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Abstract. We implement a decision procedure for answering questions
about a class of infinite words that might be called (for lack of a bet-
ter name) “Tribonacci-automatic”. This class includes, for example, the
famous Tribonacci word T = 0102010010201 · · · , the fixed point of the
morphism 0 → 01, 1 → 02, 2 → 0. We use our decision procedure to
reprove some old results about the Tribonacci word from the literature,
such as assertions about the occurrences in T of squares, cubes, palin-
dromes, and so forth. We also obtain some new results, including on
enumeration.

1 Introduction

In several previous papers (e.g., [1,21–24,32] we have explored the ramifications
of a decision procedure for the logical theory Th(N,+, a(n)), where (a(n))n≥0

is an infinite sequence specified by a finite-state machine M . Furthermore, in
many cases we can explicitly enumerate various aspects of such sequences, such
as subword complexity [8]. Roughly speaking, given a predicate P of one or more
variables in the logical theory, the method transforms M to a new automaton
M ′ that accepts the representations of those variables making the predicate true.
The ideas are based on extensions of the logical theory Th(N,+), sometimes
called Presburger arithmetic [28,29]. See, for example, [6].

A critical point is what sort of representations are allowed. According to the
results in [5], it suffices that the representations be based on a Pisot number.
The critical point is that there must be an automaton that can perform addition
of two numbers in the appropriate representation [15,16].

In the papers mentioned above, we applied our method to the so-called k-
automatic sequences, which correspond to automata that work with the ordinary
base-k expansions of numbers. More recently, we also proved a number of new
results using Fibonacci (or “Zeckendorf”) representation [13], which is based on
writing integers as a sum of Fibonacci numbers.

It is our contention that the power of this approach has not been widely
appreciated, and that many results, previously proved using long and involved
ad hoc techniques, can be proved with much less effort by phrasing them as logi-
cal predicates and employing a decision procedure. Furthermore, many enumer-
ation questions can be solved with a similar approach. Although the worst-case

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 170–190, 2015.
DOI: 10.1007/978-3-319-23660-5 15



Mechanical Proofs of Properties of the Tribonacci Word 171

running time of the procedure is enormously large (of the form 22
...2

p(n)

where
the number of 2’s is the number of quantifier alternations), n is the size of the
polynomial, and p is a polynomial), in practice the procedure often terminates
in a reasonable time.

In this paper we discuss our implementation of an analogous algorithm for
Tribonacci representation. We use it to reprove some old results from the litera-
ture purely mechanically, as well as obtain some new results. The implementation
of the decision procedure was created by the first author. It is called Walnut, and
is available for free download at https://www.cs.uwaterloo.ca/∼shallit/papers.
html.

We have not rigorously proved the correctness of this implementation, but
it has been tested in a large number of different ways (including some results
verified with independently-written programs). In this, we are well in the tra-
dition of many other results in combinatorics on words that have been verified
with machine computations — despite a lack of formal verification of the code.
Even if the code were formally verified, one could reasonably ask for a proof of
the correctness of the verification code! We believe that publication of our code,
allowing checking by any interested reader, serves as an adequate check.

We view our work as part of a modern trend in mathematics. For other
works on using computerized formal methods to prove theorems see, for example,
[25,27].

2 Tribonacci Representation

Let the Tribonacci numbers be defined, as usual, by the linear recurrence Tn =
Tn−1 + Tn−2 + Tn−3 for n ≥ 3 with initial values T0 = 0, T1 = 1, T2 = 1. (We
caution the reader that some authors use a different indexing for these numbers.)
Here are the first few values of this sequence.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tn 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768

From the theory of linear recurrences we know that

Tn = c1α
n + c2β

n + c3γ
n

where α, β, γ are the zeros of the polynomial x3−x2−x−1. The only real zero is
α

.= 1.83928675521416113; the other two zeros are complex and are of magnitude
< 3/4. Solving for the constants, we find that c1

.= 0.336228116994941094225,
the real zero of the polynomial 44x3 − 2x − 1 = 0. It follows that Tn = c1α

n +
O(.75n). In particular Tn/Tn−1 = α + O(.41n).

It is well-known that every non-negative integer can be represented, in an
essentially unique way, as a sum of Tribonacci numbers (Ti)i≥2, subject to the
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constraint that no three consecutive Tribonacci numbers are used [7]. For
example, 43 = T7 + T6 + T4 + T3.

Such a representation can be written as a binary word a1a2 · · · an represent-
ing the integer

∑
1≤i≤n aiTn+2−i. For example, the binary word 110110 is the

Tribonacci representation of 43.
Let Σ2 = {0, 1}. For w = a1a2 · · · an ∈ Σ∗

2 , we define [a1a2 · · · an]T :=∑
1≤i≤n aiTn+2−i, even if a1a2 · · · an has leading zeros or occurrences of the

word 111.
By (n)T we mean the canonical Tribonacci representation for the integer n,

having no leading zeros or occurrences of 111. Note that (0)T = ε, the empty
word. The language of all canonical representations of elements of N is ε + (1 +
11)(0 + 01 + 011)∗.

