
Florin Manea
Dirk Nowotka (Eds.)

 123

LN
CS

 9
30

4

10th International Conference, WORDS 2015
Kiel, Germany, September 14–17, 2015
Proceedings

Combinatorics
on Words

Lecture Notes in Computer Science 9304

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Florin Manea • Dirk Nowotka (Eds.)

Combinatorics
on Words
10th International Conference, WORDS 2015
Kiel, Germany, September 14–17, 2015
Proceedings

123

Editors
Florin Manea
Universität Kiel
Kiel
Germany

Dirk Nowotka
Universität Kiel
Kiel
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23659-9 ISBN 978-3-319-23660-5 (eBook)
DOI 10.1007/978-3-319-23660-5

Library of Congress Control Number: 2015947798

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the proceedings of the 10th International Conference on
WORDS, which took place at Kiel University, Germany, September 14-17, 2015.
WORDS is the main conference series devoted to the mathematical theory of words,
and it takes place every two years. The first conference in the series was organized in
1997 in Rouen, France, with the events that followed taking place in Rouen, Palermo,
Turku, Montreal, Marseille, Salerno, Prague, and Turku.

The main object in the scope of the conference, words, are finite or infinite
sequences of symbols over a finite alphabet. They appear as natural and basic math-
ematical model in many areas, theoretical or applicative. Accordingly, the WORDS
conference is open to both theoretical contributions related to combinatorial, algebraic,
and algorithmic aspects of words, as well as to contributions presenting applications
of the theory of words, for instance, in other fields of computer science, linguistics,
biology and bioinformatics, or physics.

For the second time in the history of WORDS, after the 2013 edition, a refereed
proceedings volume was published in Springer’s Lecture Notes in Computer Science
series. In addition, a local proceedings volume was published in the Kiel Computer
Science Series of the Kiel University. Being a conference at the border between the-
oretical computer science and mathematics, WORDS tries to capture in its two pro-
ceedings volumes the characteristics of the conferences from both these worlds. While
the Lecture Notes in Computer Science volume is dedicated to original contributions
that fulfil the high quality standards required by a formal publication in computer
science, the local proceedings volume allows, in the spirit of mathematics conferences,
the publication of less formally prepared contributions, informing on current research
and work in progress, surveying some areas connected to the core topics of WORDS,
or presenting relevant previously published results. All the papers, the ones published
in the Lecture Notes in Computer Science proceedings volume or the ones from the
local proceedings volume, were refereed to high standards by the members of the
Program Committee. Following the conference, a special issue of the Theoretical
Computer Science journal will be edited.

We received 22 submissions, from 15 countries. From these, 14 papers were
selected to be published in this refereed proceedings volume. In addition to the con-
tributed talks, the conference program included six invited talks given by leading
experts in the areas covered by the WORDS conference: Jörg Endrullis (Amsterdam),
Markus Lohrey (Siegen), Jean Néraud (Rouen), Dominique Perrin (Paris), Michaël Rao
(Lyon), Thomas Stoll (Nancy). Extended abstracts of these talks are included in this
proceedings volume. WORDS 2015 was the tenth conference in the series, so we were
extremely happy to welcome, as invited speaker at this anniversary event, Jean Néraud,
one of the initiators of the series and the main organizer of the first two iterations of this
conference. We thank all the invited speakers and all the authors of submitted papers
for their contributions to the success of the conference.

We are grateful to the members of the Program Committee for their work that led to
the selection of the contributed talks, and, implicitly, of the papers published in this
volume. They were assisted in their task by a series of external referees, gratefully
acknowledged below. The submission and reviewing process was performed via the
Easychair system; we thank Andrej Voronkov for this system which facilitated the
work of the Program Committee and the editors considerably. We express our gratitude
to the representatives of Springer for their collaboration. Finally, we thank the Orga-
nizing Committee of WORDS 2015 for ensuring the smooth run of the conference.

September 2015 Dirk Nowotka
Florin Manea

VI Preface

Organization

Program Committee

Maxime Crochemore King’s College London, UK
James Currie University of Winnipeg, Canada
Stepan Holub Charles University in Prague, Czech Republic
Juhani Karhumäki University of Turku, Finland
Manfred Kufleitner University of Stuttgart, Germany
Gad Landau University of Haifa, Israel
Dirk Nowotka Kiel University, Germany (PC-Chair)
Wojciech Plandowski University of Warsaw, Poland
Antonio Restivo University of Palermo, Italy
Michel Rigo University of Liège, Belgium
Mikhail Volkov Ural State University, Russia
Luca Zamboni University Lyon 1, France

Additional Reviewers

Allouche, Jean-Paul
Amit, Mika
Badkobeh, Golnaz
Bucci, Michelangelo
Charlier, Emilie
De Luca, Alessandro
Dekking, Michel
Epifanio, Chiara
Ferenczi, Sebastien
Fici, Gabriele

Glen, Amy
Hadravova, Jana
Leroy, Julien
Manea, Florin
Mantaci, Sabrina
Mercas, Robert
Plandowski, Wojciech
Prodinger, Helmut
Puzynina, Svetlana
Rozenberg, Liat

Saarela, Aleksi
Sebastien, Labbe
Sheinwald, Dafna
Smyth, William F.
Stipulanti, Manon
Szabados, Michal
Sýkora, Jiří
Widmer, Steven
Zaroda, Artur

Abstracts of Invited Talks

Degrees of Transducibility

Jörg Endrullis1, Jan Willem Klop1,2, Aleksi Saarela3,
and Markus Whiteland3

1Department of Computer Science, VU University Amsterdam,
Amsterdam, The Netherlands

2Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands
3Department of Mathematics and Statistics & FUNDIM,

University of Turku, Turku, Finland

Abstract. Our objects of study are infinite sequences and how they can be
transformed into each other. As transformational devices, we focus here on
Turing Machines, sequential finite state transducers and Mealy Machines. For
each of these choices, the resulting transducibility relation � is a preorder on the
set of infinite sequences. This preorder induces equivalence classes, called
degrees, and a partial order on the degrees.

For Turing Machines, this structure of degrees is well-studied and known as
degrees of unsolvability. However, in this hierarchy, all the computable streams
are identified in the bottom degree. It is therefore interesting to study transduc-
ibility with respect to weaker computational models, giving rise to more
fine-grained structures of degrees. In contrast with the degrees of unsolvability,
very little is known about the structure of degrees obtained from finite state
transducers or Mealy Machines.

Equality Testing of Compressed Strings

Markus Lohrey

Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. This paper gives a survey on efficient algorithms for checking
equality of grammar-compressed strings, i.e., strings that are represented suc-
cinctly by so called straight-line programs.

This research is supported by the DFG-project LO 748/10-1.

On the Contribution of WORDS to the Field
of Combinatorics on Words

Jean Néraud

Université de Rouen, Rouen, France
jean.neraud@univ-rouen.fr, jean.neraud@wanadoo.fr,

neraud.jean@free.fr

Abstract. We propose some notes about the history and the features of the
conference WORDS, our goal being to testify how the conference may be
embedded in the development of the field of Combinatorics on Words.

litis, Université de Rouen, UFR Sciences et Techniques, Campus du Madrillet, 76800 Saint Etienne du
Rouvray, France.

Codes and Automata in Minimal Sets

Dominique Perrin

LIGM, Université Paris Est, Paris, France
dominique.perrin@esiee.fr

Abstract. We explore several notions concerning codes and automata in a
restricted set of words S. We define a notion of S-degree of an automaton and
prove an inequality relating the cardinality of a prefix code included in a min-
imal set S and its S-degree.

Decidability of Abelian-Power-Freeness
and Generalizations

Michaël Rao

LIP, CNRS, ENS de Lyon, UCBL, Université de Lyon, Lyon, France
michael.rao@ens-lyon.fr

Abstract. Avoidability of structures and patterns has been extensively studied in
theoretical computer science since the work of Thue in 1906-1912 on avoid-
ability of repetitions in words.

The avoidability of abelian repetitions has been studied since a question
from Erdős in 1957. He asked whether it is possible to avoid abelian squares in
an infinite word over an alphabet of size 4. Keränen answered positively to
Erdős’ question in 1992 by giving a morphism whose fixed point is
abelian-square-free. Moreover, Dekking showed that it is possible to avoid
abelian cubes on a ternary alphabet and abelian fourth powers over a binary
alphabet.

Erdős also asked if it is possible to avoid arbitrarily long usual squares on a
binary alphabet. This question was answered positively by Entringer, Jackson
and Schatz in 1974. Mäkelä asked two questions in 2002 about the avoidability
of long abelian squares (resp., cubes) on a ternary (resp., binary) alphabet.

The notion of k-abelian repetition has been introduced recently by Kar-
humäki et al. as a generalization of both repetition and abelian repetition. One
can avoid 3-abelian squares (resp., 2-abelian squares) on a ternary (resp., binary)
alphabet. Following Erdős’ and Mäkelä’s questions, one can also ask whether it
is possible to avoid long k-abelian powers on a binary alphabet.

We present an overview on the results on avoidability of k-abelian repeti-
tions on small alphabets. We present techniques to decide whether a morphic
word avoid abelian and k-abelian repetitions. These techniques allow us to prove
some new results on avoidability. In particular, we will show that:

– Long abelian squares are avoidable on a ternary alphabet, answering pos-
itively to a weak version of the first question from Mäkelä.

– Additive squares are avoidable over Z2.

(Based on a joint work with Matthieu Rosenfeld.)

Thue–Morse Along Two Polynomial
Subsequences

Thomas Stoll

Institut Elie Cartan de Lorraine, UMR 7502,
Université de Lorraine/CNRS, 54506 Vandœuvre-lès-Nancy Cedex,

Nancy, France
thomas.stoll@univ-lorraine.fr

http://iecl.univ-lorraine.fr/*Thomas.Stoll/

Abstract. The aim of the present article is twofold. We first give a survey on
recent developments on the distribution of symbols in polynomial subsequences
of the Thue–Morse sequence t ¼ ðtðnÞÞn� 0 by highlighting effective results.
Secondly, we give explicit bounds on

minfn : ðtðpnÞ; tðqnÞÞ ¼ ðe1; e2Þg;
for odd integers p, q, and on

minfn : ðtðnh1Þ; tðnh2ÞÞ ¼ ðe1; e2Þg
where h1; h2 � 1, and ðe1; e2Þ is one of (0, 0), (0, 1), (1, 0), (1, 1).

Work supported by the ANR-FWF bilateral project MuDeRa “Multiplicativity: Determinism and
Randomness” (France-Austria) and the joint project “Systèmes de numération : Propriétés
arithmétiques, dynamiques et probabilistes” of the Université de Lorraine and the Conseil Régional
de Lorraine.

Contents

Degrees of Transducibility . 1
Jörg Endrullis, Jan Willem Klop, Aleksi Saarela, and Markus Whiteland

Equality Testing of Compressed Strings . 14
Markus Lohrey

On the Contribution of WORDS to the Field of Combinatorics on Words . . . 27
Jean Néraud

Codes and Automata in Minimal Sets . 35
Dominique Perrin

Thue–Morse Along Two Polynomial Subsequences 47
Thomas Stoll

Canonical Representatives of Morphic Permutations 59
Sergey V. Avgustinovich, Anna E. Frid, and Svetlana Puzynina

Linear-Time Computation of Prefix Table for Weighted Strings 73
Carl Barton and Solon P. Pissis

New Formulas for Dyck Paths in a Rectangle. 85
José Eduardo Blažek

Ambiguity of Morphisms in a Free Group . 97
Joel D. Day and Daniel Reidenbach

The Degree of Squares is an Atom . 109
Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks,
and Hans Zantema

Words with the Maximum Number of Abelian Squares 122
Gabriele Fici and Filippo Mignosi

Arithmetics on Suffix Arrays of Fibonacci Words . 135
Dominik Köppl and Tomohiro I

Prefix-Suffix Square Completion. 147
Marius Dumitran and Florin Manea

Square-Density Increasing Mappings . 160
Florin Manea and Shinnosuke Seki

http://dx.doi.org/10.1007/978-3-319-23660-5_1
http://dx.doi.org/10.1007/978-3-319-23660-5_2
http://dx.doi.org/10.1007/978-3-319-23660-5_3
http://dx.doi.org/10.1007/978-3-319-23660-5_4
http://dx.doi.org/10.1007/978-3-319-23660-5_5
http://dx.doi.org/10.1007/978-3-319-23660-5_6
http://dx.doi.org/10.1007/978-3-319-23660-5_7
http://dx.doi.org/10.1007/978-3-319-23660-5_8
http://dx.doi.org/10.1007/978-3-319-23660-5_9
http://dx.doi.org/10.1007/978-3-319-23660-5_10
http://dx.doi.org/10.1007/978-3-319-23660-5_11
http://dx.doi.org/10.1007/978-3-319-23660-5_12
http://dx.doi.org/10.1007/978-3-319-23660-5_13
http://dx.doi.org/10.1007/978-3-319-23660-5_14

Mechanical Proofs of Properties of the Tribonacci Word 170
Hamoon Mousavi and Jeffrey Shallit

On Arithmetic Progressions in the Generalized Thue-Morse Word. 191
Olga G. Parshina

A Square Root Map on Sturmian Words (Extended Abstract) 197
Jarkko Peltomäki and Markus Whiteland

Specular Sets . 210
Valérie Berthé, Clelia De Felice, Vincent Delecroix,
Francesco Dolce, Julien Leroy, Dominique Perrin,
Christophe Reutenauer, and Giuseppina Rindone

On the Tree of Ternary Square-Free Words . 223
Elena A. Petrova and Arseny M. Shur

Author Index . 237

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-23660-5_15
http://dx.doi.org/10.1007/978-3-319-23660-5_16
http://dx.doi.org/10.1007/978-3-319-23660-5_17
http://dx.doi.org/10.1007/978-3-319-23660-5_18
http://dx.doi.org/10.1007/978-3-319-23660-5_19

Degrees of Transducibility

Jörg Endrullis1(B), Jan Willem Klop1,2,
Aleksi Saarela3, and Markus Whiteland3

1 Department of Computer Science,
VU University Amsterdam, Amsterdam, The Netherlands

joerg@few.vu.nl
2 Centrum Voor Wiskunde En Informatica (CWI), Amsterdam, The Netherlands

jwk@cs.vu.nl
3 Department of Mathematics and Statistics and FUNDIM,

University of Turku, Turku, Finland
{amsaar,markus.whiteland}@utu.fi

Abstract. Our objects of study are infinite sequences and how they can
be transformed into each other. As transformational devices, we focus
here on Turing Machines, sequential finite state transducers and Mealy
Machines. For each of these choices, the resulting transducibility rela-
tion ≥ is a preorder on the set of infinite sequences. This preorder induces
equivalence classes, called degrees, and a partial order on the degrees.

For Turing Machines, this structure of degrees is well-studied and
known as degrees of unsolvability. However, in this hierarchy, all the
computable streams are identified in the bottom degree. It is therefore
interesting to study transducibility with respect to weaker computational
models, giving rise to more fine-grained structures of degrees. In contrast
with the degrees of unsolvability, very little is known about the structure
of degrees obtained from finite state transducers or Mealy Machines.

1 Introduction

In recent times, computer science, logic and mathematics have extended the
focus of interest from finite data types to include infinite data types, of which
the paradigm notion is that of infinite sequences of symbols, or streams. As
Democritus in his adagium Panta Rhei already observed, streams are ubiqui-
tous. Indeed they appear in functional programming, formal language theory, in
the mathematics of dynamical systems, fractals and number theory, in business
(financial data streams) and in physics (signal processing).

The title of this paper is inspired by the well-known ‘degrees of unsolvabil-
ity’, described in Shoenfield [12]. Here sets of natural numbers are compared by
means of transducibility using Turing Machines (TMs). The ensuing hierarchy
of degrees of unsolvability has been widely studied in the 60’s and 70’s of the
last century and later. We use the notion of degrees of unsolvability as a guiding
analogy. In our case, we will deal with streams, noting that a set of natural num-
bers (as the subject of degrees of unsolvability) is also a stream over the alphabet
{0, 1} via its characteristic function. However, Turing Machines are too strong
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 1–13, 2015.
DOI: 10.1007/978-3-319-23660-5 1

2 J. Endrullis et al.

for our purposes, since typically we are interested in computable streams and
they would all be identified by transducibility via Turing Machines.

We are therefore interested in studying transducibility of streams with respect
to less powerful devices. A reduction of the computational power results in a finer
structure of degrees. For transforming streams, a few choices present themselves:
(sequential) finite state transducers (FSTs) or Mealy Machines (MMs). There are
other possibilities, for instance: morphisms, many-one-reducibility, 1-reducibility
and tt-reducibility (truth-table reducibility). The last three are more interesting
in the context of degrees of unsolvability (Turing degrees).

Let us now describe the contents of this paper. In Sect. 2, we start with the
formal definition of the three main notions of degrees, as generated by trans-
ducibility using Turing Machines, by sequential finite state transducers, and
by Mealy Machines. The latter two machine models will be defined formally, for
Turing Machines we will suppose familiarity, making a definition superfluous. At
the end of this preliminary section, we briefly mention the possible employment
of infinitary rewriting as an alternative way of phrasing the various transduc-
tions. The next section (Sect. 3) can be considered to be the heart of this paper,
with a comparison between Turing degrees and Transducer degrees (arising from
Turing Machines and finite state transducers, respectively). Here we mention a
dozen of the main properties of Turing degrees, all without the jump operator,
and compare these with the situation for Transducer degrees. This yields a num-
ber of open questions. In Sect. 4 we zoom in on an interesting area in the partial
order of Transducer degrees, namely the area of ‘rarefied ones’1 streams. It turns
out that the degree structure of this restricted area is already surprisingly rich.
Remarkably the structure of degrees of these streams requires neither insight
about finite state transducers, nor about infinite sequences. We conclude with
an extensive list of questions about Transducer degrees, see Sect. 5.

A general word of warning may be in order. While we think that the questions
arising from finite state transducibility of streams are fascinating, they seem to
be challenging, some might even be intractable with the current state of the art.

2 Preliminaries

We briefly introduce the dramatis personae: (sequential) finite state transducers,
Mealy Machines and Turing Machines. For a thorough introduction of finite
automata and transducers, we refer the reader to [1,11].

Let Σ be an alphabet. We use ε to denote the empty word. We use Σ∗ to
denote the set of finite words over Σ, and let Σ+ = Σ∗ \ {ε}. The set of infinite
sequences over Σ is Σω = {σ | σ : N → Σ} and we let Σ∞ = Σ∗ ∪ Σω. In
this paper, we consider only sequences over finite alphabets. Without loss of
generality we assume that the alphabets are of the form Σn = {0, 1, . . . , n − 1}
for some n ∈ N. Then there are countably many alphabets and countably many
1 The name ‘rarefied ones’ for the stream 01001000100001 · · · occurs in [[7] p.208] in
the context of dynamical systems.

Degrees of Transducibility 3

finite state transducers over these alphabets. We write S for the set of all streams
over these alphabets, that is S =

⋃
n∈N

Σω
n .

2.1 Finite State Transducers and Mealy Machines

Sequential finite state transducers, also known as deterministic generalised sequ-
ential machines (DGSMs), are finite automata with input letters and output
words along the edges.

Definition 2.1. A (sequential) finite state transducer (FST) A = 〈Σ,Γ,Q,
q0, δ, λ〉 consists of

(i) a finite input alphabet Σ,
(ii) a finite output alphabet Γ ,
(iii) a finite set of states Q,
(iv) an initial state q0 ∈ Q,
(v) a transition function δ : Q × Σ → Q, and
(vi) an output function λ : Q × Σ → Γ ∗.

Whenever Σ and Γ are clear from the context we write A = 〈Q, q0, δ, λ〉.
A finite state transducer reads an input stream letter by letter and produces a
prefix of the output stream in each step.

Definition 2.2. Let A = 〈Σ,Γ,Q, q0, δ, λ〉 be a finite state transducer. We
homomorphically extend the transition function δ to Q × Σ∗ → Q by

δ(q, ε) = q δ(q, au) = δ(δ(q, a), u)

for q ∈ Q, a ∈ Σ, u ∈ Σ∗, and the output function λ to Q × Σ∞ → Γ∞ by

λ(q, ε) = ε λ(q, au) = λ(q, a) · λ(δ(q, a), u)

for q ∈ Q, a ∈ Σ, u ∈ Σ∞.

A Mealy Machine is an FST that outputs precisely one letter in each step.

Definition 2.3. A Mealy Machine (MM) is an FST A = 〈Σ,Γ,Q, q0, δ, λ〉 such
that |λ(q, a)| = 1 for every q ∈ Q and a ∈ Σ.

For convenience, we sometimes consider the output function of a Mealy Machine
as having type λ : Q × Σ → Γ .

2.2 Degrees of Transducibility

We define the partial orders of degrees of streams arising from Turing Machines,
finite state transducers and Mealy Machines. First, we define transducibility
relations ≥TM, ≥FST and ≥MM on the set of streams.

4 J. Endrullis et al.

Definition 2.4. Let Σ,Γ be finite alphabets, and σ ∈ Σω, τ ∈ Γω streams. For
an FST A = 〈Σ,Γ,Q, q0, δ, λ〉, we write σ ≥A τ if τ = λ(q0, σ).

(i) We write σ ≥FST τ if there exists an FST A such that σ ≥A τ .
(ii) We write σ ≥MM τ if there exists an MM A such that σ ≥A τ .
(iii) We write σ ≥TM τ if τ is computable by a TM with oracle σ.

Note that the relations ≥TM, ≥FST and ≥MM are preorders on S. Each of
these preorders ≥ induces a partial order of ‘degrees’, the equivalence classes
with respect to ≥ ∩ ≤. We denote equivalence using ≡.

Definition 2.5. Let T ∈ {FST, MM, TM}. We define ≡T as the equivalence
relation ≥T ∩ ≤T. The T-degree [σ]T of a stream σ ∈ S is the equivalence class
of σ with respect to ≡T, that is, [σ]T = {τ ∈ S | σ ≡T τ}. For a set of streams
X ⊆ S, we write [X]T for the set of degrees {[σ]T | σ ∈ X}.

The T-degrees of transducibility is the partial order 〈[S]T,≥T〉 induced by
the preorder ≥T on S, that is, for σ, τ ∈ S we have [σ]T ≥T [τ]T ⇐⇒ σ ≥T τ .
We introduce some notation:

– We use 0T to denote the bottom degree of 〈[S]T,≥T〉, that is, the unique degree
a ∈ [S]T such that a ≤T b for every b ∈ [S]T.

– A minimal cover of a degree a is a degree b such that a <T b and there exists
no degree strictly between a and b.

– An atom is a minimal cover of the bottom degree 0T.

In the sequel, we will refer to

– TM-degrees 〈[S]TM,≥TM〉 as Turing degrees,
– FST-degrees 〈[S]FST,≥FST〉 as Transducer degrees and
– MM-degrees 〈[S]MM,≥MM〉 as Mealy degrees.

Machine Models via Infinitary Rewriting. As we have seen, degrees of trans-
ducibility depend on the machine used. It is worth remarking that describing
such machine models, including the transduction of streams, can be conveniently
phrased in the framework of rewriting, in particular infinitary rewriting [5,6],
including infinitary λ-calculus.

Clearly, Turing Machines are tantamount to finite λ-terms, as to their expres-
sive power to define computable functions. Interestingly, oracle Turing Machines
can also be described in λ-calculus, this time in infinitary λ-calculus. For a
set X ⊆ N, we use X to denote the infinite λ-term obtained using iterated
pairing that describes the characteristic function of X. For example, if X =
{1, 2, 4, 7, . . .} then the infinite λ-term X is

X = 〈0, 〈1, 〈1, · · · 〉〉〉 = λz. z0(λz. z1(λz. z1(· · ·)))
Here 〈p, q〉 = λz. zpq is the usual pairing in λ-calculus. Turing reducibility is
then a matter of infinitary rewriting →→→: for X,Y ⊆ N, X is Turing reducible to
Y , X ≤TM Y , if there exists a finite λ-term M such that MY →→→ X. Sequential
finite state transducers and Mealy Machines can be described using restricted
forms of λ-terms M or infinitary first-order rewriting.

Degrees of Transducibility 5

3 Comparison

In this section, we compare the structure of degrees of transducibility arising from
Turing Machines with that obtained from sequential finite state transducers. We
will also mention a few facts about the degrees obtained from Mealy Machines.
All three partial orders have very different structural properties, to wit:

– In contrast to the Mealy degrees, there exist atoms (minimal non-zero degrees)
in the Turing degrees and Transducer degrees.

– The Turing degrees and Mealy degrees form semi-lattices in contrast to the
Transducer degrees for which there exist pairs of degrees without supremum.

Turing Degrees. Our comparison will be guided by questions that have been
studied for Turing degrees, and we start by recalling some of the classical results.
The bottom degree 0TM of this hierarchy consists of all computable streams.

In the following theorem, we summarise a few known results about Turing

degrees. For each result we indicate on the right using , and whether
the property holds, does not hold or is open for Transducer degrees, respectively.
For further reading on Turing degrees we refer the reader to [8,9,12,13,15,16].

Theorem 3.1. For Turing degrees we have:

(i) (Kleene, Post) Every degree is countably infinite.

(ii) (Kleene, Post) There are 2ℵ0 distinct degrees.

(iii) (Kleene, Post) For every degree a, a ↓ = {b | a ≥ b} is countable.
(iv) (Kleene, Post) For every degree a, the set a ↑ = {b | b ≥TM a} has cardi-

nality 2ℵ0 .

(v) (Spector) There exists an atom.

(vi) (Spector) Every degree has a minimal cover.

(vii) (Kleene, Post) Every finite set of degrees has a least upper bound.
(viii) (Kleene, Post, Spector) No infinite ascending sequence of degrees has a least

upper bound.

(ix) (Kleene, Post) There are pairs of degrees without greatest lower bound.
(x) (Kleene, Post) For every degree �= 0 there exists an incomparable degree.

(xi) (Sacks) Every countable partially ordered set can be embedded.
(xii) (Sacks) The recursively enumerable degrees are dense: whenever a < c for

recursively enumerable degrees a, c, then there exists a recursively enumer-

able degree b such that a < b < c.
(xiii) (Simpson) The first-order theory of [S]TM in the language 〈≥,=〉 is recur-

sively isomorphic to that of true second order arithmetic.

6 J. Endrullis et al.

The items (viii) and (ix) of Theorem 3.1 are corollaries of the following famous
result by Kleene, Post and Spector.

Theorem 3.2. (Kleene, Post, Spector [12]). Let a0 <TM a1 <TM · · · be an
infinite ascending sequence of Turing degrees. Then there exist Turing degrees
b, c such that b and c are upper bounds for {an}n∈N, and there is no Turing
degree that is both an upper bound for {an}n∈N and a lower bound for {b, c}.

The structure of Turing degrees is extremely complicated. Shore [13] dis-
cussed some conjectures about this structure due to Sacks, such as:

(C4) A partially ordered set P is embeddable in the Turing degrees if and only
if P has at most continuum cardinality, and each downward cone is at
most countable.

(C5) If S is a set of independent Turing degrees of cardinality less than contin-
uum, then there exists a degree d �∈ S such that S ∪{d} is an independent
set of degrees.

The first conjecture is still open2, and the second was shown to be independent
of the axioms of ZFC set theory! We expect that the structure of Transducer
degrees is more tractable, less complicated than the structure of Turing degrees.

Transducer Degrees. Sequential finite state transducers are less powerful than
Turing machines, and consequently, the Transducer degrees are more fine-grained
than the Turing degrees. The Transducer degrees provide an interesting com-
plexity measure for streams. On the one hand, transducers are ‘weak enough’ to
exhibit a rich structure within the computable streams (which trivialise in the
bottom degree of the Turing degrees). On the other hand, finite state transduc-
tion generalises several usual transformations in dealing with streams, such as
alphabet renaming, insertion and removal of elements, or applying a morphism
that substitutes words for letters.

The structure of the Transducer degrees is largely unexplored territory with a
large number of interesting open questions. An initial study of this partial order
of degrees has been carried out in [3,4]. The bottom degree 0 of the hierarchy
is formed by the ultimately periodic streams. There exist infinite ascending and
infinite descending sequences, and thus the hierarchy is not well-founded. It is
not difficult to see that there exists no maximal degree, and a set of degrees
has an upper bound if and only if the set is countable. The cardinality results
(i)–(iv) of Theorem 3.1 hold also for the Transducer degrees. In [4] it has been
shown that the degree of the stream

Π = 1101001000100001000001 . . .

is an atom (a minimal non-zero degree) and hence Theorem 3.1(v) is valid for
the Transducer degrees. We refer to Sect. 4 for more on atom degrees. How-
ever, it is open whether every degree has a minimal cover (compare with The-
orem 3.1(vi)). Analogously to the degrees of unsolvability, we call a Transducer
2 The conjecture was open at the time of Shore [13] and it has remained open to the
best knowledge of the authors.

Degrees of Transducibility 7

degree recursively enumerable if it contains a recursively enumerable stream. As
a consequence of the degree of Π being an atom, it follows that the recursively
enumerable Transducer degrees are not dense, and hence Theorem 3.1(xii) fails
for the Transducer degrees. However, it is interesting and open whether there
exist dense substructures (e.g. dense intervals).

Theorem 3.1(ix) holds for the Transducer degrees: there exist pairs of degrees
without a greatest lower bound. In contrast to the Turing degrees, there also
exist pairs of Transducer degrees without a least upper bound and thus Theo-
rem 3.1(vii) fails. It is open whether there exist infinite ascending sequences of
Transducer degrees with a least upper bound (Theorem 3.1(viii)). The validity of
Theorem 3.1(x) for Transducer degrees (the existence of incomparable degrees)
follows immediately from the fact that finite state transducers are weaker than
Turing Machines. Theorem 3.1(xi) is open for Transducer degrees. It is even
open whether every finite distributive lattice can be embedded. Finally, also the
complexity of the first-order theory of Transducer degrees in the language 〈≥,=〉
is open (compare with Theorem 3.1(xiii)).

Mealy Degrees. The hierarchy of degrees induced by transducibility via Mealy
Machines, has been studied by Rayna in [10] and Belov in [2]. We briefly mention
a few interesting facts about this hierarchy. The bottom degree 0 of consists of the
ultimately periodic streams, just as for the Transducer degrees. Except for the
common bottom degree, the Mealy degrees and Transducer degrees exhibit very
different properties. In the Mealy degrees, every stream σ �∈ 0 admits an infinite
descending chain, while there exist atom degrees in the Transducer degrees. In
the Mealy degrees, the degree of a stream σ �∈ 0 is always strictly lower than the
degree of every strict suffix of σ. In contrast, the Transducer degree of a stream
is invariant under removal and insertion of finitely many elements. In the Mealy
degrees, every finite set of degrees has a least upper bound.

4 Atoms and Polynomials

In this section, we want to highlight an intriguing connection between finite state
transduction and number theory.

We will consider the following ‘rarefied ones’ streams: for f : N → N we use
〈f〉 ∈ 2ω to denote the sequence

〈f〉 =
∞∏

i=0

0f(i)1 = 0f(0) 10f(1) 10f(2) · · · ,

Note that for every stream σ ∈ {0, 1}ω there exists f : N → N such that σ = 〈f〉,
and for every stream σ ∈ S there exists f : N → N such that σ ≡FST 〈f〉.

In general, it is difficult to characterise the set of transducts of a sequence 〈f〉.
We will therefore consider the case where the function f is a polynomial. Sur-
prisingly, even for this simple class of functions, there is a rich structure in the
degrees, and we reach very soon a large terra incognita.

8 J. Endrullis et al.

0
ultimately periodic streams

T W

sup? upper bound

atoms〈n〉 〈n2〉 〈pk〉

〈nk〉
? polynomials

of fixed order k ≥ 3?

?

?

Fig. 1. The partial order of Transducer degrees. Question marks indicate open problems.
Here pk is a polynomial of order k, see Section 4 for the form of this polynomial. The
degree of 〈pk〉 is an atom and all other polynomials of order k can be transduced to pk.
Note that 〈nk〉 is not an atom for k ≥ 3.

Let us lead up to the situation as described in Fig. 1 by the following step-
wise example; afterwards we present the technical key to establish these facts.
In the sequel, when speaking about polynomials, we always mean polynomials
with non-negative integer coefficients.

(i) Linear functions.
All linear functions 〈an + b〉 are equivalent to 〈n〉, and the degree of 〈n〉 is
an atom. For example, the following transducer transforms 〈2n+1〉 to 〈n〉:

q0 q1
0|ε

0|0 1|1

1|1

The way back from 〈n〉 to 〈2n + 1〉 is an easy exercise. The proof that the
degree of 〈n〉 is an atom requires an understanding of the method explained
below.

(ii) Quadratic functions.
Every quadratic function 〈an2 + bn + c〉 transduces to 〈n2〉 and the degree
of 〈n2〉 is an atom. This has been shown in [3] using the technical analysis
described below. We expect that the same argument yields that 〈n2〉 also
transduces to 〈an2 + bn+ c〉, and hence all quadratic polynomials have the
same degree. We wonder whether there is a relation to the well-known geo-
metrical fact that the graphs of quadratic polynomials, parabolas, coincide
up to translation and scaling.

Degrees of Transducibility 9

Let’s work out a typical example which gives a feeling for the capabilities
of transducers. We show that 〈2n2 + n + 3〉 ≥FST 〈n2〉:

〈2n2 + n + 3〉 ≡ 〈2n2 + n〉 subtracting a constant

≡ 〈2(n + 1)2 + (n + 1)〉 = 〈2n2 + 5n + 3〉 taking the tail

≥ 〈1(2(2n)2 + 5(2n) + 3) + merging even& odd blocks

3(2(2n + 1)2 + 5(2n + 1) + 3)〉 multiplying odd blocks by 3

= 〈32n2 + 64n〉 ≡ 〈32(n + 1)2〉 adding a constant

≡ 〈(n + 1)2〉 division by 32

≡ 〈n2〉 prefixing 1

(iii) Cubic functions and higher order.
For polynomials of order three and higher the picture becomes much more
complicated. For k ≥ 3, the degree of 〈nk〉 is not an atom. But nevertheless
there are polynomials pk(n) of order k that do have an atom degree, namely

pk(n) = (kn + 0)k + (kn + 1)k + · · · + (kn + (k − 1))k .

Moreover, all degrees of polynomials of order k are above or equal to this
atom degree (and hence the atom degree is unique among them). For exam-
ple, the unique atom for polynomials of order 3 is the degree of

p3(n) = (3n + 0)3 + (3n + 1)3 + (3n + 2)3

= 81n3 + 81n2 + 45n + 9 .

The results on polynomials of order 3 and higher are very recent and still
unpublished. We include then as they indicate that there is a rich structure
inside this ‘polynomial subhierarchy’.

Let us briefly discuss the technical key observations underlying these results.
A block is an occurrence of a word 100 · · · 0 in a stream. Finite state transducers
can multiply (and divide) the length of a block by any non-negative rational
number. A transducer can ‘merge’ consecutive blocks by erasing the 1 between
the blocks. Moreover, transducers have a finite number of states, so they can
multiply and merge in a periodic fashion. This is the essence of what we call
‘weighted products’, denoted by α ⊗ f . Here α is a tuple of weights and a
weight is a tuple of rational numbers. For example, let us consider f(n) = n and
α = 〈α1, α2〉 with α1 = 〈1, 2, 3, 4〉, α2 = 〈0, 1, 1〉. Then:

f · · ·0 1 2 3 4 5 6 7 8 9

α ⊗ f · · ·12 5 42 10

×1 ×2 ×3
+4

×0 ×1
+1

×1 ×2 ×3
+4

×0 ×1
+1

10 J. Endrullis et al.

Intuitively, the weight α1 = 〈1, 2, 3, 4〉 means that three consecutive blocks
are merged, where the length of the blocks is multiplied by 1, 2 and 3, respec-
tively, and finally 4 is added to the result. Likewise, the weight α2 = 〈0, 1, 1〉
means that two consecutive blocks are merged while being multiplied by 0 and 1,
respectively, and 1 is added to the result.

Such transformations can always be realised by finite state transducers, that
is, for every f : N → N and every tuple of weights α we have 〈f〉 ≥FST 〈α ⊗ f〉.
However, the crucial observation is the following: for a certain class of functions f
this is ‘all’ that finite state transducers can do. This is the class of ‘spiralling’
functions; polynomials fall in this class.

Definition 4.1. A function f : N → N is called spiralling if

(i) limn→∞ f(n) = ∞, and
(ii) for every m ≥ 1, the function n �→ f(n) mod m is ultimately periodic.

Functions with the property (ii) are called ‘ultimately periodic reducible’ in [14].
Note that polynomials with non-negative integer coefficients are spiralling.

For a tuple α = 〈α0, . . . , αm〉 we define its rotation by α′ = 〈α1, . . . , αm, α0〉.
Definition 4.2. A weight is a tuple 〈a0, . . . , ak−1, b〉 ∈ Q

k+1 of rational numbers
such that a0, . . . , ak−1 ≥ 0. Given a weight α = 〈a0, . . . , ak−1, b〉 and a function
f : N → N we define α · f ∈ Q by

α · f = a0f(0) + a1f(1) + · · · + ak−1f(k − 1) + b .

The weight α is said to be constant whenever aj = 0 for all j ∈ N<k.

Definition 4.3. For functions f : N → N, and tuples α = 〈α0, α1, . . . , αm−1〉
of weights, the weighted product of α and f is a function α ⊗ f : N → Q that is
defined by induction on n through the following scheme of equations:

(α ⊗ f)(0) = α0 · f

(α ⊗ f)(n + 1) = (α′ ⊗ S |α0|−1(f))(n) (n ∈ N)

where |αi| is the length of the tuple αi, and Sk(f) is the k-th shift of f .

The following theorem from [3] characterises up to equivalence the transducts
of spiralling sequences in terms of weighted products.

Theorem 4.4. ([3]). Let f : N → N be spiralling, and σ ∈ 2ω. Then 〈f〉 ≥FST σ
if and only if σ ≡FST 〈α ⊗ Sn0(f)〉 for some n0 ∈ N, and a tuple of weights α.

As an immediate consequence of this theorem we obtain that polynomials of
degree k are closed under transduction in the following sense.

Proposition 4.5. ([3]). Let p(n) be a polynomial of degree k with non-negative
integer coefficients, and let σ be a transduct of 〈p(n)〉 with σ /∈ 0. Then σ ≥FST

〈q(n)〉 for some polynomial q(n) of degree k with non-negative integer coeffi-
cients.

Degrees of Transducibility 11

In [3], Proposition 4.5 and Theorem 4.4 are used to show that the degree of 〈n2〉
is an atom. The following theorem characterises transduction between spiralling
sequences (without the ‘up to equivalence’ of Theorem 4.4).

Theorem 4.6. Let f, g : N → N be spiralling functions. Then 〈g〉 ≥FST 〈f〉 if
and only if there exist n0,m0 ∈ N and a tuple of weights α such that

Sn0(f) = α ⊗ Sm0(g) .

We expect that several questions about the structure of Transducer degrees could
be answered if we understood what preorder Sn0(f) = α ⊗ Sm0(g) induces on
spiralling functions and, in particular, on polynomials.

Even among the polynomials there seems to be a rich structure. Theorem 4.6
can be used to obtain the following two results.

Theorem 4.7. For k ≥ 3, the degree of 〈nk〉 is not an atom.

Nevertheless, it turns out that for every k ≥ 1 there exists a unique atom among
the degrees of sequences 〈p〉 where p is a polynomial of order k.

Theorem 4.8. Let k ≥ 1. Let a0, . . . , ak−1 ≥ 1 and define

p(n) = a0(kn + 0)k + a1(kn + 1)k + · · · + ak(kn + (k − 1)k

Then for every polynomial q of order k with non-negative integer coefficients it
holds that 〈q〉 ≥FST 〈p〉. Hence the degree of 〈p〉 is an atom (the unique atom
among polynomials of order k).

5 A Plethora of Questions

We mention a few interesting open questions about the Transducer degrees:

(1) How many atom degrees exist? Are there continuum many?
(2) Does every degree have a minimal cover?
(3) Is every degree a the greatest lower bound of a pair of degrees (�= a)?
(4) Are there dense intervals? That is degrees a and e with a < e such that

for all degrees b,d with a ≤ b < d ≤ e there exists c with b < c < d.
(5) Can every finite partial order be embedded in the hierarchy?
(6) Can every finite distributive lattice be embedded in the hierarchy?
(7) When does a pair of degrees have a supremum?
(8) When does a pair of degrees have an infimum?
(9) Are there infinite ascending sequences of degrees with least upper bound?

(10) Are there infinite descending sequences of degrees with greatest lower bound?
(11) What is the structure of degrees of polynomials of order k (for fixed k ≥ 1)

with non-negative integer coefficients. Is the number of degrees finite for
every k ≥ 1?

(12) Is there a degree that has precisely two degrees below itself? This is dis-
played in Fig. 2 on the right.

12 J. Endrullis et al.

(13) Is there a degree that has precisely three degrees below itself: two incom-
parable degrees and the bottom degree? This is displayed in Fig. 2 on the
left.

(14) How complex is the first-order theory in the language 〈≥,=〉?
(Compare with Theorem 3.1 item (xiii).)

0 0

Fig. 2. Possible structures in the hierarchy: a diamond, and a line. The arrows → mean
transducibility ≥FST.

We expect that some of these questions can be answered by better under-
standing what preorder Theorem 4.6 induces on spiralling functions and poly-
nomials.

There are also intriguing decidability questions, for example:

(15) Is transducibility (≥FST) decidable for automatic (or morphic) sequences?
(16) Is equivalence (≡FST) decidable for automatic (or morphic) sequences?

Moreover, there are challenging questions concerning concrete streams:

(17) Is the degree of Thue-Morse an atom?
(18) Consider the period doubling sequence σ = 1011 1010 1011 1011 1011 · · ·

and drop every third element τ = 10 1 1 10 01 10 1 1 11 · · · . Do we have
τ ≥FST σ? If not, then Thue-Morse is not an atom.

(19) Are the degrees of Thue-Morse and Mephisto Waltz incomparable?
(20) Is it decidable whether an automatic sequence can be transduced to (≥FST)

or is equivalent to (≡FST) the Thue-Morse sequence?

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications General-
izations. Cambridge University Press, New York (2003)

2. Belov, A.: Some algebraic properties of machine poset of infinite words. ITA 42(3),
451–466 (2008)

3. Endrullis, J., Grabmayer, C., Hendriks, D., Zantema, H.: The Degree of Squares
is an Atom (2015)

4. Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. J. integers 11B(A6),
1–40 (2011). Proceedings of the Leiden Numeration Conference 2010

Degrees of Transducibility 13

5. Endrullis, J., Hendriks, D., Klop, J.W.: Highlights in infinitary rewriting and
lambda calculus. Theor. Comput. Sci. 464, 48–71 (2012)

6. Endrullis, J., Hendriks, D., Klop, J.W.: Streams are forever. Bull. EATCS 109,
70–106 (2013)

7. Jacobs, K.: Invitation to mathematics. Princeton University Press (1992)
8. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvabil-

ity. Ann. Math. 59(3), 379–407 (1954)
9. Odifreddi, P.: Classical Recursion Theory. Studies in logic and the foundations of

mathematics. North-Holland, Amsterdam (1999)
10. Rayna, G.: Degrees of finite-state transformability. Inf. Control 24(2), 144–154

(1974)
11. Sakarovitch, J.: Elements of Automata Theory. Cambridge (2003)
12. Shoenfield, J.R.: Degrees of Unsolvability. North-Holland, Elsevier (1971)
13. Shore, R.A.: Conjectures and questions from Gerald Sacks’s degrees of unsolvabil-

ity. Arch. Math. Logic 36(4–5), 233–253 (1997)
14. Siefkes, D.: Undecidable extensions of monadic second order successor arithmetic.

Math. Logic Q. 17(1), 385–394 (1971)
15. Soare, R.I.: Recursively enumerable sets and degrees. Bull. Am. Math. Soc. 84(6),

1149–1181 (1978)
16. Spector, C.: On degrees of recursive unsolvability. Ann. Math. 64, 581–592 (1956)

Equality Testing of Compressed Strings

Markus Lohrey(B)

Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. This paper gives a survey on efficient algorithms for checking
equality of grammar-compressed strings, i.e., strings that are represented
succinctly by so called straight-line programs.

1 Introduction

The investigation of the computational complexity of algorithmic problems for
succinct data started with the work of Galperin and Wigderson [10]. In that
paper, a graph with 2n vertices is represented by a Boolean circuit with 2n
inputs, and there is an edge between u ∈ {0, 1}n and v ∈ {0, 1}n if and only
if the circuit outputs 1 on input u, v. This kind of succinct representation was
further investigated in [3,5,30,34]. It turned out that for circuit-encoded graphs,
an upgrading theorem holds. Basically, it says that if a graph problem is hard for
a certain complexity class, then the succinct version of the problem is hard for
the exponentially larger class (precise assumptions on the underlying reductions
have to be made).

In this paper, we are concerned with another succinct representation that
allows to encode long strings: straight-line programs, briefly SLPs. An SLP is a
context-free grammar that produces a single string. The length of this string can
be exponential in the size of the SLP. Thus, SLPs allow exponential compression
in the worst case. There exist several grammar-based compressors that compute
from a given input string a small SLP for that string [6].

Another line of research studies algorithmic problems for SLP-compressed
strings, see [25] for a survey. In this paper we deal with the equality problem for
SLP-compressed strings: Given two SLPs G and H, we want to check whether
the strings produced by G and H are equal. We call this problem compressed
equality checking in the following. Obviously, a simple decompress-and-check
strategy that first produces the strings derived by G and H and then compares
these strings symbol by symbol needs exponential time. Surprisingly, in 1994
three independent conference papers by Plandowski [31], Hirshfeld, Jerrum, and
Moller [15] (see [16] for a long version), and Mehlhorn, Sundar, and Uhrig [27]
(see [28] for a long version) were published, where polynomial time algorithms
for compressed equality checking were presented. Since then, improvements con-
cerning the running time have been achieved in [2,17,23]. The currently fastest

This research is supported by the DFG-project LO 748/10-1.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 14–26, 2015.
DOI: 10.1007/978-3-319-23660-5 2

Equality Testing of Compressed Strings 15

and probably also simplest algorithm is due to Jeż [17] and has a quadratic run-
ning time (under some assumptions on the machine model). In Sect. 3 we outline
Jeż’s algorithm.

Let us remark that both, Plandowski [31] and Hirshfeld et al. [15,16], use
Theorem 1 as a tool to solve another problem. Plandowski derives from
Theorem 1 a polynomial time algorithm for testing whether two given mor-
phisms (between free monoids) agree on a given context-free language. Hirshfeld
et al. use Theorem 1 in order to check bisimilarity of two normed context-free
processes (a certain class of infinite state systems) in polynomial time.

The algorithms from [2,16,17,23,28,31] are all sequential, and it is not
clear whether any of them allows an efficient parallelization. In fact, it is open
whether compressed equality checking belongs to NC or whether it is P-complete.
On the other hand, recently a randomized parallel algorithm for compressed
(dis)equality checking was presented in [22]. More precisely it was shown that
compressed equality checking belongs to the class coRNC2. The algorithm from
[22] reduces compressed equality checking to a restricted form of polynomial
identity testing over the polynomial ring F2[x]. For this restricted form, the
identity testing algorithm of Agrawal and Biswas [1] combined with the parallel
modular powering algorithm of Fich and Tompa [8] works in coRNC2. In Sect. 4
we outline this algorithm.

2 Straight-Line Programs

For a string s ∈ Σ∗ we denote with |s| the length of s. A factor of s is a string
u such that there exist strings x, y with s = xuy.

A straight-line program, briefly SLP, is basically a context-free grammar that
produces exactly one string. To ensure this, the grammar has to be acyclic and
deterministic (every variable has a unique production where it occurs on the
left-hand side. Formally, an SLP is a tuple G = (V,Σ, rhs, S), where V is a finite
set of variables (or nonterminals), Σ is the terminal alphabet, S ∈ V is the start
variable, and rhs maps every variable to a right-hand side rhs(A) ∈ (V ∪ Σ)∗.
We require that there is a linear order < on V such that B < A, whenever
B occurs in rhs(A). Every variable A ∈ V derives to a unique string valG(A)
by iteratively replacing variables by the corresponding right-hand sides, starting
with A. Finally, the string derived by G is val(G) = valG(S).

Let G = (V,Σ, rhs, S) be an SLP. The size of G is |G| =
∑

A∈V |rhs(A)|, i.e.,
the total length of all right-hand sides. The SLP G is in Chomsky normal form
if for every A ∈ V , rhs(A) is either a symbol a ∈ Σ, or of the form BC, where
B,C ∈ V . Every SLP can be transformed in linear time into an SLP in Chomsky
normal form that derives the same string.

A simple induction shows that for every SLP G of size m one has |val(G)| ≤
O(3m/3) [6, proof of Lemma 1]. On the other hand, it is straightforward to define
an SLP H of size 2n such that |val(H)| ≥ 2n. This justifies to see an SLP G as
a compressed representation of the string val(G), and exponential compression
rates can be achieved in this way.

16 M. Lohrey

An SLP can be also viewed as a multiplicative circuit over a free monoid Σ∗,
where the variables are the gates that compute the concatenation of its inputs.
This view can be generalized by replacing Σ∗ by any finitely generated monoid,
see [26]. In algebraic complexity theory, the term “straight-line program” is also
used for algebraic circuits that compute (multivariate) polynomials. In such a
circuit, every internal gate either computes the sum or the product of its inputs,
and the input gates of the circuit are labelled with constants or variables. In
Sect. 4 we will use this kind of straight-line programs, and we use the term
“algebraic straight-line programs” to distinguish them from string-generating
straight-line programs.

Example 1. Consider the SLP G = (V,Σ, rhs, A7) with V = {A1, . . . , A7}, Σ =
{a, b}, and the following right-hand side mapping: rhs(A1) = b, rhs(A2) = a,
and rhs(Ai) = Ai−1Ai−2 for 3 ≤ i ≤ 7, Then val(G) = abaababaabaab, which is
the 7th Fibonacci string. The SLP G is in Chomsky normal form and |G| = 12.

One of the most basic tasks for SLP-compressed strings is compressed equality
checking:
input: Two SLPs G and H
question: Does val(G) = val(H) hold?

Clearly, a simple decompress-and-compare strategy is very inefficient. It takes
exponential time to compute val(G) and val(H). Nevertheless a polynomial time
algorithm exists. This was independently discovered by Hirshfeld, Jerrum, and
Moller [15,16], Mehlhorn, Sundar, and Uhrig [27,28], and Plandowski [31]:

Theorem 1. Compressed equality checking can be solved in polynomial time.

In Sect. 3 we give an outline of the currently fastest (and probably also simplest)
algorithm for compressed equality checking, which is due to Jeż [17]. In Sect. 4,
we sketch a new approach from [22] that yields a randomized parallel algorithm
for compressed equality checking.

3 Sequential Algorithms

The polynomial time compressed equality checking algorithms of Hirshfeld
et al. [15,16] and Plandowski [31] use combinatorial properties of strings, in
particular the periodicity lemma of Fine and Wilf [9]. This lemma states that if
p and q are periods of a string w (i.e., w[i] = w[i + p] and w[j] = w[j + q] for
all positions 1 ≤ i ≤ |w| − p and 1 ≤ j ≤ |w| − q) and p + q ≤ |w| then also the
greatest common divisor of p and q is a period of w. The algorithms from [16,31]
achieve a running time of O(n4), where n = |G|+ |H|. An improvement to O(n3)
(for the more general problem of pattern matching), still using the periodicity
lemma, was achieved by Lifshits [23].

In contrast to [16,23,31], the algorithm of Mehlhorn et al. [27,28] does not
use the periodicity lemma of Fine and Wilf. Actually, in [28], Theorem 1 is not
explicitly stated but follows immediately from the main result. Mehlhorn et
al. provide an efficient data structure for a finite set of strings that supports the
following operations:

Equality Testing of Compressed Strings 17

– Set variable x to the symbol a.
– Set variable x to the concatenation of the values of variables y and z.
– Split the value of variable x into its length-k prefix and remaining part and

store these strings in variables y and z.
– Check whether the values of variables x and y are identical.

The idea is to compute for each variable a signature which is a small number and
that allows to do the equality test in constant time. The signature of a string
is computed by iteratively breaking up the sequence into small blocks, which
are encoded by integers using a pairing function. A single update operation
x := yz needs time O(log n(log m log∗ m + log n)) for the mth operation, where
n is the length of the resulting string (hence, log(n) ≤ m). This leads to a cubic
time algorithm for compressed equality checking. An improvement of the data
structure from [28] can be found in [2].

The idea from [2,28] of recursively dividing a string into smaller pieces and
replacing them by new symbols (integers in [2,28]) was taken up by Jeż, who
came up with an extremely powerful technique for dealing with SLP-compressed
strings (and the related problem of solving word equations [18]). It also yields the
probably simplest proof of Theorem1. In the rest of the section we briefly sketch
this algorithm. We ignore some details. For instance, it is required in [17] that
after each step, the terminal alphabet (which gets larger) is an initial segment
of the natural numbers, which is ensured by using the radix sort algorithm, see
[17] for more details.

Let s ∈ Σ+ be a non-empty string over a finite alphabet Σ. We define the
string block(s) as follows: Assume that s = an1

1 an2
2 · · · ank

k with a1, . . . , ak ∈ Σ,
ai �= ai+1 for all 1 ≤ i < k and ni > 0 for all 1 ≤ i ≤ k. Then block(s) =
a
(n1)
1 a

(n2)
2 · · · a(nk)

k , where a
(n1)
1 , a

(n2)
2 , . . . , a

(nk)
k are new symbols. For instance,

for s = aabbbaccb we have block(s) = a(2)b(3)a(1)c(2)b(1). For the symbol a(1) we
will simply write a. Let us set block(ε) = ε.

For a partition Σ = Σl � Σr we denote with s[Σl, Σr] the string that is
obtained from s by replacing every occurrence of a factor ab in s with a ∈ Σl

and b ∈ Σr by the new symbol 〈ab〉. For instance, for s = abcbabcad and Σl =
{a, c} and Σr = {b, d} we have s[Σl, Σr] = 〈ab〉〈cb〉〈ab〉c〈ad〉. Since two different
occurrences of factors from ΣlΣr must occupy disjoints sets of positions in s,
the string s[Σl, Σr] is well-defined.

Obviously, for all strings s, t ∈ Σ∗ we have

(s = t ⇐⇒ block(s) = block(t)) and (s = t ⇐⇒ s[Σl, Σr] = t[Σl, Σr]). (1)

In the rest of this section, we assume that all SLPs G = (V,Σ, S, rhs) are in a
kind of generalized Chomsky normal form: We require that for every variable
A ∈ V , rhs(A) is either of the form u ∈ Σ+, uBv with u, v ∈ Σ∗ and B ∈ V , or
uBvCw with u, v, w ∈ Σ∗ and B,C ∈ V . In other words, every right-hand side
is non-empty and contains at most two occurrences of variables. In particular,
we only consider SLPs that produce non-empty strings. This is not a crucial
restriction for checking the equality val(G) = val(H), since we can first check
easily in polynomial time, whether val(G) or val(H) produce the empty string.

18 M. Lohrey

For the following consideration, it is more convenient to have a single SLP
G with two start variables S1 and S2; we write G = (V,Σ, rhs, S1, S2) for such
an SLP. For Jeż’s algorithm, it is important to assume that S1 and S2 do not
occur in a right-hand side rhs(A) (A ∈ V), which can be easily enforced by
renaming variables. Let us write vali(G) = valG(Si) for i ∈ {1, 2}. Moreover,
w.l.o.g. we always assume that |val1(G)| ≤ |val2(G)| (this property can be easily
verified). The goal is to check val1(G) = val2(G) for a given SLP G. Jeż’s strat-
egy [17] for checking this equality is to compute from G an SLP H such that
vali(H) = (block(vali(G)))[Σl, Σr] for i ∈ {1, 2} and val1(H) ≤ c · |val1(G)| for
some constant c < 1. This process is iterated. After at most log |val1(G)| ∈ O(|G|)
many iterations it must terminate with an SLP such that val1(G) has length one.
Checking equality of the two strings produced by this SLP is easy. The main
difficulty of this approach is to bound the size of the SLP during this process.

In the following, for an SLP G we denote with |G|0 (resp., |G|1) the total
number of occurrences of terminal symbols (resp., nonterminal symbols) in all
right-hand sides of G. Thus, |G| = |G|0 + |G|1. Moreover, let Var(G) be the set of
variables of G. For block compression, we have:

Lemma 1. There is an algorithm CompressBlocks that gets as input an SLP
G = (V,Σ, rhs, S1, S2) and computes in time O(|G|) an SLP H such that the
following properties hold, where k = |V |:
– S1, S2 ∈ Var(H) ⊆ V ,
– vali(H) = block(vali(G)) for i ∈ {1, 2},
– |H|1 ≤ |G|1 ≤ 2k and |H|0 ≤ |G|0 + 4k.

Note that this implies in particular that block(vali(G)) cannot contain too many
different symbols. In fact, it is not hard to show that block(vali(G)) contains
at most |G| many different symbols. For the proof of Lemma 1 one processes
the SLP G bottom-up, i.e., if B occurs in the right-hand side of A, then A has
to be processed before B. When A is processed, we remove from rhs(A) the
maximal prefix (resp., suffix) of the form an and insert in front of (resp., after)
every occurrence of A in a right-hand side the block an. When all nonterminals
(except of S1 and S2) are processed then every maximal block an in a right-hand
side is replaced by the single letter a(n).

After block compression the two strings produced by the SLP G do not
contain a factor of the form aa. For a string s ∈ Σ∗ that does not contain a
factor of the form aa (a ∈ Σ), a simple probabilistic argument shows that there
exists a partition Σ = Σl � Σr such that s[Σl, Σr] is by a constant factor (34
up to the additive constant 1

4) shorter than s. Using a standard derandomization,
this partition can be computed in linear time. Moreover, using a technique for
counting digrams in SLP-compressed strings (see also [13]), one can compute the
partition in linear time even if s is succinctly represented by an SLP G. Once
the partition Σ = Σl � Σr is computed, one can prove the following lemma in a
similar way as Lemma 1.

Equality Testing of Compressed Strings 19

Algorithm 1. CheckEquality
Data: SLP G = (V, Σ, rhs, S1, S2) such that |val1(G)| ≤ |val2(G)|
while |val1(G)| > 1 do

G := CompressPairs(CompressBlocks(G))
end
check whether val1(G) = val2(G)

Lemma 2. There is an algorithm CompressPairs that gets as input an SLP
G = (V,Σ, rhs, S1, S2) such that for i ∈ {1, 2}, vali(G) does not contain a factor
aa (a ∈ Σ) and computes in time O(|G|) a partition Σ = Σ� � Σr and an SLP
H such that the following properties hold, where k = |V |:
– S1, S2 ∈ Var(H) ⊆ V ,
– vali(H) = vali(G)[Σl, Σr] for i ∈ {1, 2},
– |H|1 ≤ |G|1 ≤ 2k and |H|0 ≤ |G|0 + 4k,
– |val1(H)| ≤ 1

4 + 3
4 |val1(G)|.

Using Lemmas 1 and 2 we can prove Theorem1: Assume that we have an SLP
G = (V,Σ, rhs, S1, S2) over the terminal alphabet Σ, where m := |val1(G)| ≤
|val2(G)|. Moreover, let k = |V |. Algorithm 1 checks whether val1(G) = val2(G).
Correctness of the algorithm follows from observation (1). It remains to analyze
the running time of the algorithm. By the last point from Lemma2, the number
of iterations of the while loop is bounded by O(log(m)) ≤ O(|G|). Let Gi be the
SLP after i iterations of the while loop. The number of variables of Gi is at most
k. Hence, by Lemmas 1 and 2 we have |Gi| ≤ |G| + 8ki ∈ O(|G|2). Since the i-th
iteration takes time O(|Gi|), the total running time is O(|G|3).

There is a simple way to improve the running time to O(|G|2) (under some
assumptions on the underlying machine model). In the above calculation we
ignored the fact that block and pair compression also reduce the size of the SLP.
To make use of this, we modify Algorithm 1 as follows. In every second iteration
of the while loop, we choose the partition (Γl, Γr) for pair compression according
to the following variant of Lemma 2:

Lemma 3. There is an algorithm CompressPairs′ with the same properties as
algorithm CompressPairs from Lemma2 except that the last property |val1(H)| ≤
1
4 + 3

4 |val1(G)| in Lemma 2 is replaced by |H|0 ≤ 3
4k + 4k + 3

4 |G|0.
The proof of this lemma is the same as for Lemma 2, except that the partition
Σ = Σ� ∪ Σr is chosen in such a way that the maximal factors from Σ∗ in
right-hand sides of G (there are at most 3k such factors since every right-hand
side contains at most two variables) contain many factors of the form ab with
a ∈ Σl, b ∈ Σr (see Claim 1 in the proof of [19, Lemma 6] for a more precise
statement).

Since Lemma 3 is used in every second iteration of the while loop, we get

|Gi+2|0 ≤ 3
4
k + 4k +

3
4
(|Gi|0 + 12k) = O(|G|) +

3
4
|Gi|0

20 M. Lohrey

for every even i (we add the 12k since we apply CompressBlocks twice and
CompressPairs once, before we apply CompressPairs′). A simple calculation
shows that |Gi|0 ∈ O(|G|) and hence |Gi| ∈ O(|G|) for all i ≥ 0. The number
of iterations of the while loop is still bounded by O(log(m)). This yields the
running time O(log(m) · |G|) ≤ O(|G|2).

This concludes our outline of Jeż’s algorithm. We ignored some issues related
to the machine model. More precisely, the time bound O(|G|2) only holds if the
length m fit into a single machine word, see [17] for details. Let us finally remark
that Jeż [17] obtains his result for the more general problem of fully compressed
pattern matching, see Sect. 5.

Randomized algorithms for compressed equality checking are studied in [12,
32]. These algorithms are based on arithmetic modulo small prime numbers.
The algorithm from [32] has a quadratic running time under the RAM model
with logarithmic cost measure, which means that arithmetic operations on n-bit
numbers need time O(n). If val(G) = val(H) then the algorithm will correctly
output “yes”; if val(G) �= val(H) then the algorithm may incorrectly output
“yes” with a small error probability. In the next section, we will outline another
randomized algorithm for compressed equality checking that allows an efficient
parallelization.

4 A Parallel Algorithm

The polynomial time algorithms from [2,16,17,28,31] for compressed equality
checking are all sequential, and it is not clear whether one of them allows a
parallel implemention. It is in fact open, whether compressed equality checking
belongs to the class NC of all problems that can be solved on a PRAM in
polylogarithmic time using only polynomially many processors. In this section,
we sketch a randomized parallel algorithm that was recently discovered in [22].

We use standard definitions concerning circuit complexity, see e.g. [35] for
more details. In particular we will consider the class NCi of all problems that can
be solved by a circuit family (Cn)n≥1, where the size of Cn (the circuit for length-
n inputs) is polynomially bounded in n, its depth is bounded by O(logi n), and
Cn is built from input gates, NOT-gates and AND-gates and OR-gates of fan-in
two. The class NC is the union of all classes NCi. We assume circuit families to
be logspace-uniform, which means that the mapping an → Cn can be computed
in logspace.

To define a randomized version of NCi, one uses circuit families with addi-
tional inputs. So, let the nth circuit Cn in the family have n normal input gates
plus m random input gates, where m is polynomially bounded in n. For an input
x ∈ {0, 1}n one defines the acceptance probability as

Prob[Cn accepts x] =
|{y ∈ {0, 1}m | Cn(x, y) = 1}|

2m
.

Here, Cn(x, y) = 1 means that the circuit Cn evaluates to 1 if the ith normal input
gate gets the ith bit of the input string x, and the ith random input gate gets the

Equality Testing of Compressed Strings 21

ith bit of the random string y. Then, the class RNCi is the class of all problems A
for which there exists a polynomial size circuit family (Cn)n≥0 of depth O(logi n)
with random input gates that uses NOT-gates and AND-gates and OR-gates of
fan-in two, such that for all inputs x ∈ {0, 1}∗ of length n: (i) if x ∈ A, then
Prob[Cn accepts x] ≥ 1/2, and (ii) if x �∈ A, then Prob[Cn accepts x] = 0. As
usual, coRNCi is the class of all complements of problems from RNCi. Section
B.9 in [14] contains several problems that are known to be in RNC, but which
are not known to be in NC; the most prominent example is the existence of a
perfect matching in a graph.

In this section, we will sketch a proof of the following result that was recently
shown in [22]:

Theorem 2. Compressed equality checking belongs to coRNC2.

Let us assume that we have a single SLP G in Chomsky normal form, and we
want to check whether valG(X) = valG(Y) for two variables X,Y . Without loss
of generality we can assume that the terminal alphabet of G is {0, 1}. In a first
step, we compute the length |valG(A)| for every variable A. For this, one has
to evaluate addition circuits over the natural numbers, which is possible in NC2

(see [22] for details). If |valG(X)| �= |valG(X)|, then we reject. So, let us assume
that |valG(X)| = |valG(X)|. We omit the index G in the following.

As for many other randomized algorithms (also the RNC-algorithm for the
existence of a perfect matching in a graph) we now shift the problem to an
algebraic problem about polynomials. A string w = a0a1 · · · an ∈ {0, 1}∗ with
ai ∈ {0, 1} can be encoded as the polynomial

pw(x) =
n∑

i=0

ai · xi ∈ F2[x]

over the field F2. Clearly, if |u| = |v|, then u = v if and only if pu(x)+pv(x) = 0.
Hence, it remains to check whether pval(X)(x)+pval(Y)(x) is the zero polynomial.

The polynomial pval(X)(x) + pval(Y)(x) has exponential degree, but it can be
defined by a small algebraic circuit, or equivalently, a small algebraic straight-
line program (ASLP). ASLPs are defined analogously to our SLPs for strings,
but variables evaluate to polynomials from F2[x] (or another polynomial ring,
in general). In right-hand sides, the operations of (polynomial) addition and
multiplication as well as the constants 0, 1, x can be used. We translate the
SLP G into an ASLP H for the polynomial pval(X)(x) + pval(Y)(x) as follows:
If rhs(A) = a ∈ {0, 1} in G, then also rhs(A) = a in H, and if rhs(A) = BC
in G, then rhs(A) = B + xn · C in H, where n = |valG(B)| (this length can
be precomputed in NC2). Finally, we add a new start variable S to H and set
rhs(S) = X + Y . It is easy to check, that H indeed produces the polynomial
pval(X)(x) + pval(Y)(x).

Note that the right-hand side B + xn · C contains a big power of x. On the
other hand, n is only exponential in the input size and could be replaced by
a chain of multiplications. Testing whether H produces the zero polynomial is

22 M. Lohrey

an instance of polynomial identity testing (PIT) over the ring F2[x]. This is a
famous problem in complexity theory, which is known to be in coRP (the class of
complements of problems from randomized polynomial time), but for which no
polynomial time algorithm is known. Moreover, proving PIT to be in P would
prove circuit lower bounds that currently seem to be out of reach, see [20].

So far, we have put compressed equality checking into the class coRP only.
To lower this bound to coRNC2 we have to make use of the particular form of
the ASLPs in our situation. The right-hand side B + xn · C can be replaced by
B +D, where D is a fresh variable with rhs(D) = xn ·C. We now have obtained
an ASLP H, where every right-hand side has one of the following forms:

– a constant a ∈ {0, 1},
– an addition B + C of two variables B,C,
– a multiplication xn ·C, where C is a variable and n is a number that is encoded

in binary representation.

In [22] we called such an ASLP powerful skew: In a skew ASLP (or skew algebraic
circuit), for every multiplication one of the two arguments has to be a constant
or the variable x. The additional adjective “powerful” refers to the fact one of
the arguments of every multiplication gate is a power of x, where the exponent
is given in binary notation.

To test val(H) = 0 for a powerful skew ASLP, we can use any of the random-
ized PIT-algorithms. In order to get a coRNC2-algorithm, the identity testing
algorithm of Agrawal and Biswas [1] is the right choice. This algorithm com-
putes the polynomial val(H) modulo a test polynomial P (x) ∈ F2[x] of poly-
nomial degree, which is randomly chosen from a suitable test space. Clearly, if
val(H) = 0, then also val(H) mod P (x) = 0. On the other hand, by the specific
choice of the test space, if val(H) is not the zero polynomial, then also val(H)
mod P (x) is not the zero polynomial with high probability. This part of the
algorithm is the only place, were we use randomness.

It finally remains to compute val(H) mod P (x), which will be done in NC2,
using the modular powering algorithm of Fich and Tompa [8]. More precisely,
Fich and Tompa proved in [8] that the following problem can be solved in NC2

(we only present here the result for the polynomial ring F2[x], but in [8] a more
general version is shown):

input: polynomials p(x), q(x) ∈ F2[x] and a binary encoded natural number n.
output: p(x)n mod q(x)

Using this result, we can replace in the ASLP H every power xn by xn mod P (x)
in NC2. The resulting ASLP computes the same polynomial as H modulo P (x).
Moreover, the big powers xn in right-hand sides of the form xn ·B are replaced by
polynomials of polynomially bounded degree. This allows to compute the output
polynomial explicitly in NC2 using a standard reduction to matrix powering, see
[22] for details. We still have to compute this output polynomial modulo P (x),
which can be done in NC1 [7]. This concludes our proof sketch for Theorem2.

Equality Testing of Compressed Strings 23

The coRNC2-algorithm for compressed equality checking easily generalizes to
equality checking for SLP-compressed 2-dimensional pictures (and in fact, pic-
tures of any dimension). Such a 2-dimensional picture is a rectangular array of
symbols from a finite alphabet. To define 2-dimensional SLPs, one uses a hori-
zontal and a vertical concatenation operation, which are both partially defined
(for horizontal concatenation, the two pictures need to have the same height,
and for vertical concatenation, the two pictures need to have the same width).
This formalism was studied in [4], where it was shown that equality of SLP-
compressed 2-dimensional pictures belongs to coRP using a reduction to PIT.
Using the above technique, this bound was reduced to coRNC2 in [22]. It is
still open, whether equality of SLP-compressed 2-dimensional pictures can be
checked in polynomial time.

5 Related Problems

A natural generalization of checking equality of two strings is pattern matching.
In the classical pattern matching problem it is asked for given strings p (usually
called the pattern) and t (usually called the text), whether p is a factor of t. There
are many linear time algorithms for this problem on uncompressed strings. It
is therefore natural to ask, whether a polynomial time algorithm for pattern
matching on SLP-compressed strings exists. This problem is sometimes called
fully compressed pattern matching and is defined as follows:

input: Two SLPs P and T
question: Is val(P) a factor of val(T)?

The first polynomial time algorithm for fully compressed pattern matching was
presented in [21] by Karpinski, Rytter, and Shinohara. Further improvements
with respect to the running time were achieved in [11,17,23,29]. The algorithms
from [11,21,23,29] use the periodicity lemma of Fine and Wilf, similarly to the
solutions of Plandowski and Hirshfeld et al. for compressed equality checking.
In contrast, Jeż’s algorithm from [17] is based on his recompression technique
and is a refinement of the algorithm sketched in the previous section. It is the
currently fastest algorithm. Its running time is O((|T |+ |P|) · log |val(P)|) under
the assumption that |val(P)| can be stored in a single machine word, otherwise
an additional factor log(|T | + |P|) goes in.

Let us finally mention a result of Lifshits [24], which together with Theorem1
gives an impression of the subtle borderline between tractability and intractabil-
ity for problems on SLP-compressed strings. A function f : Σ∗ → N belongs to
the counting class #P if there exists a nondeterministic polynomial time bounded
Turing-machine M such that for every x ∈ Σ∗, f(x) equals the number of accept-
ing computation paths of M on input x. A function f : Σ∗ → N is #P-complete
if it belongs to #P and for every #P-function g : Γ ∗ → N there is a logspace
computable mapping h : Γ ∗ → Σ∗ such that h◦f = g. Functions that are #P-
complete are computationally very powerful. By a famous result of Toda [33],
every language from the polynomial time hierarchy can be decided in determin-
istic polynomial time with the help of a #P-function, i.e., PH ⊆ P#P. For two

24 M. Lohrey

strings u = a1 · · · an and v = b1 · · · bn of the same length n, the Hamming-distance
dH(u, v) is the number of positions i ∈ {1, . . . , n} such that ai �= bi.

Theorem 3 ([24]). The mapping (G,H) → dH(val(G), val(H)), where G and H
are SLPs is #P-complete.

6 Open Problems

The main open problem in the context of compressed equality checking is the
precise complexity of this problem. Theorem2 suggests that compressed equality
checking is not P-complete (showing P ⊆ RNC would be a big surprise). Hence,
we conjecture that compressed equality checking belongs to NC. For fully com-
pressed pattern matching it is even open whether the problem belongs to coRNC
(or RNC).

Another open problem is whether the quadratic running time of Jeż’s algo-
rithm for compressed equality checking can be further improved.

References

1. Agrawal, M., Biswas, S.: Primality and identity testing via chinese remaindering.
J. Assoc. Comput. Mach. 50(4), 429–443 (2003)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Pro-
ceedings of SODA 2000, pp. 819–828. ACM/SIAM (2000)

3. Balcázar, J.L.: The complexity of searching succinctly represented graphs. In:
Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 208–219. Springer, Heidelberg
(1995)

4. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. J.
Comput. Syst. Sci. 65(2), 332–350 (2002)

5. Borchert, B., Lozano, A.: Succinct circuit representations and leaf language classes
are basically the same concept. Inf. Process. Lett. 59(4), 211–215 (1996)

6. Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M.,
Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

7. Eberly, W.: Very fast parallel polynomial arithmetic. SIAM J. Comput. 18(5),
955–976 (1989)

8. Fich, F.E., Tompa, M.: The parallel complexity of exponentiating polynomials over
finite fields. In: Proceedings of STOC 1985, pp. 38–47. ACM (1985)

9. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16, 109–114 (1965)

10. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control 56(3),
183–198 (1983)

11. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms
for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.)
SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

12. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Randomized efficient
algorithms for compressed strings: the finger-print approach (extended abstract).
In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 39–49.
Springer, Heidelberg (1996)

Equality Testing of Compressed Strings 25

13. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram mining on SLP com-
pressed strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011.
LNCS, vol. 7024, pp. 278–289. Springer, Heidelberg (2011)

14. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, Oxford (1995)

15. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding
equivalence of normed context-free processes. In: Proceedings of FOCS 1994, pp.
623–631. IEEE Computer Society (1994)

16. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. Theor. Comput. Sci. 158(1&2), 143–159
(1996)

17. Jeż, A.: Faster fully compressed pattern matching by recompression. In: Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS,
vol. 7391, pp. 533–544. Springer, Heidelberg (2012)

18. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
Proceedings of STACS 2013. LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2013)

19. Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammars. Technical
report, arXiv.org (2014). http://arxiv.org/abs/1309.4958

20. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)

21. Karpinski, M., Rytter, W.: Pattern-matching for strings with short descriptions.
In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 205–214. Springer,
Heidelberg (1995)

22. König, D., Lohrey, M.: Parallel identity testing for skew circuits with big powers
and applications. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9235, pp. 445–458. Springer, Heidelberg (2015)

23. Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

24. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Hei-
delberg (2006)

25. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptology 4(2), 241–299 (2012)

26. Lohrey, M.: The Compressed Word Problem for Groups. SpringerBriefs in Mathe-
matics. Springer, Heidelberg (2014)

27. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under
equality-tests in polylogarithmic time. In: Proceedings of SODA 1994, pp. 213–
222. ACM/SIAM (1994)

28. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

29. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.)
CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)

30. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs.
Inform. Control 71(3), 181–185 (1986)

31. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg
(1994)

32. Schmidt-Schauß, M., Schnitger, G.: Fast equality test for straight-line compressed
strings. Inf. Process. Lett. 112(8–9), 341–345 (2012)

http://arXiv.org
http://arxiv.org/abs/1309.4958

26 M. Lohrey

33. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

34. Veith, H.: Succinct representation, leaf languages, and projection reductions. Inf.
Comput. 142(2), 207–236 (1998)

35. Vollmer, H.: Introduction to Circuit Complexity. Springer, Heidelberg (1999)

On the Contribution of WORDS to the Field
of Combinatorics on Words

Jean Néraud(B)

Université de Rouen, Rouen, France
jean.neraud@univ-rouen.fr, jean.neraud@wanadoo.fr, neraud.jean@free.fr

Abstract. We propose some notes about the history and the features
of the conference WORDS, our goal being to testify how the conference
may be embedded in the development of the field of Combinatorics on
Words.

