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Università dell’Aquila, L’Aquila, Italy

Filippo.Mignosi@di.univaq.it

Abstract. An abelian square is the concatenation of two words that are
anagrams of one another. A word of length n can contain Θ(n2) distinct
factors that are abelian squares. We study infinite words such that the
number of abelian square factors of length n grows quadratically with n.

1 Introduction

A fundamental topic in Combinatorics on Words is the study of repetitions.
A repetition in a word is a factor that is formed by the concatenation of two
or more identical blocks. The simplest kind of repetition is a square, that is the
concatenation of two copies of the same block, like sciascia. A famous conjecture
of Fraenkel and Simpson [1] states that a word of length n contains less than
n distinct square factors. Experiments strongly suggest that the conjecture is
true, but a theoretical proof of the conjecture seems difficult. In [1], the authors
proved a bound of 2n. In [2], Ilie improved this bound to 2n − Θ(log n), but the
conjectured bound is still far away.

Among the different generalizations of the notion of repetition, a prominent
one is that of an abelian repetition. An abelian repetition in a word is a factor
that is formed by the concatenation of two or more blocks that have the same
number of occurrences of each letter in the alphabet. Of course, the simplest kind
of abelian repetition is an abelian square, that is therefore the concatenation of
a word with an anagram of itself, like viavai. Abelian squares were considered
in 1961 by Erdös [3], who conjectured that there exist infinite words avoiding
abelian squares (this conjecture has later been proved to be true, and the smallest
possible size of an alphabet for which it holds has been proved to be 4 [4]).

We focus on the maximum number of abelian squares that a word can contain.
Opposite to case of ordinary squares, a word of length n can contain Θ(n2)
distinct abelian square factors (see [5]). Since the total number of factors in a
word of length n is quadratic in n, this means that there exist words in which
a fixed proportion of all factors are abelian squares. So we turn our attention
to infinite words, and we wonder whether there exist infinite words such that
for every n any factor of length n contains, on average, a number of abelian
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squares that is quadratic in n. We call such an infinite word abelian-square rich.
Since a random binary word of length n contains Θ(n

√
n) distinct abelian square

factors [6], the existence of abelian-square rich words is not immediate. We also
introduce uniformly abelian-square rich words, that are infinite words such that
for every n, every factor of length n contains a quadratic number of abelian
squares.

As a first result, we prove that the famous Thue-Morse word is uniformly
abelian-square rich. Then we look at the class of Sturmian words, that are ape-
riodic infinite words with the lowest factor complexity. In this case, we prove
that if a Sturmian word is β-power free for some β ≥ 2 (that is, does not contain
repetitions of order β or higher), then it is uniformly abelian-square rich.

2 Notation and Background

Let Σ = {a1, a2, . . . , aσ} be an ordered σ-letter alphabet. Let Σ∗ stand for the
free monoid generated by Σ, whose elements are called words over Σ. The length
of a word w is denoted by |w|. The empty word, denoted by ε, is the unique word
of length zero and is the neutral element of Σ∗. We also define Σ+ = Σ∗ \ {ε}.

A prefix (resp. a suffix ) of a word w is any word u such that w = uz (resp. w =
zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a
suffix of a prefix) of w. The set of prefixes, suffixes and factors of the word w are
denoted by Pref(w), Suff(w) and Fact(w), respectively. From the definitions, we
have that ε is a prefix, a suffix and a factor of any word.

For a word w and a letter ai ∈ Σ, we let |w|ai
denote the number of occur-

rences of ai in w. The Parikh vector (sometimes called composition vector) of a
word w over Σ = {a1, a2, . . . , aσ} is the vector P (w) = (|w|a1 , |w|a2 , . . . , |w|aσ

).
An abelian k-power is a word of the form v1v2 · · · vk where all the vi’s have the
same Parikh vector. An abelian 2-power is called an abelian square.

An infinite word w over Σ is an infinite sequence of letters from Σ, that is,
a function w : N �→ Σ. Given an infinite word w, the recurrence index Rw(n) of
w is the least integer m (if any exists) such that every factor of w of length m
contains all factors of w of length n. If the recurrence index is defined for every
n, the infinite word w is called uniformly recurrent and the function Rw(n)
the recurrence function of w. A uniformly recurrent word w is called linearly
recurrent if the ratio Rw(n)/n is bounded. Given a linearly recurrent word w,
the real number rw = lim supn→∞ Rw(n)/n is called the recurrence quotient
of w.

