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Abstract. This paper gives a survey on efficient algorithms for checking
equality of grammar-compressed strings, i.e., strings that are represented
succinctly by so called straight-line programs.

1 Introduction

The investigation of the computational complexity of algorithmic problems for
succinct data started with the work of Galperin and Wigderson [10]. In that
paper, a graph with 2n vertices is represented by a Boolean circuit with 2n
inputs, and there is an edge between u ∈ {0, 1}n and v ∈ {0, 1}n if and only
if the circuit outputs 1 on input u, v. This kind of succinct representation was
further investigated in [3,5,30,34]. It turned out that for circuit-encoded graphs,
an upgrading theorem holds. Basically, it says that if a graph problem is hard for
a certain complexity class, then the succinct version of the problem is hard for
the exponentially larger class (precise assumptions on the underlying reductions
have to be made).

In this paper, we are concerned with another succinct representation that
allows to encode long strings: straight-line programs, briefly SLPs. An SLP is a
context-free grammar that produces a single string. The length of this string can
be exponential in the size of the SLP. Thus, SLPs allow exponential compression
in the worst case. There exist several grammar-based compressors that compute
from a given input string a small SLP for that string [6].

Another line of research studies algorithmic problems for SLP-compressed
strings, see [25] for a survey. In this paper we deal with the equality problem for
SLP-compressed strings: Given two SLPs G and H, we want to check whether
the strings produced by G and H are equal. We call this problem compressed
equality checking in the following. Obviously, a simple decompress-and-check
strategy that first produces the strings derived by G and H and then compares
these strings symbol by symbol needs exponential time. Surprisingly, in 1994
three independent conference papers by Plandowski [31], Hirshfeld, Jerrum, and
Moller [15] (see [16] for a long version), and Mehlhorn, Sundar, and Uhrig [27]
(see [28] for a long version) were published, where polynomial time algorithms
for compressed equality checking were presented. Since then, improvements con-
cerning the running time have been achieved in [2,17,23]. The currently fastest
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and probably also simplest algorithm is due to Jeż [17] and has a quadratic run-
ning time (under some assumptions on the machine model). In Sect. 3 we outline
Jeż’s algorithm.

Let us remark that both, Plandowski [31] and Hirshfeld et al. [15,16], use
Theorem 1 as a tool to solve another problem. Plandowski derives from
Theorem 1 a polynomial time algorithm for testing whether two given mor-
phisms (between free monoids) agree on a given context-free language. Hirshfeld
et al. use Theorem 1 in order to check bisimilarity of two normed context-free
processes (a certain class of infinite state systems) in polynomial time.

The algorithms from [2,16,17,23,28,31] are all sequential, and it is not
clear whether any of them allows an efficient parallelization. In fact, it is open
whether compressed equality checking belongs to NC or whether it is P-complete.
On the other hand, recently a randomized parallel algorithm for compressed
(dis)equality checking was presented in [22]. More precisely it was shown that
compressed equality checking belongs to the class coRNC2. The algorithm from
[22] reduces compressed equality checking to a restricted form of polynomial
identity testing over the polynomial ring F2[x]. For this restricted form, the
identity testing algorithm of Agrawal and Biswas [1] combined with the parallel
modular powering algorithm of Fich and Tompa [8] works in coRNC2. In Sect. 4
we outline this algorithm.

2 Straight-Line Programs

For a string s ∈ Σ∗ we denote with |s| the length of s. A factor of s is a string
u such that there exist strings x, y with s = xuy.

A straight-line program, briefly SLP, is basically a context-free grammar that
produces exactly one string. To ensure this, the grammar has to be acyclic and
deterministic (every variable has a unique production where it occurs on the
left-hand side. Formally, an SLP is a tuple G = (V,Σ, rhs, S), where V is a finite
set of variables (or nonterminals), Σ is the terminal alphabet, S ∈ V is the start
variable, and rhs maps every variable to a right-hand side rhs(A) ∈ (V ∪ Σ)∗.
We require that there is a linear order < on V such that B < A, whenever
B occurs in rhs(A). Every variable A ∈ V derives to a unique string valG(A)
by iteratively replacing variables by the corresponding right-hand sides, starting
with A. Finally, the string derived by G is val(G) = valG(S).