Just as Tribonacci representation is an analogue of base-k representation, we
can define the notion of Tribonacci-automatic sequence as the analogue of the
more familiar notation of k-automatic sequence [2,11]. We say that an infinite
word a = (an)n≥0 is Tribonacci-automatic if there exists an automaton with
output M = (Q,Σ2, q0, δ, κ,Δ) for a coding κ such that an = κ(δ(q0, (n)T ))
for all n ≥ 0. An example of a Tribonacci-automatic sequence is the infinite
Tribonacci word,

T = T0T1T2 · · · = 0102010010201 · · ·
which is generated by the following 3-state automaton (Fig. 1):

Fig. 1. Automaton generating the Tribonacci sequence

To compute Ti, we express i in canonical Tribonacci representation, and feed
it into the automaton. Then Ti is the output associated with the last state
reached (denoted by the symbol after the slash).

A basic fact about Tribonacci representation is that addition can be per-
formed by a finite automaton. To make this precise, we need to generalize our
notion of Tribonacci representation to r-tuples of integers for r ≥ 1. A repre-
sentation for (x1, x2, . . . , xr) consists of a string of symbols z over the alphabet
Σr

2 , such that the projection πi(z) over the i’th coordinate gives a Tribonacci
representation of xi. Notice that since the canonical Tribonacci representations
of the individual xi may have different lengths, padding with leading zeros will
often be necessary. A representation for (x1, x2, . . . , xr) is called canonical if
it has no leading [0, 0, . . . 0] symbols and the projections into individual coor-
dinates have no occurrences of 111. We write the canonical representation as
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(x1, x2, . . . , xr)T . Thus, for example, the canonical representation for (9, 16) is
[0, 1][1, 0][0, 0][1, 1][0, 1].

Thus, our claim about addition in Tribonacci representation is that there
exists a deterministic finite automaton (DFA) Madd that takes input words of
the form [0, 0, 0]∗(x, y, z)T , and accepts if and only if x+y = z. Thus, for example,
Madd accepts [1, 0, 1][0, 1, 1][0, 0, 0] since the three words obtained by projection
are 100, 010, and 110, which represent, respectively, 4, 2, and 6 in Tribonacci
representation.

Since this automaton does not appear to have been given explicitly in the
literature and it is essential to our implementation, we give it below in Table 1.
This automaton actually works even for non-canonical expansions having three
consecutive 1’s. The initial state is state 1. The state 0 is a “dead state” that
can safely be ignored.

We briefly sketch a proof of the correctness of this automaton. States can
be identified with certain sequences, as follows: if x, y, z are the identical-length
words arising from projection of a word that takes Madd from the initial state 1
to the state t, then t is identified with the integer sequence ([x0n]T + [y0n]T −
[z0n]T )n≥0. State 0 corresponds to sequences that can never lead to 0, as they
are too positive or too negative.

When we intersect this automaton with the appropriate regular language
(ruling out input triples containing 111 in any coordinate), we get an automaton
with 149 states accepting 0∗(x, y, z)T such that x + y = z.

Another basic fact about Tribonacci representation is that, for canonical
representations containing no three consecutive 1’s or leading zeros, the radix
order on representations is the same as the ordinary ordering on N. It follows
that a very simple automaton can, on input (x, y)T , decide whether x < y.

Putting this all together, we get the following decision procedure:

Procedure 1 (Decision Procedure for Tribonacci-Automatic Words)
Input:

– m,n ∈ N;
– m DFA’s generating the Tribonacci-automatic words w1,w2, . . . ,wm;
– a first-order proposition with n free variables ϕ(v1, v2, . . . , vn) using constants

and relations definable in Th(N, 0, 1,+) and indexing into w1,w2, . . . ,wm.

Output: DFA with input alphabet Σn
2 accepting

{(k1, k2, . . . , kn)T : ϕ(k1, k2, . . . , kn) holds}.

3 Mechanical Proofs of Properties of the Infinite
Tribonacci Word

Recall that a word x, whether finite or infinite, is said to have period p if x[i] =
x[i + p] for all i for which this equality is meaningful. Thus, for example, the
English word alfalfa has period 3. The exponent of a finite word x, written
exp(x), is |x|/P , where P is the smallest period of x. Thus exp(alfalfa) = 7/3.
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Table 1. Transition table for Madd for Tribonacci addition

