vision as they pertain
to plant cell biology including, segmentation, machine learning, and video analysis,
while highlighting the recent advances that were possible due to the collaboration of
biologists and engineers.
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10.2 Segmentation: Detecting Regions of Interest

Ultimately, biologists want to be able to extract data from acquired multidimen-
sional images. However, the biologist needs to be able to identify those subregions
within the image that hold the most data and that are therefore more important. As
expert biologists, we can accurately identify the interesting regions of an image
intuitively. Segmentation is the process of partitioning the regions of an image into
segments [22]. Before we can extract data, we must first detect the objects or
regions that are biologically meaningful. Biological images are acquired with
various modalities and therefore one segmentation method is not going to be
effective for all cases Specialized methods must be applied to each case. Much
progress has been made in the domain of confocal microscopy. Bright fluorophores
allow for high-contrast images that facilitate robust segmentation. In the realm of
plant cell biology, many organelles and protein localization sites resemble bright
spots or blobs. This is due to the light diffraction limit which limits the resolution of
light microscopy at 250 nm, making small objects appear as fuzzy blobs [23].
Quantifying the number or size of these bright blobs is often done manually and can
take several days. Simple segmentation can greatly improve this process which can
then lead to feature extraction in both static and dynamic datasets.

Static 2D images are by far the most popular type of microscopy data to analyze
because of their relatively short acquisition and analysis time. The majority of
subcellular imaging is focused on the localization of proteins of interest. Using
fluorescent markers fused to proteins of interest and dyes, cell biologists can
understand the proteins that are involved with biological processes by monitoring
the abundance, size shape, and localization within organelles. Organelles are of
interest to cell biologist because of their diverse and extremely important roles in
plant development, homeostasis, and stress responses. Automatic tools are being
developed and used to quantify protein localization and spatial features of discrete
compartments [24]. Organelles often manifest as punctate dots when imaged using
fluorescent confocal laser scanning microscopy. These dots are then quantified per
cell area and features extracted such as area, intensity, and number of compartments
[19]. Salomon et al. used such a tool to quantify the response of various
endomembrane compartment to bacterial infection, cold stress, and dark treatment
[25]. Crucial information can also be garnered from the cells themselves. Cell
borders can be detected when labeled and size as well as shape information ana-
lyzed automatically [25]. This information can then be used to track cell growth and
development. Segmentation is the first crucial step to extracting quantitative
information from live cell imaging data.

Cells exist in four dimensions, X, Y, Z, and time. If cell biologists want the full
complement of information from imaging data, we have to consider all four of these
dimensions. Collecting and processing 3D data is computationally more expensive
and more difficult to manage but can yield a greater understanding of spatial
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information. Most confocal microscopes can easily collect data in the Z direction
and 3D reconstructions are relatively easy to do now with the capable software.
Most of the images captured of dividing plant cell are two-dimensional leaving out
the critical third dimension. Miart et al. used 3D constructions of a growing cell
plate to understand the role of cellulose synthase complexes in cell plate formation
by analyzing time lapse video data of fluorescently labeled cellulose synthase
complexes [26]. Although these analyses did not take advantage of automated
quantification, the visualization of the 3D cell plate greatly contributed to the
understanding of how cellulose synthase complexes (CESAs) are involved in cell
plate formation [26]. Quantifying temporal dynamics in a study such as this would
lend insight into how fast this process happens and perhaps how the population of
CESA complexes shifts from a homeostatic role to an actively dividing role.

Four-dimensional data including 3D movies of cellular phenomena, will become
more popular as the tools to analyze this data become more sophisticated and more
user friendly. Automated 4D analysis tools are already being used by cell biologists
to analyze trichome development [9]. This system extracts the leaf surface, seg-
menting the mid-plane of the young leaf and detects the developing trichomes using
a Hough transform which can detect circles [27]. One 3D image is registered to the
next 3D image in the time series to maintain consistency and to track and compare
its growth over time [28]. These tools will need to be adapted from analyzing gross
morphology to tracking moving cellular structures over time.

10.3 Machine Learning Allows Automatic Classification
of Cellular Components

Machine learning is a subdiscipline of artificial intelligence that is focused on the
development of algorithms that can learn from given data [29]. These methods often
require the use of training data and user input to learn how the data should be
classified. Training the algorithm allows it to correctly identify the class to which
each sample belongs. A simple example is the spam filter on most email accounts
that can discern between those messages that are spam and those that are important.

A logical application of machine learning in cell biology was determining the
subcellular localization of fluorescent markers based on extracted features.
Traditionally, cell biologists have to colocalize their protein of interest and markers
of known localization to determine where the protein is located. Biologists could
simply analyze a confocal micrograph with a machine learning program and receive
the location of their protein of interest. An additional advantage to the machine
learning methods over traditional cellular methods, other than reduced time is that
these methods provide statistics as to how likely the determined localization is to be
true [30]. Though there seems to be reasonable progress in determining subcellular
localization using machine learning, the biological community has yet to adopt the
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methodology. Prediction of subcellular localization will streamline experimental
design and support traditional colocalization assays.

Machine learning is a powerful tool for gene discovery and organelle dynamics.
It can help uncover relationships that we otherwise could not. Because organelle
dynamics can be complex and variable, it is valuable to simplify dynamics. Using
Baysian networks, Collinet et al. found that endosome number, size, concentration
of cargo, and position are mediated by genetic regulation and not random [31].
Furthermore, they used this method to discover novel components regulating en-
docytosis by clustering endocytic phenotypes caused by screening siRNA libraries
[31]. Statistical analysis was similarly used to summarize and classify
organelle movement in Arabidopsis stomata (Higaki 2012). The result is an atlas
of organelle movement in stomata that can be compared to various conditions.
Organelle movement patterns were compared between open and closed stomata
revealing differences in ER position in response to stomatal opening. These new
findings emphasize the need for statistical methods to manage complex data and
present this data in forms we can easily understand and manipulate.

Though we are interested in cell autonomous processes, cells do not exist in a
vacuum. We are also interested in how a cell influences the development and
function of its neighboring cells. To address this challenge, segmentation coupled
with machine learning was used to jointly detect and classify cell types in whole
tissues. three-dimensional images of propidium iodide stained roots were used to
automatically find cell files in longitudinal and transverse sections using watershed
segmentation and a support vector machine to classify cell types [32]. An alter-
native approach used histological sections of Arabidopsis hypocotyls to differen-
tiate tissue layers and predict the location of phloem bundle cells [33]. The true
utility of these tools will be realized when they are used to compare wild-type cell
profiles with mutants, possibly being used in large content screening.

10.4 Quantifying Temporal Dynamics Adds a New
Dimension of Data

Once an object has been detected and classified, it is often very important to follow
its movement through time and space. This extremely important problem of
tracking has been tackled by many engineers developing the field of computer
vision. A multitude of tools are available for tracking cells and organelles, most of
these being manual and semi automated [19]. Tracking organelles are difficult
because rarely do they have a straight forward movement model. It is because of the
diversity and variability of tracking problems that semiautomated methods are the
most widely used. Common problems include object moving out of the plane of
focus when using 2D images. It is because of this issue that 3D movies are such
valuable data sets [34]. Therefore, automatically tracking object in a 3D image set is
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an invaluable tool [35]. Other challenges include maintaining identity when two
objects fuse or break off from one another, and maintaining multiple tracks at the
same time. A perfect tracking algorithm would overcome all of these problems,
while maintaining minimal user input and accurate segmentation.

The purpose of quantifying movement and movement patterns is to gain useful
biological insight such as diffusion rates, types of motion including Brownian
motion, non-Brownian motion, confined motion, directed motion, or anomalous
diffusion [36]. Ung et al. correlated multiple dynamic features which suggested that
when tobacco pollen tubes where treated with specific bioactive compounds the
contained Golgi bodies increased in size and this increase in size was correlated to
an increase in signal intensity and a decrease in straightness suggesting that these
were possibly multiple fused Golgi and that this fusion disrupted movement [19].
Similar correlations were made by collinet et al. when examining endocytosis in
mammalian cells [31]. Indeed these data are consistent with the hypothesis pro-
posed by Hamilton et al. (2007) including conservation of surface area, measure-
ment of volume, flux across a membrane, the role of pressure and tension and
vesicle fusion. These biological details would not be obtainable without quantitative
video analysis.

Although each challenge was presented separately, they are by no means
mutually exclusive. The vast majority of image analysis problems require identi-
fication of regions of interest before they can be quantified, tracked, or classified.

10.5 Opportunities for Innovation in Cellular Video
Bioinformatics

As video bioinformatics tools become increasingly accurate and biologist friendly,
they will be more widely used in biological studies. The future of video analysis is
moving toward automatic quantification of cellular dynamics in four dimensions
(3D time lapse images). The amount of data that can be extracted from 3D movies
will increase with the availability and ease of use of software. Biologists will be
able to quantify difference in movement possibly identifying underlying principals
of movement and other components essential to cellular dynamics. As these video
analysis tools become more fully automated, it will be more practical to screen for
factors that influence dynamics. In this manner, biologists will be able to directly
screen for changes in cellular dynamics.

Creating the tools to quantify cellular dynamics is futile unless biologists use
them to produce data. The pipeline from engineer to the biological community
needs to be stronger. This could be enhanced by taking advantage of open source
repositories of image analysis tools. A small pool of these repositories currently
available and will grow in popularity as the need for these programs becomes
greater [37]. As we take advantages of quantitative methods we will produce large
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amounts of data that has the potential to fuel mathematical models or other future
studies [38]. Many mathematical models require know numerical parameters to be
of use.

As live cell imaging modalities and acquisition methods become more advanced
including super resolution methods and as biological systems change, our analysis
methods will to have to adapt. In the future, these efforts will be spearheaded by a
handful of interdisciplinary scientists that will be trained in biological principals,
experimental design, computer programming, and image analysis’s tool design.
Future biologists will have to be well-versed in computer programming basics and
be able to design tools that are applicable to their specific research topic, while
having a basic understanding of the appropriate algorithms all while being able to
communicate with engineers. Engineers on the other hand, will have to understand
biological limitations, know which features are useful, experimental design, and
acquisition methods (Figs. 10.1, 10.2 and 10.3).

Fig. 10.1 Pattern recognition of membrane compartments in leaf epidermal tissue at cellular and
subcellular resolution. Merged confocal laser microscopic images show Arabidopsis leaf
epidermal cells. Top section GFP-2xFYVE plants were imaged at 403 magnification (scale bar
= 20 mm) and images analyzed by the endomembrane script. Bottom section GFP-PEN1 plants
were imaged at 203 magnification (scale bar = 50 mm) and images analyzed by the plasma
membrane microdomain script. a and b, Merged pseudo images. c and d, Recognition of
epidermal cells is shown by colored lines. e, Recognition of GFP-2xFYVE-labeled endosomal
compartments is shown by colored circles. f, Recognition of (b). Graminis induced GFP-PEN1
accumulation beneath attempted fungal entry sites (indicated by arrowheads) is shown by colored
circles. Color coding is random, different colors indicate individual cells compartments [25]
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Chapter 11
Understanding Growth of Pollen Tube
in Video

Asongu L. Tambo, Bir Bhanu, Nan Luo and Zhenbiao Yang

Abstract Pollen tubes are tube-like structures that are an important part of the
sexual reproductive cycle in plants. They deliver sperm to the ovary of the plant
where fertilization occurs. The growth of the pollen tube is the result of complex
biochemical interactions in the cytoplasm (protein–protein, ions, and cellular
bodies) that lead to shape deformation. Current tube growth models are focused on
capturing these internal dynamics and using them to show changes in tube
length/area/volume. The complex nature of these models makes it difficult for them
to be used to verify tube shapes seen in experimental videos. This chapter presents a
method of verifying the shape of growing pollen tubes obtained from experimental
videos using video bioinformatics techniques. The proposed method is based on a
simplification of the underlying internal biological processes and their impact on
cell morphogenesis. Experiments are conducted using videos of growing pollen
tubes to show the model’s performance.
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11.1 Introduction

Biological systems are complex naturally occurring systems. Attempts to understand
their behavior often involve laboratory experimentation to identify key substances
(proteins, ions, etc.), parts of the organisms, and whatever relationships exist between
them. These relationships involve, but are not limited to, signaling pathways between
system parts and how these parts respond to and affect changes in their environment.
To simplify this task, scientists search for relatively simple organisms/systems, ter-
med ‘model organisms’, which are representative of more complex systems.
Experiments are conducted onmodel organism in hopes of gleaning knowledge about
the behavior ofmore complex systems. Pollen tubes are a goodmodel system, not only
because they are essential for plant reproduction, but also because they grow through
localized cell wall expansion (apical growth) rather than uniform cell wall expansion.

In recent years, growth models have been presented to address the complexity of
apical growth [1–5]. Each model explains polar growth in pollen tubes by capturing
different cellular processes in the form of differential equations that describe the
various interactions that lead to growth: protein–protein interactions, ion dynamics,
turgor pressure, cell wall resistance, etc. Depending on the readers’ background,
any of the above models can prove challenging to understand. The models in [1, 2]
focus on transport phenomena while [3, 5] focus on the physics of the cell wall and
how it is deformed by turgor pressure. Using equations, they all explain what is
known about different aspects of the growth process. Owing to the complex nature
of the problem, the above models suffer from one major limitation: verification of
the model with experiments, i.e., using the model to explain/predict the dynamics of
variables in experimental videos. Such a task would involve making accurate
measurements from the images, parameter estimation to determine variable values,
and/or statistics of unobservable variables. The model presented in this chapter is
based on aspects of the tip growth process that are unobservable as well as
observable phenomenon whose behavior can only be approximated.

The rest of this chapter is organized as follows: Sect. 11.2 gives a detailed outline
and comparison of three of the above models, and the motivation for a simplistic,
intuitive, video-based model. Section 11.3 details the technical approach of the
model with relevant equations and assumptions. Section 11.4 covers experimental
results and discussion of these results, and Sect. 11.5 concludes the chapter.

11.2 Related Work and Motivation

11.2.1 Related Work

Available models of pollen tube growth are predictive in nature. They are mainly
used to predict what the effect of changing the values of one or more variables will
have on the growth behavior of the pollen tube. As Fig. 11.1 shows, cell growth is
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the end result of a sequence of reactions that get more complex as one digs deeper.
In order for the cell to grow, there must be available material. The availability of
cell wall material is controlled by internal cellular dynamics (protein–protein
interactions, ion concentrations and reaction rates, etc.). As a result of this com-
plexity, current models approach the problem from different angles and make
assumptions about the behavior/values of other un-modeled parameters. In this
section, we shall examine some of these models and their assumptions.

In [1] the authors present a model for cell elongation that can be said to cover
parts A, B and C of Fig. 11.1. Growth is represented as an increase in cell tip
volume due to the expansion/stretching of a thin film that quickly hardens to form
new cell wall. As a result of positive changes in osmotic and turgor pressure
between the cell and its surroundings, water enters the cell and induces a stress–
strain relationship at the tip. This causes stretching of deposited cell wall material.
To prevent the thinning of the cell wall, this stretching is balanced by a material
deposition system. The interplay between stretching and deposition determines and
maintains the thickness of the cell wall.

Similarly, the authors of [3] present a model that focuses on parts A and B of
Fig. 11.1. This model represents growth as a result of internal stresses (in two
principal directions) that deform the cell wall and lead to various cell shapes. The
cell wall is represented as a viscous fluid shell. Cell wall thickness is maintained by
local secretion of cell wall material. This secretion rate is maximal at the apex of the
cell and decreases in the direction of the shank. With simulations, the authors show
that cell radius and velocity can be determined as a function of turgor pressure.

In [5] a growth model is presented based solely on the rheology of the cell wall.
Cell growth is modeled as the stretching of a thin viscoplastic material under turgor
pressure. The stress–strain relationship is modeled after Lockhart’s equation [6] for
irreversible plant cell elongation. Like in [3], this model focuses on the physics of
cell wall deformation and requires material deposition to maintain wall thickness.
Simulations show that various shapes can be observed using this model.

11.2.2 Motivation

The models presented above take different approaches to solving the problem of tip
growth in pollen tubes. They all take into account certain aspects of the process that are

Fig. 11.1 Separation of the growth process into key blocks. Cell growth requires the deposition of
new cell wall material. This deposition is controlled by internal cellular dynamics, which are by far
the most complex part of the process
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universally agreed upon: turgor pressure is necessary for growth, and deposition of
material is needed to maintain cell wall thickness. Each model can be used to predict
how cell growth varies under certain conditions prior to conducting an experiment.
This is a useful tool in understanding the effects of variables in a complex system.

The main limitation of these methods is that they are not used to determine
parameter values for a given experiment, i.e., they are neither used to determine
variable behavior/values during the course of an experiment nor to check whether the
behavior of un-modeled variables agrees with model assumptions. In the next section,
we develop a model that is capable of accounting for changes observed in experi-
mental videos of growing pollen tubes. The model leverages underlying biology in
the development and unification of appropriate functions that explain tip growth.

11.3 Technical Approach

As indicated above, pollen tube growth involves a complex series of interactions
between cell organelles and their environments. Modeling cell growth is an attempt
to express the interactions between several variables (ion and protein concentra-
tions, turgor pressure, wall stress/strain, rate of exocytosis/endocytosis, cell
length/volume, etc.) over time with a system of mathematical equations, usually
differential equations. A proper solution to such a system would require experi-
mental data of how these variables are changing. Some of the readily available
variables include cell length/volume and ion/protein concentrations. Those vari-
ables whose behavior cannot be readily observed are therefore inferred.

This section presents a model to account for cell growth using a minimal number
of variables while inferring the behavior of other components. Section 3.1 covers
the behavior of the protein ROP1, which is key in pollen tube growth. Section 3.2
covers tube elongation (growth) as a resource-consumption process whereby
material deposited at the cell wall via exocytosis is used for growth. Although this
is commonly known, the above models do not explicitly take advantage of it.

11.3.1 Dynamics of ROP1-GTP Protein Determines Region
and Start of Exocytosis

It is accepted among the pollen tube community that pollen tube growth requires the
deposition of material to maintain the thickness of the cell wall. If the rate of cell
expansion is greater than the rate of cell wall reconstruction, then the thickness of
the cell wall reduces. This leads to bursting at the cell tip. On the other hand, if the
rate of cell wall reconstruction is greater, then the cell wall thickens and inhibits
growth. So the availability of cell wall material is crucial in maintaining cell
integrity. This material is deposited by vesicles that have travelled from within the
cell to the site of exocytosis.
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The authors of [7, 8] have shown that the localization and concentration of the
active form of the protein ROP1 (ROP1-GTP) indicates the region of exocytosis.
As shown in Fig. 11.2, the localization of active ROP1 promotes the synthesis of
proteins whose dynamics contribute to both positive and negative feedback of
ROP1-GTP. Positive feedback of ROP1-GTP leads to an increase in localized
concentrations of ROP1-GTP. In images, this is represented by an increase in
localized brightness. It is considered that the assembly of the F-Actin network
contributes to vesicle accumulation at the site of exocytosis. Negative feedback of
ROP1-GTP is believed to contribute to an increase in the concentration of apical
Ca2+. Ca2+ may also accumulate at the tip due to stretch-activated pores during cell
growth [9]. Accumulation of Ca2+ destroys the F-Actin network and fosters the
conversion of ROP1-GTP into ROP1-GDP. When this occurs, there is a drop in
brightness of the fluorescing pollen tube. We consider this event to be the signal
that starts exocytosis. During exocytosis, accumulated vesicles fuse with the cell
membrane, adding to the surface area of the cell membrane, and releasing their
contents to the cell wall. This idea is supported by the authors of [10], who show
that exocytosis in pollen tubes leads to an increase in tube growth rate.

In this study, we consider that the dynamics of apical Ca2+ cannot be observed,
but its influence can be seen in the accumulation/decay profile of ROP1-GTP. We
represent the dynamics of ROP1 as a 2-state (accumulation and decay states)
Markov process. We also consider that the transition from accumulation to decay is
the signal for the start of exocytosis as this coincides with the destruction of the
F-actin network (Fig. 11.3).

Fig. 11.2 The dynamics of ROP1 in both the active form (-GTP) and the inactive form (-GDP). In
positive feedback (left-to-right), ROP1-GTP promotes RIC4, which promotes the assembly of the
F-Actin network that conveys ROPGEF to the sites of ROP1-GTP. ROPGEF converts ROP1-GDP
to ROP1-GTP. In negative feedback (right-to-left), ROP1-GTP promotes RIC3, which promotes
Ca2+ accumulation. Ca2+ destroys the F-Actin network and stops the transportation of ROPGEF.
With diminished localized concentration of ROPGEF, global conversion of ROP1-GTP into
ROP1-GDP prevails
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11.3.2 Growth as a Resource-Consumption Process

Geometrically, the pollen tube can be divided into two main parts: the shank and the
tip. The shank is the cylindrical part of the tube while the tip is the hemispherical
part. As the tube grows, the tip moves forward leaving behind a wall that forms the

shank. Let X ¼ xi
yi

� �
; i ¼ 1; . . .;N

� �
be the set of points along the tip of the tube,

and assuming that the cell is elongating vertically. Then there exist an affine
transformation that will project the tip points at time (t − 1) to the next shape at time
t, i.e.,

X tð Þ ¼ A t � 1ð Þ T
~0 1

� �
X t � 1ð Þ; ð11:1Þ

where A(t) is a (2 × 2) matrix of rotation, scale, and shear parameters, T is a
2-dimensional normally distributed random variable that represents system noise,
and Xð:Þ is a (2 × N) matrix of tip points. The matrix A can be decomposed into its
component parts using QR-decompositions into a product of a rotation matrix (R)
and an upper-triangular matrix U:

A ¼ R � U ð11:2Þ

The matrix U can be further decomposed into a product of scale and shear
matrices. Put together, A can be written as

A tð Þ ¼ R
1 cðtÞ
0 1

� �
aðtÞ 0
0 bðtÞ

� �
; ð11:3Þ

where a(t), b(t) represent scaling factors that control expansion (x-direction) and
elongation (y-direction), and c(t) is a shear parameter that controls the turning of the

Fig. 11.3 Representation of ROP1-GTP activity as a 2-state Markov process. The transition from
accumulation-to-decay is assumed to be the signal for the start of exocytosis, which leads to
growth
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tip. R is a 2� 2ð Þ rotation matrix whose impact is a result of system noise. The
elongation and expansion of the cell are governed by

xf
yf

� �
¼ a 0

0 b

� �
xi
yi

� �
! a� 1 ¼ _�x ¼ _/rh

b� 1 ¼ _�y ¼ _/rs

�
; ð11:4Þ

where ϕ is the extensibility of the cell wall, �i; ri are the strain and stress,
respectively, in the ith-direction as depicted in Fig. 11.3. Similarly,

xf � xi
yi

¼ c ð11:5Þ

The stress/strain relationship used above was proposed by Lockhart [6].
A similar equation is used in [5, 11]. We consider that the cell is made extensible
due to the stretching of weakened cellulose fibers in the cell wall caused by exo-
cytosis. We also assume that deposited material is used to restore the fibers to their
original thickness, thus maintaining the thickness of the cell wall. To represent this
resource-consumption process, we use the Gompertz function, which is one of
several specific cases of a logistic function. Logistic functions have been used
extensively in studies of population growth [12, 13]. The choice of the Gompertz
function limits the logistic function to 2 parameters. Thus, we consider that cell wall
extensibility is governed by

_/ tð Þ ¼ �r/ tð Þ ln K
/ tð Þ

� �
; ð11:6Þ

where ϕ(t) denotes the extensibility of the cell wall over time, K ≥ 0 is the maxi-
mum attainable extensibility of the cell wall, and r is the extension rate of the cell
wall. The growth rate depends on a number of factors that include the rate of
exocytosis and the rate of cell wall reconstruction. Since these quantities cannot be
measured in experiments, we assume that the rate of cell stretching is proportional
to the rate of exocytosis (material deposition). This ensures that the thickness of the
cell wall is maintained.

Since we assume that the thickness of the cell wall is kept constant, the change in
length of the cell is related to the volume of material deposited by vesicles during
exocytosis. A measure of the number of vesicles that were involved in exocytosis is
given in [14] by considering that tip growth adds cylindrical rings of the same
thickness as the cell wall at the tip/shank junction. To determine this ratio we use
the change in the circumference of the points along the tip. The rate of vesicle
deposition becomes

d
dt
N tð Þ ¼ 3

8
Rtd
r3v

d
dt
hðtÞ; ð11:7Þ

where Rt is the radius of the tip/shank junction, δ is the thickness of the cell wall,
h is the change in the circumference of the tip, and rv is the radius of a vesicle.

11 Understanding Growth of Pollen Tube in Video 207



11.3.3 Video Analysis

The above equations are used to determine the dynamics of the described variables.
So far, the prescribed method works best with videos of growing pollen tubes
showing fluorescent markers for ROP1. Given one such image, the contour of the
cell is segmented from the background. The fluorescence along the cell contour is
measured and used to segment the cell into tip and shank regions. The average
fluorescence of the tip, favgðtÞ, (Table 11.1, line 4) is also recorded. Cell shape
analysis begins when a maxima turning point is detected in favgðtÞ. Let this maxima
turning point be at time ta [ 0. The line separating the tip and the shank at the time
of the maxima turning point is used to separate future shapes into tip-shank regions.
Given that ta is the start of the growth process, we implement an initialization phase
(Table 11.1, line 6bi) requiring a delay of three frames, i.e., the cell tip is detected
from two consecutive images in a set of three images and used to determine the

Table 11.1 Pseudo-code for video analysis of growing pollen tubes
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values of a(t), b(t), c(t). Using these values, predictions for the transformation
parameters for the next time are made as

a tþ 1ð Þ ¼ 1
3

Xt

i¼maxð0;t�2Þ
aðiÞ ð11:8Þ

Equation (11.8) applies for b(t + 1) and c(t + 1).These predictions are used to
transform/grow the cell tip.

If the error between the predicted cell tip and the detected tip is greater than a
prescribed threshold, the predicted shape and the predicted values for a(t), b(t), and
c(t) are corrected. This correction involves computing the transformation that takes
the predicted shape to the measured shape. The values for scale and shear
parameters extracted from this new transformation are used to update their
respective current values. This process continues until a new maxima is detected in
favgðtÞ, at which point, the method resets (Table 11.1, line 6a).

11.4 Experiments

In this section, we present the results of using the above method to analyze a video
of a growing pollen tube. The pollen tube grows from pollen grains taken from the
plant Arabidopsis thaliana. This plant is considered a model plant for pollen tube
study because it grows quickly and its entire genome is known. Since the genome is
known, mutants can be easily made and studied to understand the effect of
proteins/ions on the growth process.

11.4.1 Materials and Methods

Arabidopsis RIP1 (AT1G17140, also named ICR1) was fused with GFP on the
C-terminus and used as a marker of active ROP1. The RIP1-GFP fragment was
fused into a binary vector pLat52::NOS, which contains a pollen tube-specific
promoter, to generate the binary construct pLat52::RIP1-GFP construct. pLat52::
RIP1-GFP was introduced to Arabidopsis wild-type Col0 background using
Agrobacterium mediated flower dip method.

Arabidopsis thaliana plants were grown at 22 °C in growth rooms under a light
regime of 16 h of light and 8 h of dark. Pollens were germinated on a solid medium
(18 % sucrose, 0.01 % boric acid, 1 mM CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4,
pH 6.4 and 0.5 % agar) for 3 h before observation under microscope. GFP-ROP1,
GFP-RIC1, GFP-RIC4, or RLK-GFP expressing pollen tubes were observed under
a Leica SP2 confocal microscope (488 nm excitation, 500–540 nm emission).
Median plane of pollen tube tip was taken for time-lapse images.
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11.4.2 Results

The diagrams below show the output of the above method in video analysis of
growing pollen tubes. Figure 11.4 shows model output on two video sequences.
Fluorescence analysis detected 4 growth cycles in the first video and 3 cycles in the
second video. The first video (first row) contains 220 images with a time interval of
about 1 s. To reduce computational time, the images were downsized by 50 % to a
size of (200 × 232) pixels. A buffer size of 3 (parameter N in Table 11.1) was used
in determining the maxima turning points in the curve of ROP1-GTP. Each pixel
has a length of 58.13 nm. The average radius of the pollen tube is 1.84 μm. The
second video (second row) contains 300 images with a time interval of 1 s. Images
were resized to (256 × 256) pixels. Due to the fast acquisition time for both videos,
the analysis was performed on every 5th image to ensure observable growth
between two time points. Each image of Fig. 11.4 shows an overlay of the cell tip
predicted by the model (green), the cell contour as detected by image segmentation
(red), and the initial cell tip position (yellow) that marked the start of the growth
cycle. In the first two rows, there is very little elongation or change in cell tip area.
The last two rows show the most elongation of the cell.

Figure 11.5 shows a Receiver Operating Characteristic (ROC) plot of the
average accuracy and standard deviation (error bars) of the predicted shape as the
pixel acceptance threshold increases from [0–10] pixels for the first experiment

Fig. 11.4 Images showing the results of tip tracking for two experimental videos (rows) of
growing pollen tubes. The number of images in each row denotes the number of detected growth
cycles. Each image shows the initial tip shape (yellow), the models estimate of the final tip shape
(green) and the observed tip shape (red). The first experiment shows straight growth while the
second shows both straight and turning tip behavior. Please see Supplemental Materials for a video
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shown in Fig. 11.4. The statistics are obtained on 64 predicted shapes, i.e., each
point in Fig. 11.5 shows the average accuracy across 64 trials when the pixel
acceptance threshold is n-pixels wide. Points on the predicted tip shape are con-
sidered accurate if they are within a distance of n-pixels of an observed point. It is
expected that as n increases, the number of accurate points will increase as well as
the number of misclassified points. The figure shows that over 90 % accuracy is
achieved at a distance of 3-pixels (0.1 μm or 5.43 % of cell radius).

Figure 11.6 shows the change in length over time of the growing pollen tube
computed from the changing length of the deforming growth region (black) and
the fitted curve (red) when using the Gompertz equation for cell wall weakening.
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Fig. 11.5 ROC plot of average accuracy of predicted shape as pixel acceptance threshold
increases from 0 to 10 pixels (0–0.58 μm). Error bars indicate standard deviation. Statistics are
obtained for approximately 64 predicted shapes from experiment 1 in Fig. 11.4. Over 90 %
accuracy is achieved within 0.1 μm (5.43 % of cell radius)
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Fig. 11.6 Elongation trend in the pollen tube shown in Fig. 11.4, row 1. The blue curve is the
cumulative sum of the measured affine parameter for elongation (b) and the red curve (dotted)
shows the fit of Eq. (11.6) to the data for each growth cycle (between vertical bars). Curve
agreement indicates that the Gompertz function is suitable for explaining observed cell wall
dynamics
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There are four growth segments representing row 1 of Fig. 11.4. The accuracy of
the fitted curve indicates that the Gompertz equation is a good choice for deter-
mining cell wall dynamics.

11.5 Conclusions

In the above sections, we presented an intuitive model for tracking the tip of a
pollen tube during growth. Instead of explicitly accounting for every known vari-
able in the growth process, our approach focused on those variables that can be
observed/measured in experimental videos of growing pollen tubes. In the devel-
opment, we suggest suitable functions for propagating the shape of the cell over
time. These functions are based on an understanding and simplification of the
growth process. Given an initial tip shape, an affine transformation is performed to
obtain subsequent tip shapes. The parameters of the transformation matrix rely on
the biological processes that affect cell wall extensibility. Since the growth process
is cyclical, the model searches for cyclical patterns in the fluorescence intensity
signal and reinitializes the shape process when a new cycle is detected. The results
show that our model can detect appropriate growth cycles within experimental
videos and track cell tip changes within each cycle. This ability is important in
quantifying the effects of various agents on the growth process.
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Chapter 12
Automatic Image Analysis Pipeline
for Studying Growth in Arabidopsis

Katya Mkrtchyan, Anirban Chakraborty, Min Liu
and Amit Roy-Chowdhury

Abstract The need for high-throughput quantification of cell growth and cell
division in a multilayer, multicellular tissue necessitates the development of an
automated image analysis pipeline that is capable of processing high volumes of
live imaging microscopy data. In this work, we present such an image processing
and analysis pipeline that combines cell image registration, segmentation, tracking,
and cell resolution 3D reconstruction for confocal microscopy-based time-lapse
volumetric image stacks. The first component of the pipeline is an automated
landmark-based registration method that uses a local graph-based approach to
select a number of landmark points from the images and establishes correspondence
between them. Once the registration is acquired, the cell segmentation and tracking
problem is jointly solved using an adaptive segmentation and tracking module of
the pipeline, where the tracking output acts as an indicator of the quality of seg-
mentation and in turn the segmentation can be improved to obtain better tracking
results. In the last module of our pipeline, an adaptive geometric tessellation-based
3D reconstruction algorithm is described, where complete 3D structures of indi-
vidual cells in the tissue are estimated from sparse sets of 2D cell slices, as obtained
from the previous components of the pipeline. Through experiments on Arabidopsis

K. Mkrtchyan (&)
Department of Computer Science, University of California, Riverside, CA, USA
e-mail: mkrtchyk@cs.ucr.edu

A. Chakraborty � M. Liu � A. Roy-Chowdhury
Department of Electrical Engineering, University of California, Riverside, CA, USA
e-mail: anirban.chakraborty@email.ucr.edu

M. Liu
e-mail: mliu009@ucr.edu

A. Roy-Chowdhury
e-mail: amitrc@ee.ucr.edu

© Springer International Publishing Switzerland 2015
B. Bhanu and P. Talbot (eds.), Video Bioinformatics,
Computational Biology 22, DOI 10.1007/978-3-319-23724-4_12

215



shoot apical meristems, we show that each component in the proposed pipeline
provides highly accurate results and is robust to ‘Z-sparsity’ in imaging and low
SNR at parts of the collected image stacks.

12.1 Introduction

The causal relationship between cell growth patterns and gene expression dynamics
has been a major topic of interest in developmental biology. However, most of the
studies in this domain have attempted to describe the interrelation between the gene
regulatory network, cell growth, and deformation qualitatively. A proper quanti-
tative analysis of the cell growth patterns in both the plant and the animal tissues
has remained mostly elusive so far. Information such as rates and patterns of cell
expansion plays a critical role in explaining cell growth and deformation dynamics
and thereby can be extremely useful in understanding morphogenesis. The need for
quantifying these biological parameters (such as cell volume, cell growth rate, cell
shape, mean time between cell divisions, etc.) and observing their time evolution is,
therefore, of utmost importance to biologists.