The factor complexity function of an infinite word w is the integer func-
tion pw(n) defined by pw(n) = |Fact(w) ∩ Σn|. An infinite word w has linear
complexity if pw(n) = O(n).

A substitution over the alphabet Σ is a map τ : Σ �→ Σ+. Using the exten-
sion to words by concatenation, a substitution can be iterated. Note that for
every substitution τ and every n > 0, τn is again a substitution. Moreover, a
substitution τ over Σ can be naturally extended to a morphism from Σ∗ to Σ∗,
since for every u, v ∈ Σ∗, one has τ(uv) = τ(u)τ(v), provided that one defines
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τ(ε) = ε. A substitution τ is k-uniform if there exists an integer k ≥ 1 such that
for all a ∈ Σ, |τ(a)| = k. We say that a substitution is uniform if it is k-uniform
for some k ≥ 1. A substitution τ is primitive if there exists an integer n ≥ 1
such that for every a ∈ Σ, τn(a) contains every letter of Σ at least once. In this
paper, we will only consider primitive substitutions such that τ(a1) = a1v for
some non-empty word v. These substitutions always have a fixed point, which
is the infinite word w = limn→∞ τn(a1). Moreover, this fixed point is linearly
recurrent (see for example [7]) and therefore has linear complexity.

3 Abelian-square Rich Words

Kociumaka et al. [5] showed that a word of length n can contain a number of
distinct abelian square factors that is quadratic in n. We give here a proof of
this fact for the sake of completeness.

Proposition 1. A word of length n can contain Θ(n2) distinct abelian square
factors.

Proof. Consider the word wn = anbanban, of length 3n + 2. For every 0 ≤ i, j ≤
n such that i + j + n is even, the factor aibanbaj of w is an abelian square.
Since the number of possible choices for the pair (i, j) is quadratic in n, we are
done. 	

Motivated by the previous result, we wonder whether there exist infinite words
such that all their factors contain a number of abelian squares that is quadratic
in their length. But first, we relax this condition and consider words in which,
for every sufficiently large n, a factor of length n contains, on average, a number
of distinct abelian square factors that is quadratic in n.

Definition 1. An infinite word w is abelian-square rich if and only if there
exists a positive constant C such that for every n sufficiently large one has

1
pw(n)

∑

v∈Fact(w)∩Σn

{# abelian square factors of v} ≥ Cn2.

Notice that Christodoulakis et al. [6] proved that a binary word of length n
contains Θ(n

√
n) distinct abelian square factors on average, hence an infinite

binary random word is almost surely not abelian-square rich.
Given a finite or infinite word w, we let ASFw(n) denote the number of

abelian square factors of w of length n. Of course, ASFw(n) = 0 if n is odd, so
this quantity is significant only for even values of n.

The following lemma is a consequence of the definition of linearly recurrent
word.

Lemma 1. Let w be a linearly recurrent word. If there exists a constant C such
that for every n sufficiently large one has

∑
m≤n ASFw(m) ≥ Cn2, then w is

abelian-square rich.
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In an abelian-square rich word the average number of abelian squares in a factor
is quadratic in the length of the factor. A stronger condition is that every factor
contains a quadratic number of abelian squares. We thus introduce uniformly
abelian-square rich words.

Definition 2. An infinite word w is uniformly abelian-square rich if and only
if there exists a positive constant C such that for every n sufficiently large one
has

inf
v∈Fact(w)∩Σn

{# abelian square factors of v} ≥ Cn2.

Clearly, if a word is uniformly abelian-square rich, then it is also abelian-square
rich, but the converse is not always true. However, in the case of linearly recurrent
words, the two definitions are equivalent, as shown in the next lemma.

Lemma 2. If w is abelian-square rich and linearly recurrent, then it is uniformly
abelian-square rich.

