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Abstract. We answer an open question in the theory of degrees of infi-
nite sequences with respect to transducibilityby finite-state transducers.
An initial study of this partial order of degrees was carried out in [1],
but many basic questions remain unanswered.One of the central ques-
tions concerns the existence of atom degrees, other than the degree of
the ‘identity sequence’ 100101102103 · · · . A degree is called an ‘atom’ if
below it there is only the bottom degree 0, which consists of the ulti-
mately periodic sequences. We show that also the degree of the ‘squares
sequence’ 1001011041091016 · · · is an atom.

As the main tool for this result we characterise the transducts of
‘spiralling’ sequences and their degrees. We use this to show that every
transduct of a ‘polynomial sequence’ either is in 0 or can be transduced
back to a polynomial sequence for a polynomial of the same order.

1 Introduction

· · ·

q0

q1

q2

0|ε

1|ε
1|10|1

0|0

1|0

Fig. 1. A finite-state transducer
realising the sum of consecutive
bits modulo 2.

Finite-state transducers are ubiquitous in com-
puter science, but little is known about the
transducibility relation they induce on infinite
sequences. A finite-state transducer (FST) is
a deterministic finite automaton which reads
the input sequence letter by letter, in each
step producing an output word and changing
its state. An example of an FST is depicted
in Fig. 1, where we write ‘a|w’ along the tran-
sitions to indicate that the input letter is
a and the output word is w. For example,
it transduces the Thue-Morse sequence T =
0110100110010110 · · · to the period doubling
sequence P = 1011101010111011 · · · .

We are interested in transductions of infinite sequences. We say that a
sequence σ is transducible to a sequence τ , σ ≥ τ , if there exists an FST that
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transforms σ into τ . The relation ≥ is a preorder on the set ΣN of infinite
sequences, which induces an equivalence relation ≡ on ΣN, and a partial order
on the set of (FST) degrees, that is, the equivalence classes with respect to ≡.

So we have T ≥ P. Also the back transformation can be realised by an FST,
P ≥ T. Hence the sequences are equivalent, T ≡ P, and are in the same degree.

The bottom degree 0 is formed by the ultimately periodic sequences, that is,
all sequences of the form uvvv · · · for finite words u, v with v non-empty. Every
infinite sequence can be transduced to any ultimately periodic sequence.

There is a clear analogy between degrees induced by transducibility and the
recursion-theoretic degrees of unsolvability (Turing degrees). Hence many of the
problems settled for Turing degrees, predominantly in the 1940s, 50s and 60s,
can be asked again for FST degrees.

0 0

Fig. 2. Possible structures in
the hierarchy (no intermediate
points on the arrows).

Some initial results on FST degrees have
been obtained in [1]: the partial order of degrees
is not dense, not well-founded, there exist no
maximal degrees, and a set of degrees has an
upper bound if and only if the set is count-
able. The morphic degrees, and the computable
degrees form subhierarchies. Also shown in [1]
is the existence of an ‘atom’ degree, namely the
degree of 100101102103 · · · .1 A degree D �= 0 is
an atom if there exists no degree strictly between
D and the bottom degree 0. Thus every trans-
duct of a sequence in an atom degree D is either in 0 or still in D. The following
questions, which have been answered for Turing degrees, remain open for the
FST degrees:

(i) How many atom degrees exist?
(ii) When do two degrees have a supremum (or infimum)? In particular, are

there pairs of degrees without a supremum (infimum)?
(iii) Do the configurations displayed in Fig. 2 exist?
(iv) Can every finite distributive lattice be embedded in the hierarchy?

At the British Colloquium for Theoretical Computer Science 2014, Jeffrey
Shallit offered £20 for each of the following questions, see [2]:

(a) Is the degree of the Thue-Morse sequence an atom?
(b) Are there are atom degrees other than that of 100101102103 · · · ?
We answer (b) by showing that the degree of the ‘squares’ 100101104109 · · · is an
atom. The main tool that we use in the proof is a characterisation of transducts
of ‘spiralling’ sequences (Theorem 4.22), which has the following consequence
(Proposition 5.1): For all k ≥ 1 it holds that every transduct σ �∈ 0 of the
sequence 〈nk〉 = 100

k

101
k

102
k

103
k · · · has, in its turn, a transduct of the form

〈p(n)〉 = 10p(0)10p(1)10p(2)10p(3) · · · where p(n) is a polynomial also of degree k.
1 In [1] atom degrees were called ‘prime degrees’. We prefer the more general notion
of ‘atom’ because prime factorisation does not hold, see Theorem 4.24.
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This fact not only enables us to show that the degree of the squares sequence
is an atom, by using it for k = 2, but it also suggests that the analogous result
for the degree of 〈nk〉, for arbitrary k ≥ 1, has come within reach. For this it
would namely suffice to show, for polynomials p(n) of degree k, that 〈p(n)〉 can
be transduced back to 〈nk〉.

