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Abstract. We consider the generalized Thue-Morse word on the alpha-
bet Σ = {0, 1, 2}. The object of the research is arithmetic progressions in
this word, which are sequences consisting of identical symbols. Let A(d)
be a function equal to the maximum length of an arithmetic progression
with the difference d in the generalized Thue-Morse word. If n, d are
positive integers and d is less than 3n, then the upper bound for A(d) is
3n + 6 and is attained with the difference d = 3n − 1.
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1 Introduction

Arithmetic progressions in infinite words have been studied since the classical
papers of Van der Waerden [1] and Szemerédi [2]. Results described in these
papers say in particular, that we cannot constrain the length of a homogeneous
arithmetic progression by a constant. For bounded differences and fixed word
the question about the maximum possible length of an arithmetic progression
depends on the structure of the word and the answer to it may be non-trivial. In
some cases (e.g. Toeplitz words) the length of an arithmetic progression may be
infinite. We are interested in ones having long progression with large differences
only. Our research shows that such correlation between length of a progression
and the value of its difference does not occur among automatic words.

The reported result refers to the Thue-Morse word, which was chosen because
it is famous and the defining morphism is simple. More details on the Thue-Morse
sequence and its applications can be found e.g. in [3]. It is known that the set
of arithmetic progressions of the Thue-Morse word contains all binary words [4].
In [5] the results of [4] are generalized to symmetric D0L words including the
generalized Thue-Morse word.

The original Thue-Morse word was studied earlier [6]. Here we considered
its generalization on the alphabet Σ3 = {0, 1, 2}, it was chosen to simplify the
presentation, although the technique presented in the paper is easy to extend to
Σq for an arbitrary prime q.
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We consider the maximal length of a homogeneous arithmetic progression of
difference d. It is proven that the length grows quite rapidly (see Theorem 1) and
reaches its maximums at points of specific kind. Since the Thue-Morse word over
Σ3 is easy to define by ternary representation of natural numbers, the proof of
the theorem uses mostly this representation and arithmetic operations modulo 3.
The proof has three stages: at first we reject the most part of the set of differences,
which cannot provide the maximum of the length of a progression, then we present
concrete values of the difference, of starting symbols and corresponding values of
the length which are maxima of this function. The final part is exhaustion of the
rest of initial symbols for this difference, there we give an upper bound of length
for each type of starting number.

2 Preliminaries

Let Σq = {0, 1, ..., q − 1} be an alphabet. Consider a function Rq : N → Σq

which for every natural x gives its base-q expansion. The length of this word
is denoted by |Rq(x)|. Also let rq(x) be the sum modulo q of the digits of x

in its q-ary expansion. In other words x =
n−1∑

i=0

xi · qi, Rq(x) = xn−1 · · · x1x0

and rq(x) =
n−1∑

i=0

xi mod q. The generalized Thue-Morse word is defined as:

wTM = w0w1w2w3 · · · , where wi = rq(i) ∈ Σ.
An arithmetic progression of length k with the starting number c and

the difference d in arbitrary infinite word v = v0v1v2v3 · · · is a sequence
vcvc+dvc+2d · · · vc+(k−1)d. We are interested in homogeneous progressions, i.e.,
in situations when vc+id = α for each i = 0, 1, ..., k − 1 and α ∈ Σ.

Consider a function A(c, d) which outputs the length of an arithmetic pro-
gression with starting symbol vc and difference d for positive integers c and d.
The function A(d) = maxc A(c, d) gives the length of the maximal arithmetic
progression of difference d.

As we mentioned before, here we consider the alphabet Σ3 and the general-
ized Thue-Morse word:

wTM = 012120201120201012201012120 · · ·
Since the word is cube-free, A(1) = 2. We can see that A(0, 5) = 2, A(2, 2) =
A(20, 2) = 3 and we state that A(2) = 3.

3 Main Result

Here we formulate the main theorem, the remainder of the paper is devoted to
its proof.

Theorem 1. For all numbers n ≥ 1 the following holds:

max
d<3n

A(d) =

{
3n + 6, n ≡ 0mod 3,

3n, otherwise.
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As we will see later, the function A(d) reaches its maxima with differences of
the form 3n − 1 for natural n. Let us prove that if d �= 3n − 1, the value of A(d)
will be not more than 3n for fixed n.

