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Preface

The editors started working on medical data privacy in 2009, when they were
postdoctoral researchers in the Health Information Privacy Laboratory, Department
of Biomedical Informatics, Vanderbilt University. Their work on the topic involved
understanding the privacy risks of medical data publishing and developing methods
to prevent these risks. Protecting medical data privacy is a challenging problem,
since a large volume of complex data must be protected in a setting that involves
multiple parties (patients, physicians, carers, researchers, etc.). To address the
problem, it is important to develop principled approaches that are specifically geared
towards medical data. In addition, it is equally important to increase the awareness
of all parties, involved in managing medical data, about privacy risks and approaches
for achieving medical data privacy. Thus, the overarching aim of this book is to
survey the field of medical data privacy and to present the state-of-the-art approaches
to a wide audience.

The structure of the book closely follows the main categories of research works
that have been undertaken to protect medical data privacy. Each such category is
surveyed in a different part of the book, as follows. Part I is devoted to medical data
sharing. Part II focuses on medical data privacy in distributed and dynamic settings.
Following that, Part III examines privacy preservation in emerging applications
featuring medical data, and Part IV discusses medical data privacy through policy,
data de-identification, and data governance.

Privacy-preserving data sharing requires protecting the identity of patients
and/or their sensitive information. For instance, attackers may use external data
or background knowledge to learn patients’ identity, even though attributes that
directly identify patients (e.g., SSNs, phone numbers) have been removed. The
problem has been studied extensively in the context of medical data, by the computer
science, medical informatics, and statistics communities. However, there is no one-
size-fits-all solution and various challenges remain. The purpose of Part I of this
book is to survey the main research directions in the area of privacy-preserving
medical data sharing and to present state-of-the-art approaches, including measures,
algorithms, and software tools, that have been designed to solve this problem.
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The protection of medical data privacy is particularly challenging, when multiple
interrelated parties are involved. For example, medical data practitioners often need
to link or exchange different parts of data about a patient, in the context of patient
treatment. In addition, medical researchers or insurers may need to access patient
information, according to the patient’s privacy requirements. In this case, both the
objectives of the parties accessing the data and the patient’s requirements may
change over time. Furthermore, data that are stored or processed in the cloud are
vulnerable to a multitude of attacks, ranging from malicious access to intentional
data modification. Part II of this book presents approaches focusing on privacy
protection in such distributed and dynamic settings. These include approaches for
linking data (record linkage), managing data access and patient consent, as well
as exchanging health information. Furthermore, a comprehensive survey of privacy
concerns and mitigation strategies for medical data in the cloud is presented.

Advances in medical devices and ubiquitous computing enable the collection
and analysis of many complex data types, including genomic data, medical images,
sensor data, biomedical signals, and health social network data. These data are
valuable in a wide spectrum of emerging applications, either alone or in combination
with data such as patient demographics and diagnosis codes, which are commonly
found in Electronic Health Record (EHR) systems. For example, genomic studies
have strong potential to lead to the discovery of effective, personalized drugs, and
therapies. However, genomic data are extremely sensitive and must be privacy-
protected. Part III of this book surveys privacy threats and solutions for all the
aforementioned types of data that are central in emerging applications.

Parts I–III of this book focus on technical solutions that allow data owners
(e.g., a healthcare institution) to effectively protect medical data privacy. On the
other hand, Part IV focuses on the legal requirements for offering data privacy
protection, as well as on the techniques and procedures that are required to
satisfy this requirement. More specifically, this part examines key legal frameworks
related to medical data privacy protection, as well as data de-identification and
governance solutions, which are required to comply with these frameworks. A
detailed presentation of the data protection legislation in the USA, EU, UK, and
Canada is offered.

This book is primarily addressed to researchers and educators in the areas of
computer science, statistics, and medical informatics who are interested in topics
related to medical privacy. This book will also be a valuable resource to industry
developers, as it explains the state-of-the-art algorithms for offering privacy.
To ease understanding by nonexperts, the chapters contain a lot of background
material, as well as many examples and citations to related literature. In addition,
knowledge of medical informatics methods and terminology is not a prerequisite,
and formalism was intentionally kept at a minimum. By discussing a wide range



Preface ix

of privacy techniques, providing in-depth coverage of the most important ones,
and highlighting promising avenues for future research, this book also aims at
attracting computer science and medical informatics students to this interesting field
of research.

Dublin, Ireland Aris Gkoulalas-Divanis
Cardiff, UK Grigorios Loukides
July, 2015
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Chapter 1
Introduction to Medical Data Privacy

Aris Gkoulalas-Divanis and Grigorios Loukides

Abstract The advancements in medical and information technology have resulted
in a tremendous increase in the amount and complexity of medical data that are
being collected. These data are a valuable source for analyses that have strong
potential to improve both medical research and practice. However, such analyses
have also raised considerable concerns over potential violations of privacy and
misuse of medical data. To address such concerns, technological and procedural
solutions are necessary. These solutions must be applicable to different types of
data, ranging from patient demographics to medical images, and be able to meet
diverse application requirements, such as data publishing and health information
exchange. This chapter provides an introduction to the field of medical data privacy,
offers a taxonomy of the different research directions, and presents an overview of
the state-of-the-art privacy-preserving solutions.

1.1 Introduction

Recent developments in medical and information technology allow the collection
of massive amounts of medical data. These data contain demographic, genomic,
and clinical information, including diagnoses, medications, medical images and
laboratory test results. For instance, electronic health records are utilized by
multiple parties with different roles and responsibilities, as a result of the increasing
adoption of Electronic Medical Record/Electronic Health Record (EMR/EHR)
systems [6, 15]. The use of the collected data is a valuable source for analyses
that significantly benefit both medical research and practice, leading to effective
ways of preventing and managing illnesses, as well as the discovery of new drugs
and therapies. For example, it is necessary to share large amounts of demographic,
clinical, and genomic data among collaborating healthcare institutions, in the
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context of genomic studies [16], which are considered as an important step towards
the realization of personalized medicine. The quality of healthcare that patients
receive can also be improved as a result of the increased availability of medical
data to clinicians [15].

At the same time, however, there are considerable concerns regarding potential
violations of privacy and misuse of medical data. For example, according to a recent
survey [19], 59 % of patients believe that the widespread adoption of EMR/EHR
systems will lead to more personal information being lost or stolen, while 51 %
believe that the privacy of health information is not currently sufficiently protected.
In addition, various public campaigns have urged people to opt-out and to dissent to
the use of their medical records [5, 18], and as a result large efforts for improving
health services, such as care.data in England, have been significantly delayed [21].

To address these concerns, it is important to consider the entire lifecycle of medi-
cal data when protecting them. This implies that medical data must be collected and
communicated securely, be accessed only by authorized parties, and not disclosing
any private and/or sensitive medical information when disseminated. To meet these
objectives, a large number of technological solutions have been proposed. These
include formal privacy models, algorithms, protocols, languages, architectures, and
software tools. In addition, privacy protection is a legal requirement, which is
posed by worldwide legal frameworks, including the Privacy Rule of the Health
Insurance Portability and Accountability Act (HIPAA) [11] in the United States,
and the Data Protection Act [28] in the United Kingdom. Closely related to the
enforcement of these policies, are recent medical data governance efforts. These
include the establishment of the so-called safe havens, i.e., environments which
allow researchers to securely access medical data. Examples of safe havens are
the Population Data BC [23] in Canada and the Farr Institute [8] in the United
Kingdom.

These efforts have shaped the area of medical data privacy. Broadly speaking,
the research in this area falls in one of the categories described in the following
subsections.

1.1.1 Privacy in Data Sharing

Protecting the privacy of data prior to their sharing is a central topic in medical data
privacy. Privacy-protected data may either become accessible by authorized parties
or publicly available. For example, medical data are often accessed by researchers,
who perform various types of analyses, spanning from simple statistical tests to
advanced data analytics, in the context of their studies.

The analysis of data in a privacy-preserving way is possible through statistical
disclosure control methods, which modify aggregated data prior to analysis, or
through output perturbation methods, which modify the analysis result. In addition,
medical data that have been collected as part of funded research projects need
to be deposited into central repositories, in order to enable the validation of
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existing results as well as to be used in novel future studies. In this setting, data
anonymization methods that transform the original medical data to satisfy privacy,
while preserving data utility, are necessary. The variety of medical data types and
analytic tasks that are applied to the data call for different approaches. As an
example, anonymization methods for demographic data are not applicable to data
containing patients’ diagnosis codes, since these two types of data are modeled and
analyzed in substantially different ways. Similarly, the anonymization of patients’
longitudinal data and the de-identification of clinical reports call for require vastly
different solutions.

1.1.2 Privacy in Distributed and Dynamic Settings

Numerous applications require the protection of data that are distributed into
multiple parties. These parties hold, and aim to integrate, parts of data about the
same patient, or about different patient subpopulations. In this case, record linkage
methods are necessary to securely construct a “global” view of the data. These
methodologies often employ secure multiparty computation (SMC) protocols to
construct this “global” view, without the sharing of original (unencrypted) data
among parties. The goal of these methods is to achieve data integration in a way
that no party, who participates to the protocol, learns the data that is held by any
other party (as well as any other sensitive information).

In addition, patients’ medical information often needs to be exchanged between
different parties, in a privacy-preserving way. This offers multiple benefits, reducing
the possibility of medical identity theft, financial fraud, and errors. To achieve this,
access control methods, which manage how these parties access information are
necessary. These methods determine when and how a subset of data about a patient
can be accessed by specific parties, which perform a certain task or have a certain
role. An example of an effective approach to managing the access to data is based
on the notion of consent. This approach empowers patients with the capability of
granting and revoking access to their (medical) data, in a way that changes over
time and is specified according to the context. Furthermore, medical data may be
stored or processed in a cloud infrastructure. This poses various privacy threats,
such as malicious data access and intentional data modification, which have to be
appropriately addressed.

1.1.3 Privacy for Emerging Applications

Advances in sequencing technology, telemedicine, signal processing, and social
networks allow the collection of large amounts of complex data. Examples are
DNA sequences, medical images, biomedical signals, and health social network
data. All these types of data contain confidential or sensitive information about
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patients and need to be privacy-protected. This is far from straightforward, due to
the inherent complexity of these data types. For instance, if the genomic sequence
of a patient is not sufficiently protected, privacy-intrusive associations between
the patient and family members may be disclosed. Another significant challenge
involved in the protection of these data is efficiency. This is true for methods that
employ cryptographic operations, which are not generally scalable to large datasets.

To protect genomic data, techniques such as noise addition, which is used to
enforce an appropriate privacy principle, or cryptography, which is used to securely
compute a result on the data, are typically employed. The goal of both of these
techniques is to maintain a desired level of privacy protection, while preserving the
utility of data in supporting genomic studies.

In addition, the sharing of medical images is promoted by various initiatives
worldwide, such as the Picture Archiving and Communications Systems (PACS)
in the United Kingdom [22], and the Canada Health Infoway-Inforoute [4]. The
protection of medical image data can be achieved by cryptographic means (mainly
encryption and digital signatures), while techniques such as watermarking protect
the images from unauthorized modification and copying.

Another class of emerging applications for both disease diagnosis and treatment
is based on biomedical signal processing. An important requirement in these
applications is to be able to process a biomedical signal without revealing its content
or the processing results, to unauthorized users. This is achievable by performing
analysis directly on the encrypted signal.

Furthermore, health social networks allow their users (e.g., doctors, patients and
carers) to communicate and interact, in order to virtually manage and improve the
health of patients. Health social networks and related communities can either be
built on top of existing social networking applications or on dedicated platforms.
Protecting the data that are deposited by patients, or result from the communication
and interaction among users, is particularly important. This is possible by building
solutions using a multitude of technologies that were mentioned before, including
anonymization, cryptography, and access control.

1.1.4 Privacy Through Policy, Data De-identification, and Data
Governance

Clinical information systems, such as web-based electronic healthcare systems,
systems for personal health monitoring, and physician order entry systems, are
increasingly adopted and have already simplified and improved many aspects of
healthcare.

These systems contain sensitive information that must be managed in a privacy-
preserving way. To achieve this, adherence to legal frameworks, such as HIPAA and
the Data Protection Act, is an important and mandatory step. These frameworks
specify the responsibilities of organizations regarding the privacy protection of
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personal health information. However, complying with these frameworks is both
challenging and costly for a healthcare organization. Furthermore, discovering
individually identifiable health information about patients is not straightforward,
especially when data are unstructured (i.e., in a textual form). Thus, techniques
which de-identify text data (i.e., detect, and remove or modify personal identifying
information) are necessary. In addition, clear data governance processes are needed
to deal with the privacy-preserving management of clinical information.

This handbook covers the above-mentioned research areas of medical data
privacy in a comprehensive way. Each area corresponds to a different part of the
book.

In the remaining of this chapter, we discuss each of these areas in more detail
and provide an overview of the contents of the book. Specifically, Sects. 1.2
and 1.3 discuss privacy protection in the context of data sharing, and in distributed
and dynamic settings, respectively. Section 1.4 presents a range of emerging
privacy-preserving applications. Section 1.5 focuses on the issues of policy, data
de-identification, and data governance, which are central to the management of
medical information. Last, Sect. 1.6 concludes the chapter.

1.2 Part I: Privacy in Data Sharing

This part of the book focuses on preserving privacy in data sharing. Specifically, it
explains how this can be achieved through data anonymization techniques. These
techniques are based on various formal privacy principles and data transformation
operations, and they are applied by a series of methods and software tools. The part
concludes with a survey of statistical disclosure control methods for medical data.

Anonymization algorithms are very important, in the context of data sharing, and
their development has attracted significant attention. As a result, a large number of
anonymization algorithms for medical data have been proposed recently. Chapter 2
reviews the most popular of these algorithms and explains their objectives, as well
as the main aspects of their operation. Furthermore, it presents several directions for
future research in the area of developing data anonymization algorithms. Interested
readers may also refer to [10] for a more comprehensive coverage of this area.

Differential privacy [7] has emerged as a strong privacy principle that can
be used to protect medical data, prior to their sharing. Intuitively, this privacy
principle ensures that any inferences that can be made by an attacker do not depend
significantly on the presence or absence of information about a patient (e.g., a
patient’s record). In the recent years, many approaches for enforcing differential
privacy on medical data have been proposed. Chapter 3 introduces differential
privacy and provides an extensive survey of these approaches with focus on private
histogram generation and synthetic data publication.

An important consideration when applying differential privacy in practice is
the preservation of data utility. In fact, the enforcement of differential privacy
is typically performed through (Laplace) noise addition, which may significantly



6 A. Gkoulalas-Divanis and G. Loukides

degrade data utility. Several works have indicated this limitation of differential
privacy when compared to syntactic anonymization methods. At the same time,
research has shown that in certain data publishing scenarios, differential privacy
can achieve reasonable levels of data utility. Chapter 4 studies the issue of assessing
and maintaining the utility of differential privacy, in the context of a fundamental
statistical task (logistic regression [9]). The analysis and the experimental results
presented in this work confirm that the production of differentially private data with
high utility is challenging, particularly when the data are high-dimensional.

Another important privacy principle to protect medical data is k-anonymity
[25, 26]. k-anonymity belongs to the family of syntactic privacy-preserving data
publishing approaches and is probably the first formal mathematical model that has
been proposed for offering anonymity. The k-anonymity principle aims to prevent
an attacker from associating a patient with their patient record in a published
dataset. This attack is referred to as identity disclosure and constitutes a major
privacy breach. Identity disclosure is possible when patient data (e.g., demographic
values or diagnosis codes) are contained in both the published dataset and in
publicly/widely available external data sources (e.g., voter registration lists, Census
data, and hospital discharge summaries). A triangulation of the patient data with
those external data sources may lead to unique patient records for some of the
patients whose information is recorded in the dataset, hence reveal their identity.
To prevent identity disclosure, k-anonymity requires modifying the data (usually
through selective data generalization and/or suppression), prior to their sharing,
so that each record in the published dataset can be associated with at least k
different individuals, where k is a parameter specified by data owners. This limits the
probability of performing identity disclosure to at most 1

k . We note that in medical
research, typical values of k are k D 3 and k D 5, which are considered to offer a
sufficient level of anonymity.

Various algorithms for enforcing k-anonymity on medical data have been
proposed [10]. Recently, several of these algorithms have been implemented into
software systems. This is important because the implementation and application
of anonymization methods requires significant expertise. Chapter 5 presents an
overview of a system called SECRETA, which was developed by the University of
Peloponnese in collaboration with Cardiff University and IBM Research. The sys-
tem allows evaluating and comparing nine popular data anonymization algorithms
that are applicable to patient data containing demographics and/or diagnosis codes.
The application of the algorithms is performed, in an interactive and progressive
way, and the results, including attribute statistics and various data utility indicators,
are summarized and presented graphically. Another anonymization system, called
ARX, was developed by the Institute for Medical Statistics and Epidemiology of the
University of Technology Munich (TUM). Chapter 6 discusses this anonymization
system, which is applicable to patients’ demographics. The system supports various
algorithms based on k-anonymity, as well as on other popular principles [12, 20] that
enhance the protection provided by k-anonymity. An important feature of ARX is
that it guides the user, through all steps of the anonymization process, using several
helpful wizards.
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k-Anonymity offers a good solution to data privacy, by providing formal privacy
guarantees. Applying, however, k-anonymity on high dimensional data, such as
patients’ diagnosis codes, is challenging. In response, different principles that are
based on k-anonymity have been proposed [13, 24]. The main idea behind these
privacy principles is to prevent the use of specific combinations of diagnosis
codes in identity disclosure attacks. The specification of these combinations can
be performed by data owners, or automatically [13]. Thus, the application of
these principles avoids overprotecting the data and unnecessarily reducing data
utility. Chapter 7 discusses the application of these principles through two popular
operations, namely data generalization [13, 25, 26] and datadisassociation [14, 27].
Generalization replaces diagnosis codes with sets of diagnosis codes (e.g., diabetes
type I may be replaced by a set containing diabetes-I and diabetes-II). On the
other hand, disassociation partitions the diagnosis codes into groups to conceal
their associations. The chapter also reviews state-of-the-art algorithms based on
generalization and on disassociation.

Most of the syntactic approaches that have been proposed to facilitate privacy-
preserving data publishing assume a single data release, where the original dataset
is first anonymized and then made available to the intended recipients. After its
original release, the data is no longer updated with (anonymized) information about
new individuals or additional information about the existing ones. Moreover, a
subset of the same data is typically not used as part of other anonymous data
releases, as this could lead to privacy disclosures. Chapter 8 is devoted to this
important issue of preventing composition attacks in the privacy-preserving sharing
of medical data. These attacks involve the intersection of independently published
datasets, to infer sensitive information (e.g., that a patient is diagnosed with a mental
disorder). To mitigate these attacks, this chapter presents two different approaches
that are applicable to patient demographics. The first approach is based on noise
addition and the second on data generalization. The chapter also presents analysis
and experiments to demonstrate the strengths and weaknesses of each approach.

The approaches discussed so far focus on medical data that are being shared by
healthcare organizations. However, statistical agencies also share medical data that
are collected by individuals in surveys, censuses, and registers. These data often
contain sensitive information (e.g., statistics on abortions or diseases) and must be
protected prior to their dissemination. There are, however, important challenges in
doing so, which stem from the complexity of data (e.g., when data are longitudinal)
or the requirement for publicly releasing data as part of government open data
initiatives. Chapter 9 surveys different approaches that are employed by statistical
agencies to protect the privacy of health data. These approaches are either applicable
to individual-specific data, or to aggregate data. In addition, the chapter discusses
approaches that are currently being assessed by statistical agencies.



8 A. Gkoulalas-Divanis and G. Loukides

1.3 Part II: Privacy in Distributed and Dynamic Settings

The second part of the book discusses privacy protection in distributed and dynamic
settings. It first surveys techniques for privacy-preserving record linkage, as well
as their implementation and use by dedicated centers for linking medical data that
have been recently established around the world. Subsequently, the important issue
of privacy preservation in Health Information Exchange (HIE) systems is discussed.
After surveying threats and solutions in these systems, techniques for access control
and consent management are presented in detail. The part concludes with a survey
of privacy issues related to the management of medical data in cloud environments.

Many large-scale medical research studies require data about the same patient,
which are distributed into (i.e., held or managed by) different parties. For example,
social data about patients are typically collected by statistical agencies, while the
patient’s clinical data are collected by one or more hospitals that the patient has
visited. To enable these studies, it is important to construct a holistic view of the
patients’ health information, by combining all the available data referring to the
same patient, from the different data sources. In addition, the construction of this
(holistic) record for each patient should be performed without disclosing the data
that is held by each party, due to privacy concerns (i.e., the parties cannot simply
share all their data). To achieve this, privacy-preserving record linkage methods have
been proposed. Chapter 10 provides a comprehensive survey of privacy-preserving
record linkage methods, with a focus on those that use identifying information (e.g.,
names) to perform the linkage. The latter methods preserve individual patients’
privacy and are efficient and effective.

Privacy-preserving record linkage is of great practical importance. This is
evidenced by the establishment of dedicated medical record linkage centers, in
various countries, including the United Kingdom, Canada, and Australia [3]. These
centers routinely collect and link medical data, as well as provide secure access to
the data to trusted researchers. Chapter 11 discusses both procedural (i.e., practices
and processes) and technical (i.e., architectures and protocols) approaches that are
typically employed by record linkage centers.

Another important setting in which data must be privacy-protected involves
Health Information Exchange (HIE) systems accessed by multiple parties. These
systems contain patient information that is directly collected from patients (e.g.,
from physicians or pharmacies). HIE systems are highly complex and dynamic. For
example, they may be federated to allow broad accessibility that spans across mul-
tiple healthcare providers. HIE systems improve quality of care and patient safety,
and they significantly reduce medical errors. However, the increased availability
of patient information to multiple parties poses serious threats, such as identity
theft and medical financial fraud. Chapter 12 surveys issues related to privacy in
the context of HIE systems, and it presents principles that users and administrators
of these systems should adopt in order to preserve patient privacy.

The information contained in HIE systems needs to be accessible by multiple
collaborating parties, for purposes ranging from team-based patient care to clinical
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education. The main challenge in controlling the access to this information is the
dynamic nature of HIE systems. Specifically, there are changes to the data, to
the level of data access, and to the specific (and often conflicting) requirements
of the different parties. Chapter 13 surveys the state-of-the-art research on access
control to support team collaboration and workflow management. In addition,
it introduces the New York State HIV Clinical Education Initiative (CEI), an
application that requires complex information access in the combined contexts of
workflow and team collaboration.

In addition, information access in HIE systems needs to be performed in
accordance with patients’ consent [17, 30]. This calls for consent management
approaches, which aim to capture the specific requirements of patients and health-
care providers for access to patients’ medical data, in a way that reduces the risk of
errors and preserves privacy. Consent management is a dynamic and context-specific
process, since patients may want to handle consent in accordance with the actual
situation. Chapter 14 presents an approach for managing consent that is based
on authorization policies (i.e., rules that govern the access to a patient’s data).
The approach is able to simplify the management of consent, by combining and
collectively managing policies that have a common aim, in a specific context.

Recently, there is tremendous interest for utilizing cloud computing infrastruc-
tures to store, manage, analyze and share medical data. This offers various benefits,
including scalability, increased availability of information, and cost effectiveness.
However, outsourcing sensitive medical data to third-party cloud providers may
raise serious privacy concerns. Chapter 15 provides an overview of the privacy
issues related to the storage and sharing of medical data in the cloud. Subsequently,
it focuses on effective strategies to mitigate these concerns. Each of these strategies
is evaluated and open issues for future research are presented. We note that this is a
very interesting and largely unexplored research area, which asks for novel methods
that can offer sufficient privacy protection with guarantees for the stored medical
data, in order to increase the adoption of cloud computing on healthcare.

1.4 Part III: Privacy for Emerging Applications

In this part of the book, privacy protection in a range of emerging medical
applications is discussed. This includes applications featuring the management,
sharing, and analysis of: (a) genomic data, (b) medical images, (c) Radio Frequency
IDentification (RFID) data, (d) biomedical signals, and (e) health social network
data. Due to the differences in their semantics and use, these types of data are
susceptible to different privacy attacks and require very different approaches to be
protected.

Genomic data are highly important for supporting research in personalized
medicine, as well as for improving the accuracy of diagnosis and public health.
However, they are probably the most sensitive type of medical data as they may
reveal a patient’s sensitive information, including identity, ethnic group, and disease
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association, as well as information about the ancestors and descendants of the
patient. Thus, the sharing and analysis of patient genomic data must be performed
in a way that provably preserves privacy. Chapter 16 introduces the state-of-the-
art in genome privacy research. After providing an overview of the legal, ethical
and technical aspects of genome privacy, the authors present various attacks and
solutions that have been proposed for preserving the privacy of genomic data, as
well as discuss several directions for future research in this hot research area.

Enforcing differential privacy to protect the privacy of patients’ genomic data
is an important approach, particularly because differential privacy makes few
assumptions about the background knowledge of attackers. This helps to eliminate
inferences that are difficult to predict, but can have serious consequences to privacy.
Chapter 17 presents an effective algorithm that follows this approach. The algorithm
splits raw genome sequences into blocks, subdivides the blocks in a top-down
fashion, and finally adds noise to counts, in order to enforce differential privacy.
Importantly, the algorithm is able to preserve data utility in supporting different
genome data analysis tasks, as demonstrated by the authors through experiments.

The second major approach to protecting the privacy of genomic data is based on
cryptography. This approach assumes that a set of authorized users are interested
in obtaining the results of a medical analytic task, instead of obtaining the entire
dataset. Chapter 18 discusses this approach and adopts it to address four interesting
problems. These are (a) the management of raw genomic data, (b) the use of
genomic data for conducting medical tests, (c) the use of genomic data for genetic
association studies, and (d) the secure data storage and retrieval of genomic data.
The problems are addressed using methods based on cryptographic primitives, such
as order-preserving [1] and homomorphic [2] encryption.

Medical images are very important in diagnostic applications, and they need to
be protected from a range of attacks, including unauthorized view, modification,
and copying, to ensure patient confidentiality. Chapter 19 surveys approaches that
combine encryption with watermarking to achieve this. Encryption guarantees that
medical images cannot be viewed by unauthorized parties, while watermarking
prevents the copying of images from authorized parties that have decrypted them.
The chapter presents a range of methods that combine encryption and watermarking,
and then focuses on a practical algorithm for joint encryption-watermarking.

In addition, guarding against patient re-identification (i.e., disclosing the identity
of patients, from an image that is devoid of directly identifying information) is
necessary from both a legal and an ethical point of view. In the context of image data,
patient re-identification occurs when an attacker verifies the identity of the owner of
the image, or when the attacker creates an accurate profile for the potential owner
of the image. Chapter 20 discusses the threat of re-identification in the context of
neuroimage data. After presenting data properties and processes that are useful for
protecting neuroimages, the authors discuss privacy risks relevant to neuroimage
data. Subsequently, the chapter presents an effective solution for neuroimage data
that is able to satisfy legal and regulatory requirements.

Next, we consider Radio Frequency IDentification (RFID) data. These data are
increasingly used to improve supply-chain management and service offerings, by
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monitoring the locations of patients and healthcare providers. The data that is
stored in RFID devices may contain sensitive information about patients that can
be obtained, for example, by intercepting the transmission used to track a patient.
In addition to obtaining access to sensitive patient data, there are more privacy
attacks that need to be considered for RFIDs, such as data modification, interruption,
and fabrication. Chapter 21 surveys these attacks, along with further issues related
to privacy, in the context of various real applications of RFIDs in healthcare.
Furthermore, it discusses a range of potential solutions to each of these threats.

The diagnosis of various heart-related disorders, including ventricular contrac-
tions, fibrillation and tachycardia, is based on the analysis (classification) of a type
of biomedical signal, referred to as ElectroCardioGram (ECG). Chapter 22 presents
three algorithms for classifying encrypted ECG signals. This is a challenging task,
which requires preserving the representation of the signal after its encryption, as
well as the intermediate computation results. The privacy algorithms presented
in this chapter are based on different primitives (classification functions) and are
evaluated using real data, in terms of their achieved accuracy and efficiency.

Another class of emerging applications in medicine are based on health social
networks. In these applications, users (i.e., doctors, patients, caregivers, etc.)
exchange data of various forms, such as text and images, to provide or receive
emotional support, share advice and experiences, and find medical information
that would help them address a medical condition. Thus, the use of health social
networks can help towards improving patients’ health and quality of life. On
the other hand, however, health social network data are susceptible to privacy
attacks, such as re-identification, discrimination, profiling, and sensitive information
disclosure. Chapter 23 provides a comprehensive discussion of these attacks, in the
context of health social networks of different types, as well as the implications of
these attacks to patients. Furthermore, it presents tools and methods that can be used
to guard against these attacks.

1.5 Part IV: Privacy Through Policy, Data De-identification,
and Data Governance

Part IV of the book reviews important issues related to privacy-preserving data man-
agement in healthcare systems. The first issue regards compliance with existing legal
frameworks. This is a legal requirement for healthcare institutions and organizations
(at large) that hold electronic health records, but it is far from straightforward to
achieve. One major challenge is to effectively de-identify patients’ medical data. On
this end, the US legislation (HIPAA) provides a set of guidelines for the removal of
Protected Health Information (PHI) from the data, where PHI is any information in
a medical record that can be used to identify an individual. This challenge becomes
more important in the context of unstructured medical data (text), such as doctors’
clinical notes and prescriptions, where PHI have to be first discovered in the data
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and then redacted. Another major challenge is that the existing legal frameworks
are generic and sometimes abstract. Consequently, data governance strategies are
needed to support compliance to these frameworks. Both of the aforementioned
challenges are discussed extensively in this part of the book, and methods for
addressing them are presented.

Legal frameworks that have been proposed by the governments of many countries
(e.g., United States, United Kingdom, and Canada), as well as by major research
funding organizations (e.g., the NIH, Welcome Trust, and Genome Canada) are
surveyed in Chap. 24. These frameworks are comprised of laws, policies, and
regulations, and are an important step for preserving data privacy. The content,
significance, and practical usefulness of these frameworks is explained, and barriers
to facilitating global data sharing are identified. The chapter also suggests ways to
overcome these barriers, while maintaining robust data-privacy protection.

The breach of privacy laws, policies, and regulations is often caused by human
errors and incurs significant costs to healthcare organizations. Chapter 25 catego-
rizes the human errors and explains how they may lead to privacy breaches, in the
context of the HIPAA privacy policy [11], a key legal framework for medical data in
the United States. In addition, it provides an analysis of various cases of privacy
breaches and reports on the most important cases of HIPAA privacy breaches
in which the U.S. Office for Civil Rights has reached a resolution agreement.
The analysis identifies the latent causes of privacy breaches and has important
implications in policy formulation and system design.

As mentioned earlier, the de-identification of medical text is necessary to comply
with legal policies and regulations. In addition, de-identification is essential to
facilitate the secondary use of clinical information, because a significant amount of
clinical information if contained in text. While manual de-identification is possible,
it is a tedious, costly, and error-prone process. This led to the development of
automated de-identification approaches, which are more principled and efficient.
Chapter 26 introduces the problem of medical text de-identification, and then
surveys and evaluates existing methods, with a focus on those that have been
customized for the U.S. Veterans Health Administration [29].

A class of text de-identification methods replace PHI with terms that can be read
naturally, which are called surrogates. For example, instead of replacing the doctor’s
name, “Dr. Riley” with a pseudonym “Doctor1” (or redacting it), they replace it with
another plausible name, e.g., “Dr. Robertson”. This is important for de-identified
data intended to be read naturally, such as hospital discharge summaries and
correspondence between doctors. Chapter 27 presents a de-identification method
based on the generation of surrogates. It also discusses the requirement of preserving
important relationships between terms (e.g., co-reference) in the data, which is
needed in order to generate realistic surrogates.

The second major challenge to comply with policies and regulations is data
governance. This is a procedural requirement, which, in the context of medical data,
aims to help a group of healthcare organizations to achieve a collective goal, such
as performing a research study. Data governance becomes increasingly important in
cases when health data are collected by different parties (e.g., healthcare institutions,
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clinics, and pharmacies) and need to be integrated with other forms of data (e.g.,
social data). Chapter 28 provides a comprehensive discussion of medical data
governance. This includes current practice and associated challenges. In addition, it
presents a framework for medical data governance, which aims at enhancing privacy
while supporting medical data analysis.

1.6 Conclusion

Medical data privacy is a research area with a broad spectrum of applications,
ranging from genomics to patient monitoring. This area has attracted significant
interest from the computer science, medical informatics, and statistics communities.
This chapter provided an overview of the major topics in medical privacy. The
first three topics cover aspects of privacy preservation in data sharing, distributed
and dynamic settings, and emerging applications. These include anonymization,
statistical disclosure control, record linkage, access control, and secure compu-
tation. The fourth topic focuses on privacy aspects related to the management
of patient information. These include legal frameworks for privacy preservation,
de-identification of medical text, and data governance.
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Chapter 2
A Survey of Anonymization Algorithms
for Electronic Health Records

Aris Gkoulalas-Divanis and Grigorios Loukides

Abstract Electronic Health Records (EHRs) contain various types of structured
data about patients, such as patients’ diagnoses, laboratory results, active medica-
tion, and allergies, which are increasingly shared to support a wide spectrum of
medical analyses. To protect patient privacy, EHR data must be anonymized before
their sharing. Anonymization ensures that the re-identification of patients and/or the
inference of patients’ sensitive information is prevented, and it is possible using
several algorithms that have been proposed recently. In this chapter, we survey
popular data anonymization algorithms for EHR data and explain their objectives, as
well as the main aspects of their operation. After that, we present several promising
directions for future research in this area.

2.1 Introduction

Electronic Health Records (EHRs) contain a wealth of clinical data, which include
demographics, diagnosis codes, and medications. The data are typically used by
physicians, for the diagnosis and treatment of diseases, and have been shown to
improve patient care [23]. In addition, EHR data are becoming a valuable source
for research [28]. For example, various analyses, such as controlling epidemics
and predicting the risk of diabetes, can be applied to EHR data [60]. The large
amounts of available EHR data and their usefulness in analytic tasks have led
governments and major funders worldwide to support the wide sharing of EHR data
[50, 53]. However, the sharing of EHR data must be performed in a way that offers
patient anonymity [14]. Anonymization of EHR data is both a legal [62] and ethical
requirement, as well as it is necessary in order to sufficiently protect the identity and
sensitive information of patients.
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Recently, the computer science and health informatics communities have pro-
posed several algorithms for anonymizing EHR data. The main goal of these
algorithms is to satisfy specific privacy requirements, while ensuring that the
anonymized data remain useful for analysis. The privacy requirements are captured
using formal privacy models and the enforcement of these models is performed by
data transformation. In addition, data transformation must preserve data utility.

The majority of privacy models focus on blocking two important threats to
patient privacy: (a) identity disclosure, which occurs when a patient is linked to
their record in the published data [55, 57], and (b) attribute disclosure (or sensitive
information disclosure) [49], which occurs when a patient is associated with
sensitive information (e.g., HIV-positive status). Furthermore, data transformation
is performed by: (a) generalization, which replaces values with more general,
but semantically consistent values [44, 57], and (b) suppression, which deletes
certain data values [55]. To preserve data utility, the anonymization algorithms
aim to minimize the impact of data transformation. That is, the application of
these algorithms should ensure that the anonymized EHR data: (a) retain important
information, (b) remain useful in pre-specified medical data analysis tasks, and
(c) satisfy certain requirements of data owners.

This chapter surveys anonymization algorithms for EHR data, with a focus
on algorithms that are applied to patient demographics or to diagnosis codes.
This is because most algorithms for EHR data aim to anonymize either of these
two types of data, and they can be extended to deal with other patient attributes
(e.g., the anonymization of diagnosis codes is similar to that of procedural codes
[44]). To ease understanding and highlight the differences between anonymization
algorithms, we first present a brief discussion of the main privacy models that are
relevant to EHR data. Subsequently, we classify the existing privacy algorithms
according to the privacy model they adopt. For each algorithm, we explain the
main aspects of its operation, which include its privacy model, data transformation
strategy, utility objective, and heuristic search strategy.

As it will become evident, there are major differences in the operation of the
surveyed anonymization algorithms and also a number of important issues that
remain outstanding. The chapter aims to shed light on the operation of these
algorithms, to help data owners select the most appropriate algorithm for a specific
EHR data publishing scenario. Furthermore, we aim to summarize outstanding
issues related to the development of anonymization algorithms for EHR data, in
order to motivate further research. For a more technical overview of a larger class
of anonymization algorithms for medical data, we refer the readers to [20].

The remainder of this chapter is organized as follows. Section 2.2 presents pri-
vacy threats and models that have been proposed, and Sect. 2.3 reviews algorithms
for anonymizing EHR data. Section 2.4 presents some interesting directions for
future research, and Sect. 2.5 concludes this work.
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2.2 Privacy Threats and Models

This section discusses the two major privacy threats that are relevant to the sharing
of EHR data, namely identity and attribute disclosure. Next, it presents privacy
models that aim to prevent each of these threats or both of them at the same time.

2.2.1 Privacy Threats

In the following, we classify the types of attributes that are found in EHR data,
based on their role in the development of privacy models. Then, we discuss the
privacy threats that arise in the sharing of EHR data.

Typically, there are three different types of attributes in structured EHR data:
direct identifiers, quasi-identifiers, and sensitive attributes. Direct identifiers
uniquely identify patients—examples of these attributes are names and phone
numbers. Quasi-identifiers, on the other hand, are attributes which in combination
identify a patient; quasi-identifying attributes include demographics [55, 65] and
diagnosis codes [43]. Last, sensitive attributes are those that patients are not willing
to be associated with. Examples of sensitive attributes are serious diseases, such as
psychiatric diseases and forms of cancer.

Identity disclosure (or re-identification) [57, 65] occurs when a patient is associ-
ated with their record in the published EHR dataset. This is performed even when
data are devoid of direct identifiers, since quasi-identifiers are contained in both
the published dataset and in publicly available external data sources [55, 65]. For
example, it has been estimated that over 87 % of U.S. citizens can be re-identified
based on a combination of only three demographics (5-digit zip code, gender and
date-of-birth) [55]. Many other identity disclosure incidents have also been reported
[10]. For instance, in one attack students re-identified individuals in the Chicago
homicide database by linking it with the social security death index.

Attribute disclosure (or sensitive information disclosure) [49] occurs when a
patient is associated with information about their sensitive attributes. As discussed
above, there are common types of attributes that are widely regarded as sensitive.
The specification of sensitive attributes is generally left to data owners [34, 44, 49].
Although attribute disclosure has not transpired in the context of EHR data, it
has raised serious privacy concerns, because the inference of sensitive medical
information may cause financial and emotional embarrassment to patients.

2.2.2 Privacy Models

This section presents well-established privacy models that aim to protect data from
attacks leading to identity and/or attribute disclosure. These include models that
were specifically proposed for protecting EHR data, as well as others that can be
easily applied for this purpose.
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2.2.2.1 Models Against Identity Disclosure

In the following, we discuss well-established privacy models against identity
disclosure, focusing on those that are applicable to demographics or diagnosis
codes.

The most popular privacy model for protecting demographics is k-anonymity
[55, 57]. k-anonymity requires each record in a dataset to contain the same values
in the set of Quasi-IDentifier attributes (QIDs) with at least k � 1 other records
in the dataset. k-anonymity protects from identity disclosure, because it limits the
probability of attackers to successfully link an individual to his or her record, based
on QIDs, to 1=k. The parameter k controls the level of offered privacy and is set by
data owners, usually to 3 or 5 in the context of EHR data [44].

A variation of k-anonymity is a privacy model, called k-map [56]. k-map
considers that the linking is performed based on larger datasets (called population
tables), from which the shared EHR dataset has been derived. Thus, k-map can
be satisfied with lower data transformation than what is required by k-anonymity,
but provides less protection. For example, identity disclosure may still occur when
attackers know that a patient’s record is included in the published dataset. Other
models based on k-anonymity or k-map were proposed in [11] and in [16].

Several privacy models have been proposed to prevent identity disclosure attacks
based on diagnosis codes. The work of He and Naughton [22] proposed complete
k-anonymity, a model which assumes that any combination of diagnosis codes can
lead to identity disclosure. This model is similar to k-anonymity. However, it may
harm data utility unnecessarily because it is extremely difficult for attackers to know
all the diagnoses in a patient record [43]. This led to the development of more
flexible privacy models, such as km-anonymity [58]. km-anonymity uses a parameter
m (typically m D 2; : : : ; 4) to control the maximum number of diagnosis codes that
may be known to an attacker, and it requires each combination of m diagnosis codes
to appear in at least k records of the shared dataset.

Another flexible privacy model for diagnosis codes is privacy-constrained
anonymity [44]. This model assumes that certain combinations of diagnosis codes
may be known to an attacker and protects identity disclosure attacks, based on
these combinations. By definition, privacy-constrained anonymity assumes that
attackers know whether a patient’s record is contained in the released dataset. This
assumption is made by most research in the field (e.g., [22, 47, 58, 67]). Relaxing
this assumption, however, is straightforward by following an approach similar to
that of the k-map model, and can potentially offer more utility at the expense of
privacy.

2.2.2.2 Models Against Attribute Disclosure

Privacy models against attribute disclosure can be classified according to the type of
attributes they are applied to: (a) models for patient demographics, and (b) models
for diagnosis codes. In what follows, we describe some representative privacy
models from each of these groups.
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The most popular privacy model that thwarts attribute disclosure attacks in
patient demographics is l-diversity [49]. It requires each anonymized group in a
dataset to contain at least l “well represented” (e.g., distinct or not “too” frequent)
sensitive attribute values [49]. Other principles that thwart attribute disclosure,
similarly to l-diversity, are (a,k)-anonymity [63] and p-sensitive-k-anonymity [61].
t-closeness [34] is another privacy model for protecting demographics from attribute
disclosure. This model prevents an attacker from learning information about an
individual’s sensitive value that is not available from the entire published EHR
dataset. The models discussed so far prevent attribute disclosure based on cate-
gorical attributes (e.g., nationality). Privacy models to guard against the disclosure
of sensitive ranges of values in numerical attributes have also been proposed
[26, 32, 39, 41].

In addition, several privacy models have been proposed to protect attribute
disclosure attacks when sharing diagnosis codes For example, Cao et al. [5]
proposed �-uncertainty, which limits the probability of associating an individual
with any (single) diagnosis code to less than �. This model makes the (stringent)
assumption that each diagnosis code in a patient record can be sensitive, and all the
remaining codes in the record may be used for its inference. Another privacy model,
called .h; k; p/-coherence, was proposed in [67]. The latter model prevents from
both identity and sensitive information disclosure. It provides protection similar to
that of both km-anonymity and l-diversity but for diagnosis codes.

A more recent privacy model for protecting privacy in the release of diagnosis
codes is the PS-rule based anonymity model (PS-rule stands for Privacy Sensitive
rule), which was proposed in [48]. This model thwarts both identity and sensitive
information disclosure. The PS-rule based anonymity model offers significant
benefits, as it allows data publishers to specify detailed privacy requirements, and it
is more general than the models in [22, 58, 67].

2.3 Anonymization Algorithms

In this section, we provide a classification of algorithms that employ the privacy
models in Sect. 2.2. These algorithms are summarized in Table 2.1. For each class
of algorithms, we also discuss techniques that are employed in their operation.

2.3.1 Algorithms Against Identity Disclosure

As discussed in the introduction, anonymization algorithms transform data to
enforce a privacy model in a way that preserves data utility. In the following, we
briefly present approaches to transforming data and classify algorithms with respect
to the strategies they adopt to transform data, their utility objectives, and their
heuristic strategies. Based on this discussion, we subsequently present a detailed
classification of the privacy algorithms.
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Table 2.1 Anonymization algorithms that protect from identity and attribute disclosure
(adapted from [20], with permission from Elsevier)

Anonymization algorithms for
Privacy threat Demographics Diagnosis codes

Identity disclosure k-Minimal generalization [55]
OLA [9]
Incognito [29]
Genetic [25]
Mondrian [30, 31] UGACLIP [44]
TDS [12] CBA [38]
NNG [8] UAR [37]
Greedy [66] Apriori [58]
k-Member [4] LRA [59]
KACA [33] VPA [59]
Agglomerative [16] mHgHs [36]
.k; k/-anonymizer [16] Recursive partition [22]
Hilb [15]
iDist [15]
MDAV [7]
CBFS [27]

Attribute disclosure Incognito with l-diversity [49]
Incognito with t-closeness [34]
Incognito with .a; k/-anonymity [63] Greedy [67]
p-sensitive k-anonymity [61] SuppressControl [5]
Mondrian with l-diversity [64] TDControl [5]
Mondrian with t-closeness [35] RBAT [46]
Top Down [63] Tree-based [48]
Greedy algorithm [39] Sample-based [48]
Hilb with l-diversity [15]
iDist with l-diversity [15]
Anatomize [64]

2.3.1.1 Data Transformation

The transformation of data is applied to quasi-identifiers, in order to prevent
identity disclosure. To transform data, (a) microaggregation [6], (b) generalization
[55], and (c) suppression [55] are applied. Microaggregation involves replacing
a group of quasi-identifier values using a summary statistic (e.g., median) and
is applicable to demographics but not to diagnosis codes. Generalization, on
the other hand, suggests replacing quasi-identifier values by more general, but
semantically consistent, values. Two generalization models, called global and local
recoding, have been proposed [52]. Global recoding involves mapping the domain
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of QIDs into generalized values, while local recoding involves mapping the values
of individual records into generalized ones on a group-by-group basis. Finally,
suppression involves the deletion of specific quasi-identifier values from the data,
prior to their release.

2.3.1.2 Utility Objectives

As data transformation causes utility loss, anonymization algorithms aim at preserv-
ing data utility. This is achieved by applying one of the following general strategies:
(a) quantifying information loss using measures, (b) assuming that data will be used
in a specific data analysis task and aiming to preserve the accuracy of performing
this task, and (c) satisfying pre-specified utility requirements (e.g., set by the data
owners). These three strategies are discussed below.

The information loss measures that have been proposed to quantify data utility
are used in cases when there is no specific use intended for the anonymized data.
Accordingly, the goal of these measures is to introduce the minimum amount of
overall distortion in the dataset to offer privacy. These measures are based on (a) the
size of the formed anonymization groups, or (b) the characteristics of generalized
values. Measures of the first category are based on the intuition that all records
in an anonymization group are indistinguishable from one another, as they have
the same value over QIDs. Thus, larger groups incur more information loss and
smaller groups are preferred. Examples of measures that fall into the first category
are the Discernibility Metric (DM) [3] and the Normalized Average Equivalence
Class Size [30]. Examples of measures that belong to the second category are
theGeneralization Cost (GC) [1], the Normalized Certainty Penalty (NCP) [66], and
the Loss Metric (LM) [25]. All of these measures are applicable to demographics.
A recently proposed information-loss measure for diagnosis codes is Information
Loss Metric (ILM) [38].

To quantify how well anonymized EHR data support a specific task, one can
use the Classification Metric (CM), which was proposed in [25]. By optimizing
this measure, anonymized data that helps building accurate classification models
can be generated. The CM measure is expressed as the number of records whose
class labels are different from that of the majority of records in their anonymized
group, normalized by the dataset size. Furthermore, to support query answering
using anonymized data, one can use the Average Relative Error (ARE) measure,
which was proposed in [30]. ARE quantifies data utility by measuring the difference
between the number of returned answers to a query using the anonymized and using
the original data. Some measures for anonymizing data while supporting clustering
applications were considered in [13]. Although these measures are also general,
currently they have only been applied to patient demographics.

Several publishing scenarios involve the release of an anonymized dataset to
support a specific medical study, or to data recipients having certain data analysis
requirements. In such scenarios, knowledge of how the dataset will be analyzed
can be exploited during anonymization to better preserve data utility. Samarati
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proposed modeling data analysis requirements based on the minimum number of
suppressed tuples, or on the height of hierarchies for categorical QID values [55].
Another approach was proposed by Xu et al. [66]. This approach prioritized the
anonymization of certain attributes by using data-owner specified weights. To
guarantee that the anonymized data will remain useful for the specified analysis
requirements, Loukides et al. [42] proposed models for expressing data utility
requirements. Utility requirements can be expressed at an attribute or at a value level
and can be applied to patient demographics but not to diagnosis codes. Anonymizing
diagnosis codes in a way that satisfies data utility requirements has been considered
in [44]. The proposed approach models data utility requirements using sets of
diagnosis codes, referred to as utility constraints. Collectively, utility constraints
specify the information that the anonymized data should retain in order to be useful
in intended medical analysis tasks, and form what is called a utility policy.

2.3.1.3 Heuristic Strategies

Anonymization algorithms employ heuristic search strategies to identify a “good”
privacy solution. In what follows, we discuss different search strategies that have
been applied to demographics and diagnosis codes.

Algorithms for demographics typically employ: (a) binary search on the lattice of
possible generalizations [55], (b) a lattice search strategy similar in principle to the
Apriori [2] algorithm, (c) genetic search on the lattice of possible generalizations
[25], (d) data partitioning [24, 30], (e) data clustering [33, 39, 52, 66], or (f) space
mapping [15]. The main idea behind strategies (a) to (c) is to represent the possible
ways to generalize a value (in a quasi-identifier attribute) using a taxonomy, and
then combine the taxonomies for all quasi-identifier attributes, to obtain a lattice.
Thus, finding a way to generalize values can be performed by exploring the lattice
using heuristics that avoid considering certain lattice nodes for efficiency reasons.
The strategy (a) prunes the ascendants of lattice nodes that are sufficient to satisfy a
privacy model, while the strategies (b) and (c) prune lattice nodes that are likely to
incur high utility loss. The latter nodes are identified while considering nodes that
represent incrementally larger sets of generalized values, for strategy (a), or while
selecting nodes by combining their descendants, as specified by a genetic algorithm,
in the case of strategy (b).

More recent research has focused on developing methods that use strategies
(d) and (e), which are applied to the records of a dataset and aim to organize
records into carefully selected groups that help the preservation of privacy and
the satisfaction of a utility objective. Both data partitioning and clustering-based
strategies create groups iteratively, but they differ in the task they perform in an
iteration. Specifically, partition-based strategies split records into groups, based
on the value that these records have in a single quasi-identifier attribute, while
clustering-based strategies merge two groups of records, based on the values of the
records in all quasi-identifier attributes together.
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Last, space mapping techniques [15] create a ranking of records, such that
records with similar values in quasi-identifiers have similar ranks. Based on this
ranking, groups of records are subsequently formed by considering a number
of records that have consecutive ranks. Space mapping techniques achieve good
effectiveness and efficiency.

Algorithms for diagnosis codes employ: (a) space partitioning in a bottom-up
[44] or top-down [5] fashion, (b) space clustering [17], or (c) data partitioning in a
top-down [22], vertical or horizontal [59] way.

Both strategies (a) and (b) attempt to find a set of generalized diagnosis codes that
can be used to replace diagnosis codes in the original dataset. However, they differ in
the way they operate. Specifically, space partitioning strategies require a taxonomy
for diagnosis codes, while space clustering strategies lift this requirement and are
more effective in terms of preserving data utility. On the other hand, data partitioning
strategies are applied to transactions (records) instead of diagnosis codes, and they
aim to create groups of transactions that can be subsequently anonymized with low
data utility loss.

2.3.1.4 Classification of Algorithms

In what follows, a classification of algorithms for preventing identity disclosure is
presented. The classification is based on the strategies that these algorithms adopt
for (a) transforming quasi-identifiers, (b) preserving utility, and (c) heuristically
searching the space for a “good” solution.

A. Algorithms for Demographics

Table 2.2 presents a classification of algorithms for preventing identity disclosure
based on patients’ demographics. As can be seen, all algorithms adopt k-anonymity,
with the exception of .k; k/-anonymizer [16] which adopts a similar model, called
.k; k/-anonymity. Furthermore, most algorithms use generalization, except from (a)
the algorithms in [29, 55], which use both generalization and suppression, and (b)
the algorithms in [7, 27], which use microaggregation. Moreover, most algorithms
aim at minimizing information loss and none of these algorithm takes into account
specific utility requirements.

From the presented algorithms, the Genetic [25], Infogain Mondrian [31], and
TDS [12] algorithms aim at releasing data in a way that allows for building accurate
classifiers. The LSD Mondrian [31] algorithm is similar to Infogain Mondrian but
uses a different utility objective measure, as its goal is to preserve the ability of
using the released data for linear regression.

It can also be observed that several algorithms implement data partitioning
heuristic strategies. Examples are [30, 31] that follow a top-down partitioning
strategy, while the TDS algorithm [12] and the NNG [8] algorithm employ more
sophisticated strategies to benefit data utility. On the other hand, the algorithms
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Table 2.2 Algorithms that protect from identity disclosure based on demographics (Table adapted
from [20], with permission from Elsevier)

Algorithm Privacy model Transformation Utility objective Heuristic strategy

k-Minimal k-anonymity gen and sup Min. inf. loss Binary lattice
generalization [55] search

OLA [9] k-anonymity gen Min. inf. loss Binary lattice
search

Incognito [29] k-anonymity gen and sup Min. inf. loss Apriori-like lattice
search

Genetic [25] k-anonymity gen Classification Genetic search
accuracy

Mondrian [30] k-anonymity gen Min. inf. loss Data partitioning

LSD Mondrian [31] k-anonymity gen Regression Data partitioning
accuracy

Infogain Mondrian [31] k-anonymity gen Classification Data partitioning
accuracy

TDS [12] k-anonymity gen Classification Data partitioning
accuracy

NNG [8] k-anonymity gen Min. inf. loss Data partitioning

Greedy [66] k-anonymity gen Min. inf. loss Data clustering

k-Member [4] k-anonymity gen Min. inf. loss Data clustering

KACA [33] k-anonymity gen Min. inf. loss Data clustering

Agglomerative [16] k-anonymity gen Min. inf. loss Data clustering

(k,k)-anonymizer [16] (k,k)-anonymity gen Min. inf. loss Data clustering

Hilb [15] k-anonymity gen Min. inf. loss Space mapping

iDist [15] k-anonymity gen Min. inf. loss Space mapping

MDAV [7] k-anonymity mic Min. inf. loss Data clustering

CBFS [27] k-anonymity mic Min. inf. loss Data clustering

We use “gen”, “sup” and “mic” to refer to generalization, suppression, and microaggregation,
respectively.

that employ clustering [4, 16, 51, 66] follow a similar greedy, bottom-up procedure,
which aims at building clusters of at least k records by iteratively merging
together smaller clusters of records, in a way that helps data utility preservation.
The algorithms iHilb and iDist, both of which were proposed in [15], employ
space partitioning strategies, while the algorithms in [9, 29, 55] use lattice-search
strategies.

B. Algorithms for Diagnosis Codes

Algorithms for anonymizing diagnosis codes are summarized in Table 2.3. These
algorithms adopt different privacy models, but they all use generalization and/or
suppression. For example, the algorithms in [37, 38, 44] use suppression when
generalization alone does not satisfy the specified utility constraints. In addition,
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Table 2.3 Algorithms that protect against identity disclosure based on diagnosis codes
(Table adapted from [20], with permission from Elsevier)

Algorithm Privacy model Transformation Utility objective Heuristic strategy

UGACLIP [44] Privacy-constrained gen and sup Utility Bottom-up space
anonymity requirements partitioning

CBA [38] Privacy-constrained gen and sup Utility Space clustering
anonymity requirements

UAR [37] Privacy-constrained gen and sup Utility Space clustering
anonymity requirements

Apriori [58] km-anonymity gen Min. inf. loss Top-down space
partitioning

LRA [59] km-anonymity gen Min. inf. loss Horizontal data
km-anonymity partitioning

VPA [59] km-anonymity gen Min. inf. loss Vertical data
km-anonymity partitioning

mHgHs [36] km-anonymity gen and sup Min. inf. loss Top-down space
partitioning

Recursive Complete gen Min. inf. loss Data partitioning
partition [22] k-anonymity

We use “gen” and “sup” to refer to generalization and suppression, respectively.

these algorithms aim at either satisfying utility requirements, or at minimizing
information loss. The UGACLIP, CBA, and UAR algorithms adopt utility con-
straints to formulate utility requirements and attempt to satisfy them. However,
these algorithms still favor solutions with low information loss, among those that
satisfy the specified utility constraints. All other algorithms attempt to minimize
information loss, which they quantify using two different measures.

Interestingly, all algorithms in Table 2.3 operate on either the space of diagnosis
codes, or on that of the records of the dataset to be published. Specifically,
UGACLIP [44] partitions the space of diagnosis codes in a bottom-up manner,
whereas Apriori [58] and mHgHs [36] employ top-down partitioning strategies.
Data partitioning strategies are employed by the Recursive partition [22], LRA [59]
and VPA [59] algorithms.

2.3.1.5 Algorithms Against Attribute Disclosure

In the following, we present some background information for understanding the
way algorithms for thwarting attribute disclosure work. Subsequently, we review
some of the most popular algorithms that belong to this category.

The main goal of anonymization algorithms against attribute disclosure is to con-
trol the associations between quasi-identifier and sensitive values. Therefore, they
create anonymous groups and merge them iteratively, until these associations are
protected. This is possible using generalization and/or suppression. An alternative
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technique called bucketization has also been proposed [64]. Bucketization works by
releasing two projections of the dataset, one on quasi-identifiers and another on a
sensitive attribute. Bucketization has been successfully applied to enforce l-diversity
with low information loss in [64].

Many of the anonymization algorithms for protecting against attribute disclosure
follow the same data transformation strategies and utility objectives, with the algo-
rithms examined earlier. However, they additionally ensure that sensitive values are
protected within each anonymized group. The approach of constructing anonymous
data that prevent attribute disclosure, but are no more distorted than necessary,
is referred to as protection constrained. Alternatively, data owners may want to
produce anonymized data with a desired trade-off between data utility and privacy
protection (against identity disclosure). This is possible using trade-off constrained
algorithms [39–41]. These algorithms quantify and aim at optimizing the trade-off
between the distortion and the protection against attribute disclosure.

A. Algorithms for Demographics

Table 2.4 presents a classification of algorithms for demographics. It can be
easily seen that the majority of these algorithms follow the protection-constrained
approach and employ generalization and/or suppression. The goal of most
algorithms is to enforce l-diversity, t-closeness, p-sensitive k-anonymity, .a; k/-
anonymity, or tuple-diversity. An exception is the Anatomize algorithm [64], which
was specifically developed for enforcing l-diversity using bucketization. Note also
that the algorithms in [39, 61, 63] are applied to both quasi-identifiers and sensitive
attributes, and provide protection from both identity and attribute disclosure.

B. Algorithms for Diagnosis Codes

Algorithms for anonymizing diagnosis codes against attribute disclosure are sum-
marized in Table 2.5. As can be seen, the algorithms adopt different privacy models,
which are enforced using generalization and/or suppression. For example, TDCon-
trol [5] applies suppression when generalization alone cannot enforce �-uncertainty.
In terms of heuristic search strategies, the algorithms in Table 2.5 employ a greedy
search and operate on either the space of diagnosis codes, or on the transactions
of the dataset to be published. For example, UGACLIP [44] partitions the space
of diagnosis codes in a bottom-up manner, whereas Apriori [58] and mHgHs [36]
employ top-down partitioning strategies.

Observe that all the algorithms in Table 2.5 operate on the space of diagnosis
codes and either perform greedy search to discover diagnosis codes that can be
suppressed with low data utility loss, or they employ space partitioning strategies.
Specifically, TDControl, RBAT, and the Tree-based algorithm all employ top-down
partitioning, while Sample-based uses both top-down and bottom-up partitioning
strategies. The main difference between the strategy of TDControl and that of RBAT



2 A Survey of Anonymization Algorithms for Electronic Health Records 29

Table 2.4 Algorithms for preventing attribute disclosure for demographics (Table adapted from
[20], with permission from Elsevier)

Algorithm Privacy model Transformation Approach Heuristic strategy

Incognito with l-diversity Gen and sup Protection constrained Apriori-like lattice
l-diversity [49] search

Incognito with t-closeness Gen and sup Protection constrained Apriori-like lattice
t-closeness [34] search

Incognito with .a; k/-anonymity Gen and sup Protection constrained Apriori-like lattice
.a; k/-anonymity [63] search

p-sens k-anon [61] p-sensitive Gen Protection constrained Apriori-like lattice
k-anonymity search

Mondrian with [64] l-diversity Gen Protection constrained Data partitioning

l-diversity

Mondrian with [35] t-closeness Gen Protection constrained Data partitioning

t-closeness

Top Down [63] .a; k/-anonymity Gen Protection constrained Data partitioning

Greedy algorithm Tuple diversity Trade-off constrained Data clustering
[39]

Gen and sup

Hilb with l-diversity Gen Protection constrained Space mapping

l-diversity [15]

iDist with l-diversity Gen Protection constrained Space mapping

l-diversity [15]

Anatomize [64] l-diversity Buc Protection constrained Quasi-identifiers
are released intact

We use “gen”, “sup”, and “buck” to refer to generalization, suppression, and bucketization,
respectively.

is that the former is based on a taxonomy, which is used to organize diagnosis
codes. This restricts the possible ways of partitioning diagnosis codes and may
harm data utility unnecessarily. On the other hand, the Tree-based and Sample-based
algorithms adopt a more flexible variation of the strategy employed in RBAT, which
significantly enhances data utility.

2.4 Directions for Future Research

The sharing of EHR data is essential to support medical research in various areas,
ranging from the detection of epidemics to the prediction of heart-related disorders.
The sharing of EHR data, however, must be achieved while preserving patient
privacy. The anonymization algorithms surveyed in this chapter make this possible.
However, despite the progress in the development of anonymization algorithms for
EHR data, there are several directions that warrant more investigation.
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Table 2.5 Algorithms for preventing attribute disclosure based on diagnosis codes (Table adapted
from [20], with permission from Elsevier)

Algorithm Privacy model Transformation Approach Heuristic strategy

Greedy [67] .h; k; p/-coherence Sup Protection constrained Greedy search

Suppress �-uncertainty Sup Protection constrained Greedy search

Control [5]

TDControl [5] �-uncertainty Gen and sup Protection constrained Top-down space
partitioning

RBAT [46] PS-rule based Gen Protection constrained Top-down space
anonymity partitioning

Tree-based [48] PS-rule based Gen Protection constrained Top-down space
anonymity partitioing

Sample- PS-rule based Gen Protection constrained Top-down and
based [48] bottom-up

anonymity space partitioning

We use “gen” and “sup” to refer to generalization and suppression, respectively.

First, EHR datasets become increasingly more complex and large, and this
poses difficulties in anonymizing them using existing algorithms. For example,
EHR datasets that contain both demographics and diagnosis codes, often need to
be shared. The anonymization of these datasets, while preserving data utility, is
challenging because: (a) the two attribute types (demographics and diagnosis codes)
cannot be anonymized separately, and (b) it is not straightforward to preserve data
utility when anonymizing both of the attribute types together.

This creates the need for sophisticated data anonymization algorithms that are
able to deal with the problem, while maintaining the utility of EHR data in practice.
A first step towards solving this problem has been made recently [54]. However, the
algorithms proposed in [54] are not designed for EHR data. As another example,
consider EHR datasets that are several GBs in size, such as those used to support
longitudinal studies. These datasets do not fit into the main memory of a typical
computer, and thus they cannot be anonymized using the algorithms that are
surveyed in this chapter. It would be worthwhile to develop scalable anonymization
algorithms for handling such large EHR datasets.

Second, while the focus of this chapter has been on data anonymization, there
are other privacy threats that are relevant to EHR data sharing. An example is the
risks stemming from the mining of published data [18, 19, 21]. These risks are
posed because mining reveals knowledge that apply to a large number of patients,
which is not hidden by anonymization algorithms. To mitigate these risks, sensitive
knowledge patterns need to be detected and concealed from the data, so that they
cannot be discovered by data mining techniques applied on the shared EHR data.

Last, we note that the chapter focused on technical means (and more specifically
algorithms) for protecting EHR data and considered only data held by a single
party (data owner). However, non-technical means, including key legal frameworks
(e.g., [62]) and various data sharing regulations are also important to protect data.
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Furthermore, there are many cases in which EHR data are contributed by multiple
parties (e.g., various healthcare institutions that collaboratively perform a study).
The anonymization of data in this setting [45] is quite challenging, since it requires:
(a) combining different parts of data in a secure manner, and (b) taking into account
changes in data, as well as the possibility of collusion between attackers, which
makes privacy preservation more challenging.

2.5 Conclusion

This chapter presented a survey of data anonymization algorithms for protecting
patient demographics and diagnosis codes in the context of Electronic Health
Record (EHR) data. We classified and discussed many popular data anonymization
algorithms, which can be used to prevent the main privacy threats that arise in EHR
data publishing. We also explained the main aspects of these algorithms, including
the privacy models they follow, the data transformation strategies they apply, the
utility objectives they aim to satisfy, and heuristic search strategies they use to
discover “good” solutions. In addition, we provided a discussion of several research
directions that in our opinion warrant further investigation.
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Chapter 3
Differentially Private Histogram and Synthetic
Data Publication

Haoran Li, Li Xiong, and Xiaoqian Jiang

Abstract Differential privacy has recently emerged as one of the strongest privacy
guarantees by making few assumptions on the background or external knowledge
of an attacker. Differentially private data analysis and publishing have received con-
siderable attention in biomedical communities as promising approaches for sharing
medical and health data, while preserving the privacy of individuals represented
in data records. In this chapter, we provide a broad survey of the recent works in
differentially private histogram and synthetic data publishing. We categorize most
recent and emerging techniques in this field from two major aspects: (a) various
data types (e.g, relational data, transaction data, dynamic stream data, etc.), and (b)
parametric, and non-parametric techniques. We also present some challenges and
future research directions for releasing differentially private histogram and synthetic
data in health and medical data.

3.1 Introduction

The problem of preserving patient privacy in disseminated biomedical datasets has
attracted increasing attention by both the biomedical informatics and computer
science communities. The goal is to share a “sanitized” version of the individual
records (microdata) that simultaneously provides utility for data users and privacy
protection for the individuals represented in the records. In the biomedical domain,
many text de-identification tools focus on extracting identifiers from different types
of medical documents, and use simple identifier removal or replacements according
to the HIPAA safe harbor method [32] for de-identification. Several studies and
reviews have evaluated the re-identification risk of linking de-identified data by the
HIPAA safe harbor method with external data, such as voter registration lists. Many
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studies have proposed or applied formal anonymization methods on medical data.
While anonymization is still the dominant approach in practice, the main limitation
of microdata release with de-identification is that it often relies on assumptions of
certain background or external knowledge (e.g., availability of voter registration
lists) and only protects against specific attacks (e.g., linking or re-identification
attacks) [25].

Differential privacy has emerged as a promising privacy mechanism under
which a “sanitized” version of individual records (microdata) can be generated
and published. This privacy principle makes few assumptions on the background
or external knowledge of an attacker, and thus provides a strong provable privacy
guarantee. A statistical aggregation or computation satisfies �-differential privacy, if
the outcomes are formally “indistinguishable” (“indistinguishable” is formally and
quantitatively defined in Dwork [12]: the outcome probability differs by no more
than a multiplicative factor e�) when run with and without any particular record
in the dataset, where � is a privacy parameter that limits the maximum amount of
influence a record can have on the outcome.

In this chapter, we first introduce the concept of differential privacy, as well as
mechanisms for achieving differential privacy. Then, we summarize a number of
state-of-the-art data release techniques under differential privacy in the database
community, while categorizing existing methods based on the type of data they
handle: relational data, transaction data, and dynamic stream data. There are many
methods designed for learning specific models or patterns with differential privacy,
but for the purposes of this work we only focus on histogram and synthetic
data generation, which are useful for exploratory analysis. Finally, we investigate
potential challenges and future directions for applying differentially private data
release techniques to healthcare and biomedical data.

3.2 Differential Privacy

In this section, we first introduce the fundamental concept of differential privacy,
and then discuss mechanisms of achieving differential privacy. Finally, we present
composition theorems for a sequence of private mechanisms to guarantee overall
differential privacy.

3.2.1 Concept of Differential Privacy

Differential privacy has emerged as one of the strongest privacy definitions for sta-
tistical data release. It guarantees that if an adversary knows complete information
of all the tuples in D except one, the output of a differentially private randomized
algorithm should not give the adversary too much additional information about the
remaining tuples. We say that datasets D and D0 are two neighboring datasets when
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D and D0 differ in only one tuple t, and write that jjD�D0jj D 1. Let us make it clear
that there exist two scenarios: the replacement scenario and the insertion/deletion
scenario. In the replacement scenario, jjD � D0jj D 1 means that we can obtain
D0 by changing only one tuple t from D and tuple t has different values in the two
datasets (i.e. jDj D jD0j 1); in the insertion/deletion scenario, it means that we can
obtain D0 by removing or adding only one tuple from D and tuple t is present in only
one of the two datasets (i.e. jjDj � jD0jj D 1). For concreteness, in this paper we
consistently use the second definition. A formal definition of differential privacy is
given as follows:

Definition 3.1 (�-Differential Privacy [9]). Let A be a randomized algorithm over
two neighboring datasets D and D0, and let O be any arbitrary set of possible outputs
of A. Algorithm A satisfies �-differential privacy if and only if the following holds:

PrŒA.D/ 2 O� � e�PrŒA.D0/ 2 O�

Intuitively, differential privacy ensures that the released output distribution of A
remains nearly the same whether or not an individual tuple is in the dataset.

3.2.2 Mechanisms of Achieving Differential Privacy

Laplace Mechanism The most common mechanism to achieve differential privacy
is the Laplace mechanism [9] that adds a small amount of independent noise to the
output of a numeric function f to fulfill �-differential privacy of releasing f , where
the noise is drawn from Laplace distribution with a probability density function

PrŒ� D x� D 1
2b e�

jxj
b . A Laplace noise has a variance 2b2 with a magnitude of b.

The magnitude b of the noise depends on the concept of sensitivity that is defined as
follows.

Definition 3.2 (Sensitivity [9]). Let f denote a numeric function and the sensitivity
of f is defined as the maximal L1-norm distance between the outputs of f over the
two data sets D and D0 which differs in only one tuple. Formally,

�f D maxD;D0 jjf .D/� f .D0/jj1:
With the concept of sensitivity, the noise follows a zero-mean Laplace distribution
with the magnitude b D �f

�
. To fulfill �-differential privacy for a numeric function

f over D, it is sufficient to publish f .D/C X, where X is drawn from Lap.
�f

�
/.

Geometric Mechanism The geometric mechanism [18] adds integer noise, and
is usually preferred for queries q with integer answers, e.g., COUNT queries [7].
When f .D/ is integer-valued, X can be drawn from the geometric distribution

1jDj means the data cardinality or the number of tuples in database D.
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PrŒX D x� D 1C ˛

1� ˛
˛jXj

where ˛ D e��=�f , x 2 Z .

Exponential Mechanism McSherry and Talwar [28] propose the exponential
mechanism by selecting an output t 2 T that is close to the optimum with respect
to a utility function under differential privacy.

Theorem 3.1 (Exponential Mechanism [28]). For an input data set D, output
range T , privacy parameter �, and a utility function q W D � T ! R, a
randomized mechanism that chooses an output t 2 T with probability proportional
to exp.

�q.D;t/
2�q / guarantees �-differential privacy.

The exponential mechanism takes as inputs a dataset D, output range T , privacy
parameter �, and a utility function q W D � T ! R that assigns a real
valued score to every output t 2 T , where higher scores have better utility. Let
�q D max8r;D;D0 jq.D; t/ � q.D0; t/j be the sensitivity of the utility function, which
means the maximum difference in q over two input data sets that differ in only a
single individual, for all r. The probability associated with each output t increases
proportionally to exp.

�q.D;t/
2�q /; that is, the output with a higher score is exponentially

more likely to be sampled. So the mechanism samples an output t by building a
probability distribution over the output range T with an exponential mechanism
of the utility function. Here, the exponential mechanism significantly bias the
distribution and tends to favor outputs with high scores [28].

The motivation behind the exponential mechanism is that it is useful in situations
in which we only want to select the top-K “best” responses from a domain, but
adding noise directly to the computed quantity can completely destroy its value
(such as �2 statistics are computed from a set of SNPs) and directly adding Laplace
noise could dramatically distort the original values because of high sensitivity.

Staircase Mechanism The staircase mechanism, proposed by Geng et al. [17], is
an optimal �-differentially private mechanism for single real-valued query functions.
The objective here is to minimize the worst case cost among all possible query
outputs with differential privacy as the constraint. The probability density function
of the noise in the staircase mechanism is staircase-shaped, symmetric around the
origin, monotonically decreasing and geometrically decaying. The staircase mech-
anism can be viewed as a geometric mixture of uniform probability distributions,
providing a simple algorithmic description for the mechanism. It has been shown in
[17] that the staircase mechanism performs better than the Laplace mechanism for
single real-valued query functions.
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3.2.3 Composition Theorems

For a sequence of differentially private mechanisms, the composition [27] theorems
guarantee the overall privacy.

Theorem 3.2 (Sequential Composition [27]). For a sequence of n mechanisms
M1; : : : ; Mn and each Mi provides �i-differential privacy, the sequence of Mi

provides .
Pn

iD1 �i/-differential privacy.

Theorem 3.3 (Parallel Composition [27]). If Di are disjoint subsets of the origi-
nal database and Mi provides ˛-differential privacy for each Di, then the sequence
of Mi provides ˛-differential privacy.

3.3 Relational Data

In this section, we first present the problem setting of histogram and synthetic data
publication for relational data under differential privacy. Then, we classify various
methods into three categories: parametric algorithms, semi-parametric algorithms
and non-parametric algorithms, and describe all methods in each subsection.

3.3.1 Problem Setting

Running Example Assume that we have a relational dataset with attributes age
and income, and a two-dimensional count data cube or histogram.2 The domain
values of age are 20 � 30, 30 � 40 and 40 � 50; the domain values of income
are 0 � 10K, 10K � 20K and > 20K. Each cell in the histogram bin represents the
population count corresponding to the age and income values.

Differentially private histogram publication means releasing a differentially
private histogram with noisy histogram bin counts, as shown in Fig. 3.1. The left
noisy histogram of Fig. 3.1 employs a direct Laplace mechanism. The right noisy
histogram first applies advanced sub-histogram partitioning techniques, and then
injects independent Laplace noise to each sub-histogram. We will demonstrate this
noisy histogram generation process in the following subsections. Note that in the
problem of differentially private histogram publication, histogram bin counts may
be negative since a random Laplace noise is sampled from a Laplace distribution
with mean zero.

The main idea behind differentially private synthetic data generation is to build
a private statistical model from the data and then to sample points from the model.

2Data cube and histogram are the same objects in this chapter.
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Fig. 3.1 Example: released cell histogram (left) and subcube histogram (right), and Ni is a random
Laplace noise (see Sect. 3.2 for Laplace mechanism)

These sampled points form the synthetic data, which is then released instead of the
original data. The private synthetic data can be generated from private histograms
after rounding all negative bin counts to zero.

Utility Measures Range count queries are often used to measure the utility of the
private histograms and synthetic data. Random range count queries with random
query predicates covering all attributes, are defined in the following:

Select COUNT.�/ from D

Where A1 2 I1 and A2 2 I2 and : : : and Am 2 Im:

For each attribute Ai, Ii is a random interval generated from the domain of Ai.
The query accuracy is primarily measured by the relative error defined as follows:
for a query q, Aact.q/ is the true answer to q on the original data. Anoisy.q/ denotes
the noisy answer to q when using differentially private histogram and synthetic data
publication methods. Then the relative error (RE) is defined as:

RE.q/ D Anoisy.q/� Aact.q/

maxfAact.q/; sg
where s is a sanity bound to mitigate the effects of queries with extremely small
query answers. Given a workload of queries, the utility over n random count queries
can be calculated as

ARE.q/ D 1

n

n
X

iD1

Anoisy.q/� Aact.q/

maxfAact.q/; sg

Other measures, such as KL-divergence and classification accuracy are also used
(interested readers can see [1, 29]).
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Three Categories of Existing Methods The main approaches of existing work can
be classified into three categories:

1. Parametric methods that fit the original data to a multivariate distribution and
make inferences about the parameters of the distribution while preserving
differential privacy, as shown in Fig. 3.2. Synthetic data is then generated from
the private multivariate distribution.

2. Non-parametric methods that learn empirical distributions from the data through
histograms, as shown in Fig. 3.3;

3. Semi-parametric methods that capture the dependence implicit in the high-
dimensional datasets, while using non-parametric methods to generate a marginal
histogram of each dimension, as shown in Fig. 3.4.
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Fig. 3.2 Generate synthetic data via parametric methods

Original data Synthetic data

Histogram
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Fig. 3.3 Generate synthetic data via non-parametric methods

Synthetic dataOriginal data

Marginal histograms

Dependence

Fig. 3.4 Generate synthetic data via semi-parametric methods
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3.3.2 Parametric Algorithms

Machanavajjhala et al. [26] propose a differentially private Multinomial-Dirichlet
synthesizer (MD) to release the commuting patterns of the population of the United
States. They build a multinomial distribution with Dirichlet prior estimation as an
initial mechanism to fit the original data. As the original data is extremely sparse and
the resulting synthetic data contains a large number of extremely unlikely events, the
paper proposes an .�; ı/-probabilistic differential privacy mechanism, a relaxed and
probabilistic version of differential privacy. With the new definition, MD revises the
initial mechanism to throw away useless synthetic data, and minimizes the negative
effects of the sparse data and large domain in the map application. Since MD uses a
multivariate distribution to fit the original data and samples the synthetic data from
this distribution, we categorize MD to parametric algorithms.

3.3.3 Semi-parametric Algorithms

DPCopula Li et al. [24] propose a DPCopula framework to generate high dimen-
sional and large domain DP synthetic data. DPCopula computes a differentially
private copula function3 and samples direct synthetic data from the function that
effectively captures the dependence implicit in the high-dimensional datasets. With
the copula functions, DPCopula can separately consider the margins and the joint
dependence structure of the original data, instead of modeling the joint distribution
or empirical histogram of all dimensions, as shown in Fig. 3.4.

Step 1: Create a differentially private marginal histogram for each dimension to
obtain DP empirical marginal distribution.

Step 2: Use DP MLE (Maximum Likelihood Estimation) or DP kendall to estimate
the DP correlation matrix QP, and each entry of QP is a correlation coefficient of
each pairwise attributes.

Step 3: Sample DP synthetic dataset from the private copula function.

We call methods like DPCopula semi-parametric, because they compute private
marginal histograms for all dimensions, which belongs to non-parametric tech-
niques, and model the joint dependence by estimating the private correlation matrix,
which can be considered as parametric technique.

3In linguistics, a copula is a word used to link the subject of a sentence with a predicate, such
as the word “is” in the sentence “The sky is blue”. In probability and statistics theory, a copula
is a multivariate probability distribution for which the marginal probability distribution of each
variable is uniform.
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3.3.4 Non-parametric Algorithms

LPA The method by Dwork et al. [14] publishes a DP histogram by adding
independent Laplace random noise to each cell count of the original histogram,
as shown in Fig. 3.1 (left). We call this method LPA, which lays the foundation for
other, more advanced, methods and is considered as a baseline strategy. While LPA
works well for low-dimensional data, it becomes problematic for high dimensional
and large domain data, because the original count in each histogram bin will be
extremely small, leading to large perturbation error incurred by Laplace random
noise.

Fourier Transform Barak et al. [2] uses LPA to obtain a DP frequency matrix,
then transforms it to the Fourier domain and adds Laplace noise in this domain.
With the noisy Fourier coefficients, it employs linear programming to create a non-
negative frequency matrix. The problem is that (a) post-processing is not shown to
improve accuracy, and (b) the method requires solving a linear program, where the
number of variables equals to the number of entries in the frequency matrix. This
can be computationally challenging for practical datasets with large domain space.
For instance, for the eight-dimensional datasets, each with domain size of 1000, the
number of variables is:

Qm
iD1 jAij=1024.

Privelet+ Xiao et al. [35] propose a Privelet method by applying a wavelet
transform on the original histogram, then adding polylogarithmic noise to the
transformed data. Privelet takes the histogram H of a relational table T and a
differentially private version H0 of H. The general steps are as follows:

First, it applies a wavelet transform on H. Generally speaking, a wavelet
transform is an invertible linear function, i.e., it maps H to another matrix C, such
that (a) each entry in C is a linear combination of the entries in H, and (b) H can
be losslessly reconstructed from C. The entries in C are referred to as the wavelet
coefficients. Wavelet transforms are traditionally defined for ordinal data, and a
special extension for nominal data is investigated (see [35] for details).

Second, Privelet adds independent Laplace noise to each wavelet coefficient in a
way that ensures �-differential privacy. This results in a new matrix C0 with noisy
coefficients.

In the third step, Privelet (optionally) refines C0 and subsequently maps C0 back
to a noisy frequency matrix H0, which is returned as the output. The refinement of C0
may arbitrarily modify C0, but it does not utilize any information from the original
table T or H. In other words, this third step of Privelet depends only on C0. This
ensures that Privelet does not leak any information about T, except for what has
been disclosed in C0.

A Privelet+ method is also proposed to handle tables with small discrete
attributes. It first divides the original histogram into sub-histograms along the
dimensions specified by small discrete attributes, then applies Privelet on each sub-
histogram, and finally assembles all noisy sub-histograms into one histogram.
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NoiseFirst and StructureFirst Xu et al. [36] propose NoiseFirst and Structure-
First techniques to release differentially private histograms. The main difference of
these two techniques lies in the relative order of the noise injection and the histogram
structure computation steps. NoiseFirst first uses LPA to generate a noisy histogram
QH, then runs the dynamic programming histogram construction algorithm on QH.
The NoiseFirst algorithm can be interpreted as a post-optimization technique to
the baseline LPA method, by merging adjacent noisy counts. The intuitive idea
behind NoiseFirst is that averaging over the neighboring noisy counts is able
to eliminate the impact of zero-mean Laplace noise, based on the large number
theorem. Since NoiseFirst fails to exploit the reduced sensitivity after bin merging,
StructureFirst is developed which calculates the histogram structure on the original
data before adding the noise on the histogram bin structure. It first constructs
the optimal histogram by choosing boundaries between neighbouring bins with
exponential mechanism, then adds Laplace noise on the average counts of all sub-
histogram partitions. NoiseFirst and StructureFirst are mainly applied on perturbing
histograms with low-dimensional original data for its high computation complexity.

Filtering and Sampling Cormode et al. [7] developed a series of filtering and
sampling techniques to obtain a compact histogram summary H00 of sparse data
under differential privacy, given a histogram H of original relation table T. The size
of H00 (i.e., the number of histogram bins) can be much smaller than H. The first and
simplest summarization method is the high-pass filter.

For every non-zero histogram bin count H.i/, it adds independent geometric
random noise with parameter ˛ to get a noisy count QH.i/ which is added to H00
if QH.i/ is larger than a threshold 	 . For zero histogram bin counts, uniformly at
random selects k locations i from H such that H.i/ D 0, where k is sampled from
a binomial distribution with parameter 2˛	

1C˛
. For each of these k locations, it draws

a value with a coin flipping sign from PrŒjXj � x� D .1 � ˛/x�	C1 and adds it to
H00. It has been proved that the high-pass filter generates a summary with the same
distribution as the baseline LPA method for 	 � 1.

The other two advanced methods are based on threshold sampling and priority
sampling. They add each non-zero histogram bin count to H00 due to a probability
or priority weight, k is sampled from a binomial distribution with an alternative
parameter form, and the value of zero bin count is sampled from an alternative
distribution. The limitation is that if a large number of small-count non-zero entries
exists in the histogram, it will give zero entries a higher probability to be in the final
summary, leading to less accurate summary results. In addition, it needs careful
selection of the appropriate values for several parameters, including sample size
and filter threshold ([7] did not provide a principled approach to determine them).

DPCube DPCube uses a two-phase partitioning strategy. First, a cell based
partitioning based on the domains (not the data) is used to generate a fine-
grained equi-width cell histogram (as in the baseline LPA strategy), which gives
an approximation of the original data distribution. Then a synthetic dataset Dc

is released based on the cell histogram. Second, a multi-dimensional partitioning
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based on kd-tree is performed on Dc to obtain uniform or close to uniform partitions.
The resulted partitioning keys are used to partition the original database and obtain
a noisy count for each of the partitions, resulting in a v-optimal histogram. Finally,
given a user-issued query, an estimation component uses either the v-optimal
histogram or both histograms to compute an answer of the query.

DPCube preserves differential privacy because the second multi-dimensional
partitioning step accesses only the private synthetic dataset Dc with no impact on
the privacy guarantee. The second step uses a kd-tree based space partitioning
strategy that seeks to produce close to uniform partitions in order to minimize the
estimation error within a partition. It starts from the root node which covers the
entire space. At each step, a splitting dimension and a split value from the range of
the current partition on that dimension are chosen heuristically to divide the space
into subspaces. The algorithm repeats until a pre-defined requirement are met. Here,
several metrics, such as information entropy and variance, can be used to measure
the uniformity of a partition and make the decision whether to split the current
partition and to select the best splitting point.

PSD Cormode et al. [6] design a class of differentially private spatial decomposi-
tions (PSDs). These partition the space into smaller regions, and report statistics
on the points within each region. Queries can then be answered by intersecting
the query region with the decomposition. Query answers are expected to be
more accurate by performing a spatial decomposition which results in compact
regions with sufficiently many points and a more uniform distribution. Spatial
decompositions involved by PSDs include data-independent tree structures, such
as quadtrees which recursively divide the data space into equal quadrants, and data-
dependent trees, such as the popular kd-trees which aim to better capture the data
distribution by using original spatial data.

The simplest PSD can be formed by instantiating a data-independent tree such
as a full quadtree, but computing counts for each node via the Laplace mechanism.
See Fig. 3.5 for an example. For data-independent trees, releasing the structure of
the index (i.e., the node rectangles) does not endanger the privacy of any individual
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Fig. 3.5 DExample of private quadtree: noisy counts (inside boxes) are released; actual counts,
although depicted, are not released. Query Q (dotted red rectangle) could be answered by adding
noisy counts of marked nodes (Color figure online) [6]
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since the concept of sensitivity (Definition 3.2) captures the maximum change in the
output caused by the presence or absence of a single tuple. For data-dependent trees,
a private tree-structure needs to be built since the choice of splits is based on the true
data, and potentially reveals information. This problem can be induced to compute
a differentially private median for a given set of spatial points. Four methods for
computing a private median are referred as follows.

1. Smooth sensitivity tailors the noise to be more specific to the set of multi-
dimensional points whose values are in non-decreasing order for some certain
dimension. However, smooth sensitivity has a slightly weaker privacy guarantee
that is .�; ı/-differential privacy (see [31] for more details).

2. Exponential mechanism [28] (Theorem 3.2.1) is a general method as an
alternative to the Laplace mechanism: instead of adding random noise to the
true value, the output value is drawn from a probability distribution over all
possible outputs, so that the differential privacy condition is satisfied. Applied
to median, the exponential mechanism EM returns x with PrŒEM.C/ D x� /
exp.� �

2
jrank.x/ � rank.xm/j/; where C is a (multi)set of n values in non-

decreasing order in some domain range, xm is its median value and rank.x/ denote
the rank of x in C.

3. Cell-based Method is a heuristic proposed in DPCube. It imposes a fixed
resolution grid over C and then computes the median based on the noisy counts
in the grid cells. When applied to a hierarchical decomposition, a fixed grid is
computed over the entire data, then medians are computed from the subset of grid
cells in each node. Cell counts have sensitivity 1. The accuracy of this method
depends on the coarseness of the grid relative to the data distribution.

4. Noisy Mean is a heuristic from [19], which replaces median with mean. A private
mean can be computed by computing a noisy sum (with sensitivity M) and
a noisy count (with sensitivity 1), and outputting their ratio. If the count is
reasonably large, this is a fair approximation to the mean, though there is no
guarantee that this is close to the median. One heuristic of noisy mean is that
the original data should have approximately uniform distribution, because the
mean and median differ significantly for skewed data distributions (e.g., the age
of patients with Alzheimer’s disease).

EFPA Acs et al. [1] study an Enhanced Discrete Fourier Transform (EFPA) mecha-
nism for generating differentially private histograms. It applies the Fourier transform
to a histogram and compresses it by removing high-frequency components using the
exponential mechanism. They improve the performance of FPA by designing a more
accurate score function for the exponential mechanism and exploiting the intrinsic
correlation among the Fourier coefficients of real-valued histograms. The general
steps of EFPA are as follows:

Step 1: Compute the DFT coefficients F D DFTreal.H/ of a given histogram H
with length n by discrete Fourier transform. The length of F is m, and m D nC1

2
.

Step 2: Remove the last m � k coefficients from F, which correspond to the high-
frequency components in H, whereas the first k elements of F, denoted by Fk,
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preserve the low frequencies in H, and therefore represent the high-level trends
of H. Note that k is selected by exponential mechanism, with the probability

proportional to exp.� �U.H;k/p
2

/, where U.H; k/ D
q

Pn
iDkC1 jFi�1j2 C 2z

�
, and

z D 2kC 1.
Step 3: Generate the noisy version of Fk, denoted by QFk, by LPA: add i.i.d Laplace

noise Lap.
2
p

z
�

/ to each coefficient in Fk, where z D 2kC 1.
Step 4: Pad QFk to be a m-dimensional vector by appending m � k zeros, which is

denoted by PADm. QFk/.
Step 5: The inverse DFT is applied to PADm. QFk/ to obtain a noisy version of H.

The total differential privacy budget � is uniformly divided between LPA (Step 3)
and exponential mechanism (Step 2), therefore, EFPA is �-differentially private due
to the sequential composition theorem. EFPA is an advanced version of Discrete
Fourier Transform (DFT).

P-HP The authors in [1] also propose P-HPartition that uses a divisible hierarchical
clustering (partitioning) scheme to compress histograms. The intuition is that
histogram bins belonging to the same cluster have similar counts, and hence can
be approximated by their mean value (i.e., cluster center). It is often sufficient to
release only the noisy cluster centers, which have a smaller sensitivity.

The challenge is how to make hierarchical partitioning of histogram bins under
differential privacy. P-HP leverages on a tree structure of the clustering hierarchy.
The initial partition containing all n bins forms the root of the tree; each bisection
splits a partition (represented as a node in the tree) into two child nodes. Each
bisection consists of two steps:

1. Select a partition who has not been bisected for more than d times before, which
is made data-independent and therefore does not violate differential privacy.

2. Bisect the selected partition using exponential mechanism.

In order to make sure that the selection of a partition to bisect is data-independent,
P-HP maintains a queue of all partitions, and always picks up the first partition in
the queue to bisect. After each bisection, the resultant sub-partitions are appended
to the end of the queue, and the new configuration (i.e., all partitions in the queue)
is saved.

DiffGen The DiffGen method [29] releases a differentially private synthetic
data table especially for classification analysis. The input relational table
T.Apr

1 ; : : : ; Apr
d ; Acls/ includes two categories of attributes:

1. A class attribute Acls that contains the class value, and the goal of the data miner
is to build a classifier to accurately predict the value of this attribute.

2. A set of d predictor attributes .Apr
1 ; : : : ; Apr

d /, whose values are used to predict the
class attribute.

The class attribute is categorical, and the predictor attribute can be either numerical
or categorical, while for each categorical-predictor attribute Apr

i , a taxonomy tree is
provided (see Fig. 3.6 for a taxonomy tree example).
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Fig. 3.6 Taxonomy tree of attributes [29]
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Fig. 3.7 Tree for partitioning records [29]

DiffGen first generalizes the predictor attributes .Apr
1 ; : : : ; Apr

d / and divides the
original table into several equivalence groups, where all the records within a group
have the same attribute values. Then, the algorithm publishes the noisy counts of
the groups. The general idea is to anonymize the original data by a sequence of
partitions, starting from the topmost general state as shown in Fig. 3.7. Then it
pushes down the partition iteratively by specializing an attribute and some value in
the current partition. At each iteration, DiffGen probabilistically selects a candidate
attribute for partition. Candidates are selected using the exponential mechanism
with their score values, and different heuristics (e.g., information gain) can be used
to determine the score function of the candidates. Then the score of the affected
candidates is updated due to the partition. Finally, Laplace noise is injected to the
original count of each partition group. DiffGen terminates after a given number of
partitions.

3.4 Transaction Data

In this section, we first present the problem setting for the case of transaction/set-
valued data under differential privacy, and then explain a set of methods that have
been proposed to solve it.
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Table 3.1 A sample
set-valued dataset [5]

TID Items

t1 {I1; I2; I3; I4}

t2 {I2; I4}

t3 {I2}

t4 {I1; I2}

t5 {I2}

t6 {I1}

t7 {I1; I2; I3; I4}

t8 {I2; I3; I4}

Fig. 3.8 A context-free
taxonomy tree of the sample
data in Table 3.1 [5]

I {1,2,3,4}

I {,3,4}

I4I3I2

I {1,2}

I1

3.4.1 Problem Setting

Let I D fI1; I2; : : : ; IjIjg be the universe of items, where jIj is the size of the universe.
The multiset D D ft1; t2; : : : ; tjDjg denotes a set-valued or transaction dataset, where
each record ti 2 D is a non-empty subset of I. Table 3.1 presents an example of a
set-valued dataset with the item universe I D fI1; I2; I3; I4g.

3.4.2 DiffPart

Chen et al. [5] proposed DiffPart, a differentially private sanitization algorithm that
recursively partitions a given set-valued dataset, based on a context-free taxonomy
tree. A context-free taxonomy tree is a taxonomy tree, whose internal nodes are
a set of their leaves, not necessarily the semantic generalization of the leaves. For
example, Fig. 3.8 presents a context-free taxonomy tree for Table 3.1, and one of its
internal nodes If1;2;3;4g D fI1; I2; I3; I4g. We say that an item can be generalized to a
taxonomy tree node if it is in the nodes set. For example, I1 can be generalized to
If1;2g because I1 2 fI1; I2g.

DiffPart takes as inputs the raw set-valued dataset D, the fan-out f used to
construct the taxonomy tree, and also the total privacy budget �, specified by the
data publisher, and returns a sanitized dataset QD satisfying �-differential privacy. It
starts by creating the context-free taxonomy tree, and then generalizes all records
to a single partition with a common representation. The common representation is
called the hierarchy cut, consisting of a set of taxonomy tree nodes. It recursively
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Fig. 3.9 The partitioning process of Fig. 3.1 [5]

distributes the records into disjoint sub-partitions with more specific representations
in a top-down manner based on the taxonomy tree. For each sub-partition, DiffPart
determines if it is empty in a noisy way and further splits the sub-partitions
considered “non-empty”. The method stops when no further partitioning is possible
in any sub-partition. Given the dataset in Table 3.1 and a fan-out value 2, a possible
partitioning process is illustrated in Fig. 3.9.

3.4.3 Private FIM Algorithms

Bhaskar et al. [3] proposes two mechanisms for choosing the top-K most frequent
patterns in a sensitive transaction dataset. The first one consists of applying K rounds
of the exponential mechanisms. In each round, a set of itemsets with fixed size are
sampled. For a given dataset, the score of an item set is a truncated version of its
frequency, and the analysis of privacy is determined by bounding the sensitivity of
the truncated frequency. The second mechanism is to add independent Laplace noise
to the frequencies of all itemsets and choose the top-K item sets with the highest
perturbed frequencies. The authors show that it suffices to add noise only O. K

�
/.

3.4.4 PrivBasis

Li et al. [23] proposes a PrivBasis algorithm by avoiding the selection of top k
itemsets from a very large candidate set. The method first computes the number
of size-one items 
, which are involved in the top-K frequent item sets. Second, it
obtains the 
 most frequent items F among all item sets. It can be approximately
achieved that F includes exactly the items that appear in the top-K itemsets.
Subsequently, it computes a set of the most frequent pairs of items P among F.
The desired goal is that P includes exactly the pairs of items that appear in the top-
K item sets. Finally, it constructs a 	-basis set B with small width and length, and
obtains noisy frequencies of item sets in a given candidate set whose size is reduced
based on B. Top-K item sets can be selected.
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3.5 Stream Data

In this section, we present the problem setting for the case of stream data under
differential privacy, and discuss methods that have been proposed to solve it.

3.5.1 Problem Setting

An aggregate time series X D fxkg is defined as a set of values of a variable x
observed at a discrete time point k, with 0 � k < T, where T is the length of the
series. In practical applications, X may often be an aggregate count series, such as
the daily number of patients diagnosed of Influenza, or the hourly count of drivers
passing by a gas station. If each element in X is the value of a multivariate variable
or a histogram, i.e., X D fHkg, then we define X D fHkg as a dynamic dataset or
histogram data. In this section, both aggregate time series and dynamic datasets are
considered as dynamic stream data.

User-Level Privacy vs. Event-Level Privacy There exists two definitions of
differential privacy in the private release of stream data, namely event-level privacy
and user-level privacy. The former protects any single event at any time point, while
the latter preserves all the events of any user over the entire time points. In user-level
privacy, the neighbouring datasets are defined as two series of dynamic datasets
differing in only one user.

The two works that initiated the study on this setting are [11, 13], which consider
the input data stream as a bitstring, and at each time point release the number of
1’s seen so far. Both works focus on event-level privacy and release the number of
event occurrences (i.e., a counter) at every time point. In this scenario, the effect
of a single event at some time point spans over all subsequent publications. The
work in [11] adds the noisy update value with Laplace noise of magnitude 1

�
to the

counter as an update arrives at the next time point. This method performs well when
the 1’s arrive frequently over the entire stream, but may be ineffective under sparse
appearance of 1’s. To improve this limitation, [11] also studies that the publication
of a new counter may be postponed until a predefined number of 1’s has arrived.

Dwork et al. [13] proposes a binary tree method to improve the efficiency of [11].
Based on a stream with fixed length N, they dynamically construct a full binary
tree as the updates of the stream arrive. Each node stores a noisy value with scale
logarithmic in N. Then, at each update i, they first identify the subtree it belongs to,
and report the current counter after adding the noisy values stored in the roots of
these subtrees.

A similar idea is proposed in [4]. The authors build a full binary tree on the
updates, where each node stores the noisy sum of the updates in its subtree with scale
logarithmic in N. At the ith update, the algorithm identifies the maximal subtrees
covering updates 1 to i, and publishes the sum of the values contained in their roots.
The authors also extend their method to handle infinite streams, by building a new
binary tree after 2k updates arrive, where k is a positive integer.
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In this section, we focus on recent methods under user-level privacy. We first
introduce methods under finite streams, then investigate w-event privacy, which
combines user-level and event-level privacy to bridge the gap between infinite and
finite stream data. The mechanism is simple for event-level privacy, since it is
sufficient to sample private statistics at every time stamp with �-privacy budget,
and the overall private time-series statistics still guarantees �-differential privacy.

A Direct Extension of LPA A baseline solution to sharing differentially private
time series is to apply the standard Laplace perturbation at each time stamp. If every
query satisfies �

N -differential privacy, based on the sequential composition theorem
the sequence of queries guarantees �-differential privacy. The problem is that the
utility of released stream data will be reduced as N increases, and the solution can
not be applied to infinite streams.

3.5.2 Discrete Fourier Transform

Rastogi and Nath [33] propose a discrete Fourier transform (DFT) method. EFPA is
an advanced version of DFT. Note that DFT is “a one-time” release of time-series
data, meaning that we need to collect original time-series data at all time stamps,
and then apply DFT to the overall time series. We describe DFT as follows:

Step 1: Compute the DFT coefficients F D DFT.H/ of a times-series X with length
T by discrete Fourier transform. The length of F is also T. The j-th coefficient is

given as: DFT.X/j DPT�1
iD0 exp. 2�

p�1
T ji/xi.

Step 2: Remove the last m � k coefficients from F, which correspond to the high-
frequency components in X, whereas the first k elements of F, denoted by Fk,
preserve the low frequencies in X, and therefore represent the high-level trends
of X. Note that k is an input to the algorithm.

Step 3: Generate the noisy version of Fk, denoted by QFk, using the Laplace

perturbation mechanism: add i.i.d Laplace noise Lap.
p

k
�

/ to each coefficient
in Fk.

Step 4: Pad QFk to be a n-dimensional vector by appending n � k zeros, which is
denoted by PADn. QFk/.

Step 5: The inverse DFT (IDFT) is applied to PADn. QFk/ to obtain a noisy version

of X. The j-th element of the inverse is: 1
T

PT�1
iD0 exp.� 2�

p�1
T ji/xi.

3.5.3 FAST

Fan et al. [16] proposed a FAST framework to release time-series data with
differential privacy (illustrated in Fig. 3.10). We present the outline of FAST as
follows:
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Fig. 3.10 The FAST framework [16]

• For each time stamp k, the adaptive sampling component determines whether to
sample/query the input time-series or not.

• If k is a sampling point, the data value at k is perturbed by the Laplace mechanism
to guarantee �1-differential privacy, where �1 D �

M , and M is the maximum
number of samples FAST allows for a time series, � is the privacy budget.

• The filtering component produces a prediction of a data value based on an internal
state model at every time stamp. The prediction, i.e., prior estimate, is released
to output at a non-sampling point, while a posterior estimate, i.e., correction of
the noisy observation and prediction, is released at a sampling point.

• The error between the prior and the posterior is then fed through the adaptive
sampling component to adjust the sampling rate. Once the user-specified privacy
budget � is used up, the system will stop sampling the input series.

There are three important characteristics of FAST. First, it requires that the
original time-series data follows a linear process model, meaning that the states
at consecutive time stamps can be modeled by xk D xk�1 C !, where ! is a white
Gaussian noise. Second, it allows for fully automated adaptation to changing data
dynamics. Finally, FAST supports real-time time-series data publishing.

3.5.4 w-Event Privacy

w-event privacy [21] is proposed as an extension of differential privacy to address
release of infinite streams, by combining user-level and event-level privacy. It
protects any event sequence occurring within any window of w timestamps. It is
event-privacy with w = 1 and converges to user-level privacy with w D1. w-event
privacy guarantees user-level �-differential privacy for every sub sequence of length
w (or over w timestamps) anywhere (i.e., it can start from any timestamp) in the
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original series of dynamic datasets. w-neighboring series of dynamic datasets, Dw,
and ODw, can be defined as the user-level neighbors under any sub-sequence of length
w, anywhere. w-event privacy can be formally defined as follows:

Definition 3.3 (w-Event �-Differential Privacy). Let A be a randomized mech-
anism over two w-neighboring series of dynamic datasets Dw, and ODw, and let
O be any arbitrary set of possible outputs of A. Algorithm A satisfies w-event
�-differential privacy (or, w-event privacy) if and only if it holds that:

PrŒA.Dw/ 2 O� � e�PrŒA. QDw/ 2 O�

The authors in [21] also proposed two mechanisms, Budget Distribution (BD)
and Budget Absorption (BA), to allocate the budget within one w-timestamp win-
dow. They propose a sampling approach which computes the noisy distance between
the dataset at the current time point and the original dataset at the latest sampling
point, and then compares the noisy distance with the perturbation noise to be added
if current dataset is to be released. If the distance is greater than the perturbation
noise, a noisy dataset is released at current time stamp. The perturbation noise is
determined by their privacy budget allocation schemes, Budget Distribution (BD)
and Budget Absorption (BA), that allocate the budget to different timestamps in the
w-event window. Specifically, BD allocates the privacy budget in an exponentially
decreasing fashion, in which earlier timestamps obtain exponentially more budget
than later ones. BA starts by uniformly distributing the budget to all w timestamps,
and accumulates the budget of non-sampling timestamps, which can be allocated
later to the sampling timestamps. A main drawback of their approach is that the
privacy budget may be exhausted prematurely (sampling too frequently in the
beginning) or not fully utilized during all w timestamps (sampling not frequent
enough), leading to suboptimal utility of the released data.

3.6 Challenges and Future Directions

In this section, we present a series of challenges related to differentially private
data releases in the biomedical domain and discuss some future directions. There
are a number of characteristics that need to be addressed in exploring and applying
differentially private techniques for healthcare data. The introduction of new privacy
preserving methods would have to consider these issues before being employed
widely. The aspects below are summarized from previous works and our experiences
in the healthcare data field.
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3.6.1 Variety of Data Types

Health data contains a large number of categorical data and numerical data, espe-
cially continuous numeric data with high precision (e.g., blood pressure, weight,
height). This may disable existing techniques to be employed directly in health
data. For example, most state-of-the-art differentially private data release methods
are based on count queries (e.g., computing general or partial histograms) and the
addition of Laplace noise to numeric continuous data can distort the original data
largely. Hierarchical methods are often used to generalize continuous numeric data
by existing DP techniques. However, numerical attributes of health data sometimes
can not be generalized, for example, the dose of a certain drug which should be
strictly controlled.

3.6.2 High Dimensionality

Healthcare data is often high dimensional, contains many data errors, and does not
follow a certain distribution. The utility of released synthetic data will be deteri-
orated as the number of dimensions increase. How to generate private synthetic
data for high dimensional data effectively and efficiently is still an open topic in
the community of differential privacy. The correlation and general joint distribution
of raw data may not be retained sufficiently by the private data, especially in the
case of high-dimensional data with unexpected distributions. Since most of the
existing methods are based on count queries, good utility of count queries does
not necessarily mean accurate simulation of correlation and joint distribution. The
granularities of count queries are difficult to determine.

3.6.3 Correlated Constraints Among Attributes

Many attributes in healthcare datasets are correlated or have natural constraints. For
example, one drug may precede another drug for treatment, or a number of drugs
are taken or never taken in combination. Correlations may also exist between drugs
and diagnoses, and lab results and diagnoses.

Independent privacy-preserving perturbation may reduce the trust of data ana-
lysts on the perturbed data, which is a barrier to the wide acceptability and adoption
of differentially private techniques. For example, if the perturbed data shows two
drugs that are known to interact in a way that can be damaging to a patient’s health,
or a drug that would never be prescribed with a particular treatment appearance for
the same patient, or a dose that does not make sense for a patient, then data analysts
will cease to trust the released private data. In practice, this requires higher accuracy
of synthetic data generation and creates challenges for existing methods that add
noise to original data.
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3.6.4 Limitations of Differential Privacy

Setting and Explaining the Privacy Budget � Setting an appropriate value for � is
a challenging task and it is still an open topic even in differential privacy literature.
It is difficult for common data holders to measure how much protection the private
synthetic data will provide for a specific � value. For example, if a user wants to
know the number of smokers who had lung cancer in an original dataset, then what
does � D 0:1 mean? Is this enough to protect the appearance of one individual
smoker with lung cancer in the raw dataset? Does the value of � depend on the
dataset itself or the domain universe of attributes?

To date, there are no theoretical analysis or experimental evaluation on how to
appropriately choose a value of �. Dwork considers the issue as “a social question
and beyond the scope” in [10] and provides some recommended values, like 0.1 or
0.01, and sometimes ln 2, ln 3. Some papers set the values of � as from 0.5 to 1.5,
or from 3 to 10. The authors in [20, 22] state that for an � value, the probability of
re-identification of an individual is not fixed, it is determined by data values in the
given dataset and even by data for individuals outside the dataset.

Besides choosing the value of �, the explanation of � is also not an easy task.
There is an on-going need to explain to non-specialists what differential privacy
is, especially the meaning of privacy budget �, and how much protection of the
original data and utility of the private data will be for the various � settings. This is
very important to allow for the adoption of this technology in healthcare, especially
when used for the protection of highly vulnerable patient groups [15].

Sensitivity Another important limitation of differential privacy regards the queries
or functions’ sensitivities, which determine the scale of noise (perturbation) that
should be injected to the original answers. So far, research works require that the
queries or functions under differential privacy have low sensitivity that incurs small
scale of perturbation, compared to the true answers [8]. Low sensitivity means that
the outputs of queries or functions are not influenced severely by the change of
any single record.4 One such concern of differential privacy is its application on
numerical data, which may have high sensitivity and render the noisy output useless.

Another concern was mentioned by Muralidhar and Sarathy in[30, 34] and
regards the inherent difficulty in computing queries’ sensitivity in unbounded
domains. That raises two questions about not only the sensitivity calculation, but
also about differential privacy verification as well. These questions may have been
neglected in previous works, as they are limited to queries or functions with low or
domain-independent sensitivities.

4Another definition is the removal or addition of a single data record.
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3.7 Conclusion

In this chapter, we presented the basic concepts and mechanisms for achieving
differential privacy. We surveyed state-of-the-art techniques in releasing private
synthetic data and histograms for relational data from three categories: parametric
algorithms, semi-parametric algorithms and non-parametric algorithms. Then, we
investigated state-of-the-art methods for private data publication in the context of
transaction/set-valued data and dynamic stream data. Last, we discussed a set of
challenges pertaining to the offering of differentially-private data releases for health
data, along with a set of promising directions for future research.
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Chapter 4
Evaluating the Utility of Differential Privacy:
A Use Case Study of a Behavioral
Science Dataset

Raquel Hill

Abstract Healthcare datasets may contain information that participants and data
collectors have a vested interest in keeping private. Additionally, social scientists
who collect large amounts of medical data value the privacy of their survey
participants. As they follow participants through longitudinal studies, they develop
unique profiles of these individuals. A growing challenge for these researchers
is to maintain the privacy of their study participants, while sharing their data
to facilitate research. This chapter evaluates the utility of a differentially private
dataset. There has been extensive work, and heightened public and governmental
focus on the privacy of medical datasets. However, additional efforts are needed
to help researchers and practitioners better understand the fundamental notion of
privacy with regards to more recent techniques, like differential privacy. The results
of the study align with the theory of differential privacy, showing that dimensionality
is a challenge, and that when the number of records in the database is sufficiently
larger than the number of cells covered by a database query, the number of statistical
tests with results close to those performed on original data, increases.