For complex multilayered, multicellular plant and animal tissues, the most
popular method to capture individual cell structures and to estimate the afore-
mentioned parameters for growing cells is the Confocal Microscopy-based Live
Cell Imaging. Confocal Laser Scanning Microscopy (CLSM) enables us to visually
inspect the inner parts of the multilayered tissues. With this technique, optical cross
sections of the cells in the tissue are taken over with multiple observational time
points to generate spatio-temporal image stacks. For high-throughput analysis of
these large volumes of image data, development of fully automated image analysis
pipelines are becoming necessities, thereby giving rise to many new automated
visual analysis challenges.

The image analysis pipeline for gathering the cell growth and division statistics
comprises of four main parts: image registration, cell segmentation, cell tracking,
and 3D reconstruction. All four components of the pipeline encounter significant
challenges that depend on the dataset characteristics, which make the problem a
nontrivial image processing problem.

In spite of the extreme usefulness of CLSM-based live cell imaging for ana-
lyzing such tissue structures, there are number of technical challenges associated
with this imaging technique that make the problem of automated cell growth
estimation nontrivial. To keep the cells alive and growing, we have to limit the laser
radiation exposure to the specimen, i.e., if dense samples in one time point are
collected, it is highly unlikely that we will be able to get time-lapse images as the
specimen will not continue to grow in time due to high radiation exposure.
Therefore, the number of slices in which a cell is imaged is often low (2–4 slices per
cell). Again, the fluorescent signal fades as we image the deeper layers of the tissue,
thereby bringing in the problem of low SNR in parts of the confocal image stack.
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Please note that in some cases, a two photon excitation microscopy or light sheet
microscopy can be better choices for live cell imaging for more efficient light
detection and less photo-bleaching effect. But, a large number of data sets exist that
are imaged using CLSM or exhibit the characteristic of our data, and our method
can be useful in analyzing them. We have found that two photon excitations are
more toxic to SAM (Shoot Apical Meristem) cells than the single photon CLSM
and since the SAM is surrounded by several developing flower buds, the side ward
excitation may not be possible. Also, by designing an image-analysis method that is
capable of handling the worse quality data, we can ensure that the same or better
accuracy can be achieved on a dataset having superior image quality and resolution.

In this work, we have looked at the problem of image registration, cell seg-
mentation and tracking, and 3D reconstruction of a tightly packed multilayer tissue
from its Z-sparse confocal image slices. As a special example, in this work, we
apply our proposed pipeline in analyzing large volumes of image data for Shoot
Apical Meristem (SAM) of Arabidopsis Thaliana. As hinted in [1], this pipeline can
be applied on root meristem as well. SAM, also referred to as the stem cell niche, is
a important part of a plant body plan because it supplies cells for all the above
ground plant parts such as leaves, branches, and stem. A typical Arabidopsis SAM
is a densely packed multilayered cell cluster consisting of about five hundred cells
where the cell layers are clonally distinct from one another. Using CLSM tech-
nique, time lapse 3D image stacks are captured which are essentially 4D video data.
Our objective in this work is to extract quantifiable parameters describing growth
from this large volume of video data. Therefore, it is one of the most important
video bioinformatics problems from the plan sciences perspective.

12.2 Method

As discussed above, the main components of the pipeline are image registration,
segmentation of the tissue into individual cellular regions, spatio-temporal cell
tracking, and cell resolution 3D reconstruction. The flow of the pipeline is shown in
Fig. 12.1. We are going to discuss the individual components of the pipeline in the
next subsections.

Adaptive
Segmentation
and Tracking

Image Stack

Registration

3D Reconstruction

Fig. 12.1 The general workflow in the image analysis pipeline
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12.2.1 Registration

12.2.1.1 Motivation and Related Work

In practice, the live cell imaging of a plant comprises of several steps, where the plant
has to be physicallymoved between different places. For normal growth of the plant, it
has to be kept in a place having specific physical conditions (temperature of 24 °C).
The plant is moved and placed under microscope at the imaging/observational time
points, before it is placed back in the aforementioned place once again. For 72 hours
overall, this process is repeated for every 3 hours. Because of this process of
replacement of the plant under the microscope and also since the plant keeps growing
during these 72 h, various shifts can occur between two Z-stacks of images taken in
consecutive time points, though images in any Z-stack are automatically registered.
So, to get the accurate and longer cell lineages and cell division statistics, image stacks
should be aligned.

Recently, there has been some work done on SAM cells [2], where cells are
segmented by watershed algorithm [3] and tracked by local graph matching
method. The method in [2] was constrained to focus on datasets that are approxi-
mately registered. Therefore, registration is of utmost importance to be able to work
with varied datasets. Popular registration method based on maximization of the
mutual information [4, 5], fails to provide accurate registration as it uses the pixel
intensities to acquire the registration. Pixel intensities in the Arabidopsis SAM
images are not discriminative features. The landmark-based methods are more
suitable to register such images. A recent paper [6] uses SAM images acquired from
multiple angles to automate tracking and modeling. For pair of images to be reg-
istered, the user identified correspondences by pairing a few anchor points (referred
as landmark points in this work). In this section, we present a fully automated
landmark-based registration method that can find out correspondences between two
images and utilize these correspondences to yield a better registration result. In the
registration results from Sect. 12.2.1.3, we show that landmark-based registration is
more suitable for noisy and sparse confocal images, than registration based on
maximization of the mutual information.

The most common landmark-based registration algorithm is the Iterative Closest
Point (ICP) algorithm [7], where a set of landmark point pair correspondences are
constructed between two images and then the images are aligned so as to minimize
the mean square error between the correspondences. The ICP algorithm is sensitive
to initialization; it provides a good estimate of the correct correspondence when the
images are approximately aligned with each other. There are different additions to
the basic ICP algorithm, e.g., Iterative Closest Point using Invariant Features (ICPIF)
[8], which uses features like eccentricity and curvature to overcome the issue. But in
Arabidopsis SAM, because densely packed cells have similar features, the eccen-
tricity, curvature, and other common features such as shape, color, etc., are not
discriminative enough to be used for registration. Thus, available landmark-based
registration approaches may not be able to properly align the SAM images. This is

218 K. Mkrtchyan et al.



why we need to develop a novel feature that can be used to register SAM images.
The proposed landmark estimation method uses features of the local neighborhood
areas to find corresponding landmark pairs for the image registration [9].

In this section, we present an automatic landmark-based registration method for
aligning Arabidopsis SAM image stacks. The flow of the proposed registration
method is described in Fig. 12.2. In the rest of this subsection, we call the image
that we wish to transform as the input image, and the reference image is the image
against which we want to register the input.

12.2.1.2 Detailed Registration Method

Landmark Identification There is accumulated random shift, rotation, or scaling
between the images taken at different time points. The performance of tracking is
affected by the registration. The quality of the image registration result depends on
the accuracy of the choice of landmark points. Common features such as shape,
color, etc., cannot be used to choose corresponding landmark pairs. Motivated by
the idea presented in [2], we use the relative positions and ordered orientation of the
neighboring cells as unique features. To exploit these properties, we represent these
local neighborhood structures as graphs and select the best candidate landmark
points that have the minimum distance between the local graphs built around them.

Local graphs as features Graphical abstraction is created on the basos of col-
lection of cells. Vertices in the graph are the centers of the cells and neighboring
vertices are connected by an edge. Neighborhood set NðCÞ of a cell C contains the
set of cells that share a boundary with C. Thus, every graph consists of a cell C and
a set of clockwise ordered neighboring cells (Fig. 12.3a, d). The ordering of the
cells in NðCÞ is important because under nonreflective similarity transformation,
the absolute positions of the neighboring cells could change but the cyclic order of
the cells remains invariant.

Landmark point pair estimation from local graphs Cell divisions happen
throughout the 72 h intervals but at the consecutive images, taken every 3 h apart,
only several cell divisions are present. Ideally, in the areas where there is no cell
division, the local graph topology should not change (segmentation errors will
circumvent this in practice). We exploit these conditions to find the corresponding

Fig. 12.2 Registration methodology in sparse confocal image stacks—a SAM located at the tip
Arabidopsis shoot, b raw images taken at consecutive time instances, c segmented images after
applying watershed segmentation, d estimation of the corresponding landmark point pairs, and
e bottom image is registered to the top image (the same color arrows represent the same cell)
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landmark pairs in two images. Let, GðtÞ
1 and Gðtþ1Þ

2 be two local graphs constructed
around the cells C and C0 in consecutive temporal slices (Fig. 12.3). For each
triangle subgraph of the local graph GðtÞ, we define feature vector of five com-
ponents where the components are the angles between the edges (Fig. 12.3
hNi1 ;C;Ni2

ðtÞ), lengths of the neighboring edges (Fig. 12.3 lC;Ni1
ðtÞ; lC;Ni2

ðtÞ), and the
areas of the neighboring cells (Fig. 12.3 ANi1

ðtÞ;ANi2
ðtÞ). Having these features

defined on the subgraphs, we compute distance between two triangle subgraphs by
considering summation of the square of the normalized differences of the corre-
sponding components of feature vectors. To ensure that our landmark estimation
method takes care of the rotation of local area, we consider all cyclic permutations
of the clockwise ordered neighbor set of the cell C0 from the input image. Then, we
define distance between the local graphs for the fixed permutation k of the neigh-
boring set of the cell C0;DðG1;Gk

2Þ, as the summation of the distance of triangle
subgraphs. Finally, the distance DIðG1;G2Þ between two graphs G1 and G2 cor-
responding to cells ðC;C0Þ for all permutations k is

DIðG1;G2Þ ¼ DðG1;G
kI
2 Þ; ð12:1Þ

where kI ¼ argk minDðG1;Gk
2Þ; k 2 f0; 1; . . .; ðm� 1Þg: This guarantees that our

landmark estimation method is invariant of the rotation in the local area.
For all cell pairs Ci;C0

j and corresponding graphs Gi;Gj from two consecutive

images, we compute the distance DIðGi;GjÞ. Then, the cell pairs are ranked
according to their distances DI and the top q cell pairs are chosen as landmark
point pairs. The choice of q is described later.

Image Registration Once we have the landmark point pairs corresponding to
the reference and input images, we find the spatial transformation between them.

(a) (b) (c) (d)

Fig. 12.3 a, d The local graphs G1 and G2 at time t and t þ 1 with the central cells C and C0,
respectively, and clockwise ordered neighboring cell vertices N1; . . .;N6 and N 0

1; . . .;N
0
6, b, c two

enlarged triangle subgraphs with indicated features Ni1 ;Ni2—i1th and i2th neighboring cells of C,
N 0
j1 ;N

0
j2—j1th and j2th neighboring cells of C0, hNi1 ;C;Ni2

ðtÞ—angle between Ni1C and Ni2C,

hN 0
j1
;C0 ;N 0

j2
ðtÞ—angle between N 0

j1C
0 and N 0

j2C
0, lC;Ni1

ðtÞ; lC;Ni2
ðtÞ—neighbor edge lengths,

lC0 ;N 0
j1
ðt þ 1Þ; lC0 ;N 0

j1
ðt þ 1Þ—edge lengths, ANi1

ðtÞ;ANi2
ðtÞ—areas of the cells Ni1 ;Ni2 AN 0

j1
ðt þ 1Þ;

AN 0
j2
ðt þ 1Þ—areas of the cells N 0

j1 ;N
0
j2
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Finding the nonreflective similarity transformation between two images is a prob-
lem of solving a set of two linear equations. As mentioned before, for better
accuracy of transformation parameters, the top q landmark point pairs are used in a
least-square parameter estimation framework. The choice of q depends on the
quality of the input and base image as choosing more landmark point pairs, gen-
erally increases the risk of having more false positive landmark point pairs. In our
experiments, we choose four, five, or six landmark pairs depending on the dataset
image quality.

12.2.1.3 Registration Results

We have tested our proposed automatic landmark-based registration method,
combined with the watershed segmentation [3] and local graph matching-based
tracking [2]. We compared tracking results of the proposed method with results
obtained without registration, with semi-automated registration (the landmark pairs
are chosen manually, the transformation is obtained automatically) and with MIRIT
software [4].

Figure 12.4a–e shows cell tracking results from two consecutive images (30th
and 36th hour). The results with MIRIT registration and without registration show
incorrect cell tracks. Whereas, the proposed method and semi-automated registra-
tion correctly registered two images with 100 % correct tracking results. Detailed
results for the same dataset are shown in Fig. 12.4f, g. In Fig. 12.4f, we can see that
from 33 and 27 cells, present in the images at time points five (30th hour) to six
(36th hour), respectively, none are tracked by the tracker run on the images reg-
istered with the MIRIT software and not registered images (as in Fig. 12.4a–e). The
same result is seen for the tracking results in images at time points 6–7. But the
tracking results obtained with proposed and semi-automated methods provided
results close to manual results. Figure 12.4g shows lengths of the cell lineages
calculated with the proposed method, semi-automated registration, MIRIT regis-
tration, and without registration. We can see that in tracking without registration
and after registration with MIRIT software, there are no cells that have lineage
lengths greater then four as opposed to the case with the proposed and
semi-automated registration, where cells have lineages for the entire 72 h. The
reason for such results is that there is a big shift between two images from con-
secutive time points, in the middle time points. Without proper registration, the
tracking algorithm is not able to provide correct cell correspondence results, which
interrupts the lineage of the cells. The result in Fig. 12.4g can also be related to
Fig. 12.4f. Since no cells have been tracked in frames five to six, and overall there
are eleven frames, then no cell can have a lineage life with the length greater than or
equal to five. Table 12.1 shows the number of cell divisions in 72 h. We can see that
the semi-automated and the proposed registration provide results that are close to
the manual results as opposed to without registration and MIRIT software.
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12.2.2 Segmentation and Tracking

12.2.2.1 Motivation and Related Work

The manual tracking of cells through successive cell divisions and gene expression
patterns is beginning to yield new insights into the process of stem cell homeostasis
[10]. However, manual tracking is laborious and impossible as larger and larger
amounts of microscope imagery are collected worldwide. More importantly,
manual analysis will not provide quantitative information on cell behaviors, besides
cell-cycle length and the number of cell divisions within a time period. There are
significant challenges in automating the segmentation and tracking process.
The SAM cells in a cluster appear similar with few distinguishing features, cell
division event changes the relative locations of the cells, and the live images are
inherently noisy.

Table 12.1 Total number of
cell divisions/ground-truth

Data Our method Manual MIRIT [4] No registration

1 28/34 30/34 23/34 25/34

2 17/21 17/21 11/21 12/21

Fig. 12.4 a Raw consecutive images (the same color arrows represent the same cells) and
tracking results obtained b without registration c with MIRIT registration, d with manual
registration, and e with proposed automatic registration. The same colors represent the same cell.
f Number of tracked cells across two consecutive images. g Length of cell lineages
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There has been some work on automated tracking and segmentation of cells in
time-lapse images, both plants and animals. One of the well-known approaches for
segmenting and tracking cells is based on level sets [11–13]. However, the level set
method is not suitable for tracking of SAM cells because the cells are in close
contact with each other and share similar physical features. The Softassign method
uses the information on point location to simultaneously solve both the problem of
global correspondence as well as the problem of affine transformation between two
time instants iteratively [14–16]. A recent paper [6] uses SAM images acquired
from multiple angles to automate tracking and modeling. Since SAMs are imaged
from multiple angles, it imposes a limitation on the temporal resolution. This
precludes a finer understanding of spatial-temporal dynamics through dynamical
modeling. In an earlier study, we have used level set segmentation and local graph
matching method to find correspondence of cells across time points by using live
imagery of plasma membrane labeled SAMs [2] imaged at 3 h intervals. However,
this study did not make an attempt to integrate segmentation and tracking so as to
minimize the segmentation and tracking errors, which are major concerns in noisy
live imagery. Here, we have combined the local graph matching-based tracking
methodology from [2] with the watershed segmentation in an adaptive framework
in which tracking output is integrated with the segmentation (Fig. 12.5) [17]. In our
recent works [18, 19], we provided new approaches for the cell tracking problem.

The local graph matching-based tracking methodology from [2] was combined
with the watershed segmentation in an adaptive framework in which tracking output
is integrated with the segmentation. The system diagram is also shown (Fig. 12.5).

12.2.2.2 Detailed Segmentation and Tracking Method

We used watershed transformation [20, 21] to segment cell boundaries. Watershed
treats the input image as a continuous field of basins (low-intensity pixel regions),
barriers (high-intensity pixel regions), and outputs the barriers that represent cell
boundaries. It has been used to segment cells of Arabidopsis thaliana root meristem
[22]. It outperforms the level set method in two aspects. On the one hand, it reaches
more accurate cell boundaries. On the other hand, it is faster, which provides the
opportunity to implement it in an adaptive framework efficiently. However, the
main drawback is that it results in both over-segmentation and under-segmentation
of cells, especially those from deeper layers of SAMs that are noisy. So, prior to

Watershed Cell
Segmentation

Adjust Threshold
for Watershed

Cell Tracking by
Local Graph

Matching

Minimize Under-
Segementation and
Over-Segmentation

Cell Lineage

Fig. 12.5 The overall diagram of the adaptive cell segmentation and tracking scheme
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applying the watershed algorithm, the raw confocal microscopy images undergo H-
minima transformation in which all the pixels below a certain threshold percentage
h are discarded [23]. The H-minima operator was used to suppress shallow minima,
namely those whose depth is lower than or equal to the given h-value. The
watershed segmentation after the H-minima operator with a proper threshold can
produce much better segmentation results than level set segmentation.

Since the H-minima threshold value h plays a crucial role in the watershed
algorithm, especially when the input images are noisy, it is extremely important to
choose an appropriate threshold value such that only the correct cell boundaries are
detected. Generally, a higher value of the threshold parameter h performs
under-segmentation of the images and, conversely, a lower value over-segments the
images. The numbers of over-segmented cells in a noisy image slice increases as we
choose lower values for the H-minima threshold h and, on the other hand, a larger
value of h produces more under-segmented cells. Since the cell size is fairly uni-
form for most cells of the SAM, the watershed should ideally produce a segmented
image that contains similarly sized cells. Thus, a good starting threshold could be
the value of h such that variance of cell areas in the segmented image is minimal.
This optimal value of h is what we are trying to obtain, as will be explained later.

The tracker performance depends heavily on the quality of the segmentation
output. However, due to a low Signal-to Noise Ratio (SNR) in the live cell imaging
dataset, the cells are often over- or under-segmented. Therefore, the segmentation
and tracking have to be carried out in an integrated and adaptive fashion, where the
tracking output for a particular slice acts as an indicator of the quality of seg-
mentation and the segmentation can be improved so as to obtain the best tracking
result.

Design of Integrated Optimization Function Due to the rapid deterioration of
image quality in deeper layers of the Z-stack, the existing segmentation algorithms
tend to under-segment or over-segment image regions (especially in the central part
of the image slices). Even a manual segmentation of cells is not always guaranteed
to be accurate if each slice in the deeper layers is considered separately due to low
SNR. In fact, in such cases, we consider the neighboring slices, which can provide
additional contextual information to perform segmentation of the noisy slice in a
way that provides the best correspondence for all the segmented cells within the
neighborhood. The automated method of integrated segmentation and tracking
proposed here, involves correcting faulty segmentation of cells by integrating their
spatial and temporal correspondences with the immediate neighbors as a feedback
from the tracking to the segmentation module. In the next few paragraphs, we
formalize this framework as a spatial and temporal optimization problem and
elaborate the proposed iterative solution strategy that yields the best segmentation
and tracking results for all the cell slices in the 4D image stack.

The advantage of using watershed segmentation is that it can accurately find the
cell boundaries, while its main drawback is over-segmentation and
under-segmentation, which can be reduced by choosing the proper H-minima
threshold. Due to the over-segmentation errors in regions of low SNR, the water-
shed algorithm often tends to generate spurious edges through the cells. In the cases
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in which a cell is imaged at multiple slices along the Z-stack and is over-segmented
in one of the slices, the tracker can identify this over-segmentation error as a
spurious ‘spatial cell-division’ event. Clearly, this is not legitimate and is a result of
faulty segmentation. Additionally, cell-merging in the temporal direction (again an
impossible event) can arise from under-segmentation, where the watershed algo-
rithm fails to detect a legitimate edge between two neighboring cells. The intuition
behind the proposed method in this paper is to reduce the over-segmentation errors
by minimizing the spurious spatial cell divisions and reduce the under-segmentation
errors by minimizing the number of merged cells. Specifically, for frame Stk the kth
image slice at time point t, we are going to minimize the number of spurious ‘cell
divisions’ between it and its spatial neighbor Stk�1 and the number of spurious
cell-merging events in Stk from its temporal predecessor St�1

k , as shown in Fig. 12.6.
(Although it may be possible to identify that such spurious events have happened
through simple rules disallowing a cell division in the Z-direction or a merging in
the forward temporal direction, correcting for them is a lot harder, as the structure of
the collection of cells needs to be maintained. Our approach will allow detection of
not only such spurious events, but also their correction.)

The optimization goal here is to minimize the number of spurious cell divisions
ðNt

ðk�1;kÞÞ for the frame Stk from its upper slice Stk�1 and the number of cell-merging

events Nðt;t�1Þ
k in Stk from its previous slice. The error caused by over-segmentation,

ðNt
ðk�1;kÞÞ monotonically decreases with the increment in threshold h, whereas the

error due to under-segmentation,ðNðt;t�1Þ
k Þ monotonically increases with h. Hence,

the optimal segmentation result can be obtained through finding the value of h for

Fig. 12.6 Optimization Scheme. a Schematic showing how to integrate the spatial and temporal
trackers for 4D image stacks. b Adaptive segmentation and tracking scheme for a certain image
slices Stk (the kth slice at the t time point)
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which the summation ðNðt;t�1Þ
k þ Nt

ðk�1;kÞÞ attains a minimum. The cost function

ðNðt;t�1Þ
k þ Nt

ðk�1;kÞÞ is essentially an indicator of the overall error in segmentation

(combining both over and under-segmentation) and can be optimized by varying
the H-minima threshold h for Stk . Formally, the optimal value htk is found as a
solution to the following optimization problem:

htk ¼ min
h
ðNðt;t�1Þ

k ðhÞ þ Nt
ðk�1;kÞhÞ

With the variation of htk (by either increasing or decreasing), the cost function
decreases to a minimum (ideally 0). The threshold htk for which the cost function
attains this minimum is the optimum value of the threshold for H-minima
transformation.

12.2.2.3 Segmentation and Tracking Results

We have tested our proposed adaptive cell segmentation and lineage construction
algorithm on two SAM datasets. Datasets consist of 3D image stacks taken at 3 h
intervals for a total of 72 h (24 data points). Each 3-D stack consists of 30 slices in
one stack, so the size of the 4D image stack is 888 × 888 × 30 × 24 pixels. After
image registration, we used the local graph matching-based algorithm to track cells,
the detailed information about which can be found in [2]. We demonstrate that, by
integrating this within the proposed adaptive scheme, we are able to obtain sig-
nificantly better results. The adaptive segmentation and tracking method is run on
every two consecutive images in both the spatial and temporal directions. The
thresholds of H-minima for images in the given 4D image stack are determined
sequentially along the direction of the arrows shown in Fig. 12.6a. In the seg-
mentation, we normalized the image intensities in the range of [0 1] and set the
searching range for the optimal H-minima threshold h in [0.005 0.09]. The step size
used in the search was ±0.005, and the sign depends on the search direction
(htk [ htkðinitÞ or h

t
k\htkðinitÞ). We manually verified the accuracy of the cell lineages

obtained by the proposed algorithm.
Figure 12.7 is a typical example of the segmentation result and tracking result

using our proposed adaptive method, with seven simultaneously dividing cells
being detected. In Fig. 12.8, the segmentation and tracking results in selected 3D
image stacks along three time instances (6, 9, and 15 h) are shown. The tracker is
able to compute both spatial and temporal correspondences with high accuracy as a
result of improved segmentation.
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Fig. 12.7 The segmentation and tracking results using adaptive method

Fig. 12.8 The segmentation and tracking results in 3D stacks at selected time instances. The
segmented cells shown in same color across consecutive slices (second, third, and fourth slices)
represent same cells
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12.2.3 3D Reconstruction

12.2.3.1 Motivation and Related Work

There are several methods of shape and size estimations for individual cells such as
impedance method [24] and light microscopy methods [25]. Methods such as [26]
are used to study changes in cell sizes found in cell monolayers. In live plant
tissues, a number of works focused on the surface reconstruction [27, 28]. But we
are looking at a much more challenging problem, where the subject of study is a
dense cluster of cells. Plant meristem is one example of such cell clusters where
hundreds of small cells are densely packed into a multilayer structure. In such cases,
now-a-days, the most popular practice is to use Confocal Laser Scanning
Microscopy (CLSM) to image cell or nucleus slices at a high spatial resolution and
then reconstruct the 3D volume of the cells from those serial optical slices which
have been shown to be reasonably accurate [6, 29, 30].

A recent method [6] accurately reconstructs the Shoot Apical Meristem of
Arabidopsis. This method uses a dataset containing fine slice images acquired from
three different angles, each at a Z-resolution of 1 μm. They have reported 24 h as the
time resolution in imaging. But, for analyzing the growth dynamics of cell clusters
where the time gap between successive cell divisions is in the range of 30–36 h, we
need a much higher time resolution in imaging, in order to capture the exact growth
dynamics. To obtain longer cell lineages at high time resolution, we may have to
sacrifice the spatial or depth resolution and hence the number of image slices in
which a cell is present which can be really small. With such a limited amount of
image data, the existing 3D reconstruction/segmentation techniques cannot yield a
good estimate of cell shape. In the present work, we have addressed this problem of
reconstructing plant cells in a tissue when the number of image slices per cell is
limited.

There is a basic difference between the segmentation problem at hand and a
classical 3D segmentation scheme. A classical method solves the segmentation
problem using the pixel intensities and cannot work when no intensity information
is provided for a majority of 3D pixels in the image. In such situations, the most
intuitive way to perform the segmentation is to first segment sections in the image
with known intensity information using a classical segmentation scheme, and then
to extrapolate between these sparse segments using a known geometric model or a
function which could be generic or data-specific. In [31], we have shown that 3D
shapes of individual cells in the SAM can be approximated by a deformed truncated
ellipsoidal model. In a recent work [1], we explain how [31] can be described as a
special case of the Mahalanobis distance-based Voronoi tessellation under specific
conditions and in that respect, the present method is a generalization of the work in
[31]. In our work, we have shown that a quadratic Voronoi tessellation is an
accurate choice for such a geometric model for segmenting a tissue with
anisotropically growing tightly packed cells starting with a sparse set of 2D
Watershed segmented slices per cell.
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The Shoot Apical Meristem is a multilayer and multicellular structure where the
cells are tightly packed together with hardly any void in between. Motivated by this
physical structure of SAM, we propose our novel cell resolution 3D reconstruction
in a geometric tessellation framework. A tessellation is a partition of a space into
closed geometric regions with no overlap or gap among these regions. In case of the
SAM tissue, each cell is represented by such a closed region and any point in the
3D SAM structure must be the part of one and only one cell. In fact, there are some
recent works in the literature as [32] which predicted that the 3D structures of
Arabidopsis SAM cells could be represented by convex polyhedrons forming 3D
‘Voronoi’ tessellation pattern.

A Voronoi tessellation is one of the simplest form of partitioning of the metric
space, where the boundaries between two adjacent partitions are equidistant from a
point inside each of these regions, also known as the ‘sites’. In [32, 33], these sites
are the approximate locations of the center of the cell nuclei about which the tissue
is tessellated into individual cells. However, this work used a dataset where both the
plasma membrane as well as the nucleus of each cell is marked with fluorescent
protein, whereas, in our case, only the plasma membrane is visible under the
confocal microscope.

In [1], we presented and evaluated a fully automated cell resolution 3D recon-
struction framework for reconstructing the Arabidopsis SAM where the number of
confocal image slices per cell is limited. The framework comprises of different
modules such as cell segmentation, spatial cell tracking, SAM surface reconstruc-
tion, and finally a 3D tessellation module. We proposed a quadratic distance-based
anisotropic Voronoi tessellation, where the distance metric for each cell is estimated
from the segmented and tracked sparse data points for the cell. This method is
applicable to the densely packed multicellular tissues and can be used to reconstruct
tissues without voids between cells with sufficiently high accuracy. Note that, for
the proposed 3D reconstruction module, we start with a handful of data points on
each segmented cell which are pre-clustered through the cell tracking method (i.e.,
an incomplete segmentation of the 3D) whereas, the final output of our algorithm is
a complete tessellation of the entire 3D structure of the SAM, where each cell is
represented by a dense point cloud. These point clouds for individual cells can be
visualized by 3D convex polyhedrons that approximate the shape of the cells.

12.2.3.2 Detailed 3D Reconstruction Method

Generation of Dense Point Cloud to Be Partitioned Into Cells: Global Shape of
SAM At this stage, we estimate the 3D structure of the SAM by fitting a smooth
surface to its segmented contours. The surface fitting is done in two steps. In step
one, the SAM boundary in every image slice is extracted using the ‘Level Set’
method. A level set is a collection of points over which a function takes on a
constant value. We initialize a level set at the boundary of the image slice for each
SAM cross section, which behaves like an active contour and gradually shrinks
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toward the boundary of the SAM. Let the set of points on the segmented SAM
contours be PSAM fxSAM; ySAM; zSAMgð Þ.

In the second step, we fit a surface on the segmented points PSAM. Assuming that
the surface can be represented in the form z ¼ f ðx; yÞ (where the function f is
unknown), our objective is to predict z at every point ðx; yÞ on a densely sampled
rectangular grid of points bounded by xSAMmin ; ySAMmin ; xSAMmax ; ySAMmax

� �
. As the segmented

set of data points are extremely sparse, this prediction is done using a linear
interpolation on a local set of points on the grid around the point ðx; yÞ. As the value
(z) for the point ðx; yÞ is approximated by a linear combination of the values at a few
neighboring points on the grid, the interpolation problem can be posed as a linear
least-square estimation problem. We also impose a smoothness constraint in this
estimation by forcing the first partial derivatives of the surface evaluated at
neighboring points to be as close as possible.

Once the SAM surface ðSSAMÞ is constructed, we uniformly sample a dense set
of 3D points ðPdenseÞ such that every point in Pdense must lie inside SSAM. Thus,
Pdense ¼ fx1; x2; . . . xNg and the required output from the proposed algorithm is a

clustering of these dense data points into C cells/clusters such that Pdense ¼
fP̂ð1Þ

dense; P̂
ð2Þ
dense; . . . P̂

ðCÞ
denseg starting from the sparse set of segmented and tracked

points Psparse ¼ fPð1Þ
sparse;P

ð2Þ
sparse; . . .P

ðCÞ
sparseg obtained from the confocal slice images

of individual cells.
An Adaptive Quadratic Voronoi Tessellation (AQVT) for Nonuniform Cell

Sizes and Cell Growth Anisotropy: In a tissue like SAM, cells do not grow
uniformly along all three axes (X, Y, Z). In fact, most of the cells show a specific
direction of growth. Again, neighboring cells in SAM, especially in the central
region (CZ), are not likely to grow along the same direction. Thus, even if a
tessellation is initially an affine Voronoi diagram, it is not likely to remain so after a
few stages of growth. Such cases of nonuniform cell sizes and anisotropic growth
can be captured in a more generalized nonaffine Voronoi tessellation called the
‘Anisotropic Voronoi Diagrams.’ In the most general form of such diagram for
point sites, the distance metric has a quadratic form with an additive weight [34].

Following similar notations used in previous paragraphs, for a set of anisotropic
sites S ¼ fs1; s2; . . . sng in R

d , the anisotropic Voronoi region for a site si is given
as

VAðsiÞ ¼ x 2 R
d jdAðx; siÞ� dAðx; sjÞ 8j 2 f1; 2; . . . ng� �

; ð12:2Þ

where

dAðx; siÞ ¼ ðx� siÞTRiðx� siÞ � xi ð12:3Þ

Ri is a d × d positive definite symmetric matrix associated with the site si and
xi 2 R. Thus, each of the anisotropic Voronoi regions is parameterized by the
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triplet ðsi;Ri;xiÞ. Further assuming xi ¼ xj 8i; j 2 f1; 2; . . . ng, the distance
function becomes

dQðx; siÞ ¼ ðx� siÞTRiðx� siÞ ð12:4Þ

As the bisectors of such a Voronoi diagram are quadratic hypersurfaces, these
diagrams are called ‘Quadratic Voronoi Diagrams’, wherein every Voronoi cell i is
parameterized by ðsi;RiÞ pairs.

VQðsiÞ ¼ x 2 R
d jdQðx; siÞ� dQðx; sjÞ 8j 2 f1; 2; . . . ng� � ð12:5Þ

From Eq. 12.4, it can be observed that Ri is essentially a weighting factor that
nonuniformly weights distances in every Voronoi regions along every dimension.
When all the Voronoi regions are equally and uniformly weighted along every axis,
Ri ¼ Idxd 8i ¼ 1; 2; . . . n and the resulting diagram for point sites becomes an
Euclidean distance-based Voronoi diagram.

Estimating the Distance Metric from Sparse Data: Minimum Volume
Enclosing Ellipsoid Now, the problem at hand is to estimate the parameter pair for
each cell/quadratic Voronoi regions from the sparse data points, as obtained from
the segmented and tracked slices, that belongs to the boundary of each cell. Given
the extreme sparsity of the data, there is no available method that would provide Ris
for each region. We, in this work, propose an alternative way of estimating ðsi;RiÞ
pairs directly from the sparse data points. The motivation of this estimation strategy
can be found in [1].

After registration, segmentation and identification of a cell in multiple slices in
the 3D stack, we can obtain ðx; y; zÞ co-ordinates of the set of points on the
perimeter of the segmented cell slices. Let this set of points on the cth cell be

PðcÞ
sparse ¼ fp1; p2; . . . pkg 2 R

3. We estimate the minimum volume ellipsoid which
encloses all these k points in R3 and we denote that with E. An ellipsoid in its center
form is represented by

Eðs;RÞ ¼ fp 2 R
3jðp� sÞTRðp� sÞ� 1g; ð12:6Þ

where s 2 R
3 is the center of the ellipsoid E and R 2 R

3�3. Since all the points in

PðcÞ
sparse must reside inside E, we have

ðpi � sÞTRðpi � sÞ� 1 for i ¼ 1; 2; . . . k ð12:7Þ

and the volume of this ellipsoid is

VolðEÞ ¼ 4
3
pfdetðRÞg�1

2 ð12:8Þ
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Therefore, the problem of finding the Minimum Volume Enclosing Ellipsoid

(MVEE) for the set of points PðcÞ
sparse can be posed as

min
R;s

� log detðRÞ

s:t: ðpi � sÞT Rðpi � sÞ� 1 for i ¼ 1; 2; . . . k

R � 0

ð12:9Þ

To efficiently solve Problem 12.9, we convert the primal problem into its dual
problem since the dual is easier to solve. A detailed analysis on the problem
formulation and its solution can be found in [35, 36]. Solving this problem indi-

vidually for each sparse point set Pð1Þ
sparse;P

ð2Þ
sparse; . . .P

ðCÞ
sparse, the parameters of the

quadratic distance metrics are estimated as fð̂s1; R̂1Þ; ðŝ2; R̂2Þ; . . . ðŝC; R̂CÞg.
As we are estimating the parameters of quadratic distance metric associated with

every individual Voronoi cell separately and then using the distance metrics, thus
obtained, to tessellate a dense point cloud, we choose to call the resulting Voronoi
tessellation as the ‘Adaptive Quadratic Voronoi Tessellation’ (AQVT).