The representation of numbers by sequences of symbols is inherent in math-
ematics. A noticeable step has certainly been reached by the introduction of the
decimal representation. This notion appears at the tenth century in the docu-
ments written by the arabe mathematician Al-Uqlidisi, which was interested in
the indian system of numeration. In the occident, the fractional representation of
numbers delayed the introduction of the decimal representation until the seven-
teenth century, when the belgian mathematician Simon Stevin recommends it as
a performing tool of calculation. In his document “La Disme”, he predicts that
these methods of calculation will be extended to unrestricted representations
and even be applied to the so-called incommensurable numbers.

A systematic study of words as formal mathematical objects appeared at
the beginning of the twentieth century, when three now famous papers were
published by the norvegian mathematician Axel Thue [16–18]. Presently, thanks
to Jean Berstel [1] and James F. Power [15], we get translations of these papers
in a more recent terminology and in relation with more contemporary directions
of research.

Actually, from the end of the nineteenth century, words have taken an impor-
tant role in different domains of mathematics such as Groups, Semigroups, For-
mal Languages, Number Theory, Ergodic Theory. In another hand, constituting
a unified treatment of words was more and more in demand: such a request was
especially stimulated by Max Paul Schützenberger, who presented a series of
challenging questions concerning the topic in his lectures of 1966.

In the growing importance of the field of Combinatorics on Words, a new
fundamental step was reached in the eighties when were published the series
of Lothaire’s books [8,9] and the famous “Theory of Codes” from Jean Berstel
and Dominique Perrin [2] (cf also [3]). The importance of the topic has been
also supported by the publication of the third book from Lothaire [10], which

litis, Université de Rouen, UFR Sciences et Techniques, Campus du Madrillet, 76800
Saint Etienne du Rouvray, France.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 27–34, 2015.
DOI: 10.1007/978-3-319-23660-5 3

28 J. Néraud

testifies that words have fundamental applications in many domains of computer
science. Another important step was reached in 1991, when the terminology
“Combinatorics on Words” has been introduced in the famous “Mathematics
Subject Classification” as a subfield of “Discrete Mathematics in Relation to
Computer Science” (68R15).

In view of sharing scientific results, international workshops play a comple-
mentary part beside the publication of books and full papers. They quickly
provide a picture of the state-of-the-art and are special meeting places for the
communauty. Actually, until the end of the nineties, due to the numerous varied
topics in theoretical computer science, in most of the international conferences
only a few sessions could be granted to Combinatorics on Words. As regard to
the growing number of papers concerned by the topic, a specific international
conference essentially devoted to words was strongly required.

The organization of “WORDS” was the response to such a request: with
Aldo de Luca and Antonio Restivo, we drew the main features of the project,
and opted in particular for a bi-annual series of meetings. The first conference
WORDS was planned in Rouen, France, during September 1997. Thanks are due
to the many researchers that supported that event and the subsequent confer-
ences (they will recognize themselves); a special thought is due to Jean Berstel,
for his invaluable investment in the project. A series of ten international work-
shops were organized:

WORDS 1997, Rouen, France, Jean Néraud chair,
WORDS 1999, Rouen, France, Jean Néraud chair,
WORDS 2001, Palermo, Italia, Felipo Mignosi chair,
WORDS 2003, Turku, Finland, Juhani Karhumäki chair,
WORDS 2005, Montréal, Canada, Srecko Brlek and Christophe Reutenauer co-
chairs,
WORDS 2007, Marseille, France, Srecko Brlek and Julien Cassaigne co-chairs,
WORDS 2009, Salerno, Italia, Arturo Carpi and Clelia De Felice co-chairs,
WORDS 2011, Prague, Czech Republic, Štěpán Holub and Edita Pelandova co-
chairs,
WORDS 2013, Turku, Finland, Juhani Karhumäki and Luca Zamboni co-chairs,
WORDS 2015, Kiel, Germany, Dirk Nowotka, chair.

For each meeting, papers selected to be presented are collected in written
acts; moreover among them, some of the most stricking are published in a special
issue of an international scientific revue [4–7,11–14].

The tenth conference WORDS provides the opportunity to take a panoramic
look at all the fascinating papers which were presented. Of course, drawing up
an exhaustive list would be an impossible task: in what follows, only a limited
number of results will be mentioned: according to the frequency of their presen-
tations, we have opted for a classification into three thematic areas.

On the Contribution of WORDS to the Field of Combinatorics on Words 29

The topic of Unavoidable Patterns

The famous infinite word of The-Morse have the fundamental property that given
a letter a, no factor of type avava may appear in the word. It is also well-known
that this word allows to construct an infinite cube-free word on a three letter
alphabet. These properties have naturally opened a more general problem: given
finite alphabet does an infinite word exists such that none of its factors may be
a repetition of type (uv)ku, with u �= ε and k ≥ 2.

- Avoidance of patterns is a central question in the topic. In the meeting of
1997, Roman Kolpakov, Gregory Kucherov and Yuri Tarannikov present some
properties of repetition-free binary words of minimal density. During that of
2003, James Currie draws an extensive survey concentrating on open problems.
In the same workshop, Ina N. Rampersad, Jeffrey Shallit and Ming-Wei Wang
are interested in infinite words avoiding long squares. In the conference of 2007,
Arturo Carpi and Valerio D’Alonzo present a word avoiding near repeats. In
their contribution to WORDS 2011, Elena A. Petrova and Arseny M. Shur will
focuse on binary cube-free words that cannot be infinitely extended preserving
cube-freeness: they prove that such words exist but can have arbitrarily long
finite cube-free extensions both to one side and two sides. In WORDS 2013, Tero
Harju presents an infinite square-free word on a three-letter alphabet that can
be shuffled with itself to produce another infinite square-free word. In the same
conference, Tomi Kärki gives an overview of the results concerning repetition-
freeness in connection with the so-called similarity relations, which are relations
on words of equal length induced by a symmetric and reflexive relation on letters.

- A natural question consists in examining the number of patterns that may
appear in a finite word. In their contribution to WORDS 1997, the exact number
of squares in the Fibonacci words is examined by Aviezri S. Fraenkel and Jamie
Simpson: they prove that a word of length n contains at most 2n squares. The
bound will be refined as 2n − O(log n) by Lucian Illie in his talk of WORDS
2005.

- In their talk of WORDS 2009, Maxime Crochemore, Lucian Ilie and Liviu
Tinta define runs as patterns of type uuα that are maximal in the sense where
they cannot be extended from left or right to obtain the same type of pattern.
Such objects play an important role in a lot of string matching algorithms: the
authors show that, given a word of length n, the number of its runs is up-bounded
by 1.029n.

- The repetition threshold for k letters, which we denote by RT (k), is the
shortest word x such that there exists an infinite x+-free word over a k-letter
alphabet. Actually, repetitions of the Thue-Morse sequence have exponent at
most 2 and we have RT (2) = 2. In the seventies, Françoise Dejean conjectured
that for every k > 2 the following holds:

RT (k) =

⎧
⎪⎨

⎪⎩

7/4 if k = 3
7/5 if k = 4
k/k − 1 otherwise.

30 J. Néraud

A stronger version of this conjecture has been stated by Pascal Ochem in his
contribution to WORDS 2005:

– For every k ≥ 5, an infinite (k/k − 1)+-free word over k letters exists with
letter frequency 1/k + 1

– For every k ≥ 6, an infinite (k/k − 1)+-free word over k letters exists with
letter frequency 1/k − 1.

Dejean’s conjecture had been partially solved by several authors. The final proof
was completed in 2009 by James Currie and Narad Rampersad for 15 ≤ n ≤ 26,
and independently by Michaël Rao for 8 ≤ k ≤ 38. In WORDS 2009, Michaël
Rao will present his proof. Moreover the technic that he applies allow also to
prove Ochem’s stronger version of the conjecture for 9 ≤ k ≤ 38.

- Abelian patterns are also concerned: an abelian square consists in a pattern
of type xy, where the word y is obtained by applying a permutation on the letters
of x. In 1992, Veikko Keränen had solved a famous open problem in constructing
an abelian square free word over a four-letter alphabet. In the meeting of 2007,
he will present new abelian square-free morphisms and a powerful substitution
over 4 letters.

Two words u, v are k-abelian equivalents if every word of length at most k
occurs as a factor in u as many times as in v. A word is strongly k-abelian nth-
power if it is k-abelian equivalent to a nth-power. In WORDS 2013, Mari Huova
and Aleksi Saarela prove that strongly k-abelian nth-powers are unavoidable on
any alphabet.

- Pattern avoidance by palindromes was the subject of the talk from Inna A.
Mikhailova and Mikhail Volkov, in WORDS 2007.

A word is a pseudopalindrome if it is the fixed point of some involutary
antimorphism φ of the free monoid (i.e. φ2 = id, φ(uv) = φ(v)φ(u)) and the
pseudopalindromic closure of a word w is the shortest pseudopalindrome having
w as a prefix. In their contribution to WORDS 2009, Damien Jamet, Genevieve
Paquin, Gwenaël Richomme and Laurent Vuillon present some several combina-
torial properties of the fixed points under iterated by pseudopalindromic closure.

Factorization of words. Equations

Other important informations may be obtained by decomposing words into a
convenient sequence of consecutive factors: w = w1 · · · wn.

- In their talk of WORDS 1997, Juhani Karhumäki, Wojciech Plandowski
and Wojciech Rytter investigate the properties of the so-called F-factorization,
where the preceding sequence (w1, · · · , wn) was assigned to satisfy a given prop-
erty F . From an algorithmic point of view, they examine the behavior of three
fundamental properties of such factorization, namely completeness, uniqueness
and synchronization.

- Periodicity is also clearly concerned by the notion of factorization. If for
an integer n ≥ 2, all the preceding words w1, · · · , wn−1 are equal, the word wn

being one of their prefix, we say that the length of w1 is a period of w. The

On the Contribution of WORDS to the Field of Combinatorics on Words 31

famous theorem of Fine and Wilf states that if some powers of two words x, y
have a common prefix of length |x| + |y| − gcd(|x|, |y|), then x and y themselves
are powers of the same word. In WORDS 1997, Maria Gabriella Castelli, Filippo
Mignosi and Antonio Restivo present an extension of Fine and Wilf’s theorem
for three periods. In their contribution to WORDS 2003, Sorin Constantinescu
and Lucian Ilie prove a new extension of that theorem for arbitrary number
of periods, and in WORDS 2007, Vesa Halava, Tero Harju, Tomi kärki, and
Luca Q. Zamboni will study the so-called relational Fine and Wilf words. At
least, in his contribution to WORDS 2007, Kalle Saari, examine periods of the
factors of the Fibonacci word.

- A word w is quasiperiodic if another word x exists such that any position in
w falls in an occurrence of x as a factor of w (unformaly, w may be completely
“covered” by a set of occurences of the factor x). In the conference of 2013,
Florence Levé and Gwenaël Richomme extend the work that they presented
in WORDS 2007: in particular they present algorithms for deciding whether a
morphism is strongly quasiperiodic on finite and infinite words.

- In WORDS 1999 Juhani Karhumäki and Ján Maňuch prove that if a non-
periodic bi-infinite word possesses three disjoint factorizations on the words of a
prefix-free set X, then a set Y with cardinality at most |X| − 2 exists such that
X ⊆ Y ∗.

Such a type of defect effect is strongly connected to independent systems of
equations, as illustrated by the paper presented by Tero Harju and Dirk Nowotka
in WORDS 2001, where the case of equations in three variables is investigated.
Some properties of infinite systems of equations are also presented by Štěpán
Holub and Juha Kortelainen in WORDS 2005.

- The famous Post Correspondence Problem (PCP for short) is also con-
nected to decomposition of words. Given two morphisms h, g, it consists in exam-
ining wether the existence of a non-empty solution for the equation h(x) = g(x)
is decidable. In the meeting of 2005 Vesa Halava, Tero Harju, Juhani Karhumäki
and Michel Latteux provide an extension of the decidability of the marked PCP
to instances with unique blocks. The properties of new variants such as the
circular-PCP , and the n-permutation PCP are also examined by Vesa Halava
in his presentation of WORDS 2013. In the same meeting, in the topic of the
Dual-PCP , the so-called periodicity forcing words is the aim of the talk from
Joel D. Day, Daniel Reidenbach and Johannes C. Schneider.

Complexity issues

In the literature, with a word several notions of complexity can be associated,
the most famous being certainly the factor complexity: given a word w, this
complexity measures the number pw(n) of different factors of length n occuring in
w. The famous characterization of Morse-Hedlund for ultimately periodic words
has led to introduce the infinite Surmian words whose complexity is pw(n) =
n + 1, the best known example of them being certainly the famous Fibonacci
word.

32 J. Néraud

- Other notions of complexity for infinite words are defined by Sébastien
Ferenczi and Zoltán Kása in their paper of WORDS 1997: the behavior of
upper (lower) total finite-word complexity and upper (lower) maximal finite-word
complexity are compared to the classical factor complexity, moreover new char-
acterizations of Sturmian sequences are obtained.

-The recurrence function has been introduced by Morse and Hedlund: given
a factor u, it associates with every non-negative integer n the size Ru(n) of
the smallest window that contains every factor of length n of u. During its
talk of WORDS 1997, Julien Cassaigne introduces the recurrence quotient as
lim sup
n→∞

R(n)
n , moreover he computes it for Sturmian sequences.

- The notion of special factor allows to obtain a performing characterization of
Sturmian words. In the case of finite words, it leads to introduce two parameters,
namely R,L which, given a finite word w, represent the least integer such no
right (left) special factors of lenght ≥ R (≥ L) may occur in w. In his paper of
WORDS 1997, Aldo de Luca studies the connections between these parameters
and the classical factor complexity.

- The study of the ratio p(n)/n brings also noticeable informations on infinite
words. In WORDS 1999, Alex Heinis shows that if p(n)/n has a limit, then it
is either equal to 1, or highter than and equal to 2. By using the Rauzy graphs,
in WORDS 2001, Ali Aberkane will present characterizations of the words such
that the limit is 1.

- An words is balanced if for any pairs (u, v), of factors with same length,
and for any letter a, we have ||u|a − |v|a| ≤ 1 (where |u|a stands for the number
of occurrences of the letter a in u). In the paper he presents in WORDS 2001,
Boris Adamczewski defines the balance function as max

a∈A
max

u,v∈F (w)
{||u|a − |v|a|}:

as regard to the so-called primitive substitutions, he investigates the connec-
tions between the asymptotic behavior of the balance function and the incidence
matrix of such a substitution. In the workshop of 2007, several contributions to
the topic are also presented: Nicolas Bédaride, Eric Domenjoud, Damien Jamet
and Jean-Luc Remy study the number of balanced words of given length and
height on a binary alphabet. During WORDS 2013, two talks relating investiga-
tions of the property of balancedness of the Arnoux-Rauzy word are presented:
one is from Julien Cassaigne and the other one from Vincent Delecroix, Tomáš
Hejda and Wolfgang Steiner.

- The arithmetical complexity of an infinite sequence is the number of all
words of a given length whose symbols occur in the sequence at positions which
constitute an arithmetical progression. The study of arithmetical complexity will
also appear in the contribution of Julien Cassaigne and Anna Frid of WORDS
2005: they give a uniform O(n3) upper bound for the arithmetical complexity of
a Sturmian word and provide explicit expressions for the arithmetical complexity
of Sturmian words of slope between 1/3 and 2/3 (this is, in particular, the case
of the infinite Fibonacci word). In this case the difference between the genuine
arithmetical complexity function and the precedingly mentioned upper bound is
itself bounded and ultimately 2-periodic.

On the Contribution of WORDS to the Field of Combinatorics on Words 33

- The palindromic complexity of an infinite word is the function which counts
the number P (n) of different palindromes of each length occurring as factors in
the word. In their talk of WORDS 2005, Peter Bali, Zuzana Masḱová and Edita
Pelantovà provide an estimate of the palindromic complexity P (n) for uniformly
recurrent words; denoting by p(n) the classical factor complexity this estimation
is based on the equation: P (n) + P (n + 1) = p(n + 1) − p(n) + 2.

- The m-binomial complexity of an infinite word w maps an integer n to the
number of m-binomial equivalence classes of factors of length n that occur in
w. This relation of binomial equivalence is defined as follows: two words u, v are
m-equivalent if, for any word x of length at most m, x appears in u and v with
the same number of occurrences. In their contribution to WORDS 2013 Michel
Rigo and Pavel Salimov compute the m-binomial complexity of famous words:
the Sturmian words and the Thue-Morse word.

- Given a word v with several occurrences in an infinite word, the set of return
words of v has for elements all distinct words beginning with an occurrence of v
and ending just before the next occurrence of v. It had been proved that a word
is Sturmian if and only if each of its factors has two returns: in the meeting of
2011, Svetlana Puzynina and Luca Zamboni prove that a word is Sturmian if
and only if each of its factors has two or three abelian returns.

- Complexity is also implicitely present in the talk given by Shuo Tan and
Jeffrey Shallit in WORDS 2013. Given an alphabet A, a subset X of An is rep-
resentable if it occurs as the set of all factors of length n of a finite word. Clearly,
the set An itself is represented by any De Bruinj word of order n. One of the
questions which are presented by the authors consists in examining the length of
a word needed to represent a given representable set X: they provide a lower and
a upper bounds of the form α2n with α =

√
2 for the lower bound and α = 10

√
4

for the upper-one.

Many other interesting topics were presented during the conference: in the
sequel we can only mention some of them.

As regard to sets of words, in WORDS 1999, Jean Berstel and Luc Boasson
prove that, given a finite set of words S, at most one (normalized) multiset P
may exists such that S is the shuffle of the words in P , the multiset P being
effectively computable. Codes were also the subject of talks from Véronique
Bruyère and Dominique Perrin (WORDS 1997), Jean Néraud and Carla Selmi
(WORDS 2001), Fabio Burderi (WORDS 2011).

Extensions of the classical concept of words were also the subject of a lot of
presentations: the notion of partial word has been introduced in WORDS 1997
by Jean Berstel and Luc Boasson; in WORDS 2009, in the framework of binary
words, Francine Blanchet Sadri and Brian Shirey will examine the relationship
between such a notion and periodicity. Multidimensional words were the feature
of the talks from Valérie Berthé and Robert Tijdeman in WORDS 1999, and in
the meeting of 2005, they were also the subject of two presentations: one was
given by Pierre Arnoux, Valérie Berthé, Thomas Fernique and Damien Jamet
and the other one by Jean-Pierre Borel.

Connections with Semigroups Theory were the subject of the lectures of
Sergei I. Adian in WORDS 2003.

34 J. Néraud

Words in connection with Number Theory and Numeration Systems were
also the feature of very interesting papers from Tom Brown (WORDS 1999),
Petr Ambrož and Christiane Frougny (WORDS 2005), Daniel Dombek (WORDS
2011), Shigeki Akiyama, Victor Marsault and Jacques Sakarovitch (WORDS
2013).

Anyway each of the numerous results which will be presented in the ten
conferences plays a noticeable part in the state-of-the-art. We will have reached
our goal if the preceding notes may testify to the involvement of WORDS in the
development of the field of Combinatorics on Words.

References

1. Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. http://igm.
univ-mlv.fr/∼berstel/Articles/1994ThueTranslation.pdf

2. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)
3. Berstel, J., Perrin, D., Reutenauer, C.: Codes an Automata, Encyclopedia of Math-

ematics and its Applications, vol. 129. Cambridge University Press, Cambridge
(2010)

4. Carpi, A., De Felice, C. (Guest Editors): Combinatorics on Words (WORDS 2009),
7th International Conference on Words, Fisciano, Italy, Theoretical Computer Sci-
ence, vol. 412, Issue 27, pp. 2909–3032 (2011)

5. Brlek, S., Reutenauer, C. (Guest Editors): Combinatorics on words. Theor. Com-
put. Sci. 380(3), 219–410 (2007)

6. Harju, T., Karhumäki, J., Restivo, A. (Guest Editors): Combinatorics on words.
Theor. Comput. Sci. 339(1), 1–166 (2005)

7. Karhumäki, J., Lepistö, A., Zamboni, L.: Combinatorics on Words, Theoretical
Computer Science (to appear)

8. Lothaire, M.: Combinatorics on Words, 2nd edn. Cambridge University Press,
Cambridge (1997). First edition 1983

9. Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathametics
and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

10. Lothaire, M.: Applied Combinatorics on Words, Encyclopedia of Mathematics and
its Applications, vol. 105. Cambridge University Press, Cambridge (2005)

11. Masáková, Z., Holub, Š.: Special Issue WORDS 2011. Int. J. Found. Comput. Sci.
23(8), 1579–1728 (2012)

12. Néraud, J. (Guest Editor): WORDS. Theor. Comput. Sci. 218(1), 1–216 (1999)
13. Néraud, J. (Guest Editor): WORDS. Theor. Comput. Sci. 273(1–2), 1–306 (2002)
14. Néraud, J. (Guest Editor): WORDS. Theor. Comput. Sci. 307(1), 1–216 (2003)
15. Power, J.F.: Thues 1914 paper: a translation. http://arxiv.org/pdf/1308.5858.pdf
16. Thue, A.: Über unendliche zeichenreihen. Nor. Vid. Selsk; Skr. I. Mat. Kl. Chris-

tiana 7, 1–22 (1906)
17. Thue, A.: Über die gegenseitige lager gleicher teile gewisser zeichenreihen. Skr. I.

Mat. Kl. Christiana 1, 1–67 (1912)
18. Thue, A.: Problemeüber Veränderungen von Zeichenreihen nach gegebenen Regeln.

Christiana Videnskabs-Selskabs Skrifter, I. Math. naturv. Kl. 10 (1914). Reprinted
in [NSST77, pp. 493–524]

http://igm.univ-mlv.fr/~berstel/Articles/1994ThueTranslation.pdf
http://igm.univ-mlv.fr/~berstel/Articles/1994ThueTranslation.pdf
http://arxiv.org/abs/http://arxiv.org/pdf/1308.5858.pdf

Codes and Automata in Minimal Sets

Dominique Perrin(B)

LIGM, Université Paris Est, Paris, France
dominique.perrin@esiee.fr

Abstract. We explore several notions concerning codes and automata
in a restricted set of words S. We define a notion of S-degree of an
automaton and prove an inequality relating the cardinality of a prefix
code included in a minimal set S and its S-degree.

1 Introduction

We have introduced in [1] the notion of tree set as a common generalization of
Sturmian sets and of interval exchange sets. In this paper, we investigate several
new directions concerning codes and automata in minimal sets.

Codes and automata in restricted sets of words have already been investigated
several times. In particular, Restivo has investigated codes in sets of finite type [2]
and Reutenauer has studied the more general notion of codes of paths in a
graph [3]. We have initiated in [4] with several other authors, a systematic study
of bifix codes in Sturmian sets, a subject already considered before in [5]. The
overall conclusion of this study is that very surprising phenomena appear in this
context in relation with subgroups of finite index of the free group, allowing one
to obtain positive bases of the subgroups contained in a given minimal set.

In this paper, we investigate several notions concerning codes and automata
in relation with a factorial set S. This includes a definition of minimal S-rank of
an automaton, which is equal to 1 if and only if the automaton is synchronized.
We prove a result which allows to compute the minimal S-rank when S is minimal
(Theorem 3.1). We also show that for a recurrent set S and a strongly connected
automaton A, the set of elements of the transition monoid M of minimal S-rank
is included in a D-class of M called its S-minimal D-class (Proposition 3.2). This
regular D-class is unique when S is minimal and it is related with the results
of [6] and [7] on the regular J -classes of free profinite semigroups.

We define the S-degree of a prefix code X included in S as the minimal
S-rank of the minimal automaton of X∗. We show that the cardinality of a
prefix code is bounded below by a linear function of its S-degree (Theorem 4.4).

Let X be a prefix code and let M be the transition monoid of the minimal
automaton of X∗. We associate to X a permutation group denoted GX(S) which
is the structure group of the S-minimal D-class of M . We show that for any
uniformly recurrent tree set S and any finite S-maximal bifix code X, the group
GX(S) is equivalent to the representation of the free group on the cosets of the
subgroup generated by X (Theorem 4.5).

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 35–46, 2015.
DOI: 10.1007/978-3-319-23660-5 4

36 D. Perrin

2 Neutral and Tree Sets

Let A be a finite alphabet. We denote by A∗ the set of all words on A. We denote
by ε or 1 the empty word. A set of words on the alphabet A and containing A is
said to be factorial if it contains the factors of its elements. An internal factor
of a word x is a word v such that x = uvw with u,w nonempty.

2.1 Neutral Sets

Let S be a factorial set on the alphabet A. For w ∈ S, we denote LS(w) =
{a ∈ A | aw ∈ S}, RS(w) = {a ∈ A | wa ∈ S}, ES(w) = {(a, b) ∈ A × A |
awb ∈ S}, and further �S(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) =
Card(ES(w)).

We omit the subscript S when it is clear from the context. A word w is right-
extendable if r(w) > 0, left-extendable if �(w) > 0 and biextendable if e(w) > 0. A
factorial set S is called right-extendable (resp. left-extendable, resp. biextendable)
if every word in S is right-extendable (resp. left-extendable, resp. biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if �(w) ≥ 2.
It is called bispecial if it is both left-special and right-special. For w ∈ S, we
denote

mS(w) = eS(w) − �S(w) − rS(w) + 1.

A word w is called neutral if mS(w) = 0. We say that a set S is neutral if it
is factorial and every nonempty word w ∈ S is neutral. The characteristic of S
is the integer χ(S) = 1 − mS(ε).

A neutral set of characteristic 1, simply called a neutral set, is such that all
words (including the empty word) are neutral.

The following is a trivial example of a neutral set of characteristic 2.

Example 2.1. Let A = {a, b} and let S be the set of factors of (ab)∗. Then S is
neutral of characteristic 2.

As a more interesting example, any Sturmian set is a neutral set [1] (by a Stur-
mian set, we mean the set of factors of a strict episturmian word, see [8]).

The following example is the classical example of a Sturmian set.

Example 2.2. Let A = {a, b} and let f : A∗ → A∗ be the Fibonacci morphism
defined by f(a) = ab and f(b) = a. The infinite word x = limn→∞ fn(a) is the
Fibonacci word. One has x = abaababa · · · . The Fibonacci set is the set of factors
of the Fibonacci word. It is a Sturmian set, and thus a neutral set.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). The complexity of a Sturmian set is pn =
n(Card(A) − 1) + 1. The following result (see [9]) shows that a neutral set has
linear complexity.

Proposition 2.1 The factor complexity of a neutral set on k letters is given by
p0 = 1 and pn = n(k − χ(S)) + χ(S) for every n ≥ 1.

Codes and Automata in Minimal Sets 37

Example 2.3. The complexity of the set of Example 2.1 is pn = 2 for any n ≥ 1.

A set of words S �= {ε} is recurrent if it is factorial and for any u,w ∈ S, there
is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be minimal or
uniformly recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u
is a factor of any word of S of length n. A uniformly recurrent set is recurrent.

2.2 Tree Sets

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w) as
an undirected graph on the set of vertices which is the disjoint union of L(w)
and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension
graph of w. We sometimes denote 1 ⊗ L(w) and R(w) ⊗ 1 the copies of L(w)
and R(w) used to define the set of vertices of E(w). We note that since E(w)
has �(w) + r(w) vertices and e(w) edges, the number 1 − mS(w) is the Euler
characteristic of the graph E(w).

A biextendable set S is called a tree set of characteristic c if for any nonempty
w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees. Note that a
tree set of characteristic c is a neutral set of characteristic c.

Example 2.4. The set S of Example 2.1 is a tree set of characteristic 2.

A tree set of characteristic 1, simply called a tree set as in [1], is such that E(w)
is a tree for any w ∈ S.

As an example, a Sturmian set is a tree set [1].

Example 2.5. Let A = {a, b} and let f : A∗ → A∗ be the morphism defined by
f(a) = ab and f(b) = ba. The infinite word x = limn→∞ fn(a) is the Thue-Morse
word. The Thue-Morse set is the set of factors of the Thue-Morse word. It is
uniformly recurrent but it is not a tree set since E(ε) = A × A.

Let S be a set of words. For w ∈ S, let ΓS(w) = {x ∈ S | wx ∈ S ∩ A+w}. If S
is recurrent, the set ΓS(w) is nonempty. Let

RetS(w) = ΓS(w) \ ΓS(w)A+

be the set of return words to w.
Note that a recurrent set S is uniformly recurrent if and only if the set

RetS(w) is finite for any w ∈ S. Indeed, if N is the maximal length of the words
in RetS(w) for a word w of length n, any word in S of length N + n contains an
occurrence of w. The converse is obvious.

We will use the following result [1, Theorem 4.5]. We denote by FA the free
group on A.

Theorem 2.2 (Return Theorem). Let S be a uniformly recurrent tree set.
For any w ∈ S, the set RetS(w) is a basis of the free group FA.

Note that this result implies in particular that for any w ∈ S, the set RetS(w)
has Card(A) elements.

38 D. Perrin

Example 2.6. Let S be the Tribonacci set. It is the set of factors of the infinite
word x = abacaba · · · which is the fixed point of the morphism f defined by
f(a) = ab, f(b) = ac, f(c) = a. It is a Sturmian set (see [8]). We have RetS(a) =
{a, ba, ca}.

3 Automata

All automata considered in this paper are deterministic and strongly connected
and we simply call them automata. An automaton on a finite set Q of states
is given by a partial map from Q × A into Q denoted p �→ p · a, and extended
to words with the same notation. For a word w, we denote by ϕA the map
p ∈ Q �→ p · w ∈ Q.

The transition monoid of the automaton A is the monoid M of partial maps
from Q to itself of the form ϕA(w) for w ∈ A∗. The rank of an element m of M
is the cardinality of its image, denoted Im(m).

Let A be an automaton and let S be a set of words. Denote by rankA(w) the
rank of the map ϕA(w), also called the rank of w with respect to the automaton
A. The S-minimal rank of A is the minimal value of rankA(w) for w ∈ S. It is
denoted rankA(S). A word of rank 1 is called synchronizing.

The following result gives a method to compute rankA(S) and thus gives a
method to decide if A admits synchronizing words.

Theorem 3.1. Let S be a recurrent set and let A be an automaton. Let w be
in S and let I = Im(w). Then w has rank equal to rankA(S) if and only if
rankA(wz) = rankA(w) for any z ∈ RetS(w).

Proof. Assume first that rankA(w) = rankA(S). If z is in RetS(w), then wz is
in S. Since rankA(wz) ≤ rankA(w) and since rankA(w) is minimal, this forces
rankA(wz) = rankA(w).

Conversely, assume that w satisfies the condition. For any r ∈ RetS(w), we
have I · r = Im(wr) ⊂ Im(w) = I. Since rankA(wr) = rankA(w), this forces
I · r = I. Since ΓS(w) ⊂ RetS(w)∗, this proves that

ΓS(w) ⊂ {z ∈ S | I · z = I}. (3.1)

Let u be a word of S of minimal rank. Since S is recurrent, there exists words
v, v′ such that wvuv′w ∈ S. Then vuv′w is in ΓS(w) and thus I · vuv′w = I
by (3.1). This implies that rankA(u) ≥ rankA(vuv′w) = rankA(w). Thus w has
minimal rank in S.

Theorem 3.1 can be used to compute the S-minimal rank of an automaton in an
effective way for a uniformly recurrent set S provided one can compute effectively
the finite sets RetS(w) for w ∈ S.

Example 3.1. Let S be the Fibonacci set and let A be the automaton given by its
transitions in Fig. 3.1 on the left. One has Im(a2) = {1, 2, 4}. The action on the
3-element sets of states of the automaton is shown on the right. By Theorem 3.1,
we obtain rankA(S) = 3.

Codes and Automata in Minimal Sets 39

1 2 3 4 5 6 7 8 9

a 2 4 1 − 7 8 4 1 3

b 3 5 − 6 − − 9 1 −
1, 2, 4 3, 5, 6 1, 7, 8 1, 3, 9 1, 2, 3

b a b a

a

a

Fig. 3.1. An automaton of S-degree 3.

We denote by L,R,D,H the usual Green relations on a monoid M (see [10]).
Recall that R is the equivalence on M defined by mRn if mM = nM . The R-
class of m is denoted R(m). Symmetrically, one denotes by L the equivalence
defined by mLn if Mm = Mn. It is well-known that the equivalences R and L
commute. The equivalence RL = LR is denoted D. Finally, one denotes by H
the equivalence R ∩ L.

The following result is proved in [4] in a particular case (that is, for an
automaton recognizing the submomoid generated by a bifix code).

Proposition 3.2. Let S be a recurrent set and A be a strongly connected
automaton. Set ϕ = ϕA and M = ϕ(A∗). The set of elements of ϕ(S) of rank
rankA(S) is included in a regular D-class of M .

Proof. Set d = rankA(S). Let u, v ∈ S be two words of rank d. Set m = ϕ(u)
and n = ϕ(v). Let w be such that uwv ∈ S. We show first that mRϕ(uwv) and
nLϕ(uwv).

For this, let t be such that uwvtu ∈ S. Set z = wvtu. Since uz ∈ S, the
rank of uz is d. Since Im(uz) ⊂ Im(z) ⊂ Im(u), this implies that the images
are equal. Consequently, the restriction of ϕ(z) to Im(u) is a permutation. Since
Im(u) is finite, there is an integer � ≥ 1 such that ϕ(z)� is the identity on Im(u).
Set e = ϕ(z)� and s = tuz�−1. Then, since e is the identity on Im(u), one has
m = me. Thus m = ϕ(uwv)ϕ(s), and since ϕ(uwv) = mϕ(wv), it follows that
m and ϕ(uwv) are R-equivalent.

Similarly n and ϕ(uwv) are L-equivalent. Indeed, let t′ be such that vt′uwv ∈
S. Set z′ = t′uwv. Then Im(vz′) ⊂ Im(z′) ⊂ Im(v). Since vz′ is a factor of
z2 and z has rank d, it follows that d = rank(z2) ≤ rank(vz′) ≤ rank(v) =
d. Therefore, vz′ has rank d and consequently the images Im(vz′), Im(z′) and
Im(v) are equal. There is an integer �′ ≥ 1 such that ϕ(z′)�′

is the identity on
Im(v). Set e′ = ϕ(z′)�′

. Then n = ne′ = nϕ(z′)�′−1ϕ(tuwv) = nqϕ(uwv), with
q = ϕ(z′)�′−1ϕ(t). Since ϕ(uwv) = ϕ(uw)n, one has nLϕ(uwv). Thus m,n are
D-equivalent, and ϕ(uwv) ∈ R(m) ∩ L(n).

Set p = ϕ(wv). Then p = ϕ(w)n and, with the previous notation, n = ne′ =
nqϕ(u)p, so L(n) = L(p). Thus mp = ϕ(uwv) ∈ R(m) ∩ L(p), and by Clifford
and Miller’s Lemma, R(p) ∩ L(m) contains an idempotent. Thus the D-class of
m, p and n is regular.

The D-class containing the elements of ϕ(S) of rank rankA(S) is called the S-
minimal D-class of M . This D-class appears in a different context in [11] (for a
survey concerning the use of Green’s relations in automata theory, see [12]).

40 D. Perrin

Example 3.2. Let S be the Fibonacci set and let A be the automaton represented
in Fig. 3.2 on the left. The S-minimal D-class of the transition monoid of A is
represented in Fig. 3.2 on the right.

1 2

3

a

a

b

b

a

3 1 2

1, 2 b *ba *ba2

1, 2, 3 *ab * *

Fig. 3.2. The automaton A and the S-minimal D-class

Thus rankA(S) = 1. We indicate with a ∗ the H-classes containing an idem-
potent.

Let us recall some notions concerning groups in transformation monoids (see [4]
for a more detailed presentation). Let M be a transformation monoid on a set
Q. For I ⊂ Q, we denote

StabM (I) = {x ∈ M | Ix = I}

or Stab(I) if the monoid M is understood. The holonomy group of M relative
to I is the restriction of the elements of StabM (I) to the set I. It is denoted
Group(I).

Let D be a regular D-class in a transformation monoid M on a set Q. The
holonomy groups of M relative to the sets Qm for m ∈ D are all equivalent. The
structure group of D is any of them.

Let A be an automaton with Q as set of states and let I ⊂ Q. Let w be a
word such that ϕA(w) ∈ Stab(I). The restriction of ϕA(w) to I is a permutation
which belongs to Group(I). It is called the permutation defined by the word w
on the set I.

Let A be a strongly connected automaton and let S be a recurrent set of
words. The S-group of A is the structure group of its S-minimal D-class. It is
denoted GA(S).

For the set S = A∗ and a strongly connected automaton, the group GA(S) is
a transitive permutation group of degree dX(S) (see [10, Theorem 9.3.10]). We
conjecture that it holds for a uniformly recurrent tree set. It is not true for any
uniformly recurrent set S, as shown in the following examples.

Example 3.3. Let S be the set of factors of (ab)∗ and let A be the automaton of
Fig. 3.3. The minimal S-rank of A is 2 but the group GA(S) is trivial.

Codes and Automata in Minimal Sets 41

1 23

a

bb

a

Fig. 3.3. An automaton of S-rank 2 with trivial S-group

1

2

3

4

1

1

5

6

8

1

10 1

7

1

9 11 1

a

b

a

b

a

b

b
a

b

b b

a
a

b
a a

0 1

2

a

aa
b b

b

Fig. 3.4. An automaton of S-degree 3 with trivial S-group

1, 2, 4 1, 3, 6 1, 3, 5 1, 2, 7 1, 3, 9 1, 2, 11

1, 2, 8 1, 3, 10

b b a b a

a

a

b

b

a

Fig. 3.5. The action on the minimal images

Example 3.4. Let S be the Thue-Morse set and let A be the automaton repre-
sented in Fig. 3.4 on the left. The word aa has rank 3 and image I = {1, 2, 4}.

The action on the images accessible from I is given in Fig. 3.5. All words with
image {1, 2, 4} end with aa. The paths returning for the first time to {1, 2, 4} are
labeled by the set RetS(aa) = {b2a2, bab2aba2, bab2a2, b2aba2}. Thus rankA(S) =
3 by Theorem 3.1. Moreover each of the words of RetS(a2) defines the trivial
permutation on the set {1, 2, 4}. Thus GA(S) is trivial.

The fact that dA(S) = 3 and that GA(S) is trivial can be seen directly as
follows. Consider the group automaton B represented in Fig. 3.4 on the right
and corresponding to the map sending each word to the difference modulo 3 of
the number of occurrences of a and b. There is a reduction ρ from A onto B
such that 1 �→ 0, 2 �→ 1, and 4 �→ 2. This accounts for the fact that dA(S) = 3.
Moreover, one may verify that any return word x to a2 has equal number of a
and b (if x = uaa then aauaa is in S, which implies that aua and thus uaa have
the same number of a and b). This implies that the permutation ϕB(x) is the
identity, and therefore also the restriction of ϕA(x) to I. The same argument
holds for Example 3.3 by considering the parity of the length.

42 D. Perrin

4 Codes

A code is a set X such that for any n,m ≥ 0 any x1, . . . , xn and y1, . . . , ym in
X, one has x1 · · · xn = y1 · · · ym only if n = m and x1 = y1,..., xn = yn. A prefix
code is a set X of nonempty words which does not contain any proper prefix of
its elements. A suffix code is defined symmetrically. A bifix code is a set which
is both a prefix code and a suffix code.

Let S be a set of words. A prefix code X ⊂ S is said to be S-maximal if it is
not properly contained in any prefix code Y ⊂ S. The notion of an S-maximal
suffix or bifix code are symmetrical.

It follows from results of [4] that for a recurrent set S, a finite bifix code
X ⊂ S is S-maximal as a bifix code if and only if it is S-maximal as a prefix
code.

Given a set X ⊂ S, we denote λS(X) =
∑

x∈X λS(x) where λS is the map
defined by λS(x) = eS(x) − rS(x). The following result is [9, Proposition 4].

Proposition 4.1. Let S be a neutral set of characteristic c on the alphabet A,
and let X be a finite S-maximal prefix code. Then λS(X) = Card(A) − c.

Symmetrically, one denotes ρS(x) = eS(x) − �S(x). The dual of Proposition 4.1
holds for suffix codes instead of prefix codes with ρS instead of λS .

Note that when S is Sturmian, one has λS(x) = Card(A)−1 if x is left-special
and λS(x) = 0 otherwise. Thus Proposition 4.1 expresses the fact that any finite
S-maximal prefix code contains exactly one left-special word [4, Proposition
5.1.5].

Example 4.1. Let S be the Fibonacci set and let X = {aa, ab, b}. The set X is
an S-maximal prefix code. It contains exactly one left-special word, namely ab.
Accordingly, one has λS(X) = 1.

Let S be a factorial set and let X ⊂ S be a finite prefix code. The S-degree of
X is the S-minimal rank of the minimal automaton of X∗. It is denoted dX(S).

When X is a finite bifix code, the S-degree can be defined in a different way.
A parse of a word w is a triple (s, x, p) such that w = sxp with s ∈ A∗ \ A∗X,
x ∈ X∗ and p ∈ A∗ \ XA∗. For a recurrent set S and an S-maximal bifix code
X, dX(S) is the maximal number of parses of a word of S. A word w ∈ S has
dX(S) parses if and only if it is not an internal factor of a word of X (see [4]).

The following result is [13, Theorem 4.4].

Theorem 4.2 (Finite Index Basis Theorem). Let S be a uniformly recur-
rent tree set and let X ⊂ S be a finite bifix code. Then X is an S-maximal bifix
code of S-degree d if and only if it is a basis of a subgroup of index d of FA.

Note that the result implies that any S-maximal bifix code of S-degree n has
d(Card(A)−1)+1 elements. Indeed, by Schreier’s Formula, a subgroup of index
d of a free group of rank r has rank d(r − 1) + 1.

Codes and Automata in Minimal Sets 43

Example 4.2. Let S be a Sturmian set. For any n ≥ 1, the set X = S ∩ An is
an S-maximal bifix code of S-degree n. According to theorem 4.2, it is a basis
of the subgroup which is the kernel of the group morphism from FA onto the
additive group Z/nZ sending each letter to 1.

The following statement generalizes [4, Theorem 4.3.7] where it is proved for a
bifix code (and in this case with a stronger conclusion).

Theorem 4.3. Let S be a recurrent set and let X be a finite S-maximal prefix
code of S-degree n. The set of nonempty proper prefixes of X contains a disjoint
union of n − 1 S-maximal suffix codes.

Proof. Let P be the set of proper prefixes of X. Any word of S of rank n of
length larger than the words of X has n suffixes which are in P .

We claim that this implies that any word in S is a suffix of a word with at
least n suffixes in P . Indeed, let x ∈ S be of minimal rank. For any w ∈ S, since
S is recurrent, there is some u such that xuw ∈ S. Then xuw is of rank n and
has n suffixes in P . This proves the claim.

Let Yi for 1 ≤ i ≤ n be the set of p ∈ P which have i suffixes in P . One
has Y1 = {ε} and each Yi for 2 ≤ i ≤ d is clearly a suffix code. It follows from
the claim above that it is S-maximal. Since the Yi are also disjoint, the result
follows.

Corollary 1. Let S be a recurrent neutral set of characteristic c, and let X be
a finite S-maximal prefix code of S-degree n. The set P of proper prefixes of X
satisfies ρS(P) ≥ n(Card(A) − c).

Proof. By Theorem 4.3, there exist n−1 pairwise disjoint S-maximal suffix codes
Yi (2 ≤ i ≤ n) such that P contains all Yi. By the dual of Proposition 4.1,
we have ρS(Yi) = Card(A) − c for 2 ≤ i ≤ n. Since ρS(ε) = eS(ε) − �S(ε) =
mS(ε)+rS(ε)−1 = Card(A)−c, we obtain ρS(P) ≥ ρS(ε)+(n−1)(Card(A)−c) =
n(Card(A) − c).

4.1 A Cardinality Theorem for Prefix Codes

Theorem 4.4. Let S be a uniformly recurrent neutral set of characteristic c.
Any finite S-maximal prefix code has at least dX(S)(Card(A) − c) + 1 elements.

Proof. Let P be the set of proper prefixes of X. We may identify X with the
set of leaves of a tree having P as set of internal nodes, each having rS(p) sons.
By a well-known argument on trees, we have Card(X) = 1 +

∑
p∈P (rS(p) − 1).

Thus Card(X) = 1 + ρS(P). By Corollary 1, we have ρS(P) ≥ n(Card(A) − c).

The next example shows that the prefix code can have strictly more than
dX(S)(Card(A) − c) + 1 elements.

Example 4.3. Let S be the Fibonacci set. Let X be the S-maximal prefix code
represented in Fig. 4.1. The states of the minimal automaton of X∗ are repre-
sented on the figure. The automaton coincides with that of Example 3.1. Thus
dX(S) = 3 and Card(X) = 6 while dX(S)(Card(A) − 1) + 1 = 4.

44 D. Perrin

1 2 3 4 5 6 7 8 9

a 2 4 1 − 7 8 4 1 3

b 3 5 − 6 − − 9 1 −
1, 2, 4 3, 5, 6 1, 7, 8 1, 3, 9 1, 2, 3

b a b a

a

a

Fig. 4.1. A prefix code of S-degree 3

If X is bifix, then it has dX(S)(Card(A) − c) + 1 elements by a result
of [9]. The following example shows that an S-maximal prefix code can have
dX(S)(Card(A) − c) + 1 elements without being bifix.

1 2

3

a

a

b

b

a

3 1 2

1, 2 b *ba *ba2

1, 2, 3 *ab * *

Fig. 4.2. The S-maximal prefix code X and the action on 2-subsets.

Example 4.4. Let S be the Fibonacci set and let

X = {aaba, ab, ba}.

The literal automaton of X∗ is represented in Fig. 4.2 on the left. The prefix
code X is S-maximal. The word ab has rank 2 in the literal automaton of X∗.
Indeed, Im(ab) = {1, 3}. Moreover RS(ab) = {ab, aab}. The ranks of abab and
abaab are also equal to 2, as shown in Fig. 4.2 on the right. Thus the S-degree
of X is 2 by Proposition 3.1. The code X is not bifix since ba is a suffix of aaba.

4.2 The Group of a Bifix Code

The following result is proved in [4, Theorem 7.2.5] for a Sturmian set S. Recall
that a group code of degree d is a bifix code Z such that Z∗ = ϕ−1(K) for a
surjective morphism ϕ from A∗ onto a finite group G and a subgroup K of index
d in G. Equivalently, a bifix code Z is a group code if it generates the submonoid
H ∩ A∗ where H is a subgroup of index d of the free group FA.

The S-group of a prefix code, denoted GX(S), is the group GA(S) where A
is the minimal automaton of X∗.

Theorem 4.5. Let Z be a group code of degree d and let S be a uniformly
recurrent tree set S. The set X = Z ∩S is an S-maximal bifix code of S-degree d
and GX(S) is equivalent to the representation of FA on the cosets of the subgroup
generated by X.

Codes and Automata in Minimal Sets 45

Proof. The first part is [14, Theorem 5.10], obtained as a corollary of the Finite
Index Basis Theorem. To see the second part, let H be the subgroup generated
by X of the free group FA. Consider a word w ∈ S which is not an internal
factor of X. Let P be the set of proper prefixes of X which are suffixes of w.
Then P has d elements since for each p ∈ P , there is a parse of w of the form
(s, x, p). Moreover P is a set of representatives of the right cosets of H. Indeed,
let p, q ∈ P and assume that p = uq with u ∈ S. If p ∈ Hq, then u ∈ X∗ ∩ S.
Since p cannot have a prefix in X, we conclude that p = q. Since H has index
d, this implies the conclusion.

Let A = (Q, i, i) be the minimal automaton of X∗. Set I = Q ·w. Let Stab(I)
be the set of words x ∈ A∗ such that I ·x = I. Note that Stab(I) contains the set
RetS(w) of right return words to w. For x ∈ Stab(I), let π(x) be the permutation
defined by x on I. By definition, the group GX(S) is generated by π(Stab(I)).
Since Stab(I) contains RetS(w) and since RetS(w) generates the free group FA,
the set Stab(I) generates FA.

Let x ∈ Stab(I). For p, q ∈ I, let u, v ∈ P be such that i · u = p, i · v = q. Let
us verify that

p · x = q ⇔ ux ∈ Hv. (4.1)

Indeed, let t ∈ S be such that vt ∈ X. Then, one has p · x = q if and only if
uxt ∈ X∗ which is equivalent to ux ∈ Hv. Since Stab(I) generates FA, Eq. (4.1)
shows that the bijection u �→ i · u from P onto I defines an equivalence from
GX(S) onto the representation of FA on the cosets of H.

Example 4.5. Let S be the Fibonacci set and let Z = A2 which is a group code
of degree 2 corresponding to the morphism from A∗ onto the additive Z/2Z
sending each letter to 1. Then X = {aa, ab, ba}. The minimal automaton of X∗

is represented in Fig. 4.3 on the left. The word a has 2 parses and its image is the
set {1, 2}. We have RetS(a) = {a, ba} and the action of RetS(a) on the minimal
images is indicated in Fig. 4.3 on the right. The word a defines the permutation
(12) and the word ba the identity.

Theorem 4.5 is not true for an arbitrary minimal set instead of a minimal tree
set (see Example 3.4). The second part is true for an arbitrary finite S-maximal
bifix code by the Finite Index Basis Theorem. We have no example where the
second part is not true when X is S-maximal prefix instead of S-maximal bifix.

1 23

a

bb

a

Fig. 4.3. The minimal automaton of X∗ and the action on minimal images.

46 D. Perrin

References

1. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Acyclic, connected and tree sets. Monats. Math. 176, 521–550 (2015)

2. Restivo, A.: Codes and local constraints. Theoret. Comput. Sci. 72(1), 55–64 (1990)
3. Reutenauer, C.: Ensembles libres de chemins dans un graphe. Bull. Soc. Math.

France 114(2), 135–152 (1986)
4. Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and

Sturmian words. J. Algebra 369, 146–202 (2012)
5. Carpi, A., de Luca, A.: Codes of central Sturmian words. Theoret. Comput. Sci.

340(2), 220–239 (2005)
6. Almeida, J., Costa, A.: On the transition semigroups of centrally labeled Rauzy

graphs. Internat. J. Algebra Comput. 22(2), 1250018 (2012). 25
7. Almeida, J., Costa, A.: Presentations of Schützenberger groups of minimal sub-

shifts. Israel J. Math. 196(1), 1–31 (2013)
8. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of

de Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001)
9. Dolce, F., Perrin, D.: Enumeration formulæ in neutral sets. In: Potapov, I. (ed.)

DLT 2015. LNCS, vol. 9168, pp. 215–227. Springer, Heidelberg (2015)
10. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University

Press, Cambridge (2009)
11. Perrin, D., Schupp, P.: Automata on the integers, recurrence, distinguishability,

and the equivalence of monadic theories. LICS 1986, 301–304 (1986)
12. Colcombet, T.: Green’s relations and their use in automata theory. In: Dediu, A.-

H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 1–21.
Springer, Heidelberg (2011)

13. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)

14. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Maximal bifix decoding. Discrete Math. 338, 725–742 (2015)

Thue–Morse Along Two Polynomial
Subsequences

Thomas Stoll(B)

Institut Elie Cartan de Lorraine, UMR 7502,
Université de Lorraine / CNRS, 54506 Vandoeuvre-lès-Nancy Cedex, Nancy, France

thomas.stoll@univ-lorraine.fr

http://iecl.univ-lorraine.fr/Thomas.Stoll/

Abstract. The aim of the present article is twofold. We first give a sur-
vey on recent developments on the distribution of symbols in polynomial
subsequences of the Thue–Morse sequence t = (t(n))n≥0 by highlighting
effective results. Secondly, we give explicit bounds on

min{n : (t(pn), t(qn)) = (ε1, ε2)},

for odd integers p, q, and on

min{n : (t(nh1), t(nh2)) = (ε1, ε2)}
where h1, h2 ≥ 1, and (ε1, ε2) is one of (0, 0), (0, 1), (1, 0), (1, 1).

Keywords: Thue–Morse sequence · Sum of digits · Polynomials

1 Introduction

The Thue–Morse sequence

t = (t(n))n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .

can be defined via
t(n) = s2(n)mod 2, (1)

where s2(n) denotes the number of one bits in the binary expansion of n, or
equivalently, the sum of digits of n in base 2. This sequence can be found in
various fields of mathematics and computer science, such as combinatorics on
words, number theory, harmonic analysis and differential geometry. We refer the
reader to the survey articles of Allouche and Shallit [2], and of Mauduit [14]
for a concise introduction to this sequence. As is well-known, Thue–Morse is

Work supported by the ANR-FWF bilateral project MuDeRa “Multiplicativity:
Determinism and Randomness” (France-Austria) and the joint project “Systèmes
de numération : Propriétés arithmétiques, dynamiques et probabilistes” of the Uni-
versité de Lorraine and the Conseil Régional de Lorraine.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 47–58, 2015.
DOI: 10.1007/978-3-319-23660-5 5

48 T. Stoll

2-automatic and can be generated by the morphism 0 �→ 01, 1 �→ 10. It is also
the prime example of an overlapfree sequence.

The overall distribution of the symbols 0 and 1 in Thue–Morse is trivial since
the sequence consists exclusively of consecutive blocks of the forms 01 and 10,
thus there are “as many 0’s as 1’s” in the sequence. The investigation of Thue–
Morse along subsequences can be said to have started with an influential paper
by Gelfond in 1967/68 [9]. He proved, via exponential sums techniques, that t
is uniformly distributed along arithmetic progressions, namely,

#{n < N : t(an + b) = ε} ∼ N

2
, (ε = 0 or 1)

with an explicit error term. Gelfond’s result shows that there are “as many 0’s as
1’s” in the sequence also regarding arithmetic progressions. His result, however,
gives no information on how long one actually has to wait to “see” the first, say,
“1” along a specific arithmetic progression. Newman [19] showed that there is a
weak preponderance of the 0’s over the 1’s in the sequence of the multiples of
three. More precisely, he showed that

#{n < N : t(3n) = 0} =
N

2
+ C(N),

with c′
1N

log4 3 < C(N) < c′
2N

log4 3 for all N ≥ 1 and certain positive constants
c′
1, c

′
2. For the multiples of three one has to wait for 7 terms to “see the first 1”,

i.e.,
min{n : t(3n) = 1} = 7.

Morgenbesser, Shallit and Stoll [18] proved that for p ≥ 1,

min{n : t(pn) = 1} ≤ p + 4,

and this becomes sharp for p = 22r −1 for r ≥ 1 (Note that 3 = 22·1−1 is exactly
of that form). A huge literature is nowadays available for classes of arithmetic
progressions where such Newman-type phenomena exist and many generaliza-
tions have been considered so far (see [3,4,8,10,12,22] and the references given
therein). Still, a full classification is not yet at our disposal.

Most of the results that hold true for Thue–Morse in the number-theoretic
setting of (1) have been proven for the sum of digits function in base q, where q
is an integer greater than or equal to 2, and where the reduction in (1) is done
modulo an arbitrary integer m ≥ 2. We refrain here from the general statements
and refer the interested readers to the original research papers.

Following the historical line, Gelfond [9] posed two challenging questions
concerning the distribution of the sum of digits function along primes and along
polynomial values instead of looking at linear subsequences. A third question was
concerned with the simultaneous distribution when the sum of digits is taken
to different bases; this question has been settled by Kim [13]. In recent years,
this area of research gained much momentum due to an article by Mauduit and
Rivat [15] who answered Gelfond’s question for primes with an explicit error

Thue–Morse Along Two Polynomial Subsequences 49

term. In a second paper [16], they also answered Gelfond’s question for the
sequence of squares. Their result implies that

#{n < N : t(n2) = ε} ∼ N

2
.

In a very recent paper, Drmota, Mauduit and Rivat [6] showed that t along
squares gives indeed a normal sequence in base 2 meaning that each binary block
appears with the expected frequency. This quantifies a result of Moshe [17] who
answered a question posed by Allouche and Shallit [1, Problem10.12.7] about
the complexity of Thue–Morse along polynomial extractions.

We are still very far from understanding

#{n < N : t(P (n)) = ε},

where P (x) ∈ Z[x] is a polynomial of degree ≥ 3. Drmota, Mauduit and Rivat [7]
obtained an asymptotic formula for #{n < N : sq(P (n)) = ε (mod m)} when-
ever q is sufficiently large in terms of the degree of P . The case of Thue–Morse
is yet out of reach of current technology. The currently best result is due to the
author [23], who showed that there exists a constant c = c(P) depending only
on the polynomial P such that

#{n < N : t(P (n)) = ε} ≥ cN4/(3 deg P+1). (2)

This improves on a result of Dartyge and Tenenbaum [5] who had N2/(deg P)!

for the lower bound. The method of proof for (2) is constructive and gives an
explicit bound on the minimal non-trivial n such that t(nh) = ε for fixed h ≥ 1.
Since t(nh) = 1 for all n = 2r, and t(0h) = 0, we restrict our attention to

A = {n : n �= 2r, r ≥ 0} = {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, . . .}.

From the proof of (2) follows that

min(n ∈ A : t(nh) = ε) ≤ 64h+1
(
8h · 12h

)3h+1
.

Hence, there exists an absolute constant c1 > 0 such that

min(n ∈ A : t(nh) = ε) ≤ exp(c1h2). (3)

With some extra work, a similar result can be obtained for a general polyno-
mial P (n) instead of nh, where there corresponding constant will depend on the
coefficients of P .

The joint distribution of the binary digits of integer multiples has been
studied by J. Schmid [20] and in the more general setting of polynomials by
Steiner [21]. The asymptotic formulas do not imply effective bounds on the first
n that realizes such a system and it is the aim of this paper to prove effective
bounds in the case of two equations for integer multiples and for monomials.

Our first result is as follows.

50 T. Stoll

Theorem 1. Let p > q ≥ 1 be odd integers. Then there exists an absolute
constant c2 > 0 such that

min(n : t(pn) = ε1, t(qn) = ε2) ≤ exp(c2 log p) (ε1, ε2 ∈ {0, 1}).

Remark 1. Note that for p = 2r+1 with r ≥ 1 we have t(pn) = 0 for all n < p−1,
so that there is no absolute bound for the minimal n.

There are examples that show that sometimes one has to “wait” quite some time
to see all of the four possibilities for (ε1, ε2) when the extraction is done along
two monomial sequences. For instance, we have

min{n ∈ A : t(n130) = ε1)} ≤ 7 and min{n ∈ A : t(n53) = ε2)} ≤ 5

for ε1, ε2 = 0, 1 but

min
{
n : (t(n130), t(n53)) = (0, 0)

}
= 113.

The construction that we will use to prove Theorem 1 will not be useful to
study the minimal n along polynomial subsequences since in this case we would
need to keep track of the binary digits sum of various binomial coefficients.
Instead, we will use ideas from work of Hare, Laishram and the author [11] to
show the following result.

Theorem 2. Let h1 > h2 ≥ 1 be integers. Then there exists an absolute
constant c3 > 0 such that

min(n ∈ A : t(nh1) = ε1, t(nh2) = ε2) ≤ exp(c3h3
1) (ε1, ε2 ∈ {0, 1}).

Remark 2. The method also allows to treat general monic polynomials P1(x),
P2(x) ∈ Z[x] of different degree h1, h2 in place of xh1 , xh2 . Even more generally,
we can deal with non-monic polynomials P1(x), P2(x) ∈ Z[x] provided h1 is
odd. As we will see in the proof (compare with the remark after (14)), the latter
condition relies on the fact that for odd h the congruence xh ≡ a (mod 16)
admits a solution mod 16 for each odd a, while this is not true in general if h is
even.

We write log2 for the logarithm to base 2. Moreover, for n =
∑�

j=0 nj2j with
nj ∈ {0, 1} and n� �= 0 we write (n�, n�−1, · · · , n1, n0)2 for its digital represen-
tation in base 2 and set � = �(n) for its length. To simplify our notation, we
allow to fill up by a finite number of 0’s to the left, i.e., (n�n�−1 · · · n1n0)2 =
(0n�n�−1 · · · n1n0)2 = (0 · · · 0n�n�−1 · · · n1n0)2.

The paper is structured as follows. In Sect. 2 we prove Theorem 1 and in
Sect. 3 we show Theorem 2.

2 Thue–Morse at Distinct Multiples

The proof of Theorem 1 is based on the following lemma.

Thue–Morse Along Two Polynomial Subsequences 51

Lemma 1. Let p, q be odd positive integers with p > q ≥ 1 and let (ε1, ε2) be
one of (0, 0), (0, 1), (1, 0), (1, 1). Then we have

min {n : (t(pn), t(qn)) = (ε1, ε2)} ≤ Cε1,ε2(p, q),

where

C0,0(p, q) = C1,1(p, q) = 4p, C0,1(p, q) =
223p11

(p − q)6
C1,0(p, q) =

26p3

(p − q)2
.

Proof. Recall that for 1 ≤ b < 2k and a, k ≥ 1, we have

s2(a2k + b) = s2(a) + s2(b), s2(a2k − b) = s2(a − 1) + k − s2(b − 1). (4)

In the sequel we will make frequent use of these splitting formulas. We first
deal with the two cases when (ε1, ε2) is one of (0, 0), (1, 1). If 2k > p > q then
s2(p(2k − 1)) = s2(q(2k − 1)) = k. Moreover, since k ≡ 0 or 1 mod 2 and

2k − 1 ≤ 2log p/ log 2+2 − 1 = 4p − 1 < 4p,

we get that C0,0(p, q), C1,1(p, q) ≤ 4p. Finding explicit bounds for C0,1(p, q) and
C1,0(p, q) is more involved. To begin with, we first claim that there exists n1 ≥ 1
with the following two properties:

(a) �(pn1) > �(qn1),
(b) pn1 ≡ 1mod4.

As for (a), we need to find two integers a, n1 such that 2a ≤ pn1 and 2a > qn1.
This is equivalent to

2a

p
≤ n1 <

2a

q
. (5)

For odd k, n either kn ≡ 1 (mod 4) or k(n + 2) ≡ 1 (mod 4), so provided
2a

(
1
q − 1

p

)
≥ 4, we can find an odd n1 that satisfies both (a) and (b). By taking

a to be the unique integer with

4pq

p − q
≤ 2a < 2 · 4pq

p − q
, (6)

we get an n1 with

n1 <
8p

p − q
.

Now, define n2 = 2�(pn1) + 1. Since both p and n1 are odd we have n2 ≤ pn1.
Then

s2(pn1n2) = s2(pn12�(pn1) + pn1) = 2s2(pn1) − 1 ≡ 1 (mod 2), (7)

52 T. Stoll

since there is exactly one carry propagation from the most significant digit of
pn1 to the digit at digit place �(pn1) of pn12�(pn1) which stops immediately after
one step because of property (b). On the other hand, (a) implies that

s2(qn1n2) = s2(qn12�(pn1) + qn1) = 2s2(qn1) ≡ 0 (mod 2), (8)

because the terms qn1 and qn12�(pn1) do not interfere and there is therefore no
carry propagation while adding these two terms. We therefore can set

n = n1n2 ≤
(

8p

p − q

)2

p

to get that C1,0(p, q) ≤ 26 · p3

(p−q)2 . For (ε1, ε2) = (0, 1), take m to be the unique
odd integer with

pn1n2 < 2m ≤ 4pn1n2

and put
n3 = 22m + 2m − 1 ≤ 2(4pn1n2)2 ≤ 25(pn1)4.

Then by (7),

s2(pn1n2n3) = s2 ((pn1n22m + pn1n2)2m − pn1n2)
= s2 (pn1n22m + pn1n2 − 1) + m − s2 (pn1n2 − 1)
= s2 (pn1n2 − 1) + s (pn1n2) + m − s2 (pn1n2 − 1)
≡ m + 1 ≡ 0 (mod 2).

A similar calculation shows by (8) that

s (qn1n2n3) ≡ m ≡ 1 (mod 2).

We set n = n1n2n3 and get

n ≤
(

8p

p − q

)2

p · 25p4 · (8p)4

(p − q)4
= 223 · p11

(p − q)6
.

This completes the proof.
�
Proof (Theorem 1). This follows directly from Lemma 1 and

223 · p11

(p − q)6
≤ 217p11.

�

3 Thue–Morse at Two Polynomials

This section is devoted to the proof of a technical result which implies Theorem 2.
Considering the extractions of Thue–Morse along nh1 and nh2 , it is simple to

Thue–Morse Along Two Polynomial Subsequences 53

get two and not too difficult to get three out of the four possibilities for (ε1, ε2).
However, to ensure that we see all of the four possibilities, we need a rather
subtle construction. The difficulty is similar to that one to get C0,0(p, q) in the
proof of Theorem 1. The idea is to shift two specific blocks against each other
while all other terms in the expansions are non-interfering. Via this procedure,
we will be able to keep track of the number of carry propagations. In the proof
of Theorem 1 we have used the blocks pn1 and qn1. In the following, we will
make use of u1 = 9 = (1001)2 and u2 = 1 = (0001)2. Then

s2(u1 + u2) = 2,
s2(u1 + 2u2) = 3,

s2(u1 + 22u2) = 3,

s2(u1 + 23u2) = 2,

and mod 2 we get the sequence (0, 1, 1, 0). These particular expansions and
additions will be of great importance in our argument (compare with (16)–(19)).

Lemma 2. Let h1, h2 be positive integers with h1 > h2 ≥ 1 and let (ε1, ε2) be
one of (0, 0), (0, 1), (1, 0), (1, 1). Then we have

min
{
n ∈ A : (t(nh1), t(nh2)) = (ε1, ε2)

} ≤ C,

where

C = 323h1+5

(
1
15

(
150
h1

8h1

)2
)5h2

1+h1−5

.

Proof. Let h ≥ 1 and put

l =

⌊

log2

(
1
15

(
150
h

8h

)2
)⌋

+ 1, (9)

a = (2lh − 1)24 + 1,

b =
⌊

150
h

8ha1− 1
h

⌋

,

M =
⌊
15a1− 1

h

⌋
+ 1,

k = lh2 + 3h + 4 − l.

It is straightforward to check that for all h ≥ 1, we have

l ≥ 12, a ≥ 65521, b ≥ 1200, M ≥ 16, k ≥ 7. (10)

Obviously, we have b ≥ M . Moreover,

a = 16 · 2lh − 15 ≥ 15 · 2lh ≥
(

150
h

8h

)h

54 T. Stoll

and therefore a ≥ b. Furthermore, for h ≥ 2, we have aM > b2 since by

a >

(
1
15

(
150
h

8h

)2
)h

we have

aM − b2 > a · 15a1− 1
h −

(
150
h

8ha1− 1
h

)2

> 0.

Let
T (x) = ax5 + bx4 + Mx3 + Mx2 − x + M

and write T (x)h =
∑5h

i=0 αix
i. Obviously, α0 > 0 and α1 < 0. We claim that for

h ≥ 1 we have αi > 0 for 2 ≤ i ≤ 5h. To see this we write

T (x)h =
(
ax5 + bx4 + Mx3 + Mx2 + M

)h
+ r(x), (11)

with

r(x) =
h∑

j=1

(
h

j

)

(−x)j
(
ax5 + bx4 + Mx3 + Mx2 + M

)h−j
=

5(h−1)∑

j=1

djx
j .

Since a ≥ b ≥ M the coefficient of xi in the first term in (11) is ≥ Mh. On the
other hand,

|dj | < h2h(5a)h−1,

and

Mh ≥
(
15a1−1/h

)h

>
(
3 · 5a1−1/h

)h

>
(
2h1/h(5a)1−1/h

)h

= |dj |

which proves the claim. Next, we need a bound on the size of αi. The coefficients
αi, 0 ≤ i ≤ 5h−2, are bounded by the corresponding coefficients in the expansion
of (ax5 + bx4 + M(x3 + x2 + x + 1))h. Since aM > b2 and M ≤ 16a1−1/h, each
of these coefficients is bounded by

(
ah−1M

) · 6h < ah−1M8h ≤ ah− 1
h · 16 · 8h,

and therefore

|αi| ≤ ah− 1
h · 16 · 8h, i = 0, 1, 2, . . . , 5h − 2. (12)

Moreover, we have

α5h−1 = hbah−1 =
⌊

150
h

8ha1− 1
h

⌋

hah−1 (13)

and
149 · 8hah− 1

h ≤ α5h−1 ≤ 150 · 8hah− 1
h ,

Thue–Morse Along Two Polynomial Subsequences 55

which is true for all a ≥ 1 and h ≥ 1. Note that both the bound in (12) and
the coefficient α5h−1 are increasing functions in h. From now on, suppose that
h ≥ 2. We further claim that

ah− 1
h · 16 · 8h < 2k, 9 · 2k ≤ α5h−1 < 10 · 2k, (14)

which will give us the wanted overlap for the digital blocks of α5h−1 and α5h.
By (14) the binary expansion of α5h−1 is (1001 · · ·)2 and interferes with the
digital block coming from α5h = ah which is (· · · 0001)2 since a ≡ 1 (mod 16).
To prove (14), we show a stronger inequality that in turn implies (14), namely,

144 · 8hah− 1
h < 9 · 2k ≤ 149 · 8hah− 1

h . (15)

Passing to logarithms, this is equivalent to

(k − 3h − 4) − δ ≤
(

h − 1
h

)

log2 a < k − 3h − 4

with
δ = log2 149 − log2 9 − 4 = 0.04924 · · · >

1
25

.

We rewrite
(

h − 1
h

)

log2 a =
(

h − 1
h

)(

lh + log2

(

1 −
(

1
2lh−4

− 1
2lh

)))

,

which on the one hand shows that
(

h − 1
h

)

log2 a <

(

h − 1
h

)

lh = lh2 − l = k − 3h − 4,

and on the other hand by −x/(1 − x) < log(1 − x) < 0 for 0 < x < 1 that
(

h − 1
h

)

log2 a > lh2 − l − 1
log 2

· (24 − 1) · (h − 1
h

)

2lh − 24 + 1
.

Finally, we easily check that for all h ≥ 2 and l ≥ 5 we have

1
log 2

· 15
(
h − 1

h

)

2lh − 15
<

1
25

,

which finishes the proof of (15) and thus of (14).
After this technical preliminaries we proceed to the evaluation of the sum of

digits. First note that for all h ≥ 1 by construction none of n = T (2k), T (2k+1),
T (2k+2), T (2k+3) is a power of two and therefore n ∈ A in these four cases. Let
h = h1 ≥ 2 and define a, b,M, l, k according to (9). To begin with, by (12)–(14)
and the splitting formulas (4), we calculate

s2(T (2k)h1) = s2

(
5h1∑

i=0

αi2ik

)

= A1 − 1 + A2 + k + A3, (16)

56 T. Stoll

where

A1 = s2(α5h1) + s2(α5h1−1),

A2 = s2

(
5h1−2∑

i=3

αi

)

+ s2(α0),

A3 = s2(α2 − 1) − s2(α1 − 1).

Note that the summand k in (16) comes from formula (4) due to the negative
coefficient α1, and the −1 comes from the addition of (· · · 0001)2 and (1001)2
(the ending and starting blocks corresponding to α5h1 and α5h1−1) which gives
rise to exactly one carry. A similar calculation shows that

s2(T (2k+1)h1) = A1 + A2 + (k + 1) + A3, (17)

s2(T (2k+2)h1) = A1 + A2 + (k + 2) + A3, (18)

s2(T (2k+3)h1) = A1 + A2 − 1 + (k + 3) + A3. (19)

In (17) we add (1001)2 to (· · · 00010)2 which gives no carry. The same happens
for the addition of (1001)2 to (· · · 000100)2 in (18). Finally, in (19) we again have
exactly one carry in the addition of (1001)2 to (· · · 0001000)2. If we look mod 2
this shows that

(
t(T (2k)h1), t(T (2k+1)h1), t(T (2k+2)h1), t(T (2k+3)h1)

)

is either (0, 0, 1, 1) or (1, 1, 0, 0). For h2 < h1 with h2 ≥ 1 all coefficients are
non-interfering. To see this, consider the coefficients of T (x)h2 =

∑5h2
i=0 α′

ix
i.

By (12), they are clearly bounded in modulus by ah1− 1
h1 · 16 · 8h1 < 2k for

i = 0, 1, 2, . . . , 5h2 − 2. Also, by (10) and h1 ≥ 2,

α′
5h2−1 ≤ 150 · 8h2ah2− 1

h2 <
150
8

· 8h1ah1−1 < ah1− 1
h1 · 16 · 8h1 < 2k,

and thus we don’t have carry propagations in the addition of terms in the expan-
sion of T (2k)h2 . Similarly, we show that

(
t(T (2k)h2), t(T (2k+1)h2), t(T (2k+2)h2), t(T (2k+3)h2)

)

is either (0, 1, 0, 1) or (1, 0, 1, 0). This yields in any case that

{(t(T (2k+i)h1), t(T (2k+i)h2)) : i = 0, 1, 2, 3} = {(0, 0), (0, 1), (1, 0), (1, 1)},

which are the four desired values. Finally,

T (2k+3) ≤ 25(k+3) · 2lh1+4

≤ 2l(5h2
1+h1−5) · 25(3h1+4)+4

≤ 323h1+5

(
1
15

(
150
h1

8h1

)2
)5h2

1+h1−5

,

which completes the proof.
�

Thue–Morse Along Two Polynomial Subsequences 57

Proof (Theorem 2). This follows from Lemma 2 and

323h1+5

(
1
15

(
150
h1

8h1

)2
)5h2

1+h1−5

≤ exp
(
c3h

3
1

)

for some suitable positive constant c3.
�

Acknowledgements. I am pleased to thank Jeff Shallit for bringing to my attention
the question on bounding Thue–Morse on two multiples. I also thank him and E.
Rowland for several discussions.