We obtain that there is a pair of non-zero degrees whose infimum is 0, namely
the pair of atom degrees of 〈n〉 and 〈n2〉. We moreover use Theorem 4.22 to show
that there is a non-atom degree that has no atom degree below it (Theorem 4.24).

2 Preliminaries

We use standard terminology and notation, see, e.g., [3]. Let Σ be an alphabet,
i.e., a finite non-empty set of symbols. We denote by Σ∗ the set of all finite
words over Σ, and by ε the empty word. We let Σ+ = Σ∗ \ {ε}. The set of
infinite sequences over Σ is ΣN = {σ | σ : N → Σ} with N = {0, 1, 2, . . .}, the
set of natural numbers. For u ∈ Σ∗, we let uω = uuu · · · . We define N<k =
{0, 1, . . . , k − 1}. We let Σ∞ = Σ∗ ∪ ΣN denote the set of all words over Σ. For
u ∈ Σ∗ and v ∈ Σ∞ we write u 
 v to denote that u is a prefix of v, that is,
when v = uv′ for some v′ ∈ Σ∞. For f : N → A and k ∈ N, the k-th shift of f is
defined by Sk(f)(n) = f(n + k), for all n ∈ N.

We use the notation a to denote a tuple a = 〈a0, a1, . . . , ak−1〉 where the ai

are elements from some set A; the length of a is k. Given a tuple a we use ai

for the element indexed i, that is, we start indexing from 0 onward. We use the
notation a′ to denote the rotated tuple a′ = 〈a1, . . . , ak−1, a0〉.

3 Finite-State Transducers and Degrees

For a thorough introduction to finite-state transducers, we refer to [3]. Here we
only consider complete pure sequential finite-state transducers, where for every
state q and input letter a there is precisely one successor state δ(q, a), and the
functions realised by these transducers preserve prefixes. We use 2 = {0, 1} both
for the input and the output alphabet.

Definition 3.1. A finite-state transducer (FST) is a tuple T = 〈Q, q0, δ, λ〉
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × 2 → Q
is the transition function, and λ : Q × 2 → 2∗ is the output function.

We homomorphically extend the transition function δ to Q × 2∗ → Q and
the output function λ to Q × 2∞ → 2∞ as follows:

δ(q, ε) = q δ(q, au) = δ(δ(q, a), u) (q ∈ Q, a ∈ 2, u ∈ 2∗)
λ(q, ε) = ε λ(q, au) = λ(q, a) · λ(δ(q, a), u) (q ∈ Q, a ∈ 2, u ∈ 2∞) .

The function T : 2∞ → 2∞ realised by the FST T is defined by T (u) = λ(q0, u),
for all u ∈ 2∞.
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Definition 3.2. Let T = 〈Q, q0, δ, λ〉 be an FST. A zero-loop in T is a sequence
of states q1, . . . , qn with n > 1 such that q1 = qn and qi �= qj for all i, j with
1 ≤ i < j < n and qi+1 = δ(qi, 0) for all 1 ≤ i < n. The length of the zero-loop
is n − 1. (Note that there can only be finitely many zero-loops in an FST.) Let
T = 〈Q, q0, δ, λ〉 be an FST. We define Z(T ) as the least common multiple of the
lengths of all zero-loops of T .

Let T be an FST with states Q. From any state q ∈ Q, after reading the word
0|Q|, the automaton must have entered a zero-loop (by the pigeonhole principle
there must be a state repetition). By definition of Z(T ), the length � of this
loop divides Z(T ); say Z(T ) = d� for some d ≥ 1. As a consequence, reading
0|Q|+i·Z(T ) yields the output λ(q, 0|Q|) followed by di copies of the output of the
zero-loop. This yields a pumping lemma for FSTs, see also [1, Lemma 29].

Lemma 3.3. Let T = 〈Q, q0, δ, λ〉 be an FST. For every q ∈ Q and n ≥ |Q|
there exist words p, c ∈ 2∗ such that for all i ∈ N, δ(q, 10n+i·Z(T )) = δ(q, 10n)
and λ(q, 10n+i·Z(T )) = pci .

Definition 3.4. Let T be an FST, and let σ, τ ∈ 2N be infinite sequences. We
say that T transduces σ to τ , and that τ is the T -transduct of σ, which we denote
by σ ≥T τ , whenever T (σ) = τ . We write σ ≥ τ , and call τ a transduct of σ, if
there exists an FST T such that σ ≥T τ .

Clearly, the relation ≥ is reflexive. By composition of FSTs (the so-called ‘wreath
product’), the relation ≥ is also transitive, see [1, Remark 9]. We write σ > τ
when σ ≥ τ but not τ ≥ σ. Whenever we have σ ≥ τ as well as a back-
transduction τ ≥ σ, we consider σ and τ to be equivalent.

Definition 3.5. We define the relation ≡ ⊆ 2N × 2N by ≡ = ≥ ∩ ≥−1. For a
sequence σ ∈ 2N the equivalence class [σ] = {τ | σ ≡ τ} is called the degree of σ.