3D Tessellation Based on the Estimated Parameters of AQVT: The Final
Cell Shapes As soon as the parameters of the quadratic distance metrics are esti-
mated from the previous step, the dense point cloud Pdense can be partitioned into
different Voronoi regions based on Eq. (12.8), i.e., the dense point cloud belonging
to cell c is given as

P̂ðcÞ
dense ¼ x 2 Pdensejðx� ŝcÞT R̂cðx� ŝcÞ� ðx� ŝjÞT R̂jðx� ŝjÞ 8j 2 f1; 2; . . .Cg� �

ð12:10Þ

For visualization purpose of the cell resolution 3D reconstruction results, we fit

convex polyhedrons to P̂ð1Þ
dense; P̂

ð2Þ
dense; . . . P̂

ðCÞ
dense to represent each cell (Fig. 12.9).

Fig. 12.9 Visualization of the AQVT-based 3D reconstruction of SAM cell cluster.
a Visualization of the 3D reconstructed structure of a cluster of around 220 closely packed
cells using convex polyhedron approximations of the densely clustered data points for each cell, as
obtained from the proposed 3D reconstruction scheme, b a subset of cells from the same tissue
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12.2.3.3 3D Reconstruction Results

Figure 12.6a shows a cell resolution reconstruction of the cell cluster in SAM using
AQVT. Note that for 3D visualization purpose of the 3D structure only, we have
represented each cell as a convex polyhedron fitted to the dense point cloud clus-
tered to the cells, as obtained from our 3D reconstruction/3D segmentation scheme.
For better understanding of the 3D structures of individual cells, we have shown the
reconstructed shapes of a smaller cluster of cells in Fig. 12.6b.

Validation on 3D SAM Data There is hardly any biological experiment which
can directly validate the estimated growth statistics for individual cells in a sparsely
sampled multilayered cluster. In fact, the absence of a method to estimate growth
statistics directly using noncomputational methods in a live imaging developmental
biology framework is the motivation for the proposed work and we needed to
design a method for computationally validating our 3D reconstruction technique.
Once the 3D reconstruction is achieved, we can computationally re-slice the
reconstructed shape along any arbitrary viewing plane by simply collecting the
subset of reconstructed 3D point cloud that lies on the plane (Fig. 12.10).

Fig. 12.10 Reconstruction of a cluster of cells using Euclidean distance-based Voronoi
tessellation and the proposed AQVT for comparison of the 3D reconstruction accuracy.
a Segmented and tracked cell slices for a cluster of 52 cells from the L1 and L2 layers of SAM.
A dense confocal image stack is subsampled at a z-resolution of 1.35 μm to mimic the ‘z-sparsity’
observed in a typical Live-Imaging scenario. The slices belonging to the same cell are marked with
the same number to show the tracking results. b 3D reconstructed structure for a subset of these
cells when reconstructed using the Euclidean distance-based Voronoi Tessellation. c The
AQVT-based reconstruction result for the same cell cluster
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To show the validation of our proposed method, we have chosen a single time
point dataset that is relatively densely sampled along Z (0.225 μm between suc-
cessive slices). Then, we resampled this dense stack at a resolution of 1.35 μm to
generate a sparser subset of slices that mimic the sparsity generally encountered in a
live imaging scenario. The sparsely sampled slices for a cluster of cells spanning
two layers (L1 and L2) in the SAM are shown in Fig. 12.7. The aforementioned
tracking method [2] is used to obtain correspondences between slices of the same
cells. Different slices of the same cells imaged at different depths in Z are shown
using the same number in Fig. 12.7a. Next, we reconstructed the cell cluster first by
the standard Voronoi tessellation using the Euclidean distance metric and then
using our proposed method (AQVT) with a quadratic distance metric adapted for
each of these cells. The reconstruction results for a subset of the cells for each of
these methods are shown in Fig. 12.7b, c, respectively, for a direct comparison. It
can be observed that not only our proposed method accurately reconstructed the cell
shapes but also it has captured the multilayer architecture of these SAM cells more
closely in comparison to its Voronoi counterpart with the Euclidean distance metric.

12.3 Conclusion

In this chapter, we have presented a fully automated image analysis pipeline to
process large volumes of live imaging data of tightly packed multilayer biological
tissues. We have provided the necessary details of each of the multiple components
of such a pipeline, viz., image registration, cell segmentation, spatio-temporal cell
tracking, and cell resolution 3D reconstruction of the tissue. We have shown
experimental results on such datasets obtained through confocal microscopy on the
shoot meristem of a model plant Arabidopsis thaliana. We have shown that our
proposed method is capable of processing data consisting hundreds of cells of
stereotypical shapes and sizes imaged through multiple hours of observations. Our
method is shown to be robust to low SNRs at parts of the images and can be used to
generate large volume of cell growth and cell division statistics in a
high-throughput manner. These important statistics, as obtained from this pipeline,
would be useful for biologists to gain quantitative insight into the broader problem
of morphogenesis.
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Chapter 13
Quantitative Analyses Using Video
Bioinformatics and Image Analysis
Tools During Growth and Development
in the Multicellular Fungus Neurospora
crassa

Ilva E. Cabrera, Asongu L. Tambo, Alberto C. Cruz,
Benjamin X. Guan, Bir Bhanu and Katherine A. Borkovich

Abstract Neurospora crassa (Neurospora) is a nonpathogenic multicellular fungus.
Neurospora has many attributes that make it an ideal model organism for cell biology
and genetic studies, including a sequenced genome, a predominantly haploid life
cycle and the availability of knock-out mutants for the*10,000 genes. Neurospora
grows by polar extension of tube-like structures called hyphae. Neurospora has a
complex life cycle, with two asexual sporulation pathways and a sexual cycle that
produces meiotic progeny. This study analyzes stages during the formation of a
colony, from asexual spore to mature hyphae with the use of video bioinformatics and

Electronic Supplementary Material Supplementary material is available in the online version
of this chapter at 10.1007/978-3-319-23724-4_13. Videos can also be accessed at http://www.
springerimages.com/videos/978-3-319-23723-7

I.E. Cabrera � K.A. Borkovich (&)
Department of Plant Pathology and Microbiology, University of California,
900 University Avenue, Riverside, CA 92521, USA
e-mail: Katherine.Borkovich@ucr.edu

I.E. Cabrera
e-mail: icabr001@ucr.edu

A.L. Tambo � A.C. Cruz � B.X. Guan � B. Bhanu
Center for Research in Intelligent Systems, University of California,
Chung Hall 216, Riverside, CA 92521, USA
e-mail: atamb001@student.ucr.edu

A.C. Cruz
e-mail: albert.cureg.cruz@gmail.com

B.X. Guan
e-mail: xguan001@ucr.edu

B. Bhanu
e-mail: bhanu@ee.ucr.edu

© Springer International Publishing Switzerland 2015
B. Bhanu and P. Talbot (eds.), Video Bioinformatics,
Computational Biology 22, DOI 10.1007/978-3-319-23724-4_13

237

http://dx.doi.org/10.1007/978-3-319-23724-4_13
http://www.springerimages.com/videos/978-3-319-23723-7
http://www.springerimages.com/videos/978-3-319-23723-7


image analysis tools. We are the first to analyze the asexual spore size, hyphal
compartment size and hyphal growth rate in an automated manner, using video and
image analysis algorithms. Quantitative results were obtained for all three phenotypic
assays. This novel approach employs phenotypic parameters that can be utilized for
streamlined analysis of thousands of mutants. This software, to be made publicly
available in the future, eliminates subjectivity, and allows high-throughput analysis in
a time saving manner.

13.1 Neurospora Life Cycle and Genomics

Neurospora is a eukaryotic filamentous fungus belonging to the phylum
Ascomycota. Filamentous fungi include a large group of plant and animal patho-
gens that affect crop production and human health [1, 2]. Due to the feasibility of
genetic manipulations, a predominantly haploid life cycle and a relatively fast
growth rate, genetic studies in Neurospora have further advanced the understanding
of multiple pathways shared with both important pathogens and higher eukaryotes
[3, 4]. Access to a sequenced genome and knock-out mutants for almost all of the
10,000 genes [5, 6] are among the reasons that Neurospora has been designated as
an NIH model system for filamentous fungi (http://www.nih.gov/science/models/).

Neurospora grows by polar extension, branching, and fusion of tube-like
structures termed hyphae. All the three mechanisms of growth (extension,
branching, and fusion) involve polarization of the hyphal tip [7]. A typical
Neurospora hypha is 4–12 µm in diameter and contains multinucleate cellular
compartments, separated by incomplete cell walls (septa) [8]. As the cell divides, it
lays down the septum during the final stage of mitosis (cytokinesis). The septal wall
contains a pore that allows for cytoplasmic communication and movement of
organelles between the cells. Fusion and branching of hyphae results in formation
of a colony, consisting of interconnected multinucleated hyphae [9].

Neurospora uses three different developmental pathways to produce three dif-
ferent types of spores (Fig. 13.1). The major asexual sporulation developmental
pathway is known as macroconidiation. Macroconidia, also referred to as conidia,
are multinucleate, containing 3–5 nuclei per cell [10]. These conidia develop in
chains at the end of aerial hyphae and are easily dispersed into the environment
upon maturation. Spores produced during the second asexual sporulation pathway,
microconidia, contain only one nucleus and develop from basal vegetative hyphae
[11]. The third type of spore is produced during sexual reproduction. Sexual
reproduction in Neurospora involves the fusion of cells from the two mating types,
mat A and mat a. Nitrogen starvation induces the production of female reproductive
structures termed protoperithecia. The presence of an asexual spore (male) of
opposite mating type in the vicinity will cause a hypha from the protoperithecium to
grow toward it and fuse, with uptake of the male nucleus. Fertilization and meiosis
occur and the female structure then enlarges to form a fruiting body (perithecium)
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containing the progeny (ascospores) [12]. Ascospores are ejected from the mature
perithecium into the environment, and are able to germinate to form a colony upon
heat activation [13].

Neurospora has made a large impact in the fungal genetics community, and will
continue to do so, due to the feasibility of genetic manipulations [3, 14, 15]. The
Neurospora genomic sequence became available in 2003, revealing a 43 Mb
genome containing approximately 10,000 genes [5]. The discovery of mus-51 and
mus-52, two genes homologous to KU70 and KU80 in humans, which are
responsible for non-homologous end joining, has facilitated the production of gene
deletion mutants [16]. Transformation of Neurospora strains from these two genetic
backgrounds (Δmus-51 and Δmus-52) ensures 100 % homologous recombination of
gene replacement cassettes containing a hygromycin resistance gene in place of
each target gene [17].

13.2 Hyphal Growth in Neurospora

Growth is an essential process required for colonization of dead and decaying plant
material by Neurospora. In fungal animal and plant pathogens, tip-based (polar-
ized) growth is used for invasion of the host and defects in hyphal morphogenesis
compromise the virulence of pathogens [18, 19].

In filamentous fungi, the complex hypothesized to be responsible for hyphal
polarized growth is the Spitzenkorper. The Spitzenkorper is the vesicle organization

Fig. 13.1 N. crassa life cycle. Neurospora grows by extension, branching, and fusion of hyphae
to form a colony. Neurospora has two asexual sporulation pathways (macroconidiation and
microconidiation) and a sexual cycle
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site, from which vesicles containing components needed for cell wall degradation
and synthesis are shuttled [20]. Cell-wall-synthesizing activity occurs at the hyphal
apex to promote hyphal extension [21]. In addition, the position of the
Spitzenkorper correlates with the local direction of growth [22].

The cytoskeleton is also important for polarized growth. The absence of actin
filaments blocks polarized growth and prevents septum formation [23, 48].
Microtubules, another component of the cytoskeleton, have also been proposed to
play a role during polarized growth. The absence of microtubules leads to loss of
directed extension of hyphae and irregular growth patterns [24, 25].

13.2.1 Quantifying Hyphal Compartment Size

Cell compartment properties are quantified by examining morphology.
Conventionally, data is gathered via manual analysis by multiple experts who
would repeat the same measurements multiple times for the same image in order to
increase the accuracy of the results. A method is needed that does not require a user
to perform manual segmentation. Such fully automatic methods improve the
objectivity of results and significantly improve the throughput of experiments. For
comparison, the time required to manually segment the pavement cells of
Arabidopsis thaliana in a single image is measured in 102–103 s. The time required
for automatic methods is measured in 100–10–1 s [26].

The system overview is as follows: (A) First, the region of interest (ROI), the
region of the image belonging to the network, is identified with a Poisson-based
ROI extraction procedure. This method detects the compartments. (B) Edges are
extracted with Gabor filters and a non-classical receptive field inhibitor. This
method detects the walls that separate the compartments, reducing the ROI into
separate regions corresponding to the compartments. (C) Morphological operators
refine the results by separating erroneously joined compartments and filling in
holes. (D) Connected components identify each cell and, finally, (E) properties of
each compartment, such as area, orientation, length, and width, are extracted.

13.2.1.1 Cell Growth and Microscopy

This study used wild-type N. crassa strain FGSC 2489 [17]. Conidia were inocu-
lated in the center of a 100 × 15 mm petri plate containing 12 ml of Vogel’s
minimal medium (VM) with 1 % agar as a solidifying agent [27]. Cultures were
incubated for 20–22 h at 30 °C in the dark. Vegetative hyphae were stained using a
1:1 ratio of Calcoflour-white in VM liquid medium [28]. The “inverted agar block
method” described in [29] was used to visualize the sample using an Olympus IX71
inverted microscope (Olympus America, Center Valley, PA) with a 40× phase
objective. Several images were collected for the strain. Manual analysis of the
length and diameter were also performed, (data not shown). Statistical analysis
(t-test) was used to compare methods and performed using Excel [30].
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13.2.1.2 Poisson-Based ROI Extraction

State-of-the-art methods model the pixel intensity value with a probabilistic
framework, and assume a normal distribution in computation. One study [31] uti-
lized a probabilistic method to correct intensity loss in confocal microscopy images,
assuming a normal distribution. In Pound et al. [32], a normal distribution is applied
as a point spread function and for segmentation. In a third approach, [33], a
semi-supervised learning algorithm segments cells, assuming a normal distribution.
We propose modeling the intensity as a Poisson distribution. When capturing the
images in a confocal microscope, a pixel measures the arrival of photons at that
point in the sensor. Because the Poisson distribution models the probability of a
given number of events occurring, it is better suited for the segmentation model.
The model in Gopinath et al. [32] was used as groundwork for the proposed
Poisson-based segmentation model.

13.2.1.3 Non-classical Receptive Field Inhibition Based Edge Detection

Grigorescue et al. [34] proposed a method for edge detection that models the human
visual system. This method is based on the Gabor filter, modeling of gradients in
the V1 cortex of the human visual system. It expands on Gabor filters by modeling
the process by which the human visual system can extract meaningful edges in
noisy data. It is called non-classical receptive field inhibition. This method was
exploited for microtubule detection in A. thaliana pavement cells and was found to
reduce false alarm rate over state-of-the-art methods by a factor of 2.14 [26].

13.2.1.4 Results

The automated method allows the user to select the cell or cells of interest in a rapid,
non-biased manner. Once the cells have been selected, quantitative data for length,
width (diameter), area, and perimeter are stored as a CSV file (Table 13.1). Statistical
analysis confirmed that there was no statistical difference between manual analysis
and the automated method (Data not shown). The automated method detects the
walls that separate the hyphal compartments, reducing the ROI into separate com-
partments. Figure 13.2 shows the primary image as colored compartments to easily
recognize the different cells for the user to select for analysis.

Table 13.1 Results from the cell compartment size automated program

Measurement Length (µm) Width (µm) Area (µm2) Perimeter (µm)

Mean 79.85 10.65 625.88 174.01

Standard error 5.32 0.62 79.69 12.06

Standard deviation 26.58 3.11 398.46 60.30

Minimum 25.71 7.085 148.96 60.31

Maximum 142.26 16.91 1557.90 303.61
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13.2.2 Measuring Hyphal Growth Rate

Neurospora is one of the most rapidly growing filamentous fungi, extending at a
rate of 5 mm/h on solid medium [15, 35]. Capturing hyphal tip growth using video
microscopy will enable us to quantitate the growth rate of any strain in real time.
Many mutants possess a growth defect and this method will provide an unbiased
and accurate growth rate measurement.

13.2.2.1 Hyphal Growth and Video Microscopy

The N. crassa strain and culture methods are identical to those described in
Sect. 13.2.1.1. The “inverted agar block method” described in [29] was used to
visualize the sample using an Olympus IX71 inverted microscope (Olympus
America, Center Valley, PA) with a 100× phase objective. Frames were captured at
a speed of one frame every second for 5 min (300 s).

13.2.2.2 Video Analysis

These operations are performed using MATLAB software [36]. For each image in
the video sequence, image segmentation is performed to distinguish the hypha
(foreground) from the media (background). This process is achieved using an
edge-based active contour model as outlined in [37]. The algorithm is provided with
an initial contour that it collapses using gradient descent to find the shape of the
hypha. The result of this process is a binary image where the foreground pixels have
a value of 1 and the background pixels are 0. The extracted shape of the hypha is
further collapsed inward using gradient descent and the distance transform image to
find the internal line of symmetry of the hypha. The tip of the line is projected to
intersect with the contour of the shape to form the complete line of symmetry. This
line is used to compute the length of the hypha via Euclidean distance. Video 1
represents this method on one frame of the growing hypha.

The results with wild type (Fig. 13.3) suggest that overall hyphal growth rate is
linear, but that the velocity is oscillating over short time periods. These results agree
with those from a prior video microscopy study reporting that Neurospora grows in
a pulsatile manner [38]. Previous results involving manual calculation reported the
growth rate for wild type vegetative hyphae as 0.201 µm/s [38], which is very close
to our finding of 0.207 µm/s.
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13.3 Asexual Sporulation

As mentioned above, asexual spores (conidia) are essential for dispersal of
Neurospora. Conidia formation is initiated by light, nutrient deprivation and/or
exposure to oxygen [39]. These conditions lead to growth of aerial hyphae that rise
perpendicular to the basal hyphae [40]. Aerial hyphae begin to bud at their tips to
form macroconidia, each containing 2–5 nuclei [41]. Most macroconidia are 5–9 µm
in diameter [39]. Mature conidia are held together by septa, and can be easily
separated by natural forces such as wind, which will aid their dispersal in the
environment [41].

13.3.1 Quantifying Conidia Area

In this study, we propose an automated algorithm for conidia cell region detection.
The cell region is the foreground, F, and the rest of noncell regions are background,

Fig. 13.3 Determination of hyphal growth rate. a Length of the midline of the hypha over time.
The green dashed line is the smoothed measurements from the solid blue line. The smoothed
measurements were obtained with a moving average. b Rate of change in length of the hypha over
time (velocity). The results show that hyphal growth is oscillating over time
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B. The cell has three basic characteristics: (1) A strong halo surrounded the cell;
(2) a dark oval or circular ring circumscribes the cell body; (3) the cell center has
similar intensity as, or brighter intensity than, the background.

13.3.1.1 Conidia Propagation and Image Capture

This study used the N. crassa strain described in Sect. 13.2.1.1 conidia from a
5–7-day-old slant cultures were collected using 1 ml of sterile water. The sus-
pension was diluted 1:50 and visualized using an Olympus IX71 inverted micro-
scope (Olympus America, Center Valley, PA) with a 40× phase objective. Several
images were collected for analysis.

13.3.1.2 Algorithm

The algorithm exploits three characteristics for cell region detection. The algorithm
uses a Gabor filter to enhance the effect of halo for cell region detection [42]. The
effect of image property with/without Gabor filter can be seen in Fig. 13.4. After
filtering, a simple thresholding by Otsu’s method is sufficient for segmenting out
cell regions from noncell regions [43]. As shown in Fig. 13.5, the halo intensity
distribution is located at the right of the histogram, while the background distri-
bution is on the left. As the result, halo stands out as part of detected cell regions by
Otsu’s. However, there is an overlapped region between foreground and back-
ground intensity distribution (Fig. 13.5). As a result, a morphological method is
used to obtain the entire cell region [44, 45, 46]. Since the cell body without halo is
the only interest, oversegmentation is inevitable in the algorithm, which is shown in
Fig. 13.4. The concept of region shrinking is used after Otsu’s method to reduce
over-segmentation [47]. The region shrinking is applied to each detected cell
region. Figure 13.4 shows the final result of the algorithm. The equations for the
algorithm are shown below:ą

Fig. 13.4 Conidia images. Original image (left) and after being subjected to Gabor filtering (right)

13 Quantitative Analyses Using Video Bioinformatics … 245



Wk ¼ e
�

lek
�lhaloð Þ2
r2
halo ð13:1Þ

SNRk ¼ lcellðkÞ
rcell kð Þ ð13:2Þ

MðkÞ ¼ Wk � SNRk ð13:3Þ

kopt ¼ max
k

M kð Þð Þ ð13:4Þ

Wk is the weight for edge at the kth iteration
ek is a vector that contain edge intensity values at the kth iteration
lek is the mean intensity value of ek
lhalo is the mean intensity value of halo
r2halo is the intensity variance of halo
lcell kð Þ is the mean intensity value of cell region at the kth iteration
rcellðkÞ is the intensity standard deviation of cell region at the kth iteration
SNRk is the signal to noise ratio at the kth iteration
MðkÞ is the weighted SNR at the kth iteration
FjðkoptÞ is the jth cell region at the kopt iteration

Fig. 13.5 Halo intensity
histogram. The halo intensity
distribution is located at the
right of the histogram, while
the background distribution is
on the left. As the result, the
halo stands out as part of
detected cell regions by
Otsu’s
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13.4 Conclusion

The use of algorithm analysis on biological organisms has revolutionized the way
scientists analyze their data. Here, collaborations between biologists and engineers
have enhanced the analysis process with video and image analyses algorithms.
These methods have saved tremendous amounts of time and money. In addition,
data analysis becomes unbiased by reducing human error, thus ensuring the
authenticity of the results. In this study, we have analyzed Neurospora during
growth and development. This includes analysis of asexual spores and mature basal
hyphae. Quantifiable data was extracted using images, while growth rate was
measured using video bioinformatics. These methods may be applied to different
Neurospora gene deletion strains, thus revealing defects not captured by other
phenotypic assays. In addition, other fungi or any organism with similar features
can be analyzed using these programs. For example, there are other fungi that

Algorithm: Cell detection
--------------------------------------------------------------------------------------------------------------
Input: 
: Phase contrast image.

: Iteration limit for morphological erosion.
Output:

: Foreground (the cell regions).
: Background (the non-cell regions).

=================================================================
Procedure Detection_Algo( );
{ 

1. Initialize and with a zero matrix with size of image, . 
2. is a result of Gabor Filtering of image, (Mehrotra, Namuduri et al. 1992). 
3. is a binary result by Otsu’s method on (Otsu 1979). 
4. Apply morphological filtering on (Soille 1999). 
5. Apply connected component on (Haralick and Shapiro 1991). 
6. is a connected component labeling of . 
7. For ( = 1 to total number of components in ){ 
a. is the component of  . 
b. For ( = 1 to ){ 
i. Obtain by apply morphological erosion on (van den Boomgard and van Balen 1992). 

ii. Obtain edge locations, from (Li, Huang et al. 2006). 
iii. Obtain from image, , for all edge locations in .
iv. Calculate from . 
v. Calculate , and with equation (1), (2) and (3).

vi. . 
vii. . 

} 
c. Calculate using equation (4).
d. . 
8. } 
9. . 

}; 
=================================================================
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produce spores and quantifying the area of these spores is feasible, as long as phase
contrast microscopy is used. Growth rate analysis on other polarized tip-growing
organisms can also be quantified, thus expanding the use of these programs.
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Part V
Dynamics of Intracellular Molecules



Chapter 14
Quantification of the Dynamics of DNA
Repair to Ionizing Radiation
via Colocalization of 53BP1 and ɣH2AX

Torsten Groesser, Gerald V. Fontenay, Ju Han, Hang Chang,
Janice Pluth and Bahram Parvin

Abstract Cellular response to stress can be manifested and visualized by mea-
suring induced DNA damage. However, cellular systems can repair the damage
through a variety of DNA repair pathways. It is important to characterize the
dynamics of DNA repair in a variety of model systems. Such a characterization is
another example of the video bioinformatics through harvesting and fixing of a
large sample size at different time points. This chapter provides background and
motivation for quantifying the dynamics of DNA damage induction and repair in
cycling and stationary cells. These model systems indicate that the repair kinetics
have a similar profile for gamma radiation; however, following iron ion exposure
residual unrepaired damage is noted at longer times when assayed in stationary
cells. Repair kinetics are visualized by immunofluorescence staining of phosphor-
ylated histone gamma-H2AX and the DNA repair protein 53BP1. The kinetics are
then quantified using cell-based segmentation, which provides a context for repair
measurements and colocalization analysis. For enhanced robustness, cell-based
segmentation and protein localization leverage geometric methods. Subsequently,
cellular profiles are stored in a database, where colocalization analysis takes place
through specially design database queries.
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14.1 Introduction

Immunofluorescence staining of proteins involved in DNA repair or histone
modifications such as phosphorylation is a widely used technique to study DNA
damage and repair, in those cases where the repair mechanism is a dynamic process.
In recent years, quantitative analysis of DNA damage and repair has become a
necessity, given the large volumes of multifactorial data. In order to manage
experimental factors, images, and the analysis data, the BioSig imaging bioinfor-
matics system [1] has been significantly extended, and one of its views is shown in
Fig. 14.1. Each row represents a subset of samples under identical experimental
conditions. The experimental factors are (i) radiation dosage (e.g., 0 cGy, 200 cGy),
(ii) cycling and non-cycling cells (e.g., with or without EGF), and harvest time
(e.g., 48, 72 h post radiation). The phenotypic responses, in terms of the number of
colocalizations (e.g., spatial overlap between two different fluorescent labels with
different emission wavelength, where each label corresponds to a different DNA
damage markers) on each nucleus, provide an index for the repair dynamics.

The phosphorylation of histone H2AX on serine 139 (γH2AX) is one of the most
studied histone modifications, as it occurs at the sites of double strand breaks (DSB)
and provides a good biomarker for DSB kinetics. During the DNA repair process
ɣH2AX demarcates large chromatin domains on both sides of the DNA damage [2].

Fig. 14.1 Multifactorial experimental design and associated images can be visualized through the
web. Each row corresponds to thumbnail views of samples prepared and imaged with the same set
of experimental factors
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Using specific antibodies, this highly amplified response can then be visualized as
distinctive ɣH2AX foci. Another widely studied DNA repair protein is tumor
suppressor p53-binding protein 1 (53BP1), which colocalizes with ɣH2AX at sites
of DNA damage. We will refer to these sites as “foci” in the remainder of the
chapter. It is possible to detect the histone modification or the protein accumulation
in the cell nucleus through specific primary antibodies, and to visualize them with
fluorescence-labeled secondary antibodies. The distinct small foci can then be used
as a surrogate marker for the induction and repair of DNA damage. Immediately
after ionizing radiation damage foci numbers are shown to correlate well with
induced DNA double-strand breaks (dsb), therefore it is assumed that foci mea-
surement allows one to study the induction and repair of DNA DSBs. In this
chapter, an integrated computational and experimental assay is developed, to
investigate the dynamics of the DNA repair subject to damage induced by heavy
charged particles. Understanding the repair dynamics is crucial for radiation risk
assessment and protection. From a computational perspective, sites of DNA dam-
age are detected on a cell-by-cell basis, and registered with a database for sub-
sequent colocalization analysis. In this case, colocalization refers to detecting two
different proteins or phosphorylations occuring in the same spatial position. The
problem and challenges of correctly defining the number and co-localization of foci
on a per cell basis in an unbiased way are illustrated by an example shown in
Fig. 14.2. From an image analysis perspective, the difficulties can be reduced by
segmentation of nuclear and phosphorylation regions (e.g., foci) within each cell.

Background Investigating the colocalization of two different fluorescence signals
can give insights into the biological interaction of the labeled targets, and thus is
crucial to understanding their role in biological processes [3]. In addition, it can be
used to understand DNA repair in a more complex way than just measuring foci

Fig. 14.2 a An example of γH2AX and 53BP1 co-localization on a cell-by-cell basis. Blue is the
DAPI (nuclear) stained channel. Green corresponds to γH2AX, and red corresponds to 53BP1.
b Each nucleus and the corresponding sites of foci are segmented
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numbers of a single surrogate marker. Some of the data sets that are used here for
measuring co-localization of ɣH2AX and 53BP1 were published earlier [4]. DNA
damage was induced by iron ion exposure in cycling and non-cycling MCF10A
cells, a human mammary epithelial cell (HMEC) line. DNA repair studies with
heavy charged particles can give insights into the repair of complex DNA damage,
and are crucial for radiation risk assessment and protection.

From a computational perspective, the main issues for detection of foci and
co-localization [5] are (i) detection of overlapping nuclei, which provide context for
quantitative analysis on a cell-by-cell basis; (ii) heterogeneity in the fluorescent
signals in each channel; and (iii) methods for co-localization studies.

14.2 Materials and Methods

Cell culture conditions, radiation exposure as well as the immunostaining protocol
and image acquisition were reported in detail in [4]. In short, cycling or stationary
human mammary epithelial cells MCF10A were exposed to 1 or 2 Gy of
968 MeV/amu iron ions (LET = 151 keV/µm). Immunostaining for ɣH2AX and
53BP1 foci formation was performed on cell monolayers at different times after
exposure. Cells were counterstained with 4′,6-diamidino-2-phenylindole (DAPI),
air-dried, and mounted with Vectashield before image acquisition. Image acquisi-
tion was performed using a Zeiss Axiovert epifluorescence microscope with a Zeiss
plan-apochromat 40× dry lens and a scientific grade 12-bit charge-coupled device
camera. All images within the same data set were captured with the same exposure
time so that intensities were within the 12-bit linear range and could be compared
between specimens. Images were taken in 11 focal planes with 0.7 mm steps over a
range of 7 mm total, to capture foci in different focal plans. A single 2D image was
then constructed via maximum projection of all 3D slices. A total of 216 images
were collected, and at least 100 cells per treatment group have been analyzed for
each independent experiment.

14.3 Quantitative Analysis

(i) Delineating nuclei Nuclear segmentation, from DAPI-stained samples, has
been widely utilized by the community, and remains an active area of research
[6–8]. The main challenges are heterogeneous fluorescent signals due to
changes in cell cycle, nuclei touching in a clump of cells, and variation in the
background signal. The primary barrier has been designating individual nuclei
when nuclei are touching, and a number of approaches have been proposed to
enable analysis on a cell-by-cell basis. These include seed detection followed
by watershed or evolving fronts [9], gradient edge flow [10, 11], and geometric
reasoning [12]. In the current system, nuclear segmentation is based on
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separating foreground and background, followed by geometric reasoning for
validation and separating touching nuclei [13, 14]. The foreground-background
separation is based on a combination of gradient and zero-crossing filters,
which delineate foreground regions consisting of both individual nuclei and
clumps of nuclei. This method is preferred over classical thresholding tech-
niques since gradient-based methods are less sensitive to variations in fore-
ground and background intensities. Having delineated the foreground regions,
the system utilizes geometric reasoning to separate touching nuclei, with the
main assumption being that normal nuclei have a convex morphology. As a
result, ambiguities associated with the delineation of overlapping nuclei can be
resolved by detecting concavities and partitioning them through geometric
reasoning. The process, shown in Fig. 14.3, consists of the following steps:

a. Detection of Points of Maximum Curvature: The contours of the nuclear
mask were extracted, and the curvature along the contour is computed by
using k = x′y′′ − y′x′′(x′2 + y′2)3/2, where x and y are coordinates of the
boundary points. The derivatives were then computed by convolving the
boundary with derivatives of the Gaussian filters. An example of detected
points of maximum curvature is shown in Fig. 14.3.

Fig. 14.3 Steps in delineating clumps of nuclei
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b. Delaunay Triangulation (DT) of Points of Maximum Curvature for
Hypothesis Generation and Edge Removal: DT was applied to all points of
maximum curvature to hypothesize all possible groupings. The main
advantage of DT is that the edges are non-intersecting, and the Euclidean
minimum spanning tree is a sub-graph of DT. This hypothesis space was
further refined by removing edges based on certain rules, e.g., no back-
ground intersection.

c. Geometric reasoning: Properties of both the hypothesis graph (e.g., degree
of vertex), and the shape of the object (e.g., convexity) were integrated for
edge inference.

The protocol is similar to the method presented in [12]; however, Delaunay
Triangulation offers a significant performance improvement. For more details, see
[14, 15].

(ii) Detection and segmentation of foci Nuclear segmentation enables quantita-
tive foci analysis on a cell-by-cell basis. Here, foci detection refers to the
phosphorylation sites of ɣH2AX or 53BP1, as shown in Fig. 14.2a. The foci
morphology is typically round and punctate; however, the intensity and the
signal amplitude can vary. Typically, spot detection is based on thresholding;
however, thresholding is sensitive to the background intensity and presence of
foci in the same proximity. More importantly, foci may vary slightly in size
and shape. The current protocol is based on iterative radial voting [16], which
has been validated [12] to be quite effective in spot detection and which
remains robust to variations in the background and foreground intensity. This
is an important feature since the signal intensity tends to vary as a result of the
dynamic of the DNA repair mechanism. The iterative radial voting utilizes the
local spatial gradient to detect “blob-shaped” objects and is tolerant to vari-
ations in shape and object size. It is essentially a form of clustering that
gradually improves foci detection iteratively. Foci detection is followed by
segmentation to quantify foci profiling (e.g., intensity, morphology), with an
example shown in Fig. 14.4.

Fig. 14.4 Detection of foci
on a cell-by-cell basis for two
nuclei

258 T. Groesser et al.



(iii) Colocalization analysis The database schema captures foci profile, on a
cell-by-cell basis, which includes morphological and intensity-based indices.
One of the novel aspects of our analysis is that co-localization analysis is
performed at the database level. Each foci (e.g., γ-H2AX, 53BP1) has an
assigned bounding box, and the ratio of the overlap between bounding boxes,
computed from different channels, reflects co-localization being true or false.
The overlap function takes advantage of the geometric data types and opti-
mized geometric operators native to the PostgreSQL relational database
management system [17]. The functionality leverages the box data type and
the intersection operator in order to store the amount of intersection for each
possible pair of foci within any single nucleus. With these stored tables,
database functions are developed to quantify co-localization of foci, in dif-
ferent imaging channels, by defining the minimum percentage of overlap that
should qualify as overlap or intersection. Each query has three parameters:
percentage of overlap, the source channel, and the target channel.
Subsequently, the system exports co-localization data per radiation dose on a
cell-by-cell basis. One of the advantages of the co-localization studies through
the database queries is that the query can be repeated, with a different
parameter setting for the amount of overlap between computed foci from
different imaging channels, to improve sensitivity and robustness in
co-localization studies.