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications General-
izations. Cambridge University Press, Cambridge (2003)

2. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications. Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London
(1999)

3. Boreico, I., El-Baz, D., Stoll, T.: On a conjecture of Dekking: the sum of digits of
even numbers. J. Théor. Nombres Bordeaux 26, 17–24 (2014)

4. Coquet, J.: A summation formula related to the binary digits. Invent. Math. 73,
107–115 (1983)

5. Dartyge, C., Tenenbaum, G.: Congruences de sommes de chiffres de valeurs poly-
nomiales. Bull. London Math. Soc. 38(1), 61–69 (2006)

6. Drmota M., Mauduit C., Rivat J.: The Thue-Morse sequence along squares is
normal, manuscript. http://www.dmg.tuwien.ac.at/drmota/alongsquares.pdf

7. Drmota, M., Mauduit, C., Rivat, J.: The sum of digits function of polynomial
sequences. J. London Math. Soc. 84, 81–102 (2011)

8. Drmota, M., Ska�lba, M.: Rarified sums of the Thue-Morse sequence. Trans. Am.
Math. Soc. 352, 609–642 (2000)

9. Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives
données. Acta Arith. 13, pp. 259–265 (1967/1968)

10. Goldstein, S., Kelly, K.A., Speer, E.R.: The fractal structure of rarefied sums of
the Thue-Morse sequence. J. Number Theor. 42, 1–19 (1992)

11. Hare, K.G., Laishram, S., Stoll, T.: Stolarsky’s conjecture and the sum of digits of
polynomial values. Proc. Am. Math. Soc. 139, 39–49 (2011)

12. Hofer, R.: Coquet-type formulas for the rarefied weighted Thue-Morse sequence.
Discrete Math. 311, 1724–1734 (2011)

13. Kim, D.-H.: On the joint distribution of q-additive functions in residue classes. J.
Number Theor. 74, 307–336 (1999)

14. Mauduit, C.: Multiplicative properties of the Thue-Morse sequence. Period. Math.
Hungar. 43, 137–153 (2001)

15. Mauduit, C., Rivat, J.: Sur un problème de Gelfond: la somme des chiffres des
nombres premiers. Ann. Math. 171, 1591–1646 (2010)

16. Mauduit, C., Rivat, J.: La somme des chiffres des carrés. Acta Math. 203, 107–148
(2009)

http://www.dmg.tuwien.ac.at/drmota/alongsquares.pdf

58 T. Stoll

17. Moshe, Y.: On the subword complexity of Thue-Morse polynomial extractions.
Theor. Comput. Sci. 389, 318–329 (2007)

18. Morgenbesser, J., Shallit, J., Stoll, T.: Thue-Morse at multiples of an integer. J.
Number Theor. 131, 1498–1512 (2011)

19. Newman, D.J.: On the number of binary digits in a multiple of three. Proc. Am.
Math. Soc. 21, 719–721 (1969)

20. Schmid, J.: The joint distribution of the binary digits of integer multiples. Acta
Arith. 43, 391–415 (1984)

21. Steiner W.: On the joint distribution of q-additive functions on polynomial
sequences. In: Proceedings of the Conference Dedicated to the 90th Anniversary
of Boris Vladimirovich Gnedenko (Kyiv, 2002), Theory Stochastic Process, 8, pp.
336–357 (2002)

22. Stoll T.: Multi-parametric extensions of Newman’s phenomenon. Integers (elec-
tronic), 5, A14, p. 14 (2005)

23. Stoll, T.: The sum of digits of polynomial values in arithmetic progressions. Funct.
Approx. Comment. Math. 47, 233–239 (2012). part 2

Canonical Representatives of Morphic
Permutations

Sergey V. Avgustinovich1, Anna E. Frid2(B), and Svetlana Puzynina1,3

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
avgust@math.nsc.ru

2 Aix-Marseille Université, Marseille, France
anna.e.frid@gmail.com

3 LIP, ENS de Lyon, Université de Lyon, Lyon, France
s.puzynina@gmail.com

Abstract. An infinite permutation can be defined as a linear ordering
of the set of natural numbers. In particular, an infinite permutation can
be constructed with an aperiodic infinite word over {0, . . . , q− 1} as the
lexicographic order of the shifts of the word. In this paper, we discuss the
question if an infinite permutation defined this way admits a canonical
representative, that is, can be defined by a sequence of numbers from
[0, 1], such that the frequency of its elements in any interval is equal
to the length of that interval. We show that a canonical representative
exists if and only if the word is uniquely ergodic, and that is why we use
the term ergodic permutations. We also discuss ways to construct the
canonical representative of a permutation defined by a morphic word
and generalize the construction of Makarov, 2009, for the Thue-Morse
permutation to a wider class of infinite words.

1 Introduction

We continue the study of combinatorial properties of infinite permutations anal-
ogous to those of words. In this approach, infinite permutations are interpreted
as equivalence classes of real sequences with distinct elements, such that only the
order of elements is taken into account. In other words, an infinite permutation
is a linear order in N. We consider it as an object close to an infinite word, but
instead of symbols, we have transitive relations < or > between each pair of
elements.

Infinite permutations in the considered sense were introduced in [10]; see also
a very similar approach coming from dynamics [6] and summarised in [3]. Since
then, they were studied in two main directions: First, a series of results compared
properties of infinite permutations with those of infinite words ([4,10,11] and
others). Secondly, different authors studied permutations directly constructed

S. Puzynina—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Univer-
sité de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 59–72, 2015.
DOI: 10.1007/978-3-319-23660-5 6

60 S.V. Avgustinovich et al.

with the use of general words [7,13], as well as precise examples: the Thue-Morse
word [14,18], other morphic words [17,19] or Sturmian words [15].

In the previous paper [5], we introduced the notion of an ergodic permutation,
which means that a permutation can be defined by a sequence of numbers from
[0,1] such that the frequency of its elements in any interval is equal to the
length of the interval. We proved also that the minimal complexity (i.e., the
number of subpermutations of length n) of an ergodic permutation is n, and the
permutations of minimal complexity are Sturmian permutations in the sense of
[15] (and close to the sense of [4]). So, the situation for ergodic permutations is
similar to that for words. Note that for the permutations in general, this is not
the case: The complexity of an aperiodic permutation can grow slower than any
unbounded growing function [10].

In this paper, we focus on permutations generated by words. First of all,
we prove that such a permutation is ergodic if and only if its generating word
is uniquely ergodic, which explains the choice of the term. Then we generalize
the construction of Makarov [14] and give a general method to construct the
canonical representative sequence of any permutation generated by a fixed point
of a primitive monotone separable morphism. We also discuss why this method
cannot be directly extended further, and give some examples.

2 Basic Definitions

We consider finite and infinite words over a finite alphabet Σq = {0, 1, q − 1}. A
factor of an infinite word is any sequence of its consecutive letters. The factor
u[i] · · · u[j] of an infinite word u = u[0]u[1] · · · u[n] · · · , with u[k] ∈ Σ, is denoted
by u[i..j]; prefixes of a finite or an infinite word are as usual defined as starting
factors.

The length of a finite word s is denoted by |s|. An infinite word u = vww · · · =
vwω for some non-empty word w is called ultimately (|w|-)periodic; otherwise it
is called aperiodic.

When considering words on Σq, we refer to the order on finite and infinite
words meaning lexicographic (partial) order: 0 < 1 < . . . < q − 1, and u < v if
u[0..i] = v[0..i] and u[i + 1] < v[i + 1] for some i. For words such that one of
them is the prefix of the other the order is not defined.

Now we recall the notion of the uniform frequency of letters and factors in
an infinite word. For finite words v and w, we let |v|w denote the number of
occurrences of w in v. The infinite word u has uniform frequencies of factors
if, for every factor w of u, the ratio |u[i..i+n]|w

n+1 has a limit ρw(u) when n → ∞
uniformly in k. For more on uniform frequencies in words we refer to [8].

To define infinite permutations, we will use sequences of real numbers. Anal-
ogously to a factor of a word, for a sequence (a[n])∞

n=0 of real numbers, any of
its finite subsequences a[i], a[i + 1], . . . , a[j] is called a factor and is denoted by
a[i..j]. We define an equivalence relation ∼ on real infinite sequences with pair-
wise distinct elements as follows: (a[n])∞

n=0 ∼ (b[n])∞
n=0 if and only if for all i, j

the conditions a[i] < a[j] and b[i] < b[j] are equivalent. Since we consider only
sequences of pairwise distinct real numbers, the same condition can be defined

Canonical Representatives of Morphic Permutations 61

by substituting (<) by (>): a[i] > a[j] if and only if b[i] > b[j]. An infinite per-
mutation is then defined as an equivalence class of real infinite sequences with
pairwise distinct elements. So, an infinite permutation is a linear ordering of the
set N0 = {0, . . . , n, . . .}. We denote it by α = (α[n])∞

n=0, where α[i] are abstract
elements equipped by an order: α[i] < α[j] if and only if a[i] < a[j] or, which is
the same, b[i] < b[j] for every representative sequence (a[n]) or (b[n]) of α. So,
one of the simplest ways to define an infinite permutation is by a representative,
which can be any sequence of pairwise distinct real numbers.

Example 2.1. Both sequences (a[n]) = (1,−1/2, 1/4, . . .) with a[n] = (−1/2)n

and (b[n]) with b[n] = 1000 + (−1/3)n are representatives of the same permuta-
tion α = α[0], α[1], . . . defined by

α[2n] > α[2n + 2] > α[2k + 3] > α[2k + 1]

for all n, k ≥ 0.

A factor α[i..j] of an infinite permutation α is a finite sequence (α[i], α[i +
1], . . . , α[j]) of abstract elements equipped by the same order as in α. Note that a
factor of an infinite permutation can be naturally interpreted as a finite permu-
tation: for example, if in a representative (a[n]) we have a factor (2.5, 2, 7, 1.6),
that is, the 4th element is the smallest, followed by the 2nd, 1st and 3rd, then in

the permutation, it will correspond to a factor
(

1 2 3 4
3 2 4 1

)

, which we will denote

simply as (3241). Note that in general, we index the elements of infinite objects
(words, sequences or permutations) starting with 0 and the elements of finite
objects starting with 1.

A factor of a sequence (permutation) should not be confused with its sub-
sequence a[n0], a[n1], . . . (subpermutation α[n0], α[n1], . . .) which is defined as
indexed with a growing subsequence (ni) of indices.

Note, however, that in general, an infinite permutation cannot be defined as
a permutation of N0. For instance, the permutation from Example 2.1 has all its
elements between the first two ones.

3 Ergodic Permutations

Let (a[i])∞
i=0 be a sequence of real numbers from the interval [0,1], representing

an infinite permutation, a and p also be real numbers from [0,1]. We say that
the probability that an element of (a[i]) is less than a exists and is equal to p if
the ratio

#{a[j + k]|0 ≤ k < n, a[j + k] < a}
n

has a limit p when n → ∞ uniformly in j.
In other words, if we substitute all the elements from (a[i]) which are smaller

than a by 1, and those which are bigger by 0, the above condition means that the

62 S.V. Avgustinovich et al.

uniform frequency of the letter 1 exists and equals p. So, in fact the probability
to be smaller than a is the uniform frequency of the elements which are less
than a.

We note that this is not exactly probability on the classical sense, since we do
not have a random sequence. But we are interested in permutations where this
“probability” behaves in certain sense like the probability of a random sequence
uniformly distributed on [0,1]:

Definition 3.1. A sequence (a[i])∞
i=0 of real numbers is canonical if

– all the numbers are pairwise distinct;
– for all i we have 0 ≤ a[i] ≤ 1;
– and for all a, the probability for any element a[i] to be less than a is well-

defined and equal to a for all a ∈ [0, 1].

Remark 3.2. The set {a[i]|i ∈ N} for a canonical sequence (a[i]) is dense on [0,1].

Remark 3.3. In a canonical sequence, the frequency of the elements which fall
into any interval (t1, t2) ⊆ [0, 1] exists and is equal to t2 − t1.

Remark 3.4. Symmetrically to the condition “the probability to be less than a is
a” we can consider the equivalent condition “the probability to be greater than
a is 1 − a”.

Definition 3.5. An infinite permutation α = (α[i])∞
i=1 is called ergodic if it has

a canonical representative.

Example 3.6. For any irrational σ and for any ρ, consider the sequence of frac-
tional parts {ρ + nσ}. It is uniformly distributed in [0, 1), so, the respective
permutation is ergodic. In fact, such a permutation is a Sturmian permutation
in the sense of [14]; in [4], the considered class of permutations is wider than that.
It is easy to see that Sturmian permutations are directly related to Sturmian
words [12,16].

Proposition 3.7. An ergodic permutation α has a unique canonical represen-
tative.

Proof. Given α, for each i we define

a[i] = lim
n→∞

#{α[k]|0 ≤ k < n, α[k] < α[i]}
n

and see that, first, this limit must exist since α is ergodic, and secondly, a[i] is
the only possible value of an element of a canonical representative of α. 	

Note, however, that even if for some infinite permutation all the limits above
exist, it does not imply the existence of the canonical representative. Indeed,
there is another condition to fulfill: for different i the limits must be different.

Canonical Representatives of Morphic Permutations 63

4 Ergodic Permutations Generated by Words

Consider an aperiodic infinite word u = u[0] · · · u[n] · · · over Σq and, as usual,
define its nth shift Tnu as the word obtained from u by erasing the first n
symbols: Tnu = u[n]u[n + 1] · · · . We can also interpret a word u as a real number
0.u in the q-ary representation.

If the word u is aperiodic, then in the sequence (0.Tnu)∞
n=0 all the numbers

are different and thus this sequence is a representative of a permutation which we
denote by αu. Clearly, αu[i] < αu[j] if and only if T iu is lexicographically smaller
than T ju. A permutation which can be constructed like this is called valid; the
structure of valid permutations has been studied in [13] (for the binary case)
and [7] (in general).

Most of results of this paper were inspired by the following construction.

Example 4.1. The famous Thue-Morse word 0110100110010110 · · · is defined
as the fixed point starting with 0 of the morphism ftm : 0 �→ 01, 1 �→ 10
[1,2]. The respective Thue-Morse permutation defined by the representative
(0.01101001 · · · , 0.11010011 · · · , 0.10100110 · · · , 0.01001100 · · · ,. . .) can also be
defined by the following sequence, denoted by atm:

1
2
, 1,

3
4
,
1
4
,
5
8
,
1
8
,
3
8
,
7
8
, · · · ,

that is the fixed point of the morphism ϕtm : [0, 1] �→ [0, 1]2:

ϕtm(x) =

{
x
2 + 1

4 , x
2 + 3

4 , if 0 ≤ x ≤ 1
2 ,

x
2 + 1

4 , x
2 − 1

4 , if 1
2 < x ≤ 1.

It will be proved below that the latter sequence is canonical and thus the Thue-
Morse permutation is ergodic. This construction and the equivalence of the two
definitions was proved by Makarov in 2009 [15]; then the properties of the Thue-
Morse permutation were studied by Widmer [18].

When is a valid permutation ergodic? The answer is simple and explains the
choice of the term “ergodic”.

Lemma 4.2. A valid permutation αu for a recurrent non-periodic word u is
ergodic if and only if all the uniform frequencies of factors in u exist and are
not equal to 0.

Before proving the lemma, we prove the following proposition about words:

Proposition 4.3. Let u be a recurrent aperiodic word and w and v some of its
factors. Then in the orbit of w there can be the lexicographically maximal word
from its closure starting with w, or the lexicographically minimal word from its
closure starting with v, but not both at a time.

64 S.V. Avgustinovich et al.

Proof. Suppose the opposite: let T k(u) be the maximal element of the orbit
closure of u starting with w, and T l(u) be the minimal element of the orbit
closure of u starting with v. Consider the prefix r of u of length max(k + |u|, l +
|v|). Since u is recurrent, this prefix appears in it an infinite number of times,
and since u is not ultimately periodic, there exists an extension p of r to the
right which is right special: pa and pb are factors of u for some symbols a �= b.
Suppose that the prefix of u of the respective length is pa, and pb is a prefix of
Tn(u).

If a < b, then u < Tn(u) and thus T k(u) < T k+n(u), where T k+n(u) starts
with w. A contradiction with the maximality of T k(u). If by contrary a > b,
then u > Tn(u) and thus T l(u) > T l+n(u), where T l+n(u) starts with v. A
contradiction with the minimality of T l(u). The proposition is proved. 	
.

Proof of Lemma 4.2.
Suppose first that the frequency μ(w) of each factor w in u exists and is

non-zero. We should prove that the corresponding valid permutation is ergodic.
For every k we define

a[k] = lim
n→∞

∑

|v|=n,
v≤w[k]···w[k+n−1]

μ(v).

Clearly, such a limit exists and is in [0,1], and by the definition, the probability
that another element of the sequence (a[i]) is less than a[k] is equal to a[k].

It remains to prove that a[k] �= a[l] for k �= l, that is, that the sequence (a[n])
is indeed a representative of a permutation.

Suppose the opposite: a[k] = a[l] for k �= l. Let m ≥ 0 be the first posi-
tion such that w[k + m] �= w[l + m]: say, w[k + m] < w[l + m]. The only pos-
sibility for a[l] and a[k] to be equal is that T k(w) = w[k]w[k + 1] · · · is the
maximal word in the orbit closure of w starting with w[k] · · · w[k + m], and
T l(w) = w[l]w[l + 1] · · · is the minimal word in the orbit closure of w starting
with w[l] · · · w[l + m]. Due to Proposition 4.3, this is a contradiction. So, the
values a[k] are indeed all different, and thus the permutation is well-defined.
Together with the condition on the probabilities we proved above, we get that
the corresponding valid permutation is ergodic.

The proof of the converse is split into two parts. First we prove that for a
valid ergodic permutation the frequencies of factors in the corresponding word
must exist, then we prove that they are non-zero.

So, first we suppose that the frequencies of (some) factors of w do not exist.
We are going to prove that the permutation is not ergodic, that is, that the
canonical representative sequence (a[n]) is not well-defined.

Let us take the shortest and lexicographically minimal factor w whose fre-
quency does not exist and consider the subsequence (a[ni]) of the sequence (a[n])
corresponding to suffixes starting with w. The upper limit of (a[ni]) should be
equal to the sum of frequencies of the words of length |w| less than or equal to
w, but since the frequency of w is the only one of them that does not exist, this
limit also does not exist. So, the sequence (a[n]) is not well-defined and hence
the corresponding valid permutation is not ergodic.

Canonical Representatives of Morphic Permutations 65

The remaining case is that of zero frequencies: Suppose that w is the shortest
and lexicographically minimal factor whose frequency is zero, and consider again
the subsequence (a[ni]) of the sequence (a[n]) corresponding to suffixes starting
with w. The subsequence (a[ni]) is infinite since u is recurrent, but all its elements
must be equal: Their value is the sum of frequencies of words of length |w|
lexicographically less than w. So, the sequence (a[n]) does not correctly define a
permutation, and hence in the case of zero frequencies the corresponding valid
permutation is not ergodic. 	

We have seen above in Example 3.6 how the canonical representatives of permu-
tations corresponding to Sturmian words are built.

Example 4.4. Let us continue the Thue-Morse example started above and prove
that the representative atm is canonical. We should prove that the probabil-
ity for any element a[j] to be less than a is well-defined and equal to a. Let
us prove by induction on k that the probability for an element to be in any
binary rational interval (d/2k, (d + 1)/2k], where 0 ≤ d < 2k, is exactly 1/2k.
Indeed, by the construction, the intervals (0,1/2] and (1/2, 1] correspond to the
zeros and ones in the original Thue-Morse word whose frequencies are 1/2.
The morphic image of any of these intervals is, consecutively, two intervals:
(0, 1/2] �→ (1/4, 2/4], (3/4, 4/4], and (1/2, 1] �→ (2/4, 3/4], (0, 1/4]. So, in both
cases, the intervals are of the form (d/22, (d + 1)/22], d = 0, . . . , 3. Each of them
is twice rarer than its pre-image; the four intervals cover (0, 1] and do not inter-
sect, so, the probability for a point a[i] to be in each of them is 1/4. But exactly
the same argument works for any of these four intervals: its image is two intervals
which are twice smaller and twice rarer than the pre-image interval. No other
points appear in that shorter interval since each mapping corresponding to a
position in the morphism is linear, and their ranges do not intersect. So, the
probability for a point to be in an interval (d/23, (d + 1)/23] is 1/8, and so on.
By induction, it is true for any binary rational interval and thus for all interval
subsets of (0, 1]: the frequency of elements in this interval is equal to its length.
This proves that atm is indeed the canonical representative of the Thue-Morse
permutation.

Remark 4.5. This example shows that the natural way of constructing the canon-
ical representative of a valid permutation has little in common with frequencies
of factors in the underlying word. The frequencies of symbols look important,
but, for example, the frequency of 00 in the Thue-Morse word is 1/6, whereas
all the elements of the canonical representative are binary rationals.

Remark 4.6. In Lemma 4.2, we assumed that the word is recurrent. Indeed, if a
word is not recurrent, the permutation can be ergodic. As an example, consider
the word

01221211221121221 · · · ,

that is, 0 followed by the Thue-Morse word on the alphabet {1, 2}. The respec-
tive permutation is still ergodic with the canonical representative 0, atm =
0, 1/2, 1, 3/4, 1/4,

66 S.V. Avgustinovich et al.

Note also that this property depends on the order of symbols. For example,
the permutation associated with the word

20110100110010110 · · · = 2utm

is not ergodic since atm[0] can be equal only to 1. On the other hand, it is well
known that the first shift of the Thue-Morse word is the lexicographically largest
element in its shift orbit closure. So, atm[1] must also be equal to 1.

4.1 Morphisms on Words and Intervals

In this subsection, we generalize the above construction for the Thue-Morse
word to a class of fixed points of morphisms: for any word from that class, we
construct a morphism similar to the Thue-Morse interval morphism ϕtm defined
in Example 4.1.

Let ϕ : {0, . . . , q − 1}∗ �→ {0, . . . , q − 1}∗ be a morphism and u = ϕ(u) be its
aperiodic infinite fixed point starting with a letter a if it exists. In what follows
we give a construction of the canonical representative au of the permutation αu

provided that the morphism ϕ is primitive, monotone and separable. We will
now define what these properties mean.

Recall that the matrix A of a morphism ϕ is a q×q-matrix whose element aij

is equal to the number of occurrences of i in ϕ(j). A matrix A and a morphism
ϕ are called primitive if in some power An of A all the entries are positive, i.e.,
for every b ∈ {0, . . . , q − 1} all the symbols of {0, . . . , q − 1} appear in ϕn(b)
for some n. A classical Perron-Frobenius theorem says that a primitive matrix
has a dominant positive Perron-Frobenius eigenvalue θ such that θ > |λ| for any
other eigenvalue λ of A. It is also well-known that a fixed point of a primitive
morphism is uniquely ergodic, and that the vector μ = (μ(0), . . . , μ(q − 1))t of
frequencies of symbols is the normalized Perron-Frobenius eigenvector of A:

Aμ = θμ.

We say that a morphism ϕ is monotone on an infinite word u if for any
n,m > 0 we have Tn(u) < Tm(u) if and only if ϕ(Tn(u)) < ϕ(Tm(u)); here <
denotes the lexicographic order. A morphism is called monotone if it is monotone
on all infinite words, or, equivalently, if for any infinite words u and v we have
u < v if and only if ϕ(u) < ϕ(v).

Example 4.7. The Thue-Morse morphism ϕtm is monotone since 01 = ftm(0) <
ftm(1) = 10.

Example 4.8. The Fibonacci morphism ϕf : 0 → 01, 1 → 0 is not monotone
since 01 = ϕf (0) > ϕf (10) = 001, whereas 0 < 10. At the same time, ϕ2

f :
0 → 010, 1 → 01 is monotone since for all x, y ∈ {0, 1} we have ϕ2

f (0x) =
0100x′ < 0101y′ = ϕf (1y), where x′, y′ ∈ {0, 1}∗. So, to use our construction to
the Fibonacci word uf = 01001010 · · · which is the fixed point of ϕf , we should
consider uf as the fixed point of ϕ2

f .

Canonical Representatives of Morphic Permutations 67

Example 4.9. As an example of a morphism which does not become monotone
even when we consider its powers, consider g : 0 → 02, 1 → 01, 2 → 21. It can
be easily seen that gn(0) > gn(1) for all n ≥ 1.

The last condition we require from our morphism is to be separable. To define
this property, consider the fixed point u as the infinite catenation of morphic
images of its letters and say that the type τ(n) of a position n is the pair (a, p)
such that u[n] = ϕ(a)[p] in this “correct” decomposition into images of letters.
So, there are

∑q−1
a=0 |ϕ(a)| different types of positions in u. Also note that we

index the elements of u starting with 0 and the elements of finite words ϕ(a)
starting from 1, so that, for example, τ(0) = (u[0], 1).

We say that a fixed point u of a morphism ϕ is separable if for every n,m such
that τ(n) �= τ(m) the relation between Tn(u) and Tm(u) is uniquely defined by
the pair τ(n), τ(m). For a separable morphism ϕ we write τ(n) τ(m) if and
only if Tn(u) ≤ Tm(u).

Example 4.10. The Thue-Morse word is separable since for τ(n) = (0, 1) and
τ(m) = (1, 2) we always have Tn(utm) > Tm(utm), i.e., all zeros which are first
symbols of ftm(0) = 01 give greater words than zeros which are second symbols
of ftm(1) = 10. Symmetrically, all ones which are first symbols of ftm(1) = 10
give smaller words than ones which are second symbols of ftm(0) = 01, that is,
for τ(n) = (1, 1) and τ(m) = (0, 2) we always have Tn(utm) < Tm(utm).

Example 4.11. The fixed point

u = 001001011001001011001011011 · · ·
of the morphism 0 → 001, 1 → 011 is inseparable. Indeed, compare the following
shifts: T 2(u) = 1001011001 · · · , T 5(u) = 1011 · · · and T 17(u) = 1001011011 · · · .
We see that T 2(u) < T 17(u) < T 5(u). At the same time, τ(2) = τ(5) = (0, 3),
and τ(17) = (1, 3).

Note that the class of primitive monotone separable morphisms includes in par-
ticular all morphisms considered by Valyuzhenich [17] who gave a formula for
the permutation complexity of respective fixed points.

Similarly to morphisms on words, we define a morphism on sequences of
numbers from an interval [a, b] as a mapping ϕ : [a, b]∗ �→ [a, b]∗. A fixed point of
the morphism ϕ is defined as an infinite sequence a[0], a[1], . . . of numbers from
[a, b], such that ϕ(a[0], a[1], . . .) = a[0], a[1], Clearly, if a morphism ϕ has a
fixed point, then there exists a number c ∈ [a, b] such that ϕ(c) = c, c[1], . . . , c[k]
for some k ≥ 1 and c[i] ∈ [a, b] for i = 1, . . . k. Clearly, a fixed point of a morphism
on sequences of numbers defines an infinite permutation (more precisely, its
representative) if and only if all the elements of the sequence are distinct. The
example of morphism defining an infinite permutation is given by the Thue-
Morse permutation described in Example 4.1.

The rest of the section is organized as follows: First we provide the construc-
tion of a morphic ergodic permutation, then we give some examples, and finally
we prove the correctness of the construction.

68 S.V. Avgustinovich et al.

The construction of ergodic permutation corresponding to a separable
fixed point of a monotone primitive morphism.

Now let us consider a separable fixed point u of a monotone primitive mor-
phism ϕ over the alphabet {0, . . . , q−1}, and construct the canonical representa-
tive au of the premutation αu generated by it. To do it, we first look if u contains
lexicographically minimal or maximal elements of the orbit with a given prefix.
Note that due to Proposition 4.3, it cannot contain both of them. So, if u does
not contain lexicographically maximal elements, we consider all the intervals to
be half-open [·); in the opposite case, we can consider them to be half-open (·],
like in the Thue-Morse case. Without loss of generality, in what follows we write
the intervals [·), but the case of (·] is symmetric.

So, let μ = (μ0, . . . , μq−1) be the vector of frequencies of symbols in u. Take
the intervals I0 = [0, μ0), I1 = [μ0, μ0+μ1), . . ., Iq−1 = [1−μq−1, 1). An element
e of au is in Ib if for another element of au the probability to be less than e is
greater than the sum of frequences of letters less than b, and the probability to
be greater than e is greater than the sum of frequences of letters greater than b.
In other words, e is in Ib if and only if the respective symbol of u is b.

Now let us take all the k =
∑q−1

a=0 |ϕ(a)| types of positions in u and denote
them according to the order :

τ1 ≺ τ2 ≺ · · · ≺ τk,

with τi = (ai, pi).
For each τi the frequency li = μai

/θ, where θ is the Perron-Frobenius eigen-
value of ϕ, is the frequency of symbols of type τi in u. Indeed, the ϕ-images of
ai are Θ times rarer in u than ai, and τi corresponds just to a position in such
an image. Denote

J1 = [0, l1), J2 = [l1, l1 + l2), . . . , Jk = [1 − lk, 1);

so that in general, Ji = [
∑i−1

m=1 lm,
∑i

m=1 lm). We will also denote Ji = Jai, pi.
The interval Ji is the range of elements of au corresponding to the symbols of

type τi in u. Note that all symbols of the same type are equal, and on the other
hand, each symbol is of some type. For example, we have a collection of possible
positions of 0 in images of letters, that is, a collection of types corresponding to
0, and all these types are less than any other type corresponding to any other
symbol. So, the union of elements Ji corresponding to 0 is exactly I0, and the
same argument can be repeated for any greater symbol. In particular, each Ji is
a subinterval of some Ia.

Now we define the morphism ψ : [0, 1]∗ �→ [0, 1]∗ as follows: For x ∈ Ia we
have

ψ(x) = ψa,1(x), . . . ψa,|ϕ(a)|.

Here ψa,p is a linear mapping ψa,p : Ia �→ Ja,p: If Ia = [x1, x2) and Ja,p = [y1, y2),
then

ψa,p(x) =
y2 − y1
x2 − x1

(x − x1) + y1. (1)

Canonical Representatives of Morphic Permutations 69

Now we can define the starting point, that is, the value of a1. Suppose that
the first symbol of u is b; then ϕ(b) starts with b, which means that Jb,1 ⊂ Ib,
and the mapping ψb,1 has a fixed point x: ψb,1(x) = x. We take a1 to be this
fixed point: a1 = x. Note that if a1 is the upper end of Jb,1, then we should take
all the intervals to be (·]; if it is the lower end, the intervals are [·); if it is in the
middle of the interval, the ends are never attained. The situation when a1 is an
end of Jb,1 corresponds to the situation when there are the least or the greatest
infinite words starting from some prefix in the orbit of u; as we have seen in
Proposition 4.3, only one of these situations can appear at a time. In particular,
in this situation, u is the least (or greatest) element of its orbit starting with b.

This construction may look bulky, but in fact, it is just a natural gener-
alization of that for the Thue-Morse word. Indeed, in the Thue-Morse word,
μ0 = μ1 = 1/2, θ = 2, and the order of types is given in Example 4.10. So,
I0 = [0, 1/2], I1 = [1/2, 1], J0,1 = [1/4, 1/2], J0,2 = [3/4, 1], J1,1 = [1/2, 3/4],
J1,2 = [0, 1/4]. Here the intervals are written as closed since at this stage we do
not yet know whether we must take them [·) or (·]. However, it becomes clear
as soon as we consider the mapping ψ0,1 which is the linear order-preserving
mapping I0 �→ J0,1. Its fixed point is 1/2, that is, the upper end of both inter-
vals. Thus, the intervals must be chosen as (·]. The mappings ψa,p are explicitly
written down in Example 4.1.

To give another example, consider the square of the Fibonacci morphism
mentioned in Example 4.8.

Example 4.12. Consider the Fibonacci word as the fixed point of the square
of the Fibonacci morphism: ϕ2

f : 0 → 010, 1 → 01. This morphism is clearly
primitive; also, it is monotone as we have seen in Example 4.8, and separable:
we can check that (0, 3) (0, 1) (1, 1) (0, 2) (1, 2). In particular, this
means that zeros which are first symbols of ϕ2

f are in the middle among other
zeros. So, in what follows we can consider open intervals since their ends are
never attained.

The Perron-Frobenius eigenvalue is θ = (3+
√

5)/2, the frequencies of symbols
are μ0 = (

√
5 − 1)/2 and μ1 = (3 − √

5)/2. So, we have

I0 =

(

0,

√
5 − 1
2

)

, I1 =

(√
5 − 1
2

, 1

)

,

and divide their lengths by θ to get the lengths of intervals corresponding to
symbols from their images:

|J0,1| = |J0,2| = |J0,3| =
μ0

θ
=

√
5 − 2, |J1,1| = |J1,2| =

μ1

θ
=

7 − 3
√

5
2

.

The order of intervals is shown at Fig. 1.
Now the morphism ψ can be completely defined:

ψ(x) =

{
ψ0,1(x), ψ0,2(x), ψ0,3(x) for x ∈ I0,

ψ1,1(x), ψ1,2(x) for x ∈ I1.

70 S.V. Avgustinovich et al.

Fig. 1. Intervals for the Fibonacci permutation morphism

Here the mappings ψa,p : Ia �→ Ja,p are defined according to (1). In particular,
ψ0,1 : (0, (

√
5 − 1)/2) �→ (

√
5 − 2, 2(

√
5 − 2)) has the fixed point x = ψ0,1(x) =

(3 − √
5)/2. This is the starting point a1 of the fixed point a of ψ.

We remark that we could prove directly that the sequence a constructed above
is exactly the canonical representative of the permutation associated with the
Fibonacci word, using the fact that Fibonacci word belongs to the family of
Sturmian words. However, we do not provide the proof for this example, since
we now give a more general proof of the correctness of the general construc-
tion: the fixed point of the morphism ψ described above is indeed the canonical
representative of our permutation.

Proof of correctness of the construction of the morphism ψ.

First we show that the fixed point of ψ is a representative of our permutation.
Indeed, if Tn(u) < Tm(u), and n and m are of different types, then, since the
morphism is separable and by the construction, a[n] and a[m] are in different
intervals Ja,p, and a[n] < a[m]. Now suppose that n and m are of the same type
(a, p), that is, the nth (mth) symbol of u is the symbol number p of the image
ϕ(a), where a is the symbol number n′ (m′) of u, i.e., u[n′] = a, u[n] = ϕ(a)[p],
and applying the morphism ϕ to u sends u[n′] to u[n−p+1..n−p+|ϕ(a)|]. Then,
since the morphism is monotone, Tn(u) < Tm(u) if and only of Tn′

(u) < Tm′
(u).

Exactly the same condition is true for the relation a[n] < am if and only if
an′ < am′ , since the mapping ψa,p preserves the order. Now we can apply the
same arguments to m′ and n′ instead of m and n, and so on. So, by the induction
on the maximal power of ϕ involved, we also get that Tn(u) < Tm(u) if and only
if a[n] < a[m]. So, the sequence a is indeed a representative of the permutation
generated by u.

It remains to prove that this representative is canonical. As above for the
Thue-Morse word, it is done inductively on the intervals

ψbk,pk
(ψbk−1,pk−1(. . . ψb1,p1(Ib1) . . .)).

We prove that the probability for an element of a to be in this interval is equal to
its length. For the intervals Ib, it is true by the construction as well as for their
images. To make an induction step, we observe that the image of an interval
under each ψb,p is θ times smaller than the initial interval and corresponds to
the situation which is θ times rarer. So, we have a partition of (0, 1) to arbitrary
small intervals for which the length is equal to the frequency of occurrences. This
is sufficient to make sure that in fact, this is true for all intervals. 	

Canonical Representatives of Morphic Permutations 71

Remark 4.13. In Example 4.12, we constructed a morphism for the Fibonacci
permutation. However, it is not unique, and even not unique among piecewise
linear morphisms. For example, the canonical representative b of each Sturmian
permutation β(σ, ρ) defined by βn = {σn + ρ} for n ≥ 0 is the fixed point of the
following morphism [0, 1]∗ �→ [0, 1]∗: x → {2x − ρ}, {2x − ρ + σ}. Indeed, this is
exactly a morphism which sends {σn + ρ} to {σ(2n) + ρ}, {σ(2n + 1) + ρ}. It
is clearly piecewise linear as well as the function {·}. Also, the same idea can be
generalized to a k-uniform morphism for any k ≥ 2.

Remark 4.14. We remark that the considerations used in the proof of the cor-
rectness of the construction are closely related to so-called Dumont-Thomas
numeration systems [9].

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences – Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

2. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications. Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London
(1999)

3. Amigó, J.: Permutation Complexity in Dynamical Systems - Ordinal Patterns,
Permutation Entropy and All That. Springer Series in Synergetics. Springer, Hei-
delberg (2010)

4. Avgustinovich, S.V., Frid, A., Kamae, T., Salimov, P.: Infinite permutations of
lowest maximal pattern complexity. Theort. Comput. Sci. 412, 2911–2921 (2011)

5. Avgustinovich, S.V., Frid, A.E., Puzynina, S.: Ergodic infinite permutations of
minimal complexity. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 71–84.
Springer, Heidelberg (2015)

6. Bandt, C., Keller, G., Pompe, B.: Entropy of interval maps via permutations.
Nonlinearity 15, 1595–1602 (2002)

7. Elizalde, S.: The number of permutations realized by a shift. SIAM J. Discrete
Math. 23, 765–786 (2009)

8. Ferenczi, S., Monteil, T.: Infinite words with uniform frequencies, and invariant
measures. Combinatorics, automata and number theory. Encyclopedia Math. Appl.
135, 373–409 (2010). Cambridge University Press

9. Dumont, J.-M., Thomas, A.: Systèmes de numération et fonctions fractales relatifs
aux substitutions. Theoret. Comput. Sci. 65(2), 153–169 (1989)

10. Fon-Der-Flaass, D.G., Frid, A.E.: On periodicity and low complexity of infinite
permutations. Eur. J. Combin. 28, 2106–2114 (2007)

11. Frid, A.: Fine and Wilf’s theorem for permutations. Sib. Elektron. Mat. Izv. 9,
377–381 (2012)

12. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

13. Makarov, M.: On permutations generated by infinite binary words. Sib. Elektron.
Mat. Izv. 3, 304–311 (2006)

14. Makarov, M.: On an infinite permutation similar to the Thue-Morse word. Discrete
Math. 309, 6641–6643 (2009)

72 S.V. Avgustinovich et al.

15. Makarov, M.: On the permutations generated by Sturmian words. Sib. Math. J.
50, 674–680 (2009)

16. Morse, M., Hedlund, G.: Symbolic dynamics II: Sturmian sequences. Amer. J.
Math. 62, 1–42 (1940)

17. Valyuzhenich, A.: On permutation complexity of fixed points of uniform binary
morphisms. Discr. Math. Theoret. Comput. Sci. 16, 95–128 (2014)

18. Widmer, S.: Permutation complexity of the Thue-Morse word. Adv. Appl. Math.
47, 309–329 (2011)

19. Widmer, S.: Permutation complexity related to the letter doubling map. In:
WORDS 2011 (2011)

Linear-Time Computation of Prefix Table
for Weighted Strings

Carl Barton1 and Solon P. Pissis2(B)

1 The Blizard Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London, UK

c.barton@qmul.ac.uk
2 Department of Informatics, King’s College London, London, UK

solon.pissis@kcl.ac.uk

Abstract. The prefix table of a string is one of the most fundamental
data structures of algorithms on strings: it determines the longest factor
at each position of the string that matches a prefix of the string. It can be
computed in time linear with respect to the size of the string, and hence it
can be used efficiently for locating patterns or for regularity searching in
strings. A weighted string is a string in which a set of letters may occur at
each position with respective occurrence probabilities. Weighted strings,
also known as position weight matrices, naturally arise in many biological
contexts; for example, they provide a method to realise approximation
among occurrences of the same DNA segment. In this article, given a
weighted string x of length n and a constant cumulative weight threshold
1/z, defined as the minimal probability of occurrence of factors in x, we
present an O(n)-time algorithm for computing the prefix table of x.

1 Introduction

An alphabet Σ is a finite non-empty set of size σ, whose elements are called
letters. A string on an alphabet Σ is a finite, possibly empty, sequence of elements
of Σ. The zero-letter sequence is called the empty string, and is denoted by ε.
The length of a string x is defined as the length of the sequence associated with
the string x, and is denoted by |x|. We denote by x[i], for all 0 ≤ i < |x|, the
letter at index i of x. Each index i, for all 0 ≤ i < |x|, is a position in x when
x �= ε. It follows that the i-th letter of x is the letter at position i − 1 in x.

The concatenation of two strings x and y is the string of the letters of x
followed by the letters of y; it is denoted by xy. A string x is a factor of a string
y if there exist two strings u and v, such that y = uxv. Consider the strings
x, y, u, and v, such that y = uxv, if u = ε then x is a prefix of y, if v = ε then x
is a suffix of y. Let x be a non-empty string and y be a string, we say that there
exists an occurrence of x in y, or more simply, that x occurs in y, when x is a
factor of y. Every occurrence of x can be characterised by a position in y; thus
we say that x occurs at the starting position i in y when y[i . . i + |x| − 1] = x.

Single nucleotide polymorphisms, as well as errors introduced by wet-lab
sequencing platforms during the process of DNA sequencing, can occur in some
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 73–84, 2015.
DOI: 10.1007/978-3-319-23660-5 7

74 C. Barton and S.P. Pissis

positions of a DNA sequence. In some cases, these uncertainties can be accurately
modelled as a don’t care letter. However, in other cases they can be more subtly
expressed, and, at each position of the sequence, a probability of occurrence
can be assigned to each letter of the nucleotide alphabet; this process gives
rise to a weighted string or a position weight matrix. For instance, consider a
IUPAC-encoded [1] DNA sequence, where the ambiguity letter M occurs at some
position of the sequence, representing either base A or base C. This gives rise to
a weighted DNA sequence, where at the corresponding position of the sequence,
we can assign to each of A and C an occurrence probability of 0.5.

A weighted string x of length n on an alphabet Σ is a finite sequence of n
sets. Every x[i], for all 0 ≤ i < n, is a set of ordered pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having letter sj at position i. Formally,
x[i] = {(sj , πi(sj))|sj �= s� for j �= �, and

∑
j πi(sj) = 1}. A letter sj occurs at

position i of a weighted string x if and only if the occurrence probability of letter
sj at position i, πi(sj), is greater than 0. A string u of length m is a factor of
a weighted string if and only if it occurs at starting position i with cumulative
occurrence probability

∏m−1
j=0 πi+j(u[j]) > 0. Given a cumulative weight threshold

1/z ∈ (0, 1], we say that factor u is valid, or equivalently that factor u has a
valid occurrence, if it occurs at starting position i and

∏m−1
j=0 πi+j(u[j]) ≥ 1/z.

For clarity of presentation, in the rest of this article, a set of ordered pairs in a
weighted string is denoted by [(s0, πi(s0)), . . . , (sσ−1, πi(sσ−1))].

A great deal of research has been conducted on weighted strings for pattern
matching [2,4], for computing various types of regularities [5,7,9], for indexing [2,
8], and for alignments [3]. The efficiency of most of the proposed algorithms relies
on the assumption of a given constant cumulative weight threshold defining the
minimal probability of occurrence of factors in the weighted string.

Similar to the standard setting [6,10], we can define the prefix table for a
weighted string. Given a weighted string x of length n and a constant cumulative
weight threshold 1/z, we define the prefix table WP of x as follows:

WP[i] =

⎧
⎪⎨

⎪⎩

|u| if i = 0 and u is the longest valid prefix of x.

|v| if 0 < i < n and v is the longest valid prefix of
x with a valid occurrence at i.

For large alphabets it makes sense to perform a simple filtering on x to filter
out letters with occurrence probability less than 1/z. This is required as if the
alphabet is not of fixed size, we may have many letters with low occurrence
probability that are not of interest. We simply read the entire string and keep
only those letters with probability greater than or equal to 1/z; these are at
most z for each position, so still constant. We are thus left with a string of size
O(zn), and the entire stage takes time O(σn). For clarity of presentation, in the
rest of this article, we assume that the string resulting from this stage is the
input weighted string x, and consider the following problem.

WeightedPrefixTable

Input: a weighted string x of length n and a constant integer z > 0
Output: prefix table WP of x

Linear-Time Computation of Prefix Table for Weighted Strings 75

Example 1. Let x = aab[(a, 0.5), (b, 0.5)][(a, 0.5), (b, 0.5)]bab and z = 4. Then
we have

i : 0 1 2 3 4 5 6 7

WP[i] : 8 1 0 5 1 0 1 0.

WP[3] = 5 since aabab has a valid occurrence at position 0 with probability
1/4 ≥ 1/4 and a valid occurrence at position 3 with probability 1/4 ≥ 1/4.

The main contribution of this article is the following.

Theorem 1. Problem WeightedPrefixTable can be solved in time O(n).

An O(n)-time bound, for z = O(1), for pattern matching on weighted strings
was shown in [2]. This is useful in the context of molecular biology for find-
ing IUPAC-encoded nucleotide or peptide sequences such as cis-elements in
nucleotide sequences or small domains and motifs in protein sequences [11]. A
direct application of Theorem 1 is a simple O(n)-time algorithm for the same
problem. However, similar to the standard setting, we anticipate that this struc-
ture will be of use for other problems such as regularity searching on weighted
strings [5].

2 Properties and Auxiliary Data Structures

Fact 1. Any factor of a valid factor of x is also valid.

We perform a colouring stage on x, similar to the one before the construction
of the weighted suffix tree [8], which assigns a colour to every position in x
according to the following scheme:

– mark position i black (b), if none of the occurring letters at position i has
probability of occurrence greater than 1 − 1/z.

– mark position i grey (g), if one of the occurring letters at position i has
probability of occurrence greater than 1 − 1/z.

– mark position i white (w), if one of the occurring letters at position i has
probability of occurrence 1.

This stage can be trivially performed in time O(zn).

Lemma 1 ([8]). Any valid factor of x contains at most �log z/ log(z
z−1)� black

positions.

From Lemma 1 we know that any valid factor contains a constant number
of black positions; for the rest of the article, we denote this constant by � =
�log z/ log(z

z−1)�. We can also see that any valid factor of a weighted string is
uniquely determined by the letters it has at black positions: any white or grey
position is common to all valid factors that contain the same positions. Hence
an occurrence of a valid factor of x can be memorised as a tuple < i, j, s >,
where i is the starting position in x, j ≥ i is the ending position in x, and s is a
set of ordered pairs (p, c) denoting that letter c ∈ Σ occurs at black position p,
i ≤ p ≤ j. This representation requires space O(�) per occurrence by Lemma 1;

76 C. Barton and S.P. Pissis

Table 1. Weighted string x and z = 2, colouring, array FP with cumulative occurrence
probabilities between black positions, and array BP with black positions indices; the
letter t at position 10 has already been filtered out since 0.4 < 1/z

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a c t t (a, 0.5) t c (a, 0.5) t t (a, 0.6)

(c, 0.5) (t, 0.5) (t, 0.4)

Colour w w w w b w w b w w g

FP 1 1 1 1 0 1 1 0 1 1 0.6

BP 4 4 4 4 7 7 7 11 11 11 11

it can also be used to efficiently compute the occurrence probability of any factor
of x in time proportional to the number of black positions it contains.

We start by computing an array BP of integers, such that BP[i] stores the
smallest position greater than i that is marked black; otherwise (if no such
position exists) we set BP[i] = n. We next view x as a sequence of the form
u0g0u1g1 . . . uk−1uk−1uk, such that u0, uk are (possibly empty) strings on Σ,
u1, . . . , uk−1 are non-empty strings on Σ, and g0, . . . , gk−1 are maximal sequences
consisting only of black positions. We compute an array FP of factor probabil-
ities, such that FP[i + q] stores the occurrence probability of uj [0 . . q], for all
0 ≤ q < |uj |, starting at position i of x; otherwise (if no such factor starts at
position i) we set FP[i] = 0. For an example, see Table 1. Both arrays BP and
FP can be trivially computed in time O(n).

Given a range of positions in x, the black positions indices within this range,
and the letters at black positions, that is, given a tuple < i, j, s >, we can easily
compute the occurrence probability of the respective factor: we take the prob-
ability of any factor between black positions, the probability of the letters at
black positions, the probability of any leading or trailing segments, and, finally,
we multiply them all together. Notice that we can deal with any leading seg-
ments by computing the differences between prefixes via division. This takes
time proportional to the number of black positions within the factor, and is thus
O(�) for any valid factor.

Example 2. Consider the weighted string x in Table 1 and z = 2. We wish
to determine the probability of the factor starting at position 2 and ending
at position 7, with the two black positions as letters a and a; that is factor
< 2, 7, {(4, a), (7, a)} >. We determine the probability of factor tt starting at
position 2 by taking FP[3]/FP[1] = 1. We take the probability of factor tc start-
ing at position 5, which is given by FP[6] = 1. The probability of the two black
positions are 0.5 and 0.5. By multiplying all of these together we get the occur-
rence probability of factor < 2, 7, {(4, a), (7, a)} > which is 0.25.

A maximal factor of a weighted string is a valid factor that cannot be extended
to the left or to the right and preserve its validity (for a formal definition, see [2]).

Linear-Time Computation of Prefix Table for Weighted Strings 77

Lemma 2 ([2]). At most z maximal factors start at any position of x.

Let lcve(u, v) denote the length of the longest common valid prefix (or longest
common valid extension) of two weighted strings u and v.

Proposition 1. Given a factor v of x with two valid occurrences < i, j, s >
and < i′, j′, s′ >, then lcve(x[i . . n − 1], x[i′ . . n − 1]) can be computed in time
O(� + �zm), where m = lcve(x[i . . n − 1], x[i′ . . n − 1]) − |v|.
Proof. Let pi and pi′ be the probability of occurrence of the common valid factor
v, starting at positions i and i′ of x, respectively. We can compute pi and pi′ in
time O(�) using < i, j, s > and < i′, j′, s′ > with the technique outlined above
(using array FP). We may then proceed by comparing letters from positions j+1
and j′ + 1 onwards. We have a number of cases to consider. Suppose that of the
two positions we compare:

– no position is black; then we carry on comparing the letters and updating pi

and pi′ accordingly.
– one position is black and the other position is either white or grey; we check

if the single letter at the white or grey position occurs at the black position
and update pi and pi′ accordingly.

– both positions are black; we consider all occurring letters that match and
continue extending all corresponding valid factors. By Lemma2, the number
of these combinations of letters at black positions is at most z; by Lemma 1
the number of black positions in each combination is at most �.

We terminate this procedure when we have no match or the probability thresh-
old is violated. It is clear to see that the work at any position is no more
than O(�z). �	
The main idea of our algorithm is based on the efficient computation of an
auxiliary array P of n integers, which for some position i stores the length of the
longest common prefix (or longest common extension) of strings x[i . . n− 1] and
x[0 . . n − 1] as if in all black positions of x we had a don’t care letter—a letter
that does not belong in Σ and it matches itself and any other letter in Σ.

Computing array P in a näıve way could take as much as O(n2) time; the
transitive properties used in the standard setting [10] do not hold due to don’t
care letters. We will show here that it is possible to compute array P in time
O(�n). The critical observation for this computation is that no entry in WP can
be greater than the length of the longest valid prefix of x containing at most
� black positions: this is clear from Lemma 1. This means that we only need
to compute the values of P for this longest valid prefix; this will allow us to
efficiently compute the values of WP for all positions later on.

We now describe the method for the efficient computation of P. Let x′ be the
string obtained by replacing in x: (a) each black position with a unique letter
$h not in Σ; and (b) each grey position with the only letter in that position
with probability of occurrence greater than 1 − 1/z. Hence x′ is of the form
x′
0g0x

′
1g1 . . . x′

k−1gk−1x
′
k, such that x′

0, x
′
k are (possibly empty) strings on Σ,

x′
1, . . . , x

′
k−1 are non-empty strings on Σ, and g0, . . . , gk−1 are maximal sequences

78 C. Barton and S.P. Pissis

consisting only of letters $h. Let lce(u, v) denote the length of the longest common
prefix of strings u and v. We now make use of the critical observation. We
compute the standard prefix table of x′

j$x′, such that $ �∈ Σ and $ �= $h, only if
x′

j is a factor of the longest valid prefix of x. Given these prefix tables we can
easily compute, for each such x′

j , 0 ≤ j ≤ �, the following array of size n:

πx′
j
[i] =

{
lce(x′[i . . n − 1], x′

j) if x′[i] ∈ Σ

0 otherwise.
We are now in a position to compute array P by making use of the above

computed arrays. For any position i, x′[i] ∈ Σ, we start by checking the length
of the longest common prefix between x′[i . . n − 1] and x′

j . We note two cases
about the mismatch occurring one position past the longest common prefix:

1. If the mismatch is caused by two letters from Σ, then there is a legitimate
mismatch and we know the correct value of P[i];

2. If the mismatch is caused by (at least) one letter $h not from Σ, then we
need to check if it can be extended further.

By skipping the maximal sequence of letters $h of x′ (Case 2), we can reach the
beginning of another one of the x′

j factors, 0 ≤ j ≤ �, that we have computed
a prefix table for, so we may continue extending the common factor until a
legitimate mismatch (Case 1) or the end of the string is reached. For any position
i, x′[i] �∈ Σ, we similarly skip letters $h until we reach the beginning of a x′

j factor.
If, for any position i, we have encountered more than � letters $h either in the

prefix of x′ or in x′[i . . n − 1], we terminate the extension. If, for any position i,
the length of the extension becomes greater than the length of the longest valid
prefix of x (trivially computed), we terminate the extension and set P[i] = ∞.

Example 3. Consider the weighted string x in Table 2 and z = 64. The longest
valid prefix of x is equal to x. Let x′ =g$0g$1$2gagcg$3$4g$5c, where $0, $1, $2,
$3, $4, and $5 are unique letters not in Σ. x′ is of the form x′

0g0x
′
1g1x

′
2g2x

′
3g3x

′
4:

x′
0 = g, x′

1 = g, x′
2 = gagcg, x′

3 = g, and x′
4 = c; and g0, . . . , g3 are maximal

sequences consisting only of letters not in Σ. Table 2 illustrates the computation

Table 2. Computation of array P

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x[i] g (a, 0.5) g (g, 0.5) (a, 0.5) g a g c g (g,0.5) (c,0.5) g (a,0.5) c

(c, 0.5) (t, 0.5) (t, 0.5) (t,0.5) (t,0.5) (t,0.5)

x′[i] g $0 g $1 $2 g a g c g $3 $4 g $5 c

πx′
0
[i] 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0

πx′
1
[i] 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0

πx′
2
[i] 1 0 1 0 0 5 0 1 0 1 0 0 1 0 0

πx′
3
[i] 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0

πx′
4
[i] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

P[i] 15 5 6 5 2 9 0 7 0 5 5 4 2 2 0

Linear-Time Computation of Prefix Table for Weighted Strings 79

of arrays πx′
j
. Let i = 5. We start by checking the lce between x′[5 . . n − 1]

and x′
0 = g which is given by πx′

0
[5] = 1. We proceed by skipping x′[13] since

x′[13] = $5, and terminate the check since πx′
4
[9] = 0; we thus set P[5] = 9. We

proceed by skipping x′[8 . . 9] since x′[3 . . 4] = $1$2 and skipping x′[10 . . 11] since
x′[10 . . 11] = $3$4. We check the lce between x′[7 . . n − 1] and x′

3 = g which
is given by πx′

3
[7] = 1. We proceed by skipping x′[13] since x′[13] = $5, and

terminate the check since πx′
4
[9] = 0; we thus set P[5] = 9.

Lemma 3. Array P can be computed in time O(�n).

Proof. The length of xj$x′, 0 ≤ j ≤ �, is no more than 2n+1 and, by Lemma 1,
there can be no more than � + 1 prefix tables to compute; using a standard
algorithm [10], each takes no more than 2(2n + 1) letter comparisons, and no
table entry is updated more than once, so O(�n) in total. For each position i, we
may need to perform, by Lemma 1, at most 2� letter comparisons for an entry
in P, so O(�n) in total. Each entry in P is updated only once, and so we achieve
the claim with a total of no more than (6� + 4)n + 2� + 2 letter comparisons. �	
Lemma 4. P[i] ≥ WP[i], for all 0 ≤ i < n.

Proof. For those entries in P that are ∞ the claim is obvious. Those others entries
in P are computed ignoring letters at black positions: should all those black
positions match their corresponding positions and the probability threshold is
not violated then P[i] = WP[i]; should any of those positions not match or the
probability threshold is violated then P[i] > WP[i]. �	
The method for computing table WP proceeds by determining WP[i] by increas-
ing values of the position i on x. We introduce, the index i being fixed, two
values g and f that constitute the key elements of our method. They satisfy the
following relations

g = max{j + WP[j] : 0 < j < i} (1)

and
f ∈ {j : 0 < j < i and j + WP[j] = g}. (2)

We note that g and f are defined when i > 1. We note, moreover, that if g < i
we have then g = i − 1, and that on the contrary, by definition of f , we have
f < i ≤ g.

Lemma 5. Let f < i < g, u be a factor of x with two valid occurrences at
positions 0 and f , |u| = g − f , and WP[i − f] < g − i. Then we can compute
lcve(x, x[i . . g − 1]) in time O(�z).

Proof. If WP[i − f] < g − i then there exist two factors v1 and v2, possibly
v1 �= v2, of u, |v1| = |v2| = WP[i − f], occurring at positions 0, f and i − f and
i, respectively. By Fact 1 factors v1 and v2 are valid. By the definition of table
WP there does not exist another valid factor v, |v| > |v1|, occurring at positions
0 and i − f . Let v3 be the longest common valid prefix of x and x[i . . g − 1],
i.e. lcve(x, x[i . . g − 1]) = |v3|. We have two cases: v1 = v2 and v1 �= v2.

80 C. Barton and S.P. Pissis

In case v1 = v2, then it holds that v3, |v1| ≤ |v3| ≤ g − i, occurs at positions
0 and i. By Lemmas 1, 2, and 4, we can determine the length of v3 using array
P, |v3| ≤ P[i], and letter comparisons only at black positions (using array BP)
in time O(�z).

In case v1 �= v2 letter comparisons are required to determine the length of v3.
By Lemma 1 and triangle inequality, since v1, v2, and v3 are valid factors, a prefix
of v1 may differ to a prefix of v3 by at most 2� (black) positions: v1, occurring
at position 0, differs to v2, occurring at position i − f , by at most � positions;
and a prefix of v2, occurring at position i, differs to a prefix of v3, occurring at
position i, by at most � positions. Each position has at most z occurring letters.
Therefore, by Lemmas 1 and 2, we can either determine the actual value of
lcve(x, x[i . . g − 1]) = |v3| < |v1| or determine that |v1| ≤ |v3| ≤ g − i in time
O(�z). In case |v1| ≤ |v3| ≤ g − i, by Lemmas 1, 2, and 4, we can determine
the length of v3 using array P, |v3| ≤ P[i], and letter comparisons only at black
positions in time O(�z).

Example 4. Let the following string x and z = 64.

f g
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x[i] g (a, 0.5) g (g, 0.5) (a, 0.5) g a g c g (g,0.5) (c,0.5) g (a,0.5) c

(c, 0.5) (t, 0.5) (t, 0.5) (t,0.5) (t,0.5) (t,0.5)
P[i] 15 5 6 5 2 9 0 7 0 5 5 4 2 2 0

Further let i = 10 < g = 14, u = gcgttga be the valid factor occurring at
positions 0 and f = 7, |u| = g − f = 7, and WP[i − f] = 3 < g − i = 4. Factor
v1 = gcg occurs at positions 0 and f = 7 and factor v2 = ttg occurs at positions
i − f = 3 and i = 10. In this case v1 �= v2. We apply Lemma 5.

Factor v1, occurring at position 0, has a black position at index 1. Factor
v2, occurring at position 3, has two black positions at indices 3 and 4. Factors
v2 and v3, starting at position 10, have two black positions at indices 10 and
11. Therefore we know that we have to compare the letters at positions 0 and 1
to the letters at positions 10 and 11, respectively, and that positions 2 and 12
are white and therefore x[2] = x[12]. There exist such letters that match and
therefore the prefix of length |v1| of v3 is gcg. And since P[10] = 5, by Lemma 4,
we know that |v3| ≤ 5. We can determine |v3| via comparing black positions: 3
to 13. Therefore we determine that lcve(x, x[i . . g − 1]) = 4.

For a graphical illustration of the proof inspect Fig. 1. �	
Lemma 6. Let f < i < g, u be a factor of x with two valid occurrences at
positions 0 and f , |u| = g − f , and WP[i − f] > g − i. Then we can compute
lcve(x, x[i . . g − 1]) in time O(�z).

Proof. If WP[i − f] > g − i then there exists a factor v, possibly v �= u, |v| =
WP[i − f], occurring at positions 0 and i − f . By the definition of WP factor
v is valid and there does not exist another valid factor v′, |v′| > |v|, occurring
at positions 0 and i − f . Let v1 be the longest common valid prefix of x and
x[i . . g − 1], i.e. lcve(x, x[i . . g − 1]) = |v1|. We have two cases: v = u and v �= u.

Linear-Time Computation of Prefix Table for Weighted Strings 81

0 i − f g − f f i g n − 1

u u

(a) String x = x[0 . . n − 1], u occurs at positions 0 and f , and WP[f] = |u|
0 i − f g − f f i g n − 1

u
v1
v3

v2
u

v1 v2
v3

(b) If v1 = v2 then |v3| = lcve(x, x[i . . g − 1]) ≥ |v1|
0 i − f g − f f i g n − 1

u
v1 v2
v3

u
v1 v2

v3

(c) If v1 = v2 then letter comparisons at black positions are re-
quired to determine the length of v3

Fig. 1. Illustration of lemma 5

In case v = u, it holds that v1, |v1| = g − i, occurs at positions 0 and i, and
hence lcve(x, x[i . . g − 1]) = |v1|.

In case v �= u, letter comparisons are required to determine the length of v1.
By Lemma 1 and triangle inequality, since u, v, and v1 are valid factors, v1 may
differ to some prefix of u by at most 2� (black) positions: the prefix of length
g − i of u, occurring at position 0, differs to the suffix of length g − i of u in
at most � positions; and the suffix of length g − i of u, occurring at position i,
differs to v1 in at most � positions. Each position has at most z occurring letters.
Therefore, by Lemmas 1 and 2, we can either determine the actual value of
WP[i] = lcve(x, x[i . . g − 1]) < g − i or determine that lcve(x, x[i . . g − 1]) = g − i
in time O(�z).

Example 5. Let the following string x and z = 8.

f g
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x[i] a c g a (c, 0.5) (a, 0.5) a t c a c g a (c,0.5) (a,0.5) c

(t, 0.5) (g, 0.5) (t,0.5) (g,0.5)

Further let i = 12 < g = 15, u = acgata be the valid factor occurring at positions
0 and f = 9, |u| = g − f = 6. Factor v = acgat, |v| = WP[i− f] = 5 > g − i = 3,
occurs at positions 0 and i − f = 3. In this case u �= v. We apply Lemma 6.

The prefix of length g−i = 3 of u = acgata, occurring at position 0, differs to
the suffix of length g−i = 3 of u in two positions. The suffix of length g−i = 3 of
u, occurring at position i = 12, differs to factor v1, occurring at positions 0 and
i = 12, in two positions. Therefore we know that we have to compare the letters

82 C. Barton and S.P. Pissis

at positions 1 and 2 to the letters at positions 13 and 14, respectively, and that
positions 0 and 12 are white and therefore x[0] = x[12]. There exist such letters
that match and therefore we determine that lcve(x, x[i . . g − 1]) = g − i = 3.

For a graphical illustration of the proof inspect Fig. 2. �	

0 i − f g − f f i g n − 1

u u

(a) String x = x[0 . . n − 1], u occurs at positions 0 and f , and WP[f] = |u|
0 i − f g − f f i g n − 1

u
v

v

u
v1

(b) If u = v then |v1| = lcve(x, x[i . . g − 1])

0 i − f g − f f i g n − 1

u
v

v

u
v1

(c) If u = v then letter comparisons at black positions are required
to determine the length of v1

Fig. 2. Illustration of lemma 6

Similar to Lemma 6 we can obtain the following.

Lemma 7. Let f < i < g, u be a factor of x with two valid occurrences at
positions 0 and f , |u| = g − f , and WP[i − f] = g − i. Then we can compute
lcve(x, x[i . . g − 1]) in time O(�z).

3 Algorithm

We can now present Algorithm WeightedPrefixTable for computing table WP.

Lemma 8. Algorithm WeightedPrefixTable correctly computes table WP.

Proof. The computation of WP[0] is, by definition, correct. The variables f and
g satisfy Eqs. 1 and 2 at each step of the execution of the loop. For i being fixed
and satisfying the conditions i < g and lcve(x, x[i . . g−1]) < g− i, the algorithm
applies the Lemmas 5–7 which produce a correct computation: lcve(x, x[i . . n −
1]) = lcve(x, x[i . . g − 1]). It remains thus to check that the computation is
correct otherwise. But in this case, we compute lcve(x, x[i . . n − 1]) = |x[f . . g −
1]| = g − f which is, by definition, the value of WP[i]. Therefore, Algorithm
WeightedPrefixTable correctly computes table WP. �	

Linear-Time Computation of Prefix Table for Weighted Strings 83

Lemma 9. Given a weighted string x of length n and a constant cumulative
weight threshold 1/z Algorithm WeightedPrefixTable requires time O(n).

Proof. The computation of WP[0] can be trivially done in time O(n). Array P
can be computed in time O(n), for � = O(1), by Lemma 3. As the value of g never
decreases and that it varies from 0 to at most n, there will be, by Proposition 1,
at most O(n) positive comparisons in the inner loop. Each negative comparison
leads to the next step of the outer loop; and there are at most n − 1 of them.
Thus O(n) comparisons on the overall. All other instructions, by Lemmas 5-7,
take constant time for each value of i giving a total time of O(n). �	

Algorithm WeightedPrefixTable(x, n, 1/z)

WP[0 . . n − 1] ← 0;

WP[0] ← |u| where u is the longest valid prefix of x;

Compute array P;

g ← 0;

foreach i ∈ {1, n − 1} do

if i < g and lcve(x, x[i . . g − 1]) < g − i then

WP[i] ← lcve(x, x[i . . g − 1]);

else

f ← i; g ← max{g, i};

while g < n and there exists c ∈ Σ occurring at positions g
and g − f and there exists a common valid prefix, say v,
|v| = g − f , of x[0 . . n − 1] and x[i . . n − 1], such that vc is a
valid factor starting at position 0 and i do

g ← g + 1;

WP[i] ← g − f ;

return WP;

Lemmas 8 and 9 imply the main result of this article (Theorem1).

Corollary 1. The number of letter comparisons performed by Algorithm Weight-
edPrefixTable is no more than (4z2 log z + 6z log z + 4)n + 2z log z + 2.

Proof. We perform no more than (6�+4)n+2�+2 letter comparisons to compute
P (Lemma 3). Then each entry in WP is updated only once. The condition evalu-
ation by the if statement requires at most 2�z letter comparisons (Lemmas 5–7).
Each update in the else statement requires the same (Proposition 1). This gives
at most (4�z + 6� + 4)n + 2� + 2 letter comparisons. For z = 1, the string is not
essentially weighted so the claim clearly holds; for z > 1, we must show that:

� = � log z

log(z
z−1)

� = � log z

log(z) − log(z − 1)
� ≤ z log z. Or equivalently that:

log z(z log z − z log(z − 1) − 1)
log z − log(z − 1)

> 0.

84 C. Barton and S.P. Pissis

Clearly the above is true if and only if: z log z − z log(z − 1) − 1 > 0. There is a
discontinuity at z = 1; after this it is always positive and the following holds:

lim
z→∞ z log z − z log(z − 1) − 1 = 0.

�	

4 Final Remarks

In this article, we presented a linear-time algorithm for computing the prefix
table for weighted strings with a very low constant factor (Corollary 1). This
implies an O(nz2 log z)-time algorithm for pattern matching on weighted strings
for arbitrary z, which is simple and matches the best-known time complexity for
this problem [2]. Furthermore, we anticipate that this structure will be of use
in other problems on weighted strings such as computing the border table of a
weighted string and computing the suffix/prefix overlap of two weighted strings.

References

1. Nomenclature Committee of the International Union of Biochemistry: (NC-IUB).
Nomenclature for incompletely specified bases in nucleic acid sequences. Recom-
mendations (1984). Eur. J. Biochem. 150(1), 1–5 (1985)

2. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. In: Lewenstein, M., Valiente, G. (eds.) CPM
2006. LNCS, vol. 4009, pp. 188–199. Springer, Heidelberg (2006)

3. Amir, A., Gotthilf, Z., Shalom, B.R.: Weighted LCS. J. Discrete Algorithms 8(3),
273–281 (2010)

4. Amir, A., Iliopoulos, C.S., Kapah, O., Porat, E.: Approximate matching in
weighted sequences. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 365–376. Springer, Heidelberg (2006)

5. Barton, C., Iliopoulos, C.S., Pissis, S.P.: Optimal computation of all tandem
repeats in a weighted sequence. Algorithms Mol. Biol. 9(21), 1–8 (2014)

6. Barton, C., Iliopoulos, C.S., Pissis, S.P., Smyth, W.F.: Fast and simple computations
using prefix tables under hamming and edit distance. In: Jan, K., Miller, M., Froncek,
D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 49–61. Springer, Heidelberg (2015)

7. Christodoulakis, M., Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis,
A.K., Tsichlas, K.: Computation of repetitions and regularities of biologically
weighted sequences. J. Comput. Biol. 13(6), 1214–1231 (2006)

8. Iliopoulos, C.S., Makris, C., Panagis, Y., Perdikuri, K., Theodoridis, E., Tsakalidis,
A.: The weighted suffix tree: an efficient data structure for handling molecular
weighted sequences and its applications. Fundam. Inf. 71(2–3), 259–277 (2006)

9. Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A.K.: Computing the
repetitions in a biological weighted sequence. J. Automata Lang. Comb. 10(5/6),
687–696 (2005)

10. Smyth, W.F., Wang, S.: New perspectives on the prefix array. In: Amir, A., Turpin,
A.,Moffat,A. (eds.) SPIRE2008. LNCS, vol. 5280, pp. 133–143. Springer,Heidelberg
(2008)

11. Yan, T., Yoo, D., Berardini, T.Z., Mueller, L.A., Weems, D.C., Weng, S., Cherry,
J.M., Rhee, S.Y.: PatMatch: a program for finding patterns in peptide and
nucleotide sequences. Nucleic Acids Res. 33(suppl. 2), W262–W266 (2005)

New Formulas for Dyck Paths in a Rectangle

José Eduardo Blažek(B)

Laboratoire de Combinatoire Et D’Informatique Mathématique,
Université du Québec à Montréal, Montréal, Canada

jeblazek@lacim.ca

Abstract. We consider the problem of counting the set of Da,b of Dyck
paths inscribed in a rectangle of size a × b. They are a natural general-
ization of the classical Dyck words enumerated by the Catalan numbers.
By using Ferrers diagrams associated to Dyck paths, we derive formulas
for the enumeration of Da,b with a and b non relatively prime, in terms
of Catalan numbers.

Keywords: Dyck paths · Ferrers diagrams · Catalan numbers · Bizley
numbers · Christoffel words

1 Introduction

The study of Dyck paths is a central topic in combinatorics as they provide
one of the many interpretations of Catalan numbers. A partial overview can be
found for instance in Stanley’s comprehensive presentation of enumerative com-
binatorics [1] (see also [2]). As a language generated by an algebraic grammar
is characterized in terms of a Dyck language, they are important in theoretical
computer science as well [3]. On a two-letter alphabet they correspond to well
parenthesized expressions and can be interpreted in terms of paths in a square.
Among the many possible generalizations, it is natural to consider paths in a
rectangle, see for instance Labelle and Yeh [4], and more recently Duchon [5]
or Fukukawa [6]. In algebraic combinatorics Dyck paths are related to parking
functions and the representation theory of the symmetric group [7]. The moti-
vation for studying these objects stems from this field in an attempt to better
understand the links between these combinatorial objects.

In this work, we obtain a new formula for |Da,b|, when a and b are not
relatively prime, in terms of the Catalan numbers using the notion of Christoffel
path. More precisely, the main results of this article (diagrams decomposition
method in Sect. 3, Theorems 1 and 2 in Sect. 4) are formulas for the case where
a = 2k :

|Da,b| =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cat(−)
(a,n) −

k−1∑

j=1

Cat(−)
(a−j,n)Cat(−)

(j,n), if b = a(n + 1) − 2,

Cat(+)
(a,n) +

k∑

j=1

Cat(+)
(a−j,n)Cat(+)

(j,n), if b = an + 2,

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 85–96, 2015.
DOI: 10.1007/978-3-319-23660-5 8

86 J.E. Blažek

where k, n ∈ N, Cat(−)
(a,n) := Cat(a,a(n+1)−1), and Cat(+)

(a,n) := Cat(a,an+1).
The paper is organized as follows. In Sect. 2 we fix the notation for Dyck

and Christoffel paths, and present their encoding by Ferrers diagrams. Then,
in Sect. 3, we develop the “Ferrers diagram comparison method” and “diagrams
decomposition method”. Section 4 contains several technical results in order to
prove the main results, and in Sect. 5 we present the examples.

2 Definitions and Notation

We borrow the notation from Lothaire [8]. An alphabet is a finite set Σ, whose
elements are called letters. The set of finite words over Σ is denoted Σ∗ and
Σ+ = Σ∗ \ {ε} is the set of nonempty words where ε ∈ Σ∗ is the empty word.
The number of occurrences of a given letter α in the word w is denoted |w|α
and |w| =

∑
α∈Σ |w|α is the length of the word. A language is a subset L ⊆ Σ∗.

The language of a word w is L(w) = {f ∈ Σ∗ | w = pfs, p, s ∈ Σ∗}, and its
elements are called the factors of w.
Dyck words and paths. It is well-known that the language of Dyck words on
Σ = {0,1} is the language generated by the algebraic grammar D → 0D1D+ε.
They are enumerated by the Catalan numbers (see [9]),

Catn =
1

n + 1

(
2n

n

)

,

and can be interpreted as lattice paths inscribed in a square of size n × n using
down and right unit steps (see Fig. 1 (a)).

Fig. 1. Dyck path and Ferrers diagram.

More precisely an (a, b)-Dyck path is a south-east lattice path, going from
(0, a) to (b, 0), which stays below the (a, b)-diagonal, that is the line segment join-
ing (0, a) to (b, 0). In Fig. 1, the paths are respectively 010101 and 01011011.

Alternatively such word may be encoded as a Ferrers diagram corresponding
to the set of boxes to left (under) the path. As usual, Ferrers diagrams are
identified by the number of boxes on each line, thus corresponding to partitions:

λ = (λa−1, λa−2, . . . , λ1), with λa−l ≤
⌊

bl

a

⌋

where 1 ≤ l ≤ a − 1. (1)

New Formulas for Dyck Paths in a Rectangle 87

In the examples of Fig. 1, the paths are respectively encoded by the sequences
(2, 1, 0) and (3, 1, 0). The cases where (a, b) are relatively prime, or b = ak are
of particular interest. For the case b = ak with k ≥ 1 we have the well-know
formula of Fuss-Catalan (see [9]).

Cat(a,k) =
1

ak + 1

(
ak + a

a

)

.

For a×b rectangles, with a and b are relatively prime, we also have the “classical”
formula:

Cat(a,b) =
1

a + b + 1

(
a + b + 1

a

)

.

In particular, when a = p is prime, either b and p are relatively prime, or b
is a multiple of p. Hence the relevant number of Dyck paths is:

|Dp,b| =

{
1

p+b

(
p+b

p

)
if gcd(p, b) = 1,

1
p+b+1

(
p+b+1

p

)
if b = kp.

The generalized ballot problem is related with the number of lattice paths form
(0, 0) to (a, b) that never go below the line y = kx (see [10]):

b − ka + 1
b

(
a + b

a

)

where k ≥ 1, and b > ak ≥ 0.

And the number of lattice paths of length 2(k + 1)n + 1 that start at (0, 0) and
that avoid touching or crossing the line y = kx (see [11]) has the formula:

(
2(k + 1)n

2n

)

− (k − 1)
i=0∑

2n−1

(
2(k + 1)n

i

)

, where n ≥ 1and k ≥ 0.

In the more general case we have a formula due to Bizley (see [12]) expressed as
follows. Let m = da, n = db and d = gcd(m,n), then:

B(a,b)
k :=

1
a + b

(
ka + kb

ka

)

for k ∈ N,

Ba,b
λ := B(a,b)

λ1
B(a,b)

λ2
· · · B(a,b)

λl
if λ = (λ1, λ2, . . . , λl),

It is straightforward to show that the number of Dyck paths in m × n is:

|Dm,n| :=
∑

λ�d

1
zλ

B(a,b)
λ where n ≥ 1and k ≥ 0.

Christoffel Paths and Words. A Christoffel path between two distinct points
P = (0, k) and P ′ = (0, l) on a rectangular grid a × b is the closest lattice path
that stays strictly below the segment PP ′ (see [13]). For instance, the Dyck path
of Fig. 1(b) is also Christoffel, and the associated word is called a Christoffel
word. The Christoffel path of a rectangular grid a × b is the Christoffel path

88 J.E. Blažek

associated to the line segment going from the north-west corner to the south-
east corner of the rectangle of size a × b. As in the case of Dyck paths, every
Christoffel path in a fixed rectangular grid a×b is identified by a Ferrers diagram
of shape (λa−1, λa−2, . . . , λ1) given by Equation (1).