A degree [σ] is an atom if [σ] �= 0 and there is no degree [τ ] such that
[σ] > [τ ] > 0.

4 Characterising Transducts of Spiralling Sequences

In this section we characterize the transducts of ‘spiralling’ sequences. Proofs
omitted in the text can be found in the extended version [4].

Definition 4.1. For a function f : N → N we define the sequence 〈f〉 ∈ 2N by

〈f〉 =
∞∏

i=0

10f(i) = 10f(0) 10f(1) 10f(2) · · · .

For a sequence 〈f〉, we often speak of the n-th block of 〈f〉 to refer to the
occurrence of the word 10f(n) in 〈f〉.
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In the sequel we often write 〈f(n)]〉 to denote the sequence 〈n �→ f(n)〉. We
note that there is a one-to-one correspondence between functions f : N → N,
and infinite sequences over the alphabet 2 that start with the letter 1 and that
contain infinitely many occurrences of the letter 1. Every degree is of the form
[〈f〉] for some f : N → N.

The following lemma is concerned with some basic operations on functions
that have no effect on the degree of 〈f〉 (multiplication with a constant, and
x- and y-shifts), and others by which we may go to a lower degree (taking
subsequences, merging blocks).

Lemma 4.2. Let f : N → N, and a, b ∈ N. It holds that:

(i) 〈af(n)〉 ≡ 〈f(n)〉, for a > 0,
(ii) 〈f(n + a)〉 ≡ 〈f(n)〉,
(iii) 〈f(n) + a〉 ≡ 〈f(n)〉,
(iv) 〈f(n)〉 ≥ 〈f(an)〉, for a > 0,
(v) 〈f(n)〉 ≥ 〈af(2n) + bf(2n + 1)〉.

Definition 4.3. Let A be a set. A function f : N → A is ultimately periodic if
for some integers n0 ≥ 0, p > 0 we have f(n + p) = f(n) for all n ≥ n0.

Definition 4.4. A function f : N → N is called spiralling if

(i) limn→∞ f(n) = ∞, and
(ii) for every m ≥ 1, the function n �→ f(n)modm is ultimately periodic.

Functions with the property (ii) in Definition 4.4 have been called ‘ultimately
periodic reducible’ by Siefkes [5] (quotation from [6]). Note that the identity func-
tion is spiralling. Furthermore scalar products, and pointwise sums and products
of spiralling functions are again spiralling. As a consequence also polynomials
aknk + ak−1n

k−1 + · · · + a0 are spiralling.
In the remainder of this section, we will characterise the transducts σ of

〈f〉 for spiralling f . We will show that if such a transduct σ is not ultimately
periodic, then it is equivalent to a sequence 〈g〉 for a spiralling function g, and
moreover, g can be obtained from f by a ‘weighted product’.

Lemma 4.5. Let f : N → N be a spiralling function. We have 〈f〉 ≥ σ if and
only if σ is of the form

σ = w ·
∞∏

i=0

m−1∏

j=0

pj c
ϕ(i,j)
j where ϕ(i, j) =

f(n0 + mi + j) − aj

z
, (1)

for some integers n0,m, aj ≥ 0 and z > 0, and finite words w, pj , cj ∈ 2∗

(0 ≤ j < m) such that ϕ(i, j) ∈ N for all i ∈ N and j ∈ N<m.

Proof. Assume 〈f〉 ≥ σ and let T = 〈Q, q0, δ, λ〉 be an FST that transduces 〈f〉
to σ. As f is spiralling, there exist �0, p ∈ N, p > 0 such that f(n) ≡ f(n + p)
(mod Z(T )) for every n ≥ �0. Moreover, as a consequence of limn→∞ f(n) = ∞,
there exists �1 ∈ N such that f(n) ≥ |Q| for every n ≥ �1.
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For n ∈ N, let qn ∈ Q be the state that the automaton T is in, before reading
the n-th occurrence of 1 in the sequence σ (i.e., the start of the block 10f(n)). By
the pigeonhole principle there exist n0,m ∈ N with max{�0, �1} < n0 and m > 0
such that m ≡ 0 (mod p) and qn0 = qn0+m. Then, for every i ∈ N and j ∈ N<m,
we have f(n0 + mi + j) ≥ |Q| and f(n0 + mi + j) ≡ f(n0 + j) (mod Z(t)). For
j ∈ N<m, we define aj = min{f(n0 + mi + j) | i ∈ N}. Note that aj ≥ |Q|.
Then for all i ∈ N and j ∈ N<m we have: f(n0 + mi + j) = aj + ϕ(i, j) · z
where ϕ(i, j) = (f(n0 + mi + j) − aj)/z and z = Z(T ). Using Lemma 3.3 it
follows by induction that qn0+n = qn0+m+n for every n ∈ N. Hence qn0+j =
qn0+mi+j for every i ∈ N and j ∈ N<m. Then, again by Lemma 3.3, for every
j ∈ N<m there exist words pj , cj ∈ 2∗ such that λ(qn0+mi+j , 10f(n0+mi+j)) =
λ(qn0+j , 10aj+ϕ(i,j)·Z(T )) = pjc