Let G = (V,Σ, rhs, S) be an SLP. The size of G is |G| =
∑

A∈V |rhs(A)|, i.e.,
the total length of all right-hand sides. The SLP G is in Chomsky normal form
if for every A ∈ V , rhs(A) is either a symbol a ∈ Σ, or of the form BC, where
B,C ∈ V . Every SLP can be transformed in linear time into an SLP in Chomsky
normal form that derives the same string.

A simple induction shows that for every SLP G of size m one has |val(G)| ≤
O(3m/3) [6, proof of Lemma 1]. On the other hand, it is straightforward to define
an SLP H of size 2n such that |val(H)| ≥ 2n. This justifies to see an SLP G as
a compressed representation of the string val(G), and exponential compression
rates can be achieved in this way.
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An SLP can be also viewed as a multiplicative circuit over a free monoid Σ∗,
where the variables are the gates that compute the concatenation of its inputs.
This view can be generalized by replacing Σ∗ by any finitely generated monoid,
see [26]. In algebraic complexity theory, the term “straight-line program” is also
used for algebraic circuits that compute (multivariate) polynomials. In such a
circuit, every internal gate either computes the sum or the product of its inputs,
and the input gates of the circuit are labelled with constants or variables. In
Sect. 4 we will use this kind of straight-line programs, and we use the term
“algebraic straight-line programs” to distinguish them from string-generating
straight-line programs.

Example 1. Consider the SLP G = (V,Σ, rhs, A7) with V = {A1, . . . , A7}, Σ =
{a, b}, and the following right-hand side mapping: rhs(A1) = b, rhs(A2) = a,
and rhs(Ai) = Ai−1Ai−2 for 3 ≤ i ≤ 7, Then val(G) = abaababaabaab, which is
the 7th Fibonacci string. The SLP G is in Chomsky normal form and |G| = 12.

One of the most basic tasks for SLP-compressed strings is compressed equality
checking:
input: Two SLPs G and H
question: Does val(G) = val(H) hold?

Clearly, a simple decompress-and-compare strategy is very inefficient. It takes
exponential time to compute val(G) and val(H). Nevertheless a polynomial time
algorithm exists. This was independently discovered by Hirshfeld, Jerrum, and
Moller [15,16], Mehlhorn, Sundar, and Uhrig [27,28], and Plandowski [31]:

Theorem 1. Compressed equality checking can be solved in polynomial time.

In Sect. 3 we give an outline of the currently fastest (and probably also simplest)
algorithm for compressed equality checking, which is due to Jeż [17]. In Sect. 4,
we sketch a new approach from [22] that yields a randomized parallel algorithm
for compressed equality checking.

3 Sequential Algorithms

The polynomial time compressed equality checking algorithms of Hirshfeld
et al. [15,16] and Plandowski [31] use combinatorial properties of strings, in
particular the periodicity lemma of Fine and Wilf [9]. This lemma states that if
p and q are periods of a string w (i.e., w[i] = w[i + p] and w[j] = w[j + q] for
all positions 1 ≤ i ≤ |w| − p and 1 ≤ j ≤ |w| − q) and p + q ≤ |w| then also the
greatest common divisor of p and q is a period of w. The algorithms from [16,31]
achieve a running time of O(n4), where n = |G|+ |H|. An improvement to O(n3)
(for the more general problem of pattern matching), still using the periodicity
lemma, was achieved by Lifshits [23].

In contrast to [16,23,31], the algorithm of Mehlhorn et al. [27,28] does not
use the periodicity lemma of Fine and Wilf. Actually, in [28], Theorem 1 is not
explicitly stated but follows immediately from the main result. Mehlhorn et
al. provide an efficient data structure for a finite set of strings that supports the
following operations:
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– Set variable x to the symbol a.
– Set variable x to the concatenation of the values of variables y and z.
– Split the value of variable x into its length-k prefix and remaining part and

store these strings in variables y and z.
– Check whether the values of variables x and y are identical.

The idea is to compute for each variable a signature which is a small number and
that allows to do the equality test in constant time. The signature of a string
is computed by iteratively breaking up the sequence into small blocks, which
are encoded by integers using a pairing function. A single update operation
x := yz needs time O(log n(log m log∗ m + log n)) for the mth operation, where
n is the length of the resulting string (hence, log(n) ≤ m). This leads to a cubic
time algorithm for compressed equality checking. An improvement of the data
structure from [28] can be found in [2].