Proof. Since w is linearly recurrent, there exists a positive integer K such that
every factor of w of length Kn contains all the factors of w of length n. Let v be
a factor of w of length n containing the largest number of abelian squares among
the factors of w of length n. Hence the number of abelian squares in v is at least
the average number of abelian squares in a factor of w of length n. Since w is
abelian square rich, the number of abelian squares in v is greater than or equal
to Cn2, for a positive constant C and n sufficiently large. Since v is contained
in any factor of w of length Kn, the number of abelian squares in any factor of
w of length Kn is greater than or equal to Cn2, whence the statement follows.

	

The rest of this section is devoted to prove that the Thue-Morse word and the
Sturmian words that do not contain arbitrarily large repetitions are uniformly
abelian-square rich.

3.1 The Thue-Morse Word

Let
t = 011010011001011010010110 · · ·

be the Thue-Morse word, i.e., the fixed point of the uniform substitution μ : 0 �→
01, 1 �→ 10. For every n ≥ 4, the factors of length n of t belong to two disjoint
sets: those that start only at even positions in t, and those that start only at odd
positions in t. This is a consequence of the fact that t is overlap-free, hence 0101
cannot be preceded by 1 nor followed by 0, and that 00 and 11 are not images
of letters, so they cannot appear at even positions.

Let p(n) be the factor complexity function of t. It is known [8, Proposi-
tion 4.3], that for every n ≥ 1 one has p(2n) = p(n) + p(n + 1) and p(2n + 1) =
2p(n + 1).
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The next lemma (proved in [9]) shows that the Thue-Morse word has the
property that for every length there are at least one third of the factors that
begin and end with the same letter, and at least one third of the factors that begin
and end with different letters. We define faa(n) (resp. fab(n)) as the number of
factors of t of length n that begin and end with the same letter (resp. with
different letters).

Lemma 3 ([9]). For every n ≥ 2, one has faa(n) ≥ p(n)/3 and fab(n) ≥
p(n)/3.

Since p(n) ≥ 3(n − 1) for every n [10, Corollary 4.5], we get the following result.

Corollary 1. For every n ≥ 2, one has faa(n) ≥ n − 1 and fab(n) ≥ n − 1.

Proposition 2. The Thue-Morse word t is uniformly abelian-square rich.

Proof. Let u be a factor of length n > 1 of t that begins and ends with the same
letter. Since the image of any even-length word under μ is an abelian square,
we have that μ2(u) is an abelian square factor of t of length 4n that begins and
ends with the same letter. Moreover, the word obtained from μ2(u) by removing
the first and the last letter is an abelian square factor of t of length 4n − 2.
So, by Corollary 1, t contains at least n − 1 abelian square factors of length 4n
and at least n − 1 abelian square factors of length 4n − 2. This implies that for
every even n the number of abelian square factors of t of length n is linear in n.
Hence, for every n the number of abelian square factors of t of length at most n
is quadratic in n. The statement then follows from Lemmas 1 and 2. 	


3.2 Sturmian Words

In this section we fix the alphabet Σ = {a,b}.
Recall that a (finite or infinite) word w over Σ is balanced if and only if for

any u, v factors of w of the same length, one has ||u|a − |v|a| ≤ 1.
We start with a simple lemma.

Lemma 4. Let w be a finite balanced word over Σ. Then for any k > 0, P (w) =
(0, 0) mod k if and only if w is an abelian k-power.

Proof. Let w be balanced and P (w) = (ks, kt), for a positive integer k and some
s, t ≥ 0. Then we can write w = v1v2 · · · vk where each vi has length s + t.
Now, each vi must have Parikh vector equal to (s, t) otherwise w would not
be balanced, whence the only if part of the statement follows. The if part is
straightforward. 	

A binary infinite word is Sturmian if and only if it is balanced and aperiodic.
Sturmian words are precisely the infinite words having n + 1 distinct factors
of length n for every n ≥ 0. There is a lot of other equivalent definitions of
Sturmian words. A classical reference on Sturmian words is [11, Chap. 2]. Let us
recall here the definition of Sturmian words as codings of a rotation.
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We fix the torus I = R/Z = [0, 1). Given α, β in I, if α > β, we use the
notation [α, β) for the interval [α, 1) ∪ [0, β). Recall that given a real number α,
�α is the greatest integer smaller than or equal to α, �α� is the smallest integer
greater than or equal to α, and {α} = α−�α is the fractional part of α. Notice
that {−α} = 1 − {α}.