q [0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1] acc/rej

0 0 0 0 0 0 0 0 0 0

1 1 2 3 1 3 1 0 3 1

2 4 0 5 4 5 4 6 5 0

3 0 7 0 0 0 0 0 0 0

4 0 0 0 0 0 0 8 0 0

5 9 0 10 9 10 9 11 10 0

6 12 13 0 12 0 12 0 0 1

7 0 14 0 0 0 0 0 0 0

8 0 0 9 0 9 0 10 9 0

9 0 0 4 0 4 0 5 4 0

10 2 15 1 2 1 2 3 1 0

11 7 16 0 7 0 7 0 0 1

12 14 17 0 14 0 14 0 0 1

13 18 19 20 18 20 18 21 20 0

14 3 1 0 3 0 3 0 0 0

15 0 0 0 0 0 0 22 0 0

16 20 18 21 20 21 20 0 21 1

17 5 4 6 5 6 5 23 6 1

18 0 0 8 0 8 0 24 8 0

19 0 0 0 0 0 0 25 0 0

20 10 9 11 10 11 10 0 11 1

21 0 12 0 0 0 0 0 0 0

22 0 0 26 0 26 0 27 26 0

23 0 28 0 0 0 0 0 0 0

24 13 29 12 13 12 13 0 12 0

25 0 0 0 0 0 0 26 0 0

26 0 0 0 0 0 0 4 0 0

27 15 0 2 15 2 15 1 2 0

28 0 30 0 0 0 0 0 0 0

29 0 0 31 0 31 0 32 31 0

30 0 3 0 0 0 0 0 0 0

31 0 0 0 0 0 0 33 0 0

32 26 0 27 26 27 26 34 27 0

33 0 0 0 0 0 0 9 0 0

34 16 35 7 16 7 16 0 7 0

35 31 0 32 31 32 31 36 32 0

36 37 38 39 37 39 37 0 39 1

37 17 40 14 17 14 17 0 14 0

38 19 0 18 19 18 19 20 18 0

39 0 41 0 0 0 0 0 0 1

40 0 0 22 0 22 0 42 22 0

41 21 20 0 21 0 21 0 0 0

42 38 43 37 38 37 38 39 37 0

43 0 0 0 0 0 0 31 0 0
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If x is an infinite word with a finite period, we say it is ultimately periodic.
An infinite word x is ultimately periodic if and only if there are finite words u, v
such that x = uvω, where vω = vvv · · · .

A nonempty word of the form xx is called a square, and a nonempty word of
the form xxx is called a cube. More generally, a nonempty word of the form xn

is called an n’th power. By the order of a square xx, cube xxx, or n’th power
xn, we mean the length |x|.

The infinite Tribonacci word T = 0102010 · · · = T0T1T2 · · · can be described
in many different ways. In addition to our definition in terms of automata, it
is also the fixed point of the morphism ϕ(0) = 01, ϕ(1) = 02, and ϕ(1) =
0. This word has been studied extensively in the literature; see, for example,
[3,9,14,17,30,31,33,34].

It can also be described as the limit of the finite Tribonacci words (Yn)n≥0,
defined as follows:

Y0 = ε Y1 = 2 Y2 = 0
Y3 = 01 Yn = Yn−1Yn−2Yn−3 forn ≥ 4.

Note that Yn, for n ≥ 2, is the prefix of length Tn of T.
In the next subsection, we use our implementation to prove a variety of results

about repetitions in T.

3.1 Repetitions

It is known that all strict epistandard words (or Arnoux-Rauzy words), are not
ultimately periodic (see, for example, [19]). Since T is in this class, we have the
following known result which we can reprove using our method.

Theorem 2. The word T is not ultimately periodic.

Proof. We construct a predicate asserting that the integer p ≥ 1 is a period of
some suffix of T:

(p ≥ 1) ∧ ∃n ∀i ≥ n T[i] = T[i + p].

(Note: unless otherwise indicated, whenever we refer to a variable in a predicate,
the range of the variable is assumed to be N = {0, 1, 2, . . .}.) From this predicate,
using our program, we constructed an automaton accepting the language

L = 0∗ {(p)T : (p ≥ 1) ∧ ∃n ∀i ≥ n T[i] = T[i + p]}.

This automaton accepts the empty language, and so it follows that T is not
ultimately periodic.

Here is the log of our program:

p >= 1 with 5 states, in 426ms

i >= n with 13 states, in 3ms

i + p with 150 states, in 31ms
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TR[i] = TR[i + p] with 102 states, in 225ms

i >= n => TR[i] = TR[i + p] with 518 states, in 121ms

Ai i >= n => TR[i] = TR[i + p] with 4 states, in 1098ms

En Ai i >= n => TR[i] = TR[i + p] with 2 states, in 0ms

p >= 1 & En Ai i >= n => TR[i] = TR[i + p] with 2 states, in 1ms

overall time: 1905ms

The largest intermediate automaton during the computation had 5999 states.
A few words of explanation are in order: here “T” refers to the sequence T,

and “E” is our abbreviation for ∃ and “A” is our abbreviation for ∀. The symbol
“=>” is logical implication, and “&” is logical and. ��

From now on, whenever we discuss the language accepted by an automaton,
we will omit the 0∗ at the beginning.

We now turn to repetitions. As a particular case of [17, Theorem. 6.31 and
Example 7.6, p. 130] and [18, Example 6.21] we have the following result, which
we can reprove using our method.

