Chapter 17
Private Genome Data Dissemination

Noman Mohammed, Shuang Wang, Rui Chen, and Xiaoqian Jiang

Abstract With the rapid advances in genome sequencing technology, the collection
and analysis of genome data have been made easier than ever before. In this course,
sharing genome data plays a key role in enabling and facilitating significant medical
breakthroughs. However, substantial privacy concerns have been raised on genome
data dissemination. Such concerns are further exacerbated by several recently
discovered privacy attacks. In this chapter, we review some of these privacy attacks
on genome data and the current practices for privacy protection. We discuss the
existing work on privacy protection strategies for genome data. We also introduce a
very recent effort to disseminating genome data while satisfying differential privacy,
arigorous privacy model that is widely adopted for privacy protection. The proposed
algorithm splits raw genome sequences into blocks, subdivides the blocks in a top-
down fashion, and finally adds noise to counts in order to preserve privacy. It has
been empirically shown that it can retain essential data utility to support different
genome data analysis tasks.

17.1 Introduction

In the past decades, genome sequencing technology has experienced unprecedented
development. The Human Genome Project (HGP), initiated in 1990, took 13 years
to complete at a total cost of $3 billion, while nowadays it takes only 2 or 3 days for
a whole genome sequence at the cost of $6K [1]. The readily availability of genome
data has spawned many new exciting research areas, ranging from understanding
the mechanisms of cellular functions to identifying criminals. There has been no
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doubt that genome data analysis generates interesting scientific discoveries and
enables significant medical breakthroughs. However, substantial privacy concerns
have been raised on the dissemination of genome data. The public has realized
that a personally identifiable genomic segment already gives an adversary access
to a wealth of information about the individual and his or her genetic relatives [2],
exposing their privacy to considerable risks.

Genomic data leakage has serious implications for research participants such as
discrimination for employment, insurance, or education [1]. Recent research results
show that given some background information about an individual, an adversary
can identify or learn sensitive information about the victim from the de-identified
data. For example, Homer’s attack [3] demonstrated that it is possible to identify
a genome-wide association study (GWAS) participant from the allele frequencies
of a large number of single-nucleotide polymorphisms (SNPs). As a consequence,
the U.S. National Institutes of Health (NIH) has forbidden public access to most
aggregate research results to protect privacy. Later, Wang et al. [4] showed an even
higher risk that individuals could be actually identified from a relatively small set of
statistics, such as those routinely published in GWAS papers. There are also many
other attacks revealed recently [5—7], which could result in harm to the privacy
of individuals. Therefore, there has been a growing demand to promote privacy
protection for genome data dissemination.

In the United States, the Health Insurance Portability and Accountability Act
(HIPAA) [8] establishes the Privacy Rule to protect health information. The Privacy
Rule defines an operational approach, called Safe Harbor that removes 18 HIPAA-
specified identifiers to achieve some degree of “de-identification”. Since genome
data are biometrics, it would be natural to remove these data from “de-identified”
data sets. However, there is no explicit clarification of de-identified genomic data by
the Institute of Medicine (IOM) or HIPAA regulations.

There have been long and vigorous debates [9, 10] about the current privacy
rules for Human Genomic Studies (HGS). Some researchers contend that existing
privacy rules are not adequate for the protection of genomic information [4, 11],
as the technological evolution and the increasing accessibility of data cause the
“de-identified” genome data to be re-identifiable. Others complain that privacy
regulations impede effective data access and use for research [9, 12], as genomic
data are most useful when presented in high quality, sufficient samples, and
associated with an individual’s medical history, etc. Recently, the Presidential
Commission for the Study of Bioethical Issues published a report about privacy
and progress in Whole Genome Sequencing (WGS) [12]. The report concludes that
under current privacy rules, genome privacy is not adequately protected and that at
the same time genomic researchers and data owners cannot effectively access and
share data. To address these limitations, there have been some pioneering efforts
on developing practical privacy-preserving technology solutions to genome data
sharing.