4.1 Introduction

The sharing of medical data has many possible benefits, which include the creation
of unified data visualizations for clinicians, the development of predictive and
diagnostic support systems, reductions in institutional costs, and improvements in
medical care. Medical data are often not shared with external parties, because even
when transformations that are intended to preserve individual privacy are applied to
raw data, e.g., when data is de-identified per the US HIPAA Safe Harbor rules or
when data is transformed per the UK ICO’s Anonymization Guidelines, sharing of
such data may still introduce important privacy risks. This is because privacy does
not only depend on the transformed data but also on context-specific information,
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Reason for Appointment
1.MDVIP PE

History of Present Illness
HPI Notes:
1) LIPID management, On Lovastatin 15 y, p Non STEMI in mid 90s w normal
LHC; h/o arrhythmia > 20y; Vegan 5 y
2) Lifelong nasal congestion has lessened; now w decr nasal acuity and chronic
prod post nasal cough
3) Sleep disorder, Scammel rec Provigil George declines and we review the
medicine in detail; the narcolepsy does not impact his professional or private
life hence no need for it; he is not driving anymore
4) recurrent fungus in inguinal area
5) post running headaches and neck pain.

Fig. 4.1 Excerpt from doctor’s notes

such as shared demographic data of subjects, presence of fields that may be linked
across other existing databases, social relationships among subjects, and profiles of
the data recipient.

Preserving the privacy of medical data is even more challenging because the
combination of unstructured textual narratives, video, images, audio and other
health-focused data modalities, create unique medical profiles. Figure 4.1 contains
an example of unstructured, narrative text from a patient’s examination. It illustrates
that these narratives may contain information about prescribed medications, medical
disorders, lifestyle, and even parts of the patient’s name. Prior research shows
that self-reported medical diagnoses and prescription drug information makes
records within a survey dataset unique [29]. Other uniqueness results show that
simple demographics, including birthdate, gender and zipcode can be used in
combination to identify 63–87 % of the U.S. population [15, 30]. Most medical
information includes simple demographics. In addition, unique combinations of
information have been used in numerous re-identification studies [25]. In principle,
any information that can be used to distinguish one person from another can be used
for re-identifying data [26]. Thus, unique combinations present a major challenge
to any system that seeks to enforce a re-identification risk mitigation privacy policy.

Any information that distinguishes an individual or a record within a database
may be used to identify the person to whom the information belongs. Even when
traditional identifiers are removed, the uniqueness of the resulting records may
make a privacy breach easy to orchestrate or implement. Eliminating all unique
characterizations from the data may destroy the utility or usefulness of data.
Therefore sharing these data with external parties may become a lengthy process of
negotiating specific use agreements. Sharing of the data among researchers within
the organization where the data resides also creates privacy risks. Therefore, when
designing mechanisms to enforce privacy policies, one must consider the type of
policy, the data and the intended use for the data.
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Given the challenges of creating a privacy preserving medical dataset for
publishing, this chapter focuses on structured data and the exploration of differential
privacy (DP) mechanisms as a means for providing privacy preserving mediated
access to this data. Specifically, instead of sharing a sanitized version of a dataset,
the data owner provides an interface that enables individuals to query the data
and receive a sanitized response. DP is a data perturbation technique that provides
strong and formal privacy guarantees [8]. The essential goal of DP is to prevent a
possible adversary from discovering whether or not some specific individual’s data
is present in a differentially private dataset, given some risk threshold. A statistical
aggregation or computation is differentially private, or satisfies differential privacy,
if the outcome is formally indistinguishable when run with and without any (one)
particular record in the dataset. The level of indistinguishability is quantified as a
privacy parameter. A common differential privacy mechanism is to add calibrated
noise to a statistical aggregation or computation result, determined by the privacy
parameter and the sensitivity of the computation to the inclusion or exclusion of any
individual record. While traditional de-identification methods [13] or perturbation
methods that add noise to individual values of data records [1] are subject
to re-identification or data reconstruction attacks, depending on the background
knowledge of an adversary, a differential privacy mechanism adds noise to statistical
aggregation or computation outputs, and provides a strong and provable privacy
guarantee with little assumptions on the background knowledge of an adversary.

Hill et al. [18] present a use case analysis framework for evaluating the utility of
a differentially private dataset that contains self reported medical information. The
data set resulted from a survey that was administered by behavioral scientists. The
use case focused on evaluating the results of logistic regression by measuring the
distance between odds ratios that were derived from the original and differentially-
private data sets. This chapter extends that work and introduces the p-score, which
captures whether a variable level has changed from significant to non-significant
(or vice versa). The odds ratio (OR) distance and p-score are intended to mirror
the judgement process of a behavioral science researcher using multivariate logistic
regression to determine predictor utility. The OR distance is important because it
tells the researcher how strongly the predictor level influences the response variable.
The p-score is also important because non-significant predictor levels are often
ignored when interpreting results. If a researcher only has access to the differentially
private histogram, a non-zero value for either metric could result in very different
conclusions about the data.

The remainder of the chapter is organized as follows. Section 4.2 provides the
necessary background on differential privacy and other approaches for anonymizing
data. Section 4.3 describes the use case, and the utility metrics that were used. The
results are presented in Sect. 4.4. Section 4.5 extends the discussion of the results,
and Sect. 4.6 concludes the chapter.



62 R. Hill

4.2 Background

This section provides an overview and background of privacy-preserving data
publishing and privacy-preserving data mining techniques, with specific focus on
k-anonymity [27, 28, 31] and differential privacy [7, 8], respectively.

Syntactic models, like k-anonymity, provide tools to publish useful information,
while preserving data privacy. Syntactic models typically generalize a database
until the data conforms to some set of rules, the syntactic condition. For example,
given the quasi-identifier1 attributes, k-anonymity requires that each of the released
records be indistinguishable from k � 1 other records. k-anonymity assumes that
quasi-identifiers are known at the time of data sanitization.

Privacy-preserving data mining techniques, like differential privacy, provide
frameworks for querying databases in a privacy-preserving manner without releas-
ing the actual database. Differential privacy is a perturbation technique that adds
noise to the answers of queries on the data. It provides strong and formal privacy
guarantees. A fundamental goal of differential privacy is to prevent a possible
adversary from discovering whether or not some specific individual’s data is present
in a differentially private dataset, given some risk threshold.

The remainder of this section provides a high-level overview of k-anonymity,
differential privacy, and a brief discussion of privacy applications.

4.2.1 Syntactic Models: k-Anonymity

Syntactic models, like k-anonymity, were created to reduce the risk of re-
identification in published data. The risk of re-identification can be specified as
the probability of selecting the matching record from the k possible records. When
no additional information can be used to allow the attacker to exclude any of
the k records, the risk of re-identification can be denoted as a simple probability,
1/k. The example below is based on work by El Emam et al. [11]. In their work,
they evaluate prescription drug data that had been provided by a pharmaceutical
company. Table 4.1 provides a subset of the original data, while Table 4.2 contains
the k-anonymized data. In this example, gender and year of birth are the assumed
quasi-identifiers. The minimum equivalence class size is 2, which indicates that
there is at least one other record that has the same quasi-identifier values, and the
probability of re-identification is 1/2.

The use of k-anonymity for more than two decades to publish data, including
health data has resulted in guidelines, policies, court cases, and regulatory orders
that define acceptable levels of risk [9]. Even in the presence of such vast practical
use, the ever growing data landscape continues to challenge the limiting assumptions

1A quasi-identifier is a feature or set of features that is sufficiently correlated with an entity and
when combined with other such features create a unique identifier.
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Table 4.1 Original prescription database (derived from [11])

Identifier Quasi-identifier Sensitive attribute

Name Gender Year of birth DIN

Joe Brown Male 1969 2046059

Jackson Brown Male 1972 716839

Adam Smith Male 1969 2241497

Amanda Smith Female 1985 2046059

Mary Kinsey Female 1976 392537

Timothy Janssen Male 1985 363766

Scott Sanders Male 1988 544981

Leslie Silverstone Female 1977 293512

Carl Fredricks Male 1969 544981

Cathy Nielson Female 1985 596612

Eric Jefferson Male 1977 725765

Table 4.2 Disclosed
prescription database (k = 2)
(derived from [11])

Quasi-identifier Sensitive attribute

Gender Decade of birth DIN

Male 1960–69 2046059

Male 1970–79 716839

Male 1960–69 2241497

Female 1980–89 2046059

Female 1970–76 392537

Male 1980–89 363766

Male 1980–89 544981

Female 1970–79 293512

Male 1960–69 544981

Female 1980–89 596612

Male 1970–79 725765

of k-anonymity and its derivatives. For example k-anonymity assumes that all quasi-
identifiers are known a-priori. Researchers argue that it is unrealistic to limit the
adversary in this manner and that it may be possible to use any unique information
to link an identity to a de-identified record [26].

For example, in Tables 4.1 and 4.2, the Drug Identification Number (DIN),
although unique in some cases, is not considered a quasi-identifier. For this example,
an attacker who knows the DIN for the drugs associated with an individual would be
able to uniquely identify 64 % of the records. Knowing the DIN and Year-of-Birth
would allow an attacker to re-identify the remaining 36 %.

Researchers have proposed a variety of approaches for managing biomedical
data and protecting patient information. A thorough review of k-anonymity and
its derivatives are presented in Gkoulalas-Divanis et al. [14]. El Emam et al. [10]
consider extensions to k-anonymity in the context of two attack scenarios: one in
which the attacker wants to re-identify a specific individual that he/she knows in the
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anonymized dataset (called the prosecutor scenario), and one in which the attacker
simply wants to demonstrate that an arbitrary individual from some population could
be re-identified in the dataset (called the journalist scenario).

The best k-anonymity extension selects an appropriate k value using hypothesis
testing and a truncated-at-zero Poisson distribution. While this method outperforms
standard k-anonymity in terms of information loss (computed using the discern-
ability metric) on their sample datasets, the authors acknowledge that increasing
the number of quasi-identifiers may lead to unacceptable amounts of information
loss, even for small values of k. Additionally, there was no discussion about how
different values of the discernability metric may impact the results of common
statistical analyses performed by consumers of an anonymized dataset (i.e., how
much information loss will a logistic regression tolerate?).

4.2.2 Differential Privacy: Definition

Differential privacy (DP) has recently emerged as one of the strongest privacy
guarantees for statistical data release. A statistical aggregation or computation is
differentially private, or satisfies differential privacy, if the outcome is formally
indistinguishable when run with and without any particular record in the dataset.
The level of indistinguishability is quantified as a privacy parameter.

A common differential privacy mechanism is to add calibrated noise to a
statistical aggregation or computation result determined by the privacy parameter
and the sensitivity of the computation to the inclusion or exclusion of any individual
record. Differential privacy provides a strong and provable privacy guarantee with
little assumptions on the background knowledge of an adversary.

Differential privacy guarantees that if an adversary knows complete information
of all the tuples in a dataset D except one, the output of a differentially private ran-
domized algorithm should not give the adversary too much additional information
about the remaining tuples. We say datasets D and D0 differ in only one tuple, if we
can obtain D0 by removing or adding only one tuple from D. A formal definition of
differential privacy is given as follows:

Definition 4.1 ("-Differential Privacy [7]). Let A be a randomized algorithm over
two datasets D and D0 differing in only one tuple, and let O be any arbitrary set of
possible outputs of A. Algorithm A satisfies �-differential privacy if and only if the
following holds:

PrŒA.D/ 2 O� � e�PrŒA.D0/ 2 O�

Intuitively, differential privacy ensures that the released output distribution of A
remains nearly the same whether or not an individual tuple is in the dataset.

The most common mechanism to achieve differential privacy is the Laplace
mechanism [7] that adds a small amount of independent noise to the output of a
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numeric function f to fulfil �-differential privacy of releasing f , where the noise is
drawn from a Laplace distribution with a probability density function PrŒ� D x� D
1
2b e�

jxj
b . Laplace noise has a variance 2b2 with a magnitude of b. The magnitude b

of the noise depends on the concept of sensitivity, which is defined as follows:

Definition 4.2 (Sensitivity [7]). Let f denote a numeric function. The sensitivity of
f is defined as the maximal L1-norm distance between the outputs of f over the two
datasets D and D0, which differ in only one tuple. Formally,

�f D maxD;D0 jjf .D/� f .D0/jj1:

With the concept of sensitivity, the noise follows a zero-mean Laplace distribution
with the magnitude b D �f =�. To fulfill �-differential privacy for a numeric function
f over D, it is sufficient to publish f .D/C X, where X is drawn from Lap.�f =�/.

For a sequence of differentially private mechanisms, the composability [22]
theorems (see below) guarantee the overall privacy.

Theorem 4.1 (Sequential Composition [22]). For a sequence of n mechanisms
M1; : : : ; Mn, where each mechanism Mi provides �i-differential privacy, the
sequence of Mi provides .

Pn
iD1 �i/-differential privacy.

Theorem 4.2 (Parallel Composition [22]). If Di are disjoint subsets of the
original database and Mi provides ˛-differential privacy for each Di, then the
sequence of Mi provides ˛-differential privacy.

Dankar et al. [6] provide a thorough treatment of the state-of-the-art in differen-
tial privacy. They also outline some of the limitations of the model and the various
mechanisms that have been proposed to implement it. In addition, this work dis-
cusses several recent applications of differential privacy [12, 16, 19, 20, 23, 32, 33].

In this chapter, we evaluate the output of several DP processes, including cell-
based [32], range query[33], and space partitioning[32]. The space partitioning
approach differs from the basic cell-based and range query approaches in that it
attempts to preserve the characteristics within the original data, by adding noise
uniformly to cells that belong to a partitioned group.

Xiao et al. [32, 34] use a kd-tree (k-dimensional tree) to partition the data.
A kd-tree is a space partitioning data structure for organizing data points in a
k-dimensional space. First, the DP algorithm partitions the dataset D based on
the domain and adds noise to each cell to create a synthetic dataset D0. D0 is
subsequently partitioned using a kd-tree algorithm. The resulting keys from the kd-
tree partitioning are then used to subdivide the original dataset. Finally, Laplace
noise is added to each partition’s count. Each cell within a partition is assigned
the value of its partition’s noisycount=ˇ, where ˇ is the number of cells within the
partition. The perturbed dataset is used in the kd-tree phase of the algorithm, so
as not to waste the privacy budget on accessing the original dataset multiple times
during the partitioning phase.
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Xiao et al. [32] evaluate the utility of their DP mechanism by comparing query
counts of the original data to those of the differentially private data. We build upon
this work by performing predictive analysis on a large social science dataset and
the corresponding differentially private data. We derive our use cases from the
actual analyses that were previously performed by the researchers who collected
and evaluated the original data [17].

4.2.3 Applications

Various applications for securing access and reducing the privacy while sharing data
have been proposed and implemented. Brown et al. [3] present a “distributed” query
system designed to allow data holders to maintain physical control of their data.
This system is contrasted with a centralized database, where users submit queries
outside of their local firewalls (and also receive results from a remote server). Data
privacy is maintained by physically co-locating the query system software with the
data. The system does not attempt to anonymize data for access by a third party.

Murphy et al. [24] present the i2b2 system (integrating biology and the bedside),
which provides graded access to patient data depending on the privacy level of
the user. At the lowest level, only aggregate counts with Gaussian noise added is
available. The problem of multiple queries allowing for convergence on the true
count is discussed, but only solved for single user accounts (a user with multiple
accounts could still discover the true count). For all other privacy levels, some
form of anonymized patient data is available to the user, with the highest level
having access to the original data. The de-identification methods for this data are
not discussed (they are only listed as HIPAA compliant), and neither is the link
between dataset dimensionality and re-identification.

Kushida et al. [21] perform a literature survey on de-identification and
anonymization techniques. They focus on three main scenarios: free-text fields,
images, and biological samples. For free-text fields, statistical learning-based
systems provide the best performance (at or above manual de-identification).
Anonymization techniques for images and biological samples are briefly discussed
as well. Unfortunately, there is no mention of data privacy methods for datasets
with coded fields (e.g., surveys) or dimensionality—i.e., how much easier is re-
identification with high-dimensional data?

Bredfeldt et al. [2] develop a set of templates and a common zip-file directory
structure for multi-site research collaborations with sensitive data. Additionally,
some best practices are identified, such as not transferring the zip-file over e-mail
or any unencrypted protocol. While the templates and structure provide support for
collaboration, important details for protecting the data itself (e.g., via encryption or
some privacy mechanism) are not discussed.
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Fig. 4.2 Experiment flow chart

4.3 Methodology

Figure 4.2 illustrates a flow chart of the experimental setup. Hill et al. [18] also
used this non-interactive querying approach. To evaluate differential privacy, a
differentially private contingency table, a histogram of all possible attribute settings,
is generated once. Data records are then reconstructed from the histogram bins.
Statistical analysis is performed on both the original data and the DP data. The
outcomes of the analyses are compared to assess the usefulness of the DP data.

The DP application implements several algorithms including two, cell and basic,
that add Laplacian noise to each histogram cell independently, using the perturbation
(privacy) � parameter. The two algorithms differ in the way they compute the lambda
parameter for Laplacian noise. In addition, the application implements a k-d tree
algorithm that adds noise in two stages with the goal of preserving entropy [32, 34],
and an algorithm that was designed to support range queries [33]. These algorithms
are referred to as k-d tree and adhoc throughout the remainder of the text.

The parameter � determines the level of privacy, with a lower value providing
more privacy. For the k-d tree algorithm, the ET parameter determines the entropy,
or uniformity, within each partition. The lower the value of ET, the less uniform
partitions will be. In our experiments, we vary � over the range Œ0:1; 2:0� and ET
over the range Œ0:4; 1:0�. These ranges represent very low and very high privacy,
and cover the true entropies of the datasets. For all our experiments, we fix the IG
parameter at 0:0001.

Twenty five DP histograms are generated per algorithm, per each parameter
setting, and the mean results from these histograms are compared to the original.
Bonferroni correction is used to address the issue of multiple testing within
our experiments. Our dataset contains 5887 participants who have answered 332
questions of a sexual health survey. The participants are a convenience sample
of individuals within the USA. The survey contains multiple modules and most
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modules are standardized sexual health scales—a questionnaire with which you
hope to measure a psychological construct using multiple questions (i.e., items or
indicators) [4].

The use cases are derived from work by Higgins et al. [17], and examine
predictors of unprotected sex and unplanned pregnancy. Higgins et al. use logistic
regression to evaluate the likelihood of a participant reporting an unplanned
pregnancy and the likelihood of a participant reporting having had unsafe sex in
the last 12 months (both binary outcomes). This chapter takes the same approach
as Hill et al. [18] and evaluates both the full data model that contains all predictive
variables that were used by Higgins et al. [17] and reduced data models that contain
subsets of the predictive variables. The reduced models were used to demonstrate
how dimensionality affects the usefulness of differentially private data. The full and
reduced models are described below.

Predictor Variables

• age: Age of the participant (31 levels). Range is from 18–80 years old.
• employ: Employment status (4 levels): full-time, part-time, unemployed,

temp/seasonal.
• gender: Gender (2 levels): male, female.
• income: Income level (4 levels): poor, lower, middle, upper.
• relation: Relationship status (3 levels): none, exclusive, non-exclusive.
• sis5: Use of safe sex products causes arousal loss (4 levels): strongly agree,

agree, disagree, strongly disagree.
• sis8: Risk of pregnancy inhibits arousal (4 levels): strongly agree, agree,

disagree, strongly disagree.

Response Variables

• kisbq18: Had unprotected vaginal sex in the last 12 months (binary).
• kisbq20: Ever had an unplanned pregnancy (binary).

Data Models

• Full Set: 7 predictor variables (age, gender, relation, employ, income, sis5,
sis8) and 2 response variables (kisbq18, and kisbq20).

• Reduced Set 1 (RS1): 2 predictor variables (income, sis5) and 1 response
variable (kisbq18).

• Reduced Set 2 (RS2): 2 predictor variables (relation, sis8) and 1 response
variable (kisbq20).
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4.3.1 Utility Measures

The size n of the database directly impacts the accuracy of a DP query. When n	 y,
where n is the number of records within the database and y is the number of cells
covered by the query, the query results will be inaccurate [6, 8]. For the Full Set,
RS1 and RS2, there are 190,464, 32, and 24 cells covered by the query, respectively.
To evaluate the effect that the size of the database has on the accuracy of our results,
we compare the results across the three datasets.

Data Distribution We compared the distributions of individual dimensions (or
variables) for every DP histogram to the original distributions. For example,
there were about 25 % more females than males in the original dataset.
A utility-preserving DP histogram should have a similar male/female proportion
(not necessarily the exact same number). All dimensions besides age were
categorical, so we used a standard Pearson �2 goodness-of-fit test with the expected
bin probabilities derived from the original data. The age variable was treated as
continuous, so we performed a Kolmogorov-Smirnov (K-S) test instead of �2.
Effect sizes for dimensions besides age were computed with Cramér’s V [5], and
the K-S statistic itself was used as an effect size for variable age.

Logistic Regression Logistic regression produces an odds ratio (OR) and p-value
for every variable level in the dataset (e.g., “full time” for the employ). All
categorical variables had a reference level (shown in Tables 4.3 and 4.4). The age
variable was treated as continuous, so it only had a single OR and p-value. For every
set of parameters and variable level, we computed two metrics across all 25 runs:
odds ratio distance and p-score.

The odds ratio distance is the absolute distance between the noisy and original
odds ratios. For example, the odds ratio (M) for employ (full-time) in Table 4.3 was
1:56, meaning “full-time” employed males were more likely to have had unprotected
sex in the last 12 months. If a noisy histogram had an OR of 0:56 for the same
variable level and gender, the OR distance would be 1:0. This metric is larger when
the noisy logistic results are farther away from the original dataset. To judge whether
or not OR values are significantly different from the original, we used a one-sample
Wilcoxon signed-rank test.

The p-score is 1 if the variable level has changed from significant to non-
significant (or vice versa), and 0 otherwise. The age variable, for example, was
highly significant for females in Table 4.4 (p < 0:001). If a noisy histogram had a
p-value � 0:05 for age (making it non-significant), then the p-score would be 1.
Likewise, a change from non-significant to significant (p < 0:05) would result in
a p-score of 1. A p-score of 0 would be given for a change from highly significant
(p < 0:001) to significant (p < 0:05) or vice-versa. We summed all 25 p-scores for
every variable level, and considered a p-score of 2 or more as significantly different
from the original dataset. This allowed for 1 out of the 25 runs (4 %) to change
significance and still be considered similar to the original variable level.



70 R. Hill

Table 4.3 Odds ratios (OR) and statistical significance (SS) for males (M)
and females (F) in original data set (kisbq18)

Response kisbq18 (unprotected sex)

Predictor OR (M) SS (M) OR (F) SS (F)

age 1.12 p < 0:001 (***) 1.22 p < 0:001 (***)

employ (full time) 1.56 1.75 p < 0:01 (**)

employ (part time) 1.42 1.48 p < 0:05 (*)

employ (unemployed) 1.18 2.05 p < 0:001 (***)

employ (temporary) Reference level

income (poor) 0.85 1.29

income (lower) 1.09 1.40 p < 0:01 (**)

income (middle) 1.06 1.29 p < 0:05 (*)

income (upper) Reference level

relation (exclusive) 1.53 p < 0:01 (**) 1.55 p < 0:001 (***)

relation (non-exclusive) 2.63 p < 0:001 (***) 2.18 p < 0:01 (**)

relation (none) Reference level

sis5 (strongly agree) 1.84 p < 0:01 (**) 3.23 p < 0:001 (***)

sis5 (agree) 1.13 2.56 p < 0:001 (***)

sis5 (disagree) 1.03 1.42 p < 0:001 (***)

sis5 (strongly disagree) Reference level

The number of asterisks indicates the strength of the results. Given three
asterisks as opposed to two or one, it is less likely to incorrectly reject the
null hypothesis

The two metrics above are intended to mirror the judgement process of a social
science researcher using multivariate logistic regression to determine predictor
utility. The OR distance is important because it tells the researcher how strongly
the predictor level influences the response variable. The p-score is also important
because non-significant predictor levels are often ignored when interpreting results.
If a researcher only has access to the differentially-private histogram, a non-zero
value for either metric could result in very different conclusions about the data.

4.4 Results

Before evaluating the results, we first compare the size of our database n to the
number of cells that are covered for each use case. Recall that n D 5887 in the
original dataset, while the cell coverage for the Full Set use case is 190,464 cells.
Therefore, as we decrease the amount of noise that is added, we do not expect the
odds ratio distances for the logistic regressions to change significantly.

When considering the reduced set use cases, RS1 and RS2, the number of records
n is significantly larger than the cell coverage. Therefore, as we alter the � parameter
to decrease noise, we expect that more variable counts will be preserved, and a
decrease in the distance between the original and DP odds ratios.
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Table 4.4 Odds ratios (OR) and statistical significance (SS) for males (M)
and females (F) in original data set (kisbq20)

Response kisbq20 (unplanned pregnancy)

Predictor OR (M) SS (M) OR (F) SS (F)

age 1.21 p < 0:001 (***) 1.52 p < 0:001 (***)

employ (full time) 1.31 1.65 p < 0:05 (*)

employ (part time) 0.80 1.24

employ (unemployed) 1.02 1.64 p < 0:05 (*)

employ (temporary) Reference level

income (poor) 1.6 2.12 p < 0:001 (***)

income (lower) 1.28 1.55 p < 0:001 (***)

income (middle) 1.09 1.32 p < 0:05 (*)

income (upper) Reference level

relation (exclusive) 1.68 p < 0:01 (**) 1.91 p < 0:001 (***)

relation (non-exclusive) 2.56 p < 0:001 (***) 2.24 p < 0:001 (***)

relation (none) Reference level

sis8 (strongly agree) Reference level

sis8 (agree) 1.11 1.03

sis8 (disagree) 1.72 p < 0:01 (**) 1.31 p < 0:05 (*)

sis8 (strongly disagree) 1.91 p < 0:01 (**) 1.41 p < 0:05 (*)

Overall, the two most important determinants of utility preservation were: (1)
the dimensionality of the dataset (i.e., the number of variables), and (2) the entropy
threshold of the k-d tree algorithm.

4.4.1 Variable Distributions

The differentially private distributions of individual dimensions (variables) are
compared to those of the original data. If differentially private variable distributions
differ significantly, it is unlikely that other kinds of utility (e.g., logistic regression)
will be preserved. For all variables besides age, we judged a variable’s distribution
to be significantly different using Pearson’s �2 goodness-of-fit test with bin
probabilities derived from the original data. Effect size for these variables was
computed with Cramér’s V [5] using the corresponding �2 statistic. We treated the
age variable as continuous, and therefore used a Kolmogorov-Smirnov (K-S) test
with the K-S statistic serving as an effect size.

4.4.1.1 Full Set

For the full dataset, we found that none(!) of the noisy histograms contained a
variable distribution that was similar to the original dataset. When looking at the
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2:0 (right)

noisy histograms with the lowest effect size, it is immediately apparent why this
is the case. Figure 4.3 shows the distribution of age from the original histogram
and also from the DP histogram with the smallest effect size (K-S statistic). The DP
histogram was generated using the k-d tree algorithm with � set to 2:0 (low noise)
and the entropy threshold (ET) set to the entropy of the original histogram. Visually,
we can see that important properties of the distribution have been lost, such as the
long tail. Figure 4.4 shows a similar story for the gender variable. Even though
this histogram has the smallest effect size (Cramér’s V), the noisy distribution is
much more uniform than the original.

Effect size appears to be mostly driven by � for all DP algorithms. While effect
sizes decrease as � increases for both age and other variables, they are still fairly
large. Given the reduced set results, it appears that the dimensionality of the full
dataset is really the biggest contributor to the large effect sizes and significantly
different variable distributions.
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Fig. 4.5 Proportion of variable counts vs. � for all algorithms (for the first reduced dataset)

Fig. 4.6 Proportion of variable counts vs. � for all algorithms (for the second reduced dataset)

4.4.1.2 Reduced Sets

Whereas all of the DP variable distributions from the full dataset were significantly
different from their originals, the DP variable distributions for the reduced datasets
had far better utility. For certain values of �, 100 % of the variable distributions were
preserved. Figures 4.5 and 4.6 compare the performance of the four algorithms for
both reduced datasets.

Figures 4.7 and 4.8 depict the detailed performance of the k-d tree algorithm for
MART_rs1 and MART_rs2. As the figures show, variable distributions are similar
to the original when the entropy threshold is greater than or equal to that of the
original data. As much as 75 % of all variables are preserved for MART_rs1 when
entropy_threshold = 1 and � > 0:1.
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Fig. 4.7 Proportion of variable counts preserved vs. � for k-d tree (for MART_rs1)

The ad-hoc, basic and cell-based methods had broader variable coverage with
utility being preserved for all variables, while the kd-tree method had more
similar runs for individual variables, such as kisbq18 and relation. Upon further
investigation, we see that as � increases, effect size decreases (Fig. 4.9). This holds
true for all DP algorithms on both reduced datasets. The same is not true, however,
for entropy threshold (ET). Instead, for kd-tree we find that all similar runs had their
ETs at the original dataset entropy or above. So having a high ET was a prerequisite
for a similar run, while � merely modulated effect size.

4.4.2 Multivariate Logistic Regression

The second measure of data utility uses multivariate logistic regression. The use
cases were derived from Higgins et al. [17]. For the full dataset, there were
two response variables: kisbq18 (unsafe sex) and kisbq20 (unplanned pregnancy).
Separate regressions were run for males and females, making a total of 4 use cases
in the full dataset (2 response variables� 2 genders). The reduced datasets each had
a single response variable, so only 2 regressions were run per noisy histogram (male
and female). Table 4.5 shows the predictors and response variables for each dataset.
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Fig. 4.8 Proportion of variable counts preserved vs. � for k-d tree (for MART_rs2)
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Fig. 4.9 Effect size versus � for RS1 cell-based runs that were similar

For every set of parameters and variable level, the odds ratio distance and p-score
were computed. The p-score is 1 if the variable level has changed from significant to
non-significant (or vice versa), and 0 otherwise. The p-score is summed across the
25 noisy histograms for a parameter setting, and a p-score < 2 is considered a good
run and utility preserving. This allowed for 1 out of the 25 runs (4 %) to change
significance and still be considered similar to the original variable level.
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Table 4.5 Logistic regressions for each dataset

Set Query Predictors Resp.

Full Unsafe Age, employ, income, relation, sis5 kisbq18

Full Preg Age, employ, income, relation, sis8 kisbq20

RS1 Unsafe Income, sis5 kisbq18

RS2 Preg Relation, sis8 kisbq20

Queries are “unsafe” (unsafe sex) and “preg” (unplanned preg-
nancy)

Fig. 4.10 Logistic results for MART_final for k-d tree, effect size and proportion of good runs
versus the DP � parameter

4.4.2.1 Noisy Results

Across all datasets and parameter settings, only 4.6 % of the variable levels were
similar to the originals. Of those similar levels, 24.5 % are from the adhoc algorithm,
32.4 % from the basic, 41.4 % from the cell and 1.7 % from the kd-tree algorithm.
Only the kd-tree algorithm provided utility preserving levels for the full dataset,
MART_final. Figure 4.10 shows these results. The utility is preserved for SIS5,
level = disagree. Interestingly, this is the most frequently provided response to the
question, “Use of safe sex products causes arousal loss”. The utility is preserved
when � D 1:1 and entropy_threshold D 0:682, which is the entropy of the original
dataset. Also note that an effect size of 0.020 shows a strong relationship between
the original odds ratio for this variable level and the mean of the odds ratio for the
25 samples when � D 1:1, and entropy_thresholdD 0:682.

Most of the utility-preserving levels were from the reduced datasets (about 88 %).
Figure 4.11 compares the proportion of good runs for each algorithm and value
of � for the MART_rs1 dataset. As the figure shows, the cell-based algorithm
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Fig. 4.11 Logistic results for MART_rs1 for k-d tree, proportion of good runs versus the DP �

parameter

Fig. 4.12 Logistic results for MART_rs1 for k-d tree, effect size and proportion of good runs
versus the DP � parameter for entropy_threshold = 1.0

outperforms all other algorithms for � values 0.1–1.4, which includes the higher
noise values. The wavelet basic algorithm performs slightly better than the cell
algorithm for � values 1.7 and 2.0.

Figure 4.11 also shows that the kd-tree algorithm does not perform as well as
the other algorithms and that the performance is somewhat consistent regardless of
the value of �. Figure 4.12 provides more detail and shows that all utility preserving
levels for the k-d tree algorithm for MART_rs1 occur when the entropy_threshold
= 1. The corresponding entropy_threshold for the original MART_rs1 dataset is
0.893. When �=0.4, 33 % of the runs preserve utility, which is a significant increase
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Fig. 4.13 Logistic results for MART_rs2, proportion of good runs versus the DP � parameter

Fig. 4.14 Logistic results for MART_rs2 for k-d tree, effect size and proportion of good runs
versus the DP � parameter for entropy_threshold = 1.0

in comparison with the results from the full dataset, MART_final. Additionally, all
utility preserving levels occur for variable SIS5 for levels agree and strongly agree,
with twice as many occurring for the latter.

We report similar results for the second reduced dataset, MART_rs2. As Fig. 4.13
shows, the cell-based algorithm performs significantly better for six of the eight
values of � and has 90 % of its runs preserve utility for � = 0.8 and 1.4. The wavelet
basic algorithm performs slightly better than cell for � values 1.7 and 2.0 with 100 %
of its runs preserving utility for these values.
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Figure 4.13 also shows that the kd-tree algorithm does not perform as well as
the other algorithms and that the performance is somewhat consistent regardless of
the value of �. Figure 4.14 provides more detail and shows that all utility-preserving
levels for the k-d tree algorithm for MART_rs2 occur when entropy_threshold = 1.
The corresponding entropy_threshold for the original MART_rs2 dataset is 0.874.
When �=0.4 and 0.5, 50 % of the runs preserve utility, which is a significant increase
in comparison with the results from the full dataset, MART_final. Additionally, the
utility preserving levels occur for the relationship and SIS8 variables, with 52 % for
exclusive, 38 % for nonexclusive and 10 % for SIS8 disagree.

For the reduced sets, the average effect size decreased as � increased (ad-hoc,
basic, cell-based), and as � and entropy threshold increased (k-d tree). Effect size
for the full dataset, however, was not strongly correlated with �. Having an entropy
threshold at or above the original histogram entropy was strong predictor of utility
preservation across all datasets. As with the variable distribution utility measure,
the reduced datasets only had utility-preserving variable levels with the k-d tree
algorithm when the entropy threshold met this condition.

4.5 Discussion

The experiment hypothesis was that if the variable distributions were not preserved,
then it would be unlikely that the results of other classifiers, like logistic regression
would hold. The results show that none of the variable distributions for our full
dataset, MART_final, were preserved. Consequently, the utility of the logistic results
for only one variable was preserved for the full dataset. The corresponding noisy
histogram was generated using the k-d tree partitioning algorithm, with � D 1:1

and ET D 0:682 (the entropy of the original dataset). These logistic results are
similar in nature to those presented by Hill et al. [18], which show that for the
full dataset, the odds ratio distances do not change even when the amount of noise
added is reduced. As previously stated, the query coverage for the full dataset is
significantly larger than the number of records. Under such conditions, the results
show that dimensionality limits the creation of utility preserving DP datasets.

The overall utility preservation performance for the noisy reduced datasets was
significantly stronger than the full dataset. We observed a strong performance for
the basic, adhoc and cell-based algorithms for the variable utility distribution,
with preservation rates approaching 100 % for higher values of � (i.e., less noise).
The k-d tree algorithm also produced more utility-preserving histograms when the
entropy threshold parameter was set to a value that was greater than or equal to
the entropy threshold of the original dataset. As much as 75 % of the variable
distributions were preserved for MART_rs1 when using the k-d tree algorithm with
ET D 1. The same trend was observed for the logistic, p-score utility measure for
the reduced sets.
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4.6 Conclusion

One challenge to assessing the utility of DP data is specifying what constitutes
equivalent results. While results by Hill et al. [18] show that in some cases
distance measures and error rates approach zero, this does not sufficiently articulate
equivalence. When discussing these results with behavioral scientists, we found that
this measure of utility may not translate. Therefore, this chapter extends prior work
and incorporates the p-score, which seeks to model the decision making process of
behavioral scientists, and bridge the gap between a distance measure of accuracy
and the way in which behavioral scientists evaluate the quality of their results.

The results confirm that dimensionality is a major challenge for differentially
private algorithms, especially when the number of records in the database is
sufficiently less than the number of cells covered by the query. Given the two
reduced sets, the query cell coverage for MART_rs1 is greater than for MART_rs2,
indicating that some variables in MART_rs1 have a larger range than those in
MART_rs2. This larger range provides more opportunities for cells to have zero
counts. When the DP application adds noise to these cells, the resulting distribution
for this dimension is altered. Therefore, when the range is large, the resulting utility
of the differentially private data is less.
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Chapter 5
SECRETA: A Tool for Anonymizing Relational,
Transaction and RT-Datasets

Giorgos Poulis, Aris Gkoulalas-Divanis, Grigorios Loukides,
Spiros Skiadopoulos, and Christos Tryfonopoulos

Abstract Publishing medical datasets about individuals, in a privacy-preserving
way, has led to a significant body of research. Meanwhile, algorithms for anonymiz-
ing such datasets, with relational or set-valued (a.k.a. transaction) attributes, in a
way that preserves data truthfulness, are crucial to medical research. Selecting,
however, the most appropriate algorithm is still far from trivial, and tools that
assist data publishers in this task are needed. To highlight this need, we initially
provide a brief description of the popular anonymization algorithms and the most
commonly used metrics to quantify data utility. Next, we present a system that we
have designed, which is capable of applying a set of anonymization algorithms,
enabling data holders, including medical researchers and healthcare organizations,
to test the effectiveness and efficiency of different methods. Our system, called
SECRETA, allows evaluating a specific anonymization algorithm, comparing multi-
ple anonymization algorithms, and combining algorithms for anonymizing datasets
with both relational and transaction attributes. The analysis of the algorithms is
performed in an interactive and progressive way, and results, including attribute
statistics and various data utility indicators, are summarized and presented graphi-
cally.
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5.1 Introduction

Several medical studies require datasets which contain not only set-valued
information (such as diagnosis codes of patients), but also relational information
(such as patient demographics). This kind of datasets, henceforth referred to as
RT-datasets, cannot be published in their original form, as it is provably easy for
attackers to link a record to the corresponding patient [14]. Consider the original
dataset of Table 5.1. The ids and names of the patients will not be disclosed in
the published counterpart of the dataset; they are only illustrated for the ease
of presentation. If an attacker knows that John is from France and has been
diagnosed with Flu and Herpes, it is easy to link John to the first patient of
Table 5.1. This type of attack is called identity disclosure, and can be issued either
on the relational part of the dataset, or on the transaction part of the data, or in both.

The relational attributes in a dataset that are not direct identifiers, but can still be
used (in combination) by an attacker to uniquely identify a user in the dataset, are
called quasi-identifiers (QI). For example, in Table 5.1, we consider Age, Origin
and Gender to be the quasi-identifiers. In order to protect a dataset from identity
disclosure, the dataset has to be anonymized prior to data publishing.

Several methods (e.g., [4, 8, 11, 22]) have been proposed for performing data
anonymization, by preventing the disclosure of individuals’ private and sensi-
tive information, while maintaining data truthfulness. Different to noise addition
approaches, such as differential privacy [3], these methods lead to anonymized
datasets that can be accurately analysed at a record level, without falsifying the
data. For instance, Table 5.2c illustrates the anonymization of Table 5.1 using the
method proposed by Poulis et al. [14]. In this dataset, an attacker cannot uniquely
identify John, since his record can be either Id 1 or 2.

Let us consider a medical researcher who needs to conduct three medical
studies. The first study is based on the demographics of patients, the second on
the diagnosis codes of patients, and the third examines the correlation between
certain diagnoses and patients’ demographics. A data owner (e.g., a healthcare
clinic) cannot disclose the data to the researcher in its original form, as the patients’
privacy would be compromised. Also, the data owner does not typically have the
necessary technical expertise to apply anonymization algorithms on the data.

Table 5.1 An example of an RT-dataset containing patient demographics
and diseases

Id Name Age Origin Gender Disease

1 John 19 France Male Asthma Flu Herpes

2 Steve 22 Greece Male Asthma Flu Eczema

3 Mary 28 Germany Female Flu Herpes

4 Zoe 39 Spain Female Asthma Flu Eczema

5 Ann 70 Algeria Female Asthma

6 Jim 55 Nigeria Male Asthma Flu
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Table 5.2 (a) A 2-anonymous dataset with respect to relational attributes, (b) a
22-anonymous dataset with respect to the transaction attribute, and (c) a .2; 22/-
anonymous dataset

Id Age Origin Gender

1 [19:22] Europe Male

2 [19:22] Europe Male

3 [28:39] Europe Female

4 [28:39] Europe Female

5 [55:70] Africa All

6 [55:70] Africa All
(a)

Id Disease

1 Asthma Flu (Herpes,Eczema)

2 Asthma Flu (Herpes,Eczema)

3 Flu (Herpes,Eczema)

4 Asthma Flu (Herpes,Eczema)

5 Asthma

6 Asthma Flu
(b)

Id Age Origin Gender Disease

1 [19:22] Europe Male Asthma Flu (Herpes,Eczema)

2 [19:22] Europe Male Asthma Flu (Herpes,Eczema)

3 [28:39] Europe Female (Asthma,Flu) (Herpes,Eczema)

4 [28:39] Europe Female (Asthma,Flu) (Herpes,Eczema)

5 [55:70] Africa All (Asthma,Flu)

6 [55:70] Africa All (Asthma,Flu)

(l)

In this chapter, we provide an overview of SECRETA [17], a system that allows
the healthcare clinic to release an anonymized version of the data to the researcher.
SECRETA supports datasets holding either relational or transaction data, as well as
RT-datasets. Moreover, it supports a variety of anonymization algorithms and the
most common utility metrics. In more detail, Table 5.2a presents an anonymous
counterpart of the dataset shown in Table 5.1 with respect to the demographics of
the patients, while Table 5.2b presents an anonymous dataset with respect to their
diagnosis codes. Last, Table 5.2c presents an anonymous version of the medical
dataset shown in Table 5.1 with respect to both the demographics and the diagnosis
codes of the patients.

In what follows, we discuss some popular, non-commercial systems for per-
forming data anonymization and highlight their functionality and limitations, when
applied to medical data. Subsequently, we provide a discussion of concepts that are
necessary to understand how the anonymization of relational, transactional, and RT-
datasets is performed. Last, we provide an overview of SECRETA, a system that
enables healthcare data owners to effectively anonymize their medical datasets. The
system allows to evaluate and compare a range of anonymization methods, with
respect to their achieved level of privacy, utility, and computational runtime.
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5.2 Related Work

Data anonymization tools are important both for allowing users to experiment with
different anonymization methods and understand their workings, as well as for
enabling non-experts to anonymize their data. However, only a limited number of
non-commercial data anonymization tools are currently available. Below, we discuss
three of the most feature-rich non-commercial tools for data anonymization.

The Cornell Anonymization Toolkit (CATtool) [23] supports k-anonymity and
`-diversity [12] on relational datasets, essentially offering protection from identity
and sensitive attributes’ disclosure. The CATtool enables users to select an input
dataset, specify the attributes which act as quasi-identifiers, select any sensitive
attributes, and finally set the k or ` parameter to a desired value. The tool then
applies the selected anonymity method and presents in two graphs the distribution
of the original and anonymized values for the quasi-identifying and the sensitive
attributes. Moreover, the tool calculates a risk value for the dataset, based on the
probability of an attacker to accurately link a user to a sensitive attribute value.

Next, the TIAMAT tool [2] supports the k-anonymity model [20] on datasets
containing only relational attributes, while the authors have stated that they plan to
extend it to also support `-diversity [12] and t-closeness [10] in a future release.
TIAMAT has the following interesting features:

• It allows users to visually create and edit the taxonomies of relational attributes,
and also select which attributes in the dataset will act as quasi identifiers.

• It enables users to evaluate the performance of the supported methods, measuring
the NCP [24] and the efficiency, and presenting them in graphs.

• It supports the visual representation of several executions of the algorithm with
variable values of parameter k. This mode is called head-to-head analysis, and
allows users to obtain a better understanding of the effect of parameter k in
information loss and efficiency.

Prasser et al. recently introduced ARX [19], an interesting tool for anonymizing
relational datasets. This tool supports algorithms enforcing k-anonymity [20],
`-diversity [12], t-closeness [10] and ı-presence [13]. ARX has a user-friendly
editor for generalization hierarchies, where users can construct hierarchies to
meet their requirements. It also supports a number of utility measures, such as
monotonic and non-monotonic variants of height, precision, discernability and
entropy. It presents the anonymized dataset to the end-user and reports the above
metrics in a graphical representation. Another interesting feature of ARX is that
it can be easily extended; the authors provide an API which enables users to
implement and integrate to the tool their own methods, or use the tool with their
existing software solutions.

The SECRETA system, which will be presented in detail in the remainder of this
chapter, supports the core functionalities of CATtool, TIAMAT and ARX, as can be
seen in Table 5.3, although it currently lacks an anonymization API as well as the
advanced data visualization and re-identification risk analysis capabilities offered
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Table 5.3 Comparison of data anonymization tools

CATtool TIAMAT ARX SECRETA

Rel. datasets
p p p p

Trans. datasets
p

RT-datasets
p

Privacy constraints
p

Utility constraints
p

Automatic hierarchies
p p

Distributions plot
p p

NCP/UL/ARE plots
p p

Anonymization API
p

Privacy risk analysis
p

Advanced visualization
p

by ARX. In more detail, SECRETA supports the Incognito [8], the Mondrian [9],
the Cluster [14], the Top-down [4], and the Full subtree bottom-up anonymization
algorithms for relational datasets. For transaction/set-valued datasets, SECRETA
supports the COAT [11], the PCTA [5], the Apriori, the LRA [21], and the VPA
[21] algorithms. Furthermore, SECRETA enables the combined use of relational and
transaction anonymization algorithms to anonymize RT-datasets. This is achieved
with the help of three methods, called RMERGEr, TMERGEr and RTMERGEr [14],
which combine a relational with a transaction anonymization algorithm.

5.3 Overview of SECRETA

This section describes the components of SECRETA, which we broadly divide into
frontend and backend components. The frontend offers a Graphical User Interface
(GUI), which enables users to issue anonymization requests, visualize and store
experimental results. The backend consists of components for servicing anonymiza-
tion requests and for conducting experimental evaluations. The architecture of
SECRETA is illustrated in Fig. 5.1.

5.3.1 Frontend of SECRETA

The frontend of SECRETA is implemented using the QT framework (available at:
https://qt-project.org). Using the provided GUI, users are able to:

1. Select relational, transaction or RT-datasets for anonymization.
2. Specify generalization hierarchies and query workloads.
3. Select and configure data anonymization algorithms.

https://qt-project.org
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Fig. 5.1 System architecture of SECRETA

4. Execute experiments and visualize the experimental results.
5. Export anonymized datasets and experimental results, in a variety of formats.

In what follows, we elaborate on the components of the frontend.

Dataset Editor The dataset editor enables users to select datasets for anonymiza-
tion. The datasets can have relational and/or transaction attributes, and they need
to be provided in a Comma-Separated Values (CSV) format. Relational datasets
consist of records (rows) and attributes (columns), where each record has a specific
value for each attribute. Attributes (respectively, values) may be numerical or
categorical. Transaction datasets consist of records (rows), where each record is
associated with a set of items (literals). Different records may contain a different
number of items, which are provided as a comma-separated list. RT-datasets consist
of a set of relational attributes and one transaction attribute.1 Once a dataset is
loaded to the dataset editor, the user can modify it (edit attribute names and values,
add/delete rows and attributes, etc.) and store the changes. The user can also
generate data visualizations, such as histograms of attributes. Figure 5.2 shows a
loaded dataset and some of the supported data visualizations.

Configuration Editor The configuration editor allows users to select hierarchies
and to specify privacy and utility policies. Hierarchies are used by all anonymization
algorithms, except from COAT [11] and PCTA [5], whereas privacy and utility
policies are only used by these two algorithms to model such requirements.

1We note that in the case of RT-datasets containing more than one transaction attributes, these
attributes can be integrated into a single transaction attribute by changing their domain and values’
specification. Assuming two such attributes X and Y, with X having values x1; x2 and Y values
y1; y2, we can replace these attributes with a single transaction attribute, say Z, with domain
fX:x1; X:x2; Y:y1; Y:y2g.
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Fig. 5.2 The main screen of SECRETA

Fig. 5.3 Automatic creation of hierarchies. (a) Selecting the number of splits per level of the
hierarchy and (b) Displaying the produced hierarchy

Hierarchies and policies can be uploaded from a file, or automatically derived from
the data, using the implemented algorithms from [21]. Figure 5.3 shows an example
of the automatic hierarchies creation process. For instance, in Fig. 5.3a the user
selects 3 as the number of splits per hierarchy-level for relational attribute age.
Thus, for attribute age, every parent node in the hierarchy will have three children
nodes (e.g., parent [1918:1926] has children [1918:1920], [1921:1923]
and [1924:1926]). The created hierarchy is depicted in Fig. 5.3b.
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Fig. 5.4 The evaluation mode: method evaluation screen of SECRETA

Queries Editor This component allows specifying query workloads, which will
be used to evaluate the utility of anonymized data in query answering. SECRETA
supports the same type of queries as [24], and uses Average Relative Error (ARE)
[24] as a defacto utility indicator. The query workloads can be loaded from a file
and edited by the user, or can be loaded directly using the GUI.

YOB=[1945:1955] Race=[1:3] 191 206
Sex=2 Race=[1:4] 12 3
Sex=2 Race=1 14 1

In the above queries workload, for instance, the first query selects all users in the
dataset with YOB (year of birth) in [1945:1955], Race in [1:3], and having
the diagnosis codes 192 and 206.

Experimentation Interface Selector This component sets the operation mode of
SECRETA. Figure 5.4 presents the Evaluation mode, in which users can evaluate
a selected anonymization algorithm, while Fig. 5.5 shows the Comparison mode,
which allows users to compare multiple anonymization algorithms. Through these
interfaces, users can select and configure the algorithm(s) to obtain the anonymized
data, store the anonymized dataset(s), and generate visualizations that present the
performance of the algorithm(s).



5 SECRETA: A Tool for Anonymizing Relational, Transaction and RT-Datasets 91

Fig. 5.5 The comparison mode: methods comparison screen of SECRETA

Fig. 5.6 The experimentation interface selector

Figure 5.6 highlights the algorithms’ configuration pane. In this figure, the user
has set parameters k D 25, m D 2 and ı D 0:5, and has selected the Cluster
algorithm as the relational anonymization method, the Apriori algorithm as the
transactions anonymization method, and RMERGEr as the bounding method, in
order to anonymize an input RT-dataset.

Plotting Module The plotting module is based on the QWT library (http://qwt.
sourceforge.net/) and supports a series of data visualizations that help users analyze
their data and understand the performance of anonymization algorithms, when they
are applied with different configuration settings. Specifically, users can visualize
information about:

1. The original and the produced anonymized datasets (e.g., plot histograms of
selected attributes, plot the relative differences in the frequencies between
original and generalized values, etc.)

2. The anonymization results, for single and varying parameter execution.

http://qwt.sourceforge.net/
http://qwt.sourceforge.net/
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Fig. 5.7 Plots for (a) the original dataset, (b) varying parameters execution, and (c) the compari-
son mode

In the single parameter execution, the results are derived with fixed, user-
specified parameters and include frequencies of generalized values in relational
attributes or transaction attributes, runtime, etc. In varying parameter execution,
the user selects the start/end values and step of a parameter that varies, as well
as fixed values for the remaining parameters. The plotted results include data utility
indicators and runtime vs. the varying parameter.

Data Export Module The data export module allows exporting datasets, hierar-
chies, policies, and query workloads, in CSV format, as well as graphs in PDF, JPG,
BMP or PNG format.

Various instances of the plotting and data export modules are shown in Fig. 5.7.
Specifically, Fig. 5.7a presents a histogram of the generalized values of attribute
eduyear, the relative error between the frequencies of the items in the transaction
attribute (comparing the frequency of each item in the original vs. the anonymized
dataset), and the runtime of the various phases of the selected algorithm (efficiency).
Figure 5.7b presents the UL in the transaction part of the data, for fixed values of k
and m and varying parameter ı, as well as the NCP and the runtime of Algorithm
RMERGEr for different values of parameter ı. Figure 5.7c shows the UL, the ARE
and the total number of created clusters for the three different executions, where:

1. Cluster was used for the relational part, Apriori for the diagnosis codes,
RMERGEr as the bounding method, and k D 25, m D 2 and ı D 0:4.

2. Cluster was used for the relational part, VPA for the diagnosis codes, RMERGEr

as the bounding method, and k D 25, m D 2 and ı D 0:4.
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3. Cluster was used for the relational part, Apriori for the diagnosis codes,
RMERGEr as the bounding method, k D 25, ı D 0:4 and the specified utility
and privacy constraints.

These methods and their parameterisation are presented in Sect. 5.3.3. Figure 5.7a–c
help users to conclude that the third configuration is superior to the others.

5.3.2 Backend of SECRETA

In this section we present the backend of SECRETA. First, we provide some
key definitions that are necessary to introduce the methods and utility metrics
implemented into SECRETA (for more information please refer to [6, 7]). Then,
we discuss the specific modules that have been implemented in the backend.

5.3.2.1 Key Definitions

In Sect. 5.1 we highlighted the importance of medical data anonymization algo-
rithms. This need comes from the ability of attackers to use their knowledge
about specific patients’ quasi-identifying values in order to uniquely identify
the corresponding patients’ records in the dataset. As attackers can hold partial
knowledge about various patients, it is critical to protect the data from all possible
attackers.

For instance, an attacker can identify a patient in a relational dataset, using
some known values over the patient’s quasi-identifiers. In a transactions dataset,
it is reasonable to consider that an attacker may know up to m diagnosis codes
of the patient, where m can be arbitrarily large, even covering the entire domain.
Finally, in a RT-dataset an attacker may know the patient’s set of quasi-identifiers
for the relational part and up to m of the patients’ diagnosis codes (transaction
part). We note that this type of adversarial knowledge is more powerful than the
one considered in the cases of relational or transaction datasets.

Relational Datasets In relational datasets, the most commonly used anonymity
model is k-anonymity [20]. k-anonymity protects from identity disclosure, as it
requires that a record becomes indistinguishable from at least k � 1 other records in
the dataset. This group of at least k similar records is called an equivalence class.

Most of the methods satisfying k-anonymity by employing data generalization or
suppression. These operations are applied to the quasi-identifier values. Specifically,
data generalization replaces the original (crisp) values with more general values, and
suppression deletes the corresponding values.

The values of a relational attribute can be either categorical (like gender) of
numerical (like age). Generalizing a categorical value, simply replaces this value
with a more general but semantically close one, using a generalization hierarchy.
For example, in the first record of Table 5.2a, the original country’s value France
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All

Male Female

All

EuropeAfrica

GenderOrigin

Algeria Nigeria Greece France Germany Spain

Fig. 5.8 An example of a hierarchy tree

is replaced with the more general value Europe according to the hierarchies of
Fig. 5.8. Similarly, a numerical value can be replaced with an interval of consecutive
values, where the original value belongs to the interval. For instance, the original
value of age on record 1 in Table 5.2a can be replaced with [19:22].
These are the possible schemes for methods employing generalization:

Full-domain generalization [8, 20]. In this scheme, the same level of a hierarchy
tree is used for all the values of an attribute. For example, using the hierarchies
of Fig. 5.8, if Origin’s value Algeria was generalized to Africa, then it
would be also required that Nigeria is generalized to Africa and Greece,
France, Germany and Spain are generalized to Europe. This scheme has
the smallest search space for a possible solution, as the anonymization algorithm
climbs rapidly the hierarchy tree level-by-level, entailing, on the other hand,
significant data distortion.

Subtree generalization [4, 14]. In this scheme, at a node, either all values are
generalized to their parent, or none is generalized. In more detail, assuming
the hierarchy of Fig. 5.8, if Algeria is generalized to Africa, then also
Nigeria has to be generalized to Africa, but Greece, France, Germany
and Spain can maintain their values. This scheme has an increased search space
for finding a solution, but typically results in a lower level of data distortion when
compared to the previous scheme.

Multidimensional generalization [9]. In the previous schemes, when a value is
generalized, all its instances are generalized. Such schemes are called global
recoding schemes. Alternatively, the multidimensional generalization or local
recoding scheme, allows the generalization of some instances of a value, while
other instances may remain to their original values or be generalized in different
levels of the hierarchy. In more detail, this scheme enables two groups of records,
having the same value on a quasi-identifier, to be generalized independently
into different levels of the hierarchy. For example, let us assume two groups
of records. The first group has two records, both sharing the same original value
Nigeria. The second group has also two records, having values Nigeria and
Algeria, respectively. The first group is already 2-anonymous with respect to
attribute Origin, and thus no generalization has to be applied. On the other hand,
in the second group, we need to generalize both values to Africa to make it
2-anonymous. This scheme enables us to generalize only the groups of records
that violate the anonymity principle, producing less distorted data than the full-
domain and subtree generalization schemes.
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Table 5.4 A .2; 22/-anonymous dataset with privacy constraints P D fFlu; Herpesg
and utility constraints U D ffAsthma; Flug; fHerpes; Eczemagg
Id Age Origin Gender Disease

1 [19:22] Europe Male Asthma Flu (Herpes,Eczema)

2 [19:22] Europe Male Asthma Flu (Herpes,Eczema)

3 [28:39] Europe Female (Asthma,Flu) (Herpes,Eczema)

4 [28:39] Europe Female (Asthma,Flu) (Herpes,Eczema)

5 [55:70] Africa All Asthma

6 [55:70] Africa All Flu

Transaction Datasets For the case of transactions datasets, the most commonly
employed model is km-anonymity [5, 11, 21], which considers attackers that know
up to m diseases (generally items) associated with a patient, and guarantees that
there are least k records in the dataset sharing the same set of m diseases.
The methods that achieve km-anonymity can be categorized as follows:

Hierarchy based generalization [21]. This method applies generalization using
a predefined hierarchy, which groups together semantically close items, e.g.,
diagnosis codes. For example, Essential hypertension (ICD-9
code: 401) could be generalized to Hypertensive disease (ICD-9
codes: 401-405) and then to Diseases of the circulatory
system (ICD-9 codes: 390-459), if necessary.

Constraint based generalization [5, 11]. This approach does not use a hierarchy,
but instead groups together items, e.g., diagnosis codes, based on their semantics.
The corresponding methods can select only certain items to act as quasi-
identifiers or enable data publishers to force certain items to become generalized
together. Thus, they entail less distortion than hierarchy based methods, and also
produce results that are more meaningful in certain medical applications. In
Table 5.4 we present a .2; 22/-anonymous version of the dataset of Table 5.1.
In this case we consider as potentially linkable the combination of Flu and
Herpes. We also enable our method to generalize together only Asthma with
Flu, and Herpes with Eczema.

Typical anonymity models consider all diagnosis codes as potentially linkable,
which may not be the case in the medical domain. For that reason, SECRETA
allows data owners to specify an arbitrarily large set of privacy constraints, each
holding a combination of items that are considered as risky and potentially linkable.
The anonymization algorithm takes as input the user-specified privacy constraints
and applies the necessary data transformations to guarantee that each constraint is
satisfied in the resulting dataset. In this way, each individual (record) is linked to a
sufficiently large number of records with respect to the set of items (a.k.a. itemsets)
specified in the privacy constraints.

In more detail, a privacy constraint is a non-empty set of items that are specified
as potentially linkable. The union of all privacy constraints formulates a privacy
constraints set or a privacy policy. In order to satisfy a privacy policy, each
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privacy constraint in the policy has to be independently satisfied. For a parameter k,
a privacy constraint is satisfied if:

1. The corresponding itemset (of the privacy constraint) appears in at least k
transactions of the anonymized dataset, or

2. It does not appear in the original dataset and each of its proper subsets either
appears in at least k transactions in the anonymized dataset, or it does not appear
in the original dataset.

For example, in Table 5.4, records 5 and 6 are considered safe with respect to the
given privacy policy P , as only records holding together Flu and Herpes are
considered unsafe. We note, however, that the user could have also specified Flu
and Herpes as individual privacy constraints.

Another important factor in medical datasets, is the ability to select which
data generalizations are acceptable, in order to produce data that is meaningful
for supporting medical analyses. In order to enforce only such eligible data
generalization actions, a set of utility constraints (collectively known as a utility
policy) is supported by selected anonymization algorithms. More formally, a utility
constraint declares the set of items that are allowed to be generalized together. The
set of all utility constraints defines the utility policy. A utility policy is satisfied if:

1. Any generalization involves only items (e.g., diagnosis codes) that belong to the
same utility constraint, and

2. The fraction of suppressed items (e.g., diagnosis codes) in the anonymized
dataset is at most s % (where s is a value specified by the data owner to reduce
the number of item suppressions in the dataset).

An example is presented in Table 5.4, where Herpes is generalized together with
Eczema, and Asthma with Flu, thereby satisfying the utility policy Uc.

RT Datasets To anonymize RT-datasets the privacy model of .k; km/-anonymity
has been defined [14]. This privacy model aims to protect users from attackers
whose knowledge spans between the relational attributes and the items of the users.
.k; km/-anonymity guarantees that there exist groups of records with size at least k,
where each group holds patients with the same quasi-identifiers’ values and the same
set of m items (e.g., diagnosis codes). .k; km/-anonymity can be achieved through
the framework described in [14]. In this framework, a data publisher initially creates
clusters of records having size between Œk; 2k � 1�. These clusters can be created
to support either records (a) with semantically close relational attributes, or (b)
semantically close items. Then, a data publisher can use the methods described
in Sect. 5.3.2.1 to anonymize the relational part of the data. Finally, inside each
cluster, the methods of Sect. 5.3.2.1 are applied to guarantee privacy for the items
(e.g., diagnosis codes) of the clusters.

Utility Metrics As there are numerous methods that can be applied to anonymize
a dataset, data publishers need access to intuitive and accurate metrics, in order to
evaluate the information loss of each method. In relational datasets, the information
loss of a generalization may be captured by using the Normalized Certainty Penalty
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(NCP)[24] metric. NCP is calculated by taking under consideration the hierarchy
for categorical values and the generalized space for numerical attributes.

In more detail, suppose that a record t has value u on a categorical attribute
Ai, where u is replaced with the set of values Qv D fu1; : : : ; u; : : : ; ulg during
generalization. The Normalized Certainty Penalty for categorical attribute Ai in
record t is defined as:

NCPAi.t/ D
�

0; j Qvj D 1

j Qvj=jRj; otherwise

where j Qvj is the number of distinct values in set fu1; : : : ; u; : : : ; ulg and jAij is the
number of distinct values of the attribute Ai.
The NCP for a numerical attribute Ai, which is generalized to interval Œx Wy� in record
t is defined as:

NCPAi.t/ D jy � xj
jmaxAi �minAi j

;

where maxAi (minAi) is the maximum (minimum) value of attribute Ai in dataset D.
The NCP of a record t is calculated as:

NCP.t/ D

n
P

iD1

NCPAi.t/

n
;

where NCPAi.t/ is the NCP of attribute Ai in record t, and n is the total number of
attributes in a record.
Consequently, the total NCP of an anonymous dataset D is defined as:

NCP.D/ D
P

t2D

n
P

iD1

NCPAi.t/

jDj ;

where jDj is the number of records of dataset D.
In order to capture the information loss in transaction datasets, we use Utility

Loss (UL) [5, 11]. UL calculates information loss, by assigning a weight to each
generalized item, which reflects the semantics of the diagnosis codes that are
generalized together. UL was first proposed by Loukides et al. [11], for the case
of global recoding. Then, it was adapted for local recoding by Poulis et al. [14].
The latter definition is more suitable for the anonymization of RT-datasets, because
it calculates the information loss per cluster. For a generalized item Qu, a record t,
and a dataset D, UL is defined as follows:

UL.Qu/ D .2jQuj � 1/ 
 w.Qu/;
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UL.t/ D
P

8Qu2t

UL.Qu/

2�.t/ � 1
;

UL.D/ D
P

8r2D
UL.r/

jDj ;

where jQuj is the number of items mapped to Qu, w.Qu/ 2 Œ0; 1� is a weight reflecting
the importance of items Qu respectively [11], and �.t/ is the sum of sizes of all
generalized items in record t.

Last, Average Relative Error (ARE) [9] can be used to quantify data utility in
both the relational and the transaction part of a record. ARE calculates the average
number of records that are retrieved incorrectly, as part of the answer set to a
workload of COUNT queries posed on the anonymized dataset.
As an example, consider the following query on relational data:

QUERY1= SELECT COUNT(*)
FROM dataset
WHERE Age=19 AND Origin=France.

When the above query is issued on the dataset of Table 5.1 the result is 1, as only
one patient has Age=19 and Origin=France. However, when the same query is
issued to the dataset of Table 5.2a, there are two possible answers (i.e., patients 1

and 2 having Age=Œ10 W22� and Origin=Europe).
Similarly, for the following query issued on transaction data:

QUERY2= SELECT COUNT(*)
FROM dataset
WHERE Disease=Asthma AND Disease=Herpes.

When this query is issued on the dataset of Table 5.1 the result is 1, as only the
patient of the first record has diseases Asthma and Herpes. When the same query
is issued to the dataset of Table 5.2b, there are three possible answers (i.e., patients 1,
2 and 4 have the generalized item {Herpes, Eczema}). Based on the semantics of
the applied generalization, a patient having {Herpes, Eczema} may suffer either
from Herpes, or Eczema, or both.

5.3.3 Components

The backend of SECRETA is implemented in C++ and consists of four components,
namely the Policy Specification module, the Method Evaluator/Comparator, the
Anonymization module, and the Experimentation module. In a nutshell, SECRETA
invokes one or more instances of the anonymization module with the specified
algorithm and parameters. The anonymization results are collected by the Method
Evaluator/Comparator component and forwarded to the Experimentation module.
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From there, results are forwarded to the Plotting module for visualization, and/or to
the Data Export module for data export.

Policy Specification Module The Policy Specification module invokes algorithms
that automatically produce hierarchies [22], as well as the strategies in [11], which
generate privacy and utility policies. The hierarchies and/or policies are then used
by the anonymization module.

Method Evaluator/Comparator Module This module implements the function-
ality that is necessary for supporting the interfaces of the Evaluation and the
Comparison modes. Based on the selected interface, anonymization algorithm(s)
and parameters, this component invokes one or more instances (threads) of the
anonymization module. After all instances finish, the evaluator/comparator compo-
nent collects the anonymization results and forwards them to the Experimentation
module.

Anonymization Module The Anonymization module is responsible for executing
an anonymization algorithm with the specified configuration. SECRETA supports
nine algorithms in total. In more detail, the following five algorithms are applicable
to datasets with relational attributes.

1. Incognito [8] is an algorithm that enforces k-anonymity on relational data
by applying full-domain generalization. Incognito works in an apriori fashion,
initially generalizing single attributes and then larger combinations of attributes
in the set of quasi-identifiers, until it produces an anonymous dataset. Incognito
minimizes the information loss in anonymized data by selecting generalizations
that produce more equivalence classes.

2. Cluster [14] is an algorithm that employs a multidimensional generalization
scheme achieving minimal information loss, entailing only a minimal efficiency
overhead. Initially, Cluster selects a random record as a seed and finds k � 1

other records with similar relational attributes’ values to that seed, formulating a
cluster of size k. This intuitive selection of the cluster’s records, typically results
in very low NCP scores.

3. Mondrian [9] is a popular method that uses a multidimensional generalization
scheme. It is a top-down specialization algorithm, which selects a quasi-
identifying attribute and performs local recoding specialization.

4. Top-down [4] is another specialization algorithm. It performs specialization to
one quasi-identifying attribute at a time, as Mondrian does, but instead it uses a
global recoding scheme.

5. Full subtree bottom-up [14] is an algorithm that traverses the hierarchy tree
from bottom to top, generalizing every attribute in its parental value. This method
outperforms full-domain generalization methods, as it uses an extended search
space to find a solution.

As can be seen, these algorithms differ with respect to the way they transform
quasi-identifier values and also the way they operate. Mondrian is the fastest of
these algorithms and Full subtree bottom-up generalization typically achieves better
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utility. However, each of these algorithms has features that may be important in
particular applications. For example, Incognito can easily generate all possible
generalizations that can be generated according to its recoding model.

SECRETA supports the following transaction anonymization algorithms:

1. COAT [11] is an algorithm that prevents identity disclosure. This algorithm
employs the constraint-based generalization model and can support km-
anonymity, as well as privacy-constrained anonymity. It also supports utility
constraints.

2. PCTA [5] works in a similar manner to COAT, supporting both km-anonymity
and privacy-constrained anonymity, as well as utility constraints. PCTA uses
clustering-based heuristics and is significantly more effective than COAT, reduc-
ing utility loss. However, PCTA is less efficient than COAT.

3. Apriori Anonymization [22] is a popular method that has provided the
basis for many other anonymization algorithms [15, 16, 18, 22]. This method
enforces km-anonymity, initially fixing single problematic diagnosis codes and
then moving up to sets of problematic diagnosis codes with sizes 2; : : : ; m.
It uses hierarchy-based generalization based on a user-provided generalization
hierarchy.

4. LRA [22] and VPA [22] are heuristics based on Apriori Anonymization, employ-
ing hierarchy based local recoding generalization. These algorithms initially
partition the dataset in clusters with similar items and then generalize the items
inside each cluster to enforce the km-anonymity principle.

All these algorithms are heuristics, which differ according to the way they generalize
data and their objective functions. It is important to support these algorithms,
because none of them is superior to others in all applications. For example, COAT
is more effective than Apriori Anonymization, but it is not as scalable.

Additionally, SECRETA supports three bounding methods [14], which merge
together clusters, until the total NCP of the dataset reaches a user defined threshold
ı. These methods can be applied to datasets that have been anonymized using
Incognito, Cluster, TDS and Full subtree bottom-up algorithms. Note that Mondrian
is not supported, as it does not use a hierarchy to construct equivalence classes. The
supported bounding methods are:

1. RMERGEr . This method merges together clusters based on their respective
relational attributes. It uses the NCP metric to evaluate how close two clusters
are, and chooses the clusters that produce the lowest NCP.

2. TMERGEr . This method merges together clusters based on their respective
transaction items. Specifically, it evaluates how many common, different and
total diagnosis codes exist between every pair of records between the two
clusters, and chooses the clusters that have the most semantically closest items.

3. RTMERGEr . This method takes into consideration both the relational and the
transaction parts of the records inside each cluster. Its performance lies between
RMERGEr and TMERGEr .

An overview of the supported algorithms in SECRETA is presented in Table 5.5.
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Table 5.5 Overview of the methods supported from SECRETA

Relational datasets Transaction datasets RT-datasets

Incognito
p p

Mondrian
p

Cluster
p p

Top-down
p p

Bottom-up
p p

PCTA
p p

COAT
p p

Apriori
p p

LRA
p p

VPA
p p

Experimentation Module This module is responsible for producing visualizations
of the anonymization results and of the performance of the anonymization algo-
rithm(s), in the case of single and varying parameter execution. For visualizations
involving the computation of ARE, input is used from the Queries Editor module.
The produced visualizations are presented to the user, through the Plotting module,
and can be stored to disk using the Data Export module.

5.4 Using SECRETA

We will now demonstrate all the necessary steps that a user has to complete in
order to anonymize and evaluate a dataset. Let us consider a user (e.g., a healthcare
facility) holding a medical dataset, which contains the demographics and a set
of diagnosis codes for various patients. Let us also assume that the user wants
to anonymize and publish this dataset, enabling medical researchers to study the
correlation between the age and sex of a patient with certain diagnosis codes.

To validate that the anonymized dataset can still be used for meaningful analysis,
the user wants to issue some COUNT queries on the original and the anonymous
datasets, and measure the average relative error.

• Prepare the dataset in order to be compatible with SECRETA.
• Load the dataset in SECRETA.
• Edit the dataset using the embedded dataset editor of SECRETA.
• Define a hierarchy for the demographic attributes.
• Load and edit a workload of COUNT queries.
• Perform a set of data visualizations to the original dataset.
• Compare the available anonymization methods for the dataset in order to select

the most appropriate one.
• Anonymize the dataset using the selected method.
• Export various graphs reporting on a set of quality and efficiency metrics.
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Table 5.6 (a) A fictitious medical dataset presenting the Year-Of-Birth, Sex, Race, and
Diagnosis codes of patients, (b) mapping of attribute Sex, and (c) mapping of attribute Race

YOB Sex Race Diagnosis codes

1998 1 1 131 2 278

1926 1 1 432 433 615 435 184 96 243 210 168 316 388

1955 1 1 135 184 427

1938 1 1 380 128

1972 1 2 429 83 288 434 467 113 612 128 243 380 393

(a)

id Sex

1 Male

2 Female

(b)

id Race

1 White

2 Black

3 American Indian/Alaska Native

4 Asian

5 Native Hawaiian/Pacific islander

6 Multiple races reported

(c)

5.4.1 Preparing the Dataset

We consider that the user has a medical dataset with information like the one
presented in Table 5.6a. In Table 5.6b, c, we present the mapping for attributes sex
and race respectively. For instance, sex=1 in the original dataset, means that this
patient is male. In order to make this dataset compatible with SECRETA, the user
has to export it to a file of the following format:

//YOB,sex,race,diagnosis_codes
1998,1,1,0,6, 131 2 278
1926,1,1,3,1, 432 433 615 435 184 96 243 210 168 316 388
1955,1,1,0,5, 135 184 427
1938,1,1,12,2, 380 128
1972,1,2,10,3, 429 83 288 434 467 113 612 128 243 380 393

The first line holds the name of all attributes of the dataset and is optional. In the
following lines, the relational attributes have to be separated by comma, while the
items of the transaction attribute have to be separated by spaces. Finally, a comma
and a space has to be used in order to separate the relational attribute from the
transaction attribute.
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Fig. 5.9 The dataset editor

Fig. 5.10 Frequency plots of the original dataset

5.4.2 Using the Dataset Editor

The user can now load the dataset in the dataset editor using the button.
SECRETA automatically recognizes the type and the format of the dataset, and
presents the loaded dataset (Fig. 5.9).

After that, the user is able to edit the attribute names of the dataset, by double
clicking on their respective title column. The user can also edit the values of a record,
select and delete several records, or insert new records.

Finally, the user may overwrite the existing dataset with the modified one,
or export it to a file. Subsequently, the user can analyze the dataset by plotting
histograms of the frequency of values in any attribute on the bottom pane of the
main screen of SECRETA (see Fig. 5.10).
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Fig. 5.11 The hierarchy
specification area

5.4.3 The Hierarchy Editor

Next, the user can define a hierarchy for the relational attributes of the dataset.
This step is applicable only on relational and RT-datasets. A hierarchy can be either
loaded from a file or be automatically generated by SECRETA, using the automatic

hierarchy generation feature. This feature is triggered by clicking the button.
When this feature is used, the user inputs the number of children that a leaf node
shall contain, for every attribute of the dataset. The generated hierarchy for the
example dataset is presented in Fig. 5.11. This hierarchy is fully browsable and
editable, and can be exported to a text file.

5.4.4 The Queries Workload Editor

The user can also load a query workload from a file, in order to issue the desired
COUNT queries in the original and anonymized datasets. Each COUNT query has to
be in the following format:

attribute=<range of values> 
 
 
 diagnosis_code_id 
 
 

In more detail, the user enters the name of a relational attribute and a desired value
or range of values. The user can enter more than one relational attributes in the
same query. Next, the user enters the desired items for the transaction attribute. For
example, a valid query workload is:

YOB=[1978:1985] sex=1 12 92
YOB=1978 sex=[1:2] 43 92
YOB=1978 sex=1 12 43

In this example, the first query counts all male patients having YOB (year-of-birth)
between 1978 and 1985, and being diagnosed with diseases 12 and 92.
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After loading the query workload (by pressing the button on the upper
right corner of SECRETA), the user can edit single queries, add or remove queries,
and finally save the query workloads to a file.

5.4.5 Evaluating the Desired Method

Having prepared the dataset, defined a hierarchy and a queries workload, the user

can now enter the Method Evaluation interface, by clicking the button. This
interface enables the user to configure, apply, and evaluate a single method.

Initially, the user can use the Method Evaluation interface and set the values
for parameters k; m; ı, using the text boxes or the corresponding sliders (Fig. 5.12).
Notice that the bounds for parameters k and m are automatically set by the system
based on the input dataset. For instance, if the users’ dataset contains 6000 records
and no record has more than 29 values, k has allowable values in Œ2; 6000� and
m 2 Œ1; 29�. By definition, ı 2 Œ0; 1� and the user can specify it’s exact value. Then,
the user may select three algorithms, one for anonymizing the relational attributes,
one for the transaction attribute, and one as the bounding method.

Next, the user may initiate the anonymization process. When this process ends,
a message box with the summary of results will be presented (Fig. 5.13) and the
anonymized dataset will be displayed in the output area (Fig. 5.14). Last, the user
can select a number of data visualizations. These visualizations will be presented in
the plotting area (Fig. 5.15) and may illustrate any combination of the following:

1. ARE scores for various parameters (e.g., for varying ı and fixed k and m, or for
varying k and fixed ı and m, etc.)

2. The time needed to execute the overall algorithm and its different phases.
3. The frequency of all generalized values in a selected relational attribute.
4. The relative error between the frequency of the transaction attribute values

(items), in the original and in the anonymized dataset.

Fig. 5.12 Method parameters setup
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Fig. 5.13 A messagebox
with the results summary

Fig. 5.14 The data output area

Fig. 5.15 The plotting area

5.4.6 Comparing Different Methods

Typically, users want to evaluate more than one methods and select the most
beneficial. In this case, the Methods Comparison interface of SECRETA can be

used (by clicking on the button).
This interface enables the user to:

• Select an algorithm for anonymizing relational attributes (e.g., demographics).
• Select an algorithm for anonymizing diagnosis codes.
• Select an algorithm that will be used as a bounding method.
• Set the values for parameters that will be fixed, as described above.
• Choose one varying parameter, along with its start/end value and step.

The above actions define a configuration, which is added into the experimenter area

on the top-right pane (Fig. 5.16) by pressing the button. Similarly, the user may
create additional configurations. After the methods are applied, the user may select
various graphs, which will be displayed in the plotting area.



5 SECRETA: A Tool for Anonymizing Relational, Transaction and RT-Datasets 107

Fig. 5.16 The configurations editor

5.5 Conclusion and Future Work

In this chapter, we provided an overview of the SECRETA system, which allows
applying and evaluating different anonymization algorithms on data with relational
and/or transaction attributes. The SECRETA system does not require expertise in
data anonymization in order to be used, and has several useful features for evaluating
different algorithms and reporting their achieved level of data utility.

SECRETA can be a useful tool for medical data owners, as it enables them
to effortlessly evaluate a range of anonymization methods to select the most
appropriate one for a specific data publishing need. However, SECRETA is a
tool that can be extended and improved along many dimensions, including the
following:

• Inclusion of additional data anonymization algorithms. For example, we plan
to incorporate algorithms that enforce l-diversity [12], t-closeness [10], and
�-uncertainty [1].

• Offering of SECRETA’s functionality through an API that developers can use to
call anonymization methods or evaluation tools from their own software.

• Provisioning of a command line execution mode, for faster data anonymization
of larger datasets by avoiding the overhead of the GUI.

• Offering of SECRETA’s functionality as a web service. Currently, a user has to
download the software and install it in a linux environment. On the contrary, a
web-based version of SECRETA could be executed on any operating system with
Internet access. Also, new releases of the software would be directly available to
end users, without any actions from their side.
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Chapter 6
Putting Statistical Disclosure Control into
Practice: The ARX Data Anonymization Tool

Fabian Prasser and Florian Kohlmayer

Abstract The sharing of sensitive personal data has become a core element of
biomedical research. To protect privacy, a broad spectrum of techniques must
be implemented, including data anonymization. In this article, we present ARX,
an anonymization tool for structured data which supports a broad spectrum of
methods for statistical disclosure control by providing (1) models for analyzing re-
identification risks, (2) risk-based anonymization, (3) syntactic privacy criteria, such
as k-anonymity, `-diversity, t-closeness and ı-presence, (4) methods for automated
and manual evaluation of data utility, and (5) an intuitive coding model using
generalization, suppression and microaggregation. ARX is highly scalable and
allows for anonymizing datasets with several millions of records on commodity
hardware. Moreover, it offers a comprehensive graphical user interface with wizards
and visualizations that guide users through different aspects of the anonymization
process. ARX is not just a toolbox, but a fully-fledged application, meaning that all
implemented methods have been harmonized and integrated with each other. It is
well understood that balancing privacy and data utility requires user feedback. To
facilitate this interaction, ARX is highly configurable and provides various methods
for exploring the solution space.

6.1 Introduction

Collaborative collection and sharing of sensitive personal data have become
indispensable for biomedical research. To secure privacy in complex research
environments, a broad spectrum of measures must be implemented, including legal,
contractual as well as technical measures. Data anonymization is a central building
block in this context. It aims at sanitizing datasets in ways that prevent attackers
from breaching the subjects’ privacy. Different definitions of privacy and techniques
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for sanitizing datasets have been proposed [13, 15, 20]. As sanitization inevitably
leads to information loss and, thus, a decrease in data quality, the balance between
privacy protection and utility for a specific use case has to be considered.

In this work, we will focus on statistical disclosure control with syntactic privacy
models [15, 20]. We will relate our work to semantic privacy models [13] in
Sects. 6.5.1 and 6.5.2.

6.1.1 Background

Methods of statistical disclosure control offer the dynamic means needed to balance
privacy and utility. The spectrum of methods is broad [8, 17, 20]. Syntactic
privacy criteria are used to express privacy requirements. Coding models, often
generalization and suppression of attribute values, are utilized to transform datasets
in such a way that they adhere to the specified privacy requirements. Risk models
are used to estimate risks of re-identification, which are an inherent aspect of many
privacy models. Utility measures allow estimating the suitability of the resulting
datasets for specific usage scenarios. Methods of statistical disclosure control have
been recommended by official working groups [1], as they can effectively protect
sensitive biomedical data while resulting in a higher data utility compared to simple
heuristics such as the HIPAA Safe Harbor method [36]. Still, however, they are used
rarely. An important reason for this is that effective statistical disclosure control
requires the use of a large set of techniques in an integrated manner.

Firstly, a balancing of privacy and utility can be achieved by using different
methods, as well as by varying their respective parameters. Secondly, data may
be shared with different users under differing laws and regulations, leading to
different privacy requirements. Thirdly, different usage scenarios only allow for
different types of transformations to be applied to data. Finally, different techniques
have been developed for anonymizing different types of data. To cope with this
broad spectrum of requirements, systems need to support various privacy models,
risk models, methods for evaluating data utility and types of data transformations.
As each of these individual methods is already complex by itself, it is not surprising
that neither best practices nor concise guidelines are available to assist data
controllers in dealing with these complexities. Moreover, tools that provide adequate
access to the variety of methods needed are still in their infancy.

To improve upon existing tools, methods need not only be implemented but also
integrated with each other to enable exploiting their full potential. This is non-trivial.
For example, it requires a fair amount of effort to make sure that privacy models can
be combined with each other, with different methods for automatic evaluation of
data utility, and with different transformation models. It is cumbersome to adjust
the details and to make sure that all parameters and results can be customized and
visualized in the user interface. Such development efforts are usually not undertaken
when developing research prototypes. Overall, this imposes a high barrier to data
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controllers and researchers who want to test the practical usefulness of methods
for data anonymization, develop guidelines and ultimately implement them into
day-to-day data processing.

6.1.2 Objectives and Outline

To overcome this gap, we have put extensive efforts in developing ARX, a data
anonymization tool which, to our knowledge, provides the most comprehensive
support of methods for statistical disclosure control to date. Moreover, ARX is not
just a toolbox but a fully-fledged application, meaning that all implemented methods
have been harmonized and integrated with each other. It is well understood that
balancing privacy and data utility may often require user feedback. For this reason,
ARX is highly configurable and provides various methods for exploring the solution
space. While ARX can be seen as a domain-independent tool, it has been designed
with a specific focus on the biomedical domain. Its highlights include:

Risk analyses: ARX implements multiple methods for estimating re-identification
risks, including two different super-population models [11].

Risk-based anonymization: ARX provides privacy criteria that utilize the imple-
mented risk models. It can automatically transform datasets to ensure that risks
are below a user-defined threshold.

Syntactic privacy criteria: ARX implements a variety of further syntactic privacy
criteria, including k-anonymity [48], three variants of `-diversity [32, 35], two
variants of t-closeness [32] and ı-presence [40]. Moreover, ARX supports
arbitrary combinations of privacy criteria (including risk-based methods).

Utility evaluation: ARX implements several methods for evaluating data utility,
manually as well as automatically [3, 16, 24, 30]. Methods for automated utility
evaluation are highly configurable.

Intuitive transformation model: ARX uses global recoding via full-domain gen-
eralization combined with local recoding via tuple suppression [27]. This coding
scheme has been recommended for the biomedical domain [16]. Additionally, it
supports top- and bottom-coding, as well as microaggregation [8].

Optimality: ARX implements a globally-optimal search strategy that will automat-
ically classify the solution space and determine the transformation that is optimal
according to the defined utility measure [26].

Scalability: ARX has been designed from the ground up to be highly scalable, and it
is able to handle very large datasets (with millions of data entries) on commodity
hardware [45].

Compatibility: ARX comes with facilities for importing data from common
sources, such as CSV files, spreadsheet programs (MS Excel) and relational
database systems (e.g., MS SQLServer, MySQL, PostgreSQL) [44].
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Comprehensive GUI: ARX provides a fully-fledged graphical interface with fea-
tures such as wizards for creating generalization hierarchies and various visual-
izations of data utility, risk estimates and the solution space [44].

Carefully designed API: ARX also offers an application programming interface
(API) that allows accessing all of its features. All methods are first-class citizens
in the API, as well as the GUI [44].

Cross-platform: ARX is implemented in Java and available for all common
operating systems. The ARX user interface is built with the Standard Widget
Toolkit (SWT) which provides a native look and feel on all platforms.

Open source: ARX is open source software, fostering reviews by the community
and allowing users to tailor it to their requirements [2].

Implementing an integrated application with support for such a broad spectrum of
anonymization methods is non-trivial. Many methods are inherently computation-
ally complex and thus require the development of sophisticated data structures and
algorithms to implement them in an efficient manner. Moreover, implementations
need to be designed carefully, to ensure that they are inter-operable with the many
other methods relevant to data anonymization.

In this chapter, we present ARX and sketch some of its most important design
and implementation aspects. The remainder of the chapter is structured as follows.
In Sect. 6.2 we give an in-depth overview of the ARX system. We present the system
architecture and introduce the application programming interface as well as the
graphical user interface. In Sect. 6.3 we describe selected implementation details. In
Sect. 6.4 we present a brief experimental evaluation, focusing on the more advanced
methods supported by ARX. Last, we discuss our work and conclude this chapter.

6.2 The ARX Data Anonymization Tool

There are three different types of data anonymization typically performed with
personal health data:

1. Masking identifiers in unstructured data, e.g., removing HIPAA identifiers
[53] from clinical notes using machine learning approaches or regular expres-
sions [25].

2. Privacy-preserving data analysis in an interactive scenario. Methods from this
area include interactive differential privacy [13] and query-set-size control.

3. Anonymization of static structured microdata, where data is expected to be in a
tabular form with each row corresponding to the data about one individual [20].

The focus of our work, ARX, is on the anonymization of static structured microdata,
which may, for example, be used to de-identify data that has been collected for
biomedical research prior to sharing it with others.
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6.2.1 Background

When anonymizing structured data, the general attack vector assumed is linkage of a
sensitive dataset with an identified dataset (or similar background knowledge about
individuals). The attributes that may be used for linkage are termed quasi-identifiers
(or indirect identifiers, or keys). Such attributes are not identifiers per-se but may in
combination be used for linkage. Moreover, it is assumed that they cannot simply
be removed from the dataset as they may be required for analyses and that they are
likely to be available to an attacker.

Furthermore, it is assumed that directly identifying information (such as names)
have already been removed from the dataset. An example dataset with different
types of attributes is shown in Fig. 6.1. Three types of privacy threats are commonly
considered [34]:

1. Membership disclosure means that data linkage allows an attacker to determine
whether or not data about an individual is contained in a dataset [40]. While this
does not directly disclose any information from the dataset itself, it may allow
an attacker to infer meta-information. In our example, the data is from a cancer
registry and it can thus be inferred that an individual has or has had cancer. While
this deals with implicit sensitive attributes (meaning attributes of an individual
that are not contained in the dataset), other disclosure models deal with explicit
sensitive attributes.

2. Attribute disclosure may be achieved even without linking an individual to a
specific item in a dataset [35]. It protects sensitive attributes, which are attributes
from the dataset with which individuals are not willing to be linked with. As such,
they might be of interest to an attacker and, if disclosed, could cause harm to
data subjects. As an example, linkage to a set of data entries allows inferring
information if all items share a certain sensitive attribute value (breast cancer in
our example).

3. Identity disclosure (or re-identification) means that an individual can be linked
to a specific data entry [50]. This is a very serious type of attack, as it has
legal consequences for data owners according to many laws and regulations
worldwide. From the definition it also follows that an attacker can learn all
sensitive information contained in the data entry about the individual.

Firstname Lastname Age Gender State Diagnosis
Bradley Rider 51 Male NY Colon cancer
Michael Harlow 45 Male MS Hodgkin disease
Adella Bartram 63 Female NY Breast cancer
Freya King 78 TX Breast cancer

Laurena Milton 81 AL Breast cancer
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Fig. 6.1 Example cancer dataset: types of attributes and types of disclosure



116 F. Prasser and F. Kohlmayer

male female

gender

≥61

99...

age

*

*

6160...2019...1

≤ 19 20–60

Level 2

Level 1

Level 0

Fig. 6.2 Generalization hierarchies for attributes age and gender

To counter privacy threats with ARX, data is transformed with generalization
hierarchies. The tool supports hierarchies for both categorical and continuous
attributes. Examples are shown in Fig. 6.2. Here, values of the attribute age are
transformed into age groups, while values of the attribute gender can only be sup-
pressed. Generalization hierarchies are well suited for categorical attributes. They
can also be used for continuous attributes by performing on-the-fly categorization.
In ARX, this categorization is implemented by representing generalization strategies
in a functional manner, e.g., as a set of intervals.

To increase data utility, attribute generalization is combined with the suppression
of data records. This means that rows which violate the privacy criteria (i.e., outliers)
are automatically removed from the dataset, while the total number of removed
records is kept under a specified threshold, which is called the suppression limit. As
a result, less generalization is required to ensure that the remaining records satisfy
the privacy model.

ARX implements multi-dimensional global recoding with full-domain general-
ization and local recoding with tuple suppression. This combination of methods has
been found to be well-suited for the biomedical domain, as it is (1) intuitive, (2)
produces datasets that are well suited for analyses by epidemiologists and, (3) can
be configured by non-experts [16]. Configuration (and thus balancing of privacy
and utility) may be performed by altering generalization hierarchies or by choosing
a suitable transformation from the solution space. For continuous variables, ARX
also supports microaggregation [8]. This means that the values of a quasi-identifier
within one group are transformed by applying aggregate functions, such as the
arithmetic or geometric mean. In the anonymized table, the entire group of values is
then replaced with the result of the aggregate function. In contrast to generalization
or suppression, this method can be used to preserve the data type and scale of
measure of a numerical variable.

When using global recoding with full-domain generalization, the search space
can be modeled as a generalization lattice, which is a partially ordered set of all
possible combinations of generalization levels of each attribute. Lattices can be
visualized with Hasse diagrams, which in our context means to draw the transitive
reduction of a set of transformations in an acyclic graph, where each node is
connected to all of its direct successors and predecessors [55]. Each node represents
one transformation and defines generalization levels for all quasi-identifiers. An
arrow denotes that a transformation is a direct generalization of a more specialized
transformation, which can be created by incrementing one of the generalization
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Fig. 6.3 Example search
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Table 6.1 Example dataset and the result of applying the transformation (1,0)

Quasi-identifying Insensitive Sensitive Quasi-identifying Insensitive Sensitive
Age Gender State Diagnosis Age Gender State Diagnosis
34 Male NY Pneumonia 20–60 Male NY Pneumonia
45 Female MS Gastritis 20–60 Female MS Gastritis
66 Male NY Gastritis �61 Male NY Gastritis
70 Male TX Pneumonia �61 Male TX Pneumonia
35 Female AL Pneumonia 20–60 Female AL Pneumonia
21 Male AL Gastritis 20–60 Male AL Gastritis
18 Female TX Pneumonia �19 Female TX Pneumonia
19 Female MS Gastritis �19 Female MS Gastritis

levels defined by its predecessor. An example utilizing the hierarchies from Fig. 6.2
is shown in Fig. 6.3. The original dataset is at the bottom (0, 0), whereas the
transformation with maximal generalization (2, 1) is at the top.

Table 6.1 shows an example dataset in which the attributes age and gender are
considered quasi-identifying, state is considered insensitive, and diagnosis
is considered to be a sensitive attribute. Moreover, the table shows the result of
applying the transformation (1, 0) to the quasi-identifiers, which leaves gender
as-is and generalizes age to the first level of the associated hierarchy.

6.2.2 Overview

In this section, we will present a short overview of the basic functionalities of ARX
in terms of supported privacy models, risk models and methods for utility evaluation.

6.2.2.1 Privacy Models

To prevent privacy breaches, ARX implements privacy models that apply syntactic
privacy criteria on a dataset. In these privacy models, assumptions are made
about potential attackers and (likely) background knowledge, as well as goals, by
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classifying attributes according to the above definitions. The tool supports arbitrary
combinations of the following privacy models:

• k-Anonymity is the best known privacy model [50]. It aims at protecting datasets
from identity disclosure. A dataset is k-anonymous if, regarding the quasi-
identifiers, each data item cannot be distinguished from at least k-1 other data
items. This property can be used to define equivalence classes of indistinguish-
able entries [48]. The output dataset from Table 6.1 fulfills 2-anonymity.

• `-Diversity aims at protecting datasets against attribute disclosure [35].
It requires that each sensitive attribute must have at least ` “well represented”
values in each equivalence class. ARX implements three variants, which use
different notions of diversity: distinct-`-diversity, which requires ` different
sensitive values per class [32], as well as recursive-(c, `)-diversity and entropy-
`-diversity [35]. The output dataset from Table 6.1 fulfills distinct-2-diversity.

• t-Closeness overcomes some limitations of `-diversity but it may also be more
difficult to achieve [32]. It requires that the distance between the distribution
of sensitive values in each equivalence class and their overall distribution in
the dataset must be lower than a given threshold [32]. ARX implements two
variants, one of which uses generalization hierarchies to compute distances
between different distributions of an attribute.

• ı-Presence aims at protecting datasets against membership disclosure [40].
It requires that the disclosed dataset is explicitly modeled as a subset of a
larger dataset that represents the attacker’s background knowledge. The criterion
enforces restrictions on the probabilities with which it can be determined whether
or not an individual from the global dataset is contained in the research subset.
Upper bounds for these probabilities are calculated based on the sizes of
equivalence classes [40].

• Risk-based anonymization can be used to automatically transform datasets to
ensure that estimated re-identification risks fall below a given threshold [11].

6.2.2.2 Risk Analysis and Risk-Based Anonymization

In ARX, super-population models may be used to estimate population uniqueness,
i.e., the fraction of entries in the dataset that are unique within the overall population.
These statistical methods estimate characteristics of the overall population with
probability distributions that are parameterized with sample characteristics. ARX
provides default settings for populations, such as the USA, UK, France or Germany,
and implements The sentence is misleading as the model by Zayatz is not a super-
population model. The model by Hoshino, which is based on Pitman’s sampling
formula [22], and a model using a slide negative binomial (SNB) distribution [6, 47],
in which it is assumed that the sample has been created through random binomial
sampling. Moreover, the tool implements the risk model by Zayatz [21, 61], which
assumes no specific distribution of the data. Three models have also been combined
into a decision rule for biomedical datasets which has been validated with real-
world data [11].
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In the tool, risk estimates can also be used for risk-based anonymization. The
static k-anonymity model basically defines an upper bound on the re-identification
risk, which is (over-) estimated with sample frequencies. ARX supports multiple
relaxed variants of this criterion that utilize the aforementioned risk models to
ensure that risk estimates fall below a given threshold.

6.2.2.3 Utility Evaluation

For automatically measuring data utility, ARX supports methods based on equiv-
alence classes, which are called single-dimensional utility metrics in the tool.
Examples include Discernibility [3] and Average Equivalence Class Size [30]. Both
measures estimate information content based on the size of equivalence classes,
while discernibility also involves a penalty for suppressed tuples.

Additionally, ARX supports methods based on the actual data values. As these
methods compute independent values for each attribute, which are then compiled
into a global value, we call them multi-dimensional utility metrics. ARX supports
several aggregate functions for compiling global utility measures, including sum,
arithmetic mean and geometric mean.

Moreover, multi-dimensional metrics may be weighted, meaning that weights
can be assigned to attributes to model their importance. The implemented measures
include Non-Uniform Entropy [16], which is an information theoretic method, and
Loss [24], which measures the extent to which the domain of an attribute is covered
by its generalization. The latter method makes use of functional representations
of generalization hierarchies (cf. Sect. 6.1.1). Our globally-optimal search strategy,
Flash, is able to automatically determine a transformation that maximizes data
utility according to the implemented utility measures [26].

6.2.2.4 Additional Features

ARX is compatible with a wide range of data processing tools. It currently features
interfaces for importing data from character-separated values (CSV) files, MS Excel
spreadsheets and relational database management systems (RDBMSs), such as MS
SQLServer, PostgreSQL and MySQL. The syntax of CSV encoded files is detected
automatically. On a semantic level, ARX supports different data types and scales of
measure. Formats of data types are also detected automatically. ARX supports data
cleansing during import, meaning that invalid data are replaced with a value that
represents missing data. ARX safely handles missing values by making sure that
different missing values match each other [7].
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Fig. 6.4 High-level
architecture of the ARX
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6.2.3 System Architecture

The high-level system architecture of ARX is shown in Fig. 6.4. Among the design
objectives was to prevent tight coupling of subsystems and to ensure extensibility.
The core modules, which normally need not be modified, provide the basis for our
software. Implementation details about this module will be given in Sect. 6.3.

The I/O module provides methods for reading data from and writing data to
external storage, while the data encoding module transforms the data into the format
and memory layout required by the framework. The data management module
deals with this internal representation and implements several optimizations (see
Sect. 6.3). The transformation model is implemented on top of this representation
and supports generalizing, suppressing and aggregating values. The data analysis
module provides methods for grouping data records and for computing frequency
distributions of attribute values. These distributions can be used to protect sensitive
attributes and to apply microaggregation. The analysis module also acts as a bridge
to privacy models and data utility measures.

Extensible modules are built on top of the core modules and provide implemen-
tations of privacy criteria, data utility measures, risk models, methods of descriptive
statistics, and anonymization algorithms. These modules are only loosely coupled
to the internals of the framework. Currently, our tool features several variants of
the Flash algorithm but the framework can be used to implement a large set of
methods [28, 44]. The application programming interface (API) is based on both
the extensible and the core modules. It is also used by the graphical interface, which
is thus decoupled from the internals of the system.

Figure 6.5 provides a more detailed overview of the basic design of ARX’s core.
It shows a simplified Unified Modeling Language (UML) class diagram, in which
classes that are part of the public Application Programming Interface (API) of ARX
are drawn with a thick border. The public API will be presented in more detail in
the next paragraph. In ARX, the attributes of a dataset are partitioned into different
Buffers, depending on which types of transformation (generalization or aggrega-
tion) and analyses (computation of frequency distributions) are to be performed with



6 The ARX Data Anonymization Tool 121

Data
ManagementData Handle

ARXLattice

Buffer

Input

Static
Input

Generalizable
Input

Aggregatable
Input

Output

Generalized
Output

Aggregated
Output

DataHandle
Input

DataHandle
Output

Analyzable
Input

Generalizer Aggregator

Analyzer

Equivalence
Class Distribution

Transformation
model

ValueAggregate
Function

Checker Data
analysisUtilityMetric

Snapshot
Management

Search
algorithm

Flash
Algorithm

PrivacyCriterion

Hierarchy

Fig. 6.5 Overview of the most important classes in ARX’s core

them. For users of the API, DataHandles re-integrate these separate buffers and
provide transparent access. For parts of the data that are modified, separate output
buffers exist that hold transformed attribute values. The transformation module
reads data from the input buffers and the frequency distributions of attribute values
computed by the analysis module and writes generalized (via Generalizer) or
aggregated (via Aggregator) values to the output buffers.

The Analyzer from the data analysis module accesses data from the input
and output buffers, and computes equivalence classes and frequency distributions
of attribute values. It makes use of the snapshot management component from the
data management module for optimizations (see Sect. 6.3). The class Checker
acts as the main interface to anonymization algorithms. It orchestrates the process
of transforming data, analyzing data and evaluating privacy criteria as well as
data utility measures. Our search algorithm, Flash, traverses a given generalization
lattice and uses this interface for evaluating properties of data transformations.

A UML diagram of the most important classes of the API of ARX is shown in
Fig. 6.6. The API has packages for (1) data import and configuration, (2) hierarchy
creation, (3) privacy criteria specification, (4) data utility quantification, (5) utility
evaluation, (6) representation of the solution space, and (7) risk analyses.

For hierarchy creation, ARX provides several ValueAggregateFunctions,
which can also be used for microaggregation. Privacy criteria are divided
into class-based and sample-based. The latter are evaluated for the complete
dataset instead of individual equivalence classes. Currently, all instances of
RiskBasedPrivacyCriterion are sample-based. These criteria make use
of risk estimators provided by the corresponding package. Risk estimators are
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Fig. 6.6 Overview of the most important classes in ARX’s application programming interface

implemented for analyzing (groups of) attributes and for analyzing the dataset
based on sample characteristics or super-population models.

Data utility measures are divided into single-dimensional and multi-dimensional
UtilityMetrics (cf. Sect. 6.2.2.3). The utility analysis package provides basic
methods of descriptive statistics for evaluating input and output data. It is accessible
via DataHandles.

The classes ARXConfiguration, ARXAnonymizer and ARXResult act
as the main interfaces to ARX’s functionalities. Data and attribute types are provided
as static variables from the DataType and AttributeType classes, respec-
tively. The class DataHandle allows users to interact with the data (read-only),
by performing operations such as sorting, swapping rows or accessing cell values.
Handles can be obtained for input data, output data and horizontal subsets of such
data. Data handles, representing input and derived output data, are linked with each
other, meaning that operations performed on one representation are transparently
performed on all other representations as well. For example, sorting the input data
sorts the output data analogously. The class ARXLattice offers several methods
for exploring the solution space and for obtaining information about the properties
of transformations, represented by instances of the class ARXNode.

All features that are accessible via the graphical interface are also accessible
via the public API. However, the aim of the programming interface is to provide
de-identification methods to other software systems and we note that interaction
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with the software library will often be simpler than interaction with the graphical
tool. Programmatic access will usually rely on ARX’s ability to automatically
determine a solution to a privacy problem.

6.2.4 Application Programming Interface

In this section, we will present a running example for anonymizing a dataset
with the API. While this example naturally does not make use of all of ARX’s
features, it covers many of the more advanced functionalities of the software.
This includes (1) importing data from a relational database system, (2) using
functional representations of generalization hierarchies, (3) enforcing t-closeness
using generalization hierarchies for computing distances, (4) performing a risk
analysis that uses super-population models and Dankar et al.’s decision rule for
biomedical datasets, as well as, (5) automatically determining an optimal solution
with regards to a utility measure that is parameterized with attribute weights and
preferences about how the coding model should be applied. We assume a dataset
with three quasi-identifiers, age, gender and zip code as well as one sensitive
attribute, LDL cholesterol.

We start by creating generalization hierarchies for the four attributes. ARX
implements methods for creating generalization hierarchies by mapping values into
intervals, by ordering and grouping values, and by masking characters. Listing 6.1
shows an example of how to use intervals for categorizing the attribute LDL
cholesterol into six categories ranging from very low (LDL cholesterol lower
than 1.8) to very high (LDL cholesterol greater than 4.9). On the next level of
the hierarchy, the categories very low and low are merged into the category low,
the categories normal and borderline high are merged into the category normal, and
the categories high and very high are merged into the category high. On the next
level, low and normal are merged into low-normal, while high remains unchanged.
Such functional representations of hierarchies enable ARX to handle continuous
variables via categorization.

1 // Create builder that uses intervals for categorization
2 HierarchyBuilderIntervalBased<Double> bLDL = HierarchyBuilderIntervalBased
3 .create(DataType.DECIMAL);
4

5 // Define base intervals (level 1)
6 bLDL.addInterval(0.0d, 1.8d, "very low");
7 bLDL.addInterval(1.8d, 2.6d, "low");
8 bLDL.addInterval(2.6d, 3.4d, "normal");
9 bLDL.addInterval(3.4d, 4.1d, "borderline high");

10 bLDL.addInterval(4.1d, 4.9d, "high");
11 bLDL.addInterval(4.9d, 10d, "very high");
12

13 // Define groups (levels 2 and 3)
14 bLDL.getLevel(0).addGroup(2, "low").addGroup(2, "norm").addGroup(2, "high");
15 bLDL.getLevel(1).addGroup(2, "low-norm").addGroup(1, "high");

Listing 6.1 Categorizing the attribute LDL cholesterol and creating a generalization
hierarchy
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In Listing 6.2 we use the same type of functional hierarchy for the discrete
attribute age. In this case, we define one single base interval for the range Œ0; 5�.
This interval will automatically be repeated within the defined overall range Œ0; 80�.
On subsequent levels, we merge instances of this interval, two at a time, resulting
in intervals of sizes 10, 20, 40 and 80 on the higher levels. Values that are lower
than the lower bound of the range (0) will raise an error, while values that are larger
than the upper bound of the range (80) will be top-coded, meaning that they will be
replaced with the label > 80. Labels for the automatically derived groups of values
will be created with a user-defined aggregate function. In the example we use the
interval function, which will create labels such as “[lower, upper]” for the according
ranges.

1 // Create builder for values in range [0, 120] with top-coding for values > 80
2 HierarchyBuilderIntervalBased<Long> bAge = HierarchyBuilderIntervalBased
3 .create(DataType.INTEGER, new Range<Long>(0, 0, 0),
4 new Range<Long>(80, 80, 120));
5

6 // Use intervals as aggregate function, lower included, upper excluded
7 bAge.setAggregateFunction(DataType.INTEGER.createAggregate()
8 .createIntervalFunction(true, false));
9

10 // Define base interval on level 1
11 bAge.addInterval(0, 5);
12

13 // Define groups on levels 2, 3, 4 and 5
14 bAge.getLevel(0).addGroup(2); // [0, 10[, [10, 20[, [20, 30[, [30, 40[, ...
15 bAge.getLevel(1).addGroup(2); // [0, 20[, [20, 40[, [40, 60[, [60, 80[
16 bAge.getLevel(2).addGroup(2); // [0, 40[, [40, 80[
17 bAge.getLevel(3).addGroup(2); // [0, 80[

Listing 6.2 Creating a generalization hierarchy for the attribute age

Next, we use character masking for creating a hierarchy for the attribute zip code,
as is shown in Listing 6.3. In this example, all values of the attribute will be padded
to the same size and left-aligned. Finally, characters will be masked from right to
left, e.g., creating the following generalizations for the value 81667! 8166? !
816 ? ?! 81 ? ??! 8 ? ? ? ?! ? ? ? ? ?.

1 // Create builder that aligns from right to left and masks from left to right
2 HierarchyBuilder<?> bZipCode = HierarchyBuilderRedactionBased.create(
3 Order.RIGHT_TO_LEFT, Order.RIGHT_TO_LEFT,
4 ’ ’, ’*’);

Listing 6.3 Creating a generalization hierarchy for the attribute zip code

Finally, as can be seen in Listing 6.4, we use ordering and grouping for creating
a hierarchy for the attribute sex. In the example, we merge male and female into
a common group. For creating labels we use the set function, resulting in the label
{male, female}.