The idea from [2,28] of recursively dividing a string into smaller pieces and
replacing them by new symbols (integers in [2,28]) was taken up by Jeż, who
came up with an extremely powerful technique for dealing with SLP-compressed
strings (and the related problem of solving word equations [18]). It also yields the
probably simplest proof of Theorem1. In the rest of the section we briefly sketch
this algorithm. We ignore some details. For instance, it is required in [17] that
after each step, the terminal alphabet (which gets larger) is an initial segment
of the natural numbers, which is ensured by using the radix sort algorithm, see
[17] for more details.

Let s ∈ Σ+ be a non-empty string over a finite alphabet Σ. We define the
string block(s) as follows: Assume that s = an1

1 an2
2 · · · ank

k with a1, . . . , ak ∈ Σ,
ai �= ai+1 for all 1 ≤ i < k and ni > 0 for all 1 ≤ i ≤ k. Then block(s) =
a
(n1)
1 a

(n2)
2 · · · a(nk)

k , where a
(n1)
1 , a

(n2)
2 , . . . , a

(nk)
k are new symbols. For instance,

for s = aabbbaccb we have block(s) = a(2)b(3)a(1)c(2)b(1). For the symbol a(1) we
will simply write a. Let us set block(ε) = ε.

For a partition Σ = Σl � Σr we denote with s[Σl, Σr] the string that is
obtained from s by replacing every occurrence of a factor ab in s with a ∈ Σl

and b ∈ Σr by the new symbol 〈ab〉. For instance, for s = abcbabcad and Σl =
{a, c} and Σr = {b, d} we have s[Σl, Σr] = 〈ab〉〈cb〉〈ab〉c〈ad〉. Since two different
occurrences of factors from ΣlΣr must occupy disjoints sets of positions in s,
the string s[Σl, Σr] is well-defined.

Obviously, for all strings s, t ∈ Σ∗ we have

(s = t ⇐⇒ block(s) = block(t)) and (s = t ⇐⇒ s[Σl, Σr] = t[Σl, Σr]). (1)

In the rest of this section, we assume that all SLPs G = (V,Σ, S, rhs) are in a
kind of generalized Chomsky normal form: We require that for every variable
A ∈ V , rhs(A) is either of the form u ∈ Σ+, uBv with u, v ∈ Σ∗ and B ∈ V , or
uBvCw with u, v, w ∈ Σ∗ and B,C ∈ V . In other words, every right-hand side
is non-empty and contains at most two occurrences of variables. In particular,
we only consider SLPs that produce non-empty strings. This is not a crucial
restriction for checking the equality val(G) = val(H), since we can first check
easily in polynomial time, whether val(G) or val(H) produce the empty string.
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For the following consideration, it is more convenient to have a single SLP
G with two start variables S1 and S2; we write G = (V,Σ, rhs, S1, S2) for such
an SLP. For Jeż’s algorithm, it is important to assume that S1 and S2 do not
occur in a right-hand side rhs(A) (A ∈ V ), which can be easily enforced by
renaming variables. Let us write vali(G) = valG(Si) for i ∈ {1, 2}. Moreover,
w.l.o.g. we always assume that |val1(G)| ≤ |val2(G)| (this property can be easily
verified). The goal is to check val1(G) = val2(G) for a given SLP G. Jeż’s strat-
egy [17] for checking this equality is to compute from G an SLP H such that
vali(H) = (block(vali(G)))[Σl, Σr] for i ∈ {1, 2} and val1(H) ≤ c · |val1(G)| for
some constant c < 1. This process is iterated. After at most log |val1(G)| ∈ O(|G|)
many iterations it must terminate with an SLP such that val1(G) has length one.
Checking equality of the two strings produced by this SLP is easy. The main
difficulty of this approach is to bound the size of the SLP during this process.