In this chapter, we present an approach to disseminate genomic data in a privacy-
preserving manner. The privacy guarantee is guarded by the rigorous differential
privacy model [13]. Differential privacy is a rigorous privacy model that makes no
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assumption about an adversary’s background knowledge. A differentially-private
mechanism ensures that the probability of any output (released data) is equally
likely from all nearly identical input datasets and thus guarantees that all outputs
are insensitive to any individual’s data. In other words, an individual’s privacy is not
at risk because of his or her participation in the dataset. The proposed approach uses
a top-down structure to split long sequences into segments before adding noise to
mask record owners’ identity, which demonstrates promising utility with a desirable
computational complexity.

The rest of the chapter is organized as follows. An overview of the related work
is presented in Sect. 17.2. Section 17.3 describes the problem statement and details
the data privacy requirement and the utility criteria. Section 17.4 describes the
proposed algorithm and analyzes the privacy guarantee and the computational cost
of the proposed method. Experimental results are presented in Sect. 17.5, and finally,
Sect. 17.6 concludes the chapter.

17.2 Literature Review

17.2.1 Privacy Attacks and Current Practices

In general, the traditional consent mechanism that allows data disclosure without
de-identification is not suitable for genomic data [14]. It is often impossible to
obtain consent for an unknown future research study without creating any bias in
the sample. In addition, the consent mechanism also raises a number of ethical
issues (e.g., withdrawal from future research, promise of proper de-identification,
etc.) [15].

A common de-identification technique is to remove all explicit identifying
attributes (e.g., name and SSN) and to assign each record a random number prior
to data sharing. However, this technique is vulnerable to identity disclosure attacks
as demonstrated by a recent study that successfully identified the participants of the
Personal Genome Project (PGP) through public demographic data [16].

Given that a genome sequence is a strong personal identifier, several organi-
zations including the U.S. National Institutes of Health (NIH) initially adopted
a two-tier access model: controlled access and open access [17]. Individual-level
biomedical data are only available to approved researchers (i.e., data requesting
institutions) based on proper agreements, while summary statistics, which are useful
for meta-GWAS analyses, can be disclosed publicly. Unfortunately, some recent
studies have shown that from summary statistics adversaries can already learn sen-
sitive information [3, 4]. This is known as an attribute disclosure attack. Currently,
there are a number of techniques for breaching biomedical data privacy [18]. In
response, the NIH and other data custodians have moved summary statistics from
open access to controlled access. For example, the Database of Genotypes and
Phenotypes (dbGaP) [19], which is a popular public database recommended by
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Genome Canada for sharing biomedical data, no longer provides open access to
summary statistics. Although such policy provides enhanced privacy protection, it
largely limits researchers’ ability to conduct timely research.

In the United States, the Health Insurance Portability and Accountability Act
(HIPAA) provides two standards for health data sharing without requiring patients’
consent. The Safe Harbor Standard, which is also used by health organizations in
Canada [20], considers a dataset properly de-identified if the 18 specific attributes
are removed. However, genomic data along with other types of data (e.g., diagnostic
code) are not part of these specified attributes [21]. The alternative Statistical
Standard requires an expert to certify that the risk of re-identification is very small
from the disclosed data. However, there is no specific guideline to address how to
achieve Statistical Standard for genomic data.

The current practice of genomic data sharing is based on the controlled access
model, and privacy is ensured through a data-use certification (DUC) agreement.
However, an agreement cannot prevent an insider from intentionally performing
privacy attacks or even stealing data. A recent article reported several violations of
such agreements (e.g., investigators sharing controlled-access data with unapproved
parties) that occurred in the last 6-year period [22].

17.2.2 Privacy Preserving Techniques

Privacy-preserving data sharing techniques study how to transform raw data into a
version that is immune to privacy attacks but that still preserves useful information
for data analysis. Existing techniques are primarily based on two major privacy
models: k-anonymity [23] and differential privacy [13]. Data sharing techniques
adopting the k-anonymity model require that no individual should be identifiable
from a group of size smaller than k based on the values of quasi-identifiers
(e.g., age, gender, date of birth). In spite of its wide application in the healthcare
domain [21, 24], recent research results indicate that k-anonymity based techniques
are vulnerable to an adversary’s background knowledge [25-28]. This has stimu-
lated a discussion in the research community in favor of the differential privacy
model, which provides provable privacy guarantees independent of an adversary’s
background knowledge.