Theorem 3. T contains no fourth powers.

Proof. A natural predicate for the orders of all fourth powers occurring in T:

(n > 0) ∧ ∃i ∀t < 3n T[i + t] = T[i + n + t].

However, this predicate could not be run on our prover. It runs out of space
while trying to determinize an NFA with 24904 states.

Instead, we make the substitution j = i + t, obtaining the new predicate

(n > 0) ∧ ∃i ∀j ((j ≥ i) ∧ (j < i + 3n)) =⇒ T[j] = T[j + n].

The resulting automaton accepts nothing, so there are no fourth powers.
Here is the log.

n > 0 with 5 states, in 59ms

i <= j with 13 states, in 15ms

3 * n with 147 states, in 423ms

i + 3 * n with 799 states, in 4397ms

j < i + 3 * n with 1103 states, in 4003ms

i <= j & j < i + 3 * n with 1115 states, in 111ms

j + n with 150 states, in 18ms

TR[j] = TR[j + n] with 102 states, in 76ms

i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 6550 states, in 1742ms

Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 4 states, in 69057ms

Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

n > 0 & Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

overall time: 79901ms

The largest intermediate automaton in the computation had 86711 states. ��
Next, we move on to a description of the orders of squares occurring in T. We
reprove a result of Glen [17, Sect. 6.3.5].
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Theorem 4. All squares in T are of order Tn or Tn + Tn−1 for some n ≥ 2.
Furthermore, for all n ≥ 2, there exists a square of order Tn and Tn + Tn−1 in T.

Proof. A natural predicate for the lengths of squares is

(n > 0) ∧ ∃i ∀t < n T[i + t] = T[i + n + t].

but when we run our solver on this predicate, we get an intermediate NFA of
4612 states that our solver could not determinize in the allotted space. The
problem appears to arise from the three different variables indexing T . To get
around this problem, we rephrase the predicate, introducing a new variable j
that represents i + t. This gives the predicate

(n > 0) ∧ ∃i ∀j ((i ≤ j) ∧ (j < i + n)) =⇒ T[j] = T[j + n].

and the following log

n > 0 with 5 states, in 59ms

i <= j with 13 states, in 15ms

3 * n with 147 states, in 423ms

i + 3 * n with 799 states, in 4397ms

j < i + 3 * n with 1103 states, in 4003ms

i <= j & j < i + 3 * n with 1115 states, in 111ms

j + n with 150 states, in 18ms

TR[j] = TR[j + n] with 102 states, in 76ms

i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 6550 states, in 1742ms

Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 4 states, in 69057ms

Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

n > 0 & Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

overall time: 79901ms

The resulting automaton accepts exactly the language 10∗+110∗. The largest
intermediate automaton had 26949 states. ��
We can easily get more information about the square occurrences in T. By
modifying our previous predicate, we get

(n > 0) ∧ ∀j ((i ≤ j) ∧ (j < i + n)) =⇒ T[j] = T[j + n]

which encodes those (i, n) pairs such that there is a square of order n beginning
at position i of T.

This automaton has only 10 states and efficiently encodes the orders and
starting positions of each square in T. During the computation, the largest
intermediate automaton had 26949 states. Thus we have proved the following
new result:

Theorem 5. The language

{(i, n)T : there is a square of order n beginning at position i in T}

is accepted by the automaton in Fig. 2.
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Fig. 2. Automaton accepting orders and positions of all squares in T

Next, we examine the cubes in T. Evidently Theorem4 implies that any cube
in T must be of order Tn or Tn + Tn−1 for some n. However, not every order
occurs. We thus recover the following result of Glen [17, Sect. 6.3.7].

Theorem 6. The cubes in T are of order Tn for n ≥ 5, and a cube of each such
order occurs.

Proof. We use the predicate

(n > 0) ∧ ∃i ∀j ((i ≤ j) ∧ (j < i + 2n)) =⇒ T[j] = T[j + n].

When we run our program, we obtain an automaton accepting exactly the lan-
guage (1000)0∗, which corresponds to Tn for n ≥ 5. The largest intermediate
automaton had 60743 states. ��

4 Enumeration

Mimicking the base-k ideas in [8], we can also mechanically enumerate many
aspects of Tribonacci-automatic sequences. We do this by encoding the factors
having the property in terms of paths of an automaton. This gives the concept
of Tribonacci-regular sequence. Roughly speaking, a sequence (a(n))n≥0 taking
values in N is Tribonacci-regular if the set of sequences

{(a([xw]T )w∈Σ∗
2

: x ∈ Σ∗
2}

is finitely generated. Here we assume that a([xw]T ) evaluates to 0 if xw con-
tains the word 111. Every Tribonacci-regular sequence (a(n))n≥0 has a linear
representation of the form (u, μ, v) where u and v are row and column vectors,
respectively, and μ : Σ2 → N

d×d is a matrix-valued morphism, where μ(0) = M0

and μ(1) = M1 are d × d matrices for some d ≥ 1, such that

a(n) = u · μ(x) · v

whenever [x]T = n. The rank of the representation is the integer d.
Recall that if x is an infinite word, then the subword complexity function

ρx(n) counts the number of distinct factors of length n. Then, in analogy with
[8, Theorem. 27], we have
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Theorem 7. If x is Tribonacci-automatic, then the subword complexity function
of x is Tribonacci-regular.