Let α ∈ I be irrational, and ρ ∈ I. The Sturmian word sα,ρ (resp. s′
α,ρ) of

angle α and initial point ρ is the infinite word sα,ρ = a0a1a2 · · · defined by

an =
{
b if {ρ + nα} ∈ Ib,
a if {ρ + nα} ∈ Ia,

where Ib = [0, 1−α) and Ia = [1−α, 1) (resp. Ib = (0, 1−α] and Ia = (1−α, 1]).
In other words, take the unitary circle and consider a point initially in posi-

tion ρ. Then start rotating this point on the circle (clockwise) of an angle α,
2α, 3α, etc. For each rotation, take the letter a or b associated with the interval
within which the point falls. The infinite sequence obtained in this way is the
Sturmian word sα,ρ (or s′

α,ρ, depending on the choice of the two intervals). See
Fig. 1 for an illustration.

ρ

ρ + α

ρ + 2α

ρ + 3α

0
ρ + 4α

1 − α

Ia

Ib

Fig. 1. The rotation of angle α = ϕ − 1 ≈ 0.618 and initial point ρ = α generating the
Fibonacci word F = sϕ−1,ϕ−1 = abaababaabaabab · · · .

For example, if ϕ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio, the Sturmian
word

F = sϕ−1,ϕ−1 = abaababaabaababaababaabaababaabaab · · ·

is called the Fibonacci word :
A Sturmian word for which ρ = α, like the Fibonacci word, is called charac-

teristic. Note that for every α one has sα,0 = bsα,α and s′
α,0 = asα,α.

An equivalent way to see the coding of a rotation consists in fixing the point
and rotating the intervals. In this representation, the interval Ib = I0b is rotated
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at each step, so that after i rotations it is transformed into the interval I−i
b =

[{−iα}, {−(i + 1)α}), while I−i
a = I \ I−i

b .
This representation is convenient since one can read within it not only a

Sturmian word but also any of its factors. More precisely, for every positive
integer n, the factor of length n of sα,ρ starting at position j ≥ 0 is determined
by the value of {ρ + jα} only. Indeed, for every j and i, we have:

aj+i =
{
b if {ρ + jα} ∈ I−i

b ;
a if {ρ + jα} ∈ I−i

a .

As a consequence, we have that given a Sturmian word sα,ρ and a positive integer
n, the n + 1 different factors of sα,ρ of length n are completely determined by
the intervals I0b , I−1

b , . . . , I
−(n−1)
b , that is, only by the points {−iα}, 0 ≤ i < n.

In particular, they do not depend on ρ, so that the set of factors of sα,ρ is the
same as the set of factors of sα,ρ′ for any ρ and ρ′. Hence, from now on, we let
sα denote any Sturmian word of angle α.

If we arrange the n + 2 points 0, 1, {−α}, {−2α}, . . . , {−nα} in increasing
order, we determine a partition of I in n+1 subintervals, L0(n), L1(n), . . . , Ln(n).
Each of these subintervals is in bijection with a different factor of length n of
any Sturmian word of angle α (see Fig. 2).

54321

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

a

b

L0

L1

L2

L3

L4

L5

L6

{−α}

{−2α}

{−3α}

{−4α}

{−5α}

{−6α}

Fig. 2. The points 0, 1 and {−α}, {−2α}, {−3α}, {−4α}, {−5α}, {−6α}, arranged in
increasing order, define the intervals L0(6) ≈ [0, 0.146), L1(6) ≈ [0.146, 0.292), L2(6) ≈
[0.292, 0.382), L3(6) ≈ [0.382, 0.528), L4(6) ≈ [0.528, 0.764), L5(6) ≈ [0.764, 0.910),
L6(6) ≈ [0.910, 1). Each interval is associated with one of the factors of length 6 of the
Fibonacci word, respectively babaab, baabab, baabaa, ababaa, abaaba, aababa, aabaab.
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Recall that a factor of length n of a Sturmian word sα has a Parikh vec-
tor equal either to (�nα, n − �nα) (in which case it is called light) or to
(�nα�, n − �nα�) (in which case it is called heavy). The following proposition
relates the intervals Li(n) to the Parikh vectors of the factors of length n (see
[12,13]).