To satisfy a specific privacy model, certain anonymization techniques have to
be developed to achieve a reasonable trade-off between privacy and utility. While
many anonymization techniques have been proposed for various types of data
(i.e., relational [29, 30], set-valued [31], spatio-temporal data [32]), the problem
of genomic data anonymization has been little studied. Recent methods [33-35]
propose to generalize genomic data to achieve the k-anonymity privacy model.
Malin [35] presents how to anonymize genome sequences. Loukides et al. [33]
and Heatherly et al. [34] propose to anonymize only health data (i.e., no protection
for genome sequences). However, as mentioned before, all methods adopting -
anonymity as the underlying privacy model are vulnerable to the recently discovered
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privacy attacks [25-28]. More recently, differentially private mechanisms [36—38]
have been proposed for genomic data. However, these techniques only release
some aggregate information or target specific data analysis tasks (e.g., minor allele
frequencies, top-k most relevant SNPs). They do not support individual-level data
sharing, which could be of much greater interest to the research community.

As another possible direction, cryptography-based methods have also been
suggested for distributed genomic data sharing [39, 40]. Data custodians outsource
their data securely through homomorphic encryption to a third party that carries
out computations on the encrypted data. However, these techniques have several
shortcomings. First, they assume the existence of a trusted third party [39] or
tamper-resistant hardware [40]. These assumptions may not be practical in most
real-life applications. Second, these techniques only support a limited set of
aggregate queries and do not enable to share individual-level data. Finally, these
techniques suffer from one main drawback: the aggregate output has no privacy
guarantee. In the rest of this chapter, we will introduce a novel differentially private
data dissemination technique that supports individual-level genome data sharing.

17.3 Problem Statement

Suppose a data owner has a data table D(A’, A7) and wants to release an anonymous
data table D to the public for data analysis. The attributes in D are classified into two
categories: (1) An explicit identifier attribute that explicitly identifies an individual,
such as SSN, and Name. These attributes are removed before releasing the data as
per the HIPAA Privacy Rule [41]; (2) A multi-set of SNPs (genomic data), which is
denoted by A*”, for each individual in the data table D. For example in Table 17.1,
AP and A*" are ID and Genomic data attributes, respectively.

Given a data table D, our objective is to generate an anonymized data table b
such that D satisfies e-differential privacy, and preserves as much utility as possible
for data analysis. Next, we introduce differential privacy and data utility models.

Table 17.1 Raw genome
data

S

Genomic data

AG CCCCGGCTGG AA CC
AGCCCCGGTTGGAACC
AA CCCCGGTT GG AA CC
AG CT CT AGCT AG AGCT
GG CT CT AG CC GG AA CC
AACCCCGGTTGGAACC
AGCTCT AG CT AG AGCT
AA CCCCGGTT GG AA CC
GG CT TT AG CC AG AA CC
AG CT CT GG CT AG AA CC
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—
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17.3.1 Privacy Protection Model

Differential privacy is a recent privacy definition that provides a strong privacy guar-
antee. It guarantees that an adversary (even with arbitrary background knowledge)
learns nothing more about an individual from the released data set, regardless of
whether her record is present or absent in the original data. Informally, differential
privacy requires that any computational output be insensitive to any particular
record. Therefore, from an individual’s point of view, the output is computed as if
from a data set that does not contain his or her record. Formally, differential privacy
is defined as follows.

Definition 17.1 (e-Differential Privacy [13]). A randomized algorithm Ag is dif-
ferentially private if for all data sets D and D’ whose symmetric difference is at most
one record (i.e., [DAD'| < 1), and for all possible anonymized data sets D,

Pr{Ag(D) = D] < ¢° x Pr[Ag(D’) = D), (17.1)

where the probability is taken over the randomness of Ag.

The privacy level is controlled by the parameter €. A smaller value of ¢ provides
a strong privacy guarantee. A standard mechanism to achieve differential privacy is
the Laplace mechanism [13]. Its key idea is to add properly calibrated Laplace noise
to the true output of a function in order to mask the impact of any single record. The
maximal impact of a record to a function f’s output is called its sensitivity.