In the following, for an SLP G we denote with |G|0 (resp., |G|1) the total
number of occurrences of terminal symbols (resp., nonterminal symbols) in all
right-hand sides of G. Thus, |G| = |G|0 + |G|1. Moreover, let Var(G) be the set of
variables of G. For block compression, we have:

Lemma 1. There is an algorithm CompressBlocks that gets as input an SLP
G = (V,Σ, rhs, S1, S2) and computes in time O(|G|) an SLP H such that the
following properties hold, where k = |V |:

– S1, S2 ∈ Var(H) ⊆ V ,
– vali(H) = block(vali(G)) for i ∈ {1, 2},
– |H|1 ≤ |G|1 ≤ 2k and |H|0 ≤ |G|0 + 4k.

Note that this implies in particular that block(vali(G)) cannot contain too many
different symbols. In fact, it is not hard to show that block(vali(G)) contains
at most |G| many different symbols. For the proof of Lemma 1 one processes
the SLP G bottom-up, i.e., if B occurs in the right-hand side of A, then A has
to be processed before B. When A is processed, we remove from rhs(A) the
maximal prefix (resp., suffix) of the form an and insert in front of (resp., after)
every occurrence of A in a right-hand side the block an. When all nonterminals
(except of S1 and S2) are processed then every maximal block an in a right-hand
side is replaced by the single letter a(n).

After block compression the two strings produced by the SLP G do not
contain a factor of the form aa. For a string s ∈ Σ∗ that does not contain a
factor of the form aa (a ∈ Σ), a simple probabilistic argument shows that there
exists a partition Σ = Σl � Σr such that s[Σl, Σr] is by a constant factor (34
up to the additive constant 1

4 ) shorter than s. Using a standard derandomization,
this partition can be computed in linear time. Moreover, using a technique for
counting digrams in SLP-compressed strings (see also [13]), one can compute the
partition in linear time even if s is succinctly represented by an SLP G. Once
the partition Σ = Σl � Σr is computed, one can prove the following lemma in a
similar way as Lemma 1.
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Algorithm 1. CheckEquality
Data: SLP G = (V, Σ, rhs, S1, S2) such that |val1(G)| ≤ |val2(G)|
while |val1(G)| > 1 do

G := CompressPairs(CompressBlocks(G))
end
check whether val1(G) = val2(G)

Lemma 2. There is an algorithm CompressPairs that gets as input an SLP
G = (V,Σ, rhs, S1, S2) such that for i ∈ {1, 2}, vali(G) does not contain a factor
aa (a ∈ Σ) and computes in time O(|G|) a partition Σ = Σ� � Σr and an SLP
H such that the following properties hold, where k = |V |:

– S1, S2 ∈ Var(H) ⊆ V ,
– vali(H) = vali(G)[Σl, Σr] for i ∈ {1, 2},
– |H|1 ≤ |G|1 ≤ 2k and |H|0 ≤ |G|0 + 4k,
– |val1(H)| ≤ 1

4 + 3
4 |val1(G)|.

Using Lemmas 1 and 2 we can prove Theorem 1: Assume that we have an SLP
G = (V,Σ, rhs, S1, S2) over the terminal alphabet Σ, where m := |val1(G)| ≤
|val2(G)|. Moreover, let k = |V |. Algorithm 1 checks whether val1(G) = val2(G).
Correctness of the algorithm follows from observation (1). It remains to analyze
the running time of the algorithm. By the last point from Lemma2, the number
of iterations of the while loop is bounded by O(log(m)) ≤ O(|G|). Let Gi be the
SLP after i iterations of the while loop. The number of variables of Gi is at most
k. Hence, by Lemmas 1 and 2 we have |Gi| ≤ |G| + 8ki ∈ O(|G|2). Since the i-th
iteration takes time O(|Gi|), the total running time is O(|G|3).

There is a simple way to improve the running time to O(|G|2) (under some
assumptions on the underlying machine model). In the above calculation we
ignored the fact that block and pair compression also reduce the size of the SLP.
To make use of this, we modify Algorithm 1 as follows. In every second iteration
of the while loop, we choose the partition (Γl, Γr) for pair compression according
to the following variant of Lemma2:

Lemma 3. There is an algorithm CompressPairs′ with the same properties as
algorithm CompressPairs from Lemma2 except that the last property |val1(H)| ≤
1
4 + 3

4 |val1(G)| in Lemma 2 is replaced by |H|0 ≤ 3
4k + 4k + 3

4 |G|0.