14.4 Results

In this section, we summarize quantitative results of co-localization experiments
that were outlined earlier [4], which have not yet been reported. Figure 14.5a–f
shows a representative set of phenotypic signatures for the site of DNA damage and
repair. Accordingly, the response is heterogeneous, which requires a large dataset
for appropriate statistical interpretation, and the repair kinetic is complete within the
first 15 h following the radiation exposure. Figure 14.6a, b show the amount of
co-localization over time for 53BP1 (source channel) with ɣH2AX (target channel)
for 50 % (0.5), 75 % (0.75), and 95 % (0.95) foci overlap in stationary or cycling
MCF10A cells. Results represent the average amount of co-localization from 2–3
independent experiments; for better visualization, error bars were not included. The
amount of colocalization (e.g., the overlap between segmented foci regions in
53BP1 and ɣH2AX) drops for a stricter requirement of overlap for treated and
control cells. Higher co-localization can be detected in exposed cells compared to
the unexposed cells. In addition, a drop in co-localization over time is also noted.
Unexposed cells show a more constant level of co-localization over time with only
minor fluctuations, (20–40 % for stationary cells and 10–30 % for cycling cells),
depending on the amount of overlap. In Fig. 14.6c the amount of co-localization for
50 % foci overlap in cycling cells is plotted over time, with error bars that represent
the standard deviation of three independent experiments. It is clear that the highest
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co-localization in the irradiated cells occurs between 2 and 6 h after exposure, and
that there is a constant drop over time. Cells exposed to 2 Gy iron ions seem to have
a slightly higher amount of co-localization than those exposed to 1 Gy. We did not
observe 100 % co-localization in any of our samples at any time. Maximum levels
were around 85 % of co-localization in cells, 6 h after a 2 Gy exposure (for 50 %
overlap).

14.5 Discussion and Conclusion

An integrated approach for co-localization studies has been presented, where the
spot counting method has been validated in contrast to human read outs in our
earlier papers [18]. There is extensive literature on the co-localization of 53BP1
with ɣH2AX. Some studies have suggested nearly complete co-localization while
others have reported either partial or no co-localization [5]. Our unbiased quanti-
tative analyses of 53BP1 and ɣH2AX foci co-localization in MCF10A cell line,
show a dose and post-irradiation time-dependency. The fraction of foci that
co-localize drops over time, after reaching a maximum at about 2–6 h. In addition,
radiation-induced foci in exposed cells show a higher level of co-localization as
compared to unirradiated cells. Our results are in good agreement with
co-localization data published by [19], in VH-10 fibroblasts and HeLa cells, where
they also reported a lack of co-localization in a fraction of 53BP1 and ɣH2AX foci,
despite generally good co-localization for the majority of the foci. Other authors

Fig. 14.5 Representative phenotypic signatures of the DNA repair sites, as a function of time,
indicates that the repair mechanism is typically complete within the first 15 h following the
radiation exposure
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have reported complete co-localization of 53BP1 and ɣH2AX up to 24 h after iron
ion exposure [20]. The variation in the extent of co-localization reported in the
literature is most likely due to the use of different cell lines and radiation qualities,
as well as the way co-localization was determined. In summary, the quantitative

Fig. 14.6 a Amount of
colocalization of 53BP1
(source channel) and ɣH2AX
(target channel) foci in 2D
cultures of stationary
MCF10A cells after iron ion
exposure over time. The
amount of foci overlap is
given in parenthesis. Data
points represent the average
of three independent
experiments. b Amount of
colocalization of 53BP1
(search channel) and ɣH2AX
(target channel) foci in 2D
cultures of cycling MCF10A
cells after iron ion exposure
over time. Amount of foci
overlap is given in
parenthesis. Data points
represent the average of two
independent experiments.
c Amount of co-localization
of 53BP1 (source channel)
and γ-H2AX (target channel)
foci in 2D cultures of
stationary MCF10A cells after
iron ion exposure over time
for 50 % (0.5) foci
overlap. Error bars represent
the standard deviation of three
independent experiments
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approach for foci detection and co-localization outlined here removes several
degrees of freedom (e.g., cell line, dosage, fixation and staining) leading to addi-
tional uncertainties, enables unbiased analysis for large scale data, and integrates
sensitivity analysis for cellular profiling.

Acknowledgment Funding: National Institute of Health [grant R01 CA140663] and carried out
at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.
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Chapter 15
A Method to Regulate Cofilin Transport
Using Optogenetics and Live Video
Analysis

Atena Zahedi, Vincent On and Iryna Ethell

Abstract Alzheimer’s disease (AD) is a neurodegenerative disease, where early
stages of learning and memory loss are associated with a pronounced loss of synapses
and dendritic spines. The actin-severing protein cofilin regulates the remodeling of
dendritic spines in neurons, which are small protrusions on the surface of dendrites
that receive inputs from neighboring neurons. However, the underlying mechanisms
that mediate this are unclear. Previous studies have reported that phosphorylation
regulates cofilin activity, but not much is known about the spatiotemporal dynamics
of cofilin in synapses and spines. Here, an optogenetic method was developed to
modulate the activity of cofilin, and video bioinformatics tools were used to study
cofilin transport in dendritic spines and its effects on synapses. Gaining further insight
into the workings of cofilin in spines can lead to potential therapies that regulate
synaptic connectivity in the brain. In this chapter, a light-inducible, multichannel, live
video imaging system was used to track the localization of cofilin, regulate its
activity, and modulate synaptic connectivity in cultured hippocampal neurons.
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15.1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by the abnormal accumulation and aggregation of β-amyloid (Aβ)1-42 peptides,
which lead to the formation of Aβ plaques in the brain [1]. AD results in a decline
of cognitive abilities and progressive dementia followed by loss of fine motor skills
and severe neurological impairments that eventually lead to death [2]. However,
early stages of the disease reveal a prominent loss of synapses/spines associated
with memory decline [2–4]. The actin-severing protein cofilin has been implicated
in the underlying mechanisms that govern synaptic loss prior to plaque formation
[5, 6]. Here, a video bioinformatics approach was developed to study the spa-
tiotemporal dynamics of cofilin in dendritic spines using photoactivatable probes
and live multiphoton imaging. This approach can be used to further investigate the
role of cofilin in loss of dendritic spines/synapses.

Dendritic spines are small, actin-enriched structures that house the post-synaptic
sites of most excitatory synapses in the central nervous system (CNS) [7–11].
Dendritic spines modulate the formation, maintenance, and removal of synaptic
connections [12–16]. The size of dendritic spines directly correlates with the
number of neurotransmitter receptors in the post-synaptic density (PSD) [10, 11,
17–20]. Dendritic spines can rapidly undergo cytoskeletal changes that lead to their
morphological enlargement, reduction, or deletion [13, 14, 19, 21]. These structural
modifications correlate with plasticity at the level of synapses, and their long-term
changes are important in cognitive functions such as learning and memory [12–16,
19, 22]. These activity-dependent modifications of spines are regulated by changes
in the organization of filamentous actin (F-actin) [12–16], which is accomplished by
actin-binding proteins, such as cofilin [6, 21, 23–25].

Pathological changes in actin organization can lead to synaptic loss and may
underlie the cognitive decline seen in AD [6]. Brain tissues from human and
transgenic AD mouse models show the presence of intracellular actin aggregates
called cofilin-actin rods [6, 21]. These actin rods can cause abnormal protein
inclusions, blockade of transport, neuronal swelling, and death [6, 26]. The for-
mation of these rods is generally triggered by cofilin dephosphorylation and rep-
resents early signs of cytoskeletal alterations [6, 16, 21, 23–25]. Aβ-induced actin
rods are associated with a decrease in spine density [27] and signaling events that
resemble long-term depression (LTD) [28, 29]. Moreover, previous studies have
shown that elevation of Aβ enhances LTD [30] and activation of
N-methyl-D-aspartate receptor (NMDAR)-dependent LTD results in translocation
of cofilin to spines where it causes synaptic loss [31].

Cofilin is an actin-severing protein that can bind and disassemble filamentous
(F)-actin, creating newbarbed-ends (Fig. 15.1) [6, 16, 21, 23–25, 32–36]. This process
increases the level of G-actin monomers [32, 33, 37] and can lead to actin remodeling
and destabilization/loss of synapses [38–41].Very low levels of cofilin lead to stability
of the actin filaments, slightly higher concentrations lead to actin depolymerization,
and even higher levels result in release of inorganic phosphate (Pi) without severing
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and the formation of actin-cofilin rods [23–25, 42]. Another important consideration is
the localization of cofilin in specific subcellular compartments such as dendritic
spines, which affects the local dynamics of actin [23, 24]. Several mechanisms that
regulate cofilin activity in dendritic spines have been reported, such as Rho
GTPase-dependent regulation of LIM-kinase (LIMK), which results in cofilin
phosphorylation and suppression of its activity [32, 34, 35, 38, 43, 44].

The complex networks of actin-regulating players in spines make it difficult to
effectively target a specific pathway and distinguish its effects. Therefore, an
optogenetic approach is advantageous in allowing for immediate probing and
acquisition of live changes in protein dynamics and subsequent spine morphology.

Fig. 15.1 Cofilin Modulation in Dendritic Spines. The activity of cofilin can be regulated by
altering its phosphorylation state: (1) NMDAR-mediated Ca2+ influx, which activates calcineurin
and dephosphorylates cofilin by SSH; (2) Rac1-PAK1-LIMK signaling cascade downstream of
Ephrin/EphB receptors, which phosphorylates cofilin; and (3) activation via a light-controllable
PA-Rac1. Pathway (1, green) can lead to F-actin severing and loss and/or reorganization of
dendritic spines, or formation of cofilin-actin aggregates called rods. Pathways (2, red) and (3) are
proposed to lead to polymerization of F-actin and stabilization of spines
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15.1.1 The Cofilin Switch Is Regulated by Two Opposing
Pathways

The local concentration of cofilin in subcellular compartments determines its
behavior and subsequent shifting of the G-actin/F-actin ratio [23, 24, 32, 33].
Several signaling pathways that control cofilin activity in dendritic spines have been
reported, such as the influx of Ca2+ through N-methyl-D-aspartate receptors
(NMDARs) that rapidly activates calcineurin [45] and leads to cofilin dephos-
phorylation by Slingshot phosphatase (SSH) [46]. This study proposes an optical
modulation approach to counter this effect by activating an alternative signaling
pathway using a photoactivatable Rac1 (PA-Rac1) probe. By activating a
PA-Rac1-Pak1-LIMK pathway, the aim is to induce phosphorylation of cofilin and
inhibit its F-actin-severing function. Figure 15.1 depicts the various pathways that
regulate cofilin in dendritic spines, along with the study’s proposed optogenetic
modulation method.

Since the activity of cofilin depends on both its phosphorylation state and
localization, photoactivatable probes are useful tools to instantaneously and pre-
cisely control the cofilin switch. In particular, PA-Rac1 allows for reversible
switching of activity with fast kinetics and is conveniently tagged with a mCherry
fluorophore for visualizing PA-Rac-positive neurons without premature photoacti-
vation [47]. Current pharmacological methods are chemically invasive, non-precise,
and difficult in targeting a single neuron. A strong correlation has been established
between excessive cofilin activity and AD pathology; therefore, is it imperative to
further investigate the transport mechanisms of cofilin in and out of spines. A live
video tracking approach can help to monitor and quantify the spatiotemporal reg-
ulation of cofilin in the spines, to better aid the study of its transport and mechanistic
role in synaptic loss.

15.2 Experimental Procedures

15.2.1 Materials and Methods

Primary hippocampal neurons were prepared from embryonic day E15–E16mice and
plated on glass-bottom dishes coated with poly-D-lysine and laminin as previously
described [31] (Fig. 15.2a). After 12–14 days in vitro (DIV), hippocampal cultures
were transfected with a pTriEx-mCherry-PA-Rac1 (a gift fromKlaus Hahn, Addgene
plasmid # 22027) using a calcium phosphate method to express photoactivatable
Rac1. Previously, Wu and colleagues developed this light-switchable probe by steric
inhibition of its binding site to Pak1 using the photo-reactive LOV
(light-oxygen-voltage) domain [47] (Fig. 15.2c). PA-Rac contains mutations to
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eliminate any dominant negative effects and reduce its interactions with alternative
upstream effectors [47]. PA-Rac and a GFP-tagged-wt-Cofilin were co-expressed in
cultured neurons (Fig. 15.2b), which were illuminated with approximately 473 nm
light to optically trigger the signaling cascade shown below (Fig. 15.2c).

Rac1 activation was first confirmed in hippocampal neurons by illuminating
PA-Rac-expressing neurons for 15 min and immunostaining for downstream
effector, phospho-Pak1 (pPak1) [48]. As expected, higher levels of pPak1 were
detected in PA-Rac-positive neurons in comparison to GFP-transfected controls
[48]. Next, cofilin was optically modulated in live neurons by continuous
whole-cell exposure, and time-lapse images were taken every 30 s. The live
changes in the localization of GFP-wt-cofilin were recorded by tracking the GFP
signal; this exposure to blue (480 nm) light allowed for simultaneous activation of
PA-Rac and tracking of cofilin in spines. The live imaging was conducted with a
Nikon Eclipse Ti inverted microscope made available by the University of
California, Riverside (UCR) IGERT for Video Bioinformatics. Immunostaining
results were analyzed using a Leica SP5 inverted confocal microscope made
available by UCR’s Microscopy and Imaging Core facility.

Fig. 15.2 Experimental schematics of cell culture, transfection, and photoactivation methods of
the hippocampal neurons. a Primary hippocampal neurons were isolated from the hippocampus of
embryonic day 15–16 (E15-16) mice, dissociated enzymatically, plated onto poly-D-lysine and
laminin-plated glass coverslips, and allowed to mature in culture for 1–4 weeks. b The cultures
were transfected at 14 days in vitro (DIV) using calcium phosphate method to overexpress PA-Rac
and GFP-tagged-wt-Cofilin (shown in green). The live changes in cofilin localization were
recorded by tracking the GFP signal, while simultaneously photoactivating PA-Rac with the same
wavelength. c Exposure to *480 nm light results in conformational changes that expose Rac1
active binding site to Pak1. This results in Pak1 phosphorylation, which in turn triggers the
activation of LIMK and subsequent phosphorylation (suppression) of cofilin
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15.2.2 Video Tracking Algorithms

To quantify the movement of cofilin in and out of the dendritic spines, an auto-
mated cofilin tracking software was developed to segment regions of GFP-tagged

Fig. 15.3 Automated software was developed to track the dynamics of cofilin. The algorithm can
quickly track and characterize regions of high intensity GFP-tagged cofilin in live cell videos. The
resulting data can be used to determine parameters such as length, change in area, distance
traveled, and speed of cofilin ROIs. Movie 1 quick response (QR) code shows a sample video of
the segmented cofilin clusters

Table 15.1 Extracted Features after Segmentation of Videos

Features Description

Area Number of pixels in the segmentation

Perimeter Number of pixels making the boundary of the segmentation

Centroid Point representing the center of mass of the segmentation

Solidity Ratio of pixels in segmentation to pixels in convex hull of segmentation

Orientation Angle between the x-axis and major axis of the fitted ellipse with the same
second-moments as the segmentation

Major axis Major axis length of the fitted ellipse

Minor axis Minor axis length of the fitted ellipse

Eccentricity Ratio of distance between foci of the fitted ellipse and its major axis length.
Takes a value between 0 and 1 with values closer to 0 being more circular

Max intensity Pixel value of the most intensity pixel in the segmentation

Min. intensity Pixel value of the least intensity pixel in the segmentation

Change in area Difference in area between each successive frame

Change in
perimeter

Difference in perimeter between each successive frame

Change in
centroid

Pairwise difference in centroid between each successive frame

Velocity Computed velocity of the segmented cofilin ROI
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fluorescence (Fig. 15.3). To track the movement of cofilin, the video is thresholded
to segment regions of high pixel intensity as shown in the Movie #1. Each video
frame is then sorted into connected components. Extremely large and extremely
small regions are removed due to their unlikelihood of being cofilin deposits. Next,
the centroid of the silhouette is extracted and used to compute the pairwise distance
of its coordinates between frames. The units of cofilin movement in pixels per
frame can be translated to meters per second given the imaging parameters. The
algorithm can extract an array of features (shown in Table 15.1), which can relate
information about transport properties. Also, the diffusion coefficient of a freely
moving cofilin region was extracted, as the mean square displacement of the ROI
over a given time frame. The diffusion coefficient was calculated as 9.06E-3 µm2/s,
which is far slower than the typical 5–50 µm2/s value of diffusion coefficient for
proteins in the cytoplasm [49]. Therefore, diffusion was ruled out as the mechanism
of cofilin transport in spines of hippocampal neurons.

The algorithm was used to segment regions of high cofilin intensity in time-lapse
videos of PA-Rac-/wt-Cofilin-expressing neurons. Figure 15.4 illustrates an oscil-
latory type of cofilin transport in a subset of the dendritic spines. The software was
used to approximate that every 5 min cofilin will accumulate in the spine heads,
followed by a rapid export from dendritic spines, which can be visualized in
attached Movie #2. Also, cofilin can cluster in the form of aggregated cofilin-actin
rods, and can be distinguished as areas of cofilin saturation (high pixel intensity).
To analyze the effect on the entire neuron as a whole, it was necessary to develop a
statistical model of the different types of cofilin and changes occurring in the target
video population over time.

Fig. 15.4 Tracking cofilin in PA-Rac and wt-cofilin-expressing neurons using time-lapse
imaging. Photoactivation of PA-Rac in neurons expressing GFP-wt-cofilin resulted in an
oscillatory type of cofilin accumulation and export from the dendritic spines approximately every
5 min. Cofilin can cluster and move in spines and can be identified by areas of cofilin saturation
and high pixel intensity. White arrows denotes cofilin clusters in the dendritic spine. Movie 2 QR
code provides a link to the corresponding video
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15.2.3 Video Bioinformatics Analysis

The different species of cofilin were classified over time in the entire video, using the
cofilin tracking algorithm and additional bioinformatics tools (Fig. 15.5).
Specifically, kymographs can provide a graphical representation of dynamics over
time, where the spatial axis represents time [50]. Kymographs of dendritic regions
were used to map the trajectory of the ROIs and visualize features such as length

Fig. 15.5 Results from kymographs and the cofilin tracking algorithm used to classify different
cofilin species. A Kymographs of cofilin-expressing neurons used to illustrate spatiotemporal
trajectory of GFP-cofilin regions (green) in response to various stimuli. Time-lapse imaging
reveals different cofilin classifications: (a) cofilin-actin aggregates, characterized by long regions
of high cofilin intensity and minimal movement; (b) freely moving cofilin regions, which exhibit
an oscillatory type of dynamics; and (c) hybrid structures, which alternate between rods and freely
moving cofilin. The bottom row represents the kymographs as maximum intensity projections of
the top images along the y-axis. As you move down vertically on the kymograph, time increases.
B Classification results from the cofilin tracking algorithm, and their regions of high cofilin-GFP
intensity were segmented and their length (major axis line) was extracted. Regions 3, 6, and 7 can
be classified as freely moving cofilin regions, since their lengths are ≤3 µm. However, regions 2, 4,
and 5 can be classified as rods due to longer lengths, and regions 1 and 7 as hybrids since they
display a significant shift in length
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and movement of cofilin. Kymographs were created by taking a maximum intensity
projection of each frame and concatenating them on top of each other to create a time
lapse image. The y-axis represents time in frames and the x-axis is the projection
image of each frame. Kymographs of wt-Cofilin-expressing neurons were used to
illustrate spatiotemporal translocation of GFP-cofilin regions (Fig. 15.5A, green) in
response to the PA-Rac activation. Time-lapse imaging revealed different classes of
cofilin: cofilin-actin aggregates, which can be characterized by long regions of high
cofilin intensity and minimal movement (Fig. 15.5Aa); freely moving cofilin
regions, which exhibit an oscillatory type of dynamics (Fig. 15.5Ab); and hybrid
structures, which can alter between rods and freely moving cofilin (Fig. 15.5Ac).
Subsequently, the cofilin tracking algorithm was used to segment regions of high
cofilin-GFP intensity, followed by extraction of various morphological features
listed in Table 15.1.

15.2.4 Cofilin Classification and Features

As previously mentioned, hyperactive cofilin can lead to the formation of
cofilin-saturated actin filaments called rods [6]. Rods disrupt synaptic function and
are a good indicator of synaptic loss prior to neuronal loss [6]. Therefore, it is
desirable to be able to automatically classify the various types and relative ratios of
the various cofilin forms, such as the accumulated rods in neurites. This can be done
with a cofilin rod classification algorithm, which uses a combination of features for
detection of various cofilin forms. This software is able to classify the segmented
tracks as cofilin-actin rods, freely moving cofilin, or hybrids cofilin regions by using
a decision tree. The length of the segmented region is a useful indicator and has
been previously used to identify rods in hippocampal neurons [50]. The length of a
cofilin region is found by extracting the segmented region’s major axis length.
Next, regions <3 µm length were classified as freely moving cofilin, and regions of
≥3 µm length were classified as either rod or hybrid cofilin forms. However,
additional features were required to make further distinctions between rods and
hybrids.

Another key feature is the change in centroid of the segmented ROI, which
detects the distance traveled (pair-wise displacement) between each frame. If the
region is not freely moving, then the change in centroid is checked to determine if it
is a rod or hybrid cofilin form. Figure 15.6b demonstrates the average change in
centroid values between each frame for the different cofilin classes. All three curves
experience a drop in the first and last few frames, which may be due to fact that not
all tracks are equivalent in length. The algorithm can be developed in the future to
recognize a returning cyclic cofilin region that has previously disappeared.
Therefore, the data may be skewed at both extremes of the curve. The freely
moving curve also shows an elevated change in centroid values and a noisier curve,
which may be a good indicator of its oscillatory behavior. Conversely, the rod and
hybrid cofilin groups have lowered change in centroid values and smoother curves,
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which correlate with the observation that they move less. The hybrid curves have a
steady decline in change of centroid over time. It is interesting that the number of
freely moving cofilin regions increased over time (Fig. 15.6a). This may signify that
the total pool of cofilin is being converted into more dynamic, freely moving types.
However, the number of rods and hybrids are relatively stable, indicating that fewer
new structures of these two cofilin types appear over time.

15.2.5 Monitoring the Remodeling of Spines

A spine tracking algorithm was developed to monitor and quantify the synaptic
remodeling effects. Extracting the spines begins by focusing on a subregion in the
video and segmenting the entire dendrite and its spines from the video’s back-
ground. The software allows the user freedom to select a region of intensity and
intensity threshold. Once extracted, the segmentation silhouette is automatically
divided into two parts: the main dendritic branch and its individual spines. Next,
spines are removed with an algorithm using morphological operators. The algo-
rithm begins by removing boundary pixels from the silhouette until only a general
skeleton of its shape remains. Afterwards spur pixels (pixels with exactly one,
8-connected neighbor) are removed from the skeleton. Spur pixels are connected
diagonally to other pixels and connected in only one direction. This allows us to
remove all diagonally connected spines. Also, spines that diverge more than a
specified angle (45°) from the main dendrite were removed. These two operations
enable removal of all spines from the skeleton leaving the main dendritic branch.

Fig. 15.6 A cofilin classifier algorithm was used to distinguish the different cofilin forms based on
extracted characteristics. a The number of segmented cofilin regions were tracked in each frame,
and classified as either rods, hybrids, or freely moving cofilin forms. Note that the number of freely
moving cofilin (red curve) significantly increases over time; whereas, the rods (blue curve) and
hybrids (green curve) predominately remain unchanged. b A change of centroid feature was used
to further differentiate between the different types of cofilin. Note that the freely moving cofilin
curve has several peaks, which may correlate with its oscillatory type of behavior. In contrast, the
rod and hybrid curves are smooth, which is in line with the fact that they move less
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The algorithm than dilates the branch by a function of its border pixels, giving us a
general idea of the size of the main dendritic branch. This result is subtracted from
the original silhouette to give only the segmentations of dendritic spines. By
monitoring the volume and morphology of spines, changes over time, and other
extracted features can be acquired for subsequent spine analysis (Fig. 15.7).

15.3 Discussion

Here, an optogenetic method was developed to regulate cofilin-mediated remodeling
of dendritic spines in hippocampal neurons via a Rac1-Pak1-LIMK signaling path-
way. A genetically encoded PA-Rac1 mutant was used to transiently photoactivate
live hippocampal neurons expressing GFP-tagged-wt-cofilin. The phosphorylation

Fig. 15.7 a Automated spine tracking software was developed to study the effects of PA-Rac
activation on density, size, and shape of spines in live videos. The algorithm tracks live video
recordings of GFP-tagged cofilin in neurons to visualize the remodeling effects of spines. First, the
entire dendrite and its spines are segmented by a user-specified threshold. Once extracted, the
segmentation silhouette is divided into the main dendritic branch and individual spines. Next,
the algorithm uses morphological operators to remove boundary pixels from the silhouette, leaving
the main dendritic branch. The algorithm then dilates the branch by a function of its border pixels
to create an estimation of the main dendritic shaft. This estimation is subtracted from the original
silhouette to give the spine segmentation. By monitoring the volume and morphology of dendritic
spines, their changes over the video timeframe can be calculated. b The top row displays the
dendritic spine over time, while the bottom row displays the segmentation of the time points
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state of cofilin was modulated and its translocation in spines was simultaneously
recorded by exposure to approximately 473 nm light. An automated tracking
algorithm was developed to study cofilin dynamics by classifying various forms of
cofilin over time. PA-Rac activation resulted in cyclic export of GFP-wt-cofilin from a
subset of spines. Furthermore, a classification algorithm was developed to show that
the number of freely moving cofilin regions increased over time.

Dephosphorylation (activation) of cofilin can be stimulated by initiators of
neuronal degeneration, such as oxidative stress, excitotoxic glutamate, and soluble
forms of Aβ [6, 27, 51]. Also, LTD-like mechanisms can lead to a rapid translo-
cation of active cofilin to dendritic spines [31]. The number of neurotransmitter
receptors at the PSD is crucial for synaptic plasticity [12–16, 21]; therefore, cofilin
may be involved in actin-mediated recycling of receptors. Furthermore, cofilin-actin
rods block normal intracellular trafficking, which may further implicate cofilin in
neurodegeneration. The software can be used to track cofilin and study its transport
properties in response to various experimental conditions, such as PA-Rac activa-
tion or Aβ(1-42) treatments. Furthermore, the software can be expanded to encom-
pass multi-channel recording for the purpose of co-localization studies and can be
used to investigate the role of other aiding molecules in the cofilin transport
machinery. Lastly, the spine tracking algorithm can analyze high-resolution, spa-
tiotemporal modifications of the subsequent actin remodeling in various treatments.
This can aid the study cofilin-mediated regulation of spine morphology, compo-
sition, and stability, which likely contribute to the long-lasting changes in synaptic
efficacy, with significant implications for AD pathology and normal spine plasticity.

Controlling excessive activity of cofilin could serve as a therapeutic approach for
rescuing the Aβ-induced synaptic loss associated with AD. While individuals who
are predisposed to AD can do nothing to change various risk factors such as age or
genetics, research aimed at the degenerative effects of the disease leave hope for
alternative treatments. Although many studies have been directed at generating drug
candidates that reduce levels of Aβ peptides and plaque, none have been successful
in sustaining memory and cognitive functions in AD patients. Therefore, the goal is
to target the disease in its earliest stages by modulating synaptic connections. The
optogenetic method proposed in this chapter is useful for achieving simultaneous
and harmless optical manipulation of cofilin in dendritic spines. Moreover, using
live video segmentation and other bioinformatics tools, it is possible to study the
transport of cofilin in dendritic spines. Other imaging modalities can be used to
further study and measure spatiotemporal dynamics. By utilizing advanced bioin-
formatics techniques, the mechanisms of cofilin regulation in spines can be eluci-
dated with a potential for clinical applications to prevent or slow the progression of
Aβ-mediated synaptic and cognitive deficits in AD patients.
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15.4 Conclusions

This chapter describes a method for the multichannel recording and activation of a
photoactivatable Rac1 (PA-Rac1) probe in cultured hippocampal neurons. Since
elevated cofilin activity has been linked to loss of synapses and dendritic spines,
modulating cofilin via a Rac1-Pak1-LIMK1-mediated pathway can serve as a
therapeutic approaches that target synaptic loss in disorders such as Alzheimer’s
disease. Live imaging experiments revealed that PA-Rac activation triggers the
cyclic export of cofilin in a subset of dendritic spines. Next, a video bioinformatics
approach was developed to track the GFP-labeled-cofilin clusters in live neuronal
cultures. After segmenting the cofilin clusters, their spatiotemporal dynamics were
evaluated using kymographs. Furthermore, the different cofilin types were classified
based on various morphological features. Additionally, a spine segmentation algo-
rithm was developed in order to track the size, number, and shape of dendritic spines.

Future work in this study will focus on automatic classification of spine shape
and correlation to the cofilin dynamics, such as to its translocation trajectory rel-
ative to the dendrite. Also, the two algorithms can be consolidated to study the
effect of cofilin translocation on spine density and morphology. In follow-up
studies, tracking the movements of the constitutively active cofilinS3A (Ser3
mutated to an alanine) and phospho-mimetic cofilinS3D (Ser3 mutated to aspartate)
mutants and the resulting effects on the various forms of cofilin can be explored.
This will determine whether phosphorylation alone is responsible for directed
transport and elucidate the mechanisms regulating cofilin transport in dendritic
spines. By optogenetically probing and studying the cofilin system, mechanistic
insights can be explored regarding the regulation of cofilin activity and transloca-
tion, which underlie actin remodeling in dendritic spines.
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Chapter 16
Integrated 5-D Cell Tracking and Linked
Analytics in the FARSIGHT Open Source
Toolkit

Amine Merouane, Arunachalam Narayanaswamy
and Badrinath Roysam

Abstract Modern optical microscopy is now a multi-dimensional imaging tool that
enables recording of multiple structures and dynamic processes in living specimens
in their three-dimensional (3-D) spatial context and temporal order, yielding
information-rich 5-D images (3-D space, time, spectra). Of interest are complex and
dynamic tissue microenvironments that play critical roles in health and disease, e.g.,
tumors, and immune system tissues. The task of analyzing these images exceeds
human ability due to the volume of the data, its structural complexity, and the
dynamic behaviors of cells. There is a need for automated systems to assist the
human analyst to map the tissue anatomy, quantify structural, and temporal asso-
ciations; identify critical events, map event locations, and timing to the tissue ana-
tomic context; produce meaningful summaries of multivariate measurement data;
and compare perturbed and normal datasets for testing hypotheses, exploration, and
systems modeling. Beyond automation, there is a need for “computational sensing”
of sub-visual tissue patterns and cell behaviors. Recent progress has resulted in
algorithms for tracking migrating cells from time-lapse multi-photon image
sequences. This chapter describes algorithms and an open source toolkit (www.
farsight-toolkit.org) for end-to-end analysis of 5-D microscopy data including image
pre-processing, cell segmentation, automated tracking, linked visualization of
image-derived measurements and analyses in the context of the image data, and
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edit-based validation of cell movement tracks, and multivariate pattern analysis tools
for translating the resulting quantitative measurements into biological insight. This
framework provides the biologist with the necessary tools to achieve reliable
quantification, and help accelerate the experimental and discovery cycles.

16.1 Introduction

Many complex and dynamic biological tissue microenvironments play critical roles
in health and disease—examples include the immune system, stem-cell niches,
tissues surrounding implants, developing/remodeling/injured tissues, tumors, and
cancer stem-cell niches [1, 2]. Achieving a deep understanding of these microen-
vironments is a broadly recognized need that cuts across disease areas and disci-
plines. However, there is slow progress in characterizing these microenvironments
compared to the need, because current methods require the investigator to pains-
takingly piece together knowledge from a large numbers of experiments, each of
which yields a small amount of data (e.g., 2D slices of 3D tissue, static snapshots of
dynamic tissue, small number of molecular entities per image, and low-throughput
investigation). High-throughput methods (e.g., gene and protein arrays, and flow
cytometry) help by enabling a larger number of molecules and cells to be studied at
once. However, by disrupting the cell and tissue architecture, they miss vital
information on sub-cellular protein localization, location of cells in tissue, dynamic
interactions, collective behaviors, and spatiotemporal relationships between cells
and structures. Indeed, our greatest knowledge gaps relate to the in vivo dynamic
behaviors of cells in these microenvironments, and the influence of the microen-
vironment on the cell behaviors.

Advances in multi-photon, multi-channel, time-lapse microscopy, coupled with
improved live-cell chamber designs and sensitive photodetectors have enabled
5-dimensional (x, y, z, t, λ) imaging of living tissue microenvironments over
extended durations, providing information-rich datasets revealing dynamic pro-
cesses in their native tissue context [3]. As an example, panel A of Fig. 16.1 shows
one frame from a 5-D movie. Intact thymic lobes from a GFP transgenic mouse
were imaged ex vivo using a custom-built two-photon microscope. In panel B, the
lymph node of an adult mouse was imaged in vivo using a two-photon microscope.
The lymph node of the rat was surgically exposed, mounted tightly on an apparatus
and imaged. The aim of this study was to understand the role of the LFA1 integrin in
the interaction of T cells and dendritic cells. The full movie captures the migrations
and interactions occurring in a crowded field of wild-type and genetically modified
(P14) thymocytes with dendritic cells, in relation to the vasculature (red), allowing
the cell interactions to be studied in their vascular context for the first time.

The motivation of 5-D imaging is straightforward. A single 5-D movie is more
informative than hundreds, or even thousands of 2-D images of fixed, thin speci-
mens labeled with a couple of stains. These movies can provide more insight from
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fewer experiments and animals by enabling direct observation of processes instead
of having to infer them indirectly from multiple images (that may come from
different animals). They can reveal subtle dynamic behaviors and rare events as
they occur, which are nearly impossible to infer from fixed specimens. They can
reveal the tissue context/influences behind observed processes (e.g., the presence of
nearby vasculature or an interacting cell type), and expose more of the underlying
variables simultaneously. This can lead to direct, comprehensive, and simpler
systems modeling.