Definition 17.2 (Sensitivity [13]). For a function f : D — R¢, the sensitivity of f
is Af = maxp  |[f(D) —f(D')||; for all databases such that [DAD'| < 1.

Given a function’s sensitivity and a privacy parameter, the Laplace mechanism is
given as follows.

Theorem 17.1 ([13]). For any function f : D — R¢, the mechanism Ag,
Af Af
Ag(D) =f(D) + (Lapl(?), e Lapd(T)) (17.2)

gives e-differential privacy, where Lapi(g) are i.i.d Laplace variables with scale

parameter A—f
€

17.3.2 Privacy Attack Model

The likelihood ratio test [42] provides an upper bound on the power of any method
for the detection of an individual in a cohort, using the following formula:
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oo 5, 1= p,
L= Z(le‘)g;; +(1—Xj)10g1_p’) :

j J

where x; is either O (i.e., major allele) or 1 (i.e., minor allele), m is the number of
SNPs, p; is the allele frequency of SNP j in the population and p; is that in a pool.

A statistic L measure the probability that a subject in the case group will be re-
identified. The re-identification risk is considered to be high if the LR test statistic
of individual’s SN'Vs is significantly greater than those of individuals who are not
in the same group.

17.3.3 Utility Criteria

We use a case-control association y? test to evaluate the utility of a differentially

2

private data. The test has the following form: x> = >/ >~ %, where r is
the number of rows, c is the number of columns, O;; is observed frequencies, and
E;; is expected frequencies. The x? test statistic provide a measure of how close
the observed frequencies are to the expected frequencies. Suppose that the observed
allele counts (e.g., for allele “A” and “T”) for the case group are a and b, respectively,
for total of r = a + b. Similarly, we define the observed counts for the same allele
(i.e., “A” and “T”) in the control group as c and d, respectively, for total of s =
¢ + d. Then, the expected allele frequencies in the case group can be expressed as
(a+c)r/(r+s)and (b+d)r/(r + s). The expected allele frequencies in the control
group can be expressed as (a + ¢)s/(r + s) and (b + d)s/(r + s), which measure
the expected allele frequencies in both case and control populations.

17.4 Genomic Data Anonymization

In this section, we first present our genomic data anonymization algorithm as
described in Algorithm 17.1 and prove that the algorithm is e-differentially private.
We then analyze the runtime complexity of the algorithm.

17.4.1 Anonymization Algorithm

The proposed algorithm first divides the genomic data into blocks and then
generalizes each block. Thus, the algorithm divides the raw data into several
equivalence groups, where all the records within an equivalence group have the
same block values. Finally, the algorithm publishes the noisy counts of the groups.
Next we elaborate each line of the algorithm.
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Table 17.2 Genome data
partitioned into blocks

Genomic data

ID |Block 1 |Block2 |Block 3 |Block 4
I |AGCC [CCGG |[CTGG |AACC
2 |AGCC CCGG |TTGG |AACC
3 |AACC |[CCGG |[TTGG |AACC
4 |AGCT |[CTAG |CTAG |AGCT
5 |GGCT CTAG |[CCGG |AACC
6 |AACC CCGG |TTGG |AACC
7 |AGCT [CTAG CTAG |AGCT
8 |AACC |[CCGG |[TTGG |AACC
9 |GGCT TTAG |CCAG |AACC
10 |[AGCT |[CTGG |[CTAG |AACC

Dividing the Raw Data (Line 1) Algorithm 17.1 first divides the raw genomic data
into multiple blocks. Each block consists of a number of SNPs. For example, the raw
genomic data of Table 17.1 can be divided into four blocks as shown in Table 17.2,
where each block consists of two SNPs. These blocks are treated like different
attributes and thus enable the proposed algorithm to anonymize high-dimensional
genomic data effectively. We denote each block by A} and thus A = UA;"™.

Note that the sizes of all the blocks do not need to be equal. For example, if
there were nine SNPs in Table 17.1 instead of 8, it would be impossible to have all
blocks of size two. In such a case, the last block can be bigger than the other blocks.
In principle, each block may have a different size, and the proposed algorithm can
handle such a scenario.

