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    Chapter 7   
 Novel Drugs for Underactive Bladder       

       Pradeep     Tyagi       and     Mahendra     Pratap     Kashyap    

           Need for Novel Drugs 

 The International Continence Society (ICS) defi nes UAB as a detrusor contraction of 
inadequate strength and/or duration resulting in prolonged bladder emptying and/or 
a failure to achieve complete bladder emptying in the absence of urethral obstruction 
(Abrams et al.  2002 ). A multifactorial etiology is implicated (Tyagi et al.  2014 ) 
including aging for idiopathic UAB, neurogenic UAB as a consequence of Parkinson 
disease, multiple sclerosis, spinal cord injury or cauda equina (e.g., herniated disc, 
pelvic fractures), infection (e.g., AIDS, herpes zoster infection), and myogenic UAB 
secondary to diabetes mellitus or bladder outlet obstruction. 

 Medical management of UAB does not always achieve satisfactory results and it 
remains an undertreated and underreported condition. Despite the enormous amount 
of new biologic insights, very few drugs with mechanism of action other than direct 
and indirect muscarinic agonists have passed as yet the proof-of-concept stage. 
Research and development of novel therapeutic options for UAB is therefore an 
area of active interest (Smith et al.  2014b ). Although the exact etiology of UAB is 
unknown, pharmacological therapy has been targeted to both the central and periph-
eral nervous system. In order to understand the pharmacology guiding the enter-
prise of drug discovery for this ailment, it is important to describe the potential sites 
available for action by novel drugs. Complete bladder emptying during voluntarily 
initiated voiding relies on intact afferent transmission from the bladder to brain, 
which then activate the efferent outfl ow for coordinating the contraction and relax-
ation of the bladder and sphincter, respectively. During voiding, the pontine mictu-
rition refl ex center stimulates the sacral parasympathetic nucleus to increase 
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parasympathetic activity. This results in bladder contraction via activation of post-
synaptic muscarinic receptors (M2/3) and relaxation of both urethral and prostatic 
smooth muscle by nitric oxide (NO) release (Tyagi et al.  2014 ). A defect at any link 
in the chain (from urothelium to nerve to detrusor smooth muscle) can ultimately 
lead to prolonged bladder emptying that characterizes UAB (Tyagi et al.  2014 ). 
Molecular pathways participating at each stage of micturition refl ex can be poten-
tial drug targets for UAB.  

    Novel Drugs 

 A number of promising new drugs that target key molecular pathways (Fig.  7.1 ) 
(Table  7.1 ) involved in micturition control at the levels of the urothelium, detrusor 
muscle, peripheral and central nervous systems are being considered for treat-
ment of UAB (Smith et al.  2014b ). Preferred drug candidates either increase the 
afferent activity or the detrusor contractile force while decreasing the outfl ow 
resistance. Molecular targets in the periphery include muscarinic, prostaglandin 
receptors, neurotrophins, potassium, pannexin, and transient receptor potential 
(TRP) and hyperpolarization- activated cyclic nucleotide-gated (HCN) channels. 
Potential targets in the CNS include dopamine, serotonin (5-HT), and opioid neu-
rotransmission. In the standard pharmacotherapy for UAB, bethanechol mimics 
the acetylcholine action, which is the primary excitatory neurotransmitter involved 
in bladder (detrusor) contraction and emptying. Therefore, bethanechol can 
address the defi cits in both afferent and efferent neurotransmission, but its clinical 
utility is limited by the lack of receptor selectivity and cholinergic side effects of 
sialorrhea, nausea, abdominal distension, and abdominal cramping (Manchana 
and Prasartsakulchai  2011 ), vision, and, potentially, cardiovascular and CNS 
effects. Further preclinical and clinical studies are therefore needed to meet the 
unmet medical need.

        Drugs Targeting Urothelium Signaling 

 The sensory side of the micturition refl ex (Smith et al.  2012 ) is a potential therapeu-
tic target for UAB. Mechanoreceptive afferents residing in the bladder wall not only 
convey the state of bladder fullness during storage phase but also convey the magni-
tude of spontaneous (non-voiding) and voiding detrusor contractions (Meng et al. 
 2008 ). Several reports have suggested that reduced release of various substances, 
including adenosine triphosphate (ATP) (Munoz et al.  2011 ), prostaglandins, and 
acetylcholine (ACh), from bladder urothelium could contribute to decreased bladder 
sensation and cause a defi cit in afferent input from the bladder(Smith et al.  2012 ). In 
addition, attenuated contractile stimulus (acetylcholine and ATP) can also lead to 
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decreased detrusor contractility. Therefore, drugs that target urothelium can improve 
the defective initiation of afferent signals and enhance detrusor contractility. 