6 The ARX Data Anonymization Tool 125

1 // Create builder that aligns from right to left and masks from left to right
2 HierarchyBuilderOrderBased<String> bSex = HierarchyBuilderOrderBased
3 .create(DataType.STRING);
4

5 // Define the default aggregate function
6 bSex.setAggregateFunction(DataType.STRING.createAggregate()
7 .createSetFunction());
8

9 // Define groups
10 bSex.getLevel(0).addGroup(2); // {male, female}

Listing 6.4 Creating a generalization hierarchy for the attribute sex

We are now ready to use these generalization hierarchies for anonymizing a
dataset. In our example, we will load a table (tbl1) from a SQLite database. This
process is sketched in Listing 6.5. We define the data types of the four attributes,
which means that data cleansing will automatically be performed during data import
by removing values that do not conform to the given data types. Additionally, we
rename the column ldlc to ldl cholesterol.

1 // Load driver
2 Class.forName("org.sqlite.JDBC");
3

4 // Define source database
5 DataSource source = DataSource.createJDBCSource("jdbc:sqlite:test.db", "tbl1");
6

7 // Define columns to be imported
8 source.addColumn("sex", DataType.STRING);
9 source.addColumn("age", DataType.INTEGER);

10 source.addColumn("zip code", DataType.STRING);
11 source.addColumn("ldlc", "ldl cholesterol", DataType.DECIMAL);
12

13 // Create data object
14 Data data = Data.create(source);

Listing 6.5 Importing data from a relational database system

Finally, we define and configure the privacy model, the method for measuring
data utility and our coding model. This process is shown in Listing 6.6. Firstly,
we specify that sex, age and gender are quasi-identifiers, by associating them
with the respective hierarchies. Secondly, we specify that ldl cholesterol is
a sensitive attribute. Thirdly, we set the suppression limit to 100 %, as ARX’s utility
measures will automatically balance the application of generalization and suppres-
sion to achieve optimal utility. As a privacy criterion, we specify 0.2-closeness on
the sensitive attribute, which uses the respective generalization hierarchy to compute
the distance between frequency distributions.

Next, we create an instance of the Loss metric, which will favor generalization
over suppression (a parameter of 0:0 means to only apply generalization, 1:0 means
to only apply suppression). We further define that age is our most important
attribute, followed by sex and zip code. ARX will try to reduce the amount of
generalization applied to more important attributes. When everything is configured
accordingly we perform the anonymization process.
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1 // Specify attribute types and assign hierarchies
2 Data.getDefinition().setAttributeType("sex", bSex);
3 Data.getDefinition().setAttributeType("age", bAge);
4 Data.getDefinition().setAttributeType("zip code", bZipCode);
5 Data.getDefinition().setAttributeType("ldl cholesterol",
6 AttributeType.SENSITIVE_ATTRIBUTE);
7

8 // Define privacy model
9 ARXConfiguration config = ARXConfiguration.create();

10 config.setMaxOutliers(1.0d);
11 config.addPrivacyCriterion("ldl cholesterol",
12 new HierarchicalDistanceTCloseness(0.2d, bLDL);
13

14 // Configure coding model
15 config.setMetric(Metric.createLossMetric(0.3d));
16 config.setAttributeWeight("sex", 0.5d);
17 config.setAttributeWeight("age", 0.7d);
18 config.setAttributeWeight("zip code", 0.3d);
19

20 // Anonymize
21 DataHandle result = new ARXAnonymizer().anonymize(data, config).getOutput();

Listing 6.6 Enforcing t-closeness on the attribute ldl cholesterol

Listing 6.7 shows how the re-identification risks of the resulting transformed data
may be analyzed. In this example, we assume that the dataset is a sample from the
US population and estimate population uniqueness, i.e., the fraction of entries from
the sample that are estimated to be unique within the overall population. To this end,
we use Dankar et al.’s decision rule [11].

1 ARXPopulationModel population = ARXPopulationModel.create(Region.USA);
2 double uniqueness = result.getRiskEstimator(population)
3 .getPopulationBasedUniquenessRisk()
4 .getFractionOfUniqueTuples(
5 PopulationUniquenessModel.DANKAR);

Listing 6.7 Analyzing population uniqueness of the t-close result dataset

6.2.5 Graphical User Interface

In this section, we will first describe the workflow supported by ARX’s graphical
user interface. We will then present the interface in more detail and describe the
views that may be used to repeat the previous example with the graphical interface.

6.2.5.1 Anonymization Process

The central challenge in data anonymization is to achieve a balance between data
utility and privacy. In ARX, methods that model the different aspects of this process
are combined into a multi-step workflow that allows users to iteratively adjust
parameters, until the result matches their requirements. As is depicted in Fig. 6.7,
the basic steps consist of (1) configuring the privacy and transformation model,
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Fig. 6.7 Anonymization process implemented in ARX’s GUI

(2) exploring the solution space, and (3) analyzing input and output data. In the
configuration phase, input data is loaded and annotated, generalization hierarchies
are created or imported, and all further parameters such as privacy criteria, are
specified.

When the solution space has been characterized by executing ARX’s anonymiza-
tion algorithm, the exploration phase supports searching for privacy-preserving data
transformations that fulfill the user’s requirements. To assess suitability, the analysis
phase allows comparing transformed datasets to the original input dataset with
methods of descriptive statistics. Moreover, risk-analyses can be performed for input
data as well as its transformed representations. Based on these analyses, further
solution candidates might be considered and evaluated or the configuration of the
anonymization process may be altered.

6.2.5.2 Overview

The three steps from the anonymization process are mapped to four perspectives in
the ARX user interface:

Configuration: In this perspective, firstly, a dataset can be imported into the
tool and annotated, e.g., by characterizing attributes. Secondly, generalization
hierarchies for quasi-identifiers or sensitive attributes can be generated semi-
automatically by means of a wizard or imported into the tool. Thirdly, privacy
criteria, the method for measuring data utility and further parameters, such as
properties of the transformation model, can be specified.

Exploration: As a result of the anonymization process, a solution space is con-
structed and characterized based on the given parameters. This perspective allows
users to browse the space of data transformations, organize and filter it according
to their needs and to select further transformations for analysis.

Utility evaluation: To assess the suitability of a specific transformation for a
given usage scenario, this perspective enables comparing transformations of the
input dataset to the original data. To this end, it incorporates various graphical
representations of results of statistical analyses and also allows for a cell-by-cell
comparison.
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Fig. 6.8 The ARX configuration perspective

Risk analysis: In this perspective, the distribution of class sizes, the risks associated
with individual quasi-identifiers, as well as sample-based and population-based
risk estimates can be analyzed. The view also displays details about esti-
mated re-identification risks obtained from different models.

6.2.5.3 Configuring the Anonymization Process

In this perspective, which is shown in Fig. 6.8, a dataset can be annotated and the
anonymization process can be configured. Annotation means to classify attributes
as quasi-identifying or sensitive, to specify generalization hierarchies, to define a
research subset and to enter information about the overall population. Configuration
means to specify the privacy model and to parameterize the transformation process.
The input dataset is displayed on the left side of the view.

A querying interface, which is accessible in the lower-left corner, can be used to
select a research subset, which is a subset of the data records that are to be included
in the final anonymized dataset. This mechanism can be used for different purposes.
Firstly, it can be used to enforce ı-presence on the subset, i.e., to protect the subset
from membership disclosure by preventing attackers that know the overall dataset
from determining whether a specific individual is or is not contained in the subset.
Secondly, it can be used to manually remove data entries. The area in the upper-
right corner lists all attributes and supports annotations by defining data types and
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Fig. 6.9 Wizard for creating a generalization hierarchy with intervals

attribute types. The same area also shows the generalization hierarchies associated
with the attributes. ARX distinguishes between four different types of attributes:

1. Identifying attributes will be removed from the dataset. Typical examples are
names or Social Security Numbers.

2. Quasi-identifying attributes will be transformed by means of generalization,
suppression or microaggregation. Typical examples are gender, date of birth and
zip codes.

3. Sensitive attributes will be kept unmodified but may be subject to further
constraints, such as t-closeness or `-diversity. Typical examples are diagnoses.

4. Insensitive attributes will be kept unmodified.

For specifying generalization hierarchies, the tool offers a wizard, which supports
creating hierarchies for attributes with different scales of measure (cf. Sect. 6.2.4).
The wizard for creating hierarchies with intervals is shown in Fig. 6.9. Firstly, a
sequence of intervals can be defined. In the next step, subsequent levels of the
hierarchy can be defined, which consist of groups of intervals from the previous
level. As can be seen, any sequence of intervals or groups is automatically repeated
to cover the complete range of the attribute. Each element is associated with an
aggregate function. These functions implement methods for creating labels for
intervals, groups and values to be translated into a common generalized value.

In the configuration perspective, hierarchies are visualized as tables where each
row contains the generalization rule for a single attribute value. This intuitive rep-
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resentation enables compatibility with third-party applications, such as spreadsheet
programs. Hierarchies can also be fine-tuned with a built-in editor that is available
by right-clicking their tabular representation.

The view in the center of the right side of the perspective supports the specifica-
tion of the privacy model. To this end, it shows a list of currently enabled privacy
criteria and supports adding, removing and configuring criteria via according
dialogs. In the second tab, population characteristics can be defined which are
required for risk analyses and risk-based anonymization.

Options for configuring the transformation process are implemented in the views
on the bottom of the right side of the perspective. In the general settings, the
suppression limit can be specified and further performance-related parameters may
be adjusted. In the second tab, utility measures can be selected and configured. The
other two tabs allow users to parameterize the transformation model by weighting
attributes (selected in the screenshot shown in Fig. 6.8) and by prioritizing different
types of data recoding.

6.2.5.4 Exploring the Solution Space

When the search space has been characterized based on the given parameters, the
exploration perspective allows users to browse potential solutions, organize them
and filter them according to their requirements. The aim of the perspective (see
Fig. 6.10) is to select a set of interesting transformations for further evaluation.

Fig. 6.10 The ARX exploration perspective
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In the center of this view a subset of the solution space is visualized. In the
example, transformations are presented as a list, which is ordered by data utility.
Each transformation is represented by the generalization levels that it defines for
the quasi-identifiers in the input dataset. Transformations are characterized by four
different colors: green indicates that a transformation results in an anonymous
dataset; red indicates that a transformation does not result in an anonymous dataset;
yellow indicates that a transformation is the global optimum; and gray indicates that
the anonymity property of a transformation is unknown as a result of pruning. If
such a transformation is applied to the dataset, its actual anonymity property will be
computed in the background and the state of the search space will be updated.

The lower-left area allows filtering the displayed subset of the solution space,
e.g., by restricting transformations to certain generalization levels or by defining
thresholds on data utility. Transformations can also be added to a clipboard, which is
located in the lower-central part of the view. Here, transformations can be annotated
and organized. The lower-right area displays basic information about the currently
selected transformation. Right-clicking a transformation brings up a context menu,
which allows to apply it to the dataset. The result can then be exported or analyzed.

Two further visualizations of the solution space are provided. Firstly, it may also
be visualized as a Hasse diagram. Here, the same colors as in the list view are used
to encode the anonymity property. The view is interactive and supports zooming.
Secondly, the solution space may also be visualized as a set of tiles, which are
ordered and colored by data utility. In contrast to the other two representations, this
view is capable of displaying a large number of transformations simultaneously.

6.2.5.5 Evaluating Data Utility

This perspective enables users to compare transformed data representations to
the original dataset. An example is shown in Fig. 6.11. It displays the input
dataset on the left side and the output dataset on the right side. Both tables are
synchronized when scrolling, supporting cell-by-cell comparisons. The data can be
sorted by a single attribute, or by all quasi-identifiers, which will also highlight
the resulting equivalence classes if applied to an output dataset (cf. Fig. 6.11).
For comparing two data representations, the view displays typical descriptive
statistics, both in tabular and graphical form. They include uni-variate and bi-variate
methods, such as empirical distributions, central tendency and dispersion as well as
contingency tables. The screenshot shows graphical representations of contingency
tables. Together with statistical measures, this view also displays information
reflecting the anonymization process. Examples include a shallow specification of
the configuration and metadata about the resulting dataset, such as the number of
suppressed data entries and the resulting data utility.
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Fig. 6.11 The ARX utility evaluation perspective

6.2.5.6 Analyzing Re-identification Risks

With this perspective the re-identification risks of an input or output dataset can be
analyzed with several sample-based or population-based measures. Moreover, this
perspective provides an overview of the distribution of the sizes of the equivalence
classes (see Sect. 6.2.2) in the dataset and supports analyzing the risks associated
with groups of attributes to find quasi-identifiers.

In the screenshot shown in Fig. 6.12, the distribution of class sizes is displayed
for both input and output. The view in the lower-right corner shows a comparison
of the estimated population uniqueness from three risk models for different sample
fractions. It also displays results of the decision rule proposed and validated for
clinical datasets by Dankar et al., which selects a different risk model for different
sample fractions [11]. When computing risk estimates, ARX must numerically solve
equation systems. The solver used by ARX can be configured in the settings dialog.
Here, you may specify options such as the total number of iterations, the maximal
number of iterations per try and the required accuracy. This may influence the
precision of results and execution times. Moreover, in the lower-left corner, the view
displays basic risk estimates which are either computed from the sample itself or
with a risk model.

Further views that are not shown in the screenshot support analyses of
re-identification risks associated with groups of attributes. This analysis uses
estimates of uniqueness either based on the sample or on a statistical model. When
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Fig. 6.12 The ARX risk analysis perspective

a set of attributes has been selected for analysis, ARX will determine the average
risk of re-identification that is associated with the power set of these attributes.
This information can be helpful to decide which attributes need to be generalized.
Moreover, details about the population from which the dataset has been sampled
can be configured in a dedicated view.

6.3 Implementation Details

The three-step workflow implemented by ARX poses considerable challenges in
terms of efficiency. As the process likely involves repeated anonymization with
different parameters and configurations, it is important that it is fast. For this
purpose, our tool is not built upon existing database systems but implements a
dedicated runtime environment that is tailored to the problem domain. Moreover,
ARX features a carefully designed search algorithm that employs multiple prun-
ing strategies and it uses efficient implementations of computationally complex
methods. In previous work, we have shown that our search algorithm outperforms
comparable algorithms within our runtime environment [26, 44].
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Fig. 6.13 Example of how data is encoded and transformed in ARX

6.3.1 Data Management

The internal encoding and representation of data is one of the key reasons for ARX’s
scalability. Original and transformed values are encoded into data dictionaries with
one dictionary per attribute. As a consequence the internal modules of ARX almost
entirely process 32-bit integer values (methods that need to interpret values use the
dictionary to access the actual content associated with integer identifiers). For each
quasi-identifier, the original values from the input dataset are encoded before the
values contained in the higher levels of the generalization hierarchy. As a result, the
original attribute values of a quasi-identifier with m distinct values are represented
by the numbers 0 to m � 1. This allows representing generalization hierarchies as
two-dimensional arrays in which the i-th row (0 � i � m�1) represents the iterative
generalization steps for the attribute value encoded with i. This means that the j-th
column stores the corresponding transformed value at the j-th level of the hierarchy.
The resulting memory layout is sketched in Fig. 6.13.

The input dataset itself is also represented as an integer array (data). Additionally,
a similar data structure (buffer) is maintained which is used to store a transformed
representation of the original data. Based on this memory layout, the transformation
of a value from the input data in cell (row, col) to the value defined on level level of
its generalization hierarchy and storing it in the buffer can be implemented with a
simple assignment:

buffer[row; col]  hier[col; data[row; col�; level]

The example in Fig. 6.13 shows the transformation of the values in the first
column of rows 0 and 7 to the first generalization level. More details about the
coding scheme can be found in [26, 27].

The second key to efficient data processing in ARX is its snapshotting func-
tionality. Here, the basic idea is to create snapshots that completely represent the
state of the dataset for a given transformation while being highly compressed
in comparison to the transformed dataset itself. Due to the monotonicity of
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generalization hierarchies in ARX, these compressed representations can be used as
a basis for further generalization (see Sect. 6.3.2). A related method has been called
roll-up in previous work [30]. In ARX, a snapshot of a dataset contains a list of its
equivalence classes, where each equivalence class is represented by the index of one
of its data entries (called representative) as well as its size (in terms of the number
of entries in the class). Additionally, each equivalence class may also be associated
with references to frequency distributions of values of attributes that are not part
of the attributes that are generalized. Such attributes are, for example, sensitive
attributes for which `-diversity or t-closeness is enforced or quasi-identifiers to
which microaggregation is applied.

When a snapshot is used as a basis for generalization, only the representatives
need to be transformed and grouped. Additionally, if two or more equivalence
classes are merged because of generalization, their associated frequency dis-
tributions must be merged as well. Processing compressed snapshots is much
more efficient than processing the data itself. ARX employs several strategies
for determining whether a snapshot should be created because it is likely to be
used in further processing. Moreover, it implements a LRU eviction policy to
control memory consumption. Figure 6.14 shows an example of how snapshots are
constructed.

The left side of the figure shows the data which is to be snapshotted. We assume
that the first three attributes are quasi-identifiers which are generalized, and that
the fourth attribute is sensitive and requires frequency distributions to be computed.
Moreover, the data represents the transformation (0, 1, 0) of an input dataset which
is not shown. The snapshot will also contain this meta-information. In its uncom-
pressed form, the data is represented by a two-dimensional array which consumes
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8 � 4 � 4 D 128 bytes of memory. The data consists of three equivalence classes
for which representatives and sizes are contained in the snapshot. Additionally,
each class is associated with a frequency distribution. Each frequency distribution
consists of two arrays, one that represents the values (i.e., their integer codes) and
one that represents the associated counts. These arrays are also encoded into a
dictionary, meaning that each array can be referenced by an integer identifier and
that arrays that appear multiple times only need to be stored once.

The snapshot consists of the transformation followed by four identifiers per
equivalence class: (1) its size, (2) the index of the representative, (3) the identifier
of the value array of its distribution, and (4) the identifier of the counts array of its
distribution. The resulting representation requires 15 � 4 C 8 � 4 D 92 bytes of
memory. We note that the size of a snapshot is independent of the number of quasi-
identifiers and that compression will be more effective in real-world scenarios.

6.3.2 Pruning Strategies

The general process that is implemented by ARX and its search algorithm, Flash
[26], as well as by other globally-optimal anonymization algorithms that use a
similar coding model, such as Incognito [29] and OLA [16], is very simple.
To determine an optimal solution, each transformation in the solution space is
checked for whether it is a solution candidate, meaning that it fulfills the given set
of privacy criteria. Additionally, data utility is computed for all solution candidates,
which allows to determine the global optimum. For an individual transformation,
this is implemented in the following manner in ARX:

• Step 1: Apply the transformation to the dataset.
• Step 2: Suppress all entries in all equivalence classes that do not fulfill the privacy

model.
• Step 3: If the number of suppressed entries is lower than the given threshold, the

transformation is a solution candidate.
• Step 4: If the transformation is a solution candidate, compute the utility of the

transformed dataset. This step may involve microaggregation.

As this is a computationally complex process, anonymization algorithms imple-
ment pruning strategies to exclude parts of the search space. In this context, mono-
tonicity is a typical assumption. This means that generalizations of a transformation
that fulfills a privacy model also fulfill the privacy model. Moreover, specializations
of a transformation that does not fulfill a privacy model do also not fulfill the privacy
model. For utility measures, monotonicity means that information loss increases
monotonically with generalization and therefore the utility of a transformation will
always be lower than, or equal to, the utility of its specializations. Monotonicity
(of both privacy criteria and utility metrics) requires generalization hierarchies to be
monotonic, which means that they must form mono-hierarchies, where each element
has exactly one parent. This is guaranteed by the ARX system.
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However, in real-world settings monotonicity is only given for simple privacy
models, e.g., k-anonymity and distinct-`-diversity, or when the coding model
is restricted to global recoding with full-domain generalization. More elaborate
privacy model that enforce restrictions on the distributions of sensitive attribute
values in each class, e.g., recursive-(c,l)-diversity or t-closeness, are not monotonic
with tuple suppression. When generalizing a representation of a dataset previously
suppressed data entries can re-join to the dataset and increase the distance of a
distribution of sensitive attribute values in a class from the overall distribution
(t-closeness) or make a distribution less diverse. The same is true for more
elaborate utility measures. An increase in generalization may lead to a decrease
in suppression, which increases overall data utility.

The key to ARX’s scalability and efficiency when dealing with complex privacy
problems is the exploitation of multiple pruning strategies. Firstly, ARX is able to
prune parts of the solution space that can never be a solution to the privacy problem,
if the set of specified criteria induces a minimal equivalence class size. This is the
case if the set of privacy criteria contains k-anonymity or any variant of `-diversity
[17]. The property of a transformation not resulting in the required minimal class
size is equal to the property of not fulfilling k-anonymity, which is monotonic even
with tuple suppression [50]. As a consequence, specializations of transformations
that do not have this property can be pruned from the search process.

Secondly, ARX employs a generic pruning strategy that is based on data utility
measures and which is therefore independent of the privacy model utilized. Here,
ARX computes two different variants of the selected utility measure for each
transformation: (1) a utility measure only considering generalization (termed upper
bound) and (2) a utility measure that considers generalization and suppression.
It is easy to see that utility measured when only generalizing a dataset is always
greater than or equal to the utility measured when first generalizing a dataset and
then suppressing some of its entries. Moreover, all utility measures implemented
in ARX are monotonic for coding models that only consist of generalization (see
[3, 16, 24, 30]). During the search process, ARX keeps track of the current optimum,
i.e., the transformation with maximal utility. Transformations can be pruned if the
upper bound of the utility of any of its specializations, i.e., predecessors in the
lattice, is already lower than or equal to the current optimum [3]. As we will show
in Sect. 6.4, this method is a highly effective.

To implement these pruning strategies into the search process, the ARX tool
employs six different variants of the Flash algorithm [26] that utilize different com-
binations of the above and previously proposed pruning strategies. An appropriate
variant of the algorithm is chosen depending on the exact configuration of a given
anonymization problem.
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6.3.3 Risk Analysis and Risk-Based Anonymization

ARX supports arbitrary combinations of privacy criteria, including risk-based
criteria that ensure that estimated re-identification risks fall below a given threshold.
For these criteria, ARX uses a coding model that integrates well with the other
functionalities of the system and for which it is possible to determine an optimal
solution to the anonymization problem. To transform a dataset according to a set of
privacy criteria that contains one or more risk-based criteria the process described
in Sect. 6.3.2 is modified slightly:

• Step 1: Apply the transformation to the dataset.
• Step 2: Suppress all entries in all equivalence classes that do not fulfill the (not

risk-based) privacy criteria.
• Step 3: While risk estimates are greater than the given thresholds:

– Step 3.1: Suppress all entries in the equivalence class with the lowest
information content (determined with the selected utility measure).

– Step 3.2: Re-evaluate the risk model.

• Step 4: If the number of suppressed entries is lower than the given threshold, the
transformation is a solution candidate.

• Step 5: If the transformation is a solution candidate, compute the utility of the
transformed dataset.

ARX implements three different statistical models to estimate population unique-
ness, two of which require solving bi-variate non-linear equation systems. In ARX,
we need efficient implementations of this process, as risk models will be evaluated
frequently during the above search process. For solving the equation systems,
ARX implements Newton’s method [56], which requires two object functions for
which a common root is to be found as well as four partial derivatives, two
for each object function. In both super-population models the object function is
a combination of sums over the sizes of equivalence classes in the dataset and
therefore computationally complex to evaluate. To overcome this bottleneck we
have implemented the object functions as well as the partial derivatives with the
family of polygamma functions [57], resulting in closed forms of the open sum
formulas.

Moreover, there are efficient numeric approximations of polygamma func-
tions. In ARX, we use an implementation developed at Microsoft Research [38].
As approximations of polygamma are inaccurate for some ranges of input, we
employ a three step-process:

• Step 1: Try to solve the linear equation system with the approximations of all
input functions.

• Step 2: If a result has been found, verify it with the original open forms of the
object functions.

• Step 3: If the verification fails or no solution has been found by step 1, try to
solve the system using the original open forms of the object functions.
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We confirmed experimentally that this scheme is orders of magnitude faster
than solving the equation systems with the open forms of the object functions.
The final verification step ensures that no errors are introduced by using numeric
approximations. The described scheme results in efficient search processes for
risk-based anonymization and enables risk analyses that can be performed in near
real-time.

6.4 Experimental Evaluation

In this section we will briefly evaluate our system with a specific focus on the
methods and implementation details presented in the previous sections. To this end,
we make use of the benchmarking environment that we have presented in [44].
The implementation of the experiments performed in this section is also available
online [43]. To cover a broad spectrum of privacy methods supported by ARX we
present two evaluations. Firstly, we anonymize datasets with k-anonymity, which is
the least complex privacy criterion available in our tool. Secondly, we anonymize
datasets with a risk-based criterion that makes use of the decision rule by Dankar
et al. As this rule depends on three different statistical models and risk-based criteria
utilize a more complex coding model, this is the most complex privacy model
supported by ARX. Moreover, risk-based anonymization is also a relaxed variant
of k-anonymity, making a comparison between the data utility resulting from these
two models interesting. As a utility measure we used Loss, which is also the most
elaborate method that is available for this purpose in ARX. Additionally, we make
use of the tool’s feature of automatically balancing generalization and suppression
to achieve optimal data utility by setting the suppression limit to 100 %.

Our benchmark is based upon five real-world datasets, which we have chosen for
different reasons. Two of the datasets are frequently used for benchmarking work
on data anonymization and thus represent de-facto standard problem instances: the
1994 US census database (Adult) and the dataset for the 1998 KDD data mining
competition (Cup). We include three additional datasets with increasing size: US
NHTSA crash statistics (FARS), American Time Use Survey (ATUS) and Integrated
Health Interview Series (IHIS). The datasets feature different numbers of data
entries (ranging from 30,162 records (Adult) to 1,193,504 records (IHIS)). More-
over, they consist of eight and nine quasi-identifiers. As can be seen in Table 6.2,
the search spaces consisted of between 12,960 and 45,000 transformations. More
details about the datasets and the generalization hierarchies utilized can be found
in [44].

Table 6.3 shows runtime measures obtained for risk-based anonymization with a
threshold of 1 % population uniqueness according to Dankar et al.’s model. In this
case, the only pruning strategy that can be utilized is to exclude transformations
based on upper bounds of data utility. It can be seen that this strategy is highly
effective, as more than 99 % of the search space were excluded for all datasets.
The execution times, however, were rather high with totals between 2 and 216 s.
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Table 6.2 Datasets used in
the experiments

Dataset QIs Entries Transformations Size [MB]

Adult 9 30,162 12,960 2.52

Cup 8 63,441 45,000 7.11

FARS 8 100,937 20,736 7.19

ATUS 9 539,253 34,992 84.03

IHIS 9 1,193,504 25,920 107.56

Table 6.3 Runtime measures for risk-based anonymization

Dataset Trans. checked Trans. pruned [%] Time total [s] Time per check [ms]

Adult 61 99.53 2 34

Cup 431 99.04 55 128

FARS 165 99.20 30 183

ATUS 19 99.95 21 1,092

IHIS 97 99.63 216 2,229

Table 6.4 Runtime measures for 5-anonymity

Dataset Trans. checked Trans. pruned [%] Time total [s] Time per check [ms]

Adult 375 97.11 1 3

Cup 1,245 97.23 13 11

FARS 1,102 94.69 8 7

ATUS 130 99.63 4 34

IHIS 507 98.04 65 128

This is due to the complexity of the coding model for risk-based privacy criteria.
This complexity is also reflected by the average time required for each individual
check, which was between 34 ms (Adult) and 2.2 s (IHIS).

Table 6.4 shows runtime measures obtained for anonymization the datasets with
5-anonymity. In contrast to the previous experiment, multiple pruning strategies can
be utilized as k-anonymity is a monotonic model. Still, pruning was less effective
being as low as 94 % for the FARS dataset. The execution times, however, were
much lower with totals between 1 and 65 s. The reason is that it is less complex
to check data transformations for k-anonymity. Again, this is also reflected by the
average time required for each individual check, which was between 3 (Adult) and
128 ms (IHIS).

The privacy models used in this section result in very different privacy guar-
antees. 5-anonymity ensures that the re-identification risk for each entry from the
dataset is lower than or equal to 20 %. The risk used as a basis for the anonymization
is likely to be strongly overestimated. The risk-based criterion ensures that at most
1 % of the entries from the dataset can be re-identified. This is a much less strict
criterion that may, however, still offer sufficient protection, e.g. when assuming
a prosecutor scenario where the attacker aims at re-identifying the data of one
specific individual. The difference in protection is also reflected by the amount
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Table 6.5 Utility measures for risk-based anonymization

Dataset Entries suppressed Attributes generalized Generalization levels Information loss [%]

Adult 0 (0 %) 2/9 (22 %) 1/4, 1/3 2.40

Cup 0 (0 %) 3/8 (38 %) 3/5, 1/4, 1/4 2.68

FARS 0 (0 %) 3/8 (38 %) 3/5, 1/3, 1/3 6.55

ATUS 4,160 (1 %) 1/9 (11 %) 1/5 1.00

IHIS 0 (0 %) 3/9 (33 %) 1/5, 1/3, 1/4 1.30

Table 6.6 Utility measures for 5-anonymity

Dataset
Entries
suppressed

Attributes
generalized

Generalization
levels Information loss [%]

Adult 3,382 (11 %) 5/9 (56 %) 3/4, 1/3, 1/2, 1/2,
1/2

22.85

Cup 2,578 (4 %) 5/8 (63 %) 4/5, 3/4, 1/4, 2/4,
1/4

13.97

FARS 4,636 (5 %) 6/8 (75 %) 3/5, 1/2, 1/3, 1/3,
1/3, 1/2

17.58

ATUS 64,007 (12 %) 2/9 (22 %) 2/5, 1/2 12.71

IHIS 182,663 (15 %) 3/9 (33 %) 2/5, 1/3, 2/4 17.28

of generalization and suppression that needs to be applied to the dataset. We will
analyze these differences in the following paragraphs.

Table 6.5 gives an overview of how the data needed to be transformed to
achieve optimality for the risk-based model. It can be seen that suppression was
only required for one dataset (ATUS). Moreover, only between one and three
attributes needed to be generalized for each dataset. If an attribute was generalized,
it was only transformed to the lowest generalization level in 10 out of 12 cases.
The rightmost column shows the information loss according to the normalized Loss
utility measure. It can be seen that the loss of information was evaluated to be
between only 1 and 7 % by this utility measure.

Table 6.6 shows the resulting utility for 5-anonymity. It can be seen that this
model is much more difficult to achieve. Suppression was required for all datasets,
while between 4 and 15 % of the entries needed to be removed for the optimal
solution. Additionally, on average, half of the attributes in a dataset needed to be
generalized. Still, if an attribute was generalized, it was transformed to a rather
low generalization level in most cases. The loss of information was evaluated to be
between 13 and 23 % for this configuration.

The numbers reflecting data utility also explain why the pruning power was
lower in the second experiment. As the datasets obviously required much less
generalization with risk-based anonymization, the search strategy was able to utilize
a much stronger upper-bound for pruning transformations based on data utility. In
the second experiment, more generalization was required, which reduced pruning
power. This was compensated to some extent by pruning methods that use the
monotonicity of k-anonymity.
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6.5 Discussion

In this section, we will compare ARX to other data anonymization tools, discuss its
limitations and present directions for future work. We will conclude this article with
some general remarks about data anonymization.

6.5.1 Comparison with Prior Work

The landscape of existing tools is heterogeneous. To our knowledge, PARAT is the
only commercial de-identification software using syntactic privacy models [46]. It
is a closed-source tool for which only limited information is available to the public.
It uses the same coding model as ARX and a related search strategy [16]. We will
focus on non-commercial tools in the remainder of this article.

Several research prototypes exist that have mainly been developed for demonstra-
tion purposes. Problems with these tools include scalability issues when handling
large datasets, complex configuration requiring IT expertise, and incomplete support
of methods for statistical disclosure control. Our tool is the only software that
provides wizards for creating generalization hierarchies and visualizations of the
solution space.

The UTD Anonymization Toolbox (UTD-AT) is written in Java. It supports
three different privacy models (k-anonymity, `-diversity and t-closeness) [54]. When
using the k-anonymity privacy model it supports the same coding model as ARX.
The tool implements Incognito, which is a globally-optimal search algorithm [29],
and DataFly, which is a heuristic search algorithm [49]. In [26, 45] we have
shown that ARX’s search algorithm significantly outperforms Incognito within our
runtime environment. When using `-diversity or t-closeness, data transformation
is restricted to full-domain generalization, because the tool is not able to handle
non-monotonic privacy problems. This can lead to low data quality [3]. UTD-
AT supports two further coding models: multi-dimensional global recoding with
generalization via the Mondrian algorithm [31] and anatomization [58], which is
a specific form of slicing [34]. The tool uses a SQLite database backend and we
encountered scalability issues with larger datasets. It does not provide a graphical
interface and requires configuration to be performed via an XML file. As the name
already implies, the software only provides a loosely coupled collection of methods
that are not harmonized and integrated in a comprehensive manner. The tool does
not implement methods for risk analyses or risk-based anonymization and it only
supports few methods for measuring data utility.

The Cornell Anonymization Tool (CAT) is implemented in C++ [59]. It imple-
ments `-diversity and t-closeness. As a coding model it uses global recoding
with full-domain generalization. It only supports manual tuple suppression. For
importing data it requires files to be in a tool-specific format. Analogously to UTD-
AT it implements the Incognito algorithm [29]. It only provides few methods for
automatically evaluating data utility and for assessing disclosure risks.
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TIAMAT is a closed source software that is implemented in Java [9]. It only sup-
ports the k-anonymity privacy model. It implements the Mondrian [31] partitioning
algorithm and k-Member [4], which is a clustering algorithm. The coding model
is multi-dimensional global recoding with generalization. The tool implements a
simple graphical editor for generalization hierarchies. For automatically measuring
data utility, TIAMAT implements the Global Certainty Penalty (GCP) method
[19] and the Classification Metric [24]. The aim of the tool is to compare the
Mondrian algorithm with the k-Member approach and it therefore implements
various visualizations that summarize their execution times and resulting data utility.
The tool does not implement methods for risk assessment.

SECRETA is a closed source software that is implemented in C++ [42]. It has
been developed for comparing methods for anonymizing relational and transactional
(set-valued) data. For relational data it implements a clustering algorithm, top-down
and bottom-up search algorithms and Incognito [29]. Coding models for relational
data include full-domain generalization, subtree generalization and local recoding
[17]. It further implements five different algorithms for anonymizing set-valued
data, including the method from [41], and three different methods for combining
algorithms for relational data with algorithms for set-valued data. Analogously to
ARX and CAT, the user interface provides visualizations of data characteristics with
methods from empirical statistics. The tool implements a sophisticated method for
measuring data utility, by specifying query workloads and determining the average
relative error of query results [60]. As the aim of the tool is to compare different
anonymization strategies, it further implements various visualizations of execution
times and data utility. It does not provide methods for risk assessment and it does
not enable users to visualize and browse a solution space.

In addition to these research prototypes, there are two mature solutions that
are being used in practice. Both have been developed by the statistics research
community: sdcMicro and -Argus. Compared to ARX, both implement a more
manual anonymization process. In terms of supported methods, they provide more
features in some areas of statistical disclosure control (e.g. more coding models)
and less features in others (e.g. fewer privacy models).

sdcMicro is an open source package for the R statistics software parts of which
have been implemented in C++ [51]. It supports many primitives required for data
anonymization. The tool features a graphical user interface, which only provides
access to a subset of the methods implemented by the package. sdcMicro is not
designed as a stand-alone application, but it is oriented towards statistics experts that
use the console to leverage the full potential of the package. As the tool is integrated
into R, a wide variety of methods for analyzing and visualizing data can be used.
Although the most important usage scenario of the tool is a manual iterative process
of data anonymization, it also supports methods for automatically transforming
data with local recoding or top-coding. It supports two syntactic privacy models:
k-anonymity and `-diversity. sdcMicro implements a wide variety of truthful and
perturbative transformation models, including noise addition, global recoding, local
suppression, microaggregation, post-randomization, rank-swapping as well as top-
and bottom-coding [8, 17]. Although it also supports the same coding model as



144 F. Prasser and F. Kohlmayer

ARX, the tool is focused on a manual process and it does not implement algorithms
for automatically constructing and analyzing a solution space. Consequently, it only
implements few utility measures. It supports various risk estimators, some of which
are based on super-population models.

-Argus is a former closed-source application, which has just recently been
converted to an open source project after development had ceased for several years
[23]. Its core functionalities are implemented in C++ and, recently, a graphical
user interface has been developed in Java. Similar to sdcMicro it offers only few
methods that assist users in the data anonymization process and it does not support
automated recoding. It provides a broad spectrum of recoding techniques, including
global recoding with local suppression as well as top- and bottom-coding and
multiple methods for risk estimation. De-identification must be performed manually
in a three-step process. First a set of attributes is selected as a quasi-identifier.
It is recommended that these sets do not contain more than about a handful of
attributes. Next, re-identification risks are analyzed. Finally, the user performs
recoding operations until risks fall below an acceptable threshold. This process can
then be repeated with another set of attributes. The tool does not implement typical
utility measures and provides only few visualizations.

The syntactic privacy models implemented by ARX and related software can
be an important building block for protecting sensitive health data. However, they
can only provide very specific guarantees which require rather strong assump-
tions to be made about the goals and the background knowledge of an attacker.
Semantic privacy models, such as differential privacy [13], require much less such
assumptions. In contrast to syntactic models, which formulate syntactic conditions
for released datasets, semantic models are directly related to a formalization of
privacy [12]. However, only few implementations are available, e.g., PINQ [37] or
HIDE [18], most of which focus on privacy-preserving data analysis and thus on a
usage scenario that is different from the one considered by our work. Additionally,
these methods involve stronger trade-offs in terms of supported workflows [10].
Many methods of differential privacy are non-truthful, which can be problematic
for an application in the biomedical domain [10]. Which approach provides a better
balance between privacy and utility is subject to ongoing discussions (see, e.g.
[5, 39]).

6.5.2 Limitations and Future Work

ARX currently relies on a globally-optimal search strategy and materializes the
complete solution space. As a consequence, it can only handle anonymization
problems in which the search space is small enough to allow materialization. As
a rule of thumb, the current version of ARX can handle datasets with up to about 15
quasi-identifiers, but the exact limitation depends on the size of the generalization
hierarchies utilized. In the near future, we will integrate a heuristic search strategy
for anonymizing high-dimensional datasets.
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While ARX already covers a broad spectrum of methods, it does currently
not support methods for handling set-valued data [17]. In future work, we will
implement methods for anonymizing data with set-valued attributes, such as km-
anonymity [52], and methods for anonymizing data with set-valued attributes and
relational characteristics, such as .k; km/-anonymity [41]. We further plan to adapt
the method of measuring data utility with predefined query workloads to our
setup [60].

We are also working on the integration of semantic privacy models into the tool.
Here, we focus on non-interactive methods of Differential Privacy (DP) [13]. For
example, .k; ˇ/-SDGS is very well suited for integration into ARX [33]. It imple-
ments a combination of random sampling, k-anonymization with generalization and
suppression to create datasets that fulfill .�; ı/-DP [14]. These primitives for data
transformation are already implemented in our tool.

6.5.3 Concluding Remarks

While ARX aims at making data anonymization available to a wide variety of
users, data anonymization remains a complex issue that has to be performed by
experts. There is no single measure that is able to protect datasets from all possible
threats, especially while being flexible enough to support many usage scenarios. As
is common in IT security, data controllers should therefore follow the onion layer
principle and employ a multitude of measures for protecting sensitive personal data.
This includes legal agreements, as well as data economy, meaning the principle that
no more personal details than necessary should be collected, stored and shared.
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Chapter 7
Utility-Constrained Electronic Health Record
Data Publishing Through Generalization
and Disassociation
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and Manolis Terrovitis

Abstract Data containing diagnosis codes are often derived from electronic health
records and shared to enable large-scale, low-cost medical studies. However, the
sharing of such data may lead to the disclosure of patients’ identities, which must
be prevented to address privacy concerns and comply with worldwide legislation. To
ensure that data privacy and utility are preserved, a utility-constrained anonymiza-
tion approach can be enforced. This approach transforms a given dataset, so that the
probability of identity disclosure, based on diagnosis codes, is limited and the data
remain useful for intended studies. In this chapter, we provide a detailed discussion
of the utility-constrained anonymization approach. Specifically, we explain how
utility constraints, which model the requirements of intended studies, can be
formulated and satisfied through data generalization or disassociation. Furthermore,
we review two recently proposed algorithms that follow the utility-constrained
approach and are the current state-of-the-art in terms of preserving data utility. We
conclude this chapter by discussing several promising directions for future research.
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7.1 Introduction

Electronic Health Records (EHRs) allow healthcare professionals to make informed
decisions that have a very positive impact on quality of care and patient safety.
In addition, EHRs contain large amounts of patient data that can be shared to
improve medical science, greatly reduce research costs, and enable large-scale,
complex medical studies. For instance, various analytic tasks, ranging from building
predictive data mining models [7] to genomic studies [1], can be performed using
data derived from EHRs. Thus, there has recently been a tremendous interest for
sharing large amounts of electronic health record data [19, 24].

The sharing of EHR data must be performed in a privacy-preserving way, to
address patients’ concerns and comply with legislation. The requirement to preserve
privacy is posed by a number of regulations, such as the HIPAA privacy rule1 in
the United States, the Anonymization Code2 in the United Kingdom, and the Data
Protection Directive3 in the European Union. However, despite the existence of
such legislation, privacy breaches that affect many individuals still occur frequently.
Specifically, 627 privacy breaches, which affected more than 500 and up to 4.9 M
individuals each, were reported from 2010 to July 2013 by the U.S. Department of
Health & Human Services.4

7.1.1 Identity Disclosure

An alarming threat related to the sharing of EHR data is identity disclosure
(also referred to as re-identification). An identity disclosure attack succeeds when
an identified patient is associated with their record in the shared data. Identity
disclosure may occur even when the data are devoid of explicit identifiers (i.e.,
attributes that directly identify patients, such as phones and social security numbers).
This is because explicit identifiers are often publicly available and can be linked to
the shared data, based on diagnosis codes.

Consider, for example, the data in Table 7.1a. Each record in the data corresponds
to a distinct patient and contains the diagnosis codes of the patient. The ID column
is for referencing and is not released, and the description of the diagnosis codes in
Table 7.1a is shown in Table 7.1b. Observe that an attacker, who knows that a patient
is diagnosed with Bipolar I disorder, single manic episode, mild (denoted with the
ICD code 296:01) and Closed dislocation of finger, unspecified part (denoted with
the ICD code 834:0), can associate an identified patient with the first record, denoted

1http://www.ncvhs.hhs.gov/091210p06b.pdf.
2http://ico.org.uk/for_organisations/data_protection/topic_guides/anonymisation.
3http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.
4http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/breachtool.html.

http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/breachtool.html.
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.
http://ico.org.uk/for_organisations/data_protection/topic_guides/anonymisation.
http://www.ncvhs.hhs.gov/091210p06b.pdf.
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Table 7.1 (a) Dataset comprised of diagnosis codes, and (b) diagnosis
codes contained in the dataset of Table 7.1a and their description (reprinted
from [15], with permission from Elsevier)

ID Records

r1 {296.00, 296.01, 296.02, 834.0, 944.01}
r2 {296.00, 296.02, 296.01, 401.0, 944.01, 692.71, 695.10}
r3 {296.00, 296.02, 692.71, 834.0, 695.10}
r4 {296.00, 296.01, 692.71, 401.0}
r5 {296.00, 296.01, 296.02, 692.71, 695.10}
r6 {296.03, 295.04, 404.00, 480.1}
r7 {294.10, 296.03, 834.0, 944.01}
r8 {294.10, 295.04, 296.03, 480.1}
r9 {294.10, 295.04, 404.00}
r10 {294.10, 295.04, 296.03, 834.0, 944.01}

(a)

Diagnosis code Description

294.10 Dementia in conditions classified elsewhere
without behavioral disturbance

295.04 Simple type schizophrenia, chronic with acute
exacerbation

296.00 Bipolar I disorder, single manic episode,
unspecified

296.01 Bipolar I disorder, single manic episode, mild
296.02 Bipolar I disorder, single manic episode, mod-

erate
296.03 Bipolar I disorder, single manic episode,

severe, without mention of psychotic behavior
401.0 Malignant essential hypertension
404.00 Hypertensive heart and chronic kidney dis-

ease, malignant, without heart failure and with
chronic kidney disease stage I through stage
IV, or unspecified

480.1 Pneumonia due to respiratory syncytial virus
692.71 Sunburn
695.10 Erythema multiform, unspecified
834.0 Closed dislocation of finger, unspecified part
944.01 Burn of unspecified degree of single digit

(finger (nail) other than thumb

(b)

with r1, in Table 7.1a. This is because the set of ICD codes f296:01; 834:0g appears
in no other record of the data in Table 7.1a.

Identity disclosure attacks, based on diagnosis codes, were first studied by
Loukides et al. in [10], and they led to the development of several data anonymiza-
tion methods (e.g., [11, 12, 14, 15, 18]). At an abstract level, these methods transform



152 G. Loukides et al.

a dataset to ensure that an attacker cannot associate an individual with fewer than
k records, where k is a parameter that is specified by data owners. In other words,
these methods ensure that the probability of performing identity disclosure, based
on diagnosis codes, will not exceed 1=k.

The transformation of diagnosis codes is performed either using generalization
(i.e., by replacing diagnosis codes with more general, but semantically consistent,
terms) and suppression (i.e., by deleting selected diagnosis codes) [4, 12], or
using disassociation (i.e., by segmenting a record into subrecords that contain non-
transformed diagnosis codes) [15].

7.1.2 Utility-Constrained Approach

In this chapter, we focus on anonymizing transaction datasets in a way that prevents
identity disclosure and ensures that the shared data remain useful for intended
studies. To clarify the relation between data anonymization and utility-preservation,
assume that a healthcare institution wants to anonymize the dataset in Table 7.1a,
so that: (i) the probability of identity disclosure, based on all sets of two diagnosis
codes, does not exceed 1=3, and (ii) the findings of studies u1 to u5 (see Table 7.2a),
which require accurately counting the number of patients diagnosed with any
combination of codes in them, are preserved.

Requirement (i) is posed by the need to comply with data sharing policies, while
satisfying requirement (ii) will ensure that the data can be meaningfully analyzed
by collaborating researchers, who perform the studies u1 to u5. The anonymized
dataset in Table 7.2b is produced using generalization. For example, the diagnosis
codes 294.10, 295.04, 296.03, 401.0, 404.00, 480.1, and 944.01 are all replaced by
the generalized term .294:10; 295:04; 296:03; 401:0; 404:00; 480:1; 944:01/. This
term is interpreted as any combination (subset) of these codes.

Generalization prevents an attacker from identifying a patient, based on knowl-
edge of the patient’s diagnosis codes, as the attacker cannot distinguish between
the combination of diagnosis codes in the generalized term [4, 12]. Observe that
the dataset in Table 7.2b satisfies requirement (i), because each combination of 2
diagnosis codes appears in at least 3 records. For instance, an attacker who knows
that an individual is diagnosed with Bipolar I disorder, single manic episode, mild
and Closed dislocation of finger, unspecified part (i.e., the codes 296:01 and 834:0)
cannot uniquely associate a patient with r1 in Table 7.2b. This is because 7 other
records (i.e., the records r2, r4, r6, r7, r8, r9, and r10) are associated with these two
codes. However, requirement (ii) is not satisfied, as none of the studies u1 to u5 can
be performed accurately using the anonymized dataset in Table 7.2b.

Consider, for example, the study u4 D f480:1g. The number of patients
associated with 480:1 (i.e., the support of this code) is not the same in the dataset of
Table 7.1a and in its anonymized counterpart in Table 7.2b. Consequently, the study
u4 can no longer be performed accurately. Sharing data that affects the findings of
intended studies can have serious consequences. For instance, such data may lead to
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Table 7.2 (a) Utility requirements, and (b) anonymized dataset that does
not satisfy the utility requirements (reprinted from [15], with permission
from Elsevier)

ID Utility constraints

u1 {294.10, 295.04, 296.00, 296.01, 296.02, 296.03}
u2 {692.71, 695.10}
u3 {401.0, 404.00}
u4 {480.1}
u5 {834.0, 944.01}

(a) Utility constraints

ID Records

r1 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01),
(296.00, 296.01, 296.02, 692.71, 695.10, 834.0)

r2 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01),
(296.00, 296.01, 296.02, 692.71, 695.10, 834.0)

r3 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01)
r4 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01),

(296.00, 296.01, 296.02, 692.71, 695.10, 834.0)
r5 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01)
r6 (296.00, 296.01, 296.02, 692.71, 695.10, 834.0)
r7 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01),

(296.00, 296.01, 296.02, 692.71, 695.10, 834.0)
r8 (296.00, 296.01, 296.02, 692.71, 695.10, 834.0)
r9 (296.00, 296.01, 296.02, 692.71, 695.10, 834.0)
r10 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01),

(296.00, 296.01, 296.02, 692.71, 695.10, 834.0)

(b) Anonymized dataset

results that are difficult to interpret or to the discovery of spurious knowledge, when
records contain clinical profiles (e.g., demographics and/or genomic sequences, in
addition to diagnosis codes) [10, 18]. Intuitively, an intended study can be performed
fairly accurately when the number of patients associated to the diagnosis codes of
the study does not increase or decrease significantly, as a result of anonymization.

To anonymize data in a way that supports intended studies, a utility-constrained
approach can be adopted [12]. In this approach, data owners specify sets of diagnosis
codes that model analytic tasks that the published data are intended for. Each such
set is termed a utility constraint and is used to control the way that diagnosis
codes will be transformed. For instance, each of the studies u1 to u5, mentioned
above, corresponds to a utility constraint, as shown in Table 7.2a. The specified
utility constraints are taken into account during data transformation to prevent their
violation.5 Consider, for example, the anonymized dataset in Table 7.3, which is

5As we explain later in the chapter, some utility constraints may not be satisfied in the transformed
data, due to the hardness of the problem.
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Table 7.3 Anonymized counterpart of the dataset in Table 7.1a, using the utility-constrained
approach (reprinted from [15], with permission from Elsevier)

C
lu

st
er

P
1 jP 1
jD

5
Record chunks Item chunk

C1 C2 CT

r1 {296.00, 296.01, 296.02}
r2 {296.00, 296.01, 296.02} {692.71, 695.10}
r3 {296.00, 296.02} {692.71, 695.10} 401.0, 834.0, 944.01
r4 {296.00, 296.01} {692.71}
r5 {296.00, 296.01, 296.02} {692.71, 695.10}

C
lu

st
er

P
2 jP 2
jD

5

Record chunk Item chunk

C1 CT

r6 {296.03, 295.04}
r7 {294.10, 296.03}
r8 {294.10, 295.04, 296.03} 404.00, 480.1, 834.0, 944.01
r9 {294.10, 295.04}
r10 {294.10, 295.04, 296.03}

produced based on the utility-constrained approach. This dataset is comprised of
two clusters, and each record of the dataset is comprised of a number of subrecords,
called chunks. Notice that the anonymized dataset contains diagnosis codes that are
not transformed, but the associations between chunks are “blurred”. For example,
the set of diagnosis codes f401:0; 834:0gmay be associated with any of the records
r1 to r5 in the first cluster. The anonymized dataset achieves the same amount of
privacy as the one in Table 7.2b, and it additionally satisfies the utility constraint
u4 D f480:1g in Table 7.2a*. This is because the number of patients associated with
480:1 (i.e., the support of this code) is the same as in the dataset of Table 7.1a. Thus,
the study corresponding to u4 can be performed with no accuracy loss.

7.1.3 Chapter Organization

In the remainder of the chapter, we discuss the utility-constrained approach in
detail. Specifically, Sect. 7.2 presents some concepts that are necessary to explain the
utility-constrained approach. Section 7.3 explains the operations of generalization
and disassociation that are used to transform diagnosis codes, in order to preserve
privacy. Section 7.4 elaborates on the specification of utility constraints. Section 7.5
presents state-of-the-art algorithms that employ generalization and disassociation to
anonymize data, and Sec. 7.6 provides a review of promising directions for future
work. Last, Sect. 7.7 concludes the chapter.
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7.2 Preliminaries

In this section, we define the type of data we consider, as well as how identity
disclosure can be performed, using such data. Subsequently, we present a privacy
principle that can be used to thwart identity disclosure.

We assume a dataset, D, which is comprised of jDj records. We will refer to D as
the original dataset. Each record in dataset D corresponds to a distinct patient, and
it contains the set of all diagnosis codes that are associated with this patient. The
number of records of D in which a set of diagnosis codes appears will be referred to
as the support of the set in D. All diagnosis codes are derived from a finite domain,
denoted with T, and the diagnosis codes contained in D are derived from a subset of
T, denoted with TD. An example of an original dataset is shown in Table 7.1a. Each
record in the dataset contains some diagnosis codes, and the domain T contains all
diagnosis codes in Table 7.1b. Notice that, in contrast to the traditional attack models
for relational data [9, 16], the methods following the utility-constrained approach
do not distinguish between sensitive (unknown to the attacker) and non-sensitive
diagnosis codes in a record. Instead, they assume that any diagnosis code may be
used in identity disclosure attacks.

In the following, we formally describe how identity disclosure may be per-
formed. We assume that an attacker knows up to m diagnosis codes of an individual,
whose record r is contained in D. Clearly, m can be any integer from 0 to mmax,
where mmax is the maximum number of diagnosis codes that appear in a record
of D. The case in which an attacker has no background knowledge is modeled by
setting m to 0, whereas knowledge of all diagnosis codes about an individual is
modeled by setting m to mmax. Also, there may be multiple attackers, each of whom
knows a (not necessarily distinct) set of up to m diagnosis codes. Based on this
knowledge, an identified patient can be associated with their record r, by an attacker.
As we will discuss later, the parameter m is set by data owners, according to data
sharing policies. To thwart this threat, the privacy model of km-anonymity [23] may
be employed. km-anonymity is a conditional form of k-anonymity [20, 21], which
ensures that an attacker, with partial knowledge of a record r, will not be able to
distinguish r from k�1 other records in the published dataset. In other words, the
probability that the attacker performs identity disclosure is upper bounded by 1=k.

Definition 7.1 (km-anonymity [23]). Given data owner-specified parameters k and
m, an anonymized dataset DA satisfies km-anonymity, if no attacker with background
knowledge of up to m diagnosis codes about an individual, represented in DA, can
associate the individual with fewer than k candidate records in DA.

We now introduce two transformations that are used to define the privacy guaran-
tee against identity disclosure. The anonymization transformation, denoted with A,
takes as input the original dataset D and produces an anonymized dataset DA. Note
that this transformation is independent of the operation that is applied to diagnosis
codes. The inverse transformation, denoted with AI , takes as input the anonymized
dataset DA and outputs all possible (non-anonymized) datasets that could produce



156 G. Loukides et al.

DA, i.e., AI.DA/ D fD0 j DA D A.D/g. Obviously, the original dataset D is one of
the datasets in AI.A.D//. Thus, km-anonymity (Definition 7.1) can be satisfied, by
enforcing the following privacy guarantee (adapted from [22]).

Guarantee 1. Given an anonymized dataset DA and a set of up to m diagnosis
codes, applying AI.DA/, will produce at least one dataset D0 2 AI.DA/, for which
there are at least k records that contain all diagnosis codes in the set.

Intuitively, an attacker, who knows any set of up to m diagnosis codes about an
individual, will have to consider at least k candidate records in a possible original
dataset. For example, assume that an attacker knows the set of codes f401:0; 834:0g
about an individual. The dataset in Table 7.2b, which was produced by general-
ization, satisfies 32-anonymity, as the attacker cannot associate an individual with
fewer than 3 records (i.e., they have to consider the records r1, r2, r4, r7, and r10).
Similarly, the dataset in Table 7.3, which was produced by disassociation, also
satisfies 32-anonymity, as explained in the Introduction.

7.3 Generalization and Disassociation

In this section, we explain the operations of generalization and disassociation,
which are used to prevent identity disclosure, in the utility-constrained approach.
We first discuss generalization. As mentioned in the beginning of the chapter,
this operation replaces a diagnosis code with a more abstract, but semantically
consistent, generalized term. Generalization was first applied to solve the problem of
anonymizing demographic attributes by Sweeney [21]. Suppression, also mentioned
earlier, can be thought of as the special case of generalization where diagnosis
codes are replaced by the most general concept, Any (usually denoted by *), which
is interpreted as any diagnosis code in the domain T. Furthermore, generalization
typically incurs a lower amount of information loss than suppression. Thus, we will
not discuss suppression separately, in the remainder of this section.

Diagnosis codes can be generalized, using global or local models. Global
models require generalizing all instances (i.e., occurrences) of a diagnosis
code, in the original dataset, in the same way. On the contrary, local models
do not impose this requirement. The dataset shown in Table 7.2b, for
example, has been produced by applying a global generalization model to the
dataset of Table 7.1a. Note that all instances of the diagnosis codes 294:10,
295:04, 296:03, 401:0, 404:00, 480:1, and 944:01 have been replaced by
.294:10; 295:04; 296:03; 401:0; 404:00; 480:1; 944:01/,which implies that a patient
could have been diagnosed with any combination of these codes.

While local models are known to reduce information loss, they may lead to the
construction of datasets that are difficult to be used in practice. This is because data
mining algorithms and analysis tools cannot work effectively on these datasets [2].
Thus, most works have adopted a global model to generalize diagnosis codes. This
model is referred to as set-based generalization, and it is defined as follows.
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Table 7.4 Mappings between diagnosis codes and generalized terms, created by
set-based generalization

Diagnosis code Generalized term

294:10 (294.10, 295.04, 296.03, 401.0, 404.00, 480.1, 944.01)
295:04
296:03
401:0
404:00
480:1
944:01
296:00 (296.00, 296.01, 296.02, 692.71, 695.10, 834.0)
296:01
296:02
692:71
695:10
834:0

Definition 7.2 (Set-based generalization [12]). Given a dataset D and a set of
diagnosis codes TD that contains all diagnosis codes in D, a set-based generalization
is a partition QI of TD.6 The partition QI is constructed by mapping each diagnosis code
i in TD to a generalized term Qi that contains i.

Set-based generalization requires replacing each diagnosis code in TD with a
unique generalized term. For example, the anonymized dataset in Table 7.2b has
been produced by applying set-based generalization. Each code in the domain of
codes in Table 7.1b has been replaced by a generalized term, and the two generalized
terms form a partition of the domain. The mapping between the diagnosis codes and
the generalized terms is shown in Table 7.4.

The application of set-based generalization can prevent identity disclosure, as
it can lead to an increase in the number of records that can be associated with
an individual. This is because a generalized term appears in at least as many
records as any of the diagnosis codes it replaces. For instance, the generalized
term .294:10; 295:04; 296:03; 401:0; 404:00; 480:1; 944:01/ appears in 7 records in
Table 7.2b, while all diagnosis codes in this generalized term appear in no more than
4 records in Table 7.1a. A slightly different model to generalize diagnosis codes,
which are represented as ICD codes,7 was used in [11]. The difference is that, in
[11], the generalized terms must be nodes in a hierarchy that is specified by data
owners. The hierarchy is a tree structure, where leaves represent diagnosis codes

6A partition of a set is defined as a set of non-empty subsets, such that every element in the set is
in exactly one of these subsets.
7ICD is a standard coding scheme for representing diagnosis codes. More details can be found at
http://www.who.int/classifications/icd/en/.

http://www.who.int/classifications/icd/en/.


158 G. Loukides et al.

and the root represents the most general concept (Any). If diagnoses are represented
using ICD codes, then the standard ICD code hierarchy can be used (see [11]).

We now turn our attention to disassociation. This operation was proposed by
Terrovitis et al. in [22] and was recently employed for protecting diagnosis codes
by Loukides et al. [15]. Disassociation partitions the records in the original dataset
D into subrecords. The main principle behind disassociation is that combinations
of diagnosis codes that appear “few” times in D can be concealed, as they will be
scattered in different subrecords of the published dataset. The general concept of
breaking associations between values has also been employed in [25], for relational
data (e.g., data containing demographic attributes).

In the following, we illustrate disassociation through an example. Consider
Table 7.3, which shows a disassociated dataset produced from the original dataset of
Table 7.1a. The dataset in Table 7.3 is comprised of two clusters, P1 and P2, which
contain the records r1 to r5 and r6 to r10, respectively. Furthermore, the diagnosis
codes in a cluster are divided into subsets, and each record in the cluster is split
into subrecords, according to these subsets. For example, the diagnosis codes in P1

are divided into subsets T1 D{296.00, 296.01, 296.02}, T2 D{692.71, 695.10}, and
TT D{834.0, 401.0, 944.01}, according to which r1 is split into three subrecords:
{296.00, 296.01, 296.02}, an empty subrecord {}, and {834.0, 944.01}.

The collection of all (possibly empty) subrecords of different records that
correspond to the same subset of diagnosis codes is called a chunk. For instance, the
subrecord {296.00, 296.01, 296.02} of r1 goes into chunk C1, the empty subrecord
goes into chunk C2, and the subrecord {834.0, 944.01} goes into chunk CT . In
contrast to C1 and C2 which are record chunks, CT is a special, item chunk,
containing a single set of diagnosis codes. In our example, CT contains the set
{834.0, 401.0, 944.01}, which represents the subrecords from all r1 to r5 containing
these codes. Thus, the number of times each diagnosis code in CT appears in the
original dataset is completely hidden from an attacker, who can only assume that
this number ranges from 1 to jPij, where jPij is the number of records in Pi.

Note that, different from generalization and suppression, disassociation retains
all diagnosis codes of the published dataset in their original form. Thus, no
information is lost within each record chunk, which is helpful when a chunk
contains diagnosis codes that are analyzed together. This property makes the use of
disassociation particularly beneficial in the utility-constrained approach, as we will
discuss later. However, in order to preserve privacy, associations between diagnosis
codes that are contained in different chunks are lost. In fact, the original dataset may
contain any record that could be reconstructed by a combination of subrecords from
the different chunks plus any subset of diagnosis codes from CT .

For example, {296.00, 296.01, 834.0, 944.01} in Table 7.5 is a reconstructed
record, which is created by taking {296.00, 296.01} from C1, the empty subrecord
{} from C2, and {834.0, 944.01} from CT . Observe that this record does not appear
in the original dataset of Table 7.1a. In other words, the disassociated dataset can
be interpreted as any possible original dataset, as explained in Guarantee 1. This
way, the original dataset D is hidden, among all possible datasets that can be
reconstructed from a disassociated dataset.
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Table 7.5 A possible dataset
reconstructed from the dataset
of Table 7.3 (reprinted from
[15], with permission from
Elsevier)

ID Records

r1 {296.00, 296.01, 834.0, 944.01}

r2 {296.02, 296.01, 692.71, 834.0}

r3 {296.00, 296.01, 296.02, 692.71, 695.10, 834.0}

r4 {296.00, 296.02, 692.71, 695.10}

r5 {296.00, 296.01, 296.02, 692.71, 695.10, 401.0}

r6 {296.02, 295.04, 480.1}

r7 {294.10, 296.02, 404.00, 834.0, 944.01}

r8 {294.10, 295.04, 296.02, 480.1, 834.0}

r9 {294.10, 295.04, 404.00, 834.0}

r10 {294.10, 295.04, 296.02, 834.0, 944.01}

Reconstructed datasets can permit accurate analysis, as (i) they retain most of
the statistical properties of the original dataset, and (ii) they are straightforward
to analyze (e.g., using off-the-shelf tools), in contrast to generalized datasets
that require special handling (e.g., interpreting a generalized term as an original
diagnosis code, with a certain probability) [15]. However, it is important to note
that a reconstructed dataset may contain associations between diagnosis codes that
do not exist in the original dataset. For example, the combination f296:02; 480:1g
appears in the record r6 of the reconstructed dataset in Table 7.5, but it does not
appear in the original dataset. The extent to which such associations affect utility
can be controlled, and it is minimal in practice, as discussed in [22].

7.4 Specification of Utility Constraints

In this section, we explain how utility constraints can be specified by data owners.
First, we discuss the notion of utility constraints and their satisfaction. Subsequently,
we review different types (instantiations) of utility constraints that have been proven
useful in the context of medical applications.

7.4.1 Defining and Satisfying Utility Constraints

Both generalization and disassociation incur information loss, which must be con-
trolled to ensure that anonymized data can support intended studies. To achieve this,
a utility-constrained approach has been proposed in [12]. In addition to minimizing
information loss, as most approaches do [6, 22, 27], the utility-constrained approach
requires that a set of utility requirements, specified by data owners, are satisfied in
the released data. These requirements are called utility constraints, and the set of the
specified utility constraints is termed utility policy. The following definitions explain
the concept of utility constraint and utility policy, and they are adapted from [12].
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Definition 7.3 (Utility Constraint and Utility Policy [12]). A utility constraint u
is a set diagnosis codes, specified by data owners. The set of all utility constraints is
a partition of TD, which is called utility policy and is denoted with U .

As an example of a utility constraint, consider u2 D f692:71; 695:10g in
Table 7.2a. This utility constraint is comprised of 2 diagnosis codes and is contained
in the utility policy fu1; u2; u3; u4; u5g. Note that the utility constraints are non-
overlapping and that each diagnosis code is contained in exactly one utility
constraint. Thus, a utility policy is a partition of the domain of diagnosis codes
of a given dataset.

By specifying a utility constraint u, we aim to ensure that the number of patients
diagnosed with any diagnosis in u will be the same before and after anonymization.
If this holds, the anonymized dataset will be as useful as the original dataset, for
the study corresponding to u. Furthermore, it is easy to see that the usefulness of
the anonymized data for the study will be lower, if generalization or disassociation
incurs a significant change in the number of patients diagnosed with u. This intuition
leads to the following measure, called Matching Relative Error (MRE) [15].

Definition 7.4 (Matching Relative Error [15]). Let u be a utility constraint in a
utility policy U , and MA and MO be functions, which return the number of records
that match u in the anonymized dataset D0 and in the original dataset D, respectively.
The MRE for u is computed as:

MRE.u/ D MO.u/�MA.u/

MO.u/

Thus, a zero MRE implies that an anonymized dataset can support u to the same
extend as the original dataset does, and MRE scores close to zero are preferred.
In addition, MRE can take positive (respectively, negative) values, when the
number of records that match u in the anonymized dataset is smaller (respectively,
larger) than the corresponding number in the original dataset. The sign of MRE
helps distinguishing between these two cases, which may be useful for specific
studies (e.g., when underestimating the number of patients is not as harmful as
overestimating it). Note also that MRE is independent of the data transformation
operation, hence it can be applied to generalized or disassociated datasets. For a
generalized or reconstructed dataset, a record matches u if it contains at least one
of the diagnosis codes in u. For a disassociated dataset, the definition of a match
is slightly different. Specifically, given a record r in a cluster P of a disassociated
dataset, we say that r matches a utility constraint u, if at least one of the diagnosis
codes in u is contained in: (i) the record chunk or r, or (ii) in the item chunk of P.

For example, the utility constraint u2 in Table 7.2a matches 4 records (namely
r2; r3; r4; r5) in the original dataset of Table 7.1a. However, u2 matches 8 records
in the generalized dataset, shown in Table 7.2b, because at least one of the codes
in f692:71; 695:10g appears in 8 records. Thus, in this case, MRE.u2/ D �1.
This implies that the number of records that match u2 in the generalized dataset
is 100 % (i.e., 2 times) larger than that in the original dataset. Now consider u2 in
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the disassociated dataset of Table 7.5, in which u2 matches 4 records (namely r2 to
r5). In this case, MRE.u2/ D 0. Since the MRE for u2 in the dataset of Table 7.5 is
lower than that for the dataset of Table 7.2b, the former dataset is more useful for u2.

When the MRE for a utility constraint is zero, we say that this constraint is
satisfied. A utility policy is satisfied when all utility constraints in it are satisfied.
Given an anonymized dataset and a utility policy, one may explicitly compute MO

and MA, for each utility constraint in the utility policy, to find out whether the utility
policy is satisfied. However, to produce a generalized (respectively, disassociated)
dataset that satisfies a utility policy, it is necessary to study how generalization
(respectively, disassociation) affects MA. The following property explains this for
the case of data generalization.

Property 7.1. A utility policy U is satisfied for a generalization QI, if and only if, for
each generalized term Qi in QI, all diagnosis codes that are mapped to Qi are contained
in a single utility constraint in U .

That is, QI should not contain a diagnosis code whose corresponding generalized
term “spans” utility constraints. This property holds, because all occurrences of a
diagnosis code are mapped to the same generalized term, in all records of the dataset.
Thus, a good strategy to produce a generalized dataset that satisfies the utility policy
is to generalize diagnosis codes, contained in the same utility constraint.

In the following, we provide a property for disassociation. This property is
applied to the clusters of a disassociated dataset, because the matching of a record
to a utility constraint is performed for a cluster, as explained above.

Property 7.2. Given a utility constraint u and a disassociated dataset, comprised of
clusters C1; : : : ; Cr, the utility constraint is satisfied in the disassociated dataset, if
the diagnosis codes of u are contained in at most one record chunk, for each cluster
Ci, where i 2 Œ1; r�. A utility policy U is satisfied for a disassociated dataset, if each
utility constraint u in U is satisfied.

Thus, the diagnosis codes of a utility constraint should not “span” multiple record
chunks of a cluster. Otherwise, diagnosis codes that appear in the same record of the
original dataset can end up in different records in the disassociated dataset. This, in
turn, may lead to the violation of the utility constraint. For example, assume that a
utility constraint contains two diagnosis codes, which appear in a single record of
the original dataset. The utility constraint will not be satisfied when these codes end
up in two different record chunks and each chunk belongs to a different record of
the disassociated dataset.

Based on Properties 7.1 and 7.2, we make the following observations, for
a utility constraint u. These observations are important to select an appropriate
anonymization algorithm in practice, and they have not been discussed so far in
the research literature, to the best of our knowledge.

Observation 1: The number of individuals that are associated with any subset of
diagnosis codes in u is not affected by disassociation, when u is satisfied. That is,
any utility constraint that is more fine-grained than u is also satisfied. This does
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not necessarily hold when generalization is used. In other words, generalization
should be used when a study does not distinguish between diagnosis codes in u,
whereas disassociation should be used when such distinction is important to be
made.

Observation 2: A utility constraint u that contains many diagnosis codes is gener-
ally more difficult to be satisfied by disassociation, whereas the opposite holds for
generalization. For example, a utility constraint that contains all diagnosis codes
in the domain T will always be satisfied by generalization, whereas creating
record chunks that end up in different records in a disassociated dataset may lead
to the violation of the utility constraint. Thus, the use of disassociation should be
preferred when studies involve a small number of diagnosis codes.

7.4.2 Types of Utility Constraints for ICD Codes

The concept of utility constraint is fairly general in the sense that any set of diagnosis
codes can form a utility constraint. Consequently, utility constraints can be formed
by grouping diagnosis codes represented using different medical terminologies,
such as ICD or SNOMED CT.8 However, most works on anonymizing diagnosis
codes (see [5] for a survey) focus on utility constraints formed of ICD codes, which
is also the focus of this chapter. In the following, we will present three types of utility
constraints, which are based on: (i) the ICD hierarchy, (ii) the similarity between
ICD codes, or (iii) the frequency of ICD codes in the original dataset. These types
of constraints can be used to model the requirements of various medical studies, as
explained in [11].

Hierarchy-Based Utility Constraints These constraints model semantic relation-
ships between ICD codes that are based on the ICD hierarchy. This hierarchy has
5-digit ICD codes as leaves and 3-digit ICD codes, Sections and Chapters, as
internal nodes. The root of this hierarchy is the most general concept Any. Sections
and Chapters model aggregate concepts, and Chapters correspond to more general
concepts than Sections. Thus, a utility constraint can contain all 5-digit ICD codes
(leaves) that have a common ancestor (i.e., 3-digit ICD code, Section, or Chapter).
The intuition behind hierarchy-based constraints is that a study often involves
different forms of the same disease (e.g., different forms of Schizophrenic disorders)
or classes of related diseases according to the ICD hierarchy (e.g., Psychoses).

For example, consider a utility constraint u for Schizophrenic disorders. The
5-digit ICD codes in u are of the form 295:xy, where x D f0; : : : ; 9g and y D
f0; : : : ; 5g, and they have the 3-digit ICD code 295 as their common ancestor. The
utility constraint u is shown in the first row of Table 7.6. By forming a different
utility constraint, for each 3-digit ICD code in the hierarchy (e.g., 296, 297, etc.),
we construct a level 1, hierarchy-based policy. Alternatively, the common ancestor

8http://www.ihtsdo.org/snomed-ct/.

http://www.ihtsdo.org/snomed-ct/.
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Table 7.6 Examples of hierarchy-based utility constraints

Utility policy ICD codes in utility constraint

level 1 f295:00; 295:01; : : : ; 295:95g
level 2 f295:00; 295:01; : : : ; 295:95; 296:00; : : : ; 299:91g
level 3 f290:10; 295:00; 295:01; : : : ; 295:95; 296:00; : : : ; 299:91; : : : ; 299:91; : : : ; 319g

of the codes in the utility constraint u may be a Section. For example, u is comprised
of Psychoses, whose common ancestor is 295–299, in the second row of Table 7.6.
In this case, u will be contained in a level 2, hierarchy-based policy. In another case,
the common ancestor for the codes in u may be a Chapter. For example, u may
correspond to Mental disorders that have 290–319 as their common ancestor (see
the last row of Table 7.6). In this case, u is contained in a level 3, hierarchy-based
policy.

Similarity-Based Utility Constraints Similarity-based utility constraints model
semantic relationships between ICD codes, which are not necessarily formed using
a hierarchy. Thus, they are more general than hierarchy-based utility constraints.

For example, they can be used to model the requirements of studies involving
certain forms of a disorder (i.e., only some of the 5-digit ICD codes whose common
ancestor is a 3-digit ICD code) or broader groups of ICD codes (e.g., some 3-digit
ICD codes which do not have the same common ancestor). In addition, different
forms of similarity (e.g., other taxonomies or distance measures) can be used. In
[11], for instance, similarity-based utility constraints that contain the same number
of sibling 5-digit ICD codes in the hierarchy have been considered. As an example, a
similarity-based utility constraint can contain 5 sibling ICD codes: 295:00, 295:01,
295:02, 295:03, and 295:04. These codes are only some of the 5-digit ICD codes
that have the 3-digit ICD code 295 as their common ancestor in the ICD hierarchy.

Frequency-Based Utility Constraints Frequency-based utility constraints model
frequent itemsets (i.e., sets of diagnosis codes that appear in at least a certain
percentage of the records of the original dataset). For example, a utility constraint
can contain all diagnosis codes that appear in at least 5 % percent of records, and
a utility policy may be formed of all such utility constraints. The intuition behind
frequency-based utility constraints is that studies often involve codes that appear
relatively frequent in the original dataset.

7.5 Utility-Constrained Anonymization Algorithms

In this section, we provide an overview of the Clustering-based Anonymizer (CBA)
[11] and the DISassociation (DIS) [15] algorithm. These algorithms anonymize data
following the utility-constrained approach, and they are the current state-of-the-art
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in terms of their effectiveness to preserve data utility. Subsequently, we present a
concrete example that illustrates the operation of the CBA and DIS algorithms, as
well as the differences between them.

7.5.1 Clustering-Based Anonymizer (CBA)

The CBA algorithm aims to enforce km-anonymity to an original dataset by applying
generalization to diagnosis codes, so that the utility policy is satisfied and minimal
information loss is incurred.9 The pseudocode of CBA is provided in Algorithm 7.1.

Algorithm 7.1 CLUSTERING-BASED ANONYMIZER (CBA).
Input : Original dataset D, utility policy U , parameters k and m
Output : Generalized dataset DA

1 DA  D
2 PQ all sets of up to m diagnosis codes with support lower than k in D
3 while PQ is not empty do
4 p set of diagnosis code with largest support
5 for each diagnosis code t in p do
6 if t has been generalized before then
7 Update p by replacing t with its generalized term
8 end
9 end

10 while the support of p in DA is in .0; k/ do
11 Find diagnosis codes t and t0, such that (i) t and t0 are in the same utility constraint, and

(ii) .t; t0/ has the lowest information loss
12 if such codes can be found then
13 Create the generalized term .t; t0/
14 Update p and DA by replacing t and t0 with .t; t0/
15 end
16 else
17 while the support of p in DA is in .0; k/ do
18 Delete the diagnosis code in p that has the lowest support in DA

19 end
20 end
21 end
22 Remove p from PQ
23 end
24 return DA

This algorithm starts by initializing the dataset to be anonymized, denoted with
DA, to the original dataset D. Then, in step 2, a priority queue PQ is populated with

9This algorithm can also be used to apply a privacy model called privacy-constrained anonymity
(see [11] for details). However, in this chapter, we focus on km-anonymity, as it is enforced by DIS.
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all sets of diagnosis codes that need protection (i.e., those with up to m diagnosis
codes and support lower than k in D). The priority queue keeps these sets sorted in
decreasing order of their support in D.

In steps 4–23, CBA considers each of the elements in PQ. Specifically, CBA
retrieves p, the top-most element of PQ, and updates the diagnosis code contained
in it (steps 4–8). The update reflects generalizations that may have occurred in
previous iterations, and it is necessary to decide if the element p requires protection.
Thus, CBA iterates over each diagnosis code in p and replaces the code with its
corresponding generalized term, if the code has been generalized before.

Subsequently, in steps 10–21, CBA protects p, if its support is lower than k
in DA. To achieve this, the algorithm attempts to find a pair of diagnosis codes
t and t0 that can be generalized together, according to the utility policy and in a
way that minimizes information loss (step 11). Information loss is measured by
taking into account the support of the generalized term .t; t0/, as well as the semantic
distance between t and t0 (see [11] for details). If such a pair is found, t and t0 are
generalized to .t; t0/, while the set of diagnosis codes p and DA are updated to reflect
the generalization (steps 12–15). Otherwise, CBA iteratively deletes diagnosis codes
from p, starting with the least supported code in DA, until p becomes protected (steps
16–20). This allows CBA to delete no more ICD codes than what is required to
protect p. After p is satisfied, it is removed from PQ (step 22), and the algorithm
checks whether PQ contains another element that must be protected. When PQ
becomes empty, CBA returns the anonymized dataset DA (step 24).

Time Complexity The worst case time complexity of CBA is O.2jTDj 
 jDj/, where
jTDj is the number of distinct diagnosis codes in the original dataset D, and jDj is the
number of records in D. This is because there are at most O.2jTDj/ sets of diagnosis
codes that require protection and computing the support of each set takes O.jDj/
time. In practice, the number of distinct diagnosis codes that require protection is
smaller, and CBA is fairly efficient. For instance, anonymizing a dataset containing
25 K records and 631 distinct diagnosis codes required less than 6 s [15].

7.5.2 DISassociation Algorithm (DIS)

The DIS algorithm has the same objective as CBA (i.e., to enforce km-anonymity,
while satisfying the utility policy and incurring minimal information loss), but it
uses disassociation instead of generalization. Thus, the operations it performs are
fundamentally different from those of CBA.

A high-level description of the DIS algorithm is provided in Algorithm 7.2. As
can be seen, DIS performs a horizontal partitioning of the dataset into disjoint
clusters, and then it partitions each cluster vertically. The creation of clusters is
performed by an algorithm called HORPART, while the vertical partitioning of
the clusters is performed by an algorithm called VERPART. Subsequently, DIS
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Algorithm 7.2 DISASSOCIATION (DIS) (reprinted from [15], with permission from
Elsevier).
Input : Original dataset D, utility policy U , parameters k and m
Output : Disassociated dataset DA

1 Partition D horizontally into disjoint clusters by applying Algorithm HORPART

2 for each cluster P do
3 Partition P vertically into chunks by applying Algorithm VERPART

4 end
5 Refine clusters
6 return DA

performs the refining operation, which aims to further reduce information loss. In
the following, we present the partitioning algorithms and the refining operation in
more detail.

We first discuss HORPART, which horizontally partitions the original dataset into
clusters. This algorithm aims to create clusters that contain semantically similar
diagnosis codes and no more than maxClusterSize records, where maxClusterSize
is a parameter provided by the data owners. The intuition behind the operation of
HORPART is that the records in such clusters can be partitioned vertically without
incurring significant information loss.

The pseudocode of HORPART is provided in Algorithm 7.3. As can be seen, the
algorithm first checks whether the dataset it is applied to, denoted with D, contains
fewer than maxClusterSize records. In this case, the dataset D is returned. Otherwise,
HORPART splits the dataset into two parts, according to: (i) the support of diagnosis
codes in the original dataset, and (ii) the participation of diagnosis codes in the
utility policy. The first part of D is denoted with D1 and contains all records with
a diagnosis code a. To select a, we distinguish two cases. In the first case (steps
4–6), all diagnosis codes in u have been considered in previous recursive calls of the
algorithm. In this case, the diagnosis code with the largest support in D that has not
been considered before is assigned to a, and the utility constraint that contains a is
assigned to u. Otherwise, at least one diagnosis code, in the input utility constraint
u, can be considered as a. Thus, a is assigned to the code in u that has the largest
support in the original dataset (step 8). Subsequently, in steps 10–11, HORPART

creates the two parts of the dataset; D1 contain all records that contain a, and D2

contains all the remaining records of D. This procedure is applied recursively, to
each of the constructed parts (step 12), until they contain fewer than maxClusterSize
records. Diagnosis codes that have been previously used for partitioning are used
only once.

Next, we discuss the VERPART algorithm, which vertically partitions a cluster
into chunks. VERPART is essentially a greedy heuristic which tries to distribute
non-protected combinations of codes into different chunks. By doing so, the
algorithm breaks the associations between such codes, which helps creating a km-
anonymous cluster. In addition, VERPART aims at satisfying the utility policy, by
creating record chunks that contain as many diagnosis codes from the same utility
constraint as possible. Note that this is in line with Property 7.2.
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Algorithm 7.3 HORPART (reprinted from [15], with permission from Elsevier).
Input : Dataset D, utility policy U , a utility constraint u 2 U (initially empty)
Output : A HORizontal PARTitioning of D, i.e., a set of clusters
Param. : The maximum cluster size maxClusterSize

1 if jDj < maxClusterSize then
2 return D
3 end
4 if all diagnosis codes in u have been considered then
5 a  a diagnosis code that: (i) has the largest support in D, and (ii) has not been considered

before u the utility constraint from U that contains a
6 end
7 else
8 a a diagnosis code that: (i) is contained in u, (ii) has the largest support in D, and (iii) has

not been considered before
9 end

10 D1 the set of all records of D that contain a
11 D2 D� D1

12 return HORPART.D1;U ; u/[HORPART.D2;U ; fg/

The pseudocode of VERPART is provided in Algorithm 7.4. The algorithm starts
by creating an item chunk that contains all diagnosis codes whose support in the
cluster is lower than k. The support of a set of diagnosis codes cannot be larger
than that of the diagnosis codes contained in it, hence such diagnosis codes could
not be part of km-anonymous record chunks. Then, VERPART assigns all remaining
diagnosis codes into a set T 0, which is partitioned into groups (steps 2–3). Each
group contains all diagnosis codes of a utility constraint, and these codes are sorted
in decreasing order of their support in the cluster (step 4). Next, all groups of T 0 are
sorted, in decreasing order with respect to the support of their first diagnosis code
(step 5). This prioritizes the partitioning of clusters that contain at least one frequent
code, and it was shown to be effective for preserving data utility [15].

Following that, in steps 6–18, the algorithm creates record chunks, by consid-
ering all diagnosis codes in T 0. Specifically, each code t, which is not part of a
record chunk, is used to create a new record chunk (step 8). All other codes that
are contained in the same utility constraint as t are then considered, following the
ordering of T 0. These codes are added into the created record chunk, if the cluster
remains km-anonymous (step 9). Clearly, the creation of large record chunks helps
preserving the associations between diagnosis codes, while the selection of codes
from the same utility constraint helps satisfying the utility policy. After that, in steps
11–13, VERPART considers each diagnosis code t in T 0 and finds: (i) the record
chunk, R.t/, that contains t, and (ii) the first code, t0, that was added into R.t/. If
t and t0 belong to different utility constraints and some of the diagnosis codes in
the utility constraint of t have not been added into R.t/, then t is removed from
R.t/ (steps 14–15). This enables the algorithm to insert the code into another record
chunk (along with the remaining codes of u) in a subsequent step. After all codes
in T 0 are added into record chunks, the algorithm returns the disassociated cluster
(step 19).
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Algorithm 7.4 VERPART (reprinted from [15], with permission from Elsevier).
Input : A cluster P, utility policy U , parameters k and m
Output : A km-anonymous VERtical PARTitioning of P

1 Create item chunk using the set of diagnosis codes in P that appear in fewer than k records of P
2 T0  all diagnosis codes that are contained in P but not in the item chunk
3 Partition T0 into groups, s.t. each group contains all diagnosis codes of a utility constraint in U
4 Sort the diagnosis codes of each group, in decreasing order of their support in P
5 Sort the groups, in decreasing order with respect to the support of their first diagnosis code
6 repeat
7 for each diagnosis code t in T0 that is not part of a record chunk do
8 Create an empty record chunk and add t into it
9 Add all diagnosis codes in T0 that can be added into the record chunk without violating

the km-anonymity of the cluster P, following the ordering of T0

10 end
11 for each diagnosis code t in T0 do
12 Let R.t/ be the record chunk of t
13 Let t0 the diagnosis code that was first inserted into C.t/
14 if t belongs to a utility constraint u, which is different from the constraint of t0 and not all

diagnosis codes of u are added to R.t/ then
15 Remove t from R.t/
16 end
17 end
18 until all diagnosis codes in T0 are contained in record chunks;
19 return disassociated cluster C

Last, we explain the refining operation (see step 5 in the pseudocode of DIS).
This operation aims at improving the utility of the disassociated dataset, without
violating km-anonymity. To this end, we examine the diagnosis codes that reside in
the item chunk of each cluster. Consider, for example, Table 7.3. The item chunk of
the cluster P1 contains the diagnosis codes 834:0 and 944:01, because the support of
these codes in P1 is 2 (i.e., lower than k D 3). For similar reasons, these diagnosis
codes are also contained in the item chunk of P2. However, the support of these
codes in both clusters P1 and P2 together is not small enough to violate privacy (i.e.,
the set f834:0; 944:01g appears as many times as the set f296:03; 294:10g which is
in the record chunk of P2). To deal with such situations, the DIS algorithm allows
the creation of joint clusters, which share record chunks.

Given a set Ts of codes that appear in the item chunks of two or more clusters,
a joint cluster can be created by (i) constructing one or more shared chunks, after
projecting the original records of the initial clusters to Ts, and (ii) removing all
diagnosis codes in Ts from the item chunks of the initial clusters. The shared chunks
must be km-anonymous, to ensure that privacy is preserved, and contain a minimum
number of subrecords, to help data utility, as explained in [22]. Table 7.7 shows
a joint cluster, created by combining the clusters P1 and P2 of Table 7.3, when
Ts={834.0, 944.01}. Furthermore, larger joint clusters can be built by combining
joint clusters.
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Table 7.7 Disassociation with a shared chunk (reprinted from [15], with
permission from Elsevier)

Record Item Shared

P1 cluster

{834.0,944.01}

{944.01}

{834.0}

{834.0,944.01}

{834.0,944.01}

{296.00, 296.01, 296.02}

{296.00, 296.01, 296.02} {692.71, 695.10} 401.0

{296.00, 296.02} {692.71, 695.10}

{296.00, 296.01} {692.71}

{296.00, 296.01, 296.02} {692.71, 695.10}

P2 cluster

{296.03, 295.04}

{294.10, 296.03} 404.00,

{294.10, 295.04, 296.03} 480.1

{294.10, 295.04}

{294.10, 295.04, 296.03}

Time Complexity The worst-case time complexity of HORPART is O.jDj2/, as it
performs O.jDj/ splits and reorders O.jDj/ records in each split. The worst-case
time complexity of VERPART is O.jT 0jŠ/, as it examines O.jT 0jŠ/ combinations of
diagnosis codes, and that of the refining operation is O.jDj2/. As noted in [15], the
behavior of DIS is dominated by that of HORPART, because jTj is small in practice
(and it can also be controlled through varying maxClusterSize).

7.5.3 Comparing the CBA and DIS Algorithms

In this section, we provide an example that illustrates the application of the CBA and
DIS algorithms to the dataset of Table 7.1a. The utility policy, shown in Table 7.2a,
is used, and the parameters k and m are set to 3 and 2, respectively. Subsequently,
we compare the outcome of these algorithms with respect to data utility.

We first illustrate the application of CBA. The algorithm begins by identifying
all sets of up to 2 diagnosis codes that have a lower support than 3. There are
totally 32 such sets of diagnosis codes, which are added into the priority queue,
in decreasing order of their support (step 2). Table 7.8 shows some of these sets
and their support. Then, CBA retrieves the top-most element of the priority queue,
which is the set f296:00; 834:0g. None of the codes in the set has been generalized
before, so no update takes place in steps 6–8. As the support of the set is lower than
3, the algorithm needs to apply generalization and/or suppression.

Specifically, CBA finds the pair 296:00 and 296:01 (step 11). These codes are
semantically similar, hence incur low information loss, and they belong in the
same utility constraint in Table 7.2a. Thus, the generalized term .296:00; 296:01/

is created and these two codes are replaced by this term in the element of the
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Table 7.8 Sets of diagnosis
codes that are added into the
priority queue of CBA, and
their support

Support Set of diagnosis codes

2 f296:00; 834:0g
2 f296:00; 944:01g
2 f296:00; 401:0g
2 f296:01; 944:01g
2 f296:01; 401:0g
: : :

2 401.00

2 404.00

2 480.01

: : :

1 f296:03; 404:00g
1 f401:0; 965:10g

priority queue, as well as in the original dataset (steps 12–14). After that, the top-
most element of the priority queue becomes f.296:00; 296:01/; 834:0g, which still
requires protection as its support is lower than k. The algorithm proceeds in a similar
fashion and eventually creates .294:10; 295:04; 296:00; 296:01; 296:02; 296:03/,
whose support is 10 (i.e., larger than k).

Notice that the utility constraint u1 in Table 7.1a is satisfied, but km-anonymity
does not hold. This is because there are still sets of codes whose support is lower
than k (e.g., f296:00; 401:0g). Therefore, CBA considers these sets and creates the
generalized term .401:0; 404:00/. Still, u2 is satisfied, but km-anonymity does not
hold. At this point, there are no generalized terms that can be constructed, in a
way that satisfies the remaining utility constraints. Thus, the algorithm employs
suppression (i.e., it deletes codes), as shown in Table 7.9. For example, the
code 480:1 has been suppressed, because it co-occurs with the generalized term
.401:0; 404:00/ only in record r6, and generalizing 480:1 with another code would
violate the utility constraint u4 D f480:1g in Table 7.2a. At this point, all sets of
diagnosis codes have a support of at least k (i.e., the priority queue is empty), and
CBA returns the anonymized dataset shown in Table 7.9 (step 24).

We now show how the DIS algorithm can be applied to the original dataset in
Table 7.1a. We assume that the parameter maxClusterSize is set to 6. The algorithm
starts by using HORPART to create a set of disjoint clusters. As the size of the
original dataset is larger than 6 and no diagnosis codes have been considered in
previous calls (steps 1–6), the HORPART algorithm assigns a to 296:00 (step 5).
This code is contained in the utility constraint u1 of Table 7.2a and has the largest
support in the original dataset. Then, the algorithm splits D into two parts, D1 and
D2. D1 consists of the records containing 296.00 (i.e., r1 to r5), whereas D2 contains
the remaining records (steps 10–11). The next call of HORPART for D1 is performed
with the utility constraint u1 as input, and HORPART tries to further partition D1,
using the codes of this constraint. On the contrary, no utility constraints are given
as input to HORPART, when it is applied to D2. As the size of both D1 and D2 is
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Table 7.9 Anonymized dataset by CBA using the utility policy of Table 7.2a

ID Records

r1 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 834.0, 944.01

r2 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00), 944.01,
692.71, 695.10

r3 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 692.71, 834.0, 695.10

r4 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00), 692.71

r5 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 692.71, 695.10

r6 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00), 480.1

r7 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 834.0, 944.01

r8 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 480.1

r9 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00)
r10 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 834.0, 944.01

The diagnosis codes appearing in grey have been suppressed (deleted)

lower than maxClusterSize, HORPART creates two clusters; P1, which contains the
first five records, and P2, which contains the remaining records. The two clusters
amount to D1 and D2, respectively.

Next, DIS applies the VERPART algorithm to each of the clusters P1 and P2.
VERPART starts by creating the item chunk containing the codes 401:0, 834:0 and
944:01, which appear in fewer than 3 records in P1 (step 1). Thus, T 0 contains all
other codes, and it is sorted according to the support of these codes in P1 and their
participation in a utility constraint (steps 2–4). Specifically, for the utility constraints
of Table 7.2a, we distinguish two groups of codes; a group f296:00; 296:01; 296:02g,
for the codes in u1, and another group f692:71; 695:10g for the codes in u2. Next,
VERPART sorts each of these groups, in descending order of the support of its codes.
Thus, the final ordering of T 0 is f296:00; 296:01; 296:02; 692:71; 695:10g.

Subsequently, VERPART constructs the record chunks of P1 (steps 7–10), as
follows. First, it selects 296:00, which has the largest support among all records
of P1, and adds it into an initially empty record chunk. Then, it selects 296.01, the
next code in T 0, and adds it into the record chunk, as the record chunk remains
32-anonymous. After that, it considers each of the remaining codes of T 0, following
the ordering of T 0, and it adds 296:02 and 692:71 into the record chunk. The code
695:10 is not added, because the set f296:01; 695:10g appears in only two records
of P1 (i.e., r2 and r5), hence adding it into the chunk would violate 32-anonymity.

After considering all codes in T 0, VERPART checks whether the codes of a utility
constraint are only partially added to the record chunk (steps 11–17). This is true
for 692:71, which is separated from 695:10 (both these codes are contained in u2).
Hence, 692:71 is removed from the record chunk, so that it can be added to the
chunk C2 of P1 along with 695:10. After that, the algorithm proceeds to creating
the next record chunk. Then, DIS applies VerPart to the cluster P2, and creates the
disassociated dataset shown in Table 7.3.

Following that, the algorithm refines the clusters of the dataset in Table 7.3 to
reduce information loss. During this operation a shared chunk, shown in Table 7.10,
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Table 7.10 Disassociated dataset with a shared chunk (reprinted from
[15], with permission from Elsevier)

Record Item Shared

P1 cluster

{834.0,944.01}

{944.01}

{834.0}

{834.0,944.01}

{834.0,944.01}

{296.00, 296.01, 296.02}

{296.00, 296.01, 296.02} {692.71, 695.10} 401.0

{296.00, 296.02} {692.71, 695.10}

{296.00, 296.01} {692.71}

{296.00, 296.01, 296.02} {692.71, 695.10}

P2 cluster

{296.03, 295.04}

{294.10, 296.03} 404.00,

{294.10, 295.04, 296.03} 480.1

{294.10, 295.04}

{294.10, 295.04, 296.03}

Table 7.11 The result of
functions MO and MA, for
CBA and for a reconstructed
dataset, produced by DIS

Utility constraint MO MA for CBA MA for reconstructed

u1 10 10 10

u2 4 0 4

u3 4 4 2

u4 2 0 2

u5 5 0 7

These functions are calculated for each utility constraint in
Table 7.2a and used in the computation of the MRE measure

is created, as follows. First, DIS inspects the item chunks of P1 and P2 in Table 7.3,
and it identifies that the codes 834:0 and 944:01 have support 2 in P1, as well as
in P2. Since the support of these codes in both clusters together is 2C 2 D 4 > k,
DIS reconstructs the parts fr1; : : : ; r5g and fr6; : : : ; r10g that contain these codes, and
calls VERPART, which creates the shared chunk. Finally, the dataset created by DIS
is used to generate the reconstructed dataset shown in Table 7.5.

In the following, we compare the anonymized dataset of CBA to the recon-
structed dataset, created from the output of DIS, in terms of utility, using the MRE
measure (see Sect. 7.4). The computation of MRE is based on the functions MO

and MA, which are applied to each utility constraint in Table 7.2a. The results of
the computation are shown in Table 7.11. Specifically, the latter figure shows the
result of the functions MA, for the dataset created by CBA, and for the reconstructed
dataset, in the third and last column, respectively. Based on these functions, the
MRE for each of the utility constraints is computed, as shown in Table 7.12. Observe
that CBA outperforms DIS for u3, whereas it performs worse than DIS, in the case
of u2, u4, and u5. The MRE scores for utility constraints in which an algorithm
performs better are underlined.
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Table 7.12 MRE scores for
each utility constraint in
Table 7.2a

Utility constraint MRE for CBA MRE for DIS

u1 0 0

u2 1 0

u3 0 1

u4 1 0

u5 1 �0:4

Last, we compare CBA and DIS with respect to their ability to permit accurate
aggregate query answering (i.e., to support studies requiring to find the number of
patients associated with a certain combination of codes). The comparison is based
on the INFORMS 2008 electronic medical record dataset [7], and it is part of the
experimental evaluation of DIS reported in [15].

To measure aggregate query answering accuracy, we considered various work-
loads of queries, asking for sets of diagnosis codes that at least ı % of all patients
have. In other words, the queries retrieve frequent itemsets, appearing in at least
ı % of the records. The parameter ı varies in f0:625; 1:25; 2:5; 5g. To quantify
the accuracy of answering the queries in a workload, we measured the average
percentage of records that are retrieved incorrectly as part of the query answers
on anonymized data. The latter percentage is denoted with ˛.

For example, consider a workload comprised of a query that returns 10 in the
original data and 13 in the anonymized data. In this case, .j10 � 13j=10 
 100 % D
30 % of records are retrieved incorrectly as part of the query answer, thus ˛ D 30.
Clearly, lower values of ˛ imply higher data utility. Furthermore, we applied the
CBA and DIS methods, using three different utility policies, namely U1, U2, and
U3. U1 is a level 1 hierarchy-based policy, U2 is a similarity-based policy, whose
constraints contain 10 sibling 5-digit codes in the ICD hierarchy, and U3 is a
frequency-based policy, whose constraints contain all codes that appear in at least
1:25 % of records. The parameters k and m were fixed to 5 and 2, respectively.

The results for the utility policy U1 are summarized in Table 7.13a. As one can
observe, the scores for DIS and CBA are 15:5 and 5:5, on average, respectively.
Thus, both algorithms perform reasonably well. However, DIS can generally allow
enforcing km-anonymity with lower information loss. For instance, when ı D 5 %,
DIS permits approximately 16 times more accurate query answering than CBA.
A similar observation can be made from Tables 7.13b and 7.13c, which illustrate
the corresponding results for U2 and U3, respectively. Of note, the difference of DIS
and CBA with respect to ˛ increases with the parameter ı. This suggests that DIS
should be preferred over CBA when the queries correspond to relatively frequent
combinations of diagnosis codes.
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Table 7.13 Average percentage of records that are retrieved incorrectly,
for workloads having different ı values and for: (a) U1, (b) U2, and (c) U3

ı.%/ ˛ for CBA ˛ for DIS

0.625 16 13

1.25 15 6

2.5 20 2

5 10 0.6

(a)

ı.%/ ˛ for CBA ˛ for DIS

0.625 43 13

1.25 36 6

2.5 29 2

5 1 0.6

(b)

ı.%/ ˛ for CBA ˛ for DIS

0.625 32 12

1.25 28 6

2.5 22 1

5 4 0.5

(c)

7.6 Future Directions

To increase the adoption of anonymization technologies, it is important to guarantee
that medical studies can be performed accurately on anonymized data. The utility-
constrained approach, surveyed in this chapter, is a first step towards achieving
this objective, but there are various other directions awaiting to be explored. In
the following, we discuss some of these directions. Specifically, in Sect. 7.6.1, we
discuss alternative ways of formulating utility constraints, which are relevant to
different uses of anonymized data. Next, in Sect. 7.6.2, we consider the issue of
providing guarantees for the satisfaction of specified utility policies.

7.6.1 Different Forms of Utility Constraints

Our discussion so far focused on utility constraints that are modeled as sets of
diagnosis codes. The intuition behind this formulation is that data transformation
should not affect relations between diagnosis codes falling into the same utility
constraint. However, there are alternative formulations that are worth investigating.
In the following, we present three such formulations.

First, there are studies aiming to discover patterns of diagnosis codes, which
have certain desired properties (e.g., a support that exceeds a certain threshold,
or deviates from its expected value [3]). In many cases, publishing the patterns
alone is insufficient (e.g., due to regulations that require patient-level data to be
shared), or inappropriate (e.g., due to requirements of certain data recipients). Thus,
it is important to formulate utility constraints, whose satisfaction will enable the
discovery of patterns, and then anonymize the diagnosis codes with respect to
such constraints. However, the problem is far from straightforward, due to the



7 Utility-Constrained EHR Data Publishing 175

overlap between patterns and the large number of patterns that may be discovered.
Furthermore, generalization and/or disassociation must be applied in a way that
prevents the creation of fake patterns (i.e., patterns that are not discoverable from
the original dataset but can be discovered from the anonymized dataset).

Second, diagnosis codes are often released for querying purposes. In this case, the
formulation of utility constraints should be based on the queries, in order to better
preserve utility for the intended studies. This raises several interesting questions,
including: (i) which types of queries can be supported best by generalization or
disassociation, (ii) how to deal with correlations between diagnosis codes that must
be retained to support the queries, and (iii) how to detect and deal with attackers
who formulate queries in a way that makes breaching privacy easier. A pioneering
attempt towards producing anonymized relational data (e.g., patient demographics)
that support, but do not guarantee, accurate query answering was made in [8].
Diagnosis codes, however, require different treatment than demographics, and they
are susceptible to different types of identity disclosure attacks [12].

Third, a large number of applications involve the analysis of both patient
demographics and diagnosis codes. Methods for anonymizing such data have been
considered recently [17, 18], but they do not guarantee the utility of anonymized
data in intended studies. Formulating utility constraints for such data is worthwhile.
However, it is not clear how to extend the utility-constrained approach to deal with
data containing both demographics and diagnosis codes. For instance, numerical
values contained in such data require different handling than diagnosis codes, as
they are generalized using ranges, which are difficult to know prior to anonymiza-
tion [26].

7.6.2 Different Approaches to Guaranteeing Data Utility

The utility-constrained approach treats privacy as more important than utility. That
is, the utility policy may need to be violated, if this is necessary to satisfy privacy.
In fact, no guarantees that a utility policy will be satisfied are provided by existing
methods [11, 12, 15]. For instance, both CBA and DIS did not satisfy the utility
policy, in the example of Sect. 7.5.3, although they satisfied some of the utility
constraints (i.e., the constraints whose MRE is 0 in Table 7.12).

One way to get around this problem is to design algorithms that offer some type
of guarantees, related to the satisfaction of utility constraints. Example of such
guarantees are: “a predetermined subset of the utility constraints will always be
satisfied”, or “the MRE of all utility constraints will be within a predetermined
interval”. The challenge for the development of such algorithms stems from the
computational complexity of the problem. As shown in [13], the problem of
anonymizing data in the presence of utility constraints, formulated as sets of
diagnosis codes, is NP-hard. An alternative way is to design more flexible privacy
principles. Such principles may be based on the personal privacy preferences of
patients, or employ different parameters (e.g., a lower k and m) for diagnosis codes,
contained in utility constraints that are important to satisfy.
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7.7 Conclusion

In this chapter, we provided a detailed discussion of the utility-constrained approach
to anonymizing diagnosis codes. After introducing the operations of generalization
and disassociation, we focused on the specification of utility constraints. Subse-
quently, we surveyed two algorithms that follow the utility-constrained approach.
These algorithms are based on generalization and disassociation, respectively, and
they have been shown to outperform others in terms of preserving data utility. Last,
we discussed several promising directions for future work.
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Chapter 8
Methods to Mitigate Risk of Composition Attack
in Independent Data Publications

Jiuyong Li, Sarowar A. Sattar, Muzammil M. Baig, Jixue Liu,
Raymond Heatherly, Qiang Tang, and Bradley Malin

Abstract Data publication is a simple and cost-effective approach for data shar-
ing across organizations. Data anonymization is a central technique in privacy
preserving data publications. Many methods have been proposed to anonymize
individual datasets and multiple datasets of the same data publisher. In real life,
a dataset is rarely isolated and two datasets published by two organizations may
contain the records of the same individuals. For example, patients might have visited
two hospitals for follow-up or specialized treatment regarding a disease, and their
records are independently anonymized and published. Although each published
dataset poses a small privacy risk, the intersection of two datasets may severely
compromise the privacy of the individuals. The attack using the intersection of
datasets published by different organizations is called a composition attack. Some
research work has been done to study methods for anonymizing data to prevent
a composition attack for independent data releases where one data publisher has
no knowledge of records of another data publisher. In this chapter, we discuss two
exemplar methods, a randomization based and a generalization based approaches, to
mitigate risks of composition attacks. In the randomization method, noise is added
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to the original values to make it difficult for an adversary to pinpoint an individual’s
record in a published dataset. In the generalization method, a group of records
according to potentially identifiable attributes are generalized to the same so that
individuals are indistinguishable. We discuss and experimentally demonstrate the
strengths and weaknesses of both types of methods. We also present a mixed data
publication framework where a small proportion of the records are managed and
published centrally and other records are managed and published locally in different
organizations to reduce the risk of the composition attack and improve the overall
utility of the data.

8.1 Introduction

The increasing collection of large volumes of person information has created
tremendous opportunities for knowledge-based decision making in a number of
domains [29]. To fully maximize the knowledge that can be learned, the data needs
to be made available beyond the organizations that performed the initial collection
[20]. Data sharing, however, must be accomplished in a manner that respects the
privacy of the individuals from which the data was gathered [35].

Data publication is an easy and effective way for data sharing. A wide variety
of computational models have been proposed [13] for privacy preserving data
publications. Most models focus on single publication [22, 23, 34] and multiple
publications from the same data publisher [4, 14, 38]. Single publication refers to
when a dataset is published once only and other possibly relevant datasets may have
not been considered in the data publication process. Multiple data publications from
the same data publisher refer to the publications of a series of datasets which are all
extensions in some aspect (e.g., quarterly releases of data). When the datasets are
all from the same publisher, the publisher has the knowledge of all original data.

In this chapter, we consider a situation where datasets are published inde-
pendently from multiple organizations and they share records of some common
individuals. This is a concern because, in some cases, an individual’s information
will be collected and published by different organizations [24]. And when such a
situation arises, an adversary may invoke a composition attack [15] on the published
datasets to compromise the privacy guarantees of each dataset.

We illustrate the risk of a composition attack on multiple independent publi-
cations as follows. Suppose that a victim has the following personal information,
(Gender = male, Age = 22, Postcode = 5095), which are known to an
adversary. The adversary also knows that the victim’s records are in two datasets.
Such information may be obtained through personal acquaintance or via social
media. Table 8.1 lists data segments from the two published datasets containing
the victim’s records. In each dataset, the adversary cannot uniquely determine the
record corresponding to the victim’s sensitive information (i.e., disease in this case),
because there are three possible diseases. However, the intersection of the two data
segments contains only one disease, thus leading to the compromise of the victim’s
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privacy. In this example, the sensitive value of the individual is 100 % inferred. Note
that the confidence of the inference does not have to be 100 %, and, in practice,
a highly confident inference can be considered a compromise of an individual’s
privacy.

Privacy risk in multiple independent data publications is real in practice. For
example, a patient may visit two hospitals for the treatment of the same disease and
the two hospitals then publish their datasets independently without coordination.
The reasons for not coordinating may be due to regulations that disallow hospitals
to share their raw data, or to infeasibility because a hospital may share common
patients with many other hospitals [5].

There are a few methods dealing with composition attacks with multiple inde-
pendent data publications. In this chapter, we discuss two methods for mitigating
the risk of composition attacks at the conceptual level, analyze their strengths
and weaknesses, and present a mixed publication framework for simultaneously
reducing the risk of composition attacks and improving data utility.

The remainder of this chapter is organized as follows. Section 8.2 explains
the composition attack and multiple publications in detail. Sections 8.3 and 8.4
discuss two methods for risk mitigation based on randomization and generalization,
respectively. Section 8.5 presents experimental results to demonstrate the reduction
of risk of composition attack by the two methods and compare their data utility.
Section 8.6 provides a mixed publication framework for reducing the risk of the
composition attack and achieving high data utility. Finally, Section 8.7 concludes
the chapter.

8.2 Composition Attack and Multiple Data Publications

8.2.1 Composition Attack

A composition attack makes use of multiple anonymized datasets to determine
the sensitive information of an individual whose records are contained in multiple
datasets. The risk of composition attack is real in data publications, since datasets
are rarely isolated. The problem is expected to become more severe when more
datasets are publicly available.