Achieving the potential of 5-D microscopy-driven research requires automated
systems to quantify 5-D data, because the size and complexity of 5-D data pre-
cludes human analysis, and mere 5-D visualization is insufficient. Manual analysis
is expensive, tedious, slow, and subjective. There is a need for automated tools to
aid the researcher through all stages of experimentation starting with specimen
preparation and microscopy, image segmentation and tracking, quality control,
multivariate data analysis, and design of the next round of experiments based on
insights from the previous round of experiments.

In order to achieve the aforementioned goals, one needs a synergistic combi-
nation of accurate, scalable cell segmentation, and tracking algorithm combined
with powerful editing and analytics tools. In this chapter, we describe these tools
that have been built as a part of the Farsight toolkit. Figure 16.2 depicts a flowchart
of the toolkit’s building blocks, workflow and the software components.1

Fig. 16.1 Immune system microenvironments are dense and intricate in structure and the
interactions between components of the niche are complex. a Ex vivo live image (2-D maximum
intensity projection of a 3-D 2-photon image) of a developing thymus from a mouse revealing four
channels consisting of wild-type thymocytes (cyan), F5 thymocytes (green), dendritic cells
(crimson), and blood vessels (red) [3]. b In vivo live image of a lymph node in a mouse showing
3-channels—CD4+ LFA-1KI T cells (green), OTI cells (cyan), dendritic cells GP33+ (red) [30]

1Parts of this figure appeared in Kevin W. Eliceiri, Michael R. Berthold, Ilya G. Goldberg, Luis
Ibáñez, B.S. Manjunath, Maryann E. Martone, Robert F. Murphy, Hanchuan Peng, Anne L.
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The organization of this chapter is as follows. Section 16.2 describes a seg-
mentation algorithm that uses a combination of foreground extraction and seed
detection algorithms to delineate cell boundaries. Section 16.3 describes a fully
automated multi-temporal method for globally optimal cell tracking. The algorithm
formulates the tracking problem as a second-order edge selection problem in
directed hypergraph. 0–1 integer programing is used to solve the assignment
problem. Section 16.4 discusses the multi-view editing and analytics framework
and its implementation in the Farsight toolkit. Section 16.6 presents conclusions
and future directions.

Fig. 16.2 Illustrating the Farsight-5D system. Top diagram illustrating a flowchart of the
workflow and the components of the Farsight-5D system. Bottom screenshots of the system
windows. Each module corresponds to one or more view (window) of the system. a Shows as an
orthogonal (x, y, z, t) view. Cells are delineated and identified with numbers that correspond to
rows of a table of cell measurements (d) and points in the scatter plot (e). b, c The cell tracking
results are displayed in a beads on strings and kymograph view, showing the 3D movement paths
of cells for detecting anomalies. The corresponding cell dynamic measurements are shown in table
(g) and scatter (h). f Bi-cluster plots organize the cell data into groups based on the intrinsic
measurements in (d). i Bi-cluster plot organizing the cell tracks into groups based on the dynamic
measurements in table (g)

(Footnote 1 continued)

Plant, Badrinath Roysam, Nico Stuurman, Jason R. Swedlow, Pavel Tomancak, and Anne E.
Carpenter, “Biological Imaging Software Tools,” Nature Methods 9, 697–710 (2012).

286 A. Merouane et al.



16.2 Image Pre-processing and Cell Segmentation

Automatic segmentation and delineation of cells is typically the first step in ana-
lyzing time-lapse microscopy images. It is crucial for a cell segmentation algorithm
to be able to accurately detect the correct number of cells and delineate them
automatically. Designing a robust cell segmentation algorithm can be a difficult
task. One must address several challenges, some of which are related to the inherent
heterogeneity in cell morphology such as shapes and sizes; others are due to the
limitations present in the image acquisition process such as poor and varying image
contrast and image noise. Computational cost and algorithm complexity are also
important factors, which need to be taken into consideration.

Although designing a robust segmentation algorithm is essential, image
pre-processing is often required to facilitate the application of the following steps in
the analysis pipeline, i.e., segmentation and tracking. The choice of the
pre-processing algorithms usually depends on the type of artifacts present in the raw
image data. We typically apply a background subtraction step to correct for
non-uniform illumination in the image, followed by Gaussian or median filtering for
noise reduction. The type of the smoothing filter is usually based on the image
statistics. More sophisticated de-noising algorithms [4–6] can also be used although
sometimes at the expense of computational complexity.

The cell segmentation procedure based on the algorithm proposed by [7] pro-
vides important advantages for large-scale automated cell analysis. The most
important advantage is the absence of adjustable parameters for a default applica-
tion of the algorithm to image data. The few parameters that remain are intuitive
and the algorithm is not overly sensitive to them. This algorithm starts by extracting
the image foreground using the Poisson distribution-based minimum error thres-
holding and the Graph Cuts algorithm [8]. The next step consists of identifying the
number of cells and cell centers. This is achieved by transforming the intensity
image to represent the cells by blobs. The local maxima points of these blobs can be
interpreted as cell centers, which will also be referred to as seed points in the rest of
this chapter. The transformation is based on a multi-scale Laplacian of Gaussian
(LoG) filtering of the intensity image [9]. Given a set of seed points and a trans-
formed image, a fast clustering algorithm known as local maximum clustering [10]
is used to delineate each cell.

For the initial binarization of an image IðxÞ where x denotes the 2-D/3-D pixel
coordinate; the normalized histogram denoted by p(i) where i denotes the intensity
of a pixel in the range [0, Imax] which is modeled as a mixture of two Poisson
distributions as follows:

pðiÞ ¼ P0 � pðin0Þ þ P1 � pðin1Þ; ð16:1Þ

P0 and P1 represent the a priori probabilities of the background and the fore-
ground regions. pðin0Þ and pðin1Þ are Poisson distributions with means μ0 and μ1,
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respectively. The aim is to find an optimal threshold value t* by minimizing the
error function as given by [11]

t� ¼ argmint l� P0 tð Þ lnP0 tð Þ þ l0 tð Þlnl0 tð Þð Þ � P1 tð Þ lnP1 tð Þ þ l1 tð Þlnl1 tð Þð Þð Þ:
ð16:2Þ

For a given threshold t, the parameters of the mixture model are determined by

P0 tð Þ ¼
Xt
i¼0

p ið Þ; l0 tð Þ ¼ 1
P0 tð Þ

Xt
i¼0

i� p ið Þ;

P1 tð Þ ¼
XImax
i¼tþ1

p ið Þ; l1 tð Þ ¼ 1
P1 tð Þ

XImax
i¼tþ1

i� p ið Þ;
ð16:3Þ

The threshold t� is found by iterating through all intensity values and then setting
t� to the intensity value that minimizes the objective function. This step results in a
binary image with foreground pixels labeled 1 and background labeled 0. This
initial binarization is only adequate in settings where images have uniform fore-
ground and background regions with high signal-to-noise ratio. In cases where
images suffer from low signal-to-noise ratio or have highly textured regions, the
binary image will potentially contain a large number of mislabeled pixels. In order
to obtain a clean binary image, the initial binarization is refined by incorporating
spatial relationships between neighboring pixels. In other words, a pixel’s label
does not only depend on its intensity but also on the intensities of its neighboring
pixels. Mathematically, an optimal pixel labeling L xð Þ is obtained by minimizing
the following energy function:

E L xð Þð Þ ¼
X
xð Þ

D L xð Þ; I xð Þð Þ þ
X
xð Þ

X
x0ð Þ2N xð Þ

V L xð Þ; L x0ð Þð Þ: ð16:4Þ

The data term in E L xð Þð Þ represents the cost of assigning a label j ∊ {0, 1} to a
pixel. It can be written as follows:

D L xð Þ; I xð Þð Þ ¼ � ln p I xð Þnjð Þ: ð16:5Þ

The data term measures how likely a label is for a pixel given the observed
image. The second term is called the smoothness term. It penalizes different labels
for neighboring pixels and measures the degree to which the image is not piecewise
smooth [8]. It can be written as follows [12]:

V L xð Þ; L x0ð Þð Þ ¼ q L xð Þ; L x0ð Þð Þ � exp � I xð Þ � I x0ð Þj j
2r2L

� �
; ð16:6Þ

where
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q L xð Þ; L x0ð Þð Þ ¼ 1; if L xð Þ 6¼ L x0ð Þ
0; if L xð Þ ¼ L x0ð Þ

�
ð16:7Þ

where σL is a scale parameter. Optimization of the energy function in Eq. (16.7) is
achieved via the max-flow/min-cut algorithm developed by [13]. Note that for this
binary case, the Graph Cuts algorithm finds a global minimum of the energy
function in low-order polynomial time. Figure 16.3 illustrates the binarization
results using the described method.

To separate (split) such clusters, initial markers, i.e., seed points, are required.
Detecting these points is analogous to finding cell centers. In some cases, the cells in
an image appear as bright objects with increasing intensity values toward their
centers and the seed points can be readily detected using a local maxima detection
algorithm such as the h-maxima transform [14]. However, in instances where images
contain textured cells or suffer from low signal-to-noise ratio, detecting local max-
ima points becomes a non-trivial task. In such scenarios, the intensity image needs to
be transformed to a surface such that (1) the surface’s peaks are representative of the
cell centers (seed points), and (2) the surface is smooth enough so that maxima
detection algorithms can be easily applied. The output of the convolution of a
Laplacian of Gaussian filter LoG x; rð Þ with an image containing blob-like objects
with radius rwhen r ¼ ffiffiffi

2
p

r is a smooth surface with a peak response at the center of
each object. In order to detect objects of different sizes, the LoG filter is applied at
different scales. Each LoG filter produces a response image with possibly a different
peak location for each scale. To address this issue, the response at each pixel (voxel)
location is set to be the maximum response over all scales.

Even so, this approach can only be used if the LoG filter is scale-normalized
such that the response at different scales can be compared. The normalized LoG can
be written as [9]

Fig. 16.3 a Projection of 3-D fluorescent image of Thymocyte channel at frame 1 of 5-D image
shown in Fig. 16.1. b Projection of binarization results using the minimum error thresholding and
the Graph Cuts algorithm
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R xð Þ ¼ argmaxr LoGnorm x; rð Þ � I xð Þð Þ: ð16:8Þ

Finally, given a response image R xð Þ, the clustering algorithm presented in [10]
is used to obtain the final segmentation. The foreground region is partitioned into
clusters each of which represents a single cell. The algorithm starts by searching for
local maxima points around the neighborhood of each point x. The search neigh-
borhood is defined by a resolution parameter vector r ¼ ½rx; ry; rz�.The result is a set
of seed points representative of cluster centers, Fig. 16.4e. Given a set of N seed
points labeled 1; . . .;Nf g, the algorithm iterates through each foreground pixel
(voxel) and assigns to it the same label assigned to the local maximum in its
neighborhood. This process is repeated until all foreground pixels (voxels) have
been assigned a value in the set 1; . . .;Nf g. The output of this clustering algorithm

Fig. 16.4 Illustrating the seed detection and clustering steps of the segmentation algorithm.
a Projection of 3-D fluorescent image of thymocyte channel at frame 1. b Surface plot of the
highlighted region in panel (a). c Surface plot of the multi-scale LoG response of the highlighted
region in panel (a). d Seed (in red) detection results using the local maxima clustering on the
original image in (b). e Seed detection results using the local maxima clustering on the LoG
response image in (b). f Segmentation results of the image shown in (a). g–l show enlarged regions
from different parts of the result image in panel (f)
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is a label image where pixels belonging to the same cells are assigned the same
value. Algorithm 1 provides a pseudocode of the described segmentation algorithm.
Figure 16.4f–l illustrates the segmentation results.

When applied to a sequence of images, the segmentation algorithm outputs a set

of objects Ci
t

� �i¼1...N tð Þ
t¼1...T where T denotes the number of frames and N(t) represents

the number of cells in frame t. From these results, a collection of single-cell
measurements, including location, intensity, area, shape factor, and molecular
biomarker associations, are computed and concatenated in a single vector denoted
as f it . These features essentially capture cellular states (static) which can, for
instance, be used in discovering heterogeneity in cell population. These features are
also used in computing the temporal association costs of the tracking algorithm as
will be described in the next section.

16.3 Cell Tracking

16.3.1 Prior Work

Tracking of motile objects in images has been a major focus in the field of computer
vision for a long time. The vast interest shown in this topic has led a wide variety of
algorithms ranging from overly highly tuned algorithms designed for a particular
need to general algorithms that may not be suitable for a specific need. The primary
goal behind a cell tracking algorithm is to find temporal correspondences between
cells in a time-lapse video.

Most approaches try to approximate Multiple Hypothesis Tracking (MHT) to a
few frames and find locally optimal solutions. Graph theoretic techniques solve the
multi-target tracking as an assignment problem in some abstract space. In [15],
the authors give an overview of assignment problems that arise in tracking. In [16],
the authors used sequential MHT to construct cell lineages. Their modeling
included mitosis events but not cells entering and leaving the field of view. The
same approach was utilized by [17] to perform 5-D image analysis. In [18], the
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authors proposed a greedy method for multi-frame correspondence based on
maximum path cover. The algorithm described in this chapter builds on this work
and improves upon it in many ways. Multi-temporal correspondences are computed
through second-order modeling and a globally optimal solution is provided.
Jaqaman et al. [19] proposed a particle tracking algorithm that uses a two-part
approach. In the first step, a frame-to-frame association is computed through linear
programming as in [17]. Complete tracks are computed by combining track seg-
ments using gap closing, merging, and splitting.

Kalman and particle filtering techniques [20, 21] are often used for cell tracking.
These sequential techniques have a high space requirement while handling joint
distributions of states for multi-target tracking. Sophisticated re-sampling methods
and measurement gating [20] are necessary to overcome the degeneracy problem.
Another class of approaches is based on active contours [22]. These are unsuitable
under high object density, and suffer from the well-known leakage problem.
Topological constraints are necessary to avoid merging of contours [23]. These
methods perform the association on frame-to-frame basis.

Many applications handle segmentation and tracking steps independently,
enabling a modular approach. Improvement in segmentation techniques can easily
be accommodated. The described method uses this approach to take advantage of
the recent advances in cell segmentation.

16.3.2 The Algorithm

We formulate the cell tracking problem as an embedding in a hypergraph.
A directed hypergraph is an ordered pair HG ¼ V ;Eð Þ, where V is a set of N nodes
and E is a multiset of hyperedges. A hyperedge e = {T(e), H(e)} is an ordered pair
of sets of vertices, where T(e) � V is the tail of the edge e and H(e) � V is the head
of the edge e where T eð Þ \H eð Þ ¼ / (the null set). The nodes of the directed
hypergraph are the cells and auxiliary vertices. Denote the ith vertex at time t by Ci

t .
The feature vector for Ct

i is denoted f it . The features include the centroid xcð Þ, time
(t), volume (v), and bounding box. t varies between 0 and T − 1 when there are
T frames in the image sequence. With the exception of the first and last time frames,
every cell has a connected appear and a disappear vertex.

In our hypergraph, we represented the cells as vertices in the graph. We also
augment this set of vertices with auxiliary vertices to model cellular events such as
entry and exit of cells from the field of view of the microscope. We add hyperedges
that model the possible cellular events. Then, we compute second-order hyperedges
that characterize the second-order motion events and compute their utilities. Next,
we formulate the tracking as a subset selection problem in the second-order hy-
peredge space. We represent the subset selection as an integer-programming
problem and find a global optimum using a fast branch-and-cut method. Finally, we
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use a feature-based method to correct the segmentation errors found in the previous
step and compute the corrected labels for the cells in the tracks.

The hypergraph contains three types of vertices: cells, appear, and disappear
vertices. Appear and disappear vertices are auxiliary vertices that model the entry
and exit of cells. Cell tracks only end on one of these auxiliary vertices. The
hypergraph also contains hyperedges which are of five types, each signifying an
event: translation, appearance, disappearance, split, and merge. Translation,
appearance, and disappearance edges connect two vertices, whereas split and merge
hyperedges connect three vertices. Translation indicates movement of a cell entirely
within the field of view. Multi-frame edges are translation edges connecting cells
that are more than one time point apart. Appearance edges connect an appear vertex
to a cell and disappearance edges connect a cell to a disappear vertex. Merge
hyperedges connect two cells from the same time point to another cell in the next
time point. These hyperedges represent a segmentation error and not a mitosis
event. Mitosis events are much slower events than the typical time scales we deal
within our studies. Similarly, a split hyperedge represents a segmentation error
leading to two cells in the next time point. Note that all the hyperedges discussed
until now merely form the hypotheses set. The eventual selection problem identifies
the correct hypotheses subset based on the utilities and imposed constraints.

Second-order hyperedges (SOH) are formed by combining neighboring
first-order hyperedges (FOH). Mathematically, a second-order hyperedge S is an
ordered pair S ¼ E1;E2ð Þ;E1Y \E2X 6¼ /, where E1;E2 are two first-order edges. It
is easy to see that S 2 Ein Vð Þ � Eout Vð Þf g.

The second-order hyperedges are necessary to model second-order motion
characteristics of a cell. In the following sections, we describe why the use of SOHs
eliminates the need for pre-computing the local directions of cell movements to
calculate the utility. Typically, the drawback of using SOH’s is a combinatorial
explosion of number of motion models. We overcome this by a principled approach
to utility estimation.

The initial set of hyperedges represents a set of all possible cellular events, not
all of which might have occurred in reality. The goal of our tracking algorithm is to
find the correct subset of valid hypothesis. The utility for a hyperedge is the
probability that the hyperedge corresponds to a real event. We propose two types of
motion models (a) parametric motion model (b) non-parametric motion model.
The difference between the two motion models is in the way the utility functions are
generalizable. The non-parametric motion model has more degrees of freedom than
the parametric counterpart and is thus more generalizable.

16.3.3 Motion Models

Parametric motion model The first-order utility U Ci
t ;C

j
tþ1

� 	
of a hyperedge con-

necting Ci
t and C

j
tþ1 is the a posteriori probability of the hyperedge corresponding to
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a real cellular event. Every hyperedge is associated with a set of features in an N-
dimensional space. In the parametric motion model, the likelihood functions are
represented by multi-dimensional Gaussian functions over the feature space of the
hyperedges. The exact features used are described below. Formally, we the like-
lihood of a hyperedge given its feature vector (of dimensionality N) is

P Ci
t;C

j
tþ1

� 	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞN Rj j

q e�
1
2 f it �f jtþ1k k�lð ÞR�1 f it �f jtþ1k k�lð Þ; ð16:9Þ

where R is the covariance matrix and μ is the mean vector. The mean and
covariance matrix were estimated from a training set. Equation (16.9) defines the
utility function of a translation edge. U(Ci

t , C
j
tþ1) is the product of the likelihood

with prior ω. x Tð Þ;x MSð Þ andx ADð Þ are the prior probabilities of translation
edges, merge/split edges, and appearance/disappearance edges, respectively.

U Ci
t ;C

j
tþ1

� 	 ¼ P Ci
t ;C

j
tþ1

� 	� x Tð Þ: ð16:10Þ

The likelihood of a split hyperedge is the sum of the likelihoods of the con-
tributing hyperedges after accounting for the change in the volume of the split cells.
The utility for a split hyperedge is dependent on the prior of a split hyperedge.
Equation (16.11) formally defines the utility of a split hyperedge:

U Ci
t;C

j
tþ1;C

k
tþ1

� 	 ¼ P Ci
t;C

0j
tþ1

� 	þ P C j
t ;C

0k
tþ1

� 	� 	� x MSð Þ; ð16:11Þ

where volume (C0j
tþ1) = volume (C0k

tþ1) = volume (C j
tþ1) + volume (Ck

tþ1). In other
words, for a split hypothesis, we consider the sum of the volume of the split cells to
be equal to the volume of the cell prior to split to account for the change in volume.
We compute it for the merge hypothesis in the same way.

We do not compute the first-order utility functions for appearance and disap-
pearance edges because proximity to the boundary is not representative of the true
likelihood of entry/exit of cells. The axial resolution is small in 2-photon micros-
copy (2 μm or more). We propose a technique based on forward and backward
prediction of cell locations to compute second-order utilities for cells that
appear/disappear.

SOHs have a second-order utility (Us) associated with them. Figure 16.6
describes the calculation of Us for the simplest case as a function of the first-order
utility U. Us is the product of first-order utilities and a correction factor for the
alignment, which takes into account the deviation from a locally smooth linear
motion model. Let A;B;C denote three cells at time points t � 1; t; t þ 1, respec-
tively. A vertex D is predicted at time t at the mean location of A, C. The distance
between B and D is dalign. Alignment factor Falign is a normalized Gaussian function
on dalign. Here, σ

2 is the distance variance in R. The following equation mathe-
matically defines Us for the simplest case:
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Fig. 16.5 An illustration of nine different motion models represented as a second-order hyperedge
centered about a vertex B. The vertices need not be from consecutive time points. Each translation
edge in the above figure could be a multi-frame edge in which case the cell was undetected over a
short number of time frames

Fig. 16.6 a Illustration of the misalignment cost calculation. D is the predicted vertex location
based on A and C. Misalignment cost is computed as in (3.5). b Forward and backward prediction
for estimating the utility of cells entering and leaving the field of view
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Us A;B;Cð Þ ¼ U A;Bð Þ � U B;Cð Þ � Falign e1; e2ð Þ; ð16:12Þ

Falign ¼ e�
d2
align
2r2 : ð16:13Þ

The calculation of Us for the other cases illustrated in Fig. 16.5 is more involved.
The basic idea behind computing the second-order utilities that contain first-order
merge/split hyperedges is to enumerate all possible sub-paths. The rationale being
that in the absence of segmentation errors, this would have been their true utilities.
All second-order edges are centered about a vertex B. We consider all possible
simple paths through this vertex. For example, in Fig. 16.5 Panel G, the path
A B C is the only simple path through B. Therefore, the second-order utility for
the path (A, B, C, D) is defined as Us A;B;C;Dð Þ ¼ Us A;B0;Cð Þ, where B′ is the
volume-adjusted version of B as described earlier. Note that although vertex D is
not directly involved in the computation, and the volume of B is adjusted to B′ using
the volume of D. In Panel E, not all paths through B can be chosen simultaneously.
In this case, we consider the two possible sets of simple paths: (i) (A, B, E), (C, B,
D) and (ii) (A, B, D), (C, B, E). Among the two possible set of simple paths, we
choose the one that maximizes the utility, i.e.,

Us ¼ max Us A
0;B;D0ð Þ þ Us C

0;B;E0ð Þ;Us A
0;B;E0ð Þ þ Us C

0;B;D0ð Þð Þ: ð16:14Þ

For all the other possible cases that have not been explicitly described here, the
same principle is applied. For a disappearance edge, we need to predict the location
of the cell in the future, using its known location for two consecutive time points.
We call this forward prediction. For an appearance edge, we need to predict the
location before the cell came into the field of view. We call this backward pre-
diction. In Fig. 16.6 Panel A, we perform a forward prediction of the location of B,
given the locations of A, B. We predict the location of C though a linear extrap-
olation from the locations of A, B. Let us define db as the shortest distance between
the predicted cell C’s location and the image boundary. This distance is measured
along the closest of the six image boundaries. Equation (16.15) defines
Us(A, B, C) for the forward prediction as a function of db. The correction factor is a
Gaussian function, dependent on db:

Us A;B;Cð Þ ¼ U A;Bð Þ � 1� e
� db�lbð Þ2

2r2
b

 !
� x ADð Þ: ð16:15Þ

The second-order utility for the backward prediction is defined analogously. This
symmetry, between forward and backward prediction, is a desirable property.
Performing tracking on a movie or its time-reversed copy produces identical results
by our formulation.

Non-parametric motion model Non-parametric estimation models the motion
more accurately since it does not impose any constraint like locally smooth linear
motion. Each motion type can have different numbers of features and number of
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participating cells. Each feature has a different distribution depending on the motion
type. Therefore, we used a non-parametric kernel density estimator (NKDE) to
compute the utility functions based on the method by Parzen and Rosenblatt [24,
25]. We used smooth Gaussian kernels with a bandwidth estimated using the
method proposed by Silverman [26].

The goal of the NKDE is to estimate the probability density functions using a
training dataset. Let x be any point in D-dimensional Euclidian space. Let xn 2 RD

refer to the nth sample training point of a training dataset of N points. We used a
product kernel independently in each dimension for simplicity. However, this does
not limit the estimated probability density function to be feature independent [26].We
use a Gaussian kernel in each of theD dimensions with a bandwidth hd . K is given by

K x; xn; h1; h2; . . .; hDð Þ ¼ 1
h1h2. . .hD

YD
d¼1

Kd
xd � xnd

hd

� �
; ð16:16Þ

where Kd xð Þ is a unit Gaussian kernel. The estimated density can be defined as the
sum of the normalized kernels:

PKDE xð Þ ¼ 1
Nh1h2. . .hD

XN
n¼1

YD
d¼1

Kd
xd � xnd

hd

� �
: ð16:17Þ

The bandwidth parameter plays an important role in determining PKDE xð Þ. It has
been shown [26] that the optimal value of the bandwidth parameter h* for a
single-dimensional Gaussian density function is given by h� ¼ 1:06rN�1=5:

We used the NKDE just described to compute one-dimensional and
two-dimensional distributions of the marginal utility function distributions as
shown. We call these marginal distributions as utility components. Each component
is a uni- or multi-dimensional joint distribution. We normalized these marginal
distributions to a maximum of 1. The utility function for a given type of motion is a
product of utility components. This method avoids the curse of dimensionality
because computing higher-order functions from the training data requires higher
number of training samples [26].

The first-order utility values U(.) for the translation merge and split events were
calculated as follows:

U Ci
t ;C

j
tþ1; . . .

� 	 ¼ x typeð Þ �
Y
8k

Pk
KDE Ci

t;C
j
tþ1; . . .

� 	
; ð16:18Þ

where Ci
t;C

j
tþ1; . . . form the vertices involved in the FOH and ω(.) denotes the prior

for the first-order hyperdge. Table 16.1 summarizes the features used to calculate
the second-order utility for the different motion types. In order to compute the
complete second-order utility, i.e., utility value for a SOH, we used a combination
of the first-order utilities and the alignment factor. In this new model, we calculated
the first-order utility and the alignment factor using the non-parametric motion. For
a simple translation–translation SOH, the utility is given by
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US A;B;Cð Þ ¼ U A;Bð Þ � U B;Cð Þ � Falign A ! B;B ! Cð Þ; ð16:19Þ

One could add more features (like intensity, texture information) in the future to
improve the accuracy of the utility functions. In our experiments, we trained the
algorithm using the ground truth tracks from one of the synthetic datasets with a
simulated track density of 180. We generated the test datasets independently at
various densities. We now formulate the tracking problem as a subset selection
problem over these second-order hyperedges.

16.3.4 Second-Order Hyperedge Subset Selection

Let S denote the set of all second-order edges in the tracking hypergraph G.
A second-order matching M is a set of second-order hyperedges M � S such that
for every vertex at most one first-order hyperedge from M is incident on it and at
most one hyperedge from M emanates from it. Let M denote the set of all possible
second-order matchings in G. A maximum second-order matching Mw is a
second-order matching such that for every M 2 M,

P
e2Mw

Us eð Þ� P
e2M Us eð Þ.

We also denote the second-order utility of a matching as Us Mð Þ ¼Pe2M Us eð Þ.

Table 16.1 A table of utility function components and the features used to compute them

Utility type Features used Mathematical definition Dimensions

Translation Distance dk k 1

Volume
overlap ratio

b v1ð Þ\b v2ð Þj j
b v1ð Þ þj jb v2ð Þj j

1

Time
difference

|t2 − t1| − 1 1

Merge/Split Distances MIN d13k k; d23k kð Þ;MAX d13k k; d23k kð Þ 2

Avg. volume
overlap ratio 0:5

b v1ð Þ\b v3ð Þj j
b v1ð Þ þj jb v3ð Þj j þ

b v3ð Þ\b v2ð Þj j
b v3ð Þ þj jb v2ð Þj j

� �
1

Volume ratio V3

V1 þ V2

1

Time
difference

|t3 - t1| + 1 1

Appear/
Disappearance

Boundary
distances

bd AjDð Þ; bd v1ð Þ 2

Alignment
factor

Distance ratio,
direction
projection

MIN d12k k; d23k kð Þ
MAX d12k k; d23k kð Þ ;

d12 � d23
d12k k d23k k

2

Different components have different numbers of dimensions. The utility components are multiplied
to compute the utility. The separation of independent components helps us avoid the curse of
dimensionality. Glossary of terms: d distance, b(v) bounding box volume of vertex v, t time point,
V volume of the cell.
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Based on the above definitions, the tracking problem is the problem of finding
the maximum second-order matching in a directed hypergraph. Two things remain
to be shown: (i) A second-order matching produces a valid set of correspondences
for a tracking result and (ii) A maximum second-order matching maximizes
tracking saliency. A second-order matching represents a set of track correspon-
dences. Every SOH is composed of two FOHs. Therefore, a second-order matching
corresponds to a set of first-order hyperedges too. Connected component labeling of
the matching FOHs gives the individual tracks. For a set of tracking correspon-
dences to be valid, a cell cannot belong to two different tracks. The constraint that
every cell has an in- and out-degree of one guarantees this. Note that split hyper-
edge and a merge hyperedge contribute to an in-/out-degree of one. A maximum
second-order matching maximizes Us Mð Þ. In turn, we are maximizing the total
probability of true correspondences.

Every cell belongs to only one track, and they all start with an appearance
hyperedge and terminate with a disappearance hyperedge. The only region where
tracks split/merge are at the locations of split/merge hyperedges. We resolve these
regions in the post-tracking step.

16.3.5 Integer Programming

We formulate the second-order hyperedge selection problem as the following
integer program. The feasible region RIP for the integer program is denoted
RIP ¼ fx 2 Zn

þjAx	 bg. The optimal solution is given by x� 2 RIP, where

cTx� � cTx0; 8x0 2 RIP: ð16:20Þ

This is the global optimum of the objective function and not a local optimum.
Let X(S) be a Boolean variable for every SOH S 2 S, the set of all second-order
hyperedges:

X Sð Þ ¼ 0; S 2 S�M

1; S 2 M
:

(
ð16:21Þ

The objective function O(M) to maximize is given by

Maximize : O Mð Þ ¼
X
8S2S

X Sð ÞUs Sð Þ; ð16:22Þ

It can be easily seen that O Mð Þ ¼ Us Mð Þ, because
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X
8S2S

X Sð ÞUs Sð Þ ¼
X
8S2M

X Sð ÞUs Sð Þ ¼
X
8S2M

Us Sð Þ: ð16:23Þ

We have two sets of constraints—vertex constraints and edge constraints. The
vertex constraints avoid multiple chosen second-order edges being centered on a
vertex. The second set of constraints avoids multiple overlapping SOHs on the out-
and in-edges. The edge constraint also ensures that tracks can originate or terminate
in one of the four cases (i) appearance edge, (ii) disappearance edge, (iii) beginning
of the sequence, and (iv) end of the time sequence. The first constraint is given by

X
8i

X Siv
� 	 ¼ 1; 8v 2 V ; ð16:24Þ

where Siv is the ith SOH centered on v. Let us define two new sets of SOHs for every
hyperedge. Let SE1 and SE2 denote the two FOHs that form the SOH S ¼ SE1 ; SE2ð Þ.
Let Sin eð Þ ¼ fS 2 SjSE2 ¼ eÞ denote the set of SOHs that are incident on e. Let
Sout eð Þ ¼ fS 2 SjSE1 ¼ eÞ denote the set of SOHs that originate from e. The edge
constraint is

X
8S2SinðeÞ

XðSÞ
0
@

1
A� eYj j ¼

X
8S2SoutðeÞ

XðSÞ
0
@

1
A� eXj j; 8 e 2 EjjSinðeÞj[ 0 and jSoutðeÞj[ 0f g;

ð16:25Þ

where e ¼ eX ; eYð Þ. One can see that the edge constraints do not exist for
appearance/disappearance or for the edges in the first and last frames. Note that the
number of constraints is O(|V| + |E|). If we assume that every vertex has an average
in-degree/out-degree of d, then the total number of constraints is approximately
Vj j þ 2 Vj jd: Therefore, for sparse graphs like ours, with a max degree of D, total
number of constraints is O Vj jDð Þ. The number of variables is Sj j, which is
O Vj jD2� 	

.
We used the ILOG CPLEX optimization package (http://www-03.ibm.com/ibm/

university/academic/pub/page/academic_initiative) to solve the integer program
using a branch-and-cut method. Solving an integer program is computationally
expensive, with the worst-case running time having an exponential growth rate. The
branch-and-cut algorithm is a hybrid method that uses a combination of
branch-and-bound, and cutting planes. Although theoretically it could take expo-
nentially longer time, they seldom do because our integer program’s solution is
close to a linear program solution in most cases. This allows the branch-and-cut
algorithm to use only a few hundred cutting planes to arrive at the solution. The
typical running time for the optimization step is in the order of a few minutes for the
largest of our datasets.
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By ensuring that all the SOHs in the graph are matched simultaneously, we
compute the global optimum of the objective function. The SOHs with X(.) = 1
gives the desired matching. An FOH is selected if any of the SOH containing it is
present in the matching. After this step, we resolved all the merges/splits using a
post-tracking step.

16.3.6 Post-tracking Identification and Correction
of Segmentation Errors

The second-order matching contains merge and split hyperedges due to two rea-
sons: (i) under-segmentation and (ii) over-segmentation. We identify these errors
and correct the segmentations (and the corresponding tracking results). First, we
identify all paths in the matching from a merge hyperedge to a split hyperedge
through simple translations. We then identify if the split or the merged vertices are
physically separated. If the segmentations do not share a boundary, it is an indi-
cation that the pair was correctly segmented. Over-segmented cells always share
boundaries at some part of their segmentation. If the evidence is not found, one
cannot conclude if the segmentations were correct or over-segmented. We continue
to search beyond the split/merged vertices to see if there is an evidence of sepa-
ration. If such evidence is found, we split all the cells in the path into two. We then
identify the correct correspondences by maximizing the total second-order utility
over all possible correspondences. We iterate this procedure over all possible paths
formed between a merge and split hyperedge. Since the number of continuously
under-segmented cells in a track is rather small, there is no concern about a
combinatorial explosion. After this process, we merged all the remaining fragments
that can be merged and repeat the process until it converges. Algorithm 2 sum-
marizes the described cell tracking algorithm

.
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16.3.7 Validation

We have validated our tracking algorithm’s accuracy both in terms of its seg-
mentation correction ability and its spatiotemporal tracking accuracy. The seg-
mentation errors were not manually corrected prior to tracking. For the real images
obtained through two-photon microscopy, we performed manual human validation
of the results of our tracking algorithm. We have compared our algorithm’s per-
formance against two previously published works. The first method is the 5-D
image analysis framework published by [17]. The second method is the u-track
algorithm used for particle tracking by [19]. For the synthetic datasets, we com-
pared the non-parametric motion model with the fixed Gaussian model. For the real
datasets, we used the fixed Gaussian-based model to make the comparison.