We do not use any heuristic to determine the size of each block. Block size
is always constant, and hence, this step does not use any privacy budget (See
Sect. 17.4.2). Experimental results suggest that six SNPs per block yield good result.
However, this number may vary depending on the data set in question. It is an
interesting research problem to design a heuristic that can determine the optimal
size of each block so as to maximize the data utility for a given data set.

Algorithm 17.1 Genomic data anonymization algorithm.
¢ Input: Raw data set D, privacy budget €, and number of specializations %

¢ Qutput: Anonymized genomic data set b

: Divide the genome data into blocks;

: Generate the taxonomy tree for each block;

: Initialize every block in D to the topmost value;

: Initialize Cut; to include the topmost value;

: for i=1tohdo

Select v € UCut; randomly;

Specialize v on D and update UCut;;

: return each leaf node with noisy count (C 4 Lap(1/¢))
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Fig. 17.1 Taxonomy tree of blocks

Generating the Taxonomy Tree (Line 2) A taxonomy tree of a block A"
specifies the hierarchy among the values. Figure 17.1 presents the taxonomy trees of
Blocks 1 —4 (ignore the dashed curve for now) in Table 17.2. A cut of the taxonomy
tree for a block A}, denoted by Cut;, contains exactly one value on each root-to-leaf
path (more discussion follows).

Ideally, the data owner should provide a taxonomy tree for each block as the
knowledge of the taxonomy tree is domain specific. However, if no taxonomy tree
is provided, Algorithm 17.1 can generate it by scanning the data set once for each
block. For each unique value that appears in the data set, a leaf node is created
from the root node Any;. For example, four unique values (i.e., AG CC, AA CC,
AG CT, and GG CT) appear in Table 17.2 for Block 1; therefore, the corresponding
taxonomy tree also has four leaves as shown in Fig. 17.1.

All the generated taxonomy trees have only two levels (i.e., the root and the
leaf nodes). However, a data owner can define a multilevel taxonomy tree for each
block [43]. A multilevel taxonomy tree provides more flexibility and may preserve
more data utility; further investigation is needed in order to validate the benefit of
multilevel taxonomy trees.

Data Anonymization (Lines 3-8) The data anonymization starts by creating a
single root partition by generalizing all values in UA;" to the top-most value in
their taxonomy trees (Line 3). The initial Cut; contains the topmost value for each
block A;” (Line 4).

The specialization starts from the topmost cut and pushes down the cut iteratively
by specializing some value in the current cut. The general idea is to anonymize the
raw data by a sequence of specializations, starting from the topmost general state as
shown in Fig.17.2. A specialization, denoted by v — child(v), where child(v)
is the set of child values of v, replaces the parent value v with a child value.
The specialization process can be viewed as pushing the “cut” of each taxonomy



452 N. Mohammed et al.
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Fig. 17.2 Tree for partitioning records

Table 17.3 Anonymous data

Genomic data Noisy count
(e=1,h=2)

Any CC GG Any AACC |3

Any CC GG Any AGCT |2

Any CT AG Any AACC |1

Any CT AG Any AGCT |3

tree downwards. Figure 17.1 shows a solution cut indicated by the dashed curve
corresponding to the anonymous Table 17.3.

At each iteration, Algorithm 17.1 randomly selects a candidate v € UCut; for
specialization (Line 6). Candidates can be selected based on their score values, and
different heuristics (e.g., information gain) can be used to determine candidates’
scores. In future work, we will investigate how to design a scoring function tailored
to a specific data utility requirement.

Then, the algorithm specializes v and updates UCut; (Line 7). Algorithm 17.1
specializes v by recursively distributing the records from the parent partition into
disjoint child partitions with more specific values based on the taxonomy tree. The
algorithm terminates after a given number of specializations.