An adversary is assumed to possess the following knowledge to make a
composition attack possible. Firstly, the adversary knows quasi-identifier attribute

Table 8.1 An illustrative example of a composition attack; the shared common record is revealed
by intersecting two corresponding equivalence classes

Gender Age Postcode Disease Gender Age Postcode Disease
m 21–29 5091–5095 Anemia m 21–29 5091–5099 Cancer
m 21–29 5091–5095 Cancer m 21–29 5091–5099 Migraine
m 21–29 5091–5095 Diabetes m 21–29 5091–5099 Cough
(a) An equivalence class in published dataset 1 (b) An equivalence class in published dataset 2
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values of an individual (i.e., victim) whose sensitive value is to be inferred. Quasi-
identifier attributes are attributes that, in combination, can potentially disclose the
identity of an individual, such as age, sex, and zip code of residence. Secondly,
the adversary knows that the record of a victim is stored in two or more datasets that
are anonymized and published.

The mechanism for a composition attack is an intersection operation. In an
anonymized dataset, records are normally organized into small groups, each with
the identical set of quasi-identifier values, and such a group is called an equivalence
class. In an equivalence class, all individuals are indistinguishable and they are
associated with some number of sensitive values, dependent upon the specific
method of anonymization. For example, Table 8.1(a) contains an equivalence class
which is associated with three sensitive values ‘Anemia’, ‘Cancer’, ‘Diabetes’. As
a result, an adversary is unsure as to the sensitive value of a victim, even if she can
identify the equivalence class that the victim is in. Hence, the privacy of a victim is
protected.

However, if the adversary knows that two equivalence classes in two datasets
contain the victim’s record, she can use the intersection to narrow down the
set of sensitive values in common in both equivalence classes. If there is only
one sensitive value in common in the two equivalence classes, the privacy of
the victim is completely compromised. Table 8.1 shows such a case, since only
one sensitive value ‘Cancer’ is common in both equivalence classes. When there
is only one common sensitive value, the confidence of a composition attack is
100 %. More generally, the privacy of an individual can be considered to be
compromised if adversary’s confidence is substantially larger than a random guess.
When an individual’s record is mapped to more than one equivalence class, the
set of equivalence classes form a super equivalence class. Yet, the privacy can be
compromised by applying the mechanism of the composition attack to the super
equivalence classes. We consider the foundational case where one record maps to
one equivalence class in this chapter.

The aim for protecting datasets from composition attacks is to ensure that the
common sensitive values in two or more overlapping equivalence classes are at least
d, where d is the user-specified minimum number of sensitive values and d � 2. We
say that two equivalence classes overlap if their corresponding values are identical
or their value ranges overlap. For example, two equivalence classes in Table 8.1(a)
and (b) are overlapping since they have the same Gender value and Age intervals,
and their Postcode ranges overlap respectively.

Before we move to multiple data publications, we briefly recap two most widely
used anonymization models in single data publication. k-anonymity [34] requires
the minimum size of an equivalence class in a published dataset at least k so
an adversary has at most 1/k confidence in pinpointing the record of a victim.
l-diversity [23] requires the number of sensitive values in an equivalence class to be
at least l and, hence, the confidence of an adversary inferring the sensitive value of a
victim be 1=l (assuming that the l values have the same frequencies). For example,
both tables in Table 8.1 are 3 anonymous and 3 diverse.
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8.2.2 Multiple Coordinated Data Publications

In multiple coordinated data publications, a data publisher knows the raw and
published datasets of all versions, or accesses the published datasets of other organi-
zations in the data anonymization process. Serial data publication [14, 36, 38, 39] is a
typical example. For example, a hospital publishes quarterly patient activity reports,
and it makes use of all information in the previous versions when it anonymizes its
current version of the dataset.

Serial publications have attracted some research interest in the privacy-
preserving data publications [14, 36, 38, 39]. A widely accepted model is
m-invariance [39], which requires all overlapping equivalence classes in all versions
of published datasets persistently associate with the same set of m sensitive values.
As a result, when an adversary tries to use an intersection to narrow down the
number of sensitive values using two or more equivalence classes in different
versions, the minimum number of common sensitive values she can get is m, and
hence the privacy of individuals is protected from composition attacks. Note that the
previously published datasets are taken into account when anonymizing the current
dataset.

Collaborative privacy-preserving data publication solves a different problem.
It concerns two or more parties, each holding a part of data, who wish to
collaboratively publish an integrated and anonymized dataset [13]. The techniques
in this area generally fall in two categories: collaborative anonymization for
vertically partitioned data [16, 25] and collaborative anonymization for horizontally
partitioned data [17, 41]. In the former category, different data publishers hold
datasets of different attributes while the records may or may not correspond to
the same entity. In the latter category, different data publishers hold different
entities, each with the same set of attributes. In collaborative privacy-preserving
data publications, it is essential to access the datasets of other parties in a secure
manner (e.g., via secure multi-party communication).

The methods for collaborative privacy-preserving data publications can, however,
be used for multiple coordinated data publications, especially different datasets
belong to different publishers who do not share their raw data. Following a privacy-
preserving serial data publication model, such as the m-invariance model, different
data publishers can use secure computation or build joint generalization taxonomies
to ensure that in the anonymization process the principle is satisfied.

8.2.3 Multiple Independent Data Publications

In multiple independent data publications, a data publisher does not know other
datasets (published or to be published) that might be used for composition attacks.
The data publisher does not access other datasets in the data anonymization process.
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Simply speaking, in the process of an independent data publication, a data publisher
does not reference any other published or unpublished dataset.

It is very difficult to protect the privacy in a dataset from composition attacks in
multiple independent data publications, since datasets to be used for composition
attacks are unknown. There is little work on data anonymization for multiple
independent data publication.

The first work studying the privacy risk on multiple independent data publica-
tions was reported in [15]. In addition to demonstrate the privacy risks of multiple
independent data publications, the authors prove that the concept of differential
privacy can be used to protect data from composition attacks. In [15], it is unclear
whether the differential privacy based solution is for data publications or for
interactive data access (where a user makes queries to an unpublished database
and receives perturbed results). Nevertheless, the conclusion in [15] is true for
differential privacy based data publications. A concern with this solution is that
the offered data utility is low. Later on in the chapter, we will provide a detailed
discussion on the privacy and utility of differential privacy based data publications.

Another method to anonymize datasets to reduce the risk of composition attacks
in multiple independent publications is by cloning [2]. The method works under
the assumption that all datasets are drawn from the same population and their
distributions are similar. In an idea situation, assume that the distributions of
sensitive values in all datasets are identical, and a dataset is anonymized in a way that
each equivalence class has the identical sensitive value distribution as the dataset.
In this idea situation, the risk of composition attack is zero. As an approximation, if
the frequency difference of each sensitive value between an equivalence class and
the dataset is bounded by a small value, the risk of composition attack will also
be bounded. The work by Baig et al. [2] implements an approximate algorithm
for cloning generalization. The limitation of this method is that the size of an
equivalence class can be large and this reduces the data utility.

A more recent method to solving the problem is to use a probabilistic approach
to control the risk of composition attack [32]. Based on the assumption that all
datasets are drawn from the same population and their distributions are similar, the
chance of a sensitive value falling into an equivalence class can be estimated and
the chance of two equivalence classes sharing a number of sensitive values can be
estimated as well. The assumption is realistic in real word applications, because the
disease distribution and demographic distributions of patients are largely similar.
If the chance of sharing a minimum number of sensitive values in two or more
equivalence classes in different datasets is greater than a user specified threshold,
then the chance of a composition attack is bounded. The limitation of the model
is that low frequency sensitive values may result in significant utility loss, since
records with them need a high level generalization.

In the following, we further explain the first and third methods as examples for
randomization and generalization approaches for reducing the risk of composition
attacks in multiple independent publications, and elaborate their strengths and
weaknesses. We then present a mixed publication framework for data publications
to mitigate the risk of composition attacks.
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8.3 Risk Mitigation Through Randomization

Randomization is a major technique for data anonymization. A randomization
method adds noise to the original values (or aggregated values), and makes it
difficult to pinpoint an individual in a published dataset or to infer the exact sensitive
value of an individual. In general, it creates uncertainty in a published dataset and
reduces the probability of inferring the sensitive information of an individual.

Differential privacy is a major framework in randomization. A randomized
mechanism on a dataset satisfies differential privacy if the removal or inclusion
of a single record from the dataset has only a small effect on the output of the
randomization mechanism [8]. It was proposed in an interactive setting, where a user
accesses a database via a query and an anonymization technique adds noise to the
query result. To ensure privacy, the user is given a privacy budget and is allowed to
query the database until the budget is exhausted. However, the interactive setting is
not always applicable since, in some situations, datasets are required to be published
publicly to provide more flexible analysis [26].

The differential privacy principle has been applied to non-interactive data access.
A data set can be summarized as a contingency (or frequency) table, where each
row takes a set of unique values of attributes representing an equivalence class and
the sensitive values are summarized as counts. A count query can be answered
by aggregating relevant rows in the contingency table. The noise is added to the
counts of the contingency table and the contingency table (or aggregations to
some attributes) is published [3, 11]. One problem is that the number of rows
of the contingency table can be large and many counts are small or zero, and
noise on the small counts greatly reduces the data quality. The method in [26]
generalizes attribute values and reduces the problem with small counts. In other
words, a dataset published by Mohammed et al. [26] is row-wise aggregation of the
original contingency table and counts of sensitive values are added Laplacian noise.
However, the problem of small counts still exists, since the attribute values should
not be generalized too much to preserve good utility of the published datasets for
answering count queries. In this chapter, we consider the differential privacy based
data publications, where values have been generalized.

A differential privacy based randomization method can protect data privacy from
composition attacks [15]. When two datasets are processed with a randomized
method of differential privacy, with privacy budgets �1 and �2 (the smaller a privacy
budget, the higher privacy), a composition attack could not completely compromise
the privacy of an individual, since the privacy is ensured in the privacy budget
�1 C �2 for intersections of two datasets. An intuitive illustration of this is shown
in Table 8.2 by contrast with Table 8.1. In Table 8.1 we have two independent
publications using the standard anonymization techniques of k-anonymity [34] and
l-diversity [23]. The pair of 3-anonymous and 3-diverse datasets are vulnerable to
a composition attack since only one sensitive value, ‘Cancer’, is common between
the two equivalence classes. The record of an individual will then be revealed if the
two records correspond to the same individual. Table 8.2 shows differential privacy
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based publications [15] of the same datasets. The pair of differential privacy based
equivalence classes are not vulnerable to a composition attack, since an adversary
cannot infer which counts are actually zero and which are not. A zero count may
not be zero since a non-zero value may be noised to zero, and a non-zero count may
be noised from a zero count. The intersection of sensitive values of two equivalence
classes may not give the adversary the true common sensitive values.

The utility of a differential privacy based dataset can be low. The level of noise of
a differential privacy based randomized method is independent from the value to be
noised and is dependent on the user specified privacy budget �. In other words, given
a privacy budget �, a small value and a large value in a table have the same chance
to receive the same magnitude of noise. Relatively speaking, the impact of the noise
is larger for a small value than for a large value. This is why differential privacy
does not provide good utility for small query results. Other discussions on the low
utility of differential privacy can be found in [7, 30, 33]. In differential privacy
based publications [26], records are grouped into equivalence classes. The size of an
equivalence class is not large because the detailed information of the quasi-identifier
would otherwise be lost. So, the counts of sensitive values in an equivalence class
are not large, and this results in a big impact of noise on the published dataset. For
example, Table 8.2 shows that the counts of sensitive values do not preserve the
original distributions of sensitive values in two equivalence classes well.

It is possible to increase � to reduce the level of noise to maintain the utility,
but this makes the datasets vulnerable to a composition attack. In a composition
attack, the privacy is protected within the budget �1C �2. If both �1 and �2 are large,
the total budget may not satisfy the user’s privacy requirement. For example, if the
noise is low in Table 8.2, most of the zero counts will be published unaltered, and so
the adversary is again able to infer with a high confidence that ‘Cancer’ is the only
common sensitive value. Experiments reported in [32] show that when the value
of � is larger than 1, more than 75 % of the nosed values are unchanged (note that
fractional values are rounded to their nearest integers).

In addition, noise may cause some other problems in medical practice. For
example, when the count of a sensitive value within an equivalence is small in

Table 8.2 An illustration of differential privacy based publications of datasets in
Table 8.1. Anemia, Cancer, Migraine, Diabetes and Cough are all sensitive
values in the datasets. The counts of sensitive values are noised and published with the
equivalence class. It is difficult for an adversary to find true common sensitive values using
noised counts. Note that the counts are small since we use the same datasets from Table 8.1

G Age Postcode Disease(counts) G Age Postcode Disease(counts)
m 21–9 5091–99 Anemia (2) m 21–9 5091–99 Anemia (0)
m 21–9 5091–99 Cancer (1) m 21–9 5091–99 Cancer (1)
m 21–9 5091–99 Migraine (1) m 21–9 5091–99 Migraine (0)
m 21–9 5091–99 Diabetes (1) m 21–9 5091–99 Diabetes (1)
m 21–9 5091–99 Cough (0) m 21–9 5091–99 Cough (1)

(a) An equivalence class in published
dataset 1 (G for Gender)

(b) An equivalence class in published
dataset 2 (G for Gender)
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the original dataset, say zero, it may be perturbed into any integer. And this is
problematic when analytics over the published data require the complete absence
of information in order to classify an individual, such as is the case in clinical
phenotyping [28]. Even more, this problem can occur for all equivalence classes of
individuals. Overall, the chance for a result to have a large noise is low. However, for
a user making just one query, the worst case is that the result has been added a large
amount of noise and hence is useless. So, many practitioners prefer generalization
to randomization, since the uncertainty in the generalization is bounded for a result
but the uncertainty of a noised result is unbounded for a single result (the noise can
be anything between zero and a large value).

8.4 Risk Mitigation Through Generalization

Generalization is another main technique for data anonymization. Generalization
coarsens the values in the quasi-identifier attributes and makes a number of
individuals appear to be identical in a published dataset. As a result, an individual
cannot be identified and her sensitive value cannot be inferred with a high
confidence. Generalization has been used for the implementation of most partition-
based privacy-preservation models, such as k-anonymity [34], l-diversity [23],
t-closeness [22], and .˛; k/-anonymity [37]. It has also been used to implement
anonymization models for serial publications [14, 36, 38, 39]. Note that the number
of quasi-identifier attributes should not be large for generalization to be effective,
because as the number of attributes grows, so too does the amount of generalization
in order to achieve privacy protection, which leads to low data utility.

In general, generalization methods do not protect data privacy from composition
attacks in multiple independent publications [1]. In a generalized dataset, the
information is coarsened but faithful. When an adversary notices that the victim’s
quasi-identifier values match the generalized values of an equivalence class, the
victim’s record is in the equivalence class. The counts of sensitive values in an
equivalence class are also faithful too. When a count is zero, the sensitive value does
not occur in the equivalence class. Since two datasets are published independently,
there is always a chance (even though very small) that two equivalence classes share
only one sensitive value and hence a composition attack is possibly successful (when
the matched records belong to the victim whom the adversary is searching for).

To address the composition attacks in multiple independent data publications
via generalization, we will have to consider a probabilistic model, which allows a
small chance of possible composition attacks. Even in differential privacy based
publications, there is a chance for possible composition attacks. For a stubborn
adversary who takes everything she sees in differentially private tables as true
values, she will find unique common sensitive value and this finding has a chance to
be true. The protection of data from composition attacks by differential privacy does
not mean there is no possibility for a successful composition attack, but the chance
is low.
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Table 8.3 Comparison of risk of composition attack of two equivalence classes: Case 1

G Age Postcode Disease G Age Postcode Disease
m 20–9 5090–99 Leukaemia m 20–9 5090–99 Cold
m 20–9 5090–99 Huntington’s disease m 20–9 5090–99 Migraine
m 20–9 5090–99 Multiple sclerosis m 20–9 5090–99 Diabetes
(a) Equivalence class 1 (G for Gender) (b) Equivalence class 2 (G for Gender)

Since other datasets are not referenced in multiple independent data publications,
it is impossible to use a serial or collaborative method to ensure the minimum
number of common sensitive values in all possible intersections of corresponding
equivalence classes in two published datasets. The best we can do is to ensure
that in most intersections, the minimum number of common sensitive values are
maintained. To motivate our discussion, let us look at two equivalence classes in
Table 8.3. Without other information, which equivalence class is more risky for a
composition attack? Note that we do not know the table to be used for a composition
attack.

Intuitively, the equivalence class in Table 8.3(a) has a higher risk for a compo-
sition attack than the equivalence class in Table 8.3(b). The chance of any pair of
sensitive values in Table 8.3(b) occurring in an equivalence class of another table
is higher than that of any pair in Table 8.3(a). This is because ‘Cold’, ‘Migraine’
and ‘Diabetes’ are common diseases and the chance to see any pair of them in an
equivalence class of a middle age group is high. All three diseases in Table 8.3(a)
are uncommon and seeing any two of them in one equivalence class is rare. In other
words, the sensitive values in Table 8.3(a) have a higher chance of being unique
when the equivalence class is intersected with another equivalence class, than those
in Table 8.3(b). So the risk of the equivalence class in Table 8.3(a) is higher than
that of the equivalence class in Table 8.3(b).

The risk for a composition attack is associated with the frequencies of sensitive
values in a dataset. The higher frequencies of sensitive values, the lower the chance
for a composition attack.

Again, let us look at the two equivalence classes shown in Table 8.4. All diseases
in Table 8.4(a) and (b) are uncommon. However, Table 8.4(b) has a lower chance
for a composition attack than Table 8.4(a), since there are more sensitive values in
Table 8.4(b) than in Table 8.4(a). The chance of another equivalence class containing
two sensitive values of Table 8.4(b) is higher than that of Table 8.4(a), and this
reduces the chance of a possible composition attack.

The risk for a composition attack is associated with the number of sensitive
values in an equivalence class. The more sensitive values, the lower the chance for
a composition attack. Therefore, without the knowledge of a dataset to be used for a
composition attack, we are still able to reduce the probability of the attack, as long
as each equivalence class contains a sufficient number of sensitive values according
to their frequencies.

The .d; ˛/-linkable model [32] was designed to mitigate the risk of composition
attack in multiple independent publications. We provide an illustrative explanation
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Table 8.4 Comparison of risk of composition attack of two equivalence classes: Case 2

G Age Postcode Disease G Age Postcode Disease
m 20–9 5090–99 Leukaemia m 20–9 5090–99 Leukaemia
m 20–9 5090–99 Huntington’s disease m 20–9 5090–99 Huntington’s disease
m 20–9 5090–99 Multiple sclerosis m 20–9 5090–99 Multiple sclerosis
(a) Equivalence class 1 (G for Gender) m 20–9 5090–99 Lung cancer

m 20–9 5090–99 Prostate cancer
(b) Equivalence class 2 (G for Gender)

of the .d; ˛/-linkable model in the following. Assume that all datasets are drawn
from a population and they have the same distributions in quasi-identifier attributes
and in the sensitive attribute. It is possible to estimate the probability of sharing
d (i.e., the user-specified minimum number of common sensitive values of two
overlapping equivalence classes) of any two datasets drawn from the population, and
this probability is denoted as ˛1. Then, 1 � ˛1 is the probability of two overlapping
equivalence classes sharing sensitive values less than d, and it poses a risk for
composition attacks when .1�˛1/ > .1�˛/, where ˛ is a user-specified minimum
confidence threshold. When ˛1 > ˛, the risk of composition attack is lower than
the user-specified confidence level and hence the privacy is protected. Note that
the shared sensitive values are not all directly caused by common records of same
individuals; the majority of them are caused by chance (two irrelevant individuals
happen to have the same generalized quasi-identifier attribute values and disease),
and hence the probability for a possible composition attack is multiple magnitude
lower than .1 � ˛1/.

Sattar et al. [32] also present a dLink algorithm as a generalization implementa-
tion of the .d; ˛/-linkable model. The dLink algorithm works as a post-processing
procedure for a dataset, which is anonymized by a normal generalization algorithm
protecting privacy in a single data release, in order to reduce the risk of composition
attack. The experimental results show that the dLink process reduces the risk of
composition attacks greatly and largely preserves data utility.

A major limitation of the dLink process is that it cannot handle well data with
a skewed sensitive value distribution. For example, if two or more rare sensitive
values are included in one equivalence class, the size of equivalence class has to be
very large to satisfy the .d; ˛/-requirement, and this results in significant utility loss.
We will consider this issue in the final section of this chapter.

8.5 An Experimental Comparison

In this section, we demonstrate the reduction of risk of composition attacks by the
randomization based approach and the generalization based approach discussed in
the previous section. We compare the utility of these methods in terms of query
accuracy and preservation of the distribution of sensitive values.
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Table 8.5 Domain size of different attributes

Attribute Age Sex Education Race Birth place Occupation Salary

Domain Size 100 2 20 6 41 50 50

8.5.1 Data and Setting

We performed experiments with real world datasets derived from the U.S. Cen-
sus Bureau.1 We split the dataset into two independent datasets (a) Occupa-
tion and (b) Salary. Each dataset consists of 600,000 records. The Occupa-
tion dataset includes five quasi-identifier attributes: Age, Gender, Education,
Race, Birth-place and one sensitive attribute: Occupation. The Salary
dataset contains the same quasi-identifier attributes and the sensitive attribute:
Salary. All quasi-identifier attributes consist of categorical values except Age
and Education. A description of the datasets is shown in Table 8.5.

We created five sets of datasets with overlapping records in the following way.
We firstly initiated five disjoint data groups from every dataset, each with 100,000
records. The remaining 100,000 records are used for an overlapping record pool.
We then made five copies of each group, and purposely inserted 1000, 2000, 3000,
4000 and 5000 records from the overlapping pool to the copies respectively for each
group. We finally obtained five sets of datasets with the size of 101,000, 102,000,
103,000, 104,000 and 105,000. Each set of datasets shares overlapping records of
1000, 2000, 3000, 4000 and 5000, respectively.

The randomization based data publication method used in the experiment is
the implementation of the differential privacy framework proposed in [26]. Privacy
budgets � are set as 0.05 and 0.1. In the experiments of most other works, � is set
between 0.1 and 0.2. Consider that the privacy budget after the composition attack
using two datasets is an aggregation of two individual privacy budgets. We use 0.05
and 0.1. To give readers an idea of the noise level of � D 0:05 and 0.1, they leave
around 20 and 30 % values un-noised [31].

We apply the post-processing method (i.e., dLink) to datasets that have been k-
anonymized by the Mondrian algorithm [21]. The value of k varies from 10 to 30.

8.5.2 Reduction of Risk of Composition Attacks

Composition attacks are conducted between all pairs of datasets with the same
overlapping records. The risk is measured as the accuracy of composition attack,
which is defined as the ratio of the number of records have one common sensitive

1http://ipums.org.

http://ipums.org
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Fig. 8.1 The average accuracy of the composition attack on the Salary and Occupation datasets

value in its corresponding equivalence classes of different anonymous datasets and
total number of overlapping records. The results are averages of all pairs of datasets.

Figure 8.1 shows privacy risk of the composition attack of both the differential
privacy based method and the generalization based method by post-processor dLink
in comparison with publications by a k-anonymization method (Mondrian [21]).
Both methods have reduced the risk of composition attack greatly. The risk of
composition attack of the differential privacy based method is nearly zero. Consider
that the number of sensitive values is 50 and the count of the majority of them
are noised. The chance of 1 common sensitive value is very low. dLink reduces
the success rate of the composition attack greatly. The risk reduction increases
with the size of the equivalence class. In some cases, the privacy risk is lower
than one-tenth of the privacy risk without the post-processor (dLink). The risk
of composition attack is nonzero especially when k is small. This is because the
number of sensitive values in each equivalence class is even smaller which results
in a nonzero probability of the unique common sensitive value in two overlapping
equivalence classes. Moreover, from Fig. 8.1 it can be observed that the privacy
risk of Mondrian and dLink approaches zero when the equivalence class size is
large. The reason behind this effect is that when two equivalence classes are large,
the likelihood that there are common sensitive values in two equivalence classes
increases significantly. As a consequence, the risk of composition attack is reduced.
However, this does not mean that it is unnecessary to utilize dLink. First, if we
increase equivalence class size to reduce the risk of the composition attack, we
unnecessarily reduce the utility of dataset. Second, a large equivalence class does
not directly bound the risk of composition attack.
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Fig. 8.2 The average query errors of the Salary and Occupation datasets with different methods

8.5.3 Comparison of Utility of the Two Methods

We assess the utility of published datasets by the accuracy of answering
range queries. We randomly generate 1000 queries. For a query, we obtain its
true result from the original dataset, and compute an estimated answer from
its anonymized dataset. The relative error of a query is defined as RE D
.jTrue result – Estimated resultj/=.True result/. We measure the workload error as
the average relative error (ARE) of all the queries of all datasets.

Figure 8.2 lists the average query errors of the k-anonymized datasets with and
without dLink, and of differential privacy anonymized datasets. The results show
that relative difference in query error is at most 5 % before and after the application
of dLink. It can be observed that in all cases, queries on dLink processed datasets
have at least 7 and 22 % less error than those from differential privacy anonymized
datasets with � of 0.1 and 0.05, respectively. Note that the query errors do not change
with k for differential privacy based anonymization, since k is not a parameter in the
implementation. The data set with different k is of size of 101,000.

The above results support our previous analysis that the differential privacy
based approach does not preserve data utility well. In contrast, the post-processing
strategy that is applied by dLink has little effect on query accuracy. It reduces the
data utility slightly (5 % or less errors in the query processing) in comparison with
k-anonymized datasets.
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Fig. 8.3 Distance between the original dataset, the output of dLink, and several privacy budgets
of differential privacy (� D 0:01; 0:05; 0:1)

We also compare the distances of distributions (histograms) of sensitive values
in equivalence classes in the published dataset and the original dataset without the
anonymization. The distance is measured by the Kullback-Leibler distance [19] and
city block distance. The smaller the distance, the better the preservation of the
original distribution. The results in Fig. 8.3 are average distances of equivalence
classes. From Fig. 8.3, it can be seen that the distributional distances using dLink
are at least 21.03, and 56.51 % smaller than those using differential privacy based
anonymization, when � is set to 0.1 and 0.05, respectively.

8.6 Risk Mitigation Through Mixed Publications

In this section, we propose a mixed publication framework, combining independent
publication and centralized publication schemes, to reduce risk of composition
attack and improve data utility.

We prefer generalization to randomization in data publications, since generaliza-
tion gives faithful information even though the granularity may not be fine, whereas
the noised information may bother many users. Most information consumers do not
need detailed information, but instead use aggregated information. For instance,
medical researchers can query which age group “20–30” or “30–40” is more
susceptible to Diabetes instead of an exact age value. Binning age values intervals
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Fig. 8.4 An illustration of the mixed publication model

is a common practice in most applications [6]. So generalization does not lose much
utility for many users. Though on average the noise added to a randomized dataset
is small by a randomized method, if a user only takes one query result, the user does
not know the impact of noise since noise may be anything between zero and a large
amount. It is impossible for a user to make a number of same queries and to obtain
the average query result in a data publication scenario.

The generalization based on the .d; ˛/-linkable model has been shown to greatly
reduce the risk of composition attacks in the previous subsection and to preserve
data utility well. However, the inherent limitation is that a skewed dataset may result
in a substantial utility loss. We propose a mixed publication model to further reduce
risk and improve utility in data publications.

The low frequency sensitive values are a major obstacle for processing data to
reduce the risk of composition attack and maintain good data utility. If we try to
accommodate all low frequency sensitive values in the .d; ˛/-model to keep the
probability of d common sensitive values occurring in two equivalence classes high,
then we will need a very high level of generalization to obtain large size equivalence
classes. This sacrifices the utility of published datasets.
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Fig. 8.5 An example of the mixed publication

As such, the low frequency sensitive values and medium-to-high frequency
sensitive values should be dealt with separately in data publications. We propose
a mixed data publication model for reducing the privacy risk from composition
attacks. For sensitive values with moderate to high frequency, they can be published
independently by individual data publishers. For low frequency sensitive values,
they should be aggregated further among a number of (or all) data publishers.
In practice, there are such mechanisms already, for example, in national cancer
registries. An illustrative diagram of the model is shown in Fig. 8.4. In addition,
Fig. 8.5 shows an example of data publication following the model from three
different organizations.

There are a number of benefits for such a mixed model:

1. It balances the cost for data publications, privacy protection and data utility. If all
patient records are centralized, there will be too much data and the centralization
is too costly to maintain. If all data records are locally managed and published,
the low frequency diseases will cause problems for privacy or utility. The
centralized management of rare diseases is not too costly, and makes the data
of rare diseases precise and easy to analyze. Since the rare diseases in a local
dataset are very few, it does not have much value for the analysis at the local level.
Furthermore, if records of rare diseases are locally managed, it is unavoidable to
have duplicated records since a patient may visit a number of hospitals. The small
number of duplicates will have a big impact in data analysis since the number of
rare diseases is itself small.

2. It enhances the privacy protection of published datasets in individual organiza-
tions. When all the data records in an organization are published, an adversary
knows that a victim’s data record is definitely in the dataset. When some data
records are withhold (in this model, they are moved to centralized collection and
publication), the adversary will have a reduced confidence that the record of the
victim is in the dataset, and such a reduced confidence is good for protecting
privacy from composition attacks.
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3. It improves the data utility. First, after removing the low frequency sensitive
values, a low level data generalization will protect the sensitive information
of individuals because sensitive values with moderate to high frequency are
likely appear in many equivalence classes such that the risk of composition
attacks is small. When rare diseases are moved to a central data repository, their
corresponding statistics will be more accurate than those from aggregations over
individual datasets because the duplications are minimized. In turn the analysis
will be more reliable on the centralized collection of rare diseases.

In sum, the risk of composition attack is greatly mitigated by the mixed
publication model and the data utility is significantly improved. The centralization
of a small portion of rare disease does not involve much additional cost for data
management, and in many cases, this has been done by various medical registers.

8.7 Conclusion

Existing single data publication and serial data publication methods do not support
multiple independent data publication by different publishers that share overlapping
records. This chapter has discussed the cause of composition attack and the
challenges for mitigating the risk. This chapter further analyzed two typical methods
for mitigating the risk of composition attack and their strengths and weaknesses. An
experimental comparison has been reported to show the strengths and weaknesses of
both methods. Finally, we introduced a mixed publication model, combining local
independent data publications with a global centralized publication, which greatly
reduces the risk of composition attacks and maintains the utility of datasets.
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(ARC) Discovery Grant DP110103142 and a CORE (junior track) grant from the National
Research Fund, Luxembourg.

Appendix

In this appendix, we discuss three measures used in the experiments and the
definitions of differential privacy.

A. Metrics

Definition 8.1 (Kullback-Leibler Divergence). Kullback-Leibler (KL) diver-
gence [19] is a non-symmetric measure of the difference between two probability
distributions P and Q. Specifically, KL-divergence is a measure of information loss
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when Q is used to approximate P. It is denoted by DKL.PjjQ/. If P and Q represent
discrete probability distributions, KL-divergence of Q from P is defined as:

DKL.PjjQ/ D
X

i

P.i/ ln
P.i/

Q.i/

In other words, it is the expectation of the logarithmic difference between the
probabilities P and Q, where the expectation is taken the probabilities P.

Definition 8.2 (City Block Distance). City block distance measures the similarity
between two objects. If a and b are two objects described by a m-dimensional vector,
then the city block distance between a and b is calculated as follows.

Distance.a; b/ D
m
X

jD1

jaj � bjj

The city block distance is greater than or equal to zero. The distance is zero for
identical objects and high for objects that share little similarity.

Definition 8.3 (Relative Error). Relative error indicates how accurate a measure-
ment is relative to the actual value of an object being measured. If Ract represents the
actual value and Rest represents the estimated value, then the relative error is defined
as follows:

Error D jRact � Restj
Ract

D �R

Ract

where �R represents the absolute error.

B. Differential Privacy

Differential privacy has received significant attention recently because it provides
semantic and cryptographically strong guarantees [18]. It ensures that an adversary
learns little more about an individual being in the dataset than not [9, 18, 26].

“Differential privacy will ensure that the ability of an adversary to inflict harm (or good, for
that matter) of any sort, to any set of people, should be essentially the same, independent of
whether any individual opts in to, or opts out of, the dataset. [9]”

The intuition behind this is that the output from a differentially private mechanism
is insensitive to any particular record.

Definition 8.4 (Differential Privacy [26]). A randomized function K is differen-
tially private if for all datasets D and D0 where their symmetric difference contains
at most one record (i.e., jD�D0j � 1), and for all possible anonymized dataset OD,
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PrŒK.D/ D OD� � e� � PrŒK.D0/ D OD�

where the probabilities are over the randomness of K.

The parameter � > 0 is public and set by the data publishers [9]. The lower the
value of �, the stronger the privacy guarantee, whereas a higher value of � provides
more data utility [27]. Therefore, it is crucial to choose an appropriate value for � to
balance data privacy and utility [30, 33, 40].

A standard mechanism to achieve differential privacy is to add random noise to
the original output of a function. The added random noise is calibrated according
to the sensitivity of the function. The sensitivity of the function is the maximum
difference between the values that the function may take on a pair of datasets that
differ in only one record [9].

Definition 8.5 (Sensitivity [12]). For any function f W D ! Rd, the sensitivity of
f is measured as:

�f D max
D;D0
jjf .D/� f .D0/jj1

for all D, D0 differing in at most one record.

Dwork et al. [12] suggest the Laplace mechanism to achieve differential privacy.
The Laplace mechanism takes a dataset D, a function f and the parameter b to
generate noise according to the Laplace distribution with the probability density
function Pr.xjb/ D 1

2b exp.�jxj=b/ with variance 2b2 and mean 0. Theorem 8.1
connects the sensitivity to the magnitude of the noise that generates the noisy output
f . OD/ D f .D/CLap.b/ to satisfy �-differential privacy. Note that Lap.b/ is a random
variable sampled from the Laplace distribution.

Theorem 8.1 ([10]). For any function f W D ! Rd, the randomized function K
that adds independently generated noise with distribution Lap.�=�/ to each of the
outputs guarantees �-differential privacy.

Therefore, the function f , returns the count value, first computes the original
count f .D/ and then outputs the noisy answer f . OD/ D f .D/C Lap.1=�/.
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Chapter 9
Statistical Disclosure Limitation for Health
Data: A Statistical Agency Perspective

Natalie Shlomo

Abstract Statistical agencies release heath data collected in surveys, censuses
and registers. In this chapter, statistical disclosure limitation (SDL) from the
perspective of statistical agencies is presented. Traditional outputs in the form of
survey microdata and tabular outputs are first presented with respect to quantifying
disclosure risk, common SDL techniques for protecting the data, and measuring
information loss. In recent years, however, there is greater demand for data including
government ‘open data’ initiatives, which have led statistical agencies to examine
additional forms of disclosure risks, related to the concept of differential privacy in
the computer science literature. A discussion on whether SDL practices carried out
at statistical agencies for traditional outputs are differentially private, is provided in
the chapter. The chapter concludes with the presentation of some innovative data
dissemination strategies that are currently being assessed by statistical agencies,
where stricter privacy guarantees are necessary.

9.1 Introduction

Statistical agencies have an obligation to release statistical data for research
purposes and to inform policies. On the other hand, they have a legal, moral and
ethical commitment to protect the confidentiality of individuals responding to their
request for data via surveys, censuses and registers. Health data that are collected
by statistical agencies are particularly sensitive since they may contain sensitive
information, such as diagnosis codes and abortion statistics.

Statistical agencies generally have two approaches for statistical disclosure
limitation (SDL): protect the data for release using disclosure limitation techniques
(“safe data”), or restrict access to the data, for example by limiting its use to
approved researchers within a secure data environment (“safe access”). When
releasing sensitive health data, a combination of both approaches is usually applied.
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Statistical data that are traditionally released by statistical agencies include
microdata from social surveys, such as the General Health Survey, and tabular data.
Tabular data contain either frequency counts or magnitude data which typically
arise from business surveys, e.g., total revenue by industry code. For each of these
traditional outputs, there has been much research on how to quantify disclosure risk,
which SDL techniques to use to protect the data and their impact on information
loss. However, with increasing demands for new forms of data at higher resolution,
in particular linked hierarchical data and open data initiatives, there is even more
pressure on statistical agencies to broaden access and to provide better solutions for
the release of statistical data.

In traditional outputs, we define the notion of an intruder, as someone who
wants to attack statistical data for malicious intent. In terms of health data, intruders
might be, for example, individuals or organizations who wish to disclose sensitive
information about doctors/clinics performing abortions. Two main disclosure risks
are identity disclosure, where a statistical unit can be identified based on a set
of cross-classified identifying variables, such as age, gender, occupation, place of
residence; and attribute disclosure, where new information can be learnt about an
individual or a group of individuals. Disclosure risk scenarios form the basis of
possible means of disclosure, for example, the ability of an intruder to match a
dataset to an external public file based on a common set of identifying variables;
the ability of an intruder to identify uniques through visible and rare attributes; the
ability of an intruder to difference nested frequency tables and obtain small counts;
the ability of an intruder to form coalitions, and so on.

In microdata from social surveys, the main concern is the risk of identification,
since it is a prerequisite for attribute disclosure where many new sensitive variables,
such as income or health outcomes, may be revealed following an identification.
Naturally, sampling from the population provides a-priori protection, since an
intruder cannot be certain whether a sample unique is a population unique. In tabular
data of whole population counts, attribute disclosure arises when there is a row /
column of zeros and only one populated cell. This leads to individual or group
attribute disclosure depending on the size of the populated cell, since an intruder
can learn new attributes based on the remaining spanning variables of the table
that was not known previously. Therefore, in frequency tables containing whole
population counts, it is the zero cells that are the main cause of attribute disclosure.
Frequency tables of weighted survey counts are generally not a cause of concern due
to the ambiguity introduced by the sampling and the survey weights. In magnitude
tables arising from business surveys, disclosure risk is generally defined by the
ability of businesses to be able to form coalitions to disclose sensitive information
about competing businesses. Since our focus is on health data arising from official
statistics, the SDL of business data will not be considered further.

One disclosure risk that is often overlooked in traditional statistical outputs
and is only now coming to prominence with ongoing research and development
into web-based interactive data dissemination is inferential disclosure. Inferential
disclosure risk is the ability to learn new attributes with high probability. For
example, a proportion of some characteristic is very high within a subgroup, e.g.,
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a high proportion of those who smoke have heart disease, or a regression model
may have very high predictive power if the dependent and explanatory variables are
highly correlated, e.g., regressing BMI on height and weight. In fact, an individual
does not even have to be in the dataset in order to disclose information. Another
example of inferential disclosure is disclosure by differencing frequency tables of
whole population counts, when multiple tabular releases are disseminated from one
data source. Inferential disclosure risk forms the basis of the definition of differential
privacy as formulated in the computer science literature. Although the theory of
differential privacy was developed in the context of the protection of queries in a
remote query system, it is now coming to the attention of statistical agencies who
are considering online interactive dissemination of statistical data and therefore are
in need of stricter privacy guarantees.

An overview of statistical disclosure limitation for traditional outputs: microdata
from social surveys which include the General Health Survey and whole population
tabular data, are presented in Sects. 9.2 and 9.3 respectively. In Sect. 9.4, we discuss
differential privacy and inferential disclosure as developed in the computer science
literature and consider these definitions in the context of survey sampling and
perturbation techniques, as practiced at statistical agencies. In Sect. 9.5 we present
a future outlook for releasing statistical data. We conclude in Sect. 9.6 with some
considerations for the future of data dissemination at statistical agencies.

9.2 Statistical Disclosure Limitation for Microdata
from Social Surveys

Disclosure risk typically arises from attribute disclosure where small counts on
cross-classified indirectly identifying key variables, such as: age, sex, place of
residence, marital status, occupation, can be used to identify an individual and
confidential information may be learnt. Identity disclosure therefore is a prerequisite
for attribute disclosure and disclosure risk assessment is based on estimating a
probability of identification given a set of identifying key variables. Generally,
identifying key variables are categorical. Sensitive variables are often continuous,
but can also be categorical. In order to protect the data, one can either apply an
SDL technique on the identifying key variables or the sensitive variables. In the first
case, identification of a unit is rendered more difficult, and the probability that a unit
is identified is hence reduced. In the second case, even if an intruder succeeds in
identifying a unit by using the values of the identifying key variables, the sensitive
variables would hardly disclose any useful information on the particular record.
One can also apply SDL techniques on both the identifying and sensitive variables
simultaneously. This offers more protection, but also leads to more information loss.

In Sect. 9.2.1, we review the probabilistic modelling approach to disclosure
risk assessment (see [4, 5, 16, 42, 43] and references therein). The probabilistic
models provide consistent global and record-level disclosure risk measures, which



204 N. Shlomo

is an important feature for informing decisions about data release and where to
target additional SDL techniques if necessary. The probabilistic modelling takes
into account the protection afforded by the sampling and is based on the notion
of population uniqueness. Shlomo and Skinner [37] have further developed this
approach to take into account the realistic case where identifying variables may
be misclassified or purposely perturbed. In Sect. 9.2.2, we present two examples of
perturbative SDL methods that have been adapted to preserve sufficient statistics,
as well as logical consistencies of the data. Subsequently, in Sect. 9.2.3 we discuss
some common information loss measures.

9.2.1 Disclosure Risk Assessment

Identifying key variables for disclosure risk assessment are determined by a
disclosure risk scenario, i.e., assumptions about available external files and IT tools
that can be used by intruders to identify individuals in released microdata. For
example, key variables may be chosen, which would enable matching the released
microdata to a publicly available file containing names and addresses. Examples of
publicly available data might include data that is freely available over the internet,
such as car registrations, phone book or electoral roles, or can be purchased, such as
supermarket loyalty cards and life-style datasets.

Under a probabilistic approach, disclosure risk is assessed on the contingency
table of counts spanned by these identifying key variables. The other variables in the
file are sensitive variables. The assumption is that the microdata contain individuals
investigated in a survey and the population is unknown (or only partially known
through some marginal distributions). The disclosure risk is a function of both the
population and the sample, and in particular the cell counts of a contingency table
defined by combinations of identifying discrete key variables, for example place of
residence, sex, age and occupation.

Individual per-record risk measures, in the form of a probability of re-
identification, are estimated. These per-record risk measures are then aggregated
to obtain global risk measures for the entire file. Denoting by Fk the population
size in cell k of a table spanned by key variables having K cells; fk the sample
size,

PK
kD1 Fk D N and

PK
kD1 fk D n, then the set of sample uniques is defined

as SU D fk W fk D 1g, since these are potential high-risk records, i.e., population
uniques. Two global disclosure risk measures (where I is the indicator function) are
the following:

1. Number of sample uniques that are population uniques:
�1 DPk I.fk D 1; Fk D 1/

2. Expected number of correct matches for sample uniques (i.e., a matching
probability): �2 DPk I.fk D 1/ 1=Fk.

The individual risk measure for �2 is 1=Fk. This is the probability that a match
between a record in the microdata and a record in the population having the same
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values of key variables will be correct. If, for example, there are two records in
the population with the same values of key variables, the probability is 0:5 that the
match will be correct. Adding up these probabilities over the sample uniques gives
the expected number (on average) of correctly matching a record in the microdata to
the population when we allow guessing. The population frequencies are unknown
and need to be estimated from the probabilistic model. The disclosure risk measures
are estimated by:

O�1 D
X

k

I.fk D 1/ OP.Fk D 1jfk D 1/; O�2 D
X

k

I.fk D 1/ OE.1=Fkjfk D 1/

(9.1)
Skinner and Holmes [42] and Elamir and Skinner [16] propose a Poisson

Model to estimate disclosure risk measures. In this model, they make the natural
assumption in contingency table literature: Fk � Poisson.
k/ for each cell k.
A sample is drawn by Poisson or Bernoulli sampling with a sampling fraction �k in
cell k: fkjFk � Bin.Fk; �k/. It follows that:

fk � Poisson.�k
k/ and Fkjfk � Poisson.
k.1 � �k// (9.2)

where Fkjfk are conditionally independent.
The parameters f
kg are estimated using log-linear modeling. The sample

frequencies fk are independent Poisson distributed with a mean of k D �k
k. A log-
linear model for the k is expressed as: log.k/ D x0kˇ, where xk is a design vector
which denotes the main effects and interactions of the model for the key variables.
The maximum likelihood estimator (MLE) Ǒ may be obtained by solving the score
equations:

X

k

Œfk � �k exp.x0kˇ/�xk D 0 (9.3)

The fitted values are calculated by Ouk D exp.x0k Ǒ/ and O
k D Ouk=�k. Individual
disclosure risk measures for cell k are:

P.Fk D 1jfk D 1/ D exp.
k.1 � �k//;

E.1=Fkjfk D 1/ D Œ1 � exp.
k.1 � �k//�=Œ
k.1 � �k/�
(9.4)

Plugging O
k for 
k in (9.4) leads to the estimates OP.Fk D 1jfk D 1/ and
OEŒ1=Fkjfk D 1� and then to O�1 and O�2 of (9.1). Rinott and Shlomo [32] consider
confidence intervals for these global risk measures.

Skinner and Shlomo [43] develop a method for selecting the log-linear model
based on estimating and (approximately) minimizing the bias of the risk estimates
O�1 and O�2. Defining h.
k/ D P.Fk D 1jfk D 1/ for �1 and h.
k/ D E.1=Fkjfk D 1/

for �2, they consider the expression: B DPk EŒI.fk D 1/�Œh. O
k/� h.
k/�. A Taylor
expansion of h leads to the approximation:
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B �
X

k

�k
k exp.�
k/Œh
0.
k/. O
k � 
k/C h00.
k/. O
k � 
k/

2=2�

and the relations Efk D �k
k and EŒ.fk � �k
O
k/

2 � fk� D �2
k E.
k � O
k/

2 under the
hypothesis of a Poisson fit, lead to a further approximation of B of the form:

B �
X

k

O
k exp.��k
O
k/Œ�h0. O
k/.fk � �k

O
k/C h00. O
k/Œ.fk � �k
O
k/

2 � fk�=.2�k/�

(9.5)
For example, for �1 they obtain:

OB1 �
X

k

O
k exp.� O
k/.1 � �k/f.fk � �k
O
k/C .1 � �k/Œ.fk � �k

O
k/
2 � fk�=.2�k/�g

(9.6)

The method selects the model using a forward search algorithm which minimizes
the standardized bias estimate OBi=

p Ovi for O�i, with i D 1; 2, where Ovi are variance
estimates of OBi.

Empirical studies have shown that the probabilistic modelling approach can
provide unbiased estimates of the overall global level of disclosure risk in the
microdata, but are not accurate for the individual record level of disclosure risk.
Thus care should be taken when using record level measures of disclosure risk for
targeting SDL techniques to high-risk records.

Skinner and Shlomo [43] also address the estimation of disclosure risk measures
under complex survey designs with stratification, clustering and survey weights.
While the method described assumes that all individuals within cell k are selected
independently using Bernoulli sampling, i.e., P.fk D 1jFk/ D Fk�k.1 � �k/

Fk�1,
this may not be the case when sampling clusters (households). In practice, key
variables typically include variables such as age, sex and occupation, that tend to cut
across clusters. Therefore, the above assumption holds in practice in most household
surveys and does not cause bias in the estimation of the risk measures. Inclusion
probabilities may vary across strata, the most common stratification is on geography.
Strata indicators should always be included in the key variables to take into account
differential inclusion probabilities in the model. Under complex sampling, the f
kg
can be estimated consistently using pseudo-maximum likelihood estimation, where
the estimating equation in (9.3) is modified as:

X

k

Œ OFk � exp.x0kˇ/�xk D 0 (9.7)

and OFk is obtained by summing the survey weights in cell k: OFk DPi2k wi.
The resulting estimates f O
kg are then plugged into expressions in (9.4) and �k

is replaced by the estimate O�k D fk=Fk. Note that the risk measures in (9.4) only
depend on sample uniques and that the value of O�k in this case is simply the
reciprocal of the survey weight. The test criteria OB is also adapted via the pseudo-
maximum likelihood method.
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The presented probabilistic model, as well as other probabilistic methods (see
Bethlehem et al. [5], Benedetti et al. [4], Rinott and Shlomo [30, 31]), assume that
there is no measurement error in the way the data is recorded. Besides typical errors
in data capture, key variables can also be purposely misclassified as a means of
masking the data. Shlomo and Skinner [37] adapt the estimation of risk measures to
take into account measurement errors. Denoting the cross-classified key variables in
the population and the microdata as X, and assuming that X in the microdata have
undergone some misclassification or perturbation error, denoted by the value QX, and
determined independently by a misclassification matrix M,

Mkj D P. QX D kjX D j/ (9.8)

the record-level disclosure risk measure of a match with a sample unique under
measurement error is:

Mkk.1 � �Mkk/
P

j FjMkj=.1 � �Mkj/
� 1

Fk
(9.9)

Under assumptions of small sampling fractions and small misclassification errors,
the measure can be approximated by: Mkk=

P

j FjMkj or Mkk= QFk, where QFk is the

population count with QX D k. Aggregating the per-record disclosure risk measures,
the global risk measure is:

�2 D
X

k

I.fk D 1/Mkk= QFk (9.10)

Note that to calculate the measure only the diagonal of the misclassification matrix
needs to be known, i.e., the probabilities of not being perturbed. Population counts
are generally not known so the estimate in (9.10) can be obtained by probabilistic
modeling with log-linear models as described above on the misclassified sample:

O�2 D
X

k

I. Qfk D 1/Mkk OE.1= QFkj Qfk/ (9.11)

9.2.2 Statistical Disclosure Limitation Methods

Based on the disclosure risk assessment, statistical agencies must choose appropri-
ate SDL methods either by perturbing, modifying, or summarizing the data. The
choice depends on the mode of access, the requirements of the users and the impact
on data utility. Choosing an optimal SDL method is an iterative process where a
balance must be found between managing disclosure risk and preserving the utility
in the microdata.
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SDL methods for microdata include perturbative methods that alter the data
and non-perturbative methods which limit the amount of information released.
Examples of non-perturbative SDL methods that are often applied on social survey
microdata are global recoding and suppression of values or whole key variables.
Sub-sampling records is also a non-perturbative method and is often used for
producing census microdata. Perturbative methods for masking continuous sensitive
variables include: adding random noise (see Kim [23], Fuller [19], and Brand [6]);
micro-aggregation, where records are grouped and their values are replaced by
their average (see Defays and Nanopoulos [11], Anwar [3], Domingo-Ferrer and
Mateo-Sanz [14]); rounding to a pre-selected rounding base; and rank swapping,
where values between pairs of record within a small group are swapped (see
Dalenius and Reiss [9], Fienberg and McIntyre [17]). Perturbative methods for
categorical key variables include record swapping (typically swapping geography
variables) and a more general post-randomization probability mechanism (PRAM),
where categories of variables are changed or not changed according to a prescribed
probability matrix and a stochastic selection process (see Gouweleeuw et al. [21]).
For more information on perturbative and non-perturbative methods see also:
Willenborg and De Waal [44], Domingo-Ferrer, et al. [13], and references therein.

Each SDL method impacts differently the level of protection obtained in the
microdata and information loss. Shlomo and De Waal [38] discuss optimizing SDL
methods to preserve sufficient statistics, as well as logical consistencies in the
microdata. Two of these perturbative techniques are described below.

9.2.2.1 PRAM for Categorical Key Variables

For protecting categorical identifying variables, Gourweleeuw et al. [21] propose
the post-randomization method (PRAM). As a perturbative method, PRAM alters
the data, and therefore we can expect consistent records to start failing edit rules.
Edit rules describe logical relationships that have to hold true, such as “a ten-year
old person cannot be married” or “the profit and the costs of an enterprise should
sum up to its turnover”.

Willenborg and De Waal [44] describe the process of applying PRAM as follows:
Let P be a L � L transition matrix containing conditional probabilities pij D
p.perturbed category is jj original category is i/ for a categorical variable with
L categories, t the vector of frequencies and v the vector of relative frequencies:
v D t=n, where n is the number of records in the micro-data set. In each record
of the data set, the category of the variable is changed or not changed according
to the prescribed transition probabilities in the matrix P and the result of a draw
of a random multinomial variate u with parameters pij (j D 1; : : : ; L). If the j�th
category is selected, category i is moved to category j. When i D j, no change
occurs. Let t� be the vector of the perturbed frequencies. t� is a random variable
and E.t�jt/ D tP. Assuming that the transition probability matrix P has an inverse
P�1, this can be used to obtain an unbiased moment estimator of the original data:
Ot D t�P�1. In order to ensure that the transition probability matrix has an inverse
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and to control the amount of perturbation, the matrix P is chosen to be dominant on
the main diagonal, i.e., each entry on the main diagonal is over 0:5.

The condition of invariance can be placed on the transition matrix P, i.e.,
tP D t. This releases the users of the perturbed file of the extra effort to obtain
unbiased moment estimates of the original data, since t� itself will be an unbiased
estimate of t. To obtain an invariant transition matrix, a matrix Q is calculated by
transposing matrix P, multiplying each column j by vj and then normalizing its
rows so that the sum of each row equals one. The invariant matrix is obtained
by R D PQ. The invariant matrix R may distort the desired probabilities on
the diagonal, so Shlomo and De Waal [38] define a parameter ˛ and calculate
R� D ˛R C .1 � ˛/I, where I is the identity matrix. R� will also be invariant
and the amount of perturbation is controlled by the value of ˛. The property of
invariance means that the expected values of the marginal distribution of the variable
being perturbed are preserved. In order to obtain the exact marginal distribution and
reduce the additional variance caused by the perturbation, a “without” replacement
selection strategy for choosing values to perturb can be implemented based on the
expectations calculated from the transition probabilities.

As in most perturbative SDL methods, joint distributions between perturbed
and unperturbed variables are distorted, in particular for variables that are highly
correlated with each other. The perturbation can be controlled as follows:

1. Before applying PRAM, the variable to be perturbed is divided into subgroups,
g D 1; : : : ; G. The transition (and invariant) probability matrix is developed
for each subgroup g, Rg. The transition matrices for each subgroup are placed
on the main diagonal of the overall transition matrix where the off-diagonal
probabilities are all zero, i.e., the variable is only perturbed within the subgroup
and the difference in the variable between the original value and the perturbed
value will not exceed a specified level. An example of this is perturbing age
within broad age bands.

2. The variable to be perturbed may be highly correlated with other variables.
Those variables should be compounded into one single variable. PRAM should
be carried out on the compounded variable. Alternatively, the variable to be
perturbed is carried out within subgroups defined by the second highly correlated
variable. An example of this is when age is perturbed within groupings defined
by marital status.

The control variables in the perturbation process will minimize the amount of edit
failures, but they will not eliminate all edit failures, especially edit failures that are
out of scope of the variables that are being perturbed. Remaining edit failures need
to be manually or automatically corrected through edit and imputation processes
depending on the amount and types of edit failures.
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9.2.2.2 Additive Noise for Continuous Variables

In its basic form, random noise is generated independently and identically dis-
tributed with a positive variance and a mean of zero. The random noise is then
added to the original variable (see Brand [6] and references therein for a summary
and discussion of additive random noise). Adding random noise will not change the
mean of the variable for large datasets, but will introduce more variance. This will
impact on the ability to make statistical inferences. Researchers may have a suitable
methodology to correct for this type of measurement error, but it is good practice to
minimize these errors through better implementations of the method.

Additive noise should be generated within small homogenous sub-groups (for
example, percentiles of the continuous variable) in order to use different initiating
perturbation variance for each sub-group. Generating noise in sub-groups also
causes less edit failures with respect to relationships in the data. Following Kim [23]
and Fuller [19], correlated random noise can be added to the continuous variable
thereby ensuring that not only means are preserved but also the exact variance.
A simple method for generating correlated random noise for a continuous variable
z, as described in Shlomo and De Waal [38], operates as follows:

Procedure 1 (Univariate). Define a parameter ı which takes a value greater than
zero and less than equal to one. When ı D 1 we obtain the case of fully modelled
synthetic data. The parameter ı controls the amount of random noise added to the
variable z. After selecting a ı, calculate d1 D

p

.1 � ı2/ and d2 D
p

ı2. Now,
generate random noise " independently for each record with a mean of 0 D 1�d1

d2


and the original variance of the variable �2. Typically, a Normal Distribution is
used to generate the random noise. Calculate the perturbed variable z0i for each
record i in the sample microdata (i D 1; : : : ; n) as a linear combination: z0i D
d1�ziCd2�"i. Note that E.z0/ D d1E.z/Cd2Œ

1�d1

d2
E.z/� D E.z/ and Var.z0/ D .1�

ı2/Var.z/C ı2Var.z/ D Var.z/, since the random noise is generated independently
to the original variable z.

An additional problem when adding random noise is that there may be several
variables to perturb at once, and these variables may be connected through an
edit constraint of additivity. One procedure to preserve additivity would be to
perturb two of the variables and obtain the third from aggregating the perturbed
variables. However, this method will not preserve the total, mean and variance of
the aggregated variable and in general, it is not good practice to compound effects
of perturbation by aggregating perturbed variables since this causes unnecessary
information loss.

Shlomo and De Waal [38] propose implementing Procedure 1 in a multivariate
setting, where correlated Gaussian noise is added to the variables simultaneously.
The method not only preserves the means of each of the three variables and their
co-variance matrix, but also preserves the edit constraint of additivity.

Procedure 2 (multivariate). Consider three variables x; y and z, where xC y D z.
This procedure generates random noise that a-priori preserves additivity and
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therefore combining the random noise to the original variables will also ensure
additivity. In addition, means and the covariance structure are preserved. The
technique works as follows. Generate multivariate random noise: ("x; "y; "z/

T �
N.0; †/, where the superscript T denotes the transpose. In order to preserve sub-
totals and limit the amount of noise, the random noise should be generated with
percentiles (note that we drop the index for percentiles). The vector 0 contains
the corrected means of each of the three variables x; y and z based on the noise
parameter ı: 

0T D .0x; 0y; 0z/ D . 1�d1

d2
x;

1�d1

d2
y;

1�d1

d2
z/. The matrix † is

the original covariance matrix. For each separate variable, calculate the linear
combination of the original variable and the random noise as previously described.
For example, for record i W z0i D d1zi C d2"zi. The mean vector and the covariance
matrix remain the same before and after the perturbation, and the additivity is
exactly preserved.

9.2.3 Information Loss Measures

The information loss in microdata that has undergone SDL techniques is assessed
on whether the same statistical analysis and inference can be drawn on the perturbed
data compared to the original data. Microdata is multi-purposed and used by many
different types of users, with diverse reasons for analysing the data. To assess the
utility in microdata, proxy measures have been developed and include measuring
distortions to distributions and the impact on bias, variance and other statistics (Chi-
squared statistic, R2 goodness of fit, rankings, etc.). Domingo-Ferrer, et al. [13],
Gomatam and Karr [20], Shlomo and Young [40, 41], and Shlomo [35], describe
the use of such measures for assessing information loss in perturbed statistical data
with empirical examples and applications. A brief summary of some useful proxy
measures is presented below.

9.2.3.1 Distance Metrics

Distance metrics are used to measure distortions to distributions in the microdata
as a result of applying SDL techniques. The AAD is a distance metric based on the
average absolute difference between observed and perturbed counts in a frequency
distribution. Let D represent a frequency distribution produced from the microdata
and let D.c/ be the frequency in cell c. The Average Absolute Distance (AAD) per
cell is defined as:

AAD.Dorig; Dpert/ D
X

c

jDpert.c/ �Dorig.c/j=nc (9.12)

where nc is the number of cells in the distribution.
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9.2.3.2 Impact on Measures of Association

Tests for independence are often carried out on joint frequency distributions between
categorical variables that span a table calculated from the microdata. The test for
independence for a two-way table is based on a Pearson Chi-Squared Statistic �2 D
P

i

P

j
.oij�eij/

2

eij
, where oij is the observed count and eij D .ninj/=n is the expected

count for row i and column j. If the row and column are independent then �2 has
an asymptotic chi-square distribution with .R � 1/.C � 1/ and for large values the
test rejects the null hypothesis in favor of the alternative hypothesis of association.
Typically, the Cramer’s V is used, which is a measure of association between two

categorical variables: CV D
q

�2=n
min f.R�1/;.C�1/g . The information loss measure is the

percent relative difference between the original and perturbed table:

RCV.Dpert; Dorig/ D 100 � CV.Dpert/ � CV.Dorig/

CV.Dorig/
(9.13)

For multiple dimensions, log-linear modeling is often used to examine associations.
A similar measure to (9.13) can be calculated by taking the relative difference in the
deviance obtained from the model based on the original and perturbed microdata.

9.2.3.3 Impact on Regression Analysis

For continuous variables, it is useful to assess the impact on the correlation and in
particular the R2 of a regression (or ANOVA) analysis. For example, in an ANOVA,
the test involves whether a continuous dependent variable has the same means across
groups defined by a categorical explanatory variable. The goodness of fit criterion R2

is based on a decomposition of the variance of the mean of the dependent variable.
By perturbing the statistical data, the groupings may lose their homogeneity, the
“between” variance becomes smaller, and the “within” variance becomes larger. In
other words, the proportions within each of the groupings shrink towards the overall
mean. On the other hand, the “between” variance may become artificially larger
showing more association than in the original distribution.

The utility is based on assessing differences in the means of a response variable
across categories of an explanatory variable having K categories. Let Nyk be the
mean in category k and define the “between” variance of this mean by BV.Nyorig/ D

1
K�1

P

k. Nyk � Ny/2, where Ny is the overall mean. Information loss is measured by:

BVR.Nypert; Nyorig/ D 100 � BV.Nypert/� BV.Nyorig/

BV.Nyorig/
(9.14)

In addition, other analysis of information loss involves comparing estimates of
coefficients when applying a regression model on both the original and perturbed
microdata and comparing the coverage of confidence intervals.
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9.3 Statistical Disclosure Limitation for Frequency Tables

The focus of this section is on protecting frequency tables of whole population
counts. This is more challenging than protecting tables from a sample. The sampling
a-priori introduces ambiguity into the frequency counts and, as a result, it is more
difficult to identify statistical units without response knowledge or infer what the
true count may be in the population. Moreover, tabular data from samples are
typically weighted counts where sampling weights vary between units because of
differential selection probabilities and non-response adjustments. Therefore, the
number of contributors to a cell is not always known.

Tabular outputs are pre-determined by statistical agencies after careful consider-
ation of population thresholds, average cell sizes, collapsing and fixing categories
of variables spanning the tables. In spite of all these efforts, SDL techniques are still
necessary. These techniques include pre-tabular methods, post-tabular methods and
combinations of both.

Pre-tabular methods are implemented on the microdata prior to the tabulation
of the tables. The most commonly used method is record swapping between a pair
of households/individuals matching on some control variables (see Dalenius and
Reis [9] and Fienberg and McIntyre [17]. This method has been used for protecting
census tables at the United States Bureau of the Census and the Office for National
Statistics (ONS) in the United Kingdom. Record swapping can be seen as a special
case of the more general method of PRAM, as defined in Sect. 9.2.2.1. In practice,
statistical agencies prefer record swapping since the method is easy to implement
and marginal distributions are preserved exactly on higher aggregations of the data.

Post-tabular methods are implemented on the entries of the tables after they are
computed and typically take the form of random rounding, either on the small cells
of the tables or on all entries of the tables. Within the framework of developing
the SDL software package, Tau Argus, a fully controlled rounding option has been
added (Hundepool [22]). The procedure uses linear programming techniques to
round entries up or down and in addition ensures that all rounded entries add up
to the rounded totals. Other post-tabular methods include cell suppression or some
form of random perturbation on the cells of the whole population tables.

In Sect. 9.3.1 we provide an overview of disclosure risks in tabular data and
in Sect. 9.3.2 present disclosure risk and information loss measures based on
Information Theory as developed in Antal et al. [2] and Shlomo et al. [34].
Section 9.3.3 presents some common SDL techniques.

9.3.1 Disclosure Risk in Whole Population Tabular Outputs

The main disclosure risk in a register/census context comes from small counts, i.e.,
ones and twos, since these can lead to re-identification. The amount and placement
of the zeros in the table determines whether new information can be learnt about
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an individual or a group of individuals. Therefore, SDL techniques for whole
population tabular data should not only protect small cells in the tables but also
introduce ambiguity and uncertainty into the zero values.

The disclosure risks as defined in [35, 44] are:

Individual attribute disclosure: An individual can be identified on the basis of
some of the variables spanning the table and a new attribute revealed about the
individual, i.e. for tabular data, this means that there is a one in a margin of
the table. Identification is a necessary pre-condition for attribute disclosure and
therefore should be avoided. In a census/register context where many tables are
released, an identification made in a lower dimensional table will lead to attribute
disclosure in a higher dimensional table.

Group attribute disclosure: If there is a row or column that contains mostly zeros
and a small number of non-zero cells, then one can learn a new attribute about
a group of individuals as well as learn about the group of individuals who do
not have this attribute. This type of disclosure risk does not require individual
identification.

Disclosure by differencing: Two tables that are nested may be subtracted one
from the other resulting in a new table containing small cells and the above
disclosure risk scenarios would apply. For example, a table containing the elderly
population in private households may be subtracted from a table containing
the total elderly population, resulting in a table of the elderly in communal
establishments. This table is typically very sparse compared to the two original
tables.

Disclosure by linking tables: Since many tables are disseminated from one data
source, they can be linked though common cells and common margins thereby
increasing the chances for revealing SDL methods and original cell counts.

To protect against attribute disclosure, SDL techniques should limit the risk
of identification and also introduce ambiguity into the zero counts. To avoid
disclosure by differencing, often only one set of variables and geographies are
disseminated with no possibilities for overlapping categories. To avoid disclosure by
linking tables, margins and cells of tables should be made consistent. In addition,
statistical agencies often employ transparent and visible SDL techniques to avoid
any perception that there may be disclosure risks in the data and resources are
directed to ensure that the public is informed about the measures taken to protect
confidentiality.

9.3.2 Disclosure Risk and Information Loss Measures Based
on Information Theory

As mentioned, attribute disclosure is caused by rows/columns that have many zero
cells and only one or two populated cells. A row/column with a uniform distribution
of cell counts would have little attribute disclosure risk whilst a degenerate
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distribution of cell counts would have high attribute disclosure risk. Moreover, a
row/column with large counts would have less risk of re-identification compared
to a row/column with small counts. Antal et al. [2] propose a new disclosure risk
measure based on Information Theory.

In their paper, the disclosure risk measure for a whole-population frequency table
should have the following properties: (a) small cell values have higher disclosure
risk than large values; (b) uniformly distributed frequencies imply low disclosure
risk; (c) the more zero cells in the census table, the higher the disclosure risk;
(d) the risk measure should be bounded by 0 and 1. Using Information Theory, an
analytical expression of disclosure risk that meets these properties can be computed.
The entropy of the frequency vector in a table of size K, with population counts
F D .F1; F2; : : : ; FK/, where

PK
iD1 Fi D N is:

H.P/ D H.
F

N
/ D �

K
X

iD1

Fi

N
log.

Fi

N
/ D N log N �PK

iD1 Fi log Fi

N

and to produce a disclosure risk measure between zero and one, the disclosure risk
measure is defined as:

1 � H. F
N /

log K
(9.15)

The disclosure risk measure in (9.15) ensures property (b) since the term will tend
to zero as the frequency distribution is more uniform, and ensures property (d) since
the measure is bounded between zero and one. However, the disclosure risk measure
does not take into account the magnitude of the cells counts or the number of zero
cells in the table (or row/column of the table) and does not preserve properties (a)
and (c). Therefore, an extended disclosure risk measure is proposed in (9.16) and is
defined as a weighted average of three different terms, each term being a measure
between zero and one.
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(9.16)

where A is the set of zeroes in the table and jAj the number of zeros in the set, K, N
and F as defined above, and w1, w2 are arbitrary weights: 0 � w1 C w2 � 1.

The first measure in (9.16) is the proportion of zeros which is relevant for
attribute disclosure and property (c). The third measure in (9.16) allows us to
differentiate between tables with different magnitudes and accounts for property
(a). As the population size N gets larger in the table, the third measure tends to zero.
The weights w1 and w2 should be chosen depending on the data protector’s choice of
how important each of the terms are in contributing to disclosure risk. Alternatively,
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one can avoid weights altogether by taking the L2 norm of the three terms of the risk
measure in (9.16) as follows:

.
P3

iD1 jxij2/1=2

p
3

;

where xi represents term i (i D 1; 2; 3) in (9.16). This provides more weight to the
larger term of the risk measure.

Continuing with Information Theory based measures, Antal et al. [2] propose to
measure information loss using Hellinger’s Distance to assess the distance between
two distributions. This is the L2 norm:

HD.P; Q/ D 1p
2
jjpP �pQjj2;

where P D .p1; p2; : : : ; pk/ is the original probability distribution of cell counts and
Q is the perturbed probability distribution of cell counts.

The Hellinger’s distance is bounded by zero and one, and preserves the properties
of a distance metric (non-negativity, coincidence axiom, symmetry and triangle
inequality). Measuring the distance infers that the smaller the distance the more
information is left in the table.

In the case of frequency distributions from whole-population tables, where F D
.F1; F2; : : : ; FK/ is the vector of original counts and G D .G1; G2; : : : ; GK/ is the
vector of perturbed counts, and
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The Hellinger’s Distance takes into account the magnitude of the cells since
the difference between square roots of two “large” numbers is smaller than the
difference between square roots of two “small” numbers, even if these pairs have
the same absolute difference. The lower bound remains zero and the upper bound of
this distance of counts changes:
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The information loss measure which is bounded by zero and one, where zero
represents low utility and one represents high utility, is:
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1 � HD.F; G/
q

NCM
2

More details of these measures are in Shlomo et al. [34], which focuses on the
development of flexible web-based table generation platforms for user-defined
census tables and where the disclosure risk and information loss measures need
to be calculated on-the-fly. In that paper, the disclosure risk measure is also adapted
for assessing disclosure risk following the application of SDL techniques.

9.3.3 Statistical Disclosure Limitation Methods

In this section, we describe three SDL techniques which have been used to protect
whole population frequency tables such as for a census or register: a pre-tabular SDL
method of record swapping and post-tabular SDL methods of random rounding and
stochastic perturbation. Record Swapping is used to protect census outputs in the
United States and the United Kingdom, a post-tabular method of random rounding
is used in New Zealand and Canada and a post-tabular probabilistic stochastic
perturbation mechanism has been recently implemented in Australia. Examples of
applications and case studies can be found in Shlomo [35], Shlomo and Young [40],
and Shlomo et al. [34, 39].

9.3.3.1 Record Swapping

Record swapping is based on the exchange of values of variable(s) between similar
pairs of population units (often households). In order to minimize bias, pairs of
population units are determined within strata defined by control variables. For exam-
ple, for swapping households, control variables may include: a large geographical
area, household size and the age-sex distribution of individuals in the households.
In addition, record swapping can be targeted to high-risk population units found
in small cells of census tables. In a census/register context, geographical variables
related to place of residence are often swapped. Swapping place of residence have
the following properties: (1) it minimizes bias based on the assumption that place
of residence is independent of other target variables conditional on the control
variables; (2) it provides more protection in the tables since place of residence is
a highly visible variable which can be used to identify individuals; (3) it preserves
marginal distributions within a larger geographical area. For more information on
record swapping, see Dalenius and Reiss [9], Fienberg and McIntyre [17], and
Shlomo [35].
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9.3.3.2 Semi-Controlled Random Rounding

Another post-tabular method of SDC for frequency tables is based on unbiased
random rounding. Let Floor.x/ be the largest multiple bk of the base b, such that
bk < x for any value of x. In this case, res.x/ D x � Floor.x/. For an unbiased
rounding procedure, x is rounded up to Floor.x/C b with probability res.x/=b and
rounded down to Floor.x/ with probability (1� res.x/=b). If x is already a multiple
of b, it remains unchanged.

In general, each small cell is rounded independently in the table, i.e., a random
uniform number u between zero and one is generated for each cell. If u � res.x/=b
then the entry is rounded up; otherwise, it is rounded down. This ensures an
unbiased rounding scheme, i.e. the expectation of the rounding perturbation is zero.
However, the realization of this stochastic process on a finite number of cells in a
table will not ensure that the sum of the perturbations will exactly equal zero. To
place some control in the random rounding procedure, we use a semi-controlled
random rounding algorithm for selecting entries to round up or down as follows:
First the expected number of entries of a given res.x/ that are to be rounded up
is predetermined (for the entire table or for each row/column of the table). The
expected number is rounded to the nearest integer. Based on this expected number,
a random sample of entries is selected (without replacement) and rounded up. The
other entries are rounded down. This process ensures that rounded internal cells
aggregate to the controlled rounded total.

Due to the large number of perturbations in the table, margins are typically
rounded separately from internal cells and tables are not additive. When using semi-
controlled random rounding this alleviates some of the problems of non-additivity
since one of the margins and the overall total will be controlled, i.e., the rounded
internal cells aggregate to the rounded total.

Another problem with random rounding is the consistency of the rounding across
same cells that are generated in different tables. It is important to ensure that the
cell value is always rounded consistently, otherwise the true cell count can be learnt
by generating many tables containing the same cell and observing the perturbation
patterns. Fraser and Wooton [18] propose the use of microdata keys which can solve
the consistency problem. First, a random number (which they call a key) is defined
for each record in the microdata. When building a census frequency table, records
in the microdata are combined to form a cell defined by the spanning variables of
the table. When these records are combined to a cell, their keys are also aggregated.
This aggregated key serves as the seed for the rounding and therefore same cells
will always have the same seed and result in consistent rounding.

9.3.3.3 Stochastic Perturbation

A more general method than random rounding is stochastic perturbation, which
involves perturbing the internal cells of a table using a probability transition matrix
and is similar to the post-randomisation method (PRAM) that is used to perturb
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categorical variables in microdata, as described in Sect. 9.2.2.1. In this case, it is the
cell counts in a table that are perturbed. More details are in Fraser and Wooton [18]
and Shlomo and Young [41].

In Sect. 9.2.2.1, we describe the invariant probability matrix R. In this case t is
the vector of frequencies of the cell values where the last component would contain
the number of cells above cap L and v is the vector of relative frequencies: v D t=K,
where K is the number of cells in the table. In each cell of the table, the cell value i
is changed or not changed according to the prescribed transition probabilities in the
invariant matrix R. Placing the condition of invariance on the probability transition
matrix means that the marginal distribution of the cell values are approximately
preserved under the perturbation. As described in the random rounding procedure,
in order to obtain the exact marginal distribution a similar strategy for selecting the
cell values to change can be carried out. For each cell value i, the expected number
of cells that need to be changed to a different value j is calculated according to the
probabilities in the transition matrix. We then randomly select (without replacement)
the expected number of cells i and carry out the change to j.

To preserve exact additivity in the table, an iterative proportional fitting algorithm
can be used to fit the margins of the table after the perturbation according to the
original margins. This results in cell values that are not integers. Exact additivity
with integer counts can be achieved for simple tables by controlled rounding to base
1 using for example Tau-Argus (Salazar-Gonzalez et al. [33]). Cell values can also
be rounded to their nearest integers resulting in “close” additivity because of the
invariance property of the transition matrix. Finally, the use of microdata keys can
also be adapted to this SDL method to ensure consistent perturbation of same cells
across different tables by fixing the seed for the perturbation.

9.4 Differential Privacy in Survey Sampling
and Perturbation

Shlomo and Skinner [36] explore how definitions of differential privacy, as intro-
duced in the computer science literature [12, 15], relate to the disclosure risk
scenarios of survey microdata. In addition, they investigate whether best practices
at statistical agencies for the disclosure limitation of survey microdata would meet
the strict privacy guarantees of differential privacy.

The disclosure risk scenario for survey microdata is that an intruder knows the
values of some key variables for a target unit and seeks to use these values to link
the unit to a record in the microdata after SDL has been applied, for n units in a
sample s drawn from a population U. For identification risk to be well-defined, we
assume that the records in the released microdata can meaningfully be associated
with units in the population.

In the more recent computer science literature on privacy, there is usually no
distinction between key variables and sensitive variables. The starting point is the
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(original) database of attribute values from which the microdata are generated via
the SDL method. It is supposed that an intruder wishes to learn about the attribute
values for a specific (target) unit in the database. A “worst case” scenario is allowed
for, in which the intruder has complete information about all other units represented
in the database [15]. Under this assumption, let x denote the cell value, taking
possible values 1; : : : ; k, where the contingency table is now formed by cross-
classifying all variables, whether key or sensitive.

In the survey setting, there are two possible definitions of the database: the pop-
ulation “database” xU D .x1; : : : ; xN/ and the sample “database” xs D .x1; : : : ; xn/,
where N denotes the size of the population U D f1; : : : ; Ng and without loss
of generality, we write s D f1; : : : ; ng. The sample database might be viewed
from one perspective as more realistic, since it contains the data collected by the
statistical agency, whereas the population database would include values of survey
variables for non-sampled units, which are unknown to the agency. In the context of
differential privacy, we use the population database xU to define privacy and treat the
sampling as part of the SDL mechanism, and suppose that prior intruder knowledge
relates to aspects of xU.

Let Qxi denote the cell value of unit i in the microdata after SDL has been applied,
and let Qfj D P

i2s I. Qxi D j/ denote the corresponding observed count in cell j
in the microdata. Supposing that the SDM method leads to an arbitrary ordering
of the records in the microdata, we can view the released data as the vector of
counts: Qf D . Qf1; Qf2; : : : ; Qfk/. Let PrŒQfjxU� denote the probability of Qf with respect to
an SDM mechanism, which includes sampling and/or misclassification, and where
xU is treated as fixed. Shlomo and Skinner [36] consider the following definition.

Definition 9.1. "-differential privacy [15] holds if:
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for some " > 0, where the maximum is over all pairs .x.1/
U ; x.2/

U /, which differ in only
one element across all possible values of Qf. The disclosure risk in this definition is
inferential disclosure, where if only one value is changed in the population database
the intruder is unable to gain any new knowledge about a target individual given that
all other individuals in the population are known.

An ."; ı/-probabilistic differential privacy definition, as discussed in [8], holds
if (9.18) applies with probability at least 1 � ı for some "; ı > 0. More precisely,
this definition holds if the space of possible outcomes Qf may be partitioned into
“good” and other outcomes, if (9.18) holds when the outcome is “good” and if the
probability that the outcome is “good” is at least 1� ı. This definition is essentially
the same as the notion of probabilistic differential privacy in Machanavajjhala, et al.
[25], where the set of “bad” outcomes is referred to as the disclosure set.

In the differential privacy literature, strict privacy guarantees are ensured by
introducing random noise to the query. Laplace noise addition is proposed and the
magnitude of the noise depends on the size of the query and parameter ".
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In Shlomo and Skinner [36], the aim is to investigate whether common practices
at statistical agencies for preserving the confidentiality of respondents in survey
microdata, such as sampling and perturbation, are differentially private. As an
example from their paper, assume microdata are released from a sample which was
drawn under an equal probability design. For this sample design and many other
sampling schemes, fj may equal Fj with positive probability. In particular, it is usual,
in order to achieve unbiased statistical estimation, for an agency to require of any
sampling scheme that all population units have positive inclusion probability and
so, if any unit is population unique .Fj D 1/ there is a positive probability that this
unit is sampled, in which case fj D Fj D 1. Thus, for a given f and any sampling
scheme where some element fj of f may equal Fj with positive probability, there

exists a database x.1/
U such that fj D F.1/

j � 1 for some j and PrŒfjx.1/
U � ¤ 0. Now,

if we change an element of x.1/
U which takes the value j to construct x.2/

U , for which

F.2/
j D F.1/

j � 1 < fj, we obtain PrŒfjx.2/
U � D 0. Hence, "-differential privacy does

not hold for a very broad class of sampling schemes.
Shlomo and Skinner [36] present three reasons why the disclosure implications

of this finding might not be considered a cause for concern by a statistical agency.
First, consider the threat that the event fj D Fj enables an intruder to disclose

the cell value of a target individual. Such a disclosure depends upon the intruder
knowing the count for the cell j across the whole of the population, excluding the
target individual. Given this knowledge and the observation that this count equals
fj� 1, the intruder could infer that the target individual falls in this cell (and appears
in the microdata). For the kinds of large populations of individuals upon which
social surveys are typically based, it may be deemed unrealistic for an intruder to
have precise information on all individuals in the population except one. The nearest
realistic possibilities are that there exist an external database which either (a) via full
population information, enables the population count Fj to be determined together
with the identities of these Fj individuals, or (b) provides identities of an unknown
subset of population individuals in the cell. In neither of these cases would exact
disclosure occur. In (a), the key variable value for the target individual would already
be known to the intruder. In (b), there would be residual uncertainty.

Second, consider the threat of identification, where an intruder knows both that
a target individual belongs to cell j and that the individual is population unique, i.e.,
Fj D 1. In this case, the target individual is sampled (so that fj D 1) then the intruder
would be able to identify the individual in the microdata. This possibility is already
well-known to agencies as a threat and grounds for ensuring that no microdata are
released for which there are combinations of key variables for which an intruder
could know that Fj D 1 or some other small value, such as in the kind of external
database mentioned above.

Third, for any given database, the possible values of f where "-differential privacy
fails may occur only with negligible probability. Therefore, the agency may consider
it more appropriate to adopt the ."; ı/-probabilistic differential privacy definition
referred to earlier.
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To explore the probabilistic nature of the threat to privacy further, consider
the event that fj D Fj, viewed here as the key threat to "-differential privacy.
By assumption, units in social surveys have small inclusion probabilities and the
probability that all population units in a cell j will appear in the sample, i.e.,
fj D Fj D m, will be very small for m D 2 (doubles) and even smaller for m > 2.
The most realistic outcome is that a sample unique is population unique, i.e., the case
fj D Fj D 1, but this will typically also be possible with only a small probability.
Therefore, while sampling does not guarantee differential privacy, it does provide
probabilistic differential privacy under certain conditions.

Shlomo and Skinner [36] also examine perturbation under a misclassification
mechanism:

Pr. Qxi D j1jxi D j2/ D Mj1j2 ; i D 1; : : : ; n; j1; j2 D 1; : : : ; k (9.19)

where Qxi denotes the i-th element of Qxs. They found that "-differential privacy holds
if and only if all elements of M are positive.

For example, under the SDL method of recoding, which is a common SDL
technique for microdata arising from social surveys, assume a variable where
categories 1 to ˛ are grouped to category 1. The misclassification matrix is:

Mj1j2 D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; if j2 D 1; : : : ; ˛ and j1 D 1; or

j2 D ˛ C 1; : : : ; k and j1 D j2 � aC 1

0; otherwise

It is clear that with elements equal to zero, "-differential privacy will not be
guaranteed. Another example is the SDL technique of PRAM which uses a
misclassification (probability) matrix R to make random changes across categories
of a variable as described in Sect. 9.2.2.1. The misclassification matrix should
be defined to have no zero elements in order to ensure "-differential privacy.
Note that in practice, there may be zero elements in the misclassification matrix
which represent structural zeros in the population, i.e. impossible combinations of
categories such as children having an occupation as a “doctor”. For these cases,
differential privacy is not applicable.

In general, Shlomo and Skinner [36] found that non-perturbative methods of SDL
will not guarantee "-differential privacy but may under some circumstances uphold
."; ı/-probabilistic differential privacy, whereas perturbative methods which ensure
no zero elements in the misclassification matrix will guarantee "-differential privacy.

9.5 Future Outlook for Releasing Statistical Data

Statistical agencies are beginning to examine new dissemination strategies in order
to allow more flexibility in the release of statistical data, whilst preserving the
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confidentiality of respondents. More modern dissemination via web-based remote
servers and table generators have now forced statistical agencies to consider stricter
privacy guarantees offered by differential privacy.

As defined in Sect. 9.4, differential privacy aims to avoid inferential disclosure
by ensuring that an intruder cannot make inference about a single unit when only
one of its value is changed, given that all other units in the population are known.
This definition would include disclosure by differencing and disclosure from highly
predictive models, which are at the forefront of disclosure risk scenarios when
considering flexible dissemination and online query systems compared to traditional
outputs. The solution for guarantying differential privacy in the computer science
literature is by adding noise/perturbation to the outputs of the queries under specific
parameterizations.

In this section, we examine some new dissemination strategies that are being
considered by statistical agencies.

9.5.1 Safe Data Enclaves and Remote Access

To meet increasing demands for high resolution data, many statistical agencies
have set up data enclaves on their premises where approved researchers can go
onsite and gain access to confidential statistical data. The secure servers within
the enclave have no connection to printers or the internet and only authorized
researchers are allowed to access them. To minimize disclosure risk, no data is
to be removed from the enclave and researchers undergo specialized training to
understand the confidentiality guidelines. Researchers are generally provided with
standard software within the system, such as STATA, SAS and R, but any specialized
software would not be available. All information flow is controlled and monitored.
Any outputs to be taken out of the data enclave are dropped in a folder and manually
checked by experienced confidentiality officers for disclosure risks. Examples of
disclosure risks in outputs are small cell counts in tables, residual plots from
regression models which may highlight outliers and Kernel density estimation with
small band-widths.

The disadvantage of the data enclave is the need to travel, sometimes long
distances, to access confidential data. In recent years, some statistical agencies have
piloted remote access by extending the concept of the data enclave to a “virtual” data
enclave. These “virtual” data enclaves can be set up at other government agencies,
universities and even on a researcher’s own laptop. Users log on to secure servers via
vpn connections to access the confidential data. All activity is logged and audited
at the keystroke level and outputs are reviewed remotely by confidentiality officers
before being sent back to the researchers via a secure file transfer protocol site.
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9.5.2 Web-Based Applications

In recent years there are two types of web-based dissemination applications that
are being considered by statistical agencies, namely flexible table generators and
remote analysis servers.

9.5.2.1 Flexible Table Generating Servers

Driven by demand from policy makers and researchers for specialized and tailored
tables from statistical data, particularly census data, some statistical agencies are
developing flexible table generating servers that allow users to define and generate
their own tables. The United States Census Bureau and the Australian Bureau of
Statistics have developed such servers for disseminating census tables. Moreover,
the Israel Central Bureau of Statistics developed a server for disseminating tables
from the Social Survey. Users access the servers via the internet and define their
own table of interest from a set of pre-defined variables and categories, typically
provided in the form of drop down lists.

When selecting the SDL method to apply to the output table, there are two
approaches: apply SDL to the underlying data so that all tables generated in the
server are deemed safe for dissemination (known as pre-tabular SDL), or produce
tables directly from original data and apply the SDL method to the final tabular
output (known as post-tabular SDL). Although sometimes a neater and less resource
intensive for data from a single source, the pre-tabular approach is problematic
since it will compound the SDL impact and overprotect the data whilst increasing
information loss. The post-tabular approach is also motivated by the computer
science definition of differential privacy as discussed in Sect. 9.4.

For flexible table generation, the server has to quantify the disclosure risk in the
original table, apply an SDL method on the data and then reassess the disclosure
risk. Obviously, the disclosure risk will depend on whether the underlying data is a
whole population (census) and the zeros are real zeros, or the data are from a survey
and the zeros may be random zeros. After the table is protected, the server should
also calculate the impact on information loss by comparing the perturbed table to
the original data table.

Measures based on Information Theory were presented in Sect. 9.3.2 and can
be used to assess disclosure risk and information loss in a table generating server
since they can be calculated on-the-fly. In addition, some perturbation methods for
protecting census tables were presented in Sect. 9.3.3.

The design of remote table generating servers typically involves many ad-
hoc preliminary SDL rules that can easily be programmed within the system in
order to determine whether tables can be safely released or not. These SDL rules
may include limiting the number of dimensions in the table, minimum population
thresholds, ensuring consistent and nested categories of variables to avoid disclosure
by differencing, and so on.



9 Statistical Disclosure Limitation for Health Data: A Statistical Agency Perspective 225

Table 9.1 Disclosure risk
and information loss for the
generated table

Disclosure risk Hellinger distance

Original 0.318 –

Perturbed input

Record swapping 0.282 0.988

Semi-controlled

random rounding
0.137 0.991

Stochastic perturbation 0.239 0.995

Perturbed output

Semi-controlled

random rounding
0.135 0.993

As an example, in Table 9.1 we compare different SDL methods for a census
table defined in one region of the United Kingdom according to banded age groups,
education qualification and occupation. The table contained 2; 457 cells where
62:4% were real zeros. The underlying data in the flexible table generating server
was a very large hypercube which provides a priori protection since no units
below the level of the cells of the hypercube are disseminated. We compare three
pre-tabular methods on the hypercube: record swapping, semi-controlled random
rounding and a stochastic perturbation, and a post-tabular method of semi-controlled
random rounding applied directly to the output table. The measures are based on
Information Theory, as described in Sect. 9.3.2.

From Table 9.1, it is clear that the method of record swapping when applied to the
input data did little to reduce the disclosure risk in the final output table. This was
due to the fact that the small cells remain unperturbed in the table. Record swapping
provided the lowest data utility since the geography variable that was swapped was
used to select a sub-population of the table thus increasing the information loss.
From among the input perturbation methods, the semi-controlled random rounding
provided the most protection against disclosure. The stochastic perturbation still
leaves small cells in the table and hence is not as protective as the semi-controlled
random rounding. Both methods have similar information loss. Comparing the
pre-tabular and post-tabular semi-controlled random rounding procedure, we see
slightly lower disclosure risk according to the post-tabular rounding and slightly
higher data utility since the SDL method is not compounded by aggregating rounded
cells.

9.5.2.2 Remote Analysis Servers

A remote analysis server is an online system which accepts a query from the
researcher, runs it within a secure environment on the underlying data and returns a
confidentialized output without the need for human intervention to manually check
the outputs for disclosure risks. Similar to flexible table generators, the queries are
submitted through a remote interface and researchers do not have direct access to
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Fig. 9.1 Confidential residual plot from a regression analysis on receipts for the Sugar Canes
dataset. (a) Residuals by fitted values. (b) Normal QQ plot of residuals

the data. The queries may include exploratory analysis, measures of association,
regression models and statistical testing. The queries can be run on the original data
or confidentialized data and may be restricted and audited depending on the level
of required protection. O’Keefe and Good [27] describe regression modeling via a
remote analysis server.

O’Keefe and Shlomo [26] compared outputs based on original data and two SDL
approaches: outputs from confidentialized microdata and confidentialized outputs
obtained from the original data via a remote analysis server. The comparison
was carried out on a dataset from the 1982 survey of the sugar cane industry in
Queensland, Australia (Chambers and Dunstan [7]). The dataset corresponds to
a sample of 338 Queensland sugar farms and contained the following variables:
region, area, harvest, receipts, costs and profits (equal to receipts minus costs). The
dataset was confidentialized by deleting large outlier farms, coarsening the variable
area and adding random noise to harvest, receipts, costs and profits.

Figure 9.1 shows what the residual plots would look like in a remote analysis
server, where the response variable is receipts and the explanatory variables: region,
area, harvests and costs. As can be seen, the scatterplot is presented as sequential
box plots and the Normal QQ plot is smoothed. Figure 9.2 presents the comparison
of the univariate analysis of receipts on the original dataset, the confidentialized
input approach and the confidentialized output approach.

9.5.3 Synthetic Data

Basic confidential data is a fundamental product of virtually all statistical agency
programs. These lead to the publication of public-use products, such as summary
data, microdata from surveys, etc. Confidential data may also be used for internal
use within data enclaves. In recent years, there has been a move to produce synthetic



9 Statistical Disclosure Limitation for Health Data: A Statistical Agency Perspective 227

Fig. 9.2 Univariate analysis of receipts for the Sugar Canes dataset

microdata as public-use files which preserve some of the statistical properties of
microdata. The data elements are replaced with synthetic values sampled from an
appropriate probability model. The model is fit to the original data to produce
synthetic populations through a posterior predictive distribution similar to the theory
of multiple imputation. Several samples are drawn from the population to take
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into account the uncertainty of the model and to obtain variance estimates. See
[10, 28, 29] and references therein for more details of generating synthetic data.

The synthetic data can be implemented on parts of data, so that a mixture of real
and synthetic data is released [24]. One application which uses partially synthetic
data is the US Census Bureau “On the Map” available at: http://onthemap.ces.
census.gov/. It is a web-based mapping and reporting application that shows where
workers are employed and where they live according to the Origin-Destination
Employment Statistics. More information is provided in Abowd and Vilhuber [1].

In practice it is very difficult to capture all conditional relationships between
variables and within sub-populations. If models used in a statistical analysis are sub-
models of the model used to generate data, then the analysis of multiple synthetic
samples should give valid inferences. In addition, partially synthetic datasets may
still have disclosure risks and need to be checked prior to dissemination.

9.6 Conclusion

In recent years, statistical agencies have been restricting access to statistical data due
to their inability to cope with the large demand for high-resolution data whilst ensur-
ing the confidentiality of statistical units. However, with government initiatives for
‘open data’, new ways to disseminate statistical data are being explored. This has led
to more cooperation with computer scientists who have developed formal definitions
of disclosure risk, particularly for inferential disclosure, and the adaption of SDL
techniques that have stricter privacy guarantees. However, these techniques come
at a cost in that researchers will have to cope with analyzing perturbed data which
will require more training in the area of statistical inference under measurement
(perturbation) errors. The methods for coping with measurement errors in statistical
modelling requires that the statistical agencies release the parameters that are used
in generating the SDL technique, for example, the variance of the additive noise and
the swap rate in record swapping. Without these parameters, researchers will not be
able to account for the measurement/perturbation errors in their analysis.
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Chapter 10
A Review of Privacy Preserving Mechanisms
for Record Linkage

Luca Bonomi, Liyue Fan, and Li Xiong

Abstract Record linkage represents the process of identifying records that refer
to the same real-world entity across multiple sources. In the recent past, the large
explosion of data from organizations and individuals has created critical challenges
in record linkage process, leading the scientific community to develop a rich series
of techniques. Among these recent developments, the design of record linkage
solutions for medical data is a cornerstone for health-care systems, as personal
identifying information, such as name and date of birth, is often used for linkage.
In this setting, record linkage solutions are expected to preserve individual patients’
privacy in addition to be effective and efficient. In this chapter, we provide a broad
review of the recent works in privacy preserving record linkage (PPRL). From a
privacy-centric perspective, we summarize a comprehensive framework of the PPRL
process and describe the privacy assurance techniques adopted for each step in the
framework. With the applications in biomedical domain in mind, we identify several
challenges for PPRL and discuss future research directions.

10.1 Introduction

Record linkage, also referred to as duplicate detection [16] or entity resolution [19],
is a process that identifies records which belong to the same real-world entity across
two or more data sources. Record linkage relies primarily on matching of names,
addresses, and other fields that are typically not unique identifiers of entities. Given
records in two datasets A and B, these can be represented as vectors in which
each component is associated with a record’s field or attribute. For example, in
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a medical setting, two hospitals interested in reconstructing their patients’ history
may represent each record in their databases as a vector, where the first component
is associated with the patient’s name, the second with her address, and the other
components mapping the remaining attributes. Then, under this representation the
records can be matched by examining the similarity between each component in the
vectors.

In the original work proposed by Fellegi and Sunter [17], the record linkage
approach is described as the process of partitioning the cartesian product of the
datasets A � B into three disjoint sets: M the set of “matches”, U the set of “non-
matches”, and C a set which requires human intervention in order to classify.
The classification of the records into these sets is performed by using similarity
functions that can differ on the particular field in the records (e.g., character-based
similarity metrics to handle typographical errors). Therefore, the typical record
linkage process consists first in pre-processing the data in order to compute the
cartesian product A � B and successively in matching the records with the intent of
minimizing the elements that are classified in the set C.

In the biomedical domain, linking records across multiple databases can provide
a comprehensive view of a patient’s medical history to increase safety and to
aid decision making. Due to the decentralized nature of healthcare systems, data
records that correspond to the same patient are often distributed across multiple
disparate providers. For instance, it is common for hospitals to use a patient’s
Social Security Number (SSN) and/or demographics information for administrative
purposes [26]. However, due to federal regulations and organizations’ policies, the
disclosure of such attributes is strictly prohibited. Therefore, without a universal
patient identifier, the integration of medical databases largely relies on available
common attributes, such as names, addresses, dates of birth, etc. Such integration
process could be extremely challenging due to missing values or errors present in the
record attributes. Below, we report some of the regulations for medical data records.

Legal, Regulatory, and Ethical Constraints Medical data records contain
sensitive information about private patients, such as genome sequences, test
results, treatments, etc. The collection and release activities are governed by rules,
regulations, and legislative authorizations. For example, the European Union’s
Data Protection Directive 95/46/EC (the “EU Directive”) protects the privacy of all
personal data collected for, or about, EU citizens [49]. Data is considered personal,
or “identifiable”, if it enables anyone to link information to a specific person,
even if the data holders cannot make that link. The Health Insurance Portability
and Accountability Act of (HIPAA) Privacy Rule [51] in United States regulates
the use and disclosure of individually identifiable information by health plans,
providers, and other covered entities. Under HIPAA’s “safe harbor” standard, 18
listed identifiers must be removed from data before it can be shared with an outside
party, including names, social security numbers, biometric identifiers and other
individually unique information. In addition, ethical issues of health-related data
sharing must be considered, which are not specified in legislation and regulation.
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Uses of data other than those for which they are specifically collected should be
ethically justified and meet some minimal standard, even if law or regulation allows
these data to be shared.

Challenges Extensive studies have been performed on privacy-preserving record
linkage (PPRL). Three major challenges can be identified in the privacy-preserving
record linkage process: privacy, linkage quality and scalability.

1. The privacy challenge during the PPRL process comes from two sources.
First of all, record attribute values that are used in PPRL may be disclosed
or reconstructed and patients can be re-identified as a result. A variety of
de-identification techniques have been proposed to provide privacy guarantee
on the data level, such as: k-anonymity [48], encryption/hashing [44], and
differential privacy [14]. Secondly, record attribute values may be inferred by
parties that are involved in PPRL protocols. In fact, a party could perform such
privacy attacks either by following the protocol and trying to infer sensitive
information, as a honest but curious adversary (HBC) [21], or by deviating from
the protocol in a malicious way, as a malicious adversary [21]. Existing PPRL
approaches typically assume HBC parties, since malicious adversaries can cheat
in an arbitrary way, which makes it hard to achieve privacy guarantees.

2. Linkage quality measures the ability of classifying candidate records into
matches and non-matches. In real world cases, high linkage quality is hard to
achieve due to the presence of errors, missing, or outdated values in the data
records. Therefore, approximate matching techniques in the record matching
phase are often employed to mitigate data heterogeneity. Furthermore, the
privacy assurance techniques in the PPRL process pose additional challenges on
the linkage quality. For example, certain data transformation techniques are prone
to false positives [43, 45]; limited data types and operations are allowed due
to encryption techniques. The PPRL approaches introduce a trade-off between
privacy guarantees and quality of linkage.

3. Today’s databases contain an enormous amount of records, which poses tremen-
dous challenges on the scalability of the PPRL protocols. In fact, the number
of potential record pair comparisons grows with the product of the cardinalities
of original databases. To overcome this challenge, a series of blocking/indexing
techniques have been proposed with the intent of removing record pairs that
are likely non-matches, while preserving those pairs that could potentially be
matched. In PPRL protocols, these indexing techniques are often combined with
cryptographic techniques, e.g., [33, 53], to alleviate the high encryption cost by
matching only to a small number of candidate pairs.

Scope A few works [12, 22, 52] survey techniques for a specific procedure in
privacy-preserving record linkage, e.g., private string comparison [12], and provide
a brief overview of individual PPRL protocols [22, 52]. The scope of this chapter
differs from the above works in several ways.

In this chapter, we review the most recent works on PPRL, many of which have
been specifically designed for biomedical applications. For instance, in Atallah et al.
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[3] a secure protocol for computing edit distance is proposed, which can be used to
measure the similarity between DNA sequences. The work of Du et al. [10] also
investigates the problem of secure sequence matching and provides solutions for
computing a few generic distance metrics.

This chapter provides a privacy-centric view of the PPRL process. We summarize
a conceptual framework for PPRL, which includes data transformation, blocking,
and matching, and review all privacy assurance techniques that have been proposed
for each step by the existing research works. For example, Bloom Filter [45]
and Lipschitz Embedding [43] can be used in the data transformation step to
achieve data de-identification; Homomorphic encryption [33] and Secure Scalar
Product [41] can be used in the matching step to measure pair-wise record similarity.

Through the framework, we categorize existing PPRL works according to the
specific privacy techniques. We further provide a taxonomy with respect to privacy,
scalability, and linkage quality to facilitate the understanding and implementation
of these protocols. Toward the end, we point out several future research questions in
PPRL, specifically related to applications to medical databases.

The organization of this chapter is as follows: Sect. 10.2 describes the PPRL
model and provides a taxonomy of the existing privacy-preserving record linkage
protocols. In Sect. 10.3, we review a set of secure data transformation techniques,
and in Sect. 10.4 we summarize secure multi-party computation (SMC) protocols
that are employed by PPRL approaches. Section 10.5 provides a set of blocking
techniques, which can be used to reduce the number of pair-wise comparisons
in an effort to improve the scalability of the PPRL process. Then, in Sect. 10.6
we describe some open research problems in applying privacy-preserving record
linkage on medical datasets. Last, Sect. 10.7 concludes this chapter.

10.2 Overview of Privacy Preserving Record Linkage

This section provides an overview of the privacy-preserving record linkage process.
Specifically, we illustrate the PPRL model and describe the major steps in the
process. Aligned with this model, we provide a taxonomy of the approaches
considered in the rest of the chapter and outline their key features.

10.2.1 The PPRL Model

The privacy preserving record linkage techniques typically include two data sources
following a multi-step process, as illustrated in Fig. 10.1. We use this represen-
tation to highlight the steps where privacy preserving techniques are employed.
In particular, we identify three major steps: data transformation, blocking/indexing
and record matching, where the first two steps are optional. In fact, theoretically it
is sufficient to achieve privacy by applying secure multi-party computation (SMC)
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Fig. 10.1 The privacy-preserving record linkage (PPRL) model

protocols at the record matching step. However, since SMC protocols largely rely on
cryptographic mechanisms, this straightforward solution could result in prohibitive
computational cost for real-world applications.

Many works have proposed to employ data transformation and blocking/indexing
techniques to achieve privacy, as well as to improve the computational efficiency.
In the data transformation step, privacy is typically achieved using transformation
schemes/anonymization techniques, so that the transformed records can be used in
the remaining steps without incurring additional privacy manipulations. Although
blocking/indexing methods have been historically designed to accelerate the linkage
process, they can also be modified to preserve private information about the data
records, when the data transformation step is not performed. Detailed descriptions
of the framework are provided below.

Data Transformation Step Many PPRL protocols proposed in the literature
perform a data transformation step to achieve privacy in the record linkage process.
This step aims to generate new representations for the original records, which are
then used in the rest of the record linkage process. The advantages of this phase
are two-fold. Firstly, the transformation generally provides privacy by either using
mapping functions that are hard to reverse or removing sensitive information from
the original records. Secondly, the similarity properties of the original records can
be typically preserved to some extent by the transformation, which enables record
linkage techniques to match transformed records either in an exact or approximate
way. As is shown in the framework, data owners may share some information during
this step to improve the utility of transformed data; however, the transformation of
data records is often done by the owner of the data.

Blocking/Indexing Step This phase is generally used to reduce the computational
cost of record linkage. In fact, the blocking/indexing step aims to reduce the number
of pair-wise record comparisons in the matching step, by removing those pairs that
are unlikely to be linked. As a result, only the record pairs that represent potential
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matches are further evaluated in the matching step. The blocking/indexing step does
not typically introduce privacy guarantees in the PPRL process as a standard alone
component, but rather it is used in combination with private data transformations or
SMC protocols in the matching step. Similar to the transformation step, the blocking
phase is generally performed by each data owner and in some cases information may
be shared among parties to improve the quality of blocking.

Records Matching Step In this phase, the candidate record pairs are compared
in detail to determine whether they represent a match. The pair-wise comparison
between records can be performed either at record level or attribute level. In the
first case, the attribute values are concatenated to form a long string, which is used
in the similarity evaluation. On the other hand, in the second case the comparison
is performed using specialized similarity functions between individual attribute
values. Depending on the nature of the attribute type, different similarity measures
can be employed for the comparison. For example, the edit distance [34] (i.e.,
Levenshtein distance) is commonly used to measure the similarity between string
records. The comparison between records can be performed in an exact or in an
approximate way. While in the former case, records are considered as a match when
their corresponding values are exactly the same; in the latter, records are matched if
their similarity score is above a certain threshold. The matching step can be either
performed by a third party or by the data owners. However, in both cases it requires
the data owners to share the candidate records. Therefore, SMC protocols are often
employed in literature to achieve privacy in this step.

In this framework, the privacy of data records can be preserved by either convert-
ing them to new representations with data transformation techniques, or matching
them securely through SMC protocols at the matching step. The blocking/indexing
step, often deployed together with data transformation or secure matching, does not
offer privacy protection alone in general. However, a few blocking methods have
been proposed [26, 33] to provide k-anonymity and differential privacy guarantees,
in case of knowledgeable adversaries.

10.2.2 Taxonomy of Presented Techniques

We provide a taxonomy for the privacy-preserving record linkage approaches pre-
sented in the rest of the chapter. Our goal is to provide a clear overview of the current
techniques and to outline the differences in the privacy-preserving mechanisms
employed by these approaches. A recent survey that presents a taxonomy of PPRL
techniques along 15 dimensions can be found in Vatsalan et al. [52].

We distinguish the PPRL solutions into three major families: secure transforma-
tions, secure multi-party computation (SMC) and hybrid techniques, according to
where the privacy notion is applied in the record linkage model. For each family,
we provide a comprehensive view of the techniques, examining seven dimensions
which we group into three categories: privacy guarantee, scalability and linkage
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quality. The complete list of the PPRL approaches is shown in Table 10.1. In the rest
of this section, we provide a brief overview of the features of the privacy-preserving
record linkage protocols that are considered in this chapter.

10.2.2.1 Privacy Guarantee

A series of privacy methodologies have been developed to provide privacy guaran-
tees in the record linkage process. The privacy notion employed by the solution is
often related to the number of parties involved and the type of the protocol that is
used. Typically, PPRL solutions involve two or three parties in the process. In the
first case, only the data owners participate in the process and therefore solutions
following this scheme are called two-party protocols. In the second case, a third
party is present in the protocol with the task of matching record pairs. Solutions
following this paradigm are called three-party protocols.

Privacy-preserving techniques, in the context of medical data, center around
the following privacy notions: k-anonymity, encryption/hashing, and differential
privacy. Here we briefly introduce these privacy notions.

k-Anonymity The k-anonymity notion [48] has been used in the privacy-
preserving record linkage setting to construct a variety of privacy-preserving
solutions [26, 27, 36]. Given an integer value k, a dataset satisfies k-anonymity
if for each combination of quasi-identifiers (i.e., attributes that can be used to
identify individual entities) there are at least k records in the dataset matching such
configuration. Intuitively, for each individual record, there are other k � 1 records
having the same values for the quasi-identifiers. In general, this privacy notion
is used in the data transformation step as well as in the indexing/blocking step.
To achieve k-anonymity, the attributes of the records in the original dataset are
suppressed or generalized. While in the first case the attribute values are replaced
with “*”, in the second case they are replaced with a broader range or category. An
example database that satisfies the k-anonymity principle is illustrated in Table 10.2.

Encryption/Hashing Encryption and hashing techniques are widely used in the
PPRL approaches. Typically, in these works, the data holders encrypt the identifiers
with standard cryptographic procedures and send the encrypted data to the third
party to perform the match. The data holders agree on the secret key to use in
encrypting the identifiers in their databases and send only the encrypted data to a
third party. Since the identifiers agree exactly if their corresponding hash values are
the same, the third party can link matching records without knowing the identifiers.

Works in [43, 45], for example, perform data transformation to achieve privacy
using Bloom Filter [5] with one-way hashing functions and embedding techniques,
respectively. While approaches based on hashing functions match records by
hashing the original data and computing similarity between the hashed results,
embedding techniques instead map the original records in a vector space where
pair-wise distance is generally preserved up to a distortion factor. Intuitively, the
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privacy guarantee that is provided by using hashing and embedding techniques is to
transform the original records, hence reducing the chance of data re-identification
or reconstruction by adversaries.

Approaches such as [2, 53] adopt SMC protocols in the record matching
phase, where the candidate records are compared with cryptographic solutions. In
general, SMC-based approaches allow the two party holders to directly perform
the linkage of the records by following a communication protocol and encryption
steps without requiring the presence of a third party. SMC solutions guarantee
that at the end of the computation no party learns more than the final output (i.e.,
the final record linkage result). Despite the strong privacy notion, SMC protocols
are computationally expensive due to the encryption schemes they employ. PPRL
solutions based on SMC are generally designed with commutative encryption,
homomorphic encryption, and secure scalar product protocols.

Differential Privacy Recently, Dwork [14] proposed a new privacy notion which
aims to protect the individual records against adversaries with arbitrary background
knowledge, when answering statistical queries on the database. The idea of differ-
ential privacy consists of perturbing the output of the query with random noise,
such that an adversary cannot determine the presence or absence of any individual
record. Differential privacy enables the protection of records without constraining
the adversary model, which makes this approach very popular in the database
field [15]. In the PPRL model, differential privacy can be applied when statistical
queries are performed on the original datasets and the results of such queries are
shared among parties. An example is the work of Inan et al. [24], where the notion
of differential privacy is adopted to protect the block sizes in the indexing phase.