Using our implementation, we can obtain a linear representation of the subword
complexity function for T. An obvious choice is to use the language

{(n, i)T : ∀j < i T[i..i + n − 1] �= T[j..j + n − 1]},

based on a predicate that expresses the assertion that the factor of length n
beginning at position i has never appeared before. Then, for each n, the number
of corresponding i gives ρT(n).

However, this does not run to completion in our implementation in the allot-
ted time and space. Instead, let us substitute u = j + t and k = i − j to get the
predicate

∀k (((k > 0) ∧ (k ≤ i)) =⇒ (∃u ((u ≥ j) ∧ (u < n + j) ∧ (T[u] �= T[u + k])))).

This predicate is close to the upper limit of what we can compute using our pro-
gram. The largest intermediate automaton had 1230379 states and the program
took 12323.82 s, giving us a linear representation (u, μ, v) rank 22. When we
minimize this using the algorithm in [4] we get the rank-12 linear representation

u = [1 0 0 0 0 0 0 0 0 0 0 0]

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

−1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

−1 0 1 0 0 0 1 0 0 0 0 0
−2 0 1 0 1 0 1 0 0 0 0 0
−3 0 2 0 1 0 1 0 0 0 0 0
−4 0 2 0 2 0 1 0 0 0 0 0
−5 0 2 0 2 0 2 0 0 0 0 0
−6 0 2 0 3 0 2 0 0 0 0 0
−10 0 3 0 4 0 4 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

v′ = [1 3 5 7 9 11 15 17 21 29 33 55]R.

Comparing this to an independently-derived linear representation of the func-
tion 2n+1, we see they are the same. From this we get a well-known result (see,
e.g., [12, Theorem 7]):

Theorem 8. The subword complexity function of T is 2n + 1.

We now turn to computing the exact number of square occurrences in the finite
Tribonacci words Yn.
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To solve this using our approach, we first generalize the problem to consider
any length-n prefix of Yn, and not simply the prefixes of length Tn.

The predicate represents the number of distinct squares in T[0..n − 1]:

Lds := {(n, i, j)T : (j ≥ 1) and (i+ 2j ≤ n) and T[i..i+ j − 1] = T[i+ j..i+ 2j − 1]

and ∀i′ < i T[i′..i′ + 2j − 1] �= T[i..i + 2j − 1]}.

This predicate asserts that T[i..i+2j−1] is a square occurring in T[0..n−1] and
that furthermore it is the first occurrence of this particular word in T[0..n − 1].

This represents the total number of occurrences of squares in T[0..n − 1]:

Ldos := {(n, i, j)T : (j ≥ 1) and (i+2j ≤ n) and T[i..i+ j − 1] = T[i+ j..i+2j − 1]}.

This predicate asserts that T[i..i + 2j − 1] is a square occurring in T[0..n − 1].
Unfortunately, applying our enumeration method to this suffers from the

same problem as before, so we rewrite it as

(j ≥ 1) ∧ (i + 2j ≤ n) ∧ ∀u ((u ≥ i) ∧ (u < i + j)) =⇒ T[u] = T[u + j]

When we compute the linear representation of the function counting the number
of such i and j, we get a linear representation of rank 63. Now we compute the
minimal polynomial of M0 which is (x − 1)2(x2 + x + 1)2(x3 − x2 − x − 1)2.
Solving a linear system in terms of the roots (or, more accurately, in terms of
the sequences 1, n, Tn, Tn−1, Tn−2, nTn, nTn−1, nTn−2) gives

Theorem 9. The total number of occurrences of squares in the Tribonacci word
Yn is

c(n) =
n

22
(9Tn − Tn−1 − 5Tn−2) +

1
44

(−117Tn + 30Tn−1 + 33Tn−2) + n − 7
4

for n ≥ 5.

In a similar way, we can count the occurrences of cubes in the finite Tribonacci
word Yn. Here we get a linear representation of rank 46. The minimal polynomial
for M0 is x4(x3 − x2 − x − 1)2(x2 + x + 1)2(x − 1)2. Using analysis exactly like
the square case, we easily find

Theorem 10. Let C(n) denote the number of cube occurrences in the Tribonacci
word Yn. Then for n ≥ 3 we have

C(n) =
1
44

(Tn + 2Tn−1 − 33Tn−2) +
n

22
(−6Tn + 8Tn−1 + 7Tn−2) +

n

6

− 1
4
[n ≡ 0 (mod 3)] +

1
12

[n ≡ 1 (mod 3)] − 7
12

[n ≡ 2 (mod 3)].