Example 17.1. Consider Table 17.1 with € = 1 and & = 2, where € is the privacy
budget and £ is the number of specializations. Initially the algorithm creates one root
partition containing all the records that are generalized to (Any;, Any,, Anys, Anys).
UCut; includes {Any;, Any,, Anys;, Anys}. Let the first specialization be Any, —
{CC GG, CT AG}. The algorithm creates two new partitions under the root, as
shown in Fig. 17.2, and splits data records between them. UCut; is updated to
{Any,Anys, Any,}. Suppose that the next specialization is Any, — {AA CC,
AG CT}, which creates further specialized partitions, as illustrated in Fig. 17.2. =

Returning the Noisy Counts (Line 9) Finally, Algorithm 17.1 computes the noisy
count of each leaf partition to construct the anonymous data table D as shown in
Table 17.3. The number of leaf partitions is at least 2 and the exact number depends
on the taxonomy tree of the blocks.

Publishing the true counts of each partition violates differential privacy; there-
fore, a random variable Lap(Af/€) is added to the true count of each leaf partition,
where Af = 1, and the noisy counts are published instead.
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17.4.2 Privacy Analysis

We now analyze the privacy implication of each of the above steps and quantify the
information leakage in terms of privacy budget.

Line 1 The algorithm divides the raw data into blocks, where the block size is a
given constant irrespective of the given data set. Since the block generation process
is data independent, this step does not require any privacy budget. However, if a
heuristic were used to determine the block size, then a portion of privacy budget
should be allocated to satisfy differential privacy.

Line 2 We assume that the data owner provides the taxonomy trees. In such a
case, this step incurs no privacy leakage and no privacy budget is consumed as
the taxonomy trees are generated from public knowledge that is independent of any
particular data set.

On the other hand, the alternative approach that we outlined, for a scenario
when the taxonomy trees are not provided, needs additional treatment to satisfy
differential privacy. It is because, for a different data set D, a taxonomy tree may
have one more or less leaf node. We argue that taxonomy trees represent the domain
knowledge, and therefore, should be part of public information.

Lines 3-8 The algorithm selects a candidate for specialization randomly (Line 7)
and iteratively creates child partitions based on the given taxonomy trees (Line 8).
Both operations are independent of the underlining data set (the selection process is
random and the partitioning process is fixed due to the given taxonomy trees), and
therefore no privacy budget is required for the 7 number of iterations.

Line 9 The algorithm adds Laplace noise Lap(1/€) to the true count of each
leaf partition and the requisite privacy budget is € due to the parallel composition
property [44]. The Parallel composition property guarantees that if a sequence of
computations are conducted on disjoint data sets, then the privacy cost does not
accumulate but depends only on the worst guarantee of all the computations. Since
the leaf partitions are disjoint (i.e., a record can fall into exactly one leaf partition),
the total privacy cost (i.e., the budget required) for this step is €.

In conclusion, Line 1, Line 2, Lines 3-8, and Line 9 use 0, 0, 0, and €
privacy budgets, respectively. According to the sequential composition property
of differential privacy [44], any sequence of computations that each provides
differential privacy in isolation also provides differential privacy in sequence.
Therefore, Algorithm 17.1 satisfies e-differential privacy.

17.4.3 Computational Complexity

The proposed algorithm is scalable and the runtime is linear to the size of the data
set. This is an important property to achieve in the age of big data. In this section,
we present a brief analysis of the computational complexity of Algorithm 17.1.



454 N. Mohammed et al.

Line 1 Algorithm 17.1 generates the blocks from the raw data. This can be done
by scanning the data set once. Thus, the runtime of this step is O(|D| x m), where
|D| is the number of records and m is the number of SNPs.

Line 2 In case, Algorithm 17.1 can also generate the taxonomy trees (if not given)
by scanning the data set once. This is can be achieved simultaneously with the
previous step (Line 1); hence, there is no additional cost for generating taxonomy
trees. Therefore, if there are d/n number of blocks, where n is the block size, then
the runtime of this step is O(|D| x 2).

Lines 3-8 Candidates are selected randomly in each iteration, which requires
constant O(1) time (Line 6).

To perform a specialization v — child(v), we need to retrieve D, the set of data
records generalized to v. To facilitate this operation we organize the records in a
tree structure as shown in Fig. 17.2. Each leaf partition (node) stores the set of data
records having the same generalized block values. This will allow us to calculate
the noisy counts in Line 9.