    Acetylcholine 

 Bladder urothelium possesses a nonneuronal cholinergic system and high density of 
muscarinic receptors. Impaired afferent signaling(Smith et al.  2014a ) due to either 
reduced acetylcholine release from urothelium or due to changes in the sensitivity 
and coupling of the suburothelial interstitial cell network is offered as an explana-
tion for UAB phenotype. Agents can either directly mimic the release of acetylcho-
line in the bladder or act indirectly by inhibiting the metabolism of acetylcholine. 
Acetylcholine released from parasympathetic nerves together with ATP (Burnstock 
 2013 ) at the detrusor neuromuscular synapse mediates detrusor contraction. ATP 
exerts activation of excitatory purinergic P2X 1  receptors on the detrusor smooth 
muscle, and inhibitory action on P2Y 1  receptors in cholinergic nerve endings con-
trols the acetylcholine release.  

  Table 7.1    Novel drugs for underactive bladder  

 Drugs targeting urothelium signaling 
   Acetylcholine 
   Improve bladder emptying by indirect acting agonists 
   Neurotrophin mimetics 
   Neurite growth enhancer 
   Prostaglandins 
   Agents that activate pannexin channels 
 Agents that sensitize afferent nerve endings 
   TRPV1 and TRPV4 agonists 
   TRPA1 agonists 
   Transient receptor potential melastatin 8 (TRPM8) channel agonists 
   Cannabinoid receptor antagonists 
 Drugs improving muscle function for myogenic UAB 
   By facilitating nerve-evoked contraction 
    M 1  muscarinic agonists 
    N-Type high-voltage-activated Ca(2+) channels (HVACCs) agonists 
   By facilitating spontaneous contraction 
    Potassium channels 
    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels 
 Centrally acting drugs for neurogenic UAB 
   Drugs acting on dopamine pathway 
   Drugs acting on serotonin pathway 
   Drugs acting on opioid pathway 
 Drugs that decrease urethral resistance 
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    Improve Bladder Emptying by Indirect Acting Agonists 

 Considering the adverse effect profi le of direct acting agonists of acetylcholine, 
namely, bethanechol, there is a defi nite incentive for enhancing the action of ace-
tylcholine through indirect means. Distigmine inhibits the enzyme, acetylcholines-
terase, and thereby increases the pharmacodynamic half-life of endogenously 
released ACh. Three times daily treatment of distigmine 5 mg for 4 weeks was 
recently tested in 27 UAB patients (Bougas et al.  2004 ). In the phase II trial on 
UAB patients, distigmine was generally well tolerated by UAB patients. Pressure 
fl ow studies were conducted before the initiation of distigmine and at follow-up. 
Distigmine obviated the need for intermittent self-catheterization in 11 patients and 
PVR was signifi cantly reduced. Treated patients also showed slight increase in 
maximum fl ow rate and detrusor pressure at maximum fl ow. Apart from cholines-
terase inhibition for UAB, drugs that downregulate the expression of acetylcholin-
esterase can be another alternative option. Antagonists for P2Y1 receptor are 
known to block the ATP-mediated increase of cholinesterase activity with aging 
(Choi et al.  2003 ).  

    Neurotrophin Mimetics 

 A common trait shared by voiding dysfunctions such as UAB, irrespective of their 
origin, is dysregulation in synthesis and secretion of neurotrophins (Kim et al.  2005 ; 
Nirmal et al.  2014 ; Wang et al.  2015 ). Four neurotrophins have been identifi ed in 
mammalian cells: most notably nerve growth factor (NGF), brain-derived neuro-
trophic factor (BDNF), neurotrophin-4/5 (NT-4/5). These target tissue-derived neu-
rotrophins exert their effects upon binding to their high-affi nity receptors abundantly 
expressed in the bladder (Girard et al.  2011 ) and neuronal circuits regulating mictu-
rition function (Garraway et al.  2011 ). Studies have demonstrated that constitutive 
expression of NGF and BDNF from urothelium and detrusor smooth muscle cells 
can promote neuronal survival and maturation (Elmariah et al.  2004 ; Gonzalez et al. 
 1999 ). BDNF interacts with serotoninergic and cholinergic transmission as sero-
tonin reuptake inhibitors increase BDNF levels (Song et al.  2014 ), and BDNF is 
known to increase the cholinergic transmission through a presynaptic mechanism 
(Slonimsky et al.  2003 ). In a recent study, exogenous expression of BDNF was 
shown to upregulate the expression of cholinergic genes in the bladder (Kashyap 
et al.  2014b ,  2015 ). 