Proposition 3. Let sα be a Sturmian word of angle α, and n a positive integer.
Let ti be the factor of length n associated with the interval Li(n). Then ti is
heavy if Li(n) ⊂ [{−nα}, 1), while it is light if Li(n) ⊂ [0, {−nα}).

Example 1. Let α = ϕ − 1 ≈ 0.618 and n = 6. We have 6α ≈ 3.708, so that
{−6α} ≈ 0.292. The reader can see in Fig. 2 that the factors of length 6 corre-
sponding to intervals above (resp. below) {−6α} ≈ 0.292 all have Parikh vector
(4, 2) (resp. (3, 3)). That is, the intervals L0 and L1 are associated with light
factors (babaab, baabab), while the intervals L2 to L6 are associated with heavy
factors (baabaa, ababaa, abaaba, aababa, aabaab).

Observe that, by Lemma 4, every factor of a Sturmian word having even
length and containing an even number of a’s (or, equivalently, of b’s) is an
abelian square. The following proposition relates the abelian square factors of a
Sturmian word of angle α with the arithmetic properties of α.

Proposition 4. Let sα be a Sturmian word of angle α, and n a positive even
integer. Let ti be the factor of length n associated with the interval Li(n). Then
ti is an abelian square if and only if Li(n) ⊂ [{−nα}, 1) if �nα is even, or
Li(n) ⊂ [0, {−nα}) if �nα is odd.

Proof. By Proposition 3, ti is heavy if and only if Li(n) ⊂ [{−nα}, 1), while it
is light if and only if Li(n) ⊂ [0, {−nα}). If �nα is even, then every light factor
of length n contains an even number of a’s and hence is an abelian square, while
if �nα is odd, then every heavy factor of length n contains an even number of
a’s and hence is an abelian square, whence the statement follows. 	

Recall that given a finite or infinite word w, ASFw(n) denotes the number of
abelian square factors of w of length n.

Corollary 2. Let sα be a Sturmian word of angle α. For every positive even n,
let In = {{−iα} | 1 ≤ i ≤ n}. Then

ASFsα
(n) =

{
#{x ∈ In | x ≤ {−nα}} if �nα is even;
#{x ∈ In | x ≥ {−nα}} if �nα is odd.

Example 2. The factors of length 6 of the Fibonacci word F are, lexicogra-
phically ordered: aabaab, aababa, abaaba, ababaa, baabaa (heavy factors),
baabab, babaab (light factors). The light factors, whose number of a’s is
�6α = 3, are not abelian squares; the heavy factors, whose number of a’s is
�6α� = 4, are all abelian squares.
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We have I6 = {0.382, 0.764, 0.146, 0.528, 0.910, 0.292} (values are approxi-
mated) and 6α � 3.708, so �6α is odd. Thus, there are 5 elements in I6 that
are ≥ {−6α}, so by Corollary 2 there are 5 abelian square factors of length 6.

The factors of length 8 of the Fibonacci word are, lexicographically
ordered: aabaabab, aababaab, abaabaab, abaababa, ababaaba, baabaaba,
baababaa, babaabaa (heavy factors), babaabab (light factor). The light fac-
tor, whose number of a’s is �8α = 4, is an abelian square; the heavy fac-
tors, whose number of a’s is �8α� = 5, are not abelian squares. We have
I8 = {0.382, 0.764, 0.146, 0.528, 0.910, 0.292, 0.674, 0.056} (values are approxi-
mated) and 8α � 4.944, so �8α is even. Thus, there is only one element in
I8 that is ≤ {8α}, so by Corollary 2 there is only one abelian square factor of
length 8.

In Table 1 we report the first values of the sequence ASFF (n) for the
Fibonacci word F .

Table 1. The first values of the sequence ASFF (n) of the number of abelian square
factors of length n in the Fibonacci word F = sϕ−1,ϕ−1.

n 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

ASFF (n) 0 1 3 5 1 9 5 5 15 3 13 13 5 25 9 15 25 21 27

Recall that every irrational number α can be uniquely written as a (simple)
continued fraction as follows:

α = a0 +
1

a1 + 1
a2+...