Initially, the tree has only one leaf partition containing all data records, gen-
eralized to the topmost value on every block. In each iteration we perform a
specialization by refining the leaf partitions and splitting the records among the
new child partitions. This operation also requires scanning all the records once per
iteration. Thus, the runtime of this step is O(|D| x h). The value of / is constant and
usually very small (around 10), and therefore, can be ignored.

Line 9 The cost of adding Laplace noise is proportional to the number of leaf nodes,
which is 2", For a small value of A, the number of leaf nodes is insignificant with
respect to the size of the data set |D|. We therefore can ignore the cost of this step.
Note that, we can easily determine the true count of a leaf partition as it keeps track
of the set of data records it represents.

Hence, the total runtime of the algorithm is: O(|D| x m + |D|) = O(|D| x m).

17.5 Experimental Results

The goal of the proposed framework is to generate differentially private data that can
mitigate the attack of likelihood ratio tests, while preserving highly significant SNPs
as much as possible. Two data sets (i.e., chr2 and chr10) with 200 participants in
case, control and test groups were used in our experiments. The 200 cases are from
Personal Genome Project (PGP: http://www.personalgenomes.org/), missing values
filled by using fastPHASE. The 200 Controls are simulated based on the haplotypes
of 174 individuals from CEU population of International HapMap Project (http://
hapmap.ncbi.nlm.nih.gov/). Besides, the chr2 and chr10 data sets contain 311 SNPs
and 610 SNPs, respectively.
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Table 17.4 Data utility of chr2 data set with privacy budget of 1.0 and power of 0.01

Cutoff p-value | Accuracy | Sensitivity | Precision | Fl-score | # of significant SNPs

SE-02 0.178 1.000 0.079 0.147 22
1E-02 0.211 0.999 0.075 0.140 20
1E-03 0.250 0.948 0.072 0.134 19
1E-05 0.297 1.000 0.060 0.114 14

Table 17.5 Data utility of chr10 data set with privacy budget of 1.0 and power of 0.09

Cutoff p-value | Accuracy | Sensitivity | Precision | Fl-score | # of significant SNPs

SE-02 0.301 0.956 0.092 0.168 45
1E-02 0.317 0.903 0.048 0.091 23
1E-03 0.431 1.000 0.041 0.080 15
1E-05 0.577 1.000 0.030 0.058 8

The number of specializations used in our experiment was 5. SNP data were split
evenly into N /6 blocks, where N is the number of SNP. All the results are based on
the average of 100 trials.

Tables 17.4 and 17.5 illustrate the results of the proposed method on chr2
and chrl10 data sets with privacy budget of 1.0, where power indicates the ratio
of identifiable individuals using the likelihood ratio test in the case group. The
power serves as a measurement of the remaining privacy risk in the differentially
private results. In Tables 17.4 and 17.5, cutoff p-value thresholds of 5E-2, 1E-2,
1E-3, 1E-5 were used in our experiment, for which four measurements (accuracy,
sensitivity, precision and F1-score) were calculated under each method. The last
column corresponds to the number of significant SNPs discovered in the original
data without adding noise. We can see that the proposed results showed high
sensitivities but low precisions on both data sets, which means our method can
correctly preserve most true significant SNPs, but with a large amount of false
positive reports. Because most SNPs of interest can pass the same filter (e.g., p-
value) on both the original data and our differentially private outputs, the latter can
serve as a proxy (for exploratory analysis) of the former without losing too much
critical information.

Figure 17.3 show the box plots of the data utility in terms of sensitivity and
precision for both testing data sets with privacy budget of 1.0 under different cutoff
p-values. We can see that the proposed method achieved high sensitivity on both
data sets for all cutoff p-values. Moreover, Fig. 17.3 also depict that the precision
decreases as the cutoff p-value decreases. Comparing the experiments, results on
chr2 are less sensitive in precision than results on chr10 when p-values changes.