 It is known that NGF activates the cell-surface transmembrane glycoprotein TrkA 
receptor, whereas BDNF acts via high-affi nity receptor tropomyosin-related kinase B 
(TrkB). TrkB receptor is co-expressed with acetylcholine receptors along the postsyn-
aptic membrane of the neuromuscular junction, and expression is innervation depen-
dent (Funakoshi et al.  1995 ; Pitts et al.  2006 ). TrkB signaling was demonstrated to be 
a key regulator of neuromuscular function as blockade of TrkB signaling (Kulakowski 
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et al.  2011 ) attenuated the neuromuscular transmission and fragmented postsynaptic 
acetylcholine receptors. Drugs mimicking BDNF action can therefore be potential 
drugs for increasing the cholinergic transmission in the bladder of UAB patients.  

    Neurite Growth Enhancer 

 Studies on animal models of neuropathy showed that TAC-302 a cyclohexenoic- 
long fatty alcohol derivative was able to enhance the outgrowth of neurites. Chronic 
oral administration of TAC-302 improved the voiding in diabetic bladder dysfunc-
tion with dose-dependent reduction in residual urine volume and increased voided 
volume in UAB secondary to streptozotocin (STZ)-induced diabetes (Takahisa et al. 
 2013 ; Yoshizawaa et al.  2012 ).  

    Prostaglandins 

 Prostaglandins, namely, PGE2, are synthesized by cyclooxygenase-1 (COX-1) 
and COX-2 in the bladder, which is released during bladder stretch and believed to 
be responsible for the spontaneous detrusor contractions (Fry et al.  2004 ). 
Instillation of PGE2 was able to reduce the voiding interval in UAB secondary to 
STZ-induced diabetes mellitus (Nirmal et al.  2014 ). In similar studies on UAB 
induced by lumbar canal stenosis (LCS), PGE2 infusion increased the frequency 
of small-amplitude phasic contractions during the fi lling phase of cystometry 
under urethane anesthesia performed 4 weeks after LCS (Fig.  7.2 ), whereas 
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  Fig. 7.2    The effect of PGE2 instillation on basal tone of the bladder in rat model of neurogenic 
UAB induced by lumbar canal stenosis. Bladder infusion of PGE2 in the concentration (200 uM) 
induced small- amplitude phasic contractions during the fi lling phase of cystometry under urethane 
anesthesia performed 4 weeks after LCS procedure ( right panel ). Saline-treated LCS rats at the same 
time point showed the acontractile phenotype with the absence of phasic contractions ( left panel )       
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saline-treated group remained acontractile (Wang et al.  2015 ). Intravenous injec-
tion of sulprostone, a prostaglandin E receptor 3 (EP3) agonist at 2 weeks, repro-
duced the cystometric changes observed following intravesical PGE2 in 4-week 
old LCS rats under urethane anesthesia (Wang et al.  2015 ). In a clinical study, 
once-weekly intravesical PGE2 (1.5 mg in 20 mL 0.9 % saline) was combined 
with bethanechol 50 mg four times daily for a total of 6-week therapy of 17 male 
and 2 female UAB patients (Hindley et al.  2004 ). Combined therapy only showed 
limited therapeutic effect over placebo, where majority of the patients included in 
the trial were reliant on clean intermittent self-catheterization with PVR consis-
tently >300 mL. Overall, studies support PGE2 analogues and EP1 receptor as 
potential drugs and drug target for UAB, respectively.

       Agents That Activate Pannexin Channels 

 It is known that the bladder response to purinergic agents increases with age, 
whereas the response to cholinergic agents decreases with age (Yoshida et al. 
 2004 ). These age-dependent biochemical changes support the rationale of develop-
ing drugs acting on purinergic pathway for age-associated disorders such as 
UAB. A recent study showed that in response to distension, ATP is released through 
pannexin channels into the lumen (Beckel et al.  2015 ). Considering that aging is 
associated with loss of responsiveness to bladder fi ling (Smith et al.  2012 ), it is 
suggested that pannexin functionality is reduced with aging. Drugs that activate 
pannexin channels such as ATP diphosphohydrolase (apyrase) can be potential 
drugs for UAB.   