For later use, we define two functions associated to Ferrers diagram. Let
Qa,b to be the total number of boxes in the Ferrers diagram associated to the
Christoffel path of a × b (see [14]):

Qa,b =
(a − 1)(b − 1) + gcd(a, b) − 1

2
. (2)

Also, let Δa,b(l) be the difference between the boxes of the Ferrers diagrams
associated to the Christoffel paths of a × b and a × (b − 1), respectively:

Δa,b(l) :=
⌊

bl

a

⌋

−
⌊

(b − 1)l
a

⌋

,

where a < b ∈ N and 1 ≤ l ≤ a − 1.
In the next section we give an alternate method to calculate the number of

(a, b)-Dyck paths when a and b are not relatively prime, and satisfying certain
conditions in terms of the Catalan numbers.

Isosceles Diagrams. An isosceles diagram In is a Ferrers diagram associated
to a Christoffel path in a square having side length n. Given a Ferrers diagram
Ta,b, we call maximum isosceles diagram the largest isosceles diagram included
in Ta,b.

Ferrers Set. Let Ta,b be a Ferrers diagram. The Ferrers set of Ta,b is the set
of all Dyck paths contained in Ta,b.

Fig. 2. Rule 1.

3 Ferrers Diagrams Comparison Method

Let Ta,b be the Ferrers diagram associated to a Christoffel path of a × b. In
order to establish the main results we need to count the boxes in excess between
the Christoffel paths in rectangles a × b and a × c, for any c > b. We develop
a method to do this by removing exceeding boxes between Ta,b and Ta,c, for
c > b. Using the functions Qa,b and Δa,b(l), our comparison method gives the
following rules:

New Formulas for Dyck Paths in a Rectangle 89

Rule 1: If Qa,b = 1 and Δa,b(i) = 1, there is only one corner in Ta,c which
does not belong to the Ta,b. Let Ta1,b1 and Ta′

1,b′
1

be the Ferrers diagram
obtained by erasing from Ta,c the row and the column that contain α (see
Fig. 2(b)). These Ferrers diagrams are not associated to a Christoffel path
in general. Let

Ja1,b1 ⊆ Da1,b1 , and Ja′
1,b′

1
⊆ Da′

1,b′
1

be the sets of Dyck paths contained in the Ferrers diagrams Ta1,b1 and Ta′
1,b′

1
,

respectively. We have:

|Da,c| − |Da,b| = −|Ja1,b1 | · |Ja′
1,b′

1
|,

It is clear that if the box α is located on the bottom line (l = a − 1), the
equation is reduced to:

|Da,c| − |Da,b| = −|Ja1,b1 |.
Rule 2: When Qa,b = k and there are exactly k rows with a difference of one

box we need to calculate how many paths contain these boxes (see Fig. 3),
so we construct a sequence of disjoint sets as follows. Let Aj be the set of
all paths that do not contain the boxes αi for each i > j, where 1 ≤ j ≤ k.
Also, let Bj be the set of all paths that do not contain the boxes αi for each
i < j, where 1 ≤ j ≤ k. This strategy gives us disjoint sets that preserve the
total union, so using Rule 1 for every Aj or Bj we get:

|Da,c| − |Da,b| = −
k∑

j=1

(|Jaj ,bj | · |Ja′
j ,b′

j
|),

where Jaj ,bj ⊆ Daj ,bj , and Ja′
j ,b′

j
⊆ Da′

j ,b′
j
.

.

.

.
.
.
.

.

.

.

α1.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

α2

αk

Fig. 3. More one box.

3.1 Diagrams Decomposition Method

Using the diagrams comparison method we make an iterative process erasing
boxes in excess between the diagram Ta,b and its respective maximum isosceles
diagram In. It begins at the right upper box as shown in Fig. 5. The decompo-
sition is give in sums and products of diagrams. The sum operation + is given
by the union of disjoint Ferrers sets. We can consider a red box in the border of

90 J.E. Blažek

Fig. 4. Separation of diagrams.

the diagram. Any path contained in a diagrams having the red box is written as
one of the two cases in Fig. 4.

The products of diagrams T × T ′ is a diagram containing all possible con-
catenation of a Dyck path of T with a Dyck path of T ′. For example, the

diagram corresponding to D4,6 is [4, 3, 1] includes the isosceles diagram

[3, 2, 1] . When we remove the box the diagram splits into two pairs associ-
ated with operations that simplify the computation of paths (see Fig. 5).

Fig. 5. First diagram decomposition.

In Fig. 5, 1 is an empty diagram. We repeat this method until all the diagrams
are isosceles (the operation × distributes the operation +) (Fig 6).

Fig. 6. Full diagram decomposition.

Clearly, we can count the Dyck paths in an isosceles diagram with a classical
Catalan formula because there is a relation between the decomposition and the
number of Dyck paths. This relation, denoted H, between the isosceles diagrams
and Catalan numbers is such as:

H(1) := 1, H(In + Im) := H(In) + H(Im),
H(In) := Catn, H(In × Im) := H(In) · H(Im).

New Formulas for Dyck Paths in a Rectangle 91

3.2 Technical Results

The following technical formulas are needed in the sequel (see [14]).

i) Let a = 2k, b = 2k(n + 1) − 1, and 1 ≤ l ≤ 2k − 1. Then,

Δ2k,2k(n+1)−1(l) =

{
0 if 1 ≤ l ≤ k,

1 if k + 1 ≤ l ≤ 2k − 1.
(3)

ii) Let a = 2k, b = 2kn + 2, and 1 ≤ l ≤ 2k − 1. Then,

Δ2k,2kn+2(l) =

{
0 if 1 ≤ l ≤ k − 1,

1 if k ≤ l ≤ 2k − 1.
(4)

iii) Let a, k ∈ N, and k < a . There exists a unique r ∈ N such as for k =
1, . . . , a − 1 :

⌊
kr

a

⌋

= k − 1 or
⌊

kr

a

⌋

= k, (5)

and gcd(r, a) = 1. The solution is given by r = a − 1

4 Theorems

Now we are ready to prove the two main results of this article. The formulas are
obtained by studying the “Ferrers diagram comparison method” (see Sect. 3), in
the cases where every Ferrers diagram obtained by subdivisions of Ta,c is associ-
ated to a Christoffel path inscribed in a rectangular box of co-prime dimension.

Theorem 1 (see [14]). Let a = 2k, b = a(n + 1) − 2, and k, n ∈ N, then the
number of Dyck paths is:

|Da,b| = Cat(−)
(a,n) −

k−1∑

j=1

Cat(−)
(a−j,n)Cat(−)

j,n ,

where Cat(−)
a,n := Cat(a,a(n+1)−1).

92 J.E. Blažek

Proof. From Eqs. 2 and 3, we get that there are k − 1 total difference between
the Ferrers diagram associated to the Christoffel path of a × b and a × (b + 1).
We easily obtain that the Ferrers diagram associated to Dc,cn+c−1 is λ = ((c −
1)n + c − 2, . . . , 2n + 1, n).

By definition of Aj , the rectangles j × b1 and (2k− j)× b′
1 are such that their

maximal underlying diagrams are:

λ = ((j − 1)n + j − 2, . . . , 3n + 2, 2n + 1, n),
λ′ = ((2k − j − 1)n + 2k − j − 2, . . . , 2n + 1, n),

respectively. So,

|Aj | = |D2k−j,(2k−j)n+2k−j−1||Dj,jn+j−1|.
Since all rectangles are relatively prime, we have:

|Da,b| − |Da,b+1| = −
k−1∑

j=1

(|Da−j,(a−j)(n+1)−1| · |Dj,j(n+1)−1|).

then

|Da,b| = Cat(−)
(a,n) −

k−1∑

j=1

Cat(−)
(a−j,n)Cat(−)

j,n .

where Cat(−)
t,n := Cat(t,t(n+1)−1), of course Cat(−)

(1,n) = 1. ��
Theorem 2 (see [14]). Let a = 2k, b = an + 2 and k, n ∈ N, then the number
of Dyck paths is:

|Da,b| = Cat(+)
(a,n) +

k∑

j=1

Cat(+)
(a−j,n)Cat(+)

j,n .

where Cat(+)
a,n := Cata,an+1.

Proof. From Eqs. 2 and 4, we get that there are k total difference between the
Ferrers diagram associated to the Christoffel path of a×b and a×(b+1). We easily
get that the Ferrers diagram associated to Dc,cn+1 is λ = ((c − 1)n, . . . , 2n, n).
By definition of Bj , the rectangles j × b1 et (2k − j) × b′

1 are such as that their
maximal underlying diagram are:

λ = ((j − 1)n, . . . , 3n, 2n, n),
λ′ = ((2k − j − 1)n, . . . , 2n, n),

respectively. So,
|Bj | = |D2k−j,(2k−j)n+1||Dj,jn+1|.

Since all rectangles are relatively prime, we have:

|Da,b| − |Da,b−1| = −
k−1∑

j=1

(|Da−j,(a−j)n−1| · |Dj,jn+1|).

New Formulas for Dyck Paths in a Rectangle 93

then

|Da,b| = Cat(+)
(a,n) +

k∑

j=1

Cat(+)
(a−j,n)Cat(+)

j,n .

where Cat(+)
t,n := Cat(t,tn+1), of course Cat(+)

(1,n) = 1. ��

5 Examples

In order to illustrate the main results, we consider the cases D8,8n+6, to generalize
the case of discrepancies with a larger diagram. Then we study D6,6n+2 to gen-
eralize the case of discrepancies for shorter diagram. These cases corresponding
to rectangles having relatively prime dimensions such that Jaj ,bj = Daj ,bj and
Ja′

j ,b′
j

= Da′
j ,b′

j
. Finally, we give some examples of the diagrams decomposition

method.

5.1 Example D8,8n+6

We apply the comparison method to D8,8n+6 and D8,8n+7. Using Eq. 2, we get
that the difference in total number of sub-diagonal boxes is Q8,8n+7 −Q8,8n+6 =
3. To find the lines where they are located we use the Eq. 3. In this cases Δ(l)
is zero except for l = 5, 6, 7 (see Fig. 7).

n ···
2n+1 ··· ···
3n+2 ··· ··· ··· ···
4n+3 ··· ··· ··· ··· ··· ···
5n+3 ··· ··· ··· ··· ··· ··· ··· ··· α1
6n+4 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· α2
7n+5 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· α3

Fig. 7. D8,8n+6 and D8,8n+7

Applying Rule 2, we have that A1 = { paths containing the box α1 and not
(α2 or α3)}, A2 = { paths containing the box α2 and not α3}, and A3 =
{paths containing the box α3}.

Applying the rule 1 to these sets, we have:

Case 1: for A1, we must find the rectangles 5 × b1 and 3 × b′
1 with underlying

diagram λ = (5n + 4, 4n + 3, 3n + 2, 2n + 1, n) and λ′ = (n), then

|A1| = |D5,5n+4||D3,3n+2|.
Case 2: for A2, we must find the rectangles 6 × b2 and 2 × b′

2 with underlying
diagram λ = (5n + 4, 4n + 3, 3n + 2, 2n + 1, n) and λ′ = (n), then

|A2| = |D6,6n+5||D2,2n+1|.

94 J.E. Blažek

Case 3: for A3, we must find the rectangle 7 × b3 with underlying diagram
λ = (6n + 5, 5n + 4, 4n + 3, 3n + 2, 2n + 1, n), then,

|A3| = |D7,7n+6|.
Finally, we obtain:

|D8,8n+6| = Cat(8,8n+7) − Cat(7,7n+6)

− Cat(6,6n+5)Cat(2,2n+1) − Cat(5,5n+4)Cat(3,3n+2).

5.2 Example D6,6n+2

Similarly to the previous example, comparing D6,6n+2 and D6,6n+1 from Eq. 2,
we get that the total difference is Q6,6n+2 − Q6,6n+1 = 3. From Eq. 4, in this
cases Δ(l) is zero except for l = 3, 4, 5 (see Fig. 8).

n ···
2n ··· ···
3n ··· ··· ··· ··· α1

4n ··· ··· ··· ··· ··· ··· ··· α2

5n ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· α3

Fig. 8. D6,6n+1 et D6,6n+2

We consider the sets:

B1 = {paths containing the box α1},

B2 = {paths containing the box α2 and not α1},

B3 = {paths containing the box α3 and not (α1 or α2)}.

We have the following cases :

Case 1: For B1, we find 3 × b1 and 3 × b′
1 with underlying diagram λ = (2n, n)

and λ′ = (2n, n), respectively (see Eq. 5). Then,

|B1| = |D3,3n+1||D3,3n+1|.
Case 2: For B2, the rectangles 4 × b2 and 2 × b′

2 such as λ = (3n, 2n, n) et
λ′ = (n) (see Eq. 5). Then,

|B2| = |D4,4n+1||D2,2n+1|.
Case 3: for B3, the rectangle 5×b3 such as λ = (4n, 3n, 2n, n) (see Eq. 5). Then,

|B3| = |D5,5n+1|.
Finally, we obtain:

|D6,6n+2| = Cat(6,6n+1) + Cat(5,5n+1)

+ Cat(4,4n+1)Cat(2,2n+1) + Cat(3,3n+1)Cat(3,3n+1).

New Formulas for Dyck Paths in a Rectangle 95

5.3 Example D6,9.

For D6,9 the Ferrers diagram is (Fig. 9):

Fig. 9. Ferrers diagram D6,9 and D6

and the diagrams decomposition method. After six iterations the decompo-
sition is:

then,

We can also decompose (see Fig. 10), and after four iterations the decompo-
sition is:

Fig. 10. Ferrers diagram D6,9 and D6,8

then,

As they are many possible decomposition, finding the shortest one is an open
problem.

96 J.E. Blažek

Acknowledgements. The author would like to thank his advisor François Bergeron
and Srečko Brlek for their advice and support during the preparation of this paper.
The results presented here are part of J.E. Blažek’s Master thesis. Algorithms in SAGE
are available at http://thales.math.uqam.ca/∼jeblazek/Sage Combinatory.html.

References

1. Stanley, R.P.: Enumerative Combinatorics, 2nd edn. Cambridge University Press,
New York (2011)

2. Bergeron, F., Labelle, G., Leroux, P., Readdy, M.: Combinatorial Species and Tree-
like Structures, Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge (1998)

3. Eilenberg, S.: Automata, Languages, and Machines. Academic Press Inc, Orlando
(1976)

4. Labelle, J., Yeh, Y.: Generalized dyck paths. Discrete Math. 82(1), 1–6 (1990)
5. Duchon, P.: On the enumeration and generation of generalized dyck words. Discrete

Math. 225(1–3), 121–135 (2000)
6. Fukukawa, Y.: Counting generalized Dyck paths, April 2013. arXiv:1304.5595v1

[math.CO]
7. Gorky, E., Mazin, M., Vazirani, M.: Affine permutations and rational slope parking

functions, March 2014. arXiv:1403.0303v1 [math.CO]
8. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press,

Cambridge (2005)
9. Koshy, T.: Catalan Numbers with Applications. Oxford University Press, New York

(2009)
10. Goulden, I., Serrano, L.: Maintaining the spirit of the reflection principle when the

boundary has arbitrary integer slope. J. Comb. Theory Ser. A 104, 317–326 (2003)
11. Chapman, R.J., Chow, T., Khetan, A., Moulton, D.P., Waters, R.J.: Simple for-

mulas for lattice paths avoiding certain periodic staircase boundaries. J. Comb.
Theory Ser. A 116, 205–214 (2009)

12. Bizley, M.T.L.: Derivation of a new formula for the number of minimal lattice
paths from (0, 0) to (km, kn) · · · . JIA 80, 55–62 (1954)

13. Melançon, G., Reutenauer, C.: On a class of Lyndon words extending Christoffel
words and related to a multidimensional continued fraction algorithm. J. Integer
Sequences 16, 30 (2013)

14. Blazek, J.E.: Conbinatoire de N-modules Catalan, Master thesis. Département de
Mathématique, UQAM (2015)

http://thales.math.uqam.ca/~jeblazek/Sage_Combinatory.html
http://arxiv.org/abs/1304.5595v1
http://arxiv.org/abs/1403.0303v1

Ambiguity of Morphisms in a Free Group

Joel D. Day(B) and Daniel Reidenbach

Department of Computer Science, Loughborough University, Loughborough,
Leicestershire LE11 3TU, UK

{J.Day,D.Reidenbach}@lboro.ac.uk

Abstract. A morphism g is ambiguous with respect to a word u if there
exists a morphism h �= g such that g(u) = h(u). The ambiguity of mor-
phisms has so far been studied in a free monoid. In the present paper,
we consider the ambiguity of morphisms of the free group. Firstly, we
note that a direct generalisation results in a trivial problem. We provide a
natural reformulation of the problem along with a characterisation of ele-
ments of the free group which have an associated unambiguous injective
morphism. This characterisation matches an existing result known for
the free monoid. Secondly, we note a second formulation of the problem
which leads to a non-trivial situation: when terminal symbols are permit-
ted. In this context, we investigate the ambiguity of the morphism erasing
all non-terminal symbols. We provide, for any alphabet, a pattern which
can only be mapped to the empty word exactly by this morphism. We
then generalize this construction to give, for any morphism g, a pattern
α such that h(α) is the empty word if and only if h = g.

1 Introduction

A morphism g is ambiguous with respect to a word u if there exists a morphism
h �= g such that g(u) = h(u). For example the morphism g : {a, b}∗ → {a, b}∗

such that g(a) = a · b · a and g(b) = b is ambiguous with respect to a · b · b · a,
as the same result may be achieved with the morphism h given by h(a) = a and
h(b) = b ·a ·b (we have g(a ·b ·b ·a) = h(a ·b ·b ·a) = a ·b ·a ·b ·b ·a ·b ·a). On the
other hand, the (identity) morphism g : {a, b}∗ → {a, b}∗ given by g(a) := a and
g(b) = b is unambiguous with respect to u := a ·b ·b ·a, since no other morphism
g : {a, b}∗ → {a, b}∗ produces the same image when applied to u. However, if
instead of the monoid {a, b}∗, we consider the free group F{a,b} generated by a
and b, then the identity morphism g : F{a,b} → F{a,b} becomes ambiguous with
respect to u = a · b · b · a, as verified by, e.g., the morphism h : F{a,b} → F{a,b}
given by h(a) = a ·b ·b ·a ·b−2 ·a−1 and h(b) = a ·b ·b ·a ·b ·a−1 ·b−2 ·a−1. Thus,
we see that by moving from the free monoid to the free group, the ambiguity of
morphisms can change.

The ambiguity of morphisms can be seen as both a property of the pair of
words (u, g(u)), and of the morphism itself. Put another way, it provides some
measure of (non-)determinism in the process of mapping u to g(u). Similarly
to injectivity, the unambiguity of a morphism determines to some extent the

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 97–108, 2015.
DOI: 10.1007/978-3-319-23660-5 9

98 J.D. Day and D. Reidenbach

information lost when the morphism is applied, and indeed unambiguity can be
seen as a dual to injectivity. To substantiate this claim, consider two words u, v
and a morphism g such that g(u) = v. It is possible to determine u from v and
g if and only if g is injective. Similarly, if is possible to determine g from u and
v if and only if g is unambiguous with respect to u. It is obvious, of course, that
the final configuration, that v may be determined by u and g is the condition
that g is a function.

All papers addressing the topic directly consider only morphisms of the
free monoid, and are surprisingly recent (see e.g., Freydenberger et al. [1],
Freydenberger, Reidenbach [2]), although earlier topics such as the Dual Post
Correspondence Problem (Culik II, Karhumäki [3]) have addressed the ques-
tion indirectly. Due to the nature of the question, it is clear that ambi-
guity of morphisms has implications on many areas such as equality sets
(Salomaa [4], Engelfriet, Rozenberg [5]) or equalizers, the Post Correspon-
dence Problem (Post [6]), and word equations (see, e.g., Makanin [7]); however,
arguably the biggest achievements of research on the ambiguity of morphisms
have come in the world of pattern languages (the set of all morphic images of a
given word) (Reidenbach [8]).

In the current work, we extend the study of ambiguity to morphisms of the
free group. While ambiguity and indeed pattern languages have generally been
studied in the context of a free monoid, or semi-group, many of these ideas over-
lap with areas of study related to free groups, in which morphisms play a central
role. Recent publications have addressed pattern languages in a group setting
(Jain et al. [9]), and a group-equivalent of the Post Correspondence Problem
(Bell, Potapov [10]), while more established areas include test words for auto-
morphisms (Turner [11]), automorphisms themselves and their fixed subgroups
(see e.g., Ventura [12]), equations of the free group (Makanin [13]), and equalizers
– all of which are connected to the ambiguity of morphisms.

We begin in Sect. 3 with the observation is that, in its simplest form, a gen-
eralisation of the ambiguity of morphisms leads to a trivial problem: in the
free group, all morphisms are ambiguous with respect to all words. However on
closer inspection, it is possible to see that this evaluation does not reflect the
richness and intricacies of the subject. We reformulate the problem in a nat-
ural way which results in a non-trivial notion of unambiguity in a free group.
In Sect. 4 we provide a characterisation of when a word from the free group
posesses an unambiguous morphism in terms of fixed points of non-trivial mor-
phisms, providing an analogue to an existing result for the free monoid found in
Freydenberger et al. [1].

Finally, in Sect. 5 we consider another setting in which the problem is non-
trivial: when so-called terminal symbols are present. Many of the remaining
open problems for ambiguity of morphisms in a free monoid are with regards
to words which contain terminal symbols – symbols which are always preserved
by morphisms. We provide some initial insights in the group setting, including
a construction that, for any morphism g, provides a word which is uniquely
erased by g.

Ambiguity of Morphisms in a Free Group 99

2 Preliminaries

N denotes the natural numbers, and N0 := N ∪ {0}. Z denotes the integers.
A set of symbols Σ := {a1, a2, . . .} is called an alphabet. The free semigroup
generated by Σ is denoted Σ+ and Σ∗ is the free monoid. The identity element
is denoted ε. For a given alphabet Σ = {a1, a2, . . .}, its inverse Σ−1 is an
alphabet {a−1

1 , a−1
2 , . . .} such that Σ ∩ Σ−1 = ∅. The free group is the free

monoid over Σ ∪ Σ−1 with additional relations aia
−1
i = a−1

i ai = ε for each
ai ∈ Σ. For a free group F and a given word u = u1u2 · · · un ∈ F , its inverse
u−1 is the word u−1

n u−1
n−1 · · · u−1

1 . For an alphabet Σ, the free group generated
by Σ is denoted FΣ. Generally, we will refer to generators as letters or variables
(see pattern languages below).

For semigroups, monoids or groups A and B, a (homo)morphism σ : A → B
is a mapping such that, for every u, v ∈ A, σ(uv) = σ(u)σ(v). Note that for
groups, this implies that σ(u−1) = σ(u)−1. By the definition of a morphism,
we mean the set of images of individual generators (letters) of A. A morphism
σ : A → B is an automorphism if it is surjective, injective and A = B. A
morphism σ : A → B is periodic if there exists some u ∈ B such that for every
a ∈ A, σ(a) = un for some n ∈ Z. A morphism σ : A → B is ambiguous with
respect to u ∈ A if there exists a morphism τ : A → B such that σ(u) = τ(u),
and such that σ(a) �= τ(a) for some letter a occurring in u. If, for some u ∈ A,
the identity morphism is ambiguous with respect to u, then u is said to be a
non-trivial fixed point.

Given words w and u, u is a factor of w if there exist x, v such that w = uxv.
A word w is bordered if there exist u, v such that w = uvu. A contraction is
a factor or word with length greater than 0 which is equal to the empty word.
A contraction is primary if it contains exactly one factor x · x−1 where x is a
single letter. Words with no contractions are called reduced. It is assumed that
all images of generators under morphisms are reduced.

Two words which are not necessarily reduced do not have to be graphically
identical to be equal (within the structure of the group). Two reduced words must
be graphically identical to be equal. If an equality of two words is considered, it
should be assumed to be the least strict of the two types of equality (i.e., group
equality over graphical equality), unless otherwise stated (sometimes this will be
implied by assuming the words are reduced).

In line with notation from pattern languages, we will refer to pre-images of
morphisms as patterns. The letters of a pattern are called variables, and the
set of variables occurring in a pattern α is denoted var(α). Usually, we will
use the infinitely generated group FN for patterns. We will use Σ to denote
a finite (binary, unless otherwise specified) terminal alphabet. This consists
of symbols which are not altered further by morphisms. Words over a termi-
nal alphabet are referred to as terminal words. In Sect. 5, we consider pat-
terns containing terminal symbols. Such patterns belong to the group FN∪Σ.
A pattern language of a pattern α is the set LΣ(α) := {σ(α) | σ : FN∪Σ →
FΣ is a terminal-preserving morphism} and for a terminal-free pattern is the
set LΣ(α) := {σ(α) | σ : FN → FΣ is a morphism}.

100 J.D. Day and D. Reidenbach

For a pattern, or word α ∈ Σ∗, we denote by |α|x the number of occurrences
of x in α. If α ∈ FΣ, we denote by |α|x the balance of occurrences of x, i.e., the
number of occurrences of x minus the number of occurrences of x−1.

3 Basic Ambiguity

We begin our investigation by considering the most basic generalisation of ambi-
guity from the monoid to the free group. The result is a trivial situation: that
all morphisms are ambiguous with respect to all patterns.

Theorem 1. All morphisms σ : FN → FΣ are ambiguous with respect to every
pattern α ∈ FN with at least two variables.

This triviality, which is not present in the free monoid, is primarily due to
a ‘trick’ of composition with a particular class of inner automorphism which we
demonstrate with an example below. In the case of the free monoid, all inner
automorphisms degenerate into the identity. As a result the two morphisms τ
and σ in the construction become identical.

Example 1. Let α := 1 · 2 · 2 · 1, and let σ be the morphism given by σ(1) := ab
and σ(2) = a. Then σ(α) = a · b · a · a · a · b. In order to apply the ‘inner
automorphism trick’, we compose σ with the inner automorphism ϕ given by
ϕ(1) = α·1·α−1 and ϕ(2) = α·2·α−1. The result is a morphism τ = σ◦ϕ such that
τ(1) = a·b·a3 ·b·a·b·b−1 ·a−3 ·b−1 ·a−1 and τ(2) = a·b·a3 ·b·a·b−1 ·a−3 ·b−1 ·a−1.
Thus

τ(α) = σ(α) · a · b ·σ(α)−1 ·σ(α) · a ·σ(1)−1 ·σ(α) · a ·σ(α)−1 ·σ(α) · a · b ·σ(α)−1

= σ(α) · a · b · a · a · a · b · σ(α)

= σ(α) · σ(α) · σ(α)−1 = σ(α).

Thus τ(α) = σ(α), and σ is ambiguous.

Of course, in order to complete the proof of Theorem1, it is necessary to
consider the possibility that τ = σ (i.e., when σ(α) · σ(x) · σ(α)−1 = σ(x) for
ever x ∈ var(α)). It turns out that this is true precisely when σ is periodic.
Thus, we include the following observation, which can easily be produced with
elementary number theory:

Proposition 1. Let α ∈ FN be a pattern with | var(α)| > 1, and let σ : FN → FΣ

be a periodic morphism. Then σ is ambiguous with respect to α.

Proposition 1 is less surprising, as periodic morphisms can be seen to preserve
the least amount of structural information. Indeed, in the free monoid, nearly all
periodic morphisms are ambiguous. It is interesting, however, to note that the
range of images obtainable by periodic morphisms is much larger in the free group
than the free monoid. For example consider the pattern α := 1·2·1·1·2. Any word

Ambiguity of Morphisms in a Free Group 101

w ∈ FΣ can be obtained as an image of α by applying the periodic morphism
σ given by σ(1) = w and σ(2) = w−1. Thus all morphisms are ambiguous with
respect to α, even without using the inner automorphism construction given in
Example 1. By contrast, α has the largest possible set of unambiguous morphisms
when considered in the free monoid.

As mentioned above, the fact that all periodic morphisms are ambiguous is
intuitive. However, this is not true of those morphisms which are ambiguous
only because of the composition with inner automorphisms. Since inner auto-
morphisms are so closely related to the identity morphism, the composition τ in
Example 1 can be seen as very closely related to σ. Hence, it is natural to con-
sider a reformulation of the problem of ambiguity which disregards this particu-
lar phenomenon. From existing literature (Ivanonv [14]), we have the following
proposition which shows this is sufficient to obtain a non-trivial problem.

Proposition 2 (Ivanov [14]). Let α := 1p1 ·2p2 · · · npn such that p1, p2, . . . , pn

are distinct even integers. Let ϕ : Fvar(α) → Fvar(α) be a morphism such that
ϕ(α) = α. Then ϕ is an inner automorphism.

Thus we can say that the identity morphism is unambiguous up to inner
automorphism with respect to the pattern(s) α. We define this formally below.

Definition 1 (Ambiguity up to Inner Automorphism). Let α ∈ FN be
a pattern. Let σ : FN → FΣ be a morphism. Then σ is unambiguous up to
inner automorphism with respect to α if, for every morphism τ : FN → FΣ

with τ(α) = σ(α), there exists an inner automorphism ϕ : FN → FN such that
τ(x) = σ(ϕ(x)) for every x ∈ var(α). Otherwise, σ is ambiguous up to inner
automorphism with respect to α.

Similarly, it is possible to consider ambiguity up to automorphism, injective
morphism, or indeed any class of morphism. In the current work (in particular,
Sect. 4) we will consider ambiguity up to inner automorphism, as this is, in a
sense, the minimal restriction needed in order to obtain a rich theory.

It is worth mentioning here that there exists another variation of the problem
which results in a non-trivial concept of ambiguity in the free group: namely when
terminal symbols may occur in the patterns. This is due to the fact that since
the terminal symbols must be preserved by morphisms, the inner-automorphism
trick used in this section is not always possible. We consider this variation in
Sect. 5.

4 Unambiguous Injective Morphisms

Referring to our discussion of Definition 1, the current section addresses the
following question: Given a pattern α, does there exist a morphism σ : FN → FΣ

such that σ is unambiguous with respect to α (up to inner automorphism). More
precisely, we wish to investigate the case that σ is also injective. For the free
monoid, there exists a characterisation of this problem in terms of fixed points

102 J.D. Day and D. Reidenbach

of morphism: a pattern α ∈ N
+ possesses an unambiguous injective morphism

σ : N∗ → Σ∗ if and only if it is not a fixed point of a morphism which is not the
identity. We will firstly provide an equivalent characterisation for patterns in a
free group, and will then use the remainder of the section to give some idea of
the proof technique, which itself provides further useful insights.

4.1 Main Theorem

We saw in the previous section that in a free group, all patterns are fixed by
morphisms which are not equal to the identity – namely inner automorphisms.
Hence an analoguous result for free groups would rather be that a pattern pos-
sesses an injective morphism which is unambiguous up to inner automorphism
if and only if it is not the fixed point of a morphism which is not an inner
automorphism. This is precisely the statement we give in Theorem 2 below.

Theorem 2. Let α ∈ FN be a pattern. Then there exists an injective morphism
σ : FN → FΣ which is unambiguous with respect to α (up to inner automor-
phism) if and only if the identity morphism is unambiguous with respect to α
(up to inner automorphism).

It is worth noting that for the monoid, there exists a concise, combinatorial char-
acterisation of patterns which are only fixed by the identity, namely the morphi-
cally primitive patterns (Reidenbach, Schneider [15]). It is even known that such
patterns can be identified in polynomial time (Holub [16], Kociumaka et al. [17]).
Unfortunately no such equivalent characterisation exists for free groups, although
fixed points of morphisms is a wide area of study with many useful existing the-
orems. For example, one known class of patterns which are only fixed by inner
automorphisms is given in Proposition 2 in the previous section.

4.2 Proof Outline

The main idea of the proof of Theorem2 is to establish, for any pattern α, a
morphic image w ∈ FΣ of α, such that any morphism σ : FN → FΣ mapping α
to w must, in a specific sense, encode a morphism ϕσ : FN → FN which fixes α.
The encoding works in such a way that if a morphism σ : FN → FΣ mapping
α to w is ambiguous up to inner automorphism, then either the encoded fixed
point morphism ϕσ is ambiguous up to inner automorphism, or α belongs to a
particular class of patterns, referred to as NCLR. A brief analysis shows that the
identity morphism is ambiguous up to inner automorphism with respect to every
NCLR pattern, and, thus, whenever σ is ambiguous up to inner automorphism,
the identity morphism is ambiguous up to inner automorphism. Consequently if
the identity is unambiguous up to inner automorphism with respect to α, then
so is σ. Since the converse statement follows easily from the injectivity of σ, this
proves the Theorem.

Ambiguity of Morphisms in a Free Group 103

Constructing the Encoding Word w

The role of w in the proof is to encode the pre-image α in such a way that
any morphism mapping α to w must be reducible to a morphism mapping α
to α. We construct w as the image σ(α) for some morphism σ : FN → FΣ so
that it is guaranteed at least one morphism maps α to w. In fact, we generalise
the situation slightly so that any morphism mapping any given pattern β to
w = σ(α) must be reducible to a morphism mapping β to α. This allows us to
give a characterisation of the inclusion problem for terminal free group pattern
languages, generalising a result of Jiang et al. [18].

In the monoid, this encoding can be achieved by setting σ(x) equal to k
distinct segments si := abia which are unique to x, so that, e.g., σ(1) = s1 ·
s2 · · · sk, σ(2) = sk+1 ·sk+2 · · · s2k etc. By taking k large enough, it is guaranteed
that for each x ∈ var(α), there is a segment Sx which is not ‘split’ by τ (that
is, if β = b1 · b2 · b3 · · · b|β|, then every occurrence of Sx in τ(β) does not span
two factors τ(bj), τ(bk)), and such that every occurrence of Sx in the image
σ(α) (= τ(β)) corresponds to an occurrence of x in the pre-image α. These
segments act as the encoding of α: the result of replacing each one in τ for
the corresponding variable x, and removing all the surrounding letters a and b
results in a morphism which exactly maps β to α.

However, if we wish to use the same technique within the free group, we
have a more intricate task, due to the existence of contractions. The problem
lies in the fact that these replacement operations are not compatible with reduc-
tions (the removal of contractions to produce a reduced word). This problem
is demonstrated in more detail in Example 2, but first we introduce the follow-
ing convenient notation. Note that by restricting ourselves to factors which are
unbordered, we can ensure that occurrences of the factor do not overlap, and,
thus, that our operation is a well-defined function. Let u, v ∈ FΣ be words, and
let w be an unbordered word. Denote by R[w → v](u) the word obtained by
replacing all occurrences of w in u with v. For a morphism σ : FN → FΣ, denote
by R[w → v](σ) the morphism defined by σ(x) = R[w → v](x) for each x ∈ N.

Example 2. Let σ : FN → FΣ be the morphism given by σ(1) = a · b · b and
σ(2) = a · b · a−2. Let α := 1 · 2 · 2 · 1. Then

R[b · b → c](σ(α)) = R[b · b → c](a · b · b · a · b · a−2 · a · b · a−2 · a · b · b)
= a · c · a · b · a−1 · b · a−1 · c = R[b · b → c](σ)(α).

The equivalence holds because b·b is not split by a contraction, or the morphisms,
so there is a one-to-one correspondence between the factors in the image σ(α)
and factors in the definition of σ. Conversely, this does not hold for, e.g., the
factor a−2. In fact, all occurrences are contracted and thus do not fully appear
in the image. Thus

R[a−2 → c](σ(α)) = σ(α) = a · b · a · b · a−1 · b · a−1 · b · b
and

R[a−2 → c](σ)(α) = a · b · b · a · b · c · a · b · c · a · b · b �= σ(α)

104 J.D. Day and D. Reidenbach

so we have R[a−2 → c](σ(α)) �= R[a−2 → c](σ)(α).

It is clear from the above example that if we wish to extend the reasoning from
Jiang et al. [18] to use for free groups, we must guarantee not only that the
encoding segments Sx are not split by the morphism τ , but are also not split by
any contraction in the image τ(β). We can achieve this by increasing the number
of segments in the definition of σ, but first we need the following bound for the
number of contractions which may occur in the image τ(β).

Proposition 3. Let α ∈ FN and let σ : FN → FΣ be a morphism. Then σ(α)
can be fully reduced by removing at most |α|(|α|−1)

2 primary contractions.

We are now ready to construct our ‘encoding morphism’ σ. It has a similar
structure to the one in Jiang et al. [18]. However, it must contain a much higher
number of segments as segments can be split not only between the variables,
but also between contractions. We also alter our segments so that they are
unbordered, although this is purely for convenience when formally considering
replacements.

Definition 2. Let si := abi. For any k, p ∈ N, let σk,p be the morphism given
by σk,p(x) := γx ·sp ·sp+(x−1)k · · · sp+xk−1 ·γx for every x ∈ N, where γx := sx ·a.
The factors γx ensure that no contractions occur within the main segments sx,
meaning that each segment is guaranteed to appear in the (reduced) image σ(α).
By giving the segments a minimal length p, we can guarantee that no segment
can be obtained ‘accidentally’ by contracting γx factors. Thus, we can be sure
that at least k segments appear, uniquely associated to each pre-image variable.
The encoding is achieved by making k large enough that not all segments can
be split and, hence, for every variable x there is at least one which can be used
to successfully encode (and later decode) x in the image.

It is worth noting at this stage that we can apply our reasoning so far to pro-
duce a result for group pattern languages. If LΣ(α) ⊆ LΣ(β), then σ(α) ∈ L(β),
and thus our construction yields the following characterisation of the inclusion
problem for terminal-free group pattern languages, extending a known equivalent
result for terminal free pattern languages in the free monoid (Jiang et al. [18]).

Theorem 3. Let α, β ∈ FN be patterns. Then LΣ(α) ⊆ LΣ(β) if and only if
there exists a morphism ϕ : FN → FN with ϕ(β) = α.

Returning to the case that β = α, we are able to infer that if σ (= σk,p for some
large k, p) is ambiguous up to inner automorphism with respect to α, then we
have two distinct morphisms σ and τ mapping α to w = σ(α). As a result we
have two encoded morphisms ϕσ and ϕτ both fixing α. Due to the construction
of σ, it is not difficult to see that ϕσ is the identity.

Consequently, if ϕτ is not an inner automorphism, then the identity mor-
phism is ambiguous up to inner automorphism with respect to α, and the claim
of Theorem 2 holds for that case. Assuming that ϕτ is an inner automorphism,
we can reverse the process of obtaining ϕτ from τ , to learn the structure of τ .

Ambiguity of Morphisms in a Free Group 105

In particular we know from the positions of the variables x ∈ var(α) in the def-
inition of ϕ the relative positions of certain segments Sx in the definition of τ
(recall that the segments Sx are replaced by the variables x, and then all other
letters a and b removed to obtain ϕτ from τ). Thus in order to completely recon-
struct τ it remains to find out the factors between the segments Sx. It turns out
that these factors are determined by the following system of equations Π:

u1 = w1

viuj = wk

v|α| = w|α|+1

for every k such that i · j or j−1 · i−1 is a factor of α at positions k − 1, k. If Π
has only one solution (it must have at least one, corresponding to the case that
τ = σ◦ϕτ), then σ is unambiguous up to inner automorphism with respect to α.
In the final part of the proof, we consider the case that Π has mutliple solutions
by investigating a particular class of patterns, which we call NCLR.

NCLR Patterns
We define the set of patterns NCLR as follows. It is worth noting that our
definition generalises an existing class known for the monoid, described by
Freydenberger, Reidenbach in [2].

Definition 3 (NCLR). Let N0, C0, L0, R0 be pairwise-disjoint sets of variables
with L0 ∪ R0 �= ∅. Let N := N0 ∪ N−1

0 , C := C0 ∪ C−1
0 , L := L0 ∪ R−1

0 and
R := R0 ∪ L−1

0 . A pattern α ∈ FN is in the set NCLR if and only if it has the
form

N∗(L · C∗ · R · N∗)+.

We motivate the above definition with the following remark.

Remark 1. The system of equations Π (above) has more than one solution
exactly when α ∈ NCLR.

In order to complete the proof (sketch) of Theorem2 it is necessary to assert
that the identity morphism is ambiguous up to inner automorphism with respect
to α whenever α ∈ NCLR. Fortunately this is not difficult, and in fact we can
even prove this statement for all morphisms.

Proposition 4. Every morphism σ : FN → FΣ is ambiguous up to inner auto-
morphism with respect to every pattern α ∈ NCLR.

Example 3. Consider the pattern α := 1 ·2 ·3 ·4 ·2 ·3 ·1 ·2 ·3 ·4 ·2 ·4−1. Let N0 = ∅,
C0 = 2, L0 = {1, 4}, R0 = {3}, and note that this shows α ∈ NCLR. Consider

106 J.D. Day and D. Reidenbach

the morphism ϕ : FN → FN given by ϕ(1) = 1 ·5, ϕ(2) = 5−1 ·2 ·5, ϕ(3) = 5−1 ·3
and ϕ(4) = 4 · 5. Clearly ϕ is not an inner automorphism. Moreover

ϕ(α) = 1·5·5−1·2·5·5−1·3·4·5·5−1·2·5·5−1·3·1·3·5−12·5·5−1·3·4·5·5−1·2·5·5−1·4−1

= α.

Thus, the identity is ambiguous up to inner automorphism with respect to α.
Furthermore, we can compose any morphism σ : FN → FΣ with ϕ to get σ ◦
ϕ(1) = σ(1) · σ(7), σ ◦ ϕ(2) = σ(7)−1 · σ(2) · σ(7)... etc. Clearly, σ and σ ◦ ϕ are
distinct whenever σ(7) �= ε. Consequently, σ is unambiguous with respect to α.

Thus, if α is only fixed by inner automorphisms, there exists an (injective)
morphism σ : FN → FΣ which is unambiguous up to inner automorphism with
respect to α. Conversely, if α is fixed by a morphism which is not an inner
automorphism it is clear that all injective morphisms are ambiguous up to inner
automorphism with respect to α.

5 Patterns with Terminal Symbols

In the previous section, we saw that by ignoring a particular construction involv-
ing inner automorphisms, we return to a rich, non-trivial theory, and we are able
to partition patterns according to whether they possess an unambiguous mor-
phism up to inner automorphism. In the present section, we discuss an alter-
native situation in which the question of whether a morphism is ambiguous is
again non-trivial, this time in the stronger, traditional sense, where composi-
tion with an inner automorphism is allowed. More precisely, we look at patterns
containing terminal symbols – symbols which must be preserved by morphisms.
This condition greatly reduces the number of inner automorphisms which can
be constructed. For example, if we consider patterns with at least two termi-
nal symbols, the only inner automorphism we can apply to that pattern is the
identity morphism. It is also worth noting that the same restriction applies to
periodic morphisms – if two terminal symbols are present in a pattern, then any
morphism preserving those terminal symbols cannot be periodic. Thus, the con-
structions given in Sect. 3 to show that ambiguity of morphisms is trivial in the
free group cannot be reproduced in general for patterns with terminal symbols.

We begin with the following proposition, supporting our claim that the ques-
tion of ambiguity is non-trivial for patterns with terminal symbols. In fact, we
produce a far stronger construction. Using so-called C-test words (Lee [19]), we
construct a pattern for which all morphisms are unambiguous.

Proposition 5. For any finite Δ ⊂ N, there exists a pattern α ∈ FN∪Σ with
var(α) = Δ such that all terminal-preserving morphisms σ : FN∪Σ → FΣ are
unambiguous with respect to α.

Corollary 1. For any finite Δ ⊂ N, every terminal-preserving morphism σ :
FΔ∪Σ → FΣ is unambiguous with respect to some pattern α with var(α) = Δ.

Ambiguity of Morphisms in a Free Group 107

Since we are unable to provide a characterisation for when an unambiguous
morphism exists with respect to a pattern, we will instead attempt to categorise
patterns according to how many of their morphisms are unambiguous, and also
focus on some specific examples – in particular morphisms which erase the pat-
tern completely. The next proposition serves several purposes in this respect.
Firstly, it provides a concise example of an unambiguous morphism (the C-test
words on which the previous proposition relies are defined recursively, and thus
the construction becomes exceedingly long). Secondly, we establish the unambi-
guity of a morphism erasing a pattern α, and thirdly we note that since we can
also find a morphism which is ambiguous with respect to α, we have patterns
for which there are both unambiguous and ambiguous morphisms.

Proposition 6. Let α := 1 ·a ·1−1 ·b ·1 ·2 ·a ·b ·2. Then the terminal-preserving
morphism mapping α to ε is unambiguous, and any terminal-preserving mor-
phism mapping α to a · b · a · a · b−1 · a−1 is ambiguous.

It is clear that there exist patterns for which all morphisms are ambiguous
– take for example 1 · 2 · a. Thus we can complete the following classification of
patterns:

Theorem 4. There exist patterns α1, α2, α3 ∈ FN∪Σ such that

– All terminal-preserving morphisms are ambiguous with respect to α1,
– there exist both ambiguous and unambigous terminal-preserving morphisms

with respect to α2, and
– all terminal-preserving morphisms are unambiguous with respect to α3.

Another short example of a pattern with an unambiguous morphism is given
below. In particular, we show that the pattern has the particularly interesting
property that the only morphism which completely erases the pattern is the
one which erases each individual variable. It also forms the basis for Theorem5
below.

Proposition 7. Let α := 1 · a · 1−1 · b · 1 · b−1 · a−1 · 2 · 2 · a · 2 · 2 · a−1 and
let σ : FN∪Σ → FΣ be the terminal-preserving morphism such that σ(x) = ε for
every x ∈ var(α). Then σ is unambiguous with respect to α, and σ(α) = ε.

The above proposition is easily generalised for larger alphabets.

Proposition 8. Let Δ be a finite alphabet and let σ : FΔ∪Σ → FΣ be the
terminal-preserving morphism given by σ(x) = ε for every x ∈ Δ. There exists
a pattern α ∈ FΔ∪Σ with var(α) = Δ, such that σ is unambiguous with respect
to α, and σ(α) = ε.

Finally, as a further generalisation, we can obtain a construction, for any
morphism σ, of a pattern α which is only erased by σ.

Theorem 5. Let Δ be a finite subset of N. For every terminal-preserving mor-
phism σ : FΔ∪Σ → FΣ, there exists an α ∈ FΔ∪Σ such that σ(α) = ε, and σ is
unambiguous with respect to α.

108 J.D. Day and D. Reidenbach

Acknowledgements. The authors wish to thank Alexey Bolsinov for his helpful input
on the subject of inner automorphisms.

References

1. Freydenberger, D., Reidenbach, D., Schneider, J.: Unambiguous morphic images
of strings. Int. J. Found. Comput. Sci. 17, 601–628 (2006)

2. Freydenberger, D., Reidenbach, D.: The unambiguity of segmented morphisms.
Discrete Appl. Math. 157, 3055–3068 (2009)

3. Culik II, K., Karhumäki, J.: On the equality sets for homomorphisms on free
monoids with two generators. Theor. Inform. Appl. (RAIRO) 14, 349–369 (1980)

4. Salomaa, A.: Equality sets for homomorphisms of free monoids. Acta Cybern. 4,
127–239 (1978)

5. Engelfriet, J., Rozenberg, G.: Fixed point languages, equality languages and rep-
resentation of recursively enumerable languages. J. ACM 27, 499–518 (1980)

6. Post, E.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52,
264–268 (1946)

7. Makanin, G.: Equations in a free semigroup. Am. Math. Soc. Transl. Ser. 2(117),
1–6 (1981)

8. Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397,
166–193 (2008)

9. Jain, S., Miasnikov, A., Stephan, F.: The complexity of verbal languages over
groups. In: 27th Annual IEEE Symposium on Logic in Computer Science (LICS),
pp. 405–414 (2012)

10. Bell, P., Potapov, I.: On the undecidability of the identity correspondence problem
and its applications for word and matrix semigroups. Int. J. Found. Comput. Sci.
21, 963–978 (2010)

11. Turner, E.: Test words for automorphisms of free groups. Bull. Lond. Math. Soc.
28, 255–263 (1996)

12. Ventura, E.: Fixed subgroups in free groups: a survey. Contemp. Math. 296,
231–256 (2002)

13. Makanin, G.: Equations in a free group. Math. USSR Izvestiya 21, 483–546 (1983)
14. Ivanov, S.: On certain elements of free groups. J. Algebra 204, 394–405 (1998)
15. Reidenbach, D., Schneider, J.: Morphically primitive words. Theor. Comput. Sci.

410, 2148–2161 (2009)
16. Holub, Š.: Polynomial-time algorithm for fixed points of nontrivial morphisms.

Discrete Math. 309, 5069–5076 (2009)
17. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Linear-time version of

holub’s algorithm for morphic imprimitivity testing. In: Dediu, A.-H., Mart́ın-
Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 383–394. Springer,
Heidelberg (2013)

18. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns.
J. Comput. Syst. Sci. 50, 53–63 (1995)

19. Lee, D.: On certain c-test words for free groups. J. Algebra 247, 509–540 (2002)

The Degree of Squares is an Atom

Jörg Endrullis1, Clemens Grabmayer1, Dimitri Hendriks1(B),
and Hans Zantema2,3

1 Department of Computer Science, VU University Amsterdam,
Amsterdam, Netherlands

diem@cs.vu.nl
2 Department of Computer Science, Eindhoven University of Technology,

Eindhoven, Netherlands
3 Institute for Computing and Information Science,

Radboud University Nijmegen, Nijmegen, Netherlands

Abstract. We answer an open question in the theory of degrees of infi-
nite sequences with respect to transducibilityby finite-state transducers.
An initial study of this partial order of degrees was carried out in [1],
but many basic questions remain unanswered.One of the central ques-
tions concerns the existence of atom degrees, other than the degree of
the ‘identity sequence’ 100101102103 · · · . A degree is called an ‘atom’ if
below it there is only the bottom degree 0, which consists of the ulti-
mately periodic sequences. We show that also the degree of the ‘squares
sequence’ 1001011041091016 · · · is an atom.

As the main tool for this result we characterise the transducts of
‘spiralling’ sequences and their degrees. We use this to show that every
transduct of a ‘polynomial sequence’ either is in 0 or can be transduced
back to a polynomial sequence for a polynomial of the same order.

1 Introduction

· · ·

q0

q1

q2

0|ε

1|ε
1|10|1

0|0

1|0

Fig. 1. A finite-state transducer
realising the sum of consecutive
bits modulo 2.

Finite-state transducers are ubiquitous in com-
puter science, but little is known about the
transducibility relation they induce on infinite
sequences. A finite-state transducer (FST) is
a deterministic finite automaton which reads
the input sequence letter by letter, in each
step producing an output word and changing
its state. An example of an FST is depicted
in Fig. 1, where we write ‘a|w’ along the tran-
sitions to indicate that the input letter is
a and the output word is w. For example,
it transduces the Thue-Morse sequence T =
0110100110010110 · · · to the period doubling
sequence P = 1011101010111011 · · · .

We are interested in transductions of infinite sequences. We say that a
sequence σ is transducible to a sequence τ , σ ≥ τ , if there exists an FST that
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 109–121, 2015.
DOI: 10.1007/978-3-319-23660-5 10

110 J. Endrullis et al.

transforms σ into τ . The relation ≥ is a preorder on the set ΣN of infinite
sequences, which induces an equivalence relation ≡ on ΣN, and a partial order
on the set of (FST) degrees, that is, the equivalence classes with respect to ≡.

So we have T ≥ P. Also the back transformation can be realised by an FST,
P ≥ T. Hence the sequences are equivalent, T ≡ P, and are in the same degree.

The bottom degree 0 is formed by the ultimately periodic sequences, that is,
all sequences of the form uvvv · · · for finite words u, v with v non-empty. Every
infinite sequence can be transduced to any ultimately periodic sequence.

There is a clear analogy between degrees induced by transducibility and the
recursion-theoretic degrees of unsolvability (Turing degrees). Hence many of the
problems settled for Turing degrees, predominantly in the 1940s, 50s and 60s,
can be asked again for FST degrees.

0 0

Fig. 2. Possible structures in
the hierarchy (no intermediate
points on the arrows).

Some initial results on FST degrees have
been obtained in [1]: the partial order of degrees
is not dense, not well-founded, there exist no
maximal degrees, and a set of degrees has an
upper bound if and only if the set is count-
able. The morphic degrees, and the computable
degrees form subhierarchies. Also shown in [1]
is the existence of an ‘atom’ degree, namely the
degree of 100101102103 · · · .1 A degree D �= 0 is
an atom if there exists no degree strictly between
D and the bottom degree 0. Thus every trans-
duct of a sequence in an atom degree D is either in 0 or still in D. The following
questions, which have been answered for Turing degrees, remain open for the
FST degrees:

(i) How many atom degrees exist?
(ii) When do two degrees have a supremum (or infimum)? In particular, are

there pairs of degrees without a supremum (infimum)?
(iii) Do the configurations displayed in Fig. 2 exist?
(iv) Can every finite distributive lattice be embedded in the hierarchy?

At the British Colloquium for Theoretical Computer Science 2014, Jeffrey
Shallit offered £20 for each of the following questions, see [2]:

(a) Is the degree of the Thue-Morse sequence an atom?
(b) Are there are atom degrees other than that of 100101102103 · · · ?
We answer (b) by showing that the degree of the ‘squares’ 100101104109 · · · is an
atom. The main tool that we use in the proof is a characterisation of transducts
of ‘spiralling’ sequences (Theorem 4.22), which has the following consequence
(Proposition 5.1): For all k ≥ 1 it holds that every transduct σ �∈ 0 of the
sequence 〈nk〉 = 100

k

101
k

102
k

103
k · · · has, in its turn, a transduct of the form

〈p(n)〉 = 10p(0)10p(1)10p(2)10p(3) · · · where p(n) is a polynomial also of degree k.
1 In [1] atom degrees were called ‘prime degrees’. We prefer the more general notion
of ‘atom’ because prime factorisation does not hold, see Theorem 4.24.

The Degree of Squares is an Atom 111

This fact not only enables us to show that the degree of the squares sequence
is an atom, by using it for k = 2, but it also suggests that the analogous result
for the degree of 〈nk〉, for arbitrary k ≥ 1, has come within reach. For this it
would namely suffice to show, for polynomials p(n) of degree k, that 〈p(n)〉 can
be transduced back to 〈nk〉.

We obtain that there is a pair of non-zero degrees whose infimum is 0, namely
the pair of atom degrees of 〈n〉 and 〈n2〉. We moreover use Theorem 4.22 to show
that there is a non-atom degree that has no atom degree below it (Theorem 4.24).

2 Preliminaries

We use standard terminology and notation, see, e.g., [3]. Let Σ be an alphabet,
i.e., a finite non-empty set of symbols. We denote by Σ∗ the set of all finite
words over Σ, and by ε the empty word. We let Σ+ = Σ∗ \ {ε}. The set of
infinite sequences over Σ is ΣN = {σ | σ : N → Σ} with N = {0, 1, 2, . . .}, the
set of natural numbers. For u ∈ Σ∗, we let uω = uuu · · · . We define N<k =
{0, 1, . . . , k − 1}. We let Σ∞ = Σ∗ ∪ ΣN denote the set of all words over Σ. For
u ∈ Σ∗ and v ∈ Σ∞ we write u
 v to denote that u is a prefix of v, that is,
when v = uv′ for some v′ ∈ Σ∞. For f : N → A and k ∈ N, the k-th shift of f is
defined by Sk(f)(n) = f(n + k), for all n ∈ N.

We use the notation a to denote a tuple a = 〈a0, a1, . . . , ak−1〉 where the ai

are elements from some set A; the length of a is k. Given a tuple a we use ai

for the element indexed i, that is, we start indexing from 0 onward. We use the
notation a′ to denote the rotated tuple a′ = 〈a1, . . . , ak−1, a0〉.

3 Finite-State Transducers and Degrees

For a thorough introduction to finite-state transducers, we refer to [3]. Here we
only consider complete pure sequential finite-state transducers, where for every
state q and input letter a there is precisely one successor state δ(q, a), and the
functions realised by these transducers preserve prefixes. We use 2 = {0, 1} both
for the input and the output alphabet.

Definition 3.1. A finite-state transducer (FST) is a tuple T = 〈Q, q0, δ, λ〉
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × 2 → Q
is the transition function, and λ : Q × 2 → 2∗ is the output function.

We homomorphically extend the transition function δ to Q × 2∗ → Q and
the output function λ to Q × 2∞ → 2∞ as follows:

δ(q, ε) = q δ(q, au) = δ(δ(q, a), u) (q ∈ Q, a ∈ 2, u ∈ 2∗)
λ(q, ε) = ε λ(q, au) = λ(q, a) · λ(δ(q, a), u) (q ∈ Q, a ∈ 2, u ∈ 2∞) .

The function T : 2∞ → 2∞ realised by the FST T is defined by T (u) = λ(q0, u),
for all u ∈ 2∞.

112 J. Endrullis et al.

Definition 3.2. Let T = 〈Q, q0, δ, λ〉 be an FST. A zero-loop in T is a sequence
of states q1, . . . , qn with n > 1 such that q1 = qn and qi �= qj for all i, j with
1 ≤ i < j < n and qi+1 = δ(qi, 0) for all 1 ≤ i < n. The length of the zero-loop
is n − 1. (Note that there can only be finitely many zero-loops in an FST.) Let
T = 〈Q, q0, δ, λ〉 be an FST. We define Z(T) as the least common multiple of the
lengths of all zero-loops of T .

Let T be an FST with states Q. From any state q ∈ Q, after reading the word
0|Q|, the automaton must have entered a zero-loop (by the pigeonhole principle
there must be a state repetition). By definition of Z(T), the length � of this
loop divides Z(T); say Z(T) = d� for some d ≥ 1. As a consequence, reading
0|Q|+i·Z(T) yields the output λ(q, 0|Q|) followed by di copies of the output of the
zero-loop. This yields a pumping lemma for FSTs, see also [1, Lemma 29].

Lemma 3.3. Let T = 〈Q, q0, δ, λ〉 be an FST. For every q ∈ Q and n ≥ |Q|
there exist words p, c ∈ 2∗ such that for all i ∈ N, δ(q, 10n+i·Z(T)) = δ(q, 10n)
and λ(q, 10n+i·Z(T)) = pci .

Definition 3.4. Let T be an FST, and let σ, τ ∈ 2N be infinite sequences. We
say that T transduces σ to τ , and that τ is the T -transduct of σ, which we denote
by σ ≥T τ , whenever T (σ) = τ . We write σ ≥ τ , and call τ a transduct of σ, if
there exists an FST T such that σ ≥T τ .

Clearly, the relation ≥ is reflexive. By composition of FSTs (the so-called ‘wreath
product’), the relation ≥ is also transitive, see [1, Remark 9]. We write σ > τ
when σ ≥ τ but not τ ≥ σ. Whenever we have σ ≥ τ as well as a back-
transduction τ ≥ σ, we consider σ and τ to be equivalent.

Definition 3.5. We define the relation ≡ ⊆ 2N × 2N by ≡ = ≥ ∩ ≥−1. For a
sequence σ ∈ 2N the equivalence class [σ] = {τ | σ ≡ τ} is called the degree of σ.

A degree [σ] is an atom if [σ] �= 0 and there is no degree [τ] such that
[σ] > [τ] > 0.

4 Characterising Transducts of Spiralling Sequences

In this section we characterize the transducts of ‘spiralling’ sequences. Proofs
omitted in the text can be found in the extended version [4].

Definition 4.1. For a function f : N → N we define the sequence 〈f〉 ∈ 2N by

〈f〉 =
∞∏

i=0

10f(i) = 10f(0) 10f(1) 10f(2) · · · .

For a sequence 〈f〉, we often speak of the n-th block of 〈f〉 to refer to the
occurrence of the word 10f(n) in 〈f〉.

The Degree of Squares is an Atom 113

In the sequel we often write 〈f(n)]〉 to denote the sequence 〈n �→ f(n)〉. We
note that there is a one-to-one correspondence between functions f : N → N,
and infinite sequences over the alphabet 2 that start with the letter 1 and that
contain infinitely many occurrences of the letter 1. Every degree is of the form
[〈f〉] for some f : N → N.

The following lemma is concerned with some basic operations on functions
that have no effect on the degree of 〈f〉 (multiplication with a constant, and
x- and y-shifts), and others by which we may go to a lower degree (taking
subsequences, merging blocks).

Lemma 4.2. Let f : N → N, and a, b ∈ N. It holds that:

(i) 〈af(n)〉 ≡ 〈f(n)〉, for a > 0,
(ii) 〈f(n + a)〉 ≡ 〈f(n)〉,
(iii) 〈f(n) + a〉 ≡ 〈f(n)〉,
(iv) 〈f(n)〉 ≥ 〈f(an)〉, for a > 0,
(v) 〈f(n)〉 ≥ 〈af(2n) + bf(2n + 1)〉.

Definition 4.3. Let A be a set. A function f : N → A is ultimately periodic if
for some integers n0 ≥ 0, p > 0 we have f(n + p) = f(n) for all n ≥ n0.

Definition 4.4. A function f : N → N is called spiralling if

(i) limn→∞ f(n) = ∞, and
(ii) for every m ≥ 1, the function n �→ f(n)modm is ultimately periodic.

Functions with the property (ii) in Definition 4.4 have been called ‘ultimately
periodic reducible’ by Siefkes [5] (quotation from [6]). Note that the identity func-
tion is spiralling. Furthermore scalar products, and pointwise sums and products
of spiralling functions are again spiralling. As a consequence also polynomials
aknk + ak−1n

k−1 + · · · + a0 are spiralling.
In the remainder of this section, we will characterise the transducts σ of

〈f〉 for spiralling f . We will show that if such a transduct σ is not ultimately
periodic, then it is equivalent to a sequence 〈g〉 for a spiralling function g, and
moreover, g can be obtained from f by a ‘weighted product’.

Lemma 4.5. Let f : N → N be a spiralling function. We have 〈f〉 ≥ σ if and
only if σ is of the form

σ = w ·
∞∏

i=0

m−1∏

j=0

pj c
ϕ(i,j)
j where ϕ(i, j) =

f(n0 + mi + j) − aj

z
, (1)

for some integers n0,m, aj ≥ 0 and z > 0, and finite words w, pj , cj ∈ 2∗

(0 ≤ j < m) such that ϕ(i, j) ∈ N for all i ∈ N and j ∈ N<m.

Proof. Assume 〈f〉 ≥ σ and let T = 〈Q, q0, δ, λ〉 be an FST that transduces 〈f〉
to σ. As f is spiralling, there exist �0, p ∈ N, p > 0 such that f(n) ≡ f(n + p)
(mod Z(T)) for every n ≥ �0. Moreover, as a consequence of limn→∞ f(n) = ∞,
there exists �1 ∈ N such that f(n) ≥ |Q| for every n ≥ �1.

114 J. Endrullis et al.

For n ∈ N, let qn ∈ Q be the state that the automaton T is in, before reading
the n-th occurrence of 1 in the sequence σ (i.e., the start of the block 10f(n)). By
the pigeonhole principle there exist n0,m ∈ N with max{�0, �1} < n0 and m > 0
such that m ≡ 0 (mod p) and qn0 = qn0+m. Then, for every i ∈ N and j ∈ N<m,
we have f(n0 + mi + j) ≥ |Q| and f(n0 + mi + j) ≡ f(n0 + j) (mod Z(t)). For
j ∈ N<m, we define aj = min{f(n0 + mi + j) | i ∈ N}. Note that aj ≥ |Q|.
Then for all i ∈ N and j ∈ N<m we have: f(n0 + mi + j) = aj + ϕ(i, j) · z
where ϕ(i, j) = (f(n0 + mi + j) − aj)/z and z = Z(T). Using Lemma 3.3 it
follows by induction that qn0+n = qn0+m+n for every n ∈ N. Hence qn0+j =
qn0+mi+j for every i ∈ N and j ∈ N<m. Then, again by Lemma 3.3, for every
j ∈ N<m there exist words pj , cj ∈ 2∗ such that λ(qn0+mi+j , 10f(n0+mi+j)) =
λ(qn0+j , 10aj+ϕ(i,j)·Z(T)) = pjc

ϕ(i,j)
j for all i ∈ N. We conclude that

σ =
∞∏

n=0

λ(qn, 10f(n)) = w ·
∞∏

i=0

m−1∏

j=0

pj c
ϕ(i,j)
j ,

where w =
∏n0−1

n=0 λ(qn, 10f(n)).
For the other direction, we refer to the extended version [4]. ��

Example 4.6. We illustrate the influence of both the zero-loops of the automaton
as well as the growth of the block lengths of the input sequence, on the size m of
the innermost product of Lemma 4.5. Consider the FST T = 〈{q0, q1, q2}, q0, δ, λ〉
in Fig. 3 on the left, and the sequence 〈⌊n

2

⌋〉 = 111010102102103103104104 · · · ,
where �x� = max{n ∈ N | n ≤ x}. We investigate the sequence r0a0r1a1r2 · · · of
states r of T alternated with letters a from the input sequence, in such a way
that T is in state rn after having read the word a0a1 · · · an−1,

q01q21q11q00q11q00q11q00q10q21q10q20q01q20q00q10q21q10q20q00 · · ·

The two underlined occurrences of q0 indicate a repetition of states in combina-
tion with a repetition of the block size modulo Z(T) = 3. The number of blocks
between these occurrences, forming the repetition, is m = 6. Actually, following
the proof of Lemma 4.5 precisely, the algorithm would instead select the repe-
tition starting from the second underlined occurrence of q0. The reason is that

q0

q1

q2

0|00

1|1

1|1

0|0
1

0|10

1|1
q0 q1

1|1

0|01
1|1

0|10

Fig. 3. Transducers used in Examples 4.6 and 4.8.

The Degree of Squares is an Atom 115

in general, when reading a block 100 · · · 0, only after reading |Q| zeros, we are
guaranteed to be in a zero-loop. For this FST T , all states are on a zero-loop,
and so we enter the loop immediately.

From Lemma 4.5 it follows that FSTs can only transform the length of blocks
by linear functions (and merge blocks). As a consequence, FSTs typically cannot
slow down the growth rate of blocks in spiralling sequences by more than a linear
factor. This yields the following simple criterion for non-reducibility.

Lemma 4.7. Let f, g : N → N be such that f is spiralling, g is not ultimately
periodic and g ∈ o(f), i.e., for every a ∈ N there is n0 ∈ N such that for all
n ≥ n0 it holds that f(n) ≥ ag(n). Then 〈f〉 �≥ 〈g〉.
Note that the reverse 〈g〉 �≥ 〈f〉 does not follow. For example, we have 〈4n〉 �≥
〈2n〉, but 〈2n〉 ≥ 〈4n〉.

There can be several ways to factor the transduct σ in the statement of
Lemma 4.5, as shown by the following example.

Example 4.8. Consider the FST T = 〈{q0, q1}, q0, δ, λ〉 in Fig. 3 on the right,
and the sequence 〈n〉 = 110102103104 · · · . The T -transduct of 〈n〉 is T (〈n〉) =
1 1(01) 1(10)2 1(01)3 1(10)4 · · · . Using the double product (1) of Lemma 4.5 we
have w = ε, n0 = 0, m = 2, p0 = p1 = 1, c0 = 01, c1 = 10, a0 = a1 = 0, and
z = Z(T) = 1. Thus, ϕ(i, j) = 2i + j. Note that cω

1 = p0c
ω
0 , and so we can merge

the factors of the innermost product, decreasing its size to m = 1. Then T (〈n〉) =
1101 1101(0101) 1101(0101)2 1101(0101)3 · · · , that is, in the double product (1),
T (〈n〉) can be factored by choosing m = 1, p0 = 1101, and c0 = 0101.

Whenever we have the situation cω
j = pj+1c

ω
j+1 in the representation (1) for

some j ∈ N<m (addition is modulo m), we speak of a ‘transition ambiguity’.
We will eliminate such ambiguities by merging factors of the innermost product,
as in Lemma 4.10. In general, this merging may involve weighted sums in the
exponents. The following lemma is folklore, see for instance [7].

Lemma 4.9. If a sequence σ is periodic with period lengths k and �, then it is
periodic with period length gcd(k, �).

Lemma 4.10. Let u, v, w ∈ 2∗ be finite words with u,w �= ε such that uω =
vwω. Then there exists a word x ∈ 2∗ and a, b ∈ N such that umvwn = vxam+bn

for all m,n ∈ N.

Our goal is to obtain a simple characterisation of the degrees of the transducts σ
of spiralling sequences 〈f〉. To this end, we transform the transduct σ into a
sequence σ′ by replacing in the double product of Lemma 4.5 the displayed
occurrence of pj by 1 and of cj by 0 for every j ∈ N<m. To guarantee that
this transformation does not change the degree, that is σ′ ≡ σ, we first have to
resolve transition ambiguities.

For the back transformation blocks 10ϕ(i,j) have to be replaced by pjc
ϕ(i,j)
j ,

an operation that is easily realised by an FST. If the product does not contain

116 J. Endrullis et al.

transition ambiguities, then also the transformation from σ into σ′ can be realised
by an FST and thus does not change the degree of the sequence, hence σ ≡ σ′.
If there exists j ∈ N<m with cω

j = pj+1c
ω
j+1, then, by this transformation of σ

into σ′, one possibly leaves the degree of σ, i.e., σ > σ′. This is because for large
enough i ∈ N, an FST cannot recognise where a block pjc

ϕ(i,j)
j ends and where

the next block pj+1c
ϕ(i,j+1)
j+1 starts. This might make it impossible to realise the

transformation by an FST, as then the FST cannot replace pj+1 by 1.

Definition 4.11. A weight is a tuple 〈a0, . . . , ak−1, b〉 ∈ Q
k+1 of rational num-

bers such that a0, . . . , ak−1 ≥ 0. Given a weight α = 〈a0, . . . , ak−1, b〉 and a
function f : N → N we define α · f ∈ Q by

α · f = a0f(0) + a1f(1) + · · · + ak−1f(k − 1) + b .

The weight α is called constant when aj = 0 for all j ∈ N<k. For a tuple of
weights α = 〈α0, . . . , αm−1〉 we define its rotation by α′ = 〈α1, . . . , αm−1, α0〉.

For functions f : N → N, and tuples α = 〈α0, α1, . . . , αm−1〉 of weights, the
weighted product of α and f is a function α ⊗ f : N → Q that is defined by
induction on n through the following scheme of equations:

(α ⊗ f)(0) = α0 · f

(α ⊗ f)(n + 1) = (α′ ⊗ S |α0|−1(f))(n) (n ∈ N)

where |αi| is the length of the tuple αi, and Sk(f) is the k-th shift of f . A
weighted product α ⊗ f is called natural if (α ⊗ f)(n) ∈ N for all n ∈ N.

In what follows, all weighted products α ⊗ f that we consider are assumed
to be natural.

Example 4.12. Let f(n) = n for all n ∈ N, and α = 〈α1, α2〉 with α1 =
〈1, 2, 3, 4〉, α2 = 〈0, 1, 1〉. Interpreting the functions f and α ⊗ f as sequences,
the computation of α ⊗ f can be visualised as follows:

f · · ·0 1 2 3 4 5 6 7 8 9

α ⊗ f · · ·12 5 42 10

×1 ×2 ×3
+4

×0 ×1
+1

×1 ×2 ×3
+4

×0 ×1
+1

Thus, for n = 0, 1, 2, 3 . . . , (α ⊗ f)(n) takes the values 12, 5, 42, 10,

Lemma 4.13. Let α be an m-tuple of weights (m > 0), and let f : N → N. For
all n ∈ N we have (α ⊗ f)(n) = αr · St(f) where q, r ∈ N with r < m are such
that n = qm + r, and t = q · ∑m−1

j=0 (|αj | − 1) +
∑r−1

j=0(|αj | − 1).

Lemma 4.14. Let f : N → N. If 〈α ⊗ f〉 �∈ 0, then there exists i ∈ N<|α| such
that αi is a non-constant weight.

Lemma 4.15. Let f : N → N be spiralling, and let α be a tuple of non-constant
weights. Then α ⊗ f is spiralling.

The Degree of Squares is an Atom 117

We will show that weighted products give rise to a characterisation, up to
equivalence ≡, of functions realised by FSTs on the set of spiralling sequences,
see Theorem 4.22.

Lemma 4.16. Let f : N → N, and α a tuple of weights. If α ⊗ f is a natural
weighted product, then we have 〈f〉 ≥ 〈α ⊗ f〉.
Proof. Let m = |α|, ki = |αi|−1, and αi = 〈ai,0/di, ai,1/di, . . . , ai,ki−1/di, bi/di〉
with ai,j , di ∈ N and bi ∈ Z for all i ∈ N<m and j ∈ N<ki

(clearly weights can
always be brought into this form).

We define T = 〈Q, q0m−1,km−1−1, δ, λ〉 consisting of states qh
i,j for every

i ∈ N<m, j ∈ N<ki
, and h such that min(0, bi) ≤ h < di. The superscript

h (min(0, b)i ≤ h < di) in a state qh
i,j indicates the amount h/di of zeros

that still has to be consumed/produced. The transition and output functions
〈δ, λ〉 : Q × 2 → Q × 2∗ of T are defined as follows; let id≥0 : Z → N be defined
by id≥0(z) = z if z ≥ 0 and id≥0(z) = 0 otherwise.

〈δ, λ〉(qh
i,j , 0) = 〈qh′

i,j , 0
e〉 where e = �id≥0(h + ai,j)/di� , h′ = h + ai,j − edi

〈δ, λ〉(qh
i,j , 1) = 〈qh

i,j+1, ε〉 (j < ki − 1)

〈δ, λ〉(qh
i,ki−1, 1) = 〈qh′

i′,0, 10e〉 where e = �id≥0(bi′)/di′� , h′ = bi′ − edi′ ,

where i′ = i + 1modm. See [4] for the proof of 〈f〉 ≥T 〈α ⊗ f〉. ��
Definition 4.17. Let f : N → N be a function, and, for some m > 0, let α
be an m-tuple of weights such that α ⊗ f is a natural weighted product. Let p
and c be m-tuples of finite words. We define the sequence Φ(f,α,p, c) ∈ 2N by

Φ(f,α,p, c) =
∞∏

i=0

m−1∏

j=0

pj c
ϕ(i,j)
j where ϕ(i, j) = (α ⊗ f)(mi + j) .

Note that 〈f〉 can also be cast into this notation: 〈f〉 = Φ(f, 〈〈1, 0〉〉, 〈1〉, 〈0〉).
For the following lemma we recall that for a tuple a = 〈a0, a1, . . . , ak−1〉, we
write a′ for the rotation 〈a1, . . . , ak−1, a0〉.
Lemma 4.18. Let f , α, p, c be as in Definition 4.17. We have Φ(f,α,p, c) =
p0c

α0·f
0 · Φ(S |α0|−1(f),α′,p′, c′).

Lemma 4.19. Let f : N → N be a spiralling function, and let σ ∈ 2N be such
that 〈f〉 ≥ σ and σ �∈ 0. Then there exist n0,m ∈ N, a word w ∈ 2∗, a tuple of
weights α, and tuples of words p and c with |α| = |p| = |c| = m > 0 such that:

(i) σ = w · Φ(Sn0(f),α,p, c),
(ii) cω

j �= pj+1c
ω
j+1 for every j with 0 ≤ j < m − 1, and cω

m−1 �= p0c
ω
0 , and

(iii) cj �= ε, and αj is non-constant, for all j ∈ N<m.

118 J. Endrullis et al.

Proof. By Lemma 4.5, there exist n0,m, aj , z ∈ N (j ∈ N<m), w ∈ 2∗, and
p, c ∈ (2∗)m such that σ = w · Φ(Sn0(f),α,p, c), where, for j ∈ N<m, αj is
defined by αj = 〈 1z ,−aj

z 〉.
We now repeatedly alter the tuples α, p, c until conditions (ii) and (iii) are

fulfilled while condition (i) is upheld. For this we let n0 ∈ N, w ∈ 2∗, m ∈ N, α,
p, and c with |α| = |p| = |c| = m be arbitrary such that (i) holds.

First note that, if m = 1 and condition (ii) or (iii) are violated, then σ ∈ 0,
contradicting the assumption.