ϕ(i,j)
j for all i ∈ N. We conclude that

σ =
∞∏

n=0

λ(qn, 10f(n)) = w ·
∞∏

i=0

m−1∏

j=0

pj c
ϕ(i,j)
j ,

where w =
∏n0−1

n=0 λ(qn, 10f(n)).
For the other direction, we refer to the extended version [4]. ��

Example 4.6. We illustrate the influence of both the zero-loops of the automaton
as well as the growth of the block lengths of the input sequence, on the size m of
the innermost product of Lemma 4.5. Consider the FST T = 〈{q0, q1, q2}, q0, δ, λ〉
in Fig. 3 on the left, and the sequence 〈⌊n

2

⌋〉 = 111010102102103103104104 · · · ,
where �x� = max{n ∈ N | n ≤ x}. We investigate the sequence r0a0r1a1r2 · · · of
states r of T alternated with letters a from the input sequence, in such a way
that T is in state rn after having read the word a0a1 · · · an−1,

q01q21q11q00q11q00q11q00q10q21q10q20q01q20q00q10q21q10q20q00 · · ·

The two underlined occurrences of q0 indicate a repetition of states in combina-
tion with a repetition of the block size modulo Z(T ) = 3. The number of blocks
between these occurrences, forming the repetition, is m = 6. Actually, following
the proof of Lemma 4.5 precisely, the algorithm would instead select the repe-
tition starting from the second underlined occurrence of q0. The reason is that

q0

q1

q2

0|00

1|1

1|1

0|0
1

0|10

1|1
q0 q1

1|1

0|01
1|1

0|10

Fig. 3. Transducers used in Examples 4.6 and 4.8.
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in general, when reading a block 100 · · · 0, only after reading |Q| zeros, we are
guaranteed to be in a zero-loop. For this FST T , all states are on a zero-loop,
and so we enter the loop immediately.

From Lemma 4.5 it follows that FSTs can only transform the length of blocks
by linear functions (and merge blocks). As a consequence, FSTs typically cannot
slow down the growth rate of blocks in spiralling sequences by more than a linear
factor. This yields the following simple criterion for non-reducibility.

Lemma 4.7. Let f, g : N → N be such that f is spiralling, g is not ultimately
periodic and g ∈ o(f), i.e., for every a ∈ N there is n0 ∈ N such that for all
n ≥ n0 it holds that f(n) ≥ ag(n). Then 〈f〉 �≥ 〈g〉.
Note that the reverse 〈g〉 �≥ 〈f〉 does not follow. For example, we have 〈4n〉 �≥
〈2n〉, but 〈2n〉 ≥ 〈4n〉.

There can be several ways to factor the transduct σ in the statement of
Lemma 4.5, as shown by the following example.

Example 4.8. Consider the FST T = 〈{q0, q1}, q0, δ, λ〉 in Fig. 3 on the right,
and the sequence 〈n〉 = 110102103104 · · · . The T -transduct of 〈n〉 is T (〈n〉) =
1 1(01) 1(10)2 1(01)3 1(10)4 · · · . Using the double product (1) of Lemma 4.5 we
have w = ε, n0 = 0, m = 2, p0 = p1 = 1, c0 = 01, c1 = 10, a0 = a1 = 0, and
z = Z(T ) = 1. Thus, ϕ(i, j) = 2i + j. Note that cω

1 = p0c
ω
0 , and so we can merge

the factors of the innermost product, decreasing its size to m = 1. Then T (〈n〉) =
1101 1101(0101) 1101(0101)2 1101(0101)3 · · · , that is, in the double product (1),
T (〈n〉) can be factored by choosing m = 1, p0 = 1101, and c0 = 0101.

Whenever we have the situation cω
j = pj+1c

ω
j+1 in the representation (1) for

some j ∈ N<m (addition is modulo m), we speak of a ‘transition ambiguity’.
We will eliminate such ambiguities by merging factors of the innermost product,
as in Lemma 4.10. In general, this merging may involve weighted sums in the
exponents. The following lemma is folklore, see for instance [7].

Lemma 4.9. If a sequence σ is periodic with period lengths k and �, then it is
periodic with period length gcd(k, �).

Lemma 4.10. Let u, v, w ∈ 2∗ be finite words with u,w �= ε such that uω =
vwω. Then there exists a word x ∈ 2∗ and a, b ∈ N such that umvwn = vxam+bn

for all m,n ∈ N.

Our goal is to obtain a simple characterisation of the degrees of the transducts σ
of spiralling sequences 〈f〉. To this end, we transform the transduct σ into a
sequence σ′ by replacing in the double product of Lemma 4.5 the displayed
occurrence of pj by 1 and of cj by 0 for every j ∈ N<m. To guarantee that
this transformation does not change the degree, that is σ′ ≡ σ, we first have to
resolve transition ambiguities.