    Agents That Sensitize Afferent Nerve Endings 

 Bladder and urethral afferent dysfunction seen in UAB associated with diabetes 
(Lee et al.  2009 ) is associated with destruction of capsaicin-sensitive fi bers in the 
bladder and urethra (Yang et al.  2010 ). Age-related decline in bladder sensation is 
also related to the sparse to moderate densities of TRPV1 immunoreactive nerves 
in the suburothelium and sparse fi bers in the muscle layers. The capsaicin-sensitive 
afferents in the bladder are known to contain several peptides. These include tachy-
kinins (such as substance P and neurokinin A and B), vasoactive intestinal polypep-
tide, and calcitonin gene-related peptide. Agents mimicking the action of these 
peptides can be potential drugs for UAB. Activation of transient receptor potential 
(TRP) channels on afferent nerves in the bladder induces the release of neuroki-
nins, which increase detrusor contractility. Several partial or complete agonist of 
TRP channels TRPV1. TRPV4, TRPA1 and TRPM8 are potential drug candidates 
for UAB. 
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    Transient Receptor Potential Vanilloid 1 (TRPV1) and TRPV4 
Agonists 

 TRPV1 and TRPV4 are molecular transducers of hot temperature into neuronal sig-
nal. GSK 1016790A is a TRPV4 agonist and its intravesical instillation transiently 
decreased bladder capacity and voided volume (Aizawa et al.  2012 ). TRPV4 stimu-
lation in the urothelium is considered to facilitate the micturition refl ex by activation 
of the mechanosensitive, capsaicin-insensitive C-fi bers of the primary bladder affer-
ents. Extravesical application of piperine, a TRPV1 agonist to rat bladder, increased 
afferent input and detrusor contractility (Gevaert et al.  2007 ). Overall, studies sup-
port use of TRPV4 and TRPV1 agonists as a potential therapeutic approach for UAB.  

    Transient Receptor Potential Ankyrin 1 (TRPA1) Agonists 

 A recent study demonstrated that TRPV1 immunoreactivity in unmyelinated nerve 
fi bers within the urothelium, suburothelial space, and muscle layer of the bladder is 
co-localized with TRPA1 immunoreactivity (Streng et al.  2008 ). Activation of 
TRPA1 by allyl isothiocyanate increased the micturition frequency and reduced the 
voided volume in rat. Findings support agonism of TRPA1 as a potential approach 
for improving afferent defi cit in UAB.  

    Transient Receptor Potential Melastatin 8 (TRPM8) Channel 
Agonists 

 TRPM8 is a molecular thermal sensor for translating cold temperature into neuronal 
activity (Lei et al.  2013 ). It is recognized that cold temperature elicits urgency 
response in individuals with voiding dysfunction. Since sensory endings in the skin 
are responsible for perception of thermal cues, their stimulation can be harnessed to 
improve clinical outcomes. Spraying of menthol that activates TRPM8 decreased 
the voiding interval, micturition volume, and bladder capacity of rats (Lei et al. 
 2013 ), suggesting that topical activation of TRPM8 can be used to improve bladder 
emptying in UAB patients.  

    Cannabinoid Receptor Antagonists 

 In contrast to agonism of TRP channels, antagonism of cannabinoid receptors is a 
potential therapeutic approach for increasing afferent input from the bladder and 
reducing bladder capacity (Dmitrieva and Berkley  2002 ) in UAB patients. 
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Cannabinoid receptors were suggested to be responsible for the pathogenesis of 
UAB associated with diabetes (Li et al.  2013 ), and activity of bladder afferents was 
reduced following activation of CB1 receptors in mouse bladder (Walczak et al. 
 2009 ). Based on available research, we postulate that CB1 antagonist, rimonabant 
(Pataky et al.  2013 ), is a potential candidate for repositioning in UAB.   