First, we computed the segmentation accuracy post-tracking to quantify the
improvement achieved by the proposed tracking algorithm. The proposed tracking
algorithm corrects the segmentation errors in three ways: (i) by merging
over-segmented cells, (ii) by splitting under-segmented cells, and (iii) by correctly
retaining the tracks across undetected time frames. We quote the results for Chen
et al. from their work [17] for the same datasets. For [19] work, we have used the
freely available MATLAB implementation of u-track provided by the authors.

We evaluated using four representative datasets with different cell densities. The
image volumes were 256 × 256 × 21 voxels with varied number of time points. The
resolution in physical units was 0.64 μm × 0.64 μm × 2.0 μm for the three
dimensions, respectively. The images were of low axial resolution, commonly seen
in 2-photon microscopy.

Table 16.2 summarizes our findings in terms of cell segmentation accuracy. The
initial error rate was low (2.83 %). However, in high-throughput studies, this error
rate results in a large number of edit operations from a user’s point of view. We
found the accuracy of the segmentation post-tracking using our method to be
1.34 %. We improved the overall accuracy by about 53 % compared to a naïve
segmentation computed independently at every time point. The spatiotemporal
continuity exploited by our tracking algorithm accounts for this improvement. In
high-throughput studies, this improvement in itself could be a game changer.

Table 16.2 A compilation of segmentation error rates comparing various algorithms

Dataset Initial
(%)

Proposed
algorithm (%)

Jaqaman et al.
2008 (%)

Initial segmentation—Chen
et al. 2009 (%)

1 1.64 0.00 0.00 6.56

2 2.10 0.00 0.00 16.60

3 2.89 2.28 2.59 13.39

4 3.13 1.51 2.12 14.21

Overall 2.83 1.34 1.76 13.84

The proposed algorithm improves segmentation accuracy better than the prior works by [17, 19]
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It is clear that the proposed algorithm performs the best among the ones com-
pared. U-track improves the accuracy of segmentation by 38 % from 2.83 to
1.76 %. Chen et al.’s reported average segmentation accuracy is 13.84 %. We also
evaluated the tracking accuracy by computing the number of correctly identified
correspondences. We define correspondence as an association between two cells at
different time points. A correct correspondence is a mapping between the same cell
captured at consecutive time points.

A single error in segmentation can lead to multiple errors in tracking. In our
work, we do not manually edit the segmentation prior to tracking. The tracking
error rate is the percentage of incorrect number of correspondences identified by the
algorithm among all the correct correspondences.

In Table 16.3, we show the error rates for nine different datasets. The tracking
algorithm’s error rate is heavily dependent on the segmentation error rate. The
proposed algorithm achieves an overall error rate of 2.23 %. The proposed algo-
rithm performed significantly better than Chen et al.’s algorithm. The proposed
algorithm had 28.8 % lesser error rate than Jaqaman et al.’s algorithm.

We generated synthetic datasets by producing an ensemble of 3-D cell images
that vary in orientation, texture, brightness, shape, radius, elongation, average
speed, instantaneous speed, start and end locations, etc. We picked these cells
randomly to move in a 3-D volume in a curvilinear path. We chose the starting
point for the tracks from a region 50 % larger than the image volume itself to
simulate cells entering the field of view. To study the sensitivity, we varied the
simulated density of the track (number of tracks simulated in a given volume) and
also added additive Gaussian noise to the data. For every data point, we generated
five datasets and found an ensemble average of the errors. Figure 16.7 shows the
performance of the two proposed motion models under different values of track

Table 16.3 Summary of tracking error rates

Dataset Total # Proposed tracking
algorithm (%)

u-
track
(%)

Chen et al. Segmentation,
Tracking (%)

m12bp14pos 235 0.00 0.00 6.56 %, 7.23 %

m12cp14pos 472 0.00 0.00 16.60 %, 6.57 %

m13cp14pos 643 2.80 3.27 13.39 %, 5.29 %

m5bwt 1932 2.02 3.16 14.21 %, 4.92 %

120307m1s7* 692 3.76 3.61 –

120307m1s5* 589 3.40 3.40 –

120307m1s9* 959 2.71 3.55 –

120307m2s6* 748 2.54 4.41 –

120507m1s5* 943 1.38 3.39 –

Combined 2.23 3.13 13.84 %, 5.39 %†

†We did not correct the segmentations prior to tracking in the first two methods. A single error in
segmentation can potentially cause multiple errors in track correspondences. For the datasets
indicated by a *, we validated only a sub-volume (25–50 %)
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density. As expected, the non-parametric motion model is better because of superior
modeling by 17 %. Our experiments with additive Gaussian imaging noise showed
similar reduction in error rates.

16.4 Multi-view Editing and Analytics Framework

Automated segmentation and tracking algorithms are needed to analyze large image
datasets with high accuracy and speed. However, even the best-available algorithms
are prone to errors. Low signal-to-noise ratio and poor and varying contrast com-
monly introduce segmentation errors, which subsequently leads to tracking errors.
Therefore, some amount of human intervention is necessary to bring the accuracy of
the results to a sufficient level to permit biological inferences to be made
confidently.

Human visual inspection is still the gold standard, and one of the most widely
used techniques in verifying the correctness of the segmentation/tracking results. In
the case of 2-D sequences, it is typical for a user to inspect the results by either
scrolling through movie frames using a frame slicer or by visualizing a static 3-D
(2-D + t) volume rendering, also called a Kymograph. For 3-D sequences, visu-
alization of the complete movie becomes more difficult. There are two favored
approaches for inspecting the automated analysis results in the context of the ori-
ginal image data: (1) the user is equipped with two slicers. The first slicer is used to
scroll through the axial axis of the 3-D image, while the second is used to scroll
through movie frames (time). Visual inspection with this method is tedious and can
be time consuming especially in high-throughput studies. (2) The user is provided

Fig. 16.7 A plot of error rate as a function of track density based on the synthetic dataset
experiments (lower is better). Our method is robust even at higher track densities. The error rate
scales gracefully. The non-parametric motion model outperforms the fixed Gaussian motion model
Fixed Gaussian motion model
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with a 3-D volume rendering of the image stack and a time slicer. Cell tracks are
static and are overlaid on the volume rendering. Here, the observer scrolls through
time frames while visualizing cells moving along their tracks. This way, the user
has a complete perspective over his/her data and the segmentation and tracking
results.

In addition to visual proofreading, correction of segmentation and tracking errors
is sometimes required in order to improve the accuracy of the results. Although the
tracking algorithm described in the previous section copes well with segmentation
errors, correction of these errors is usually performed before the tracking
step. There are four types of segmentation errors, namely, under-segmentation,
over-segmentation, false detection, and missed detection. Under-segmentation
means that two or more cells were detected as one cell. A split operation is required
to correct these errors. Over-segmentation occurs when a cell is detected as two or
more cells. In this case, a group of cells is merged together to form one single
object. False/missed detection requires a (an) deletion/addition operation.

We categorize tracking errors into two types based on the edit operations
required for correction. Two edit operations (arguably) can be performed, addition
and deletion of tracks. Addition of sub-tracks is usually required when a track
association is missed between frames. Deletion is necessary when a wrong track
correspondence is present. Sometimes, both operations have to be applied to fix a
tracking error of a single cell track. For instance, assume that a correspondence
error for cell i occurred between frames t and t þ 1, and that cell i has been
mislabeled as cell j starting from frame t þ 1. The track for cell i between frames
t and t + 1 has to be deleted first, and then a track between cell i at frame t and cell
j at frame t + 1 has to be added.

Edit operations can be difficult and time consuming, especially in
high-throughput studies where thousands of objects and object tracks have to be
validated. A better alternative would be to perform edits on a group of objects
instead of one object at a time. Furthermore, analytics guided editing methods can
facilitate the task of detecting hundreds of errors at a time. For example, a com-
bination of features such as shared boundary and volumes of cells can be used to
detect over-segmented objects. Incorrect track association might lead to larger
values of instantaneous speed of the cell compared to the average speed of the cell
in its entire duration. Based on the idea that similar errors would share similar
features, editing can be performed on a large number of objects with just few clicks.

The FARSIGHT toolkit implements a multi-view segmentation and track editing
framework with six views: (1) Image view with stack and frame slicers, (2) 3-D
Kymograph view, (3) 3-D String on Beads view, (4) Bi-cluster view, (5) Table
view, and (6) Scatter plot view. Figure 16.8 depicts a diagram illustrating the
components and the organization of the software system. The data component
consists of the original image data, the labeled images, and the cellular and dynamic
measurements of each cell. In this implementation, the components of the system
are actively linked together, meaning, any operation performed on any of the views
will automatically reflect on all the other views. For instance, a delete operation in
the Kymograph view sends a signal to the data and selection module. The module
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updates the edited data, i.e., features are recomputed and images are re-labeled. In
turn, the data and selection module sends updated signals to all other modules. The
other modules then fetch the new data and update their views. This design provides
an efficient way of handling data while enabling low-memory implementation. The
toolkit is aimed to provide the user with the ability to perform a comprehensive
inspection and editing of the results. Each view has specific advantages that might
bring new insights to the validation process. As an example, by selecting to display
the volume of the cells in the x-axis and the length of their tracks in the y-axis of the
scatter plot, it is possible to identify all cells that have small volume and exist only
for a short duration in the lower left corner of the plot, which could potentially
indicate an a segmentation error.

Figure 16.9 shows a screenshot of the different views. The image view in
Fig. 16.9a displays the multi-channel image data and the cell boundaries on the 2-D
slices of the 3-D image stacks at each frame. This view is equipped with a z-slicer
and time slicer. This view is useful for identification and editing of segmentation
errors. It also allows for interactive editing of all the types of segmentation errors
described previously in this section.

The 3-D Kymograph view in Fig. 16.9b represents a volume rendering of the full
movie in a single snapshot. In the case of 2-D sequences, the 2-D images are
stacked together to form a 3-D volume. The axes of the Kymograph are defined by
x; tð Þ. For 3-D time series, each 3-D image is converted to a 2-D image by taking its
maximum intensity projection. The projected images are then stacked into a 3-D
volume to allow for kymograph rendering. The detected objects (cell centroids) are
visualized as 3-D points and cell tracks are displayed as 3-D colored lines. Cell
tracks in the raw image appear as tracking errors become easier to identify. This
view also allows for correction of tracking errors. Tracks can be deleted or added.
Once a track is selected, it is highlighted in white. The user can then delete the track
by pressing the key (d) from the keyboard. After the edit is performed, the cell
tracks are automatically assigned a new label. To add a track, the user selects two
object centroids and then presses the key (a) from the keyboard. Again, the edited

Fig. 16.8 Diagram illustrating the software organization of the multi-view editing framework.
The modules colored in blue represent the raw data and result visualization modules. The modules
in green constitute the analytics views of the system. The Data and Selection module represents the
master component and is actively linked to all the other components
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track is automatically given a new label and the other views are subsequently
updated. In addition to single-edit commands, group selections of tracks are
allowed in order to perform batch operations.

In addition to the image views described above, the toolkit implements three
analytics views. These views give the user the ability to explore the image data
from a quantitative perspective. The table shown in Fig. 16.9d lists all the computed
intrinsic and dynamic measurements for each cell. It is useful for visualizing the
exact measurements of a cell. The scatter plot view in Fig. 16.9e displays an x–
y plot of two cell measurements. The user can select which measurements to plot on
the ordinate and the abscissa using a menu item. This view is particularly conve-
nient for exploring the statistical correlation between object measurements. For
instance, if object volumes are plotted against object intensities, one can immedi-
ately recognize the correlation between these two features. Batch selections and
edits are also allowed in this view. The user can select a group of points by drawing
a polygon around the points then presses the key (s) from the keyboard to delete the
highlighted objects.

The heatmap view shown in Fig. 16.9f represents co-clusters of the entire cell
population dynamics over the full movie period, i.e., co-clusters of complete cell
tracks. Each row in the heatmap corresponds to a single cell and each column

Fig. 16.9 Screenshot of the FARSIGHT-5D multi-view editor. a Image view of the original 5-D
multi-channel data with cell segmentation results. The window has a time slider that allows the
user to scroll through frames and a z-slider to scroll the 3-D stack. Cells are delineated and
identified with a unique number. b 3-D Kymograph view shows cell tracks as colored lines
overlaid on a spatiotemporal x; y; tð Þ projection of the original image. d Table of dynamic
measurements. e Scatter plot showing the total displacement in the x-direction versus average
speed. f Bi-clustering map of cell track measurements
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represents a measurement summarizing the dynamic behavior a cell. The dynamic
features include, but are not limited to, total displacement magnitude, path length,
maximum speed, minimum speed, and average speed. The partitioning of cell
population and dynamic features illustrated in the heatmap is achieved via an
extension of the unsupervised clustering method developed in [27, 28]. Given a
data matrix Xn�m, with n rows corresponding to n cells and m columns corre-
sponding to m dynamic measurements, this algorithm alternates between hierar-
chical clustering of the rows and the columns of the matrix. This process is
iteratively applied until convergence. The result is a simultaneous hierarchical
partitioning of the data. The reader can refer to [27] for a detailed description of the
algorithm. This view is particularly useful for visualizing groups of cells based on
their dynamic phenotype. It equips the user with the ability to unveil and organize
the hidden patterns present in the data, i.e., it is a powerful data-driven visualization
and discovery tool.

16.5 Applications

The results of the described 5-D image analysis framework features was put to test
in the 4-color dataset collected from Thymus [29]. The study was to understand the
differences in motility between two different thymocytes, F5 thymocyte and the
wild-type thymocytes. The goal of the study was also to understand the motility’s
relationship to other elements in the neighborhood like dendritic cells and blood
vessels.

In individual cell features, the features that rejected the null hypothesis (that they
are from the same population) were (in the order of most significant to least sig-
nificant) surface area, volume, bounding box volume, shape, instantaneous speed,
change in distance to blood vessel, etc. In total, 11 features rejected the null
hypothesis, but many among them are strongly correlated-like volume-bounding
box volume, volume–surface area, etc. Overall, track features, average speed,
confinement ratios, path lengths, average contact to DC, and average change in
distance to blood vessel rejected the null hypothesis. Note that previously published
result has verified that normalized center to edge distance to DC is statistically
different for the wild type and F5. We identified the thymocyte-DC contact by a
threshold on this measure. The biological interpretation of the remaining features
that rejected the null hypotheses remains to be investigated. We are also analyzing
the datasets produced in vivo imaging in the lymph node (Fig. 16.10).

Our algorithm was tested against two datasets: (i) Thymus of a GFP transgenic
mouse was imaged ex vivo using a custom-built two-photon microscope and
(ii) Lymph node of a mouse was imaged in vivo. We conducted several experiments
in the study, which involved imaging two to four channels. The aim of the study
was to understand the interaction of genetically modified thymocytes with dendritic
cells and blood vessels.
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Two types of features were computed: intrinsic and associative. Intrinsic features
are calculated purely based on a single channel of data post-tracking. Associative
features involved calculating quantitative measures involving the interaction of
multiple channels. We computed intrinsic and associative features for every cell and
for every track. In order to compute features for a track, we averaged the cell-based
features over the entire duration of the track. The time-based cell features included
(but were not limited to): instantaneous speed, displacement, direction of movement
relative to the nearest blood vessel, and change in distance to the blood vessel. For
whole track features, we computed average values of distance to blood vessel, angle
relative to blood vessel, contact to a dendritic cell, speed, confinement ratio and
total track displacement, and total track path length. These features were computed
both for the wild-type cells and the genetically modified cells. We then used the
Kolmogorov–Smirnov test to identify the features that discriminate the two cell
populations.

Fig. 16.10 A gallery of plots showing the cumulative distribution functions F(x) for the
distribution of the features among the wild-type and F5 thymocytes. An arrow in (a) marks the
point of maximum disparity. a–f correspond to individual cell features and g, h correspond to
whole track features
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16.6 Conclusion and Future Directions

The FARSIGHT open source toolkit represents a synergistic and comprehensive
combination of multiple image processing algorithms, ranging from image
pre-processing, automated cell segmentation, cell tracking, feature extraction, and
feature analysis tools. The image analysis algorithms were specifically designed and
chosen for usability in the hands of a biologist. Specifically, we have prioritized
algorithms with the fewest adjustable parameters. The few parameters that remain
are minimally sensitive and intuitive. An operationally important aspect of the
toolkit is the incorporation of practically effective tools for efficient inspection and
corrective editing of the automated results. Another innovative aspect of the toolkit
relates to the underlying software infrastructure. Specifically, all of the
image-derived measurements, the visualization tools, and analytical tools are
actively linked, allowing a user to work from the most favorable viewer.
Importantly, the edits can be defined by the analytic tools (e.g., split cells based on
size outliers), and also the fact that edits made in any one view are immediately
reflected in all others. This framework aims to provide the biologist with the
necessary tools to achieve rapid experimental and discovery cycles.
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Chapter 17
Video Bioinformatics Databases
and Software

Ninad S. Thakoor, Alberto C. Cruz and Bir Bhanu

Abstract Video bioinformatics focuses on understanding biological events on
various timescales by analyzing spatiotemporal images. Fundamental to the success
of this venture is the ability to automatically analyze these images to extract rele-
vant information. For evaluation of an automated image analysis technique, one
needs to have the image data, the ground truth (i.e., the expected outcome), and a
statistically meaningful testing process. The field of computer vision, which deals
with the automated analysis of all sorts of images, has been making steady progress
for years. It has benefited immensely by the availability of public datasets and
shared software. This chapter surveys these databases and software.

Multiple public datasets are available for key computer vision problems such as
segmentation [1], tracking [2], and object recognition [3] and there are many
software options for automating analysis [4, 5]. Sharing of the data and software has
a variety of benefits such as

• it avoids duplication of effort thereby speeding up the research;
• it allows fair analysis of performance of alternate techniques;
• shared image data can be re-purposed for other applications; and
• shared software allows experiments to be reproduced.

This chapter surveys publicly available video bioinformatics (VBI) databases
and software.
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17.1 VBI Databases

17.1.1 Cell Tracking Challenge Dataset

The Cell Tracking Challenge was organized by members of three institutions: the
Center for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic;
the Center for Applied Medical Research, University of Navarra, Pamplona, Spain;
and Erasmus University Medical Center, Rotterdam, The Netherlands. The dataset
comprises 24 time-lapse sequences each for training and testing. Half of these are
real microscopy sequences, while the rest are computer generated. These sequences
have varying cell density and noise levels. The real data includes GFP transfected
rat mesenchymal stems cells (2D), GFP transfected H157 human squamous lung
carcinoma cells (3D), MDA231 human breast carcinoma cells infected with a pure
murine stem cell virus vector including GFP (3D), GFP transfected GOWT1 mouse
embryonic stem cells (2D), Histone 2B-GFP expressing HeLa cells (2D), and
Chinese hamster ovarian cells overexpressing proliferating cell nuclear antigen
tagged with GFP (3D). Ground truth was generated by manual labeling by experts.
The dataset and challenge are documented in detail in [6]. The dataset is available
at: http://www.codesolorzano.com/celltrackingchallenge.

17.1.2 Cardiac Motion Tracking Challenge Dataset

These data were acquired at the Division of Imaging Sciences and Biomedical
Engineering, King’s College London, United Kingdom, and the Department of

Fig. 17.1 Sample images from cardiac motion tracking challenge dataset
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Internal Medicine II—Cardiology, University of Ulm, Germany. The database
includes magnetic resonance (MR) and 3D ultrasound images from a dynamic
phantom and 15 healthy volunteers. This dataset and the challenge are documented
in [7]. http://www.cardiacatlas.org/web/guest/stacom-2011-motion-tracking-
challenge-data (Fig. 17.1).

17.1.3 4D Left-Ventricular Segmentation Challenge Dataset

This dataset was made available as a part of the Medical Image Computing and
Computer Assisted Intervention (MCCAI) 2011 workshop entitled: “Statistical
Atlases and Computational Models in the Heart (STACOM): Imaging and
Modeling Challenges.” The data consist of a full set of 4D cine-MRI from
short-axes and long-axes views at nearly 20 frames through the cardiac cycle in
200 patients with myocardial infarction. The dataset is available online at: http://
www.cardiacatlas.org/web/guest/stacom2011.

17.1.4 Particle Tracking Challenge Dataset

This dataset was provided for a Particle Tracking Challenge Workshop as a part of
International Symposium on Biomedical Imaging. Because generating ground truth
for real particle tracking data can be challenging, the workshop chose to use sim-
ulated data. The set includes simulated data for viruses, vesicles, receptors, and
microtubules with varying dynamics, particle density, and signal quality. The data
can be downloaded at: http://www.bioimageanalysis.org/track/. Detailed discussion
of the dataset and evaluation is provided in [8].

17.1.5 Broad Bioimage Benchmark Collection

The Broad Bioimage Benchmark Collection (BBBC) is a collection of microscopy
image sets [9]. Apart from the images, each set includes a description of the
biological application and some type of ground truth. At the time of writing of
this chapter, there were 22 different sets of images available in the collection. The
collection is available at: http://www.broadinstitute.org/bbbc/.
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17.1.6 BITE: Brain Images of Tumors for Evaluation
Database

This database is created by McConnell Brain Imaging Centre (BIC) of the Montreal
Neurological Institute, McGill University to facilitate development of new tech-
niques and evaluation [10]. The database provides pre- and postoperative MR and
intraoperative ultrasound images acquired from 14 brain tumor patients. The
database can be accessed at: http://www.bic.mni.mcgill.ca/Services/ServicesBITE.

17.1.7 The Kahn Dynamic Proteomics Database

The Kahn Dynamic Proteomics project is being conducted by Alon lab, Weizmann
Institute of Science. The project aims to monitor the position and amounts of
endogenous proteins in living human cells. This site contains a database of the
proteins tagged by yellow fluorescent protein. Each protein entry includes detailed
sequence and functional annotation, images of protein localization, movies, and
protein dynamics. The database site is: http://www.weizmann.ac.il/mcb/UriAlon/
DynamProt/.

17.1.8 Worm Developmental Dynamics Database

This database is being developed by the Laboratory for Developmental Dynamics,
RIKEN Quantitative Biology Center, Kobe. The database holds a collection of
quantitative information about cell division dynamics in early Caenorhabditis
elegans embryos. The images were captured by four-dimensional differential
contrast interference (DIC) microscopy. The database can be accessed at: http://
so.qbic.riken.jp/wddd/cdd/.

17.1.9 The Plant Organelles Database 3 (PODB3)

PODB3 provides static images and movie data of plant organelles, protocols for plant
organelle research, and is provided by National Institute for Basic Biology [11].
Specifically, it is made up of ‘The Electron Micrograph Database’, ‘The Perceptive
Organelles Database’, ‘The Organelles Movie Database’, ‘The Organellome
Database’, ‘The Functional Analysis Database’, and ‘External Links to other data-
bases and Web pages’. The database is available at: http://podb.nibb.ac.jp/
Organellome.
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17.1.10 Mouse Behavior Data

This dataset provided by the Center for Biological and Computational Learning has
over 10.6 h of continuously labeled video (8 day videos and 4 night videos) for the
eight mouse behaviors of interest: drinking, eating, grooming, hanging, micro-
movement, rearing, resting, and walking. The dataset is described in [12] and is
available at: http://cbcl.mit.edu/software-datasets/mouse/.

17.1.11 BIOCHANGE Challenge

National Institute of Standards and Technology (NIST) organized benchmarking
study of lung CT change measurement algorithms and computer-assisted diagnosis
(CAD) Tools in 2008 and 2011 called BIOCHANGE. Goal of the study was to
develop methodology and performance measures to validate change analysis using
publicly available lung CT data. The data provides CT images pairs of 96 lesions. The
challenge webpage is: http://www.nist.gov/itl/iad/dmg/biochangechallenge.cfm.

17.1.12 Sample Datasets

Various software packages provide sample imagery which is primarily to experi-
ment with the functionality of the package. The imagery can to be of diverse types,
but it is generally too limited to perform experiments and thorough evaluation.

17.1.12.1 Cell Profiler Example Images

Cell profiler is an open source cell image analysis software designed for biologists.
The sample images from various pipelines are provided at: http://www.cellprofiler.
org/examples.shtml.

17.1.12.2 bioView3D Sample Datasets

bioView3D volume renderer is an open source and cross-platform software
for biologists to visualize fluorescence microscopy images in 3D. The software
along with sample data is available at: http://biodev.ece.ucsb.edu/webpages/
software/bioView3D/.
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17.1.13 Database Registries

While this chapter lists various VBI databases available at the time of publication,
the list of the datasets is ever growing. Due to this, we also provide information
about database repositories which should provide up-to-date information about
datasets. However, note that these repositories are not limited to VBI.

17.1.13.1 re3data

In 2013, the registry of research data repositories (re3data) was established with the
goal of creating a global registry of research data repositories from various
disciplines (Fig. 17.2). The registry currently holds nearly 650 repositories, avail-
able at: http://www.re3data.org/.

17.1.13.2 BioSharing

BioSharing combines registries of policies and standards along with databases. The
databases are described in accordance with BioDBcore guidelines (The guidelines
can be found at: http://biodbcore.org/). There are 631 databases in the BioSharing
repository. Available at: http://www.biosharing.org/.

Fig. 17.2 Interface of re3data
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17.2 Software

There are three options when automating a VBI task. If you can program or if you
collaborate with programmers, you can create your own software using image
processing and computer vision libraries. If you cannot program, there are free
programs designed to be used by researchers with limited programming and image
processing experience. These programs allow the creation of plugins so that pro-
gramming savvy researchers can share their algorithms with others to be used in a
VBI assay. However, these plugins are sometime unstable. For researchers able to
purchase expensive software, there are commercially available software packages
that are more stable than their free counterparts. A list of VBI software is given in
Table 17.1.

17.2.1 Software for Programmers

For programmers in the field of image processing and computer vision, a VBI task
is addressed by creating a new program specific to that task. The program is usually
created in Matrix Laboratory (MATLAB) or in C++ with Open Source Computer
Vision (OpenCV).

17.2.1.1 Matrix Laboratory (MATLAB)

MATLAB was originally designed to assist students with linear algebra problems
but has since expanded its scope to address engineering, programming, and
statistics problems. Its current version includes image processing and computer
vision toolboxes, and its use is ubiquitous in the field. It is a command-line-based
system, but the user can enter a list of commands into a script to create a program.
MATLAB comes with a feature called GUIDE to create stand-alone executables. It
is a high-level programming language and comes with many features commonly
used in the field of image processing and computer vision.

17.2.1.2 Open Source Computer Visions (OpenCV)

OpenCV is a library to be used in C++, and it is not a stand-alone program. It does
not offer as many features as MATLAB, but it is faster than MATLAB for the
following reasons:

• MATLAB is a script language, but C ++ is compiled;
• MATLAB was originally designed to address linear algebra problems, and for

the best performance, must be written in terms of matrices without iterative
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control flow such as for and while loops to run in a comparable time to a C++
program;

• memory in MATLAB is dynamically allocated and can unnecessarily increase
memory costs with no measures for the programmer to prevent it.

A program may be prototyped in MATLAB because of its ease of use, but if
speed or memory becomes a bottleneck the final version should be programmed in
C++ with OpenCV.

17.2.2 Free Software for Non-programmers

Writing a new program for each task is time-consuming, and not feasible for
researchers who are not programmers or do not collaborate with programmers.
However, there is an existing collection of software to automate VBI assays without
a need to create a new program to address every VBI task.

17.2.2.1 ImageJ

The most widely used program is ImageJ, which is a stand-alone program that was
created by the National Institutes of Health in 1997 (Fig. 17.3). It works much like
an image manipulation program, such as Adobe Photoshop. The user opens the
program, and then opens an image within ImageJ, performs operations on the
image, and gets visual feedback for operations performed on the image. However,
instead of photo-manipulation, the focus of ImageJ is biomedical imaging appli-
cations in 2D and 3D. Since its inception, there are numerous plugins that can be
used with ImageJ from 3D cell imaging to radiological image processing. ImageJ
also includes image processing commands such as filtering, Fourier analysis,
convolution, and binary image operations, much like the features offered by
MATLAB and OpenCV. However, no knowledge of programming is required to
perform these operations because of its GUI interface. There are so many plugins
for ImageJ that attempting to list them all would be beyond the scope of this
chapter. One source estimated 500 plugins in 2012 [4]. While there are many
plugins available, bioimaging tasks are sometimes very specific, requiring unique
software to be created for each task. For this reason, ImageJ may require some
programming knowledge to create a new plugin if an existing plugin cannot be
applied to a task. ImageJ is in the public domain. ImageJ is still being improved,
and the current version of ImageJ is ImageJ2, which is a complete overhaul of
ImageJ but maintains backward compatibility. ImageJ2 focuses on multidimen-
sional data. It offers a suite of community curated plugins, much like FIJI, described
below [4].
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17.2.2.2 FIJI Is Just ImageJ (FIJI)

FIJI started as a plugin for ImageJ but expanded to the point where the developers
decided to fork ImageJ (Fig. 17.4). A fork is when developers take an existing
source code of a program and decide to create their own version of the software
from that source code. In this case, the developers created FIJI from the ImageJ
source code. It is currently supported by 12 institutions including the National
Institutes of Health, UW-Madison, MIT, Harvard, and more. It differs from ImageJ
in the following ways [5]:

• There is a suite of plugins that come with the FIJI distribution that are approved
by the community. In the original implementation of ImageJ, anyone can create
a plugin for ImageJ and host it on the Internet. Because there is no quality
control for an ImageJ plugin released in this way, there is no guarantee that the
plugin a user downloads will work. FIJI addresses this issue by bundling plugins
with the FIJI distribution that have been approved by the community.
A developer can submit a plugin to be reviewed by the FIJI community, and, if
it is approved, it is bundled with the program.

• The FIJI community has an active group of computer scientists who actively
work to improve the efficiency of the program.

• It is designed to be a streamlined version of ImageJ. It is designed to be used by
users without much programming experience.

• It comes with the Java runtime, unlike ImageJ.

Fig. 17.3 The ImageJ interface. Note the lack of built-in features; the user is responsible for
finding an appropriate plugin from the 500 plugins offered by developers, or programming the
plugins themselves
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• It automatically updates.
• It allows programmers to use Beanshell, Javascript, JRuby, Jython and Clojure,

whereas ImageJ programming of plugins is limited to Java.

FIJI is slightly easier to use than ImageJ, because if a community curated plugin
is applicable for a user’s problem, it will be more reliable than an equivalent ImageJ
plugin.

17.2.2.3 Icy

Icy is a different program not based on ImageJ, but is similar in operation (Fig. 17.5).
It has a smaller community than ImageJ or FIJI because it is newer, but it focuses
heavily on user experience with a professional GUI and is the easiest to use. In the
current version, Icy has a built-in chat room. Icy was created to promote extended
reproducible research. The concept of reproducible research was outlined in [13] and
was expanded by the developers of Icy:

1. Researchers should provide all the information necessary for others to repeat
their experiments;

2. plugins should be presented in a modular way so that researchers can visualize
algorithms in terms of a work flow, improving reproducibiliy;

3. and plugins should be standardized and interoperable.

Item 1 is defined in [13]. Items 2 and 3 are defined by the Icy developers in [4].
The developers of Icy wanted to address item 1, which they felt was not specifically

Fig. 17.4 The FIJI interface. FIJI is similar to ImageJ. However, it comes with community vetted
plugins, and allows you to program the plugins in many languages
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addressed by the sharing of plugins in ImageJ and FIJI. While a plugin could be
created in ImageJ and FIJI, it was up to the researcher to disclose use of the plugin
so that others could reproduce their work. It is possible that a researcher, intending
to distribute their research freely as a plugin, does not properly instruct others on its
use or programs poorly, thus preventing reproduction of their work when others
attempt to use the plugin. Icy addresses this by enforcing points 2 and 3. While the
user can script in JavaScript, and perform image operations in the same way as FIJI
and ImageJ, Icy offers a protocol editor that describes complex algorithms in terms
of work flows which are much easier to use by programmers and non-programmers
alike. Both FIJI and Icy have plugins that automatically update.

17.2.3 Software Licensing

Software license controls ability of a person to use, study, modify, and distribute a
software. We review two popular licenses for open source software here.

17.2.3.1 Berkeley Software Distribution (BSD)

A BSD license is a license that guarantees a person’s right to use the software
freely, to modify the software, and to redistribute it as they wish. OpenCV comes
with a Berkeley Software Distribution (BSD) license. A derivation of an OpenCV
program can be sold by a third party not related to the authors. Certain versions of

Fig. 17.5 The Icy interface. Unlike ImageJ and FIJI, Icy has a more aesthetically pleasing
graphical user interface, and comes with many plugins
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the BSD license have an attribution requirement. This requires that the user
acknowledge the authors. The OpenCV version of BSD does not have an attribution
requirement. Specifically, it is a BSD 3-clause. With a public domain license, the
user is allowed the same freedom as a BSD license. However, the key differences
are that:

• with a BSD, the authors retain the copyright and are giving it freely, whereas
with a public domain license, the authors are giving up all rights to the software;

• certain versions of BSD may require attribution (BSD 4-clause);
• and public domain is not supported in some countries, so a BSD may be

required to ensure freedom of distribution.

For this reason we recommend that developers use a BSD license instead of a
public domain license.

17.2.3.2 General Public License (GPL)

A GPL is nearly the same as a BSD license except that it has a copyleft. Copyleft
requires that derivations of the work also carry a GPL, requiring free distribution.
This means that a work derived from the FIJI main program cannot be sold. It must
be free because it must carry a GPL. This is in contrast to a BSD 3-clause, which is
permissive, where there are no restrictions on how derivations of the software can
be redistributed or modified. The main FIJI program carries a General Public
License (GPL), though plugins can carry whatever license the author issues with the
plugin. Icy is licensed with a GPL and ImageJ is built into the program.

17.2.4 Commercial Software

Unlike the previous section, the software in this section is available commercially.
They are not freely distributed and are closed-source. Typically, this software has a
very high monetary cost. Free software is buggy, which is an issue highlighted by
the developers of Icy and FIJI. While commercial software may be very expensive,
there is an expectation that the software will be stable.

17.2.4.1 Amira

Amira is a program for visualizing and processing 3D and 4D data. It is supported
by the Zuse Institute Berlin. It has a focus on medical imaging modalities such as
CT, PET and ultrasound, but could be applied to other imaging modalities as well.
It comes with a suite of commonly used image processing techniques, but focuses
on segmentation, registration, and professional visualizations of results.
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17.2.4.2 CL-Quant

Nikon offers a bioimage image processing program for operators of the Biostation
CT called CL-Quant. This software is specifically designed for bioimaging analysis
of images from the Biostation CT. It allows users to create recipes to segment the
regions-of-interest to collect results. The program emphasizes creating a recipe, a
specific set of steps, to apply to images, promoting reproducibility. CL-Quant’s ease
of use is comparable to Icy. Some algorithms are supervised so results from this
software are less reproducible than others.