For the back transformation blocks 10ϕ(i,j) have to be replaced by pjc
ϕ(i,j)
j ,

an operation that is easily realised by an FST. If the product does not contain
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transition ambiguities, then also the transformation from σ into σ′ can be realised
by an FST and thus does not change the degree of the sequence, hence σ ≡ σ′.
If there exists j ∈ N<m with cω

j = pj+1c
ω
j+1, then, by this transformation of σ

into σ′, one possibly leaves the degree of σ, i.e., σ > σ′. This is because for large
enough i ∈ N, an FST cannot recognise where a block pjc

ϕ(i,j)
j ends and where

the next block pj+1c
ϕ(i,j+1)
j+1 starts. This might make it impossible to realise the

transformation by an FST, as then the FST cannot replace pj+1 by 1.

Definition 4.11. A weight is a tuple 〈a0, . . . , ak−1, b〉 ∈ Q
k+1 of rational num-

bers such that a0, . . . , ak−1 ≥ 0. Given a weight α = 〈a0, . . . , ak−1, b〉 and a
function f : N → N we define α · f ∈ Q by

α · f = a0f(0) + a1f(1) + · · · + ak−1f(k − 1) + b .

The weight α is called constant when aj = 0 for all j ∈ N<k. For a tuple of
weights α = 〈α0, . . . , αm−1〉 we define its rotation by α′ = 〈α1, . . . , αm−1, α0〉.

For functions f : N → N, and tuples α = 〈α0, α1, . . . , αm−1〉 of weights, the
weighted product of α and f is a function α ⊗ f : N → Q that is defined by
induction on n through the following scheme of equations:

(α ⊗ f)(0) = α0 · f

(α ⊗ f)(n + 1) = (α′ ⊗ S |α0|−1(f))(n) (n ∈ N)

where |αi| is the length of the tuple αi, and Sk(f) is the k-th shift of f . A
weighted product α ⊗ f is called natural if (α ⊗ f)(n) ∈ N for all n ∈ N.

In what follows, all weighted products α ⊗ f that we consider are assumed
to be natural.

Example 4.12. Let f(n) = n for all n ∈ N, and α = 〈α1, α2〉 with α1 =
〈1, 2, 3, 4〉, α2 = 〈0, 1, 1〉. Interpreting the functions f and α ⊗ f as sequences,
the computation of α ⊗ f can be visualised as follows:

f · · ·0 1 2 3 4 5 6 7 8 9

α ⊗ f · · ·12 5 42 10

×1 ×2 ×3
+4

×0 ×1
+1

×1 ×2 ×3
+4

×0 ×1
+1

Thus, for n = 0, 1, 2, 3 . . . , (α ⊗ f)(n) takes the values 12, 5, 42, 10, . . . .

Lemma 4.13. Let α be an m-tuple of weights (m > 0), and let f : N → N. For
all n ∈ N we have (α ⊗ f)(n) = αr · St(f) where q, r ∈ N with r < m are such
that n = qm + r, and t = q · ∑m−1

j=0 (|αj | − 1) +
∑r−1

j=0(|αj | − 1).

Lemma 4.14. Let f : N → N. If 〈α ⊗ f〉 �∈ 0, then there exists i ∈ N<|α| such
that αi is a non-constant weight.

Lemma 4.15. Let f : N → N be spiralling, and let α be a tuple of non-constant
weights. Then α ⊗ f is spiralling.
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We will show that weighted products give rise to a characterisation, up to
equivalence ≡, of functions realised by FSTs on the set of spiralling sequences,
see Theorem 4.22.

Lemma 4.16. Let f : N → N, and α a tuple of weights. If α ⊗ f is a natural
weighted product, then we have 〈f〉 ≥ 〈α ⊗ f〉.
Proof. Let m = |α|, ki = |αi|−1, and αi = 〈ai,0/di, ai,1/di, . . . , ai,ki−1/di, bi/di〉
with ai,j , di ∈ N and bi ∈ Z for all i ∈ N<m and j ∈ N<ki

(clearly weights can
always be brought into this form).

We define T = 〈Q, q0m−1,km−1−1, δ, λ〉 consisting of states qh
i,j for every

i ∈ N<m, j ∈ N<ki
, and h such that min(0, bi) ≤ h < di. The superscript

h (min(0, b)i ≤ h < di) in a state qh
i,j indicates the amount h/di of zeros

that still has to be consumed/produced. The transition and output functions
〈δ, λ〉 : Q × 2 → Q × 2∗ of T are defined as follows; let id≥0 : Z → N be defined
by id≥0(z) = z if z ≥ 0 and id≥0(z) = 0 otherwise.