    Drugs Improving Muscle Function for Myogenic UAB 

 The underlying pathobiology for myogenic UAB is considered to be either 
abnormal detrusor muscle contractility or secondary to bladder outlet obstruc-
tion. Decreased detrusor contractility can result from a lack of contractile stimu-
lus from acetylcholine and ATP or a lack of tissue responsiveness to contractile 
stimuli due to irreversible changes in the bladder wall that are described as sarco-
penia (loss of muscle tissue, increased collagen deposition) (Tyagi et al.  2014 ). 
The lack of tissue responsiveness to contractile stimuli may be due to altered 
excitation–contraction coupling mechanisms contributed by changes in the prop-
erties and density of calcium and potassium channels, gap junctions, and recep-
tors in detrusor smooth muscles. It is considered that stimulus intensity of 
efferent nerve-evoked bladder contraction relies on afferent input (Zeng et al. 
 2012 ), which in turn is dependent on the strength of spontaneous detrusor con-
tractions detected during storage phase. In fact, patients with mixed UAB (coex-
istence of both neurogenic and myogenic phenotype) are considered to have 
attenuated spontaneous detrusor contractions that reduce the afferent input 
(Andersson  2010 ), which ultimately causes insuffi ciency in nerve-evoked detru-
sor contractility. Therefore, drugs can address myogenic UAB by facilitating 
nerve-evoked contraction and/or by facilitating spontaneous contractions in UAB 
with acontractile bladder phenotype.  

    Drugs That Facilitate Nerve-Evoked Contraction 

 It is established that activation of muscarinic receptors in the bladder is responsible 
for normal voiding, and a subtype of muscarinic receptor can be pharmacologically 
manipulated for attenuating the prolonged bladder emptying of UAB. Presynaptic 
M1 muscarinic receptors on parasympathetic nerve terminals are involved in an 
auto-facilitatory mechanism that markedly enhances acetylcholine release (Somogyi 
and de Groat  1999 ). The facilitatory muscarinic mechanism is dependent upon a 
protein kinase A (Oliveira and Correia-de-Sa  2005 )-mediated second messenger 
pathway and infl ux of extracellular Ca 2+  into the parasympathetic nerve terminals 
via N-type Ca 2+  channels. Both M1 receptors and N-type Ca 2+  channels are suitable 
drug targets for UAB. 

7 Novel Drugs for Underactive Bladder



104

    M 1  Muscarinic Agonists 

 Recent studies reported upregulation of M1 receptor subtype in an animal model of 
UAB induced by prolonged ischemia (Zhao et al.  2015 ), which suggests there is 
compensatory upregulation of receptors that can enhance the release of acetylcho-
line from nerves innervating the UAB. Presynaptic M1 receptors can facilitate the 
release of acetylcholine from nerves and thereby facilitate afferent signaling and 
voiding contraction (Witsell et al.  2012 ). Application of M1 agonist, cevimeline 
increased the spontaneous contractions of isolated guinea pig bladder strips 
(Arisawa et al.  2002 ). Intravenous administration of cevimeline (0.3 mg/kg or 
higher) in rats increased the non-voiding contractions, suggesting that the release of 
various substances, including acetylcholine (ACh) and ATP (Munoz et al.  2011 ), 
from bladder urothelium and efferent nerves in the bladder was increased. Oral dos-
ing of cevimeline in rats at 30 mg/kg increased the urine volume, pH, and urinary 
excretion of Na +  and Cl −  ions. Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-
1,2,5,6-tetrahydro-1- methylpyridine] (Shannon et al.  1994 ) is another M1 agonist 
available as a drug candidate for UAB.  

    N-Type High-Voltage-Activated Ca(2+) Channels (HVACCs) 
Agonists 

 Since N-type HVACC are involved in facilitating the release of ACh from parasym-
pathetic nerve terminals in the bladder, drugs that activate these channels can be 
potential agents for UAB. 4-Aminopyridine (4-AP) sold as Ampyra is known to 
directly stimulate presynaptic N-type VGCC at the concentration of 0.5 mM and 
blocks Kv1 family channels at 1 mM concentration (Wu et al.  2009 ). Ampyra and 
similar drug fampridine (Cardenas et al.  2014 ) can potentiate the release of neu-
rotransmitters from both sensory and motor nerve terminals and improve neuromus-
cular function in patients with spinal cord injury, myasthenia gravis, or multiple 
sclerosis (Wu et al.  2009 ). The effect of Ampyra on improving bladder emptying 
was tested much earlier by Maggi et al., in urethane-anesthetized rats (Maggi et al. 
 1988 ). Ampyra potentiated nerve-evoked bladder contractions, and intravenous 
injection in the dose ranging from 0.15 to 2 mg/kg i.v. produced a dose-dependent 
potentiation of voiding frequency and activation of high-amplitude, hexametho-
nium-sensitive rhythmic bladder contractions.   