The proof of this lemma is the same as for Lemma 2, except that the partition
Σ = Σ� ∪ Σr is chosen in such a way that the maximal factors from Σ∗ in
right-hand sides of G (there are at most 3k such factors since every right-hand
side contains at most two variables) contain many factors of the form ab with
a ∈ Σl, b ∈ Σr (see Claim 1 in the proof of [19, Lemma 6] for a more precise
statement).

Since Lemma 3 is used in every second iteration of the while loop, we get

|Gi+2|0 ≤ 3
4
k + 4k +

3
4
(|Gi|0 + 12k) = O(|G|) +

3
4
|Gi|0
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for every even i (we add the 12k since we apply CompressBlocks twice and
CompressPairs once, before we apply CompressPairs′). A simple calculation
shows that |Gi|0 ∈ O(|G|) and hence |Gi| ∈ O(|G|) for all i ≥ 0. The number
of iterations of the while loop is still bounded by O(log(m)). This yields the
running time O(log(m) · |G|) ≤ O(|G|2).

This concludes our outline of Jeż’s algorithm. We ignored some issues related
to the machine model. More precisely, the time bound O(|G|2) only holds if the
length m fit into a single machine word, see [17] for details. Let us finally remark
that Jeż [17] obtains his result for the more general problem of fully compressed
pattern matching, see Sect. 5.

Randomized algorithms for compressed equality checking are studied in [12,
32]. These algorithms are based on arithmetic modulo small prime numbers.
The algorithm from [32] has a quadratic running time under the RAM model
with logarithmic cost measure, which means that arithmetic operations on n-bit
numbers need time O(n). If val(G) = val(H) then the algorithm will correctly
output “yes”; if val(G) �= val(H) then the algorithm may incorrectly output
“yes” with a small error probability. In the next section, we will outline another
randomized algorithm for compressed equality checking that allows an efficient
parallelization.

4 A Parallel Algorithm

The polynomial time algorithms from [2,16,17,28,31] for compressed equality
checking are all sequential, and it is not clear whether one of them allows a
parallel implemention. It is in fact open, whether compressed equality checking
belongs to the class NC of all problems that can be solved on a PRAM in
polylogarithmic time using only polynomially many processors. In this section,
we sketch a randomized parallel algorithm that was recently discovered in [22].

We use standard definitions concerning circuit complexity, see e.g. [35] for
more details. In particular we will consider the class NCi of all problems that can
be solved by a circuit family (Cn)n≥1, where the size of Cn (the circuit for length-
n inputs) is polynomially bounded in n, its depth is bounded by O(logi n), and
Cn is built from input gates, NOT-gates and AND-gates and OR-gates of fan-in
two. The class NC is the union of all classes NCi. We assume circuit families to
be logspace-uniform, which means that the mapping an → Cn can be computed
in logspace.

To define a randomized version of NCi, one uses circuit families with addi-
tional inputs. So, let the nth circuit Cn in the family have n normal input gates
plus m random input gates, where m is polynomially bounded in n. For an input
x ∈ {0, 1}n one defines the acceptance probability as

Prob[Cn accepts x] =
|{y ∈ {0, 1}m | Cn(x, y) = 1}|

2m
.

Here, Cn(x, y) = 1 means that the circuit Cn evaluates to 1 if the ith normal input
gate gets the ith bit of the input string x, and the ith random input gate gets the
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ith bit of the random string y. Then, the class RNCi is the class of all problems A
for which there exists a polynomial size circuit family (Cn)n≥0 of depth O(logi n)
with random input gates that uses NOT-gates and AND-gates and OR-gates of
fan-in two, such that for all inputs x ∈ {0, 1}∗ of length n: (i) if x ∈ A, then
Prob[Cn accepts x] ≥ 1/2, and (ii) if x �∈ A, then Prob[Cn accepts x] = 0. As
usual, coRNCi is the class of all complements of problems from RNCi. Section
B.9 in [14] contains several problems that are known to be in RNC, but which
are not known to be in NC; the most prominent example is the existence of a
perfect matching in a graph.

In this section, we will sketch a proof of the following result that was recently
shown in [22]:

Theorem 2. Compressed equality checking belongs to coRNC2.