3.1 Case of d �= 3n − 1

We need to prove that A(d) ≤ 3n.
At first we note that subsequences of the wTM which are composed of letters

with indexes having the same remainder of the division by three are equivalent
to the word, so we do not need to consider differences which are divisible by
three.

Every number may be represented in such a way: c = y · 3n + x, where x, y
are arbitrary positive integers, x < 3n. We will call x a suffix of c.

Consider the set X = {0, 1, 2, ..., 3n −1}, |X| = 3n. Each difference d and suf-
fix x belong to X and d is prime to |X|. So the X is an additive cyclic group and
d is a generator of X, thus for every x ∈ X the set {x + i · d}3n−1

i=0 is precisely X.
We will prove the statement if for each d �= 3n − 1 we find an element x ∈ X
with following properties:

(a) x + d < 3n;
(b) r3(x + d) �= r3(x).

Indeed, consider the starting number of the form c. Because of (a), c + d =
y · 3n +(x+d). Hence, r3(c) = r3(y)+ r3(x) mod 3, r3(c+d) = r3(y)+ r3(x+d)
mod 3. Because of (b), r3(c + d) �= r3(c), and the homogeneity of a progression
will hold by at most 3n steps.

If r3(d) �= 0, then a suitable x is a zero. In another case we use the inequa-
tion d �= 3n − 1 which means that R3(d) = dn−1 · · · d1d0 has at least one letter
dj , j ∈ {0, 1, ..., n − 1}: dj �= 2. There are two possibilities:

1. ∃j : dj �= 2, dj−1 = 2, in this case x = 3j−1.
2. ∀j (dj �= 2 ⇒ ∀k < j dk �= 2).

If j > 1, then, as soon as d is not divisible by three, d1d0 may be equal to 01 or
11. In the first case we choose x = 2, in the second x = 1. But we can not find
x satisfying (a) and (b) then j = 1, i.e., then R3(d) = 2 · · · 2︸ ︷︷ ︸

n−1

1. So we find three

suffixes x with properties (i) x + d, x + 2d > 3n and (ii) r3(x) is equal to the
suffix of x + d and x + 2d. Let us explain the necessity of these properties.

Consider a number c with such a suffix x, r3(c) = r3(y) + r3(x) mod 3. The
condition (i) gives to us equalities r3(c + d) = r3(y + 1) + r3(x + d) mod 3 and
r3(c+2d) = r3(y +2)+ r3(x+2d) mod 3. With (ii) we need r3(y) = r3(y +1) =
r3(y + 2) for saving the homogeneity of a progression, but there is no number
with such property. So we know that by at most three steps the value of r3 will
change. Suitable suffixes are 6, 15, 24, and all described above guarantee that the
arithmetic progression will be not longer than 3n.

Of course, there are many suffixes satisfy (a),(b) or (i),(ii), but it is not
necessary to consider all of them.
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3.2 Case of d = 3n − 1

Here we use the notation R3(x) = X = xn−1 · · · x1x0, R3(y) = Y =
yn−1 · · · y1y0.
Lemma 1. Let d = 3n − 1, c = z · 32n + y · 3n + x, where x + y = 3n − 1, z is a
non-negative integer, then

max
z

A(c, d) =

{
3n + 3 − y, n ≡ 0mod 3,

3n − y, otherwise.

Proof. Because of the value of d we can regard the action c + d as two simul-
taneous actions: x − 1 and y + 1. Thus while y ≤ 3n − 1 the sum of digits in
Y X (the concatenation of ternary notation of y and x) equals 2n. This property
provides us with the arithmetic progression of length 3n − y.

Let y = 3n −1, hence x = 0. If we add the difference d to such a number, the
sum of digits in result’s ternary notation will be equal to 4n. To save the required
property of members of the progression we need 2n ≡ 4n mod 3, i.e., n ≡ 0 mod
3. After next addition of d, z increases to z + 1, y becomes 0 and x = 3n − 2.
We may define z arbitrary for holding the homogeneity of the progression (for
example if r3(z) = 1 we need r3(z + 1) = 2, in this case z may be equal to
1). Now r3(y) + r3(x) = 2n + 1 mod 3. Let us add the difference once more:
Y = 0 · · · 0︸ ︷︷ ︸

n−1

1, X = 2 · · · 2︸ ︷︷ ︸
n−1

0 and homogeneity holds. Next addition of d changes

the value of r3(y) + r3(x) because Y = 0 · · · 0︸ ︷︷ ︸
n−1

2 and X = 2 · · · 2︸ ︷︷ ︸
n−2

12.