Figure 17.4 present the test statistics calculated on case and test groups (i.e.,
individuals unrelated to both case and control) for both chr2 and chr10 data sets. An
individual in the case group can be re-identified with a high confidence if the test
statistic obtained from his/her SNP sequence is significantly higher than these of
the test group using likelihood ratio test [42]. Figure 17.4 depict that 2 and 18 case
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Fig. 17.3 Boxplots of data utility of chr2 and chr10 data with different p-values

individuals have higher test statistic values than 95 % test individuals (i.e., a 5%
false positive rate) in both data sets. The results suggest that the proposed method
provides a better privacy protection on a small data set (i.e., chr2 data set) under the
same privacy budget.

Finally, Fig. 17.5 show both utility and privacy risk for chr2 and chr10 data sets.
To measure the utility, we set the cutoff threshold at 0.1 and measure the sensitivity.
By changing privacy budget from 0.1 to 1, we observed no performance gain of
sensitivity nor much privacy risk change on chr2 data set, as shown in Fig. 17.5. This
seems to indicate that privacy budget 0.1 is sufficient to provide enough protection
without destroying the utility.
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Fig. 17.4 Privacy risk of chr2 and chr10 data. The star and diamond markers represent the test
value of a specific individual in the case (left) or test (right) group, respectively. The horizontal
line indicates the 0.95 confidence level for identifying case individuals that are estimated based on
the test statistic values of test individuals

We also tested the proposed algorithm on a larger data set (i.e., chrl0).
Figure 17.5 shows that the proposed algorithm achieves the best sensitivity and
the highest number of re-identification risk with privacy budget of 1.0. There is a
non-negligible difference in terms of re-identification risk when the privacy budget
changes from 0.1 to 0.5 but the difference is not obvious between privacy budgets
0.5 and 1. This indicates that a larger dataset like chr10 needs more privacy budget
to protect the privacy of its entities.



458 N. Mohammed et al.

chr2 with p-value 0.1 chr2 with p-value 0.1
2 2.4
2 23
3
15 é 50
£
>
£ 3 2.1
> 1 * * * =
g 8 2 * * X
©
0.5 319
€
2 18
0 1.7
0.1 0.5 1 0.1 0.5 1
Privacy budget Privacy budget
chr10 with p—value 0.1 chr10 with p—value 0.1
0.964 20
®
ke
0.96 £
E 19 *
>
S 0.958 B
B £ 185
& 0.956 * 3
* S 18 *
0.954 o}
Q
0.952 5 17.5
0.95 17
0.1 0.5 1 0.1 0.5 1
Privacy budget Privacy budget

Fig. 17.5 Comparison of data utility and privacy risk for chr2 and chr10 data with different privacy
budget

17.6 Conclusion

As an important type of modern medical data, genome data has been incorporated
into diverse research disciplines and real-life applications. More and more patient
data networks are incorporating or prepare to incorporate genome data along
with clinical information to support precision medicine. However, its personal
identifying nature has aroused much public concern about the privacy implications
of its dissemination, which has been increasingly confirmed by several recently
discovered privacy attacks. The current practice of genomic data sharing heavily
relies on the controlled access model. Despite the restriction the model poses, it still
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cannot provide guaranteed privacy protection. For example, side channel leakage
remains to be a big problem to controlled access model.

Advanced technical efforts are indispensable to private genome data dissemi-
nation. In this chapter, we gave an overview of the recent developments toward
accomplishing this goal. Our focus was on a new differentially private genome
data dissemination algorithm. This algorithm supports individual-level data sharing,
which is a desideratum for many research areas.

While the existing studies have demonstrated the promise of private genome data
sharing, there are still some notable limits. For example, the precision performance
of the proposed framework is relatively poor. To make this anonymization process
effective, several challenges must be addressed. First, further study is needed
to understand how to partition the genome sequences into blocks that are still
meaningful. Genomic data is high dimensional and it includes hundreds of Single
Nucleotide Polymorphisms (SNPs). Dividing the long sequences into blocks can
reduce the high-dimensionality challenge. Second, it might be useful to construct a
taxonomy tree for each genome block, which was not tried before. While multilevel
taxonomy trees have been proposed for a SNP [35], it is not clear how to construct
multilevel trees for a block. Finally, genomic data are shared for different data
analysis tasks (e.g., association test, logistic regression); in which case introducing
a task specific utility function in the data specialization process may preserve better
data utility.
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