    Drugs That Facilitate Spontaneous Contraction 

 Spontaneous contractile activity of the urinary bladder (Turner and Brading  1997 ) 
is considered to underlie the basal tone that allows the bladder to maintain an opti-
mum shape as it expands to accommodate increasing volumes of urine. In addition, 
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spontaneous contractions (Fry et al.  2004 ) are known to facilitate the generation of 
bladder sensation and afferent activity (Andersson  2010 ). Several tools have been 
used to investigate the origin of spontaneous activity in the bladder, which have 
noted that Ca 2+  wave in the propagation of spontaneous activity arise in the suburo-
thelial layer of interstitial cells and then spreads to the detrusor layer (Kanai et al. 
 2007 ). Interstitial cells are considered pacemaker cells that activate the periodic 
spontaneous inward currents (pacemaker currents) responsible for the origin of Ca 2+  
waves. 

 Several reports suggest that attenuated spontaneous activity of the bladder con-
tributes to the UAB phenotype (Wang et al.  2015 ; Nirmal et al.  2014 ) by reducing 
the intensity of afferent input from the bladder. Incidentally, acontractile bladder 
that is devoid of spontaneous activity is frequently observed in iatrogenic UAB 
patients (Drossaerts et al.  2015 ; Mitchell et al.  2014 ). Therefore, drugs that can 
selectively augment the dormant spontaneous contractions in the bladder will be 
preferable agents for UAB as they can improve the afferent input from the bladder. 
Several channel isoforms selectively expressed in the bladder can be leveraged to 
increase spontaneous activity in UAB. 

    Potassium Channels 

 Several types of potassium currents have been characterized in the bladder, but the 
subtype of K v  is considered to play an important role in spontaneous activity by 
regulating the resting membrane potential of smooth muscles and for repolarizing 
the action potential (Petkov  2012 ). Other types include BK channels that control 
action potential duration and the resting membrane potential, whereas SK currents 
underlie after-hyperpolarizations (Thorneloe and Nelson  2003 ). KCNQ (K v 7) cur-
rents are outwardly rectifying, voltage-dependent K +  currents that activate at poten-
tials positive to −60 mV with little inactivation (Gribkoff  2008 ; Gu et al.  2005 ). 
Five genes encoding the KCNQ family of ion channel proteins have been identi-
fi ed, each encoding a different KCNQ α-subunit (1–5). KCNQ are considered 
important in the regulation of smooth muscle contractility and tone (Anderson 
et al.  2013 ). KCNQ subtypes 1–5 are functionally expressed in detrusor smooth 
muscle as KCNQ channel inhibitors XE991, linopirdine, or chromanol 293B 
increased the amplitude of tetrodotoxin TTX-insensitive myogenic spontaneous 
contractions (Anderson et al.  2013 ). KCNQ inhibition by XE991 depolarized the 
cell membrane and evoked transient depolarizations in quiescent cells. XE991 also 
increased the frequency of Ca 2+ -oscillations in detrusor smooth muscles of guinea 
pig bladder (Anderson et al.  2013 ). On the other hand, spontaneous activity was 
inhibited by the KCNQ channel activators fl upirtine or meclofenamic acid 
(Anderson et al.  2013 ), and, in a separate study, another KCNQ activator, retiga-
bine, decreased the capsaicin-induced bladder overactivity in a freely moving, con-
scious rat (Streng et al.  2004 ). Taken together, blockade of KCNQ locally in the 
bladder is a potential approach for UAB.  
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    Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) 
Channels 

 HCN channels (Cuttle et al.  2001 ; Greenwood and Prestwich  2002 ) belong to a fam-
ily of nonselective cationic channels that conduct Na +  and K +  current and are activated 
by hyperpolarization in neurons and smooth muscles. HCN channels are comprised 
of four subtypes encoded by four genes (HCN1-4), which form the structural compo-
nent of a voltage-gated inwardly rectifying I h  current, which restores the resting 
membrane potential (Cuttle et al.  2001 ; Greenwood and Prestwich  2002 ). HCN chan-
nels are directly activated by direct binding of intracellular cyclic adenosine mono-
phosphate (cAMP) inside the cells (Cuttle et al.  2001 ; Greenwood and Prestwich 
 2002 ). Expression of HCN channels has been recently reported in the rat and human 
bladder (He et al.  2012 ; Xue et al.  2012 ). Furthermore, the adenylate cyclase respon-
sible for generating cAMP in the bladder smooth muscle, urothelium, and interstitial 
cells can be theoretically modulated by activation of M2 muscarinic receptor and β3 
adrenoceptor, which raises the possibility of using bladder-selective M2 agonist or β3 
adrenoceptor antagonists for modulating the kinetics of HCN channel. 