10.2.2.2 Scalability

The scalability for PPRL approaches is critical to the application of the proposed
solutions in the real world. We examine each approach regarding the computation
complexity and the indexing technique employed.

Complexity In a generic record linkage process, the number of record pair compar-
isons grows linearly with the products of the size of the two original databases and,
therefore, a quadratic time complexity is expected. However, for PPRL approaches
the privacy mechanisms could have substantial impact on the overall computational
cost. For example, cryptographic schemes for pair-wise record matching could scale
up the overall running time. In Table 10.1, we measure the complexity of privacy-
preserving record linkage approaches with respect to the size of each original
dataset, even though some approaches were originally proposed to solve one-vs-
many matching problems, such as [10].

Indexing A widely used technique to reduce the number of pair-wise comparisons
is indexing. It is achieved by grouping records into blocks and comparing only
those that fall within the same block. In PPRL literature, a variety of indexing
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techniques have been proposed that can be categorized into standard blocking,
sorted neighborhood, mapping and clustering. When combined with private data
transformation, these techniques can be performed on the transformed data records
as well.

10.2.2.3 Linkage Quality

Linkage quality measures the ability of the PPRL techniques to determine matching
and non-matching records. For each solution, we examine the type of comparison
performed (record-level vs. attribute-level), the matching rule (exact vs. approxi-
mate matching), as well as the data type supported by the protocol. Clearly, those
features are critical to the choice of the privacy mechanisms in PPRL approaches.
For example, homomorphic encryption and scalar product protocols should be
adopted to enable approximate matching as in [35], while commutative encryption
can be adopted for exact matching, as in [41].

10.3 Secure Transformations

Secure transformation techniques aim to perform the linkage of the records after
some transformations have been applied to the original data (typically strings), so
that the privacy and security of the linkage is achieved at the first step of the record
linkage process. The typical scenario involves three parties: two data owners and a
third party in charge of the matching.

First, the data owners use secure transformation techniques to generate a new
representation of the records and then send the transformed records to the third
party which performs the matching. In this framework, many strategies have been
proposed to achieve privacy in the transformation phase, which we distinguish in
the following categories: attribute suppression/generalization, n-grams methods,
embedding, and phonetic encoding. While attribute suppression/generalization
techniques aim to achieve privacy by either removing or generalizing the sensitive
information from the original records, the other three techniques generate a new
representation for the record. It is worth noting that attribute removal techniques
can be applied to generic data while n-grams, embedding and encoding are generally
focused on string records. The main idea in the n-gram methods consists in breaking
the string records into substrings of length n (n-grams) and use this information to
represent the original data in the rest of the record linkage process. Embedding
techniques map the original records in a vector space where the similarity distance
between the records is typically preserved up to some distortion factors. Therefore,
privacy-preserving record linkage approaches based on embedding techniques are
able to perform both exact and approximate matching of the records. Encoding
methods are generally used to generate a representation of the original strings which
could be based on phonetic encoding, e.g., soundex.
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In the rest of the section, we provide an overview of the secure transformation
techniques and we describe the most relevant PPRL approaches presented in
literature that fall in this category.

10.3.1 Attribute Suppression and Generalization Methods

A possible way to achieve privacy in the record linkage process is by removing
the sensitive information from the patient’s data records. In the medical domain, for
example, the institutions involved in the record linkage process agree on exchanging
de-identified information according to the HIPAA Privacy Rule [51]. Determin-
ing what information can be released without inappropriately compromising the
privacy of the individual users is a crucial problem. In fact, the large amount of
information available nowadays creates opportunities for adversaries to integrate
the de-identified information with publicly available data with the intent of re-
identifying the patient information. For example, Sweeney [47] showed that it was
possible to re-identify the names and addresses of 97 % of the registered voters in
Cambridge, Massachusetts, using the birth date and full postal code.

On the other hand, a stringent de-identification process could easily lead to
unusable data for many research tasks in a variety of settings. For example,
information such as geographical locations or treatment effects, when removed
to prevent re-identification may lead to useless data for research studies such as
epidemiological studies and pharmaceutical drug design.

In the recent years, researchers have focused on designing generalization tech-
niques to reduce the possibility of re-identification but at the same time preserve the
utility of the data. Among these works, the k-anonymity notion has been employed
to achieve privacy by grouping each single record with other k � 1 records having
the same attribute values. Privacy-preserving record linkage techniques typically
employ k-anonymity either in the transformation or in the blocking phase. Below,
we describe the PPRL approach recently proposed by Mohammed et al. [36], which
uses this privacy notion by generalizing the attribute values.

Mohammed et al. [36] proposed a multi-party integration approach that achieves
k-anonymity. The proposed technique is based on the framework originally devel-
oped by Jiang and Clifton [25] (DkA) to achieve distributed k-anonymity. Moham-
mmed et al. extended the DkA framework and proposed two solutions for privately
integrating records from multiple parties under different adversarial models. In the
first approach, the authors consider a semi-honest adversarial model, which assumes
that parties follow the protocol but may try to deduce additional information. In the
second approach, the authors consider the presence of malicious parties that for
their own benefit could deviate from the protocol. The anonymization of the data
is achieved by employing a top-down generalization approach, where the values
starting from the most general level are further specialized. The specialization of
the attribute is decided according to the privacy level and the amount information
disclosed to the other party. To prevent a malicious party to gain information by
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deviating from the protocol in deciding the specialization level, the authors in [36]
introduced game theory concepts to penalize those malicious parties that drastically
deviate from the protocol.

10.3.2 N-Grams Methods

Privacy-preserving transformations based on the decomposition of the original
string records in n-grams are extensively used by many approaches in literature.
Such techniques are generally applied with the intent of achieving privacy, while at
the same time providing high utility and low computational complexity. In fact, the
decomposition of the original records into grams can be performed in an efficient
manner and such representation preserves partial information about the strings that
can be used to approximately match the records. The privacy for these techniques
is generally achieved by using hash functions to encode the grams representation of
the original string records.

The set of n-grams that is produced by breaking down the records can be either
used to directly generate a vector representation of the original strings, or for
hashing the grams into a Bloom filter [5]. The Bloom filter generates a bit array
representing the original string, where each gram determines a position in the array
according to a set of hash functions. Initially, all the bits are set to 0, and only the bits
representing the hashed grams of the original string are set to 1. The final similarity

0

0

A

B

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 1 0 1 0 1 0 0 0 0 0

SM–S MI IT TH H–

SM–S MY YT TH H–

0 0 0 01 0 01 1 1 1 1 10 0 0 0

0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 01 0 01 1 1 0 0 00 0 0 0

Fig. 10.2 Bloom Filter representation for the names SMITH and SMYTH using 2-g. The map is
obtained using one hash function and in total there are ten bits in A, and 11 bits in B set to 1.
Only eight bits are shared among the Bloom filters, therefore the similarity measure between the
original strings approximated with the Dice coefficient is 2�8

.10C11/
� 0:762 (example from Schnell

et al. [45])
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measure between two Bloom filter representations of the original strings is generally
computed using set-based metrics, such as the Dice coefficient. An example of this
representation is illustrated in Fig. 10.2.

In what follows, we describe some of the most recent privacy-preserving record
linkage techniques that use n-grams based secure transformations.

Schnell et al. [45] proposed a secure transformation technique based on n-grams
and Bloom Filters. Their approach is based on a three-party protocol, where the data
owners transform their original data and the third party is in charge of the matching.
The secure transformation is performed as follows. Each data owner concatenates
the record attributes forming a single string, which is further decomposed in grams
of length q. Then, the records are mapped into Bloom filters using a multitude of
independent hash functions. In the original paper, the authors used the SHA1 and
MD5 [44] hash functions to construct a Bloom filter with k hash functions without
any increase in the asymptotic false positive probability. Their approach follows the
idea of the double hashing schema proposed in [30]. After this transformation, the
records are matched by the third party by computing the Dice coefficient on the
Bloom filter representation of the original string records.

The representation of records via Bloom filters as in [45] could still disclose
some information to an adversary. In fact, Kuzu et al. [32] proposed a constraint
satisfaction cryptanalysis attack which exposes the vulnerability of the record
representation based on Bloom filters. To improve the privacy, privacy-preserving
record linkage techniques based on composite Bloom filters have been proposed
in [13, 46]. The idea in these techniques is to first generate Bloom filters for
single attributes (FBFs), then combine them into one composite Bloom filter per
record (RBF). The construction of such a representation is illustrated in Fig. 10.3.

Fig. 10.3 Example of composite Bloom filter representation from Durham et al. [13]. (a)
Transformation process. (b) Composite bloom filter
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To increase the utility and the privacy for each attribute the number of bits selected
and their weight may vary. The approach proposed by Durham et al. [13], which uses
a record level Bloom filter representation, showed improved security and utility.

Churches and Christen [9] proposed a three party privacy-preserving record
linkage protocol based on hashed n-grams. The data owners agree on a common
hashing function which will be used to securely encrypt the data. Each original
record is decomposed into grams and the power set of grams is computed by each
data owner. Then, each set is hashed and sent to the third party which performs a
secure equi-join on the transformed records. The use of subsets of grams enable the
parties to perform approximate matching between their records by computing the
Dice coefficient on the set of grams. However, due to the large number of grams
in the power set, this approach is computationally intense. Furthermore, it has been
shown in [50] that this approach is vulnerable to frequency attacks.

Al-Lawati et al. [2] employed a secure hashing technique based on TFIDF [42]
(Token Frequency/ Inverse Document Frequency). Given a common vocabulary of
m tokens among the two datasets, a set of m weights is computed for each original
record by using the token frequency in the record (TF) and the token frequency in
the whole dataset (IDF). This representation enables approximate matching between
the original records, however it discloses some information about the original string.
To achieve privacy, the authors in [2] proposed a secure hash transformation. A hash
function H is evaluated on each token and it determines the index where the
corresponding weight is stored in the new record representation. In a successive
phase, the records are blocked and finally matched using a SMC protocol.

10.3.3 Embedding Methods

Embedding methods provide privacy by transforming the original data into a
vector space, where the distance between the original records is preserved up to a
distortion factor. This feature enables techniques based on embedding to determine
the optimal threshold value in the new space to match records either in a exact
or approximate way. Embedding-based approaches require a reference set (i.e., base
for the embedding) to be used during the process of mapping the strings into a vector
space. This set determines how the records are transformed and it can be either
publicly available or privately held. In the first case, the reference set is known to all
the parties involved in the protocol, while in the second scenario the reference set
is kept secret from the third party. In this case, a higher level of security is achieved
compared to the publicly available set. Some of the popular embedding approaches
applied in the PPRL setting are described below.

Scannapieco et al. [43] proposed a three party protocol where the base for the
embedding is formed by sets of random strings and it is privately determined by
the data owners. This approach is based on the use of Sparse Map [23], which is
a variant of the Lipschitz embedding. The key idea is to construct an embedding
space using a set of reference sets, each containing strings randomly generated.
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Fig. 10.4 Embedding example for the names SMITH and SMYT with an embedding base formed
by the sets S1; S2; S3; S4 of randomly generated strings

Each data owner embeds its own record, creating for each original string a vector
representing the minimum distance (edit distance) between the original string and
the strings in the base. In fact, the resulting vector is a vector of distances, where
the i-th coordinate denotes the minimum distance of the original string from the i-th
set in the base. The transformed records are subsequently sent to the third party,
which determines the matching pairs by computing the Euclidean distance between
vectors. An example of the embedding is illustrated in Fig. 10.4.

Yakout et al. [53] developed a two-party PPRL approach based on the idea
proposed in [43]. In a first phase, the string records are mapped into vectors
following the steps in [43] and for each vector a complex number is computed. In
this complex plane, adjustable slabs are used to determine the likely matching pairs.
Finally, in the second phase, a SMC protocol for secure scalar product is employed
to compute the actual matching pairs of records.

Recently, Bonomi et al. [6] proposed a privacy-preserving record linkage tech-
nique, where the reference set for the embedding is computed in a privacy-
preserving way directly from the original data. The idea is to use a data-dependent
transformation to better capture the structure of the original data. Each data owner
mines a set of frequent variable-length grams that are obtained using a prefix tree
structure from the original records. The frequencies of the grams in the reference set
satisfy the notion of differential privacy, which guarantees that an adversary cannot
infer the presence of any individual string record in the original dataset by observing
the frequency of the mined grams. After this operation, the data owners share the
mined set and decide a common base for the embedding. Given the reference set
with m grams, each original string record is embedded into a vector in R

m, where
the i-th coordinate represents the number of occurrences of the i-th gram in the
original string scaled by the gram length. The transformed records are then sent to
a third party, which performs approximate matching using the Euclidean distance.
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Table 10.3 The Soundex
encoding

Original symbols Soundex value

a, e, h, i, o, u, w, y 0

b, f, p, v 1

c, g, j, k, q, s, x, z 2

d, t 3

l 4

m, n 5

r 6

10.3.4 Phonetic Encoding Methods

Phonetic encoding methods are used to generate a representation of the original
string generally based on the phonetic properties, rather than the syntactic structure
of the strings (e.g., grams decomposition). Soundex [7] is probably the best known
phonetic encoding scheme that is used nowadays. The encoding is generated by
keeping the first symbol in the original string and converting the rest into numbers.
The mapping rule from symbol to number is reported in Table 10.3. All the zeros in
the encoding are removed and sequences with occurrences of the same number are
merged into one. The final code has fixed length of four symbols (one letter end three
numbers), where short codes are padded with zeros and longer codes are stripped-
off. This representation tends to be more robust than the n-gram method with respect
to typos and use of nicknames in the strings, since this encoding is merely based on
the phonetic properties of the string. For example, the names “John” and “Jon” are
mapped to the same phonetic encoding “J500”.

A variety of PPRL techniques have been developed using phonetic encoding. For
these methods the privacy is generally not provided by the encoding itself but rather
it is achieved by hashing the encoded values using secure hash functions.

Karakasidis et al. [29] proposed three PPRL methods based on the Soundex
phonetic encoding [7]. To reduce the vulnerability to frequency attacks, the authors
introduce fake records which, together with the real records, are encoded and sent
to the third party who performs the matching.

The first technique proposed is the Uniform Ciphertext/Uniform Plaintext
(UCUP) approach, which aims to force the set of Soundex values and original
string records to exhibit uniform distributions. Therefore, a number of fake records
is injected, in a way that all the Soundex values map to an equal number of string
records. Although this technique is intuitive and sound, it incurs a large complexity
due to the huge number of fake records introduced to the original dataset.

In order to avoid oversized datasets, the authors in [29] introduced the Uniform
Ciphertexts by Swapping Plaintexts (UCSP) strategy. In this method, the authors
first compute the average number K of string records for each Soundex value, then
remove the redundant occurrences of the string records with values larger than
K and add an equal number of fake occurrences for Soundex values with fewer
appearances. Although in this way no excessive fake records are introduced, those
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records that have been removed will not participate to the matching phase and,
therefore, a separate linking process should be initialized.

The last method introduced by the authors in [29] is the k-anonymous Ciphertexts
approach (kaC). The method aims to create a dataset where each Soundex value is
associated with at least k original string records. Therefore the parameter k provides
a trade-off between the privacy and the efficiency of this approach.

10.4 Secure Multi-Party Computation

In order to compute the similarity of record pairs without disclosing private records,
secure multi-party computation (SMC) approaches have been widely adopted by
privacy-preserving record linkage protocols to identify the matching record pairs
accurately and securely. Based on the core technique of secure computation, we
observe that existing works fall into three categories: commutative encryption based
protocols, homomorphic encryption based protocols, and secure scalar product
based protocols. In what follows, we briefly review the fundamental cryptographic
properties and the SMC protocols for PPRL for each category.

Note that SMC may be applied to secure information in other steps of the PPRL
workflow. One example is that Al-Lawati et al. [2] adopt a secure set intersection
protocol in Frugal Third Party Blocking, in order to find the set of common
keywords shared by two data sources. Due to the expensive computation inflicted
by encryption, SMC often is preceded by a privacy-preserving blocking step in the
PPRL workflow, such as in [33, 53], which reduces the number of candidate record
pairs to match through secure computation.

10.4.1 Commutative Encryption Based Protocols

An encryption scheme is commutative when a message is encrypted twice with two
keys and the resulting ciphertext is independent of the order of encryptions. More
formally, an encryption scheme E.
/ is characterized as commutative if and only if,
for any two keys e1 and e2 and for any message m, it holds that: (1) Ee1.Ee2 .m// D
Ee2.Ee1 .m//; (2) Encryption key ei and its decryption key di are computable in
polynomial time; and (3) Eei.m/ has the same value range. The commutative
property applies to the decryption phase too. Examples of commutative encryption
schemes include Pohlig-Hellman and SRA.

Du and Atallah [10] proposed a secure three-party protocol based on commu-
tative encryption for approximate matching with a generic distance function f in
the PIM (Private Information Matching) model. In short, in the PIM model, Alice
has a string x D x1 : : : xn and Bob has a database of strings T D ft1; : : : ; tNg and
the length of each string ti is n; Alice wants to know the result of Match.x; T/.
The requirement is that Bob should not know x or the result, and Alice should not
learn more information than the reply from Bob. Given a generic function f , the
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distance between two strings a and b can be measured by
Pn

kD1 f .ak; bk/. A two-
party protocol was proposed to compute f .xk; ti;k/ based on commutative encryption.
The complete protocol employs a third party, Ursula, and the function protocol for
a constructed fi;k.xk; ti;k/ D f .xk; ti;k/ C Ri;k, in order to compute f .x; ti/ for any i.
As a result, Alice does not know the actual value for f .xk; ti;k/ and Ursula does not
know the actual value for the closest match. This protocol can be applied to evaluate
jak; bkj, .ak � bk/

2, and ı.ak; bk/ and the communication cost is O.m � n � N/.
Li et al. [35] studied the problem of privacy-preserving group linkage (PPGL),

where groups of individual records are linked if they are associated with the
same entity. To prevent membership inference attacks, Alice and Bob negotiate a
threshold 	 and follow a protocol to match two groups of records, R and S. In
the end, they only learn more than jRj, jSj, and a boolean result B (depending on
whether SIM.R; S/ � 	). The authors proposed a two-party protocol for computing
SIM.R; S/ with exact matching employed at the record level. Their solution is based
on the secure set intersection protocol, proposed by Agrawal et al. [1], which is
established on top of commutative encryption. The basic idea of the approach is to
find the smallest integer k such that SIM.R; S/ � 	 and then follow [1] to find the
intersection of all subsets of Alice and Bob that are of size k. If one k-combination
is found in the intersection, the two groups are matched. Since Alice generates Cm

k
subsets and Bob generates Cn

k subsets, this approach is only preferable when k is (1)
very small, or (2) very close to m and n.

O’Keefe et al. [38] proposed several protocols for privacy preserving data linkage
and extraction. The linkage protocol enables the exact matching of records in a
secure manner across data sources. The extraction protocol extracts a cohort of
individual data from a data source, without revealing the membership in the cohort.
The design of the linkage protocol resembles the set intersection protocol in [1],
with an addition of a third party to compute the actual intersection. Due to the
commutative encryption schemes, the third party can match encrypted records
correctly with negligible probability of hash collisions. As a result, each data
source learns significantly less than in [1], in particular not enough to construct
the intersection.

10.4.2 Homomorphic Encryption Based Protocols

Homomorphic encryption methods enable certain algebraic operations to be per-
formed with ciphertext, which in the PPRL can be used to privately compute
similarity functions between record pairs. Formally, given a homomorphic encryp-
tion scheme E./, ciphertexts E.x/ and E.y/, we are able to compute the encrypted
E.x ? y/ without decryption, i.e., without knowing the plaintexts or private keys.
Here ? represents an arithmetic operation such as addition and multiplication.

Additive homomorphic encryption, in particular the Paillier cryptosystem [39],
has been widely adopted for privacy-preserving record linkage. Let Epk.
/ and Dpr.
/
denote the encryption function with public key pk and the decryption function with



10 A Review of Privacy Preserving Mechanisms for Record Linkage 253

Fig. 10.5 Example of bitwise encryption by Kuzu et al. [33]

private key pr, respectively. The Paillier encryption has the following properties:
(1) Given a constant k and a message m, the ciphertext of km can be computed
by Epk.km/ WD k �h Epk.m/; (2) Given the ciphertexts Epk.m1/ and Epk.m2/, the
encrypted sum can be computed by Epk.m1 C m2/ WD Epk.m1/ Ch Epk.m2/; (3)
Given a message m, ciphertexts c1 D Epk.m/ and c2 D Epk.m/, Dpr.c1/ D Dpr.c2/

but c1 ¤ c2 with high probability.
The work of Kuzu et al. [33] employs the Paillier system to enable data sources,

Alice and Bob, to compute secure similarity among encrypted records from the
same blocks. The encrypted record similarity results are then send to a third party,
Charlie, to decrypt and execute the decision rule. In short, Charlie generates a
Paillier public/private key pair; Alice and Bob then encrypt their records using the
public key. Textual attributes, e.g., strings, can be represented as bit vectors, where
each dimension represents a distinct 2-g, as illustrated in Fig. 10.5. Note that due to
the probabilistic property of Paillier encryption, the ciphertexts of the same message,
such as 0�’s, are not same with high probability.

With the encrypted vector cardinality shared between data sources, Jaccard
similarity between strings can be evaluated with encrypted bit vectors by either
Alice or Bob, and the encrypted similarity can be sent to Charlie for decryption.
On the other hand, numeric attributes and squares can be directly encrypted by data
sources and Euclidean distance can be evaluated on encrypted data by any data
source. Similarly, the actual Euclidean distance can be decrypted by Charlie and the
id’s of matched record pairs will be sent back to Alice and Bob. Furthermore, the
authors proposed adaptations of the above protocols for similarity blinding, where
the matching thresholds and actual similarities are perturbed with random values
before sharing with Charlie. As a result, the third party cannot infer the exact value
of record pair similarities when executing the decision rule.

Atallah et al. [3] proposed a two party protocol for computing edit distance
between two sequences, such that neither party reveals anything about their private
sequence to the other. The weighted edit distance between two sequences is the
minimum cost of insertions, deletions, and substitutions required to transform one
sequence to the other, where the cost of any operation is symbol-dependent. The
secure protocol modifies the dynamic programming procedure for edit distance and
the distance matrix is split across two parties, i.e., M D MACMB. At each step, the
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costs of the three operations are evaluated without disclosing at which position the
minimum occurs. A Blind-and-Permute protocol based on homomorphic encryption
is designed such that neither party knows the overall permutation and random
vector. This approach allows for arbitrary values for the costs of insertion, deletion,
and substitution. The longest common subsequence problem is a special case,
where insertions and deletions have unit cost and substitutions are not considered.
This approach has a considerable communication cost: one communication step is
needed for each element in matrix M. Therefore, the approach is not well suited for
performing linkage tasks on large databases.

In the work of Kantarcioglu et al. [26], two data sources store encrypted data on
an untrusted data site (DS) and a separate key holder site (KHS) manages the keys
for encrypting data records/queries, as well as keys to decrypt the query results.
A secure protocol, based on Paillier system, is proposed to execute equi-join queries
by the DS: two records are linked if all joining attributes are exact matches. In
order to prevent the KHS to learn the actual matching results, the authors design a
matching scheme with a random vector and modular operation, and show that the
false positive rate through the proposed scheme can be bounded by 1=.n�1/ (where
n is a large prime and the modular base). As a result, the KHS observes 0 for a match
and a random value for a non-match. In order to avoid evaluating all possible record
pairs from data sources, a hashing scheme based on k-anonymity is proposed and
the DS can perform secure equi-join procedure within each bucket.

Li et al. [35] utilized homomorphic encryption schemes in linking groups of
records above a threshold for exact matching and approximate matching at record
level. For exact matching, the authors proposed a protocol similar to the set
intersection protocol in [18], with perturbation with random numbers in order to
hide the actual value of the intersection of two groups. The approximate matching
protocol employs another threshold � at the record level, and those record pairs
with similarities above � are considered as matches. To avoid attacks by faking
group records, this protocol securely computes the number of records from Alice
which are linked to at least one record from Bob, and vice versa. Then, the smaller
of the two will be compared with the minimum intersection size to make the linking
decision.

10.4.3 Secure Scalar Product Protocols

Secure scalar product protocols belong to a generic framework that enables one
party to find out the scalar product of several parties’ private vectors. For example,
the Euclidean distance d0.
; 
/ between the vectors Nx and Ny can be approximated as
follows:

d0.Nx; Ny/2 D kNx � Nyk22 D kNxk22 C kNyk22 � 2 hNx; Nyi (10.1)
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where only the scalar product hNx; Nyi is computed in a secure way by the SMC
protocol. This protocol is typically used by several PPRL techniques to privately
evaluate the similarity between data records that have been previously transformed
into vectors in the data transformation step.

Ravikumar et al. [41] proposed a stochastic scalar product protocol for secure
computation of several standard distance metrics, such as TFIDF, SoftTFIDF, and
the Euclidean distance. To convert a string s to a real-valued vector, s is first broken
into a set of tokens, i.e., words. Each token w in s is given a numeric weight,
weight.w; s/ D log.TFw;s C 1/ � log.IDFw/, where TFw;s represents the term-
frequency of w in s and IDFw represents the inverse of the fraction of strings
in the corpus that contain w. Similarity metrics between two strings r and s can
then be evaluated based on the weighted feature vectors Vr and Vs. The scalar
product protocol requires L1 normalization of each party’s feature vector. And each
party samples its feature vector with probability V.i/

Z for every word wi, where Z
is the normalizing factor. A secure set intersection protocol is needed to find the
intersection of sample sets Tr and Ts. An unbiased estimate of the scalar product
can then be derived: jTr

T

Tsj
numSamples �Zr �Zs. The addition information disclosed beyond

the intersection protocol is the normalization factors Zr and Zs.
Yakout et al. [53] proposed a two-party private record linkage protocol with

approximate matching. The authors assume that data records are first transformed
to numeric vectors by each party, which can be done using techniques described
in [43]. In the first protocol, the numeric vectors are projected in the complex
plane and likely linked pairs can be computed between complex numbers. This
step reduces the number of candidate record pairs to be evaluated in the second
protocol, where the scalar product is derived securely without using cryptographic
operations. In short, party A generates linearly independent random vectors and
random scalars to hide A’s data record from party B. Similarly, B receives perturbed
data from A and perturbs/contributes its own record with orthogonal random vectors
and random scalars. The output of the protocol is that B obtains the scalar product
without learning A’s record. As pointed out by the authors, B also learns the
k-dimensional hyperplane that contains A’s record, and they suggest that a larger k
would possibly increase A’s privacy. Moreover, A can choose a relatively innocuous
hyperplane when generating random vectors.

Du and Atallah [10] proposed a Private Information Matching (PIM) model and
designed a three-party secure scalar product for computing the square distance
between two messages. For x D x1 : : : xn and each ti D ti;1 : : : ti;n in T, the
square distance can be calculated by:

Pn
kD1.xk � ti;k/2 D .�2x1; : : : ;�2xn; 1/ 


.ti;1; : : : ; ti;n;
Pn

kD1 t2i;k/ C
Pn

kD1 x2
k . Since x is fixed in the PIM model,

Pn
kD1 x2

k is
constant. The closest match can be found by computing the scalar product between
.�2x1; : : : ;�2xn; 1/ and .ti;1; : : : ; ti;n;

Pn
kD1 t2i;k/. The secure scalar product protocol

involves random vectors in order to disguise the query and private records, and
random numbers in order to disguise the matching results from the third party. The
communication cost is O.n/ for each record pair.
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10.5 Hybrid Approaches

Hybrid approaches combine blocking/indexing techniques with SMC protocols with
the aim of reducing the SMC cost for evaluating record pairs. In this section, we
briefly review those approaches and the blocking techniques they adopt.

For generic record linkage applications, the blocking/indexing step plays a
central role from both the scalability and the utility perspective. Suppose two
databases DA and DB, containing NA and NB records respectively, are directly fed
into the matching step. It leads to NA � NB pairwise record comparisons, which
is likely to become a major performance bottleneck for the entire process. This
expensive matching operation between all record pairs is not necessary in general.
In fact, due to apparent differences in attribute values, such as gender and age, only
a small fraction of the complete set of record pairs are likely to be matches, while
the majority correspond to non-matches. Motivated by this observation, researchers
have been developing techniques to reduce the unnecessary computations in the past
20 years. Typically, records are grouped into blocks and only those who fall into the
same block will be compared for matching.

Although the use of blocking enables the linkage of large databases, it also
introduces a trade-off between the computational cost and the quality of matching.
In principle, a large number of small blocks is beneficial for reducing the number
of pairwise comparisons. However, it also increases the chance of missing true
matching records, due to the fact that similar records could be placed in different
blocks. This utility loss is particularly evident in real-world databases, where data
records often contain erroneous information, such as typos and outdated data, and
matching records may be misplaced into different blocks as a result. On the other
hand, the use of large blocks reduces the chance of losing true matching records;
however, the computational cost for comparing the records increases. For a more
detailed description and comparison between blocking techniques, we point the
interested readers to the surveys presented in [4, 8, 37].

In exiting PPRL solutions, the blocking step is usually performed in two ways:
(1) on original data records, or (2) on transformed data records. We identify four
major categories for the blocking techniques adopted in the PPRL literature, i.e.,
standard blocking, sorted neighborhood, mapping and clustering. In the standard
blocking, records are associated to a key value and only those records having the
same key are placed in the same block and further considered as candidate matches.
The sorted neighborhood approach sorts all records according to a chosen key, and
only those record pairs that appear close in the sorted list are preserved for matching.
For those approaches where the blocking is performed via mapping, a combination
of record attributes is used to define a blocking key. The similarity between the
key values reflects the similarity between the original records, which enables the
construction of blocks that are more robust with respect to the noise in the data
and more effective in retrieving the true matching records. The intuition is that
non-matching records will produce different key values and they will be placed in
different blocks, so that the direct comparison of such records will be avoided and
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they will be marked as non-matching records. Last, in the clustering based blocking,
records are clustered according to specific similarity metrics and records belonging
to the same cluster are placed in the same block.

10.5.1 Standard Blocking

Standard blocking techniques group records in the same block when they have an
identical blocking key. If b denotes the number of blocks (all of the same size), then
the number of pair comparisons is reduced to O.NA � NB=b/. However, this result
is hard to achieve in real applications, since often the blocks have different size and
therefore the running time is dominated by the largest block. Below, we discuss
some recent PPRL approaches that implement this blocking technique.

The work proposed by Al-Lawati et al. [2] considers three different blocking
techniques, where the blocking key for each record is obtained via a hash function.
This approach requires the presence of a third party in charge of matching the
records within the same block. The records are encoded using a secure hashing
transformation and the hash signatures determine the block in which each record
will be placed. In the first blocking schema proposed in [2] (simple blocking), for
each record’s attribute a hash function is applied on the original record and the result
is placed in the block indexed by the hash signature. As the technique is designed, it
is possible that the similarity of a pair of records could be computed several times if
records appear together in multiple blocks, leading to poor performance in the case
of a high ratio of common blocks per record. The second blocking approach, called
record-aware blocking, solves this problem by coupling an id to the hash signature
of each record. Both these approaches heavily involve the third party, resulting in a
high communication cost due to the transmission of all the blocks. To reduce this
issue, the authors proposed a frugal third party blocking strategy, which uses a SMC
protocol to limit the transfer of only the common blocks between the two parties.

Kantarcioglu et al. [26] proposed a PPRL technique where the blocking step
achieves privacy by guaranteeing k-anonymity for the records in the blocks. The
original records are first de-identified by using k-anonymity, and such values are
used as hashed keys to partition the encrypted data into blocks containing at least k
records each. Then, the records are matched using a secure equi-join protocol.

Inan et al. [24] proposed a hybrid model for record linkage based on a two party
SMC protocol. The blocking of the records is achieved with the help of multi-
dimensional tree index data structures (i.e., BSP-tree, adaptive kd-tree, and R*-tree).
The construction of the data partitions forming the blocks is performed by enforcing
differential privacy. The idea consists in perturbing the count of the record in each
partition, resulting in removing some real records (negative noise) and introducing
fake records (positive noise). In this way, the authors protect the presence of any
individual record in the original databases. Finally, the comparison of the records is
performed via a SMC protocol among the data holders, by considering the pairs of
overlapping blocks, as shown in Fig. 10.6.
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Fig. 10.6 Performing blocking on datasets: (a) Original datasets T and V; (b) Block decompo-
sition using hyper-rectangles for T; (c) Block perturbation for T; (d) Block perturbation for V.
The candidate matching pairs tested in the SMC part are limited to the pair of overlapping blocks:
.T1; V1/, .T1; V2/, : : : ,.T5; V5/ (example from Inan et al. [24])

Recently, Kuzu et al. [33] proposed a blocking procedure which extends the
work in [24]. In this case, the records are partitioned according to some public
identifiers provided by a third party. To ensure the privacy of each individual record
in the blocks, the differential privacy mechanism is employed. The authors showed
how to calibrate the amount of perturbation introduced by the differential privacy
mechanism, by shifting the mean of the noise distribution to minimize the number
of expected comparisons and optimize the number of suppressed records. The
comparison between records within the same block is achieved via a SMC protocol.

10.5.2 Sorted Neighborhood Approach

The sorted neighborhood approach consists of the following three steps. Firstly,
a key is created for each record by extracting relevant attributes or portions of
attributes. All records in the database are subsequently sorted according to their key
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values. Lastly, a fixed-size window is moved through the list of sorted records, and
only record pairs that co-appear inside the window are compared in the matching
step. The assumption of this approach is that matching records should be close in
the sorted list. As a result, the effectiveness of the approach is highly dependent on
the quality of the key chosen to sort the records.

Yakout et al. [53] proposed a private protocol for computing likely-linked pairs,
followed by securely matching the candidate pairs. To start, each party converts her
record vectors to complex numbers by taking the first elements of discrete Fourier
transform (DFT). Secondly, record pairs close in the complex plane are selected by
moving a vertical slab with fixed width along the real axis. The authors show that
this approach leads to no false negatives, as vectors close to each other will be also
close in the complex plane. As for privacy, the authors claim that it is impractical to
infer the original vectors from the corresponding complex numbers, as they reveal
little information, i.e., only the first element of DFT, about the original records.

10.5.3 Mapping

Mapping approaches use encoding techniques and hashing functions in order to
determine which records should be blocked together. These techniques tend to be
more robust to typos and other errors in the original records, when compared with
standard blocking techniques.

Karakasidis and Verykios [27] proposed a two party protocol for records linkage,
where the secure blocking step is based on mapping. The original records are
transformed using phonetic encoding, using an encoding map for each attribute,
and adding fake records to increase security. The resulting records are hashed using
a shared hashing function. The matching of the records is performed via a SMC
protocol between the two parties.

Durham [11] proposed a PPRL framework, where the blocking step is performed
using locality-sensitive hashing functions (LSH) [20]. The transformed records,
encoded using composite Bloom filters, are blocked using several hash functions,
chosen uniformly, independently at random from a family of hash functions, which
are locally sensitive to a distance metric. Durham proposed to use Hamming-based
Locality Sensitive Hashing functions in combination with composite Bloom filters.
The hash functions are used to project the Bloom filter representation of the records
on a fixed number of bits. Then, the records having the same bits pattern are placed
in the same block. The author showed that the mapped records can be matched in
an approximate way, and the encoding prevents cryptanalysis attacks.

10.5.4 Clustering

Clustering approaches are often employed when the original records are embedded
into a vector space, where the similarity distance between vectors reflects the
similarity between original records. The blocking step takes advantage of the
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Fig. 10.7 Private blocking
via clustering (example
from [28])

geometrical property of the embedded space to group the mapped records and
discard the pairs of records that do not represent a match.

Karakasidis and Verykios [28] proposed a three-party PPRL approach where the
records are blocked according to a clustering criterion. The data owners share a
reference table that is used to initialize the clusters. The data owners create a set
consisting of unique elements from the shared reference table, and form initial
clusters containing at least k elements of the reference set each. After this initial
step, data owners form their own clusters using the nearest neighbor clustering
criterion, where the similarity measure employed is the Dice coefficient. The
similarity comparison is performed between the records in the original data and
those in the reference table (RT). Each data owner assigns a set blocking key
for each respective cluster. These clusters are then sent to the trusted third party,
which computes the candidate matching pairs, as shown in Fig. 10.7. This approach
supports approximate matching and provides privacy guarantees in the form of
k-anonymity.

Pang et al. [40] developed a PPRL approach, where the data owners use a set
of reference strings for matching records representing patients’ names. The data
owners start by computing the distance of their strings with respect to the reference
set, and send their information to the third party. For each pair of records, the third
party uses the triangulation property of the distance measure employed, in order
to estimate if the original string could represent a match. The matching decision
can be performed with different distance measures, for example edit distance, and
using a threshold value the third party is able to identify records that match in an
approximate way. To reduce the number of pairs in the final comparison, the nearest
neighbor clustering approach is applied as a blocking step. In this approach, the
distance information with respect to the reference set of strings is revealed to the
third party, while the original private data is never shared among the parties.
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10.6 Challenges and Future Research Directions

Despite the continuous development in designing privacy-preserving record linkage
approaches to provide effective and efficient solutions with privacy guarantees,
several challenges remain unsolved, creating significant opportunities for investigat-
ing future research directions. In this section, we discuss the main future research
questions for privacy-preserving record linkage in the biomedical domain.

Privacy Aspect Most of the PPRL techniques that we considered in the chap-
ter provide privacy guarantee using encryption or k-anonymity. However, such
notions could lead to privacy leakage when an adversary has external/background
knowledge regarding patients’ data. Furthermore, the large amount of personal
data publicly available nowadays (i.e., Facebook profiles, public register data,
etc.) is elevating the risk of potential privacy breaches. To address this problem,
the recently proposed notion of differential privacy has been employed by a few
PPRL approaches. Despite the strong privacy guarantee provided by this technique,
differential privacy is limited to privately answering only statistical queries. Strong
privacy techniques tailored to the record linkage process should be developed in the
future.

Medical records present a high level of complexity: text report, snip of DNA
sequences, name and age, are only a few examples of information related to a
patient’s record. Due to the nature of such attributes, some of them are more
sensitive than the other. For example, many patients could have the same name
but the DNA sequence could uniquely identify the patient. Therefore, the use of
a universal privacy notion among all the attributes could result either in poor utility,
due to a stringent privacy guarantee, or in leakage of sensitive information, in the
case of a weaker privacy notion. Since the attributes are not equally sensitive, more
research is needed to design PPRL protocols that allow attribute-specific privacy
notions.

Recently, we can observe a high degree of decentralization for medical data.
Patient’s medical records are often distributed among a multitude of organizations.
This situation poses additional privacy challenges in linking the records from a large
number of data sources. In this setting, multiple parties could collude, increasing
the ability of the adversary to breach the privacy of individual users. Most existing
PPRL protocols typically deal with linkage between two data owners. Therefore,
more research is necessary for designing record linkage solutions to achieve privacy
in a highly-distributed setting.

Linkage Quality Aspect Despite the fact that many PPRL solutions allow for
approximate matching between records, they are mostly limited only to the string
data type. In fact, new technologies in the medical domain (e.g., medical image
processing, DNA sequencing, etc.) enable the collection of more and complex
information about each patient, which could be potentially considered for record
linkage purposes. Future research is needed to develop privacy-preserving protocols
for computing approximate comparison metrics for those complex data types,
incorporating the rich information available in a patient’s profile nowadays.
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An emerging research direction in privacy-preserving record linkage is to allow
human interaction with the automated process, in order to improve the final
matching utility [31]. This can be achieved by human experts who can fine tune
the matching results and manage the uncertainty and its propagation into subsequent
analyses. However, we identify several new challenges introduced by this interactive
approach, such as data disclosure risks from the matching results and inference
risks from intermediate tuning results. Future research may investigate methods
to securely perform the human interaction step in record linkage, as well as the
incorporation of it into the overall PPRL framework.

Scalability Aspect Most of the existing PPRL techniques employ an index-
ing/blocking step to improve the efficiency of record matching. However, only
few works [24, 33, 36] propose collaborative blocking schemes between parties,
improving the utility of blocking by taking into account the dataset informa-
tion without compromising privacy. This represents an interesting and important
research direction for designing more scalable PPRL solutions.

10.7 Conclusion

In this chapter, we examined the problem of privacy preserving record linkage
(PPRL). We reviewed the most recent research works on PPRL, many of which
have particular focus on medical data applications. A taxonomy of existing works,
regarding privacy, scalability, and linkage quality, was provided to facilitate the
understanding and implementation of these protocols. We summarized a conceptual
framework for PPRL and illustrated the privacy assurance that the techniques in
literature give at each step of the PPRL process. Toward the end, we identified the
challenges of PPRL applications in the biomedical domain and we pointed out some
possible promising future research directions.
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Chapter 11
Application of Privacy-Preserving Techniques
in Operational Record Linkage Centres

James H. Boyd, Sean M. Randall, and Anna M. Ferrante

Abstract Record linkage is the process of bringing together data relating to the
same individual within and between different datasets. These integrated datasets
provide diverse and rich resources for researchers without the cost associated with
additional data collection. By their nature, record linkage systems deal with large
volumes of data and require complex organizational and technical infrastructure.
Bringing together information from different sources often requires many different
organizations to collaborate and share data, which presents challenges around data
privacy and confidentiality. Various processes and protocols have been developed to
protect the privacy of individuals during the record linkage process. These include
data governance procedures covering people, processes and information technology,
role separation and restricted data flows. Combinations of these are used to mitigate
risks to privacy by limiting access to certain information. In addition, privacy-
preserving record linkage techniques can be utilized to further reduce the risk to
privacy, by removing all personal identifying information from linkage protocols.
This chapter reviews current practices, processes and developments for maintaining
security and privacy as applied in existing record linkage centres. Models for role
separation and data flows are outlined and evaluated, and requirements for an
effective privacy-preserving record linkage protocol are described.

11.1 Introduction

Record linkage involves identifying records which belong to the same individual,
across datasets. This process is widely used to enable and enhance research in health
and health services. Medical record linkage brings together administrative records
from hospital and emergency collections, primary care facilities, birth, death and
disease registries [20, 24]. Increasingly, record linkage methods are used to connect
health records with data from other sectors including education, child protection and
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criminal justice in order to investigate the social determinants of health, as well as
other aspects of human function and well-being [8, 12, 13, 38].

Health and social service systems are complex with many interactions and
relationships. Taking a holistic approach recognizes that many interacting factors
can influence individual parts of the system. The record linkage process creates a
chronological sequence of events for all individuals in a population. This provides
researchers with cost-effective longitudinal data resources for an entire population.

In the absence of a unique person identifier, record linkage is carried out using
personally identifying information such as names, dates of birth and addresses.
As these identifiers can change and/or can include errors, probabilistic statistical
methods are frequently employed to ensure high quality links [10].

11.1.1 Record Linkage Research Infrastructure

A significant investment in medical record linkage infrastructure has occurred in
England [17], Scotland [29], Wales [16], Canada [37] and Australia [5], over the last
30 years. Dedicated record linkage centres with secure environments and specialized
linkage personnel have been established in each of these countries [5]. Within each
of the facilities, data is routinely linked to support health research and for on-going
reporting, policy development and service design by government [32]. Research
using linked data has led to changes in policy and health service delivery, which
have resulted in improved services, reduced cost and improved outcomes [7, 21].
A summary of selected centres which undertake routine medical record linkage
tasks is provided in Box 1 (below).

Box 1 International Record Linkage Centres

Australia
Centre for Data Linkage (CDL) [5]. Established in 2009, the CDL provides

linkage services at a national level, linking datasets across different Australian
states and territories, and linking these to external datasets or to other national
data collections. Currently working on a project basis only, the CDL has
undertaken a number of proof-of-concept linkages, each utilizing tens of
millions of records.
Centre for Health Record Linkage (CHeReL) [31]. Established in 2006, the
Centre for Health Record Linkage provides record linkage services for New
South Wales and the Australian Capital Territory. The linkage system consists
of almost 100 million records for over 11 million people and has provided
data for over 150 projects.

(continued)
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Data Linkage Branch (DLB), Western Australia [20]. Record linkage has
been used for health and medical research in Western Australia (WA) since the
1970s. The DLB is the longest running linkage centre in Australia. The unit
was established in 1995 within the Department of Health and has provided
record linkage services for the WA population. The linkage system contains
over 40 million records for four million people, and has provided data to over
700 research studies.
Data Linkage Unit, Australian Institute of Health and Welfare (AIHW).
This record linkage unit undertakes data linkage to support whole-of-
government policy development at the Commonwealth level. AIHW provides
record linkage services relating to the National Death Index and other national
data collections. It works closely with the Data Integration Service Centre
in order to support data custodians and researchers in undertaking data
integration projects.
SA-NT DataLink. The SA-NT DataLink unit was established in 2009 as part
of a collaboration between partners in the Northern Territory (NT) and South
Australia (SA). The joint venture includes the governments of SA and NT,
and the university sector in SA. SA-NT DataLink is currently involved in a
number of demonstration projects dealing with cancer treatment and early
childhood development.
United Kingdom (UK)

General Practice Research Datalink (GPRD) [45]. The GPRD is a primary

care database containing information from electronic medical records for
approximately 8 % of the population of the UK. Over 600 practices contribute
data to the GPRD, and the system includes information for over 11 million
persons. GPRD data has been linked to national death and hospitalization
data, disease registers at the person level, and to socioeconomic and census
data at the small area level.
Oxford Record Linkage Study (ORLS) [1, 17]. The Oxford Record Linkage
Study began as a joint project between the National Health Service (Oxford
Regional Health Authority) and academics (University of Oxford) and was
funded largely by the NHS. The Oxford group performs English national
linkage with funding from the National Institute for Health Research and
continues to use the Oxford subset for ORLS. The system is regarded as one
of the earliest sites for record linkage.
Secure Anonymised Information Linkage (SAIL) databank [16]. Estab-
lished in 2006, SAIL is an anonymous record linkage system that securely
brings together a wide array of routinely-collected data for research, develop-
ment and evaluation. The SAIL databank contains over 500 million records
covering the entire population of Wales.

(continued)
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Scotland [11, 15, 29]. The Scottish system contains linked hospital, mental
health, cancer registration and death records. The data it holds ranges from
1981 to present day and is updated on a monthly basis for the entire Scottish
population.
Canada

Manitoba Centre for Health Policy (MCHP) [37]. Providing record linkage

services for Manitoba since 1970, this centre has over 100 linked data
collections, including datasets from the education and justice sectors. The
Population Health Research Data Repository housed at MCHP was developed
to describe and explain patterns of health care and profiles of health and
illness, facilitating cross-sectoral research in areas such as health care,
education and social services. MCHP acts as a steward of the information
in the Repository for agencies such as Manitoba Health and provides access
to the data for a wide variety of research purposes. Most of the datasets within
the Repository are updated annually.
Population Data BC (PopData). Established in 1996 this centre pro-
vides record linkage services to British Columbia, Canada. PopData holds
individual-level, de-identified, longitudinal data on British Columbia’s 4.6
million residents. It provides researchers with access to one of the world’s
largest collections of healthcare, health services and population health data.
These data are linkable to each other and to external datasets, where approved
by the data provider. Linkage of data across sectors such as health, education,
early childhood development, workplace and the environment, facilitates
advances in understanding the complex interplay of influences on human
health, well-being and development. Such research informs health related
policy-making and investment decisions for healthier communities.

Over time, a large number of record linkage centres have adapted their systems
to include a repository of links between major or ‘core’ datasets. These links are
updated on a regular basis and then used by researchers following an application
and approval process which addresses ethical, privacy, confidentiality and stake-
holder/custodian requirements.

11.1.2 Privacy Challenges in Health Record Linkage

Data from health records are highly confidential, often containing sensitive infor-
mation. A critical issue in the conduct of health record linkage is striking a balance
between using individual medical records for important public good activities and
ensuring that such private information is kept confidential [22]. For a record linkage
infrastructure to be put in place, data custodians, researchers and record linkage
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centres have had to work together to develop data access and usage models that
provide sufficient guards to privacy. Record linkage centres, in particular, have
developed and implemented various strategies to minimize the risk to privacy posed
by their operations. These strategies and techniques can be grouped into three
categories:

Data governance regimes: Legal frameworks, policies and procedures around
data access, data transfer and IT security.

Operational models and data flows: Organizing and controlling the movement
of information to minimize information disclosure risk.

Privacy-preserving linkage techniques: Developing and testing methods of
accurate data matching without requiring personally identifying information.

In this chapter, we discuss these three categories of privacy-preserving techniques
in more detail, with particular focus on how they have been implemented by linkage
centres that are currently in operation.

11.2 Data Governance

The governance around record linkage covers all aspects of the infrastructure
including people, processes and information technology. Understanding and using
appropriate standards to address legislative and operational requirements, ensures a
systematic and safe approach to linkage.

The process of developing a governance framework around linkage services
often helps to identify key data controls and to develop the relevant principles
and practices required for undertaking record linkage [30]. Areas of responsibility
and accountability, typically identified during the design of a data governance
framework for record linkage include:

• Legal obligations
• Public interest
• Privacy
• Information security
• Information governance
• Consent
• Anonymization
• Data access and linkage models
• Authorising/advisory bodies
• Data custodians/data controllers
• Cross-sectoral/cross-jurisdictional data sharing
• Consumer (public and stakeholder) engagement
• Sanctions

Some of these areas of governance are specific to individual research projects and
require a customised approach to meet the relevant principles. In operational centres,
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which facilitate linkage on a regular basis, a key consideration is the principle of
proportionality. This involves addressing the key requirements identified by the
decision makers to achieve optimal governance, which can then be applied within
a best practice framework to ensure a safe, effective and proportionate governance
model. Some of the requirements can be less flexible than others, e.g., legal obli-
gations, and it is possible that some of the requirements may conflict, necessitating
careful consideration to enable linkage. However, the overriding principle is often
that the research project is of benefit to society, allowing stakeholders to find a
balance between privacy and public good.

11.2.1 Legal Obligations

It is critical that operational linkage centres ensure that their collection, use and
disclosure of personal information comply with applicable information privacy
laws. Although the regulations and legal requirements vary from one jurisdiction
to another, the main drivers are consistent and focus on protecting an individual’s
privacy and maintaining confidentiality.

Compliance with legal requirements relating to privacy is essential but it is only
one dimension of good governance. Equally important is the development of a
strong culture of understanding and support for privacy goals and governance best
practice. The Pledge of Privacy by the Centre for Health Policy in Manitoba and its
associated Privacy Code [33] provides a good example of this.

11.2.2 Information Governance

To maximize privacy and maintain the confidentiality, integrity and availability
of the personal information, linkage centres have developed robust information
governance frameworks which:

• Provide a consistent and measured approach to good governance and demonstrate
that stakeholders understand, prioritize and manage risks associated with data
transmission, access, use, storage and disposal;

• Recognise the need for flexibility given the different organizational environments
and business requirements of all stakeholders; and

• Take into account the existing information management and security policies,
practices, processes and infrastructure of all stakeholders.

Information governance procedures typically contain specific provisions around
security, operations, risk management and privacy. These have been incorporated
into the approvals process, operational models and linkage methods of many linkage
and research centres to ensure a coherent and comprehensive framework which
addresses privacy and governance requirements [5, 23, 44].
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In Wales, for example, the SAIL databank has developed comprehensive infor-
mation governance procedures to ensure compliance with data protection legislation
and confidentiality guidelines within the NHS Information Governance frame-
work [16]. This framework is based upon the Data Protection Act 1998, which
concerns data which allows the identification of living persons. To build the SAIL
databank, a set of information governance objectives was identified that addressed
issues ranging from data transportation, anonymous record linkage, disclosure
risk, data access controls and research project approval. Policy documentation and
standard operating procedures were developed on the basis of these objectives.
An independent audit was subsequently undertaken to evaluate this documentation
against legislation and to confirm its use in practice.

11.2.3 Separation of Data and Functions

The privacy risks associated with record linkage have also been addressed through
the separation principle [28]. Under this principle the process of record linkage, as
well as the data items used in a linkage activity, are kept separate from the processes
that extract and deliver content or clinical data for researchers.

Although separation of data and functions has been implemented by many
linkage centres to maximize the protection of privacy, the additional data flows
required under this model also introduce some operational challenges. One obvious
challenge is the coordination of numerous ‘separated’ elements before different
datasets can be joined up. This process can be complex and requires careful design
and implementation in order to avoid bottlenecks in the system.

11.2.4 Application and Approval Process

Privacy risks are also mitigated through the application and approval process. Each
research project requires approval from different stakeholders before data can be
acquired. Three classes of stakeholders are generally involved:

• Ethical and Privacy committees—approval which addresses all organization
and jurisdiction requirements (often in coordination with authorising/advisory
bodies);

• Data custodian/data controller—often requires additional confidentiality and
security undertakings for the project;

• Record Linkage Unit—includes the implementation of processes and standards
for secure management of data throughout linkage operations.

The application and approvals stage requires rigorous and transparent processes
that can be applied to each research project. The process often requires binding
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agreements related to data release, data confidentiality and security which address
specific organizational policies and guidelines. Though important, such processes
can be time-consuming and burdensome to those involved [34].

In the Canadian province of British Columbia, a data access committee (DAC)
oversees the approvals process [9]. This was instigated to help manage and
coordinate the numerous data custodians that would be required to give approval for
any single project, and in acknowledgement that each data custodian must consider
a research request in the context of other datasets which are simultaneously being
requested, and to which their files are being linked. This approach allows custodians
to gain a more complete understanding of the privacy risks involved in a project.

The committee ensures that the use of the data is in the public interest, and that
the research complies with relevant legislation. Both scientific peer review (to ensure
the importance of the proposed study) and ethical approval are required before the
final approval by the data access committee.

11.2.5 Information Security

Linkage centres operate within a tight information security framework. This deter-
mines how the linkage services and infrastructure are to be established and operated
in accordance with industry standards and stakeholder requirements. The design of
the linkage infrastructure is usually attuned to the relevant, local confidentiality,
privacy and security polices to ensure that appropriate measures are in place to
sufficiently protect sensitive information.

In Australia, the Centre for Data Linkage designed a secure IT environment in
consultation with relevant stakeholders to accommodate datasets from State and
Commonwealth organizations, whilst applying the highest level of security [5].
A secure stand-alone network was designed to enable the storage and processing
of personal identifiers received from jurisdictional linkage units, researchers and
other sources. Several standards and security manuals were used as guidelines for
identifying risks and determining appropriate security measures. The environment
was subjected to an independent security audit, including a full review of the
configuration, operations and use of the infrastructure to ensure compliance with
the standards and processes identified by their stakeholders.

11.3 Operational Models and Data Flows

Linkage centres adopt various operational models to ensure that the activities related
to record linkage are carried out efficiently and securely. Each model has its own
strengths and weaknesses, and their applicability or suitability often depends on
institutional settings and governance arrangements. A common theme in all of the
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Fig. 11.1 A centralized model: data providers give full datasets to the linkage unit, who link and
then pass on the data to the researcher

models is the trade-off between simple efficiency (i.e., simple but efficient models
with fewer privacy guards) and more complex arrangements (some with intricate
data flows that have a greater focus on privacy protection). An outline of some of
the more common models is provided below.

11.3.1 Centralized Model

In a centralized model, data is supplied to a central linkage facility for matching.
The data comprise both personally identifying information and clinical content data.
Using personally identifying segments of data, the central linking facility constructs
a linkage map that identifies the same individual within and across datasets. A subset
of the data is then extracted by the central unit for the researcher (see Fig. 11.1).

In this model there is no separation between the linkage unit and the client
services teams who are responsible for liaising with, and provisioning data for the
researcher. The model creates a centralized repository of linked clinical data and
personal identifiers. Centralized repositories are easier to manage and maintain,
and may provide quicker turnaround, as there are fewer opportunities for bottle-
necks. Linkage quality may also improve with access to clinical data. The clear
disadvantage to this model is that there are no privacy-providing elements inherent
in the model—all name-identifying and content information is held by a single
organization. The Scottish linkage system is one example of this model [11, 29].
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11.3.2 Separated Models

The ‘separation principle’ aims to maximize privacy by ensuring that personally
identifying information is kept separate from content or clinical data. This could
occur by providing clinical data to one organization and personally identifying data
to a separate organization, or it could occur within a single organization by limiting
an individual’s access to only one component of the data. The linkage unit requires
only the personally identifying components of the data in order to determine which
records belong to a single individual, while the researcher only requires clinical
information to perform their analysis.

By splitting data in this way, the risk to privacy is dramatically reduced.
Even nefarious individuals with access to the clinical data would have difficulty
identifying individuals from this information, while those with access to personally
identifying information only often have little more information than what could be
found in a telephone directory.1

Several linkage centres across Australia and in Canada and Wales utilize the
‘separation principle’ in their operational models, although implementations vary
slightly (see details below) [5, 16, 19, 31, 38, 41].

11.3.2.1 Separated Model, with Centralized Clinical Data Repository

In this model only the personally identifying information required for linkage is
supplied to the linkage unit. Specifically, the clinical data is passed to a client
services team who are responsible for liaising with, and providing required data
to researchers. It is important here that the linkage team is separated from the client
services team in the case where they are both part of the same organization. Once the
linkage is performed on the personally identifying information, the linkage map is
passed to the client services team who join this to the clinical information to create
datasets for research and analysis. The client services team subsequently extracts
the information for the researcher (see Fig. 11.2).

By adhering to the separation principle, privacy standards are increased and the
risk of inadvertent or malicious release of sensitive information is reduced, as no
extra individuals have access to both parts of the dataset. This model contains both
a centralized repository of person identifiers, maintained by the linkage unit, and a
centralized repository of clinical information—this reduces complexity and ensures
systems are easier to manage and maintain. In situations where the linkage unit
and the client services team are within the one organization, ensuring complete
separation may be difficult, and there may be perceived risk that individuals have
access to both portions of data. The Western Australian Data Linkage Branch is an
example of this operational model [21].

1However, for certain datasets (e.g., mental health or cancer registries), the existence of an
individual’s name within the collection can itself reveal information about that individual.
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11.3.2.2 Separated Model, with No Centralized Data Repository

Similarly to the previous operational model, the linkage unit only receives the
personally identifying information required for research. However in this model, the
clinical data is not sent to a centralized data repository; rather, it is kept by the data
providers. Once the linkage map is created by the linkage unit, it is distributed to all
data providers. Subsequently, each individual data provider extracts their clinical
data for the researcher. The researcher is responsible for amalgamating/merging
these extracts into a final linked research dataset (see Fig. 11.3). Linkage centres
in South Australia, New South Wales and the CDL in Western Australia (which
undertakes cross-jurisdictional record linkage in Australia) have implemented this
form of separated model [5, 19, 31].

Without a centralised clinical data repository, there are fewer individuals with
access to sensitive data, thereby reducing privacy risks. However, this model
requires data providers to play an active role in linkage operations.

While the data flows are relatively simple for a research project involving a
single data provider, these data flows quickly become complex for projects involving
multiple data providers. For example, for a project with ten data providers, the
linkage unit must send the correct portion of the linkage map back to all ten
data providers, and all ten data providers must then send their clinical data to
the researcher. With more complex data flows, there are more opportunities for
bottlenecks and errors in the process. Researchers must also have the expertise
required to amalgamate the myriad of datasets they receive from data providers.

Fig. 11.2 The data provider splits the data, sending the personal identifiers to the linkage unit and
the clinical content to the client services team. The linkage unit then provides the linkage map to
the client services team who join it to content data to create datasets for research and analysis
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Fig. 11.3 In the absence of a repository of clinical data, this is supplied to the researcher by the
data provider

11.3.3 A Technique to Avoid Data Collusion

An additional measure used by most linkage centres to maximise privacy is the use
of project specific identifiers. For every research project, the actual identifier which
represents a specific person is changed. ‘Person 2’ in one research project is thus a
different person to ‘Person 2’ in another study. This reduces the risk of data pooling.

11.4 Privacy Preserving Methods

To lower the privacy risks further, some linkage centres have incorporated various
privacy-preserving techniques into their data matching processes. These techniques
operate on encrypted information and do not require data custodians to release per-
sonal identifiers to third parties. A challenge in the adoption of privacy-preserving
methods is to achieve or maintain high linkage accuracy, while information content
is degraded. Privacy options for linkage including Statistical Linkage Keys (SLK),
phonetic encoding, hash encoding and bloom filters. These approaches differ in their
methods, maturity, practicality and suitability for large-scale linkage operations.
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11.4.1 Privacy Preserving Models

Privacy-preserving techniques can be classified into two general categories—those
that utilize a third party for performing the linkage (three party protocols) and those
that do not (two party protocols). Two-party protocols typically require a greater
amount of necessary communication and computation [39] to compare records, but
do not rely on the existence of a trusted third party [42]. In the medical record
linkage context, three party protocols are more common.

In a typical three party protocol, data providers must carry out the initial
encryption themselves. The data providers need to communicate a shared secret,
which is not shared with the linkage unit. The encrypted data is subsequently sent to
the third party linkage unit. The linkage unit then identifies which encrypted records
belong to the same individual (see Fig. 11.4).

Privacy-preserving techniques generally adopt the same security model as
unencrypted linkage; however, there may be differences in the particular privacy
algorithm used. Nearly all privacy-preserving protocols adopt an honest-but-curious
threat model [42], whereby parties are expected to try to carry out the protocol
correctly, but will also try and find out as much as they can from any data received.

Privacy-preserving protocols range in the comparison techniques applied—from
those carrying out an exact match of entire records to those employing string
similarity measures on individual fields. Protocols utilizing more fine-grained
techniques in determining similarity will generally yield higher linkage quality [39].

11.4.2 Techniques for Privacy Preserving Linkage

While numerous privacy-preserving methods appear in the record linkage and
data mining literature, few of these have been practically evaluated for use in
operational record linkage settings [36] and, in reality, very few privacy-preserving
methods are used routinely by operational linkage centres. Those methods that
have been adopted by operational linkage units have tended to be underscored by a
similar philosophy around data flows, namely, minimum linkage information (MLI).
Most operational centres simply employ methods (or collections of methods) that
implement this philosophy in different ways.

11.4.2.1 Minimum Linkage Information (MLI)

MLI methods generally conduct exact matching on a pre-processed subset of
personal identifiers. These methods aim to hit a “sweet spot” in the matching process
where there is enough information to distinguish all individuals, but a reduced
amount of information such that sources of difference between records belonging
to the same person are removed (see Fig. 11.5).
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Fig. 11.4 Basic data flow of three party privacy preserving linkage

The information used for exact matching can be easily concatenated and hashed,
allowing privacy-preserving linkage to occur. Hashing essentially involves using an
algorithm to map an input into a fixed length output. Hash algorithms have several
important properties:

• A hash of the same input will always produce the same output;
• Knowing the output, it is not possible to convert back to the input—a hash is one

way only; and
• Slight changes in input will completely change the output.

There are various implementations of the MLI approach. The Australian Institute
of Health and Welfare (AIHW), for example, uses the second, third and fifth letters
of surname, the second and third letters of forename, the full date of birth and the
person’s gender to create a statistical linkage key (SLK), which is used to match
records. These characters are simply amalgamated into a single string (the SLK), as
shown in Fig. 11.6. Those records containing an identical SLK are said to belong
to the same individual. AIHW has used the SLK successfully for a large number of



11 Application of PPRL Techniques in Operational Record Linkage Centres 281

Fig. 11.5 Numerous protocols attempt to reduce the variability between records of the same
person, while maintaining variability between records belonging to different people

Fig. 11.6 Creating a statistical linkage key

linkages and research projects [25–27]. As the SLK is not hashed, linkages can be
performed using rules (deterministic methods) and, in practice, information outside
the SLK is used if available.

Similar approaches have been used elsewhere. The Swiss Anonymous Linkage
Code [4], for instance, creates a hash from the phonetic codes of first and last name
(in the example in Fig. 11.7, these are ‘R543’ and ‘S500’), along with full date of
birth and sex. An analogous method has been used to conduct linkage in France [35].

A method similar to both the SLK and the Swiss Anonymous Linkage Code has
been proposed by Weber [43]. This method involves taking the first two letters of the
first name and the surname, along with the date of birth and gender, and creating a
hash of this combination to match on. A similar privacy preserving protocol has been
incorporated into the GRHANITETM system [6]. However, this health informatics
system also uses a number of pre-processing steps, including phonetic encoding and
nickname resolution, before creating a hash to match on.

A common feature of all of these methods is that they do not use string similarity
measures; hence, linkage quality tends to be lower than that achieved through
probabilistic methods [3]. However, linkage undertaken using MLI methods can
be faster than probabilistic linkage on unencrypted personal identifiers.
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Fig. 11.7 First and last name are phonetically encoded and concatenated with date of birth and
sex, which is then hashed to form the Swiss Anonymous Linkage Code

11.4.3 Requirements of a Privacy Preserving Linkage
Technique for Operational Linkage Centres

A large number of novel privacy-preserving record linkage (PPRL) techniques have
appeared in the literature in more recent times [42]. These protocols differ in their
method of preserving privacy, scalability, error tolerance and security. However,
very few of these techniques have been practically evaluated for use in operational
record linkage settings [36]. For PPRL techniques to be viable options in an
operational context, they must not only be secure, but also accurate and efficient.

11.4.3.1 Measuring and Maintaining Linkage Quality

The traditional quality assessment mechanism for record linkage is to manually
inspect individual pairs of records in order to identify possible false positive errors.
As all records in the privacy-preserving linkage are encrypted, manual inspection of
results is no longer possible. Thus, poor quality links cannot be easily identified by
a linkage centre, which may compromise the analysis of linked data and potentially
lead to erroneous research findings.

In addition to manual inspection for quality assessment (QA) purposes, some
linkage units use clerical review as part of an overall quality improvement program,
where a small proportion of links are routinely scanned and manually reviewed
[17, 20, 31]. While this method results in a high quality linkage, there are drawbacks;
it is very expensive and time consuming, and may not be feasible for large linkage
projects. Data custodians may also feel uncomfortable about the increased privacy
risk when business processes require personal identifiers to be regularly manually
examined. Clerical review processes are not used by all linkage units, however; and
there is little published evidence of the extent of quality improvement provided by
clerical review. This clerical review process, too, is no longer possible when using
privacy-preserving linkage techniques.
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Manual inspection of record pairs is also used to determine optimal threshold
settings in probabilistic record linkage. There is currently no obvious way to
determine the optimal threshold with probabilistic encrypted linkage. Some research
suggests that the optimal threshold for encrypted linkage appears to be very similar
to that of unencrypted linkage, which both have a reasonably wide tolerance
(a threshold setting 1 or 2 points either side will give almost equal results) [36].
A rules-based, deterministic linkage paradigm may also avoid this problem, as this
method does not involve setting a matching threshold. Deterministic linkage uses a
set of rules to specifically outline which combinations of matching variables will
result in a record-pair match [18, 27]. The matching threshold for deterministic
linkage is the decision of which rules, out of all possible rules, will designate a
correct match.

For privacy preserving-linkage techniques to be effective in operational contexts,
they must be accompanied with comparable quality assessment methods that can
assess (and, ideally, improve upon) the quality of linkage output. Some methods for
detecting errors in privacy-preserving record linkage settings have emerged [36];
however, a broader range of tools is required. Moreover, methods for correcting
linkage errors (not just detecting them) are also needed.

11.4.3.2 Efficiency

Record linkage is a computationally expensive process. The amount of time required
for linkage increases significantly in regard to the number of records that are used
as input; if the number of records doubles, the required time for processing will
roughly quadruple. The inappropriate setting of a linkage parameter or the use of
a software package that is designed only for small datasets, can result in a linkage
project which takes months (or even years) to complete [14].

To ensure acceptable run times in record linkage, blocking techniques are often
used. These techniques limit comparisons to those records which share a minimum
level of identifying information. This is important with large datasets as the potential
number of comparisons can be too large to process without the blocking step. For
PPRL techniques to be useable in an operational context, they must be efficient.
The run time for large-scale linkages using privacy-preserving techniques must
be similar to that taken using full demographic information. Techniques which
utilize deterministic exact-matching methods (such as the MLI methods described
above) are often fast enough. Other privacy-preserving techniques which utilize
string similarity comparisons may require some form of blocking to allow realistic
completion times. Current research into private blocking schemes will be important
to linkage centres [2, 40], as these developments will allow the units to process data
in the same timeframe as traditional methods.
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11.4.3.3 Simplicity for Data Providers

Notwithstanding linkage quality and efficiency requirements, methods for privacy-
preserving linkage must also be simple for data providers to understand and to
use. A data provider’s primary focus is to manage the quality and security of
their collections; linking data is not always part of their core business. While data
providers are often happy for their dataset(s) to be used for linked research, they
typically do not have the resources to conduct linkage themselves.

Current models for privacy-preserving linkage propose that data providers
encrypt datasets themselves before passing on to linkage centres. Under such
models, data providers play a larger and more critical role in the record linkage
process. It is vital that they encrypt datasets in the correct manner for even simple
errors, such as switching the first and last name fields in order, will be undetectable
to the linkage unit, who will only see encrypted data. In practice, tools need
to be developed and distributed (with training) to data providers to facilitate the
encryption process.

Privacy-preserving methods that involve passing data back and forth between a
data custodian and a linkage unit will generally be too complex. A more preferable
option is to have custodians passing the encrypted personal identifiers only once
during the linkage process.

11.4.3.4 Security

Privacy-preserving protocols differ in the level of privacy protection they provide.
Although increasing privacy and security is the objective of PPRL protocols, there
is no specific level of requirement in regards to security. All things being equal, a
more secure protocol is preferred over one which is less secure, which in turn is
preferred over using unencrypted personal identifiers.

Of the privacy-preserving methods so far described, the SLK provides the lowest
level of privacy protection. Although not quite as ‘visible’ as un-encoded personal
identifiers, it is still possible for an operator, or malicious individual, to determine
whether an individual exists within a database of SLKs.

Other privacy-preserving techniques encrypt data so that those with access
cannot learn any information directly from the encrypted values. Although these
encrypted values are vulnerable to frequency attacks, the encrypted/hashed proto-
cols are significantly more complex to break, and typically only a small percentage
of information can be revealed in such a case.

Another class of PPRL techniques uses hardened cryptographic techniques,
which make it very difficult to learn any information about individuals. Unfor-
tunately, such record linkage protocols are currently computationally intensive,
making them impractical for all but the smallest applications of record linkage.
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11.5 Conclusion

Record linkage centres throughout the world have adopted a multi-faceted approach
to the protection of privacy within their operations. They have instituted a range
of measures to reduce privacy risks and to protect the confidentiality of data. These
include the adoption of strong IT security and governance frameworks, best practice
linkage principles and various operational models that seek to control data flows and
minimize data disclosure risk.

Operational linkage centres have also implemented a range of privacy-preserving
data matching techniques. Although the development and implementation of some
of these techniques are still in their infancy, there is great interest in trialling
and adapting them in large operational settings. By reducing privacy-related risks
associated with record linkage activities, operational centres enhance opportunities
for administrative data to be used in medical and health research and for the wider
community to benefit from this endeavour.
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Chapter 12
Privacy Considerations for Health Information
Exchanges

Dalvin Hill, Joseph Walker, and John Hale

Abstract Health Information Exchanges (HIEs) constitute a powerful mechanism
for sharing Electronic Health Records (EHRs) across organizational boundaries
in healthcare systems. The electronic sphere of patient data is growing but some
patients and medical providers remain hesitant to adopt networked information tech-
nology due to privacy and security concerns. The U.S. Government has recognized
the importance of safeguarding and preserving the privacy of patient data in HIEs,
establishing and endorsing privacy standards and information sharing guidelines.
This chapter explores the issues and principles shaping HIE privacy solutions, and
discusses emerging trends that will influence the design and implementation of
privacy-preserving technologies for HIEs.

12.1 Introduction

The potential benefits of Health Information Exchanges (HIEs) are well understood,
and have been described by the Office of the National Coordinator for Health
Information Technology (ONC), a part of the U.S. Department of Health and Human
Services (HHS), in recent publications [59, 64]. Through streamlined information
sharing and interoperable workflow processes across healthcare systems, HIEs
enable clinicians to deliver a higher quality of care with greater safety for patients
[53]. They can help clinicians reduce medical errors and avoid redundant testing.
Along the way, HIEs yield new efficiencies and better clinician access to medical
diagnostic tools and clinical decision support systems. They serve as a vehicle for
public and community health reporting and monitoring, and offer a valuable link
between research and clinical practice.
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However, the same features and functions of HIEs conferring these benefits can
also pose serious threats to patients’ privacy. By participating in HIEs, individuals
may be exposed to greater risk of misuse and unwanted sharing of their personal
medical information. Increased accessibility inevitably increases the potential for
medical identity theft and medical financial fraud, although many steps are taken to
address these risks. Controls and safeguards must be thoughtfully architected and
deployed in order to mitigate these threats and to provide adequate assurance to
individuals that their privacy will be protected [63].

This chapter presents the history and environmental context of privacy in HIEs.
Section 12.2 describes the components of a HIE, the foundational architectural
models of HIEs, and the prevailing security and privacy governance. Section 12.3
discusses the core privacy issues associated with HIEs. Then, Sect. 12.4 presents
principles that HIE stakeholders and implementers alike can adopt as a foundation
for preserving patients’ privacy. Finally, Sect. 12.5 identifies emerging trends that
will inevitably influence the national dialogue on HIE privacy.

12.2 Health Information Exchanges

HIEs constitute an interconnected medium in which physicians, laboratories,
pharmacies, and other providers can access and store information about a patient.
Information sharing is valuable when rendering diagnosis and treatment, as it offers
a more complete view of a patient’s history. Additionally, HIEs can enable clinicians
to reduce the number of laboratory tests, and accordingly the costs associated with
redundant tests. More importantly, they allow clinicians to reduce errors that can
materialize during verbal transmission of patient information between clinicians,
and/or during the transcription process from a faxed copy. In the U.S., the ONC has
supported the development of HIEs in keeping with its mission to field an advanced
infrastructure for a national health information system.

A HIE is a complex network of many actors and systems. Its architecture, which
may be federated, centralized or hybrid, is designed to permit broad accessibility
spanning healthcare providers, functionaries and other constituents. A HIE bridges
disparate information systems, relying on common data formats and standards
to support the proper interchange of patient information. Even more substantial
challenges arise for HIEs at the organizational level, where participation and
cooperation are predicated in part on trust. At the level of the individual, privacy
and security are critical elements to engender trust [83].

12.2.1 HIE Actors and Systems

Numerous actors in a healthcare system work together to diagnose, treat and care
for patients. In the process, they produce and share volumes of personal health



12 Privacy Considerations for Health Information Exchanges 291

information. At the center of the healthcare system is the patient, who triggers
the collection of data when he/she visits a doctor, hospital, or clinic. Additional
information can be collected based on a prognosis, and can result in a referral to
see a specialist, or to obtain laboratory work. Each provider contributes different
information to the system. These actors include clinicians, hospitals, laboratories,
pharmacies, allied health providers and insurance companies.

Patients are responsible for supplying clinicians with information about their
symptoms, family medical history, and previous medical care. Clinicians and
hospitals can use this information to diagnose illnesses and recommend treatment
to the patient. Based on the information provided by the patient, clinicians can
inform them about current conditions, refer the patient to seek additional tests at
a laboratory, or order medication to be picked up at a pharmacy.

Clinicians share information with pharmacies regarding prescription needs,
laboratories for testing purposes, locations to perform X-rays and other imaging,
and make referrals to other doctors and specialists. Clinicians can also benefit
from information shared by pharmacies, results from laboratories, specialists’
findings, historical, and current information from other physicians about a patient.
Pharmacies accept prescription orders from clinicians to deliver medication to
patients.

Clinicians rely on the physical examination of a patient in addition to testing at
internal and external laboratories. The process for external laboratories may entail a
phone call to a lab to secure an appointment, along with a hand-written prescription
ordering a specific type of test(s) to be conducted. Once results are available, they
are transported back to the clinician. Laboratory Information Management Systems
(LIMSs) are replacing this error-prone and less effective process of manually
ordering and transporting laboratory tests and results [66]. Specifically, LIMSs
allow labs to capture, store, and transmit lab data in an electronic format, as well
as operate instruments and conduct analytical tasks.

Hospital Information Systems (HISs) manage a hospital’s administrative, finan-
cial and medical information [67]. Such systems capture, record, and store infor-
mation pertaining to a patient’s visit. Prior to HISs, different departments within
a hospital stored their information locally and independently. Some departments
stored their information in paper-based formats, while others stored their record
electronically. To transport information between departments, intra-office mail, a
messenger, or fax was used. HISs on the other hand, are used to capture clinical
data in an electronic format, and have the capability to share this information with
other systems. These systems typically operate within a client/server environment,
and the information captured is stored in a database over the network.

Hospitals require a massive amount of storage space for the volume of data that
is captured, processed and stored on a daily basis. Information must be captured for
billing, appointment, and medical documentation purposes. Medical documentation
becomes a part of the patient’s record in the EHR [45]. HISs can facilitate some
types of data mining, since the collected data can be used to reveal patterns
and irregularities. Where analytical capabilities are available, clinicians can utilize
information about these patterns to administer better quality care.



292 D. Hill et al.

Fig. 12.1 HIE actors and systems

Prescriptions are often ordered via fax, phone, in person with a hand-written
record, or sent electronically via a portal. In all instances, excepting electronic
submission, the order has to be manually entered into the pharmacy’s computer
system. This transcription process is prone to errors, as hand-written orders
are not always legible and re-entering information is not foolproof. Electronic
pharmacy systems can reduce the number of medication errors. These systems can
support the pharmacist by automatically conducting safety checks for side-effects,
contraindications, and other potential health and safety concerns. It is also easier
to maintain a desired inventory level when the computer system keeps track of
the quantities of medication on hand. The electronic submission of prescriptions,
automation of prescription filling, and labelling systems, are key elements in helping
pharmacists reduce the number of pharmacy errors.

Figure 12.1 illustrates a simple use case involving various actors and systems in
a healthcare system. In this example, a patient visits a clinic (1), and is subsequently
sent to see a specialist at a hospital (2), where testing is done. Test results are
evaluated at a lab (3), and a prescription is filled for the patient at a pharmacy (4).
Not shown in the figure is the complex exchange of patient information between all
these sites, as well as the billing processes and information exchange between all
parties and a health plan provider.
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Fig. 12.2 HIE models: (a) centralized, (b) decentralized, and (c) hybrid

12.2.2 HIE Models

The ONC has outlined a roadmap for interoperability of information technology in
healthcare systems. The ONC promotes ten principles of interoperability—one of
which is to preserve the security and privacy of data in the context of full system
connectedness and functionality [59]. This principle is routinely in conflict with
many of the other nine. The intention of this inherent tension is to strike the correct
balance in a HIE architecture, implementation and practice.

The high-level data architecture of a HIE can be characterized as centralized,
decentralized (federated) or hybrid. Each strategy has its own advantages and
also encumbers unique disadvantages in terms of functionality, complexity, control
and cost in technological and organizational dimensions. Figure 12.2 depicts the
centralized, decentralized and hybrid data architectures for HIEs.

In a centralized data architecture [87], all patient data resides in a centralized
Clinical Data Repository (CDR). Feeds are established from local participating sites,
and data is pushed—either periodically or on-demand—to the CDR. Any access to
patient data in the HIE results in queries to a Master Patient Index (MPI), which is
used to coordinate extraction of records from a centralized CDR. The centralized
HIE model typically requires extensive up-front cooperation and/or well-developed
data standardization processes to establish and maintain common data formats
and interfaces for integration to the centralized CDR.

In a decentralized or federated model, all patient data is stored, managed and
controlled locally [88]. Each site is required to support a common set of functions
and services, defined as core to the HIE. Queries to a Master Patient Index are
conducted by the Record Locator Service (RLS), which returns paths to patient
records stored at local or regional CDRs. Such point-to-point connectivity poses
unique challenges in interoperability and often requires heightened technology
coordination between HIE participants.

Hybrid HIE models [68], are most common, consisting of some blend of
centralized and decentralized elements. Often, some data (commonly conceived as
a minimal clinical data set) is stored in a centralized CDR, but a RLS maintains
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links to local or regional CDRs for the entirety of data relating to an individual
identified in a MPI. Synchronization of data between the centralized CDR and the
local/regional CDRs is essential. In a hybrid HIE model, storage and management
of patient data is usually under the control of the local participating sites, but access
to the patients’ data is managed in a more centralized manner.

12.2.3 HIPAA, HITECH and HIE Privacy Governance

The Health Insurance Portability and Accountability Act (HIPAA) was passed
by the U.S. Congress in 1996 with five principle objectives: (1) to improve the
portability and continuity of health insurance coverage; (2) to combat waste, fraud,
and abuse in healthcare systems; (3) to promote medical savings accounts; (4) to
improve access to long-term care services; and (5) to simplify health insurance
administration [3, 33, 44, 74]. The Privacy Rule in the Administrative Simplification
provisions of Title II, establishes conditions to preserve patient privacy. HIPAA
also incorporates language intended to ensure the confidentiality, integrity, and
availability of patient data in electronic, written or oral form.

With respect to privacy, HIPAA defines the conditions by which an individual’s
protected health information (PHI) can be collected, used, or disclosed [55–57].
Any individually identifying information that can be traced back to the patient is
protected by HIPAA. This includes billing information, data entered by doctors,
nurses and other providers, patient information stored in the computer system, and
the health insurer’s information about treatment and care.

The Privacy Rule allows only authorized users to view PHI when providing
treatment to a patient, to pay medical providers for treatment rendered, to perform
necessary administrative functions (healthcare operations), and to give mandatory
reports to police. Information cannot be legally issued to any other party, except
to law enforcement and for public health purposes only, unless a patient gives
written permission. HIPAA governs any organization that handles PHI—healthcare
providers, purveyors of health plans, and business associates alike (Fig. 12.3).

Following HIPAA, the Health Information Technology for Economic and Clin-
ical Health (HITECH) Act of 2009 endowed HHS with the authority to, among
other things, create programs and establish implementation guidance for private and
secure electronic health information exchange [32]. The Omnibus Rule, developed
by the Office for Civil Rights, clarified and expanded the scope of HITECH’s
and HIPAA’s privacy and security provisions. It increases the liability of busi-
ness associates, expands the right of individuals to PHI access and notice, and
increases privacy protection for genetic information [20].
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12.3 Privacy Issues with HIEs

The sensitive nature of medical information mandates that HIEs pay particular
attention to concerns over patient privacy. Most HIEs are built primarily for solving
the business problem of getting medical data where it needs to go, while satisfying
requirements for privacy and security. While patients are always the final consumers
of the healthcare services they receive, most HIEs are designed for the health care
providers to be the primary customers.

HIEs are also a newcomer to the healthcare industry’s infrastructure, and in
order to succeed in establishing their place permanently in the infrastructure, they
must often hone their focus to solving one problem at a time. Thus, the features
and functions that patients might want, while HIEs often are open to discussing
the possibilities, are often relegated to the technology wish list, at least in today’s
climate.

The ONC has been particularly concerned about ensuring adequate consideration
of patient concerns and has organized a workgroup, known as the Privacy & Security
Tiger Team, whose role has been to advise ONC policy with respect to patient
concerns and interests. Over half of the recommendations of this workgroup have
been incorporated into public policy so far, and many other recommendations are
under consideration for future incorporation [60].

The guiding values that have emerged from this group resemble closely the
debates many HIEs have across the country, as they make decisions about how to
address consumer privacy. These core guiding values were listed in the first annual
summary of this workgroup [62] and include:

1. The relationship between the patient and his or her healthcare provider is the
foundation for trust in health information exchange, particularly with respect to
protecting the confidentiality of personal health information.

Physicians
Dentists
Psychologists
Chiropractors
Clinics
Nursing Homes
Pharmacies

Insurance Companies
HMOs
Group Health Plans
Military
Federal
Medicare
Medicaid

Translates data for
an organization from
standard to non-standard
format or vice versa

Health Care
Clearinghouse

Health Plan ProvidersHealth Care Providers

Business Associates

Fig. 12.3 HIPAA covered entities and business associates
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2. As key agents of trust for patients, providers are responsible for maintaining the
privacy and security of their patients’ records.

3. Health IT professionals must consider patient needs and expectations. Patients
should not be surprised about or harmed by collections, uses, or disclosures of
their personal information.

4. Ultimately, to be successful in the use of health information exchange to improve
health and healthcare, the health IT professionals must earn the trust of both
consumers and physicians.

12.3.1 Patient Expectations and Concerns

While HIPAA permits healthcare providers to share patient information with one
another for treatment, payment and healthcare operations, it also requires providers
to be mindful stewards of that information. Patients expect to retain control over
their medical information. They expect to know how their information is being used,
that it is accurate and that it will remain secure.

Potential misuses of personal health information can cause significant problems
for individuals. The severity of the impact from these problems can vary dramati-
cally depending on each individual’s circumstances. Victims of domestic violence
and popular figures or politicians on the campaign trail, are just a few cases where
a medical record in the wrong hands can have catastrophic consequences.

HIEs almost universally acknowledge the need for individuals to be able to
limit access to their information by either opting out or by refusing consent for
that access. In addition, the ONC has issued strong guidance to all healthcare
professionals that to properly exchange health information electronically, they
should ensure to enable “Meaningful Consent for Electronic Health Information
Exchange.” Providing an opportunity for meaningful consent requires considera-
tions in technology, policy, and patient education efforts. This topic is addressed in
detail on the HealthIT.gov website [61].

Patients may also rightly worry that their medical information could be used for
financial fraud or identity theft. Corrupt or inaccurate medical data could lead to
errors in treatment and diagnosis. In addition, every patient-provider relationship is
unique, and no person is perfect, or is always perfectly professional. The impact
of each record on the first impressions to clinicians for subsequent medical visits
is another dynamic that changes with HIE in a way that may surprise patients, for
better or for worse. In practice, one finds that there are also many patients who
simply do not care how information gets where it needs to go, as long as it causes
them as little inconvenience as possible.

Managing and accounting for patient expectations and concerns can be as much
of an art as the practice of medicine itself, and no method is going to perfectly
address every concern. Many competing interests must be balanced to address
patient expectations and concerns effectively.



12 Privacy Considerations for Health Information Exchanges 297

12.3.2 Tension Between Functionality, Security and Privacy

There is an inherent tension between the operational goals and the security and
privacy of any information system. At a minimum, any control implemented
to address privacy or security in a HIE adds a layer of complexity. At worst,
fundamental design principles and functional requirements may operate in direct
conflict with privacy goals. Some of this tension is intentional or unavoidable. In
any case, a clear understanding of the dynamics involved is critical for a successful
HIE architecture.

Where data collection is concerned, conventional privacy wisdom dictates only
acquiring the information needed to perform the task at hand. However, in a clinical
setting, the full task (as read upon, for instance, by a differential diagnosis) may
not immediately be clear. A more aggressive collection posture could save time
and lives. This concept is reflected in the HIPAA Privacy Rule as the Minimum
Necessary standard [77, 79], which specifically “does not apply to disclosures to or
requests by a healthcare provider for treatment” [78].

In terms of use, individuals have legitimate concerns over information gathered
for one purpose, being used for another. They may be worried, for instance, that
an insurance company may look at elements in their clinician’s EHR, collected for
clinical use (diagnosis or treatment), to justify higher premiums. They would also
be alarmed if information detailing medical conditions could be sold for marketing
purposes (a prohibited practice with regard to PHI in most cases).

Proper privacy protection requires consideration of the conditions for the appro-
priate disclosure of information [58]. Limited and monitored access to PHI for
authorized users is a cornerstone element of any HIE privacy framework. While HIE
privacy policies aim to systematically limit disclosure, “break the glass” situations
do occur, wherein some safeguards must be overridden to treat a patient in an
emergency.

12.3.3 Data Stewardship and Ownership

A HIE privacy framework sets forth rights, roles and responsibilities for actors and
agents in the system. Those who store and manage access to PHI are obligated
to control the collection, use and disclosure in a manner consistent with the
Privacy Rule under HIPAA, and are advised to abide by the privacy principles
endorsed by the ONC. Some of the burden of data stewardship shifts away from
the end points in a healthcare system to HIE infrastructure providers, particularly
when centralization is embraced as an HIE organizing principle. At the other end,
decentralized approaches to HIE data architectures may result in varying privacy
protection practices, illustrating just how nuanced data stewardship issues can
become.
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Tangled with data stewardship notions is the core issue of ownership. Simply
put, the question is: “Who owns patient data? the patient, the clinician or the
possessor?” Conceptually, patients often perceive that, as the subject of the data,
it belongs to them. However, HIPAA places responsibility for the protection of PHI
(and with it, ownership of the records) primarily on the clinicians (“covered entities”
under the law) who produce the data. Covered entities often contract with HIEs
(“business associates” under the law) and may, in their legal contracts, delegate
certain decision-making authority. The law, since HITECH, holds covered entities
and business associates equally accountable for the proper protection of PHI.

HIEs, if authorized by their data sources, may create new knowledge via
analytic tools, potentially adding great value for clinicians and patients, while
complicating the question of data ownership. Perspectives of ownership may also
change depending on legal agreements and the HIE data architecture, which dictate
(legally and practically) storage and management responsibilities. Currently the
industry is in flux. Everyone recognizes the patient needs to be more empowered.
How to do this, however, is still not clear. Many clinicians and HIEs are, in
accordance with new HITECH directives, developing ways for patients to be able to
see the data that is stored about them. Some are going further, actually embracing
the philosophy that the patient owns the data comprising their medical record.

12.4 Principles and Practice of Privacy for HIEs

This section exposes the fundamental principles of medical information privacy
and presents a core collection of privacy-preserving functions and services that are
suited for deployment in HIEs.

12.4.1 Guiding Principles

Important roots of modern medical privacy policy in the U.S. can be found in a
study conducted by The Secretary’s Advisory Committee on Automated Personal
Data Systems within the Department of Health, Education, and Welfare [15]. The
study, referred to as the “HEW Report”, established a Code of Fair Information
Practices comprising five ideals:

1. Openness: There must be no personal-data record-keeping systems whose
very existence is secret.

2. Transparency: There must be a way for an individual to find out what
information about him is in a record and how it is used.

(continued)
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3. Control: There must be a way for an individual to prevent information
about him obtained for one purpose from being used or made available for
other purposes without his consent.

4. Correction: There must be a way for an individual to correct or amend a
record of identifiable information about him/her.

5. Integrity: Any organization creating, maintaining, using, or disseminating
records of identifiable personal data must assure the reliability of the data
for their intended use and must take reasonable precautions to prevent
misuse of the data [15].

The first two ideals are intended to guarantee that individuals are aware of bodies
collecting their private information and how that information is being used. The
second two principles give to individuals powers to limit the use and preserve
the accuracy of information collected about them. The fifth principle recognizes
the responsibility of stewards of personal data to maintain its security. These five
principles underpin most modern privacy legislation and regulatory frameworks.

ONC has further developed these ideas into a list of eight principles in the
recently-released nationwide interoperability roadmap publication [59]. These eight
principles are:

1. Individual Access: Simple and timely access for individuals to their
personal health information.

2. Correction: Ability of an individual to dispute and correct erroneous
personal health information.

3. Openness and Transparency: Openness and transparency of policies,
procedures and practices relating to an individual’s medical records.

4. Individual Choice: Ability of an individual to make informed decisions
regarding the collection, use and disclosure of their personal health
information.

5. Collection, Use and Disclosure Limitation: Appropriate control of the
collection, use and disclosure of personal health information governed by
the necessity to accomplish a specific purpose.

6. Data Quality and Integrity: Reasonable effort to guarantee personal
health information has not been altered inappropriately and that informa-
tion is accurate.

7. Safeguards: Application of security controls to preserve the confiden-
tiality, integrity and availability of medical records and personal health
information.

(continued)



300 D. Hill et al.

8. Accountability: Monitoring and reporting of events and actions in HIEs
that potentially constitute breaches, misuses or violations of privacy and
security [59].

Each of these principles can be traced rather directly to one or more elements of
the Code of Fair Information Practices. Individual access is a notable extension that
target rights to individuals to view information that is held about them. Patients have
the right to timely access of their PHI as held by covered entities, and to a record of
PHI disclosures. Accountability recognizes the importance of the security property
of non-repudiation in support of privacy-preservation strategies.

These principles balance the criteria that provide allowances for the collec-
tion, use and disclosure of PHI without individual authorization or consent.
HIE participants are challenged to honor these principles as they seek to solve the
business and technical issues to enable the proper flow of data through their systems.
Covered entities under HIPAA must ensure they are accurately setting patients’
expectations as they develop and distribute notices explaining organizational privacy
practices.

12.4.2 HIE Privacy in Practice

The guiding principles promoted by ONC to guarantee the privacy of constituents in
a HIE are embodied by a collection of core services. This constellation of controls
work in concert as mixture of policy, process and technology to achieve the privacy
goals of HIEs. Each fulfills some requisite aspect of functionality to operationalize
a subset of the principles described above. They are:

1. Consent Management: Informed consent to document collection, pro-
cessing, storage and distribution.

2. Access Control: Policies and enforcement mechanisms that limit the
dissemination of PHI.

3. Data Curation: Quality control and integrity remediation solutions to
ensure the accuracy of patient data.

4. Secure Transmission and Storage: Encryption and physical isolation
strategies to prevent unauthorized disclosure of PHI.

5. Privacy Preserving Record Linkage: Statistical methods over PHI per-
mitting meaningful data analysis, while preserving patients’ privacy.

6. Audit: Processes to monitor, log and report access to PHI.
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Consent Management Nearly all HIEs in practice today offer patients some form
of meaningful consent. While HIEs are still struggling to establish themselves in
the healthcare industry’s infrastructure, most HIEs employ fairly simplistic patient
consent models: either opt-in or opt-out. These models both comply with HIPAA
requirements, though depending on which model they choose, other controls may
exist to ensure that only data that is permitted to be shared for permitted purposes
to permitted individuals is shared with appropriate permission.

With an opt-in model, patients must learn of the HIE’s existence and explicitly
authorize their providers to access the records. Some opt-in models require patients
to authorize each potential data source to release records to others via the HIE,
while other opt-in models have the data pre-loaded or pre-linked in the HIE, and
merely require patient consent for providers to access the data. Some HIEs allow
this consent to be given electronically, while others require physical documents
to be signed. In some cases providers are required to attest that the patient has
authorized the access, and to maintain documentation to back up their claims of
authorization.

Some HIEs are required by state or other local laws to operate as opt-in networks.
Some HIEs have tailored their consent process to authorize the exchange of sensitive
data, such as behavioral health data, which requires specific consent under federal
laws [80], in addition to the more common PHI allowed to be shared under
HIPAA for permitted purposes. To be successful, a HIE with opt-in must carefully
consider the clinician workflow and gain buy-in from its participating clinicians so
the consent process is not overly disruptive. Coordinating a consistent change in
workflow for many organizations in a HIE is a big challenge, but approximately
half of the HIEs operating today have adopted this model.

With an opt-out model, patients are notified about the HIE and their option to
opt out either through the participating clinicians’ Notice of Privacy Practices, be
explicit “opt-in” like notification in their check-in paperwork, or by some other
method. In these HIEs, patient data is generally available to authorized users of
the HIE, unless the patient explicitly forbids it. Data that requires explicit consent,
such as behavioral health data, is generally not exchanged in these HIEs. Some
HIEs utilizing the opt-out model rely on integration with the clinicians’ information
systems so that a patient’s medical record is available from the HIE only after
the clinician’s information system sends the HIE a medical record for the patient,
evidencing that the clinician is in fact treating the patient.

Other HIEs simply require the clinicians to attest that they are only accessing
medical records for patients with whom they have a treatment relationship, or for
some other permitted purpose under HIPAA. Such models are usually accompanied
by appropriate audit controls so an abusive user is likely to be detected.

Regardless of which model is employed, a patient’s consent status is usually “all-
in” or “all-out.” In other words, if a patient has expressly opted out of participation
in the HIE, it means none of his or her records may be accessed by an authorized
HIE user. Conversely, if a patient has expressly opted in, or in the case of an opt-
out model, has not opted out, it means that all of their records may be accessed
by an authorized HIE user. One common exception to this policy is a “break-the-
glass” feature, which some, but not all HIEs support. This feature, where available,
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enables HIE users with proper authorization the ability to override patient consent
by attesting that an emergency condition exists with this individual, and that such
access is necessary to save a life or prevent harm [8, 22]. Such access often triggers
additional audit requirements designed to deter and detect any abuse of this access.

In general, HIE administrators recognize that the “all-in” or “all-out” approach
to HIE is not the ideal way of handling consent. However, greater granularity of
access requires greater technological investment in the infrastructure. Some HIEs
are working on advancing the granularity of patient consent, working on or offering
the ability for patients to limit what’s in their record by source, or by type of data.

The ONC has tried to help the effort by undertaking the Data Segmentation
For Privacy (DS4P) initiative, which sets out a framework for organizing data and
choices in a way that consumers can make meaningful decisions. This was further
pursued by the U.S. Department of Substance Abuse and Mental Health Services
Administration (SAMHSA) to address the fact that mental health facilities are often
unable to participate in HIE due to additional federal consent constraints (42 CFR
Part 2) that go well beyond HIPAA constraints. SAMHSA’s effort is an open-
source project, called Consent2Share [81], which is designed to enable patients to
essentially select which HIE users are allowed to see what types and sources of their
data. Consent2Share was piloted with a county-level HIE in 2014 [5], to demonstrate
that this level of granular consent is possible. The adoption, however, of this or other
granular patient consent models is still very new (or non-existent) on a large scale
in the industry.

Another challenge with patient consent is helping the patient understand the
benefits and risks associated with participating in HIE. While HIEs attempt to
explain the risks and benefits (typically in writing), each individual faces different
consequences depending on the contents of their medical records, their relation-
ships, and more. Standards-based approaches and architectures provide greater
opportunity for systemic interoperability of consent processes; some designs yield
solutions in which consent is the driving feature [6, 34, 69]. Recent research has
demonstrated potential for developing consent-based systems that can analyze a
patient’s record and produce some patient-specific decision support to suggest
relevant risks and benefits to opting in or opting out, when a patient is faced with
that choice [84]. This level of consumer engagement, however, is far from reality in
most of today’s HIEs.

Access Control HIE access control services express policies and implement
enforcement mechanisms that dictate permissible access by authorized users to PHI.
The keys to effective access control in HIEs are interoperability across federated
domains and fine-grained expression of policy. HIPAA requires, and HIEs almost
universally employ, some sort of Role Based Access Control (RBAC), and/or
Attribute Based Access Control (ABAC). These models require that users be
assigned to roles or attributes that correspond with the type of work they perform,
so their access is restricted in accordance with the minimum necessary standard of
the HIPAA Privacy Rule. These models are fairly straightforward, and solutions that
extend, augment or blend RBAC and ABAC exist [2, 89].
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Data Curation Data curation implies the ability to deliver patient information and
medical records with high integrity and accuracy to users of HIEs. This can be a
real challenge when integrating data feeds from multiple organizations, engaging
heterogeneous information management platforms and technologies [7, 18, 27, 35,
37]. Frameworks that address data quality as a first order concern pay a price up
front for the added investment they encumber, but reap benefits down the road.
While technology can play a strong role in providing services that help promote
data integrity for a HIE, the most important element is a robust quality assurance
process that enforces good data hygiene and standardized formats.

Many HIEs meet this challenge by either displaying exactly what they receive
from sources (leaving the user to decide if the information is helpful or not), or by
first grouping together data of similar kinds from all sources before displaying them
(e.g., all labs from all sources are displayed together, followed by all medications
from all sources). The few HIEs who currently go beyond this level of data curation
face significant struggles, because of the differences between medical terminology
standards used by different medical record systems, inconsistencies in the way
similar concepts may be represented by the same medical record systems, and the
challenge of successfully translating between the types of data coming in and the
universal standard chosen for the community. Companies have arisen specializing
in addressing this specific problem, but the difficulty of the work is reflected in the
cost of the service, and few HIEs are able to afford these types of services.

HIE frameworks that address data quality as a first order concern pay a price
up front for the added investment they encumber, but truly do reap benefits down
the road. Effective aggregation and analytics, which can be huge value-drivers for
HIE customers, depend on quality data. While technology can play a strong role in
providing services that help promote data integrity for a HIE, the most important
element is a robust quality assurance process that enforces good data hygiene and
standardized formats.

Secure Transmission and Storage Encryption is a core service for securing infor-
mation during transmission and in storage [17, 73]. It is a logical isolation strategy
(physical isolation may accomplish the same end) that scrambles data in such a way
that only authorized users may decipher it. The challenge of deploying encryption
across any far-flung enterprise is managing the keys that control encryption and
decryption. Fortunately, standards-based systems and protocols that use encryption
to create secure communication channels and storage areas for information networks
and systems are common-place and promote interoperability [12, 16, 76]. However,
careful thought must be given when deciding on an encryption solution, in terms
of its impact to system function, performance and scalability. In HIEs, alternative
encryption schemes, such as Attribute-Based Encryption (ABE), that seek a more
flexible model for logically isolating data in EHRs have been studied [1, 50].

Additionally, encryption must be properly implemented in order to achieve its
intended goal, as security experts know well that poorly implemented encryption,
even with the greatest algorithms available, affords little protection against knowl-
edgeable attackers. In this age of cyber-crime, HIEs must assume an aggressively
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defensive posture, and must expect that they are and always will be targets of
aggressive attacks. HIE security must not be disregarded, and HIEs, to properly
protect patient data, are required to have a HIPAA IT Security Officer. Though this
person may have other roles, the security industry advises this be a single role, as the
energy, resources and expertise required to perform this role well can be significant.

Privacy Preserving Record Linkage The fundamental goal of record linkage is
to determine when two or more records refer to the same individual [21, 29, 54]. In
the context of HIEs, successful linkage is a critical objective for system usability,
as well as to ensure that a patient’s consent is correctly associated with all of
that individual’s specific records. For those HIEs that support data analytics,
successful linkage is required to accurately represent each individual as a single
entity and not as multiple individuals. For patient safety, it is imperative that records
belonging to separate individuals not be falsely linked together. While the problem
of associating two records to the same person from different sources can seem
simple at times (how hard is it to match first name, last name, date of birth, and
a phone number), the reality is that in a world where the data sources were never
intended to be linked together, where demographics are hand-entered many times by
different individuals into different systems with different designs, high-confidence
in successful matching with a population of any significant size quickly becomes a
real problem.

Privacy preserving record linkage techniques may encompass a range of string
comparison, data mining and statistical methods to address the potential for misuse,
while permitting analysis [10, 29, 72]. Companies have formed around solving
this problem, and open-source solutions have been developed, but algorithms that
perform the best always must be tuned to the population they are serving and there
is always a need for human eyes to oversee and/or carry out the matching of at least
a fair number of records.

Audit In addition to facilitating HIPAA requirements, the audit functionality is an
essential component in any HIE’s privacy and security framework. Accountability
and non-repudiation is achieved in information systems through systematic logging
of user access to data. HIE audit services capture and record access requests to
PHI [4, 31, 75, 82]. Specific functionality varies based on architecture, but in
many ways audit logs and monitoring capabilities can be the primary means of
detecting problems in HIE. HIEs wrestle with the same audit challenges as other
information systems, including sheer volume of records generated by auditing
services, decentralization of audit logs for various types of events, and investment
or development of appropriate intelligent and selective audit policies supported by
data reduction tools [7, 18, 27, 35, 37].



12 Privacy Considerations for Health Information Exchanges 305

12.5 Emerging Issues

Information technology has driven advances in medicine, some of which introduce
new hazards in security and privacy. This section explores the privacy aspects of
technological advances in three domains: Big data, mobile health (“m-health”) and
telemedicine, and medical devices.

12.5.1 Big Data

As health IT workers advance the capabilities of EHR systems to create much richer
patient data sets, new opportunities for clinicians emerge, along with new risks to
patient privacy. For this reason, many HIEs and HIE participants resist or avoid
architectures that facilitate aggregation and large-scale analysis. However, those
who develop frameworks that permit aggregation and analysis do so in a controlled
way. These organizations are blazing the trail for “Big data” in healthcare.

Large data sets prospectively offer a much more complete characterization of
patient health, condition and state. This can create opportunities for clinicians to
identify high-risk patients sooner, potentially enabling clinicians to pursue treatment
options that, for example, may prevent heart attacks instead of waiting for them
to happen. This also makes possible other positive opportunities for advancing
the field of medicine and for improving public health through appropriate and
controlled research. New applications like this quite naturally result in an interesting
and complex dilemma with respect to maintaining the balance between privacy
preservation and appropriate information sharing.

One significant aspect of this dilemma involves preserving each individual’s
anonymity within a large, supposedly de-identified dataset. Many factors must be
considered to ensure true de-identification. For example, medical image data and
full genomes may be included in datasets that previously contained only common
elements of an EHR (such as labs and medications). These new data elements
pose identification risks that must be taken into account. Medical image data can
include visual features that may be used to uniquely identify a subject [48, 49, 86].
Structural MRIs, for example, are of such a resolution that high fidelity facial
reconstruction is well within the realm of possibility [71]. It has been shown that
such subject identification methods could possibly be performed systematically.
Therefore, approaches to protect privacy for medical images may often include
strategic removal or transformation of identifying features, which is non-trivial
[9, 71].

A similar situation exists for genetic information, where DNA profiling can
effectively “fingerprint” a patient [51]. It has been shown that statistical methods
may be employed to discern the identity of an individual in a genome-wide
association study (GWAS) [70]. In the sense that the data itself is a uniquely
identifying and intrinsic feature of a subject, this makes de-identification, without
removal of meaningful analysis variables, a particular challenge.
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With genomic data, the impact of disclosure of genomic information is poten-
tially much more impactful [11]. Genomic data reveals characteristics not only
about an individual, but also about relatives. In addition, genomic data may contain
information about future conditions a subject will or may develop. Approaches
to preserving privacy in genomic data sets includes partial or limited release of
genetic sequences and statistical degradation of the data [52]. However, erosion or
elimination of identifying features in genetic sequences (as is the case with images)
may remove the very information needed to diagnose or treat a patient.

12.5.2 m-Health and Telemedicine

Mobile, wireless and broadband networks extend the reach of healthcare systems
beyond the hospital and clinic, into the home and on the road. They have expanded
access to treatment and care for underserved and economically challenged popula-
tions, through mobile health applications and telemedicine. Using mobile platforms,
patients are increasingly being offered access to their personal health records and in
some cases, can consult with clinicians from virtually any location [13, 43, 46, 85].
Some studies have shown that telehealth solutions can reduce costs and enhance the
patient experience [14, 23, 36]. Both mobile medicine and telehealth can potentially
improve efficiency and quality of care in health systems.

The collection and analysis of location and temporal data on patients afforded
by mobile telehealth technology presents new opportunities for clinical insights
and improved medical outcomes. Understanding individual behavior patterns as a
function of time and space, for example, may yield better strategies for achieving
higher adherence rates in treatment regimens. In terms of public health, better
tracking of patient activity may reveal enlightening patterns and trends of disease
and wellness for an entire community. Residual benefits of leveraging geospatial
and temporal information may also include improved security and fraud detection.

Mobile and ubiquitous networking has the potential to transform the role of HIEs
in patient care, with more timely and universal access to patient data. Telehealth
applications that involve remote patient monitoring and virtual clinician encounters
will benefit dramatically from an intelligent integration of HIE services. Seemingly,
the rise of HIEs and the adoption of telehealth technologies certainly can go hand-in-
hand. However, as such technology allows for patient monitoring on a tremendous
scale and if it is allowed to become linked with health information systems, potent
questions are raised about potential privacy invasions. It now becomes possible for
clinicians (as legitimate users) and abusers alike to create a much more complete
picture of the daily life of patients. Besides exposing personal habits, even with
de-identified data, the potential exists to re-identify individuals from such data
alone.

Another issue concerns the drive to make HIE data available on remote and
mobile platforms. From a security perspective, the introduction of mobile devices
significantly expands the attack surface of HIEs [28, 47]. Smart phones and tablets
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not only embody new points of exposure to an information system, the very nature of
mobile technology poses a heightened challenge for security management. Controls
and policies must be introduced across the HIE ecosystem as safeguards to mitigate
security threats encumbered by mHealth.

12.5.3 Medical Devices

In a different way, patient medical devices may extend the boundaries of HIEs as
patients become more direct participants in their own care. Increasingly, medical
devices are configured with wired or wireless network capabilities to enable
the seamless transfer of data to a patient data repository. Healthcare providers,
researchers and technologists have embraced and pursued a vision of patient care
in which devices operate in harmony with medical information systems [25].

A collection of standards has been developed to support connectivity and
interoperability of medical devices with some clinical information systems housing
EHRs [19, 24, 38–42]. Data flowing from a medical device may include treatment
regimens, some measures of their efficacy, physiological information, as well as
metadata about the patient and the device. These devices have the potential to create
a closed loop system in which devices provide a continuous data feed and can be
controlled remotely and/or automatically [65]. HIEs will most likely play an integral
role in such environments.

The ability to stream and collect data directly from medical devices to systems
linked to a HIE can be a powerful informational adjunct for diagnosis and therapy,
but also represents a significant threat to patient privacy. Treatment data coming
from devices that is decorated with time and location information adds compelling
detail to a picture of patient behavior and activity. Such information may be very
useful to clinicians, but also to those seeking to invade the privacy of the patients. In
most cases, the very fact that a patient is associated with a medical device constitutes
PHI that must be adequately protected.