17.2.4.3 Bitplane

Bitplane offers a suite of programs that address many VBI tasks: Imaris,
MeasurementPro, ImarisTrack, Imaris Cell, FilamentTracer, ImarisColoc, ImarisXT,
Imaris Vantage, and Imaris Batch. These programs can analyze microscopy images
in 2D, 3D, and 4D. FilamentTracers is a specific program to track filaments in cells.
ImarisXT allows bitplane to interface between other programs. Bitplane focuses on
analysis of bioimaging software and can produce stunning visual results.

17.3 Conclusions

A vast amount of image data is generated by biologists during their experiment.
However, only a very small fraction of this raw image data is shared publically. One
major obstacle in sharing the image data is it sheer size, which can be many
gigabytes to even terabytes. Although many funding agencies and institutes require
that data used in experiments be made public, only higher level data is made public
as it is much more compact and directly usable by other biologists. Biological
experiments are conducted in a controlled environment. While it is quite possible
that the conditions of these experiments might reduce reusability of the image data
for top level biological inference, for design of automated image analysis tech-
niques this raw data can be immensely useful. Need for annotation adds additional
burden for the biologists especially when they are needed to label hundreds of
instances of the same objects/events so that the computer vision algorithms can
learn from these annotations. This additional effort needed can prove to be a
deterrent to image data sharing. Better computer vision algorithms which can learn
from a very small number of objects/instances and in an interactive way would
reduce the burden of annotation significantly.

Of chief concern to any researcher is reproducibility of work. When creating
your own software solution to a VBI problem, it should later be shared with others
to promote reproducibility. Currently, this is not the case with most research. This is
sometimes not the fault of the researcher: it takes time to polish software for others
to use and to create manuals and instructions so others can properly use the
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software. Rather than creating a software package from scratch, it is advisable to
use one of the plugin friendly softwares to create a plugin which solves your
problem. This allows one to reuse many components such as user interface,
preprocessing and input/output making it easier for biologists to create and sub-
sequently share the software.
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Chapter 18
Understanding of the Biological Process
of Nonverbal Communication: Facial
Emotion and Expression Recognition

Alberto C. Cruz, B. Bhanu and N.S. Thakoor

Abstract Facial emotion and expression recognition is the study of facial
expressions to infer the emotional state of a person. A camera captures video or
images of a person’s face and algorithms automatically, without the help of a
human operator, detect his/her expressions to infer his/her underlying emotional
state. There has been an increased interest in this field in the past decade, and a
system that accomplishes these tasks in unconstrained settings is a realizable goal.
In this chapter, we will discuss the process by which a human expresses an emotion;
how it is perceived by the human visual system at a low level; how prediction of
emotion is made by a human; and publicly available datasets currently used by
researchers in the field.
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18.1 Projecting Emotions Is a Biological Process

Among the first researchers in the field of facial emotion and expression recognition
was Charles Darwin who, in 1872, published, “Expression of the Emotions in Man
and Animals” [1]. In that text, Darwin connected human expressions and bodily
movements to underlying emotional states. Communication between two humans is
a complex process that involves more than just speech. Humans communicate
nonverbally with gestures, pose, and expressions. Gestures are a general term for
motion by the body. For example, a person giving thumbs up is considered a
gesture. Pose refers to the position and orientation of the body. For example, a
person could turn their face away from another person while communicating and
this would be considered posing his/her face. Expressions are facial muscle
movements. For example, a person moving their facial muscles to open their mouth
is considered an expression. Expressions and emotions are not the same. Emotions
are the underlying feelings of a person, which may be revealed, or concealed by
his/her expressions, pose, and gestures during communication.

The understanding of human expressions and emotions is a biological process—
particularly when framed in the context of their origins in mammals as Charles
Darwin studied them. When two humans communicate, they use their hands to
gesture, they use their facial muscles to form expressions, they focus their gaze, and
they pose their face toward the other human. Facial expressions are critically
important in this nonverbal communication between humans. Understanding of
the emotions of others can be a difficult task for humans. This is highlighted by the
existence of lie detectors: it is difficult for a human to determine if another human is
being deceitful. Video-based facial emotion recognition is an important field of
study where face video of a human is captured and computer algorithms must detect
their facial expressions to infer their underlying emotional state.

Expression/emotion recognition has applications in medicine (Asperger’s
Syndrome [2], autism spectral conditions [3]), video games (Xbox Kinect [4]),
human–computer interaction (embodied conversational agents [5]), deception
detection [6], and affective computing. Affective computing is a field where com-
puter interfaces can both understand and project human facial expressions to
facilitate nonverbal communication with a human. An example is given in
Fig. 18.1. In video-based facial emotion recognition, a system must automatically
detect apparent facial expressions of a person and infer their underlying emotional
state. There has been an increased interest in facial emotion recognition and the
field has seen great advances. In Sect. 2.1, we discuss the process by which a
human projects their emotions via facial expressions, and how it is interpreted by
another human. In Sect. 2.2, we discuss how a current computer algorithm detects
emotion.
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18.1.1 Projecting Emotions via Facial Expressions

If emotions and expressions are to be detected, they must first be quantified.
However, the categorization and classification systems of emotion are an ongoing
field of research in psychology and neuroscience. We will highlight three ways to
quantify emotions and expressions: action units [10], emotions based on the Ekman
big six [10] and the Fontaine emotional model [12], which is an extension of
affective dimensions.

Expressions are facial muscle movements. Ekman and Friesen [10] defined the
minimal set of facial muscle movements, or action units (AUs), that are used in
expressions. This is the Facial Action Coding System. For example, a smile consists
of AU 6 and AU 12. AU 6 indicates that a person’s cheeks are raised. AU 12
indicates that the corners of a person’s lips are being pulled outward. This often
occurs when smiling. Emotion differs from expressions in that they are the
underlying mental states that may illicit expressions. A common system for discrete
emotional states is the Ekman big six: happiness, sadness, fear, surprise, anger, and
disgust. Ekman posits that these six emotions are basic emotions that span across
different cultures [10].

A different system for emotion labels is the Fontaine emotional model [12] with
four affect dimensions: valence, arousal, power, and expectancy. An emotion
occupies a point in this four-dimensional Euclidean space. Valence, also known as
evaluation-pleasantness, describes positivity or negativity of the person’s feelings
or feelings of situation, e.g., happiness versus sadness. Arousal, also known as
activation-arousal, describes a person’s interest in the situation, e.g., eagerness
versus anxiety. Power, also known as potency-control, describes a person’s feeling
of control or weakness within the situation, e.g., power versus submission.
Expectancy, also known as unpredictability, describes the person’s certainty of the
situation, e.g., familiarity versus apprehension.

An Ekman big six emotion occupies a region in each of these four dimensions.
For example, happiness would be positive-valued valence because the person

Fig. 18.1 Aff-ective
computing
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would feel positive about the situation. It would have positive arousal, because the
person would enjoy the situation. It would have positive power, because a person
would likely need to feel in control of himself to feel happy. It may be any value for
expectancy, because a person may or may not be both surprised and happy. For a
more detailed explanation, the reader is referred to [12]. With this system, multiple
emotions can be expressed at the same time.

An overview of how humans communicate their emotions nonverbally is given
in Fig. 18.2. First, a person has an underlying emotion. He or she may move their
facial muscles based on their emotion. The facial muscle movements can be
explicitly described by AUs. Groups of AUs form a gesture, such as a smile. These
muscle movements are projected and perceived by another human. It is processed
by the human visual system at a low level, and a judgment is made by another
human as to what emotion the person is expressing. It is possible that the
expressions projected by the human are not the underlying emotion, such as when a
person is acting or when a person is being deceptive. In certain cultures, outward
displays of emotion are frowned upon. This is why detecting the emotions of
another human can be a difficult task.

18.1.2 Prediction of Emotions with Computer Algorithms

A computer algorithm may not predict emotion in the same way as the human
visual system in Fig. 18.2 (Orange). Typically, the system will process the video of
a frontal face on a frame-by-frame basis. The face region-of-interest (ROI) is
extracted to determine where the face is in the video frame. The most commonly
used method is the Viola and Jones cascade of Haar-like features [10]. This detector
is ubiquitously used in both facial expression and emotion recognition, and face
recognition. Because a person can rotate their face (called out-of-plane head
movement) and because the distance between the person in the frame and the
camera can vary (causing scale issues) the ROI of the faces must be aligned. This
procedure is called registration. Popular registration algorithms are active appear-
ance models (AAM) [14], a similarity transform (RST) using control points, such as
eyes, that are detected with Viola and Jones [15], and SIFT-based registration [11].
Then, features are extracted. A feature method describes the face in a meaningful
way such that you can describe the differences between two faces. Popular features
are control points, a set of vectors describing the position of facial features in a

Underlying 
Emotion

Facial Action 
Units

Low-Level Prediction of 
EmotionPerception

Fig. 18.2 Overview of how emotions are projected and perceived by other humans (orange).
Prediction of another humans’ emotion is a two-step process of perceiving a person’s face a low
level and predicting what emotion is being expressed
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Euclidean space; textures, and edges, noting where there are edges on the face that
may correspond to facial features; and motion. The feature is represented as a
vector. After feature extraction, a machine learning algorithm predicts the emotion
of a person (classification) by receiving a feature vector (testing sample). It refers to
a data set of other feature vectors where the emotion is known (training data), and it
attempts to find the best match for the received feature vector. Performance is
gauged by predicting the emotion of many testing samples (testing data) by the
percent accuracy (classification accuracy). An overview of this process is given in
Fig. 18.3.

While detecting the emotions of other humans can be a difficult task computer
systems struggle to detect authentic emotions in humans, i.e., computers struggle
with emotions that are not posed or acted. When actors and animators project
emotion they intend for their emotions to be understood by an audience, thus, it is
easier to detect acted or posed emotions. It makes sense then, that a computer
system should emulate the process by which the human visual system understands
the emotions projected by another human. In the following chapters, we will dis-
cuss: (1) feature extraction at a low level that resembles the way the human visual
system processes images and (2) predicting human emotions in the same way the
human visual system understands the face.

18.2 Low-Level Perception by the Human Visual System

In this chapter, we discuss the way the human visual system perceives images at a
low level. Specifically, we will discuss the Gabor energy filters and the nonclassical
receptive field. The understanding of the behavior of the human brain is a frontier of
research. However, facial processing by the human visual system is one of the most
well understood pathways of the brain. Visual information in the human visual
system is processed by the eyes. Its first stop in the human visual system is the
visual cortex, and its first stop within the visual cortex is the V1 area. In the V1
area, there are neurons that detect the presence of specific presence of an edge at a
specific orientation, and at a specific width. Examples are given in Fig. 18.4.

This somewhat resembles how a computer algorithm represents an image: it is
broken down into small meaningful parts. In the human visual system, an image is
broken down into edges of specific orientations and widths. There is a facial feature
descriptor that breaks down an image into meaningful edges in the same way as the
V1 cortex, and it is called the Gabor filter.

ROI Detection Registration Feature 
Extraction

Classification

Fig. 18.3 Overview of a system for facial emotion recognition
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18.2.1 The Classical Receptive Field

A Gabor filter is a band-pass filter that can be applied to detect edges of a specific
orientation and scale. An image is filtered by many Gabor filters under different
parameters, called a filter bank. Each filter in the bank is attuned to a different
orientation and scale. The V1 cortex’s response when presented with edges is called
the Classical Receptive Field [13]. Let I(x,y) be an input image. Contours of the
image are measured with a Gabor filter:

g x; y; c; h; k; r;/ð Þ ¼ e
~x2 þ c2~y2

2r2 cos 2p
~x
k
þ/

� �
ð18:1Þ

where x and y are the pixel location; γ is the spatial aspect ratio; θ is the angle
parameter where that attunes the filter to specific orientations; λ is the wavelength;
σ2 is the variance; ϕ is the phase offset taken to be 0 and π. To attune the Gabor filter
as a local appearance filter with a small neighborhood [13]: r=k ¼ :56, c ¼ 0:5 and
vary θ. Henceforth in the paper, g(x, y; θ, ϕ) is shorthand for the above values, i.e.,
g x; y; :5; h; 7:14; 3;/ð Þ. ~x and ~y are defined as

~x ¼ x cos hþ y sin h ð18:2Þ

~y ¼ �x sin hþ y cos h ð18:3Þ

Typically, values of θ and ϕ are selected such that they detect edges of different
orientations and magnitudes and do not overlap in their detection. f(x,y) is filtered,
first by g x; y; h; 0ð Þ, then by g x; y; h; pð Þ and its magnitude is taken to be the
response. This is called the Gabor energy:

Fig. 18.4 Examples of a gratings. As you perceive these gratings, a different, specific part of your
V1 area is responding to each grating
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E x; y; hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � gð Þ x; y; h; 0ð Þð Þ2 þ f � gð Þ x; y; h; pð Þð Þ2

q
ð18:4Þ

where f � gð Þ x; y; h;/ð Þ is the convolution of f(x,y) and g x; y; h;/ð Þ.
In summary, many Gabor filters are created by varying θ and ϕ. Each Gabor filter

would resemble a grating given in Fig. 18.4. The collection of these filters is called
a bank. If f is the image that needs description, it would be filtered by each filter in
the bank. The resulting images indicate the parts of f that resembled the gratings in
the bank. However, the human visual system takes one more step after computing
the locations of gratings. It removes noise due to background texture.

18.2.2 The Nonclassical Receptive Field

One drawback of the Gabor filter is that it captures all edges in an image, including
edges that are due to background texture. The human visual system automatically
removes these edges. An example is given in Fig. 18.5, where, when perceiving the
image, edges that are not consistent with the background texture will pop out. This
is called the pop-out effect. It can be incorporated with the Gabor filter to improve
robustness when images have background texture.

Equation 18.4 successfully captures the edge information of a specific orienta-
tion. It responds to edges in the same way a simple cell in the human visual system
responds to a grating (an edge or a set of edges). However, the human visual system
is able to detect edges in the presence of background texture. The background
texture is referred to as the Nonclassical Receptive Field [13]. It is estimated as

t x; y; hð Þ ¼ E � wð Þ x; yð Þ ð18:5Þ

where the weight function w is

w x; yð Þ ¼ 1
g DoG x; yð Þð Þk k1

g DoG x; yð Þð Þ ð18:6Þ

Fig. 18.5 Three examples illustrating the pop-out effect

18 Understanding of the Biological Process … 335



where g zð Þ ¼ H zð Þ � z, where H(z) is the Heaviside step function. DoG(x,y) is a
Difference of Gaussians:

DoG x; y;K; rð Þ ¼ 1
2pK2r2

e�
x2 þ y2

2K2r2 � 1
2pr2

e�
x2 þ y2

2r2 ð18:7Þ

where K is a weight. σ2 is the variance, the same as Eq. 18.1. This ensures that the
filter is bounded within the original Gabor filter. w(x,y) resembles the ridges of a
Mexican Hat filter. When applied as the weight, Eq. 18.5 captures the edge
information surrounding the current pixel. This allows background texture to be
estimated on a per-pixel basis. It is removed via

~b x; y; hð Þ ¼ g E x; y; hð Þ � at x; yð Þð Þ ð18:8Þ

where α is a parameter that affects how much of the background texture is removed.
When α = 0, there is no background texture suppression, and the filter is a Gabor
energy filter. An example of background texture suppression is given in Fig. 18.6.
Note that for all examples the dominant contours from the eyes and mouth are
extracted, but the classical receptive field detects edges in places where there is no
significant, perceivable edge.
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Fig. 18.6 Examples of faces processed with a the classical receptive field (Gabor) and the
nonclassical receptive field
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Equation 18.8 has retrieved the contours of f(x,y) less background texture. It is
computed for N different orientations. Conventionally, the responses from the
N orientations would be concatenated and taken to be the feature vector. A method
is needed to reduce the feature dimensionality. A representation of ~b x; y; hð Þ is
created that retains the maximal response for each pixel:

b x; yð Þ ¼ max ~b x; y; hð Þjh ¼ h1; . . .; hN
� � ð18:9Þ

Separately, an orientation map H x; yð Þ is constructed that contains the dominant
orientation for each pixel:

H x; yð Þ ¼ argmaxh ~b x; y; hð Þjh ¼ h1; . . .; hN
� � ð18:10Þ

Equations 18.9 and 18.10 retain the maximal edge. b(x,y) retains the value of the
maximum edge intensity, across all orientations, and H x; yð Þ stores the specific
orientation of the maximal edge. The image, f(x,y), is broken into M2, equally sized,
nonoverlapping regions. This process is referred to as gridding, and is used in facial
emotion recognition [14]. It is often used in local binary patterns [15] and local
phase quantization [12]. Local binary patterns and local phase quantization use a
histogram to count the response of specific microtextures. We use a soft histogram,
where votes are weighted by their maximal representation:

h hið Þ ¼
X

8 x;yð ÞjH x;yð Þ¼hi
b x; yð Þ ð18:11Þ

where h(θ) is an N bin histogram. A histogram is computed in each grid. The
M × M grids are concatenated to form the feature vector for f(x,y). Note that the
Gabor filter detected many more edges that were not meaningful, and that removing
background texture leaves only the significant edges.

18.2.3 Results for Prediction of Emotion

To test the effectiveness of the Gabor filter with background texture removal as a
feature to represent facial information, we conducted experiments using the
Audio/Visual Emotion Challenge 2012 development set frame-level sub-challenge
(to be described in 5.4. The development set was split using threefold random
cross-validation. Face ROI was extracted with Viola and Jones [13], faces were
registered with SIFT-based registration [16] and a linear SVM was used as a
classifier. We tested many features, and the proposed feature, Gabor filter with
background texture removal is the best on average. Results are given in Table 18.1,
in terms of the Pearson Product-moment Correlation Coefficient, where higher is
better. The best performer is the nonclassical receptive field, followed by
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FPLBP. LBP [6], FPLBP [30], LBP-TOP [11], and TPLBP [30] are in the LBP
family of feature descriptors and are currently the most commonly used feature for
facial emotion recognition.

18.3 Face Perception by the Human Visual System

In this section, we discuss the pathways that the human visual system uses to
combine visual information to understand the face. In their work on human face
recognition, O’Toole, Roark and Abdi [28] group facial feature information pro-
cessed by the brain as either static information or dynamic information. Static
information refers to invariant facial features that could be generated from a single
frame, such as eyebrows, iris color, geometric relationships, etc. Dynamic infor-
mation refers to spatiotemporal facial motion information that could be generated
from video, as well as gesture and pose, e.g., the facial muscle dynamics associated
with smile. A crossover exists where, when perceiving a face, dynamic information
and static information are combined under nonoptimal conditions and its contri-
bution increases proportionally with the amount of experience the viewer has with
that face. This phenomenon is called the supplemental information hypothesis
(SIH) and it posits that humans represent characteristic facial motions or idiosyn-
cratic gestures, titled, dynamic facial signatures, to a specific person. A previous
model (Haxby et al.’s distributed neural system for face perception [29]) described
this difference between static and dynamic information, but it was O’Toole, Roark
and Abdi [28] who posited that there is a crossover from the motion-computing
emotion-oriented middle temporal visual area to the appearance-oriented fusiform
face area (see Fig. 18.7).

Fusion is a method in computer vision that resembles this same procedure. It is
used in multimodal biometrics, but applicable to all computer vision applications.

Table 18.1 Results on AVEC 2012 development set frame-level sub-challenge

Pearson product-moment correlation coefficient

Feature Arousal Expectancy Valence Power Average

DCT [17] 0.034 0.078 0.076 0.063 0.063

FPLBP [30] 0.425 0.108 0.291 0.093 0.229

LBP [6] 0.434 0.072 0.257 0.088 0.213

LBP-TOP [11] 0.389 0.092 0.177 0.084 0.186

LPQ [27] 0.032 0.085 0.072 0.076 0.066

SIFT [19] 0.037 0.038 0.073 0.048 0.049

TPLBP [30] 0.024 0.047 0.086 0.039 0.049

Classical receptive field
(Gabor)

0.059 0.019 0.063 0.012 0.036

Nonclassical receptive field 0.417 0.143 0.347 0.124 0.258

For correlation, higher is better. Bold best performer. Underline second best performer
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In multimodal biometrics, there are typical multiple sensors, called modes. An
example is a facial emotion recognition system employing infrared-depth and
visible light sensors. Fusion is the method by which these two modes are combined.
The benefit of combining multiple sensors addresses the issue if one of the sensors
fails. As you increase the number of modes of different types the more accurate
your results will be. However, as the number of modes increases, so too does the
complexity of the system. A method must be carefully balance these two aspects.
There are many ways to combine the information from different sensors, and this
book focuses on the following methods: feature-level, match-score level, decision
level, and microsimilarity fusion. These methods can be distinguished by the stage
that fusion occurs in the pipeline. Feature-level fusion occurs in pre-classification,
and combines the feature vectors from the different modes. Match-score and
decision-level fusion occur post-classification. In that type of fusion, the posterior
probabilities, decision values, or estimated labels are estimated from each mode.
The initial results from these classifiers are fed into a second classifier or opti-
mization process that produces the final result. Microsimilarity fusion [17, 20]
differs from the other fusion methods by comparing the similarities between sam-
ples. Applied to the model of the human visual system, static and dynamic infor-
mation are separate modes that are fused when perceiving a face.

In facial emotion and expression recognition, fusion is applied after features are
extracted. The modes can be different features. For example, a method can fuse the
results from many different features. In one example [19], Gabor features and
optical flow features are combined with a HMM. The modes can also be entirely
different recognition pipelines, with different registration methods and classifiers.
When using too many modes, the complexity of a system results in high compu-
tational time and memory cost. For some data sets, such as the AVEC, that has
roughly one and a half million frames, just a few modes are enough to cause an
undesirable memory cost. A comparison of fusion methods is given in Table 18.2.
k is the number of modes.

Fig. 18.7 Static face information in the visual cortex (a) is carried in the ventral stream destined
for the facial fusiform area (b), while dynamic facial information is carried in the dorsal stream
destined for the middle temporal area (c). The supplemental information hypothesis posits that
there is a forward feedback (d) where dynamic facial signatures are combined with static
information
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18.3.1 Feature-Level Fusion

Among all the methods, feature-level fusion is the most commonly used. It is used
so often that many times it is not referred to by name. If there are k modes, and Xi

are the feature vectors from some mode i:

YF ¼ X1 . . . Xk½ � ð18:12Þ

where YF is the feature-level fusion of all of the modes. The feature vector size of
Y is the sum of the size of all the modes. The objective of the method is that there is
some combination of the features that may yield better classification result. To find
this manifold, the concatenation in Eq. 18.12 is coupled with a feature reprojection
and selection process, such as principle component analysis (PCA), independent
component analysis (ICA), nonnegative matrix factorization (NMF) [20], or sin-
gular value decomposition (SVD) [21]. The purpose of these algorithms is to
determine which features are useful from the feature vector. Some of the algorithms
create combinations of features that are more useful than the features themselves.

There are two ways to perform coupling of feature selection and feature con-
catenation. In the first way, the feature vectors are reprojected before concatenation
in Eq. 18.12. In the second way, Y is reprojected. The second method ensures that
the most variant features from all modes are used. However, because PCA is
applied after concatenation, there is no guarantee that all of the modes will be
utilized in the reprojection. It could be that the eigenvectors favor a specific mode in
training, and that this performance does not continue in testing. Overall, the benefit
of feature-level fusion is that it is easy to implement. The negatives are that it
increases feature vector length, and that, even if a reprojection and reduction
method is applied, the number of feature vectors and their length may be so high
that even computing the reprojection of the features is undesireable.

Table 18.2 Comparison of fusion methods

Type Stage Advantages Disadvantages

Feature Early
(pre-classifier)

Easy to implement. Single
classifier.

Increases number of
features.

Match-score or
decision

Late
(post-classifier)

Aggregating process can
account for failure of one of
the modes.

Runs of classifier
increased by k.

Microsimilarity Early (replaces
classifier)

Overcomes situations where
training data does not
properly represent testing
data.

Problem must be
framed in terms of
comparisons to other
samples.
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18.3.1.1 Q-Statistics for Feature Vector Disparity

The objective of feature-level fusion is to combine modes that are good in disparate
conditions. That is, if there are two modes, A and B, mode A works well for
samples where B fails, and vice versa. There is metric called the Q-statistic that
predicts whether or not the features from two different modes will work well in a
fusion scheme. It is

Qij ¼ n00n11 � n01n10ð Þ
n00n11 þ n01n10ð Þ ð18:13Þ

where Qij is the Q-statistic metric that measures how disparate the performance is
between mode i and mode j; n00, the number of samples where i and j misclassified
the same sample; n11, the number of samples where i and j correctly classified the
same sample; n01, the number where i misclassified and j correctly classified; n10,
the number where j misclassified and i correctly classified. Note that Qij 2 �1; 1½ �.
The larger the value of Qij, the more disparate the feature vectors are, and the better
it is to pair i and j.

18.3.2 Match-Score and Decision-Level Fusion

Match-score and decision-level fusion differ from feature-level fusion in that the
fusion occurs post-classification. In match-score fusion, a classifier generates pos-
terior probabilities, or decision values, both referred to as match-scores, for each
mode separately. After estimation, a second classifier utilizes the match-scores as
features. Decision-level fusion is similar but it utilizes the estimated labels as
opposed to the match-scores. In one example [22], a single mode is used but
neighboring time points are taken to be different modes. A classifier generates an
initial hypothesis for each frame in terms of posterior probabilities, and an aggre-
gator combines the posterior probabilities. p cjXið Þ is the posteriori probability of
membership to class c, given Xi, the features vectors for mode i. Concentionally, the
posterior probability of a sample belonging a class, given a single mode X0:

~C ¼ argmaxc ~p C;X0ð ÞjC ¼ c1; . . .; cmf g ð18:14Þ

where ~C is the estimated label, m is the number of classes, and conventionally
~p C;X0ð Þ ¼ p CjX0ð Þ. However, in fusion, we have more than one mode, and must
modify ~p C;X0ð Þ:

~p C;X0ð Þ ¼ K p CjXið ÞjXi ¼ X1; . . .;Xkf gð Þ ð18:15Þ

where K is the aggregation rule. When K is the average, it takes the average of all
the match-scores. K can be any rule, such as the harmonic mean, minimum,
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maximum, and mode. While the averaging rule could be proved optimal as the
minimum variance unbiased solution, it is not always the best in practice. In one
case, it was found that the maximum rule was the best performer [22]. The rule
should be selected empirically.

18.3.3 Microsimilarity Fusion

In the training phase, amanifold is trained from the training data that best describes the
samples encountered in training. With respect to facial emotion and expression
recognition, in testing, a person may be encountered that is not in training. Because
each person expresses an emotion in a differentway, there is no guarantee that a person
will express their emotions in the sameway as others, and there is no guarantee that the
training model will properly model the new, unforeseen emotions and expressions.
Indeed, in some of the data sets to be detailed in Sect. 18.5, persons in onefold are not
the same persons in another fold. In the presence of these technical challenges, current
methods do not perform well. This situation is similar to the problems presented in
unconstrained face recognition. Wolf et al. [17] proposed “learning with side infor-
mation” to overcome these generalization problems. This concept can be exploited in
facial emotion and expression recognition, and is realized by neutral and temporal
microsimilarities [18]. Features are created that describe the relation of a sample to
other samples, without relying on a manifold created by features.

One method of microsimilarity fusion is neutral similarity. It measures the
intensity of an emotion. A feature is computed as the difference between the current
face and neutral face, some estimate of a face that is emotion and expression
neutral. This can be estimated with Avatar Image Registration [11]. The metric
differentiates when facial expressions are close to neutral and when facial expres-
sions are intense. This is computed by comparing a given frame, I to a reference or
a neutral face. In another method, temporal similarity, the change between frames is
measured. This microsimilarity provides additional information of how expressions
are changing temporally. It is computed by comparing I(x,t) with I x� d; tð Þ, where
δ is some offset. The microsimilarities can be computed post-feature extraction by
an L1-norm vector difference between the two samples [17]. In one work, the
energy of a modified SIFT-Flow algorithm is taken to be the feature [18]. The
microsimilarities are taken to be the features for classification, and can be combined
the features to yield better classification results.

18.3.4 Results for Prediction of Emotion

We conducted experiments to test the efficacy of fusing static and dynamic infor-
mation with microsimilarities. We conducted experiments using MMI-DB and CK.
We used the entire data set where there was video of a frontal face. We used the
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most intensely expressed frame. Face ROI was extracted with Viola and Jones [13],
faces were registered with SIFT-based registration [16] and a linear SVM was used
as a classifier. The results are given in Table 18.3. Feature fusion only indicates that
a fusion of LBP [6], FPLBP [30], and TPLBP [30] was used. Fusion of all
microsimilarities is the best performer.

18.4 Data Sets

The field of facial emotion and expression recognition has advanced with the help of
publicly available data sets. Among the first was the first Japanese female expression
data set [23]. Since then, there have been many data sets available: Cohn-Kanade+
(CK+), MMI facial expression database (MMI-DB), the first facial expression
recognition and analysis grand-challenge (FERA), the audio/visual emotion chal-
lenge (AVEC), ordered by date. The field has moved toward more spontaneous,
naturally collected data. A comparison of publicly available data sets is given in
Table 18.4. Examples of images from each data set are given in Table 18.4.

Expressions and emotions are not the same. Expressions are facial muscle
movements and emotional states are the underlying mental states that may illicit
expressions. Different data sets will use different types of labels. Ekman and Friesen
defined the minimal set of facial muscle movements, or Action Units (AUs), used in
expressions. This is the Facial Action Coding System [25]. The most commonly
known system for discrete emotional states is the Ekman big six: happiness, sad-
ness, fear, surprise, anger, and disgust. These categories have since been expanded
beyond the original six [26].

18.4.1 Cohn-Kanade

It consists of 593 videos of 123 different individuals. A person faces a video camera
and acts out one or more expressions. The majority of the videos are black and

Table 18.3 Interdatabase testing for score-based facial emotion recognition on CK +, MMI-DB
and JAFFE databases

Method CK+ MMI C2 M C2 J MC2 J M2C

Feature fusion 89.8 62.5 43.4 44.1 45.5 64.9

N/T score only 89.0 78.0 56.8 51.0∗ 52.0∗ 72.0

OSE score only 90.9 86.4 57.6 56.1 57.1 85.8

Microsimilarity fusion 92.4 90.5 61.9 58.1 60.1 88.5
Acronym indicates which dataset was used for training and which was used for testing. N/T:
Neutral and temporal score. C CK+. M MMI. J JAFFE. For example, C2 M indicates that CK+
was used for training and MMI was used for testing
∗Temporal score not used because dataset is images
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white, though there are some color sequences. The sequences follow a neutral-apex
pattern, where the sequences tart with a neutral representation of the persons face,
and ends when the persons expression is most intense. There is no pose change.
Expressions are quantized in terms of facial action units (AU) [25]. There are many
more negative samples than positive samples. Such a disproportionate a priori rate
causes a high overall classification rate, so more attention should be given to the
true positive and false negative rates.

18.4.2 MMI Facial Expression Database

The MMI facial expression database (MMI-DB) is frontal face video data. We use
Part I and II of the database. It contains 736 videos. MMI-DB is acted and posed.
Unlike CK+, the classes are 26 emotional states [7]. The videos follow an
offset-onset-offset pattern. That is, emotion is neutral at frame one. It then peaks at
the emotional apex near the middle of the video. Finally, the emotion returns to
neutral at the end of the video.

18.4.3 Facial Emotion Recognition and Analysis
Grand-Challenge 2011

The facial emotion recognition and analysis grand-challenge consists of 155
training videos and 134 test videos. The labels for the test videos are withheld from
the public, and results must be submitted to another party for evaluation. There are
seven subjects in the training data and six subjects in the test set, three of which are
not in the training set. This data set differs from previous data sets in that the data
was acted by professionals. It is less constrained than previous data sets, and the
persons in the data may exhibit some pose change. The results are provided in terms
of person independent, person specific, and overall.

Table 18.4 Comparison of publicly available data sets

Name Date Labels Pose
change

Acted

Japanese female facial expression database (JAFFE)
[23]

1998 Emotions No Yes

Cohn-Kanade+ (CK+) [24] 2010 Emotions
and AU

No Yes

MMI facial expression database (MMI-DB) [7] 2010 Emotions No Yes
Facial emotion recognition and analysis
grand-challenge 2011 (FERA) [8]

2011 Emotions
and AU

Limited Professionally

Audio/visual emotion challenge 2012 (AVEC) [9] 2012 Emotions Yes No

344 A.C. Cruz et al.



18.4.4 Audio/Visual Emotion Challenge

The audio/visual emotion challenge [27] is also a grand-challenge data set. The
challenge was hosted in 2011 and 2012, and continues to be offered. A person
engages in conversation with a console displaying an embodied agent. There are no
constraints. A person may turn away from the camera, causing an extreme pose
change. An example is available online at [28]. The videos are recorded at * 49fps
and for so long that one and a half million frames are recorded. There are three sets:
training, development, and testing. In training, a training model is trained on the
training set and the development set is classified. The official results are given when
classifying the testing set instead of the training set. Because AVEC has such a high
number of frames, it is computationally undesirable to load all the frames into
memory. AVEC is unique in that it quantizes emotional states in terms of the
Fontaine emotional model [29], and that it reports results in terms of weighted
accuracy, unweighted accuracy and correlation with ground truth.

Emotion is described in terms of valence, arousal, power, and expectancy. An
emotion, such as happiness or sadness, occupies a point in this four-dimensional
Euclidean space. Each dimension represents one of the four emotions. Valence, also
known as evaluation-pleasantness, describes positivity or negativity of the subject’s
feelings or feelings of situation, e.g., happiness versus sadness. Power, also known
as potency-control, describes a user’s feeling of control or weakness within the
situation, e.g., power versus submission. Arousal, also known as activation-arousal,
describes a user’s interest in the situation, e.g., eagerness versus anxiety.
Expectancy, also known as unpredictability, describes the user’s certainty of the
situation, e.g., familiarity versus apprehension. For a more detailed explanation,
please refer to Fontaine et al. [29].