〈δ, λ〉(qh
i,j , 0) = 〈qh′

i,j , 0
e〉 where e = �id≥0(h + ai,j)/di� , h′ = h + ai,j − edi

〈δ, λ〉(qh
i,j , 1) = 〈qh

i,j+1, ε〉 (j < ki − 1)

〈δ, λ〉(qh
i,ki−1, 1) = 〈qh′

i′,0, 10e〉 where e = �id≥0(bi′)/di′� , h′ = bi′ − edi′ ,

where i′ = i + 1modm. See [4] for the proof of 〈f〉 ≥T 〈α ⊗ f〉. ��
Definition 4.17. Let f : N → N be a function, and, for some m > 0, let α
be an m-tuple of weights such that α ⊗ f is a natural weighted product. Let p
and c be m-tuples of finite words. We define the sequence Φ(f,α,p, c) ∈ 2N by

Φ(f,α,p, c) =
∞∏

i=0

m−1∏

j=0

pj c
ϕ(i,j)
j where ϕ(i, j) = (α ⊗ f)(mi + j) .

Note that 〈f〉 can also be cast into this notation: 〈f〉 = Φ(f, 〈〈1, 0〉〉, 〈1〉, 〈0〉).
For the following lemma we recall that for a tuple a = 〈a0, a1, . . . , ak−1〉, we
write a′ for the rotation 〈a1, . . . , ak−1, a0〉.
Lemma 4.18. Let f , α, p, c be as in Definition 4.17. We have Φ(f,α,p, c) =
p0c

α0·f
0 · Φ(S |α0|−1(f),α′,p′, c′).

Lemma 4.19. Let f : N → N be a spiralling function, and let σ ∈ 2N be such
that 〈f〉 ≥ σ and σ �∈ 0. Then there exist n0,m ∈ N, a word w ∈ 2∗, a tuple of
weights α, and tuples of words p and c with |α| = |p| = |c| = m > 0 such that:

(i) σ = w · Φ(Sn0(f),α,p, c),
(ii) cω

j �= pj+1c
ω
j+1 for every j with 0 ≤ j < m − 1, and cω

m−1 �= p0c
ω
0 , and

(iii) cj �= ε, and αj is non-constant, for all j ∈ N<m.
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Proof. By Lemma 4.5, there exist n0,m, aj , z ∈ N (j ∈ N<m), w ∈ 2∗, and
p, c ∈ (2∗)m such that σ = w · Φ(Sn0(f),α,p, c), where, for j ∈ N<m, αj is
defined by αj = 〈 1z ,−aj

z 〉.
We now repeatedly alter the tuples α, p, c until conditions (ii) and (iii) are

fulfilled while condition (i) is upheld. For this we let n0 ∈ N, w ∈ 2∗, m ∈ N, α,
p, and c with |α| = |p| = |c| = m be arbitrary such that (i) holds.

First note that, if m = 1 and condition (ii) or (iii) are violated, then σ ∈ 0,
contradicting the assumption.

In case (ii) does not hold, consider the smallest h ∈ N<m such that cω
h =

ph+1c
ω
h+1 where addition in the subscripts is computed modulo m. We assume

h < m − 1; the case h = m − 1 proceeds analogously, using Lemma 4.18. For
i ∈ N and j ∈ N<m, we let ϕ(i, j) = (α ⊗ Sn0(f))(mi + j). By Lemma 4.10
there are integers a, b ≥ 0 and a word x ∈ 2∗ such that c

ϕ(i,h)
h ph+1c

ϕ(i,h+1)
h+1 =

ph+1x
aϕ(i,h)+bϕ(i,h+1) (�). We now define a tuple of weights β, and tuples of

words q and d, with |β| = |q| = |d| = m − 1, as follows: Let j ∈ N<m−1. If
j < h, then we define qj = pj , dj = cj , and βj = αj . If j > h, we define qj = pj+1,
dj = cj+1, and βj = αj+1. If j = h, we define qj = phph+1, dj = x, and we let
the weight βj be defined as follows: For αh = 〈r0, r1, . . . , rk−1, e〉 and αh+1 =
〈r′

0, r
′
1, . . . , r

′
�−1, e

′〉, let βh = 〈ar0, ar1, . . . , ark−1, br
′
0, br

′
1, . . . , br

′
�−1, ae + be′〉.

By definition of q, d, and β, to verify Φ(Sn0(f),α,p, c) = Φ(Sn0(f),β, q,d), it
suffices to check, for all i ∈ N, phc

ϕ(i,h)
h ph+1c

ϕ(i,h+1)
h+1 = qhd

ϕ′(i,h)
h ; here, for i ∈ N

and j ∈ {0, . . . , m−2}, ϕ′(i, j) is defined by ϕ′(i, j) = (β⊗Sn0(f))((m−1)i+j).
Fix i ∈ N. By Lemma 4.13 we have ϕ(i, h) = αh · St(f) and ϕ(i, h + 1) = αh+1 ·
St+k(f), for some t ∈ N. Also we have ϕ′(i, h) = βh · St′

(f) for some t′ ∈ N. By
definition of β we obtain t′ = t. It follows that ϕ′(i, h) = a ·ϕ(i, h)+b ·ϕ(i, h+1),
and we conclude by (�). Repeat the procedure with β, q, d.