The devices themselves represent a possible point of entry or compromise for an
attacker [26, 30]. Devices are often built or bridged with commercial technologies
(applications or operating systems) and may be vulnerable to known exploits.
An attacker could possibly subvert a device to corrupt an information feed into
a medical record system, or perhaps use the device to access information about
an individual. In addition to the usual tensions that exist between security and
functionality, medical devices, particularly implantable medical devices, are often
developed by resource-challenged, market-driven companies, which can constrain
the security/privacy solution space for engineers. Thus, a HIE that extends to
incorporate data or access from or to such devices must properly account for the
potential vulnerability in the medical devices to adequately ensure the privacy of
individuals.
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12.6 Conclusion

Navigating the privacy issues associated with Health Information Exchanges (HIEs)
remains a challenge as information technology and medical applications continue to
evolve. Where trust is essential to adoption, striking the right balance between pri-
vacy and function can be difficult. A robust regulatory ecosystem steeped in sound
principles is one key to success. Another is the establishment and implementation
of standards and best practices shaped by organizational realities. As HIEs assume
an increasingly large role in the health IT infrastructure supporting the healthcare
industry, the pursuit of patient privacy through thoughtful dialogue and strategic
action is vital to success.
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Chapter 13
Managing Access Control in Collaborative
Processes for Healthcare Applications

Xuan Hung Le and Dongwen Wang

Abstract Team-based patient care, biomedical research, and clinical education
require coordinated access of relevant information in specific contexts of workflow
and collaboration. Research on methodology development to manage information
access in collaborative processes therefore is essential to build successful healthcare
applications. In this chapter, we first survey the existing research on access control
to support team collaboration and workflow management. We then introduce an
illustrative example, New York State HIV Clinical Education Initiative (CEI),
as a domain application requiring complex information access in the combined
contexts of workflow and team collaboration. To address the specific challenges
in access control for CEI, we present a series of studies on model development,
system implementation, and effectiveness evaluation. Specifically, we describe the
enhancement of the Role-Based Access Control (RBAC) model through formu-
lating universal constraints, defining bridging entities and contributing attributes,
extending access permissions to include workflow contexts, synthesizing a role-
based access delegation model to target on specific objects, and developing domain
ontologies as instantiations of the general model to particular applications. We illus-
trate the development of a generic system framework to implement the enhanced
RBAC model, with three functional layers: encoding of access control policies,
interpretation of these policies, and application of the policies to specific scenarios
for information access management. We present an evaluation study to assess the
effectiveness of the enhanced RBAC model when applied to CEI, with quantitative
measures on degree of agreement with a control system as well as sensitivity,
specificity, and accuracy based on a gold-standard. We close this chapter with
discussions, future works, and some conclusion remarks.
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13.1 Introduction

Patient care, medical research, and clinical education are increasingly depending
on coordination and collaboration of partners from multiple disciplines in specific
workflow contexts [20, 25, 26, 41, 53, 55, 57, 64, 69, 72, 83]. Information systems
can be effectively used to facilitate team collaboration and workflow management
[5, 8, 10, 11, 15, 17, 31, 32, 38, 43, 45, 56, 63, 73, 76, 88]. For an information system
to present the right information to the right people at the right time, access control
is a critical requirement.

Traditionally, access control is used to limit the access to certain information
to protect patient privacy [6, 14, 58, 74], to ensure confidentiality of sensitive data
[2, 46, 77], and to filter out irrelevant information in order to reduce information
overload [3, 33, 54]. In collaborative processes, access control can also facilitate
information sharing to address information needs [15, 25, 55], to improve team
collaboration [8, 10, 26, 38, 43, 53, 69, 88], and to enhance workflow management
[5, 17, 63, 83]. Previous research has shown that the requirements of information
access are continuously changing. Such changes, either in scope of information (i.e.,
availability of data vs. restriction of access to certain records) or level of access (i.e.,
review vs. documentation), depend on the specific context of workflow (i.e., goals,
tasks, and available resources) and particular requirements of team collaboration
(i.e., expertise needed for work and responsibilities assigned to individual team
members) [25, 30, 55, 69, 70, 83, 88]. We also note that the requirements for
workflow management and team collaboration frequently interfere with each other.
For example, the tasks in a specific workflow context may need particular expertise
from team members. Only considering one aspect of workflow or team collaboration
in access control will not be able to handle the dynamic nature of team collaboration
and the complexity of workflow involving multiple team members. Addressing
the needs of information access management in the combined context of team
collaboration and workflow is thus becoming a fundamental requirement to all
information systems.

In this chapter, we first review the existing research on access control in team
collaboration and workflow management. We then introduce the New York State
HIV Clinical Education Initiative (CEI) [61] as an illustrative example. We describe
our approaches to enhance the Role-Based Access Control (RBAC) model [51],
followed by a generic system framework for its implementation [49]. We present
an evaluation study to assess the effectiveness of the enhanced RBAC model when
applied to CEI [52]. We close the chapter with discussions of the results, future
works, and conclusion remarks.

13.2 Related Works

Since the late 1960s, the research community has proposed various information
access control models. Among these, Access Matrix [47] was the first introduced by
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Lampson, with a simple structure consisting two elements: access permission and
user identification. In 1973, Lapadule and Bell proposed Rule-Based Access Control
[48], within which access permissions were assigned to users based on specific
rules. Later, the United States Department of Defense released Discretionary Access
Control (DAC) [16] and Mandatory Access Control (MAC) [16]. In these models,
access permissions were managed based on individual users, which introduced
complexity and cost to manage large-scale systems. Attribute-Based Access Control
(ABAC) [89] is based on logical combination of the attributes held by subjects
and objects, as well as the environment conditions. Since the attributes can be
flexibly defined based on any parameters, ABAC is extremely powerful in its
expressiveness. RBAC [19] was proposed in the early 1990s and then standardized
by the National Institute of Standards and Technology (NIST). RBAC solved
the complexity issue by assigning permissions to users based on their roles in
organizations, to denote specific job functions and the associated authorities and
responsibilities. For two decades, RBAC has been widely used owing to its salient
features such as generalization, simplicity, and effectiveness.

With regard to implementation, these models and their extensions have been
applied to specific applications to manage information access. System frameworks
have been developed to implement the core components of access control models
that are independent of specific domains or applications [1, 12, 27, 40, 62]. Never-
theless, none of these models or approaches is sufficient for managing information
access in the combined context of team collaboration and workflow.

Because of special domain needs, healthcare has unique requirements on infor-
mation access management. A number of access control applications have been
developed to protect patient privacy [7, 28, 68], to facilitate access to relevant
information by healthcare providers [44, 50, 75], and to ensure appropriate level
of access to electronic medical records and personal health records [13, 60, 79].
Regarding the specific application contexts, Predeschly et al. introduced important
concepts to ensure information security in adaptive processes [70]; however, they
did not address the issue of team collaboration. Grando et al. addressed both process
management and team work [30], but only from the prospective of workflow tasks.

Research on using information systems to facilitate communication in a collabo-
rative environment to accomplish complex tasks, the so-called computer-supported
cooperative work (CSCW), is very active [8, 38, 43, 69, 88]. Previous efforts to apply
CSCW to healthcare applications have focused on support of collaborative clinical
tasks [30, 43, 69], facilitating communication among team members of biomedical
research [8, 26, 53], and coordination of healthcare management activities [10, 38,
88]. Managing information access is a fundamental requirement in collaborative
environments and has resulted to the development of access control models in such
contexts [29, 39].

With regard to facilitating workflow, it is widely documented in the literature
that this is one of the most important factors for a successful implementation
of information systems for biomedical research, clinical education, and patient
care [5, 17, 63, 83]. Since the workflow context defines the specific tasks that
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require access to particular information, managing information access in context
of workflow is an essential requirement to information systems [70].

Among the various models and frameworks, ABAC and RBAC worth special
mentioning. With its expressiveness, ABAC has the potential to be used for informa-
tion access management in a collaborative workflow. However, without a structure
to address specific workflow contexts and team collaboration requirements, it can
easily become too complex to manage. RBAC can significantly improve simplicity
of management by introducing roles, which could be very helpful for team collabo-
ration. Meanwhile, it can still address complex requirements through the constraints.
In a sense, RBAC can be considered as a specialization of ABAC-it emphasizes the
attribute of role so much that it singles it out as a predefined component. Our model
development, for example, formulation of special types of constraints, definition
of bridging entities and contributing attributes, and extension of access permission
to include workflow status, is based on this philosophy. In particular, these unique
features required for workflow management and team collaboration are specified as
predefined components such that they can be used to facilitate information access
management in collaborative processes (see Sect. 13.4 below).

13.3 An Illustrative Example: New York State HIV Clinical
Education Initiative

Our general approach to managing information access in collaborative processes
includes three components, i.e., model development, system implementation, and
effectiveness evaluation. Before presenting the technical details, we first introduce
the New York State HIV CEI [61] as an illustrative example. This example will
be used as a specific application to explain the concepts when describing our
approaches in the following sections.

The CEI program is sponsored by the New York State Department of Health
AIDS Institute. It has been engaging in clinical education for two decades to
meet the needs of community clinicians who provide healthcare to HIV patients
in New York State. In 2008, the CEI program was re-organized to reflect the new
priorities in specific topics of HIV clinical education, to address the differences
between the Upstate New York region and the Metropolitan New York City area, to
develop online training programs, and to provide resource coordination and program
evaluation. In consequence, the CEI program created seven training centers:

1. Testing, Post-Exposure Prophylaxis, and Diagnosis Center (TPDC)
2. Prevention and Substance Use Center (PSUC)
3. Mental Health Center (MHC)
4. Clinical Education Center for Upstate Providers (CECUP)
5. Technology Center (TC)
6. Resource and Referral Center (RRC)
7. Evaluation Center (EC)
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Table 13.1 The responsibilities of the CEI centersa

Center Role Responsibility Topic Location Format

CECUP rcecup Onsite training All topics Upstate region Onsite

TPDC rtpdc Onsite training Testing, PEP, diagnosis All areas Onsite

PSUC rpsuc Onsite training Prevention, substance use All areas Onsite

MHC rmhc Onsite training Mental health All areas Onsite

TC rtc Online training All topics All areas Online

RRC rrrc Resource and referral All topics All areas Onsite/online

EC rec Evaluation All topics All areas Onsite/online
aTable reprinted from [51], with permission from Elsevier

Here each CEI Center is in charge of a range of training activities, while in
everyday operation a specific training session may require expertise and resources
from multiple CEI Centers. Specifically, four training centers, i.e., CECUP, TPDC,
PSUC, and MHC, are charged to provide onsite trainings. The responsibilities of
each center are defined by specific training topics and geographical locations. In
particular, the three specialty training centers (TPDC, PSUC, and MHC) are charged
to provide training on specific topics of HIV clinical education for the entire state.
For example, TPDC’s expertise includes HIV testing, post-exposure prophylaxis,
diagnosis, and acute HIV infection; PSUC’s expertise includes HIV prevention and
substance use; MHC’s expertise includes all mental health related issues. In contrast,
CECUP is in charge of all training topics (including the specialty topics described
above and general topics such as adult care, pediatric care, oral health, pharmacy,
ethical/legal issues, and clinical trials) in upstate New York. Within the CECUP
Center, three catchment areas, i.e., Albany Medical Center (AMC), University of
Rochester Medical Center (URMC), and Erie County Medical Center (ECMC), are
further segmented. In addition to onsite training, TC is in charge of online training;
RRC is in charge of program resources and referrals; EC is in charge of program
evaluation. Table 13.1 is a summary of the responsibilities of each CEI Center.

When a healthcare organization in New York State requests a training session, it
can select from a list of courses or topics, each of which is mapped to specific CEI
Centers. Depending on the location of the requester (where the onsite training will
be delivered), the selected courses or topics, and the preferred training format, the
CEI Centers will work individually or collaboratively to deliver the training service.

For a specific training session in CEI, the typical training workflow con-
sists of several major stages: training requested by a healthcare organization
(request_received), calling back by a CEI staff and training arrangement pending
(arrangement_pending), scheduling of training event (training_scheduled), and
completion of training (training_completed). If a training session is progressing as
planned, it will pass through these stages step-by-step. From time to time, a training
session may step back to an earlier stage (for example, when a scheduled training
session is cancelled); a process may also terminate earlier before the training is
actually delivered (for example, when a request is beyond the scope of CEI and
referred to other training programs).



318 X.H. Le and D. Wang

training request by an agency 

request
received

call back by a CEI staff

arrangement
pending

scheduling of
training event cancelation of

scheduled training

completion of training and
reporting of trainer/event

training
scheduled

training
completed

reporting
completed

update

update

update

update

reporting of training
participant feedback

unable to
arrange

Fig. 13.1 Workflow of a CEI training session (reprinted from [51], with permission from Elsevier)

The stages of a training session can be represented in a state-transition diagram,
as shown in Fig. 13.1. In each stage of the process, a CEI Center staff can review
and document specific information for the training session that she/he is charge
of. In case a training session involves collaboration of multiple CEI Centers, this
information is also available for review by staff from the collaborating centers. To
manage the CEI training program, we have developed the CEIAdmin system for CEI
Centers to review the relevant training requests, to document training activities over
the training process, and to collaborate with other CEI Centers. Additional details
of the CEIAdmin system can be found in [51].

13.4 Development of the Enhanced RBAC Model

To develop an access control model to define access permissions in the context
of team collaboration and workflow management, we established the following
general principles: (1) effectiveness: the model could be applied to define the exact
scope and level of information access in collaborative processes; (2) simplicity: the
model should have a relatively simple structure and leverage common representation
formats so it could be easily implemented; and (3) generalizability: the model
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should initially serve the purpose of information access management for CEI and
eventually be able to generalize to other domains and applications. With these
general principles in mind, we reviewed the existing models for access control and
workflow management. Among the reviewed models, we found that RBAC [19]
is widely used, has a simple structure, and its internal constructs can be extended
for new requirements. For these reasons, we selected to start with it to develop the
proposed model as an enhancement of RBAC.

13.4.1 Overview of the Enhanced RBAC Model

The enhanced RBAC model extends the core RBAC through: (1) formulation
of specific types of universal constraints to bind on user-role assignments, role-
permission assignment, and access permissions; (2) definition of bridging entities
and contributing attributes to support access management in collaborative envi-
ronment; (3) extension of access permissions to include workflow context; and (4)
synthesis of a role-based access delegation model targeting on specific objects to
balance between flexibility and need-based access.

The universal constraints are collections of constraints that regulate specific
aspects of access control. As shown in Fig. 13.2, these constraints could be
separation of duty (as defined in the core RBAC [19]), access delegation (to delegate
access permission under specific conditions), collaboration constraint (to support
team collaboration), temporal constraint (to facilitate workflow management), and
organizational constraint (to define roles based on organizational structure). In
association with the universal constraints, we propose an enhanced permission set.
Instead of using a simple structure of asset-action pair, as defined in the core RBAC
model, we formulate the permission set within the context of a specific workflow
status. Here a workflow status represents specific tasks or goals defined as part of
a workflow, the execution of which indicates the current state of the process. The
workflow status, together with action and asset defined in the core RBAC, are then
bundled with particular types of universal constraints to define access permissions
for team collaboration and workflow management.

To implement the enhanced RBAC model in a specific domain or application,
we introduce the concept of domain ontologies. The domain ontologies define:
(1) the specific instances and specializations of the general model components
(i.e., users, roles, objects, operations, workflow statuses, and universal constraints)
for implementation in a particular domain or application; (2) the relations among
domain components; and (3) the constraints bound on domain components and
relations. For example, when defining the domain ontologies for the CEI project, we
have specified three types of collaboration constraints, i.e., geographical constraint
(to manage collaboration based on geographical areas), topic constraint (to manage
collaboration based on training topics), and format constraint (to manage collabora-
tion based on training format). It is important to note that the domain ontologies are
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Fig. 13.2 Enhanced RBAC model with universal constraints, workflow in permissions, and
domain ontologies (reprinted from [51], with permission from Elsevier)

open, configurable structures. Depending on specific applications, various types of
components, relations, and constraints can be included to meet domain requirements
without breaking the core RBAC structure.

13.4.2 Support Team Collaboration: Bridging Entities
and Contributing Attributes

To support information access management in the context of team collaboration, an
essential requirement is to specify the constraints on access permissions based on the
attributes that define the collaborative responsibilities. These attributes are used to
divide the collaborative tasks to individual team members and to re-assemble them
together once these tasks are completed. For coordination of clinical education,
a collaborative work may involve learners (medical students, nursing students,
etc.) and teachers (faculty members from various healthcare related disciplines).
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A collaboration may simply happen between the two parties of a learner and a
teacher, who are associated to each other through a training session. We name
this entity that connects the collaborating parties (for example, a training session) a
bridging entity.

A collaboration may also involve multiple learners and teachers, each of whom
is engaging in specific activities of a training session. For example, in a training
session of the CEI program, each collaborating CEI Center contributes its expertise
and resources, as defined by specific training topics, formats, and locations; by
integrating the expertise and resources from all collaborating CEI Centers, we
can accommodate the various needs by a specific training session. We name these
contributions that partition the bridging entity (for example, training topics, formats,
and locations) contributing attributes-eventually, when each party finishes its own
activities, defined by these attributes, it contributes to the overall collaborative work.

When implementing these concepts, the definition of contributing attributes
can be based on multiple dimensions, each of which represents a specific type
of universal constraint. The contributions from an individual collaborating party
can then be specified as a logical combination of multiple constraints. With these
specifications, the collaborating parties will satisfy the defined constraints and
thus have access to the relevant training information, while the other parties not
directly involved in the collaboration will not satisfy these constraints and thus have
no access permissions. The relationships among the bridging entity, contributing
attributes, and collaborating parties are shown in Fig. 13.3.

With these definitions, we can formally represent topic constraint, format
constraint, and geographical constraint through the following predicates:

Collaborating Party 2

Collaborating Party 3

Collaborating Party 4

Contributing Attributes (Universal Constraint)

Combined Contributing Attributes (Combined Constraint)

Collaborating Party n

Collaborating Party 1

Bridging Entity

Combined Constraints

Fig. 13.3 Collaboration model with bridging entity and contributing attributes (reprinted from
[51], with permission from Elsevier)
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inChargeCourse(r,course): role r is in charge of course course.
inChargeFormat(r,format): role r is in charge of format format.
inChargeLocation(r,loc): role r is in charge of location loc.

A complete representation model in first-order predicate logic can be found in
[51]. In Sect. 13.4.6, we will use specific examples from the CEI project to illustrate
how to use this model to address specific requirements for information access
management in a collaborative environment.

13.4.3 Extending Access Permissions to Include Workflow
Contexts

As briefly discussed in Sect. 13.4.1, the core RBAC model defines access per-
missions as asset-action pairs. The proposed enhancement of RBAC introduces
workflow status in representation of permissions such that we can define access
authority within specific context of workflow. To simplify the model, we select
to not include any technical details to handle workflow management. Instead,
we assume that a separate workflow engine outside of the access management
model will be used for this purpose [81, 87]. Inside the access control model, we
only include a specific workflow status, within which the access permissions are
specified. Formally, we define the following problem domains:

OBJECT: a set of system assets or resources.
OPERATION: a set of actions or operations.
WORKFLOWSTATUS: a set of workflow statuses.

We can then define access permissions in context of workflow management as:

PERMISSIOND OBJECT � (WORKFLOWSTATUS � OPERATION)

In other words, if p 2 PERMISSION, obj 2 OBJECT, w 2 WORKFLOWSTATUS,
and op 2 OPERATION, where p D (obj,w,op), it means operation op on object
obj within the context of workflow status w is permitted. The relationship among
access permission, object, workflow status, and operation is shown in Fig. 13.2. The
complete model defined in first-order predicate logic can be found in [51].

13.4.4 Role-Based Access Delegation Targeting on Specific
Objects: Providing Flexibility for Access Control
in Collaborative Processes

Access delegation regulates the situation when an authorized user transfers parts or
all of his/her access permissions to another user who is otherwise not authorized
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to have such access. It is an indispensable component for information access
management in a collaborative environment, as it can enable access under certain
conditions to facilitate team work.

The proposed access control model supports access delegation through explicitly
inviting other parties (invitee) for collaboration and granting them the appropriate
level of access permissions that the inviting party (inviter) holds. Traditionally,
access delegation under RBAC concerns about the process that the inviter grants
his/her access permission to the invitee through delegating the former’s role to
the latter [90, 91]. These approaches only differentiate the original roles from
the delegated roles, but treat all objects in the permissions uniformly [91]. In the
enhanced RBAC model, since our primary purpose to delegate access permission
is to enable collaboration in specific workflow context, the delegation has to target
on specific objects in that context. For example, when managing a collaborative
training program, a training center can invite another center to collaborate and such
collaboration only happens when they work together on specific training sessions.
Thus, delegation in this context needs to be defined based on specific objects,
i.e., the training sessions under the collaboration. To address this requirement, the
proposed delegation model is focusing on the situation that a role (represented by
a specific user) delegates certain access permission on specific objects or resources
to another role. In other words, this is a role-to-role delegation that targets on only
permissions defined for specific objects. The reverse concept of access delegation
is access revocation, which deprives a party of specific access permissions that
were granted previously through access delegation. Similar to access delegation,
access revocation in the proposed model is defined between two roles and targeted
on access permissions for specific objects. To formally represent access delegation
and revocation, we use the following predicates:

invitation(obj,op,rinvitee,rinviter):

role rinviter invites role rinvitee
to collaborate on object obj and
grants rinvitee the permission to
perform operation op in this
context.

revocation(obj,op,rrevokee,rrevoker):

role rrevoker deprives role
rrevokee of the permission to
perform operation op with regard
to object obj.

It is important to note that only the delegated permissions can be revoked.
Certain access permissions are defined originally by the contributing attributes
(see Sect. 13.4.2), and therefore those permissions held by the related collaborating
parties cannot be removed through a revocation. We name these collaborating parties
that hold access permissions through the original assignment of authorizations
root parties (essentially equivalent to the original users in a conventional RBAC
delegation model when team collaboration is not a concern [90]). In a collaborative
environment, a specific party may play a leading role to orchestrate the collaboration
among all parties. We name this specific party the leading party.
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For example, in the CEI project the leading party (a CEI Center) of a specific
training session needs to have the authority to invite other parties (CEI Centers) for
collaboration, to document training related issues, and to update the recorded data.
Therefore it holds the “write” permission (document, update, invite other centers,
etc.) for the data related to that specific training session.

To model these features, the CEI policy for access delegation requires that:

1. There is only one leading party at any time.
2. The leading role is transferable, which means a leading party can transfer/dele-

gate its leading role to another party (and immediately becomes a non-leading
party due to the requirement defined above).

3. Only the leading party can delegate (invite) and revoke access permissions.
4. Certain access permissions held by the root parties through definitions of

contributing attributes cannot be revoked.

A complete representation of access delegation and revocation in first-order predi-
cate logic can be found in [51].

13.4.5 Integration of Multiple Representation Elements
for Definition of Universal Constraints

As described above, information access in the specific context of team collaboration
and workflow management is typically around the bridging entity and the contribut-
ing attributes. Depending on specific applications, the representation of bridging
entity, contributing attributes, and access permissions may need a complex structure.
For example, in the CEI project the bridging entity is a specific training session,
which is triggered by a training request from a healthcare organization located
in New York State. A training request contains the specific information about the
requested course or training topics, as well as the format of training. The location
of the training can be derived from the requesting organization, where the training
session is typically delivered. Depending on the training topic, format, and location,
specific CEI Centers with the resources and expertise will work collaboratively on a
training session. As the process moves forward, the workflow status of the training
session is changing. Therefore, the access permissions, which are specified based
on the workflow status, are also redefined. To integrate all these requirements, we
define the following predicates:

request(req,course,format,agency):
agency agency makes a
request req for a course
course in the format format.
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location(agency,loc):
agency agency is located at
the location loc.

status(req,w):
request req is processed and its
current status in the workflow
is w.

Using a logical combination of these predicates together with those defined
previously in Sects. 13.4.2 and 13.4.4, we can complete the constraint definition.
For example, the constraints on assignment of “read” permission (review, query,
etc.) to roles for the CEI program collaboration can be defined as:

8 r 2 ROLE, 8 req 2 REQUEST, 8 w 2 WORKFLOWSTATUS,

8 opr 2 OPERATIONREAD, 8 opw 2 OPERATIONWRITE, 8 course 2
COURSE, 8 format 2 FORMAT, 8 agency 2 AGENCY, 8 loc 2
LOCATION,

9 rinviter 2 ROLE(rinviter ¤ r):

role-permission(r,req,w,opr)  
status(req,w) ^
{[ request(req,course,format,agency) ^

location(agency,loc) ^
inChargeLocation(r,loc) ^
inChargeCourse(r,course) ^
inChargeFormat(r,format)] _

[ invitation(req,opr,r,rinviter) ^
role-permission(rinviter,req,w,opw)]}

These constraints essentially define the following rules for information access
management:

1. The “read” permission depends on the requested course, training format,
location of the requesting organization, and workflow status of the training
session.

2. The “read” permission is granted to only the roles (CEI Centers) that are
in charge of the training location, course, and format (assignment of access
permission for the root parties).

3. The “read” permission can be granted to a role (CEI Center) through delegation
(invitation) from another role (CEI Center) that holds the authority (the leading
center).

It is important to note that these predicates and constraints are defined for the
specific requirements of the CEI project. When applying the enhanced RBAC
model to another domain or application, we can introduce a different set of domain
ontologies, but still keep the general framework of the model intact.
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13.4.6 Case Studies to Encode Access Policies for CEI

13.4.6.1 User, Roles, Objects, and Access Permissions

As shown in Table 13.1, the definitions of training expertise and responsibilities are
based on individual CEI Centers. Staff from a specific CEI Center have the same
level of access permissions to the training data. Therefore, defining each CEI Center
as a unique role is a natural selection. For example, we can define a unique role
“rcecup” for CECUP; all staff working for CECUP are then automatically assigned
to this role. In a formal representation with the enhanced RBAC model, this can be
expressed as a constraint on the user role assignment:

8 u 2 USER, 8 r 2 ROLE, 8 org 2 ORGANIZATION:

user-role(u,r)  
employee(u,org) ^ roleCenterMapping(r,org)

Thus, if staff “A” works for “CECUP”, she is automatically assigned to the
“rcecup” role:

“A” 2 USER, “rcecup” 2 ROLE, “CECUP” 2 ORGANIZATION:

user-role(“A”,“rcecup”) 
employee(“A”,“CECUP”) ^ roleCenterMapping(“rcecup”,“CECUP”)

When a specific training request is entered into the CEIAdmin system, it becomes
a system resource (object), upon which access permissions can be defined. These
permissions regulate whether a user in a particular role is allowed to perform specific
operations on these system resources. For example, “staff from TPDC (in role
“rtpdc”) have “read” permission to training request “1090” (which is in workflow
status “request-received”)” can be formally represented as:

“rtpdc” 2 ROLE, “1090” 2 REQUEST,

“request-received” 2 WORKFLOWSTATUS, “read” 2 OPERATIONREAD :

role-permission(“rtpdc”,“1090”, “request-received”, “read”)

With the role-permission assignments that we defined here, we can specify
universal constraints to regulate CEI Center collaboration, training workflow, and
access delegation.
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13.4.6.2 Collaboration Among CEI Centers

When a training session requires expertise and resources from multiple CEI
Centers, the related CEI Centers need to work together to deliver the training
service collaboratively. As described in Sect. 13.4.2, we can define geographical,
topic, and format constraints to bind on the access permissions to the related
training requests. These constraints essentially specify the contributing attributes
of the bridging entity. For example, “Eastman-Dental-Center”, a healthcare
organization located in “Monroe” (a county in Upstate New York region), has
requested an “onsite” training session (request “1090”, currently in workflow
status “request-received”) with the course “Acute-HIV-Infection”.
In this case, a collaboration will become necessary between CECUP and TPDC, as
both centers can satisfy the constraints (see responsibilities defined in Table 13.1).
Thus, if Staff “A” is working for CECUP and Staff “P” is working for TPDC,
both “A” and “P” have “read” access permission to this training session. These
requirements can be formally represented as:

“A” 2 USER, “rcecup” 2 ROLE, “CECUP” 2 ORGANIZATION:

user-role(“A”,“rcecup”) 
employee(“A”,“CECUP”) ^ roleCenterMapping(“rcecup”,“CECUP”)

“rcecup” 2 ROLE, “1090” 2 REQUEST,

“request-received” 2 WORKFLOWSTATUS, “read” 2 OPERATIONREAD ,

“Acute-HIV-Infection” 2 COURSE, “onsite” 2 FORMAT,

“Eastman-Dental-Center” 2 AGENCY, “Monroe” 2 LOCATION:

role-permission(“rcecup”,“1090”, “request-received”, “read”) 
status(“1090”,“request-received”) ^
request(“1090”,“Acute-HIV-Infection”,“onsite”,

“Eastman-Dental-Center”) ^
location(“Eastman-Dental-Center”,“Monroe”) ^
inChargeLocation(“rcecup”,“Monroe”) ^
inChargeCourse(“rcecup”,“Acute-HIV-Infection”) ^
inChargeFormat(“rcecup”,“onsite”)

“P” 2 USER, “rtpdc” 2 ROLE, “TPDC” 2 ORGANIZATION:

user-role(“P”,“rtpdc”) 
employee(“P”,“TPDC”) ^ roleCenterMapping(“rtpdc”,“TPDC”)

“rtpdc” 2 ROLE, “1090” 2 REQUEST,

“request-received” 2 WORKFLOWSTATUS, “read” 2 OPERATIONREAD ,

“Acute-HIV-Infection” 2 COURSE, “onsite” 2 FORMAT,

“Eastman-Dental-Center” 2 AGENCY, “Monroe” 2 LOCATION:

role-permission(“rtpdc”,“1090”, “request-received”, “read”) 

(continued)
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status(“1090”,“request-received”) ^
request(“1090”,“Acute-HIV-Infection”,“onsite”,

“Eastman-Dental-Center”) ^
location(“Eastman-Dental-Center”,“Monroe”) ^
inChargeLocation(“rtpdc”,“Monroe”) ^
inChargeCourse(“rtpdc”,“Acute-HIV-Infection”) ^
inChargeFormat(“rtpdc”,“onsite”)

Meanwhile, staff from other CEI Centers would not see this request as they
cannot satisfy the constraint above and therefore do not have access permissions.

13.4.6.3 Management of Training Workflow

As described earlier, access permissions to a specific training session is based
on its workflow status. Thus, by verifying that request “1090” is in status
“request-received”, we can define access permission for this stage of the
training workflow (see the logic statements above). If the workflow is moving
forward to the “arrangement-pending” stage and all other conditions remain
as the same, we will be able to derive the access permission for the new workflow
status through examination of the constraints:

“rcecup” 2 ROLE, “1090” 2 REQUEST,

“arrangement-pending” 2 WORKFLOWSTATUS,

“read” 2 OPERATIONREAD , “Acute-HIV-Infection” 2 COURSE,

“onsite” 2 FORMAT, “Eastman-Dental-Center” 2 AGENCY,

“Monroe” 2 LOCATION:

role-permission(“rcecup”,“1090”, “arrangement-pending”, “read”) 
status(“1090”,“arrangement-pending”) ^
request(“1090”,“Acute-HIV-Infection”,“onsite”,

“Eastman-Dental-Center”) ^
location(“Eastman-Dental-Center”,“Monroe”) ^
inChargeLocation(“rcecup”,“Monroe”) ^
inChargeCourse(“rcecup”,“Acute-HIV-Infection”) ^
inChargeFormat(“rcecup”,“onsite”)

13.4.6.4 Inviting other CEI Centers for Collaboration

Under certain scenarios, we need the flexibility to invite a specific CEI Center to
participate in a training session, even though this center does not need to involve
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according to the original definition of responsibilities. For example, the request
“1090” is made by a healthcare organization located in Upstate New York region
for an onsite training on the topic of “Acute-HIV-Infection”. According to
the contributing attributes, only CECUP and TPDC are required to collaborate on
this training session. When scheduling this particular training session, if it is decided
that certain mental health related issues will also be addressed in addition to the
main topic, MHC will need to participate in this session. In this case, the leading
center (suppose it is CECUP, with “write” permission for this request) can invite
MHC to collaborate on this specific training session. This scenario can be formally
represented as:

“rmhc” 2 ROLE,“rcecup” 2 ROLE, “1090” 2 REQUEST,

“training-scheduled” 2 WORKFLOWSTATUS, “read” 2 OPERATIONREAD
“write” 2 OPERATIONWRITE , “Acute-HIV-Infection” 2 COURSE,

“onsite” 2 FORMAT, “Eastman-Dental-Center” 2 AGENCY,

“Monroe” 2 LOCATION:

role-permission(“rmhc”,“1090”, “training-scheduled”, “read”) 
status(“1090”,“training-scheduled”) ^
invitation(“1090”,“read”,“rmhc”,“rcecup”) ^
role-permission(“rcecup”,“1090”,“training-scheduled”,“write’)

13.5 System Framework for Implementation
of Enhanced RBAC

Once the access policies are defined for specific applications based on the enhanced
RBAC model, we need to implement them to ensure that these policies are correctly
interpreted and applied, such as to grant particular users in certain roles the
appropriate scope and level of information access to support workflow management
and team collaboration. In order to generalize to multiple domains and applications,
it is essential to develop a system framework for implementation of the core
components of the enhanced RBAC.

In this section, we describe the development of such a system framework, which
includes three functional layers:

1. Encoding of access control policies.
2. Interpretation of the encoded policies.
3. Application of the policies to specific cases and scenarios for information access

management [49].

With these functional layers, the system framework can provide a flexible platform
to develop and to implement policies for information access management in col-
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laborative processes. To support the management of information access, to simulate
the application of access control policies, and to present the access permissions
in specific cases and scenarios, we have developed a demonstration tool with two
primary functions: (1) selecting the combinations of users, roles, objects, operations,
and workflow statuses; and (2) displaying the associated constraints and access
permissions. Again, we will use CEI as a specific example to illustrate the use of
this system framework for implementation of information access control policies to
facilitate collaborative processes.

13.5.1 System Architecture

To implement the enhanced RBAC model, we designed a system architecture with
three layers, specified as follows:

Layer 1: Policy Encoding Layer In this layer, policies regarding information
access control for a specific application can be defined.

Layer 2: Policy Interpretation Layer In this layer, the encoded access policies
are interpreted based on specific combinations of users, roles, objects, operations,
and workflow statuses as well as the universal constraints bound on them.

Layer 3: Access Control Application Layer In this layer, the encoded access
control policies are applied to specific cases or scenarios to make decisions on
granting or denying access.

As illustrated in Fig. 13.4, these three layers are functioning independently but
meanwhile closely integrated to each other through information flows. Specifically,
Layer 1 is where the system administrators specify access control policies through
a policy editor. The outputs from this process are the encoded policies that are
fed to Layer 2 once they are validated. Layer 2 is where the encoded policies are
interpreted in specific application contexts. During this process, it requires particular
application contextual information that comes from Layer 3. The results of policy
interpretation in Layer 2 are then fed to Layer 3, where decisions on granting or
denying access to specific cases and scenarios are made.

To support policy encoding with the continuous development of the enhanced
RBAC model, we have employed a three-level encoding schema to differentiate
the core RBAC model, the model extension, and the policy instances. To interpret
the encoded policies, we have leveraged a Java-based rule engine that can directly
retrieve and process the encoded access policies from the policy encoding layer. To
handle the workflow management, we assume there is an external workflow engine
that can be integrated with the policy interpretation layer. Finally, the application
layer implements system interfaces to retrieve application contextual information
such as users, roles, objects, and operations. We describe the details of each layer
in the following sections.
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Fig. 13.4 System architecture (reprinted from [49])

13.5.2 Encoding of Access Policies

To encode access control policies, we adopted an existing tool, Protégé (version
3.4.7) [71], as the editor. Protégé provides a flexible platform and a rich technical
environment for knowledge acquisition and ontology development. We selected it
as the editor mainly because of three reasons:

1. It supports a layered approach for model definition, which is helpful for
continuous development of the enhanced RBAC model.

2. It differentiates ontological models from instances, which is a nice feature
to support the development of the general enhanced RBAC model and the
implementation of the specific access control policies when applied to particular
domains and problems.

3. It incorporates many add-ons, in particular, the Semantic Web Rule Language
(SWRL) [66, 80] and the jess rule engine [23, 37], which can be adopted for
encoding and interpretation of the universal constraints.

Encoding of specific access control policies is based on the enhanced RBAC model.
To build the enhanced RBAC in Protégé, we employed a two-level structure, with
the core RBAC model as the basis and the extended model encoded on top of it. The
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Fig. 13.5 Three-level access control policy encoding in Protégé (reprinted from [49])

core RBAC schema defines five basic components of the RBAC model, including
users, roles, permissions, operations, and objects. The extended model integrates
additional representation elements such as universal constraints, workflow statuses,
and constructs that are used for access delegation and revocation. With this two-
level structure, we can easily support the continuous development of the enhanced
RBAC model, for example, through defining new types of universal constraints.

Once the enhanced RBAC is built, we can encode access control policies as
instances of particular model elements. These policies can be grouped together
based on individual or classes of applications. Figure 13.5 is a screenshot of using
the Protégé tool to encode the enhanced RBAC model and the access control policy
instances for the CEI project.

When defining access control policies for specific applications, we typically
encode these policies as universal constraints. In the enhanced RBAC model, the
universal constraints are defined in first-order predicate logic [51]. To encode these
constraints in Protégé, we adopted a Protégé add-on that incorporates a SWRL editor
and a jess rule engine for rule execution [18]. A SWRL rule contains an antecedent
part, which is referred to as the body of the rule, and a consequent part, which is
referred to as the head of the rule. An example of an access control policy from the
CEI project is shown in Fig. 13.6a. Once encoded in SWRL through Protégé, this
rule will be in the format shown in Fig. 13.6b. Here the arguments in the rule, such as
?req and ?course, are directly mapped to the related classes (model elements) in
Protégé and their instances can be easily retrieved by a rule engine for interpretation.
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Fig. 13.6 An example of access policy for CEI (reprinted from [49]); (a) Access policy in first-
order predicate logic, (b) Access policy in Protege SWRL

13.5.3 Interpretation of Access Control Policies

As described in Sect. 13.5.2, access control policies are encoded as SWRL rules.
To interpret these policies, we use the jess engine for rule execution. jess is a rule
engine and scripting environment written in the Java programming language [23]. It
is small, light-weight, and fast. jess is a mature system that has been used to develop
a broad range of applications [42, 59, 85]. It has already been integrated with Protégé
and SWRL [18].

For a specific SWRL rule, the jess engine can map its arguments directly
to the corresponding Protégé classes, retrieve the instances under these classes,
apply the logic of the SWRL rule, and generate new instances (typically user-role
assignments and role-permission assignments) as the consequence of the execution.
With these instances of user-role assignments and role-permission assignments, we
can judge whether a specific user should be assigned to a particular role; we can also
decide whether a specific role should have access to a particular object at certain
stages of workflow with a distinctive operation. This entire process of argument
mapping, rule interpretation, and new instance generation is built together as Protégé
add-ons.

A limitation of SWRL and jess is that they only support monotonic reasoning
and hence cannot delete existing instances in Protégé. This presents a challenge
to interpretation of access control policies when access revocation is required (and
thus need to delete specific instances of role-permission assignments). To address
this issue, we have developed a separate Protégé add-on that is specifically used for
access revocation. This Protégé add-on searches and removes all relevant instances
when interpreting a rule to revoke access permissions.
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13.5.4 Application Layer

The application layer is where the access control policies are applied to specific
cases and scenarios to make decisions on granting or denying access. This layer
includes four major components: (1) a policy enforcement module, (2) an access
portal, (3) an object portal, and (4) an object storage (see Fig. 13.4).

The access portal provides an interface for system users in particular roles. The
policy enforcement module is linked with the policy interpretation layer to make
decisions to grant or to deny access based on users, roles, objects, workflow statuses,
operations, and constraints. The object portal provides a mechanism to generate
new objects and to retire old objects. Once an object is generated, it stays in the
object storage, where the policy enforcement module can search based on criteria
defined in universal constraints. It is important to note that the specific functions and
procedures defined at this layer may differ from application to application.

To apply the enhanced RBAC model to CEI for information access management,
we mapped the components of the enhanced RBAC to specific entities in the CEI
program. These mappings include: (1) training session  ! object, (2) training
center  ! role, (3) employee of a training center  ! user, and (4) stage of a
training session ! workflow status.

Through the access portal and object portal, we imported the CEI program
data for the period between April 1, 2011 and June 30, 2011, including all 409
healthcare organizations, 104 training sessions, 17 users (employees), 6 roles
(training centers), and 44 user-role assignments. These data are transformed as
Protégé instances. Through the policy enforcement module and the execution of the
universal constraints encoded as SWRL rules, we can generate all role-permission
assignments that define the level of access to specific training sessions by particular
training centers in certain stages of training workflow. We report the findings from
an evaluation study in Sect. 13.6.

13.5.5 Demonstration Tool

We have developed a demonstration tool for two purposes: (1) to provide a user
interface to support the management of information access; and (2) to present access
permissions under specific combinations of users, roles, objects, operations, and
workflow statuses.

We implemented this tool as a Java application, with a screenshot shown in
Fig. 13.7. The user interface of the demo tool includes four portions:

Portion A: Lists of all available users, roles, objects, and workflow statuses.
Portion B: Selections of specific users, roles, objects, and workflow statuses for

examinations of information access management.
Portion C: Execution results after applying the access control policies defined in

the enhanced RBAC to the selected users, roles, objects, and workflow statuses.
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Fig. 13.7 A screenshot of the demo tool showing CEI access management (reprinted from [49])

Portion D: Execution traces and system logs.

Items in Portion B are a subset selected from Portion A. Once the items in Portion B
are selected, we can click the “run” button to generate the results in Portion C.
These results include: (1) all validated predicates (relations among users, roles,
objects, operations, workflow statuses, and other entities) defined in the system; (2)
all validated user-role mappings and role-permission mappings; and (3) assignments
of permissions to users under specific roles at particular workflow stages. With these
functions, the demo tool can be effectively used to examine access permissions in
specific cases and scenarios.

13.6 Evaluation of the Enhanced RBAC Model

To examine the effectiveness of the enhanced RBAC model, we describe in
this section an evaluation study to apply the model to CEI in order to manage
information access in a specific context of collaborative processes. This study
provides a first set of quantitative measures on effectiveness of the model, using the
CEI application as a specific example. As shown in Sects. 13.4 and 13.5, the CEI
project has complex requirements for information access management involving
both team collaboration and workflow. It also has a rich set of real-world study
cases that could be used for the evaluation. The CEI project already had in place a
system (CEIAdmin) to manage information access in an ad hoc approach that could
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EnhancedRBAC Model CEIAdmin System

Encode Access Policy Select 9152 Study Cases

9152 cases

Comparison 1
EnhancedRBAC←→CEIAdmin

Comparison 1
EnhancedRBAC←→Gold-Standard

Comparison 2
CEIAdmin←→Gold-Standard

stratified sampling

Select 512 Sample Cases

Develop Gold-Standard

access permissions
for 512 cases

access permissions
for 512 cases

selecting permissionsselecting permissions

Query Permissions

access permissions
for 9152 cases

access permissions
for 512 cases

data/information flow strategy/controltask

512 cases

encoded policy

access permissions
for 9152 cases

Compute Permissions

Fig. 13.8 Overall design of the evaluation study (reprinted from [52], with permission from
Elsevier)

be used as a control. Therefore, using CEI as an application to evaluate the enhanced
RBAC model can provide important insights on its effectiveness.

The overall study design consisted of two sets of comparisons: (1) the access
permissions generated by the enhanced RBAC model vs. those generated by
CEIAdmin, and (2) the access permissions generated by the enhanced RBAC model
vs. a gold-standard. By performing the comparison in (1), we measured the degree
of agreement between these two systems. For comparison (2), we first built a gold-
standard through organizing an expert panel to manually review a selected set of
study cases in order to determine the ideal access permissions (the ground truth) for
each of them. Using these sample cases with the gold-standard access permissions,
we then measured the effectiveness of the enhanced RBAC model (as well as
CEIAdmin). The overall design of the evaluation study is shown in Fig. 13.8.

13.6.1 Selection of Study Cases

To select the study cases, we queried the CEI database on July 1, 2011 and obtained
all onsite training sessions requested between April 1, 2011 and June 30, 2011. As
the CEI project had a quarterly schedule for system upgrades, selection of study
cases from this time period ensured a large enough sample size and, meanwhile,
reduced potential biases due to the different versions of the CEIAdmin system.
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Fig. 13.9 Mappings of CEI Centers, system roles, and users (reprinted from [52], with permission
from Elsevier)

The query generated a total of 104 training sessions requested by 38 healthcare
organizations on 27 training topics in 5 workflow statuses. At the time when
the query was made, CEIAdmin had 17 users, 6 roles, and a total of 44 user-role
assignments, as shown in Fig. 13.9. For each training session, we defined 2 types
of operations, i.e., “read” (review training data) and “write” (document training
information and/or invite other CEI Centers for collaboration) [51]. By combining
these 104 training sessions, 44 user-role assignments, and 2 operations, we created
a total of 9152 (104�44�2) study cases. The profile of these study cases is shown
in Table 13.2. It is important to note that this is a cross-sectional study, as the study
cases were obtained through a system query at a specific time point.
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Table 13.2 The profile of the study cases and the selected sample to build the gold-standard
(reprinted from [52], with permission from Elsevier)

Characteristics of Study Cases Total Cases Sample Cases

User

Abigail 624 7 % 34 7 %

Antonio 208 2 % 12 2 %

David 208 2 % 10 2 %

Dongwen 1248 14 % 70 14 %

Howard 1248 14 % 66 13 %

Hung 1248 14 % 72 14 %

Jayashree 208 2 % 10 2 %

Jennifer 208 2 % 12 2 %

Karen 208 2 % 12 2 %

Mary 208 2 % 10 2 %

Monica 1248 14 % 68 13 %

Paul 208 2 % 14 3 %

Robert 208 2 % 14 3 %

Sunhee 208 2 % 12 2 %

Tanairy 208 2 % 14 3 %

Terry 1248 14 % 70 14 %

Thomas 208 2 % 12 2 %

Total 9152 100 % 512 100 %
Role

CECUP—AMC 1456 16 % 74 14 %

CECUP—ECMC 1456 16 % 54 11 %

CECUP—URMC 1456 16 % 122 24 %

Mental Health Center 1664 18 % 108 21 %

Prevention and Substance Use Center 1664 18 % 76 15 %

Testing, Post-Exposure Prophylaxis, and Diagnosis Center 1456 16 % 78 15 %

Total 9152 100 % 512 100 %
Course/Topic

Acute HIV infection—new frontiers for HIV prevention 176 2 % 16 3 %

Antiretroviral therapy—1 hour 88 1 % 20 4 %

Care of the triply diagnosed 176 2 % 10 2 %

Cognitive behavioral therapies in primary care settings 88 1 % 20 4 %

Cross cultural issues and cultural proficiency in : : : 88 1 % 4 1 %

Hepatitis C and HIV co-infection 88 1 % 2 0 %

HIV and mental health 88 1 % 6 1 %

HIV and women’s health 88 1 % 2 0 %

HIV testing 440 5 % 30 6 %

HIV testing for people with mental illness 88 1 % 2 0 %

Legal ethical issues 88 1 % 6 1 %

Management of alcohol use in HIV patients 88 1 % 8 2 %

Motivational interviewing in primary care settings 176 2 % 38 7 %

Opioid overdose prevention—role of naloxone in : : : 88 1 % 6 1 %

(continued)
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Table 13.2 (continued)

Characteristics of Study Cases Total Cases Sample Cases

Other clinical psychiatric aspects of primary care 352 4 % 32 6 %

Post exposure prophylaxis 264 3 % 8 2 %

Resistance testing 88 1 % 2 0 %

The role of the primary care clinician in HIV care 352 4 % 0 0 %

Topic—adult 4488 49 % 208 41 %

Topic—ethical legal issues 88 1 % 6 1 %

Topic—HIV testing 704 8 % 30 6 %

Topic—mental health 176 2 % 8 2 %

Topic—pediatric 176 2 % 12 2 %

Topic—PEP 88 1 % 12 2 %

Topic—pharmacy 88 1 % 4 1 %

Topic—prevention 88 1 % 0 0 %

Topic—substance use 352 4 % 20 4 %

Total 9152 100 % 512 100 %
Geographical Location

Metropolitan New York City area 1848 20 % 82 16 %

Upstate New York region 7304 80 % 430 84 %

Total 9152 100 % 512 100 %
Workflow Status

Request received 880 10 % 30 6 %

Arrangement pending 528 6 % 88 17 %

Training scheduled 5896 64 % 342 67 %

Training completed 1760 19 % 48 9 %

Unable to arrange 88 1 % 4 1 %

Total 9152 100 % 512 100 %
Operation

Read 4576 50 % 256 50 %

Write 4576 50 % 256 50 %

Total 9152 100 % 512 100 %

13.6.2 Access Permissions Computed with the Enhanced
RBAC Model and the CEIAdmin System

To compute access permissions with the enhanced RBAC model, we first used the
Protégé tool [71] to encode the model, with the universal constraints defined in
SWRL [66]. We then imported the 9152 study cases as ontology instances. We
leveraged an existing Protégé add-on with an external Jess package [23] to interpret
the encoded constraints and to determine whether access permissions should be
granted to specific study cases. By the end of this process, we were able to make a
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decision based on the enhanced RBAC model with each study case either to grant
or to deny access. The technical details of the implementation can be found in
Sect. 13.5.

For the CEIAdmin system, if a specific user in a particular role logged in, the
hard-coded logic would be triggered and the training sessions to which this user had
access should be presented on the screen [51]. Thus, by capturing the data on the
screen for each user-role assignment, we were able to obtain all the study cases with
which access were granted to this specific user-role pair. Once these positive cases
(access granted) were identified, we sifted them out from the entire case pool to
identify the remaining (negative) cases, with which access permissions were denied
by the CEIAdmin.

13.6.3 Comparison Between the Enhanced RBAC Model
and the CEIAdmin System

Since the CEIAdmin system has already been in production use, we can assume it
is reasonably good to determine access permissions for specific training sessions.
Thus, by comparing the results computed from the enhanced RBAC model and
CEIAdmin, we can indirectly measure the effectiveness of the enhanced RBAC
using CEIAdmin as a benchmark. For this purpose, we compared the two systems
based on: (1) only the “read” operation, (2) only the “write” operation, and (3)
both the “read” and “write” operations. For each comparison, we calculated the
kappa value to measure the degree of agreement [24]. An interesting phenomenon
for the CEI project is that the “write” permission is embedded within the “read”
permission (i.e., a role always has the “read” permission if it already has the
“write” permission). Therefore, the access permission for a specific training
session can be redefined as three mutually exclusive outcomes: “no” access,
“read-only” access, and “read+write” access. To measure the degree of
agreement based on this formulation of outcomes, we transformed the results from
the previous computation and recalculated the kappa value. This analysis with the
triple outcomes provided a more accurate comparison between the enhanced RBAC
and CEIAdmin.

13.6.4 Development of the Gold-Standard

Simply comparing the enhanced RBAC model with the CEIAdmin system cannot
provide a complete measurement on its effectiveness. For example, even if the
two systems agree with each other on a specific case, it is still possible that both
systems are wrong (although this chance is low if we assume that the effectiveness
of CEIAdmin is reasonably good). In order to have an objective measurement on
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system effectiveness, we need to have a gold-standard with correct answers on
access permissions for a specific study case. Following the common practice in
developing gold-standards for evaluation of information systems [24], we organized
a panel with four domain experts, who participated in design of the CEIAdmin
system and were directly involved in daily management of the CEI project, to review
study cases and to develop standard (correct) answers. We then used the standard
answer for each case as the reference to measure the effectiveness of the enhanced
RBAC model and the CEIAdmin system.

Since it was impractical to manually review all the 9152 study cases, we decided
to first obtain a representative sample from the case pool and then to build the gold-
standard based on this sample. The results from the previous comparisons between
the enhanced RBAC and CEIAdmin provided important information to guide the
sampling process. Specifically, for those “matched” study cases (i.e., the enhanced
RBAC and CEIAdmin had a consistent decision on granting or denying access),
the chances that both systems were wrong should be relatively low; for those
“unmatched” study cases (i.e., the enhanced RBAC and CEIAdmin had different
decisions on granting or denying access), at least one of the systems should be
wrong. Therefore, we would need to pay more attention to those “unmatched” cases
when performing manual review to build the gold-standard.

For this reason, we decided to divide the study cases into the “matched” stratum
and the “unmatched” stratum. We then used a stratified random sampling technique
to sample the two strata separately, with a higher sampling rate for the “unmatched”
stratum such that a larger proportion of the “unmatched” cases could be manually
reviewed. We determined a sampling rate of 5 % for the “matched” stratum and
a sampling rate of 20 % for the “unmatched” stratum, with a total of 278 study
cases obtained. In this way we mitigated the imbalance between the two strata, and
meanwhile controlled the total number of sample cases so to ensure the feasibility
to manually review all of them.

As we planned to use an expert panel to review the sample cases and to develop
the gold-standard, it would be more intuitive and efficient for the expert judges
to review the “read” and “write” permissions together for a specific training
request, rather than asking them to check only the “read” or only the “write”
access (we called the two study cases “complementary” to each other if they
had the same user, role, training session, and workflow status but different access
operations). Thus, we decided to include into the sample additional study cases if
their complementary cases had already been selected. By the end of the sampling
process, we had a total of 512 study cases. The profile of this sample is shown in
Table 13.2.

To control potential biases, we used a partial factorial design and a blocked
randomization technique to assign study cases to each judge such that: (1) a
study case was randomly assigned to a judge, (2) each case was reviewed by
two judges, and (3) each judge reviewed half of the sample cases. For each study
case in the sample, a judge first determined whether access should be granted; if
so, he/she needed to decide whether it should be a “read-only” access or a
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Table 13.3 Assignment of sample cases to judges and results from the
first round reviewa

DW MB TD XHL Total

DW – 90 (79) 88 (87) 82 (81) 260 (247)

MB 90 (79) – 88 (77) 82 (82) 260 (238)

TD 88 (87) 88 (77) – 82 (81) 258 (245)

XHL 82 (81) 82 (82) 82 (81) – 246 (244)

Total 260 (247) 260 (238) 258 (245) 246 (244) 1024 (974)
aDW, MB, TD, and XHL are the judges. For each cell, the first number
is the cases assigned to the two judges and the second number in
parenthesis is the cases with consistent results from the first round of
review by the two judges. Table reprinted from [52], with permission
from Elsevier

“read+write” access. Each judge independently made these decisions for all
study cases assigned to him/her. During this process, all judges except the one
who managed the study data were blinded to the execution results generated by
the enhanced RBAC and CEIAdmin. Out of the 1024 (512�2) cases, the judges
had achieved initial consensus on 974 (95 %). For the remaining 50 cases with
discrepancy in judge opinions, the related judges sit down together, reviewed the
cases, and made new decisions until consensus were reached. The assignment of
sample cases to judges and the results from the first round review are presented
in Table 13.3. Figure 13.10 is a screenshot of the online tool that was used by the
judges in order to make decisions on specific study cases to build the gold-standard.

13.6.5 Measuring Effectiveness Based on Gold-Standard

To measure the effectiveness of the enhanced RBAC model when applied to the
sample cases, we first formulated a 3�3 table to compare it with the gold-standard
based on the previously described three outcomes (“no” access, “read-only”
access, and “read+write” access).

By cutting the results between the “no” access and the other two outcomes, we
were able to evaluate the effectiveness of the enhanced RBAC model on “read”
operation; by cutting the results between the “read+write” access and the other
two outcomes, we were able to evaluate the effectiveness of the enhanced RBAC
model on “write” operation. By adding up the outcomes for both the “read”
and “write” operations, we were able to evaluate the overall effectiveness of the
enhanced RBAC model.

For each comparison, we calculated sensitivity, specificity, and accuracy as the
specific measures. Here sensitivity is the proportion of actual positives (access
granted as indicated by the gold-standard) that are correctly identified by the
enhanced RBAC model; specificity is the proportion of actual negatives (access
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Fig. 13.10 A screenshot of
the online tool used by the
judges to build the
gold-standard (reprinted from
[52], with permission from
Elsevier)
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denied as indicated by the gold-standard) that are correctly identified by the
enhanced RBAC model; accuracy is the proportion of actual positives or negatives
(as indicated by the gold-standard) that are correctly identified by the enhanced
RBAC model. As a comparison, we performed the same set of measurements on
CEIAdmin. For all analyses in this study, we used the SPSS statistical package [36].
We report the detailed results in the next section.

13.6.6 Results

When formulated with three outcomes (“no” access, “read-only” access, and
“read+write” access), the enhanced RBAC model and the CEIAdmin system
agreed on 4230 out of the 4576 study cases. With a kappa value of 0.80 (95 % CI:
0.78–0.82), these two systems demonstrated a high level of agreement. When for-
mulated with two outcomes (granting or denying access), the two systems agreed on
4399 cases for the “read” operation (kappaD 0.89, 95 % CI: 0.88–0.91) and 4400
cases for the “write”operation (kappaD 0.88, 95 % CI: 0.86–0.90). Combining
both, the two systems agreed on 8799 out of the total 9152 cases (kappaD 0.89,
95 % CI: 0.88–0.90). These comparisons have shown that the enhanced RBAC
model has achieved a high level of agreement with CEIAdmin. The detailed results
are reported in Table 13.4.

When evaluated against the gold-standard, the enhanced RBAC model had a
correct answer for 251 out of the 256 cases when the results were formulated with
three outcomes (accuracy D 98 %, 95 % CI: 97–100 %). When transformed into
two outcomes and measured by the “read” operation, the enhanced RBAC model
achieved a sensitivity of 97 % (95 % CI: 94–99 %), a specificity of 100 % (95 %
CI: 100–100 %), and an accuracy of 98 % (95 % CI: 96–100 %). Based on two
outcomes and measured by the “write” operation, the enhanced RBAC model
achieved a sensitivity of 100 % (95 % CI: 100–100 %), a specificity of 100 % (95 %
CI: 100–100 %), and an accuracy of 100 % (95 % CI: 100–100 %). Combining both,
the enhanced RBAC model achieved a sensitivity of 98 % (95 % CI: 96–100 %),
a specificity of 100 % (95 % CI: 100–100 %), and an accuracy of 99 % (95 %
CI: 98–100 %). As a comparison, we performed the same set of measurements
on CEIAdmin. The results have shown that the CEIAdmin system had an overall
accuracy of 76 % (95 % CI: 70–81 %) when the results were formulated with three
outcomes. It achieved sensitivities at the level of 100 %, specificities in the range of
61–97 %, and accuracies in the range of 76–99 % when the results were formulated
with two outcomes. A complete report of the results is shown in Table 13.5.
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Table 13.4 Comparison between the enhanced RBAC model and the CEIAdmin system

Comparison with three outcomes
kappa D 0:80 (95 % CI: 0.78–0.82)

CEIAdmin system
ReadC write Read only No Total

Enhanced RBAC model ReadC write 820 0 0 820

Read only 169 15 0 184

No 7 D170 3395 3572

Total 996 185 3395 4576

Comparison with two outcomes “read” operation
kappa D 0:89 (95 % CI: 0.88–0.91)

CEIAdmin system

Yes No Total
Enhanced RBAC model Yes 1004 0 1004

No 177 3395 3572

Total 1181 3395 4576

Comparison with two outcomes “write” operation
kappa D 0:88 (95 % CI: 0.86–0.90)

CEIAdmin system

Yes No Total
Enhanced RBAC model Yes 820 0 820

No 176 3580 3756

Total 996 3580 4576

Comparison with two outcomes all operations
kappa D 0:89 (95 % CI: 0.88–0.90)

CEIAdmin system

Yes No Total
Enhanced RBAC model Yes 1824 0 1824

No 353 6975 7328

Total 2177 6975 9152

D: we performed discrepancy analyses based on each category of cases (see Sect. 13.7.3). Table
reprinted from [52], with permission from Elsevier

13.7 Discussion

13.7.1 Features of the Enhanced RBAC Model

Access control has been applied to many applications in healthcare settings [7, 13,
28, 44, 50, 56, 60, 68, 75, 79]. Since confidentiality of clinical information is an
essential requirement, most of the previous work focused on applications for patient
care. In the context of clinical education, controlling access to specific information
was not a primary concern by tradition. However, as we are moving toward a system-
wide and team-based approach to providing clinical education [78, 84], more and
more training programs are involving multiple collaborative parties and complex
training workflows. The CEI project is a perfect example. To our knowledge, this
work is the first application of an information access control model to clinical
education. The case study on the CEI project has provided us important insights
in designing an information access control model that can be generalized to various
applications for clinical education, biomedical research, and patient care, which will
be the direction for our future research.
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Access control is typically utilized to protect certain information, and thus is
more frequently implemented to limit information access. In the case of CEI,
facilitation of team coordination and collaboration was a primary goal. Therefore
we used access control not only to limit access to information (i.e., to sift out
requests beyond the catchment area of a specific CEI Center) but also to enable
access to information to facilitate collaboration (i.e., to review the progress of
training workflow documented by a collaborating CEI Center). Implementing
access management in the context of team coordination and collaboration for both
facilitation and control of information access is another contribution of this work.

To manage information access in a collaborative environment, we identified
unique concepts, such as bridging entity and contributing attribute, and incorporated
them into the model as specific types of universal constraints. From the CEI project,
we have developed geographical constraints, training topic constraints, and training
format constraints to model specific types of contributing attributes. Obviously
additional types of universal constraints can and will be identified from other
applications. Certain types of universal constraints (such as the ones we identified
from the CEI project) can be applied to similar applications. As a long term goal,
we plan to assemble the constraint sets identified from various application scenarios
to formulate a UNIversal Constraint ONtology (UNICON), which can be utilized as
a knowledge base to drive information access management in a variety of situations.

To incorporate workflow context into the modeling of access control, we selected
to expand the core RBAC definition of access permission to include workflow status.
Consequently, the enhanced RBAC is expressive in defining the workflow context
for access permission. For example, the CEI project requires that access delegation
can only happen in later stages of the workflow (“training-scheduled”
and “training-completed”). This workflow context-specific requirement on
access management can be easily specified with the enhanced RBAC model. On the
other hand, including workflow status as another dimension in the definition of
access permission introduces complexity in the specification of permissions and
constraints. A potential solution to balance the expressiveness and simplicity is to
allow the access permissions to carry over forward by default when the workflow is
changing, and meanwhile using new constraints to overwrite the default permissions
when necessary. We used this concept to define the access permissions for the CEI
project. Future research needs to focus on identifying general methods or strategies
to address this challenge.

The access delegation in the enhanced RBAC model is unique in that it targets
on access permissions for only specific objects. This feature provides flexibility to
enable information sharing in a collaborative environment and meanwhile limits
the access to only those objects that are relevant to the collaboration. Thus, it has
balanced nicely between flexibility and need-based access. Previous research of
access delegation under RBAC focused on study of the relationship between users
and roles [90, 91]. Our work for the first time modelled the relationship between
roles and objects in access delegation. For example, when CECUP invites MHC
to collaborate on training request “1090”, access delegation is limited to only this
specific request; in comparison, other methods will require to grant MHC access
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permission to all CECUP’s data. Therefore, the enhanced RBAC can achieve better
security and effectiveness in information access management. It is important to note
that an access control model only provides a means to define access policies. In order
to take full advantage of the enhanced RBAC model, we need to leverage its capacity
and configure a set of access policies that fit best with the domain requirements.

13.7.2 System Framework for Implementation

Several layered approaches to implement access control policies have been reported
in the literature [26, 50, 65, 67]. For example, the implementation of the eXten-
sible Access Control Markup Language (XACML) [65] was based on a series
of function modules/points such as Policy Administration Point (PAP), Policy
Decision Point (PDP), Policy Enforcement Point (PEP), and Policy Information
Point (PIP). However, the early versions of XACML did not provide native support
to RBAC [21]. Even the specialized XACML profiles were not able to support
many relevant constraints. To address this issue, there was a previous exploration
to introduce XACMLCOWL, a framework that integrates OWL ontologies and
XACML policies, to support RBAC.

In our implementation of the enhanced RBAC, the system framework and its
functional layers can be mapped to many functional modules in XACML implemen-
tation. Specific mappings include: the Protégé environment in the enhanced RBAC
is functioning as PAP; the jess engine and revocation add-on are functioning as PDP;
the policy enforcement module in Application Layer is functioning as PEP; and the
Access Portal and Object Portal in Application Layer are functioning as PIP.

Beyond the standard XACML implementation, we have defined unique struc-
tures in the enhanced RBAC system framework. These structures include: (1) an
external workflow engine to manage workflow context; (2) a three-level schema for
definition of access control policies to differentiate the core RBAC, the extension of
RBAC, and the policy instances; and (3) specific entities and relations defined for
particular applications, which are processed through the Context Handler.

The mappings between the functional components of the enhanced RBAC system
framework and the standard XACML implementation are shown in Fig. 13.11.
Here the integration with an external workflow engine in (1) can support access
management in specific context of workflow, which is an enhancement of the core
RBAC model. The three-level schema for definition of access control policy in
(2) can facilitate the continuous development of the enhanced RBAC model. The
application-specific entities and relations defined in (3) can custom-tailor the system
framework to particular domain applications for effective implementation of access
control policies. These features define the unique contributions of this work.

In the prototype implementation of the enhanced RBAC model for the CEI
project, we enumerated all possibilities for a request (training topic, agency location,
training format, and workflow status) when defining the access control policies.
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Fig. 13.11 Mapping the enhanced RBAC framework to XACML (reprinted from [49])

Therefore, for any request there was always a policy applicable. In this way, we
guaranteed the completeness of the policies. In addition, we followed the convention
to define policies only to grant access, with a default behavior to deny access if no
policy was applicable. Meanwhile, we implemented a separate function to remove
a previously granted access after it was revoked [49]. In this way, we ensured
the soundness of the policies. Currently, we do not have tools to automatically
detect and resolve potential policy conflicts. Others have already developed a few
techniques to address this issue [4, 9, 22, 82]. This could be another direction for
our future exploration.

13.7.3 Evaluation

13.7.3.1 Overall Approach

The overall strategy of the conducted evaluation study was situated on two sets
of measurements: (1) agreement between the enhanced RBAC model and the
CEIAdmin system, and (2) effectiveness of the enhanced RBAC model when
evaluated against a gold-standard.
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For the first set of measurements, since they could be performed on results
automatically generated by systems, we could afford to use a very large sample. In
this study, we used all 9152 study cases obtained from a period of 3 months. For the
second set of measurement, we were limited by the capacity to build a gold-standard
(usually through expert panel review) [24] and therefore the sample size had to be
smaller. In this study, we selected a sample of 512 cases, which was sufficient but
the statistical power was not at the same level as the first set comparisons.

In terms of the potential issues identified from these measurements, the first set
of comparisons could find out the differences between the two systems, while the
second set of measurements could pinpoint the specific causes of these differences
and recognize the problems that were common to both systems. By combining these
two sets of measures, we were able to perform an effective and powerful evaluation.
To our knowledge, this is the first evaluation study that has provided empirical
evidence on effectiveness of an access control system through benchmark measures
of sensitivity and specificity, and degree of agreements with a control system. We
have used a similar strategy in study design for other projects and successfully
performed evaluations on different information models [86, 87]. We believe that
this method can be generalized to additional domains and applications.

13.7.3.2 Error Analyses

As shown in Table 13.5, neither the enhanced RBAC model nor the CEIAdmin sys-
tem was perfect when evaluated against the gold-standard. To assess the problems
identified from the evaluation, we performed error analyses on the cases in Category
A, B, and C (see Table 13.5).

Here Category A was the false negative of the enhanced RBAC model (access
wrongly denied when “read” should be granted); Category B was the false positive
of the CEIAdmin system (“read+write” wrongly granted when access should be
denied); and Category C was another type of error of CEIAdmin (“readCwrite”
access wrongly granted when “read-only” should be granted). The results have
shown that:

1. The error for the 5 cases in Category A was caused by a mistake in preparing
invitation data for the study cases to feed the enhanced RBAC model.

2. The error for the 3 cases in Category B was caused by adding/deleting data
directly by a system administrator to/from the CEIAdmin database, which
interfered with CEIAdmin’s hard-coded logic for access management.

3. The error for the 59 cases in Category C was caused by an administrative decision
in developing CEIAdmin to allow a CEI Center staff to retrospectively document
call-back information in an earlier workflow status of a training session, which
led to two different workflow statuses for the same training session under specific
scenarios.

In addition to error analyses, we reviewed the discrepancies between the enhanced
RBAC model and the CEIAdmin system (see Table 13.4) and identified another
system error from the 170 cases in Category D, different from any of the previous
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situations. This error was caused by a minor inconsistency in definition of objects
(training requests) between the enhanced RBAC model and the CEIAdmin system.
Specifically, when a healthcare organization requested multiple training sessions at
the same time, CEIAdmin allowed staff from a specific CEI Center to have access to
all related training sessions as long as this CEI Center was involved in collaborative
training for one of them (Policy #5 in Fig. 13.10). When specifying the access
policies for the enhanced RBAC model, however, we only defined a single training
session as the basic unit of an access object, and thus the encoded policies did not
cover the situation when multiple training sessions were bundled together.

As shown in the results, there were 62 error cases for CEIAdmin (3 in Category
B and 59 in Category C) but only 5 for the enhanced RBAC model (in Category A).
Therefore, the overall accuracy of the enhanced RBAC model was much higher than
CEIAdmin (98 % vs. 76 %). It was interesting to note that a simple administrative
decision (leading to Category C error of CEIAdmin) and a walk-around solution to
address data issues (leading to Category B error of CEIAdmin) could significantly
impact the effectiveness in access management. Here the error in Category A could
be corrected through data reformulation. The error in Category B was a rare (but
possible) situation of a real world application (such as CEIAdmin), which we would
not be able to prevent completely. The error in Category C could be addressed by
disallowing retrospective documentation or through a refinement of access object.
The error in Category D could be resolved by including additional access policies
into the enhanced RBAC model.

13.7.3.3 Qualitative Measures

Beyond the quantitative measures on effectiveness, there are many other aspects in
the evaluation of an access control system. Here we discuss the enhanced RBAC
model with regard to a selected set of related qualitative measures based on the
guidelines proposed by Hu et al. [34, 35]. Specifically, the enhanced RBAC model
supports the following features:

1. Auditing of access through logs of all granted and denied requests [49, 51].
2. Easy discovery of access privileges and capabilities with any combination of

users, roles, objects, and workflow statuses through a demonstration tool [49].
3. Easy privilege assignments with the Protégé tool through policy encoding and

role definition [49, 51, 71].
4. Syntactic and semantic specification of access control rules through the use of

SWRL [49, 80].
5. Enforcement of least privilege principle through precisely defined access rights

in collaborative workflow [51].
6. Separation of duty through roles, workflow contexts, universal constraints [51].
7. Resolving conflict of access policies through the external Jess package [37, 49].
8. Awareness of situation through workflow status and enforcement of access

policies in these situations [51].
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9. Standard expression of access policies through XACML [51].
10. Good system performance on response time, policy deposit/retrieval, and

integration with user authentication [49].
11. Capacity of policy import and export through Protégé [49, 51, 71].
12. Availability of graphical user interface and system APIs for both the Protégé

and the demonstration tool [49, 71].
13. Verification of compliance with access policies in specific scenarios through the

enhanced RBAC system framework and the associated tools [49, 51].

Currently, the enhanced RBAC model does not support multiple granularities in
definition of objects. This is an area we would like to explore as a next step.

13.7.4 Limitations

A major limitation in the development of the enhanced RBAC model is that it
was derived from a specific application for clinical education. Its generalizability,
therefore, needs to be further examined in other applications and scenarios. For
example, when managing information access in collaborative clinical workflow, the
information access might be unpredictable but the needs to access certain patient
information are immediate. To address this requirement, we can apply the enhanced
RBAC model to define a policy to grant access (of patient records) to all clinicians
in the same clinical unit. Depending on application requirements, we can make this
policy more stringent (for example, requiring only those clinicians on duty can
have access); or we can relax this policy to allow inviting experts from another
clinical unit to consult on a patient case through access delegation. Apparently, the
effectiveness of these policies needs to be evaluated in real world applications in
order to identify the best that fits with domain requirements.

In this chapter, we only discussed the enhanced RBAC model for anterior control
of information access. Another category of its use is for posterior auditing of
information systems to identify incompliances with access policies. Since auditing
is a common practice in clinical information systems, this could potentially be an
important application for the enhanced RBAC model.

The evaluation study was based on a cross-sectional design and we did not
follow up individual training sessions through the training process. Performing
such a longitudinal study would require integration of the enhanced RBAC model
with a workflow engine, which could be a future direction for our research.
Nevertheless, our cross-sectional study included cases in all five workflow statuses
(see Table 13.2). We therefore believe that the enhanced RBAC model should still
be valid for the entire training process if we perform a longitudinal study, although
specific measurements are required to confirm this projection.

When developing the gold-standard for the evaluation, the investigators served as
the judges, which might introduce assessment bias [24]. Since the judges should be
the domain experts who understand the information resources under evaluation [24],
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we could not completely prevent this possibility. To reduce potential assessment
bias, we blinded the system execution results from three of the four judges, and
required each study case to be independently reviewed by two judges until a
consensus was reached. In addition, we used CEIAdmin, which was developed
by the same group of investigators, as a control in the evaluation. We therefore
believe that the potential assessment bias was, if not completely prevented, well
under control.

13.8 Conclusion

We have enhanced the RBAC model through: (1) formulating universal constraints,
(2) defining bridging entities and contributing attributes, (3) extending access
permission to include workflow context, (4) synthesizing a role-based access
delegation model to target on specific objects, and (5) developing domain ontologies
as instantiations of the general model to specific applications.

Based on this enhanced RBAC model, we have developed a system framework to
implement policies for information access management in collaborative processes.
We have successfully applied the enhanced RBAC model and the system framework
to the CEI project to address the specific needs on information access management
in the combined context of team collaboration and workflow.

An initial evaluation through comparison with a control system has shown a
high level of agreement. When evaluated against a gold-standard, the enhanced
RBAC model has achieved a very good measure on sensitivity and a perfect score
on specificity. These initial results indicate that the enhanced RBAC model can be
effectively used to manage information access in collaborative processes.

Future research is required to incrementally develop additional types of universal
constraints, to further investigate how the workflow context and access delegation
can be enriched to support the various needs on information access management in
collaborative processes, to extend the system framework to support the continuous
development of the enhanced RBAC model, to perform longitudinal evaluation
studies, and to examine the generalizability of the enhanced RBAC model for other
applications in clinical education, biomedical research, and patient care.
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Chapter 14
Automating Consent Management Lifecycle
for Electronic Healthcare Systems

Muhammad Rizwan Asghar and Giovanni Russello

Abstract The notion of patient’s consent plays a major role in granting access
to medical data. In typical healthcare systems, consent is captured by a form that
the patient has to fill-in and sign. In e-Health systems, the paper-form consent is
being replaced by access control mechanisms that regulate access to medical data,
while taking into account electronic content. This helps in empowering the patient
with the capability of granting and revoking consent in a more effective manner.
However, the process of granting and revoking consent greatly varies according to
the situation in which the patient is. Our main argument is that such a level of detail
is very difficult and error-prone to capture as a set of authorisation policies. In this
chapter, we present ACTORS (Automatic Creation and lifecycle managemenT Of
authoRisation policieS), a goal-driven approach to manage consent. The main idea
behind ACTORS is to leverage the goal-driven approach of Teleo-Reactive (TR)
programming for managing consent that takes into account changes regarding the
domains and contexts in which the patient is providing her consent.

14.1 Introduction

Healthcare information refers to any data containing information about an individ-
ual’s health conditions. As it contains sensitive personal information, its improper
disclosure may influence several aspects of an individual’s life. Today, medical data
is massively being converted into electronic format. Individuals’ medical data can be
now easily accessible to a very large number of health-care professionals. Although
this is done with the best of intentions to improve the processing and streamline
healthcare delivery, it also poses very concrete threats to the individual’s privacy.

This chapter extends our work that appeared in the Proceedings of POLICY 2012 [3].
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Since the medical information of an individual is confidential, the only basis for
accessing it is through that individual’s consent. In traditional healthcare systems,
an individual provided her consent by signing a paper form. In these settings,
withdrawing consent was very difficult for an individual because she had to go
through complicated bureaucratic processes. Moreover, the granularity of consent
was very coarse-grained. The individual agreed in providing consent in advance for
all her medical data, thus violating the principle of least privilege [36]—a principle
that advocates for providing only legitimate access to requested resources for a
limited time necessary to complete the job.

Policy-based authorisation mechanisms have successfully been used in managing
access rights given the flexibility and re-usability that they offer. In literature, several
approaches have been realised where the notion of consent is integrated with the
policy decision mechanism. For instance, Russello et al. [35] propose to capture
the notion of consent through the use of medical workflow and to integrate it with
Ponder2 authorisation policies [41]. Ponder2 authorisation policies are represented
as a (S, A, T) tuple, meaning a subject S can take action A on target T. For instance,
a nurse (S) can read (A) patients’ records (T). Wuyts et al. [43] have extended
the eXtensible Access Control Markup Language (XACML) [30] authorisation
model with the notion of consent. XACML is an eXtensible Markup Language
(XML)-based language designed for specifying fine-grained access control. It is a
standard ratified by the Organisation for the Advancement of Structured Information
Standards (OASIS). XACML policies are expressed as a set of rules for regulating
access to the resources. A XACML request, containing necessary information in
making authorisation decision, is evaluated against XACML policies.

To specify a set of authorisation policies that capture all the details required to
enforce correctly an individual’s decisions about consent is very complex. First of
all, each authorisation policy has conditions to express when it should be enforced
that might be in conflict with other policies. Although work has been done to address
the problem of automatically resolving conflicts [34], it is not possible to completely
automate the decision since in the specific case of the healthcare scenario, humans
are also involved. To complicate matters further, contextual information needs to be
captured to identify the purpose of the access being requested. If these details are
not captured correctly in the policy specification by the security administrator then
there may be serious consequences.

For instance, the way in which an individual wants to provide and revoke her
consent differs according to the caregivers that she is interacting with. With her
General Practitioner (GP), a patient typically establishes a lasting relationship;
therefore, consent can be given for a long time. On the other hand, when she is
visiting a specialist in a hospital, she wants to give consent only for the time the
treatment will last and only for the data that is required for the specific treatment.
Still, another different situation is in the case of an emergency where the paramedics
have to provide first care before reaching the emergency room. In this case, consent
can be given to the medical data however for the short period of time required to
reach the hospital.
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From the above scenario, it emerges that specifying in one single policy set all
the requirements for managing consent is a very error-prone task. Moreover, as
argued in [39] users are not engaging with their privacy tools and often prefer to
ignore them. In the light of this, in this chapter we propose ACTORS (Automatic
Creation and lifecycle managemenT Of authoRisation policieS), where a goal-
driven approach is used to glue together and manage authorisation policies that have
a common aim, that is the handling of consent in a specific context (i.e., consent for
the GP, for the specialist, and paramedics). In particular, our observation is that we
can simplify the specification of authorisation policies when these are treated as
a program sequence towards a specific goal. The main contribution and novelty
of our approach is to propose the idea of using Teleo-Reactive (TR) programs
to glue together authorisation policies aiming at a specific goal. The idea of TR
programs was introduced by Nilsson [28]. The main advantage of TR programs is
that the way in which they are specified is very natural for humans. Therefore, a
security administrator can capture more naturally the security requirements in a TR
sequence.

The rest of this chapter is organised as follows. In Sect. 14.2, we discuss the legal
aspect related to consent and set some of the terminology that will be used in the
rest of this chapter. Section 14.3 describes an overview of a case study that we use to
demonstrate the feasibility of our approach. Next, we provide a brief overview of TR
Policies in Sect. 14.4. In Sect. 14.5, we present our proposed approach. In Sect. 14.6,
we show how the case study scenarios can be modelled using the proposed approach.
Related approaches are reviewed in Sect. 14.7. Finally, we conclude and indicate
some directions for future work in Sect. 14.8.

14.2 Legal Background

In this section, we will discuss some of legal frameworks related to data privacy
and consent. This is not intended to be an exhaustive discussion on all the legal
frameworks out there. On the other hand, we feel it is necessary to put within the
law perspective the technical discussion that will follow in this chapter.

14.2.1 Legal Framework for Consent

When dealing with people’s data, the most developed countries have established
legal frameworks to provide individuals with rights to allow them to make decisions
regarding collection, use and disclosure of personal data. As discussed in [39], this
approach can be considered as a “privacy self-management” and relies entirely on
the user to take decisions and actions to either protect or disclose her data.
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In the last 25 years, to deal with the growing demand and new capabilities for data
collection and aggregation, a significant number of new laws have been proposed
and passed in the U.S.; these include Organisation for Economic Co-operation
and Development (OECD) Privacy Guidelines in 1980, the Asia-Pacific Economic
Cooperation (APEC) Privacy Framework in 2004, and more recently in 2012 the
Federal Trade Commission (FTC) and the White House issued major new frame-
works for protecting privacy. All these efforts have in common a set of principles for
protecting privacy that was first proposed in the Fair Information Practice Principles
(FIPPs) as a report by the U.S. Department of Health, Education, and Welfare in
1973 [33]. The FIPPs include several guidelines such as (1) transparency of the
record system of personal data; (2) the right to notice; (3) the right to prevent the
use of personal data for new purposes without consent; (4) the right to correct/amend
one’s record; and (5) responsibility of the data holder for protecting data from
misuse.

The privacy law framework in Canada is also based on the OECD Guidelines
proposed in 1980 and relies on consent for collection, use and disclosure of personal
data. However, as discussed in [20], Canada’s legislation on data handling and
processing makes a clear separation on role of consent between public and private
sectors. In particular, in the public sector, consent is seen as a justification whether
in the private sector consent is a requirement for collecting, using and disclosing
data. The Australian Privacy Act provides general guidelines for collecting and
processing personal data that are also based on consent. However, for larger
commercial entities (with annual income greater than three million AUD), there
is also an extra burden to destroy personal data once it has been used as intended
at collection time. For instance, if a customer’s address was collected because of
the delivery of goods, once the goods are delivered then the information should be
destroyed. New Zealand has a more relaxed approach when it comes to collection of
data for commercial purpose. For instance, an entity can collect information about
an individual as long as the individual has been informed about the collection and
the purpose for which the data has been collected. More interestingly, an entity
does not need to inform again an individual if the same type of data is collected
again after the person has been correctly informed the first time. However, in New
Zealand, user consent for collecting, using, and disclosing personal data is required
in specific sectors related to healthcare, telecommunications and credit records.

Compared to the frameworks of the countries above, the EU directives have a
more paternalistic approach when it comes to data processing, as discussed in [37].
According to article 2(h) of the EU Data Protection Direction (DPD) [12], consent
is defined as: “the data subject’s consent shall mean any freely given specific and
informed indication of his wishes by which a data subject signifies his agreement
to personal data relating to him being processed”, where the term data subject
describes an individual whose data is handled and data controller indicates any
entity that handles personal data.

The EU law framework also supports the concept of privacy self-management.
According to article 7 (a) of the EU Data Protection Direction [12], a data subject’s
personal data may only be processed if she has given her consent. However,
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the way in which a data handler seeks the data subject’s consent is much more
regulated. Furthermore, data processing in the EU is always controlled through a
legal framework; whereas, in the U.S., data processing is always granted by default
unless explicitly forbidden by the law.

14.2.2 Consent in Healthcare Systems

In the context of healthcare systems, consent indicates agreement of the patient on
sharing her personal health information [32]. In traditional healthcare systems, a
data subject provides her paper-based consent typically once she is enrolled within
the system. Generally, the paper-based consent is considered valid once signed
by the data subject. Unfortunately, there are two main problems with the paper-
based consent. First, it becomes very cumbersome for the data subject to withdraw
her paper-based consent. That is, she has to go through complicated bureaucratic
processes where she has to call on the responsible authority to withdraw her consent
with some considerable effort, waste of time and a huge sense of frustration. Second,
a data subject provides her consent in advance for all her medical data at the time
of registration with the healthcare system even when it may not be necessarily used,
thus violating the principle of least privilege.

With the introduction of electronic healthcare systems, we have moved from the
paper-based consent to the electronic consent, or e-consent in short. e-consent has
been established as a new industry standard [26] and aims at replacing the traditional
paper-based control, thus providing more control to patients for controlling the way
they share their Electronic Health Records (EHR).

In current IT healthcare systems, the notion of e-consent is captured as autho-
risation policies that control the access to the data, such as in [35]. Technically,
the creation or editing of these authorisation policies is delegated to an IT security
administrator. The security administrator operates on behalf of the data subject to
deploy policies in the IT infrastructure of the data controller. In some countries,
specific legislation may require the digital consent to be digitally signed by the data
subject to be considered equivalent to the manually signed paper-based consent [7].

Using the classification proposed in [5], it is possible to identify the following
essential elements of e-consent:

Requester: An entity to whom the authorisation is provided. It could be a person,
a role or even an organisation.

Actions: These are the set of rights that are authorised by the consent.
Purpose: A purpose is a reason for which the authorisation is given.
Validity: It is a time period in which the authorisation is applicable.
Revocation: This is a feature of consent using which one can revoke her consent.
Delegation: Delegation is an authority given to someone who can manage

consent on behalf of someone else.
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In the following discussion, we will use the term consent to indicate in general
electronic consent. We can identify two categories of consent [6, 32]: implicit and
explicit consent. Implicit (a.k.a. implied) consent is one that is inferred from the
actions. Explicit consent is one that is given explicitly. There is another type of
consent called informed consent. In the context of healthcare systems, informed
consent requires patients to be informed about what they are going to agree with.
In [6], Coiera and Clarke list the following four forms of consent:

1. General Consent: This is one time consent given by a patient to any medical
professional, for any purpose and valid as long as it is not revoked by the patient.
This form ensures ease of use but might hamper protection due to open access.

2. General Consent with Specific Denials: The patient provides a general consent
except some specific conditions that could be based on expressive policies e.g.,
based on time, purpose and/or validity. From the security point of view, it
improves the general consent form but reduces availability.

3. General Denial with Specific Consent(s): It is opposite of the previous form. In
this case, the patient provides a general denial except specific conditions under
which she would like to give her consent. This consent type provides reasonable
control as well as restricted availability.

4. General Denial: It is opposite of the first form. In this case, a patient denies
access to her personal information.

There are two major factors affecting the evaluation criteria for the consent.
First, it is the ease of use, meaning how easy it is to access and use the
consent. The second one is privacy, which means the level of protection offered by
consent. If we evaluate the above four forms of consent under this evaluation criteria
then the general denial provides better protection of privacy and this level decreases
as we choose other forms (from bottom to up) of consent. Thus, the protection
of privacy provided by the general consent is at the lowest level among all other
forms. However, the general consent ensures the ease of access. The ease of access
decreases as we move down from the general consent to the general denial.

It is important to know that consent is required for providing access to medical
data that is not anonymised. However, consent might not be required when the
patients’ data is first anonymised and then shared, given the data anonymisation
technique can guarantee privacy of the patients.

14.2.3 Consent Limitations

In practice, these law frameworks rely on the data subjects to make decisions on
whether it is beneficial to them to consent access and usage of their data: consent
legitimises any collection, use and disclosure of someone’s data.

There are several limitations with this approach. First of all, there are cognitive
problems with privacy self-management. As shown by several empirical studies in
social science research, people do not engage with privacy self-management: the
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main reason is that they do not read the terms and conditions notices [29] or when
they read them they do not understand them [11]. However, even when people read
and understand the notices they are not able to take rational and informed decisions
on the costs and benefits on consenting access to their data [40].

Another issue is more related to the scale of the problem. Assuming that people
had a complete understanding of the risks involved in consenting access to their
personal data, there are far too many entities collecting data to make self-managing
privacy practically possible. One study has estimated that the cost associated
with the lost productivity if each of us were to read the terms and conditions
notices of each website we visit on a given year to a staggering $781 billion [25].
To complicate matters even further, each entity quite frequently changes privacy
policies, which would require further engagement form the user.

Third, the major harm to one’s privacy comes from the aggregation of data
collected by different parties over a period of time. It is almost impossible for a
user to be able to understand the risks and benefits at the time of the release of a
piece of information without a proper knowledge of how the data will be used in
aggregation with other information. For instance, several entities that have received
consent to use the data subject’s data, that in isolation and at a given point in time
are not harmful, could decide later to collaborate or aggregate their data resulting in
a violation of the data subject’s privacy. How can a data subject be able to predict
such an event at the time the consent is given? Privacy regulations aim mainly at
protecting one’s Personally Identifiable Information (PII). However, PII is not a
static label that can be associate to a piece of data for its entire life cycle. With the
huge amount of facts that we leave in our digital trail online and the advancements
of data mining technologies, identifying someone is becoming very easy from data
that taken in isolation is pretty harmless [44]. The result is that with data mining and
aggregation, it is nearly impossible to be able to manage one’s personal information.

Another negative aspect of privacy self-management is that it is always consid-
ered as an isolated transaction between an individual and an entity. However, some
aspects of the privacy have an effect not only on the individual but to a society as
a whole. The decisions taken by an individual for consenting collection, usage and
disclosure of her data might not have the most desirable effect on a larger scale.
On the other hand, sometime overriding one’s privacy can be beneficial for the
protection or advantages of our society. For instance, as discussed in [38], the use
of data analytics can lead to better medical treatments as well as better responses to
data breaches. Privacy self-management fails to address the global outcomes on a
social level, focusing only on the single individual and on isolated transactions. Last
but not least, data subjects may withdraw their consent at any time.

Considering the criticisms above, one would be tempted to abandon consent as a
mean to safeguard one’s privacy. However, we argue that controlling consent could
be improved by bringing the necessary tools to access and manage consent closer to
the data subject, such as to her mobile device. Also, instead of doing consent micro
management by presenting endless requests of binary consent decisions, we want to
provide the data subject with an approach that takes into account her goals when it
comes to protect her privacy, and that will learn from the decisions the data subject
takes in a particular context.
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14.3 A Case Study

In this section, we introduce the case study that we will use throughout the paper to
demonstrate the feasibility of our approach. The case study is partially inspired from
the European funded projects including ENDORSE [23] and EnCoRe [42]. Both
projects focus on developing IT solutions for privacy preserving data management,
where consent is one of the main point of focus.

In this section, we describe several scenarios based on the IT healthcare system
currently deployed in one of the major hospitals in Italy. We assume that each patient
has a smartphone that she uses to receive requests for giving her consent when she is
interacting with the medical personnel. A patient can review through her smartphone
who is requesting the access, the purpose of the request, and which data is requested.

At the time of providing consent, a patient may decide to save her preferences
for subsequent consent requests made in the same context and/or by the same
entity. Afterwards, a patient may withdraw her saved preferences regarding consent.
Furthermore, a patient may activate withdrawn preferences regarding her consent.
Last but not least, a patient may intend to delete, forever, her preferences, initially
saved for providing consent automatically.

Patient Visiting Her GP Let us consider the healthcare scenario where Alice
moves to Milan and visits her GP for the first time. The GP requires access to Alice’s
medical history consisting of several medical tests and reports. For this purpose, the
GP requires Alice’s consent. Alice receives the consent request on her smartphone
and decides to provide her consent also in the future.

Patient Visiting a Cardiologist Later, the GP of Alice discovers that she has a
heart disorder. In this case, the GP refers Alice to a cardiologist for further testing.
For visiting the cardiologist, Alice needs to contact the hospital booking service
for getting an appointment. The hospital has several cardiologists; thus, it is not
known in advance which one is assigned prior to the actual appointment. On the
day of appointment, Alice will know the assigned cardiologist and can consent the
cardiologist to access her medical data. However, Alice’s consent should be valid
for the duration of the treatment and the data accessed should be within the scope of
the treatment (i.e., the cardiologist should not have access to Alice’s gynaecological
reports). Moreover, if Alice is not happy with the assigned cardiologist then she may
withdraw her consent and request a new cardiologist.

Patient in an Emergency Situation While Alice is driving in her car, she has a
car accident and gets injured. The emergency response team reaches the accident
location and starts treating Alice. For the treatment, the paramedic requires Alice’s
consent to access her medical history to get information about her allergies and any
serious conditions that she already may have. Alice provides consent to access her
medical records so that the paramedic is aware of her heart problem and provides
the appropriate treatment that does not interfere with the treatment prescribed by
the cardiologist. Although the paramedic has access to Alice’s full medical record,
consent should be revoked when the emergency is over.
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14.4 Overview of Teleo-Reactive Policies

From the above scenarios, it is clear that to capture all the details required to express
the data subject’s consent in different settings is very complex. If these details are
not captured correctly by the security administrator in the policy specification then
serious consequences might happen. In our experience, capturing all the security
requirements through the specification of several independent authorisation policies
is a very hard task. In the specific case of capturing a data subject’s consent, it
becomes even more complicated since there is the involvement of a human (which
is the data subject that can grant, hold and withdraw consent) and contextual
information expressed in the policies (such as the location and time of the access).

In this chapter, we propose to employ a goal-driven approach to glue together
and manage authorisation policies that have a common aim, i.e., the handling of
consent. In particular, our observation is that we can simplify the specification
of authorisation policies when these are treated as a program sequence towards a
specific goal. In this chapter, we propose to leverage the idea of TR programs to glue
together authorisation policies aiming at a specific goal. The idea of TR programs
was initially introduced by Nilsson [28]. A TR program is a control sequence
directing towards a goal while taking into account changes in environmental
circumstances. TR programs were used for automating behavioural robotics where
a robot was continuously observing its environmental changes.

In the following, we provide a brief overview of TR policies that is similar to one
introduced by Marinovic et al. in [24].

14.4.1 TR Policy Representation

A TR policy is an ordered list of rules as shown in Fig. 14.1, where each rule
contains (Line 2) a condition part and an action part. The condition part contains
a predicate that is bound with a variable, which is denoted with V . These variables
may describe facts or states of the system or environment in which a TR policy is
evaluated. A variable starts with a capital letter while a condition or an action starts
with a small letter. The action part contains a function that is called by the TR policy.
The action part may contain variables. The condition and action parts are separated

Fig. 14.1 A layout of TR policies
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Fig. 14.2 An example of a TR policy

by!. Each TR-policy has a name starting with a small letter and can be instantiated
with some parameters (Line 1). The condition part may include parameters, each
denoted by Pi (Line 4). The condition part can contain either a single condition or
form (Line 2 or Line 6) a conditional expression where multiple conditions can be
combined using logical operators ^ and _. Similarly, the action part can contain
either a single function or multiple functions that may be executed sequentially
and/or concurrently. The sequential and concurrent execution of functions can be
represented with˝ operator (Line 3 and Line 6) and k operator (Line 4 and Line 6),
respectively. In a TR policy, rules are specified in the descending order with respect
to their priorities. That is, a high priority rule comes first.

In Fig. 14.2, we have illustrated an example of a TR policy representing job
specification of an employee E who works at a superstore. For simplicity, we
mainly consider three job responsibilities: serving at checkout counters, helping
customers and stacking shelves. The top priority will be given to serving at a
checkout counter. An employee E can server at a checkout counter CC when each
occupied checkout counter is crowded by a large number of customers. Of course,
a checkout counter CC should be available before an employee E can start serving.
This job responsibility is specified as the first rule at Line 3. The next priority will
be given to helping any customer C, meaning if an employee E is asked for any
help then she should help the customer C. The second rule (Line 5) in the TR policy
represents this job responsibility. The lowest priority job responsibility is stacking a
shelf S if it is empty (or about to empty)—see the last rule (Line 7) in the TR policy.

14.4.2 TR Policy Evaluation

The runtime of the TR policy monitors changes in facts or states about the system
or environment in which evaluation is performed. These changes can result in the
condition part of a rule becoming either true or false. The functions in the action part
of a rule will be executed if its condition part is evaluated to true by the runtime. In a
TR policy, the condition part corresponding to the highest priority rule is evaluated
first. If it evaluates to false, the condition part of the next high priority rule will be
evaluated. In other words, if the action part of any rule is being executed, it means
the condition parts of all higher priority rules (as compared to the current rule) are
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evaluated to false. The action part of any rule is executed as long as its condition
part evaluates to true while condition parts of all higher priority rules (as compared
to the current rule) remain false.

As an example, let’s discuss evaluation of the TR policy illustrated in Fig. 14.2.
This TR policy consists of three rules listed in the order of priority (from higher
to lower). The runtime of the TR policy checks if the superstore is crowded, i.e.,
isStoreCrowded. Then, it identifies whether any checkout counter is available, i.e.,
isAvailable.CC/. If both conditions are met (i.e., they evaluate to true), the first rule
is fired and the employee E starts serving, i.e., serverAtCheckoutCounter.E; CC/.
However, if the superstore is not crowded (i.e., isStoreCrowded evaluates to false)
or it is crowded but no checkout counter is available (i.e., isAvailable.CC/ evaluates
to false) then the runtime will start evaluating conditions of next rules in the TR
policy. In our case, the next rule is to monitor if the employee E is asked for help by
any customer C (i.e., askedForHelp.E; C/). If so (i.e., askedForHelp.E; C/ evaluates
to true), the employee will start serving the customer (i.e., helpCustomer.E; C/).
Otherwise, the runtime will evaluate condition of the last rule, i.e., if a shelf is empty.
It will evaluate isShelfEmpty.S/. If it is true, the employee E will start stacking the
shelf S (i.e., stackShelf .E; S/). As soon as execution of any rule is completed, the
runtime will start evaluating condition of the first rule in the TR policy (i.e., serving
at a checkout counter if the superstore is crowded).

14.5 The ACTORS Approach

ACTORS aims at automating creation and management of consent related authori-
sation policies using a goal-driven approach. Figure 14.3 illustrates the ACTORS
architecture. There are three main system entities:

Data Subject: Data subjects represent end-users and are key entities, responsible
for granting, updating or withdrawing their consent.

Data Requester: A data requester is an entity who makes a consent request. In
the context of healthcare systems, this entity could be a doctor or a GP.

Smartphone: It is a mobile device that is owned, or at least operated, by data
subjects. It automatically manages lifecycle of consent authorisation policies.

In Fig. 14.3, an initial consent request is issued by the data subject as we can see
in Step (i). The Administration Point, managed by the data subject’s smartphone,
receives the request and fetches corresponding TR and template policies from the
TR and template store in Step (ii). The main idea is that each TR policy captures
a specific goal, such as managing consent for the GP. TR policies are used for
instantiating authorisation policies from a standard set of policy templates. TR
policies also manage the lifecycle of instantiated authorisation policies.

Since all the details required in an authorisation policy may not be known
in advance (such as, ID of the specific cardiologist assigned on the day of the
visit, location where the visit will take place), we use policy templates to define
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Fig. 14.3 The ACTORS architecture for managing consent lifecycle

abstract authorisation policies. When all the required information is available, TR
policies can instantiate the required authorisation policies from the given templates.
This instantiated authorisation policy is stored and enforced by the data subject’s
smartphone, thus providing greater control to data subjects to manage their consent.

Authorisation policies are created and managed based on the data subject’s
intent while taking into account contextual information retrieved from the Policy
Information Point (PIP) in Step (iii). The contextual information may be information
about facts or states of the environment or the system. For collecting contextual
information in an automated manner, we assume that data subjects have smart-
phones equipped with some sensors for capturing environmental conditions. For
instance, a smartphone can detect a fire alarm or an emergency situation such as
a road accident. After collecting contextual information, an authorisation policy is
populated and a data subject is asked about saving her preferences—in Step (iv)—
for saving such an authorisation policy in order to authorise subsequent consent
requests in an automated manner. Next, a consent response is sent to the data
requester in Step (iv-b). Next, an authorisation policy is stored in the policy store in
Step (v). Finally, this instantiation of authorisation policy is logged in Step (vi).

After an authorisation policy has been instantiated, any subsequent consent
request will be received by the Policy Enforcement Point (PEP) running on the data
subject’s smartphone as we can see in Step (1). The PEP forwards this request to
the Policy Decision Point (PDP) in Step (2). The PDP is responsible for fetching
corresponding authorisation policies and collecting contextual information as we
can see in Steps (3) and (4), respectively. Next, the PDP makes the decision by
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evaluating authorisation policies against the request and contextual information
provided. Then, it sends the consent response to the PEP in Step (5). The PEP also
logs the decision made by the PDP in Step (6) and finally the consent response is
sent to the data requester in Step (7).

We assume that the PEP and the administration point have access to the data
subject’s signing key that could be used for signing consent responses sent to
the data requester. The consent log captures the complete details of actions that
were taken by the data subject and decisions (e.g., signed consent responses)
automatically made by the smartphones based on data subjects’ intent. We note
that a data subject has full access to her consent log.

The data subject has a right to update her consent policy, withdraw her consent
by deactivating the consent policy or delete the policy altogether. In all these cases,
data subjects have to interact with the administration point for any modification. Our
architecture is flexible enough to cope with updates in the workflow of the healthcare
providers or even in the law. All the healthcare providers have to do is to update TR
and template policies stored in the TR and template store and delete, if any, existing
authorisation policies managed by the policy store.

It is important to mention that data requesters can get access to the data in case
of emergency using the break glass policy. In this case, the healthcare system could
expect evidence of being in emergency situation. The healthcare system could defer
verification of such evidence for the post-incident investigation.

14.5.1 Authorisation Policies

An authorisation policy specifies who is permitted (or denied) access to a resource
under specific conditions. In ACTORS, an authorisation policy contains the follow-
ing six fields:

1. Data Requester Role: It is role of the entity who makes the access request. It
can contain either a single role or a set of roles.

2. Data Requester ID: It is ID of the one who makes the access request. Like the
above field, this field can contain either a single ID or a list of IDs. This field is
optional as permissions can be assigned to roles instead of specific IDs.

3. Data Subject ID: It refers to the data subject who owns the resources.
4. Data Subject Resource: It contains data subject resource(s) protected through

the authorisation policy.
5. Access Rights: Access rights define the permission on the data subject resource.
6. provided: It contains a conditional expression that may contain a set of conditions

combined with and and or logical operators. Each condition is a predicate that
is bound to a variable. These variables can come from contextual information
that may be facts or states about the system or the environment. The contextual
information may include access purpose, access time, access date, data requester
location and data subject location.
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Fig. 14.4 An example of an
authorisation policy

Figure 14.4 illustrates an example of an authorisation policy where Bob in a role
doctor is permitted to have read access on Alice’s Blood Test report provided he
makes the access request after 9:00 h for the purpose of diagnosis or treatment. The
use of the Data Requester ID might seem redundant given the fact that the policy
already has a Data Requester Role. However, it might be the case that the data
subject might not want a specific requester to access her data. For instance, Alice
does not want Eve (another doctor and Bob’s colleague) to read her Blood Test
report. This requirement can be captured by specifying in the Data Requester ID
the condition : ’Eve’. The introduction of both positive and negative conditions
could result in conflicting authorisation policies. For resolving conflicts, we can use
existing resolution techniques, such as one proposed in [34].

We assume that once authorised as per authorisation policy, a data requester can
access medical data of the patient for a certain time (say for the duration of the
appointment). Once a time limit is reached, the data requester would not be able to
access the data anymore.

14.5.2 Policy Templates

A policy template provides a structured format for instantiating authorisation
policies on-the-fly. It is the authorisation policy specification with placeholders
for variables that are assigned a value based on contextual information and a data
subject’s intent. A data subject’s intent is about what a data subject can expect and
can be captured based on actions taken by her. A policy template contains almost
the same fields as an authorisation policy does. The fields of a very generic policy
template are left blank so that they can be assigned a value based on contextual
information. However, a list of options can be provided for each field. It means that
a template field can only be filled, at the time of policy instantiation, with a value
out of the list of options.

Figure 14.5 illustrates an example of a policy template. This policy template can
be applied when a data requester is in role Dentist and the requested resource is
Dental Report with access rights either READ or WRITE access and access purpose
is either Diagnosis or Treatment. For rest of the fields, any value can be assigned
based on contextual information and the data subject’s intent.
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Fig. 14.5 An example of a policy template

Generally, specifying an authorisation policy is difficult. However, policy tem-
plates, which could be provided by healthcare providers, make it easy for patients to
instantiate required authorisation policies. For instantiation of authorisation policies
from policy templates, a patient should be provided with usable interfaces with
simple privacy controls. These privacy controls will lead to automatic generation of
authorisation policies. Without loss of generality, our proposed architecture enables
data subjects to update existing authorisation policies or create new ones.

Policy templates are associated with TR policies and goals that the TR policy
is trying to achieve. For instance, the policy template in Fig. 14.5 can be applied
when the goal of the patient is to visit a dentist. Therefore, such a template is
associated with the TR policy managing that specific goal. Each TR policy can
be associated with several templates. Based on contextual information and a data
subject’s intent, the TR policy can identify which policy template fulfils the criteria
and then instantiates the required authorisation policy.

14.5.3 TR Policies

As already explained in Sect. 14.4, TR programs were introduced for continuously
monitoring the behaviour of a robot while taking into account environmental
changes. In ACTORS, we use TR policies for controlling the lifecycle of autho-
risation policies towards a specific goal, which is the management of data subject’s
consent in a given situation. Each TR policy might be associated with several policy
templates from which authorisation policies can be instantiated. Several TR policies
might be present on the data subject’s smartphone. The selection of the appropriate
TR policy is based on contextual information. The main advantage in using TR
policies is that they provide a built-in prioritisation of actions needed for controlling
the granting and revocation of data subjects’ consent that reacts to the changes in
the context in which the data subjects are interacting.

In the following section, we are going to provide details of how ACTORS can be
used for the case study presented in Sect. 14.3.
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14.6 Managing Consent in Healthcare Scenarios

ACTORS can be applied to any domain; however, we focus on healthcare scenarios
as already described in Sect. 14.3, where consent needs to be captured and saved
based on contextual information and the patient’s intent (note that in this context
we assume that the patient is the data subject). For automatically instantiating
authorisation policies regarding consent and managing lifecycle of those policies,
we assume that each patient is provided a set of TR policies and policy templates
at the time of registration with her healthcare provider. In fact, TR policies and
policy templates are deployed on patients’ smartphone together with an application.
Each TR policy can be associated with multiple policy templates. The smartphone
application automatically selects the most appropriate TR policy and the policy
template based on the consent request and contextual information. After instanti-
ation of authorisation policies regarding consent, they are stored and enforced by
the patient’s smartphone. It should be noted here that only policies and patient’s
decisions are stored in the smartphone while the medical data is stored in the
caregiver IT infrastructure. In this section, we explain in detail how we exploit the
proposed approach, described in Sect. 14.5, for providing solutions for each scenario
described in Sect. 14.3.

Patient Visiting Her GP In the scenario when a general practitioner (GP) needs
the patient consent, a consent request is sent to the patient for providing access
to a GP to requested resources. This consent request may be directly sent by the
healthcare system to the patient when a GP makes an access request to the patient
resources. This consent request may include information about the GP and the
patient, the patient resources, an access purpose and access duration details. Based
on the consent request together with contextual information, the most appropriate
applicable TR policy and policy template are selected.

Figure 14.6 describes a TR policy that is applied when a GP needs a patient’s
consent for accessing her data from his clinic. The name of this TR policy is
consentAtGPClinic and Patient is the parameter. When the first consent request is
made, consent is not available and the condition parts of rules at Line 3 and Line
5 evaluate to false. The condition part of rule at Line 7 also evaluates to false as
no authorisation policy is instantiated yet, i.e., instantiatedPolicy.Patient/ is false.
However, the condition part of rule at Line 9 evaluates to true, so the action part
of this rule is executed and the system waits for the patient decision for providing
consent to her GP, i.e., waitPatientDecision.Patient; GP/ is executed.

Once the patient provides consent for granting access to her GP on her resources,
then consentAvailable.Patient; GP/ becomes true. At the time of providing consent,
a patient can be given an option to save her current preferences for providing her
consent for similar consent requests when made in the same environment. If a
patient does so, the condition part of rule at Line 3 becomes true; therefore, the
authorisation policy regarding consent is instantiated from the policy template and
then it is activated while at the same time, consent is sent.
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Fig. 14.6 A TR policy for managing authorisation policy for providing consent to a GP

Fig. 14.7 A policy template for generating an authorisation policy for providing consent to a GP

Figure 14.7 illustrates a policy template that is applied when a patient visits
her GP, as is evident from the data requester role that is GP only. The empty
fields including data requester name, data subject name, data subject resource and
access rights can be filled with values based on the consent request. However,
there are certain conditions in the provided part of the policy template that are
formulated at the time of instantiating an authorisation policy. These conditions
include: the access purpose must be either diagnosis or treatment; access time must
be in office hours; and both the patient and the GP must be present in the GP’s
clinic. These conditions are formulated based on contextual information that is
collected from either patient’s smartphone or the external information point, such
as made available by the healthcare provider. The contextual information from a
patient’s smartphone may include information like patient’s current location, while
contextual information from the external information point may include information
about location of GP’s clinic and GP’s duty hours. Once all the required information
for the applicable policy template is retrieved, the authorisation policy is instantiated
and activated.
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Fig. 14.8 An authorisation policy for providing consent to a GP

Figure 14.8 shows the instantiated authorisation policy regarding consent,
expressing that a GP Bob can get patient Alice’s consent for READ access on
Alice’s Blood Test when accessed for the Diagnosis purpose during the duty hours
(that is, between 9:00 and 17:00 h) from Bob’s clinic located in Milan.