18.5 Conclusion

In this chapter, we discussed the process by which a human expresses an emotion.
There is an underlying emotional state which may elicit facial expressions. We
discussed how it is perceived by the human visual system at a low level with the
classical and nonclassical receptive field. We discussed how prediction of emotion
is made by a human with information crossovers from different parts of the human
visual system. It was found that computer algorithms modeled after the human
visual system performed better than their heuristic counterparts. This makes sense
because the projection of facial expressions understandable by other humans.
Computer algorithms should emulate the human process for understanding facial
expressions.
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Chapter 19
Identification and Retrieval of Moth
Images Based on Wing Patterns

Linan Feng, Bir Bhanu and John Heraty

Abstract Moths are important life forms on the planet with approximately 160,000
species discovered. Entomologists in the past need to manually collect moth
samples, take digital photos, identify the species, and archive into different cate-
gories. This process is time-consuming and requires a lot of human labors. As
modern technologies in computer vision and machine learning advance, new
algorithms have been developed in recognizing objects in digital images based on
their visual attributes. The methods can also be applied to the entomology domain
for recognizing biological identities. The Lepidoptera (moths and butterflies) in
general can be identified and classified by their body morphological features; wing
visual patterns that can be obtained using various image processing approaches in
automated diagnostic systems. In this chapter, we describe a system for automated
moth species identification and retrieval. The core of the system is a probabilistic
model that infers semantically related visual (SRV) attributes from low-level visual
features of the moth images in the training set, where moth wings are segmented
into information-rich patches from which the local features are extracted, and the
SRV attributes are provided by human experts as ground truth. For the testing
images in the database, an automated identification process is evoked to translate
the detected salient regions of low-level visual features on the moth wings into
meaningful semantic SRV attributes. We further propose a novel network
analysis-based approach to explore and utilize the co-occurrence patterns of SRV
attributes as contextual cues to improve individual attribute detection accuracy. The
effectiveness of the proposed approach is evaluated in automated moth identifica-
tion and attribute-based image retrieval. In addition, a novel image descriptor called
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SRV attribute signature is introduced to record the visual and semantic properties of
an image and is used to compare image similarity. Experiments are performed on an
existing entomology database to illustrate the capabilities of our proposed system.

19.1 Introduction

Moths are important life forms on the planet with approximately 160,000 species
discovered [1], compared to 17,500 species of butterflies [1], which share the same
insect Order with Lepidoptera. Although most commonly seen moth species have
dull wings (e.g., the Tomato Hornworm moth, see Fig. 19.1a), there are a great
number of species that are known for their spectacular color and texture patterns on
the wings (e.g., the Giant Silkworm moth and the Sunset moth, see Fig. 19.1b, c,
respectively). As a consequence, much research on identifying the moth species from
the entomologist side has focused on manually analyzing the taxonomic attributes on
the wings such as color patterns, texture sizes, spot shapes, etc., in contrast with the
counterpart biological research that classifies species based on DNA differences.

As image acquisition technology advances and the cost of storage devices
decreases, the number of specimen images in entomology is grown at an extremely
rapid rate both in private database collections and over the web [2–4]. Species
identification, relying on manually processing images by entomologists and highly
trained experts, is time-consuming and error-prone. The demand for more auto-
mated and efficient methods, to meet the requirements of real-world species iden-
tification such as agriculture and border control, is increasing. Given the lack of
manually annotated text descriptors to the images, and the lack of consensus on the
annotations caused by the subjectivity errors of the human experts, engines for
archiving, searching, and retrieving insect images in the databases based on key-
words and textual meta-data face great challenges in feasibility.

The progress in computer vision and pattern recognition algorithms provides an
effective alternative for identifying the insect species and many computer-assisted
systems that incorporate these algorithms have been invented in the past two
decades [5, 6]. In the image retrieval domain, one of the common approaches

Fig. 19.1 Moth wings have color and texture patterns at different levels of complexity based on
their species: a tomato hornworm, b giant silkworm and c sunset. Photo courtesy of Google Image
search engine
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introduced to complement the difficulties in text-based retrieval relies on the use of
Content-Based Image Retrieval (CBIR) systems [7–9], where sample images are
used as queries and compared with the database images based on visual content
similarities [10, 11] (color, texture, object shape, etc.). In both the identification and
retrieval scenarios, visual features that are extracted to represent morphological and
taxonomic information play an important role in the final performance. Context
information is often used to help improve individual detection performance of the
visual features [12].

These intelligent systems provide a number of attractive functions to entomolo-
gists; however, the drawback is: most systems only extract visual features at image
pixel level which do not contain human understandable information. However,
recent research [13] shows that humans are more expecting to access images at
semantic level. For example, users of a system are more likely to search by finding
all the moths containing eye spots on the dorsal hind wings rather than finding all the
moth containing a region with dark blue pixels near the bottom of the image. An
intermediate layer of image semantic descriptor that can bridge the gap between user
information need, and low-level visual feature is absent in most existing systems.

In this chapter, we present a new system for automated moth identification and
retrieval based on the detection of visual attributes on the wings. The objective of
our method is to mimic human behavior on differentiating species by looking at
specific visual contexts on the wings. More specifically, the notion of “context”
refers to discovering certain attribute relationships by taking into account their
co-occurrence frequencies. The main motivation of our system relies on the con-
jecture that the attribute co-occurrence patterns encoded on different species can
provide more information for refining the image descriptors. The approaches used
are summarized as follows: We build image descriptors based on so-called
Semantically Related Visual (SRV) attributes, which are the striking and stable
physical traits on moth wings. Some examples of SRV attributes are shown in
Fig. 19.2. The probabilistic existence of these attributes can be discovered from
images by trained detectors using computer vision and pattern recognition

Fig. 19.2 Sample moth wings illustrate the Semantically Related Visual (SRV) attributes. a Four
sets of SRV attributes on the dorsal fore wings: eye spot (top left), central white band (top right),
marginal cuticle (bottom left) and snowflake mosaic (bottom right). In each set, the right image is
the enlarged version of the left image. b Four sets of SRV attributes on the ventral hind wings.
Note it is harder to described the images in a semantic way with simple texts compared to the
images in group (a)
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techniques. Our system detects and learns SRV attributes in a supervised way.
The SRV-attributes are manually labeled by human experts to a small subset of the
image database that is used for training the attribute detectors. The core of the
detector is a probabilistic model that can infer SRV-attribute occurring scores from
the unlabeled testing images. We characterize individual images by presenting SRV
attributes into a so-called SRV-attribute signature. The species identification is
performed by comparing the SRV-attribute signature similarity.

19.2 Related Work

Insect species identification recently has received great attention due to the urgent
need for systems that can help in biodiversity monitoring [14], agriculture, and
border control [15, 16], as well as conservation and other related research [17].
Likewise, identifying species is also the prerequisite to conducting more advanced
biological research such as species evolution and developmental studies. However,
the vast number of insect species and specimen images is a challenge for manual
insect identification. The request for automated computer systems is only likely to
grow in the future.

Several attempts have been made in the last two decades to design species
identification systems from any type of available data. There have been sophisti-
cated applications to solve problems in classifying orchard insects [5], recognizing
the species-specific patterns on insect wings [6]. Qing et al. [18] developed an
automatic identification system for rice pests based on the pictorial features of the
images. It has been recognized that these computer-aided systems can overcome the
manual processing time and errors caused by human subjectiveness.

One common property of these systems is that they all rely on images taken from
carefully positioned target under consistent lighting conditions, which reduces the
difficulty of the task to some extent. One interesting aspect of automated species
identification is that the data are not limited to images. For example, the paper
proposed by Ganchev et al. [19] describes the acoustic monitoring of singing
insects that applies sound recognition technologies into the insect identification
task. Meulemeester et al. [20] report on the recognition of bumble bee species based
on statistic analysis of the chemical scent extracted from the cephalic secretions.
A challenging competition on multimedia life species identification [21] was
recently held on identifying plant, bird, and fish species using image, audio and
video data separately.

With the increase of insect images, there is a growing tendency in the field of
entomology using image retrieval systems to help archive, organize, and find
images in an efficient manner. Great efforts have been made using content-based
image retrieval technique to find the relevant images to a query based on the visual
similarity; the prototype systems for retrieving Lepidoptera images include “but-
terfly family retrieval” [22] and a part-based system [10].
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19.3 Technical Approach

19.3.1 Moth Image Dataset

The dataset used in this study is collected from an online library of moth, butterfly,
and caterpillar specimen images created by Dr. Dan Janzen [23] over a long-term
and ongoing project started in 1977 in northwestern Costa Rica. The goal of the
inventory is to have records for all the 12,500+ species in the area. As of the end of
2009, the project had collected images of 4,500 species of moths, butterflies, and
caterpillars. We use a subset of the adult moth images under the permission of
Dr. Dan Janzen. The dataset is publicly available at http://janzen.sas.upenn.edu.

The images are available for both the dorsal and ventral aspects of the moths.
Each image was resized into 600 × 400 pixels in resolution and is in RGB colors.
Our complete dataset contains 37,310 specimen images covering 1,580 species of
moth, but a majority of the species has less than twenty samples. Because our
feature and attribute analysis are based on regions on the wings, and some speci-
mens show typical damage ranging from age-dependent loss of wing scales (color
distortion), missing parts of wings (incomplete image), or uninformative orientation
differences in the wings or antennae, this makes the number of qualified samples
even less, and we carefully selected fifty species across three family groups and six
subfamily groups: Hesperiidae (Hesperinae, Pyrginae), Notodontidae (Dioptinae,
Nystaleinae), and Noctuidae (Catolacinae, Heterocampinae [=Rifargiriinae]) from
the original dataset. This new subcollection has a total of 4,530 specimens of good
quality (see Table 19.1 for the distribution of the species used in our work).

We show sample images of 20 representative species out of the 50 species used
in our work in Fig. 19.3. The moth specimens have been photographed against an
approximate uniform (usually white or gray) background, but often with shadow
artifacts. The specimens are curated in a uniformed way with the wings horizontal
and generally with the hind margin of the forewing roughly perpendicular to the
longitudinal axis, which facilities the subsequent image processing and feature
extraction steps.

19.3.2 System Architecture

The flowchart of the proposed moth identification and retrieval system is shown in
Fig. 19.4. The system architecture contains five major parts: (1) information
extraction of moth images, (2) SRV attribute detection on moth wings,
(3) co-occurrence network construction and co-occurrence pattern detection for the
SRV attributes, (4) image signature building and refinement based on SRV attri-
butes and their co-occurrence patterns, and finally (5) applications in moth species
identification and retrieval. We give the details about each part in the following
sections.
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19.3.3 Feature Extraction

19.3.3.1 Background Removal

It is important to partition the images into “background” and “foreground” because
the background usually contains disturbing visual information (such as shadows
created by the lighting device, bubbles and dirts on the specimen holder, etc.) that
can affect the performance of the detector. We adopted the image symmetry-based
approach [24] for background and shadow removal. The moth image dataset used in
this chapter have the properties of moth wings with high reflection symmetry
(Fig. 19.5a). Because the shadows have the most salient influence on the following
processing steps, and they are not symmetric in the images, we use symmetry as the
key constraint to remove the shadow.

The SIFT points of the image are detected (Fig. 19.5b) and symmetric pairs of
the points are used to vote for a dominant symmetry axis (Fig. 19.5c). Based on the
axis, a symmetry-integrated region-growing segmentation scheme is applied to
remove the white background from the moth body and shadows (Fig. 19.5d), and
the same segmentation process is run with smaller thresholds to partition the image
into shadows and small local parts of the moth body (Fig. 19.5e). Finally, symmetry
is used again to separate the shadows from the moth body by computing a sym-
metry affinity matrix. Since the shadows are always asymmetric with the axis of

    Saliana fusta      Nebulosa erymas     Nascus Burns         Entheus matho       Urbanus belli

  Erbessa albilinea          Talides Burns      Quadrus contubernalis   Hyalothyrus neleus      Melanopyge Burns

Phocides nigrescens   Vettius conka              Saliana Burns         Myscelus belti              Atarnes sallei

   Erbessa salvini      Thysania zenobia     Eulepidotis rectimargo    Eulepidotis folium  Eudocima materna

Fig. 19.3 Sample images for 20 moth species selected from all the species used in this work. We
do not show all the species due to the space limit
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reflection, their symmetry affinity will have higher values than the parts of moth
body, which is used as the criterion to remove the shadows (Fig. 19.5f).

19.3.3.2 SRV Attribute Labeling

A subregion of the moth wing is considered an SRV attribute if: (1) it repeatedly
appears on moth wings across many images, (2) it has salient and unique visual
properties, and (3) it can be described by a set of textual words that are descriptive
for the subregion.

Training Set Testing Set

     Information Extraction

SRV Attribute Detection

Applications

Signature Building and Refinement

Co-occurrence Pattern Detection

SRV A ib D i

I f ti E t ti

Shadow and Background Removal

Visual Feature Extraction

Randome Walk Process
Generative Modeling

P(attribute|visual feature) 

SRV Attribute Labeling

Species Identification Moth Image Retrieval

Salient Region Detection          
based on Segmentation

Attribute Co-occurrence 
Network Construction

Attribute Co-occurrence 
Pattern Detection

Attribute       Original Probability  Refinement
White Band           0.373                     0.431
Eye Spot                0.462                     0.372
Snowflake             0.712                     0.665  
Mosaic                  0.432                     0.518

Fig. 19.4 The flowchart of the proposed moth species identification and retrieval system. It
consists of: (1) information extraction, (2) SRV attribute detection, (3) attribute co-occurrence
pattern detection, (4) attribute signature building and refinement, and (5) moth identification and
retrieval applications
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We scan the moth images and manually pick a group of SRV attributes. Similar
ways have been utilized for designing “concepts” or “semantic attributes” in image
classification and object recognition tasks. For example, building nameable and
discriminative attributes with human-in-the-loop [25, 26]. However, compared to
their semantic attributes, our SRV attributes cannot be described with concise
semantic terms (e.g., “A region with scattered white dots on the margin of the hind
wing on the dorsal side”). Therefore, we propose to index the SRV attributes by
numbers, e.g., “attribute_1,” “attribute_2,” and so forth. We also explicitly incor-
porate the positions of the SRV attributes into the attribute index. Each moth has
two types of wings: the forewing and the hindwing, and each type of wing has two
views: the ventral view and the dorsal view; the SRV attribute index is finally
defined in an unified format “attribute_No./wing_type/view,” e.g.,
“attribute_1/forewing/dorsal,” “attribute_5/hindwing/ventral,” etc. Furthermore, as
the moths are symmetrical to the center axis, we only label one side of the moth
with the index of SRV attributes.

In order to acquire reliable attribute detectors, SRV attributes are labeled by
human experts to the regions in the training images. The regions are represented by
the minimum bounding rectangles (MBRs) which are produced using the online
open source image labeling tool “LabelMe” [27].

19.3.3.3 Salient Region Detection by Segmentation

For the test images, we use the salient region detector to extract small regions or
patches of various shapes that could potentially contain the interested SRV

Fig. 19.5 Steps for background and shadow removal. a Original image (with shadow), b detected
SIFT points, c detected symmetry axis, d background removed image, e segmentation for small
parts, and f image after shadow removal
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attributes. A good region detector should produce patches that capture salient
discriminative visual patterns in images. In this work, we apply a hierarchical
segmentation approach based on reflection symmetry introduced in [24] to jointly
segment the images and detect salient regions.

We apply symmetry axis detection on the moth images to compute a symmetry
affinity matrix, which represents the correlation between the original image and the
symmetrically reflected image. Each pixel has a continuous symmetry affinity value
between 0 (perfectly symmetric) and 1 (totally asymmetric), which is computed by
the Curvature of Gradient Vector Flow (CGVF) [28]. The symmetry affinity matrix
of each image is further used as the symmetry cue to improve the region-growing
segmentation. The original region-growing approach considers aggregating pixels
into regions by pixel homogeneity. In this chapter, we modified the aggregation
criterion to integrate the symmetry cue. More details about the approach are
explained in [24].

Comparison between Fig. 19.6a, b indicates that using symmetry, more complete
and coherent regions are partitioned. The result in Fig. 19.6b is obtained using the
same region growing, but without symmetry, so it has many noisy and incomplete
regions. The improvements are obtained using the symmetry cue only. Two more
results on salient region detection using symmetry-based segmentation are shown in
Fig. 19.6c, d.

19.3.3.4 Low-Level Feature Extraction

We represent the above detected salient regions by the minimum bounding rect-
angles (MBRs). The local features of each bounding rectangular are extracted and
pooled into numeric vector descriptors. We have three different types of features

Fig. 19.6 Results from salient region detection. a Symmetry-based segmentation, b segmentation
without using symmetry. Two more results are shown in (c) and (d) using symmetry-based
segmentation
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used to describe each region: (a) color-based feature, (b) texture-based feature, and
(c) SIFT keypoint-based feature.

(1) HSV color feature. The color feature is insensitive to changes of size and
direction of regions. However, it suffers from the influence of illumination
variations. For the color feature extraction, the original RGB (Red-Green-Blue)
color image is first transformed into HSV (Hue-Saturation-Value) space, and
only the hue and saturation components are used to reduce the impact from
lighting conditions. We then divide the interval of each component into 36 bins,
the image pixels inside the salient region are counted for each bin, and the
histogram of the 72 bins is concatenated and normalized into the final color
feature vector.

(2) Gray Level Co-occurrence Matrix (GLCM-based texture feature. Texture
feature is useful to capture the regular patterns of the spatial arrangement of
pixels and the intrinsic visual property of regions. We adopt the gray level
co-occurrence matrix (GLCM) proposed by Haralick in [29] to extract the
texture features. The GLCM is a pixel-based image processing method.

(3) SIFT (Scale Invariant Feature Transform)-based keypoint feature. SIFT [30]
proposed by Lowe is a very popular feature used in computer vision and
pattern analysis. SIFT feature has the advantage that it is invariant to changes
in scale, rotation, and intensity. The major issues related to extracting this
feature include selecting the keypoints and calculating the gradient histogram
of pixels in a neighboring rectangular region. In this work, we apply the
Difference-of-Gaussians (DoG) operator to extract the keypoints. For each
keypoint, the 16 × 16 pixels in the neighboring region are used. We divide a
region into 16 4 × 4 subregions. For each pixel in a subregion, we calculate the
direction and magnitude of its gradient. We quantize the directions into 8 bins
and build a histogram of gradient directions for each subregion. The magni-
tude of the gradient is used to weight the contribution of a pixel. Finally, the
8-dimensional feature vectors from the eight-bin direction histogram of each
subregion are combined and weighted into a 128-dimensional vector to record
local information around the keypoint.

19.3.4 SRV Attribute Detector Learning Module

In this module, the SRV attribute detector is trained using a generative approach
based on probability theory. To illustrate the basic idea, consider a scenario in

which an image region depicted by an N-dimensional low-level feature vector XN
�!

is to be assigned into one of the K SRV attributes k ¼ 1; . . .;K in a higher level of
semantics. From probability theory, we know that the best solution is to achieve the
posterior probabilities pðkjXÞ for a given X and each attribute category k, and
assign the attribute with the largest probability score to the region. In the generative
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model, we model the joint probability distribution pðk;XÞ of image region features
and attributes, and Bayes’ theorem provides an alternative to derive pðkjXÞ from
pðk;XÞ:

pðkjXÞ ¼ pðk;XÞ
pðXÞ ¼ pðXjkÞpðkÞPK

i¼1 pðXjiÞpðiÞ
ð19:1Þ

As the sum in the denominator takes the same value for all the attribute cate-
gories, it can be viewed as a normalization factor over all the attributes.
Equation (19.6) can be rewritten as:

pðkjXÞ / pðk;XÞ ¼ pðXjkÞpðkÞ ð19:2Þ

which means we only need to estimate the attribute prior probabilities pðkÞ and the
likelihood pðXjkÞ separately. The generative model has the advantage that it can
augment the large amount of unlabeled data in a dataset from a small portion of the
labeled data.

As defined earlier K denotes the pool of SRV attributes. Let ki be the ith attribute
in K. According to the previous section, ki is assigned to a set of image regions
Rki ¼ fri1; ri2; . . .; rinkig along with the corresponding feature vectors

Xki ¼ fxi1; xi2; . . .; xinkig, where n is the number of regions in an image. We assume

the feature vector is sampled from some underlying multivariate density function
pXð�jkiÞ. We use a nonparametric kernel-based density estimate [31] for the dis-
tribution pX . Assuming region rt to be in the test image with feature vector xt, we
estimate pXðxtjkiÞ using a Gaussian kernel over the feature vectors Xki :

pXðxtjkiÞ ¼ 1
n

Xn
j¼1

expf�ðxt � xjÞTR�1ðxt � xjÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2npnjRjp ð19:3Þ

Σ is the covariance matrix of the feature vectors in Xki .
pðkiÞ is estimated using Bayes estimators with a prior beta distribution, the

probability distribution of pðkiÞ is given by:

pðkiÞ ¼ ldki;r þ Nki

lþ Nr
; ð19:4Þ

where μ is the smoothing parameter estimated from the training set, dki;r ¼ 1 if
attribute ki occurs in the training region r and 0 otherwise. Nki is the number of
training regions that contain attribute ki and Nr is the total number of training
regions.

Finally, for each test region with feature vector xt, the posterior probability of
observing attribute ki in K given xt, pðkijxtÞ is given by multiplying the estimates of
the two distributions:
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pðkijxtÞ ¼ ð1
n

Xn
j¼1

expf�ðxt � xjÞTR�1ðxt � xjÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2npnjRjp Þ � ðldki;r þ Nki

lþ Nr
Þ ð19:5Þ

For each salient region extracted from a test image I, the occurrence probability
of each attribute in that region is inferred by Eq. (19.5). The probabilities for all
attributes are combined into a single vector which is called region SRV attribute
signature. For a test image with several salient regions, we combine the region SRV
attribute signature into a final vector by choosing the max score for each attribute.
We name this vector as the image SRV attribute signature, and it is used as the
semantic descriptor for images.

19.3.5 SRV Attribute Co-occurrence Pattern Detection
Module

Attribute labels given by human experts as ground-truth semantic descriptions
across the entire training image set are used to learn the contextual information
based on the attribute label co-occurrences. In this section, we devise a novel
approach to discover the co-occurrence patterns of the individual attributes based
on network analysis theories. More specifically, we construct an attribute
co-occurrence network to record all the pairwise co-occurrence between attributes.
The patterns are detected as the communities in a network structure. A similar
concept is used in social network to describe a group of people that have tightly
established interpersonal relationships.

19.3.5.1 SRV Attribute Co-occurrence Pattern Detection

We first introduce the notion of community structure from the network perspective.
One way to understand and analyze the correlations among individual items is to
represent them in a graphical network. The nodes in the network corresponds to the
individual items (attributes in our case), the edges describe the relationships (at-
tribute co-occurrence in our case), and the edge weights denote the relevant
importance of the relationship (co-occurrence frequency in our case).

A very common property of a complex network is known as the community
structure, i.e., groups of nodes may have tight internal connections in terms of a
large number of internal edges, while they may have less edges connecting each
other. These groups of nodes constitute the communities in the network. The
existence of community structure reflects underlying dependencies among elements
in the target domain. If a group of individual attributes always occur together in the
training image set, then an underlying co-occurrence pattern can be defined by these
attributes, and this pattern can be used as a priori knowledge in the attribute
detection for the test images.
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19.3.6 Identification Module

The attribute detector learned from the training data is used in the identification
module for the testing images. The inputs to the detector are the detected salient
regions from the test images as well as the extracted low-level visual features. The
output of the detector is the so-called “image SRV attribute signature”. The species
identification of testing images is performed by comparing testing image signatures
with the training image signatures. Therefore, we also build the attribute signatures
for the training images. For a training image I, the attribute signature is SjAj with
each element sðaiÞ 2 f0; 1g and sðaiÞ ¼ 1 when image I has regions labeled with
attribute ai and = 0 otherwise. We further divide the training images into groups
based on their scientific species designation. The element values are averaged
across the signatures within each species group for each individual attribute, and the
obtained signature is called the species prototype signature.

The testing image of a species is identified by comparing its image attribute
signature with the species prototype signatures of the fifty species. The distance
between the two signatures is calculated by the Euclidean distance. The testing
image is finally identified as the species with the smallest distance value. If several
species have very similar distance values to the testing image, we assign all the
species labels to that image, and let the image retrieval system give the final
decision on the species based on the feedback from the users who are determined as
experts by the retrieval system.

19.3.7 Retrieval and Relevance Feedback Module

We implement a query by example (QBE) paradigm for our retrieval system. QBE
is widely used in conventional content-based image retrieval (CBIR) systems when
the image meta-data, such as captions, surrounding texts, etc. are not available for
keyword-based retrieval.

19.3.7.1 Image Retrieval Using Query by Example

In the QBE mode, the user is required to submit query in terms of an example
specimen image to the system. Finding an appropriate query example, however, is
still a challenging problem in the research area of CBIR. In our system, we provide
an image browsing function in the user interface, and the user is allowed to browse
all the images in the database and submit a query. Images are compared by their
content similarity. Each image in the database is represented by a low-level visual
feature vector F and a high-level SRV attribute signature S, for a query image Q and
a database image Y. The distance between them is calculated by fusing the
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Euclidean distance over the visual feature vectors and the Earth Mover’s distance
[32] over the SRV attribute signatures:

DistðQ; YÞ ¼ gDEucðFQ;FYÞ þ ð1� gÞDEMDðSQ; SYÞ; ð19:6Þ

where η is the adjusting parameter between the two distance measures and is
determined by the long-term cross-session retrieval history working on the subset of
training images [33]. If the precision for a particular query is increased when more
importance is put on the feature distance, then η is adjusted to a larger value,
otherwise it becomes smaller.

19.3.7.2 Relevance Feedback

The Relevance feedback (RF) scheme has been verified as a performance booster
for our retrieval system. The reason is that RF can capture more information about
user’s search intention, which can be used to refine the original image descriptors
from feature extraction and attribute detection [34].

Our RF approach follows the Query Point Movement (QPM) paradigm as
opposed to the Query Expansion (QEX) paradigm. We move the query point in
both the feature space and the attribute space toward the center of the user’s
preference using both the relevant and irrelevant samples marked by the user at
each retrieval iteration. However, before the users’ decisions are used to refine the
descriptors, their expertise in identifying moth species are evaluated by sample tests
when they first enter the system. If an user has 90 % accuracy in identifying the
species, their relevance feedback will take effect.

19.4 Experimental Results

We implemented the system on Microsoft Windows platform using C#_net with the
Windows Presentation Foundation application development framework. The image
database with relevant features and attributes are deployed on MySQL server. The
database is set up by importing.txt files with numeric values of the attributes and
features, and textual information describing the image properties of the moth
images.

19.4.1 Species Identification Results

We randomly sampled the images into 10 subsets, one subset was held out for
testing and the rest of the subsets was used for training the model. This process was
repeated ten times using each subset of images as the testing set. The average of
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these results on 10 subsets is reported for each combination of parameters {Q, α, η}
on the testing set. We chose the parameter set that maximized the overall perfor-
mance averaged over the ten testing subsets. The value of the selected parameters
are: Q ¼ 0:3, a ¼ 0:6, g ¼ 0:5. The performance of the automated species identi-
fication is evaluated by the accuracy measure. A test image is assigned to the
species category for which prototype signature has the smallest distance to the
image’s SRV attribute signature. The accuracy measure is defined for each species
as the number of correctly identified individuals divided by the total number of
specimens of that species in the testing set. A testing image is considered as a
correct identification if the species label generated by the program matches with the
ground-truth label.

To demonstrate the effectiveness of our proposed framework for the moth
species identification application, we compare with the following approaches as
baselines: Baseline-I: The most basic model that only uses the visual features
extracted from Sect. 19.3.3.4. No SRV attributes and the signature representation
have been used. The images are identified purely based on the visual feature vector
similarity calculated using the Euclidean distance. Baseline-II: Our generative
model for individual attribute detection unified with the attribute signature repre-
sentation serves as the Baseline-II model. However, this model does not include
attribute co-occurrence pattern detection and random walk refinement on the SRV
attribute signatures. VW-MSI: We reimplemented a visual words-based model
based on the available code (http://people.csail.mit.edu/fergus/iccv2005/bagwords.
html) online for image classification [35] and name it as “Visual Words based Moth
Species Identification” (VW-MSI). We only implemented the appearance model in
the approach and ignored the complex spatial structures. SRV-MSI: Our proposed
approach integrated with co-occurrence pattern detection and SRV attribute sig-
nature refinement. We name it as “SRV attribute based Moth Species Identification”
(SRV-MSI).

We compared the species identification results of the proposed approach with
other three approaches in Table 19.2. The mean and standard deviation of the
accuracy of the experiments conducted for ten times are computed and shown for
twenty species. As we can observe from Table 19.2, our system performs the best
for almost all the species. This demonstrates the effectiveness of SRV attributes and
the co-occurrence patterns used for signature refinement.

The total number of SRV attributes manually given to the images by the human
experts is 450. As a result, the maximum length of the SRV attribute signature for
the images is 450. In order to compare the impact from the vocabulary size of the
attributes and the visual words for VW-MSI and SRV-MSI, we set the maximum
size of the visual words vocabulary to 450 as well. The SRV attributes and the
visual words are ranked in the relative vocabulary based on the number of
appearance in the image collection.

364 L. Feng et al.

http://people.csail.mit.edu/fergus/iccv2005/bagwords.html
http://people.csail.mit.edu/fergus/iccv2005/bagwords.html


19.4.2 Image Retrieval Results

To test the performance of our SRV attribute-based approach for image retrieval
with the proposed relevance feedback scheme, like for species identification in
Sect. 19.4.2, we divided the entire image dataset into 10 folds. The parameters are
determined using the same scheme as described in Sect. 19.4.1. We set the number
of attributes to 300. In order to reduce the amount of work of submitting relevance
feedback that are required by users, we propose to simulate the user interaction by
launching queries and submitting feedback automatically by the system. The sim-
ulated process works in the following way: the system compares the ground-truth
species labels of the retrieved images with the query, if the species label matches

Table 19.2 Identification accuracy for the 50 species (20 are shown for space reason)

Species Baseline I Baseline II VW-MSI SRV-MSI

Mean Std Mean Std Mean Std Mean Std

Ceroctena amynta 0.2965 0.0321 0.4176 0.0169 0.4318 0.0196 0.4582 0.0174

Eudocima materna 0.4968 0.0257 0.5483 0.0275 0.5764 0.0319 0.5944 0.0209

Eulepidotis folium 0.3910 0.0279 0.4141 0.0264 0.4219 0.0267 0.4482 0.0371

Eulepidotis
rectimargo

0.5561 0.0246 0.5875 0.0236 0.5962 0.0233 0.6134 0.0163

Hemicephalis
agenoria

0.3314 0.0268 0.3349 0.0302 0.3721 0.0331 0.3931 0.0236

Thysania zenobia 0.4102 0.0327 0.4329 0.0236 0.4623 0.0235 0.4971 0.0356

Chrysoglossa
norburyi

0.5472 0.0225 0.5553 0.0253 0.5672 0.0237 0.5752 0.0205

Erbessa albilinea 0.6048 0.0365 0.6324 0.0336 0.6547 0.0136 0.6755 0.0174

Erbessa salvini 0.3562 0.0468 0.3634 0.0425 0.3867 0.0325 0.4143 0.0345

Nebulosa erymas 0.5432 0.0312 0.5647 0.0291 0.5699 0.0257 0.5935 0.0225

Tithraustes
noctiluces

0.5438 0.0214 0.5624 0.0331 0.5912 0.0284 0.6086 0.0251

Polypoetes
haruspex

0.5247 0.0216 0.5369 0.0234 0.5682 0.0273 0.5906 0.0202

Dioptis
longipennis

0.5621 0.0281 0.5746 0.0212 0.5990 0.0187 0.6154 0.0175

Methionopsis ina 0.4721 0.0375 0.4835 0.0367 0.5014 0.0325 0.5102 0.0425

Neoxeniades luda 0.3742 0.0374 0.3852 0.0432 0.4176 0.0396 0.3975 0.0457

Saliana Burns 0.5042 0.0364 0.5356 0.0256 0.5494 0.0275 0.5731 0.0234

Saliana fusta 0.6480 0.0247 0.6597 0.0275 0.6968 0.0214 0.7346 0.0134

Talides Burns 0.5437 0.0256 0.5572 0.0247 0.5854 0.0173 0.6352 0.0176

Vettius conka 0.6417 0.0334 0.6782 0.0148 0.7332 0.0184 0.7544 0.0169

Aroma aroma 0.5437 0.0273 0.6035 0.0245 0.6204 0.0174 0.6461 0.0211

The performance of SRV-MSI is greater than all other approaches except for Neoxeniades luda,
Isostyla zetila, Atarnes sallei and Nascus Burns
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the query, the system will mark the image as relevant, otherwise, the image is
marked as irrelevant. By doing this, we assume the relevance feedback provided by
the users will always by correct (i.e., users will only mark the relevant images as
those from the same species category as the query). In each iteration, the retrieval
precision is evaluated by the rank of the relevant images. Further statistical eval-
uation of the averaged precision for each species relies on standard image retrieval
measure: Mean average precision of top D retrieved images over all the query
images from a specific species category. Let D be the number of retrieved images
and R be the relevant ones with size jRj. Given a query Q, the average precision is

defined as APðQÞ ¼ 1
jRj
PjRj

i¼1
i

RankðRiÞ, and the mean average precision (MAP) is the

averaged AP over all the testing images.
To demonstrate the effectiveness of our proposed retrieval framework, we use

the following approaches as the baselines to compare the results: Baseline-I: The
proposed image retrieval framework without relevance feedback scheme.
Baseline-II: We reimplemented an insect image identification approach [11] and
integrated it into our retrieval framework with five iterations of relevance feedback
process. The features used are a combination of color, shape, and texture features,
and there is no higher level image descriptor like our SRV attribute that has been
used in the original approach. SRV-IR: Our proposed retrieval framework with
relevance feedback scheme based on the SRV attributes.

We show the top twelve retrieved images in the application interface. However,
the application can be adjusted to show more images upon request. Table 19.3
summarizes the mean averaged precision from the three approaches for all the fifty
species. As we can observe, when RF scheme is applied (Baseline-II and SRV-IR),
the mean averaged precision is increased compared to the retrieval without RF
(Baseline-I), which demonstrates the effect of human interaction in improving the
retrieval performance. When more retrieval iterations are involved in the searching
process, and when more iterations of relevance feedback are provided, the system
can find more relevant images matching user’s search intention. In the two
approaches that adopts relevance feedback scheme, our approach which uses SRV
attribute-based image descriptor outperforms Baseline-II for all the species cate-
gories. The system response time for each individual query for a database of 1000
images is around 150 ms. For a database of 4000 images, the response time for each
individual query is approximately 500 ms.

19.5 Conclusions

In summary, this chapter has introduced a novel insect species identification and
retrieval system based on wing attributes in the moth image dataset. The purpose of
the research is to design computer vision and pattern recognition approaches to
conduct automated image analysis that can be used by the entomologists for insect
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studies. We have demonstrated the effectiveness of our system in species identifi-
cation and image retrieval for fifty moth species.

Future research will include investigations on more effective feature and attri-
butes as well as more advanced learning approaches which could address both the
scalability and discrimination issues. Also, we will look into the scalability issue of
the current system as the number of moths images increases. We will seek advanced
image indexing strategies that involve modern technologies in big data and parallel
computing.

Acknowledgment This work was supported in part by the National Science Foundation grants
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