So if 3|n, the length of an arithmetic progression equals 3n +3−y and equals
3n − y otherwise.

Lemma 2. Let n ≡ 0 mod 3, d = 3n − 1, c = z · 32n + y · 3n + x, y = 3n − 2,
x = 2, z is arbitrary non-negative, then maxz A(c, d) = 3n + 6.

Proof. Let us add to the c the difference d three times and look at the result:

1. y = 3n − 1, x = 1;
2. z → z + 1, y = 0, x = 0;
3. y = 0, x = 3n − 1.

Sums of digits in ternary notation of described numbers are the same for a
suitable z and coincide with the similar sum of initial c. After these steps we get
into conditions of Lemma 1 with y = 0 which provide us with an arithmetical
progression of length 3n + 3. Now we subtract d from the initial c to make sure
that r3(c − d) �= r3(c) and we cannot get an arithmetical progression longer.
Indeed, c − d = z · 32n + (3n − 3) · 3n + 3 and the sum of digits in its ternary
notation is 2n − 1, while in c it is 2n + 1.

So we find starting numbers for the difference d = 3n − 1 which provide us with
arithmetical progressions of the length mentioned in the Theorem.
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Now let us prove that we can not get an arithmetical progression with dif-
ference d = 3n − 1 longer than in the statement of the Theorem.

Here we represent a starting number of progression c like this: c = y · 3n + x,
x < 3n.

The case of initial number c with xj + yj = 2, j = 0, 1, ..., n − 1 is described
in Lemma 1. In another case there is at least one index j: xj + yj �= 2. We
choose j which is the minimal. There are six possibilities of values (yj , xj):
(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2).

For c of each type we find numbers k and h: r3(c + k · d) �= r3(c + h · d).
We need two more parameters: l and m which are defined from these nota-

tions: Y = ys−1 · · · yj+l+12 · · · 2yj · · · y0, X = xn−1 · · · xj+m+10 · · · 0xj · · · x0. Of
course m and l may be equal to zero, yj+l+1 �= 2 and xj+m+1 �= 0.

We will act such a way: we add 3j+1 · d to the c, and the block of twos in Y
transforms to the block of zeros, the block of zeros in X transforms to the block
of twos. In cases (yj , xj) ∈ {(0, 0), (1, 0), (2, 1), (2, 2)} after next 3j ·d addition we
get a number with the sum of digits different from the previous one. So suitable
values of k and h are 3j+1 and 4 · 3j . In cases (yj , xj) ∈ {(0, 1), (1, 2)} to change
the sum, we need to add 3j · d once more, and suitable k and h are 4 · 3j and
5 · 3j . Let us consider an example for (yj , xj) = (0, 1).
Here n = 7, m = l = 3, j = 1, d = 2186, R3(d) = 2222222.

number R3 r3

c = 2640685 11222011100011 1
+ 222222200

c + 3j+1 · d 12000011022211 1
+ 22222220

c + 4 · 3j · d 12000111022201 1
+ 22222220

c + 5 · 3j · d 12000211022121 0

But these values of k, h satisfy the Theorem if and only j < n − 1, the case
j = n − 1 needs a special consideration.

We will act the following way: we add the x ·d to the c and nullify x by that,
then add d necessary number of times. So the worst case is then X = xn−12 · · · 2,
Y = yn−10 · · · 0. Here is the table of values k, h.

(yn−1, xn−1) (0,0), (1,0) (0,1), (2,1) (2,2), (1,2)

parameters k h k h k h

3 � | n 3n−1 − 1 3n−1 2 · 3n−1 − 1 2 · 3n−1 3n − 1 3n

3 | n 3n−1 3n−1 + 1 2 · 3n−1 2 · 3n−1 + 1 3n 3n + 1
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One can see that these values satisfy the Theorem.
We have considered all the possible cases and thus completed the proof.

4 Conclusion

This result helps to better understand the structure of the well-known Thue-
Morse word and its generalization. The result and the technique of the proof
may be generalized on the Thue-Morse word over an arbitrary alphabet of prime
cardinality q, the upper bound for the length of a progression in this case is
qn + 2 · q.
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