A patient may decide to withdraw her consent. In this case, the condition part
of rule at Line 15, i.e., condition withdrawPolicyRequest.Patient/, becomes true
and the authorisation policy is withdrawn by invoking withdraw.Patient:Policy/

function. Furthermore, a patient can decide to activate her withdrawn
consent. In this case, condition activatePolicyRequest.Patient/ becomes true and
activate.Patient:Policy/ function is invoked for activating the authorisation policy.
Last but not least, a patient may also choose to delete forever her saved preferences
for automatically providing consent. In this case, deleteSavedPreferences.Patient/
becomes true and remove.Patient:Policy/ function is invoked for deleting the
instantiated authorisation policy.

In case if a GP needs the patient consent when the patient has already saved
preferences for providing consent automatically to her GP and consent is not
withdrawn yet then consent will be provided after evaluating the consent request
and contextual information against the instantiated authorisation policy, see rule in
Fig. 14.6 at Line 7. We assume that the consent request is same as already described
above. However, we have to collect contextual information in order to evaluate
the authorisation policy for providing consent. The patient’s smartphone may
provide information about her location and the current time while the information
about the GP’s location can be collected from the external information point. This
may be the healthcare system or the GP’s smartphone which may provide GP’s
location information to the patient’s smartphone. Based on the consent request and
contextual information, the authorisation policy is evaluated (see rule in Fig. 14.6 at
Line 7). After the evaluation of the authorisation policy, consent becomes available
and the consent response is automatically sent by the patient’s smartphone (see
rule in Fig. 14.6 at Line 5). The consent response contains patient consent if the
authorisation policy evaluates to true, otherwise it may contain an error message.
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A patient may decide not to save her current preferences for providing consent
automatically to her GP. In such a case, the patient will be explicitly asked each time
(see rule in Fig. 14.6 at Line 9) and consent will be provided once the patient takes
her decision (see rule in Fig. 14.6 at Line 5).

Patient Visiting a Cardiologist A cardiologist may also need the patient’s consent
while accessing the patient resources. Like the above scenario, a patient receives
the consent request. This consent request may include information about the
cardiologist and the patient, the patient resources, an access purpose and access
duration details. The additional point in this scenario, as compared to the previous
scenario, is that a cardiologist is provided consent for getting access on the patient
resources as long as the treatment may last. In other words, the saved preferences
for providing consent are deleted automatically right after the treatment.

Figure 14.9 shows the TR policy (consentAtSpecialistClinic) for managing
authorisation to provide consent to a specialist. The TR policy is similar to one
in Fig. 14.6. In the case of a cardiologist, the TR policy of specialist is selected.
Observe that this TR policy is very generic and can be applied to other specialists,
such as a dentist and a gynaecologist. However, there is a specific policy template
for each specialist. The policy template for cardiologist is shown in Fig. 14.10 and
is restricted to only resources that could be accessed by a cardiologist, such as: ECG
Report, Cardiography, and Engyography. This is different from the policy template
of the above scenario, as the resource field in Fig. 14.7 is left empty, indicating that
a GP can obtain consent to access any resource.

Figure 14.11 shows the authorisation policy regarding consent for a cardiologist
when a patient intends to save her preferences until she is treated. The authorisation
policy expresses that a cardiologist David can get patient Alice’s consent for READ
and WRITE access on Alice’s ECG Report when accessed for Diagnosis purpose
during the duty hours (that is, between 9:00 and 17:00 h) from David’s clinic that is
located in Como.

Fig. 14.9 A TR policy for providing consent to a specialist
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Fig. 14.10 A policy template for generating an authorisation policy for providing consent to a
cardiologist

Fig. 14.11 An authorisation policy for providing consent to a cardiologist

The authorisation policy regarding consent for a cardiologist may automati-
cally be deleted once the treatment completes. This information about treatment
duration can be collected by the patient at the time of saving her preferences.
For instance, it may be included in the consent request or can be collected as
contextual information from the information point made available by the service
provider. Once the treatment duration expires (starting from when the first consent
request is made), condition timeout.Patient:Policy/ becomes automatically true and
remove.Patient:Policy/ function is invoked for deleting the instantiated authorisa-
tion policy according to the rule at Line 11 in Fig. 14.9. Alternatively, a patient
may decide to delete her saved preferences during the treatment duration as already
considered in above scenario.

Patient in an Emergency Situation In an emergency situation, the emergency
response team may need a patient’s consent in order to get an access to her medical
data for the treatment purpose. Similar to above scenarios, the patient receives
the consent request, which may include information about the emergency response
team, the patient resources, an access purpose and access duration details. Similar
to the cardiologist scenario, we consider that the patient intends to provide her
consent as long as the treatment may last. Technically, the saved preferences for
providing consent are deleted automatically right after the treatment. The TR policy
for specialist, shown in Fig. 14.9, can also be applied for this scenario.
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Fig. 14.12 A policy template for generating an authorisation policy for providing consent to the
emergency response team

Fig. 14.13 An authorisation policy for providing consent to the emergency response team

The policy template applied in emergency situation is shown in Fig. 14.12. In
the provided part of the policy template for emergency situations, we include
the condition for capturing the notion of emergency situation, i.e., There is an
Emergency situation. Furthermore, we omit also the condition AccessTime is
within DutyHours, in contrast to the policy template for a GP shown in Fig. 14.7,
considering the fact that the emergency can happen at any time. For restraining
access in emergency situations, the resource field of the policy template is set
to Allergy Report and Blood Test. Moreover, we consider READ only access in
emergency situations.

Figure 14.13 shows the authorisation policy for providing consent to the emer-
gency response team. This authorisation policy is instantiated when an emergency
occurs in Aachen and Fayne, a member of the emergency response team, requests
READ access on (a patient) Alice’s Allergy Report for diagnosis, while Alice
provides her consent and also saves her preferences for subsequent requests issued
in the same environment. The occurrence of an emergency situation may be detected
using a patient’s smartphone.

There are few important points to be considered. First, we are instantiating one
authorisation policy per instance of the emergency response team. Alternatively, it
may also be possible to instantiate the authorisation policy at the role level (i.e.,
EmergencyResponseTeam) instead of at the instance level (i.e., Fayne). Second, the
patient may be in the unconscious state and may not be able to provider her consent.
In such situations, authorisation policies can be instantiated from break-the-glass
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policy templates, without asking patients. In other words, the emergency response
team may provide consent on patient’s behalf when patients are in the unconscious
state. Here, the unconsciousness state can be incorporated at the time of sending
the consent request by members of the emergency response team to the patient’s
smartphone. Finally, as an ultimate break-the-glass policy in case the smartphone
is not reachable or not functioning, the emergency team can specify the current
circumstances together with the request for accessing the patient’s medical data.
This information can subsequently be checked in a post-incident analysis to make
sure that this access mode is not abused. Again, it should be underlined here that the
medical data are not stored in the smartphone device.

14.7 Related Work

In [1], Aboelfotoh et al. propose a mobile-based architecture for integrating Personal
Health Record (PHR), where allows patients to control their data through their
mobile devices. To manage the lifecycle of consent, they use the goal-driven
approach, proposed by Asghar and Russello in [3]. In addition, they comply with
the privacy consent direction [15] of Health Level 7 (HL7) [10], a reference guide
for exchanging healthcare data.

Curren and Kaye [8] provide a legal background that signifies importance of
consent withdrawal and revocation. According to their analysis, implementing
consent withdrawal and revocation is not straightforward in practice, in particular
when we address all the related legal complications. In [32], Pruski introduces e-
CRL, a language for expressing patients’ consent to regulate access to their health
information.

Russello et al. [35] propose a consent-based framework that enables patients to
control disclosure of their medical data, where the mechanism of capturing consent
is integrated with workflows. The idea is to automatically generate Ponder2 style of
authorisation policies [9] that depend on workflows. However, there is no automatic
mechanism for managing the lifecycle of consent, such as consent withdrawal,
activation or deletion. Asghar and Russello [2] suggest a mechanism for managing
the consent lifecycle. They introduce a notion of very expressive consent represented
as a consent policy. However, they assume that a data subject defines his/her consent
policies; unfortunately, such a solution may not be acceptable because data subjects
may not be able to understand low-level policy details.

Wuyts et al. [43] incorporate patient consent to healthcare systems. They use the
XACML policy language for defining access control on medical data and retrieve
consent from the Policy Information Point (PIP). They express consent as a set of
pre-defined attributes and store it in the database. A similar approach is used in [18],
which is an authorisation framework for sharing EHR. The main issue with both
approaches is that the set of pre-defined attributes may not be sufficient to capture
consent, as it may involve certain conditions. To overcome this issue, there are
approaches [2, 31] in which consent is treated as an authorisation policy; however,
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this raises some other problems. First, this approach requires users to specify low-
level details, which a normal user may not be aware of, at the time of policy creation.
Second, there is no automatic mechanism for managing the consent lifecycle.

EnCoRe [27, 42] aims at managing consent of users in order to regulate access
to their personal data. In EnCoRe, a user is expected to define her preferences
regarding consent, which are stored by enterprises. Once any piece of personal
data is requested, these preferences are checked by the enterprises before granting
access to the requested data. However, it may be cumbersome for users to define
such complicated preferences. In our proposed solution, users’ consent can be
captured and managed dynamically by taking into account contextual information.
Furthermore, our proposed approach offers more control and access to users as
consent is stored and managed on their smartphone.

Luger and Rodden [21, 22] advocate how consent is a critical concern in
pervasive computing. They describe issues with existing consent systems and
highlight challenges and recommendations for a consent management system.

Marinovic et al. [24] employ TR policies for continuously monitoring the nursing
home, where caregivers (including nurses, head-nurses, patients and students) are
equipped with mobile devices for running their corresponding TR policies. They use
TR policies to manage all activities of a caregiver using one workflow specification
while we use TR policies with the goal of capturing consent that may involve
instantiation of authorisation policies regarding consent and management of their
lifecycle, consisting withdrawal and activation of consent.

Illner et al. [16, 17] suggest an automated approach for managing services
related to distributed and embedded systems in dynamic environments. In their
approach, various configurations for the services are generated and mapped to
specific environmental conditions only once at the design time when system is
setup while appropriate configurations for the services are activated at runtime when
certain environmental conditions hold. The shortcoming of this approach is that the
configurations are defined statically while our goal-based approach is dynamic in
a sense that authorisation policies do not need to be specified in advance and are
instantiated automatically while taking into account environmental conditions.

Johnson et al. [19] suggest a general approach for creating policy templates. A
policy template provides users with a structured format for authoring policies. In
our proposed solution, a healthcare provider may consider this work for generating
policy templates. Chan and Kwok [4] describe a method to create policies automati-
cally based on observed events. They use the Singular Value Decomposition (SVD)
technique for modelling correlation between events and policies and then create new
policies or select recommended policies based on the correlation. Unfortunately,
the SVD technique may not always choose the fine-grained policies while our
proposed approach always generates the fine-grained authorisation policies based
on environmental conditions.

Fu et al. [13, 14] propose how to automatically generate required IPSec policies
without manual configuration. The idea is to define high-level security requirements
and then automatically generate a set of IPSec policies that can satisfy all security
requirements. The main problem is that this approach incurs high performance
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overhead for finding the required set of policies as the proposed algorithm needs
to go through a large number of possibilities before halting. Instead of generating
a set of authorisation policies, our proposed approach generates only a single
authorisation policy while taking into account contextual information and user
intent.

14.8 Conclusion and Future Work

With the increasing attention towards the notion of data subjects’ consent to be
integrated in access control mechanisms, the task of appropriately capturing security
requirements in policy specification is becoming daunting. This increases the risk
of introducing errors in the policy specification that might compromise the privacy
of medical data. In light of this, in this chapter we proposed ACTORS, a goal-
driven approach where authorisation policies are managed by TR policies that aim to
capture the consent preferences of a data subject. As we have shown, in our scenario
data subjects might want to handle consent in accordance with the actual situation
and context. TR policies are structured in such a way that rules at the top are closer
to the goal of the policy, while rules at the bottom are more relevant when the goal
is not close to be achieved. This is very natural for humans to grasp; therefore, a
security administrator can capture more naturally the security requirements.

As future work, we are planning to focus on securing the mobile device where
the consent application is installed. As mobile device could be stolen or misplaced,
there is a need to make sure that the data subject does not loose control over her data
and consent. We are exploring several approaches including dynamic authentication
mechanisms to authenticate users in a seamless manner, i.e., without requiring
unnecessary interactions with the device.

Another area that deserves investigation regards the enforcement of cross-domain
policies. In this setting, it is difficult for the security administrator to have all the
details of the different domains in which the data of the user might end up. Our idea
is to establish a mapping of the policy templates from one domain to the other, say
by means of ontologies.

We are planning to perform a thorough evaluation with the medical school in our
university. Our experience so far in capturing security requirements with the use TR
policies, is very positive. ACTOR has already captured the requirements of one of
the testbeds in the ENDORSE project. Another interesting area would be capturing
consent for handling personal data of customers of a commercial entity. We can
apply the same concept to solve other real-world problems. Terms and conditions
at signing up or installing a software and granting app permissions in Android (or
approving app restrictions in iOS) are few interesting problems among many others.



14 Automating Consent Management Lifecycle for Electronic Healthcare Systems 385

References

1. Aboelfotoh, M., Martin, P., Hassanein, H.: A mobile-based architecture for integrating
personal health record data. In: IEEE 16th International Conference on e-Health Networking,
Applications and Services (Healthcom), 2014, pp. 269–274 (2014)

2. Asghar, M., Russello, G.: Flexible and dynamic consent-capturing. In: Camenisch, J., Kes-
dogan, D. (eds.) Open Problems in Network Security. Lecture Notes in Computer Science,
vol. 7039, pp. 119–131. Springer, Berlin (2012)

3. Asghar, M.R., Russello, G.: ACTORS: A goal-driven approach for capturing and managing
consent in e-health systems. In: 2012 IEEE International Symposium on Policies for
Distributed Systems and Networks (POLICY), pp. 61–69 (2012)

4. Chan, H., Kwok, T.: A policy-based management system with automatic policy selection and
creation capabilities by using a singular value decomposition technique. In: Seventh IEEE
International Workshop on Policies for Distributed Systems and Networks, 2006. Policy 2006,
pp. 96–99 (2006)

5. Clarke, R.: econsent: A critical element of trust in ebusiness. In: BLED 2002 Proceedings,
p. 12 (2002)

6. Coiera, E., Clarke, R.: e-consent: the design and implementation of consumer consent
mechanisms in an electronic environment. J. Am. Med. Inform. Assoc. 11(2), 129–140 (2004)

7. Communities, E.: Directive 1999/93/EC of the european parliament and of the council of 13
december 1999 on a community framework for electronic signatures (1999). http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1999L0093:20081211:EN:PDF

8. Curren, L., Kaye, J.: Revoking consent: a “blind spot” in data protection law? Comput. Law
Secur. Rev. 26(3), 273–283 (2010)

9. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification language. In:
Sloman, M., Lupu, E., Lobo, J. (eds.) Policies for Distributed Systems and Networks. Lecture
Notes in Computer Science, vol. 1995, pp. 18–38. Springer, Berlin (2001)

10. Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F.M., Biron, P.V., Shvo, A.S.: Hl7
clinical document architecture, release 2. J. Am. Med. Inform. Assoc. 13(1), 30–39 (2006)

11. Earp, J.B., He, Q., Stufflebeam, W., Bolchini, D., Jensen, C., et al.: Financial privacy policies
and the need for standardization. IEEE Secur. Priv. 2(2), 36–45 (2004)

12. European Communities: Directive 95/46/EC of the European Parliament and of the Council
of 24 October 1995 on the protection of individuals with regard to the processing of personal
data and on the free movement of such data, year=1995, howpublished = http://ec.europa.eu/
justice/policies/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf

13. Fu, Z.: Network management and intrusion detection for quality of network services. Ph.D.in
Computer Science, North Carolina State University (2001)

14. Fu, Z.J., Wu, S.F.: Automatic generation of IPSec/VPN security policies in an intra-domain
environment. In: 12th International Workshop on Distributed Systems: Operations & Manage-
ment (2001)

15. Health Level Seven International: Hl7 implementation guide for cda release 2: Privacy
consent directives, release 1. http://gforge.hl7.org/gf/download/frsrelease/977/10295/CDAR2_
IG_CONSENTDIR_R1_N1_2013MAY.pdf (2013)

16. Illner, S., Krumm, H., Pohl, A., Lück, I., Manka, D., Sparenberg, T.: Policy controlled
automated management of distributed and embedded service systems. In: Parallel and
Distributed Computing and Networks, pp. 710–715 (2005)

17. Illner, S., Pohl, A., Krumm, H., Luck, I., Manka, D., Sparenberg, T.: Automated runtime
management of embedded service systems based on design-time modeling and model trans-
formation. In: 2005 3rd IEEE International Conference on Industrial Informatics, INDIN ’05,
pp. 134–139 (2005)

18. Jin, J., Ahn, G.J., Hu, H., Covington, M.J., Zhang, X.: Patient-centric authorization framework
for sharing electronic health records. In: Proceedings of the 14th ACM Symposium on Access
Control Models and Technologies, SACMAT ’09, pp. 125–134. ACM, New York, NY (2009)

http://gforge.hl7.org/gf/download/frsrelease/977/10295/CDAR2_IG_CONSENTDIR_R1_N1_2013MAY.pdf
http://gforge.hl7.org/gf/download/frsrelease/977/10295/CDAR2_IG_CONSENTDIR_R1_N1_2013MAY.pdf
http://ec.europa.eu/justice/policies/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf
http://ec.europa.eu/justice/policies/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1999L0093:20081211:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1999L0093:20081211:EN:PDF


386 M.R. Asghar and G. Russello

19. Johnson, M., Karat, J., Karat, C., Grueneberg, K.: Usable policy template authoring for iterative
policy refinement. In: 2010 IEEE International Symposium on Policies for Distributed Systems
and Networks (POLICY), pp. 18–21 (2010)

20. Lawson, P., O’Donoghue, M.: Approaches to consent in Canadian data protection law. In:
Lessons from the Identity Trail: Anonymity, Privacy and Identity in a Networked Society,
pp. 23–42 (2009) https://goo.gl/VqPUwF

21. Luger, E., Rodden, T.: An informed view on consent for ubicomp. In: Proceedings of the 2013
ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13,
pp. 529–538. ACM, New York, NY (2013)

22. Luger, E., Rodden, T.: Terms of agreement: rethinking consent for pervasive computing.
Interact. Comput. 25(3), 229–241 (2013) doi:10.1093/iwc/iws017

23. Malone, P., McLaughlin, M., Leenes, R., Ferronato, P., Lockett, N., Guillen, P.B., Heistracher,
T., Russello, G.: ENDORSE: a legal technical framework for privacy preserving data manage-
ment. In: Proceedings of the 2010 Workshop on Governance of Technology, Information and
Policies, pp. 27–34. ACM (2010)

24. Marinovic, S., Twidle, K., Dulay, N., Sloman, M.: Teleo-reactive policies for managing human-
centric pervasive services. In: Network and Service Management (CNSM), 2010 International
Conference on, pp. 80–87 (2010)

25. McDonald, A.M., Cranor, L.F.: Cost of reading privacy policies, the. ISJLP 4, 543 (2008)
26. McNair, L., Costello, A.: Electronic informed consent: a new industry standard (2014) http://

www.wcgclinical.com/wp-content/uploads/2014/03/eConsent-White-Paper_FINAL.pdf
27. Mont, M.C., Pearson, S., Kounga, G., Shen, Y., Bramhall, P.: On the management of consent

and revocation in enterprises: setting the context. HP Laboratories, Technical Report HPL-
2009-49 (2009)

28. Nilsson, N.J.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1, 139–158 (1994)
29. Nissenbaum, H.: Privacy in context: technology, policy, and the integrity of social life. Stanford

University Press, Stanford (2009)
30. OASIS Standard: eXtensible Access Control Markup Language (XACML) Version 3.0. http://

docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf (2013)
31. O’Keefe, C.M., Greenfield, P., Goodchild, A.: A decentralised approach to electronic consent

and health information access control. J. Res. Pract. Inf. Technol. 37(2), 161–178 (2005)
32. Pruski, C.: e-CRL: A rule-based language for expressing patient electronic consent. In: Second

International Conference on eHealth, Telemedicine, and Social Medicine, 2010. ETELEMED
’10, pp. 141–146 (2010)

33. Report of the Secretary’s advisory committee on automated personal data systems. U.S.
Department of Health, Education & Welfare, Records, Computers, and the Rights of Citizens
(1973)

34. Russello, G., Dong, C., Dulay, N.: Authorisation and conflict resolution for hierarchical
domains. In: Eighth IEEE International Workshop on Policies for Distributed Systems and
Networks, 2007. POLICY ’07, pp. 201–210 (2007)

35. Russello, G., Dong, C., Dulay, N.: Consent-based workflows for healthcare management. In:
IEEE Workshop on Policies for Distributed Systems and Networks, 2008. POLICY 2008,
pp. 153–161 (2008)

36. Saltzer, J., Schroeder, M.: The protection of information in computer systems. Proc. IEEE
63(9), 1278–1308 (1975)

37. Schwartz, P.M.: The eu-us privacy collision: a turn to institutions and procedures (2013)
38. Schwartz, P.M., Solove, D.J.: The PII problem: privacy and a new concept of personally

identifiable information. NYUL Rev. 86, 1814 (2011)
39. Solove, D.J.: Introduction: Privacy self-management and the consent dilemma. Harv. Law Rev.

126, 1880 (2012)
40. Turow, J., Feldman, L., Meltzer, K.: Open to exploitation: America’s shoppers online and

offline (2005)

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://www.wcgclinical.com/wp-content/uploads/2014/03/eConsent-White-Paper_FINAL.pdf
http://www.wcgclinical.com/wp-content/uploads/2014/03/eConsent-White-Paper_FINAL.pdf
https://goo.gl/VqPUwF


14 Automating Consent Management Lifecycle for Electronic Healthcare Systems 387

41. Twidle, K., Dulay, N., Lupu, E., Sloman, M.: Ponder2: a policy system for autonomous
pervasive environments. In: International Conference on Autonomic and Autonomous
Systems, pp. 330–335 (2009)

42. Whitley, E.A.: Informational privacy, consent and the “control” of personal data. Inf. Secur.
Tech. Rep. 14(3), 154–159 (2009)

43. Wuyts, K., Scandariato, R., Verhenneman, G., Joosen, W.: Integrating patient consent in
e-Health access control. Int. J. Secure Softw. Eng. IGI Global 2(2), 1–24 (2011). Partner:
KUL; project: NESSoS

44. Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., Gunter, C.A., Nahrstedt,
K.: Identity, location, disease and more: inferring your secrets from android public resources.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 1017–1028. ACM, New York (2013)



Chapter 15
e-Health Cloud: Privacy Concerns
and Mitigation Strategies

Assad Abbas and Samee U. Khan

15.1 Introduction

Technological developments have greatly influenced conventional healthcare
practices. The healthcare sector has advanced from conventional clinical settings
with paper-based medical prescriptions to Electronic Medical Records (EMR),
Personal Health Records (PHR), and Electronic Health Records (EHR) [60]. The
need to integrate electronic medical information from dispersed locations, such
as clinics, hospitals, clinical laboratories, and health insurance organizations, has
given rise to the phenomenon called e-Health. The World Health Organization
(WHO) defines e-Health as “the transfer of healthcare information and resources to
healthcare professionals and consumers by employing the Information Technology
(IT) infrastructure and e-commerce practices” [53]. However, the exchange and
integration of electronic medical information, managed by several healthcare
providers and other participating organizations, is inflated and difficult to manage,
which calls for utilizing the cloud computing services in the healthcare domain [60].
The cloud computing model has relieved healthcare organizations of the strenuous
tasks of infrastructure management and has urged them to become accustomed to
third-party IT service providers [2]. Moreover, the cloud computing paradigm has
exhibited great potential: (a) to enhance collaboration among various participating
entities to the healthcare domain [6], and (b) to offer the most anticipated benefits,
such as scalability, agility, cost effectiveness, and round the clock availability of
health-related information [3, 54].

On the other hand, due to the sharing and storage of sensitive electronic health
data and Personal Health Information (PHI) through Internet, various privacy
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and security concerns arise [28]. The literature pertaining to the e-Health clouds
discusses the apprehensions about the probable disclosure of health information to
entities that are not supposed to have access. One of the key reasons for patients’
concerns about the privacy of PHI is the distributed architecture of the cloud. The
storage of gigantic volumes of confidential health data to third-party data centers
and the transmission of these data over networks is vulnerable to disclosure or theft
[22]. Particularly, in public clouds, administered by commercial service providers,
health data privacy is the most anticipated concern. Therefore, the Cloud Service
Providers (CSP) should not only identify but also deal with health data security
issues to maximize the trust level of patients and healthcare organizations [1].
Governments have also shown interest to protect the privacy of health data. For
example, in the United States, the use and disclosure of patient health information
is protected by the Health Insurance Portability and Accountability Act (HIPAA).
The health data privacy rules specified by HIPAA offer federal protection for the
PHI and ensure the confidentiality, integrity, and availability of electronic health
information [48]. Likewise, the Health Information Technology for Economic and
Clinical Health (HITECH) Act [20] also mandates the secure exchange of electronic
health information.

Various approaches, such as cryptographic and non-cryptographic methods,
are used to preserve the privacy of health data in the cloud. The majority of
the solutions use certain cryptographic techniques to conceal the contents of
health records, while quite a few solutions, such as [15, 40, 54] are based on
non-cryptographic approaches, using policy-based authorizations. The benefit of
cryptographic techniques is that they not only are capable of encrypting the data in
storage and over the network [24], but they also employ authentication mechanisms
requiring decryption keys and verification through digital signatures. Moreover,
fine-grained and patient-centric access control mechanisms have been deployed that
enable patients to specify the individuals who could have access to health data.
Furthermore, quite a few privacy preserving solutions allow the patients themselves
to encrypt the health data and provide the decryption keys to the individuals with
right-to-know privilege.

This chapter encompasses the recent efforts that have been made to preserve the
privacy of the health data in the cloud environment. We highlight the threats to the
health data in the cloud and present a discussion on the requirements to be fulfilled in
order to mitigate these threats. Moreover, we discuss the benefits of cloud computing
and the cloud deployment models in the context of healthcare. Furthermore, the
strengths and weaknesses of each of the discussed strategy to preserve privacy are
reported and some open research issues are also highlighted.

The chapter is organized as follows. Section 15.2 presents an overview of the
preliminary concepts of cloud computing in terms of healthcare. Section 15.3
presents the recent strategies developed to overcome the privacy issues of health.
Section 15.4 presents discussion on the performance of discussed strategies and
highlights open issues, and Sect. 15.5 concludes the chapter.
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15.2 An Overview of the e-Health Cloud

The e-Health cloud can be regarded as a standard platform that offers standardized
services to manage large volumes of health data [19]. The e-Health cloud ensures
the service provision for storage and processing of different types of health records
that are originated and utilized by multiple providers and other participating entities,
such as pharmacies, laboratories, and insurance providers. Typically, the health
records in an e-Health system include the EMRs, the EHRs, and the PHRs. Each of
the aforementioned type of health records is the electronic version of patient health
information. However, there are certain differences that should be understood.

The EMR is the electronic version of a patient’s health information that is created,
used, and maintained by the healthcare providers or care delivery organizations.
The EMRs contain information about the diagnosis obtained through the clinical
decision support system, clinical notes, and medication. The EHRs, on the other
hand, present a broader view of the patients’ health information. A subset of the
information contained in the EMRs is also present in the EHRs. However, the EHRs
are shared for the purpose of consultation and treatment among multiple healthcare
providers belonging to different care delivery organizations [60]. The PHRs are
the health records that are managed by the patients themselves and comprise of
the information instigated from diverse sources. The typical information that a
PHR may contain includes treatments and diagnosis, surgeries, laboratory reports,
insurance claims data, as well as personal notes and wellness charts that the patients
use in order to keep track of their health [26]. Figure 15.1 presents a distinction
among the EMRs, the EHRs, and the PHRs.

15.2.1 e-Health Cloud Benefits and Opportunities

Cloud computing, besides various other scientific and business domains, has greatly
impacted the healthcare sector. Shifting the health records to the cloud environment
brings many opportunities and benefits to the health service providers, as discussed
in the following sections.

15.2.1.1 Cost Reduction

Cloud computing relieves the organization of the obligations to purchase the
hardware and software to manage their data [41]. Instead, the clients pay to the
CSPs for the services on the basis of pay-as-you-go model. Adopting cloud services
eradicates the need for possessing the aforesaid resources. Therefore, one of the key
incentives for healthcare organizations to embrace cloud services is the significant
cost reduction in terms of purchase of computing resources.
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Fig. 15.1 Distinction among the EMR, PHR, and EHR

15.2.1.2 Easy Infrastructure Management

For healthcare organizations with limited hardware and software resources, and
support staff with inadequate technical capabilities, the tasks of infrastructure
management can be cumbersome. Therefore, healthcare organizations can avoid the
arduous management tasks by delegating them to cloud service providers [25].

15.2.1.3 Availability

Contemporary developments in healthcare systems, focusing on accessing informa-
tion anytime and anywhere, offer health service providers with a great opportunity
to move healthcare information to the cloud. This will also ensure the ubiquity of
the health information for all of the stakeholders of the e-Health cloud.

15.2.1.4 Scalable Healthcare Services

Scalability refers to expanding the IT infrastructure by increasing the number
of computers, network interconnections, and storage capacity of the data centers
while maintaining performance [41]. The latest trends in healthcare demand the
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scalability of health cloud infrastructure to facilitate all the geographically scattered
stakeholders, such as patients, doctors, clinical staff, lab staff, and insurance
companies. Therefore, cloud computing has the ability to facilitate large numbers
of healthcare providers with millions of health records.

15.2.2 Deployment Models for Cloud Based e-Health Systems

To offer the cloud computing services for healthcare, mostly the following deploy-
ment models are used: (a) private cloud, (b) public cloud, and (c) hybrid cloud. The
cloud deployment models for the healthcare domain work in the same way as in
other business and scientific domains.

15.2.2.1 Private Cloud

The private cloud is usually owned and administered by an organization [42, 67].
In a particular e-Health scenario, the cloud infrastructure, such as the storage and
processing units, are typically managed by the hospitals or any designated third-
party. However, due to the restricted exposure to the public Internet, the EMRs
stored at the private cloud are considered much secure as compared to the other
deployment models. This is because the EMRs in a private cloud environment are
only accessed by the employees of the healthcare organizations, who are generally
considered as trusted (with few exceptions). A private e-Health cloud is illustrated
in Fig. 15.2.

15.2.2.2 Public Cloud

The public cloud consists of the shared physical infrastructure that is managed
by the third-party providers [42]. The organizations utilizing the cloud services
procure the services from the Cloud Service Providers (CSPs). In a public e-Health
cloud, the EHRs may be shared among different participating entities, such as
clinics, hospitals, insurance companies, pharmacies, and clinical laboratories. More-
over, the EHRs are stored at the off-premises servers managed by the CSPs.
Therefore, the EHRs are highly vulnerable to malicious attacks and forgery attempts
both by the internal, as well as external, entities. Consequently, mechanisms are
needed to mitigate the privacy concerns and to ensure confidentiality through strong
cryptographic techniques, patient-centric access control, and efficient signature
verification schemes. An illustration of the public cloud in the context of e-Health
is presented in Fig. 15.3.
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Fig. 15.2 An illustration of a private cloud in context of e-Health

15.2.2.3 Hybrid Cloud

The hybrid clouds are a combination of two or more cloud providers (public or
private) such that each of them operates independently but are bound together
through standardized technologies [67]. The hybrid cloud deployment model is
truly beneficial for healthcare services, where the healthcare providers with limited
physical resources and interested in using their legacy systems can procure the third-
party services to store huge clinical and medical imaging data [49]. However, a key
limitation of this model is that it requires more security measures in order to achieve
privacy. An illustration of a hybrid cloud is presented in Fig. 15.4.

15.2.3 Threats to Health Data Privacy in the Cloud

The PHI in transit or at a data center may contain sensitive health data, such
as patient medical histories, current disease information, symptoms, and various
laboratory test reports. The security and privacy of health data may be at stake
in a variety of ways. As an example, health data may be susceptible to access by
unauthorized external entities when stored at a CSP or in transit from a general
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Fig. 15.3 An illustration of a public cloud in context of e-Health

Fig. 15.4 An illustration of a hybrid cloud in context of e-Health

practitioner to a remote medical specialist [1]. Likewise, threats to health data may
be internal [34]. For example, the CSP might learn the content of sensitive health
data. Therefore, the enforced access control mechanisms must ensure that access
to sensitive information should only be granted to entities having a right-to-know
privilege.
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15.2.3.1 Spoofing Identity

The spoofing identity threats include the unlawful attempts by other users, or
machines, to pose as the valid users or machines [34]. In the e-Health cloud, the
unlawful entities may obtain access to the patients’ health data by spoofing the
identities of the authorized users, such as doctors and patients themselves. There-
fore, to counter the spoofing identity attacks, strong authentication mechanisms are
necessary to restrict the unlawful data access.

15.2.3.2 Data Tampering

The malicious attempt to modify the data contents is called data tampering [67].
The health data is more vulnerable to tampering by both insiders and outsiders. The
insiders include the hospital staff, pharmacy personnel, and insurance companies’
staff that can modify the health data contents to obtain certain benefits. Moreover,
the data is also vulnerable to tampering by other insiders, for example employees
of the CSP who may act maliciously. Therefore, to ensure that the data present
in the repositories is not modified through illegal means, data audit and robust
accountability mechanisms are needed.

15.2.3.3 Repudiation

Repudiation refers to denying the obligations of a contract. The entities in a health
cloud can falsely deny about the occurrence of an event with the health data contents
[12]. Therefore, the data must be digitally signed to allow for maintaining evidence
for all data manipulations.

15.2.3.4 Denial of Service (DoS)

In DoS attacks, the services are denied to privileged users [32]. Such issues arise
due to the flaws in identity management schemes and the incompetence of the
authorization mechanisms. Consequently, the legitimate users, for example the
physicians or emergency staff, may not be able to access the cloud services when
required.

15.2.3.5 Unlawful Privilege Escalation

Unlawful users may obtain access to data and can subsequently infiltrate into the
system, such that the data contents at a large-scale are compromised [34]. The
aforementioned data breaches in the healthcare domain are extremely critical and
require the mechanisms to maintain the integrity of the health data.
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Fig. 15.5 Taxonomy of essential privacy requirements and patient-driven requirements

15.2.4 Essential Requirements for Privacy Protection

A model, called the CIA (confidentiality, integrity, availability)-triad, defines the
necessary controls to maintain the privacy of data within an organization [36]. Data
that are outsourced to third-party vendors, however, require more privacy measures
than those specified in CIA. To deal with the threats presented in Sect. 15.2.3, the
following privacy protection requirements should be fulfilled: (a) confidentiality, (b)
integrity, (c) collusion resistance, (d) anonymity, (e) authenticity, and (f) unlinkabil-
ity. Figure 15.5 presents a taxonomy of the privacy-protection requirements.

15.2.4.1 Confidentiality

The confidentiality requirement for the health data in the cloud environment requires
that the data must be protected not only from the external entities, such as the CSP,
but also from the unauthorized insiders [1].
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15.2.4.2 Integrity

The integrity of the health data stored in the cloud requires the assurance that the
data has not been modified through any illegitimate actions of either authorized or
unauthorized users. In other words, the data present in the healthcare repositories
must be a true characterization of the intended contents of the data.

15.2.4.3 Collusion Resistance

Collusion, in the context of cloud-based healthcare systems, refers to a mutual
cooperation to learn the user-identities and contents of the health data illegitimately
among the authorized and/or unauthorized entities. Therefore, collusion resistant
approaches are inevitable to ensure the privacy of health data, not only from the
external adversaries, but also from the valid insiders.

15.2.4.4 Anonymity

Anonymity refers to storing the health data contents in such a way that the identities
(i.e., any unique identifiers, such as the name and social security number of a
patient, or any other unique patient’s information) of the subjects are properly
concealed [14]. The patients’ identities have to be protected from the CSPs,
researchers, unprivileged users, and other malicious internal or external adversaries.

The methodologies used to maintain anonymity include the use of pseudonyms.
Pseudonyms are identifiers that are used for identification of a subject instead of
the subject’s real name. It is also important to distinguish between the anonymity
and pseudonymity, where pseudonymity is one of the methods currently used to
offer anonymity. Moreover, anonymity requires that adversaries should not be able
to infer meaningful information from the health data that would allow revealing data
owners’ identities.

15.2.4.5 Authenticity

Authenticity is necessary to ensure that access to health information is being
requested by authorized users only. Only the entities possessing valid authentication
codes and keys should be granted access to the health information.

15.2.4.6 Unlinkability

Unauthorized entities should not be able to infer any relationships between the (a)
identifying information of the patients, such as the name and the address, and the (b)
health information, for example diagnoses and medical histories. The adversaries
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typically aim to observe the query patterns for certain records and attempt to
interlink the patients’ personal information with the patients’ medical histories.

15.2.5 User/Patient Driven Privacy Protection Requirements

Besides the aforementioned privacy protection requirements, there are also certain
patient-driven requirements that should be fulfilled to ensure fine-grained access
control over the health data. These requirements include: (a) patient-centric access
control, (b) access revocation, and (c) auditing. In what follows, we briefly elaborate
on these requirements.

15.2.5.1 Patient-Centric Access Control

The users or patients can grant access to different entities over their health
information, according to different access policies. The users can encrypt their PHRs
before storing them in the cloud and access to this data can be permitted on a role
basis. A Patient Controlled Encryption (PCE) based approach to delegate access
rights to users has been presented in [10].

15.2.5.2 Access Revocation

The data owners or patients must be able to revoke the access rights granted to
different entities over the health information in such a way that the users should not
be able to access the health information anymore.

15.2.5.3 Auditing

The auditing of health data ensures that all activities and data manipulations of
patients’ health data are being monitored, either by the patients themselves or by
any other entity nominated by the patients [44]. A similar concept to auditing is the
accountability of health data, where data users are held responsible in the light of
agreed-upon conditions [1].

15.2.6 Adversarial Models in the e-Health Cloud

The key participants of the cloud-based e-Health ecosystem include patients, health-
care providers, pharmacies, clinical laboratories, and health insurance companies.
The health data is shared among all of the aforementioned participating entities of
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the cloud and, therefore, is vulnerable to theft and unauthorized disclosure [2]. The
proposals developed to preserve privacy or mitigate security risks assume one of the
following adversarial models: (a) trusted model, (b) untrusted model, and (c) semi-
trusted model.

In the trusted adversarial model, the data stored on the cloud is mostly protected
from external threats. Certain insiders, however, may behave maliciously and
disclose sensitive information to unauthorized entities [50]. On the other hand,
the untrusted adversarial model assumes threats to data privacy from both internal
and external adversaries. As a result, the health data outsourced to the untrusted
cloud storage requires strong security guarantees in order to fulfil the privacy
requirements. In the semi-trusted adversarial model, the cloud servers are assumed
to be honest in that they follow the protocol in general, but are curious to learn about
the contents of the data [13, 58]. In order to mitigate the privacy disclosure risks in
such models, identity management solutions that anonymize the identities of the
patients and maintain the unlinkability of health information flows, are necessary.

15.3 Privacy Protection Strategies Employed
in e-Health Cloud

To mitigate the privacy concerns related to the use of health data, both crypto-
graphic and non-cryptographic approaches have been employed. The cryptographic
approaches mostly utilize the Public Key Encryption (PKE), the Symmetric Key
Encryption (SKE), and the El-Gamal cryptosystem. Other cryptographic primi-
tives, such as Attribute Based Encryption (ABE) and its variants, Identity Based
Encryption (IBE), Hierarchical Predicate Encryption (HPE), Proxy Re-encryption
(PRE), and Homomorphic encryption have also been used. Similarly, to allow for
user authentication, digital signatures and digital certificates have been employed.
Interested readers are encouraged to consult [1] for a detailed presentation of
each of the aforementioned cryptographic approaches. On the other hand, the
non-cryptographic approaches use policy-based and broker-based authorization
mechanisms to offer data privacy. In what follows, we discussed the approaches
that are used to fulfil each of the essential requirements defined in Sect. 15.2.5.

15.3.1 Approaches to Protect Confidentiality
in the e-Health Cloud

Various mechanisms have been employed to protect the confidentiality of health
data in the cloud computing environment. Some recent approaches along with their
strengths and weaknesses are presented below.
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A platform for remote monitoring and secure exchange of health data in a cloud
environment is proposed by Thilakanathan et al. [45]. The security protocol is
implemented through an El-Gamal based proxy re-encryption methodology. The
patients can transmit their health data to data consumers, such as doctors and nurses,
in a secure manner. A key benefit of using proxy re-encryption is that the cipher-text
generated under the public key of patient or data owner is translated by a semi-
trusted proxy into a cipher-text that can be decrypted only by another user’s private
key. The construction does not permit any of the users to know the full decryption
key. A trusted service, called Data Sharing Service (DSS), decrypts the keys using
all of the pieces of the key corresponding to the requesting user. The decrypted keys
are subsequently used to decrypt the data files shared in the cloud. The methodology
also ensures revocation by simply removing the key pieces corresponding to the
revoked users in the proxies, thereby eliminating the need to redistribute the keys to
all of the users.

Han et al. [18] proposed a scheme to maintain the confidentiality of the health
data in cloud-assisted Wireless Body Area Networks (WBANs). The scheme is
intended to achieve secure communication between the WBANs and the cloud. The
data that is encrypted by the users can be only decrypted by the intended recipients
who possess the appropriate keys. The scheme utilizes multi-valued encoding rules
that are equipped with ambiguous properties to circumvent attacks. The decoding
process utilizes a complete finite graph to represent the encoded words correctly and
utilizes the Dijkstra’s algorithm [4] to determine a factorization that has high time
complexity. Therefore, the approach can lead to additional overheads for encoding
and decoding the exchanged messages.

Another approach to ensure the confidentiality of health data that is outsourced
to a cloud environment is proposed by Tong et al. [47]. The proposed approach
allows efficient searching on the encrypted data by using the Searchable Symmetric
Encryption (SSE). To avoid the key wear-out, the approach frequently updates
the keys. To enforce the auditability of the health data, the authors combined the
threshold control signature with the ABE. Instead of delegating access control to
individuals, a role-based access control approach is introduced to grant access in
emergency situations where the trusted authorities can verify the signatures. Addi-
tionally, to ensure unlinkability of parts of health information, the key management
is performed through a pseudorandom generator. Furthermore, the presented scheme
offers search pattern privacy, anonymity, and keyword privacy. On the downside, the
approach may be deficient in terms of dynamic access policy specification to grant
role-based access due to its complex access structure.

An approach that delegates access control over the EHRs in public clouds, called
Privacy-Preserving Attribute Based Group Key Management (PP AB-GKM), is
presented in [35]. The authors employ a Two Layer Encryption (TLE) methodology,
where the data owner performs a coarse-grained encryption while the fine-grained
encryption is implemented by the cloud. A broadcast encryption methodology
is used to transmit a message, after it is encrypted, to a subset of users. The
methodology uses the Oblivious Commitment Based Envelop (OCBE) protocol
to obliviously distribute the messages to users satisfying the particular access
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conditions. Access Control Policies (ACPs) are enforced through attributes, such
as role, insurance plan, type, and years of service. The policies for the role attribute
are regulated by the data owners, whereas the cloud re-encrypts the data that is
already encrypted by the data owner. The methodology effectively minimizes the
overheads at the data owners’ end, by reducing the number of attributes to be
handled. In addition, the newly inserted group members, or revoked users, are
effectively managed by the proposed methodology. On negative side, the proposed
approach can result in key escrow problems at the CSP because of delegating partial
encryption tasks to the cloud. Key escrow refers to the arrangement where the
decryption keys are made available to certain other users, or third-parties, in addition
to senders and receivers. In that sense, there are possibilities that the third-parties
having access to the keys may misuse them.

In addition to the approaches discussed above, there are also methodologies
to preserve the confidentiality of the health data in the cloud. For example, the
authors in [37, 46] used the PKE approach, whereas [29, 64] used the SKE to ensure
confidentiality. Table 15.1 presents a quick overview of the strategies that are used
to maintain confidentiality of health data in cloud environments.

15.3.2 Approaches to Maintain Data Integrity
in the e-Health Cloud

Various mechanisms have been employed to ensure the integrity of health data in the
cloud computing environment. Some recent approaches, along with their strengths
and weaknesses, are presented below.

A hybrid approach to preserving the privacy of health data that is shared in
the cloud, has been proposed by Yang et al. [57]. The proposed model uses
cryptography and statistical analysis to offer multi-level privacy. The medical
datasets are partitioned vertically, such that on each partition of the EMR a different
security level is implemented. The identifying attributes of the EMR, such as name,
date of birth, and address, are encrypted using symmetric encryption. On the other
hand, the portion of the EMR that consists of the clinical data and treatments’
history is stored as plain text. Because the data is partitioned, it is difficult for the
adversary to link the information. Moreover, only the recipients with appropriate
authentication can merge the partitions through the decryption keys and quasi-
identifiers. The data owners and the data recipients, respectively, ensure the integrity
of the medical data locally and remotely. A limitation of the proposed approach is
that the data recipient, who in this case is a cloud provider, can act maliciously
and disclose the information that can help linking the portions of patients’ medical
records.

A secure and scalable cloud-based architecture for medical wireless networks has
been proposed by Lounis et al. [32]. The proposed approach offers integrity of the
outsourced medical data and a fine-grained access control is implemented through
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the CP-ABE based construction. The system utilizes the Wireless Sensor Network
(WSN) to collect data from the patients, whereas the data stored on cloud servers are
accessed by the healthcare professionals through an application. To support access
policies in the medical domain, where certain users are granted access while others
are not, the authors used ABE and symmetric cryptography. The data file, before
storage in the cloud, is encrypted through a symmetric key and the keys are further
encrypted through ABE. Only the users possessing the secret keys satisfying the
access policies can decrypt the data files. In addition, the authors introduced a role,
called Healthcare Authority (HA), to define and enforce the policies and to generate
the security parameters. A key benefit of this approach is that in the case of change
of access policies, it requires the re-encryption of only the keys, which significantly
results in a reduction of the encryption overheads of ABE. However, the approach
can come across the management issues arising due to the frequent policy changes,
particularly in the case of access revocation.

A proposal to enhance the integrity and accountability of the EHRs by enforcing
either the explicit or implicit patient control over the EHRs, is presented by Mashima
et al. [33]. A monitoring agent monitors how and when the data is accessed.
The authors employed PKE to encrypt the health records. To make sure that
only the valid and trusted entities access and use the health records, the scheme
employs a standard digital signature approach, called Designated Verifier Signatures
(UDVS). In addition, besides encrypting and digital signing, the entities interested
in accessing the health records must contact the monitoring agent to confirm that
they intend to use the records. On the other hand, the authors’ assumption that the
record issuers are knowledgeable about the record contents and keys, can result in
information disclosure as a result of any malicious activity by the issuers.

Wang et al. [51] have presented a scheme to circumvent tampering attempts to the
health data outsourced to third-party cloud servers. The proposed scheme deploys
an independent third-party to maintain health data integrity and prevents illegitimate
data modification attempts by the cloud providers, hospitals, and patients. Before
being uploaded to the cloud, the data is encrypted by the patients using SKE
under the private keys of the patients. Homomorphic verifiable tags are used to
ensure the computations made on the encrypted data. In addition, a Diffie-Hellman
based key exchange strategy is employed to securely exchange the keys in a
multi-member scenario. Nonetheless, the large cipher-texts that are particular for
homomorphic encryption can result in performance issues. The authors in [30] also
used homomorphic encryption with IBE to preserve patients’ privacy in the context
of a mobile health monitoring system.

In addition to the above-mentioned approaches, few other strategies have also
been proposed to maintain the integrity of health data in a cloud environment. The
authors in [23] used PKE and digital signatures, whereas Hierarchical Predicate
Encryption (HPE) and ABE have been used in [7]. Similarly, a policy-based
authorization methodology has been proposed in [17] to help maintain data integrity.
Table 15.2 presents a summary of the approaches fulfilling the integrity requirement.
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15.3.3 Approaches to Offer Collusion Resistance
in the e-Health Cloud

Numerous approaches have been proposed to ensure collusion resistance in an
e-Health cloud. Some recent approaches that were developed to deal with the
collusion attacks are presented below.

A scheme to resist collusion attacks by the semi-trusted CSP was proposed in
[13]. This approach enforces access control on the attributes of the health data files
that are stored in the could, through the use of CP-ABE and IBE. A public-private
key pair for each attribute is defined and the secret key of a user is constructed
such that it is a combination of the public key of the user and the secret key of
the attribute. The users can decrypt only those cipher-texts that match with the
defined access structure. The scheme is collusion resistant in a way that even if the
unauthorized users collude with the authorized users, it is impossible for them to get
a clue about the contents of the data file. The resistance against collusion is enforced
by associating the public keys of the users with the respective attributes to stop
combining with the other users’ attributes. Although the approach claims to avoid
key management issues by offering key assignment through the cloud, key escrow
problems may exist due to the assumption of a semi-trusted adversarial model.

A methodology, called Priority based Health Data Aggregation (PHDA), that
preserves the identity and data privacy in transmissions from the WBANs, is
presented in [63]. The proposed scheme employs the Paillier cryptosystem to resist
against eavesdropping. To gain access to the health data of a particular patient,
the requesting entity submits a request to the mobile users through the CSP. Only
the entities possessing the valid secret keys are granted access to the health data.
Moreover, the identities of the patients are anonymized by changing the pseudonyms
in different periods of time and only the trusted authority has the ability to link
different pseudonyms. Furthermore, the methodology offers protection against
forgery attempts by malicious insiders, as the trusted authority authenticates the
correctness of the data requested by the doctors before transmission. However, a
limitation of the methodology is that it incurs significant overheads in terms of key
management.

Wang et al. [52] proposed an attribute-based method to enforce patient-centric
access control to health data stored in the cloud, through constant-size Ciphertext
Policy Comparative Attribute-Based Encryption (CCP-CABE). The framework
introduces a trusted authority that is responsible for generating the encryption and
decryption keys, and associated parameters. Another trusted authority, called the
encryption service provider, is used to help data owners generate partial encrypted
headers based on the attributes specified in the access policies. The proposed method
is claimed to be effective for collusion attacks by honest-but-curious cloud servers.
A key benefit of the approach is that it attempts to minimize the encryption overhead
at the data owner side, where the data owners can partially delegate the encryption
tasks to the encryption service providers. In addition, fixed sizes of ciphertexts are
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useful in reducing the overheads that are exist because of the CP-ABE. On the
negative side, the approach permits other roles, for example nurses, to delegate
access to health data, which may lead to sensitive information disclosure.

Another CP-ABE based approach, called the Efficient and Secure Patient-centric
Access control Scheme (ESPAC) for cloud storage, was proposed in [9]. This
approach implements patient-centric access control and utilizes IBE to establish a
secure communication between the remote patients and the CSP. To establish the
access structure, the patients transmit the secret keys to the CSP. The approach
ensures integrity of the transmitted message, authenticity of the message originator,
non-repudiation, and is also resistant to collusion and Denial of Service (DOS)
attacks. The performance results show that the ESPAC scheme can resist DOS
attacks in a dual server mode. The lack of dynamicity and flexibility in patient
data attainment and transmission to the hospital servers, constitutes this approach
inefficient. Moreover, the hospital servers can be a bottleneck of the system, and in
the event of failure the access to the data stored on the cloud may be restricted.

Liu et al. [31] proposed a cloud based patient-centric Clinical Decision Support
System (CDSS) and claimed that the privacy of patients’ data obtained during the
clinical visits is preserved. In this approach, diagnosis is performed by mapping
the symptom of the patients to past patients through a Naïve Bayes classifier. The
data of the existing patients is stored on the cloud. However, storing such huge
volumes of private data on third-party servers entails serious threats of data theft
and collusion. The approach proposed in [31] offers privacy for the historical data of
existing patients, by employing an El-Gamal encryption based methodology, called
Additive Homomorphic Proxy Aggregation (AHPA). The model mainly comprises
of entities, such as Trusted Authority (TA), Cloud Platform (CP), Data Provider
(DP), and Processing Unit (PU). The approach assumes an honest-but-curious server
that generally follows the protocol. It effectively deals with collusion attacks both
by the CP and the PU, by performing a re-encryption of the ciphertext, which makes
decryption impossible for the adversary without knowing the private key. However,
a limitation of this approach is that it may incur high communication overheads
because of the key generation and re-encryption operations. Table 15.3 presents a
summary of the approaches developed to overcome the collusion.

15.3.4 Approaches to Maintain Anonymity
in the e-Health Cloud

Various mechanisms have been proposed to maintain the anonymity of health data
in the cloud environment. Some recently developed approaches, along with their
strengths and weaknesses, are presented below.

Shen et al. [40] proposed a health monitoring architecture for geo-distributed
clouds. To circumvent the identification of patient identities through traffic analysis
attacks, the authors employed a traffic-shaping algorithm. The shaping algorithm
equally distributes both the health data traffic and the non-health data traffic.
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The autocorrelations obtained for the shaped health data traffic are observed close
to the non-health data traffic. The authors analyzed the capability of their traffic
analyzer by employing the Kullback-Leibler (K-L) divergence. K-L divergence
is an entropy measure used to quantify the difference between two probability
distributions [27]. The approach of Shen et al. [40] is claimed to be effective for
privacy protection to a reasonable degree. A limitation of the approach is that the
shaping algorithm incurs high communication delays because of the geo-distributed
clouds.

Zhang et al. [65] proposed a secure method to form a social group of patients
suffering from similar diseases, in cloud-assisted WBANs. The proposed approach
divides the whole district into different blocks, where each block has a designated
block manager and patients with mobile devices (sinks) move around the blocks.
The block managers sense and collect the Personal Health Information (PHI),
such as the Electrocardiogram (ECG) and Electroencephalography (EEG) data
from the mobile devices of the patients. The block managers also update and
distribute the private keys. The considered threat model assumes that adversaries
may compromise more sensors than the threshold in a fixed block location and in a
single period of time from different blocks. The methodology proposes the use of
resource constrained mobile devices that are less vulnerable to attacks and considers
that the block managers are trusted entities. A secure communication channel is
established through the Diffie-Hellman key exchange protocol among the sink nodes
and the block managers. To maintain the anonymity of the on-body sensors and
the patients, identity blinding matrices are employed. In addition, the compromised
on-body sensors in the event of a compromise are revoked and cannot be further
exploited to derive the keys. A shortcoming of the proposed approach is that it does
not offer any solution for valid insiders who may behave in a malicious way and
help adversaries by disclosing the sensitive health information or the keys.

The authors of [14] designed a methodology for secure sharing of data in multi-
cloud environments. The proposed approach enforces role-based access control
through Ciphertext Policy Attribute Based Encryption (CP-ABE). A key benefit
of CP-ABE in the proposed multi-cloud scenario is that only the delegated users
can have access to specified attributes. The patients’ health data are signed and
encrypted by the doctor, and subsequently sent to a local Multi-cloud Proxy (MCP).
The MCP splits the health record according to a secret sharing scheme and each
portion of the record is subsequently stored at different cloud providers’ locations.
Splitting the health record into multiple portions not only enhances the unlinkability
of the health data and patients’ personal information, but also has a positive effect
on patients’ anonymity. Moreover, to ensure that the privacy of portions stored
at different cloud providers is not compromised, the approach employs hash-
based identifiers. The cloud provider, or any adversary, is not able to deduce the
meaningful information from the hash because cryptographic hashes are difficult
to invert. However, the approach is limited in user revocation and in handling
emergency expectations. In addition, the complexity of searching for the identifiers
from different cloud providers while reconstructing the health records, also results
in an increased computational overhead.



410 A. Abbas and S.U. Khan

Xu et al. [56] propose an pseudonymization approach for the secondary use of
EHRs stored in a cloud infrastructure. In this paper, the authors propose to remove
all third-parties that are potentially considered as malicious. A trusted authority
issues the certificates to all the entities, such as doctors, pharmacists, and insurance
companies. Each of the requesting user/entity generates his/her private key that
subsequently, along with the user name and other information, is digitally signed by
the trusted authority. On the other hand, the patients generate the pairs of private and
public keys. The public keys are made available to the insurance companies to get
the certificate, whereas the private key, which is only known to the patient, is stored
at the protected memory of the patient’s smart card. However, the certificate issued
by the insurance company does not contain patient’s identifying information. As a
result, it can be difficult for the scheme to differentiate between the valid certificate
applicants and malicious insiders, such as employees of the insurance company, that
eventually can result in not only revealing the patients’ identities but also disclosing
primary health information.

Similar approaches for offering anonymity in a cloud environment were proposed
in [39], where the authors used ABE, and in [16], where the SSH protocol was used
for this purpose. Table 15.4 presents a summary of the approaches developed to
maintain anonymity in a health cloud environment.

15.3.5 Approaches to Offer Authenticity in the e-Health Cloud

Several methods have been proposed to ensure the authenticity of health data in a
cloud environment. Some recently developed approaches, along with their strengths
and weaknesses, are discussed below.

The authors of [43] propose a standard model for the automated collection
of health data, generated by personal devices, such as wireless glucometers and
smartphones of the patients. The collected data is transmitted to the authorized
providers. The proposed model allows the patients to exercise access control on
their health data. The data requested by the clinicians are encrypted, as well as the
S/MIME attachments. The sending entities sign the messages to ensure that the
messages have not been tampered during transit. The tasks of message encryption
and digital signing are accomplished through robust public key infrastructure-
based protocols. Each message contains a certificate created by a digital certificate
authority. Nevertheless, the DIRECT messaging to access request does not specify
whether a certificate authority is trusted or not and, therefore, can potentially lead
to tampering.

Yu et al. [59] presented a methodology that permits the physicians to collect the
patients’ evidence-based data and share it with other physicians. The privacy of the
data is preserved through a secure authentication mechanism. The new physicians
in the system are authenticated through the Health Personal Cards (HPCs). For
the existing physicians, the access to the health data is provided through the
Secure Sockets Layer (SSL) protocol. SSL establishes encrypted communication
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between the servers and the browser. In addition, patients’ identifying information
is encrypted through the Advanced Encryption Standard (AES) of the symmetric
key encryption, which helps in maintaining unlinkability.

Zhou et al. [66] proposed a scheme that aims to offer confidentiality and
anonymity to patients in an m-healthcare cloud system. An Attribute Based
Designated Verifier Signature scheme (ADVS) is proposed to ensure the patient-
self controllable access over the health information. The patients encrypt the
PHI, instead of assigning the secret keys to each of the physicians; define the
access policies for different user groups or classes. Access control is realized for
the following groups: (a) directly authorized physicians, (b) indirectly authorized
physicians, and (c) unauthorized persons or adversaries. The authorized physicians
are provided complete access to the patients’ health information and are also aware
of the identities of the patients. Although the indirectly authorized physicians can
view the health information, they are unable to learn the identities of the patients. On
the other hand, the unauthorized patients cannot have access to any information. The
users from each group need to satisfy the access structure defined on the respective
attributes. The scheme permits the patients to generate the attribute-based signatures
for each group that is different from the others and are not linkable in any way. A key
strength of the approach is that despite of using the attribute-based access structure,
the computational and communication overheads are low. On the negative side, it is
difficult to revoke access rights from the indirectly authorized physicians.

The authors of [21] used Public Key Encryption (PKE) and Content Key
Encryption (CKE) to fulfil the authenticity requirement. Yu et al. [58] used
Key Policy-Attribute Based Encryption (KP-ABE), proxy re-encryption, and lazy
re-encryption to achieve secure and scalable access control and to ensure the
authenticity of the health information. Table 15.5 presents a summary of the
approaches developed to maintain authenticity of health data.

15.3.6 Approaches to Maintain Unlinkability
in the e-Health Cloud

Maintaining unlinkability between the patients’ medical records, such as diagnosis
history, treatments, and lab reports, and the patients’ identities, is an important
requirement to be fulfilled in order to protect patients’ privacy. Some recently
developed approaches, along with their strengths and weaknesses, are presented
below. Table 15.6 presents a summary of the approaches developed to maintain the
unlinkability between the health data and patients’ identifying information.

A semantic privacy management framework for facilitating the secure sharing
of health data through mobile applications is presented in [8]. The framework
utilizes the XACML privacy policy language to enforce a set of access policies.
The approach is claimed to be effective in identifying the attacks by adversaries
asking “similar” health data in different queries. Each query by the adversary is
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assumed to have some changed requested parameters. The users’ data is stored
in the data store and the access policies are associated with the data. The users
request access to data via their mobile devices. Each request is forwarded to the
Policy Enforcement Point (PEP) that further forwards it to the Policy Decision
Point (PDP). The policies associated with the requested data are evaluated by the
semantic handler and the context handler to classify whether the query is malicious
or legitimate. The approach enforces access policies to ensure fine-grained access
control, but may possibly come across integrity and authenticity issues for the data
stored in the cloud.

Ahmad et al. [5] proposed a methodology that aims to minimize the cost of
encryption, decryption, and key management of health data in the cloud. The
methodology, called Dual Lock, allows access to PHI by applying dual keys
to offer protection against attacks issued by honest-but-curious cloud servers.
The methodology is also secure against malicious attacks that attempt to gain
information through the traffic patterns. For each query, a random output pattern
is produced that stops the adversary from inferring and linking the information.

A decentralized pseudonym scheme to protect the patients’ identities while
storing the PHRs in the cloud, is proposed by Xu et al. [55]. The patients in the
proposed model visit the doctors with their smart cards. The doctors after examining
the patients they may need to prescribe medicine to be purchased from the pharmacy.
The pseudonym and the encryption key are generated by using the patients’ smart
card. The doctor encrypts and signs the prescription record and the diagnosis data,
and the data is uploaded to the cloud. The cloud, with the help of a trusted authority,
before storing the EHRs also verifies the certificates of the doctors and challenges
the doctors’ private keys. The strategy restricts entities other than the patients to
generate valid encryption keys and pseudonyms. The patients can easily identify
and remove any forged EHR by inspecting the pseudonym and the encryption key.
The cloud has no knowledge of the contents of the EHRs, as the important contents
are encrypted and the keys are unknown to the cloud. The scheme also involves the
patients and doctors to construct the search indexes to support complex searches
on the encrypted data in the cloud. Moreover, the approach allows the patients
to frequently change their pseudonyms to avoid identify theft. On negative side,
the scheme requires complex operations for encryption key generation, certificate
creation and verification, and pseudonym generation, that seem very difficult to
manage in a real-time setting.

Cao et al. [11] proposed a scheme, called Multi-keyword Ranked Search over
Encrypted data (MRSE), to enable search operations while preserving privacy.
The scheme is applicable to the PHRs and can restrict the entities searching the
health data from learning the patients’ identifying information. The scheme assumes
an honest-but-curious cloud server that generally follows the protocol but is also
interested in learning additional information. In the proposed scheme, the cloud
servers only possess the information about the encrypted data and the searchable
index of the outsourced data. The scheme restricts the semi-trusted cloud servers
to generate trapdoors and to derive any information from the search keywords
and queries. The authors utilized the inner product similarity computation that is
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based on the secure k-nearest neighbour (k-NN) technique. A shortcoming of the
proposed scheme is that it is limited in enforcing the user-centric access control. The
approaches presented in [30, 37] also ensure the unlinkability between the patients’
health information and personal identifying information.

15.4 Discussion and Open Research Issues

The techniques presented in Sect. 15.3 effectively counter the threats, such as
spoofing identity, tampering, repudiation, denial of service attacks, and unlawful
privilege escalation. In addition, the discussed techniques also sufficiently fulfil
the privacy protection requirements that arise due to the architecture of the cloud.
The PKE based approaches were observed to be amply satisfying the unlinkability,
collusion, and anonymity requirements as compared to the SKE based constructions.
However, considering the widespread use of the public key infrastructure in most
of the Web based architectures, there is still a need to enhance the capabilities of
PKE to ensure the confidentiality, integrity, and authenticity of the health-data in
the public cloud environment.

Interestingly, the ABE-based schemes fulfilled most of the privacy protection
requirements. In addition, the ABE approaches also offered reasonable patient-
centric and fine-grained access control. However, such approaches generally come
across the issue of management of access policies. Moreover, the ABE-based
schemes tend to be expensive in terms of computational complexity, because
they usually perform bitwise matching of attributes in a hierarchical structure.
Consequently, the ciphertext size and key size increase linearly with the number
of attributes. Furthermore, the cipher-texts in ABE are of larger size and also
decryption operations are computationally expensive. This makes the use of ABE
questionable in power and energy constrained handheld devices. El-Gamal cryp-
tosystem and proxy re-encryption based approaches also proved very effective to
fulfil the important privacy protection requirements. However, they also have the
same issues as the ABE approaches.

Despite of the effectiveness of the methodologies and constructions employed to
protect the privacy of the cloud based e-Health systems, there are certain issues that
need more attention to help mitigate the privacy concerns.

The procedures to ensure the audits and accountability of health data utilization
need to be strengthened. Enforcing the audit and monitoring on the use of health
data can not only warrant the integrity and confidentiality of the health data but can
also help identifying how the privileged entities are utilizing the healthcare data. The
development of procedures to identify or distinguish whether an entity is following
the protocol in the usual way or not, is still an open issue that has to be explored.
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Another important issue worth exploring is revocation of access rights granted to
the privileged entities over the health data. Currently, the majority of the proposals
implementing the patient-centric access control, employ ABE. However, due to
the complex nature of the e-Health cloud, the specification and implementation of
the access policies for a diverse type of users is indeed a challenging task. The
management and update of access key shares for the departing or revoked users
should be done in such a way that the need to redistribute the keys is eliminated.

Although the homomorphic encryption allows computations over encrypted
data, the computational complexity of such operations enormously grows and the
approach seems impractical to handle a large number of operations on encrypted
data. Indeed, it currently seems unrealistic to perform computations over encrypted
data in real-life large-scale systems. Consequently, mechanisms are needed that
ensure privacy while computations are being performed over unencrypted data.

Another significant direction for future research is to devise methodologies that
first determine the importance of the data to be encrypted in the cloud environment,
and then encrypt only those portions of the data that contain extremely sensitive
information. The rationale for partially encrypting the data is the increased cost
of applying the encryption process. A few related solutions [38, 61, 62] have
already been developed. In any case, the practicality of such methodologies needs
to be portrayed to allow for their extended adoption, because users and healthcare
providers will not rely on solutions whose security strengths are not formally
proven.

In conclusion, the e-Health cloud is an exciting opportunity for healthcare
providers. However, the privacy of health data in cloud environments has emerged
as the most important concern that needs particular attention in order to ensure the
widespread acceptance of the cloud computing model in the healthcare domain.

15.5 Conclusion

The distributed architecture of the cloud poses serious questions on the privacy of
sensitive health data stored in the cloud. This chapter presented the privacy threats to
the electronic health data and discussed recent solutions to counter these threats. The
analysis of the discussed strategies indicates that the cryptographic solutions, along
with digital signatures and certificate-based authentication mechanisms, are capable
enough to provide privacy guarantees in a public cloud environment. However, still
robust methodologies are needed to ensure the secure provenance and monitoring
of electronic health data. The e-Health clouds can gain worldwide acceptance only
if they win the confidence and trust of healthcare organizations and patients, by
providing strong mechanisms to protect the sensitive electronic health information.



418 A. Abbas and S.U. Khan

References

1. Abbas, A., Khan, S.: A review on the state-of-the-art privacy preserving approaches in e-health
clouds. IEEE J. Biomed. Health Inform. 18, 1431–1441 (2014)

2. Abbas, A., Bilal, K., Zhang, L., Khan, S.U.: A cloud based health insurance plan recommen-
dation system: a user centered approach. Futur. Gener. Comput. Syst. 43, 99–109 (2015)

3. Abbas, A., Khan, M., Ali, M., Khan, S., Yang, L.: A cloud based framework for identification
of influential health experts from Twitter. In: Proceedings of the 15th International Conference
on Scalable Computing and Communications (ScalCom) (2015)

4. Sedgewick, R.: Algorithms in C++: Fundamentals, data structures, sorting, searching and graph
algorithms. Boston: Addison-Wesley (2001)

5. Ahmad, M., Pervez, Z., Lee, S.: Dual locks: partial sharing of health documents in cloud. In:
Bodine, C., Helal, S., Gu, T., Mokhtari, M. (eds.) Smart Homes and Health Telematics, vol.
8456, pp. 187–194. Springer, Cham (2014)

6. Ahuja, S., Mani, S., Zambrano, J.: A survey of the state of cloud computing in healthcare.
Netw. Commun. Technol. 1, 12–19 (2012)

7. Akinyele, J., Lehmann, C., Green, M., Pagano, M., Peterson, Z., Rubin, A.: Self-protecting
electronic medical records using attribute-based encryption. Technical Report 2010/565,
Cryptology e-Print Archive (2010)

8. Ammar, N., Malik, Z., Rezgui, A., Alodib, M.: MobiDyC: private mobile-based health data
sharing through dynamic context handling. Procedia Comput. Sci. 34, 426–433 (2014)

9. Barua, M., Liang, X., Lu, R., Shen, X.: ESPAC: enabling security and patient-centric access
control for eHealth in cloud computing. Int. J. Secur. Netw. 6(2/3), 67–76 (2011)

10. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.: Patient controlled encryption: ensuring privacy
of electronic medical records. In: Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, CCSW ’09, pp. 103–114. ACM (2009)

11. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked search
over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)

12. Chen, Y., Lu, J., Jan, J.: A secure EHR system based on hybrid clouds. J. Med. Syst. 36(5),
3375–3384 (2012)

13. Dong, X., Yu, J., Luo, Y., Chen, Y., Xue, G., Li, M.: Achieving an effective, scalable and
privacy-preserving data sharing service in cloud computing. Comput. Secur. 42, 151–164
(2014)

14. Fabian, B., Ermakova, T., Junghanns, P.: Collaborative and secure sharing of healthcare data in
multi-clouds. Inf. Syst. 48, 132–150 (2015)

15. Fan, L., Buchanan, W., Thummler, C., Lo, O., Khedim, A., Uthmani, O., Lawson, A., Bell, D.:
DACAR platform for e-Health services cloud. In: Proceedings of the 4th IEEE International
Conference on Cloud Computing, pp. 219–226 (2011)

16. Gorp, P., Comuzzi, M.: Lifelong personal health data and application software via virtual
machines in the cloud. IEEE J. Biomed. Health Inform. 18(1), 36–45 (2014)

17. Haas, S., Wohlgemuth, S., Echizen, I., Sonehara, N., Muller, G.: Aspects of privacy for
electronic health records. Int. J. Med. Inform. 80(2), e26–e31 (2011)

18. Han, N., Han, L., Tuan, D., In, H., Jo, M.: A scheme for data confidentiality in cloud-assisted
wireless body area networks. Inf. Sci. 284, 157–166 (2014)

19. Hans, L., Sadeghi, A., Winandy, M.: Securing the e-Health cloud. In: Proceedings of the 1st
ACM International Health Informatics Symposium, IHI ’10, pp. 220–229. ACM (2010)

20. HealthIT.gov.: Health IT legislation and regulations. http://healthit.gov/policy-researchers-
implementers/health-it-legislation (2015). Accessed 29 May 2015

21. Jafari, M., Naini, R., Sheppard, N.: A rights management approach to protection of privacy in
a cloud of electronic health records. In: Proceedings of the 11th Annual ACM Workshop on
Digital Rights Management, DRM ’11, pp. 23–30. ACM (2011)

http://healthit.gov/policy-researchers-implementers/health-it-legislation
http://healthit.gov/policy-researchers-implementers/health-it-legislation


15 e-Health Cloud: Privacy Concerns and Mitigation Strategies 419

22. Johnson, M.: Data hemorrhages in the health-care sector. In: Dingledine, R., Golle, P. (eds.)
Financial Cryptography and Data Security. Lecture Notes in Computer Science, vol. 5628,
pp. 71–89. Springer, Berlin/Heidelberg (2009)

23. Kaletsch, A., Sunyaev, A.: Privacy engineering: personal health records in cloud computing
environments. In: Proceedings of the 32nd International Conference on Information Systems
(ICIS), pp. 1–11 (2011)

24. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S.,
Kiayias, A., Miret, J., Sako, K., Kazue, S. (eds.) Financial Cryptography and Data Security.
Lecture Notes in Computer Science, vol. 6054, pp. 136–149. Springer, Berlin/Heidelberg
(2010)

25. Kuo, A.H.: Opportunities and challenges of cloud computing to improve health care services.
J. Med. Internet Res. 13(3), e67 (2011). doi:10.2196/jmir.1867

26. Li, J.: Electronic personal health records and the question of privacy. Computer 99 (2013).
doi:10.1109/MC.2013.225

27. Li, X.B., Sarkar, S.: Against classification attacks: a decision tree pruning approach to privacy
protection in data mining. Oper. Res. 57(6), 1496–1509 (2009)

28. Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud computing: patient-
centric and fine-grained data access control in multi-owner settings. In: Security and Privacy
in Communication Networks, Springer Berlin Heidelberg, pp. 89–106 (2010)

29. Li, Z., Chang, E., Huang, K., Lai, F.: A secure electronic medical record sharing mechanism in
the cloud computing platform. In: Proceedings of the 15th IEEE International Symposium on
Consumer Electronics (ISCE), pp. 98–103. ACM (2011)

30. Lin, H., Shao, J., Zhang, C., Fang, Y.: CAM: cloud-assisted privacy preserving mobile health
monitoring. IEEE Trans. Inf. Forensics Secur. 8(6), 985–997 (2013)

31. Liu, X., Lu, R., Ma, J., Chen, L., Qin, B.: Privacy-preserving patient-centric clinical decision
support system on naive Bayesian classification. IEEE J. Biomed. Health Inform. (2015).
doi:10.1109/JBHI.2015.2407157

32. Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y.: Healing on the cloud: secure cloud
architecture for medical wireless sensor networks. Future Gener. Comput. Syst. (2015).
doi:10.1016/j.future.2015.01.009

33. Mashima, D., Ahamad, M.: Enhancing accountability of electronic health record usage via
patient-centric monitoring. In: Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium, IHI ’12, pp. 409–418. ACM (2012)

34. Metri, P., Sarote, G.: Privacy issues and challenges in cloud computing. Int. J. Adv. Eng. Sci.
Technol. 5, 1–6 (2011)

35. Nabeel, M., Bertino, E.: Privacy preserving delegated access control in public clouds. IEEE
Trans. Knowl. Data Eng. 26(9), 2268–2280 (2014)

36. Ning, H., Liu, H., Yang, L.: Cyberentity security in the Internet of things. Computer 46(4),
46–53 (2013)

37. Pecarina, J., Pu, S., Liu, J.C.: SAPPHIRE: anonymity for enhanced control and private
collaboration in healthcare clouds. In: Proceedings of the 4th IEEE International Conference
Cloud Computing Technology and Science (CloudCom), pp. 99–106. ACM (2012)

38. Puttaswamy, K., Kruegel, C., Zhao, B.: Silverline: toward data confidentiality in storage-
intensive cloud applications. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pp. 10:1–10:13. ACM (2011)

39. Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with authentication for
securing data in clouds. In: Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (Ccgrid), CCGRID ’12, pp. 556–563. IEEE Computer
Society (2012)

40. Shen, Q., Liang, X., Shen, X., Lin, X., Luo, H.Y.: Exploiting geo-distributed clouds for a
e-health monitoring system with minimum service delay and privacy preservation. IEEE J.
Biomed. Health Inform. 18, 430–439 (2014)

http://dx.doi.org/10.1016/j.future.2015.01.009
http://dx.doi.org/10.1109/JBHI.2015.2407157
http://dx.doi.org/10.1109/MC.2013.225
http://dx.doi.org/10.2196/jmir.1867


420 A. Abbas and S.U. Khan

41. Sookhak, M., Gani, A., Talebain, H., Akhunzada, A., Khan, S., Buyya, R., Zomaya, A.: Remote
data auditing in cloud computing environments: a survey, taxonomy, and open issues. ACM
Comput. Surv. 47(4), 65:1–65:34 (2015)

42. Subashini, S., Kavitha, V.: Review: a survey on security issues in service delivery models of
cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

43. Sujansky, W., Kunz, D.: A standard-based model for the sharing of patient-generated health
information with electronic health records. Pers. Ubiquit. Comput. 19(1), 9–25 (2014)

44. Sundareswaran, S., Squicciarini, A., Lin, D.: Ensuring distributed accountability for data
sharing in the cloud. IEEE Trans. Dependable Secure Comput. 9(4), 556–568 (2012)

45. Thilakanathan, D., Chen, S., Nepal, S., Calvo, R., Alem, L.: A platform for secure monitoring
and sharing of generic health data in the cloud. Future Gener. Comput. Syst. 35, 102–113
(2014)

46. Thomas, H., Lohr, H., Sadeghi, A., Winandyl, M.: Flexible patient-controlled security for
electronic health records. In: Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium, IHI ’12, pp. 727–732. ACM (2012)

47. Tong, Y., Sun, J., Chow, S., Li, P.: Cloud-assisted mobile-access of health data with privacy
and auditability. IEEE J. Biomed. Health Inform. 18(2), 419–429 (2014)

48. U.S. Department of Health & Human Services.: Health Insurance Portability and Accountabil-
ity Act of 1996 (HIPAA). http://aspe.hhs.gov/admnsimp/final/pvcpre03.htm (2015). Accessed
25 April 2015

49. VMware.: Your cloud in healthcare. http://www.vmware.com/files/pdf/VMware-Your-Cloud-
in-Healthcare-Industry-Brief.pdf (2015). Accessed 22 April 2015

50. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable storage services
in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232 (2012)

51. Wang, H., Wu, Q., Qin, B., Ferrer, J.: FRR: fair remote retrieval of outsourced private medical
records in electronic health networks. J. Biomed. Inf. 50, 226–233 (2014)

52. Wang, Z., Huang, D., Zhu, Y., Li, B., Chung, C.J.: Efficient attribute-based comparable data
access control. IEEE Trans. Comput. (2015). doi:10.1109/TC.2015.2401033

53. World Health Organization.: E-health. http://www.who.int/trade/glossary/story021/en/ (2015).
Accessed 25 April 2015

54. Wu, R., Ahn, G.J., Hu, H.: Secure sharing of electronic health records in clouds. In:
Proceedings of the 8th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), pp. 711–718 (2012)

55. Xu, L., Cremers, A.: A decentralized pseudonym scheme for cloud-based ehealth systems. In:
Proceedings of the 2014 International Conference on Health Informatics, pp. 230–237. ACM
(2014)

56. Xu, L., Cremers, A., Wilken, T.: Pseudonymization for secondary use of cloud based electronic
health records. Working paper, Academy of Science and Engineering (2015)

57. Yang, J.J., Li, J.Q., Niu, Y.: A hybrid solution for privacy preserving medical data sharing in
the cloud environment. Futur. Gener. Comput. Syst. 43–44, 74–86 (2015)

58. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proceedings of the 2010 IEEE INFOCOM Conference, pp. 1–9
(2010)

59. Yu, H.J., Lai, H.S., Chen, K.H., Chou, H.C., Wu, J.M., Dorjgochoo, S., Mendjargal, A.,
Altangerel, E., Tien, Y.W., Hsueh, C.W., Lai, F.: A sharable cloud-based pancreaticoduodenec-
tomy collaborative database for physicians: emphasis on security and clinical rule supporting.
Comput. Methods Prog. Biomed. 111(2), 488–497 (2013)

60. Zhang, R., Liu, L.: Security models and requirements for healthcare application clouds.
In: Proceedings of the 3rd IEEE International Conference on Cloud Computing (CLOUD),
pp. 268–275 (2010)

61. Zhang, K., Zhou, X., Chen, Y., Wang, X., Ruan, Y.: Sedic: privacy-aware data intensive
computing on hybrid clouds. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pp. 515–526. ACM (2011)

http://www.who.int/trade/glossary/story021/en/
http://dx.doi.org/10.1109/TC.2015.2401033
http://www.vmware.com/files/pdf/VMware-Your-Cloud-in-Healthcare-Industry-Brief.pdf
http://www.vmware.com/files/pdf/VMware-Your-Cloud-in-Healthcare-Industry-Brief.pdf
http://aspe.hhs.gov/admnsimp/final/pvcpre03.htm


15 e-Health Cloud: Privacy Concerns and Mitigation Strategies 421

62. Zhang, X., Liu, C., Nepal, S., Pandey, S., Chen, J.: A privacy leakage upper bound constraint-
based approach for cost-effective privacy preserving of intermediate data sets in cloud. IEEE
Trans. Parallel Distrib. Syst. 24(6), 1192–1202 (2013)

63. Zhang, K., Liang, X., Baura, M., Lu, R., Shen, X.: PHDA: a priority based health data
aggregation with privacy preservation for cloud assisted WBANs. Inf. Sci. 284, 130–141
(2014)

64. Zhang, R., Liu, L., Xue, R.: Role-based and time-bound access and management of EHR data.
Secur. Commun. Netw. 7(6), 994–1015 (2014)

65. Zhou, J., Cao, Z., Dong, X., Xiong, N., Vasilakos, A.: 4s: a secure and privacy-preserving
key management scheme for cloud-assisted wireless body area network in m-healthcare social
networks. Inf. Sci. 314, 255–276 (2015)

66. Zhou, J., Lin, X., Dong, X., Cao, Z.: PSMPA: patient self-controllable and multi-level privacy-
preserving cooperative authentication in distributed m-healthcare cloud computing system.
IEEE Trans. Parallel Distrib. Syst. 26(6), 1693–1703 (2015)

67. Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Futur. Gener. Comput.
Syst. 28(3), 583–592 (2012)



Part III
Privacy for Emerging Applications



Chapter 16
Preserving Genome Privacy in Research Studies

Shuang Wang, Xiaoqian Jiang, Dov Fox, and Lucila Ohno-Machado

Abstract As the cost of genome sequencing continues to fall, whole genome
sequencing data have become a viable alternative for improving diagnostic accuracy
and supporting personalized medicine. Although they have the potential to advance
public health and accelerate scientific discoveries, massive collections of genomic
data also raise significant concerns about individual privacy. Like traditional
clinical information, human genomes may reveal information about individuals
(e.g., identity, ethnic group, disease association, predisposition to diseases such
as diabetes or cancer, etc.) Even more concerning is the fact that the information
is shared with ancestors and descendants, and thus loss of privacy may put the
privacy of the entire family at risk. Genome privacy is a big challenge for the
entire biomedical community, particularly since scientific discoveries depend on
data sharing and obfuscation of data is not a good option to protect privacy. Multiple
factors are involved in genomic privacy research. The components that can be used
to better protect genome privacy include, but are not limited to, legal, ethical and
technical aspects, e.g., federal laws, policies and regulations, informed consent
policies, data use agreements, secure data repositories, as well as privacy-preserving
data analysis methods. However, genome privacy challenges cannot be addressed
by any single component alone. We envision that better privacy protection can be
achieved through the incorporation of multiple components. The goal of this chapter
to introduce the state-of-the-art in genome privacy research. This chapter begins
with an introduction of genome privacy followed by an overview of the legal, ethical
and technical aspects of genome privacy. After formalizing the genome privacy

Shuang Wang and Xiaoqian Jiang share the first authorship.

S. Wang (�) • X. Jiang • L. Ohno-Machado
Department of Biomedical Informatics, University of California, San Diego, CA, USA
e-mail: shw070@ucsd.edu; x1jiang@ucsd.edu; machado@ucsd.edu

D. Fox
School of Law, University of San Diego, San Diego, CA, USA
e-mail: dovfox@sandiego.edu

© Springer International Publishing Switzerland 2015
A. Gkoulalas-Divanis, G. Loukides (eds.), Medical Data Privacy Handbook,
DOI 10.1007/978-3-319-23633-9_16

425

mailto:dovfox@sandiego.edu
mailto:machado@ucsd.edu
mailto:x1jiang@ucsd.edu
mailto:shw070@ucsd.edu


426 S. Wang et al.

problem, we will review existing attack models on genomic data. The techniques for
mitigating these attacks are discussed. This chapter concludes with the discussion
of the challenges and the future directions in genome privacy research.

16.1 Introduction

Biomedical science has been undergoing a significant transformation in the past
decade, with an increasing emphasis on data-driven approaches [1]. Rapid advances
in genome sequencing technologies have enabled the acquisition of a large amount
of genomic data inexpensively. For example, the HiSeq X Ten [2], launched
by Illumina in January 2014, delivers the first $1000 genome at 30� coverage.
Nowadays, researchers are able to conduct sequencing studies with thousands
of individuals [3, 4]. Genome-wide association studies (GWAS) focus on the
examination of common genetic variants among different individuals to identify
the association between genetic variants and a given trait. As suggested in a recent
study [5], a robust detection of novel loci that is likely to be associated with a
given disease in GWAS may require even hundreds of thousands of samples. “Big
Data” science [6] heavily relies on storage, integration and analysis of the data
on an unprecedented scale to facilitate disease prevention (e.g., BRCA mutation
test for breast cancer prevention [7]), to improve healthcare (e.g., personalized
medicine [8, 9] and precision medicine [10]) and to promote biomedical research
(e.g., detecting novel loci for a certain disease [11]).

Because the required sample size in a genomic study can easily overwhelm the
availability in a single institution, genomic data sharing plays an important role in
promoting biomedical research involving sequencing data. Through data sharing,
researchers might also utilize existing genomic data for secondary analysis or even
combine genomic data from different sources to increase the statistical power of
studies and to accelerate discoveries. In order to make progress toward this goal,
NIH launched the database of Genotypes and Phenotypes (dbGaP) [12], which
provides open or controlled accesses to genomic data in GWAS depending on the
original informed consent from participants. Additionally, NIH also expressed its
intention [13] to extend the existing GWAS data sharing policy to cover data from a
wider range of genomic studies. However, the increased demand and availability of
genomic data also raises serious concerns about the confidentiality of such data and
the privacy of individuals [14]. Potential threats to genomic data privacy include,
but are not limited to, re-identification risk [15, 16], disease association risk [17],
genomic data recovery risk [18], and unintended information disclosure of blood
relatives [19]. Over the past few years, many studies have been conducted in the area
of genome privacy, which focuses on different aspects of genome privacy, including
legal [20], ethics [21, 22] and technology [14, 23].
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Genome privacy is emerging as a new interdisciplinary field, which engages
researchers from different areas including genomics, bioethics, law, bioinformatics,
security, computer science, etc. The recent workshops in genome privacy (i.e., the
first and second International Workshop on Genome Privacy [24], the 2014 [25] and
the 2015 iDASH Genomic Privacy and Security Challenges [26]) have evidenced
the establishment of such a heterogeneous community, in which researchers with
different backgrounds can exchange insights, methods, results, legal, social and
ethical implications of genome privacy. However, as the co-organizers in the last
two workshops, we realize that there exist several technological gaps between the
designs of practical genome privacy protection methods and practical genomic
applications, primarily due to reduced communications between geneticists and
security/privacy experts. On one hand, security or privacy experts overlook the
biological context in designing their protection methods. Existing methods [27–
29] for protecting the privacy of medical records may not be applicable directly
to the genomic data due to the high-dimensional nature of the latter. Perturbation
based protection methods [30] applied to genomic data often introduce too much
noise and studies based on these noisy outputs are not trustworthy for practical
genomic applications. On the other hand, geneticists and bioethicists commonly
lack the necessary knowledge in formalizing the attack models or articulating a
tolerable level of privacy risk. Therefore, further interaction and cooperation of these
disciplines in necessary. The goal of this chapter is to summarize and systematize
knowledge of genome privacy.

The rest of the chapter is organized as follows. Section 16.2 discusses
genome privacy in terms of policies and legal regulations in the United States.
Next, Sect. 16.3 focuses on information technology that is related to genomic
privacy, including risk models and protection mechanisms that have been proposed.
Last, Sect. 16.4 provides conclusions, discussion, and future directions.

16.2 Policies, Legal Regulation and Ethical Principles
of Genome Privacy

In this section, we will present current policies, legal regulations and ethical
principles regarding genomic data sharing and privacy protection in the United
States.

16.2.1 NIH Policies for Genomic Data Sharing

16.2.1.1 GWAS Data Sharing Policy

In August 2007, the National Institutes of Health (NIH) announced the policy
for sharing of data obtained in NIH-supported Genome-Wide Association Studies
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(GWAS policy) [31]. This policy introduced two tiers of GWAS data sharing
models, i.e., unrestricted and controlled access. Furthermore, NIH created a central
repository [i.e., the database of Genotypes and Phenotypes (dbGaP)] [12] to archive
and distribute GWAS data. The above initiatives aimed at promoting scientific
discovery and maximizing the public benefits by sharing GWAS data in compliance
with the original informed consents from participants, taking into consideration pri-
vacy risks. For example, a recent report [32] analyzed 304 dbGaP studies deposited
before December 1, 2013, where 17,746 data access requests (with an approval rate
of 68 %) had been submitted by 2221 researchers and 6800 collaborators from 41
countries. The secondary use of dbGaP data resulted in a total of 924 publications
and significant breakthroughs.

Data Submission to dbGaP To protect the privacy of participants, individual-level
data are de-identified by the investigators before being submitted to dbGaP. The
submitted data are organized based on the participants’ informed consent, where
data in the same consent group have the same data use limitations (e.g., limitations
to a specific disease or the embargo date for a secondary research). Then, each
study in dbGaP is assigned with a unique accession number and associated with
additional information, which includes, but is not limited to dataset description, data
use certification, data use limitation, related publication, funding source, etc.

Data Access to dbGaP Researchers can download and use unrestricted datasets
(i.e., public datasets) without authorization and time limits. In contrast, any request
to the controlled-access (i.e., restricted) dataset from researchers must be first
reviewed by the NIH data access committee (DAC), which is composed of experts
in bioethics and relevant scientific areas. Investigators need to agree to the terms
elaborated in the data use certification for each requested dataset, and to meet
data security requirements in order to manage dbGaP data. A DAC will approve
or disapprove a given request by evaluating the consistency between the proposed
secondary research and data use limitations of the requested dataset. Currently, NIH
has established 16 DACs representing their 18 NIH Institutes and Centers (ICs),
and the average processing time of a request is 14 days. Recently, NIH released
a statement related to the use of cloud computing services for storage and analysis
of controlled-access data [33]. Although cloud computing provides better scalability
and less management effort than local clusters, ensuring data security and privacy in
cloud environments is still the responsibility of the researchers and their institutions.

16.2.1.2 Genomic Data Sharing Policy

Following on the success of the GWAS policy and due to the increasing volume
and complexity of genomic data (e.g., non-human genomic data, gene expression
data, whole genome sequencing data, etc.), NIH developed a new Genomic Data
Sharing (GDS) policy [13] in 2014 to meet the needs for managing and distributing
large scale genomic data from a wide range of genomic research. Similar to the
GWAS policy, the GDS policy allows genomic data to be shared through either
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Table 16.1 Key aspects of GWAS and genomic data sharing (GDS) policies

GWAS policy GDS policy

Effective dates January 25, 2008 January 25, 2015

Scope Human GWAS data Both human and non-human
genomic data

Consent standard for data
collected before the
effective date

• If consent is not available,
data may still be submitted to
NIH

• If consent is available, IRB
documents are required to
ensure consistency

Same

Consent standard for data
collected after the effective
date

Specific discussion about
sharing participants’ genotype
and phenotype data for research
purposes within the informed
consent is expected by NIH

• Genomic data, clinical
specimens and cell lines
should be consented for
research use with explicit
statement of either open
or controlled access

• Expectations might be
allowed upon special
request

Data submission timeline As soon as the data quality
control has been finished

• Not expected for raw data
or initial sequence reads

• Within 3 months for pro-
cessed data (e.g., aligned
sequences, SNPs, etc.)

• As soon as analyses are
completed for final anal-
ysis data (e.g., genotype-
phenotype data)

Data release timeline Immediate data release, but
with a 12 month publication
embargo for secondary use

• N/A for raw data or initial
sequence reads

• 6 months for non-human
data, and processed data

• Immediate release of final
analysis data

open or controlled access depending on the nature of informed consent [34]. The
controlled access data may be available for secondary use only after researchers
have obtained approval from the NIH for the particular study. However, there are
also several important changes in the GDS policy. The key differences between
GWAS and GDS policies are summarized in Table 16.1.
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16.2.2 U.S. Legal Regulations for Genomic Data

The U.S. Supreme Court has not established a constitutional right to informational
privacy that it has said applies to whole genome sequence data. Most recently in
Maryland v. King, a majority of the Supreme Court authorized police under the
Fourth Amendment bar on unreasonable searches and seizures to take DNA from
anyone they arrest, so long as the only part of the DNA they analyze does not encode
instructions for making proteins [35]. The constitutional logic of that decision is that
DNA may be extracted by law enforcement if it does not reveal the kinds of sensitive
genetic or medical information that the Court referred to as “more far-reaching and
complex characteristics like genetic traits” [36].

The most significant source of medical privacy protection beyond the policing
context is a congressional law called the Health Information Portability and
Accountability Act, or HIPAA [37]. Passed in 1996, HIPAA establishes rules
designed to secure the privacy of personally identifiable health information. Those
rules are then interpreted by the Department of Health and Human Services (HHS).
HIPAA’s Privacy Rule governs the conditions under which certain “covered entities”
such as healthcare providers can disclose patient-identifiable information. In 2013,
the Health Information Technology for Economic and Clinical Health (HITECH)
Act added the business associates of any previously covered entities to those liable
for the disclosing protected health information under HIPAA [38].

Specifically, these entities are forbidden from disclosing patient-identifiable
information (unless with patient consent, or to HHS in the event of a compliance
investigation or enforcement action). This includes the patient’s name, address,
social security number, and “biometric identifier” or “any other unique identifying
number, characteristic, or code” [39]. HHS has not clarified whether genetic or
genomic information counts among these protected patient-identifiable forms of
health information. Importantly, HIPAA imposes no restrictions on the use or
disclosure of health information that does not identify an individual or provide a
reasonable basis with which to identify him or her [40].

Institutions that do not count as “covered entities” subject to the requirements
of HIPAA and HITECH must instead follow the so-called Common Rule [41].
This requires human subjects’ research funded by the federal government (state-
funded or open-source genomics projects are not covered) to obtain informed
consent, minimize risks to participants, and acquire satisfactory marks by an
institutional review board (IRB). Free from these Common Rule requirements,
however, is research that uses data where the identity of the subject cannot be readily
determined [42].

The “de-identified” data can be used for research purposes without meeting
the Common Rule requirements. This implies that participants in federally funded
genomics studies will be not given additional consent or be advised about the newly
discovered risk of re-identification. This has recently led HHS to propose new
rules that better address the risks of de-identified data that can be re-identified, as
presented in Fig. 16.1.
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Rapidly evolving advances in technology coupled with the increasing vol-
ume of data readily available may soon allow identification of an indi-
vidual from data that is currently considered de-identified . . . We are
considering adopting the HIPAA standards for purposes of the Common
Rule regarding what constitutes individually identifiable information . . . it
might be advisable to evaluate the set of identifiers that must be removed
for a data set to be considered “de-identified” under both human subjects
regulations and the HIPAA Privacy Rule . . . we are considering categoriz-
ing all research involving the primary collection of biospecimens as well
as storage and secondary analysis of existing biospecimens as research
involving identifiable information [43].

Fig. 16.1 HHS’s new rules to address the risks of de-identified data that can be re-identified

At present, however, “de-identified” data remains unprotected under HIPAA if
all 18 HIPAA identifiers are removed or an expert determines that the risk of
re-identification is negligible [44]. Courts have determined that either identifier
removal or expert determination, but not both, is required to qualify data as de-
identified, and thus unprotected under the HIPAA Privacy Rule [45].

The Genetic Information Nondiscrimination Act, known as GINA, builds on
HIPAA protections, though it does not directly regulate privacy concerns related to
access to genomic data [20]. Instead this 2008 law makes it illegal for employers
with more than 15 employees to fire or refuse to hire workers, or “otherwise
to discriminate against any employee with respect to the compensation, terms,
conditions, or privileges of employment”, based on their genetic test results or
family history of disease [46]. GINA also creates a cause of legal action for people to
sue health insurance companies for investigating their genetic information or using
it to set their premiums or deny them coverage [47]. Most GINA plaintiffs failed,
however, for difficulties identifying the misuse of genetic as opposed to other kinds
information [48]. While the law applies only to asymptomatic individuals, and not
those who have “manifested disease”, the 2010 Patient Protection and Affordable
Care Act (ACA) prohibits health insurers from setting premiums or determining
eligibility for coverage based on signs and symptoms of genetic disease.

GINA extends coverage to the genetic information of family members related to
individuals, including disease manifestation, but only if relevant to determining the
individual’s risk for a genetic disease [49]. Courts have treated as “genetic”, and thus
eligible for GINA protection, “information about whether an employee’s ‘primary
relative’ has a history of prostate cancer” [50], but not a plaintiff’s wife’s diagnosis
of multiple sclerosis [51]. GINA’s protections do not cover the disadvantaging use
of genetic information in disability insurance, life insurance, or long-term care. Nor
does the law apply to athletic programs or health benefits for federal employees,
members of the military, veterans seeking healthcare through the Department of
Veterans Affairs, or the Indian Health Service [52].

GINA sets threshold federal protections in a way that permits states to provide
additional safeguards [53]. Nineteen states add some form of such additional
protections; these vary widely from state to state. Ten states have general privacy
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protection laws that require informed consent to collect, access, retain or disclose
the genetic information and that establish rules on collection, access, retention
and disclosure of such information [53]. Among the broadest such protections are
offered in California, which prohibits genetic discrimination in housing, receipt of
services, qualifications for licensing, emergency medical services, and participation
in any state-funded programs [54]. The five states like Alaska that afford certain
property rights tend to limit those rights to the DNA sample itself, with limited
protection for the genetic information it confers [55]. Some of these statutes also
set forth added informed consent requirements to collect or disclose DNA samples
and give people a private right of action against those who collect a DNA sample or
disclose DNA testing results without such content [56].

16.2.3 Ethical Principles for Genome Privacy

There are a number of risks to preserving the anonymity of genetic information from
individuals. Genomic data can be leaked by a reckless clinician or sequencing facil-
ity, or de-anonymized by a hacker or disgruntled employee. Because the genomes
of closely related people are so similar, the disclosure of one person’s genome—
whether voluntary, accidental, or malicious—can reveal sensitive information about
his or her siblings or children too [19].

Serious concerns about individual privacy follow from the risk that genomic data
might be connected to the person they come from. This can be used to establish
parental status in family disputes, to identify suspected criminals in police searches,
or to disclose health risks of possible interest to insurers or employers. Dr. Noralane
Lindor of the Mayo Clinic tells the story of a cancer patient, for example, whose
grandchild was rejected in her application to become a U.S. army helicopter pilot
when it was revealed that she had been genetically tested for a cancer mutation [57].

Informed consent and data use agreements (DUAs) play important roles in
controlled access for data sharing. Informed consent from a subject describes
whether or to what extent the data are appropriate for future research use. In
addition, an individual participant is also able to request removal of his or her data
from future research use by withdrawing the consent [58]. A DUA regulates the
responsibilities of investigators including, but not limited to, the type of research,
expiration of the contract, liabilities of protecting data confidentiality, reporting any
violation, and not attempting to re-identify participants.

Informed consent to participate in a genome sequencing study should at a
minimum make clear how the data will be used now and in the future, the degree
to which participants can control future use of the data, and potential known and
unknown benefits and risks of participation, including whether they will be informed
of incidental findings. People may assess in very different ways the desire to learn
about genetic conditions for especially late-onset disorders or disease [59].

To increase participation, some genomics data studies have used opt-out models
and blanket consent policies that do not limit the scope and duration of consent,
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but these threaten to under-inform participants about the relevant risks and benefits.
As mentioned previously, the Common Rule formally regulates federally funded
human subjects research. But it does not require IRB review or additional consent
for studies using data for which HIPAA identifiers are removed. So if the initial
consent provided to participate in a genomic data study did not include information
about privacy risks or when the data can be used for different studies, a new consent
need not be obtained unless state laws require it.

In light of re-identification risks, a number of major studies, including the
HapMap and 1000 Genomes project, undertook procedures to acquire updated
consent from participants [60]. The “re-consent” process included informing those
participants who were still alive about the inability to guarantee privacy and
removal of their information without their newly apprised agreement. The Personal
Genome Project (PGP) has adopted an “open consent” policy that makes no privacy
guarantees. Instead, it uses privacy education and ongoing participation in order to
cultivate participants willing to share their genomic information with limited control
to review and add data [61]. The PGP’s open consent approach updates consent for
genomics data studies in ways that facilitate participant education and transparency
about re-identification risks [62].

16.2.4 Summary

A patchwork of legal and regulatory mechanisms helps to protect against genetic
discrimination and to address privacy concerns. GINA prohibits genetic discrim-
ination in the health insurance and employment contexts. But it does not apply
to disability insurance, life insurance, or long-term care. Nor does it regulate
use, access, security, or disclosure of genetic data. HIPAA addresses such privacy
concerns, but that law does not make clear whether it covers genomic information.
Nor do its protections extend to certain academic institutions, federal agencies or
scientific consortia that tend to manage public genomic projects. While these entities
are bound by the requirements of the Common Rule, those privacy protections are
less strict than HIPAA, at least in advance of the proposed updates mentioned earlier.
State laws provide additional protections in some cases, but no systemic coverage.

16.3 Information Technology for Genome Privacy

In this section, we focus on information technology to protect genome privacy. This
section starts with the discussion about existing genome privacy risks followed
by the review of genome privacy protection technologies. Community efforts on
genome privacy protection are discussed at the end of this section.
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Fig. 16.2 Privacy protection
and number of released
independent single nucleotide
polymorphisms (SNPs) base
on the report in [63]

16.3.1 Genome Privacy Risks

As shown in Fig. 16.2, Lin et al. [63] showed that as few as 30–80 statistically
independent Single Nucleotide Polymorphisms (SNPs) are sufficient to uniquely
identify a single person. Genome privacy issues become even more critical because
recent research indicates that even aggregated genome data (e.g., test statistics),
which were assumed to be low risk, can be used for re-identifying an individual or
reconstructing original SNP sequences [18].

Figure 16.3 illustrates the famous Homer’s attack [15], where the existence of
a person of interest within a complex DNA mixture (e.g., a case group with a
certain disease) can be asserted with high confidence through comparisons of allele
frequencies of the reference population, the individual, and the mixture, followed
by a statistical test.

Because of the potential privacy risks reported in previous studies, the NIH has
removed most aggregated results from the public domain [31]. As whole genome
sequencing is becoming more affordable for many individuals, thorny privacy and
ethical issues must be carefully addressed [64]. A recent paper by Naveed et al.
reviewed various privacy attacks on genomic data and contextualized these attacks
from the perspective of medicine and public policy [62]. Another review paper by
Erlich and Narayanan also summarized routes for breaching and protecting genetic
privacy [65]. In this chapter, we will focus on the most recent technological progress
on protection of human genome privacy in different application scenarios.

16.3.2 Genome Privacy Protection Technologies

To contextualize our findings, in what follows we group the technological solutions
into two categories based on their focus: (1) protection of the computation process of
genomic data analysis, and (2) protection of raw data or of the outcome of genomic
data analysis.
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Fig. 16.3 Illustration of Homer’s attacks, where jPj�Rjj and jPj�Mjj measure how the person’s
allele frequency Pj differs from the allele frequencies of the reference population and the mixture,
respectively. By sampling a large number of N SNPs, the distance measure D.Pj/ will follow a
normal distribution due to the central limit theorem. Then, a one-sample t-test for this individual
over all sampled SNPs can be used to verify the hypothesis that an individual is in the mixture
(T.P/ > 0)

The first category of methods aims at ensuring the privacy and security during
the computation process of genomic data analyses. Lauter et al. developed homo-
morphic encryption methods to support private computation on encrypted genomic
data [66–68], which allow computation to be carried out on ciphertext (encrypted
data), thus generating an encrypted result that, when decrypted, matches the result
of operations performed on the plaintext (original, non-encrypted data) [69].

Homomorphic encryption methods are highly generalizable and are promising
for secure outsourcing of computation [70], such as computing in public clouds.
However, homomorphic encryption methods are computation and storage intensive.
For task-specific scenarios, more efficient solutions have been proposed. Ayday
et al. developed a privacy-preserving mechanism for processing raw genomic data to
enable a medical unit to privately retrieve a subset of the short reads of the patients
(which include a definite range of nucleotides depending on the type of the genetic
test) without revealing the nature of the genetic test to the encrypted biobank [71].

Huang et al. developed a new tool, GenoGuard, based on honey encryption
(i.e., a process that makes it hard for attackers to check whether they obtained
the desired data) to provide strong protection for genomic data against brute-force
attacks [72]. Danezis and Cristofaro proposed protocols for privacy-preserving
disease susceptibility testing [73]. Djamiko et al. developed a secure evaluation
protocol to calculate Walfarin dosage [74]. Lu et al. proposed an efficient protocol
for secure outsourcing of Genome-Wide Association studies (GWAS) [75]. Verle
et al. developed a privacy-preserving GWAS statistical analysis method using exact
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logistic regression [76]. These protocols are customized for certain data analysis
tasks and allow multiple parties to collaborate via secure multiparty computing
(SMC).

Kantarcioglu et al. developed a cryptographic approach to share and query
genomic sequences [77]. In these cases, participating parties jointly compute a
function over their inputs, and keep these inputs private. Each party can perform
certain computations locally over the controlled-access (private) data, and will only
exchange intermediary results to synthesize a global model. These protocols often
require synchronization and involve a large amount of peer-to-peer communication.

The second category of methods aims at protecting raw data or the outcome
of genomic data analysis to mitigate privacy risks. Malin developed a genomic
sequence anonymization technique with generalized lattices based on the privacy
protection schema of k-anonymity [28], which makes it hard to learn features that
distinguish one genetic sequence from k � 1 other entries in a collection [78].

Loukides et al. proposed an anonymization model to protect potentially linkable
clinical features and modified them in a way that they could no longer be used to link
a genomic sequence to a small number of patients, while preserving the associations
between genomic sequences and specific sets of clinical features corresponding to
GWAS-related diseases [79].

Many recent studies adopt differential privacy [27], a strong and provable
privacy criteria, to formally quantify what an adversary could learn from released
information. Yu et al. developed differentially private logistic regression for detect-
ing multiple-SNP association in GWAS databases [80]. Wang et al. developed a
differentially private genomic data dissemination model through top-down special-
ization [81]. Johnathon and Shmatikov proposed a privacy-preserving mechanism to
conduct chi-squared tests on genome data [82]. Uhler et al. developed an alternative
solution for differentially private chi-squared test, as well as a way to release the M
most relevant SNPs with respect to a specific phenotype [83]. Yu et al. improved the
previous methodology in releasing top M most relevant SNPs with more favorable
privacy and utility tradeoffs, and provided formal proofs [84, 85].

16.3.3 Community Efforts on Genome Privacy Protection

The challenges in genomic privacy gave rise to a new research community [86].
Privacy and security researchers have successfully hosted the International Work-
shop on Genome Privacy and Security (GenoPri) 2 years in a row to cover a wide
range of topics from access control to privacy enhancing technologies for genomic
data. The latest workshop (GenoPri’15) [87] was held in conjunction with the 36th
IEEE Symposium on Security and Privacy (S&P) and brought together a highly
interdisciplinary community involving all aspects of genome privacy and security
research to jointly tackle the emerging challenges.

From the biomedical side, the National Center for Biomedical Computing hosted
at the University of California San Diego, iDASH (integrating Data for Analysis,
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‘anonymization’ and SHaring) [88] is dedicated to bridge the gap between the
privacy protection methodology and real genomic data analysis needs. In 2014,
iDASH hosted a competition for Critical Assessment of Data Privacy and Protection
(CADPP) as a community effort to assess existing differential privacy methods
and facilitate the development of new models for privacy-preserving genomic data
sharing and analysis [25]. The competition revealed that differential privacy-based
data perturbation techniques have several limitations for sharing a large volume of
human genomic data, but that they could be used to disseminate analytical results
(using GWAS-like statistics), through services like those offered by NCBI [89].

In 2015, iDASH engaged a larger body of the privacy and security community
to host the second CADPP competition to assess the capacity of state-of-the-
art cryptographic technologies like Homomorphic encryption (HME) and secure
multi-party computing (SMC) in the context of secure and privacy-preserving
data outsourcing and distributed computing using genomic data [70]. We designed
one challenge for secure Hamming and Edit distance computation. The Hamming
distance measures the number of pair-wise differences between two equal-length
sequences. The Edit distance is defined as the minimum number of operations (e.g.,
insertion, deletion, substitution, etc.) required to transform one genome sequence
into the other. Both distances are widely used to measure the similarity between
genome sequences.