 Direct inhibition of HCN channels in the bladder with ZD7288 was shown to aug-
ment the spontaneous activity of the bladder (Green et al.  1996 ; Kashyap et al.  2015 ). 
Conversely, agents that activate HCN channels (Postea and Biel  2011 ; Albertson 
et al.  2011 ), such as lamotrigine and gabapentin, attenuate spontaneous activity of rat 
bladder (Kashyap et al.  2014a ). We found that cumulative application of ZD7288 
dose dependently increased the tetrodotoxin -insensitive phasic contractions of rat 
bladder (Fig.  7.3 ) as reported earlier by Green et al. ( 1996 ). In vitro studies suggested 
that a direct action of ZD7288 on HCN channels expressed by detrusor smooth mus-
cles or interstitial cells is responsible for the increased spontaneous activity.

   It is known that mechanosensitive Aδ bladder neurons play an important role in 
the control of normal voiding (de Groat and Yoshimura  2006 ), and localized block-
ade of HCN channels expressed in Aδ bladder neurons (Masuda et al.  2006 ) follow-
ing intrathecal injection of ZD7288 (1 μg) blocked the voiding in normal rat. In a 
separate study, chronic administration of HCN channel activator, lamotrigine 
(20 mg/kg) (Loutochin et al.  2012 ), caused a urodynamic improvement in spinal 
cord-injured rat model. Apparently different subtypes of HCN channels are expressed 
in different tissue, such that expression of HCN 4 subtype (HCN4) is predominant 
in the bladder and HCN2 predominate in the heart (Kuwabara et al.  2013 ). There are 
also species differences in the bladder with predominant expression of HCN1 in 
rodents and HCN4 in human bladder (He et al.  2012 ; Xue et al.  2012 ). Based on 
available data, it is postulated that basal levels of intracellular cAMP constitutively 
activate the HCN channels, and therefore, agents that cannot penetrate the blood–
brain barrier and are excreted unchanged in urine would be preferable to selectively 
block HCN4 channels in the bladder for augmenting spontaneous activity in the 
bladder of UAB patients without any cardiac effects. In contrast, selective activation 
of HCN channels expressed in bladder afferent neurons would be an alternative 
approach for increasing spontaneous activity in the bladder.   
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    Centrally Acting Drugs for Neurogenic UAB 

 The potential targets for managing neurogenic UAB exist in the molecular path-
ways involved in spinal and supraspinal control of voiding refl ex at the levels of 
autonomic and afferent pathways, spinal cord, and brain (Tyagi et al.  2014 ). 
Supraspinal control of the voiding refl ex is dependent upon the normal relay of 
afferent input to the bladder as any defi cit correlates with reduced activation in the 
insula and dorsal anterior cingulate cortex in the brain of older adults (Tadic et al. 
 2013 ). Therefore, effi cient afferent signaling is integral for an effi cient efferent out-
fl ow to the bladder, and neurogenic UAB can impact upon the key processes of 
perception and integration of afferent input from the bladder. 

    Drugs Acting on Dopamine Pathway 

 Age-related decline of dopamine binding has been reported in brain areas involved 
in cognition, and there is a tremendous overlap among regions involved in cogni-
tion and those involved in interpretation of afferent input from the bladder 
(MacDonald et al.  2012 ). Therefore, drugs that augment dopamine signaling can 
be potential drugs for neurogenic UAB. It is known that D1 receptors tonically 
inhibit and D2 facilitate micturition refl ex, because D2-selective agonists and 
D1-selective antagonists produce a reduction of the bladder capacity in conscious 
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  Fig. 7.3    The effect of HCN channel blocker ZD7288 on spontaneous activity of rat bladder. 
Cumulative application of ZD7288 dose dependently increased the tetrodotoxin-insensitive phasic 
contractions in bladder strips from healthy rats. Spontaneous contractility was measured in the 
presence of tetrodotoxin 1 μM       
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rat (Brusa et al.  2006 ). Studies on subcutaneous administration of apomorphine (a 
nonselective dopamine receptor agonist) 0.01–0.5 mg/kg in rodents found that it 
raises intravesical pressure through its biphasic action on the dopamine receptors, 
which is characterized by initial increase in afferent activity followed by a decrease 
(Uchiyama et al.  2009 ). Apomorphine increases the afferent activity and stimu-
lates central micturition center. These pharmacodynamic characteristics of apo-
morphine suggest that D2-selective agonists can be potential agents for increasing 
afferent input and involuntary detrusor contraction threshold (refl ex volume) 
(Brusa et al.  2006 ) in UAB patients. Apomorphine can be absorbed sublingually, 
which suggest that an on- demand therapy for bladder emptying is a possibility. 
Metoclopramide is another FDA-approved agent that can modulate dopaminergic 
pathways in UAB.  