Let us assume that we have a single SLP G in Chomsky normal form, and we
want to check whether valG(X) = valG(Y ) for two variables X,Y . Without loss
of generality we can assume that the terminal alphabet of G is {0, 1}. In a first
step, we compute the length |valG(A)| for every variable A. For this, one has
to evaluate addition circuits over the natural numbers, which is possible in NC2

(see [22] for details). If |valG(X)| �= |valG(X)|, then we reject. So, let us assume
that |valG(X)| = |valG(X)|. We omit the index G in the following.

As for many other randomized algorithms (also the RNC-algorithm for the
existence of a perfect matching in a graph) we now shift the problem to an
algebraic problem about polynomials. A string w = a0a1 · · · an ∈ {0, 1}∗ with
ai ∈ {0, 1} can be encoded as the polynomial

pw(x) =
n∑

i=0

ai · xi ∈ F2[x]

over the field F2. Clearly, if |u| = |v|, then u = v if and only if pu(x)+pv(x) = 0.
Hence, it remains to check whether pval(X)(x)+pval(Y )(x) is the zero polynomial.

The polynomial pval(X)(x) + pval(Y )(x) has exponential degree, but it can be
defined by a small algebraic circuit, or equivalently, a small algebraic straight-
line program (ASLP). ASLPs are defined analogously to our SLPs for strings,
but variables evaluate to polynomials from F2[x] (or another polynomial ring,
in general). In right-hand sides, the operations of (polynomial) addition and
multiplication as well as the constants 0, 1, x can be used. We translate the
SLP G into an ASLP H for the polynomial pval(X)(x) + pval(Y )(x) as follows:
If rhs(A) = a ∈ {0, 1} in G, then also rhs(A) = a in H, and if rhs(A) = BC
in G, then rhs(A) = B + xn · C in H, where n = |valG(B)| (this length can
be precomputed in NC2). Finally, we add a new start variable S to H and set
rhs(S) = X + Y . It is easy to check, that H indeed produces the polynomial
pval(X)(x) + pval(Y )(x).

Note that the right-hand side B + xn · C contains a big power of x. On the
other hand, n is only exponential in the input size and could be replaced by
a chain of multiplications. Testing whether H produces the zero polynomial is
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an instance of polynomial identity testing (PIT) over the ring F2[x]. This is a
famous problem in complexity theory, which is known to be in coRP (the class of
complements of problems from randomized polynomial time), but for which no
polynomial time algorithm is known. Moreover, proving PIT to be in P would
prove circuit lower bounds that currently seem to be out of reach, see [20].

So far, we have put compressed equality checking into the class coRP only.
To lower this bound to coRNC2 we have to make use of the particular form of
the ASLPs in our situation. The right-hand side B + xn · C can be replaced by
B +D, where D is a fresh variable with rhs(D) = xn ·C. We now have obtained
an ASLP H, where every right-hand side has one of the following forms:

– a constant a ∈ {0, 1},
– an addition B + C of two variables B,C,
– a multiplication xn ·C, where C is a variable and n is a number that is encoded

in binary representation.

In [22] we called such an ASLP powerful skew: In a skew ASLP (or skew algebraic
circuit), for every multiplication one of the two arguments has to be a constant
or the variable x. The additional adjective “powerful” refers to the fact one of
the arguments of every multiplication gate is a power of x, where the exponent
is given in binary notation.

To test val(H) = 0 for a powerful skew ASLP, we can use any of the random-
ized PIT-algorithms. In order to get a coRNC2-algorithm, the identity testing
algorithm of Agrawal and Biswas [1] is the right choice. This algorithm com-
putes the polynomial val(H) modulo a test polynomial P (x) ∈ F2[x] of poly-
nomial degree, which is randomly chosen from a suitable test space. Clearly, if
val(H) = 0, then also val(H) mod P (x) = 0. On the other hand, by the specific
choice of the test space, if val(H) is not the zero polynomial, then also val(H)
mod P (x) is not the zero polynomial with high probability. This part of the
algorithm is the only place, were we use randomness.