In case (ii) does not hold, consider the smallest h ∈ N<m such that cω
h =

ph+1c
ω
h+1 where addition in the subscripts is computed modulo m. We assume

h < m − 1; the case h = m − 1 proceeds analogously, using Lemma 4.18. For
i ∈ N and j ∈ N<m, we let ϕ(i, j) = (α ⊗ Sn0(f))(mi + j). By Lemma 4.10
there are integers a, b ≥ 0 and a word x ∈ 2∗ such that c

ϕ(i,h)
h ph+1c

ϕ(i,h+1)
h+1 =

ph+1x
aϕ(i,h)+bϕ(i,h+1) (�). We now define a tuple of weights β, and tuples of

words q and d, with |β| = |q| = |d| = m − 1, as follows: Let j ∈ N<m−1. If
j < h, then we define qj = pj , dj = cj , and βj = αj . If j > h, we define qj = pj+1,
dj = cj+1, and βj = αj+1. If j = h, we define qj = phph+1, dj = x, and we let
the weight βj be defined as follows: For αh = 〈r0, r1, . . . , rk−1, e〉 and αh+1 =
〈r′

0, r
′
1, . . . , r

′
�−1, e

′〉, let βh = 〈ar0, ar1, . . . , ark−1, br
′
0, br

′
1, . . . , br

′
�−1, ae + be′〉.

By definition of q, d, and β, to verify Φ(Sn0(f),α,p, c) = Φ(Sn0(f),β, q,d), it
suffices to check, for all i ∈ N, phc

ϕ(i,h)
h ph+1c

ϕ(i,h+1)
h+1 = qhd

ϕ′(i,h)
h ; here, for i ∈ N

and j ∈ {0, . . . , m−2}, ϕ′(i, j) is defined by ϕ′(i, j) = (β⊗Sn0(f))((m−1)i+j).
Fix i ∈ N. By Lemma 4.13 we have ϕ(i, h) = αh · St(f) and ϕ(i, h + 1) = αh+1 ·
St+k(f), for some t ∈ N. Also we have ϕ′(i, h) = βh · St′

(f) for some t′ ∈ N. By
definition of β we obtain t′ = t. It follows that ϕ′(i, h) = a ·ϕ(i, h)+b ·ϕ(i, h+1),
and we conclude by (�). Repeat the procedure with β, q, d.

For the case (iii) that does not hold we refer to the extended version [4]. ��
For the proof of the following theorem we allow for a more liberal version of
transducers. Instead of input letters along the edges we now allow input words.

Transitions of these transducers are of the form q
〈u,v〉|w−→ q′. The idea is that

this transition is taken if the automaton is in state q and the input word is of
the form uvτ . Then the automaton produces output w and switches to state q′,
consuming u and continuing with vτ .

Definition 4.20. An FST with look-ahead (FST�) is a tuple T = 〈Q, q0,D, δ, λ〉
where Q is a finite set of states, q0 ∈ Q is the initial state, the finite set D ⊆
Q × 2+ × 2∗ is the input domain of the transition function δ : D → Q, and the
output function λ : D → 2∗, satisfying the following condition: for all q ∈ Q,
u1, u2, v1, v2 ∈ 2∗ if u1u2 is a prefix of v1v2 and 〈q, u1, u2〉 ∈ D and 〈q, v1, v2〉 ∈
D, then u1 = v1 and u2 = v2.

We lift δ to a partial function δ� : Q × 2∗ ⇀ Q by δ�(q, ε) = q and

δ�(q, u1u2v) = δ�(δ(q, u1, u2), u2v) (〈q, u1, u2〉 ∈ D, v ∈ 2∗) .

The Degree of Squares is an Atom 119

Similarly, we lift λ to a partial function λ� : Q × 2∞ ⇀ 2∞ by λ�(q, ε) = ε and

λ�(q, u1u2v) = λ(q, u1, u2) · λ�(δ(q, u1, u2), u2v) (〈q, u1, u2〉 ∈ D, v ∈ 2∞) .

The partial function T : 2∞ ⇀ 2∞ realised by the FST� T is defined by T (u) =
λ�(q0, u), for all u ∈ 2∞.

These transducers can be simulated by FSTs.

Lemma 4.21. For every FST� T there is an FST T ′ such that for all u ∈ 2∞,
T ′(u) = T (u) whenever T (u) is defined.

Theorem 4.22. Let f : N → N be spiralling, and σ ∈ 2N. Then 〈f〉 ≥ σ if and
only if σ ≡ 〈α ⊗ Sn0(f)〉 for some integer n0 ≥ 0, and a tuple of weights α.

Proof. One direction is by Lemma 4.16. For the other, assume 〈f〉 ≥ σ. If σ ∈ 0,
then σ ≡ 〈〈〈0, 0〉〉 ⊗ S0(f)〉 = 〈n �→ 0〉 = 1ω. Thus let σ �∈ 0. By Lemma 4.19
there exist n1,m ∈ N, w ∈ 2∗, α, p and c with |α| = |p| = |c| = m > 0
such that σ = w · Φ(Sn1(f),α,p, c), and fulfilling the conditions (ii) and (iii) of
Lemma 4.19. We abbreviate g = α ⊗ Sn1(f). We will show that σ ≡ 〈g〉.

By Lemma 4.15 we have that the function g is spiralling too.
By conditions (ii) and (iii), for every j ∈ N<m, there exists tj ∈ N such that

cω
j (tj) �= (pj+1c

ω
j+1)(tj) (where addition is modulo m); let tj be minimal with

this property.
For j ∈ N<m, let �j , �

′
j ∈ N be minimal such that |cjc

�j
j | > tj and |pj+1c

�′
j

j+1| >
tj . Then by minimality of tj and �j , we obtain

(i) cjc
�j−1
j
 pj+1c

�′
j

j+1τ for every τ ∈ 2N, and

(ii) cjc
�j
j �
 pj+1c

�′
j

j+1τ for every τ ∈ 2N

(with again addition computed modulo m). From (i) we moreover obtain

(iii) cjc
�j
j
 cn

j pj+1c
�′
j

j+1τ for every n > 0 and τ ∈ 2N.

Next, we take a suffix σ′ of σ such that every occurrence of a block pj+1c
ϕ(i,j)
j+1

has as a prefix pj+1c
�j
j+1. Let n2 ∈ N be such that for g′ = Sn2·m(g) we have that

g′(n) > max{tj | j ∈ N<m} for all n ∈ N; the existence of such an n2 follows
from g being spiralling. To prove σ ≡ 〈g〉 it suffices to show σ′ ≡ 〈g′〉 where

σ′ =
∞∏

i=n2

m−1∏

j=0

pjc
ϕ(i,j)
j =

∞∏

i=0

m−1∏

j=0

pjc
ϕ′(i,j)
j 〈g′〉 =

∞∏

i=0

m−1∏

j=0

10ϕ′(i,j)

where ϕ(i, j) = g(mi + j), and ϕ′(i, j) = g′(mi + j). Note that by the choice of
n2, we have ϕ′(i, j + 1) ≥ �′

j for all i ∈ N and j ∈ N<m.
It is clear how to construct an FST that transduces 〈g′〉 to σ′. For σ′ ≥ 〈g′〉,

we define a FST� T = 〈Q, qm−1,D, δ, λ〉, as follows, and apply Lemma 4.21. Let

120 J. Endrullis et al.

Q = {qj | j ∈ N<m} and D = {〈qj , cj , c
�j
j 〉 | j ∈ N<m} ∪ {〈qj , pj+1, c

�′
j

j+1〉 | j ∈
N<m}, and define δ, λ by

〈δ, λ〉(qj , cj , c
�j
j) = 〈qj , 0〉 〈δ, λ〉(qj , pj+1, c

�′
j

j+1) = 〈qj+1, 1〉 .

We now argue that σ′ ≥T 〈g′〉. This follows from the following facts:

(a) λ�(qj , pj+1c
ϕ′(i,j+1)τ) = 1 · λ�(qj+1, c

ϕ′(i,j+1)τ),
(b) λ�(qj , c

n
j pj+1c

ϕ′(i,j+1)τ) = 0 · λ�(qj+1, c
ϕ′(i,j+1)τ) for all n > 0, since by

item (iii) we have cjc
�j
j
 cn

j pj+1c
ϕ′(i,j+1)τ . ��

Lemma 4.23. Let f : N → N be spiralling, and σ �∈ 0 with 〈f〉 ≥ σ. Then we
have σ ≥ 〈〈β〉 ⊗ Sn0(f)〉 for some integer n0 ≥ 0, and a non-constant weight β.

Theorem 4.24. There is a non-atom, non-zero degree [σ] that has no atom
degree below it. Hence, non-zero transducts of σ start an infinite descend-
ing chain.

Proof. We define the function f : N → N by f(n) = 2n. We show that the degree
[〈f〉] has no atom degree below it. Let σ �∈ 0 with 〈f〉 ≥ σ. By Lemma 4.23
there is a non-constant weight β = 〈a0, a1, . . . , ak−1, b〉 such that σ ≥ 〈g〉 where
g = 〈β〉 ⊗ Sn0(f). Since f(n) = 2n it follows that

g(n) = b +
k−1∑

i=0

ai2n0+nk+i = b + 2nk
k−1∑

i=0

ai2n0+i = (g(0) − b) · 2nk + b .

By Lemma 4.16 we have that 〈g〉 = 〈(g(0) − b) · 2nk + b〉 ≡ 〈2nk〉. Thus we have
σ ≥ 〈2nk〉. Also 〈2nk〉 ≥ 〈22nk〉 holds by Lemma 4.2 (iv), and by Lemma 4.7 we
conclude 〈22nk〉 �≥ 〈2nk〉. ��

5 Squares

In [1] it is shown that [〈n〉] is an atom degree. One of the main questions of [1]
is whether there exist other atom degrees. Here we show that also [〈n2〉] is an
atom degree. The main tool is Theorem 4.22, the characterisation of transducts
of spiralling sequences, which implies the following proposition.

Proposition 5.1. Let p(n) be a polynomial of degree k with non-negative integer
coefficients, and let σ be a transduct of 〈p(n)〉 with σ /∈ 0. Then σ ≥ 〈q(n)〉 for
some polynomial q(n) of degree k with non-negative integer coefficients.

Proof. By Lemma 4.23 it follows that σ ≥ 〈〈α〉⊗Sn0(p)〉 for some integer n0 ≥ 0,
and a non-constant weight α = 〈a0, . . . , ak−1, b〉. Let h ∈ N<k be such that
ah �= 0. Then we find (〈α〉 ⊗ Sn0(p))(n) = b +

∑k−1
j=0 aj · p(n0 + nk + j), which

can easily be recognised to be a polynomial q(n) of degree k. ��

The Degree of Squares is an Atom 121

Theorem 5.2. The degree [〈n2〉] is an atom.

Proof. Let σ ∈ 2N be a transduct of 〈n2〉 such that σ is not ultimately periodic.
By Proposition 5.1 there are integers a > 0, b, c ≥ 0 such that σ ≥ 〈an2+bn+c〉.
We first assume 2a ≥ b. Abbreviate f(n) = an2 +(2a+b)n. The roman numbers
below refer to Lemma 4.2. We derive

〈an2 + bn + c〉 ≡ 〈an2 + bn〉 by (iii)

≡ 〈a(n + 1)2 + b(n + 1)〉 by (ii)
≡ 〈f(n)〉 by (iii)
≥ 〈b(f(2n)) + (2a − b)(f(2n + 1))〉 by (v)

≡ 〈8a2n2 + 16a2n〉 ≡ 〈8a2(n + 1)2〉 by (iii)

≡ 〈(n + 1)2〉 by (i)

≡ 〈n2〉 by (ii) .

If 2a < b, choose d such that 2ad ≥ b. Then we have 〈an2+bn〉 ≥ 〈ad2n2+bdn〉
by (iv), and we reason as above for 〈a′n2 + b′n〉 with a′ = ad2 and b′ = bd.

This shows that every non-ultimately periodic transduct of 〈n2〉 can be trans-
duced back to 〈n2〉. Hence, the degree of 〈n2〉 is an atom. ��

References

1. Endrullis, J., Hendriks, D., Klop, J.: Degrees of streams. J. Integers 11B(A6), 1–40
(2011). Proceedings of the Leiden Numeration Conference 2010

2. Shallit, J.: Open problems in automata theory: an idiosyncratic view. LMS Keynote
Talk in Discrete Mathematics, BCTCS (2014). https://cs.uwaterloo.ca/shallit/
Talks/bc4.pdf

3. Sakarovitch, J.: Elements Of Automata Theory. Cambridge University Press,
Cambridge (2003)

4. Endrullis, J., Grabmayer, C., Hendriks, D., Zantema, H.: The Degree of Squares is
an Atom (Extended Version). Technical report 1506.00884, arxiv.org, June 2015

5. Siefkes, D.: Undecidable extensions of monadic second order successor arithmetic.
Math. Logic Q. 17(1), 385–394 (1971)

6. Seiferas, J., McNaughton, R.: Regularity-preserving relations. Theor. Comput. Sci.
2(2), 147–154 (1976)

7. Cautis, S., Mignosi, F., Shallit, J., Wang, M., Yazdani, S.: Periodicity, morphisms,
and matrices. Theor. Comput. Sci. 295, 107–121 (2003)

https://cs.uwaterloo.ca/shallit/Talks/bc4.pdf
https://cs.uwaterloo.ca/shallit/Talks/bc4.pdf

Words with the Maximum Number of Abelian
Squares

Gabriele Fici1(B) and Filippo Mignosi2

1 Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy
Gabriele.Fici@unipa.it

2 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università dell’Aquila, L’Aquila, Italy

Filippo.Mignosi@di.univaq.it

Abstract. An abelian square is the concatenation of two words that are
anagrams of one another. A word of length n can contain Θ(n2) distinct
factors that are abelian squares. We study infinite words such that the
number of abelian square factors of length n grows quadratically with n.

1 Introduction

A fundamental topic in Combinatorics on Words is the study of repetitions.
A repetition in a word is a factor that is formed by the concatenation of two
or more identical blocks. The simplest kind of repetition is a square, that is the
concatenation of two copies of the same block, like sciascia. A famous conjecture
of Fraenkel and Simpson [1] states that a word of length n contains less than
n distinct square factors. Experiments strongly suggest that the conjecture is
true, but a theoretical proof of the conjecture seems difficult. In [1], the authors
proved a bound of 2n. In [2], Ilie improved this bound to 2n − Θ(log n), but the
conjectured bound is still far away.

Among the different generalizations of the notion of repetition, a prominent
one is that of an abelian repetition. An abelian repetition in a word is a factor
that is formed by the concatenation of two or more blocks that have the same
number of occurrences of each letter in the alphabet. Of course, the simplest kind
of abelian repetition is an abelian square, that is therefore the concatenation of
a word with an anagram of itself, like viavai. Abelian squares were considered
in 1961 by Erdös [3], who conjectured that there exist infinite words avoiding
abelian squares (this conjecture has later been proved to be true, and the smallest
possible size of an alphabet for which it holds has been proved to be 4 [4]).

We focus on the maximum number of abelian squares that a word can contain.
Opposite to case of ordinary squares, a word of length n can contain Θ(n2)
distinct abelian square factors (see [5]). Since the total number of factors in a
word of length n is quadratic in n, this means that there exist words in which
a fixed proportion of all factors are abelian squares. So we turn our attention
to infinite words, and we wonder whether there exist infinite words such that
for every n any factor of length n contains, on average, a number of abelian
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 122–134, 2015.
DOI: 10.1007/978-3-319-23660-5 11

Words with the Maximum Number of Abelian Squares 123

squares that is quadratic in n. We call such an infinite word abelian-square rich.
Since a random binary word of length n contains Θ(n

√
n) distinct abelian square

factors [6], the existence of abelian-square rich words is not immediate. We also
introduce uniformly abelian-square rich words, that are infinite words such that
for every n, every factor of length n contains a quadratic number of abelian
squares.

As a first result, we prove that the famous Thue-Morse word is uniformly
abelian-square rich. Then we look at the class of Sturmian words, that are ape-
riodic infinite words with the lowest factor complexity. In this case, we prove
that if a Sturmian word is β-power free for some β ≥ 2 (that is, does not contain
repetitions of order β or higher), then it is uniformly abelian-square rich.

2 Notation and Background

Let Σ = {a1, a2, . . . , aσ} be an ordered σ-letter alphabet. Let Σ∗ stand for the
free monoid generated by Σ, whose elements are called words over Σ. The length
of a word w is denoted by |w|. The empty word, denoted by ε, is the unique word
of length zero and is the neutral element of Σ∗. We also define Σ+ = Σ∗ \ {ε}.

A prefix (resp. a suffix) of a word w is any word u such that w = uz (resp. w =
zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a
suffix of a prefix) of w. The set of prefixes, suffixes and factors of the word w are
denoted by Pref(w), Suff(w) and Fact(w), respectively. From the definitions, we
have that ε is a prefix, a suffix and a factor of any word.

For a word w and a letter ai ∈ Σ, we let |w|ai
denote the number of occur-

rences of ai in w. The Parikh vector (sometimes called composition vector) of a
word w over Σ = {a1, a2, . . . , aσ} is the vector P (w) = (|w|a1 , |w|a2 , . . . , |w|aσ

).
An abelian k-power is a word of the form v1v2 · · · vk where all the vi’s have the
same Parikh vector. An abelian 2-power is called an abelian square.

An infinite word w over Σ is an infinite sequence of letters from Σ, that is,
a function w : N �→ Σ. Given an infinite word w, the recurrence index Rw(n) of
w is the least integer m (if any exists) such that every factor of w of length m
contains all factors of w of length n. If the recurrence index is defined for every
n, the infinite word w is called uniformly recurrent and the function Rw(n)
the recurrence function of w. A uniformly recurrent word w is called linearly
recurrent if the ratio Rw(n)/n is bounded. Given a linearly recurrent word w,
the real number rw = lim supn→∞ Rw(n)/n is called the recurrence quotient
of w.

The factor complexity function of an infinite word w is the integer func-
tion pw(n) defined by pw(n) = |Fact(w) ∩ Σn|. An infinite word w has linear
complexity if pw(n) = O(n).

A substitution over the alphabet Σ is a map τ : Σ �→ Σ+. Using the exten-
sion to words by concatenation, a substitution can be iterated. Note that for
every substitution τ and every n > 0, τn is again a substitution. Moreover, a
substitution τ over Σ can be naturally extended to a morphism from Σ∗ to Σ∗,
since for every u, v ∈ Σ∗, one has τ(uv) = τ(u)τ(v), provided that one defines

124 G. Fici and F. Mignosi

τ(ε) = ε. A substitution τ is k-uniform if there exists an integer k ≥ 1 such that
for all a ∈ Σ, |τ(a)| = k. We say that a substitution is uniform if it is k-uniform
for some k ≥ 1. A substitution τ is primitive if there exists an integer n ≥ 1
such that for every a ∈ Σ, τn(a) contains every letter of Σ at least once. In this
paper, we will only consider primitive substitutions such that τ(a1) = a1v for
some non-empty word v. These substitutions always have a fixed point, which
is the infinite word w = limn→∞ τn(a1). Moreover, this fixed point is linearly
recurrent (see for example [7]) and therefore has linear complexity.

3 Abelian-square Rich Words

Kociumaka et al. [5] showed that a word of length n can contain a number of
distinct abelian square factors that is quadratic in n. We give here a proof of
this fact for the sake of completeness.

Proposition 1. A word of length n can contain Θ(n2) distinct abelian square
factors.

Proof. Consider the word wn = anbanban, of length 3n + 2. For every 0 ≤ i, j ≤
n such that i + j + n is even, the factor aibanbaj of w is an abelian square.
Since the number of possible choices for the pair (i, j) is quadratic in n, we are
done. 	

Motivated by the previous result, we wonder whether there exist infinite words
such that all their factors contain a number of abelian squares that is quadratic
in their length. But first, we relax this condition and consider words in which,
for every sufficiently large n, a factor of length n contains, on average, a number
of distinct abelian square factors that is quadratic in n.

Definition 1. An infinite word w is abelian-square rich if and only if there
exists a positive constant C such that for every n sufficiently large one has

1
pw(n)

∑

v∈Fact(w)∩Σn

{# abelian square factors of v} ≥ Cn2.

Notice that Christodoulakis et al. [6] proved that a binary word of length n
contains Θ(n

√
n) distinct abelian square factors on average, hence an infinite

binary random word is almost surely not abelian-square rich.
Given a finite or infinite word w, we let ASFw(n) denote the number of

abelian square factors of w of length n. Of course, ASFw(n) = 0 if n is odd, so
this quantity is significant only for even values of n.

The following lemma is a consequence of the definition of linearly recurrent
word.

Lemma 1. Let w be a linearly recurrent word. If there exists a constant C such
that for every n sufficiently large one has

∑
m≤n ASFw(m) ≥ Cn2, then w is

abelian-square rich.

Words with the Maximum Number of Abelian Squares 125

In an abelian-square rich word the average number of abelian squares in a factor
is quadratic in the length of the factor. A stronger condition is that every factor
contains a quadratic number of abelian squares. We thus introduce uniformly
abelian-square rich words.

Definition 2. An infinite word w is uniformly abelian-square rich if and only
if there exists a positive constant C such that for every n sufficiently large one
has

inf
v∈Fact(w)∩Σn

{# abelian square factors of v} ≥ Cn2.

Clearly, if a word is uniformly abelian-square rich, then it is also abelian-square
rich, but the converse is not always true. However, in the case of linearly recurrent
words, the two definitions are equivalent, as shown in the next lemma.

Lemma 2. If w is abelian-square rich and linearly recurrent, then it is uniformly
abelian-square rich.

Proof. Since w is linearly recurrent, there exists a positive integer K such that
every factor of w of length Kn contains all the factors of w of length n. Let v be
a factor of w of length n containing the largest number of abelian squares among
the factors of w of length n. Hence the number of abelian squares in v is at least
the average number of abelian squares in a factor of w of length n. Since w is
abelian square rich, the number of abelian squares in v is greater than or equal
to Cn2, for a positive constant C and n sufficiently large. Since v is contained
in any factor of w of length Kn, the number of abelian squares in any factor of
w of length Kn is greater than or equal to Cn2, whence the statement follows.

	

The rest of this section is devoted to prove that the Thue-Morse word and the
Sturmian words that do not contain arbitrarily large repetitions are uniformly
abelian-square rich.

3.1 The Thue-Morse Word

Let
t = 011010011001011010010110 · · ·

be the Thue-Morse word, i.e., the fixed point of the uniform substitution μ : 0 �→
01, 1 �→ 10. For every n ≥ 4, the factors of length n of t belong to two disjoint
sets: those that start only at even positions in t, and those that start only at odd
positions in t. This is a consequence of the fact that t is overlap-free, hence 0101
cannot be preceded by 1 nor followed by 0, and that 00 and 11 are not images
of letters, so they cannot appear at even positions.

Let p(n) be the factor complexity function of t. It is known [8, Proposi-
tion 4.3], that for every n ≥ 1 one has p(2n) = p(n) + p(n + 1) and p(2n + 1) =
2p(n + 1).

126 G. Fici and F. Mignosi

The next lemma (proved in [9]) shows that the Thue-Morse word has the
property that for every length there are at least one third of the factors that
begin and end with the same letter, and at least one third of the factors that begin
and end with different letters. We define faa(n) (resp. fab(n)) as the number of
factors of t of length n that begin and end with the same letter (resp. with
different letters).

Lemma 3 ([9]). For every n ≥ 2, one has faa(n) ≥ p(n)/3 and fab(n) ≥
p(n)/3.

Since p(n) ≥ 3(n − 1) for every n [10, Corollary 4.5], we get the following result.

Corollary 1. For every n ≥ 2, one has faa(n) ≥ n − 1 and fab(n) ≥ n − 1.

Proposition 2. The Thue-Morse word t is uniformly abelian-square rich.

Proof. Let u be a factor of length n > 1 of t that begins and ends with the same
letter. Since the image of any even-length word under μ is an abelian square,
we have that μ2(u) is an abelian square factor of t of length 4n that begins and
ends with the same letter. Moreover, the word obtained from μ2(u) by removing
the first and the last letter is an abelian square factor of t of length 4n − 2.
So, by Corollary 1, t contains at least n − 1 abelian square factors of length 4n
and at least n − 1 abelian square factors of length 4n − 2. This implies that for
every even n the number of abelian square factors of t of length n is linear in n.
Hence, for every n the number of abelian square factors of t of length at most n
is quadratic in n. The statement then follows from Lemmas 1 and 2. 	

3.2 Sturmian Words

In this section we fix the alphabet Σ = {a,b}.
Recall that a (finite or infinite) word w over Σ is balanced if and only if for

any u, v factors of w of the same length, one has ||u|a − |v|a| ≤ 1.
We start with a simple lemma.

Lemma 4. Let w be a finite balanced word over Σ. Then for any k > 0, P (w) =
(0, 0) mod k if and only if w is an abelian k-power.

Proof. Let w be balanced and P (w) = (ks, kt), for a positive integer k and some
s, t ≥ 0. Then we can write w = v1v2 · · · vk where each vi has length s + t.
Now, each vi must have Parikh vector equal to (s, t) otherwise w would not
be balanced, whence the only if part of the statement follows. The if part is
straightforward. 	

A binary infinite word is Sturmian if and only if it is balanced and aperiodic.
Sturmian words are precisely the infinite words having n + 1 distinct factors
of length n for every n ≥ 0. There is a lot of other equivalent definitions of
Sturmian words. A classical reference on Sturmian words is [11, Chap. 2]. Let us
recall here the definition of Sturmian words as codings of a rotation.

Words with the Maximum Number of Abelian Squares 127

We fix the torus I = R/Z = [0, 1). Given α, β in I, if α > β, we use the
notation [α, β) for the interval [α, 1) ∪ [0, β). Recall that given a real number α,
�α is the greatest integer smaller than or equal to α, �α� is the smallest integer
greater than or equal to α, and {α} = α−�α is the fractional part of α. Notice
that {−α} = 1 − {α}.

Let α ∈ I be irrational, and ρ ∈ I. The Sturmian word sα,ρ (resp. s′
α,ρ) of

angle α and initial point ρ is the infinite word sα,ρ = a0a1a2 · · · defined by

an =
{
b if {ρ + nα} ∈ Ib,
a if {ρ + nα} ∈ Ia,

where Ib = [0, 1−α) and Ia = [1−α, 1) (resp. Ib = (0, 1−α] and Ia = (1−α, 1]).
In other words, take the unitary circle and consider a point initially in posi-

tion ρ. Then start rotating this point on the circle (clockwise) of an angle α,
2α, 3α, etc. For each rotation, take the letter a or b associated with the interval
within which the point falls. The infinite sequence obtained in this way is the
Sturmian word sα,ρ (or s′

α,ρ, depending on the choice of the two intervals). See
Fig. 1 for an illustration.

ρ

ρ + α

ρ + 2α

ρ + 3α

0
ρ + 4α

1 − α

Ia

Ib

Fig. 1. The rotation of angle α = ϕ − 1 ≈ 0.618 and initial point ρ = α generating the
Fibonacci word F = sϕ−1,ϕ−1 = abaababaabaabab · · · .

For example, if ϕ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio, the Sturmian
word

F = sϕ−1,ϕ−1 = abaababaabaababaababaabaababaabaab · · ·

is called the Fibonacci word :
A Sturmian word for which ρ = α, like the Fibonacci word, is called charac-

teristic. Note that for every α one has sα,0 = bsα,α and s′
α,0 = asα,α.

An equivalent way to see the coding of a rotation consists in fixing the point
and rotating the intervals. In this representation, the interval Ib = I0b is rotated

128 G. Fici and F. Mignosi

at each step, so that after i rotations it is transformed into the interval I−i
b =

[{−iα}, {−(i + 1)α}), while I−i
a = I \ I−i

b .
This representation is convenient since one can read within it not only a

Sturmian word but also any of its factors. More precisely, for every positive
integer n, the factor of length n of sα,ρ starting at position j ≥ 0 is determined
by the value of {ρ + jα} only. Indeed, for every j and i, we have:

aj+i =
{
b if {ρ + jα} ∈ I−i

b ;
a if {ρ + jα} ∈ I−i

a .

As a consequence, we have that given a Sturmian word sα,ρ and a positive integer
n, the n + 1 different factors of sα,ρ of length n are completely determined by
the intervals I0b , I−1

b , . . . , I
−(n−1)
b , that is, only by the points {−iα}, 0 ≤ i < n.

In particular, they do not depend on ρ, so that the set of factors of sα,ρ is the
same as the set of factors of sα,ρ′ for any ρ and ρ′. Hence, from now on, we let
sα denote any Sturmian word of angle α.

If we arrange the n + 2 points 0, 1, {−α}, {−2α}, . . . , {−nα} in increasing
order, we determine a partition of I in n+1 subintervals, L0(n), L1(n), . . . , Ln(n).
Each of these subintervals is in bijection with a different factor of length n of
any Sturmian word of angle α (see Fig. 2).

54321

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

a

b

L0

L1

L2

L3

L4

L5

L6

{−α}

{−2α}

{−3α}

{−4α}

{−5α}

{−6α}

Fig. 2. The points 0, 1 and {−α}, {−2α}, {−3α}, {−4α}, {−5α}, {−6α}, arranged in
increasing order, define the intervals L0(6) ≈ [0, 0.146), L1(6) ≈ [0.146, 0.292), L2(6) ≈
[0.292, 0.382), L3(6) ≈ [0.382, 0.528), L4(6) ≈ [0.528, 0.764), L5(6) ≈ [0.764, 0.910),
L6(6) ≈ [0.910, 1). Each interval is associated with one of the factors of length 6 of the
Fibonacci word, respectively babaab, baabab, baabaa, ababaa, abaaba, aababa, aabaab.

Words with the Maximum Number of Abelian Squares 129

Recall that a factor of length n of a Sturmian word sα has a Parikh vec-
tor equal either to (�nα, n − �nα) (in which case it is called light) or to
(�nα�, n − �nα�) (in which case it is called heavy). The following proposition
relates the intervals Li(n) to the Parikh vectors of the factors of length n (see
[12,13]).

Proposition 3. Let sα be a Sturmian word of angle α, and n a positive integer.
Let ti be the factor of length n associated with the interval Li(n). Then ti is
heavy if Li(n) ⊂ [{−nα}, 1), while it is light if Li(n) ⊂ [0, {−nα}).

Example 1. Let α = ϕ − 1 ≈ 0.618 and n = 6. We have 6α ≈ 3.708, so that
{−6α} ≈ 0.292. The reader can see in Fig. 2 that the factors of length 6 corre-
sponding to intervals above (resp. below) {−6α} ≈ 0.292 all have Parikh vector
(4, 2) (resp. (3, 3)). That is, the intervals L0 and L1 are associated with light
factors (babaab, baabab), while the intervals L2 to L6 are associated with heavy
factors (baabaa, ababaa, abaaba, aababa, aabaab).

Observe that, by Lemma 4, every factor of a Sturmian word having even
length and containing an even number of a’s (or, equivalently, of b’s) is an
abelian square. The following proposition relates the abelian square factors of a
Sturmian word of angle α with the arithmetic properties of α.

Proposition 4. Let sα be a Sturmian word of angle α, and n a positive even
integer. Let ti be the factor of length n associated with the interval Li(n). Then
ti is an abelian square if and only if Li(n) ⊂ [{−nα}, 1) if �nα is even, or
Li(n) ⊂ [0, {−nα}) if �nα is odd.

Proof. By Proposition 3, ti is heavy if and only if Li(n) ⊂ [{−nα}, 1), while it
is light if and only if Li(n) ⊂ [0, {−nα}). If �nα is even, then every light factor
of length n contains an even number of a’s and hence is an abelian square, while
if �nα is odd, then every heavy factor of length n contains an even number of
a’s and hence is an abelian square, whence the statement follows. 	

Recall that given a finite or infinite word w, ASFw(n) denotes the number of
abelian square factors of w of length n.

Corollary 2. Let sα be a Sturmian word of angle α. For every positive even n,
let In = {{−iα} | 1 ≤ i ≤ n}. Then

ASFsα
(n) =

{
#{x ∈ In | x ≤ {−nα}} if �nα is even;
#{x ∈ In | x ≥ {−nα}} if �nα is odd.

Example 2. The factors of length 6 of the Fibonacci word F are, lexicogra-
phically ordered: aabaab, aababa, abaaba, ababaa, baabaa (heavy factors),
baabab, babaab (light factors). The light factors, whose number of a’s is
�6α = 3, are not abelian squares; the heavy factors, whose number of a’s is
�6α� = 4, are all abelian squares.

130 G. Fici and F. Mignosi

We have I6 = {0.382, 0.764, 0.146, 0.528, 0.910, 0.292} (values are approxi-
mated) and 6α � 3.708, so �6α is odd. Thus, there are 5 elements in I6 that
are ≥ {−6α}, so by Corollary 2 there are 5 abelian square factors of length 6.

The factors of length 8 of the Fibonacci word are, lexicographically
ordered: aabaabab, aababaab, abaabaab, abaababa, ababaaba, baabaaba,
baababaa, babaabaa (heavy factors), babaabab (light factor). The light fac-
tor, whose number of a’s is �8α = 4, is an abelian square; the heavy fac-
tors, whose number of a’s is �8α� = 5, are not abelian squares. We have
I8 = {0.382, 0.764, 0.146, 0.528, 0.910, 0.292, 0.674, 0.056} (values are approxi-
mated) and 8α � 4.944, so �8α is even. Thus, there is only one element in
I8 that is ≤ {8α}, so by Corollary 2 there is only one abelian square factor of
length 8.

In Table 1 we report the first values of the sequence ASFF (n) for the
Fibonacci word F .

Table 1. The first values of the sequence ASFF (n) of the number of abelian square
factors of length n in the Fibonacci word F = sϕ−1,ϕ−1.

n 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

ASFF (n) 0 1 3 5 1 9 5 5 15 3 13 13 5 25 9 15 25 21 27

Recall that every irrational number α can be uniquely written as a (simple)
continued fraction as follows:

α = a0 +
1

a1 + 1
a2+...

(1)

where a0 = �α, and the infinite sequence (ai)i≥0 is called the sequence of
partial quotients of α. The continued fraction expansion of α is usually denoted
by its sequence of partial quotients as follows: α = [a0; a1, a2, . . .], and each
its finite truncation [a0; a1, a2, . . . , ak] is a rational number nk/mk called the
kth convergent to α. We say that an irrational α = [a0; a1, a2, . . .] has bounded
partial quotients if and only if the sequence (ai)i≥0 is bounded.

The development in continued fraction of α is deeply related to the exponent
of the factors of the Sturmian word sα. Recall that an infinite word w is said
to be β-power free, for some β ≥ 2, if for every factor v of w, the ratio between
the length of v and its minimal period is smaller than β. The second author [14]
proved that a Sturmian word of angle α is β-power free for some β ≥ 2 if and
only if α has bounded partial quotients.

Since the golden ratio ϕ is defined by the equation ϕ = 1 + 1/ϕ, we have
from Eq. 1 that ϕ = [1; 1, 1, 1, 1, . . .] and therefore ϕ − 1 = [0; 1, 1, 1, 1, . . .], so
the Fibonacci word is an example of β-power free Sturmian word (actually, it is
(2 + ϕ)-power free [15]).

Words with the Maximum Number of Abelian Squares 131

We are now proving that if α has bounded partial quotients, then the Stur-
mian word sα is abelian-square rich. For this, we will use a result on the dis-
crepancy of uniformly distributed modulo 1 sequences from [16]. To the best of
our knowledge, this is the first application of this result to the theory of Stur-
mian words, and we think that the correspondence we are now showing might
be useful for deriving other results on Sturmian words.

Let ω = (xn)n≥0 be a given sequence of real numbers. For a positive integer
N and a subset E of the torus I, we define A(E;N ;ω) as the number of terms
xn, 0 ≤ n ≤ N , for which {xn} ∈ E. If there is no risk of confusion, we will
write A(E;N) instead of A(E;N ;ω).

Definition 3. The sequence ω = (xn)n≥0 of real numbers is said to be uniformly
distributed modulo 1 if and only if for every pair a, b of real numbers with 0 ≤
a < b ≤ 1 we have

lim
N→∞

A([a, b);N ;ω)
N

= b − a.

Definition 4. Let x0, x1, . . . , xN be a finite sequence of real numbers. The
number

DN = DN (x0, x1, . . . , xN) = sup
0≤γ<δ≤1

∣
∣
∣
∣
A([γ, δ);N)

N
− (δ − γ)

∣
∣
∣
∣

is called the discrepancy of the given sequence. For an infinite sequence ω of real
numbers the discrepancy DN (ω) is the discrepancy of the initial segment formed
by the first N + 1 terms of ω.

The two previous definitions are related by the following result.

Theorem 1 ([16]). The sequence ω is uniformly distributed modulo 1 if and
only if limN→∞ DN (ω) = 0.

An important class of uniformly distributed modulo 1 sequences is given by the
sequence (nα)n≥0 with α a given irrational number and n ∈ N. The discrepancy
of the sequence (nα) will depend on the finer arithmetical properties of α. In
particular, we have the following theorem, stating that if α has bounded partial
quotients, then its discrepancy has the least order of magnitude possible.

Theorem 2 ([16]). Suppose the irrational α = [a0; a1, . . .] has partial quotients
bounded by K. Then the discrepancy DN (ω) of ω = (nα) satisfies NDN (ω) =
O(log N). More exactly, we have

NDN (ω) ≤ 3 +
(

1
log ϕ

+
K

log(K + 1)

)

log N. (2)

We are now using previous definitions and results to prove that β-power free
Sturmian words are abelian-square rich.

Theorem 3. Let sα be a Sturmian word of angle α such that α has bounded
partial quotients. Then there exists a positive constant C such that for every n
sufficiently large one has

∑
m≤n ASFsα

(m) ≥ Cn2.

Proof. For every even n, let I ′
n = {{iα} | 1 ≤ i ≤ n}. By Corollary 2 and basic

arithmetical properties of the fractional part, we have:

132 G. Fici and F. Mignosi

ASFsα
(n) =

{
#{x ∈ I ′

n | x ≥ {nα}} if �nα is even;
#{x ∈ I ′

n | x ≤ {nα}} if �nα is odd.

So:
∑

m≤n

ASFsα
(m) (3)

≥
∑

m≤n

#{{iα} | {iα} ≤ 1/2, i ≤ m, and {mα} ≤ 1/2, �mα even } (4)

≥
∑

m≤n

#{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ m, and {mα/2} ≤ 1/4} (5)

≥
∑

n/2≤m≤n

#{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ n/2, and {mα/2} ≤ 1/4} (6)

= #{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ n/2} ×
∑

n/2≤m≤n

{m | {mα/2} ≤ 1/4}(7)

where: (4) follows from (3) by Corollary 2; (5) follows from (4) because {mα/2} ≤
1/4 implies {mα} ≤ 1/2 and �mα is even if and only if {mα/2} ≤ 1/2; (6)
follows from (5) is obvious; finally (7) follows from (6) because the cardinality
of the first set is independent from the sum.

Now, α/2 has bounded partial quotients (since α has) and we can apply
Theorem 2 to evaluate the two factors of (7). So we have:

#{{iα/2} | {iα/2} ∈ [1/4, 1/2), i ≤ n/2}
= A([1/4, 1/2);n/2; (nα/2))
≥ (1/2 − 1/4)n/2 − C1 log n

= n/8 − C1 log n,

for n sufficiently large and a positive constant C1. We also have:
∑

n/2≤m≤n

{m | {mα/2} ≤ 1/4}

= A([0, 1/4);n; (nα/2)) − A([0, 1/4);n/2; (nα/2))
≥ n/4 − C2 log n − n/8 − C3 log n

= n/8 − C4 log n,

for n sufficiently large and positive constants C2, C3, C4. The product of the two
factors of (6) is therefore greater than a constant times n2, as required. 	

The recurrence quotient rα of a Sturmian word of angle α = [0; a1, a2, . . .] such
that α has bounded partial quotients verifies 2 + rα < lim sup ai < 3 + rα [17,
Proposition 5]. Moreover, Durand [18] proved that a Sturmian word of angle α is
linearly recurrent if and only if α has bounded partial quotients. Thus, we have
the following:

Words with the Maximum Number of Abelian Squares 133

Corollary 3. Let sα be a Sturmian word of angle α. If sα is β-power free, then
sα is uniformly abelian-square rich.

Proof. We known that sα is β-power free for some β ≥ 2 if and only if α has
bounded partial quotients if and only if sα is linearly recurrent. The statement
then follows from Theorem 3 and Lemmas 1 and 2. 	

4 Conclusions and Future Work

We proved that the Thue-Morse is uniformly abelian-square rich. We think that
the technique we used for the proof can be generalized to some extent, and could
be used, for example, to prove that a class of fixed points of uniform substitutions
are uniformly abelian-square rich.

We also proved that Sturmian words that are β-power free for some β ≥ 2 are
uniformly abelian-square rich. The proof we gave is based on a classical result on
the discrepancy of the uniformly distributed modulo 1 sequence (nα)n≥0, where
α is the slope of the Sturmian word. To the best of our knowledge, this is the
first application of this result to the theory of Sturmian words, and we think that
the correspondence we have shown might be useful for deriving other results on
Sturmian words.

The natural question that then arises is whether the hypothesis of power
freeness is necessary for a Sturmian word being (uniformly) abelian-square rich.
We leave open the question to determine whether sα is not uniformly abelian-
square rich nor abelian-square rich in the case when α has unbounded partial
quotients.

We mostly investigated binary words in this paper. We conjecture that binary
words have the largest number of abelian square factors. More precisely, we
propose the following conjecture.

Conjecture 1. If a word of length n contains k many distinct abelian square
factors, then there exists a binary word of length n containing at least k many
distinct abelian square factors.

A slightly different point of view from the one we considered in this paper
consists in identifying two abelian squares if they have the same Parikh vec-
tor. Two abelian squares are therefore called inequivalent if they have different
Parikh vectors [19]. Sturmian words only have a linear number of inequivalent
abelian squares. Nevertheless, a word of length n can contain Θ(n

√
n) inequiv-

alent abelian squares [20]. Computations support the following conjecture:

Conjecture 2 (see [5]). A word of length n contains O(n
√

n) inequivalent abelian
squares.

Acknowledgements. The authors acknowledge the support of the PRIN 2010/2011
project “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi” of the Italian
Ministry of Education (MIUR).

134 G. Fici and F. Mignosi

References

1. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory, Ser. A 82(1), 112–120 (1998)

2. Ilie, L.: A note on the number of squares in a word. Theoret. Comput. Sci. 380(3),
373–376 (2007)

3. Erdös, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutato. Int. Kozl.
6, 221–254 (1961)

4. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

5. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Maximum number of
distinct and nonequivalent nonstandard squares in a word. In: Shur, A.M., Volkov,
M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 215–226. Springer, Heidelberg (2014)

6. Christodoulakis, M., Christou, M., Crochemore, M., Iliopoulos, C.S.: On the aver-
age number of regularities in a word. Theoret. Comput. Sci. 525, 3–9 (2014)

7. Damanik, D., Zare, D.: Palindrome complexity bounds for primitive substitution
sequences. Discrete Math. 222(1–3), 259–267 (2000)

8. Brlek, S.: Enumeration of factors in the Thue-Morse word. Discr. Appl. Math.
24(1–3), 83–96 (1989)

9. Cassaigne, J., Fici, G., Sciortino, M., Zamboni, L.: Cyclic Complexity of Words,
Submitted (2015). http://arxiv.org/abs/1402.5843

10. de Luca, A., Varricchio, S.: Some combinatorial properties of the Thue-Morse
sequence and a problem in semigroups. Theoret. Comput. Sci. 63(3), 333–348
(1989)

11. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

12. Fici, G., Langiu, A., Lecroq, T., Lefebvre, A., Mignosi, F., Prieur-Gaston, É.:
Abelian repetitions in Sturmian words. In: Béal, M.-P., Carton, O. (eds.) DLT
2013. LNCS, vol. 7907, pp. 227–238. Springer, Heidelberg (2013)

13. Rigo, M., Salimov, P., Vandomme, E.: Some properties of abelian return words. J.
Integer Seq. 16, 13.2.5 (2013)

14. Mignosi, F.: Infinite words with linear subword complexity. Theoret. Comput. Sci.
65(2), 221–242 (1989)

15. Mignosi, F., Pirillo, G.: Repetitions in the Fibonacci infinite word. RAIRO Theor.
Inform. Appl. 26, 199–204 (1992)

16. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York
(1974)

17. Cassaigne, J.: Limit values of the recurrence quotient of sturmian sequences. The-
oret. Comput. Sci. 218(1), 3–12 (1999)

18. Durand, F.: Corrigendum and addendum to: “Linearly recurrent subshifts have a
finite number of non-periodic subshift factors” [Ergodic Theory Dynam. Systems
20(4), 1061–1078 (2000)]. Ergodic Theory Dynam. Systems 23(2), pp. 663–669
(2003)

19. Fraenkel, A.S., Simpson, J., Paterson, M.: On weak circular squares in binary
words. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 76–82.
Springer, Heidelberg (1997)

20. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Personal communication
(2015)

http://arxiv.org/abs/http://arxiv.org/abs/1402.5843

Arithmetics on Suffix Arrays of Fibonacci Words

Dominik Köppl(B) and Tomohiro I

Department of Computer Science, TU Dortmund, Dortmund, Germany
dominik.koeppl@tu-dortmund.de, tomohiro.i@cs.tu-dortmund.de

Abstract. We study the sequence of Fibonacci words and some of its
derivatives with respect to their suffix array, inverse suffix array and
Burrows-Wheeler transform based on the respective suffix array. We show
that the suffix array is a rotation of its inverse under certain conditions,
and that the factors of the LZ77 factorization of any Fibonacci word
yield again similar characteristics.

1 Introduction

The sequence of Fibonacci words is one of the best studied set of strings in
the field of combinatorics. A Fibonacci word, composed by the concatenation
of its predecessor with its pre-predecessor, excels at many interesting properties
regarding factorizations [18], powers [16], fractals [15], entropy [7] and palin-
dromes [4]. The sequence is often used as a testbed for algorithms, since they
are a representative for some worst case scenarios [8]. Regarding benchmarks, it
is beneficial to know the shape of the considered data structures when they are
applied to a Fibonacci word; studying the combinatorial properties may help
understanding experimental results, or may even lead to designing new algo-
rithms.

We study properties of Fibonacci words and of some derivatives with respect
to its suffix array (SA) [13]. The SA induces the structure of its inverse and of the
SA-based Burrows-Wheeler transform (BWT) [2,10]. Under certain conditions,
the SA is a rotation, a reversed rotation, or the copy of its inverse.

With this insight, it is easy to reason about complex data structures like
compressed suffix trees [19], the FM-Index [5] or LZ77-based self-indexes [6].

2 Related Work

Regarding suffix data structures, Rytter [17] considered building a directed
acyclic word graph and a suffix tree on the j-th Fibonacci word. By some prop-
erties of the Fibonacci words, Rytter showed an easy way to modify both data
structures to match with the (j + 1)-th word. Considering BWT based on rota-
tions, Mantaci et al. [14] discovered that the BWT rearranges any Fibonacci
word in a block of consecutive b’s, followed by a block of consecutive a’s. More
generally, Mantaci et al. [14] and Simpson and Puglisi [20] gave a general theo-
rem regarding this special shape of the BWT applied to a class of binary strings,
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 135–146, 2015.
DOI: 10.1007/978-3-319-23660-5 12

136 D. Köppl and T. I

so called standard words, to which the Fibonacci words belong. Christodoulakis
et al. [3] proposed a constant time algorithm for querying different properties on
the BWT’s rotations. Without any delimiting, unique character at the string’s
end, the BWT defined on rotations and the BWT based on the SA (may) differ.
In fact, the BWT based on the SA of Fn (for any odd n) does not transform
the string into two homogenous blocks. Another result with respect to rotations
is done by Droubay [4]: they showed for every Fn with nmod 3 �= 0 that there
exists exactly one k such that the k-th rotation of Fn is a palindrome.

Since some current, popular indexing strategies perform compression on the
text (e.g., [6]), we further consider the LZ77 factorization [23]. In the special
case of the Fibonacci words, Berstel and Savelli [1] pointed out that the LZ77
factorization coincides with the palindromic factorization studied by Wen and
Wen [22]. We will show that our results apply analogously to the LZ77 factors.

3 Preliminaries

Let Σ denote an ordered alphabet. An element in Σ∗ is called a string . For
any string T , let |T | denote the length of T . The string of length zero is denoted
by ε. Σ∗ forms with ε and the concatenation Σ∗ × Σ∗ → Σ∗, (u, v) �→ uv a
free monoid. For any 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T . When
T ∈ Σ∗ is represented by the concatenation of x, y, z ∈ Σ∗, i.e., T = xyz, then
x, y and z are called a prefix , substring and suffix of T , respectively. For any
1 ≤ i ≤ j ≤ |T |, a substring of T starting at i and ending at j is denoted by
T [i..j]. Especially, a suffix starting at position i of T is denoted by T [i..]. For
any x, y ∈ Σ∗, let lcp(x, y) denote the length of the longest common prefix of x
and y.

The lexicographical order is denoted by <⊂ Σ∗ × Σ∗, i.e., x < y iff
(either) x is a proper prefix of y, or l := lcp(x, y) is less than min(|x|, |y|) and
x[l + 1] < y[l + 1]. We use another ordering � for that x � y iff the latter
condition holds. The ordering � is finer than <. If x � y, then xu � yv holds
for any u, v ∈ Σ∗. For instance, a < aa and a ��aa since a is a prefix of aa.
Appending b to both strings flips the lexicographic order to ab > aab. Taking
aa�ab as an example, appending characters to both strings does not affect their
ordering.

The inverse R−1 of an array R is an array with the same length for that
R−1[R[i]] = i holds for every 1 ≤ i ≤ |R|; the inverse of R exists iff R is
a permutation over {1, . . . , |R|}, i.e., λ.j �→ R[j] is an injective endomor-
phism. The suffix array SAT of a string T is an array of length |T | such that
T [SAT [i]..] < T [SAT [i + 1]..] for every 1 ≤ i < |T |. Since SAT is a permutation,
its inverse (i.e., the inverse suffix array) exists, and is denoted by ISAT .

Like in common literature, we let arrays start at position one (not zero);
therefore we will modify the modulo operator not to map any value to zero. For
this purpose, we define the modulo operator on the natural numbers by modn :
N → {1, . . . , n} ⊂ N,mmod n := m − nmod n if m > n, mmod n := m,
otherwise, for n,m ∈ N. Naturally, our results can also be applied to the stan-
dard modulo operator when taking arrays of the form [0..n−1], instead of [1..n].

Arithmetics on Suffix Arrays of Fibonacci Words 137

We call the array ψT with ψT [i] := ISAT [SAT [i] − 1mod |T |] for every 1 ≤
i ≤ |T | the last-to-front mapping of T .

A permutation S is called a rotation of R iff there exists exactly one k ∈
{1, . . . , |R|} such that R[i] = S[(k + i)mod |R|]. A permutation S is called a
reversed rotation of R iff there exists one k ∈ {1, . . . , |R|} such that R[i] =
S[(k − i)mod |R|]. In both cases, we call k the shift of S. If S is a rotation of R
and there exists 1 ≤ i ≤ n such that R[i] = S[i], then S = R.

Let Σ2 = {a, b} be a binary alphabet with a < b. The complementation
·̄ : Σ∗

2 → Σ∗
2 complements a string, i.e., T̄ [i] = a if T [i] = b, T [i] = b if T [i] = a.

Definition 1. The n-th Fibonacci word Fn ∈ Σ∗
2 (n ∈ N) is defined by Fn =

b ifn = 1, a ifn = 2, Fn = Fn−1Fn−2 otherwise. The sequence of lengths fn :=
|Fn| form the Fibonacci numbers. The sequence {F̄n}n∈N is called rabbit
sequence [7] and sometimes confused with the Fibonacci words (e.g., see [11]).
The ending of the n-th Fibonacci word (n ≥ 3) is given by δn := Fn[fn − 1..fn]
such that δn = ba if n is even, δn = ab if n is odd.

A factorization partitions T into z substrings T = w1 · · · wz. These substrings
are called factors. In particular, we have:

Definition 2 ([23]). A factorization w1 · · · wz = T is called the LZ77 factor-
ization of T iff wx is the shortest prefix of wx · · · wz that occurs exactly once in
w1 · · · wx.

Table 1. For each string T of a given sequence, we show the relationship between SAT

and ISAT , as well as the shape of BWTT . β is a variable character with β ≥ b, and c is
a character with c > b.

Sequence n ≥ 4 SA ↔ ISA shift BWT

Fn (Definition 1) even rotation fn−2 + 1 bfn−2afn−1

Zn (Definition 3) even rotation fn−2 + 1 bfn−2afn−1−1b

Bn := βFn even equal 0 bfn−2βafn−1

Dn := F̄nc even equal 0 bfn−1−1cafn−2b

Cn := Fnc odd reversed rotation fn bfn−2−1cafn−1b

Definition 3 ([1,12,22]). The n-th singular word is defined as Zn :=
Fn[fn]Fn[1..fn − 1]. Alternatively, Zn can be written as Zn = a if n = 1, Zn = b
if n = 2, Zn = aa if n = 3, Zn = Zn−2Zn−3Zn−2 otherwise.

Lemma 1. For any n ≥ 3, Fn = Z1 · · · Zn−2γ is the LZ77 factorization of Fn,
where γ := δn[1], i.e., γ = b if n is odd, a if n is even.

138 D. Köppl and T. I

Proof. – [basis] F3 = Z1b = ab, F4 = Z1Z2a = aba.
– [hypothesis] Assume the claim holds for n − 1 and n − 2.
– [induction proof] Let γ := Fn−2[fn−2] = Fn[fn]. Then Zn−2 =

γ̄Fn−2[1..fn−2 − 1] = γ̄Z1 · · · Zn−4, and Fn = Z1 · · · Zn−3γ̄Z1 · · · Zn−4γ =
Z1 · · · Zn−2γ.

	

Table 1 gives a summary of the properties shown in this paper.

Table 2. Instances of the string sequences considered in Table 1. We additionally exam-
ine F7 that does not show any of the attractive properties we study. Neither F7 nor
F6c possesses any interesting properties we focus on.

i 1 2 3 4 5 6 7 8
F6[i] a b a a b a b a

SAF6 [i] 8 3 6 1 4 7 2 5
ISAF6 [i] 4 7 2 5 8 3 6 1
Rotation Shift: 4

i 1 2 3 4 5 6 7 8
Z6[i] b a b a a b a b

SAZ6 [i] 4 7 2 5 8 3 6 1
ISAZ6 [i] 8 3 6 1 4 7 2 5
Rotation Shift: 4

i 1 2 3 4 5 6 7 8 9
(F̄6c)[i] b a b b a b a b c
SAF̄6c[i] 5 2 7 4 1 6 3 8 9
ISAF̄6c[i] 5 2 7 4 1 6 3 8 9

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(F7c)[i] a b a a b a b a a b a a b c
SAF7c[i] 8 3 11 6 1 9 4 12 7 2 10 5 13 14
ISAF7c[i] 5 10 2 7 12 4 9 1 6 11 3 8 13 14
Reverse Rotation Shift: 13

i 1 2 3 4 5 6 7 8 9
(βF6)[i] β a b a a b a b a
SAβF6 [i] 9 4 7 2 5 8 3 6 1
ISAβF6 [i] 9 4 7 2 5 8 3 6 1

i 1 2 3 4 5 6 7 8 9 10 11 12 13
F7 a b a a b a b a a b a a b

SAF7 11 8 3 12 9 6 1 4 13 10 7 2 5
ISAF7 7 12 3 8 13 6 11 2 5 10 1 4 9

BWTF7 b b b a a b b a a a a a a

i 1 2 3 4 5 6 7 8 9
F6c a b a a b a b a c

SAF6c 3 1 4 6 8 2 5 7 9
ISAF6c 2 6 1 3 7 4 8 5 9

BWTF6c b c a b b a a a a

Remark 1. The arithmetic progression that characterizes SA and ISA is not
restricted to the family of Fibonacci-like strings. For example, the sequences
S1 = abaa, Sn = aSn−1a and E0 = bb, E1 = bbab, En = bn+1anb have a suffix
array that is a reverse rotation of its inverse. Instances of both sequences are
depicted in Table 3.

4 The Suffix Array and Its Inverse

We examine the suffix array structure of each sequence considered in Table 1.
Besides this, we are interested in revealing some relationship between SA and
ISA. Some examples are depicted in Table 2. Lemma 3 gives us some rules that
determine whether a specific array is a rotation or reversed rotation of its inverse.
For our sequences, Lemma 5 shows that the suffix array has the form of the array
dealt in Definition 4 for some certain n.

Arithmetics on Suffix Arrays of Fibonacci Words 139

Table 3. Instances of the string sequences given in Remark 1. Both instances have an
SA that is reverse rotated to its inverse.

i 1 2 3 4 5 6 7 8
S2[i] a a a b a a a a

SAS2 [i] 8 7 6 5 1 2 3 4
ISAS2 [i] 5 6 7 8 4 3 2 1

BWTS2 [i] a a a b a a a a
Rev. Rot. Shift: 5

i 1 2 3 4 5 6 7 8
E3[i] b b b b a a a b

SAE3 [i] 5 6 7 8 4 3 2 1
ISAE3 [i] 8 7 6 5 1 2 3 4

BWTE3 [i] b a a a b b b b
Rev. Rot. Shift: 5

Definition 4. Let R be an array of integers with length n ∈ N. We call R
arithmetic progressed iff there exists m < n and q ∈ {1, . . . , n} such that
R[i] = q if i = 1, (R[i] = R[i − 1] + m)mod n if i > 1, for 1 ≤ i ≤ n.

Lemmas 2 to 4 consider an array R that is arithmetic progressed, and let n,m
and q be defined as in Definition 4.

Lemma 2. R is a permutation iff gcd(m,n) = 1.

Proof. By construction, R is an endomorphism. Let us take any r ∈ {1 . . . , n−1}.
By R[(i + r)mod n] = (R[i] + rm)mod n we see that

gcd(n,m) = 1 ⇔ rm mod n �= n ∀1 ≤ r ≤ n − 1
⇔ (R[i] + rm)mod n �= R[i] ∀1 ≤ i ≤ n and ∀1 ≤ r ≤ n − 1.

	

Lemma 3. Considering the inverse R−1 of R, the following properties hold:

(a) The array R−1 is a rotation of R with shift (q + (q − 1)m − 1) mod n if and
only if m2 mod n = 1 and gcd(m,n) = 1 holds.

(b) If R−1 is a rotation of R and q ∈ {1,m}, then R−1 = R.
(c) The array R−1 is a reversed rotation of R with shift (q + (q − 1)m + 1) mod n

if and only if m2 mod n = n − 1 and gcd(m,n) = 1 holds.

Proof. (a) Let x := R[i] for an arbitrary, fixed 1 ≤ i ≤ n. Then R[(i +
m)mod n] = (x + m2)mod n. We conclude that R−1[x] = i and R−1[(x +
m2)mod n] = (i + m)mod n holds. Now we yield the equivalence

R−1[(x + 1)mod n] = (i + m)mod n ⇔ m2 mod n = 1.

Since R[1] = q, the shift is R[q]−R−1[q]mod n = (q + (q − 1)m − 1) mod n.
(b) If q = 1, then R[1] = 1; hence 1 is a fix point. If q = m, then R[m + 1] =

(q + m2)mod n = m + 1; hence m + 1 is a fix point.

140 D. Köppl and T. I

(c) Let x, i be defined as in proof of Item (a). Then we yield the equivalence

R−1[(x − 1)mod n] = (i + m)mod n ⇔ m2 mod n = n − 1.

Since R[1] = q, the shift is R[q] +R−1[q]mod n = (q + (q − 1)m + 1) mod n.
	

Fn−1[1..fn−1 − 2] δn δn

Fn−1 Fn−2

Fn−1[1..fn−1 − 2]

Fn−2 Fn−2Fn−3

Fn

Fn−2 δn

Fig. 1. Overview over the different split-ups considered for Fn with n ≥ 4. The lower
part is shown in proof of Lemma 7 and used by Lemma 10.

Lemma 4. The last-to-front mapping ψR[i] := R−1[R[i] − 1mod n] shows the
following characterizations:

(a) If R−1 is a rotation of R, then ψR[i] = (i − m)mod n.
(b) If R−1 is a reversed rotation of R, then ψR[i] = (i + m)mod n.

Proof. We follow the observations in Lemma 3.

(a) Let k denote the shift of R−1. Then ψR[i] = R−1[R[i] − 1mod n] = R−1[q +
(i − 1)m − 1mod n] = R[q + (i − 1)m − 1 − k mod n] = q + (q + (i − 1)m −
k − 2)m mod n = i − m mod n.

(b) Let k denote the shift of R−1. Then ψR[i] = R−1[R[i] − 1mod n] = R−1[q +
(i − 1)m − 1mod n] = R[k − q − (i − 1)m + 1mod n] = q + km − qm −
(i − 1)m2 mod n = q + qm + (q − 1)m2 + m − qm − (i − 1)m2 mod n =
i + m mod n. 	

The following, well-known properties of the Fibonacci numbers allow us to apply
Lemmas 2 to 4 to the suffix array and the last-to-front mapping of some instances
of the string sequences under consideration:

Lemma 5 ([9,21]). The following statements hold:

– gcd(fn, fn−1) = 1 for n ∈ N.
– For n > 1 even, f2

n−1 mod fn = 1 holds.
– For n > 1 odd, f2

n−1 mod fn = n − 1 holds.
– Since (n − m)2 mod n = m2 mod n for any m,n ∈ N, we can exchange fn−1

by fn−2 in the items above.

Arithmetics on Suffix Arrays of Fibonacci Words 141

Since SAF1 ,SAF2 and SAF3 are the identity, we focus on the strings Fn with
n ≥ 4.

Lemma 6 (Christodoulakis et al. [3, Lemma 2.8]). For n > 3, Fn =
Fn−2Fn−3 · · · F2δn.

Lemma 7. For n ≥ 4 and 1 ≤ i < fn−1, we have Fn[i..] � Fn[i + fn−2..] if n is
even, Fn[i..] � Fn[i + fn−2..] if n is odd.

Proof. It follows from Lemma 6 that Fn = Fn−2Fn−3 · · · F2δn and Fn[1..fn−1] =
Fn−1 and Fn−1 = Fn−3Fn−4 · · · F2δn. So lcp(Fn[1..], Fn[1+fn−2..]) = fn−1−|δn|.
For any 1 ≤ i < fn−1, the order � of Fn[i..] and Fn[i + fn−2..] is determined by
comparing Fn[fn−1 − 1] = δn[1] with Fn[fn − 1] = δn[1]. 	

Lemma 8. For n ≥ 4 even, Fn[fn..] < Fn[fn + fn−2 mod fn..] < Fn[fn +
2fn−2 mod fn..] < . . . < Fn[fn + (fn − 1)fn−2 mod fn..].

Proof. The conclusion of the inequations is divided up into two intervals and a
starting position:

– It follows by Lemma 7 that Fn[i..] � Fn[i + fn−2..] for all 1 ≤ i < fn−1.
– Since Fn = Fn−1Fn−2 = Fn−2Fn−3Fn−2, Fn[i..] is a prefix of Fn[i − fn−1..] =

Fn[i + fn−2 mod fn..] for every fn−1 < i ≤ fn. Hence, Fn[i..] < Fn[i +
fn−2 mod fn..].

– By Lemma 6, Fn[fn..] is the lexicographically smallest suffix of Fn. Since
fn and fn−2 are coprime, there is a lexicographically increasing chain starting
at Fn[fn..] that visits every suffix of Fn by a step of fn−2 (taking modulo
fn). The lexicographically largest suffix is Fn[fn + (fn − 1)fn−2 mod fn..] =
Fn[fn−1..]. 	

Theorem 1. For n ∈ N even, ISAFn
is a rotation of SAFn

with a shift of fn−2+1.
SAFn

is given by SAFn
[i] = fn if i = 1, SAFn

[i] = (SAFn
[i − 1] + fn−2)mod fn

otherwise.

Proof. The arithmetic characterization of SAFn
follows directly from Lemma 8.

By Lemma 3(a), ISAFn
is a rotation of SAFn

. 	

Theorem 2. Let Bn := βFn with a character β ≥ b. For n ∈ N even, ISABn

is equal to SABn
, which is given by SABn

[i] = fn + 1 if i = 1, SABn
[i] =

(SABn
[i − 1] + fn−2)mod fn if 2 < i < fn + 1,

Proof. By Lemma 8 we know the lexicographical order of the suffixes Bn[i..] for
i > 1. It remains to pigeonhole Bn[1..]. Theorem 1 tells us that Fn[fn−1..] is
the largest suffix of fn. By transitivity it suffices to show that Fn[fn−1..] < Bn:
this is clear if β > b. Otherwise (β = b), Bn[1..] = bFn[1..] and Fn[fn−1..] =
bFn[1 + fn−1..] = bFn−2. But we saw in proof of Lemma 8 that Fn−2 < Fn,
hence Fn[fn−1..] < Bn. Together we get that the step is fn−2.

142 D. Köppl and T. I

We complete the arithmetic characterization of SABn
by showing a fix point:

SABn
[fn−2 + 2] =

(
f2
n−2 + fn−2 + 1

)
mod fn = fn−2 + 2,

where we used that f2
n−2 mod fn = 1 by Lemma 5, and |Fm−2| + 2 < |Fm| for

every m > 4. Hence, by Lemma 3(b), ISABn
[2..fn−1] is equal to SABn

[2..fn−1].
	

For the sequences Cn and Dn we have results similar to Lemma 8:

Corollary 1. (a) Let Cn := Fnc with a character c > b. For n ≥ 5 odd,
Cn[fn−1..] < Cn[2fn−1 mod fn..] < . . . < Cn[fnfn−1 mod fn..] = Cn[fn..].

(b) Let Dm := F̄mc with a character c > b. For m ≥ 4 even, Dm[fm−1..] <
Dm[2fm−1 mod fm..] < . . . < Dm[fmfm−1 mod fm..] = Dm[fm..].

Proof. We follow the steps of the proof of Lemma 8: It follows from Lemma 7 that
Cn[i..]�Cn[i+fn−2..] for all 1 ≤ i < fn−1. Hence Cn[i..]�Cn[i+fn−1 mod fn..]
for all fn−2 < i ≤ fn. By the same argument, F̄m[i..] � F̄m[i + fm−2..] for
all 1 ≤ i < fm−1, thus Dm[i..] � Dm[i + fm−1 mod fm..] for all fm−2 < i ≤
fm. Fn[i + fn−1..] is a prefix of Fn[i..] for every 1 ≤ i ≤ fn−2. So the order
Cn[i + fn−1..] � Cn[i..] is determined by comparing c with Fn−3[1]. Since Dm =
F̄m−2F̄m−3F̄m−2c, F̄m[i+fn−1..] is a prefix of F̄m[i..] for every 1 ≤ i ≤ fm−2. So
the order Dm[i + fn−1..] � Dm[i..] is determined by comparing c with F̄m−3[1].
So far, we have Cn[i..]�Cn[i+fn−1 mod fn..] for every 1 ≤ i < fn, and Dm[i..]�
Dm[i + fm−1 mod fm..] for every 1 ≤ i < fm. Since fn and fn−1 are coprime,
there is a lexicographically increasing chain starting at Cn[fn−1..] that visits
every suffix of Cn, except Cn[fn +1..], by a step of fn−1 (taking modulo fn); the
same holds for Dm. 	

Theorem 3. Let Cn := Fnc with a character c > b. For n ∈ N odd, ISACn

[1..fn]
is a reversed rotation of SACn

[1..fn] with a shift of fn. SACn
is given by SACn

[i] =
fn+1 if i = fn+1, SACn

[i] = fn if i = fn, SACn
[i] = (SACn

[i+1]+fn−1)mod fn
if 1 ≤ i < fn.

Proof. Since Cn[fn + 1..] = c is the largest suffix of Cn, the arithmetic charac-
terization of SACn

follows from Corollary 1(a). By Lemma 3(c), ISACn
[1..fn] is

a reversed rotation of SACn
[1..fn]. 	

Theorem 4. Let Dn := F̄nc with a character c > b. For n ∈ N even, ISADn
is

equal to SADn
; both are given by SADn

[i] = fn + 1 if i = fn + 1, SADn
[i] = fn if

i = fn, SADn
[i] = (SADn

[i + 1] − fn−2)mod fn if 1 ≤ i ≤ fn.

Proof. Since Dn[fn + 1..] = c is the largest suffix of Dn, the arithmetic charac-
terization of SADn

follows from Corollary 1(b). By Lemma 3(b), ISADn
is equal

to SADn
. 	

Lemma 9. For n ≥ 4 even, Zn[1 + fn−2..] < Zn[1 + 2fn−2 mod fn..] < . . . <
Zn[1 + fnfn−2 mod fn..] = Zn[1..], where Zn is the n-th singular word, defined
in Definition 3.

Arithmetics on Suffix Arrays of Fibonacci Words 143

Table 4. We divide the suffixes of the considered strings in Sect. 5 into blocks of ba-,aa-
and ba-type (to some extent). These types are arranged (mostly) like for the text T in
this table.

T [SAT [i]] a . . . a a . . . a b . . . b

T [SAT [i] − 1] b . . . b a . . . a a . . . a

Blocks ba-type aa-type ab-type

Proof. Let G := Fn[1..fn − 1]. For n even, Zn = bFn[1..fn − 1]. Following the
proof of Lemma 8 for G (Lemma 6 is still applicable for G since it depends
on the δn[1]-value, not on δn[2]) yields G[i..] � G[i + fn−2 mod fn..] for every
1 ≤ i < fn−1 − 1. Thus, Zn[i..] � Zn[i + fn−2 mod fn..] for every 1 < i < fn−1.
For the other i-values we consider that Zn = Zn−2Zn−3Zn−2; hence Zn[i+fn−1..]
is a prefix of Zn[i..] for every 1 ≤ i ≤ fn−2. So Zn[i..] < Zn[i + fn−2 mod fn..]
for every fn−1 < i ≤ fn. To sum up, there is a lexicographically increasing chain
starting at Zn[1 + fn−1..] that visits every suffix of Zn by a step of fn−2 (taking
modulo fn). 	

Theorem 5. For n ∈ N even, ISAZn

is a rotation of SAZn
with a shift of fn−2+1.

SAZn
is given by SAZn

[i] = fn−2+1 if i = 1, SAZn
[i] = (SAZn

[i−1]+fn−2)mod fn
otherwise.

Proof. The arithmetic characterization of SAZn
follows from Lemma 9. ISAZn

is
a rotation of SAZn

, due to Lemma 3(a). 	

5 Burrows-Wheeler Transform

In this section, we give a characterization of the BWT for the string sequences
displayed by Table 1. We generate BWTT of any string T by taking the preceding
character of the suffix T [SAT [i]..] while successively incrementing 1 ≤ i ≤ |T |.
Fortunately, the acquired results for SAT can be directly applied for constructing
BWTT : Consider any T ∈ Σ∗

2 whose SAT is a rotation (or reversed rotation)
of its inverse. Further, consider that SAT is arithmetic progressed; then the
previous/next entry in SAT is determined by a step of m or n−m (we introduce
m,n like in Definition 4). If the b-entries in T are distributed in such a way that
we find a b at position i + m or i + n − m for each 1 ≤ i ≤ |T | with T [i] = b,
then the suffixes T [i..] that succeed a b (= T [i − 1]) are aligned successively in
SAT , which means that the BWTT generates a homogenous block of b’s, like in
Table 4. This stepping-characteristic is caught by the following

Lemma 10 (Rytter [17]). For any n ≥ 4, we have

– Fn[i] = Fn[i + fn−2] for any i ∈ {1, . . . , fn−1 − 2}, and
– Fn[i] = Fn[i + fn−1] for any 1 ≤ i ≤ fn−2.

144 D. Köppl and T. I

Proof. By Lemma 6, Fn = Fn−2Fn−3 · · · F1δn. Also, Fn[1..fn−1] = Fn−3

Fn−4 · · · F1δn. The second claim follows by splitting Fn−2Fn−3Fn−2. Figure 1
illustrates the proven properties. 	

Theorem 6. For n even, we get ψFn

[i] = (i + fn−1) mod fn and BWTFn
=

bfn−2afn−1 .

Proof. Because Fn does not contain the string bb, the only substrings of length
two are aa, ab and ba. We will focus on the suffixes that start with an a that
are preceded by a b. We call these of type ba; they are depicted in Table 4. If
we show that these suffixes have successive numbers in the beginning of SAFn

,
we yield the claimed structure of BWTFn

. We find these suffixes by tracking the
chain given in the proof of Lemma 8. The chain starts at the smallest suffix
Fn[fn..] and takes steps of length fn−2 (modulo fn). Fortunately, Fn[fn..] is
exactly a ba-type suffix with Fn[fn − 1..] = δn = ba. By Lemma 10, the chain
will visit iteratively the next ba-type suffix, until it accesses the ba-type suffix
SAFn

[fn−2] = fn−1 + 1. This is the last ba-type suffix: SAFn
[fn−2 + 1] = 1,

and by definition of the BWT, the preceding character of the suffix SAFn
[1..]

is Fn[fn] = a. Because Fn contains exactly fn−2 many b’s, we will never again
meet a ba-type suffix while continuing traversing the chain. The structure of ψFn

follows by Lemma 4(a). 	

Theorem 7. For n ∈ N even and β ≥ b, let Bn := βFn. BWTBn

= bfn−2βafn−1

and ψBn
[i] = fn + 1 if i = fn−2 + 1, ψBn

[i] = 1 if i = fn + 1, ψBn
[i] =

(i + fn−1)mod fn otherwise.

Proof. The proof is conducted analogously to proof of Theorem 6: By Theorem 2,
the smallest suffix is Bn[fn+1..] and the step of SABn

is fn−2; Bn[fn+1..] is a ba-
type suffix. By proof of Theorem 2, the largest suffix is Bn[1..]. By following the
chain of the proof of Theorem 6, we traverse successively ba-type suffixes until we
visit the ba-type suffix SABn

[fn−2] = fn−1 + 2. If β �= b, we have already visited
all suffixes of ba-type. Again, by a step of fn−2, we find SABn

[fn−2 +1] = 2. The
suffix Bn[2..] is preceded by a β. 	

Theorem 8. For n ≥ 5 odd, let Cn := Fnc. BWTCn

= bfn−2−1cafn−1b and
ψCn

[i] = fn+1 if i = fn−2, ψCn
[i] = fn if i = fn+1, ψCn

[i] = (i+fn−1)mod fn
otherwise.

Proof. The proof is conducted analogously to proof of Theorem 6: By
Corollary 1(a), the smallest suffix is Cn[fn−1..] and the step of SACn

is fn−1;
Cn[fn−1..] is a ba-type suffix. By Theorem 3, the largest suffix is Cn[fn + 1..];
it is preceded by a b character. Since Cn[fn..] is the second largest suffix,
BWTCn

[fn+1] = b. By following the chain of the proof of Theorem 6, we traverse
successively ba-type suffixes until we visit the ba-type suffix SACn

[fn−2 − 1] =
fn−2 + 1. Again, by a step of fn−1, we find SACn

[fn−2] = 1. The suffix Cn[1..] is
preceded by a c. With Lemma 4(b) we yield the structure of ψFnc. 	

Arithmetics on Suffix Arrays of Fibonacci Words 145

Theorem 9. For n ≥ 4 even, let Dn := F̄nc. BWTDn
= bfn−1−1cafn−2b and

ψDn
[i] = fn+1 if i = fn−1, ψDn

[i] = fn if i = fn+1, ψDn
[i] = (i+fn−2)mod fn

otherwise.