    Drugs Acting on Serotonin Pathway 

 Drugs acting on serotonin pathway can increase the afferent input from bladder 
and urethra which in turn determines the force and duration of detrusor contrac-
tion. It is known that urethral afferents responding to urine fl ow in the urethra 
potentiate the detrusor contraction and bladder emptying (Torrens and Morrison 
 1987 ; de Groat et al.  1993 ; Jung et al.  1999 ). These refl exes require the integrative 
action of neuronal populations at multiple levels of the nervous system involving 
serotoninergic transmission (Song et al.  2014 ). In a recent study, supraspinal mic-
turition refl ex in rats with bilateral avulsion injury of the L5–S2 ventral roots was 
elicited by agonists for the 5HT 1A  receptor, 8-hydroxy-2-(di-n-propylamino)-
tetralin (8OH-DPAT) (Chang and Havton  2013 ). The voiding effi ciency of rats 
exhibiting UAB phenotype was increased by 20 %, and there was an evidence of 
coordinated contraction of the bladder and activation of the external urethral 
sphincter.  

    Drugs Acting on Opioid Pathway 

 Pharmacologic experiments revealed that endorphins are inhibitory transmitters in 
the spinal and supraspinal control of micturition refl ex. Agents inhibiting the opioid 
action have been used to reverse opioid-induced urinary retention. Blood–brain bar-
rier non-permeant analogues of naloxone, namely, methylnaltrexone, are effective 
in reversing opioid-induced constipation in patients, but not effective in reversing 
urinary retention (Rosow et al.  2007 ). The effect of quaternary amine, methylnal-
trexone, suggests that volitional control over micturition involve endogenous opi-
oids as the neurotransmitter in polysynaptic pathways mediating the coordination 
between the urinary bladder and the urethra.   
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    Drugs That Decrease Urethral Resistance 

 Bladder emptying is facilitated by non-cholinergic/non-adrenergic nitric oxide (NO) 
release onto the internal urethral sphincter resulting in a relaxation of the urethral outlet 
and by removal of excitatory inputs to the urethra (Takeda et al.  2010 ). Therefore, drugs 
that reduce the urethral resistance can improve bladder emptying with defi cient detru-
sor contractility by reducing the back pressure from urethral resistance. Clinical use of 
α 1  adrenoceptor antagonists in UAB patients was able to improve the bladder emptying 
by reversing obstruction and increasing PVR (Yamanishi et al.  2004 ; Chang et al. 
 2008 ). A drug approved for angina, isosorbide dinitrate, has been reported to decrease 
urethral pressures in spinal cord injury (Mamas et al.  2001 ; Reitz et al.  2004 ) as urethral 
relaxation is mediated by NO. Chemodenervation of the urethra and rhabdosphincter 
with botulinum toxin has also been tried to reduce urethral resistance (Kuo  2003 ).  

    Conclusions 

 The future for the development of new modalities for the UAB treatment looks 
promising as several different therapeutic pathways are being explored in preclinical 
studies. Future prospective therapies are aimed at novel targets with novel mecha-
nisms of action, including M1 receptor agonist, N-type HVACC agonist, KCNQ and 
HCN channel blockers, serotonin, and dopamine signaling modulators. Among other 
investigational therapies, purinergic receptor agonism, TRP channel agonism, can-
nabinoid receptor antagonism, neurotrophin mimetics, and neurokinin receptor ago-
nists are of considerable interest. There is great hope that just as drugs for OAB and 
ED better defi ne the disease condition in the general population, an effective drug 
capable of reducing PVR will also help in better defi nition and management of UAB.     
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