Here [P ] is Iverson notation, and equals 1 if P holds and 0 otherwise.
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5 Additional Results

Next, we encode the orders and positions of all cubes. We build a DFA accepting
the language

{(i, n)T : (n > 0) ∧ ∀j ((i ≤ j) ∧ (j < i + 2n)) =⇒ T[j] = T[j + n]}.

Theorem 11. The language

{(n, i)T : there is a cube of order n beginning at position i in T}
is accepted by the automaton in Fig. 3.

Fig. 3. Automaton accepting orders and positions of all cubes in T

We also computed an automaton accepting those pairs (p, n) such that there is
a factor of T having length n and period p, and n is the largest such length
corresponding to the period p. However, this automaton has 266 states, so we
do not give it here.

5.1 Palindromes

We now turn to a characterization of the palindromes in T. Once again it turns
out that the predicate we previously used in [13], namely,

∃i ∀j < n T[i + j] = T[i + n − 1 − j],

resulted in an intermediate NFA of 5711 states that we could not successfully
determinize.

Instead, we used two equivalent predicates. The first accepts n if there is an
even-length palindrome, of length 2n, centered at position i:

∃i ≥ n ∀j < n T[i + j] = T[i − j − 1].

The second accepts n if there is an odd-length palindrome, of length 2n + 1,
centered at position i:

∃i ≥ n ∀j (1 ≤ j ≤ n) =⇒ T[i + j] = T[i − j].

Theorem 12. There exist palindromes of every length ≥ 0 in T.

Proof. For the first predicate, our program outputs the automaton below. It
clearly accepts the Tribonacci representations for all n (Fig. 4).
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Fig. 4. Automaton accepting lengths of palindromes in T

The log of our program follows.

i >= n with 13 states, in 34ms

j < n with 13 states, in 8ms

i + j with 150 states, in 53ms

i - 1 with 7 states, in 155ms

i - 1 - j with 150 states, in 166ms

TR[i + j] = TR[i - 1 - j] with 664 states, in 723ms

j < n => TR[i + j] = TR[i - 1 - j] with 3312 states, in 669ms

Aj j < n => TR[i + j] = TR[i - 1 - j] with 24 states, in 5782274ms

i >= n & Aj j < n => TR[i + j] = TR[i - 1 - j] with 24 states, in 0ms

Ei i >= n & Aj j < n => TR[i + j] = TR[i - 1 - j] with 4 states, in 6ms

overall time: 5784088ms

The largest intermediate automaton had 918871 states. This was a fairly
significant computation, taking about two hours’ CPU time on a laptop.

We omit the details of the computation for the odd-length palindromes, which
are quite similar. ��
Remark 1. A. Glen has pointed out to us that this follows from the fact that T
is episturmian and hence rich, so a new palindrome is introduced at each new
position in T .

We could also characterize the positions of all nonempty palindromes. To
illustrate the idea, we generated an automaton accepting (i, n) such that
T[i − n..i + n − 1] is an (even-length) palindrome (Fig. 5).

Fig. 5. Automaton accepting orders and positions of all nonempty even-length palin-
dromes in T

The prefixes are factors of particular interest. Let us determine which prefixes
are palindromes:
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Theorem 13. The prefix T[0..n − 1] of length n is a palindrome if and only if
n = 0 or (n)T ∈ 1 + 11 + 10(010)∗(00 + 001 + 0011).

Proof. We use the predicate

∀i < n T[i] = T[n − 1 − i].

The automaton generated is given below (Fig. 6). ��

Fig. 6. Automaton accepting lengths of palindromes in T

Remark 2. A. Glen points out to us that the palindromic prefixes of T are
precisely those of the form Pal(w), where w is a finite prefix of the infinite word
(012)ω and Pal denotes the “iterated palindromic closure”; see, for example, [19,
Example 2.6]. She also points out that these lengths are precisely the integers
(Ti + Ti+2 − 3)/2 for i ≥ 1.

5.2 Quasiperiods

We now turn to quasiperiods. An infinite word a is said to be quasiperiodic if
there is some finite nonempty word x such that a can be completely “covered”
with translates of x. Here we study the stronger version of quasiperiodicity where
the first copy of x used must be aligned with the left edge of w and is not allowed
to “hang over”; these are called aligned covers in [10]. More precisely, for us
a = a0a1a2 · · · is quasiperiodic if there exists x such that for all i ≥ 0 there
exists j ≥ 0 with i − n < j ≤ i such that ajaj+1 · · · aj+n−1 = x, where n = |x|.
Such an x is called a quasiperiod. Note that the condition j ≥ 0 implies that, in
this interpretation, any quasiperiod must actually be a prefix of a.

Glen, Levé, and Richomme characterized the quasiperiods of a large class of
words, including the Tribonacci word [20, Theorem 4.19]. However, their char-
acterization did not explicitly give the lengths of the quasiperiods. We do that
in the following new result.