(1)

where a0 = �α, and the infinite sequence (ai)i≥0 is called the sequence of
partial quotients of α. The continued fraction expansion of α is usually denoted
by its sequence of partial quotients as follows: α = [a0; a1, a2, . . .], and each
its finite truncation [a0; a1, a2, . . . , ak] is a rational number nk/mk called the
kth convergent to α. We say that an irrational α = [a0; a1, a2, . . .] has bounded
partial quotients if and only if the sequence (ai)i≥0 is bounded.

The development in continued fraction of α is deeply related to the exponent
of the factors of the Sturmian word sα. Recall that an infinite word w is said
to be β-power free, for some β ≥ 2, if for every factor v of w, the ratio between
the length of v and its minimal period is smaller than β. The second author [14]
proved that a Sturmian word of angle α is β-power free for some β ≥ 2 if and
only if α has bounded partial quotients.

Since the golden ratio ϕ is defined by the equation ϕ = 1 + 1/ϕ, we have
from Eq. 1 that ϕ = [1; 1, 1, 1, 1, . . .] and therefore ϕ − 1 = [0; 1, 1, 1, 1, . . .], so
the Fibonacci word is an example of β-power free Sturmian word (actually, it is
(2 + ϕ)-power free [15]).
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We are now proving that if α has bounded partial quotients, then the Stur-
mian word sα is abelian-square rich. For this, we will use a result on the dis-
crepancy of uniformly distributed modulo 1 sequences from [16]. To the best of
our knowledge, this is the first application of this result to the theory of Stur-
mian words, and we think that the correspondence we are now showing might
be useful for deriving other results on Sturmian words.

Let ω = (xn)n≥0 be a given sequence of real numbers. For a positive integer
N and a subset E of the torus I, we define A(E;N ;ω) as the number of terms
xn, 0 ≤ n ≤ N , for which {xn} ∈ E. If there is no risk of confusion, we will
write A(E;N) instead of A(E;N ;ω).

Definition 3. The sequence ω = (xn)n≥0 of real numbers is said to be uniformly
distributed modulo 1 if and only if for every pair a, b of real numbers with 0 ≤
a < b ≤ 1 we have

lim
N→∞

A([a, b);N ;ω)
N

= b − a.

Definition 4. Let x0, x1, . . . , xN be a finite sequence of real numbers. The
number

DN = DN (x0, x1, . . . , xN ) = sup
0≤γ<δ≤1

∣∣∣∣
A([γ, δ);N)

N
− (δ − γ)

∣∣∣∣

is called the discrepancy of the given sequence. For an infinite sequence ω of real
numbers the discrepancy DN (ω) is the discrepancy of the initial segment formed
by the first N + 1 terms of ω.

The two previous definitions are related by the following result.

Theorem 1 ([16]). The sequence ω is uniformly distributed modulo 1 if and
only if limN→∞ DN (ω) = 0.

An important class of uniformly distributed modulo 1 sequences is given by the
sequence (nα)n≥0 with α a given irrational number and n ∈ N. The discrepancy
of the sequence (nα) will depend on the finer arithmetical properties of α. In
particular, we have the following theorem, stating that if α has bounded partial
quotients, then its discrepancy has the least order of magnitude possible.

Theorem 2 ([16]). Suppose the irrational α = [a0; a1, . . .] has partial quotients
bounded by K. Then the discrepancy DN (ω) of ω = (nα) satisfies NDN (ω) =
O(log N). More exactly, we have

NDN (ω) ≤ 3 +
(

1
log ϕ

+
K

log(K + 1)

)
log N. (2)

We are now using previous definitions and results to prove that β-power free
Sturmian words are abelian-square rich.

Theorem 3. Let sα be a Sturmian word of angle α such that α has bounded
partial quotients. Then there exists a positive constant C such that for every n
sufficiently large one has

∑
m≤n ASFsα

(m) ≥ Cn2.

Proof. For every even n, let I ′
n = {{iα} | 1 ≤ i ≤ n}. By Corollary 2 and basic

arithmetical properties of the fractional part, we have:
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ASFsα
(n) =

{
#{x ∈ I ′

n | x ≥ {nα}} if �nα is even;
#{x ∈ I ′

n | x ≤ {nα}} if �nα is odd.