For the case (iii) that does not hold we refer to the extended version [4]. ��
For the proof of the following theorem we allow for a more liberal version of
transducers. Instead of input letters along the edges we now allow input words.

Transitions of these transducers are of the form q
〈u,v〉|w−→ q′. The idea is that

this transition is taken if the automaton is in state q and the input word is of
the form uvτ . Then the automaton produces output w and switches to state q′,
consuming u and continuing with vτ .

Definition 4.20. An FST with look-ahead (FST�) is a tuple T = 〈Q, q0,D, δ, λ〉
where Q is a finite set of states, q0 ∈ Q is the initial state, the finite set D ⊆
Q × 2+ × 2∗ is the input domain of the transition function δ : D → Q, and the
output function λ : D → 2∗, satisfying the following condition: for all q ∈ Q,
u1, u2, v1, v2 ∈ 2∗ if u1u2 is a prefix of v1v2 and 〈q, u1, u2〉 ∈ D and 〈q, v1, v2〉 ∈
D, then u1 = v1 and u2 = v2.

We lift δ to a partial function δ� : Q × 2∗ ⇀ Q by δ�(q, ε) = q and

δ�(q, u1u2v) = δ�(δ(q, u1, u2), u2v) (〈q, u1, u2〉 ∈ D, v ∈ 2∗) .
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Similarly, we lift λ to a partial function λ� : Q × 2∞ ⇀ 2∞ by λ�(q, ε) = ε and

λ�(q, u1u2v) = λ(q, u1, u2) · λ�(δ(q, u1, u2), u2v) (〈q, u1, u2〉 ∈ D, v ∈ 2∞) .

The partial function T : 2∞ ⇀ 2∞ realised by the FST� T is defined by T (u) =
λ�(q0, u), for all u ∈ 2∞.

These transducers can be simulated by FSTs.

Lemma 4.21. For every FST� T there is an FST T ′ such that for all u ∈ 2∞,
T ′(u) = T (u) whenever T (u) is defined.

Theorem 4.22. Let f : N → N be spiralling, and σ ∈ 2N. Then 〈f〉 ≥ σ if and
only if σ ≡ 〈α ⊗ Sn0(f)〉 for some integer n0 ≥ 0, and a tuple of weights α.

Proof. One direction is by Lemma 4.16. For the other, assume 〈f〉 ≥ σ. If σ ∈ 0,
then σ ≡ 〈〈〈0, 0〉〉 ⊗ S0(f)〉 = 〈n �→ 0〉 = 1ω. Thus let σ �∈ 0. By Lemma 4.19
there exist n1,m ∈ N, w ∈ 2∗, α, p and c with |α| = |p| = |c| = m > 0
such that σ = w · Φ(Sn1(f),α,p, c), and fulfilling the conditions (ii) and (iii) of
Lemma 4.19. We abbreviate g = α ⊗ Sn1(f). We will show that σ ≡ 〈g〉.

By Lemma 4.15 we have that the function g is spiralling too.
By conditions (ii) and (iii), for every j ∈ N<m, there exists tj ∈ N such that

cω
j (tj) �= (pj+1c

ω
j+1)(tj) (where addition is modulo m); let tj be minimal with

this property.
For j ∈ N<m, let �j , �

′
j ∈ N be minimal such that |cjc

�j
j | > tj and |pj+1c

�′
j

j+1| >
tj . Then by minimality of tj and �j , we obtain

(i) cjc
�j−1
j 
 pj+1c

�′
j

j+1τ for every τ ∈ 2N, and

(ii) cjc
�j
j �
 pj+1c

�′
j

j+1τ for every τ ∈ 2N

(with again addition computed modulo m). From (i) we moreover obtain

(iii) cjc
�j
j 
 cn

j pj+1c
�′
j

j+1τ for every n > 0 and τ ∈ 2N.

Next, we take a suffix σ′ of σ such that every occurrence of a block pj+1c
ϕ(i,j)
j+1

has as a prefix pj+1c
�j
j+1. Let n2 ∈ N be such that for g′ = Sn2·m(g) we have that

g′(n) > max{tj | j ∈ N<m} for all n ∈ N; the existence of such an n2 follows
from g being spiralling. To prove σ ≡ 〈g〉 it suffices to show σ′ ≡ 〈g′〉 where

σ′ =
∞∏

i=n2

m−1∏

j=0

pjc
ϕ(i,j)
j =

∞∏

i=0

m−1∏

j=0

pjc
ϕ′(i,j)
j 〈g′〉 =

∞∏

i=0

m−1∏

j=0

10ϕ′(i,j)

where ϕ(i, j) = g(mi + j), and ϕ′(i, j) = g′(mi + j). Note that by the choice of
n2, we have ϕ′(i, j + 1) ≥ �′

j for all i ∈ N and j ∈ N<m.
It is clear how to construct an FST that transduces 〈g′〉 to σ′. For σ′ ≥ 〈g′〉,

we define a FST� T = 〈Q, qm−1,D, δ, λ〉, as follows, and apply Lemma 4.21. Let
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Q = {qj | j ∈ N<m} and D = {〈qj , cj , c
�j
j 〉 | j ∈ N<m} ∪ {〈qj , pj+1, c

�′
j

j+1〉 | j ∈
N<m}, and define δ, λ by

〈δ, λ〉(qj , cj , c
�j
j ) = 〈qj , 0〉 〈δ, λ〉(qj , pj+1, c

�′
j

j+1) = 〈qj+1, 1〉 .