Theorem 14. A nonempty length-n prefix of T is a quasiperiod of T if and
only if n is accepted by the following automaton (Fig. 7):
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Fig. 7. Automaton accepting lengths of quasiperiods of the Tribonacci sequence

Proof. We write a predicate for the assertion that the length-n prefix is a qua-
siperiod:

∀i ≥ 0 ∃j with i − n < j ≤ i such that ∀t < n T[t] = T[j + t].

When we do this, we get the automaton above. These numbers are those i
for which Tn ≤ i ≤ Un for n ≥ 5, where U2 = 0, U3 = 1, U4 = 3, and
Un = Un−1 + Un−2 + Un−3 + 3 for n ≥ 5. ��

5.3 Unbordered Factors

Next we look at unbordered factors. A word y is said to be a border of x if y is
both a nonempty proper prefix and suffix of x. A word x is bordered if it has at
least one border. It is easy to see that if a word y is bordered iff it has a border
of length 
 with 0 < 
 ≤ |y|/2.

Theorem 15. There is an unbordered factor of length n of T if and only if (n)T

is accepted by the automaton given below (Fig. 8).

Fig. 8. Automaton accepting lengths of unbordered factors of the Tribonacci sequence

Proof. As in a previous paper [13] we can express the property of having an
unbordered factor of length n as follows

∃i ∀j, 1 ≤ j ≤ n/2, ∃t < j T[i + t] �= T[i + n − j + t].

However, this does not run to completion within the available space on our
prover. Instead, make the substitutions t′ = n − j and u = i + t. This gives the
predicate

∃i ∀t′, n/2 ≤ t′ < n, ∃u, (i ≤ u < i + n − t′) T[u] �= T[u + t′].

Here is the log:
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2 * t with 61 states, in 276ms
n <= 2 * t with 79 states, in 216ms
t < n with 13 states, in 3ms
n <= 2 * t & t < n with 83 states, in 9ms
u >= i with 13 states, in 7ms
i + n with 150 states, in 27ms
i + n - t with 1088 states, in 7365ms
u < i + n - t with 1486 states, in 6041ms
u >= i & u < i + n - t with 1540 states, in 275ms
u + t with 150 states, in 5ms
TR[u] != TR[u + t] with 102 states, in 22ms
u >= i & u < i + n - t & TR[u] != TR[u + t] with 7489 states, in 3364ms
Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 552 states, in 5246873ms
n <= 2 * t & t < n => Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 944 states, in 38ms
At n <= 2 * t & t < n => Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 47 states, in 1184ms
Ei At n <= 2 * t & t < n => Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 25 states, in 2ms
overall time: 5265707ms

5.4 Lyndon Words

Next, we turn to some results about Lyndon words. Recall that a nonempty
word x is a Lyndon word if it is lexicographically less than all of its nonempty
proper prefixes.1

Theorem 16. There is a factor of length n of T that is Lyndon if and only if
n is accepted by the automaton given below (Fig. 9).

Fig. 9. Automaton accepting lengths of Lyndon factors of the Tribonacci sequence

Proof. Here is a predicate specifying that there is a factor of length n that is
Lyndon:

∃i ∀j, 1 ≤ j < n, ∃t < n−j (∀u < t T[i+u] = T[i+j+u]) ∧ T[i+t] < T[i+j+t].

Unfortunately this predicate did not run to completion, so we substituted u′ :=
i + u to get

∃i ∀j, 1 ≤ j < n, ∃t < n−j (∀u′, i ≤ u′ < i+tT[u′] = T[u′+j]) ∧ T[i+t] < T[i+j+t]. 	

1 There is also a version where “prefixes” is replaced by “suffixes”.
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5.5 Critical Exponent

Recall from Sect. 3 that exp(w) = |w|/P , where P is the smallest period of w.
The critical exponent of an infinite word x is the supremum, over all factors w
of x, of exp(w).

Then Tan and Wen [33] proved that

Theorem 17. The critical exponent of T is ρ
.= 3.19148788395311874706, the

real zero of the polynomial 2x3 − 12x2 + 22x − 13.

A. Glen points out that this result can also be deduced from [26, Theorem 5.2].

Proof. Let x be any factor of exponent ≥ 3 in T. From Theorem 11 we know
that such x exist. Let n = |x| and p be the period, so that n/p ≥ 3. Then by
considering the first 3p symbols of x, which form a cube, we have by Theorem 11
that p = Tn. So it suffices to determine the largest n corresponding to every p
of the form Tn. We did this using the predicate (Fig. 10).

Fig. 10. Length n of longest factors having period p = Tn of Tribonacci sequence

From inspection of the automaton, we see that the maximum length of a
factor n = Uj having period p = Tj , j ≥ 2, is given by

Uj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, if j = 2;
5, if j = 3;
[110(100)i−10]T , if j = 3i + 1 ≥ 4;
[110(100)i−101]T , if j = 3i + 2 ≥ 5;
[110(100)i−1011]T , if j = 3i + 3 ≥ 6.