So:
∑

m≤n

ASFsα
(m) (3)

≥
∑

m≤n

#{{iα} | {iα} ≤ 1/2, i ≤ m, and {mα} ≤ 1/2, �mα even } (4)

≥
∑

m≤n

#{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ m, and {mα/2} ≤ 1/4} (5)

≥
∑

n/2≤m≤n

#{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ n/2, and {mα/2} ≤ 1/4} (6)

= #{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ n/2} ×
∑

n/2≤m≤n

{m | {mα/2} ≤ 1/4}(7)

where: (4) follows from (3) by Corollary 2; (5) follows from (4) because {mα/2} ≤
1/4 implies {mα} ≤ 1/2 and �mα is even if and only if {mα/2} ≤ 1/2; (6)
follows from (5) is obvious; finally (7) follows from (6) because the cardinality
of the first set is independent from the sum.

Now, α/2 has bounded partial quotients (since α has) and we can apply
Theorem 2 to evaluate the two factors of (7). So we have:

#{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ n/2}
= A([1/4, 1/2);n/2; (nα/2))
≥ (1/2 − 1/4)n/2 − C1 log n

= n/8 − C1 log n,

for n sufficiently large and a positive constant C1. We also have:
∑

n/2≤m≤n

{m | {mα/2} ≤ 1/4}

= A([0, 1/4);n; (nα/2)) − A([0, 1/4);n/2; (nα/2))
≥ n/4 − C2 log n − n/8 − C3 log n

= n/8 − C4 log n,

for n sufficiently large and positive constants C2, C3, C4. The product of the two
factors of (6) is therefore greater than a constant times n2, as required. 	

The recurrence quotient rα of a Sturmian word of angle α = [0; a1, a2, . . .] such
that α has bounded partial quotients verifies 2 + rα < lim sup ai < 3 + rα [17,
Proposition 5]. Moreover, Durand [18] proved that a Sturmian word of angle α is
linearly recurrent if and only if α has bounded partial quotients. Thus, we have
the following:
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Corollary 3. Let sα be a Sturmian word of angle α. If sα is β-power free, then
sα is uniformly abelian-square rich.

Proof. We known that sα is β-power free for some β ≥ 2 if and only if α has
bounded partial quotients if and only if sα is linearly recurrent. The statement
then follows from Theorem 3 and Lemmas 1 and 2. 	


4 Conclusions and Future Work

We proved that the Thue-Morse is uniformly abelian-square rich. We think that
the technique we used for the proof can be generalized to some extent, and could
be used, for example, to prove that a class of fixed points of uniform substitutions
are uniformly abelian-square rich.

We also proved that Sturmian words that are β-power free for some β ≥ 2 are
uniformly abelian-square rich. The proof we gave is based on a classical result on
the discrepancy of the uniformly distributed modulo 1 sequence (nα)n≥0, where
α is the slope of the Sturmian word. To the best of our knowledge, this is the
first application of this result to the theory of Sturmian words, and we think that
the correspondence we have shown might be useful for deriving other results on
Sturmian words.

The natural question that then arises is whether the hypothesis of power
freeness is necessary for a Sturmian word being (uniformly) abelian-square rich.
We leave open the question to determine whether sα is not uniformly abelian-
square rich nor abelian-square rich in the case when α has unbounded partial
quotients.

We mostly investigated binary words in this paper. We conjecture that binary
words have the largest number of abelian square factors. More precisely, we
propose the following conjecture.

Conjecture 1. If a word of length n contains k many distinct abelian square
factors, then there exists a binary word of length n containing at least k many
distinct abelian square factors.

A slightly different point of view from the one we considered in this paper
consists in identifying two abelian squares if they have the same Parikh vec-
tor. Two abelian squares are therefore called inequivalent if they have different
Parikh vectors [19]. Sturmian words only have a linear number of inequivalent
abelian squares. Nevertheless, a word of length n can contain Θ(n

√
n) inequiv-

alent abelian squares [20]. Computations support the following conjecture:

Conjecture 2 (see [5]). A word of length n contains O(n
√

n) inequivalent abelian
squares.
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