It finally remains to compute val(H) mod P (x), which will be done in NC2,
using the modular powering algorithm of Fich and Tompa [8]. More precisely,
Fich and Tompa proved in [8] that the following problem can be solved in NC2

(we only present here the result for the polynomial ring F2[x], but in [8] a more
general version is shown):

input: polynomials p(x), q(x) ∈ F2[x] and a binary encoded natural number n.
output: p(x)n mod q(x)

Using this result, we can replace in the ASLP H every power xn by xn mod P (x)
in NC2. The resulting ASLP computes the same polynomial as H modulo P (x).
Moreover, the big powers xn in right-hand sides of the form xn ·B are replaced by
polynomials of polynomially bounded degree. This allows to compute the output
polynomial explicitly in NC2 using a standard reduction to matrix powering, see
[22] for details. We still have to compute this output polynomial modulo P (x),
which can be done in NC1 [7]. This concludes our proof sketch for Theorem2.
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The coRNC2-algorithm for compressed equality checking easily generalizes to
equality checking for SLP-compressed 2-dimensional pictures (and in fact, pic-
tures of any dimension). Such a 2-dimensional picture is a rectangular array of
symbols from a finite alphabet. To define 2-dimensional SLPs, one uses a hori-
zontal and a vertical concatenation operation, which are both partially defined
(for horizontal concatenation, the two pictures need to have the same height,
and for vertical concatenation, the two pictures need to have the same width).
This formalism was studied in [4], where it was shown that equality of SLP-
compressed 2-dimensional pictures belongs to coRP using a reduction to PIT.
Using the above technique, this bound was reduced to coRNC2 in [22]. It is
still open, whether equality of SLP-compressed 2-dimensional pictures can be
checked in polynomial time.

5 Related Problems

A natural generalization of checking equality of two strings is pattern matching.
In the classical pattern matching problem it is asked for given strings p (usually
called the pattern) and t (usually called the text), whether p is a factor of t. There
are many linear time algorithms for this problem on uncompressed strings. It
is therefore natural to ask, whether a polynomial time algorithm for pattern
matching on SLP-compressed strings exists. This problem is sometimes called
fully compressed pattern matching and is defined as follows:

input: Two SLPs P and T
question: Is val(P) a factor of val(T )?

The first polynomial time algorithm for fully compressed pattern matching was
presented in [21] by Karpinski, Rytter, and Shinohara. Further improvements
with respect to the running time were achieved in [11,17,23,29]. The algorithms
from [11,21,23,29] use the periodicity lemma of Fine and Wilf, similarly to the
solutions of Plandowski and Hirshfeld et al. for compressed equality checking.
In contrast, Jeż’s algorithm from [17] is based on his recompression technique
and is a refinement of the algorithm sketched in the previous section. It is the
currently fastest algorithm. Its running time is O((|T |+ |P|) · log |val(P)|) under
the assumption that |val(P)| can be stored in a single machine word, otherwise
an additional factor log(|T | + |P|) goes in.

Let us finally mention a result of Lifshits [24], which together with Theorem1
gives an impression of the subtle borderline between tractability and intractabil-
ity for problems on SLP-compressed strings. A function f : Σ∗ → N belongs to
the counting class #P if there exists a nondeterministic polynomial time bounded
Turing-machine M such that for every x ∈ Σ∗, f(x) equals the number of accept-
ing computation paths of M on input x. A function f : Σ∗ → N is #P-complete
if it belongs to #P and for every #P-function g : Γ ∗ → N there is a logspace
computable mapping h : Γ ∗ → Σ∗ such that h◦f = g. Functions that are #P-
complete are computationally very powerful. By a famous result of Toda [33],
every language from the polynomial time hierarchy can be decided in determin-
istic polynomial time with the help of a #P-function, i.e., PH ⊆ P#P. For two
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strings u = a1 · · · an and v = b1 · · · bn of the same length n, the Hamming-distance
dH(u, v) is the number of positions i ∈ {1, . . . , n} such that ai �= bi.

Theorem 3 ([24]). The mapping (G,H) → dH(val(G), val(H)), where G and H
are SLPs is #P-complete.

6 Open Problems

The main open problem in the context of compressed equality checking is the
precise complexity of this problem. Theorem2 suggests that compressed equality
checking is not P-complete (showing P ⊆ RNC would be a big surprise). Hence,
we conjecture that compressed equality checking belongs to NC. For fully com-
pressed pattern matching it is even open whether the problem belongs to coRNC
(or RNC).

Another open problem is whether the quadratic running time of Jeż’s algo-
rithm for compressed equality checking can be further improved.
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