We now argue that σ′ ≥T 〈g′〉. This follows from the following facts:

(a) λ�(qj , pj+1c
ϕ′(i,j+1)τ) = 1 · λ�(qj+1, c

ϕ′(i,j+1)τ),
(b) λ�(qj , c

n
j pj+1c

ϕ′(i,j+1)τ) = 0 · λ�(qj+1, c
ϕ′(i,j+1)τ) for all n > 0, since by

item (iii) we have cjc
�j
j 
 cn

j pj+1c
ϕ′(i,j+1)τ . ��

Lemma 4.23. Let f : N → N be spiralling, and σ �∈ 0 with 〈f〉 ≥ σ. Then we
have σ ≥ 〈〈β〉 ⊗ Sn0(f)〉 for some integer n0 ≥ 0, and a non-constant weight β.

Theorem 4.24. There is a non-atom, non-zero degree [σ] that has no atom
degree below it. Hence, non-zero transducts of σ start an infinite descend-
ing chain.

Proof. We define the function f : N → N by f(n) = 2n. We show that the degree
[〈f〉] has no atom degree below it. Let σ �∈ 0 with 〈f〉 ≥ σ. By Lemma 4.23
there is a non-constant weight β = 〈a0, a1, . . . , ak−1, b〉 such that σ ≥ 〈g〉 where
g = 〈β〉 ⊗ Sn0(f). Since f(n) = 2n it follows that

g(n) = b +
k−1∑

i=0

ai2n0+nk+i = b + 2nk
k−1∑

i=0

ai2n0+i = (g(0) − b) · 2nk + b .

By Lemma 4.16 we have that 〈g〉 = 〈(g(0) − b) · 2nk + b〉 ≡ 〈2nk〉. Thus we have
σ ≥ 〈2nk〉. Also 〈2nk〉 ≥ 〈22nk〉 holds by Lemma 4.2 (iv), and by Lemma 4.7 we
conclude 〈22nk〉 �≥ 〈2nk〉. ��

5 Squares

In [1] it is shown that [〈n〉] is an atom degree. One of the main questions of [1]
is whether there exist other atom degrees. Here we show that also [〈n2〉] is an
atom degree. The main tool is Theorem 4.22, the characterisation of transducts
of spiralling sequences, which implies the following proposition.

Proposition 5.1. Let p(n) be a polynomial of degree k with non-negative integer
coefficients, and let σ be a transduct of 〈p(n)〉 with σ /∈ 0. Then σ ≥ 〈q(n)〉 for
some polynomial q(n) of degree k with non-negative integer coefficients.

Proof. By Lemma 4.23 it follows that σ ≥ 〈〈α〉⊗Sn0(p)〉 for some integer n0 ≥ 0,
and a non-constant weight α = 〈a0, . . . , ak−1, b〉. Let h ∈ N<k be such that
ah �= 0. Then we find (〈α〉 ⊗ Sn0(p))(n) = b +

∑k−1
j=0 aj · p(n0 + nk + j), which

can easily be recognised to be a polynomial q(n) of degree k. ��
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Theorem 5.2. The degree [〈n2〉] is an atom.

Proof. Let σ ∈ 2N be a transduct of 〈n2〉 such that σ is not ultimately periodic.
By Proposition 5.1 there are integers a > 0, b, c ≥ 0 such that σ ≥ 〈an2+bn+c〉.
We first assume 2a ≥ b. Abbreviate f(n) = an2 +(2a+b)n. The roman numbers
below refer to Lemma 4.2. We derive

〈an2 + bn + c〉 ≡ 〈an2 + bn〉 by (iii)

≡ 〈a(n + 1)2 + b(n + 1)〉 by (ii)
≡ 〈f(n)〉 by (iii)
≥ 〈b(f(2n)) + (2a − b)(f(2n + 1))〉 by (v)

≡ 〈8a2n2 + 16a2n〉 ≡ 〈8a2(n + 1)2〉 by (iii)

≡ 〈(n + 1)2〉 by (i)

≡ 〈n2〉 by (ii) .

If 2a < b, choose d such that 2ad ≥ b. Then we have 〈an2+bn〉 ≥ 〈ad2n2+bdn〉
by (iv), and we reason as above for 〈a′n2 + b′n〉 with a′ = ad2 and b′ = bd.

This shows that every non-ultimately periodic transduct of 〈n2〉 can be trans-
duced back to 〈n2〉. Hence, the degree of 〈n2〉 is an atom. ��
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