Proof. The proof is conducted by complementing the results of Theorem 6: Sub-
strings of length two in Dn are of the form bc, bb, ba and ab; Dn does not contain
the string aa. By Corollary 1(b), the smallest suffix is Dn[fn−1..] and the step
of SADn

is fn−1; Dn[fn−1..] is a ba-type suffix.
Because the suffixes starting with an a are always preceded by a b (suffixes of

ba-type), it suffices to show that the suffixes starting with a b that are preceded
by a b (suffixes of bb-type) are consecutively aligned after the block of ba-type
suffixes. By Theorem 4, the largest suffix is Dn[fn + 1..]; it is preceded by a
b character. Since Dn[fn..] is the second largest suffix, BWTDn

[fn + 1] = b.
Moreover, the largest ba-type suffix is Dn[fn − 2..]. By following a chain similar
in the proof of Theorem 6, we traverse successively ba-type suffixes until we visit
the ba-type suffix SADn

[fn−2] = fn−1. We next visit the bb-type suffixes starting
from SADn

[fn−2 + 1] = fn−1 − 1 to SADn
[fn−1 − 1] = fn−2 + 1. By a step of

fn−1, we find SADn
[fn−1] = 1. The suffix Dn[1..] is preceded by a c. 	

Theorem 10. For n ≥ 4 even, BWTZn
= bfn−2afn−1−1b and ψZn

[i] =
(i + fn−1) mod fn, where Zn is the n-th singular word, defined in Definition 3.

Proof. Like Fn, the string Zn does not contain bb as a substring. The proof is
conducted analogously to proof of Theorem 6: By Lemma 9, the largest suffix is
Zn[1..]. It is preceded by Zn[|Zn|] = b; hence BWTZn

[fn] = b. Moreover, the
largest ba-type suffix is Zn[2..]. By Theorem 5, the smallest suffix is Zn[fn−2 +1..]
and the step of SAZn

is fn−2; Zn[fn−2..] is a ba-type suffix since Zn[fn−2 −
1..fn−2] = δn−2. By following the chain of the proof of Theorem 6, we traverse suc-
cessively ba-type suffixes until we visit the last ba-type suffix SAZn

[fn−2 − 1] = 2.
	

6 Outlook

We presented a family of string sequences based on the intriguing Fibonacci
words, and highlighted some interesting combinatorial properties of the suffix
array, its inverse, and the BWT of those sequences. It is an open question
whether we can specify a general class of strings having the studied proper-
ties, like the BWT based on rotations [14]. One problem is that the conditions
are not symmetric. Although we considered appending c or prepending β to a
Fibonacci string, sequences like βF̄n, F̄nα and Fnα with α ≤ a do not show any
nice properties. Even giving a characterization of the set of strings whose SA
and ISA are identical seems hard for us. The here presented techniques could be
useful for further research.

Acknowledgement. We are grateful to Gabriele Fici for helpful discussion, and to
our student Sven Schrinner who discovered one rotation property while solving an
exercise.

146 D. Köppl and T. I

References

1. Berstel, J., Savelli, A.: Crochemore factorization of sturmian and other infinite
words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
157–166. Springer, Heidelberg (2006)

2. Burrows,M.,Wheeler,D.J.,Burrows,M.,Wheeler,D.J.:Ablock-sorting lossless data
compression algorithm. Digital Equipment Corporation, Technical report (1994)

3. Christodoulakis, M., Iliopoulos, C.S., Ardila, Y.J.P.: Simple algorithm for sorting
the Fibonacci string rotations. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková,
M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 218–225. Springer,
Heidelberg (2006)

4. Droubay, X.: Palindromes in the Fibonacci word. Inf. Process. Lett. 55(4), 217–221
(1995)

5. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

6. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014)

7. Gramss, T.: Entropy of the symbolic sequence for critical circle maps. Phys. Rev.
E 50, 2616–2620 (1994)

8. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a
Fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)

9. Hoggatt Jr., V.E., Bicknell-Johnson, M.: Composites and primes among powers of
Fibonacci numbers increased or decreased by one. Fibonacci Q. 15, 2 (1977)

10. Kärkkäinen, J.: Fast bwt in small space by blockwise suffix sorting. Theor. Comput.
Sci. 387(3), 249–257 (2007)

11. de Luca, A.: A combinatorial property of the Fibonacci words. Inf. Process. Lett.
12(4), 193–195 (1981)

12. de Luca, A., de Luca, A.: Combinatorial properties of sturmian palindromes. Int.
J. Found. Comput. Sci. 17(03), 557–573 (2006)

13. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA 1990, pp. 319–327, Philadelphia, PA, USA (1990)

14. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian
words. Inf. Process. Lett. 86(5), 241–246 (2003)

15. Monnerot-Dumaine, A.: The Fibonacci Word fractal, 24 pages, 25 figures, February
2009

16. Pirillo, G.: Fibonacci numbers and words. Discrete Math. 173(1–3), 197–207 (1997)
17. Rytter, W.: The structure of subword graphs and suffix trees of Fibonacci words.

Theor. Comput. Sci. 363(2), 211–223 (2006)
18. Saari, K.: Periods of factors of the Fibonacci word. In: Proceedings of WORDS

2007. Institut de Mathematiques de Luminy (2007)
19. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.

Syst. 41(4), 589–607 (2007)
20. Simpson, J., Puglisi, S.J.: Words with simple burrows-wheeler transforms. Electr.

J. Comb. 15(1) (2008)
21. Wells, D.: Prime Numbers: The Most Mysterious Figures in Math. Wiley, Hoboken

(2011)
22. Wen, Z.X., Wen, Z.Y.: Some properties of the singular words of the Fibonacci

word. Eur. J. Comb. 15(6), 587–598 (1994)
23. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Inf. Theory 23(3), 337–343 (1977)

Prefix-Suffix Square Completion

Marius Dumitran1 and Florin Manea2(B)

1 Faculty of Mathematics and Computer Science, University of Bucharest,
Str. Academiei 14, 010014 Bucharest, Romania

marius.dumitran@fmi.unibuc.ro
2 Department of Computer Science, Christian-Albrechts University of Kiel,

Christian-Albrechts-Platz 4, 24118 Kiel, Germany
flm@informatik.uni-kiel.de

Abstract. We consider a family of new formal operation on words: the
prefix square completion, the suffix square completion, and the prefix-
suffix square completion. By suffix square completion (respectively, prefix
square completion), one can derive from a word w any word wx (respec-
tively, xw) if w has a suffix (respectively, prefix) yxy; by prefix-suffix
square completion we derive from a word w any word w′ that is obtained
either by prefix square completion or by suffix square completion from
w. We discuss two main aspects of these operations. On the one hand,
we study the derivation of infinite words by iterated prefix-suffix square
completion, and show that, although any word generated by square com-
pletion operations contains squares, we can generate infinite words that
do not contain any repetition of exponent greater than 2. On the other
hand, focusing on finite words, we give a linear time procedure that,
given two words, decides whether the longer can be generated by iter-
ated prefix-suffix square completion from the shorter.

1 Introduction

The prefix duplication, suffix duplication, and prefix-suffix duplication are formal
operations on words that were introduced in [1] following a biological motivation.
Essentially, by suffix duplication, from a word w one can derive any word wx
where x is a suffix of w; that is, suffixes of w are duplicated. Prefix duplication
is the symmetric operation: by this operation one can duplicate prefixes of w.
Finally, the prefix-suffix duplication is just a combination of the previous two
operations: by it, one can duplicate either a suffix or a prefix of the initial words.
As it is the case in the study of many word operations, one is mainly interested
in the words that can be generated by iteratively applying these operations
to an initial word. The results of [1] show that the set of words that can be
generated in arbitrarily many prefix-suffix duplication steps from some initial
word is not context-free, unless the initial word is unary. However, the language of
the words that can be generated by iterated prefix-suffix duplication from a word
is semi-linear and belongs to NL. Finally, an algorithm deciding in O(n2 log n)

The work of Florin Manea was supported by the DFG grant 596676.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 147–159, 2015.
DOI: 10.1007/978-3-319-23660-5 13

148 M. Dumitran and F. Manea

time, for two given words, whether the longer word (whose length is n) can be
generated from the shorter word by prefix-suffix duplication was given.

Restrictions of the above operations where considered in [2]: the bounded
suffix, prefix and prefix-suffix duplication. For these operations, the length of
the duplicated prefix or suffix was bounded by a predefined constant. Again,
the study of these operations addressed two main directions. On the one hand,
language theoretic properties of the set of words generated by iterated bounded
prefix-suffix duplication from a certain initial set were obtained. On the other
hand, efficient algorithms solving the membership problem for such languages
were devised. In particular, one can decide in O(nk log k) whether some word
(of length n) can be generated from a shorter word by bounded prefix-suffix
duplication where the length of the duplicated factors is at most k.

We introduce here a new family of word operations, closely related to the
prefix-suffix duplication. The initial motivation of studying the prefix-suffix
duplication were some biological processes that essentially create repetitions at
the ends of the genetic sequences (see [1] for a longer discussion on this motiva-
tion); however, the formal operations defined in [1] assumed that such repetitions
are created by replicating their root. Here we assume a different point of view:
we consider the possibility of creating squares (the simplest type of repetition)
at one of the ends of the word by completing a prefix or suffix of the considered
sequence to a square. More precisely, by suffix square completion, we derive from
a word w a word wx if w has a suffix yxy; note that the suffix we complete to a
square must contain the root of the square (here, yx), and that suffix duplication
is obtained by restricting square suffix to the case when y is the empty word.
The prefix square completion is symmetrical: from a word w we derive xw if w
has a prefix yxy. The prefix-suffix square completion just combines the previous
two operations: from a word w we derive w′ if w′ can be obtained either by prefix
square completion or by suffix square completion from w.

Most of the language theoretic results obtained for the prefix, suffix, and
prefix-suffix duplication operations seem to hold also for the newly defined square
completion operations. Therefore, our investigation of the prefix-suffix square
completion operations is aimed in the following two directions.

Firstly (and quite differently from what was done so far) we investigate how
square completion operations can be used to generate infinite words. We say that
a right-infinite word w can be generated by one of the square completion oper-
ations if there is an infinite sequence of finite prefixes of w, namely w0, w1, . . .,
such that wi is obtained by the respective operation from wi−1. For instance, the
infinite Fibonacci word or the Period-doubling word can be generated by suf-
fix square completion. Furthermore, we show that the infinite Thue-Morse word
can also be generated by suffix square completion. This exhibits a property that
seems interesting to us: every (infinite) word generated by suffix completion con-
tains squares, but there are (infinite) words generated by this operation (which
basically creates squares) that avoid any repetition of (rational) exponent higher
than 2. In comparison, we show that the Thue-Morse infinite word cannot be
generated by prefix-suffix duplication. However, we show that one can generate

Prefix-Suffix Square Completion 149

an infinite cube-free word by suffix-duplication. This is a weaker version of the
result obtained for square completion: every (infinite) word generated by suffix
duplication contains squares, but there are (infinite) words generated by this
operation that avoid any repetition of integer exponent higher than 2.

Secondly, we shift our attention to finite words, and, in this case, try to see
whether a word can be generated by prefix-suffix square completion from one
of its factors. We give an algorithm that identifies in linear time, for a given
word w, all its prefixes from which w can be generated by iterated suffix square
completion. This algorithm is an essential step in showing that we can identify
in linear time (and produce a compact representation of) all the factors of a
word from which it can be generated by iterated prefix-suffix square completion.
This leads immediately to a linear-time algorithm deciding, for two given words,
whether the longer word can be generated from the shorter word by prefix-suffix
square completion. This algorithm is much faster than the corresponding one
from the case of prefix-suffix duplication.

2 Definitions

§ Basic Facts. We define Σk = {0, . . . , k − 1} to be an alphabet with k letters.
For an alphabet Σ we denote by Σ∗ (respectively, Σ+) the set of finite (respec-
tively, non-empty finite) words over Σ, and by Σω the set of (right-)infinite
words over Σ. For a word w and some 1 ≤ i ≤ |w| we denote the i-th letter of w
by w[i]. We also denote the factor that starts with the i-th letter and ends with
the j-th letter in w by w[i..j].

The powers of a word w are defined recursively by w0 = λ and wn = wwn−1

for n ≥ 1. If w cannot be expressed as a nontrivial power (i.e., w is not a
repetition) of another word, then w is primitive. A period of a word w over V is
a positive integer p such that w[i] = w[j] for all i and j with i ≡ j(mod p); if p is
a period of w, then w is called p-periodic. Let per(w) be the smallest period of w.
The notion of repetition can be extended to the case of rational exponents: a
word of length n and period p is called a repetition with exponent n

p . A word w

with per(w) ≤ |w|
2 is called run; a run w[i..j] (so, p = per(w[i..j]) < j−i+1

2) is
maximal if and only if it cannot be extended to the left or right to get a word with
period p, i.e., i = 1 or w[i−1] �= w[i+p−1], and, j = n or w[j+1] �= w[j−p+1].

The infinite Thue-Morse word t is defined as t = limn→∞ φn
t (0), for the

morphism φt : Σ∗
2 → Σ∗

2 where φt(0) = 01 and φt(1) = 10 (see [3,4]). It is
well-known (see, for instance, [5]) that t does not contain any factor of the
form xyxyx (overlaps). Consequently, the infinite word t does not contain any
repetition of (rational) exponent greater than 2.

The infinite Fibonacci word f is defined as f = limn→∞ fn, where f0 = 0,
f1 = 01, and fk = fk−1fk−2 for k ≥ 2 (see, e.g., [5,6]). The Fibonacci word
contains cubes, but it does not contain repetitions of exponent 4; it is also a
Sturmian word. Finally, f = limn→∞ φn

f (0), where φf (0) = 01 and φf (1) = 0.
The Period doubling word d is defined as d = limn→∞ φn

d (0), for the mor-
phism φd : Σ∗

2 → Σ∗
2 where φt(0) = 01 and φt(1) = 00. This infinite word

150 M. Dumitran and F. Manea

was studied both in combinatorics on words and, just like the Fibonacci word,
in quasicrystal spectral theory (see, [6–9] and the references therein). To gen-
erate this sequence, note that to obtain φn

d (0) we can concatenate φn−1(0) to
itself and then change the last digit (1 becomes 0 and vice versa). Interestingly,
this sequence is obtained by replacing the 2 letters by 0 in the square-free Hall
sequence h = limn→∞φh(2), with φh(2) = 210, φh(1) = 20, φh(0) = 1 (see [10]).
This sequence has label A096268 in The Online Dictionary of Integer Sequences.

Stewart’s choral sequence s is defined as s = limn→∞ sn, where s0 = 0 and
sk+1 = sksks∗

k for k ≥ 0, with s∗
k being a copy of sk with the middle letter

changed from 0 to 1 or vice versa. It is known that s does not contain cubes.
For more details, see The Online Dictionary of Integer Sequences, where this
sequence has the label A116178.

See [5] for further details on the concepts discussed here.

§Square Completion Operations. The prefix, suffix, and prefix-suffix dupli-
cation operations were defined in [1]. Given a word w ∈ Σ∗, we have:

– Prefix Duplication: PD(w) = {xw | w = xw′ for some x ∈ Σ+}.
– Suffix Duplication: SD(w) = {wx | w = w′x for some x ∈ Σ+}.
– Prefix-suffix Duplication: PSD(w) = PD(w) ∪ SD(w).

Further, we define the prefix, suffix, and prefix-suffix square completion oper-
ations. Given a word w ∈ Σ∗, we define:

– Prefix Square Completion: PSC (w)={xw | w = yxyw′, with x∈Σ+, y∈Σ∗}.
– Suffix Square Completion: SSC (w)={wx | w = w′yxy, with x∈Σ+, y∈Σ∗}.
– Prefix-suffix Square Completion: PSSC (w) = PSC (w) ∪ SSC (w).

We further define, for Θ ∈ {PD ,SD ,PSD ,PSC ,SSC ,PSSC}, its iteration:
Θ0

k(x) = {x}, Θn+1
k (x) = Θn

k (x) ∪ Θk(Θn
k (x)), for n ≥ 0, Θ∗

k(x) =
⋃

n≥0

Θn
k (x).

Finally, we say that a right-infinite word w is generated by the operation Θ
and we write w ∈ Θω, where Θ ∈ {PD ,SD ,PSD ,PSC ,SSC ,PSSC}, if there
exists a sequence of finite words (wn)n∈N such that: wi is a prefix of w and
wi+1 ∈ Θ(wi) for all i ∈ N.

Example 1. Consider the words w0 = ab, w2i+1 = wiwi and w2i+2 = w2i+1b for
i ≥ 0. Let w = limn→∞ wn. Clearly, w2i+1 ∈ PD(w2i), and, as all the words wi

end with b, w2i+2 ∈ SD(w2i+1). Therefore, w ∈ PSDω.

§Algorithmic Prerequisites. The computational model we use to design and
analyse our algorithms is the standard unit-cost RAM (Random Access Machine)
with logarithmic word size, which is generally used in the analysis of algorithms.
In the upcoming algorithmic problems, we assume that the words we process are
sequences of integers (called letters, for simplicity). In general, if the input word
has length n then we assume its letters are in {1, . . . , n}, so each letter fits in a
single memory-word. This is a common assumption in stringology (see, e.g., the
discussion in [11]).

Prefix-Suffix Square Completion 151

First, we recall the range minimum query data structure (see [12]). Given an
array of n integers T [·], we can produce in O(n) time several data-structures
for this array, allowing us to answer in constant time to queries RMQ(i, j)
and posRMQ(i, j), asking for the minimum value and, respectively, its position
among T [i], T [i + 1], . . . , T [j].

For a word u, |u| = n, over V ⊆ {1, . . . , n} we build in O(n) time its suffix
tree and suffix array, as well as LCP -data structures, allowing us to retrieve in
constant time the length of the longest common prefix of any two suffixes u[i..n]
and u[j..n] of u, denoted LCPu(i, j) (the subscript u is omitted when there is
no danger of confusion). See, e.g., [11,13], and the references therein.

We will also use in our algorithms the fact that the number of maximal runs
of a word is linear and their list (with a run w[i..j] represented as the triple
(i, j, per(w[i..j])) can be computed in linear time in the RAM with logarithmic
word size model (see [14,15]). The exponent of a maximal run w[i..j] occurring
in w is defined as j−i+1

per(w[i..j]) ; in [15] it is shown that the sum of the exponents
of maximal runs in a word of length n is upper bounded by n.

3 Generating Infinite Words

Lemma 1. Let x, y, z ∈ Σ∗ such that x is a prefix of y and y a prefix of z. If
z ∈ SSC ∗(x) then z ∈ SSC ∗(y).

Proof. If x = z the conclusion follows immediately. Otherwise, there exists a
sequence of words x0, x1, . . . , xn, with n ≥ 1, such that x0 = x, xn = z, and
xi ∈ SSC (xi−1) for 1 ≤ i ≤ n. As x0 is a prefix of y and y is a prefix of xn,
there exists 1 ≤ k ≤ n such xk−1 is a prefix of y and y is a prefix of xk. So, let
y = xk−1u. As xk ∈ SSC (xk−1) we get that xk−1 = wvv′v and xk = wvv′vv′;
it follows that u is a prefix of v′ and v′ = uv′′. So, xk = wvuv′′vuv′′ = yv′′.
Therefore, xk can be obtained by suffix square completion from y by appending
v′′ to y. It follows that xj ∈ SSC ∗(y) for all j ≥ k, so z = xn ∈ SSC ∗(y).
�
The next three propositions show how the suffix square completion can be used
to generate three important infinite words.

Proposition 1. The Fibonacci word f is in SSCω.

Proof. By Lemma 1, it is enough to show that for all n ≥ 4, there exists
f ′

n such that f ′
n ∈ SSC ∗(fn), fn+1 is a prefix of f ′

n, and f ′′
n is a prefix of

fn+2. Indeed, it follows that we can derive f ′
n+1 from f ′

n (because f ′
n+1 can

be derived from the prefix fn+1 of f ′
n), and so on. For short, we would be

able to derive, starting with f4, an infinite sequence of prefixes of f . Now,
fn = fn−1fn−2; we can derive from fn the word fn−1fn−2fn−2, and then
fn−1fn−2fn−2fn−2 = fn−1fn−2fn−2fn−3fn−4; but, fn−1fn−2fn−2fn−3fn−4 =
fnfn−1fn−4 = fn+1fn−4. So, taking f ′

n = fn+1fn−4 we get exactly what we
wanted: f ′

n ∈ SSC ∗(fn), fn+1 is a prefix of f ′
n, and f ′′

n is a prefix of fn+2.
�
Proposition 2. The Period-doubling word d is in SSCω.

152 M. Dumitran and F. Manea

Proof. Let dn = φn
d (0), for n ≥ 0. It is not hard to note that if dn+1 ∈ SSC ∗(dn),

then dn+2 ∈ SSC ∗(dn+1); indeed, if in the ith step of the derivation of dn+1 from
dn we derived the word wxyxy from the word wxyx, then in the ith step of the
derivation of dn+2 from dn+1 we derive φd(wxyxy) from the word φd(wxyx).
Therefore, it is enough to show that d4 can be derived from d3 = 01000101.
Now, in the first step we derive 01000101(01) (we place the root of the square
between parentheses, and the suffix which we completed is underlined). Then,
from 0100010101 we derive 0100010(10)(10). From 01000101010 we derive in two
steps 0100010101000 (by duplicating twice the 0 letter occurring at the end of
the word). Now, from 0100010101000 we derive 010001010100(0100) = d4. This
concludes our proof.
�
Proposition 3. The Thue-Morse word t is in SSCω.

Proof. First we fix some notations. Let tn be tn in which we change all the 1
letters into 0 and all the 0 letters into 1. It is well known that tn+1 = tntn.
Also, let t′n be the word obtained from tn by deleting its last letter. Let us first
note that t6 ends with 10110 and t6 starts with 1; so, from t′6, which has the
suffix 1011, we can derive in one SSC -step the word t61, which is a prefix of t7.
Moreover, for all n ≥ 7 we have that tn ends with φn−6

t (101)φn−6
t (10), so from

t′n we can generate tnφn−6
t (1), which is a prefix of tn+1. We now note that t2n =

t2n−1t2n−2t2n−3t2n−4 . . . t1t0t0. As t2i−1 ends with t2i−2 for all i, it is immediate
that t′2n ∈ SSC ∗(t2n−1). Similarly, t2n+1 = t2nt2n−1t2n−2t2n−3 . . . t1t0t0. Now,
t2i ends with t2i−1 for all i, so t′2n+1 ∈ SSC ∗(t2n).

Now we have all the ingredients to show that t ∈ SSCω. We start with t5
and derive from it, in multiple steps, t′6. From t′6 we derive in one step t61. From
t61 we can derive t′7 by Lemma 1, because we can derive t′7 from the prefix t6 of
t61. Then we continue this process. Generally, at some point of our derivation
we obtained t′n. From this we derive tnφn−6

t (1), and further we derive in multiple
steps t′n+1 (again, we can do this according to Lemma 1, because we can derive
t′n+1 from the prefix tn of tnφn−6

t (1)). This concludes our proof.
�
The previous results shows the existence of infinite words which can be generated
by iterated suffix square completion, which avoid any power of rational expo-
nent strictly greater than 2. However, t cannot be generated by the prefix-suffix
duplication, so we cannot get in the same way a similar result for this operation.

Proposition 4. The Thue-Morse word t is not in PSDω.

Proof. To begin with, let tn be tn in which we change all the 1 letters into 0 and
all the 0 letters into 1, and let t = limn→∞ tn.

Our proof is based on a series of claims regarding the occurrences of squares
inside the Thue-Morse word.

Claim 1. For all n ≥ 0, tn does not start with a square. Same holds for tn.
Claim 2. For all n ≥ 0, tn does not end with a square. Same holds for tn.
Claim 3. For all n ≥ 0, if tn[i..j] is a square such that i ≤ 2n−1 and j > 2n−1

(i.e., this square goes over the centre of tn) then i > 2n−2 and j ≤ 2n−1 + 2n−2

Prefix-Suffix Square Completion 153

(i.e., the square is completely contained in tn[2n−2+1..2n−1+2n−2] = tn−1tn−1).
Same holds for tn.

Claim 4. For all n ≥ 0, if tn[i..j] is a square such that i ≤ 2n−1 and j >
2n−1 (i.e., this square goes over the centre of tn) and either i �= 2n−2 + 1 or
j �= 2n−1 + 2n−2, then i > 2n−2 + 2n−3 and j ≤ 2n−1 + 2n−3 (i.e., the square is
completely contained in tn[2n−2 + 2n−3 + 1..2n−1 + 2n−3]). Same holds for tn.

We now move on to the main proof.
According to Claim 1, it is enough to show that t /∈ SDω. Indeed, if t ∈

PSDω \SDω, then t has a prefix x obtained by prefix duplication. Clearly, x has
a square prefix, so t has a square prefix, as well; this is a contradiction.

We now show by induction that it is impossible to derive from a prefix of
tn (respectively, a prefix of tn) a prefix of t (respectively, of t) longer than
|tn+1| + |tn|

2 = 2n+1 + 2n−1. This property can be manually checked for n ≤ 6.
Let us assume the above property holds for all tk and tk with k ≤ n − 1 and

show that it holds for tn. Clearly, we have that:
tn+2 = tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2tn−2.

Let τi = tn+2[(i − 1)2n−2 + 1], for 1 ≤ i ≤ 16. Basically, the factors τi are
the factors tn−2 or tn−2 emphasised in the decomposition of tn+2 from above.
That is: τ1 = tn−2, τ2 = tn−2, and so on. Clearly, τ1 · · · τ4 = tn, τ5 · · · τ8 = tn,
τ7 · · · τ10 = tn, and τ9 · · · τ16 = tn+1.

We assume, for the sake of a contradiction, that we can derive from a prefix
of τ1 · · · τ4 a word longer than τ1 . . . τ10. Such a derivation starts with the initial
prefix of t, and reaches in several steps a word y that is shorter than τ1 . . . τ10
but in the next step we produce a word yz, which is longer than τ1 . . . τ10. So zz
has the centre somewhere in τ1 . . . τ10. We want to see where it may begin and
where it centre might be.

If yz ends inside tn+2, we note that, according to Claim 3, applied to tn+2 =
τ1 · · · τ16, the factor zz cannot begin inside τ1 . . . τ4; similarly if yz ends inside
tn+3, then we apply Claim 3 to tn+3. It also cannot start at the same position
as τ5: in that case, yz must end inside tn+2, so zz could only be the square
τ5 · · · τ12 = tntn; this would mean that y = τ1 · · · τ8 = tn+1 and this word can
be obtained by suffix duplication. Moreover, zz cannot start somewhere else
inside τ5τ6: such a square (centred in τ1 · · · τ10) would end in τ1 · · · τ16 = tn+2,
and this leads to a contradiction with Claim 4 (zz would not be contained in
tn+2[2n +2n−1+1..2n−1+2n−3], as it should). So, the first z factor of the square
zz is completely contained in τ7 . . . τ10. By Claim 4 (applied to tn+2), there is
no square that starts in τ7τ8 and ends strictly after the ending position of τ10.
In conclusion, both the starting position and the centre of the square zz occur
in τ9τ10. Moreover, as zz ends after the ending position of τ10, its centre cannot
occur in the first half of τ9.

So, y ends inside τ9τ10, but not in the first half of τ9. We repeat the reasoning
above for y. This word was obtained from some y′ by appending v to it. That
is, y = y′v and y′ ends with v. Just like before, vv cannot start in τ1 · · · τ6, so
it must start in τ7τ8; also, vv cannot be τ8τ9 (again, this would mean that tn+1

ends with a square). Moreover, vv cannot start in τ7, by Claim 3 applied to

154 M. Dumitran and F. Manea

τ7τ8τ9τ10 = tn−1. If y′ ends in τ7τ8 it is fine; if not, we repeat the procedure
and consider the string from which y′ was obtained in the role of y′. Generally,
we repeat this reduction until we reach an intermediate word obtained in the
derivation of y from x which ends inside τ7τ8. So, suppose y′ ended inside τ7τ8.

Assume first that y′ does not end inside τ7 (so it ends inside τ8). Say that y′

was derived from some y′′ by duplicating the factor u (i.e., y′ = y′′u and u is a
suffix of y′′). Then, by applying Claim 3 to tn = τ5 · · · τ8, we get that the square
uu cannot start in τ5τ6. This means y′′ ends inside τ7τ8, just like y′. We repeat
the process with y′′ in the role of y′ until we reach a word that ends inside τ7.

So, let us assume that y′ ends inside τ7. Take w1 be the suffix of y′ contained
in τ7 and w2 the suffix of y contained in τ7 · · · τ10. It is immediate that the
duplication steps that were used to produce y from the current y′ can be used to
produce w2 from w1. But w1 is a prefix of tn−2 and w1 is a prefix of t of strictly
longer than |tn−1|+ |tn−2|

2 (as y after the first half of τ9). This is a contradiction
with our induction hypothesis.

Clearly our claim also holds for tn, so our induction proof is complete.
Hence, it is impossible to derive from a prefix of tn (respectively, a prefix

of tn) a prefix of t (respectively, of t) longer than |tn+1| + |tn|
2 = 2n+1 + 2n−1,

for all n. This means that we cannot construct by suffix duplication an infinite
sequence of finite prefixes of t whose limit is t.
�
Despite the negative result of the previous Proposition, we show that, in fact,
the duplication operation can still be used to generate infinite words that do
not contain repetitions of large exponent. More precisely, while suffix square
completion was enough to generate words that avoid rational powers greater
than 2, the suffix duplication is enough to generate words that avoid integer
powers greater than 2 (so, automatically, rational powers greater or equal to 3).

Proposition 5. Stewart’s choral sequence s is in SDω.

Proof. It is enough to show that for all n ≥ 2 we have sn+1 ∈ SD∗(sn).
To show this, note first that, because sn+1 = snsns∗

n, we have s∗
n+1 =

sns∗
ns∗

n. Now, from sn we derive snsn = (sn−1sn−1s
∗
n−1)(sn−1sn−1s

∗
n−1), in

one duplication step. Then we duplicate the suffix sn−1s
∗
n−1 of s2n, and get

snsnsn−1s
∗
n−1. We now duplicate the suffix s∗

n−1 of the word we obtained,
and derive snsnsn−1s

∗
n−1s

∗
n−1 = snsns∗

n = sn+1. This concludes our proof: we
derived, starting with sw, an infinite sequence of prefixes of s.
�

4 Finite Words: Algorithms

In this section, we need the following immediate extension of Lemma 1.

Lemma 2. Let w ∈ Σ∗ be a word, and consider two factors of this word w[i1..j1]
and w[i2..j2], such that i1 ≤ i2 ≤ j2 ≤ j1. If w ∈ SSC ∗(w[i2..j2]) then w ∈
SSC ∗(w[i1..j1]).

Prefix-Suffix Square Completion 155

The following lemma states that we can construct efficiently a data structure
providing insight in the structure of the squares occurring inside a word.

Lemma 3. Given a word w of length n we can compute in O(n) time the values

MinRightEnd [i]=min
{

j | ∃ w[�..j] a square, such that � ≤ i < � +
j − � + 1

2

}

.

Note that MinRightEnd [i] denotes the minimum position j > i such that there
exists a square ending on position j, whose first half (that is, the square’s left
root) contains position i.

Alternatively, we can compute in linear time an array

MaxLeftEnd [i] = max{� | ∃ w[�..j] a square, such that � +
j − � + 1

2
≤ i ≤ j}.

MaxLeftEnd [i] is the maximum position � < i such that there exists a square
starting on position �, whose second half (i.e., right root) contains position i.

These two arrays will be used in the following way. The array MinRightEnd
(respectively, MaxLeftEnd) tells us that from a factor w[i + 1..j] with j ≥
MinRightEnd [i] (respectively, a factor w[j..i − 1] with j ≤ MaxLeftEnd [i]) we
can generate w[i′..j] (respectively, w[j..i′]) for some i′ ≤ i (respectively, i′ ≥ i);
moreover, from a factor w[i+1..j′] with j′ < MinRightEnd [i] we cannot generate
any factor w[i′..j′] (respectively, from w[j′..i − 1] with j′ > MaxLeftEnd [i] we
cannot generate w[j′..i′]) with i′ ≤ i (respectively, i′ ≥ i).

We can now move on to the main results of this section.

Theorem 1. Given a word w of length n we can identify the minimum i ≤ n
such that w ∈ SSC ∗(w[1..i]).

Proof. For each 1 ≤ i ≤ n, let L[i] be 1 if w ∈ SSC ∗(w[1..i]) and 0 otherwise.
We show how to compute the values of the array L[·].

We first compute all the runs of the input word in linear time. We sort the
runs with respect to their ending position; as these ending positions are between
1 and n, and we have O(n) runs, we can clearly do this sorting in linear time,
using, e.g., count sort.

Now, we observe that if there is a square w[i..i+2�−1] then, if L[i+2�−1] = 1,
we have L[j] = 1, for all j such that i + � − 1 ≤ j ≤ i + 2� − 2, as well. Indeed,
from w[1..j] we can obtain in one suffix square completion step w[1..i + 2� − 1],
if i + � − 1 ≤ j ≤ i + 2� − 2, and then from w[1..i + 2� − 1] we can obtain
w. Generally, if w[i..j] is a maximal run of period �, and L[j] = 1 then, for all
i + � − 1 ≤ k ≤ j − 1, we have L[j] = 1. On the other hand, if L[j] = 1, then j
must necessarily fall inside a run of w.

Based on the previous observations, and on Lemma 1, we get that the
sequence of 1 values in the array L forms, in fact, a contiguous non-empty suffix
of this array. It is, thus, enough to know the starting point of this suffix.

We are now ready to present the general approach we use in our algorithm.
As a first step in our algorithm, we set L[n] = 1 as w ∈ SSC ∗(w) clearly holds.

156 M. Dumitran and F. Manea

Also, during the computation, we maintain the value � of the leftmost position
we discovered so far such that L[�] = 1; initially � = n. We now go through all
positions of w from n to 1 in decreasing order. When we reach some position j
of the word w, for every maximal run r = w[i..j] of period p we test whether
i + p − 1 < �; if so, we update � and set � = i + p − 1.

After this traversal of the word, we make L[i] = 1 for all i ≥ �. It is clear
that our algorithm runs in linear time.
�
There are words (for example an) which can be derived by prefix-suffix com-
pletion from all their factors. However, by Lemma 2, given a word w, for each
position i of w where a factor generating w starts, there is a minimum ji ≥ i such
that w ∈ PSC ∗(w[i..ji]); then, for all j ≥ ji we have that w ∈ PSC ∗(w[i..j]).
Therefore, we are interested in computing for each position of a word, the short-
est factors starting there, from which w can be derived.

Theorem 2. Given a word w of length n, we can identify in O(n) time the
shortest factor w[i..ji] such that w ∈ SSC∗(w[i..j]) for all i ≤ n.

Proof. We start by computing the arrays MinRightEnd and MaxLeftEnd and
preprocess them so that we can answer range maximum and, respectively, mini-
mum queries on their ranges in constant time. For the reminder of the demonstra-
tion we will write RMQ(i, k) for the minimum value among MaxLeftEnd [i..k] =
{MaxLeftEnd [i],MaxLeftEnd [i + 1], . . . ,MaxLeftEnd [k]} and posRMQ(i, k) for
respective position of that minimum value (if there are more positions with the
same value we will consider the rightmost).

Our approach will be to find for each i the value of ji defined as above. By
Lemma 2 it follows that j1 ≤ j2 ≤ . . . ≤ jn−1 ≤ jn.

We start with computing j1, using the algorithm in Theorem 1. We then
explain how to compute j2. Note that a sufficient condition for w ∈ w[2..j1] is
that MinRightEnd [1] ≤ j1. Indeed, if there is a square that starts on position 1
and finishes before or on j1, then we can derive w[1..j1] from w[2..j1] in one
prefix square completion step, and, thus, we can derive w from w[2..j1]. This
means that we can set, in that case, j2 = j1. The condition is not necessary, as
there could be several suffix square completion operations doable starting from
w[2 . . . j1] that would expand this factor to w[2 . . . p] with p ≥ MinRightEnd [1];
so we could start by applying these completions first, and then derive w[1..p], and
then do the completions that allow us to construct w. However, we can easily test
whether this is the case. More precisely, if RMQ(j1,MinRightEnd [1]) ≥ 2 then
each position j with j1 ≤ j ≤ MinRightEnd [1] is contained in a second half of a
square that starts at least on position 2. Thus, by successive suffixes completions
we can obtain, in order, longer and longer factors w[2..m] that contain position
j, for each j1 ≤ j ≤ MinRightEnd [1]. In the end, we get a factor w[2..m] that
contains MinRightEnd [1]; we then derive w[1..m] and from this one we can derive
the entire w. So, also in this case, we can simply set j2 = j1. If this is not the
case, then we set j2 = posRMQ(j1,MinRightEnd [1]). Indeed, we could not derive
a factor that contains 1 from any factor that does not contain MinRightEnd [1],
and, in order to produce MinRightEnd [1] from a factor that starts on 2, we

Prefix-Suffix Square Completion 157

must be able to derive factors containing all the positions j between j1 and
MinRightEnd [1] with MinRightEnd [j] = 1 (otherwise, we could not derive any
factor covering these positions from smaller factors of our word).

Further, we consider the case where we know j1, . . . ji−1 and want to compute
ji. We first verify if MinRightEnd [i − 1] ≤ ji−1. Just like above, this means that
we could derive w[j..ji−1] with j ≤ i − 1 from w[i..ji−1]; then we could continue
and derive the whole w. In this case we simply set ji = ji−1 and continue with
the computation of ji+1.

Secondly, we test whether RMQ(ji−1,MinRightEnd [i − 1]) ≥ i. If this is the
case, we set ji = ji−1, just like in the case when i = 2. Indeed, we can first
obtain w[i..p] for some p ≥ MinRightEnd [i − 1] from w[i..ji−1]; then we obtain
w[i − 1..p] in one step, and from this factor we can derive w in multiple steps.

On the other hand, if RMQ(ji−1,MinRightEnd [i]) < i then we cannot
proceed as above. Let � = posRMQ(ji−1,MinRightEnd [i]). We keep updating
� = posRMQ(�,MinRightEnd [i]) while RMQ(�,MinRightEnd [i]) < i. At the
end of this while cycle, � will give us the rightmost position j between ji−1 and
MinRightEnd [i]] such that any square that contains j in the second half starts on
a position before i. So, basically, it is impossible to derive a factor that contains
� from a factor starting on i: to obtain � we need a factor that contains (at least)
i−1, while to obtain i−1 we need a factor that ends after �. Thus, we set ji = �.
It is immediate that w can be derived from w[i..ji].

Repeating this process for all i, we compute correctly all the values ji as
defined in the statement.

To compute the complexity of this algorithm, it is enough to evaluate the
time needed to compute ji. Clearly, when computing ji we execute O(ji − ji−1)
RMQ and posRMQ queries and a constant number of other comparisons. Hence,
our algorithm runs in linear time.
�
A direct consequence of the previous theorem is that we can decide in linear time
whether a shorter word generates a longer word by iterated prefix-suffix square
completion.

Theorem 3. Given two words w and x, with |x| < |w| = n, we can decide in
O(n) time whether w ∈ PSC ∗(x).

Proof. We first run a linear time pattern matching algorithm (e.g., the Knuth-
Morris-Pratt algorithm [16]) to locate all the occurrences of x in w. Then we
run the algorithm from the proof of Theorem 2 to find, for each position i of w,
the shortest factor w[i..ji] such that w ∈ PSC ∗(w[i..ji]). Finally, we just have
to check whether one of these factors is contained in an occurrence of x starting
at the same position.
�

5 Future Work

There are several directions in which the results presented in this paper could
be extended. One direction that seems very interesting to us is to see which is

158 M. Dumitran and F. Manea

the minimum exponent of a repetition avoidable by an infinite word constructed
by iterated (prefix-)suffix duplication. We saw that we can construct words that
avoid cubes, and every such word contains squares. Is it the same case as for
prefix-suffix square completion, and we can avoid any power greater than two?

Most of the language theoretic results obtained for prefix-suffix duplication
can be immediately replicated for prefix-suffix square completion. However, it is
not immediate whether the language of finite words obtained by iterated prefix-
suffix square completion from a single word remains semi-linear. It would be
interesting to settle this fact. Also, a thorough study of the languages of finite
words obtained by iterated prefix-suffix square completion from special sets of
initial words (singleton sets, finite sets, regular sets, etc.) would be interesting.

Finally, it would be interesting to check whether our algorithms can be easily
extended to measure the prefix-suffix square completion distance between two
words: what is the minimum number of steps of square completion needed to
obtain a word from one of its factors.

References

1. Garćıa-López, J., Manea, F., Mitrana, V.: Prefix-suffix duplication. J. Comput.
Syst. Sci. 80(7), 1254–1265 (2014)

2. Dumitran, M., Gil, J., Manea, F., Mitrana, V.: Bounded prefix-suffix duplica-
tion. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 176–187.
Springer, Heidelberg (2014)

3. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl.,
Christiania 7, 1–22 (1906)

4. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Skrifter I. Mat.-Nat. Kl., Christiania 1, 1–67 (1912)

5. Lothaire, M.: Comb. Words. Cambridge University Press, Cambridge (1997)
6. Allouche, J., Shallit, J.O.: Automatic Sequences - Theory, Applications, General-

izations. Cambridge University Press, Cambridge (2003)
7. Damanik, D.: Local symmetries in the period-doubling sequence. Discrete Appl.

Math. 100(1–2), 115–121 (2000)
8. Currie, J.D., Rampersad, N., Saari, K., Zamboni, L.Q.: Extremal words in morphic

subshifts. Discrete Math. 322, 53–60 (2014)
9. Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. Integers Electron. J.

Comb. Number Theor. 11B(A6), 1–40 (2011)
10. Hall, M.: Generators and Relations in Groups - The Burnside Problem. Lectures

on Modern Mathematics, vol. 2. Wiley, New York (1964). 42–92
11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.

J. ACM 53, 918–936 (2006)
12. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,

Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

14. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of FOCS, pp. 596–604 (1999)

Prefix-Suffix Square Completion 159

15. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new
characterization of maximal repetitions by Lyndon trees. In: Proceedings of SODA,
pp. 562–571 (2015)

16. Knuth Jr., D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

Square-Density Increasing Mappings

Florin Manea1 and Shinnosuke Seki4,3,2(B)

1 Department of Computer Science, Christian-Albrechts-Universität zu Kiel,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany

flm@informatik.uni-kiel.de
2 Department of Computer Science, Aalto University, P. O. Box 15400,

00076 Aalto, Finland
3 Helsinki Institute for Information Technology (HIIT), Espoo, Finland

4 Department of Communication Engineering and Informatics,
University of Electro-Communications,

1-5-1, Chofugaoka, Chofu, Tokyo 1828585, Japan
s.seki@uec.ac.jp

Abstract. The square conjecture claims that the number of distinct
squares, factors of the form xx, in a word is at most the length of the
word. Being associated with it, it is also conjectured that binary words
have the largest square density. That is, it is sufficient to solve the square
conjecture for words over binary alphabet. We solve this subsidiary con-
jecture affirmatively, or more strongly, we prove the irrelevance of the
alphabet size in solving the square conjecture, as long as the alphabet is
not unary. The tools we employ are homomorphisms with which one can
convert an arbitrary word into a word with strictly larger square density
over an intended alphabet.

1 Introduction

Let Σ be an alphabet and Σ∗ be the set of all words over Σ. Let w ∈ Σ∗. By
|w|, we denote its length. Let

Sq(w) = {uu | w = xuuy for some x, y ∈ Σ∗ with w �= xy}

be the set of all squares occurring in w. Its size, denoted by #Sq(w), has been
conjectured to be upper-bounded by the length of w [1].

Conjecture 1 (Square Conjecture). For any nonnegative integer n ≥ 0, a word of
length n contains at most n distinct squares.

This conjecture was considered in a series of papers so far, and the upper
bound on #Sq(w) was improved over the years. Already in [1] it was shown that
for a word w of length n we have #Sq(w) ≤ 2n. A simpler proof of this result

F. Manea—His work is in part supported by the DFG grant 596676.
S. Seki—His work is in part supported by the Academy of Finland, Postdoctoral
Researcher Grant 13266670/T30606.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 160–169, 2015.
DOI: 10.1007/978-3-319-23660-5 14

Square-Density Increasing Mappings 161

was given in [2]; this upper-bound was further improved by Ilie to #Sq(w) ≤
2n − log n [3]. The best upper bound known so far is shown in [4], where it is
shown that #Sq(w) ≤ 11n

6 .
A slightly stronger conjecture is that for a word w of length n, over an

alphabet Σ with at least two letters, we have #Sq(w) ≤ n − |Σ| (see [5]).
Essentially, this conjecture is supported by the fact that the known examples of
words with a large number of distinct squares are always binary. For instance,
an infinite word, over the binary alphabet Σ2 = {a, b}, whose finite factors have
a relatively large number of distinct squares compared to their length was given
by Fraenkel and Simpson [1]:

wfs = a1ba2ba3ba2ba3ba4ba3ba4ba5ba4ba5ba6b · · · . (1)

None of its factors of length n with k letters b contain more than 2k−1
2k+2n distinct

squares. A structurally simpler infinite word that has the same property was
given in [6]:

wjms = a1ba2ba3ba4ba5ba6b · · · (2)

Inspired by the properties of the above two infinite words, in [6] an even
stronger conjecture was proposed for binary words. Let k ≥ 2. For any binary
word w ∈ Σ+

2 of length n with k b’s where k ≤ �n
2 �, we have #Sq(w) ≤

2k−1
2k+2n. As explained in [6], this conjecture does not consider words with at most
one b because they are, just like unary words, square sparse. This conjecture
was shown to hold for some classes of binary words (for instance, for words
ai0bai1b · · · aik−1baik where the exponents i1, . . . , ik are pairwise distinct, or for
words with at most 9 b’s).

Among all the words of length n for an integer n, the one(s) with largest
number of distinct squares might not be binary (see an example in [5]). It was
however widely believed that the words having the largest ratio of the number
of distinct squares on it to its length (square density) are binary. This brings us
to the following conjecture.

Conjecture 2. For a word over an arbitrary alphabet, there exists a binary word
with strictly larger square density.

Conjecture 2 will be solved affirmatively as Theorem 2. In fact, we show a much
stronger result: for a word over an arbitrary alphabet and for another alphabet
Σ with at least two letters, there exists a word over Σ with strictly larger square
density, in which every letter in Σ occurs.

There are several important consequences of this result. First of all, it shows
that if one can prove that Conjecture 1 holds for words over some fixed non-
unary alphabet Σ (e.g., for binary words), then it holds in general. Then, it shows
that no upper bound on the square density is sharp. So, once the existence of a
constant c with #Sq(w)

|w| ≤ c for any word w is proved, this inequality immediately
turns out to be strict. For instance, the upper-bound given in [4] hence implies
that there does not exist any word whose square density reaches 11

6 .

162 F. Manea and S. Seki

Moreover, our result also puts in a new light on the conjecture of [6]. If one
would be able to show that for any binary word w ∈ Σ+

2 of length n with k b’s
where k ≤ �n

2 �, we have #Sq(w) ≤ 2k−1
2k+2n, then Conjecture 1 would hold not

only for binary alphabets, but in general. Thus, the techniques of [6] might be
useful in an attack on the Square Conjecture of Fraenkel and Simpson.

The techniques we use to show Conjecture 2 are quite different from those
that were used so far in the works related to Conjecture 1. We first show that
given a binary word we can effectively construct a word over an alphabet of
size 2i, with i ≥ 2, that has exactly the same square density. Essentially, this
new word is just the image of the initial word under a carefully constructed
mapping. Using the same basic idea, but with much more complicated technical
details, we show how one can design a new mapping from an alphabet Σ to an
alphabet of size |Σ|−1 such that the image of any word under this mapping has
a strictly larger square density than the initial word. These constructions show
that Conjecture 2 holds: starting with some arbitrary word, we first produce
using the first mapping a word with the same square density over an alphabet
with at least 4 letters, and then we apply iteratively the second mapping to
decrease the size of the alphabet one by one, till we reach a binary word, while
strictly increasing, at each step, the square density of the obtained words.

This paper is organized as follows. Section 2 is for preliminaries. In Sect. 3, we
propose mappings to expand the alphabet that preserve or increase fractional-
power density in general. Using these mappings, in Sect. 4, we engineer strict
square-density increasing mappings that convert a given word into another word
over an alphabet of intended size. Section 5 concludes this paper with discussion
on future research directions.

2 Preliminaries

An alphabet is a finite set of letters. For an integer � ≥ 1, let Σ� be an alphabet
of � letters. The binary alphabet Σ2 plays a significant role in this paper; we
always let its letters be a and b. When the number of letters does not matter,
we omit the subscript and simply write Σ.

By Σ∗, we denote the set of all words over Σ, and let Σ+ = Σ∗ \ {λ}, where
λ is the empty word. Let w ∈ Σ∗ be a word. The length of w is denoted by
|w|. For a letter a ∈ Σ, |w|a denotes the number of occurrences of a in w. Let
alph(w) = {a ∈ Σ | |w|a ≥ 1}, that is, the set of letters occurring in w. If
|alph(w)| = m, then w is said to be m-ary. A factor of w is a word v ∈ Σ∗ such
that w = xvy for some x, y ∈ Σ∗; if y = λ (resp. x = λ), then the factor v is
especially called a prefix (resp. suffix) of w.

For coprime positive integers n, d, the n
d -power of a word x is defined as

x�n/d�xp for some prefix xp of x such that
⌊

n
d

⌋
+ |xp|

|x| = n
d (if such xp does not

exist, then the power is undefined). The power is denoted by xn/d. A word is a
n
d -power if it is the n

d -power of some word. For a positive rational number k ≥ 1
and a word w, by #Powk(w), we denote the number of distinct k-powers in w,
that is,

#Powk(w) =
∣
∣
{
xk ∈ Σ+

∣
∣ xk is a factor of w

}∣
∣ .

Square-Density Increasing Mappings 163

The ratio of this number to the length of w is called the k-power density of w,
and denoted by ρpow,k(w), that is, ρpow,k(w) = #Powk(w)

|w| . We collectively call
the k-power densities the fractional-power density, or more simply, fpd.

The 2-power of a word is usually called a square. As an alias of the 2-power
density, we employ the square density, or more simply, sqd. Let us use ρsq(w) as
a simpler notation of ρpow,2(w). As already mentioned in the Introduction, the
currently best upper bound on the square density is 11

6 (see [4]).
For a mapping f : Σ∗ → Σ∗, we say that f is k-power density increasing

if ρpow,k(f(w)) ≥ ρpow,k(w) holds for all words w ∈ Σ∗. It is strictly k-power
density increasing if the inequality holds strictly.

3 Fractional-Power Density Increasing Mappings
to Expand the Alphabet

3.1 Fractional-Power Density Preserving Quaternarizer

Let Σ4 = Σ2∪{c, d}. Given a binary word x ∈ Σ∗
2 , let us define a homomorphism

h1,x : Σ∗
2 → Σ∗

4 , which is parameterized by x, as:

h1,x(a) = xc
h1,x(b) = xd.

(3)

Since x is free from c or d, the next code property holds. A language L ⊆ Σ∗ is
a comma-free code if LL ∩ Σ+LΣ+ = ∅. A language L ⊆ Σ∗ is a block code if
all words in L are of the same length. For definitions and basic facts regarding
codes in general, see, e.g.,[7].

Lemma 1. For any binary word x ∈ Σ∗
2 , the set {h1,x(a), h1,x(b)} is a comma-

free block code.

Based on h1,x, we define a mapping δ1,x : Σ∗
2 → Σ∗

4 as: for a binary word w ∈ Σ∗
2 ,

δ1,x(w) = h1,x(w)x.

The subscript 1 of this mapping plays a role in explicitly stating the (loga-
rithm) of the domain size; later in Sect. 3.2 we will generalize this mapping into
a mapping from the 2i-letters alphabet to the 2i+1-letters alphabet and refer
to it by a notation with subscript i. A particular interest lies in applying to
w the self-parameterized mapping δ1,w. To this end, let us define the mapping
δ1 : Σ∗

2 → Σ∗
4 as: for w ∈ Σ∗

2 ,

δ1(w) = δ1,w(w).

Lemma 2. For any rational number k ≥ 1 and binary word w ∈ Σ∗
2 , the

quaternary word δ1(w) satisfies ρpow,k(δ1(w)) ≥ ρpow,k(w). If k ≥ 2, then
ρpow,k(δ1(w)) = ρpow,k(w).

164 F. Manea and S. Seki

Proof. For any k-power xk in w, δ1(w) contains the k-power h1,w(x)k as well
as its first |w| cyclic shifts, and these |w| + 1 k-powers are pairwise distinct due
to Lemma 1.In this way, we get that the #Powk(w) k-powers in w account for
(|w| + 1)#Powk(w) k-powers in δ1(w), and all of them are pairwise distinct due
to Lemma 1. These k-powers are of length at least |w| + 1. All the k-powers in
w also occur in δ1(w); clearly, they cannot be longer than w. Now we have

ρpow,k(δ1(w)) =
#Powk(δ1(w))

|δ1(w)|
≥ (|w| + 1)#Powk(w) + #Powk(w)

(|w| + 2)|w| = ρpow,k(w). (4)

Next, we prove that if k ≥ 2, then k-powers in δ1(w) are one of these types.
Let yk be a k-power in δ1(w). If y is free from c or d, then yk is a factor of
w, and hence, a k-power of w. Otherwise, we can let y = wscv or y = wsdv
for some suffix ws of w and v ∈ Σ∗

4 . It should suffice to analyze the case when
y = wscv. For k ≥ 2, y2 = wscvwscv is a factor of yk, and hence, a factor of
δ1(w). This implies that vws ∈ {wc,wd}∗w because δ1(w) ∈ {wc,wd}∗w. Hence,
v ∈ {wc,wd}∗wp = {h1,w(a), h1,w(b)}∗wp for the prefix wp of w that satisfies
w = wpws. Thus, yk is a cyclic shift of the h1,w-image of some k-power in w. In
conclusion, in this case, the inequality (4) turns into an equation. �
Remark 1. Since d occurs in the hx-image of b but not in that of a for any x,
if a word w is unary, then δ1(w) is binary. Lemma 2 hence implies that for any
rational number k ≥ 1, k-powers are sparser on unary words than on non-unary
words, though this is trivial at least intuitively.

In Sect. 3.2, we focus on 2-powers, that is, squares. Hence, we provide the special
case of Lemma 2 with k = 2 as an independent lemma.

Lemma 3. For any binary word w ∈ Σ∗
2 , the quaternary word δ1(w) satisfies

ρsq(δ1(w)) = ρsq(w).

Remark 2. For reference, it is worth introducing one more fpd-preserving qua-
ternarizer ξ. Given a binary word w ∈ {a, b}∗, ξ renames it using a homo-
morphism f which maps a to c and b to d, and appends f(w) to w, that is,
ξ(w) = wf(w). For any rational number k and a binary word w ∈ {a, b}∗,
we have ρpow,k(ξ(w)) = ρpow,k(w). In order to achieve the goal of this paper,
we can employ both of the quaternarizers. They differ in the frequency of the
four letters a, b, c, d in the resulting word. For ξ, we have |ξ(w)|c = |ξ(w)|a and
|ξ(w)|d = |ξ(w)|b. In contrast, on δ1(w), c and d occur quadratically less fre-
quently than a and b as:

|δ1(w)|c = |w|a
|δ1(w)|d = |w|b
|δ1(w)|a = |w|a(|w| + 1)
|δ1(w)|b = |w|b(|w| + 1).

Square-Density Increasing Mappings 165

As detailed in Remark 4 later, biased frequency of letters improves on the perfor-
mance of the strictly square-density increasing mapping we will give in Sect. 4.

3.2 Fractional-Power Density Preserving Mappings to Double
the Alphabet Size

Let us generalize the quaternarizer just proposed to a k-power density preserving
mapping from an alphabet Σ2i = {a0, a1, a2, . . . , a2i−2, a2i−1} of size 2i to an
alphabet Σ2i+1 = Σ2i ∪{a2i , a2i+1, a2i+2, . . . , a2i+1−2, a2i+1−1} of double size for
arbitrary i ≥ 1.

Given a 2i-ary word x ∈ Σ∗
2i , we define a homomorphism hi,x : Σ∗

2i → Σ∗
2i+1

as: for 0 ≤ k ≤ 2i − 1,
hi,x(ak) = xa2i+k.

This is just a generalization of (3). Lemma 1 is generalized accordingly.

Lemma 4. For any 2i-ary word x ∈ Σ∗
2i , the set {hi,x(a) | a ∈ Σ2i} is a

comma-free block code.

Based on hi,x, we define a mapping δi,x : Σ∗
2i → Σ∗

2i+1 as: for a 2i-ary word
w ∈ Σ∗

2i ,

δi,x(w) = hi,x(w)x.

For a 2i-ary word wi ∈ Σ∗
2i , let wi+1 = δi,wi

(wi).
As done in the proof of Lemma 2, we can prove that ρpow,k(wi+1) ≥

ρpow,k(wi) for k ≥ 1, or ρpow,k(wi+1) = ρpow,k(wi) if k ≥ 2.
Starting from a binary word w1 = w ∈ Σ∗

2 , we can create an infinite sequence
of words with the same square density as:

w = w1

δ1,w1−−−→ w2

δ2,w2−−−→ w3 −→ · · · −→ wi

δi,wi−−−→ wi+1 −→ · · · .

4 Strictly Square-Density Increasing Mappings

The aim of this section is to design a mapping from an arbitrary word to a binary
word that strictly increases square density, which amounts to an affirmative
solution to Conjecture 2.

The mapping is a composition of the alphabet expanding mapping proposed
in Sect. 3.2 and a strictly sqd-increasing mapping that shrinks the alphabet by
one letter, which we propose now in Sect. 4.1.

4.1 Strictly Square-Density Increasing Alphabet Downsizer

For m ≥ 3, assume that the m-ary alphabet Σm contains three letters a, b,
and c. Let us propose a strictly sqd-increasing mapping gi : Σ∗

m → (Σm \
{c})∗ such that, for all w ∈ Σ∗

m in which a, b, and c occur, the inequality

166 F. Manea and S. Seki

ρsq(w) < ρsq(gi(w)) holds. We define gi based on a homomorphism fi : Σ∗
m →

(Σm \ {c})∗ parameterized by an integer i ≥ 1, which is defined as

fi(a) = (aab)ia

fi(b) = (aab)ib

fi(c) = (aab)iab

fi(d) = (aab)id for any d ∈ Σm \ {a, b, c}.

If m = 3, then Σm contains exactly three letters a, b, and c, so the function
fi is only defined for these values. Clearly, in that case, fi(w) is a binary word,
for every word w ∈ Σ3.

The next lemma follows immediately.

Lemma 5. For any integer i ≥ 1, {hi(e) | e ∈ Σm} is suffix-free, and hence, it
is a code.

Now we define a mapping gi : Σ∗
m → Σ∗

m−1 as: for a word w ∈ Σ∗
m,

gi(w) = fi(w)(aab)i.

For an m-ary word w ∈ Σ∗
m in which a, b, and c occur, let us count distinct

squares in the resulting (m−1)-ary word gi(w). For a square x2 in w, its fi-image
fi(x)2 is a square in gi(w), and its first 3i cyclic shifts are also squares in gi(w).
In this way, we can find (3i + 1)#Sq(w) squares in gi(w), but some of them
might be identical. We show that this is not the case.

Claim. These (3i + 1)#Sq(w) squares are pairwise distinct.

Proof. Consider two squares (a1 · · · an)2, (b1 · · · bm)2 in w for some n,m ≥ 1 and
letters a1, . . . , an, b1, . . . , bm ∈ Σm. We will show that if some cyclic shifts of
their fi-images are equal, then these squares are identical, that is, n = m, and
aj = bj for all 1 ≤ j ≤ n. Hence, assume

βfi(a2) · · · fi(an)fi(a1) · · · fi(an)α = yfi(b2) · · · fi(bm)fi(b1) · · · fi(bm)x (5)

for some α, x ≤p (aab)i and β, y ∈ Σ+
m such that fi(a1) = αβ and fi(b1) = xy.

Without loss of generality, we may assume |β| ≥ |y|, and if their lengths are the
same, then |α| ≥ |x|. Being of length at most 3i, x is a suffix of fi(an)α. Then
(5) implies that (fi(b1) · · · fi(bm))2 is a factor of fi(an)(fi(a1) · · · fi(an))2.

If |β| = |y|, i.e., |α| ≥ |x|, (5) implies that x is a suffix of α, and hence,
fi(b1) is a suffix of fi(a1). Lemma 5 gives fi(a1) = fi(b1), and this derives
fi(a2) · · · fi(an)fi(a1) · · · fi(an) = fi(b2) · · · fi(bm)fi(b1) · · · fi(bm) from (5). The
code property stated in Lemma 5 decodes this equation as n = m and fi(aj) =
fi(bj) for all 1 ≤ j ≤ n. Since fi is injective, we have aj = bj for all 1 ≤ j ≤ n.

Otherwise, i.e., if |β| > |y|, α is a suffix of x since the length of the image
of a letter is either 3i + 1 or 3i + 2. Note that x is a proper suffix of fi(an)α.
Thus, there exists a nonempty prefix wp of fi(an) such that fi(an)α = wpx. Let
fi(an) = wpws for some ws. Then (5) implies

(wsfi(a1) · · · fi(an−1)wp)2 = (fi(b1) · · · fi(bm))2. (6)

Square-Density Increasing Mappings 167

This equation means that ws is a prefix of fi(b1) because |ws| ≤ 3i + 1 due
to the nonemptiness of wp. No suffix of fi(d) for any d �= a can be a prefix
of fi-images, and hence, an = a, and more strongly, ws ∈ (aab)∗a. Let ws =
(aab)ka for some 0 ≤ k < i. Now we have fi(b1) = xy ≤p (aab)kafi(a1), that is,
(aab)i ≤p (aab)ka(aab)i. Deleting the prefix (aab)k from the both sides of this
equation, however, results in the contradictory relation (aab)i−k ≤p a(aab)i.
Therefore, ws is empty. Then (6) turns into the equation (fi(a1) · · · fi(an))2 =
(fi(b1) · · · fi(bm))2. The claim has been thus proved.

Note that the squares found so far are of length at least 6i+2. Let us enumerate
shorter squares in gi(w) next. For simplicity, we assume that i is even. Since a
occurs in w, fi(a) = (aab)ia is a factor of gi(w). We claim that fi(b)(aab)i is
also a factor of gi(w). Indeed, b occurs in w and (aab)i is a prefix of the fi-image
of any letter and it is also a suffix of gi(w). These factors contain the following
3i/2 squares:

(aab)2, ((aab)2)2, ((aab)3)2, . . . , ((aab)i/2)2,
(aba)2, ((aba)2)2, ((aba)3)2, . . . , ((aba)i/2)2,
(baa)2, ((baa)2)2, ((baa)3)2, . . . , ((baa)i/2)2.

(7)

More short squares can be found in the factors fi(a)(aab)i, fi(b)(aab)i, and
fi(c)(aab)i of gi(w). The factor fi(a)(aab)i = (aab)ia(aab)i contains the follow-
ing 2i − 1 squares:

a2, (aaba)2, ((aab)2a)2, . . . , ((aab)i−1a)2,
(abaa)2, ((aba)2a)2, . . . , ((aba)i−1a)2. (8)

The second factor fi(b)(aab)i = (aab)ib(aab)i contains the following i squares:

b2, (baab)2, ((baa)2b)2, . . . , ((baa)i−1b)2. (9)

The third factor fi(c)(aab)i = (aab)iab(aab)i contains the following 2i squares:

(ab)2, (abaab)2, (ab(aab)2)2, . . . , (ab(aab)i−1)2,
(ba)2, (baaba)2, (b(aab)2a)2, . . . , (b(aab)i−1a)2. (10)

These 13i/2 − 1 short squares listed in (7)–(10) are obviously pairwise distinct.
Moreover, their length is at most 6i−2, and hence, they are strictly shorter than
the (3i + 1)#Sq(w) squares listed at the beginning.

Having found the (3i + 1)#Sq(w) + 13i/2 − 1 squares in gi(w), we obtain

ρsq(gi(w)) − ρsq(w) =
#Sq(gi(w))

|gi(w)| − #Sq(w)
|w|

≥ (3i + 1)#Sq(w) + 13i/2 − 1
(3i + 2)|w| + 3i

− #Sq(w)
|w|

=
(13|w|/2 − 3#Sq(w))i − |w|(#Sq(w) + 1)

|w|((3i + 2)|w| + 3i)
. (11)

Since ρsq(w) ≤ 2 (according to [1]), we immediately get that 13|w|/2−3#Sq(w)
is positive. Thus, for any integer i > |w|(#Sq(w)+1)

13|w|/2−3#Sq(w) , the strict inequality
ρsq(gi(w)) > ρsq(w) holds. �

168 F. Manea and S. Seki

Remark 3. Needless to say, this strictly sqd-increasing mapping does not con-
tradict the constant upper-bound on the sqd. The limit of the lowerbound given
in (11) as i approaches infinity is 13/6−ρsq(w)

|w|+1 . Since the mapping gi lengthens a
word quadratically, if we apply it iteratively as w, gi(w), gi(gi(w)), . . ., then the
improvement of square density is very likely to deteriorate rapidly and the square
density of the words obtained in this manner remains smaller than a constant
upper-bound.

Remark 4. In the first inequality of (11), we bounded |gi(w)| from above very
roughly by (3i + 2)|w| + 3i, considering the imaginable “worst” case when all
letters in w are c (among all the letters in Σm, only c is mapped to a word
of length 3i + 2, and all the others are mapped to words of length 3i + 1).
Since a and b are assumed to occur in w, |gi(w)| can be bounded from above by
(3i+2)|w|+3i−2. It can be bounded more sharply by

(
3i + 4

3

) |w|+3i because,
modulo some renaming, we can assume that c is the least frequent letter in
w. However, this would not improve in a significant way the final result of our
evaluation.

The above argument works for any m ≥ 3. Repeating it as many times as
it is necessary, it eventually produces, starting from w and going through
gi(w), gi(gi(w)), . . ., a binary word with strictly larger square density.

Thus, the next theorem holds.

Theorem 1. For any word w over a ternary or larger alphabet, there exists a
binary word u ∈ Σ∗

2 with ρsq(u) > ρsq(w).

Combining the sqd-preserving quaternarizer (Lemma 3, but only when we start
with a binary word) with the mapping used in the proof of Theorem 1, we
conclude that for any word we can effectively construct a binary word with
strictly larger square density.

Needless to say, the number of squares on a unary word is exactly (the floor
of) the half of its length, and a construction of a binary word with larger square
density is known (see, e.g., the word constructed in [6], given in the Introduction).
Conjecture 2 has been thus solved affirmatively as follows.

Theorem 2. For any word w over an arbitrary alphabet Σ, there exists a binary
word u ∈ Σ∗

2 such that ρsq(u) > ρsq(w).

Beyond this affirmative solution to the conjecture, the mappings we proposed
so far allow us to choose the size of (non-unary) alphabet for our convenience in
order to solve the square conjecture.

Theorem 3. For any word w ∈ Σ∗ and an integer m ≥ 2, there exists a word
u ∈ Σ∗ with ρsq(u) > ρsq(w) in which m distinct letters occur.

As a side comment, note that in this homomorphism-based algebraic approach
to the square conjecture, larger alphabets may be more useful because they
enable homomorphisms to embed more “micro” squares, as just exemplified by
the construction of the homomorphism fi.

Finally, note the following corollary.

Square-Density Increasing Mappings 169

Corollary 1. No upper bound on the square density is sharp.

Clearly, if we obtain a word with ρsq(w) = c, by Theorem 2 we can construct a
binary word w′ with ρsq(w′) > c.

5 Future Work

There are several directions in which this work can be continued.
On one hand, in the algebraic framework that we introduced here, solving

the following task is enough to solve the Square Conjecture.

Task 1 (Construction of a Square-Density Amplifier). Can we find a
mapping f : Σ∗ → Σ∗ for which there exists a constant c > 1, such that for all
w ∈ Σ∗, if ρsq(w) ≥ 1 then ρsq(f(w)) ≥ cρsq(w)?

On another hand, the results of Sect. 3 show that the part of our approach where
the size of the alphabet is increased can be used also when one is interested in
counting distinct k-powers inside a word. However, it would be interesting to
show an equivalent of Theorems 2 and 3 for k-powers, also when k �= 2.

Finally, it seems interesting to investigate deeper whether the fact that we
only have to show Conjecture 1 for binary words has some immediate conse-
quence. For instance, can we get better results using the techniques of [4] for
binary words? Can we develop the approach of [6] and see whether their conjec-
ture holds (even in some weaker form), thus solving the Squares Conjecture?

Acknowledgements. We appreciate fruitful discussions with James Currie at
Christian-Albrechts-University of Kiel, with Hideo Bannai and Simon Puglisi at the
University of Helsinki, and with Nataša Jonoska when she visited Aalto University.

References

1. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory Ser. A 82, 112–120 (1998)

2. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares. J.
Comb. Theory Ser. A 112(1), 163–164 (2005)

3. Ilie, L.: A note on the number of squares in a word. Theoret. Comput. Sci. 380,
373–376 (2007)

4. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discrete Appl. Math. 180, 52–69 (2015)

5. Deza, A., Franek, F., Jiang, M.: A d-step approach for distinct squares in strings. In:
Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 77–89. Springer,
Heidelberg (2011)

6. Jonoska, N., Manea, F., Seki, S.: A stronger square conjecture on binary words. In:
Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014.
LNCS, vol. 8327, pp. 339–350. Springer, Heidelberg (2014)

7. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 1, pp. 511–607. Springer, Heidelberg (1997)

Mechanical Proofs of Properties
of the Tribonacci Word

Hamoon Mousavi and Jeffrey Shallit(B)

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
hamoon.mousavi@gmail.com, shallit@uwaterloo.ca

Abstract. We implement a decision procedure for answering questions
about a class of infinite words that might be called (for lack of a bet-
ter name) “Tribonacci-automatic”. This class includes, for example, the
famous Tribonacci word T = 0102010010201 · · · , the fixed point of the
morphism 0 → 01, 1 → 02, 2 → 0. We use our decision procedure to
reprove some old results about the Tribonacci word from the literature,
such as assertions about the occurrences in T of squares, cubes, palin-
dromes, and so forth. We also obtain some new results, including on
enumeration.

1 Introduction

In several previous papers (e.g., [1,21–24,32] we have explored the ramifications
of a decision procedure for the logical theory Th(N,+, a(n)), where (a(n))n≥0

is an infinite sequence specified by a finite-state machine M . Furthermore, in
many cases we can explicitly enumerate various aspects of such sequences, such
as subword complexity [8]. Roughly speaking, given a predicate P of one or more
variables in the logical theory, the method transforms M to a new automaton
M ′ that accepts the representations of those variables making the predicate true.
The ideas are based on extensions of the logical theory Th(N,+), sometimes
called Presburger arithmetic [28,29]. See, for example, [6].

A critical point is what sort of representations are allowed. According to the
results in [5], it suffices that the representations be based on a Pisot number.
The critical point is that there must be an automaton that can perform addition
of two numbers in the appropriate representation [15,16].

In the papers mentioned above, we applied our method to the so-called k-
automatic sequences, which correspond to automata that work with the ordinary
base-k expansions of numbers. More recently, we also proved a number of new
results using Fibonacci (or “Zeckendorf”) representation [13], which is based on
writing integers as a sum of Fibonacci numbers.

It is our contention that the power of this approach has not been widely
appreciated, and that many results, previously proved using long and involved
ad hoc techniques, can be proved with much less effort by phrasing them as logi-
cal predicates and employing a decision procedure. Furthermore, many enumer-
ation questions can be solved with a similar approach. Although the worst-case

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 170–190, 2015.
DOI: 10.1007/978-3-319-23660-5 15

Mechanical Proofs of Properties of the Tribonacci Word 171

running time of the procedure is enormously large (of the form 22
...2

p(n)

where
the number of 2’s is the number of quantifier alternations), n is the size of the
polynomial, and p is a polynomial), in practice the procedure often terminates
in a reasonable time.

In this paper we discuss our implementation of an analogous algorithm for
Tribonacci representation. We use it to reprove some old results from the litera-
ture purely mechanically, as well as obtain some new results. The implementation
of the decision procedure was created by the first author. It is called Walnut, and
is available for free download at https://www.cs.uwaterloo.ca/∼shallit/papers.
html.

We have not rigorously proved the correctness of this implementation, but
it has been tested in a large number of different ways (including some results
verified with independently-written programs). In this, we are well in the tra-
dition of many other results in combinatorics on words that have been verified
with machine computations — despite a lack of formal verification of the code.
Even if the code were formally verified, one could reasonably ask for a proof of
the correctness of the verification code! We believe that publication of our code,
allowing checking by any interested reader, serves as an adequate check.

We view our work as part of a modern trend in mathematics. For other
works on using computerized formal methods to prove theorems see, for example,
[25,27].

2 Tribonacci Representation

Let the Tribonacci numbers be defined, as usual, by the linear recurrence Tn =
Tn−1 + Tn−2 + Tn−3 for n ≥ 3 with initial values T0 = 0, T1 = 1, T2 = 1. (We
caution the reader that some authors use a different indexing for these numbers.)
Here are the first few values of this sequence.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tn 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768

From the theory of linear recurrences we know that

Tn = c1α
n + c2β

n + c3γ
n

where α, β, γ are the zeros of the polynomial x3−x2−x−1. The only real zero is
α

.= 1.83928675521416113; the other two zeros are complex and are of magnitude
< 3/4. Solving for the constants, we find that c1

.= 0.336228116994941094225,
the real zero of the polynomial 44x3 − 2x − 1 = 0. It follows that Tn = c1α

n +
O(.75n). In particular Tn/Tn−1 = α + O(.41n).

It is well-known that every non-negative integer can be represented, in an
essentially unique way, as a sum of Tribonacci numbers (Ti)i≥2, subject to the

https://www.cs.uwaterloo.ca/~shallit/papers.html
https://www.cs.uwaterloo.ca/~shallit/papers.html

172 H. Mousavi and J. Shallit

constraint that no three consecutive Tribonacci numbers are used [7]. For
example, 43 = T7 + T6 + T4 + T3.

Such a representation can be written as a binary word a1a2 · · · an represent-
ing the integer

∑
1≤i≤n aiTn+2−i. For example, the binary word 110110 is the

Tribonacci representation of 43.
Let Σ2 = {0, 1}. For w = a1a2 · · · an ∈ Σ∗

2 , we define [a1a2 · · · an]T :=∑
1≤i≤n aiTn+2−i, even if a1a2 · · · an has leading zeros or occurrences of the

word 111.
By (n)T we mean the canonical Tribonacci representation for the integer n,

having no leading zeros or occurrences of 111. Note that (0)T = ε, the empty
word. The language of all canonical representations of elements of N is ε + (1 +
11)(0 + 01 + 011)∗.

Just as Tribonacci representation is an analogue of base-k representation, we
can define the notion of Tribonacci-automatic sequence as the analogue of the
more familiar notation of k-automatic sequence [2,11]. We say that an infinite
word a = (an)n≥0 is Tribonacci-automatic if there exists an automaton with
output M = (Q,Σ2, q0, δ, κ,Δ) for a coding κ such that an = κ(δ(q0, (n)T))
for all n ≥ 0. An example of a Tribonacci-automatic sequence is the infinite
Tribonacci word,

T = T0T1T2 · · · = 0102010010201 · · ·
which is generated by the following 3-state automaton (Fig. 1):

Fig. 1. Automaton generating the Tribonacci sequence

To compute Ti, we express i in canonical Tribonacci representation, and feed
it into the automaton. Then Ti is the output associated with the last state
reached (denoted by the symbol after the slash).

A basic fact about Tribonacci representation is that addition can be per-
formed by a finite automaton. To make this precise, we need to generalize our
notion of Tribonacci representation to r-tuples of integers for r ≥ 1. A repre-
sentation for (x1, x2, . . . , xr) consists of a string of symbols z over the alphabet
Σr

2 , such that the projection πi(z) over the i’th coordinate gives a Tribonacci
representation of xi. Notice that since the canonical Tribonacci representations
of the individual xi may have different lengths, padding with leading zeros will
often be necessary. A representation for (x1, x2, . . . , xr) is called canonical if
it has no leading [0, 0, . . . 0] symbols and the projections into individual coor-
dinates have no occurrences of 111. We write the canonical representation as

Mechanical Proofs of Properties of the Tribonacci Word 173

(x1, x2, . . . , xr)T . Thus, for example, the canonical representation for (9, 16) is
[0, 1][1, 0][0, 0][1, 1][0, 1].