A tedious induction shows that Uj satisfies the linear recurrence Uj = Uj−1 +
Uj−2 + Uj−3 + 3 for j ≥ 5. Hence we can write Uj as a linear combination of
Tribonacci sequences and the constant sequence 1, and solving for the constants
we get

Uj =
5
2
Tj + Tj−1 +

1
2
Tj−2 − 3

2
for j ≥ 2.

The critical exponent of T is then supj≥1 Uj/Tj . Now

Uj/Tj =
5
2

+
Tj−1

Tj
+

Tj−2

2Tj
− 3

2Tj
=

5
2

+ α−1 +
1
2
α−2 + O(1.8−j).

Hence Uj/Tj tends to 5/2 + α−1 + 1
2α−2 = ρ. ��



Mechanical Proofs of Properties of the Tribonacci Word 187

We can also ask the same sort of questions about the initial critical exponent of
a word w, which is the supremum over the exponents of all prefixes of w.

Theorem 18. The initial critical exponent of T is ρ − 1.

Proof. We create an automaton Mice accepting the language

L = {(n, p)T : T[0..n − 1] has least period p}.

It is depicted in Fig. 11 below. An analysis similar to that we gave above for the
critical exponent gives the result. ��

Fig. 11. Automaton accepting least periods of prefixes of length n

Theorem 19. The only prefixes of the Tribonacci word that are powers are those
of length 2Tn for n ≥ 5.

Proof. The predicate

∃d < n (∀j < n − d T[j] = T[d + j]) ∧ (∀k < d T[k] = T[n − d + k])

asserts that the prefix T[0..n − 1] is a power. When we run this through our
program, the resulting automaton accepts 100010∗, which corresponds to Fn+1+
Fn−3 = 2Tn for n ≥ 5. ��

6 Abelian Properties

We can derive some results about the abelian properties of the Tribonacci word
T by proving the analogue of Theorem 63 of [13]:

Theorem 20. Let n be a non-negative integer and let e1e2 · · · ej be a Tribonacci
representation of n, possibly with leading zeros, with j ≥ 3. Then
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(a) |T[0..n − 1]|0 = [e1e2 · · · ej−1]T + ej.
(b) |T[0..n − 1]|1 = [e1e2 · · · ej−2]T + ej−1.
(c) |T[0..n − 1]|2 = [e1e2 · · · ej−3]T + ej−2.

Proof. By induction, in analogy with the proof of [13, Theorem 63]. ��
Recall that the Parikh vector ψ(x) of a word x over an ordered alphabet Σ =
{a1, a2, . . . , ak} is defined to be (|x|a1 , . . . , |x|ak

), the number of occurrences of
each letter in x. Recall that the abelian complexity function ρabw (n) counts the
number of distinct Parikh vectors of the length-n factors of an infinite word w.

Using Theorem 20 we get another proof of a recent result of Turek [34].

Corollary 1. The abelian complexity function of T is Tribonacci-regular.

Proof. First, from Theorem 20 there exists an automaton TAB such that
(n, i, j, k)T is accepted iff (i, j, k) = ψ(T[0..n − 1]). In fact, such an automa-
ton has 32 states.

Using this automaton, we can create a predicate P (n, i) such that the number
of i for which P (n, i) is true equals ρabT (n). For this we assert that i is the least
index at which we find an occurrence of the Parikh vector of T[i..i + n − 1]:

∀i′ < i ∃a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2

TAB(i+n, a0, a1, a2) ∧ TAB(i, b0, b1, b2) ∧ TAB(i′+n, c0, c1, c2) ∧ TAB(i′, d0, d1, d2) ∧
((a0−b0 �= c0−d0) ∨ (a1−b1 �= c1−d1) ∨ (a2−b2 �= c2−d2)). 	


Remark 3. Note that exactly the same proof would work for any word and
numeration system where the Parikh vector of prefixes of length n is “synchro-
nized” with n.

Remark 4. In principle we could mechanically compute the Tribonacci-regular
representation of the abelian complexity function using this technique, but with
our current implementation this is not computationally feasible.

Theorem 21. Any morphic image of the Tribonacci word is Tribonacci-
automatic.

Proof. In analogy with Corollary 69 of [13]. ��

7 Things We Could Not Do Yet

There are a number of things we have not succeeded in computing with our
prover because it ran out of space. These include

– Mirror invariance of T (that is, if x is a finite factor then so is xR);
– Counting the number of special factors of length n (although it can be deduced

from the subword complexity function);
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– Statistics about, e.g., lengths of squares, cubes, etc., in the “flipped” Tri-
bonacci sequence [31], the fixed point of 0 → 01, 1 → 20, 2 → 0;

– Recurrence properties of the Tribonacci word;
– Counting the number of distinct squares (not occurrences) in the finite Tri-

bonacci word Yn.
– Abelian complexity of the Tribonacci word.

In the future, an improved implementation may succeed in resolving these in
a mechanical fashion.
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24. Goč, D., Schaeffer, L., Shallit, J.: Subword complexity and k -synchronization. In:
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