Thus, our claim about addition in Tribonacci representation is that there
exists a deterministic finite automaton (DFA) Madd that takes input words of
the form [0, 0, 0]∗(x, y, z)T , and accepts if and only if x+y = z. Thus, for example,
Madd accepts [1, 0, 1][0, 1, 1][0, 0, 0] since the three words obtained by projection
are 100, 010, and 110, which represent, respectively, 4, 2, and 6 in Tribonacci
representation.

Since this automaton does not appear to have been given explicitly in the
literature and it is essential to our implementation, we give it below in Table 1.
This automaton actually works even for non-canonical expansions having three
consecutive 1’s. The initial state is state 1. The state 0 is a “dead state” that
can safely be ignored.

We briefly sketch a proof of the correctness of this automaton. States can
be identified with certain sequences, as follows: if x, y, z are the identical-length
words arising from projection of a word that takes Madd from the initial state 1
to the state t, then t is identified with the integer sequence ([x0n]T + [y0n]T −
[z0n]T)n≥0. State 0 corresponds to sequences that can never lead to 0, as they
are too positive or too negative.

When we intersect this automaton with the appropriate regular language
(ruling out input triples containing 111 in any coordinate), we get an automaton
with 149 states accepting 0∗(x, y, z)T such that x + y = z.

Another basic fact about Tribonacci representation is that, for canonical
representations containing no three consecutive 1’s or leading zeros, the radix
order on representations is the same as the ordinary ordering on N. It follows
that a very simple automaton can, on input (x, y)T , decide whether x < y.

Putting this all together, we get the following decision procedure:

Procedure 1 (Decision Procedure for Tribonacci-Automatic Words)
Input:

– m,n ∈ N;
– m DFA’s generating the Tribonacci-automatic words w1,w2, . . . ,wm;
– a first-order proposition with n free variables ϕ(v1, v2, . . . , vn) using constants

and relations definable in Th(N, 0, 1,+) and indexing into w1,w2, . . . ,wm.

Output: DFA with input alphabet Σn
2 accepting

{(k1, k2, . . . , kn)T : ϕ(k1, k2, . . . , kn) holds}.

3 Mechanical Proofs of Properties of the Infinite
Tribonacci Word

Recall that a word x, whether finite or infinite, is said to have period p if x[i] =
x[i + p] for all i for which this equality is meaningful. Thus, for example, the
English word alfalfa has period 3. The exponent of a finite word x, written
exp(x), is |x|/P , where P is the smallest period of x. Thus exp(alfalfa) = 7/3.

174 H. Mousavi and J. Shallit

Table 1. Transition table for Madd for Tribonacci addition

q [0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1] acc/rej

0 0 0 0 0 0 0 0 0 0

1 1 2 3 1 3 1 0 3 1

2 4 0 5 4 5 4 6 5 0

3 0 7 0 0 0 0 0 0 0

4 0 0 0 0 0 0 8 0 0

5 9 0 10 9 10 9 11 10 0

6 12 13 0 12 0 12 0 0 1

7 0 14 0 0 0 0 0 0 0

8 0 0 9 0 9 0 10 9 0

9 0 0 4 0 4 0 5 4 0

10 2 15 1 2 1 2 3 1 0

11 7 16 0 7 0 7 0 0 1

12 14 17 0 14 0 14 0 0 1

13 18 19 20 18 20 18 21 20 0

14 3 1 0 3 0 3 0 0 0

15 0 0 0 0 0 0 22 0 0

16 20 18 21 20 21 20 0 21 1

17 5 4 6 5 6 5 23 6 1

18 0 0 8 0 8 0 24 8 0

19 0 0 0 0 0 0 25 0 0

20 10 9 11 10 11 10 0 11 1

21 0 12 0 0 0 0 0 0 0

22 0 0 26 0 26 0 27 26 0

23 0 28 0 0 0 0 0 0 0

24 13 29 12 13 12 13 0 12 0

25 0 0 0 0 0 0 26 0 0

26 0 0 0 0 0 0 4 0 0

27 15 0 2 15 2 15 1 2 0

28 0 30 0 0 0 0 0 0 0

29 0 0 31 0 31 0 32 31 0

30 0 3 0 0 0 0 0 0 0

31 0 0 0 0 0 0 33 0 0

32 26 0 27 26 27 26 34 27 0

33 0 0 0 0 0 0 9 0 0

34 16 35 7 16 7 16 0 7 0

35 31 0 32 31 32 31 36 32 0

36 37 38 39 37 39 37 0 39 1

37 17 40 14 17 14 17 0 14 0

38 19 0 18 19 18 19 20 18 0

39 0 41 0 0 0 0 0 0 1

40 0 0 22 0 22 0 42 22 0

41 21 20 0 21 0 21 0 0 0

42 38 43 37 38 37 38 39 37 0

43 0 0 0 0 0 0 31 0 0

Mechanical Proofs of Properties of the Tribonacci Word 175

If x is an infinite word with a finite period, we say it is ultimately periodic.
An infinite word x is ultimately periodic if and only if there are finite words u, v
such that x = uvω, where vω = vvv · · · .

A nonempty word of the form xx is called a square, and a nonempty word of
the form xxx is called a cube. More generally, a nonempty word of the form xn

is called an n’th power. By the order of a square xx, cube xxx, or n’th power
xn, we mean the length |x|.

The infinite Tribonacci word T = 0102010 · · · = T0T1T2 · · · can be described
in many different ways. In addition to our definition in terms of automata, it
is also the fixed point of the morphism ϕ(0) = 01, ϕ(1) = 02, and ϕ(1) =
0. This word has been studied extensively in the literature; see, for example,
[3,9,14,17,30,31,33,34].

It can also be described as the limit of the finite Tribonacci words (Yn)n≥0,
defined as follows:

Y0 = ε Y1 = 2 Y2 = 0
Y3 = 01 Yn = Yn−1Yn−2Yn−3 forn ≥ 4.

Note that Yn, for n ≥ 2, is the prefix of length Tn of T.
In the next subsection, we use our implementation to prove a variety of results

about repetitions in T.

3.1 Repetitions

It is known that all strict epistandard words (or Arnoux-Rauzy words), are not
ultimately periodic (see, for example, [19]). Since T is in this class, we have the
following known result which we can reprove using our method.

Theorem 2. The word T is not ultimately periodic.

Proof. We construct a predicate asserting that the integer p ≥ 1 is a period of
some suffix of T:

(p ≥ 1) ∧ ∃n ∀i ≥ n T[i] = T[i + p].

(Note: unless otherwise indicated, whenever we refer to a variable in a predicate,
the range of the variable is assumed to be N = {0, 1, 2, . . .}.) From this predicate,
using our program, we constructed an automaton accepting the language

L = 0∗ {(p)T : (p ≥ 1) ∧ ∃n ∀i ≥ n T[i] = T[i + p]}.

This automaton accepts the empty language, and so it follows that T is not
ultimately periodic.

Here is the log of our program:

p >= 1 with 5 states, in 426ms

i >= n with 13 states, in 3ms

i + p with 150 states, in 31ms

176 H. Mousavi and J. Shallit

TR[i] = TR[i + p] with 102 states, in 225ms

i >= n => TR[i] = TR[i + p] with 518 states, in 121ms

Ai i >= n => TR[i] = TR[i + p] with 4 states, in 1098ms

En Ai i >= n => TR[i] = TR[i + p] with 2 states, in 0ms

p >= 1 & En Ai i >= n => TR[i] = TR[i + p] with 2 states, in 1ms

overall time: 1905ms

The largest intermediate automaton during the computation had 5999 states.
A few words of explanation are in order: here “T” refers to the sequence T,

and “E” is our abbreviation for ∃ and “A” is our abbreviation for ∀. The symbol
“=>” is logical implication, and “&” is logical and. ��

From now on, whenever we discuss the language accepted by an automaton,
we will omit the 0∗ at the beginning.

We now turn to repetitions. As a particular case of [17, Theorem. 6.31 and
Example 7.6, p. 130] and [18, Example 6.21] we have the following result, which
we can reprove using our method.

Theorem 3. T contains no fourth powers.

Proof. A natural predicate for the orders of all fourth powers occurring in T:

(n > 0) ∧ ∃i ∀t < 3n T[i + t] = T[i + n + t].

However, this predicate could not be run on our prover. It runs out of space
while trying to determinize an NFA with 24904 states.

Instead, we make the substitution j = i + t, obtaining the new predicate

(n > 0) ∧ ∃i ∀j ((j ≥ i) ∧ (j < i + 3n)) =⇒ T[j] = T[j + n].

The resulting automaton accepts nothing, so there are no fourth powers.
Here is the log.

n > 0 with 5 states, in 59ms

i <= j with 13 states, in 15ms

3 * n with 147 states, in 423ms

i + 3 * n with 799 states, in 4397ms

j < i + 3 * n with 1103 states, in 4003ms

i <= j & j < i + 3 * n with 1115 states, in 111ms

j + n with 150 states, in 18ms

TR[j] = TR[j + n] with 102 states, in 76ms

i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 6550 states, in 1742ms

Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 4 states, in 69057ms

Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

n > 0 & Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

overall time: 79901ms

The largest intermediate automaton in the computation had 86711 states. ��
Next, we move on to a description of the orders of squares occurring in T. We
reprove a result of Glen [17, Sect. 6.3.5].

Mechanical Proofs of Properties of the Tribonacci Word 177

Theorem 4. All squares in T are of order Tn or Tn + Tn−1 for some n ≥ 2.
Furthermore, for all n ≥ 2, there exists a square of order Tn and Tn + Tn−1 in T.

Proof. A natural predicate for the lengths of squares is

(n > 0) ∧ ∃i ∀t < n T[i + t] = T[i + n + t].

but when we run our solver on this predicate, we get an intermediate NFA of
4612 states that our solver could not determinize in the allotted space. The
problem appears to arise from the three different variables indexing T . To get
around this problem, we rephrase the predicate, introducing a new variable j
that represents i + t. This gives the predicate

(n > 0) ∧ ∃i ∀j ((i ≤ j) ∧ (j < i + n)) =⇒ T[j] = T[j + n].

and the following log

n > 0 with 5 states, in 59ms

i <= j with 13 states, in 15ms

3 * n with 147 states, in 423ms

i + 3 * n with 799 states, in 4397ms

j < i + 3 * n with 1103 states, in 4003ms

i <= j & j < i + 3 * n with 1115 states, in 111ms

j + n with 150 states, in 18ms

TR[j] = TR[j + n] with 102 states, in 76ms

i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 6550 states, in 1742ms

Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 4 states, in 69057ms

Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

n > 0 & Ei Aj i <= j & j < i + 3 * n => TR[j] = TR[j + n] with 2 states, in 0ms

overall time: 79901ms

The resulting automaton accepts exactly the language 10∗+110∗. The largest
intermediate automaton had 26949 states. ��
We can easily get more information about the square occurrences in T. By
modifying our previous predicate, we get

(n > 0) ∧ ∀j ((i ≤ j) ∧ (j < i + n)) =⇒ T[j] = T[j + n]

which encodes those (i, n) pairs such that there is a square of order n beginning
at position i of T.

This automaton has only 10 states and efficiently encodes the orders and
starting positions of each square in T. During the computation, the largest
intermediate automaton had 26949 states. Thus we have proved the following
new result:

Theorem 5. The language

{(i, n)T : there is a square of order n beginning at position i in T}

is accepted by the automaton in Fig. 2.

178 H. Mousavi and J. Shallit

Fig. 2. Automaton accepting orders and positions of all squares in T

Next, we examine the cubes in T. Evidently Theorem4 implies that any cube
in T must be of order Tn or Tn + Tn−1 for some n. However, not every order
occurs. We thus recover the following result of Glen [17, Sect. 6.3.7].

Theorem 6. The cubes in T are of order Tn for n ≥ 5, and a cube of each such
order occurs.

Proof. We use the predicate

(n > 0) ∧ ∃i ∀j ((i ≤ j) ∧ (j < i + 2n)) =⇒ T[j] = T[j + n].

When we run our program, we obtain an automaton accepting exactly the lan-
guage (1000)0∗, which corresponds to Tn for n ≥ 5. The largest intermediate
automaton had 60743 states. ��

4 Enumeration

Mimicking the base-k ideas in [8], we can also mechanically enumerate many
aspects of Tribonacci-automatic sequences. We do this by encoding the factors
having the property in terms of paths of an automaton. This gives the concept
of Tribonacci-regular sequence. Roughly speaking, a sequence (a(n))n≥0 taking
values in N is Tribonacci-regular if the set of sequences

{(a([xw]T)w∈Σ∗
2

: x ∈ Σ∗
2}

is finitely generated. Here we assume that a([xw]T) evaluates to 0 if xw con-
tains the word 111. Every Tribonacci-regular sequence (a(n))n≥0 has a linear
representation of the form (u, μ, v) where u and v are row and column vectors,
respectively, and μ : Σ2 → N

d×d is a matrix-valued morphism, where μ(0) = M0

and μ(1) = M1 are d × d matrices for some d ≥ 1, such that

a(n) = u · μ(x) · v

whenever [x]T = n. The rank of the representation is the integer d.
Recall that if x is an infinite word, then the subword complexity function

ρx(n) counts the number of distinct factors of length n. Then, in analogy with
[8, Theorem. 27], we have

Mechanical Proofs of Properties of the Tribonacci Word 179

Theorem 7. If x is Tribonacci-automatic, then the subword complexity function
of x is Tribonacci-regular.

Using our implementation, we can obtain a linear representation of the subword
complexity function for T. An obvious choice is to use the language

{(n, i)T : ∀j < i T[i..i + n − 1] �= T[j..j + n − 1]},

based on a predicate that expresses the assertion that the factor of length n
beginning at position i has never appeared before. Then, for each n, the number
of corresponding i gives ρT(n).

However, this does not run to completion in our implementation in the allot-
ted time and space. Instead, let us substitute u = j + t and k = i − j to get the
predicate

∀k (((k > 0) ∧ (k ≤ i)) =⇒ (∃u ((u ≥ j) ∧ (u < n + j) ∧ (T[u] �= T[u + k])))).

This predicate is close to the upper limit of what we can compute using our pro-
gram. The largest intermediate automaton had 1230379 states and the program
took 12323.82 s, giving us a linear representation (u, μ, v) rank 22. When we
minimize this using the algorithm in [4] we get the rank-12 linear representation

u = [1 0 0 0 0 0 0 0 0 0 0 0]

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

−1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

−1 0 1 0 0 0 1 0 0 0 0 0
−2 0 1 0 1 0 1 0 0 0 0 0
−3 0 2 0 1 0 1 0 0 0 0 0
−4 0 2 0 2 0 1 0 0 0 0 0
−5 0 2 0 2 0 2 0 0 0 0 0
−6 0 2 0 3 0 2 0 0 0 0 0
−10 0 3 0 4 0 4 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

v′ = [1 3 5 7 9 11 15 17 21 29 33 55]R.

Comparing this to an independently-derived linear representation of the func-
tion 2n+1, we see they are the same. From this we get a well-known result (see,
e.g., [12, Theorem 7]):

Theorem 8. The subword complexity function of T is 2n + 1.

We now turn to computing the exact number of square occurrences in the finite
Tribonacci words Yn.

180 H. Mousavi and J. Shallit

To solve this using our approach, we first generalize the problem to consider
any length-n prefix of Yn, and not simply the prefixes of length Tn.

The predicate represents the number of distinct squares in T[0..n − 1]:

Lds := {(n, i, j)T : (j ≥ 1) and (i+ 2j ≤ n) and T[i..i+ j − 1] = T[i+ j..i+ 2j − 1]

and ∀i′ < i T[i′..i′ + 2j − 1] �= T[i..i + 2j − 1]}.

This predicate asserts that T[i..i+2j−1] is a square occurring in T[0..n−1] and
that furthermore it is the first occurrence of this particular word in T[0..n − 1].

This represents the total number of occurrences of squares in T[0..n − 1]:

Ldos := {(n, i, j)T : (j ≥ 1) and (i+2j ≤ n) and T[i..i+ j − 1] = T[i+ j..i+2j − 1]}.

This predicate asserts that T[i..i + 2j − 1] is a square occurring in T[0..n − 1].
Unfortunately, applying our enumeration method to this suffers from the

same problem as before, so we rewrite it as

(j ≥ 1) ∧ (i + 2j ≤ n) ∧ ∀u ((u ≥ i) ∧ (u < i + j)) =⇒ T[u] = T[u + j]

When we compute the linear representation of the function counting the number
of such i and j, we get a linear representation of rank 63. Now we compute the
minimal polynomial of M0 which is (x − 1)2(x2 + x + 1)2(x3 − x2 − x − 1)2.
Solving a linear system in terms of the roots (or, more accurately, in terms of
the sequences 1, n, Tn, Tn−1, Tn−2, nTn, nTn−1, nTn−2) gives

Theorem 9. The total number of occurrences of squares in the Tribonacci word
Yn is

c(n) =
n

22
(9Tn − Tn−1 − 5Tn−2) +

1
44

(−117Tn + 30Tn−1 + 33Tn−2) + n − 7
4

for n ≥ 5.

In a similar way, we can count the occurrences of cubes in the finite Tribonacci
word Yn. Here we get a linear representation of rank 46. The minimal polynomial
for M0 is x4(x3 − x2 − x − 1)2(x2 + x + 1)2(x − 1)2. Using analysis exactly like
the square case, we easily find

Theorem 10. Let C(n) denote the number of cube occurrences in the Tribonacci
word Yn. Then for n ≥ 3 we have

C(n) =
1
44

(Tn + 2Tn−1 − 33Tn−2) +
n

22
(−6Tn + 8Tn−1 + 7Tn−2) +

n

6

− 1
4
[n ≡ 0 (mod 3)] +

1
12

[n ≡ 1 (mod 3)] − 7
12

[n ≡ 2 (mod 3)].

Here [P] is Iverson notation, and equals 1 if P holds and 0 otherwise.

Mechanical Proofs of Properties of the Tribonacci Word 181

5 Additional Results

Next, we encode the orders and positions of all cubes. We build a DFA accepting
the language

{(i, n)T : (n > 0) ∧ ∀j ((i ≤ j) ∧ (j < i + 2n)) =⇒ T[j] = T[j + n]}.

Theorem 11. The language

{(n, i)T : there is a cube of order n beginning at position i in T}
is accepted by the automaton in Fig. 3.

Fig. 3. Automaton accepting orders and positions of all cubes in T

We also computed an automaton accepting those pairs (p, n) such that there is
a factor of T having length n and period p, and n is the largest such length
corresponding to the period p. However, this automaton has 266 states, so we
do not give it here.

5.1 Palindromes

We now turn to a characterization of the palindromes in T. Once again it turns
out that the predicate we previously used in [13], namely,

∃i ∀j < n T[i + j] = T[i + n − 1 − j],

resulted in an intermediate NFA of 5711 states that we could not successfully
determinize.

Instead, we used two equivalent predicates. The first accepts n if there is an
even-length palindrome, of length 2n, centered at position i:

∃i ≥ n ∀j < n T[i + j] = T[i − j − 1].

The second accepts n if there is an odd-length palindrome, of length 2n + 1,
centered at position i:

∃i ≥ n ∀j (1 ≤ j ≤ n) =⇒ T[i + j] = T[i − j].

Theorem 12. There exist palindromes of every length ≥ 0 in T.

Proof. For the first predicate, our program outputs the automaton below. It
clearly accepts the Tribonacci representations for all n (Fig. 4).

182 H. Mousavi and J. Shallit

Fig. 4. Automaton accepting lengths of palindromes in T

The log of our program follows.

i >= n with 13 states, in 34ms

j < n with 13 states, in 8ms

i + j with 150 states, in 53ms

i - 1 with 7 states, in 155ms

i - 1 - j with 150 states, in 166ms

TR[i + j] = TR[i - 1 - j] with 664 states, in 723ms

j < n => TR[i + j] = TR[i - 1 - j] with 3312 states, in 669ms

Aj j < n => TR[i + j] = TR[i - 1 - j] with 24 states, in 5782274ms

i >= n & Aj j < n => TR[i + j] = TR[i - 1 - j] with 24 states, in 0ms

Ei i >= n & Aj j < n => TR[i + j] = TR[i - 1 - j] with 4 states, in 6ms

overall time: 5784088ms

The largest intermediate automaton had 918871 states. This was a fairly
significant computation, taking about two hours’ CPU time on a laptop.

We omit the details of the computation for the odd-length palindromes, which
are quite similar. ��
Remark 1. A. Glen has pointed out to us that this follows from the fact that T
is episturmian and hence rich, so a new palindrome is introduced at each new
position in T .

We could also characterize the positions of all nonempty palindromes. To
illustrate the idea, we generated an automaton accepting (i, n) such that
T[i − n..i + n − 1] is an (even-length) palindrome (Fig. 5).

Fig. 5. Automaton accepting orders and positions of all nonempty even-length palin-
dromes in T

The prefixes are factors of particular interest. Let us determine which prefixes
are palindromes:

Mechanical Proofs of Properties of the Tribonacci Word 183

Theorem 13. The prefix T[0..n − 1] of length n is a palindrome if and only if
n = 0 or (n)T ∈ 1 + 11 + 10(010)∗(00 + 001 + 0011).

Proof. We use the predicate

∀i < n T[i] = T[n − 1 − i].

The automaton generated is given below (Fig. 6). ��

Fig. 6. Automaton accepting lengths of palindromes in T

Remark 2. A. Glen points out to us that the palindromic prefixes of T are
precisely those of the form Pal(w), where w is a finite prefix of the infinite word
(012)ω and Pal denotes the “iterated palindromic closure”; see, for example, [19,
Example 2.6]. She also points out that these lengths are precisely the integers
(Ti + Ti+2 − 3)/2 for i ≥ 1.

5.2 Quasiperiods

We now turn to quasiperiods. An infinite word a is said to be quasiperiodic if
there is some finite nonempty word x such that a can be completely “covered”
with translates of x. Here we study the stronger version of quasiperiodicity where
the first copy of x used must be aligned with the left edge of w and is not allowed
to “hang over”; these are called aligned covers in [10]. More precisely, for us
a = a0a1a2 · · · is quasiperiodic if there exists x such that for all i ≥ 0 there
exists j ≥ 0 with i − n < j ≤ i such that ajaj+1 · · · aj+n−1 = x, where n = |x|.
Such an x is called a quasiperiod. Note that the condition j ≥ 0 implies that, in
this interpretation, any quasiperiod must actually be a prefix of a.

Glen, Levé, and Richomme characterized the quasiperiods of a large class of
words, including the Tribonacci word [20, Theorem 4.19]. However, their char-
acterization did not explicitly give the lengths of the quasiperiods. We do that
in the following new result.

Theorem 14. A nonempty length-n prefix of T is a quasiperiod of T if and
only if n is accepted by the following automaton (Fig. 7):

184 H. Mousavi and J. Shallit

Fig. 7. Automaton accepting lengths of quasiperiods of the Tribonacci sequence

Proof. We write a predicate for the assertion that the length-n prefix is a qua-
siperiod:

∀i ≥ 0 ∃j with i − n < j ≤ i such that ∀t < n T[t] = T[j + t].

When we do this, we get the automaton above. These numbers are those i
for which Tn ≤ i ≤ Un for n ≥ 5, where U2 = 0, U3 = 1, U4 = 3, and
Un = Un−1 + Un−2 + Un−3 + 3 for n ≥ 5. ��

5.3 Unbordered Factors

Next we look at unbordered factors. A word y is said to be a border of x if y is
both a nonempty proper prefix and suffix of x. A word x is bordered if it has at
least one border. It is easy to see that if a word y is bordered iff it has a border
of length with 0 < ≤ |y|/2.

Theorem 15. There is an unbordered factor of length n of T if and only if (n)T

is accepted by the automaton given below (Fig. 8).

Fig. 8. Automaton accepting lengths of unbordered factors of the Tribonacci sequence

Proof. As in a previous paper [13] we can express the property of having an
unbordered factor of length n as follows

∃i ∀j, 1 ≤ j ≤ n/2, ∃t < j T[i + t] �= T[i + n − j + t].

However, this does not run to completion within the available space on our
prover. Instead, make the substitutions t′ = n − j and u = i + t. This gives the
predicate

∃i ∀t′, n/2 ≤ t′ < n, ∃u, (i ≤ u < i + n − t′) T[u] �= T[u + t′].

Here is the log:

Mechanical Proofs of Properties of the Tribonacci Word 185

2 * t with 61 states, in 276ms
n <= 2 * t with 79 states, in 216ms
t < n with 13 states, in 3ms
n <= 2 * t & t < n with 83 states, in 9ms
u >= i with 13 states, in 7ms
i + n with 150 states, in 27ms
i + n - t with 1088 states, in 7365ms
u < i + n - t with 1486 states, in 6041ms
u >= i & u < i + n - t with 1540 states, in 275ms
u + t with 150 states, in 5ms
TR[u] != TR[u + t] with 102 states, in 22ms
u >= i & u < i + n - t & TR[u] != TR[u + t] with 7489 states, in 3364ms
Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 552 states, in 5246873ms
n <= 2 * t & t < n => Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 944 states, in 38ms
At n <= 2 * t & t < n => Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 47 states, in 1184ms
Ei At n <= 2 * t & t < n => Eu u >= i & u < i + n - t & TR[u] != TR[u + t] with 25 states, in 2ms
overall time: 5265707ms

5.4 Lyndon Words

Next, we turn to some results about Lyndon words. Recall that a nonempty
word x is a Lyndon word if it is lexicographically less than all of its nonempty
proper prefixes.1

Theorem 16. There is a factor of length n of T that is Lyndon if and only if
n is accepted by the automaton given below (Fig. 9).

Fig. 9. Automaton accepting lengths of Lyndon factors of the Tribonacci sequence

Proof. Here is a predicate specifying that there is a factor of length n that is
Lyndon:

∃i ∀j, 1 ≤ j < n, ∃t < n−j (∀u < t T[i+u] = T[i+j+u]) ∧ T[i+t] < T[i+j+t].

Unfortunately this predicate did not run to completion, so we substituted u′ :=
i + u to get

∃i ∀j, 1 ≤ j < n, ∃t < n−j (∀u′, i ≤ u′ < i+tT[u′] = T[u′+j]) ∧ T[i+t] < T[i+j+t]. 	

1 There is also a version where “prefixes” is replaced by “suffixes”.

186 H. Mousavi and J. Shallit

5.5 Critical Exponent

Recall from Sect. 3 that exp(w) = |w|/P , where P is the smallest period of w.
The critical exponent of an infinite word x is the supremum, over all factors w
of x, of exp(w).

Then Tan and Wen [33] proved that

Theorem 17. The critical exponent of T is ρ
.= 3.19148788395311874706, the

real zero of the polynomial 2x3 − 12x2 + 22x − 13.

A. Glen points out that this result can also be deduced from [26, Theorem 5.2].

Proof. Let x be any factor of exponent ≥ 3 in T. From Theorem 11 we know
that such x exist. Let n = |x| and p be the period, so that n/p ≥ 3. Then by
considering the first 3p symbols of x, which form a cube, we have by Theorem 11
that p = Tn. So it suffices to determine the largest n corresponding to every p
of the form Tn. We did this using the predicate (Fig. 10).

Fig. 10. Length n of longest factors having period p = Tn of Tribonacci sequence

From inspection of the automaton, we see that the maximum length of a
factor n = Uj having period p = Tj , j ≥ 2, is given by

Uj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, if j = 2;
5, if j = 3;
[110(100)i−10]T , if j = 3i + 1 ≥ 4;
[110(100)i−101]T , if j = 3i + 2 ≥ 5;
[110(100)i−1011]T , if j = 3i + 3 ≥ 6.

A tedious induction shows that Uj satisfies the linear recurrence Uj = Uj−1 +
Uj−2 + Uj−3 + 3 for j ≥ 5. Hence we can write Uj as a linear combination of
Tribonacci sequences and the constant sequence 1, and solving for the constants
we get

Uj =
5
2
Tj + Tj−1 +

1
2
Tj−2 − 3

2
for j ≥ 2.

The critical exponent of T is then supj≥1 Uj/Tj . Now

Uj/Tj =
5
2

+
Tj−1

Tj
+

Tj−2

2Tj
− 3

2Tj
=

5
2

+ α−1 +
1
2
α−2 + O(1.8−j).

Hence Uj/Tj tends to 5/2 + α−1 + 1
2α−2 = ρ. ��

Mechanical Proofs of Properties of the Tribonacci Word 187

We can also ask the same sort of questions about the initial critical exponent of
a word w, which is the supremum over the exponents of all prefixes of w.

Theorem 18. The initial critical exponent of T is ρ − 1.

Proof. We create an automaton Mice accepting the language

L = {(n, p)T : T[0..n − 1] has least period p}.

It is depicted in Fig. 11 below. An analysis similar to that we gave above for the
critical exponent gives the result. ��

Fig. 11. Automaton accepting least periods of prefixes of length n

Theorem 19. The only prefixes of the Tribonacci word that are powers are those
of length 2Tn for n ≥ 5.

Proof. The predicate

∃d < n (∀j < n − d T[j] = T[d + j]) ∧ (∀k < d T[k] = T[n − d + k])

asserts that the prefix T[0..n − 1] is a power. When we run this through our
program, the resulting automaton accepts 100010∗, which corresponds to Fn+1+
Fn−3 = 2Tn for n ≥ 5. ��

6 Abelian Properties

We can derive some results about the abelian properties of the Tribonacci word
T by proving the analogue of Theorem 63 of [13]:

Theorem 20. Let n be a non-negative integer and let e1e2 · · · ej be a Tribonacci
representation of n, possibly with leading zeros, with j ≥ 3. Then

188 H. Mousavi and J. Shallit

(a) |T[0..n − 1]|0 = [e1e2 · · · ej−1]T + ej.
(b) |T[0..n − 1]|1 = [e1e2 · · · ej−2]T + ej−1.
(c) |T[0..n − 1]|2 = [e1e2 · · · ej−3]T + ej−2.

Proof. By induction, in analogy with the proof of [13, Theorem 63]. ��
Recall that the Parikh vector ψ(x) of a word x over an ordered alphabet Σ =
{a1, a2, . . . , ak} is defined to be (|x|a1 , . . . , |x|ak

), the number of occurrences of
each letter in x. Recall that the abelian complexity function ρabw (n) counts the
number of distinct Parikh vectors of the length-n factors of an infinite word w.

Using Theorem 20 we get another proof of a recent result of Turek [34].

Corollary 1. The abelian complexity function of T is Tribonacci-regular.

Proof. First, from Theorem 20 there exists an automaton TAB such that
(n, i, j, k)T is accepted iff (i, j, k) = ψ(T[0..n − 1]). In fact, such an automa-
ton has 32 states.

Using this automaton, we can create a predicate P (n, i) such that the number
of i for which P (n, i) is true equals ρabT (n). For this we assert that i is the least
index at which we find an occurrence of the Parikh vector of T[i..i + n − 1]:

∀i′ < i ∃a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2

TAB(i+n, a0, a1, a2) ∧ TAB(i, b0, b1, b2) ∧ TAB(i′+n, c0, c1, c2) ∧ TAB(i′, d0, d1, d2) ∧
((a0−b0 �= c0−d0) ∨ (a1−b1 �= c1−d1) ∨ (a2−b2 �= c2−d2)). 	

Remark 3. Note that exactly the same proof would work for any word and
numeration system where the Parikh vector of prefixes of length n is “synchro-
nized” with n.

Remark 4. In principle we could mechanically compute the Tribonacci-regular
representation of the abelian complexity function using this technique, but with
our current implementation this is not computationally feasible.

Theorem 21. Any morphic image of the Tribonacci word is Tribonacci-
automatic.

Proof. In analogy with Corollary 69 of [13]. ��

7 Things We Could Not Do Yet

There are a number of things we have not succeeded in computing with our
prover because it ran out of space. These include

– Mirror invariance of T (that is, if x is a finite factor then so is xR);
– Counting the number of special factors of length n (although it can be deduced

from the subword complexity function);

Mechanical Proofs of Properties of the Tribonacci Word 189

– Statistics about, e.g., lengths of squares, cubes, etc., in the “flipped” Tri-
bonacci sequence [31], the fixed point of 0 → 01, 1 → 20, 2 → 0;

– Recurrence properties of the Tribonacci word;
– Counting the number of distinct squares (not occurrences) in the finite Tri-

bonacci word Yn.
– Abelian complexity of the Tribonacci word.

In the future, an improved implementation may succeed in resolving these in
a mechanical fashion.

Acknowledgments. We are very grateful to Amy Glen for her recommendations and
advice. We thank Ondrej Turek and the referees for pointing out errors.

References

1. Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an
automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

2. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

3. Barcucci, E., Bélanger, L., Brlek, S.: On Tribonacci sequences. Fibonacci Quart.
42, 314–319 (2004)

4. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications,
Encylopedia of Mathematics and Its Applications, vol. 137. Cambridge University
Press, Cambridge (2011)

5. Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theo-
ret. Comput. Sci. 181, 17–43 (1997)

6. Bruyère, V., Hansel, G., Michaux, C.,Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994), corrigendum. Bull. Belg.
Math. Soc. 1, 577 (1994)

7. Carlitz, L., Scoville, R., Hoggatt, Jr., V.E.: Fibonacci representations of higher
order. Fibonacci Quart. 10, 43–69, 94 (1972)

8. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of
automatic sequences. Int. J. Found. Comp. Sci. 23, 1035–1066 (2012)

9. Chekhova, N., Hubert, P., Messaoudi, A.: Propriétés combinatoires, ergodiques et
arithmétiques de la substitution de Tribonacci. J. Théorie Nombres Bordeaux 13,
371–394 (2001)

10. Christou, M., Crochemore, M., Iliopoulos, C.S.: Quasiperiodicities in Fibonacci
strings (2012), to appear in Ars Combinatoria. Preprint available at
http://arxiv.org/abs/1201.6162

11. Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)
12. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of

de Luca and Rauzy. Theoret. Comput. Sci. 255, 539–553 (2001)
13. Du, C.F., Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for

Fibonacci-automatic words, with applications to pattern avoidance (2014).
http://arxiv.org/abs/1406.0670

14. Duchêne, E., Rigo, M.: A morphic approach to combinatorial games: theTribonacci
case. RAIRO Inform. Théor. App. 42, 375–393 (2008)

15. Frougny, C.: Representations of numbers and finite automata. Math. Systems The-
ory 25, 37–60 (1992)

http://arxiv.org/abs/http://arxiv.org/abs/1201.6162
http://arxiv.org/abs/http://arxiv.org/abs/1406.0670

190 H. Mousavi and J. Shallit

16. Frougny, C., Solomyak, B.: On representation of integers in linear numeration sys-
tems. In: Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of Zd Actions (Warwick,
1993–1994). London Mathematical Society Lecture Note Series, vol. 228, pp. 345–
368. Cambridge University Press, Cambridge (1996)

17. Glen, A.: On sturmian and episturmian words, and related topics. Ph.D. thesis,
University of Adelaide (2006)

18. Glen, A.: Powers in a class of a-strict episturmian words. Theoret. Comput. Sci.
380, 330–354 (2007)

19. Glen, A., Justin, J.: Episturmian words: a survey. RAIRO Inform. Théor. App. 43,
402–433 (2009)

20. Glen, A., Levé, F., Richomme, G.: Quasiperiodic and Lyndon episturmian words.
Theoret. Comput. Sci. 409, 578–600 (2008)

21. Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on
words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191.
Springer, Heidelberg (2012)

22. Goč, D., Mousavi, H., Shallit, J.: On the number of unbordered factors. In: Dediu,
A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 299–
310. Springer, Heidelberg (2013)

23. Goč, D., Saari, K., Shallit, J.: Primitive words and Lyndon words in automatic and
linearly recurrent sequences. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2013. LNCS, vol. 7810, pp. 311–322. Springer, Heidelberg (2013)

24. Goč, D., Schaeffer, L., Shallit, J.: Subword complexity and k -synchronization. In:
Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 252–263. Springer,
Heidelberg (2013)

25. Hales, T.C.: Formal proof. Notices Am. Math. Soc. 55(11), 1370–1380 (2008)
26. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret.

Comput. Sci. 276, 281–313 (2002)
27. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy problem (2014).

Preprint available at http://arxiv.org/abs/1402.2184
28. Presburger, M.: Über die Volständigkeit eines gewissen Systems derArithmetik

ganzer Zahlen, in welchem die Addition als einzigeOperation hervortritt. In: Spara-
wozdanie z I Kongresu matematykówkrajów slowianskich, Warsaw, pp. 92–101, 395
(1929)

29. Presburger, M.: On the completeness of a certain system of arithmetic of whole
numbers in which addition occurs as the only operation. Hist. Phil. Logic 12,
225–233 (1991)

30. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the
Tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)

31. Rosema, S.W., Tijdeman, R.: The Tribonacci substitution. INTEGERS 5 (3),
Paper #A13 (2005). Available at http://www.integers-ejcnt.org/vol5-3.html

32. Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In:
Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer,
Heidelberg (2013)

33. Tan, B., Wen, Z.Y.: Some properties of the Tribonacci sequence. Eur. J. Comb.
28, 1703–1719 (2007)

34. Turek, O.: Abelian complexity function of the Tribonacci word. J. Integer
Sequences 18, Article 15.3.4 (2015). Available at https://cs.uwaterloo.ca/journals/
JIS/VOL18/Turek/turek3.html

http://arxiv.org/abs/http://arxiv.org/abs/1402.2184
http://www.integers-ejcnt.org/vol5-3.html
https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html
https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html

On Arithmetic Progressions in the Generalized
Thue-Morse Word

Olga G. Parshina(B)

Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
parolja@gmail.com

http://www.nsu.ru/

Abstract. We consider the generalized Thue-Morse word on the alpha-
bet Σ = {0, 1, 2}. The object of the research is arithmetic progressions in
this word, which are sequences consisting of identical symbols. Let A(d)
be a function equal to the maximum length of an arithmetic progression
with the difference d in the generalized Thue-Morse word. If n, d are
positive integers and d is less than 3n, then the upper bound for A(d) is
3n + 6 and is attained with the difference d = 3n − 1.

Keywords: Thue-Morse word · Arithmetic complexity · Arithmetic
progression · Automatic word

1 Introduction

Arithmetic progressions in infinite words have been studied since the classical
papers of Van der Waerden [1] and Szemerédi [2]. Results described in these
papers say in particular, that we cannot constrain the length of a homogeneous
arithmetic progression by a constant. For bounded differences and fixed word
the question about the maximum possible length of an arithmetic progression
depends on the structure of the word and the answer to it may be non-trivial. In
some cases (e.g. Toeplitz words) the length of an arithmetic progression may be
infinite. We are interested in ones having long progression with large differences
only. Our research shows that such correlation between length of a progression
and the value of its difference does not occur among automatic words.

The reported result refers to the Thue-Morse word, which was chosen because
it is famous and the defining morphism is simple. More details on the Thue-Morse
sequence and its applications can be found e.g. in [3]. It is known that the set
of arithmetic progressions of the Thue-Morse word contains all binary words [4].
In [5] the results of [4] are generalized to symmetric D0L words including the
generalized Thue-Morse word.

The original Thue-Morse word was studied earlier [6]. Here we considered
its generalization on the alphabet Σ3 = {0, 1, 2}, it was chosen to simplify the
presentation, although the technique presented in the paper is easy to extend to
Σq for an arbitrary prime q.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 191–196, 2015.
DOI: 10.1007/978-3-319-23660-5 16

192 O.G. Parshina

We consider the maximal length of a homogeneous arithmetic progression of
difference d. It is proven that the length grows quite rapidly (see Theorem 1) and
reaches its maximums at points of specific kind. Since the Thue-Morse word over
Σ3 is easy to define by ternary representation of natural numbers, the proof of
the theorem uses mostly this representation and arithmetic operations modulo 3.
The proof has three stages: at first we reject the most part of the set of differences,
which cannot provide the maximum of the length of a progression, then we present
concrete values of the difference, of starting symbols and corresponding values of
the length which are maxima of this function. The final part is exhaustion of the
rest of initial symbols for this difference, there we give an upper bound of length
for each type of starting number.

2 Preliminaries

Let Σq = {0, 1, ..., q − 1} be an alphabet. Consider a function Rq : N → Σq

which for every natural x gives its base-q expansion. The length of this word
is denoted by |Rq(x)|. Also let rq(x) be the sum modulo q of the digits of x

in its q-ary expansion. In other words x =
n−1∑

i=0

xi · qi, Rq(x) = xn−1 · · · x1x0

and rq(x) =
n−1∑

i=0

xi mod q. The generalized Thue-Morse word is defined as:

wTM = w0w1w2w3 · · · , where wi = rq(i) ∈ Σ.
An arithmetic progression of length k with the starting number c and

the difference d in arbitrary infinite word v = v0v1v2v3 · · · is a sequence
vcvc+dvc+2d · · · vc+(k−1)d. We are interested in homogeneous progressions, i.e.,
in situations when vc+id = α for each i = 0, 1, ..., k − 1 and α ∈ Σ.

Consider a function A(c, d) which outputs the length of an arithmetic pro-
gression with starting symbol vc and difference d for positive integers c and d.
The function A(d) = maxc A(c, d) gives the length of the maximal arithmetic
progression of difference d.

As we mentioned before, here we consider the alphabet Σ3 and the general-
ized Thue-Morse word:

wTM = 012120201120201012201012120 · · ·
Since the word is cube-free, A(1) = 2. We can see that A(0, 5) = 2, A(2, 2) =
A(20, 2) = 3 and we state that A(2) = 3.

3 Main Result

Here we formulate the main theorem, the remainder of the paper is devoted to
its proof.

Theorem 1. For all numbers n ≥ 1 the following holds:

max
d<3n

A(d) =

{
3n + 6, n ≡ 0mod 3,

3n, otherwise.

On Arithmetic Progressions in the Generalized Thue-Morse Word 193

As we will see later, the function A(d) reaches its maxima with differences of
the form 3n − 1 for natural n. Let us prove that if d �= 3n − 1, the value of A(d)
will be not more than 3n for fixed n.

3.1 Case of d �= 3n − 1

We need to prove that A(d) ≤ 3n.
At first we note that subsequences of the wTM which are composed of letters

with indexes having the same remainder of the division by three are equivalent
to the word, so we do not need to consider differences which are divisible by
three.

Every number may be represented in such a way: c = y · 3n + x, where x, y
are arbitrary positive integers, x < 3n. We will call x a suffix of c.

Consider the set X = {0, 1, 2, ..., 3n −1}, |X| = 3n. Each difference d and suf-
fix x belong to X and d is prime to |X|. So the X is an additive cyclic group and
d is a generator of X, thus for every x ∈ X the set {x + i · d}3n−1

i=0 is precisely X.
We will prove the statement if for each d �= 3n − 1 we find an element x ∈ X
with following properties:

(a) x + d < 3n;
(b) r3(x + d) �= r3(x).

Indeed, consider the starting number of the form c. Because of (a), c + d =
y · 3n +(x+d). Hence, r3(c) = r3(y)+ r3(x) mod 3, r3(c+d) = r3(y)+ r3(x+d)
mod 3. Because of (b), r3(c + d) �= r3(c), and the homogeneity of a progression
will hold by at most 3n steps.

If r3(d) �= 0, then a suitable x is a zero. In another case we use the inequa-
tion d �= 3n − 1 which means that R3(d) = dn−1 · · · d1d0 has at least one letter
dj , j ∈ {0, 1, ..., n − 1}: dj �= 2. There are two possibilities:

1. ∃j : dj �= 2, dj−1 = 2, in this case x = 3j−1.
2. ∀j (dj �= 2 ⇒ ∀k < j dk �= 2).

If j > 1, then, as soon as d is not divisible by three, d1d0 may be equal to 01 or
11. In the first case we choose x = 2, in the second x = 1. But we can not find
x satisfying (a) and (b) then j = 1, i.e., then R3(d) = 2 · · · 2︸ ︷︷ ︸

n−1

1. So we find three

suffixes x with properties (i) x + d, x + 2d > 3n and (ii) r3(x) is equal to the
suffix of x + d and x + 2d. Let us explain the necessity of these properties.

Consider a number c with such a suffix x, r3(c) = r3(y) + r3(x) mod 3. The
condition (i) gives to us equalities r3(c + d) = r3(y + 1) + r3(x + d) mod 3 and
r3(c+2d) = r3(y +2)+ r3(x+2d) mod 3. With (ii) we need r3(y) = r3(y +1) =
r3(y + 2) for saving the homogeneity of a progression, but there is no number
with such property. So we know that by at most three steps the value of r3 will
change. Suitable suffixes are 6, 15, 24, and all described above guarantee that the
arithmetic progression will be not longer than 3n.

Of course, there are many suffixes satisfy (a),(b) or (i),(ii), but it is not
necessary to consider all of them.

194 O.G. Parshina

3.2 Case of d = 3n − 1

Here we use the notation R3(x) = X = xn−1 · · · x1x0, R3(y) = Y =
yn−1 · · · y1y0.
Lemma 1. Let d = 3n − 1, c = z · 32n + y · 3n + x, where x + y = 3n − 1, z is a
non-negative integer, then

max
z

A(c, d) =

{
3n + 3 − y, n ≡ 0mod 3,

3n − y, otherwise.

Proof. Because of the value of d we can regard the action c + d as two simul-
taneous actions: x − 1 and y + 1. Thus while y ≤ 3n − 1 the sum of digits in
Y X (the concatenation of ternary notation of y and x) equals 2n. This property
provides us with the arithmetic progression of length 3n − y.

Let y = 3n −1, hence x = 0. If we add the difference d to such a number, the
sum of digits in result’s ternary notation will be equal to 4n. To save the required
property of members of the progression we need 2n ≡ 4n mod 3, i.e., n ≡ 0 mod
3. After next addition of d, z increases to z + 1, y becomes 0 and x = 3n − 2.
We may define z arbitrary for holding the homogeneity of the progression (for
example if r3(z) = 1 we need r3(z + 1) = 2, in this case z may be equal to
1). Now r3(y) + r3(x) = 2n + 1 mod 3. Let us add the difference once more:
Y = 0 · · · 0︸ ︷︷ ︸

n−1

1, X = 2 · · · 2︸ ︷︷ ︸
n−1

0 and homogeneity holds. Next addition of d changes

the value of r3(y) + r3(x) because Y = 0 · · · 0︸ ︷︷ ︸
n−1

2 and X = 2 · · · 2︸ ︷︷ ︸
n−2

12.

So if 3|n, the length of an arithmetic progression equals 3n +3−y and equals
3n − y otherwise.

Lemma 2. Let n ≡ 0 mod 3, d = 3n − 1, c = z · 32n + y · 3n + x, y = 3n − 2,
x = 2, z is arbitrary non-negative, then maxz A(c, d) = 3n + 6.

Proof. Let us add to the c the difference d three times and look at the result:

1. y = 3n − 1, x = 1;
2. z → z + 1, y = 0, x = 0;
3. y = 0, x = 3n − 1.

Sums of digits in ternary notation of described numbers are the same for a
suitable z and coincide with the similar sum of initial c. After these steps we get
into conditions of Lemma 1 with y = 0 which provide us with an arithmetical
progression of length 3n + 3. Now we subtract d from the initial c to make sure
that r3(c − d) �= r3(c) and we cannot get an arithmetical progression longer.
Indeed, c − d = z · 32n + (3n − 3) · 3n + 3 and the sum of digits in its ternary
notation is 2n − 1, while in c it is 2n + 1.

So we find starting numbers for the difference d = 3n − 1 which provide us with
arithmetical progressions of the length mentioned in the Theorem.

On Arithmetic Progressions in the Generalized Thue-Morse Word 195

Now let us prove that we can not get an arithmetical progression with dif-
ference d = 3n − 1 longer than in the statement of the Theorem.

Here we represent a starting number of progression c like this: c = y · 3n + x,
x < 3n.

The case of initial number c with xj + yj = 2, j = 0, 1, ..., n − 1 is described
in Lemma 1. In another case there is at least one index j: xj + yj �= 2. We
choose j which is the minimal. There are six possibilities of values (yj , xj):
(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2).

For c of each type we find numbers k and h: r3(c + k · d) �= r3(c + h · d).
We need two more parameters: l and m which are defined from these nota-

tions: Y = ys−1 · · · yj+l+12 · · · 2yj · · · y0, X = xn−1 · · · xj+m+10 · · · 0xj · · · x0. Of
course m and l may be equal to zero, yj+l+1 �= 2 and xj+m+1 �= 0.

We will act such a way: we add 3j+1 · d to the c, and the block of twos in Y
transforms to the block of zeros, the block of zeros in X transforms to the block
of twos. In cases (yj , xj) ∈ {(0, 0), (1, 0), (2, 1), (2, 2)} after next 3j ·d addition we
get a number with the sum of digits different from the previous one. So suitable
values of k and h are 3j+1 and 4 · 3j . In cases (yj , xj) ∈ {(0, 1), (1, 2)} to change
the sum, we need to add 3j · d once more, and suitable k and h are 4 · 3j and
5 · 3j . Let us consider an example for (yj , xj) = (0, 1).
Here n = 7, m = l = 3, j = 1, d = 2186, R3(d) = 2222222.

number R3 r3

c = 2640685 11222011100011 1
+ 222222200

c + 3j+1 · d 12000011022211 1
+ 22222220

c + 4 · 3j · d 12000111022201 1
+ 22222220

c + 5 · 3j · d 12000211022121 0

But these values of k, h satisfy the Theorem if and only j < n − 1, the case
j = n − 1 needs a special consideration.

We will act the following way: we add the x ·d to the c and nullify x by that,
then add d necessary number of times. So the worst case is then X = xn−12 · · · 2,
Y = yn−10 · · · 0. Here is the table of values k, h.

(yn−1, xn−1) (0,0), (1,0) (0,1), (2,1) (2,2), (1,2)

parameters k h k h k h

3 � | n 3n−1 − 1 3n−1 2 · 3n−1 − 1 2 · 3n−1 3n − 1 3n

3 | n 3n−1 3n−1 + 1 2 · 3n−1 2 · 3n−1 + 1 3n 3n + 1

196 O.G. Parshina

One can see that these values satisfy the Theorem.
We have considered all the possible cases and thus completed the proof.

4 Conclusion

This result helps to better understand the structure of the well-known Thue-
Morse word and its generalization. The result and the technique of the proof
may be generalized on the Thue-Morse word over an arbitrary alphabet of prime
cardinality q, the upper bound for the length of a progression in this case is
qn + 2 · q.

References

1. Van der Waerden, B.L.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.
15, 212–216 (1927)

2. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression.
Collection of articles in memory of Jurǐı Vladimirović Linnik. Acta Arith. 27, 199–
245 (1975)

3. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Proceedings of SETA 1998, pp. 1–16.
Springer, New York (1999)

4. Avgustinovich, S. V., Fon-der-Flaass, D. G., Frid, A. E.: Arithmetical complexity of
infinite words. In: Proceedings of Words, Languages and Combinatorics III (2000),
pp. 51–62 . World Scientific, Singapore (2003)

5. Frid, A.E.: Arithmetical complexity of symmetric D0L words. Theoret. Comput.
Sci. 306(1–3), 535–542 (2003)

6.

A Square Root Map on Sturmian Words

(Extended Abstract)

Jarkko Peltomäki1,2(B) and Markus Whiteland2

1 Turku Centre for Computer Science TUCS, Turku, Finland
jspelt@utu.fi

2 Department of Mathematics and Statistics, University of Turku, Turku, Finland
mawhit@utu.fi

Abstract. We introduce a square root map on Sturmian words and
study its properties. Given a Sturmian word of slope α, there exists
exactly six minimal squares in its language. A minimal square does not
have a square as a proper prefix. A Sturmian word s of slope α can be
written as a product of these six minimal squares: s = X2

1X2
2X2

3 · · · . The
square root of s is defined to be the word

√
s = X1X2X3 · · · . We prove

that
√

s is also a Sturmian word of slope α. Moreover, we describe how
to find the intercept of

√
s and an occurrence of any prefix of

√
s in s.

Related to the square root map, we characterize the solutions of the word
equation X2

1X2
2 · · · X2

m = (X1X2 · · · Xm)2 in the language of Sturmian
words of slope α where the words X2

i are minimal squares of slope α.

1 Introduction

Kalle Saari studies in [8] optimal squareful words and, more generally, α-
repetitive words. Optimal squareful words are aperiodic words containing the
least number of minimal squares (that is, squares with no proper square pre-
fixes) such that every position starts a square. Saari proves that an optimal
squareful word always contains exactly six minimal squares and characterizes
these squares. From his considerations it follows that Sturmian words are a
proper subclass of optimal squareful words.

In this paper we propose a square root map for Sturmian words. Let s be a
Sturmian word of slope α, and write it as a product of the six minimal squares
in its language: s = X2

1X2
2X2

3 · · · . The square root of s is defined to be the word√
s = X1X2X3 · · · . The main result of this paper is that the word

√
s is also

a Sturmian word of slope α. In addition to proving that the square root map
preserves the language L(α) of a Sturmian word s of slope α, we show how to
locate any prefix of

√
s in s.

Section 3 contains a proof of the fact that the square root map preserves
the language of a Sturmian word. For a given Sturmian word sx,α of slope α
and intercept x, we prove that √

sx,α equals the word sψ(x),α where ψ(x) =
1
2 (x + 1 − α). As a corollary, we obtain a description of those Sturmian words
which are fixed points of the square root map.
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 197–209, 2015.
DOI: 10.1007/978-3-319-23660-5 17

198 J. Peltomäki and M. Whiteland

In Sect. 3 we observe that given a minimal square w2 occurring in some Stur-
mian word, the interval [w] on the circle corresponding to the factor w satisfies
the square root condition ψ([w2]) ⊆ [w]. In Sect. 4 we characterize all words
w2 ∈ L(α) satisfying the square root condition. The result is that w2 satisfies
the square root condition if and only if w is a reversed standard or semistandard
word or a reversed standard word with the two first letters exchanged.

The square root condition turns out to have another characterization in
terms of specific solutions of the word equation X2

1X2
2 · · · X2

m = (X1X2 · · · Xm)2.
A word w ∈ L(α) is a solution to this equation if w2 ∈ L(α) and it can be writ-
ten that w = X1X2 · · · Xm where the words Xi are roots of minimal squares
satisfying the word equation. In Sect. 5 we prove that the word w is a primitive
solution to the word equation if and only if w2 satisfies the square root condition.

In the final section we show how to locate prefixes of
√

s in s. As an important
step in proving this, we provide necessary and sufficient conditions for a Sturmian
word to be a product of reversed standard and semistandard words.

2 Notation and Preliminary Results

Due to space constraints we refer the reader to [5] for basic notation and results
in words and for basic concepts such as prefix, suffix, factor, primitive word,
conjugate, ultimately periodic word and aperiodic word.

A period of the word w = a1a2 · · · an is an integer p ≥ 1 such that ai = ai+p

for 1 ≤ i ≤ n − p. If w has period p and |w|/p ≥ α for some real α ≥ 1, then
w is called an α-repetition. An α-repetition is minimal if it does not have an
α-repetition as a proper prefix. If w = u2, then w is a square with square root
u. A square is minimal if it does not have a square as a proper prefix.

The reversal of a word w = a1a2 · · · an is the word w̃ = an · · · a2a1. The shift
operator on infinite words is denoted by T . In this paper we take binary words
to be over the alphabet {0, 1}.

2.1 Optimal Squareful Words

In [8] Kalle Saari considers α-repetitive words. An infinite word is α-repetitive
if every position in the word starts an α-repetition and the number of distinct
minimal α-repetitions occurring in the word is finite. If α = 2, then α-repetitive
words are called squareful words. This means that every position of a squareful
word begins with a minimal square. Saari proves that if the number of distinct
minimal squares occurring in a squareful word is at most 5, then the word must
be ultimately periodic. On the other hand, if a squareful word contains at least 6
distinct minimal squares, then aperiodicity is possible. Saari calls the aperiodic
squareful words containing exactly 6 minimal squares optimal squareful words.
Further, he shows that the six minimal squares take a very specific form:

A Square Root Map on Sturmian Words 199

Proposition 1. Let s be an optimal squareful word. If 10i1 occurs in s for some
i > 1, then the roots of the six minimal squares in s are

S1 = 0, S2 = 010a−1, S3 = 010a, (1)

S4 = 10a, S5 = 10a+1(10a)b, S6 = 10a+1(10a)b+1,

for some a ≥ 1 and b ≥ 0.

The optimal squareful words containing the minimal square roots of (1) are
called optimal squareful words with parameters a and b. For the rest of this
paper we reserve this meaning for the symbols a and b. Furthermore, we agree
that the symbols Si always refer to the minimal square roots (1).

Saari completely characterizes optimal squareful words:

Proposition 2. An aperiodic infinite word s is optimal squareful if and only if
(up to renaming of letters) there exists integers a ≥ 1 and b ≥ 0 such that s is
an element of the language

0∗(10a)∗(10a+1(10a)b + 10a+1(10a)b+1)ω = S∗
1S∗

4 (S5 + S6)ω.

2.2 Continued Fractions

In this section we briefly review results on continued fractions needed in this
paper. Good references on the subject are [1,3].

Every irrational real number α has a unique infinite continued fraction
expansion

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(2)

with a0 ∈ Z and ak ∈ N for all k ≥ 1.
The convergents ck = pk

qk
of α are defined by the recurrences

p0 = a0, p1 = a1a0 + 1, pk = akpk−1 + pk−2, k ≥ 2,

q0 = 1, q1 = a1, qk = akqk−1 + qk−2, k ≥ 2.

The sequence (ck)k≥0 converges to α. Moreover, the even convergents are less
than α and form an increasing sequence. On the other hand, the odd convergents
are greater than α and form a decreasing sequence.

If k ≥ 2 and ak > 1, then between the convergents ck−2 and ck there are
semiconvergents (called intermediate fractions in [1]) which are of the form

pk,l

qk,l
=

lpk−1 + pk−2

lqk−1 + qk−2

with 1 ≤ l < ak. When the semiconvergents (if any) between ck−2 and ck are
ordered by the size of their denominators, the sequence obtained is increasing if
k is even and decreasing if k is odd.

Note that we make a clear distinction between convergents and semiconver-
gents, i.e., convergents are not a specific subtype of semiconvergents.

200 J. Peltomäki and M. Whiteland

2.3 Sturmian Words

Sturmian words are a well-known class of infinite, aperiodic binary words over
{0, 1} with minimal factor complexity. They are defined as the (right-)infinite
words having n + 1 factors of length n for every n ≥ 0. For our purposes it
is more convenient to view Sturmian words equivalently as the infinite words
obtained as codings of orbits of points in an irrational circle rotation with two
intervals [5,7].

We identify the unit interval [0, 1) with the unit circle T. Let α ∈ (0, 1) be
irrational. The map R : [0, 1) → [0, 1), x �→ {x + α}, where {x} stands for the
fractional part of the number x, defines a rotation on T. Divide the circle T

into two intervals I0 and I1 defined by the points 0 and 1 − α. Then define the
coding function ν by setting ν(x) = 0 if x ∈ I0 and ν(x) = 1 if x ∈ I1. The
coding of the orbit of a point x is the infinite word sx,α obtained by setting
its nth, n ≥ 0, letter to equal ν(Rn(x)). This word sx,α is defined to be the
Sturmian word of slope α and intercept x. To make the definition proper, we
need to define how ν behaves in the endpoints 0 and 1−α. We have two options:
either take I0 = [0, 1−α) and I1 = [1−α, 1) or I0 = (0, 1−α] and I1 = (1−α, 1].
The difference is seen in the codings of the orbits of the special points {−nα},
and both options are needed for equivalence between this definition of Sturmian
words and the usual definition. In this paper we are not concerned about this
choice, and we adopt the notation I0 = I(0, 1 − α), I1 = I(1 − α, 1) standing
for either choice. Since the sequence ({nα})n≥0 is dense in [0, 1)—as is well-
known—every Sturmian word of slope α has the same language (that is, the set
of factors); this language is denoted by L(α). For every factor w = a0a1 . . . an−1

of length n there exists a unique subinterval [w] of T such that sx,α begins with
w if and only if x ∈ [w]. Clearly [w] = Ia0 ∩R−1(Ia1)∩ . . .∩R−(n−1)(Ian−1). The
points 0, {−α}, {−2α}, . . . , {−nα} partition the circle into n + 1 intervals which
are in one-to-one correspondence with the words of L(α) of length n. Among
these intervals the interval containing the point {−(n + 1)α} corresponds to the
right special factor of length n. A factor w is right special if both w0, w1 ∈ L(α).
Similarly a factor is left special if both 0w, 1w ∈ L(α). In a Sturmian word there
exists a unique right special and a unique left special factor of length n for all
n ≥ 0. The language L(α) is mirror-invariant, that is, for every w ∈ L(α) also
w̃ ∈ L(α). It follows that the right special factor of length n is the reversal of
the left special factor of length n.

Given the continued fraction expansion of α ∈ (0, 1) as in (2) having conver-
gents qk and semiconvergents qk,l, we define the corresponding standard sequence
(sk)k≥0 of words by

s−1 = 1, s0 = 0, s1 = sa1−1
0 s−1, sk = sak

k−1sk−2, k ≥ 2.

As sk is a prefix of sk+1 for k ≥ 1, the sequence (sk) converges to a unique
infinite word cα called the infinite standard Sturmian word of slope α, and
it equals the word sα,α. Inspired by the notion of semiconvergents, we define
semistandard words for k ≥ 2 by

sk,l = sl
k−1sk−2

A Square Root Map on Sturmian Words 201

with 1 ≤ l < ak. Clearly |sk| = qk and |sk,l| = qk,l. Instead of writing “standard
or semistandard”, we often simply write “(semi)standard”. The set of standard
words of slope α is denoted by Stand(α), and the set of standard and semistan-
dard words of slope α is denoted by Stand+(α). (Semi)standard words are left
special as prefixes of the word cα. Every (semi)standard word is primitive [5,
Proposition 2.2.3]. An important property of standard words is that the words
sk and sk−1 almost commute; namely sksk−1 = wxy and sk−1sk = wyx for
some word w and distinct letters x and y. For more information about stan-
dard words see [2,5]. The only difference between the words cα and cα where
α = [0; 1, a2, a3, . . .] and α = [0; a2 + 1, a3, . . .] is that the roles of the letters 0
and 1 are reversed. We may thus assume without loss of generality that a1 ≥ 2.

For the rest of this paper we make the convention that α stands for an
irrational number in (0, 1) having the continued fraction expansion as in (2) with
a1 ≥ 2. The numbers qk and qk,l refer to the denominators of the convergents
of α, and the words sk and sk,l refer to the standard or semistandard words of
slope α.

2.4 Powers in Sturmian Words

In this section we review some known results on powers in Sturmian words, and
prove helpful results for the next section.

If a square w2 occurs in a Sturmian word of slope α, then the length of the
word w must be a really specific number, namely a denominator of a convergent
or a semiconvergent of α. The proof can be found in [4, Theorem 1] or [6,
Proposition 4.1].

Proposition 3. If w2 ∈ L(α) with w nonempty and primitive, then |w| = q0,
|w| = q1 or |w| = qk,l for some k ≥ 2 with 0 < l ≤ ak.

Next we need to know when conjugates of (semi)standard words occur as squares
in a Sturmian word.

Proposition 4. The following holds:

(i) The square of every conjugate of sk is in L(α) for all k ≥ 0.
(ii) Let w be a conjugate of sk,l with k ≥ 2 and 0 < l < ak. Then w2 ∈ L(α) if

and only if the intervals [w] and [sk,l] have the same length.
(iii) Let n = q0, n = q1 or n = qk,l with k ≥ 2 and 0 < l ≤ ak, and let s be the

(semi)standard word of length n. A factor w of length n is conjugate to s if
and only if w and s have equally many occurrences of the letter 0.

3 The Square Root Map

In [8] Saari observed that every Sturmian word with slope α is an optimal square-
ful word with parameters a = a1 − 1 and b = a2 − 1. In particular, Saari’s result
means that every Sturmian word can be (uniquely) written as a product of the
six minimal squares of slope α (1). Thus the square root map defined next is
well-defined.

202 J. Peltomäki and M. Whiteland

Definition 5. Let s be a Sturmian word with slope α and write it as a product
of minimal squares s = X2

1X2
2X2

3 · · · . The square root of s is then defined to be
the word

√
s = X1X2X3 · · · .

For some flavor, see the example at the beginning of Sect. 6. Note that this square
root map can be defined for any optimal squareful word. However, here we only
focus on Sturmian words.

We aim to prove the surprising fact that given a Sturmian word s the word√
s is also a Sturmian word having the same slope as s. Moreover, knowing the

intercept of s, we can compute the intercept of
√

s.
In the proof we need a special function ψ : T → T, ψ(x) = 1

2 (x + 1 − α). The
mapping ψ moves a point x on the circle T towards the point 1 − α by halving
the distance between the points x and 1 − α. The distance to 1 − α is measured
in the interval I0 or I1 depending on which of these intervals the point x belongs
to. The mapping ψ has the important property that ψ(x + 2nα) = ψ(x) + nα
for all n ∈ Z.

We can now state the result.

Theorem 6. Let sx,α be a Sturmian word with slope α and intercept x. Then√
sx,α = sψ(x),α. In particular, √

sx,α is a Sturmian word with slope α.

For a combinatorial version of the above theorem see Theorem 25 in Sect. 6.
The main idea of the proof is to demonstrate that the square root map is

actually the symbolic counterpart of the function ψ. We begin with a definition.

Definition 7. A square w2 ∈ L(α) satisfies the square root condition if ψ([w2])
⊆ [w].

Note that if the interval [w] in the above definition has 1 − α as an endpoint,
then w automatically satisfies the square root condition. This is because ψ moves
points towards the point 1−α but does not map them over this point. Actually,
if w satisfies the square root condition, then necessarily the interval [w] has 1−α
as an endpoint (see Corollary 12).

We will only sketch the next proof of the following lemma.

Lemma 8. The minimal squares of slope α satisfy the square root condition.

Fig. 1. The positions of the intervals on the circle in the proof sketch of Lemma 8.

A Square Root Map on Sturmian Words 203

Proof (Sketch). Since we already know the exact form of the minimal squares,
we just show that ψ(S2

i) ⊆ [Si] for 1 ≤ i ≤ 6 in a straightforward manner.
By a direct calculation ψ(S2

1) ⊆ [0] = [S1]. It is readily verified that [0] =
[S2

1]∪ [S2] = [S2
1]∪ [S2

3]∪ [S2
2] (see Fig. 1). Since [S2] has 1−α as an endpoint, by

the above remark ψ([S2
2]) ⊆ [S2]. As [S2] = [S3], also ψ([S2

3]) ⊆ [S3]. Similarly
[1] = [S4] = [S2

4] ∪ [S5] = [S2
4] ∪ [S2

6] ∪ [S2
5]. Clearly ψ([S2

4]) ⊆ [S4]. Since 1 − α
is an endpoint of [S5], we have that ψ([S2

5]) ⊆ [S5]. Finally, ψ([S2
6]) ⊆ [S6] as

[S5] = [S6]. ��
Proof (of Theorem 6). Write sx,α = X2

1X2
2X2

3 · · · as a product of minimal
squares. As x ∈ [X2

1], by Lemma 8 ψ(x) ∈ [X1]. Hence both √
sx,α and sψ(x),α

begin with X1. Since ψ(x + 2nα) = ψ(x) + nα for all n ∈ Z, by shifting sx,α

the amount 2|X1| and by applying Lemma 8, we conclude that sψ(x),α shifted
by the mount |X1| begins with X2. Therefore the words √

sx,α and sψ(x),α agree
on their first |X1| + |X2| letters. By repeating this procedure, we conclude that√

sx,α = sψ(x),α. ��
Theorem 6 allows us effortlessly to characterize the Sturmian words which are
fixed points of the square root map:

Corollary 9. The only Sturmian words of slope α which are fixed by the square
root map are the two words 01cα and 10cα, both having intercept 1 − α.

Proof. The only fixed point of the map ψ is the point 1 − α. Having this point
as an intercept, we obtain two Sturmian words: either 01cα or 10cα, depending
on which of the intervals I0 and I1 the point 1 − α belongs to. ��
The set {01cα, 10cα} is not only the set of fixed points but also the unique
attractor of the square root map in the set of Sturmian words of slope α. When
iterating the square root map on a fixed Sturmian word sx,α, the obtained word
has longer and longer prefixes in common with either of the words 01cα and 10cα

because ψn(x) tends to 1 − α as n increases.

4 One Characterization of Words Satisfying the Square
Root Condition

In the previous section we saw that minimal squares satisfying the square root
condition were crucial in proving that the square root of a Sturmian word is
again Sturmian with the same slope. The minimal squares of slope α are not the
only squares in L(α) satisfying the square root condition; in this section we will
characterize combinatorially such squares. To be able to state the characteriza-
tion, we need to define RStand(α) = {w̃ : w ∈ Stand(α)}; the set of reversed
standard words of slope α. Similarly we set RStand+(α) = {w̃ : w ∈ Stand+(α)}.
We also need the operation L which exchanges the first two letters of a word
(we do not apply this operation to too short words).

The main result of this section is the following:

204 J. Peltomäki and M. Whiteland

Theorem 10. A word w2 ∈ L(α) satisfies the square root condition if and only
if w ∈ RStand+(α) ∪ L(RStand(α)).

Theorem 10 can be proved using Corollary 12 and Proposition 13 below.
As was remarked in Sect. 3, a square w2 ∈ L(α) trivially satisfies the square

root condition if the interval [w] has 1 − α as an endpoint. Our aim is to prove
that the converse is also true. We begin with a technical lemma.

Lemma 11. Let n = q1 or n = qk,l for some k ≥ 2 with 0 < l ≤ ak, and let i
be an integer such that 1 < i ≤ n.

(i) If {−iα} ∈ I0 and {−(i + n)α} < {−iα}, then ψ(−(i + n)α) > {−iα}.
(ii) If {−iα} ∈ I1 and {−(i + n)α} > {−iα}, then ψ(−(i + n)α) < {−iα}.
With Lemma 11 we can prove the following:

Corollary 12. If w2 ∈ L(α) with w primitive satisfies the square root condition,
then [w] has 1 − α as an endpoint.

Next we study in more detail the properties of squares w2 ∈ L(α) whose interval
has 1 − α as an endpoint.

Proposition 13. Consider the intervals of factors in L(α) of length n = q1 or
n = qk,l with k ≥ 2 and 0 < l ≤ ak. Let u and v be the two distinct words having
intervals with endpoint 1 − α. Then the following holds:

(i) There exists a word w such that u = xyw and v = yxw = L(u) for distinct
letters x and y.

(ii) Either u or v is right special.
(iii) If μ is the right special word among the words u and v, then μ2 ∈ L(α).
(iv) If λ is the word among the words u and v which is not right special, then

λ2 ∈ L(α) if and only if n = q1 or l = ak.

5 Characterization by a Word Equation

It turns out that the squares of slope α satisfying the square root condition
have also a different characterization in terms of specific solutions of the word
equation

X2
1X2

2 · · · X2
m = (X1X2 · · · Xm)2 (3)

in the language L(α). We are interested only in the solutions of (3) where all
words Xi are minimal square roots (1), i.e., primitive roots of minimal squares.
We thus define:

Definition 14. A nonempty word w is a solution to (3) if w can be written as a
product of minimal square roots w = X1X2 · · · Xm which satisfy the equation (3).
The solution is trivial if X1 = X2 = . . . = Xm and primitive if w is primitive.
The word w is a solution to (3) in L(α) if w is a solution to (3) and w2 ∈ L(α).

A Square Root Map on Sturmian Words 205

All minimal square roots of slope α are trivial solutions to (3). One example
of a nontrivial solution is w = S2S1S4 in L(α), where α = [0; 2, 1, 1, . . .], since
w2 = (01010)2 = (01)2 · 02 · (10)2 = S2

2S2
1S2

4 . It is clear that the presentation of
a word as product of minimal squares is unique.

Our aim is to complete the characterization of Theorem 10 to:

Theorem 15. Let w ∈ L(α). The following are equivalent:

(i) w is a primitive solution to (3) in L(α),
(ii) w2 satisfies the square root condition,
(iii) w ∈ RStand+(α) ∪ L(RStand(α)).

Note that a word w in the set L(RStand+(α)) \ L(RStand(α)) is a solution to
(3) but not in the language L(α). Rather, w is a solution to (3) in L(β) where
β is a suitable irrational such that L(w) is a reversed standard word of slope β.

We begin with a definition:

Definition 16. The language L(a, b) consists of all factors of the infinite words
in the language

(10a+1(10a)b + 10a+1(10a)b+1)ω = (S5 + S6)ω.

Observe that by Proposition 2 every factor in L(a, b) is a factor of some optimal
squareful word with parameters a and b. Moreover if α = [0; a + 1, b + 1, . . .],
then L(α) ⊆ L(a, b).

To prove Proposition 18 below, we need the following technical lemma:

Lemma 17. Let w be a primitive solution to (3) having the word s = s̃3,1 =
10a+1(10a)b+1 as a suffix such that w2, L(w) ∈ L(a, b). Then wL(w) = X2

1X2
2 · · ·

X2
n and w = X1X2 · · · Xn where the words X2

i are minimal squares.

Proposition 18. Let w ∈ RStand+(α) ∪ L(RStand(α)). Then the word w is a
primitive solution to (3) in L(α).

From Proposition 18 we conclude the following interesting fact:

Corollary 19. There exist arbitrarily long primitive solutions of (3) in L(α).

We can now prove Theorem 15 using Theorem 10 and Proposition 18.

6 A More Detailed Combinatorial Description of the
Square Root Map

We saw in Sect. 3 that the square root of a Sturmian word s has the same factors
as s has. The proofs were dynamical; we used the special mapping ψ on the circle.
In this section we describe combinatorially why the language is preserved. We
give a location for any prefix of

√
s in s. As a side product, we are able to

206 J. Peltomäki and M. Whiteland

describe when a Sturmian word is uniquely expressible as a product of squares
of reversed (semi)standard words.

Let us consider as an example the famous Fibonacci word f (see for instance
[5]), having parameters a = 1 and b = 0, and its square root:

f = (010)2(100)2(10)2(01)202(10010)2(01)2 · · · ,
√

f = 010 · 100 · 10 · 01 · 0 · 10010 · 01 · · · .

Obviously the square root X1 = 010 of (010)2 occurs as a prefix of f . Equally
clearly the word 010 · 100 =

√
(010)2(100)2 occurs, not as a prefix, but after

the prefix X1 of f . Thus the position of the first occurrence of 010 · 100 shifted
|X1| = 3 positions from the position of the first occurrence of X1. However,
when comparing the position of the first occurrence of

√
(010)2(100)2(10)2 with

the first occurrence of 010 · 100, we see that there is no further shift. By further
inspection, the word

√
(010)2(100)2(10)2(01)202(10010)2 occurs for the first time

at position |X1| of f (when indexing from zero). This is no longer true for the first
seven minimal squares; the first occurrence of X1X2 = 010·100·10·01·0·10010·01
is at position |X1X2| = 16 of f . The amount of shift from the previous position
|X1| = 3 is |X2| = 13; observe that both of these numbers are Fibonacci numbers.
Thus the amount of shift was exactly the length of the square roots added after
observing the previous shift. As an observant reader might have noticed, both
of the words X1 and X2 are reversed standard words, or equivalently, primitive
solutions to (3). Repeating similar inspections on other Sturmian words suggests
that there is a certain pattern to these shifts and that knowing the pattern would
make it possible to locate prefixes of

√
s in the Sturmian word s. Thus it makes

very much sense to “accelerate” the square root map by considering squares of
solutions to (3) instead of just minimal squares. Next we make these somewhat
vague observations more precise.

Every Sturmian word has a solution of (3) as a square prefix. Next we aim
to characterize Sturmian words having infinitely many solutions of (3) as square
prefixes. The next two lemmas are key results towards such a characterization.

Lemma 20. Consider the reversed (semi)standard words of slope α. The set
[s̃k,l] \ {1 − α} equals the disjoint union

⎛

⎝
∞⋃

i=0

ak+2i⋃

j=1

[s̃ 2
k+2i,j]

⎞

⎠ \
l−1⋃

i=1

[s̃ 2
k,i]

for all k ≥ 2 with 0 < l ≤ ak. Analogous representations exist for the sets
[s̃0] \ {1 − α} and [s̃1] \ {1 − α}.
To put it more simply: for each x = 1 − α there exists a unique reversed
(semi)standard word w such that x ∈ [w2].

Lemma 21. Let u ∈ RStand+(α) and v ∈ RStand+(α)∪L(RStand+(α)). Then
u2 is never a proper prefix of v2.

A Square Root Map on Sturmian Words 207

Let s be a fixed Sturmian word of slope α. Since the largest power of a factor
of a Sturmian word is bounded, Lemma 21 and Theorem 15 imply that if s has
infinitely many solutions of (3) as square prefixes then no word in RStand+(α)
is a square prefix of s. We have now the proper tools to prove the following:

Proposition 22. Let sx,α be a Sturmian word of slope α and intercept x. Then
sx,α begins with a square of a word in RStand+(α) if and only if x = 1 − α.

It follows that if s has infinitely many solutions of (3) as square prefixes, then
s ∈ {01cα, 10cα}.

Next we take one extra step and characterize when s can be written as a
product of squares of words in RStand+(α).

Theorem 23. A Sturmian word s of slope α can be written as a product of
squares of words in RStand+(α) if and only if s is not of the form X2

1X2
2 · · · X2

nc
where Xi ∈ RStand+(α) and c ∈ {01cα, 10cα}. If such an expression exists, then
it is unique.

Suppose that s /∈ {01cα, 10cα}. Then s has only finitely many solutions of (3)
as square prefixes. We call the longest solution maximal. Note that the maximal
solution is not necessarily primitive since any power of a solution to (3) is also
a solution. Sturmian words of slope α can be classified into two types:

Type A. Sturmian words s of slope α which can be written as products of
maximal solutions to (3). In other words, it can be written that s = X2

1X2
2 · · ·

where Xi is the maximal solution occurring as a square prefix of the word
Thi(s) where hi = |X2

1X2
2 · · · X2

i−1|.
Type B. Sturmian words s of slope α which are of the form s = X2

1X2
2 · · · X2

nc
where c ∈ {01cα, 10cα}, and the words Xi are maximal solutions as above.

Proposition 22 and Lemma 21 imply that the words Xi in the above defini-
tions are uniquely determined and that the primitive root of a maximal solution
is in RStand+(α). Consequently, a maximal solution is always right special.
When finding the expression of a Sturmian word as a product of squares of max-
imal solutions, it is sufficient to detect at each position the shortest square of a
word in RStand+(α) and take its largest even power occurring in that position.

Keeping the Sturmian word s of slope α fixed, we define two sequences (μk)
and (λk). We set μ0 = λ0 = ε. Following the notation above, we define depending
on the type of s as follows:

(A) If s is of type A, then we set for all k ≥ 1 that

μk = X2
1X2

2 · · · X2
k and

λk = X1X2 · · · Xk.

(B) If s is of type B, then for 1 ≤ k ≤ n we define λk and μk as in the previous
case. We let

μn+1 = X2
1X2

2 · · · X2
nc and

λn+1 = X1X2 · · · Xnc.

208 J. Peltomäki and M. Whiteland

Compare these definitions with Theorem 25 and the example of the Fibonacci
word (of type A); the words X1 and X2 are maximal solutions.

Proposition 24. Suppose that s is a Sturmian word of type A. Then the word
λk is right special and a suffix of the word μk for all k ≥ 0.

Note that even though λk is right special and always a suffix of μk, it is not
necessary for μk to be right special.

We are finally in a position to formulate precisely the observations made at
the beginning of this section and state the main result of this section.

Theorem 25. Let s be a Sturmian word with slope α.
(A) If s is of type A, then

√
s = lim

k→∞
T |λk|(s).

Moreover, the first occurrence of the prefix λk+1 of
√

s is at position |λk| of s
for all k ≥ 0.

(B) If s is of type B, then
√

s = T |λn|(s).

Moreover, the first occurrence of the prefix λk+1 with 0 ≤ k ≤ n−1 is at position
|λk| of s, and the first occurrence of any prefix of

√
s having length greater than

|λn| is at position |λn| of s.
In particular,

√
s is a Sturmian word with slope α.

The theorem only states where the prefixes λk of
√

s occur for the first time. For
the first occurrence of other prefixes we do not have a guaranteed location.

Acknowledgments. We thank our supervisors Juhani Karhumäki and Luca Zamboni
for suggesting that the square root map might preserve the language of a Sturmian
word.

References

1. Khinchin, A.Ya.: Continued Fractions. Dover Publications, New York (1997)
2. Berstel, J.: On the index of Sturmian words. In: Karhumäki, J., Maurer, H., Păun,

G., Rozenberg, G. (eds.) Jewels Are Forever, pp. 287–294. Springer, Heidelberg
(1999)

3. Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge Tracts
in Mathematics and Mathematical Physics, vol. 45. Cambridge University Press,
Cambridge (1957)

4. Damanik, D., Lenz, D.: Powers in Sturmian sequences. Eur. J. Comb. 24, 377–390
(2003). doi:10.1016/S0304-3975(99)90294-3

5. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and
Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

http://dx.doi.org/10.1016/S0304-3975(99)90294-3

A Square Root Map on Sturmian Words 209

6. Peltomäki, J.: Characterization of repetitions in Sturmian words: a new proof.
Inform. Process. Lett. 115(11), 886–891 (2015). doi:10.1016/j.ipl.2015.05.011

7. Pytheas Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lec-
ture Notes in Mathematics, vol. 1794. Springer, Heidelberg (2002)

8. Saari, K.: Everywhere α-repetitive sequences and Sturmian words. Eur. J. Comb.
31, 177–192 (2010). doi:10.1016/j.ejc.2009.01.004

http://dx.doi.org/10.1016/j.ipl.2015.05.011
http://dx.doi.org/10.1016/j.ejc.2009.01.004

Specular Sets

Valérie Berthé1, Clelia De Felice2, Vincent Delecroix3, Francesco Dolce4,
Julien Leroy5, Dominique Perrin4(B),

Christophe Reutenauer6, and Giuseppina Rindone4

1 CNRS, Université Paris 7, Paris, France
2 Università Degli Studi di Salerno, Salerno, Italy

3 CNRS, Université de Bordeaux, Bordeaux, France
4 Université Paris Est, Champs-sur-marne, France

dominique.perrin@esiee.fr
5 Université de Liège, Liège, Belgium

6 Université du Québec à Montréal, Montreal, Canada

Abstract. We introduce specular sets. These are subsets of groups which
form a natural generalization of free groups. These sets are an abstract
generalization of the natural codings of interval exchanges and of linear
involutions. We prove several results concerning the subgroups generated
by return words and by maximal bifix codes in these sets.

1 Introduction

We have studied in a series of papers initiated in [1] the links between minimal
sets, subgroups of free groups and bifix codes. In this paper, we continue this
investigation in a situation which involves groups which are not free anymore.
These groups, named here specular, are free products of a free group and of a
finite number of cyclic groups of order two. These groups are close to free groups
and, in particular, the notion of a basis in such groups is clearly defined. It
follows from Kurosh’s theorem that any subgroup of a specular group is specular.
A specular set is a subset of such a group which generalizes the natural codings
of linear involutions studied in [2].

The main results of this paper are Theorem 5.1, referred to as the Return
Theorem and Theorem 5.2, referred to as the Finite Index Basis Theorem. The
first one asserts that the set of return words to a given word in a uniformly
recurrent specular set is a basis of a subgroup of index 2 called the even subgroup.
The second one characterizes the monoidal bases of subgroups of finite index of
specular groups contained in a specular set S as the finite S-maximal symmetric
bifix codes contained in S. This generalizes the analogous results proved initially
in [1] for Sturmian sets and extended in [3] to the class of tree sets (this class
contains both Sturmian sets and interval exchange sets).

There are two interesting features of the subject of this paper.
In the first place, some of the statements concerning the natural codings of

interval exchanges and of linear involutions can be proved using geometric meth-
ods, as shown in a separate paper [2]. This provides an interesting interpretation
c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 210–222, 2015.
DOI: 10.1007/978-3-319-23660-5 18

Specular Sets 211

of the groups playing a role in these natural codings (these groups are generated
either by return words or by maximal bifix codes) as fundamental groups of some
surfaces. The methods used here are purely combinatorial.

In the second place, the abstract notion of a specular set gives rise to groups
called here specular. These groups are natural generalizations of free groups, and
are free products of Z and Z/2Z. They are called free-like in [4] and appear at
several places in [5].

The idea of considering recurrent sets of reduced words invariant by taking
inverses is connected, as we shall see, with the notion of G-rich words of [6].

The paper is organized as follows. In Sect. 2, we recall some notions concern-
ing words, extension graphs and bifix codes. In Sect. 3, we introduce specular
groups, which form a family with properties very close to free groups. We prove
properties of these groups extending those of free groups, like a Schreier’s For-
mula (Formula (3.1)). In Sect. 4, we introduce specular sets. This family contains
the natural codings of linear involutions without connection studied in [7]. We
prove a result connecting specular sets with the family of tree sets introduced
in [8] (Theorem 4.6). In Sect. 5, we prove several results concerning subgroups
generated by subsets of specular groups. We first prove that the set of return
words to a given word forms a basis of the even subgroup (Theorem 5.1 referred
to as the Return Theorem). This is a subgroup defined in terms of particular
letters, called even letters, that play a special role with respect to the exten-
sion graph of the empty word. We next prove the Finite Index Basis Theorem
(Theorem 5.2).

2 Preliminaries

A set of words on the alphabet A and containing A is said to be factorial if it
contains the factors of its elements. An internal factor of a word x is a word v
such that x = uvw with u,w nonempty.

Let S be a set of words on the alphabet A. For w ∈ S, we denote LS(w) =
{a ∈ A | aw ∈ S}, RS(w) = {a ∈ A | wa ∈ S} and ES(w) = {(a, b) ∈ A × A |
awb ∈ S}. Further �S(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) =
Card(ES(w)). We omit the subscript S when it is clear from the context. A word
w is right-extendable if r(w) > 0, left-extendable if �(w) > 0 and biextendable if
e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.
biextendable) if every word in S is right-extendable (resp. left-extendable, resp.
biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if �(w) ≥ 2.
It is called bispecial if it is both left-special and right-special.

For w ∈ S, we denote

mS(w) = eS(w) − �S(w) − rS(w) + 1.

The word w is called weak if mS(w) < 0, neutral if mS(w) = 0 and strong if
mS(w) > 0.

212 V. Berthé et al.

We say that a factorial set S is neutral if every nonempty word in S is
neutral. The characteristic of S is the integer 1 − mS(ε). Thus a neutral set of
characteristic 1 is such that all words (including the empty word) are neutral.
This is what is called a neutral set in [8].

A set of words S �= {ε} is recurrent if it is factorial and if for any u,w ∈ S,
there is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be
uniformly recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u
is a factor of any word of S of length n. A uniformly recurrent set is recurrent.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and bn = sn+1 − sn be
respectively the first and second order differences sequences of the sequence pn.

The following result is from [9] (see also [10], Theorem 4.5.4).

Proposition 2.1 Let S be a factorial set on the alphabet A. One has bn =∑
w∈S∩An m(w) and sn =

∑
w∈S∩An(r(w) − 1) for all n ≥ 0.

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w) as
an undirected graph on the set of vertices which is the disjoint union of L(w)
and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension
graph of w. We sometimes denote 1⊗L(w) and R(w)⊗1 the copies of L(w) and
R(w) used to define the set of vertices of E(w).

If the extension graph E(w) is acyclic, then m(w) = 1 − c, where c is the
number of connected components of the graph E(w). Thus w is weak or neutral.

A biextendable set S is called acyclic if for every w ∈ S, the graph E(w)
is acyclic. A biextendable set S is called a tree set of characteristic c if for any
nonempty w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees (the
definition of tree set in [8] corresponds to a tree set of characteristic 1). Note
that a tree set of characteristic c is a neutral set of characteristic c.

As an example, a Sturmian set is a tree set of characteristic 1 (by a Sturmian
set, we mean the set of factors of a strict episturmian word, see [1]).

Let S be a factorial set of words and x ∈ S. A return word to x in S is a
nonempty word u such that the word xu is in S and ends with x, but has no
internal factor equal to x. We denote by RS(x) the set of return words to x in
S. The set of complete return words to x ∈ S is the set xRS(x).

Bifix Codes. A prefix code is a set of nonempty words which does not contain
any proper prefix of its elements. A suffix code is defined symmetrically. A bifix
code is a set which is both a prefix code and a suffix code (see [11] for a more
detailed introduction).

Let S be a recurrent set. A prefix (resp. bifix) code X ⊂ S is S-maximal
if it is not properly contained in a prefix (resp. bifix) code Y ⊂ S. Since S is
recurrent, a finite S-maximal bifix code is also an S-maximal prefix code (see [1],
Theorem 4.2.2). For example, for any n ≥ 1, the set X = S∩An is an S-maximal
bifix code.

Specular Sets 213

Let X be a bifix code. Let Q be the set of words without any suffix in X and
let P be the set of words without any prefix in X. A parse of a word w with
respect to a bifix code X is a triple (q, x, p) ∈ Q × X∗ × P such that w = qxp.
We denote by dX(w) the number of parses of a word w with respect to X. The
S-degree of X, denoted dX(S), is the maximal number of parses with respect to
X of a word of S. For example, the set X = S ∩ An has S-degree n.

Let S be a recurrent set and let X be a finite bifix code. By Theorem 4.2.8
in [1], X is S-maximal if and only if its S-degree is finite. Moreover, in this case,
a word w ∈ S is such that dX(w) < dX(S) if and only if it is an internal factor
of a word of X.

3 Specular Groups

We consider an alphabet A with an involution θ : A → A, possibly with some
fixed points. We also consider the group Gθ generated by A with the relations
aθ(a) = 1 for every a ∈ A. Thus θ(a) = a−1 for a ∈ A. The set A is called a
natural set of generators of Gθ.

When θ has no fixed point, we can set A = B ∪ B−1 by choosing a set of
representatives of the orbits of θ for the set B. The group Gθ is then the free
group on B. In general, the group Gθ is a free product of a free group and a
finite number of copies of Z/2Z, that is, Gθ = Z

∗i ∗ (Z/2Z)∗j where i is the
number of orbits of θ with two elements and j the number of its fixed points.
Such a group will be called a specular group of type (i, j). These groups are
very close to free groups, as we will see. The integer Card(A) = 2i + j is called
the symmetric rank of the specular group Z

∗i ∗ (Z/2Z)∗j . Two specular groups
are isomorphic if and only if they have the same type. Indeed, the commutative
image of a group of type (i, j) is Z

i × (Z/2Z)j and the uniqueness of i, j follows
from the fundamental theorem of finitely generated Abelian groups.

Example 3.1. Let A = {a, b, c, d} and let θ be the involution which exchanges
b, d and fixes a, c. Then Gθ = Z ∗ (Z/2Z)2 is a specular group of symmetric
rank 4.

By Kurosh’s Theorem, any subgroup of a free product G1 ∗G2 ∗ · · · ∗Gn is itself
a free product of a free group and of groups conjugate to subgroups of the Gi

(see [12]). Thus, we have, replacing the Nielsen-Schreier Theorem of free groups,
the following result.

Theorem 3.1 Any subgroup of a specular group is specular.

It also follows from Kurosh’s theorem that the elements of order 2 in a specular
group Gθ are the conjugates of the j fixed points of θ and this number is thus
the number of conjugacy classes of elements of order 2.

A word on the alphabet A is θ-reduced (or simply reduced) if it has no factor
of the form aθ(a) for a ∈ A. It is clear that any element of a specular group is
represented by a unique reduced word.

214 V. Berthé et al.

A subset of a group G is called symmetric if it is closed under taking inverses.
A set X in a specular group G is called a monoidal basis of G if it is symmetric,
if the monoid that it generates is G and if any product x1x2 · · · xm of elements
of X such that xkxk+1 �= 1 for 1 ≤ k ≤ m − 1 is distinct of 1. The alphabet
A is a monoidal basis of Gθ and the symmetric rank of a specular group is the
cardinality of any monoidal basis (two monoidal bases have the same cardinality
since the type is invariant by isomorphism).

If H is a subgroup of index n of a specular group G of symmetric rank r, the
symmetric rank s of H is

s = n(r − 2) + 2. (3.1)

This formula replaces Schreier’s Formula (which corresponds to the case j = 0).
It can be proved as follows. Let Q be a Schreier transversal for H, that is, a
set of reduced words which is a prefix-closed set of representatives of the right
cosets Hg of H. Let X be the corresponding Schreier basis, formed of the paq−1

for a ∈ A, p, q ∈ Q with pa �∈ Q and pa ∈ Hq. The number of elements of X
is nr − 2(n − 1). Indeed, this is the number of pairs (p, a) ∈ Q × A minus the
2(n − 1) pairs (p, a) such that pa ∈ Q with pa reduced or pa ∈ Q with pa not
reduced. This gives Formula (3.1).

Any specular group G = Gθ has a free subgroup of index 2. Indeed, let H be
the subgroup formed of the reduced words of even length. It has clearly index 2.
It is free because it does not contain any element of order 2 (such an element is
conjugate to a fixed point of θ and thus is of odd length).

A group G is called residually finite if for every element g �= 1 of G, there is
a morphism ϕ from G onto a finite group such that ϕ(g) �= 1.

It follows easily by considering a free subgroup of index 2 of a specular group
that any specular group is residually finite. A group G is said to be Hopfian if
any surjective morphism from G onto G is also injective. By a result of Malcev, any
finitely generated residually finite group is Hopfian (see [13], p. 197). Thus any
specular group is Hopfian.

As a consequence, one has the following result, which can be obtained by
considering the commutative image of a specular group.

Proposition 3.2 Let G be a specular group of type (i, j) and let X ⊂ G be a
symmetric set with 2i + j elements. If X generates G, it is a monoidal basis
of G.

4 Specular Sets

We assume given an involution θ on the alphabet A generating the specular
group Gθ. A specular set on A is a biextendable symmetric set of θ-reduced
words on A which is a tree set of characteristic 2. Thus, in a specular set, the
extension graph of every nonempty word is a tree and the extension graph of
the empty word is a union of two disjoint trees.

The following is a very simple example of a specular set.

Specular Sets 215

Example 4.1. Let A = {a, b} and let θ be the identity on A. Then the set of
factors of (ab)ω is a specular set (we denote by xω the word x infinitely repeated).

The following result shows in particular that in a specular set the two trees
forming E(ε) are isomorphic since they are exchanged by the bijection (a, b) �→
(b−1, a−1).

Proposition 4.1 Let S be a specular set. Let T0, T1 be the two trees such that
E(ε) = T0 ∪ T1. For any a, b ∈ A and i = 0, 1, one has (1 ⊗ a, b ⊗ 1) ∈ Ti if and
only if (1 ⊗ b−1, a−1 ⊗ 1) ∈ T1−i

Proof. Assume that (1 ⊗ a, b ⊗ 1) and (1 ⊗ b−1, a−1 ⊗ 1) are both in T0. Since
T0 is a tree, there is a path from 1 ⊗ a to a−1 ⊗ 1. We may assume that this
path is reduced, that is, does not use consecutively twice the same edge. Since
this path is of odd length, it has the form (u0, v0, u1, . . . , up, vp) with u0 =
1 ⊗ a and vp = a−1 ⊗ 1. Since S is symmetric, we also have a reduced path
(v−1

p , u−1
p , · · · , u−1

1 , v−1
0 , u−1

0) which is in T0 (for ui = 1 ⊗ ai, we denote u−1
i =

a−1
i ⊗ 1 and similarly for v−1

i). Since v−1
p = u0, these two paths have the same

origin and end. But if a path of odd length is its own inverse, its central edge
has the form (x, y) with x = y−1 a contradiction with the fact that the words
of S are reduced. Thus the two paths are distinct. This implies that E(ε) has a
cycle, a contradiction.

The next result follows easily from Proposition 2.1.

Proposition 4.2 The factor complexity of a specular set on the alphabet A is
pn = n(k − 2) + 2 for n ≥ 1 with k = Card(A).

Doubling Maps. We now introduce a construction which allows one to build
specular sets.

A transducer is a graph on a set Q of vertices with edges labeled in Σ × A.
The set Q is called the set of states, the set Σ is called the input alphabet and A
is called the output alphabet. The graph obtained by erasing the output letters
is called the input automaton (with an unspecified initial state). Similarly, the
output automaton is obtained by erasing the input letters.

Let A be a transducer with set of states Q = {0, 1} on the input alphabet Σ
and the output alphabet A. We assume that

1. The input automaton is a group automaton, that is, every letter of Σ acts on
Q as a permutation,

2. The output labels of the edges are all distinct.

We define two maps δ0, δ1 : Σ∗ → A∗ corresponding to initial states 0 and 1
respectively. Thus δ0(u) = v (resp. δ1(u) = v) if the path starting at state 0
(resp. 1) with input label u has output label v. The pair δ = (δ0, δ1) is called a
doubling map on Σ × A and the transducer A a doubling transducer. The image
of a set T on the alphabet Σ by the doubling map δ is the set S = δ0(T)∪δ1(T).

If A is a doubling transducer, we define an involution θA as follows. For any
a ∈ A, let (i, α, a, j) be the edge with input label α and output label a. We define

216 V. Berthé et al.

θA(a) as the output label of the edge starting at 1 − j with input label α. Thus,
θA(a) = δi(α) = a if i + j = 1 and θA(a) = δ1−i(α) �= a if i = j.

The reversal of a word w = a1a2 · · · an is the word w̃ = an · · · a2a1. A set S
of words is closed under reversal if w ∈ S implies w̃ ∈ S for every w ∈ S. As is
well known, any Sturmian set is closed under reversal (see [1]). The proof of the
following result can found in [7].

Proposition 4.3 For any tree set T of characteristic 1 on the alphabet Σ, closed
under reversal and for any doubling map δ, the image of T by δ is a specular set
relative to the involution θA.

We now give an example of a specular set obtained by a doubling map.

Example 4.2. Let Σ = {α, β} and let T be the Fibonacci set, which is the
Sturmian set formed of the factors of the fixed point of the morphism α �→
αβ, β �→ α. Let δ be the doubling map given by the transducer A of Fig. 1 on
the left.

Then θA is the involution θ of Example 3.1 and the image of T by δ is a
specular set S on the alphabet A = {a, b, c, d}. The graph ES(ε) is represented
in Fig. 1 on the right.

Note that S is the set of factors of the fixed point gω(a) of the morphism
g : a �→ abcab, b �→ cda, c �→ cdacd, d �→ abc. The morphism g is obtained by
applying the doubling map to the cube f3 of the Fibonacci morphism f in such
a way that gω(a) = δ0(fω(α)).

0 1β | d

α | a

α | c

β | b

b

a

c

b

d

c

a

d

Fig. 1. A doubling transducer and the extension graph ES(ε).

Odd and Even Words. We introduce a notion which plays, as we shall see, an
important role in the study of specular sets. Let S be a specular set. Since a
specular set is biextendable, any letter a ∈ A occurs exactly twice as a vertex of
E(ε), one as an element of L(ε) and one as an element of R(ε). A letter a ∈ A
is said to be even if its two occurrences appear in the same tree. Otherwise, it
is said to be odd. Observe that if S is recurrent, there is at least one odd letter.

Example 4.3. Let S be the specular set of Example 4.2. The letters a, c are odd
and b, d are even.

A word w ∈ S is said to be even if it has an even number of odd letters. Otherwise
it is said to be odd. The set of even words has the form X∗ ∩ S where X ⊂ S is
a bifix code, called the even code. The set X is the set of even words without a
nonempty even prefix (or suffix).

Specular Sets 217

Proposition 4.4 Let S be a recurrent specular set. The even code is an S-
maximal bifix code of S-degree 2.

Proof. Let us verify that any w ∈ S is comparable for the prefix order with
an element of the even code X. If w is even, it is in X∗. Otherwise, since S is
recurrent, there is a word u such that wuw ∈ S. If u is even, then wuw is even
and thus wuw ∈ X∗. Otherwise wu is even and thus wu ∈ X∗. This shows that
X is S-maximal. The fact that it has S-degree 2 follows from the fact that any
product of two odd letters is a word of X which is not an internal factor of X
and has two parses.

Example 4.4. Let S be the specular set of Example 4.2. The even code is X =
{abc, ac, b, ca, cda, d}.

Denote by T0, T1 the two trees such that E(ε) = T0∪T1. We consider the directed
graph G with vertices 0, 1 and edges all the triples (i, a, j) for 0 ≤ i, j ≤ 1 and
a ∈ A such that (1 ⊗ b, a ⊗ 1) ∈ Ti and (1 ⊗ a, c ⊗ 1) ∈ Tj for some b, c ∈ A.
The graph G is called the parity graph of S. Observe that for every letter a ∈ A
there is exactly one edge labeled a because a appears exactly once as a left (resp.
right) vertex in E(ε).

Note that, when S is a specular set obtained by a doubling map using a
transducer A, the parity graph of S is the output automaton of A.

Example 4.5. The parity graph of the specular set of Example 4.2 is the output
automaton of the doubling transducer of Fig. 1.

The proof of the following result can be found in [7].

Proposition 4.5 Let S be a specular set and let G be its parity graph. Let Si,j

be the set of words in S which are the label of a path from i to j in the graph G.

(1) The family (Si,j \ {ε})0≤i,j≤1 is a partition of S \ {ε}.
(2) For u ∈ Si,j \ {ε} and v ∈ Sk,� \ {ε}, if uv ∈ S, then j = k.
(3) S0,0 ∪ S1,1 is the set of even words.
(4) S−1

i,j = S1−j,1−i.

A coding morphism for a prefix code X on the alphabet A is a morphism f :
B∗ → A∗ which maps bijectively B onto X. Let S be a recurrent set and let f
be a coding morphism for an S-maximal bifix code. The set f−1(S) is called a
maximal bifix decoding of S.

The following result is the counterpart for uniformly recurrent specular sets
of the main result of [14, Theorem 6.1] asserting that the family of uniformly
recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.
The proof can be found in [7].

Theorem 4.6. The decoding of a uniformly recurrent specular set by the even
code is a union of two uniformly recurrent tree sets of characteristic 1.

218 V. Berthé et al.

Palindromes. The notion of palindromic complexity originates in [15] where it
is proved that a word of length n has at most n + 1 palindrome factors. A word
of length n is full if it has n + 1 palindrome factors and a factorial set is full
(or rich) if all its elements are full. By a result of [16], a recurrent set S closed
under reversal is full if and only if every complete return word to a palindrome
in S is a palindrome. It is known that all Sturmian sets are full [15] and also all
natural codings of interval exchange defined by a symmetric permutation [17].
In [6], this notion was extended to that of H-fullness, where H is a finite group
of morphisms and antimorphisms of A∗ (an antimorphism is the composition
of a morphism and reversal) containing at least one antimorphism. As one of
the equivalent definitions of H-full, a set S closed under H is H-full if for every
x ∈ S, every complete return word to the H-orbit of x is fixed by a nontrivial
element of H (a complete return word to a set X is a word of S which has exactly
two factors in X, one as a proper prefix and one as a proper suffix).

The following result connects these notions with ours. If δ is a doubling map,
we denote by H the group generated by the antimorphism u �→ u−1 for u ∈ Gθ

and the morphism obtained by replacing each letter a ∈ A by τ(a) if there are
edges (i, b, a, j) and (1− i, b, τ(a), 1− j) in the doubling transducer. Actually, we
have H = Z/2Z × Z/2Z. The proof of the following result can be found in [7].
The fact that T is full generalizes the results of [15,17].

Proposition 4.7 Let T be a recurrent tree set of characteristic 1 on the alphabet
Σ, closed under reversal and let S be the image of T under a doubling map. Then
T is full and S is H-full.

Example 4.6. Let S be the specular set of Example 4.2. Since it is a doubling
of the Fibonacci set (which is Sturmian and thus full), it is H-full with respect
to the group H generated by the map σ taking the inverse and the morphism
τ which exchanges a, c and b, d respectively. The H-orbit of x = a is the set
X = {a, c} and CRS(X) = {ac, abc, ca, cda}.

All four words are fixed by στ . As another example, consider x = ab. Then
X = {ab, bc, cd, da} and CRS(X) = {abc, bcab, bcd, cda, dab, dacd}. Each of them
is fixed by some nontrivial element of H.

5 Subgroup Theorems

In this section, we prove several results concerning the subgroups generated by
subsets of a specular set.

The Return Theorem. By [8, Theorem 4.5], the set of return words to a given
word in a uniformly recurrent tree set of characteristic 1 containing the alphabet
A is a basis of the free group on A. We will see a counterpart of this result for
uniformly recurrent specular sets.

Let S be a specular set. The even subgroup is the group generated by the
even code. It is a subgroup of index 2 of Gθ with symmetric rank 2(Card(A)−1)
by (3.1). Since no even word is its own inverse (see Proposition 4.5), it is a free
group. Thus its rank is Card(A) − 1. The proof can be found in [7].

Specular Sets 219

Theorem 5.1. Let S be a uniformly recurrent specular set on the alphabet A.
For any w ∈ S, the set of return words to w is a basis of the even subgroup.

Note that this implies that Card(RS(x)) = Card(A) − 1.

Example 5.1. Let S be the specular set of Example 4.2. The set of return words
to a is RS(a) = {bca, bcda, cda}. It is a basis of the even subgroup.

Finite Index Basis Theorem. The following result is the counterpart for specular
sets of the result holding for uniformly recurrent tree sets of characteristic 1
(see [3, Theorem 4.4]). The proof can be found in [7].

Theorem 5.2. Let S be a uniformly recurrent specular set and let X ⊂ S be a
finite symmetric bifix code. Then X is an S-maximal bifix code of S-degree d if
and only if it is a monoidal basis of a subgroup of index d.

Note that when X is not symmetric, the index of the subgroup generated by X
may be different of dX(S).

Note also that Theorem 5.2 implies that for any uniformly recurrent specular
set and for any finite symmetric S-maximal bifix code X, one has Card(X) =
dX(S)(Card(A)−2)+2. This follows actually also (under more general hypothe-
ses) from Theorem 2 in [18].

The proof of the Finite Index Basis Theorem needs preliminary results which
involve concepts like that of incidence graph which are interesting in themselves.

Saturation Theorem. The incidence graph of a set X, is the undirected graph
GX defined as follows. Let P be the set of proper prefixes of X and let Q be the
set of its proper suffixes. Set P ′ = P \ {1} and Q′ = Q \ {1}. The set of vertices
of GX is the disjoint union of P ′ and Q′. The edges of GX are the pairs (p, q) for
p ∈ P ′ and q ∈ Q′ such that pq ∈ X. As for the extension graph, we sometimes
denote 1⊗P ′, Q′ ⊗1 the copies of P ′, Q′ used to define the set of vertices of GX .

Example 5.2. Let S be a factorial set and let X = S ∩ A2 be the bifix code
formed of the words of S of length 2. The incidence graph of X is identical with
the extension graph E(ε).

Let X be a symmetric set. We use the incidence graph to define an equivalence
relation γX on the set P of proper prefixes of X, called the coset equivalence of
X, as follows. It is the relation defined by p ≡ q mod γX if there is a path (of
even length) from 1 ⊗ p to 1 ⊗ q or a path (of odd length) from 1 ⊗ p to q−1 ⊗ 1
in the incidence graph GX . It is easy to verify that, since X is symmetric, γX is
indeed an equivalence. The class of the empty word ε is reduced to ε.

The following statement is the generalization to symmetric bifix codes of
Proposition 6.3.5 in [1]. We denote by 〈X〉 the subgroup generated by X.

Proposition 5.3 Let X be a symmetric bifix code and let P be the set of its
proper prefixes. Let γX be the coset equivalence of X and let H = 〈X〉. For any
p, q ∈ P , if p ≡ q mod γX , then Hp = Hq.

220 V. Berthé et al.

We now use the coset equivalence γX to define the coset automaton CX of a
symmetric bifix code X as follows. The vertices of CX are the equivalence classes
of γX . We denote by p̂ the class of p. There is an edge labeled a ∈ A from s to
t if for some p ∈ s and q ∈ t (that is s = p̂ and t = q̂), one of the following cases
occurs (see Fig. 2):

(i) pa ∈ P and pa ≡ q mod γX

(ii) or pa ∈ X and q = ε.

ε̂ p̂ p̂a
p a

(i)

p̂ ε̂
a

(ii)

Fig. 2. The edges of the coset automaton.

The proof of the following statement can be found in [7].

Proposition 5.4 Let X be a symmetric bifix code, let P be its set of proper
prefixes and let H = 〈X〉. If for p, q ∈ P and a word w ∈ A∗ there is a path
labeled w from the class p̂ to the class q̂, then Hpw = Hq.

Let A be an alphabet with an involution θ. A directed graph with edges labeled
in A is called symmetric if there is an edge from p to q labeled a if and only if
there is an edge from q to p labeled a−1. If G is a symmetric graph and v is a
vertex of G, the set of reductions of the labels of paths from v to v is a subgroup
of Gθ called the subgroup described by G with respect to v.

A symmetric graph is called reversible if for every pair of edges of the form
(v, a, w), (v, a, w′), one has w = w′ (and the symmetric implication since the
graph is symmetric).

Proposition 5.5 Let S be a specular set and let X ⊂ S be a finite symmetric
bifix code. The coset automaton CX is reversible. Moreover the subgroup described
by CX with respect to the class of the empty word is the group generated by X.

Prime Words with Respect to a Subgroup. Let H be a subgroup of the specular
group Gθ and let S be a specular set on A relative to θ. The set of prime words
in S with respect to H is the set of nonempty words in H ∩ S without a proper
nonempty prefix in H ∩S. Note that the set of prime words with respect to H is
a symmetric bifix code. One may verify that it is actually the unique bifix code
X such that X ⊂ S ∩ H ⊂ X∗.

The following statement is a generalization of Theorem 5.2 in [8] (Saturation
Theorem). The proof can be found in [7].

Theorem 5.6. Let S be a specular set. Any finite symmetric bifix code X ⊂
S is the set of prime words in S with respect to the subgroup 〈X〉. Moreover
〈X〉 ∩ S = X∗ ∩ S.

Specular Sets 221

A Converse of the Finite Index Basis Theorem. The following is a converse of
Theorem 5.2. For the proof, see [7].

Theorem 5.7. Let S be a recurrent and symmetric set of reduced words of factor
complexity pn = n(Card(A)−2)+2. If S∩An is a monoidal basis of the subgroup
〈An〉 for all n ≥ 1, then S is a specular set.

Acknowledgments. The authors thank Laurent Bartholdi and Pierre de la Harpe
for useful indications. This work was supported by grants from Région Île-de-France
and ANR project Eqinocs.

References

1. Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and
sturmian words. J. Algebra 369, 146–202 (2012)

2. Berthé, V., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.:
Return words of linear involutions and fundamental groups. Ergodic Th. Dyn.
Syst. (2015, To appear). http://arxiv.org/abs/1405.3529

3. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)

4. Bartholdi, L.: Growth of groups and wreath products (2014, preprint)
5. de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathe-

matics. University of Chicago Press, Chicago, IL (2000)
6. Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under

more symmetries. Theoret. Comput. Sci. 518, 42–63 (2014)
7. Berthé, V., De Felice, C., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C.,

Rindone, G.: Specular sets. In: Manea, F., Nowotka, D. (eds.) WORDS 2015. Lec-
ture Notes in Computer Science, vol. 9304, pp. xx–yy. Springer, Heidelberg (2015).
https://arXiv.org/abs/1505.00707

8. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Acyclic, connected and tree sets. Monats. Math. 176, 521–550 (2015)

9. Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin
4(1), 67–88 (1997). Journées Montoises (Mons, 1994)

10. Berthé, V., Rigo, M.: Combinatorics, Automata and Number Theory. Encyclope-
dia of Mathematics and its Applications, vol. 135. Cambridge University Press,
Cambridge (2010)

11. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

12. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, 2nd edn. Dover
Publications Inc, Mineola, NY (2004)

13. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Classics in Mathemat-
ics. Springer, Heidelberg (2001). Reprint of the 1977 edition

14. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Maximal bifix decoding. Discrete Math. 338, 725–742 (2015)

15. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001)

16. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J.
Combin. 30(2), 510–531 (2009)

http://arxiv.org/abs/http://arxiv.org/abs/1405.3529
https://arXiv.org/abs/1505.00707

222 V. Berthé et al.

17. Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of
uniformly recurrent infinite words. Theoret. Comput. Sci. 380(3), 266–275 (2007)

18. Dolce, F., Perrin, D.: Enumeration formulæ in neutral sets (2015, submitted).
http://arxiv.org/abs/1503.06081

http://arxiv.org/abs/http://arxiv.org/abs/1503.06081

On the Tree of Ternary Square-Free Words

Elena A. Petrova(B) and Arseny M. Shur

Ural Federal University, Ekaterinburg, Russia
{elena.petrova,arseny.shur}@urfu.ru

Abstract. We contribute to the study of the set of ternary square-free
words. Under the prefix order, this set forms a tree, and we prove two
results on its structure. First, we show that non-branching paths in this
tree are short: such a path from a node of nth level has length O(log n).
Second, we prove that any infinite path in the tree has a lot of branching
points: the lower density of the set of such points is at least 2/9.

1 Introduction

Power-free words and languages are studied in lots of papers starting with the
seminal work by Thue [14], but the number of challenging open problems is still
quite big. One group of problems concerns the internal structure of power-free
languages. Such a language can be viewed as a poset with respect to prefix, suffix,
or factor order; by “internal structure” we mean the structure of these posets.
In the case of prefix or suffix order, the diagram of the poset is a tree; since
power-free languages are closed under reversal, these two trees are isomorphic.
Each node of a prefix tree generates a subtree and is a common prefix of its
descendants. In this paper, we study the prefix tree of the language of ternary
square-free words.

There are several papers discussing the structure of (prefix) trees of k-power-
free languages. For all these languages, the subtree generated by any word has
at least one leaf [1]. Further, Currie and Shelton [2,4] showed that it is always
decidable whether a given word generates finite or infinite subtree and, more-
over, every infinite subtree branches infinitely often. All other results concern
particular languages. Among these languages, the binary overlap-free language
has the simplest structure due to its slow (polynomial) growth and immense
connection to the Thue-Morse word. The finiteness problem for subtrees of the
tree of binary overlap-free words was solved by Restivo and Salemi [8] in a con-
structive way (the general solution by Currie and Shelton is non-constructive);
they also proved the existence of arbitrarily large finite subtrees in this tree.
Furthermore, for this language it is decidable (in linear time!) whether the sub-
trees generated by two given words are isomorphic [12]. En passant, the deciding
procedure checks finiteness of a given subtree in a way different from that of [8]
and computes its depth if it is finite. The existence of finite subtrees of arbitrary

E.A. Petrova and A.M. Shur—Supported by the grant 13-01-00852 of the Russian
Foundation of Basic Research.

c© Springer International Publishing Switzerland 2015
F. Manea and D. Nowotka (Eds.): WORDS 2015, LNCS 9304, pp. 223–236, 2015.
DOI: 10.1007/978-3-319-23660-5 19

224 E.A. Petrova and A.M. Shur

depth in the prefix trees of binary cube-free words and of ternary square-free
words was proved, in a constructive way also, in [6,7] respectively.

Shelton and Sony [9,10] proved that in any infinite part of the tree T of
ternary square-free words, infinite branches are not “too sparse”: if all infinite
paths from a node u contain the same node uv, then the word v has length
at most Kn2/3, where n is the length of u and K is an absolute constant. We
continue this study, focusing on all, not only infinite, branches of T . Our main
results are the following two theorems. By a fixed context of a square-free word
u we mean a word v such that the subtree generated by u contains the node uv
and has no branches above it.

Theorem 1. A fixed context of a ternary square-free wordw has lengthO(log |w|).
Theorem 2. Let w be an infinite ternary square-free word and let b(n) be the
number of branching points in the (λ,w[1..n])-path in the tree T . Then one has
lim infn→∞

b(n)
n ≥ 2

9 .

Theorem 1 clearly calls for an improvement over the result by Shelton and Sony,
but such an improvement can be quite tricky. See Sect. 5 for the discussion of a
more feasible extension of Theorem 1.

Theorem 2 demonstrates that T is reasonably “uniform” in terms of branch-
ing. Since the ternary square-free language grows exponentially at rate α ≈
1.30176 (see [13]), a node in T has, on average, α children. The lower bound in
Theorem 2 is not too far from this average.

After short preliminaries, we prove a series of lemmas clarifying the interac-
tion of periodic factors inside square-free words. Then we prove Theorems 1 and
2 and finish the paper with a short discussion.

2 Definitions and Notation

We study words over the ternary alphabet {a, b, c} and auxiliary finite alphabets.
The empty word is denoted by λ. Finite [infinite] words over an alphabet Σ are
treated as functions w : {1, . . . , n} → Σ (resp., w : N → Σ). We often refer to
the argument of this function as time, using passages like “u occurs in w earlier
than v”. We write [i..j] for the range i, i+1, . . . , j of positive integers and w[i..j]
for the factor of the word w occupying this range; w[i..i] = w[i] is just the ith
letter of w. A word w has period p < |w| if w[1..|w|−p] = w[p+1..w].

Standard notions of factor, prefix, and suffix are used. A square is a nonempty
word of the form uu. A word is square-free if it has no squares as factors; a square
is minimal if it contains no other squares as factors. The only period of a minimal
square uu is |u|. A p-square is a minimal square of period p. Words u and v are
conjugates if u = ws, v = sw for some words w, s; conjugacy is an equivalence
relation. Linking up the ends of a finite word, we obtain a circular word. A
circular word represents a conjugacy class in an obvious way. The factors of a
circular word are just words, so one can speak about square-free circular words.

On the Tree of Ternary Square-Free Words 225

The set of ternary square-free words can be represented by the prefix tree T ,
in which each square-free word is a node, λ is the root, and any two nodes w
and wx are connected by a directed edge labeled by the letter x. By a subtree
in T we mean a tree consisting of a node and all its descedants in T . The index
of a subtree S of T is the length of its root.

In a square-free word w, we say that a letter w[i] is fixed by a p-square if
w[i−2p+1..i−1]y is a p-square, where y is the letter distinct from both w[i] and
w[i−1]. Note that w[1..i] in this case is the only child of the word w[1..i−1] in
the tree T . A fixed context of w is any word v such that in the word wv each
letter of v is fixed by some square.

3 Letters Fixed by Short Squares

We call squares with periods ≤17 short (the choice of the constant is caused
by the properties discussed below). Our goal in this section is to give an upper
bound on the number of letters in a square-free word that are fixed by short
squares. Namely, we will prove the following

Lemma 1. Suppose that t, l ≥ 1 are integers and w is a square-free word such
that either |w| ≥ t+l or w is infinite. Then the range [t+1..t+l] contains at most
2l+5
3 positions in which the letters of w are fixed by the squares with periods ≤17.

To study the structure of square-free words, we use a special binary encoding
which makes the reasoning about squares and periods more convenient. Any
ternary word w containing no squares of letters can be encoded by a binary
Pansiot codeword cwd(w) of length |w| − 2:

cwd(w)[i] =

{
0 if w[i] = w[i+2],

1 otherwise;
for example,

w = a b c b a c b c . . . ,
cwd(w) = 1 0 1 1 1 0

It is easy to see that a word can be reconstructed from its first two letters and
its Pansiot codeword; thus, the codeword represents the encoded word up to a
permutation of the alphabet. This type of encoding was proposed in [5] for bigger
alphabets and studied in [11] for the ternary alphabet. Let us recall necessary
facts from [11]. First, Pansiot’s encoding can be naturally extended for circular
words of length ≥3. The Pansiot codeword for a circular word (w) is the binary
circular word (cwd(w)) of length |w| obtained as in following example:

The codewords of square-free (ordinary or circular) words are also called square-
free. Square-free circular words and minimal squares are connected by

226 E.A. Petrova and A.M. Shur

Proposition 1 ([11]). The word w2 is a minimal square if and only if (w) is
square-free.

There are no minimal squares with roots of lengths 5, 7, 9, 10, 14, and 17 over
the ternary alphabet. For any other length ≤17, there is a unique square-free
circular word; the Pansiot codewords of these words are as follows:

(111) 3 (01110111) 8 (0101110110111) 13
(0101) 4 (01011010111) 11 (010110101101011) 15
(011011) 6 (010110111011) 12 (0101101101011011) 16

(1)

To obtain the codeword of a minimal square from a square-free circular code-
word (u) one has to double u or any of its conjugates and delete the two last
letters. For example, construct such a codeword u′ from the circular square-free
codeword (u) = (01110111). Taking the conjugate 11011101 of u, doubling it
and deleting the two last letters we get u′ = 11011101 110111. The word u′ has
length 14 and period 8, so the decoded word will have length 16 and the same
period 8. In addition, it is easy to see that any 2-square has the codeword 00.

Let w be a square-free word. If some letter w[i] is fixed by a p-square, the
factor cwd(w)[i−2p+1..i−2] differs from the codeword of a minimal square in the
last letter only. We say that this letter cwd(w)[i−2] is also fixed by a p-square and
call these square-free codewords broken p-squares. Below, the broken 8-square is
obtained from the word u′:

w = · · · a b c a c b a c a b c a c b a b · · ·
cwd(w) = · · · 1 1 0 1 1 1 0 1 1 1 0 1 1 0 · · ·

A full list of short broken p-squares (see Table 1) can be obtained from (1): one
builds the codewords of squares and changes the last letter; if the resulting word
contains no codeword of a square as a suffix, it is a broken square.

For each codeword u we define its fixing sequence fix(u) to be a word of length
|u| over {2, 3, 4, 6, 8, 11, 12, 13, 15, 16, ?} such that fix(u)[i] = p if u[i] is fixed by
a p-square with p ≤ 17, and fix(u)[i] =? otherwise (i.e., if u[i] is either non-fixed
or fixed by a long square). For example,

u = 1 1 0 1 1 1 0 1 1 1 0 1 1 0
fix(u) = ? ? ? 2 ? ? 3 2 ? ? 3 2 ? 8 (2)

Lemma 1 says exactly that

(�) for any codeword u and integers t, l, the factor fix(u)[t+1..t+l] contains at
most 2l+5

3 numbers.

Note that fix(u)[1] =? for any u. A sequence v of numbers is maximal if ?v? is a
factor of some fixing sequence. The number of numbers in a factor v of a fixing
sequence is denoted by N(v). To prove (�), we first find all maximal sequences.

Let w[i] be fixed by a p-square, u = cwd(w), i > 2p. Then u[i−2p+1..i−2] is a
broken square and, in addition, u[i−2p] �= u[i−p]. Otherwise, u[i−2p..i−3] would

On the Tree of Ternary Square-Free Words 227

encode a p-square. We call the broken square u[i−2p+1..i−2] regular. Note that
not all broken squares are regular: appending a letter from the left can produce
a codeword of some square. The list of short regular broken squares is given in
the first column of Table 1.

Table 1. All regular (left column) and non-regular (right column) short broken squares.
In the left column, the letter written in boldface extends a broken square to the left.
The codewords from the list (1) are underlined.

1 01 2 0110110111 62

0 1110 3 11101110111010 82

1 101011 4 01101011101011010110 111

0 1011011010 61 01011101011010111011 112

0 11011101110110 81 11101011010111010111 113

1 1101110110101101110111 121 10101101011101011011 114

0 1011010110111011010111 122 101011011101101011011 124

1 1101011011101101011010 123 0110111011010110111010 125

1 101110110111010111011010 131 0111011010110111011011 126

0 101101110101110110111011 132 101011101101110101110111 135

0 101110101110110111010110 133 011101101110101110110110 136

0 110101110110111010111010 134 0101101011010110101101011011 152

1 1101011010110101101011010111 151 011011010110110101101101011010 162

1 110110101101101011011010110111 161 010110110101101101011011010111 163

All maximal sequences can be found as follows. If v = fix(u)[i..j] is a maximal
sequence, then u contains a broken square from the list in Table 1 ending in each
position of the range [i..j]. We search through this list in the length-increasing
order. Processing a broken p-square u, we search for its latest letter which is not
fixed by a q-square with q ≤ p in any occurrence of u in a square-free codeword.
After this, we extend u to the right while the added letters are fixed by squares
of period ≤ p. If both processes are finite for each broken p-square, the search
gives us the full list of maximal sequences. It is the case, and the list is

2 62 3 2 3 2 112 2 4 122 3 2 2 126 3 2 134 2 152
3 2 81 2 2 4 113 3 2 2 123 2 4 2 131 2 4 135 3 2 161 3 2
2 4 3 2 82 2 4 2 114 2 124 3 2 132 2 4 136 2 162 2 4
2 61 2 4 2 4 111 2 121 3 2 3 2 125 2 4 2 4 133 2 2 4 151 3 2 2 4 163 3 2

(3)

The argument is similar for all words, so we consider just one of them, 122:

u = 1011010110111011010111 ← 01

We see two broken squares (underlined and overlined) ending in the two penulti-
mate positions of u, but no such square matches the previous position. Further,
u has a fixed context 01, giving us two more numbers in the maximal sequence,

228 E.A. Petrova and A.M. Shur

but the next position after these two cannot be fixed by a short square. So we
finally obtain the maximal sequence 2 4 122 3 2.

Now we finalize the proof of (�) and then of Lemma 1. Let us take a square-
free codeword u and a factor v = fix(u)[t+1..t+l]. Since we want to bound N(v)
from above, we assume w.l.o.g. that v begins and ends with maximal sequences,
i.e., v = v1?j1v2?j2 · · · vk, where each vi is a maximal sequence and each ji ≥ 1.
The proof is by induction on k. The base case is k = 1. Here v is a maximal
sequence itself, l ≤ 5 by (3) and so N(v) = l = 2l+l

3 ≤ 2l+5
3 , as required.

For the inductive step, let us consider vk. If |vk| ≤ 2, then the word v′ =
v1?j1v2?j2 · · · vk−1 satisfies N(v′) = N(v) − 2 and |v′| ≤ l − 3. By the inductive
assumption, N(v) = 2 + N(v′) ≤ 2 + 2(l−3)+5

3 = 2l+5
3 . Let |vk| > 2. Nineteen

candidates for vk satisfy this condition, see (3). Each of them encodes some suffix
of the codeword u[1..l] (the whole word u[1..l] in case if a non-regular broken
square presents). From this factor of u one can restore several previous elements
of the word v, using two rules: (i) if u contains a broken p-square from Table 1,
assign p to the last position of this factor; (ii) if no word from Table 1 can end in
a given position of u, assign the questionmark to it. The aim is to reconstruct a
factor of the fixing sequence which ends with vk and has at most 2/3 of positions
occupied by numbers. The results are gathered in Table 2. The aim is achieved
for all words vk except for two; in these two special cases, exclamation marks
indicate the positions where we need questionmarks to reach the desired 2/3
bound, but cannot guarantee them.

If vk = 261 2 4 [resp., vk = 24 151 3 2], then there are two broken squares,
114 and 152 [resp., one broken square 111], that can end at the position of “!”.
All these squares are not regular, so we know the whole codeword u[1..l] in each
case and prove (�) by a direct check of the corresponding rows of Table 2.

After excluding these special cases, we can replace exclamation marks by
questionmarks. Let v̂ be the reconstructed part of fix(u). If v̂ contains v, then the
inequality N(v) ≤ 2l+5

3 is checked directly. If not, then v̂ =?jivi+1j
ji+1 · · · vk. Let

v = v′v̂. We have N(v̂) ≤ 2|v̂|/3 from Table 2 and N(v′) ≤ 2|v′|+5
3 by inductive

assumption. Hence, N(v) ≤ 2l+5
3 . The inductive step is proved, and so are (�)

and Lemma 1.

4 Long Squares

Lemma 2. Suppose that t, l ≥ 1, p, q ≥ 2 are integers, w is a word of length t+l
such that w[1..t+l−1] is square-free, the letter w[t] is fixed by a p-square, and w
ends with a q-square. Then one of the following three conditions is satisfied:

(1) 2q ≥ 2p + l and q ≥ 2p;
(2) p + l < 2q < 2p + l and q ≤ l;
(3) 2q ≤ p + l.

Proof. Let UxUy be the suffix of w[1..t] of length 2p, where y = w[t] �= w[t−p] =
x, and let XX be the suffix of w of length 2q. Condition 1 means that XX begins

On the Tree of Ternary Square-Free Words 229

Table 2. Reconstructed fragments of fixing sequences. Maximal sequence (1st column)
defines a factor of the codeword (2nd column, top) which, in turn, determines a factor
of the fixing sequence (2nd column, bottom); the ratio between the number of numbers
in the latter factor and its length (3rd column) is less or equal to 2/3. In two special
cases, ‘!’ can be replaced either by the period of a non-regular broken square or by ‘?’.

230 E.A. Petrova and A.M. Shur

in w at the same time as UxUy, or earlier. Two cases are possible depending on
whether the second X begins earlier or later than Uy (see Fig. 1 a,b; if the second
X begins outside UxUy, then the required inequality q ≥ 2p holds trivially). The
case where these two words begin at the same time is attached to case b (so in
each case the factor u can be empty).

. . .w = r sx yu uv v

XX

U U

↑↑ ↑ ↑
t+l−2q+1 t−2p+1 t t+l

a

. . .w = r sx yu uv v

XX

U U

↑ ↑ ↑↑
t+l−2q+1 t−2p+1 t t+l

b

Fig. 1. Mutual location of factors under the condition 2q ≥ 2p + l (Lemma 2).

In case a we have U = vu, X = rv = uxvuys. If |r| ≤ |uxvu|, then the
factor U of the first X touches or overlaps the occurrence of U in the middle
of XX; this contradicts square-freeness of w[1..t+l−1]. Hence, |r| ≥ |uxvuy|. So
q = |X| = |r| + |v| ≥ |uxvuy| + |v| = |UxUy| = 2p, as required.

Case b is similar: U = uv, X = ruvxu = vys, and if |r| ≤ |v|, then the factor
U of the second X touches or overlaps the occurrence of U in the middle of XX.
Hence |r| ≥ |vy|, and so q = |X| = |r| + |uvxu| ≥ |vy| + |uvxu| = |UxUy| = 2p.

Now turn to condition 2. We must prove that if XX begins inside Ux,
then the first X ends not earlier than UxUy. To do this, we rule out the
only alternative: the first X ends inside Uy. Let us study this alternative. If
p = q, then x = y, which is impossible. So we consider the cases q < p and
q > p (see Fig. 2a,b). In case a we have U = ruv, X = vxr = uvys. Then
UxUy = ru vxr uvy = ru uvys uvy, contradicting square-freeness. In case b X
begins and ends with u, implying that XX contains uu and so is not a minimal
square. This contradiction finishes the proof. �	

Lemma 3. Suppose that w is a square-free word, t > 0, and the letter w[t] is
fixed by a p-square. If for some t′ > t the letter w[t′] is fixed by a q-square, then
the point (t′, q) of the Euclidean plane does not lie inside the polygon bounded by
the lines

y = 2p, y = x − t, y =
x + p − t

2
, (4)

where x is the time axis and y is the period axis.

On the Tree of Ternary Square-Free Words 231

The statement of the lemma is illustrated by Fig. 3; the impossible positions for
the pair (t′, q) are marked by crosses. In what follows, we refer to the polygon
formed by the lines (4) as the (t, p)-polygon, and to the three lines (4) as its
upper, right, and lower boundaries, respectively.

. . .w = syx rr uu vv

X X

UU

↑ ↑ ↑ ↑
t+l−2q+1t−2p+1 t t+l

a

. . .w = syx rr uu vv

XX

UU

↑ ↑ ↑ ↑
t+l−2q+1t−2p+1 t t+l

b

Fig. 2. Mutual location of factors under the condition p+ l < 2q < 2p+ l (Lemma 2).

tt +p t+2p

2p

p

p/2

0 time

period

...

∗∗∗

.

.

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • •

• • • • • • •

• • • • • •

• • • • •

• • • •

• • •

• •

• • • • • • • • • • • •

× × × × × × × × × ×

× × × × × × × × ×

× × × × × × × ×

× × × × × × ×

× × × × × ×

× × × × ×

× × ×

×

Fig. 3. The restrictions on fixing the letters after the letter w[t] was fixed by a p-
square. The picture is drawn for p = 6. Possible [resp., impossible] pairs (time, period)
are marked with dots [resp., crosses]. The borders of the polygon of impossible squares
are given by (4).

232 E.A. Petrova and A.M. Shur

Proof. The three boundaries of a (t, p)-polygon correspond to the three restric-
tions on the location of squares given in Lemma2 for l = t′ − t. Consider the q-
square XX fixing the position w[t′]. Then XX = (w[t′−2q+1..t′−q])2, while the
position t is fixed by the square (w[t−2p+1..t−p])2. If t′−2q+1 ≤ t−2p+1, then
q ≥ 2p by Lemma 2(1), so the point (t′, q) is not lower then the upper boundary.
If t−2p+1 < t′−2q+1 < t−p+1, then t′−q ≥ t by Lemma 2(2), so (t′, q) cannot
be on the left from the right boundary. Finally, if t′−2q+1 ≥ t−p+1, (case 3 of
Lemma 2), then q ≤ t′+p−t

2 , i.e., (t′, q) is not higher than the lower bound. Thus,
the point (t′, q) is not in the interior of the (t, p)-polygon in all three cases. �	
Let p ≥ 2 be an integer. A sequence (t0, q0), (t1, q1), . . . , (ts, qs) of pairs of positive
integers is a p-schedule if (i) t0 < t1 < · · · < ts, p ≤ qi < 2p for all i = 0, . . . , s
and (ii) for any j < i, the pair (ti, qi) is not inside the (tj , qj)-polygon. For
convenience, we still refer to t’s and q’s as “times” and “periods” respectively.
Note that any subsequence of a p-schedule is also a p-schedule.

Lemma 4. Let (t0, q0), . . . , (ts, qs) be a p-schedule. Then ts − t0 > (s−1)p.

Proof. We call a p-schedule (t0, q0), . . . , (ys, qs) tight if for any i > 0, the point
(ti−1, qi) is inside the (tj , qj)-polygon for some j < i. Thus, in a tight schedule
each period qi is used immediately when it becomes available. If the schedule
(t0, q0), . . . , (ts, qs) is not tight, then for some i the point (ti−1, qi) is not inside
the polygons of the previous points. Hence

(t0, q0), . . . , (ti−1, qi−1), (ti−1, qi), (ti+1, qi+1), . . . , (ts, qs)

is a schedule. Indeed, for each j > i the point (tj , qj) is not inside the polygons
of the previous points because one of these polygons moved one unit left while
all others remained in place. Using this “tightening” procedure repeatedly, we
get the following claim:

(∗) for any p-schedule (t0, q0), (t1, q1), . . . , (ts, qs), there is a tight p-schedule
(t0, q0), (t′1, q1), . . . , (t

′
s, qs) with the same sequence of periods and such that

t′s ≤ ts.

By (∗), it is enough to verify the statement of the lemma for tight p-schedules;
so the p-schedules below are assumed tight. Note that the upper boundary of
any (ti, qi)-polygon is outside the range [p..2p−1], so we look at the other two
boundaries only. A closer examination of (4) and Fig. 3 reveals an important
feature: the boundaries of a (ti+1, qi+1)-polygon never intersect the boundaries
of the (ti, qi)-polygon. Indeed, the right boundary moves to the right with time,
independently of the period; and the lower boundary also moves to the right: for
the (ti, qi)-polygon, the line forming the lower boundary takes the value y = p
for some x ≤ ti+1, and for the (ti+1, qi+1)-polygon such a line takes this value
for some x > ti+1. The observed feature implies another useful property: for
any i > 0, the point (ti+1, qi+1) of a tight p-schedule lies on the boundary of

On the Tree of Ternary Square-Free Words 233

the (ti, qi)-polygon. If qi+1 ≥ qi [resp., qi+1 ≤ qi], this is the right [resp., lower]
boundary. So we have by (4)

ti+1 =

{
ti + qi+1, if qi+1 ≥ qi,

ti + 2qi+1 − qi, if qi+1 ≤ qi.
(5)

Now let us consider three successive points, (ti, qi), (ti+1, qi+1), (ti+2, qi+2), in a
p-schedule. We will show that (ti+1, qi+1) can be replaced by the point (t′, p),
where t′ = ti + 2p − qi, and the new sequence will still be a p-schedule (not
necessarily tight, but we can then tighten it). By (5), the point (t′, p) lies on the
boundary of the (ti, qi)-polygon. Due to the non-intersection of the boundaries
of polygons for different points in a p-schedule, it remains to show that the
point (t′′, qi+2) on the boundary of the (t′, p)-polygon satisfies t′′ ≤ ti+2. By (5),
t′′ = t′ + qi+2 = ti + qi+2 − qi + 2p. For ti+2, four cases are to be considered:

qi ≤ qi+1 ≤ qi+2 : ti+2 = ti + qi+2 + qi+1 ≥ t′′, since qi + qi+1 ≥ 2p;
qi ≤ qi+1 ≥ qi+2 : ti+2 = ti + 2qi+2 ≥ t′′, since qi + qi+2 ≥ 2p;
qi ≥ qi+1 ≤ qi+2 : ti+2 = ti + qi+2 + 2qi+1 − qi ≥ t′′, since qi+1 ≥ p;
qi ≥ qi+1 ≥ qi+2 : ti+2 = ti + 2qi+2 + qi+1 − qi ≥ t′′, since qi+1 + qi+2 ≥ 2p.

Thus we have proved that the proposed replacement leads to a valid p-schedule.
Using such replacements repeatedly and tightening the p-schedule after each
replacement, we replace all periods q1, . . . , qs−1 with p. After this, we also replace
qs with p (this moves a point on the boundary of a polygon down, i.e., outside the
polygon) and tighten the resulting p-schedule. Finally, we have a tight p-schedule
of the form

(t0, q0), (t̂1, p), . . . , (t̂s, p),

where t̂s ≤ ts. By (5), ti+1 = ti + p for each i ≥ 1. Hence, ts − t0 > t̂s − t̂1 =
(s − 1)p.

Lemmas 3 and 4 readily imply the following result on the number of positions
fixed by squares from a given range.

Lemma 5. Suppose that t, l ≥ 1, p ≥ 2 are integers, and w is a square-free word
such that either |w| ≥ t+l or w is infinite. Then the range [t+1..t+l] contains at
most 1 + �(l−1)/p� positions in which the letters of w are fixed by squares with
periods in the range [p..2p−1].

Proof (of Theorem 1). Let v be the fixed context of w, |w| = n, |v| = l. Thus, the
square-free word wv ends with l fixed letters. By Lemma 1, at most 2l+5

3 of these
positions are fixed by short squares (with periods ≤ 17). Let us partition the
range [18..n+l

2 �] of all possible longer periods into ranges of the form [p..2p−1]
starting from the left (the last range can be incomplete). The number of ranges
is the minimal number k such that 2k ·18−1 ≥ n+l

2 �, i. e., k = �log 1
18n+l+2

2 ��.
According to Lemma 5, the periods from the ith smallest range fix less than
2 + l−2

18·2i−1 positions. Since the total number of fixed positions is l, we have

l ≤ 2l

3
+

5
3

+ 2k +
l − 2
18

(1 − 1/2k

1 − 1/2

)
=

7l

9
+

13
9

+ 2k − l − 2
18 · 2k−1

. (6)

234 E.A. Petrova and A.M. Shur

Observing that k ≤ �log n+l+2
36 �, 2k−1 < n+l

36 , we get from (6)

2l

9
< 2

⌈
log

n+l+2
36

⌉
+

13
9

− 2(l−2)
n+l

and thus l < 9
⌈

log
n+l+2

36

⌉
+

13
2

− 9(l−2)
n+l

.

(7)
If l ≥ n, then (7) implies l < 9�log l+1

18 � + 2 + 9
l , but this inequality clearly has

no integer solutions. Therefore l < n for any n, and we have, from (7),

l < 9
⌈

log
n

18

⌉
+

13
2

< 9 log
n

9
+

13
2

< 9 log n − 57
2

+
13
2

= 9 log n − 22,

whence the result1.

Proof (of Theorem 2). Assume to the contrary that lim infn→∞
b(n)
n < 2

9 . Then
there exist α < 2/9, {li}∞

1 such that b(li) ≤ αli. Consider the (λ,w[1..li])-path.
The letters in it are partitioned in three sets: fixed by short squares, fixed by
long squares, and non-fixed. Lemmas 1 and Lemma 5 and our assumption give
upper bounds for the numbers of letters in each part. Similar to (6), (7), we get
the following formula (recall that now we have n = 0):

li <
2li + 5

3
+ 2

⌈
log

li + 2
36

⌉
+

li − 2
9

+ αli.

Then
(
2/9 − α

)
li < 2 log li − O(1). This inequality should hold for any li, but it

has only finitely many integer solutions. This contradiction proves the theorem.

5 Discussion

A weaker version of Theorem 1, with O(log n) replaced by O(n2/3), is a particular
case of the result by Shelton and Sony [9,10], mentioned in the introduction2: if
the tree T contains a (w,wv)-path with |w| = n and |v| ≥ Kn2/3, where K is a
constant, then an infinite branch is attached to some internal point of this path.
An important corollary of this result concerns finite subtrees of T : the depth of
any finite subtree of index n is O(n2/3). We suggest that a much stronger result
holds for subtrees.

Conjecture 1. In T , the size of any finite subtree of index n is O(log n).

Note that Conjecture 1 cares about the size (the number of nodes), not the depth,
of a subtree: the result by Shelton and Sony gives only a superpolynomial upper
bound on the size of these subtrees. The statement of the conjecture holds for
finite paths as a corollary of Theorem1. Proposition 2 below gives more support
to Conjecture 1, showing that indices of even very small finite subtrees are big
enough. We call a subtree S with the root w regular if T contains infinitely
many isomorphic copies of S with roots of the form vw. The subtrees that are
1 For big n, the bound can be lowered to 8.5 logn − 28 by some additional argument.
2 The original proof contained a flaw, later fixed by Currie (see [2,3]).

On the Tree of Ternary Square-Free Words 235

not regular do not count in asymptotic studies: they appear only close to the
root of T , cannot be parts of bigger finite subtrees, and so on. For example, the
word abacaba is a root of a one-node non-regular finite subtree, which appears
in T only once; on the other hand, a one-node tree with the root abcacbabcac is
regular, because this root can be preceded by infinitely many words ending with
bac, each of them generating the same subtree.

Proposition 2. The lower bounds for the indices of regular finite subtrees with
at most three nodes are as indicated in Fig. 4.

The proof is by an exhaustive search.

≥11

≥22

≥22

≥36

≥41

2

6

2

4

12
3

2

12

2

19

3

8
6

2

4

22

root:

abcacb·abcac

root:

abcacbabcbac
·abcacbabcb

root:

abcbacabcacb
·abcbacabca

root:

abcacbcabcbacbcabac
·abcacbcabcbacbcab

root:

abcacbcabacabcbacabacb
·abcacbcabacabcbacab

Fig. 4. Minimal indices of small regular subtrees. Bounds on the length of roots and the
shortest possible roots are indicated. For reader’s convenience, long roots are written
in two lines. The numbers at the ends of dotted lines are periods of squares appearing
when appending a letter to a word in the tree.

Acknowledgement. We thank the anonymous referee for useful comments.

References

1. Bean, D.A., Ehrenfeucht, A., McNulty, G.: Avoidable patterns in strings of sym-
bols. Pac. J. Math. 85, 261–294 (1979)

2. Currie, J.D.: On the structure and extendibility of k-power free words. Eur. J.
Comb. 16, 111–124 (1995)

3. Currie, J.D., Pierce, C.W.: The fixing block method in combinatorics on words.
Combinatorica 23, 571–584 (2003)

4. Currie, J.D., Shelton, R.O.: The set of k-power free words over σ is empty or
perfect. Eur. J. Comb. 24, 573–580 (2003)

5. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les
mots. Discrete Appl. Math. 7, 297–311 (1984)

236 E.A. Petrova and A.M. Shur

6. Petrova, E.A., Shur, A.M.: Constructing premaximal binary cube-free words of any
level. Int. J. Found. Comp. Sci. 23(8), 1595–1609 (2012)

7. Petrova, E.A., Shur, A.M.: Constructing premaximal ternary square-free words of
any level. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol.
7464, pp. 752–763. Springer, Heidelberg (2012)

8. Restivo, A., Salemi, S.: Some decision results on non-repetitive words. In: Apos-
tolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words. NATO ASI Series,
vol. 12, pp. 289–295. Springer, Heidelberg (1985)

9. Shelton, R.: Aperiodic words on three symbols. II. J. Reine Angew. Math. 327,
1–11 (1981)

10. Shelton, R.O., Soni, R.P.: Aperiodic words on three symbols. III. J. Reine Angew.
Math. 330, 44–52 (1982)

11. Shur, A.M.: On ternary square-free circular words. Electron. J. Comb. 17, R140
(2010)

12. Shur, A.M.: Deciding context equivalence of binary overlap-free words in linear
time. Semigroup Forum 84, 447–471 (2012)

13. Shur, A.M.: Growth properties of power-free languages. Comput. Sci. Rev. 6, 187–
208 (2012)

14. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906)

Author Index

Avgustinovich, Sergey V. 59

Barton, Carl 73
Berthé, Valérie 210
Blažek, José Eduardo 85

Day, Joel D. 97
De Felice, Clelia 210
Delecroix, Vincent 210
Dolce, Francesco 210
Dumitran, Marius 147

Endrullis, Jörg 1, 109

Fici, Gabriele 122
Frid, Anna E. 59

Grabmayer, Clemens 109

Hendriks, Dimitri 109

I, Tomohiro 135

Klop, Jan Willem 1
Köppl, Dominik 135

Leroy, Julien 210
Lohrey, Markus 14

Manea, Florin 147, 160
Mignosi, Filippo 122
Mousavi, Hamoon 170

Néraud, Jean 27

Parshina, Olga G. 191
Peltomäki, Jarkko 197
Perrin, Dominique 35, 210
Petrova, Elena A. 223
Pissis, Solon P. 73
Puzynina, Svetlana 59

Reidenbach, Daniel 97
Reutenauer, Christophe 210
Rindone, Giuseppina 210

Saarela, Aleksi 1
Seki, Shinnosuke 160
Shallit, Jeffrey 170
Shur, Arseny M. 223
Stoll, Thomas 47

Whiteland, Markus 1, 197

Zantema, Hans 109

	Preface
	Organization
	Abstracts of Invited Talks
	Degrees of Transducibility
	Equality Testing of Compressed Strings
	On the Contribution of WORDS to the Fieldof Combinatorics on Words
	Codes and Automata in Minimal Sets
	Decidability of Abelian-Power-Freenessand Generalizations
	Thue–Morse Along Two PolynomialSubsequences

	Contents
	Degrees of Transducibility
	1 Introduction
	2 Preliminaries
	2.1 Finite State Transducers and Mealy Machines
	2.2 Degrees of Transducibility

	3 Comparison
	4 Atoms and Polynomials
	5 A Plethora of Questions
	References

	Equality Testing of Compressed Strings
	1 Introduction
	2 Straight-Line Programs
	3 Sequential Algorithms
	4 A Parallel Algorithm
	5 Related Problems
	6 Open Problems
	References

	On the Contribution of WORDS to the Field of Combinatorics on Words
	References

	Codes and Automata in Minimal Sets
	1 Introduction
	2 Neutral and Tree Sets
	2.1 Neutral Sets
	2.2 Tree Sets

	3 Automata
	4 Codes
	4.1 A Cardinality Theorem for Prefix Codes
	4.2 The Group of a Bifix Code

	References

	Thue--Morse Along Two Polynomial Subsequences
	1 Introduction
	2 Thue--Morse at Distinct Multiples
	3 Thue--Morse at Two Polynomials
	References

	Canonical Representatives of Morphic Permutations
	1 Introduction
	2 Basic Definitions
	3 Ergodic Permutations
	4 Ergodic Permutations Generated by Words
	4.1 Morphisms on Words and Intervals

	References

	Linear-Time Computation of Prefix Table for Weighted Strings
	1 Introduction
	2 Properties and Auxiliary Data Structures
	3 Algorithm
	4 Final Remarks
	References

	New Formulas for Dyck Paths in a Rectangle
	1 Introduction
	2 Definitions and Notation
	3 Ferrers Diagrams Comparison Method
	3.1 Diagrams Decomposition Method
	3.2 Technical Results

	4 Theorems
	5 Examples
	5.1 Example D8,8n+6
	5.2 Example D6,6n+2
	5.3 Example D6,9.

	References

	Ambiguity of Morphisms in a Free Group
	1 Introduction
	2 Preliminaries
	3 Basic Ambiguity
	4 Unambiguous Injective Morphisms
	4.1 Main Theorem
	4.2 Proof Outline

	5 Patterns with Terminal Symbols
	References

	The Degree of Squares is an Atom
	1 Introduction
	2 Preliminaries
	3 Finite-State Transducers and Degrees
	4 Characterising Transducts of Spiralling Sequences
	5 Squares
	References

	Words with the Maximum Number of Abelian Squares
	1 Introduction
	2 Notation and Background
	3 Abelian-square Rich Words
	3.1 The Thue-Morse Word
	3.2 Sturmian Words

	4 Conclusions and Future Work
	References

	Arithmetics on Suffix Arrays of Fibonacci Words
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Suffix Array and Its Inverse
	5 Burrows-Wheeler Transform
	6 Outlook
	References

	Prefix-Suffix Square Completion
	1 Introduction
	2 Definitions
	3 Generating Infinite Words
	4 Finite Words: Algorithms
	5 Future Work
	References

	Square-Density Increasing Mappings
	1 Introduction
	2 Preliminaries
	3 Fractional-Power Density Increasing Mappings to Expand the Alphabet
	3.1 Fractional-Power Density Preserving Quaternarizer
	3.2 Fractional-Power Density Preserving Mappings to Double the Alphabet Size

	4 Strictly Square-Density Increasing Mappings
	4.1 Strictly Square-Density Increasing Alphabet Downsizer

	5 Future Work
	References

	Mechanical Proofs of Properties of the Tribonacci Word
	1 Introduction
	2 Tribonacci Representation
	3 Mechanical Proofs of Properties of the Infinite Tribonacci Word
	3.1 Repetitions

	4 Enumeration
	5 Additional Results
	5.1 Palindromes
	5.2 Quasiperiods
	5.3 Unbordered Factors
	5.4 Lyndon Words
	5.5 Critical Exponent

	6 Abelian Properties
	7 Things We Could Not Do Yet
	References

	On Arithmetic Progressions in the Generalized Thue-Morse Word
	1 Introduction
	2 Preliminaries
	3 Main Result
	3.1 Case of d=3n-1
	3.2 Case of d=3n-1

	4 Conclusion
	References

	A Square Root Map on Sturmian Words
	1 Introduction
	2 Notation and Preliminary Results
	2.1 Optimal Squareful Words
	2.2 Continued Fractions
	2.3 Sturmian Words
	2.4 Powers in Sturmian Words

	3 The Square Root Map
	4 One Characterization of Words Satisfying the Square Root Condition
	5 Characterization by a Word Equation
	6 A More Detailed Combinatorial Description of the Square Root Map
	References

	Specular Sets
	1 Introduction
	2 Preliminaries
	3 Specular Groups
	4 Specular Sets
	5 Subgroup Theorems
	References

	On the Tree of Ternary Square-Free Words
	1 Introduction
	2 Definitions and Notation
	3 Letters Fixed by Short Squares
	4 Long Squares
	5 Discussion
	References

	Author Index