The results were very promising, as Hamming and Edit distance approximations
over two sequences of 100k length could be calculated within 10 min on encrypted
data and secure collaboration over the Internet for Hamming and Edit distance
approximations of 100K could be conducted in 20 min. On the other hand, the
competition also showed that a full-fledged GWAS could still not be efficiently
done on encrypted DNA sequences, and that multi-gigabytes of memory or Internet
transmission are required to enable HME or SMC, making it hard to scale up
analyses based on these techniques.

16.4 Conclusion

In this chapter, we discussed three facets (policy, ethics, and information technol-
ogy) of genomic data privacy. The policy, ethical, and technical issues surrounding
genomic privacy research can be summarized as a balance between maximizing
benefit and minimizing harm. Policy-level protection provides a system of rules
to govern behavior in conducting genome research, by trying to establish an
atmosphere of basic trust and an anticipation of security. However, policies and
regulations alone are not sufficient to protect genome privacy. Researchers who
have access to sensitive genomic data should act in an ethical manner by following
informed consent documents and data use agreements. Complying with current
legal and privacy regulations, as well as following ethical principles, are essential
for further progress of genomic research. However, information technology is
also indispensable in securing data during storage, sharing and analyses based
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on state-of-the-art data encryption and anonymization methods. We conclude that
current challenges and limitations in genome privacy cannot be fully solved by any
single facet. We envisage that genome privacy protection can be improved through
continuous collaborations among policy makers, ethics advocates, and researchers.
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Chapter 17
Private Genome Data Dissemination

Noman Mohammed, Shuang Wang, Rui Chen, and Xiaoqian Jiang

Abstract With the rapid advances in genome sequencing technology, the collection
and analysis of genome data have been made easier than ever before. In this course,
sharing genome data plays a key role in enabling and facilitating significant medical
breakthroughs. However, substantial privacy concerns have been raised on genome
data dissemination. Such concerns are further exacerbated by several recently
discovered privacy attacks. In this chapter, we review some of these privacy attacks
on genome data and the current practices for privacy protection. We discuss the
existing work on privacy protection strategies for genome data. We also introduce a
very recent effort to disseminating genome data while satisfying differential privacy,
a rigorous privacy model that is widely adopted for privacy protection. The proposed
algorithm splits raw genome sequences into blocks, subdivides the blocks in a top-
down fashion, and finally adds noise to counts in order to preserve privacy. It has
been empirically shown that it can retain essential data utility to support different
genome data analysis tasks.

17.1 Introduction

In the past decades, genome sequencing technology has experienced unprecedented
development. The Human Genome Project (HGP), initiated in 1990, took 13 years
to complete at a total cost of $3 billion, while nowadays it takes only 2 or 3 days for
a whole genome sequence at the cost of $6K [1]. The readily availability of genome
data has spawned many new exciting research areas, ranging from understanding
the mechanisms of cellular functions to identifying criminals. There has been no
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doubt that genome data analysis generates interesting scientific discoveries and
enables significant medical breakthroughs. However, substantial privacy concerns
have been raised on the dissemination of genome data. The public has realized
that a personally identifiable genomic segment already gives an adversary access
to a wealth of information about the individual and his or her genetic relatives [2],
exposing their privacy to considerable risks.

Genomic data leakage has serious implications for research participants such as
discrimination for employment, insurance, or education [1]. Recent research results
show that given some background information about an individual, an adversary
can identify or learn sensitive information about the victim from the de-identified
data. For example, Homer’s attack [3] demonstrated that it is possible to identify
a genome-wide association study (GWAS) participant from the allele frequencies
of a large number of single-nucleotide polymorphisms (SNPs). As a consequence,
the U.S. National Institutes of Health (NIH) has forbidden public access to most
aggregate research results to protect privacy. Later, Wang et al. [4] showed an even
higher risk that individuals could be actually identified from a relatively small set of
statistics, such as those routinely published in GWAS papers. There are also many
other attacks revealed recently [5–7], which could result in harm to the privacy
of individuals. Therefore, there has been a growing demand to promote privacy
protection for genome data dissemination.

In the United States, the Health Insurance Portability and Accountability Act
(HIPAA) [8] establishes the Privacy Rule to protect health information. The Privacy
Rule defines an operational approach, called Safe Harbor that removes 18 HIPAA-
specified identifiers to achieve some degree of “de-identification”. Since genome
data are biometrics, it would be natural to remove these data from “de-identified”
data sets. However, there is no explicit clarification of de-identified genomic data by
the Institute of Medicine (IOM) or HIPAA regulations.

There have been long and vigorous debates [9, 10] about the current privacy
rules for Human Genomic Studies (HGS). Some researchers contend that existing
privacy rules are not adequate for the protection of genomic information [4, 11],
as the technological evolution and the increasing accessibility of data cause the
“de-identified” genome data to be re-identifiable. Others complain that privacy
regulations impede effective data access and use for research [9, 12], as genomic
data are most useful when presented in high quality, sufficient samples, and
associated with an individual’s medical history, etc. Recently, the Presidential
Commission for the Study of Bioethical Issues published a report about privacy
and progress in Whole Genome Sequencing (WGS) [12]. The report concludes that
under current privacy rules, genome privacy is not adequately protected and that at
the same time genomic researchers and data owners cannot effectively access and
share data. To address these limitations, there have been some pioneering efforts
on developing practical privacy-preserving technology solutions to genome data
sharing.

In this chapter, we present an approach to disseminate genomic data in a privacy-
preserving manner. The privacy guarantee is guarded by the rigorous differential
privacy model [13]. Differential privacy is a rigorous privacy model that makes no
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assumption about an adversary’s background knowledge. A differentially-private
mechanism ensures that the probability of any output (released data) is equally
likely from all nearly identical input datasets and thus guarantees that all outputs
are insensitive to any individual’s data. In other words, an individual’s privacy is not
at risk because of his or her participation in the dataset. The proposed approach uses
a top-down structure to split long sequences into segments before adding noise to
mask record owners’ identity, which demonstrates promising utility with a desirable
computational complexity.

The rest of the chapter is organized as follows. An overview of the related work
is presented in Sect. 17.2. Section 17.3 describes the problem statement and details
the data privacy requirement and the utility criteria. Section 17.4 describes the
proposed algorithm and analyzes the privacy guarantee and the computational cost
of the proposed method. Experimental results are presented in Sect. 17.5, and finally,
Sect. 17.6 concludes the chapter.

17.2 Literature Review

17.2.1 Privacy Attacks and Current Practices

In general, the traditional consent mechanism that allows data disclosure without
de-identification is not suitable for genomic data [14]. It is often impossible to
obtain consent for an unknown future research study without creating any bias in
the sample. In addition, the consent mechanism also raises a number of ethical
issues (e.g., withdrawal from future research, promise of proper de-identification,
etc.) [15].

A common de-identification technique is to remove all explicit identifying
attributes (e.g., name and SSN) and to assign each record a random number prior
to data sharing. However, this technique is vulnerable to identity disclosure attacks
as demonstrated by a recent study that successfully identified the participants of the
Personal Genome Project (PGP) through public demographic data [16].

Given that a genome sequence is a strong personal identifier, several organi-
zations including the U.S. National Institutes of Health (NIH) initially adopted
a two-tier access model: controlled access and open access [17]. Individual-level
biomedical data are only available to approved researchers (i.e., data requesting
institutions) based on proper agreements, while summary statistics, which are useful
for meta-GWAS analyses, can be disclosed publicly. Unfortunately, some recent
studies have shown that from summary statistics adversaries can already learn sen-
sitive information [3, 4]. This is known as an attribute disclosure attack. Currently,
there are a number of techniques for breaching biomedical data privacy [18]. In
response, the NIH and other data custodians have moved summary statistics from
open access to controlled access. For example, the Database of Genotypes and
Phenotypes (dbGaP) [19], which is a popular public database recommended by
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Genome Canada for sharing biomedical data, no longer provides open access to
summary statistics. Although such policy provides enhanced privacy protection, it
largely limits researchers’ ability to conduct timely research.

In the United States, the Health Insurance Portability and Accountability Act
(HIPAA) provides two standards for health data sharing without requiring patients’
consent. The Safe Harbor Standard, which is also used by health organizations in
Canada [20], considers a dataset properly de-identified if the 18 specific attributes
are removed. However, genomic data along with other types of data (e.g., diagnostic
code) are not part of these specified attributes [21]. The alternative Statistical
Standard requires an expert to certify that the risk of re-identification is very small
from the disclosed data. However, there is no specific guideline to address how to
achieve Statistical Standard for genomic data.

The current practice of genomic data sharing is based on the controlled access
model, and privacy is ensured through a data-use certification (DUC) agreement.
However, an agreement cannot prevent an insider from intentionally performing
privacy attacks or even stealing data. A recent article reported several violations of
such agreements (e.g., investigators sharing controlled-access data with unapproved
parties) that occurred in the last 6-year period [22].

17.2.2 Privacy Preserving Techniques

Privacy-preserving data sharing techniques study how to transform raw data into a
version that is immune to privacy attacks but that still preserves useful information
for data analysis. Existing techniques are primarily based on two major privacy
models: k-anonymity [23] and differential privacy [13]. Data sharing techniques
adopting the k-anonymity model require that no individual should be identifiable
from a group of size smaller than k based on the values of quasi-identifiers
(e.g., age, gender, date of birth). In spite of its wide application in the healthcare
domain [21, 24], recent research results indicate that k-anonymity based techniques
are vulnerable to an adversary’s background knowledge [25–28]. This has stimu-
lated a discussion in the research community in favor of the differential privacy
model, which provides provable privacy guarantees independent of an adversary’s
background knowledge.

To satisfy a specific privacy model, certain anonymization techniques have to
be developed to achieve a reasonable trade-off between privacy and utility. While
many anonymization techniques have been proposed for various types of data
(i.e., relational [29, 30], set-valued [31], spatio-temporal data [32]), the problem
of genomic data anonymization has been little studied. Recent methods [33–35]
propose to generalize genomic data to achieve the k-anonymity privacy model.
Malin [35] presents how to anonymize genome sequences. Loukides et al. [33]
and Heatherly et al. [34] propose to anonymize only health data (i.e., no protection
for genome sequences). However, as mentioned before, all methods adopting k-
anonymity as the underlying privacy model are vulnerable to the recently discovered



17 Private Genome Data Dissemination 447

privacy attacks [25–28]. More recently, differentially private mechanisms [36–38]
have been proposed for genomic data. However, these techniques only release
some aggregate information or target specific data analysis tasks (e.g., minor allele
frequencies, top-k most relevant SNPs). They do not support individual-level data
sharing, which could be of much greater interest to the research community.

As another possible direction, cryptography-based methods have also been
suggested for distributed genomic data sharing [39, 40]. Data custodians outsource
their data securely through homomorphic encryption to a third party that carries
out computations on the encrypted data. However, these techniques have several
shortcomings. First, they assume the existence of a trusted third party [39] or
tamper-resistant hardware [40]. These assumptions may not be practical in most
real-life applications. Second, these techniques only support a limited set of
aggregate queries and do not enable to share individual-level data. Finally, these
techniques suffer from one main drawback: the aggregate output has no privacy
guarantee. In the rest of this chapter, we will introduce a novel differentially private
data dissemination technique that supports individual-level genome data sharing.

17.3 Problem Statement

Suppose a data owner has a data table D.Ai; Asnp/ and wants to release an anonymous
data table OD to the public for data analysis. The attributes in D are classified into two
categories: (1) An explicit identifier attribute that explicitly identifies an individual,
such as SSN, and Name. These attributes are removed before releasing the data as
per the HIPAA Privacy Rule [41]; (2) A multi-set of SNPs (genomic data), which is
denoted by Asnp, for each individual in the data table D. For example in Table 17.1,
Ai and Asnp are ID and Genomic data attributes, respectively.

Given a data table D, our objective is to generate an anonymized data table OD
such that OD satisfies �-differential privacy, and preserves as much utility as possible
for data analysis. Next, we introduce differential privacy and data utility models.

Table 17.1 Raw genome
data

ID Genomic data

1 AG CC CC GG CT GG AA CC

2 AG CC CC GG TT GG AA CC

3 AA CC CC GG TT GG AA CC

4 AG CT CT AG CT AG AG CT

5 GG CT CT AG CC GG AA CC

6 AA CC CC GG TT GG AA CC

7 AG CT CT AG CT AG AG CT

8 AA CC CC GG TT GG AA CC

9 GG CT TT AG CC AG AA CC

10 AG CT CT GG CT AG AA CC



448 N. Mohammed et al.

17.3.1 Privacy Protection Model

Differential privacy is a recent privacy definition that provides a strong privacy guar-
antee. It guarantees that an adversary (even with arbitrary background knowledge)
learns nothing more about an individual from the released data set, regardless of
whether her record is present or absent in the original data. Informally, differential
privacy requires that any computational output be insensitive to any particular
record. Therefore, from an individual’s point of view, the output is computed as if
from a data set that does not contain his or her record. Formally, differential privacy
is defined as follows.

Definition 17.1 (�-Differential Privacy [13]). A randomized algorithm Ag is dif-
ferentially private if for all data sets D and D0 whose symmetric difference is at most
one record (i.e., jD4D0j � 1), and for all possible anonymized data sets OD,

PrŒAg.D/ D OD� � e� � PrŒAg.D0/ D OD�; (17.1)

where the probability is taken over the randomness of Ag.

The privacy level is controlled by the parameter �. A smaller value of � provides
a strong privacy guarantee. A standard mechanism to achieve differential privacy is
the Laplace mechanism [13]. Its key idea is to add properly calibrated Laplace noise
to the true output of a function in order to mask the impact of any single record. The
maximal impact of a record to a function f ’s output is called its sensitivity.

Definition 17.2 (Sensitivity [13]). For a function f W D ! R
d, the sensitivity of f

is �f D maxD;D0 kf .D/ � f .D0/k1 for all databases such that jD4D0j � 1.

Given a function’s sensitivity and a privacy parameter, the Laplace mechanism is
given as follows.

Theorem 17.1 ([13]). For any function f W D! R
d, the mechanism Ag,

Ag.D/ D f .D/C hLap1.
�f

�
/; : : : ;Lapd.

�f

�
/i (17.2)

gives �-differential privacy, where Lapi.
�f
�

/ are i.i.d Laplace variables with scale

parameter �f
�

.

17.3.2 Privacy Attack Model

The likelihood ratio test [42] provides an upper bound on the power of any method
for the detection of an individual in a cohort, using the following formula:
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L D
m
X

j

�

xjlog
Opj

pj
C .1 � xj/log

1 � Opj

1 � pj

�

;

where xj is either 0 (i.e., major allele) or 1 (i.e., minor allele), m is the number of
SNPs, pj is the allele frequency of SNP j in the population and Opj is that in a pool.

A statistic L measure the probability that a subject in the case group will be re-
identified. The re-identification risk is considered to be high if the LR test statistic
of individual’s SNVs is significantly greater than those of individuals who are not
in the same group.

17.3.3 Utility Criteria

We use a case-control association �2 test to evaluate the utility of a differentially

private data. The test has the following form: �2 D Pr
i

Pc
j

.Oi;j�Ei;j/
2

Ei;j
, where r is

the number of rows, c is the number of columns, Oi;j is observed frequencies, and
Ei;j is expected frequencies. The �2 test statistic provide a measure of how close
the observed frequencies are to the expected frequencies. Suppose that the observed
allele counts (e.g., for allele “A” and “T”) for the case group are a and b, respectively,
for total of r D aC b. Similarly, we define the observed counts for the same allele
(i.e., “A” and “T”) in the control group as c and d, respectively, for total of s D
cC d. Then, the expected allele frequencies in the case group can be expressed as
.aC c/r=.rC s/ and .bCd/r=.rC s/. The expected allele frequencies in the control
group can be expressed as .a C c/s=.r C s/ and .b C d/s=.r C s/, which measure
the expected allele frequencies in both case and control populations.

17.4 Genomic Data Anonymization

In this section, we first present our genomic data anonymization algorithm as
described in Algorithm 17.1 and prove that the algorithm is �-differentially private.
We then analyze the runtime complexity of the algorithm.

17.4.1 Anonymization Algorithm

The proposed algorithm first divides the genomic data into blocks and then
generalizes each block. Thus, the algorithm divides the raw data into several
equivalence groups, where all the records within an equivalence group have the
same block values. Finally, the algorithm publishes the noisy counts of the groups.
Next we elaborate each line of the algorithm.
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Table 17.2 Genome data
partitioned into blocks

Genomic data

ID Block 1 Block 2 Block 3 Block 4

1 AG CC CC GG CT GG AA CC

2 AG CC CC GG TT GG AA CC

3 AA CC CC GG TT GG AA CC

4 AG CT CT AG CT AG AG CT

5 GG CT CT AG CC GG AA CC

6 AA CC CC GG TT GG AA CC

7 AG CT CT AG CT AG AG CT

8 AA CC CC GG TT GG AA CC

9 GG CT TT AG CC AG AA CC

10 AG CT CT GG CT AG AA CC

Dividing the Raw Data (Line 1) Algorithm 17.1 first divides the raw genomic data
into multiple blocks. Each block consists of a number of SNPs. For example, the raw
genomic data of Table 17.1 can be divided into four blocks as shown in Table 17.2,
where each block consists of two SNPs. These blocks are treated like different
attributes and thus enable the proposed algorithm to anonymize high-dimensional
genomic data effectively. We denote each block by Asnp

i and thus Asnp D [Asnp
i .

Note that the sizes of all the blocks do not need to be equal. For example, if
there were nine SNPs in Table 17.1 instead of 8, it would be impossible to have all
blocks of size two. In such a case, the last block can be bigger than the other blocks.
In principle, each block may have a different size, and the proposed algorithm can
handle such a scenario.

We do not use any heuristic to determine the size of each block. Block size
is always constant, and hence, this step does not use any privacy budget (See
Sect. 17.4.2). Experimental results suggest that six SNPs per block yield good result.
However, this number may vary depending on the data set in question. It is an
interesting research problem to design a heuristic that can determine the optimal
size of each block so as to maximize the data utility for a given data set.

Algorithm 17.1 Genomic data anonymization algorithm.
• Input: Raw data set D, privacy budget �, and number of specializations h

• Output: Anonymized genomic data set OD
1: Divide the genome data into blocks;
2: Generate the taxonomy tree for each block;
3: Initialize every block in D to the topmost value;
4: Initialize Cuti to include the topmost value;
5: for i = 1 to h do
6: Select v 2 [Cuti randomly;
7: Specialize v on D and update [Cuti;
8: return each leaf node with noisy count .CC Lap.1=�//
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Fig. 17.1 Taxonomy tree of blocks

Generating the Taxonomy Tree (Line 2) A taxonomy tree of a block Asnp
i

specifies the hierarchy among the values. Figure 17.1 presents the taxonomy trees of
Blocks 1�4 (ignore the dashed curve for now) in Table 17.2. A cut of the taxonomy
tree for a block Asnp

i , denoted by Cuti, contains exactly one value on each root-to-leaf
path (more discussion follows).

Ideally, the data owner should provide a taxonomy tree for each block as the
knowledge of the taxonomy tree is domain specific. However, if no taxonomy tree
is provided, Algorithm 17.1 can generate it by scanning the data set once for each
block. For each unique value that appears in the data set, a leaf node is created
from the root node Any1. For example, four unique values (i.e., AG CC, AA CC,
AG CT, and GG CT) appear in Table 17.2 for Block 1; therefore, the corresponding
taxonomy tree also has four leaves as shown in Fig. 17.1.

All the generated taxonomy trees have only two levels (i.e., the root and the
leaf nodes). However, a data owner can define a multilevel taxonomy tree for each
block [43]. A multilevel taxonomy tree provides more flexibility and may preserve
more data utility; further investigation is needed in order to validate the benefit of
multilevel taxonomy trees.

Data Anonymization (Lines 3–8) The data anonymization starts by creating a
single root partition by generalizing all values in [Asnp

i to the top-most value in
their taxonomy trees (Line 3). The initial Cuti contains the topmost value for each
block Asnp

i (Line 4).
The specialization starts from the topmost cut and pushes down the cut iteratively

by specializing some value in the current cut. The general idea is to anonymize the
raw data by a sequence of specializations, starting from the topmost general state as
shown in Fig. 17.2. A specialization, denoted by v ! child.v/, where child.v/

is the set of child values of v, replaces the parent value v with a child value.
The specialization process can be viewed as pushing the “cut” of each taxonomy
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Fig. 17.2 Tree for partitioning records

Table 17.3 Anonymous data
(� D 1, h D 2)

Genomic data Noisy count

Any CC GG Any AA CC 3

Any CC GG Any AG CT 2

Any CT AG Any AA CC 1

Any CT AG Any AG CT 3

tree downwards. Figure 17.1 shows a solution cut indicated by the dashed curve
corresponding to the anonymous Table 17.3.

At each iteration, Algorithm 17.1 randomly selects a candidate v 2 [Cuti for
specialization (Line 6). Candidates can be selected based on their score values, and
different heuristics (e.g., information gain) can be used to determine candidates’
scores. In future work, we will investigate how to design a scoring function tailored
to a specific data utility requirement.

Then, the algorithm specializes v and updates [Cuti (Line 7). Algorithm 17.1
specializes v by recursively distributing the records from the parent partition into
disjoint child partitions with more specific values based on the taxonomy tree. The
algorithm terminates after a given number of specializations.

Example 17.1. Consider Table 17.1 with � = 1 and h = 2, where � is the privacy
budget and h is the number of specializations. Initially the algorithm creates one root
partition containing all the records that are generalized to hAny1; Any2; Any3; Any4i.
[Cuti includes fAny1; Any2; Any3; Any4g. Let the first specialization be Any2 !
fCC GG; CT AGg. The algorithm creates two new partitions under the root, as
shown in Fig. 17.2, and splits data records between them. [Cuti is updated to
fAny1; Any3; Any4g. Suppose that the next specialization is Any4 ! fAA CC;

AG CTg, which creates further specialized partitions, as illustrated in Fig. 17.2.

Returning the Noisy Counts (Line 9) Finally, Algorithm 17.1 computes the noisy
count of each leaf partition to construct the anonymous data table OD as shown in
Table 17.3. The number of leaf partitions is at least 2h and the exact number depends
on the taxonomy tree of the blocks.

Publishing the true counts of each partition violates differential privacy; there-
fore, a random variable Lap.�f =�/ is added to the true count of each leaf partition,
where �f D 1, and the noisy counts are published instead.
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17.4.2 Privacy Analysis

We now analyze the privacy implication of each of the above steps and quantify the
information leakage in terms of privacy budget.

Line 1 The algorithm divides the raw data into blocks, where the block size is a
given constant irrespective of the given data set. Since the block generation process
is data independent, this step does not require any privacy budget. However, if a
heuristic were used to determine the block size, then a portion of privacy budget
should be allocated to satisfy differential privacy.

Line 2 We assume that the data owner provides the taxonomy trees. In such a
case, this step incurs no privacy leakage and no privacy budget is consumed as
the taxonomy trees are generated from public knowledge that is independent of any
particular data set.

On the other hand, the alternative approach that we outlined, for a scenario
when the taxonomy trees are not provided, needs additional treatment to satisfy
differential privacy. It is because, for a different data set OD, a taxonomy tree may
have one more or less leaf node. We argue that taxonomy trees represent the domain
knowledge, and therefore, should be part of public information.

Lines 3–8 The algorithm selects a candidate for specialization randomly (Line 7)
and iteratively creates child partitions based on the given taxonomy trees (Line 8).
Both operations are independent of the underlining data set (the selection process is
random and the partitioning process is fixed due to the given taxonomy trees), and
therefore no privacy budget is required for the h number of iterations.

Line 9 The algorithm adds Laplace noise Lap.1=�/ to the true count of each
leaf partition and the requisite privacy budget is � due to the parallel composition
property [44]. The Parallel composition property guarantees that if a sequence of
computations are conducted on disjoint data sets, then the privacy cost does not
accumulate but depends only on the worst guarantee of all the computations. Since
the leaf partitions are disjoint (i.e., a record can fall into exactly one leaf partition),
the total privacy cost (i.e., the budget required) for this step is �.

In conclusion, Line 1, Line 2, Lines 3–8, and Line 9 use 0, 0, 0, and �

privacy budgets, respectively. According to the sequential composition property
of differential privacy [44], any sequence of computations that each provides
differential privacy in isolation also provides differential privacy in sequence.
Therefore, Algorithm 17.1 satisfies �-differential privacy.

17.4.3 Computational Complexity

The proposed algorithm is scalable and the runtime is linear to the size of the data
set. This is an important property to achieve in the age of big data. In this section,
we present a brief analysis of the computational complexity of Algorithm 17.1.
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Line 1 Algorithm 17.1 generates the blocks from the raw data. This can be done
by scanning the data set once. Thus, the runtime of this step is O.jDj � m), where
jDj is the number of records and m is the number of SNPs.

Line 2 In case, Algorithm 17.1 can also generate the taxonomy trees (if not given)
by scanning the data set once. This is can be achieved simultaneously with the
previous step (Line 1); hence, there is no additional cost for generating taxonomy
trees. Therefore, if there are d=n number of blocks, where n is the block size, then
the runtime of this step is O.jDj � d

n /.

Lines 3–8 Candidates are selected randomly in each iteration, which requires
constant O.1/ time (Line 6).

To perform a specialization v ! child.v/, we need to retrieve Dv , the set of data
records generalized to v. To facilitate this operation we organize the records in a
tree structure as shown in Fig. 17.2. Each leaf partition (node) stores the set of data
records having the same generalized block values. This will allow us to calculate
the noisy counts in Line 9.

Initially, the tree has only one leaf partition containing all data records, gen-
eralized to the topmost value on every block. In each iteration we perform a
specialization by refining the leaf partitions and splitting the records among the
new child partitions. This operation also requires scanning all the records once per
iteration. Thus, the runtime of this step is O.jDj � h/. The value of h is constant and
usually very small (around 10), and therefore, can be ignored.

Line 9 The cost of adding Laplace noise is proportional to the number of leaf nodes,
which is 2h. For a small value of h, the number of leaf nodes is insignificant with
respect to the size of the data set jDj. We therefore can ignore the cost of this step.
Note that, we can easily determine the true count of a leaf partition as it keeps track
of the set of data records it represents.

Hence, the total runtime of the algorithm is: O.jDj � m C jDj/ D O.jDj � m/.

17.5 Experimental Results

The goal of the proposed framework is to generate differentially private data that can
mitigate the attack of likelihood ratio tests, while preserving highly significant SNPs
as much as possible. Two data sets (i.e., chr2 and chr10) with 200 participants in
case, control and test groups were used in our experiments. The 200 cases are from
Personal Genome Project (PGP: http://www.personalgenomes.org/), missing values
filled by using fastPHASE. The 200 Controls are simulated based on the haplotypes
of 174 individuals from CEU population of International HapMap Project (http://
hapmap.ncbi.nlm.nih.gov/). Besides, the chr2 and chr10 data sets contain 311 SNPs
and 610 SNPs, respectively.

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://www.personalgenomes.org/


17 Private Genome Data Dissemination 455

Table 17.4 Data utility of chr2 data set with privacy budget of 1.0 and power of 0.01

Cutoff p-value Accuracy Sensitivity Precision F1-score # of significant SNPs

5E-02 0.178 1.000 0.079 0.147 22

1E-02 0.211 0.999 0.075 0.140 20

1E-03 0.250 0.948 0.072 0.134 19

1E-05 0.297 1.000 0.060 0.114 14

Table 17.5 Data utility of chr10 data set with privacy budget of 1.0 and power of 0.09

Cutoff p-value Accuracy Sensitivity Precision F1-score # of significant SNPs

5E-02 0.301 0.956 0.092 0.168 45

1E-02 0.317 0.903 0.048 0.091 23

1E-03 0.431 1.000 0.041 0.080 15

1E-05 0.577 1.000 0.030 0.058 8

The number of specializations used in our experiment was 5. SNP data were split
evenly into N=6 blocks, where N is the number of SNP. All the results are based on
the average of 100 trials.

Tables 17.4 and 17.5 illustrate the results of the proposed method on chr2
and chr10 data sets with privacy budget of 1.0, where power indicates the ratio
of identifiable individuals using the likelihood ratio test in the case group. The
power serves as a measurement of the remaining privacy risk in the differentially
private results. In Tables 17.4 and 17.5, cutoff p-value thresholds of 5E-2, 1E-2,
1E-3, 1E-5 were used in our experiment, for which four measurements (accuracy,
sensitivity, precision and F1-score) were calculated under each method. The last
column corresponds to the number of significant SNPs discovered in the original
data without adding noise. We can see that the proposed results showed high
sensitivities but low precisions on both data sets, which means our method can
correctly preserve most true significant SNPs, but with a large amount of false
positive reports. Because most SNPs of interest can pass the same filter (e.g., p-
value) on both the original data and our differentially private outputs, the latter can
serve as a proxy (for exploratory analysis) of the former without losing too much
critical information.

Figure 17.3 show the box plots of the data utility in terms of sensitivity and
precision for both testing data sets with privacy budget of 1.0 under different cutoff
p-values. We can see that the proposed method achieved high sensitivity on both
data sets for all cutoff p-values. Moreover, Fig. 17.3 also depict that the precision
decreases as the cutoff p-value decreases. Comparing the experiments, results on
chr2 are less sensitive in precision than results on chr10 when p-values changes.

Figure 17.4 present the test statistics calculated on case and test groups (i.e.,
individuals unrelated to both case and control) for both chr2 and chr10 data sets. An
individual in the case group can be re-identified with a high confidence if the test
statistic obtained from his/her SNP sequence is significantly higher than these of
the test group using likelihood ratio test [42]. Figure 17.4 depict that 2 and 18 case
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Fig. 17.3 Boxplots of data utility of chr2 and chr10 data with different p-values

individuals have higher test statistic values than 95 % test individuals (i.e., a 5 %
false positive rate) in both data sets. The results suggest that the proposed method
provides a better privacy protection on a small data set (i.e., chr2 data set) under the
same privacy budget.

Finally, Fig. 17.5 show both utility and privacy risk for chr2 and chr10 data sets.
To measure the utility, we set the cutoff threshold at 0.1 and measure the sensitivity.
By changing privacy budget from 0.1 to 1, we observed no performance gain of
sensitivity nor much privacy risk change on chr2 data set, as shown in Fig. 17.5. This
seems to indicate that privacy budget 0.1 is sufficient to provide enough protection
without destroying the utility.
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Fig. 17.4 Privacy risk of chr2 and chr10 data. The star and diamond markers represent the test
value of a specific individual in the case (left) or test (right) group, respectively. The horizontal
line indicates the 0.95 confidence level for identifying case individuals that are estimated based on
the test statistic values of test individuals

We also tested the proposed algorithm on a larger data set (i.e., chr10).
Figure 17.5 shows that the proposed algorithm achieves the best sensitivity and
the highest number of re-identification risk with privacy budget of 1.0. There is a
non-negligible difference in terms of re-identification risk when the privacy budget
changes from 0.1 to 0.5 but the difference is not obvious between privacy budgets
0.5 and 1. This indicates that a larger dataset like chr10 needs more privacy budget
to protect the privacy of its entities.
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Fig. 17.5 Comparison of data utility and privacy risk for chr2 and chr10 data with different privacy
budget

17.6 Conclusion

As an important type of modern medical data, genome data has been incorporated
into diverse research disciplines and real-life applications. More and more patient
data networks are incorporating or prepare to incorporate genome data along
with clinical information to support precision medicine. However, its personal
identifying nature has aroused much public concern about the privacy implications
of its dissemination, which has been increasingly confirmed by several recently
discovered privacy attacks. The current practice of genomic data sharing heavily
relies on the controlled access model. Despite the restriction the model poses, it still



17 Private Genome Data Dissemination 459

cannot provide guaranteed privacy protection. For example, side channel leakage
remains to be a big problem to controlled access model.

Advanced technical efforts are indispensable to private genome data dissemi-
nation. In this chapter, we gave an overview of the recent developments toward
accomplishing this goal. Our focus was on a new differentially private genome
data dissemination algorithm. This algorithm supports individual-level data sharing,
which is a desideratum for many research areas.

While the existing studies have demonstrated the promise of private genome data
sharing, there are still some notable limits. For example, the precision performance
of the proposed framework is relatively poor. To make this anonymization process
effective, several challenges must be addressed. First, further study is needed
to understand how to partition the genome sequences into blocks that are still
meaningful. Genomic data is high dimensional and it includes hundreds of Single
Nucleotide Polymorphisms (SNPs). Dividing the long sequences into blocks can
reduce the high-dimensionality challenge. Second, it might be useful to construct a
taxonomy tree for each genome block, which was not tried before. While multilevel
taxonomy trees have been proposed for a SNP [35], it is not clear how to construct
multilevel trees for a block. Finally, genomic data are shared for different data
analysis tasks (e.g., association test, logistic regression); in which case introducing
a task specific utility function in the data specialization process may preserve better
data utility.
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Chapter 18
Threats and Solutions for Genomic Data Privacy

Erman Ayday and Jean-Pierre Hubaux

Abstract With the help of rapidly developing technology, DNA sequencing is
becoming less expensive. As a consequence, the research in genomics has gained
speed in paving the way to personalized (genomic) medicine, and geneticists need
large collections of human genomes to further increase this speed. Furthermore,
individuals are using their genomes to learn about their (genetic) predispositions
to diseases, their ancestries, and even their (genetic) compatibilities with potential
partners. This trend has also caused the launch of health-related websites and
online social networks (OSNs), in which individuals share their genomic data
(e.g., OpenSNP or 23andMe). On the other hand, genomic data carries much
sensitive information about its owner. By analyzing the DNA of an individual, it
is now possible to learn about his disease predispositions (e.g., for Alzheimer’s or
Parkinson’s), ancestries, and physical attributes. The threat to genomic privacy is
magnified by the fact that a person’s genome is correlated to his family members’
genomes, thus leading to interdependent privacy risks. Thus, in this chapter,
focusing on our existing and ongoing work on genomic privacy carried out at
EPFL/LCA1, we will first highlight the threats for genomic privacy. Then, we will
present the high level descriptions of our solutions to protect the privacy of genomic
data and we will discuss future research directions. For a description of the research
contributions of other research groups, the reader is referred to Chaps. 16 and 17 of
the present volume.

18.1 Threats for Genomic Privacy

Removal of quasi-identifying attributes (e.g., date of birth or zip code) legally
protects the privacy of health data. However, it has been shown that anonymization

E. Ayday (�)
Department of Computer Engineering, Bilkent University, Ankara, Turkey
e-mail: erman@cs.bilkent.edu.tr

J.-P. Hubaux
Institute of Communication Systems, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland
e-mail: jean-pierre.hubaux@epfl.ch

© Springer International Publishing Switzerland 2015
A. Gkoulalas-Divanis, G. Loukides (eds.), Medical Data Privacy Handbook,
DOI 10.1007/978-3-319-23633-9_18

463

mailto:jean-pierre.hubaux@epfl.ch
mailto:erman@cs.bilkent.edu.tr


464 E. Ayday and J.-P. Hubaux

is an ineffective technique for genomic data [16, 18, 20]. For example, an adversary
can infer the phenotype of the donor of an anonymized genome and use this
information to identify the anonymous donor.

For instance, genomic variants on the Y chromosome are correlated with the last
name (for males). This last name can be inferred using public genealogy databases.
With further effort (e.g., using voter registration forms) the complete identity of the
individual can also be revealed [18]. Also, unique features in patient-location visit
patterns in a distributed healthcare environment can be used to link the genomic data
to the identity of the individuals in publicly available records [33]. Furthermore, it
has been shown that Personal Genome Project (PGP) participants can be identified
based on their demographics without using any genomic information [42].

The identity of a participant of a genomic study can also be revealed by using
a second sample, that is, part of the DNA information from the individual and the
results of the corresponding clinical study [9, 16, 21, 25, 43]. For this reason even
a small set of variants (e.g., single nucleotide variants - SNPs) of the individual
might be sufficient as the second sample. For example, it is shown that as few
as 100 SNPs are enough to uniquely distinguish one individual from others [31].
Homer et al. [21] prove that the presence of an individual in a case group can be
determined by using aggregate allele frequencies and his DNA profile. Homer’s
attack demonstrates that it is possible to identify a participant of a Gename-wide
association study (GWAS) by analyzing the allele frequencies of a large number
of SNPs. Wang et al. [43] showed a higher risk that individuals can actually be
identified from a relatively small set of statistics such as those routinely published
in GWAS papers. In particular, they show that the presence of an individual in the
case group can be determined based upon the pairwise correlation (i.e., linkage
disequilibrium) among as few as a couple of hundred SNPs. While the methodology
introduced in [21] requires on the order of 10,000 SNPs (of the target individual),
this new attack requires only on the order of hundreds. Another similar attack
involves the association of DNA sequences to personal names, through diagnosis
codes [32].

In another recent study [16], Gitschier shows that a combination of information
from genealogical registries and a haplotype analysis of the Y chromosome
collected for The HapMap Project, allows for the prediction of the last names of
a number of individuals held in the HapMap database. Thus, releasing (aggregate)
genomic data is currently banned by many institutions due to this privacy risk.
Zhou et al. [45], study the privacy risks of releasing aggregate genomic data. They
propose a risk-scale system to classify aggregate data and a guide for their release.

Some believe that they have nothing to hide about their genetic structure, hence
they might decide to give full consent for the publication of their genomes on
the Internet to help genomic research. However, our DNA sequences are highly
correlated to our relatives’ sequences. The DNA sequences between two random
human beings are more than 99:5 % similar, and this value is even higher for
closely related people. Consequently, somebody revealing his genome does not only
damage his own genomic privacy, but also puts his relatives’ privacy at risk [41].
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Moreover, currently, a person does not need consent from his relatives to share his
genome online. This is precisely where the interesting part of the story begins: kin
genomic privacy.

18.1.1 Kin Genomic Privacy

A recent New York Times’ article1 reports the controversy about sequencing and
publishing, without the permission of her family, the genome of Henrietta Lacks
(who died in 1951). On the one hand, the family members think that her genome
is private family information and it should not be published without the consent of
the family. On the other hand, some scientists argued that the genomes of current
family members have changed so much over time (due to gene mixing during
reproduction), that nothing accurate could be told about the genomes of current
family members by using Henrietta Lacks’ genome. As we have shown in [23]
(that we briefly describe hereafter), they were wrong. Minutes after Henrietta Lacks’
genome was uploaded to a public website called SNPedia, researchers produced a
report full of personal information about Henrietta Lacks. Later, the genome was
taken offline, but it had already been downloaded by several people, hence both her
and (partially) the Lacks family’s genomic privacy was already lost.

Unfortunately, the Lacks, even though possibly the most publicized family facing
this problem, are not the only family facing this threat. Genomes of thousands of
individuals are available online. Once the identity of a genome donor is known, an
attacker can learn about his relatives (or his family tree) by using an auxiliary side
channel, such as an online social network (OSN) , and infer significant information
about the DNA sequences of the donor’s relatives. We will show the feasibility of
such an attack and evaluate the privacy risks by using publicly available data on the
Web.

Although the researchers took Henrietta Lacks’ genome offline from SNPedia,
other databases continue to publish portions of her genomic data. Publishing only
portions of a genome does not, however, completely hide the unpublished portions;
even if a person reveals only a part of his genome, other parts can be inferred
using the statistical relationships between the nucleotides in his DNA. For example,
James Watson, co-discoverer of DNA, made his whole DNA sequence publicly
available, with the exception of one gene known as Apolipoprotein E (ApoE), one
of the strongest predictors for the development of Alzheimer’s disease. However,
later it was shown that the correlation (called linkage disequilibrium by geneticists)
between one or multiple polymorphisms and ApoE can be used to predict the ApoE
status [35]. Thus, an attacker can also use these statistical relationships (which are
publicly available) to infer the DNA sequences of a donor’s family members, even

1http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-
sequel.html?pagewanted=all

http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-sequel.html?pagewanted=all
http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-sequel.html?pagewanted=all
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Fig. 18.1 Overview of the proposed framework to quantify kin genomic privacy [23]. Each vector
Xi (i 2 f1; : : : ; ng) includes the set of SNPs for an individual in the targeted family. Furthermore,
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using fBB; Bb; bbg (or f0; 1; 2g). Once the health privacy is quantified, the family should ideally
decide whether to reveal less or more of their genomic information through the genomic-privacy
preserving mechanism (GPPM)

if the donor shares only part of his genome. It is important to note that these privacy
threats not only jeopardize kin genomic privacy, but, if not properly addressed, these
issues could also hamper genomic research due to untimely fear of potential misuse
of genomic information.

In [23], we evaluated the genomic privacy of an individual threatened by his
relatives revealing their genomes. Focusing on the most common genetic variant
in human population, single nucleotide polymorphism (SNP),2 and considering the
statistical relationships between the SNPs on the DNA sequence, we quantify the
loss in genomic privacy of individuals when one or more of their family members’
genomes are (either partially or fully) revealed. To achieve this goal, first, we design
a reconstruction attack based on a well-known statistical inference technique. The
computational complexity of the traditional ways of realizing such inference grows
exponentially with the number of SNPs (which is on the order of tens of millions)
and relatives. Therefore, in order to infer the values of the unknown SNPs in
linear complexity, we represent the SNPs, family relationships and the statistical
relationships between SNPs on a factor graph and use the belief propagation
algorithm [30, 36] for inference. Then, using various metrics, we quantify the
genomic privacy of individuals and show the decrease in their privacy level caused

2A SNP occurs when a nucleotide (at a specific position on the DNA) varies between individuals
of a given population. SNPs carry privacy-sensitive information about individuals’ health. Recent
discoveries show that the susceptibility of an individual to several diseases can be computed from
his or her SNPs.
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Table 18.1 Frequently used notations

F Set of family members in the targeted family

S Set of SNP IDs

xi
j Value of SNP j for individual i, xi

j 2 f0; 1; 2g
Xi Set of SNPs for individual i

X n�m matrix that stores the values of the SNPs of all family members

XU Set of SNPs from X whose values are unknown

XK Set of SNPs from X whose values are known by the adversary

FR./ Function representing the Mendelian inheritance probabilities

L m� m matrix representing the pairwise linkage disequilibrium

between the SNPs in S
Li;j Entry of L at row i and column j

P Set of minor allele probabilities (or MAF) of the SNPs in S

by the published genomes of their family members. We also quantify the health
privacy of the individuals by considering their (genetic) predisposition to certain
serious diseases. We evaluate the proposed inference attack and show its efficiency
and accuracy by using real genomic data of a pedigree.

In the following, we formalize our approach and present the different components
that will allow us to quantify kin genomic privacy. Figure 18.1 gives an overview of
the framework. In order to facilitate future references, frequently used notations are
listed in Table 18.1.

In a nutshell, the goal of the adversary is to infer some targeted SNPs of a
member (or multiple members) of a targeted family. We define F to be the set of
family members in the targeted family (whose family tree, showing the familial
connections between the members, is denoted as GF) and S to be the set of SNP IDs
(i.e., positions on the DNA sequence), where jFj D n and jSj D m. Note that the
SNP IDs are the same for all the members of the family. We also let xi

j be the value
of SNP j (j 2 S) for individual i (i 2 F), where xi

j 2 f0; 1; 2g (a SNP can only be in
one of these three states). Furthermore, Xi D fxi

j W j 2 S; i 2 Fg represents the set
of SNPs for individual i. We let X be the n � m matrix that stores the values of the
SNPs of all family members. Some entries of X might be known by the adversary
(the observed genomic data of one or more family members) and others might be
unknown. We denote the set of SNPs from X whose values are unknown as XU, and
the set of SNPs from X whose values are known (by the adversary) as XK.

FR.xM
j ; xF

j ; xC
j / is the function representing the Mendelian inheritance probabil-

ities, where .M; F; C/ represent mother, father, and child, respectively. The m � m
matrix L represents the pairwise linkage disequilibrium (LD)3 between the SNPs in
S, Li;j refers to the matrix entry at row i and column j. Li;j > 0 if i and j are in LD,
and Li;j D 0 if these two SNPs are independent (i.e., there is no LD between them).

3LD can be thought as a correlation between two variables.
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Fig. 18.2 Family tree of
CEPH/Utah Pedigree 1463
consisting of the 11 family
members that were
considered. The notations
GP, P, and C stand for
“grandparent”, “parent”, and
“child”, respectively. Also,
the symbols ♂ and ♀
represent the male and female
family members, respectively

GP2
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P5 P6
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P D fpb
i W i 2 Sg represents the set of minor allele probabilities (or MAF) of the

SNPs in S. Finally, note that a joint probability p.xi; xj/ can be derived from Li;j, pb
i ,

and pb
j .

The adversary carries out a reconstruction attack to infer XU by relying on
his background knowledge, FR.xM

j ; xF
j ; xC

j /, L, P, and on his observation XK. We
formulate the reconstruction attack (on determining the values of the targeted SNPs)
as finding the marginal probability distributions of unknown variables XU, given the
known values in XK, familial relationships, and the publicly available statistical
information. To run this attack in an efficient way, we formulate the problem
on a graphical model (factor graph) and use the belief propagation algorithm
for inference. Once the targeted SNPs are inferred by the adversary, we evaluate
genomic and health privacy of the family members based on the adversary’s success
and his certainty about the targeted SNPs and the diseases they reveal. Finally, we
discuss some ideas to preserve the individuals’ genomic and health privacy.

For the evaluation, we used the CEPH/Utah Pedigree 1463 that contains the
partial DNA sequences of 17 family members (4 grandparents, 2 parents, and 11
children) [10]. As shown in Fig. 18.2, we only used the first 5 (out of 11) children
(without any particular selection criteria) for our evaluation because (i) 11 is much
above the average number of children per family, (ii) we observe that the strength
of adversary’s inference does not increase further (due to the children’s revealed
genomes) when more that 5 children’s genomes are revealed, and (iii) the belief
propagation algorithm might have convergence issues due to the number of loops in
the factor graph, and this number increases with the number of children.

We construct S from 100 SNPs on chromosome 1. Among these 100 SNPs, each
SNP is in LD with 5 other SNPs on average. Furthermore, the strength of the LD
varies between 0.5 and 1. We note that we only use 100 SNPs for this study as the
LD values are not yet completely defined over all SNPs, and the definition of such
values is still an ongoing research. We define a target individual from the CEPH
family, construct the set XU from his/her SNPs, and sequentially reveal other family
members’ SNPs (excluding the target individual) to observe the decrease in the
genomic privacy of the target individual. We start revealing from the most distant
family members to the target individual (in terms of number of hops in Fig. 18.2)
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and we keep revealing relatives until we reach his/her closest family members.4

We observe that individuals sometimes reveal different parts of their genomes (e.g.,
different sets of SNPs) on the Internet. Thus, we assume that for each family member
(except for the target individual), the adversary observes 50 random SNPs from S
only (instead of all the SNPs in S), and these sets of observed SNPs are different
for each family member. In Fig. 18.3, we show the evolution of genomic privacy of
one target individual (P5). We quantify the genomic privacy based on (i) attackers
incorrectness (bottom plot), (ii) attacker’s uncertainty (middle plot), and (iii) an
entropy-based metrics that quantities the mutual dependence between the hidden
genomic data that the adversary is trying to reconstruct (top plot). We observe
that LD decreases genomic privacy, especially when few individuals’ genomes are
revealed. As more family member’s genomes are observed, LD has less impact on
the genomic privacy.

As we already mentioned, the Lacks family is just one (albeit famous) example.
In the future (and already today), people of the same family might have very differ-

4The exact sequence of the family members (whose SNPs are revealed) is indicated for each
evaluation.
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ent opinions on whether to reveal genomic data, and this can lead to disagreement:
relatives might have divergent perceptions of possible consequences. It is high time
for the security research community to prepare itself for this formidable challenge.
The genetics community is highly concerned about the fact that the proliferation
of negative stories could potentially lead to a negative perception by the population
and to tighter laws, thus hampering scientific progress in this field.

In order to prevent some of the aforementioned threats on the privacy of genomic
data, we proposed several solutions to protect the privacy of such data in various
domains. In the next section, we describe some of these solutions.

18.2 Solutions for Genomic Privacy

In this section, we summarize some of our efforts to protect the privacy of genomic
data by focusing on privacy-preserving management of raw genomic data, privacy
compliant use of genomic data in personalized medicine and research settings,
resistance to brute-force attacks for storage of genomic data, and protecting kin
genomic privacy.

18.2.1 Privacy-Preserving Management of Raw Genomic Data

Sequence alignment/map (SAM and its binary version BAM) files are the de facto
standards used to store the aligned,5 raw genomic data generated by next-generation
DNA sequencers and bioinformatic algorithms. There are hundreds of millions of
short reads (each including between 100 and 400 nucleotides) in the SAM file of
an individual. Typically, each nucleotide is present in several short reads in order to
have sufficiently high coverage of each individual DNA.

In general, geneticists prefer storing aligned, raw genomic data of the patients
(i.e., their SAM files), in addition to their variant calls (which include each
nucleotide on the DNA sequence once, hence is much more compact) due to
the following reasons: (i) Bioinformatic algorithms and sequencing platforms for
variant calling are currently not yet mature, and hence geneticists prefer to observe
each nucleotide in several short reads; (ii) If a patient carries a disease, which causes
specific variations in the diseased cells (e.g., cancer), his or her DNA sequence
in his/her healthy cells will be different from those diseased. Such variations can
be misclassified as sequencing errors by only looking at the patient’s variant calls
(rather than his/her short reads). Furthermore, (iii) due to the rapid evolution of
genomic research, geneticists do not know enough to decide which information

5Alignment is with respect to the reference genome, which is assembled by the scientists.
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should really be kept and what is superfluous, hence they prefer to store all outcomes
of the sequencing process as SAM files.

In Ayday et al. [4], we proposed a privacy-preserving system for the storage,
retrieval, and processing of the SAM files. In a nutshell, the proposed scheme stores
the encrypted SAM files of the patients at a biobank and it provides the requested
range of nucleotides (on the DNA sequence) to a medical unit (for a genetic test)
while protecting the patients’ genomic privacy. It is important to note that the
proposed scheme enables the privacy-preserving processing of the SAM files both
for individual treatment (when the medical unit is embodied in a hospital) and for
genetic research (when the medical unit is embodied in a pharmaceutical company).

We assume that the sequencing and encryption of the genomes are done at a
certified institution (CI), which is a trusted entity. We note that having such a trusted
entity cannot be avoided as the sequencing has to be done at some institution to
obtain the SAM files of the patients. Each part (position, cigar string, and content)6

of each short read (in the SAM file) is encrypted (via a different encryption scheme)
after the sequencing, and encrypted SAM files of the patients are stored at a biobank.
We assume that SAM files are stored at the biobank by using pseudonyms; this way,
the biobank cannot associate the conducted genetic tests and the medical unit (MU),
which conduct these tests, with the real identities of the patients. We note that a
private company (e.g., cloud storage service) or the government could play the role
of the biobank. There are potentially multiple MUs in the system, and each MU is
an approved institution (by the medical authorities). Furthermore, we assume that
an MU is a broad unit consisting of many sub-units (e.g., physicians or specialized
clinics) that can potentially request nucleotides from any parts of a patient’s genome.

The cryptographic keys of the patients are stored on a key manager by using the
patient’s pseudonym (which does not require the participation of the patient in the
protocol). From here on, we assume the existence of a masking and key manager
(MK) in the system to store the cryptographic keys of the patients. The MK can also
be embodied in the government or a private company. The connection between these
parties in the proposed protocol (along with the assumed threat model) is illustrated
in detail in Fig. 18.4.

When the MU requests a specific range of nucleotides (on the DNA sequence
of one or multiple patients), the biobank provides all the short reads that include at
least one nucleotide from the requested range through the MK. During this process,
the patient does not want to reveal his complete genome to the MU, to the biobank,
or to the MK. Furthermore, it is not desirable for the biobank to learn the requested
range of nucleotides (as the biobank can infer the nature of the genetic test from this
requested range). Thus, we developed a privacy-preserving system for the retrieval
of the short reads by the MU [4]. The proposed scheme provides the short reads that

6Position of a short read tells the position of the first nucleotide on the DNA sequence. Cigar
string of a short read denotes the deletions and insertions on the short read. Content of a short read
includes the nucleotides.
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Fig. 18.4 Connections
between the parties in the
proposed protocol for
privacy-preserving
management of raw genomic
data [4]
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include the requested range of nucleotides to the MU without revealing the positions
of these short reads to the biobank.

To achieve this goal, we first modify the structure of the genome by permuting
the positions of the short reads, and then we use order preserving encryption (OPE)
on the positions of the short reads (in the SAM file). OPE is a deterministic
encryption scheme whose encryption function preserves numerical ordering of the
plaintexts [1, 37]. Thus, OPE enables the encryption of the positions of the short
reads and preserves the numerical ordering of the plaintext positions.

We prevent the leakage of extra information in the short reads to the MU by
masking the encrypted short reads at the biobank (before sending them to the MU).
As each short read includes between 100 and 400 nucleotides, some provided short
reads might include information out of the MU’s requested range of genomic data,
as in Fig. 18.5. Similarly, some provided short reads might contain privacy-sensitive
SNPs of the patient (which would reveal the patient’s susceptibilities to privacy-
sensitive diseases such as Alzheimer’s), hence the patient might not give consent
to reveal such parts, as in Fig. 18.6. To achieve this goal, we encrypt the content
of the short reads by using stream cipher and mask certain parts of the encrypted
short reads at the biobank, without decrypting them using an efficient algorithm. It
is important to note that after the short reads are decrypted at the MU, the MU is not
able to determine the nucleotides at the masked positions. This proposed system is
very efficient and it has been adopted in real-life by bioinformatics companies.

18.2.2 Private Use of Genomic Data in Personalized Medicine

In Ayday et al. [6], we proposed a scheme to protect the privacy of users’ genomic
data while enabling medical units to access the genomic data in order to conduct
medical tests or develop personalized medicine methods. In a medical test, a medical
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Fig. 18.5 Parts to be masked in the short reads for out-of-range content

Fig. 18.6 Parts to be masked
in a short read based on
patient’s consent. The patient
does not give consent to
reveal the dark parts of the
short read

unit checks for different health risks (e.g., disease susceptibilities) of a user by
using specific parts of his genome. Similarly, to provide personalized medicine, a
pharmaceutical company tests the compatibility of a user with a particular medicine.
It is important to note that these genetic tests are currently done by different types
of medical units, and the tools we propose in this work aim to protect the genomic
privacy of the patients in such tests. In both medical tests and personalized medicine
methods, in order to preserve his privacy, the user does not want to reveal his
complete genome to the medical unit or to the pharmaceutical company. In addition,
in some scenarios, it is the pharmaceutical companies who do not want to reveal the
genetic properties of their drugs. To achieve these goals, we introduced the privacy-
preserving disease susceptibility test (PDS) [6].

Most medical tests and personalized medicine methods (that use genomic data)
involve a patient and a medical unit. In general, the medical unit can be a physician
in a medical center (e.g., hospital), a pharmacist, a pharmaceutical company, or
a medical council. In this study, we consider the existence of a curious entity in
the medical unit as the potential attacker. That is, a medical unit might contain a
disgruntled employee or it can be hacked by an intruder that is trying to obtain
private genomic information about a patient (for which it is not authorized).

In addition, extreme precaution is needed for the storage of genomic data due to
its sensitivity. Thus, we claim that a storage and processing unit (SPU) should be
used to store the genomic data. We assume that the SPU is more “security-aware”
than a medical unit, hence it can protect the stored genomic data against a hacker
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better than a medical unit (yet, attacks against the SPU cannot be ruled out, as we
discuss next). Recent medical data breaches from various medical units also support
this assumption. Furthermore, instead of every medical unit individually storing the
genomic data of the patients (in which case patients need to be sequenced by several
medical units and their genomic data will be stored at several locations), a medical
unit can retrieve the required genomic data belonging to a patient directly from the
SPU. We note that a private company (e.g., cloud storage service), the government,
or a non-profit organization could play the role of the SPU.

We assume that the SPU is an honest organization, but it might be curious.
In other words, the SPU honestly follows the protocols and provides correct
information to the other parties, however, a curious party at the SPU could access
or infer the stored genomic data. Further, it is possible to identify a person
only from his genomic data via phenotyping, which determines the observable
physical or biochemical characteristics of an organism from its genetic makeup and
environmental influences. Therefore, genomic data should be stored at the SPU in
encrypted form. Similarly, apart from the possibility of containing a curious entity,
the medical unit honestly follows the protocols. Thus, we assume that the medical
unit does not make malicious requests from the SPU. We consider the following
models for the attacker:

• A curious party at the SPU (or a hacker who breaks into the SPU), who tries to
infer the genomic sequence of a patient from his stored genomic data. Such an
attacker can infer the variants (i.e., nucleotides that vary between individuals) of
the patient from his stored data.

• A semi-honest entity in the medical unit, who can be considered either as an
attacker that hacks into the medical unit’s system or a disgruntled employee who
has access the medical unit’s database. The goal of such an attacker is to obtain
private genomic data of a patient for whom he or she is not authorized. The main
resource of such an attacker is the results of the genetic tests that the patient
undergoes.

For the simplicity of presentation, in the rest of this section, we will focus on a
particular medical test (namely, computing genetic disease susceptibility). Similar
techniques would apply for other medical tests and personalized medicine methods.
In a typical genetic disease-susceptibility test, a medical center (MC) wants to check
the susceptibility of a patient (P) for a particular disease X (i.e., the probability that
patient P will develop disease X) by analyzing particular SNPs of the patient.7

For each patient, we propose to store only the real SNPs (around four million
SNP positions on the DNA at which the patient has a mutation) at the SPU. At
this point, it can be argued that these four million real SNPs (nucleotides) could
be easily stored on the patient’s computer or mobile device, instead of at the

7In this study, we only focused on the diseases which can be analyzed using the SNPs. We admit
that there are also other diseases which depend on other forms of mutations or environmental
factors.
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SPU. However, we assert that this should be avoided due to the following issues.
On one hand, types of variations in human population are not limited to SNPs,
and there are other types of variations such as copy-number variations (CNVs),
rearrangements, or translocations, consequently the required storage per patient is
likely to be considerably more than only four million nucleotides. This high storage
cost might still be affordable (via desktop computers or USB drives), however,
genomic data of the patient should be available any time (e.g., for emergencies), thus
it should be stored at a reliable source such as the SPU. On the other hand, leaving
the patient’s genomic data in his own hands and letting him store it on his computer
or mobile device is risky, because his mobile device can be stolen or his computer
can be hacked. It is true that the patient’s cryptographic keys (or his authentication
material) to access his genomic data at the SPU can also be stolen, however, in the
case of a stolen cryptographic key, his genomic data (which is stored at the SPU)
will still be safe. This can be considered like a stolen credit card issue. If the patient
does not report that his keys are compromised, his genomic data can be accessed by
the attacker.

It is important to note that protecting only the states (contents) of the patient’s real
SNPs is not sufficient in terms of his genomic privacy. As the real SNPs are stored
at the SPU, a curious party at the SPU can infer the nucleotides corresponding to
the real SNPs from their positions and from the correlation between the patient’s
potential SNPs and the real ones. That is, by knowing the positions of the patient’s
real SNPs, the curious party at the SPU will at least know that the patient has one
or two minor alleles at these SNP positions (i.e., it will know that the corresponding
SNP position includes either a real homozygous or heterozygous SNP), and it can
make its inference stronger using the correlation between the SNPs.8 Therefore,
in [6] we proposed to encrypt both the positions of the real SNPs and their states.
We assume that the patient stores his cryptographic keys (public-secret key pair for
asymmetric encryption, and symmetric keys between the patient and other parties)
on his smart card (e.g., digital ID card). Alternatively, these keys can be stored at a
cloud-based password manager and retrieved by the patient when required.

In short, the whole genome sequencing is done by a certified institution (CI) with
the consent of the patient. Moreover, the real SNPs of the patient and their positions
on the DNA sequence (or their unique IDs) are encrypted by the same CI (using
the patient’s public and symmetric key, respectively) and uploaded to the SPU, so
that the SPU cannot access the real SNPs of the patient (or their positions). We are
aware that the number of discovered SNPs increases with time. Thus, the patient’s
complete DNA sequence is also encrypted as a single vector file (via symmetric
encryption using the patient’s symmetric key) and stored at the SPU, thus when new
SNPs are discovered, these can be included in the pool of the previously stored SNPs
of the patient. We also assume the SPU not to have access to the real identities of the

8It is public knowledge that a real SNP includes at least one minor allele, and the curious party
uses this background information in the attack.
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Fig. 18.7 Proposed privacy-preserving disease susceptibility test (PDS) [6]

patients and data to be stored at the SPU by using pseudonyms; this way, the SPU
cannot associate the conducted genetic tests to the real identities of the patients.

Depending on the access rights of the MC, either (i) the MC computes Pr.X/,
the probability that the patient will develop disease X by checking a subset of the
patient’s encrypted SNPs via homomorphic encryption techniques [7], or (ii) the
SPU provides the relevant SNPs to the MC (e.g., for complex diseases that cannot be
interpreted using homomorphic operations). These access rights are defined either
jointly by the MC and the patient, or directly by the medical authorities. We note
that homomorphic encryption lets the MC compute Pr.X/ using encrypted SNPs of
patient P. In other words, the MC does not access P’s SNPs to compute his disease
susceptibility. We use a modification of the Paillier cryptosystem [2, 7] to support the
homomorphic operations at the MC. We show our proposed protocol in Fig. 18.7.

Following the steps in the figure, initially, the patient (P) provides his sample
(e.g., his blood or saliva) to the certified institution (CI) for sequencing. After
sequencing, the CI first determines the positions of P’s real SNPs and the set
positions at which P has real SNPs. Then, CI encrypts the SNPs (with Paillier
cryptosystem using the public key of the patients) and their positions (using the
symmetric key shared between the patient and the CI). Next, the CI sends the
encrypted SNPs and positions to the SPU and the patient provides a part of his secret
key (x.1/) to the SPU. This finalizes the initialization phase of the protocol. Then,
the MC wants to conduct a susceptibility test on P for a particular disease X, and P
provides the other part of his secret key (x.2/) to the MC. The MC tells the patient the
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positions of the SNPs that are required for the susceptibility test or requested directly
as the relevant SNPs (but not the individual contributions of these SNPs to the test).
The patient encrypts each requested position with the symmetric key and sends the
SPU the encrypted positions of the requested SNPs. Next, the SPU re-encrypts the
requested SNPs and sends them to the MC. MC computes P’s total susceptibility
for disease X by using the homomorphic properties (i.e., homomorphic addition
and multiplication with a constant) of the modified Paillier cryptosystem. The MC
sends the encrypted end-result to the SPU, which partially decrypts it using x.1/ by
following a proxy re-encryption protocol and sends it back to the MC. Finally, the
MC decrypts the message received from the SPU by using x.2/ and recovers the
end-result.

Even though this proposed approach provides a secure algorithm, there is still a
privacy risk in case the MC tries to infer the patient’s SNPs from the end-result of
a test. In [6], we also showed that such an attack is indeed possible and one way to
prevent such an attack is to obfuscate the end-result before providing it to the MC.
Obviously, this causes a conflict between privacy and utility and this conflict is still
a hot research topic for genomic privacy.

In a follow up work [5], we also proposed a system for protecting the privacy
of individuals’ sensitive genomic, clinical, and environmental information, while
enabling medical units to process it in a privacy-preserving fashion in order to
perform disease risk tests. We introduced a framework in which individuals’ medical
data (genomic, clinical, and environmental) is stored at a storage and processing unit
(SPU) and a medical unit conducts the disease risk test on the encrypted medical
data by using homomorphic encryption and privacy-preserving integer comparison.
The proposed system preserves the privacy of the individuals’ genomic, clinical, and
environmental data from a curious party at the SPU and from a curious party (e.g., a
hacker) at the medical unit when computing the disease risk. We also implemented
the proposed system and showed its practicality via a complexity evaluation.

The general architecture of the proposed system is illustrated in Fig. 18.8. In
summary, the patient provides his sample for sequencing to the CI. Meanwhile, he
also provides his clinical and environmental data to the SPU and the MU.9 The CI
is responsible for sequencing and encryption of the patient’s genomic data. Then,
the CI sends the encrypted genomic data to the SPU. Finally, the privacy-preserving
computation of the disease risk takes place between the MU and the SPU.

18.2.3 Private Use of Genomic Data in Research

The past years have witnessed substantial advances in understanding the genetic
bases of many common phenotypes of biomedical importance. Such an evolution in

9Depending on the privacy-sensitivity of the clinical and environmental data, the patient can choose
which clinical and environmental attributes to reveal to the MU, and which ones to encrypt and
keep at the SPU.
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the medical field has pushed companies like Google to set up new infrastructures
(e.g., Google Genomics [17]) to store, process and share genetic data at a large
scale. Genome-wide association studies (GWAS) have become a popular method
to investigate the relationship between the genomic variation and several diseases.
They represent a starting point on the journey for translating this knowledge into
clinics and they pave the way for personalized medicine, which is expected to have
an unprecedented impact for clinical care by enabling treatment of diseases based
on the genomic makeups of the individuals.

Even though much emphasis is given to GWAS, replication studies and fine-
mapping of associated regions (which are both based on the a priori knowledge
generated with GWAS) are crucial to identify true positive associations and variants
that are causal for a phenotype. Replication studies are investigations performed
in independent cohorts to validate variants identified by GWAS. Fine-mapping
studies are useful in the post-GWAS phase when a few associations have been
convincingly demonstrated and exhaustive work has to be performed to identify
the actual causative variants. Additionally, it is becoming much more frequent to
investigate multiple phenotypes across the same set of patient data, in so called
phenome-wide association studies (PheWAS), which allow researchers to better
understand the genetic architecture of complex traits and gain insights into disease
mechanisms.

As genetic association studies depend on a large amount of genomic-phenomic
data, strong privacy guarantees are required in order to protect the sensitive health
information of individuals and, thus, facilitate the pace of genomic research by
encouraging people to participate in such studies knowing that their privacy is
protected. As discussed, genomic data includes privacy-sensitive information about
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an individual, such as his ethnicity, kinship, and predisposition to specific diseases.
Leakage of such information may cause genetic discrimination or blackmail. Sim-
ilarly, phenotype data of individuals is also sensitive as it includes an individual’s
disease status and identifiers. Even though standard anonymization techniques can
be used to publish phenotype data (with decreased accuracy), they have proved to be
ineffective for genomic data [18, 21]. Hence, more sophisticated privacy-enhancing
technologies have to be developed.

In Raisaro et al. [38], we proposed a privacy-preserving technique to con-
duct replication and fine-mapping genetic association studies.10 We note that our
solution is flexible enough to be generalized and to ensure privacy protection in
different applications of the medical research field. Increasingly, large-scale data
sets are being generated and applied in the medical setting, including proteomic,
transcriptomic and metabolomic data. By recombining the building blocks of our
privacy-preserving algorithm, the proposed architecture can easily support also
secure analyses of multiple ’omics datasets for personalized medicine methods as
proposed in Ayday et al. [6].

Existing techniques to conduct association studies in a privacy-preserving way
include (i) adding noise to the result of the study to satisfy differential privacy [26,
44] (e.g., when the study is done at a trusted database and only the results of the
study is shared with the researchers), and (ii) cryptographic techniques, such as
using homomorphic encryption [28, 29] (e.g., when genomic data is shared with
the researchers and the study is done by the researchers). Techniques in the former
category reduce the utility of genomic data, and hence are criticized by genomic
researchers, while cryptographic solutions enable computing exact answers with
some computational and storage overhead [11, 14]. Our proposed technique falls
into the latter category. However, as opposed to the existing crypto-based works,
our proposed method in [38] (i) stores each participant’s genotype and phenotype
data encrypted by his own cryptographic key, (ii) addresses, for the first time in a
privacy-preserving way, the problem of population stratification, and (iii) is highly
parallelizable. We emphasize that our method, by storing each participant’s data
encrypted by his own key, avoids a single point of failure in the system. If a key
is leaked or hacked, only the data of a single participant is compromised and other
participants’ data is still protected. Conversely, previous solutions assume that all
participants’ data is stored encrypted under the same key, therefore, they are less
secure as the leakage of such a key could jeopardize the entire system.

In a nutshell, we developed an efficient privacy-preserving algorithm for genetic
association studies on encrypted genotypes and phenotypes stored in a centralized
dataset. Our solution addresses the pervasive challenge of dataset stratification by
inferring, in a privacy-preserving way, the ancestry of each subject in the dataset.
Identification of dataset stratification represents a crucial preprocessing step of
genetic association studies to avoid spurious associations due to systematic ancestry

10Our solution may also be used for GWAS, but it better scales for replication/fine-mapping
association studies which are based on the a priori knowledge generated with GWAS.
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differences within and between sample populations. Furthermore, our algorithm
automatically generates case and control groups (i.e., two sets of individuals
differing in one or more phenotypic traits) and outputs only the final result of
the association study without leaking any information of the intermediate steps of
the computation. We prove the security of the proposed technique and assess its
performance with an implementation on real data. We also propose a MapReduce
implementation as a proof-of-concept of parallelization.

One real-life application of the proposed technique is clinical studies conducted
by pharmaceutical companies in collaboration with national biobanks. The goal of
these studies is to assess the effectiveness of a treatment (or effect of a drug) for a
certain group of people. In such a scenario, we can assume the biobank stores the
encrypted genotypes and phenotypes of a set of individuals. Then, a pharmaceutical
company can run a privacy-preserving genetic association study to identify in a
few hours the set of genetic variants that influence the efficacy of the treatment.
Today, these types of pharmacogenetic studies are performed through methods that
are not privacy-preserving. Since biobanks cannot release data without the explicit
consent from the participants or a special approval from an ethics committee, a
pharmacogenetic study can require months to be completed. Therefore, the proposed
technique not only preserves the privacy of the individuals’ sensitive health-related
data, but it also accelerates the pace of genomic research.

In general, genetic association studies involve a cohort of participants (P),
who provide upon consent their genotype and phenotype information for research
purposes, and a medical unit (MU) that performs the association study on this
cohort. As discussed, the MU can be either a pharmaceutical company willing to
conduct a clinical trial for a particular drug, or a research institution willing to
test the association between some single nucleotide variations (SNVs) of significant
interest and complex phenotypic traits. As shown in Fig. 18.9, the proposed system
in [38] includes a certified institution (CI) and a centralized storage and processing
unit (SPU), along with the P and the MU. The CI is responsible for (i) recruiting the
participants for association studies, (ii) genotyping their genome (i.e., identifying
and extracting their genetic variations), (iii) collecting their phenotype information,
(iv) encrypting the data, and (v) generating and distributing the cryptographic keys
between the parties.

We assume, for efficiency and security, the storage of encrypted genotypes and
phenotypes to be at the SPU. That is, instead of several MUs storing the same large
amount of genomic and phenomic data, the information of each participant is stored
at a centralized SPU and, upon request, made accessible (for association studies) to
different MUs. Storing genotype and phenotype information at the SPU also enables
(i) data from multiple hosts to be pooled into a single and centralized repository,
and (ii) genomic association studies to be conducted on an amount of data often
beyond the capability of a sole researcher or institution. The purpose of such an
architecture is to overcome the main limiting factor of association studies, i.e.,
insufficient sample size, as the individual effect of genomic differences is usually
small, and large sample sizes are required in order to increase the sensitivity of
statistical tests and data-mining techniques. As before, a private company (e.g.,
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cloud storage service), the government, or a non-profit organization can play the
role of the SPU. The proposed algorithm for privacy-preserving genetic association
studies takes place between the MU and the SPU.

The proposed solution in [38] can be summarized as follows. First, the partic-
ipants provide to the CI their biological sample for genotyping, along with their
phenotype information. Then, the CI encrypts each participant’s information and
sends it to the SPU. Finally, after a preprocessing phase for ancestry inference, the
privacy-preserving genetic association study takes place between the MU and the
SPU through a secure two-party protocol (using the homomorphic properties of
the Paillier cryptosystem and some SMC protocols between the MU and the SPU).
In such a protocol, the MU specifies the input parameters to the SPU and obtains
only the allele frequencies for the two study groups.

18.2.4 Coping with Weak Passwords for the Protection
of Genomic Data

Appropriately designed cryptographic schemes can preserve the data utility, but
they provide security based on assumptions about the computational limitations
of adversaries. Hence, they are vulnerable to brute-force attacks when these
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assumptions are incorrect or erode over time. Given the longevity of genomic data,
serious consequences can result. Compared with other types of data, genomic data
has especially long-term sensitivity. A genome is (almost) stable over time and thus
needs protection over the lifetime of an individual and even beyond, as genomic
data is correlated between the members of a single family. It has been shown that
the genome of an individual can be probabilistically inferred from the genomes of
his or her family members [23].

In many situations, though, particularly those involving direct use of data by
consumers, keys are weak and vulnerable to brute-force cracking even today. Users’
tendency to choose weak passwords is widespread and well documented [12].
This problem arises in systems that employ password-based encryption (PBE), a
common approach to protection of user-owned data.

Recently, Juels and Ristenpart introduced a new theoretical framework for
encryption called honey encryption (HE) [27]. Honey encryption has the property
that when a ciphertext is decrypted with an incorrect key (as guessed by an
adversary), the result is a plausible-looking yet incorrect plaintext. Therefore, HE
gives encrypted data an additional layer of protection by serving up fake data in
response to every incorrect guess of a cryptographic key or password. Notably, HE
provides a hedge against brute-force decryption in the long term, giving it a special
value in the genomic setting.

However, HE relies on a highly accurate distribution-transforming encoder
(DTE) over the message space. Unfortunately, this requirement jeopardizes the
practicality of HE. To use HE in any scenario, we have to understand the cor-
responding message space quantitatively, that is, the precise probability of every
possible message. When messages are not uniformly distributed, characterizing and
quantifying the distribution is a highly non-trivial task. Building an efficient and
precise DTE is the main challenge when extending HE to a real use case.

In Huang et al. [22], we proposed to address the problem of protecting genomic
data by combining the idea of honey encryption with the special characteristics of
genomic data in order to develop a secure genomic data storage (and retrieval)
technique that is (i) robust against potential data breaches, (ii) robust against a
computationally unbounded adversary, and (iii) efficient.

In the original HE paper [27], Juels and Ristenpart propose specific HE con-
structions that rely on existing generation algorithms (e.g., for RSA private keys),
or operate over very simple message distributions (e.g., credit card numbers).
These constructions, however, are inapplicable to plaintexts with considerably more
complicated structure, such as genomic data. Thus, substantially new techniques are
needed in order to apply HE to genomic data. Additional complications arise when
the correlation between the genetic variants (on the genome) and phenotypic side
information are taken into account. Our work in [38] is devoted mainly to addressing
these challenges.
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We proposed a scheme called GenoGuard. In GenoGuard [38], genomic data is
encoded to generate a seed valve, the seed is encrypted under a patient’s password,11

and stored at a centralized biobank. We propose a novel tree-based technique to
efficiently encode (and decode) the genomic sequence in order to meet the special
requirements of honey encryption. Legitimate users of the system can retrieve the
stored genomic data by typing their passwords.

A computationally unbounded adversary can break into the biobank protected by
GenoGuard, or remotely try to retrieve the genome of a victim. The adversary could
exhaustively try all the potential passwords in the password space for any genome
in the biobank. However, for each password he tries (thanks to our encoding phase),
the adversary will obtain a plausible-looking genome without knowing whether it is
the correct one. We also consider the case when the adversary has side information
about a victim (or victims) in terms of his physical traits. In this case, the adversary
could use genotype-phenotype associations to determine the real genome of the
victim. GenoGuard is designed to prevent such attacks, hence it provides protections
beyond the normal guarantees of HE.

We show the main steps of the GenoGuard protocol in Fig. 18.10. We represent
the patient and the user as two separate entities, but they can be the same individual,
depending on the application.

GenoGuard is highly efficient and can be used by the service providers that offer
DTC services (e.g., 23andMe) to securely store the genomes of their customers. It
can also be used by medical units (e.g., hospitals) to securely store the genomes of

CI User

Biobank

1. Sample, Password

2. Sequencing
3. Encoding
4. Password-based encryp�on

5. Ciphertext

6. Request

7. Ciphertext

8. Password-based decryp�on
9. Decoding

Pa�ent

Fig. 18.10 GenoGuard protocol [38]. A patient provides his biological sample to the CI, and
chooses a password for honey encryption. The CI does the sequencing, encoding and password-
based encryption, and then sends the ciphertext to the biobank. During a retrieval, a user (e.g., the
patient or his doctor) requests for the ciphertext, decrypts it and finally decodes it to get the original
sequence

11A patient can choose a low-entropy password that is easier for him/her to remember, which is a
common case in the real world [12].
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patients and to retrieve them later for clinical use. The general protocol in Fig. 18.10
can work in a healthcare scenario without any major changes. In this scenario, a
patient wants a medical unit (e.g., his doctor) to access his genome and perform
medical tests. The medical unit can request for the encrypted seed on behalf of (and
with consent from) the patient. Hence, there is a negotiation phase that provides the
password to the medical unit. Such a phase can be completed automatically via the
patient’s smart card (or smart phone), or the patient can type his password himself.
In this setup, the biobank can be a public centralized database that is semi-trusted.
Such a centralized database would be convenient for the storage and retrieval of the
genomes by several medical units.

For direct-to-customer (DTC) services, the protocol needs some adjustments.
For instance, Counsyl12 and 23andme13 provide their customers various DTC
genetic tests. In such scenarios, the biobank is the private database of these service
providers. Thus, such service providers have the obligation to protect customers’
genomic data in case of a data breach. In order to perform various genetic tests, the
service providers should be granted permission to decrypt the sequences on their
side, which is a reasonable relaxation of the threat model because customers share
their sequences with the service providers. Therefore, steps 8 and 9 in Fig. 18.10
should be moved to the biobank. A user who requests a genetic test result logs into
the biobank system, provides the password for password-based decryption and asks
for a genetic test on his sequence. The plaintext sequence is deleted after the test.

18.2.5 Protecting Kin Genomic Privacy

In Humbert et al. [24], we presented a genomic-privacy preserving mechanism
(GPPM) for reconciling people’s willingness to share their genomes (e.g., to help
research14) with privacy. Our GPPM acts at the individual data level, not at the
aggregate data (or statistical) level like in [26]. Focusing on the most relevant type
of variants (the SNPs), we study the trade-off between the usefulness of disclosed
SNPs (utility) and genomic privacy. We consider an individual who wants to share
his genome, yet who is concerned about the subsequent privacy risks for himself and
his family. Thus, we design a system that maximizes the disclosure utility but does
not exceed a certain level of privacy loss within a family, considering (i) kin genomic
privacy, (ii) personal privacy preferences (of the family members), (iii) privacy
sensitivities of the SNPs, (iv) correlations between SNPs, and (v) the research utility
of the SNPs. The proposed GPPM in [24] can automatically evaluate the privacy
risks of all the family members and decide which SNPs to disclose. To achieve

12https://www.counsyl.com/.
13https://www.23andme.com/.
14http://opensnp.wordpress.com/2011/11/17/first-results-of-the-survey-on-sharing-genetic-
information/.

http://opensnp.wordpress.com/2011/11/17/first-results-of-the-survey-on-sharing-genetic-information/
http://opensnp.wordpress.com/2011/11/17/first-results-of-the-survey-on-sharing-genetic-information/
https://www.23andme.com/
https://www.counsyl.com/
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Fig. 18.11 General protection framework. The GPPM [24] takes as inputs (i) the privacy levels
of all family members, (ii) the genome of the donor, (iii) the privacy preferences of the family
members, and (iv) the research utility. First, correlations between the SNPs (LD) is not considered
in order to use combinatorial optimization. Note that we go only once through this box. Then,
LD is used and a fine-tuning algorithm is used to cope with non-linear constraints. The algorithm
outputs the set of SNPs that the donor can disclose

this goal, it relies on probabilistic graphical models and combinatorial optimization.
Our results indicate that, given the current data model, genomic privacy of an entire
family can be protected while an appropriate subset of genomic data can be made
available.

In order to mitigate attribute-inference attacks and protect genomic and health
privacy, the GPPM relies upon an obfuscation mechanism. In practice, obfuscation
can be implemented by adding noise to the SNP values, by injecting fake SNP
values, by reducing precision, or by simply hiding the SNP values. In this work,
we choose SNP hiding, essentially because the genomic research community would
not receive other options positively. Indeed, genetic researchers are very reluctant
about adding noise or fake data, notably because of the huge investment they make
to increase (sequencing) accuracy. We assume one family member, at a given time,
who wants to disclose his SNPs and to guarantee a minimum privacy level for him
and his family. Figure 18.11 provides an overview of the proposed GPPM in [24].

For clarity of presentation, we focus on one family whose members are defined
by the set F (jFj D n). We assume that there is only one donor D who makes
the decision to share his genome at a given time. His relatives might have already
publicly shared some of their genomic data on the Internet. D takes this into
account when he makes his own disclosure decision. We let S (jSj D m) be the
set of SNP IDs. Its cardinality m can go up to 50 million, as this is currently the
approximate number of SNPs in the human population. In practice, however, people
put online (e.g., on OpenSNP) up to one million of the most significant SNPs. We
let XD D fxD

j W j 2 Sg represent the set of SNPs of D (xD
j is the value of SNP j of

the donor D), that are all initially undisclosed. Finally, we let yD D fyD
j W j 2 Sg

represent the decision vector of D, where yD
j D 1 means the corresponding SNP will

be disclosed, and yD
j D 0 means xD

j will remain hidden.
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We express the privacy constraints of a family member both in terms of genomic
and health privacy. Our framework can account for different privacy preferences
for different family members, SNPs, and diseases. For all i 2 F, j 2 S, we define
the privacy sensitivity of a SNP j for individual i as si

j. We can set the si
j’s to be

equal by default. Then, an individual willing to personalize his privacy preferences
may further define his own privacy sensitivities regarding specific SNPs based on his
privacy concerns regarding, e.g., certain phenotypes. The most well-known example
of such a scenario is the case of James Watson, co-discoverer of DNA, who made
his whole DNA sequence publicly available, with the exception of one gene known
as Apolipoprotein E (ApoE), one of the strongest predictors for the development of
Alzheimer’s disease.15 We let the sets Pi

s and Pi
d include the privacy-sensitive SNP

IDs and privacy-sensitive diseases of individual i, respectively. We represent the
tolerance to the genomic-privacy loss of individual i as Pri.i; Pi

s/, and the tolerance
to the health-privacy loss of individual i regarding disease d 2 Pi

d as Pri.i; d/. These
tolerance values represent the maximum privacy loss (after the disclosure of D’s
SNPs) that an individual would bear. By considering the privacy losses instead of
the absolute privacy levels, we ensure that the donor will more likely reveal a SNP
whose value is already well inferred by the attacker before donor’s disclosure (e.g.,
by using SNPs previously shared by the donor’s relatives). Note that these tolerance
values can always be updated for any new family member willing to disclose his
genome. Finally, the utility function is a non-decreasing function of the norm of yD,
as the knowledge of more SNPs can only help genomic research. We define uj to be
the utility provided by SNP j. Note that, in practice, the utility of the SNPs can be
determined by the research authorities and can vary based on the study.

The donor faces an optimization problem: How to maximize research utility
while protecting his own and his relatives’ genomic and health privacy. First, the
objective function is formally defined as

P

j2S ujyD
j . Then, privacy constraints are

defined, for each individual, as the sum of privacy losses induced by the donor’s
disclosure over all SNPs. This sum must be capped by the respective privacy
loss tolerances of all family members. Formally, for all individuals i 2 F and
SNPs j 2 S, the privacy loss induced by the disclosure of xD

j is defined as
.Ei

j.y
D
j D 0/� Ei

j.y
D
j D 1//. Note here that the privacy loss at a given SNP j for

any relative is only affected by the donor’s decision yD
j regarding SNP j but no other

SNP k ¤ j, meaning that LD correlations are not taken into account. Finally, note
that if an individual i has already revealed his SNP j, i.e., xi

j 2 XO, the privacy loss
at this SNP for i is zero, because Ei

j.y
D
j D 0/ D Ei

j.y
D
j D 1/ D 0. For all i 2 F,

j 2 S, the privacy weight pi
j is defined as

pi
j D si

j � .Ei
j.y

D
j D 0/� Ei

j.y
D
j D 1//: (18.1)

15Later researchers have used correlations in the genome to unveil Watson’s predisposition to
Alzheimer’s [35]. In this work, we also consider such correlations.
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Clearly, pi
j at a given SNP j can be different for each family member, depending on

how close he is from the donor in the family tree, on the actual values xi
j and xD

j of
his and the donor’s SNPs, and on his sensitivity. Note that si

j D 0 8j … Pi
s.

We can now define the linear optimization problem as

maximize
yD

X

j2S

ujy
D
j

subject to
X

j2Pi
s

pi
jy

D
j � Pri.i; Pi

s/;8i 2 F

X

k2Sd

pi
kyD

k � Pri.i; d/;8d 2 Pi
d;8i 2 F

yD
j 2 f0; 1g;8j 2 S;

(18.2)

where Sd is the set of SNPs that are associated with disease d.
Our optimization problem is very similar to the multidimensional knapsack

problem [15]. We decide to follow the branch-and-bound method proposed by
Shih [40], because it finds the optimal solution, represents a good trade-off between
time and storage space, and allows for the extension of the algorithm to null and
negative (privacy) weights. However, the LD correlations between the SNPs are
not considered in the above optimization problem in order for the constraints to
remain linear. Therefore, after getting the initial results from the linear optimization
problem, we use a fine-tuning algorithm in order to decide to reveal less or more
SNPs when LD is also considered.

18.3 Future Research Directions

Advances in genomics will soon result in large numbers of individuals having their
genomes sequenced and obtaining digitized versions thereof. This poses a wide
range of technical problems, which we explore below [3].

Storage and Accessibility: Genome at Rest Due to its sensitivity and size (about
3.2 billion nucleotides), one key challenge is where and how a digitized genome
should be stored. It is reasonable to assume that an individual who requests (and
likely pays for) genome sequencing should own the result, as is already the case with
any other personal medical results and information. This raises numerous issues,
including:

• Should the genome be stored on one’s personal devices, e.g., a PC or a
smartphone? If so, what, if any, special hardware security features (e.g., tamper-
resistance) are needed?

• Can it be outsourced to a cloud provider?
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• Should the sequencing facility keep an escrowed copy of the genome?
• Should it be entrusted to one’s personal physician and/or health insurance

provider?
• How is it to be stored: in the clear or encrypted? If the latter, where are encryption

keys generated: at the lab? at owner’s premises? at the cloud provider? Where are
these keys stored?

• How to guarantee integrity and authenticity of the digitized genome?
• Should backups be made? If so, how often and where can copies be kept?
• How can one erase a genome securely?
• Should an individual periodically re-sequence their genome to take advantage of

more accurate technology?

Privacy: Genome in Action Given the genome’s sensitivity, an individual should,
ideally, never disclose any information contained therein. However, this would
prevent the access to any genomic application that cannot be entirely and securely
performed in situ, i.e., within a secure perimeter of one’s own personal device. In
principle, this might be possible if operations are performed in some standardized
and certified form. For example, if testing for a genetic disease requires matching
a well-known pattern in some approximate location in the genome, that pattern and
its parameters can be certified by some trusted agency (such as the US Food and
Drug Administration). Thus, an individual could be assured that a legitimate test for
a specific genetic disease is being conducted and the result is clearly communicated
to that individual; the latter would then have the option to keep the result private.

At the same time, it is hard to foresee the range and complexity of future
genetic operations: some (future) tests might be too computationally complex to
be performed within the confines of a personal device. Furthermore, some genetic
testing would probably involve multiple genomes, e.g., when tracing origins of some
conditions, siblings or parents/children might need to be tested together. Similarly,
in assessing risks of genetic conditions for future progeny, both prospective parents
have to be tested. Also, some genetic tests constitute intellectual property of a
pharmaceutical/biomedical company (which needs to be protected) [8, 19, 34].

As soon as genomic information leaves the (virtual) hands of its owner, purely
technical approaches to privacy become insufficient. Legal and professional guide-
lines are certainly needed to govern how information is transmitted, stored, pro-
cessed, and eventually disposed of on the receiving end, e.g., by the physician,
hospital, pharmacist or medical lab.

Long-term Data Protection Even if genomes are encrypted, encryption schemes
considered strong today might gradually weaken in the long term, whereas genome
sensitivity does not dissipate over time. It is not too far-fetched to imagine that a
third-party in possession of an encrypted genome might be able to decrypt it years
or decades later. For instance, the Advanced Encryption Standard (AES) scheme
supports key lengths up to 256 bits—a key length estimated by NIST, following
Moore’s law, to be secure several years after 2030. However, computational break-
throughs or unforeseen weaknesses might allow breaking the encryption earlier than
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expected. Also, even leakage of a long-deceased individual’s genome could affect
genomic privacy of that person’s living progeny.

Assuming that it cannot be copied, an encrypted genome could be periodically
re-encrypted. Alternatively, one could split the genome (e.g., by using secret-sharing
techniques [39]), and partition it among several providers. However, this opens the
problem of efficient reassembly of the genome for various operations as well as how
to guarantee non-collusion between providers.

Accuracy and Accountability Computational genomic tests should guarantee
accuracy at least equivalent to that of their current analog in vitro counterparts. For
example, a software implementation of the paternity test should offer at least the
same confidence as its in vitro counterpart currently admissible in a court of law.
Also, computational tests should aim at accountability, e.g., by providing lasting
guarantees of correctness for both execution and input information.

Efficiency Computational genomic tests should incur minimal communication and
computational costs. Minimality in this setting is relative to the context of such
tests. For instance, patients may be inclined (and accustomed) to wait several
days to obtain results of genetic tests that concern their health. However, in the
computational setting, long running times on personal devices might hinder the real-
world practicality of these tests (besides negating one of the main motivations for
computational tests).

Usability Computational genomic tests that involve end-users should be usable by,
and meaningful to, regular non-tech-savvy individuals. This translates into non-
trivial questions, such as: how much understanding should be expected from a
user running a test? What information (and at what level of granularity) should be
presented to the user as part of a test and as its outcome? Do privacy perceptions
and concerns experienced by patients match those expected by the scientific
community? Some users might be willing to forego their genomic privacy in certain
cases. For instance, one may think that patients will be likely to reveal their genomes
to their medical doctors (and hence trade off privacy of their genomes) to enable
tests that can save them from, e.g., cancer. In contrast, in the case of online
services or pharmaceuticals, an individual might not wish to forgo privacy. However,
very few efforts (e.g., [13]) have focused on users’ concerns, thus prompting the
need for ethnographic studies. Also, there remains an open problem of how to
effectively communicate to the users potential privacy risks associated with genomic
information and its disclosure.

Large-scale Research on Human Genomes Potential privacy, legal, and ethical
concerns appear to conflict with large-scale research on human genomes, such
as Genome-Wide Association Studies (GWAS). However, large scale studies are
needed to discover associations between genetic make-up and medical conditions.
One current trend is to store donors’ genomes in the cloud and use analytics
techniques running on powerful computer clusters. Once again, this prompts many
privacy and legal concerns.
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18.4 Conclusion

In this chapter, focusing on the work carried out by EPFL/LCA1 and Bilkent
University, we first discussed some threats for genomic privacy. Then, we described
some of our solutions to protect genomic privacy. Namely, we focused on privacy-
preserving management of raw genomic data, privacy compliant use of genomic
data in personalized medicine and research settings, resistance to brute-force attacks
and protecting kin genomic privacy. Finally, we discussed some future research
directions. More information on this topic can be found at: https://genomeprivacy.
org
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Chapter 19
Encryption and Watermarking for medical
Image Protection

Dalel Bouslimi and Gouenou Coatrieux

Abstract Among security mechanisms studied today, a growing interest is given
to the protection of digital content especially with the help of encryption, water-
marking and, more recently, of their combination. If encryption can be considered
as an “a priori” protection mechanism since once data are decrypted they are no
longer protected, it should be completed by an “a posteriori” protection, a protection
watermarking can provide. Basically, when it is applied to images, watermarking
modifies or modulates in an imperceptible way the image pixels’ gray level values
in order to insert a message. This message can be used to assess the origins as well
as the integrity of the image. As defined, watermarking provides an “a posteriori”
protection as the image content is still available for interpretation while remaining
protected. In order to benefit from the complementarity of these two mechanisms, in
terms of a priori/a posteriori protection, different approaches have been proposed.
In this chapter, focusing in the healthcare domain, we present the different purposes
for which these approaches have been proposed for.

19.1 Introduction

The rapid evolution of multimedia and communication technologies has boosted
the sharing and remote access to patient data. Care becomes ubiquitous and, at any
time, at any place, it is possible for any citizen to access his or her medical data
(see for example the French electronic patient record DMP1 or the development
of telemedicine applications [11]). For that purpose, the healthcare system
infrastructure is adapting and quickly evolving (e.g., medical cloud computing
[1], data warehouse [38]). Systems interconnect; data are exchanged and shared not

1DMP: “Dossier Médical Personnel”, supported by The ASIP santé; dmp.gouv.fr.

D. Bouslimi (�) • G. Coatrieux
Institut Mines-Telecom, Telecom Bretagne, Technopole Brest-Iroise, France

Laboratory of Medical Information Processing, LATIM INSERM UMR 1101, France
e-mail: Dalel.Bouslimi@telecom-bretagne.eu; Gouenou.Coatrieux@telecom-bretagne.eu

© Springer International Publishing Switzerland 2015
A. Gkoulalas-Divanis, G. Loukides (eds.), Medical Data Privacy Handbook,
DOI 10.1007/978-3-319-23633-9_19

493

mailto:Gouenou.Coatrieux@telecom-bretagne.eu
mailto:Dalel.Bouslimi@telecom-bretagne.eu
dmp.gouv.fr


494 D. Bouslimi and G. Coatrieux

only for personalized patient care but also for epidemiological studies, economical
evaluations and so on. If these technological advances offer significant benefits
for medical providers and patients, it is obvious that they also increase security
concerns. Taking as an example a telemedicine application where a practitioner
outsources some Electronic Medical Records (EMR) of one patient, he or she
loses the control on these data, data the practitioner is however responsible
for and which have been given to him or her in complete trust by the patient.
These concerns are more critical within public cloud computing frameworks,
where a hospital can externalize some parts of its Information System (IS). It is
important to recall that trust between a patient and health professionals is the key
element of their relationship. Which confidence will you have in a practitioner
or a healthcare establishment, the information system of which can be scanned
from the Internet? (http://www.cnil.fr/linstitution/actualite/article/article/cloture-
de-la-mise-en-demeure-adoptee-a-lencontre-du-centre-hospitalier-de-saint-malo/,
2014). Today, ensuring security is a complex task that relies on the definition
of a security policy. Such a policy expresses security objectives in terms of
confidentiality, integrity, traceability and so on, and also establishes how it should
be deployed based on different security mechanisms.

In this chapter, we focus on the protection of medical images by means of
watermarking and cryptographic tools, the combination of which is very recent
in healthcare. Medical imaging plays a central role today at almost all steps of
healthcare, going from the diagnosis to the therapy follow-up or clinical research. As
a consequence and as any other medical data, images are more and more distributed
and shared supported for example by the constitution of regional or national Picture
Archiving and Communications Systems (PACS), as in the US [34] and Canada
(http://www.infoway-inforoute.ca).

Nowadays and in practice, protection of medical images is achieved by cryp-
tographic means, especially encryption and digital signatures, as recommended by
DICOM,2 the medical imaging standard of reference. The kind of protection that
encryption mechanisms offer is however mostly “a priori” in the sense that an
image is protected until its decryption or, equivalently, before the access to its
content is granted. Several questions arise then about the security of the image
once decrypted. Here comes the interest for an “a posteriori” protection that allows
the user accessing the image content while maintaining it protected—a kind of
protection the watermarking technology is appropriated for. Basically, when it is
applied to images, watermarking modifies or modulates the image pixels’ gray-
level values in an imperceptible way in order to encode or insert a message (i.e.,
the watermark). This message can be used, for example, to verify the image
integrity or for traceability purposes. The combination of cryptographic means and
watermarking can therefore be used to achieve a continuous a priori and a posteriori
protection and, as we will presented in the chapter, it provides solutions able to
achieve different security objectives at the same time.

2DICOM: Digital Imaging and Communications in Medicine; http://medical.nema.org.

http://medical.nema.org
http://www.infoway-inforoute.ca
http://www.cnil.fr/linstitution/actualite/article/article/cloture-de-la-mise-en-demeure-adoptee-a-lencontre-du-centre-hospitalier-de-saint-malo/
http://www.cnil.fr/linstitution/actualite/article/article/cloture-de-la-mise-en-demeure-adoptee-a-lencontre-du-centre-hospitalier-de-saint-malo/
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This chapter is divided into four sections. In Sect. 19.2, we summarize the
security issues and needs one must consider when sharing medical data in gen-
eral and in telemedicine applications. Then, in Sect. 19.3, we present encryption
mechanisms and, in particular, the main ones the DICOM standard is interoperable
with. Section 19.4 is devoted to watermarking in the context of medical imaging. In
Sect. 19.5, we give an overview of different approaches that merge encryption and
watermarking to enforce data protection. We also describe in detail one practical
joint watermarking-encryption algorithm, which gives access to the outcomes of
the image integrity and origin, even though the image is stored encrypted that is
to say without giving access to the image content. As we will see, this method is
transparent or compliant with the DICOM standard. More precisely, if a system
is not watermarking interoperable, it can still decrypt the images and access its
contents.

19.2 Security Needs for Medical Data

In this section, we first specify – in the broad sense – the security needs for medical
information. These ones, imposed by the legislator through strict legislative and
ethical rules, constitute a general framework that can be refined depending on the
applicative context. This is the case for example of telemedicine applications we
consider in the second part of this section and where traceability concerns are of
importance, especially in case of litigation.

19.2.1 General Framework

In general, security is imposed by the legislator to protect citizens’ rights. There
are many sources of regulations, national and international, criminal and ethical,
of general application (like those for software protection) or specifically devoted
to medical data. Most of the time, the purpose of medical regulations is to create a
relationship of trust between patients and health professionals. Indeed, a patient will
be better taken in charge if he or she gives a view of his/her symptoms without any
shadows. These regulations give rights to patients and duties to health professionals
about the security of the data they possess. As example, in France, one has to
respect the “Informatique et Liberté” Law of January 6th, 1978, completed by
the Law of January 1st, 1994 (http://www.cnil.fr/fileadmin/documents/approfondir/
textes/CNIL-78-17definitive-annotee.pdf), which establish security of digital data
and, by extension, of medical data, as one right of citizens and consequently of
patients. This Law requires that healthcare professionals take “all possible measures
to safeguard information security and particularly to prevent its distortion, damage,
or communication to any unauthorized third parties”. Non-respecting this regulation
is subject to criminal penalties.

http://www.cnil.fr/fileadmin/documents/approfondir/textes/CNIL-78-17 definitive-annotee.pdf
http://www.cnil.fr/fileadmin/documents/approfondir/textes/CNIL-78-17 definitive-annotee.pdf
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From a practical and a technical point of view, committees for standardization
can also give some practice recommendations on how to best protect medical
information. Among them are Working groups, such as those put in place by
the European Standards Committee TC/251 Medical Information (Working Group
III [35]), IHE (Integrating the Healthcare Enterprise) (http://www.ihe.net/), HL7
(Health Level 7) (http://www.hl7.org/), and others. Based on all the current regu-
lations and recommendations, the following should be ensured in order to meet the
security requirements of medical digital content [4]:

Confidentiality: Confidentiality is the property which ensures that only autho-
rized users in normal conditions have access to the information.

Integrity: A proof that a piece of information has not been modified in a non-
authorized way.

Availability (of personal medical information): Ability of an information system
to be used under the normal conditions of access. Its absence may be the
consequence of a partial or total destruction of the data or a denial of access.
The origins of the destruction may be different (physical or logical attack) and
trigger immediate or delayed loss.

On the other hand, there is an intrinsic link between the quality of the information
and the quality of care. L. Dussere et al. have defined in [41] the quality criteria
or properties a piece of information should possess in order to be valid: Rele-
vance (interest at one instant : : :); Accuracy; Actuality (e.g., medical knowledge
is in perpetual evolution, observations must be dated : : :); Availability (dual to
confidentiality); Exhaustiveness (any piece of information can be important : : :);
Fineness of the operator’s judgment (all interpretations are operator-dependent);
and, Reliability. As defined by L. Dussere et al., reliability corresponds to the
confidence one can have on the information and, consequently, this property has
a direct link with the concepts of integrity and authenticity. Indeed, any piece of
medical information that is “sensitive” for patient care should not be modified nor
altered (integrity). At the same time, because a medical record is most of the time
nominative, its access is limited to authorized users (confidentiality), and a recipient
as well as an issuer should be identified (authenticity).

Both considerations about security and quality of medical information can be
merged, leading to the notion of data reliability [25]. Reliability relies on the
outcomes of: (1) data integrity, and (2) data authenticity—a proof of the information
origin, as well as of its attachment to one patient. If a piece of information is reliable,
it can be used in complete trust by the physician.

These security objectives constitute a general framework for medical applica-
tions. However, they have to be refined depending on the application context. For
instance, in the case of telemedicine applications, in addition to confidentiality,
reliability and availability, there is a need for security functionalities able to support
evidence, in case of litigation in order to establish responsibilities of each party
involved in the communication.

http://www.hl7.org/
http://www.ihe.net/
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19.2.2 Refining Security Needs in an Applicative Context:
Telemedicine Applications as Illustrative Example

Supported by the development of multimedia and communication technologies,
telemedicine applications enables distant patient care by offering to health pro-
fessionals an easy access, management and processing of data. The development
of telemedicine began more than 20 years ago and has since demonstrated its
efficiency [78]. Even though technology strongly increased the quality and speed
of image transmission, telemedicine only got a legal recognition in France in 2009
and its legal framework was defined in 2010 [5, 37]. In this context, when a patient
suffers of a prejudice related to a diagnosis error, it is necessary to determine
the respective liabilities of the practitioners involved in the diagnostic/therapeutic
process. Professional negligence will be argued if one of the practitioners involved
in the telemedicine has had a negligent attitude, i.e., falling short of what might
have been expected from him/her regarding his/her field of competence. To assess
this possible lack of professionalism, and, thus, possible legal liability of one or both
involved practitioners (joint liability), several questions will arise to allow the judge
to reach a conclusion: Who made the request? What was requested? When? For
whom? What documents were provided/requested? Who answered? What? When?
Regarding which documents?

To discover the process that originated the error, all the elements involved in
the transaction must be carefully stored, with no means of modification (Need
0 (N0)). These elements are clearly defined in France by the Confidentiality
decree of May 5th, 2010 (http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=
JORFTEXT000022932449&categorieLien=id). Indeed, it is necessary that:

Need 1 (N1): All transmitted data have to be saved with the identity of all practi-
tioners, the name of the patient, the date and the time of the transaction.

Need 2 (N2): The date, time and substance of the answer of the referent practitioner
must be strongly linked to the documents that he/she received before sending it.

Need 3 (N3): The substance of the answer of the referent with the identifiers of the
physician, the specialist, the date and the time of the transaction, must be saved.

Need 4 (N4): Both practitioners must be identified in such a way that they cannot
repudiate their respective messages.

Need 5 (N5): All elements involved in the transaction must be stored, with no means
of modification, and rendered unreadable from individuals with unauthorized
access.

To sum up, in the case of telemedicine applications, in addition to the needs
of confidentiality, reliability and availability required by the legislator in a general
framework, it is also necessary to ensure data traceability and data non-repudiation.
Data traceability aims at tracing data throughout its existence. Data non-repudiation
guarantees that physicians cannot deny the emission or reception of data. So, in the
deployment of a telemedicine application, all possible means must be implemented
to ensure simultaneously these needs. To this end, an original solution can take

http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022932449&categorieLien=id
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022932449&categorieLien=id
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advantage of the complementarity of cryptographic tools and watermarking to offer
continuous protection. When considered together, one offers an a priori protection
(i.e., encryption) and the other an a posteriori protection, letting the user to access
the information while maintaining it protected by watermarked security attributes
for integrity, authenticity and traceability purposes. Before explaining how water-
marking and encryption mechanisms have been combined in the research literature,
we describe in what follows some encryption and watermarking primitives.

19.3 Encryption Mechanisms: An A Priori Protection

Encryption, or more generally, cryptography has received interest since antiquity.
Many cryptosystems exist today, some of which are standardized and/or integrated
within healthcare standards like DICOM. From a technical point of view, these
cryptosystems can be differentiated according to various criteria, the classical ones
being the symmetric/asymmetric character of a cipher or the way it works on a clear
text: block cipher vs. stream cipher. In the following sections, we describe these
categories and their differences, with a special emphasis on the symmetric block
cipher and the stream cipher; cryptosystems that are better adapted to the protection
of huge volumes of data.

19.3.1 Symmetric/Asymmetric Cryptosystems & DICOM

As illustrated in Fig. 19.1, the basic purpose of encryption is to transform a plaintext
into a ciphertext in such a way that only the authorized parties can read it by
means of a decryption process. The ciphertext is by definition unreadable or
incomprehensive. According to the principles of modern cryptography, the security
of a cryptosystem relies on the knowledge of its parameters, i.e., the encryption
and decryption keys, and not on the knowledge of the applied encryption algorithm.
Depending on the relationship between the encryption and decryption keys, one can
distinguish two kinds of cryptosystems:

Fig. 19.1 A cryptosystem
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• Symmetric cryptosystems, where encryption and decryption keys are identical.
The DES (Data Encryption Standard) or the triple DES (DES applied three times
consecutively), and more recently the AES (Advanced Encryption Standard) [33]
all fall under this category [68].

• Asymmetric cryptosystems, like the RSA and Paillier [71], are controlled by a
pair of keys that corresponds to one user. The asymmetry comes from the fact
that keys are distinct but mathematically related and if a text is encrypted with
one key, it can only be decrypted using the second key. In a pair, one key is said
private, only known by the key pair owner and is kept secret, while the other
key is said public and can be distributed to whomever needs it. Depending on
the key that is used during the encryption process, different scenarios can be
considered:

– If the sender encrypts the message using the public key of the recipient, only
the latter will be able to decrypt it with his/her private key. Data confidentiality
is consequently ensured.

– If the sender encrypts the message using his/her private key then any recipient
will have to use the sender’s public key to access the message. Message origin
is assessed and as nobody else than the sender knows the private key, we have
non-repudiation.

– If one wants to ensure non-repudiation in addition to confidentiality, he or she
has to encrypt two times the message: the first one using his or her private key
and the second with the public-key of the recipient.

Symmetric cryptosystems are 100 to 1000 times faster than some asymmetric
cryptosystems. They are thus more appropriate when huge volumes of data have
to be protected. That is especially the case in medical imaging [91]. Notice that
DICOM recommends the use of the DES, Triple DES, as well as of the AES
algorithms to encrypt the image pixels and other pieces of information within the
image file header.

Asymmetric cryptosystems are usually applied to initiate a secure commu-
nication between users or systems. As they offer non-repudiation in addition
to confidentiality, users can authenticate each other and confidentially agree on
the secret key of a symmetric cryptosystem, subsequently used to secure their
communication. DICOM recommends the use of TLS (Transport Layer Security
[39]) which is in part based on such an initialization protocol.

19.3.2 Block Cipher/Stream Cipher Algorithms

There exist two types of encryption algorithms: block cipher algorithms and stream
cipher algorithms. Block cipher algorithms, like AES and DES, operate on large
blocks of plaintext, whereas stream cipher algorithms such as RC4 or SEAL
(Software-Optimized Encryption Algorithm) [86], manipulate stream of bits/bytes
of plaintext. To highlight the differences of these two categories of algorithms, we



500 D. Bouslimi and G. Coatrieux

give in what follows an overview of AES, a block cipher algorithm recommended to
be used by DICOM, and a well-known stream cipher algorithm, RC4 (Rivest Cipher
4), which is interesting because it can be easily combined with watermarking, as we
will see in Sect. 19.5.

19.3.2.1 The AES Block Cipher Algorithm

The Advanced Encryption Standard (AES) manipulates blocks of 16, 24 or 32 bytes
of plaintext. To encrypt a plaintext, it repeats a certain number of times a round;
a round is a set of transformations. The round number depends on the encryption
key size. Let us consider, for instance, a key size of 16 bytes which makes AES
executing ten rounds. In this situation, a block Bi of 16 bytes too is re-organized in
a 4 � 4 matrix before entering into the following process of AES (see Fig. 19.2):

1. “AddRoundkey”, where Bi is combined, through a xor operation, with a sub-key
Ki derived from the encryption key using the Rijndael’s key schedule [33].

2. “N-1 Rounds”, each composed of the following consecutive steps:

a. “SubByte”, where each block of bytes is substituted with another block issued
from a lookup table: the Rijndael S-box.

b. “SubByte”, where each row of the matrix Bi is right-shifted cyclically by
different offsets.

c. “MixColumn”, where each column of the matrix Bi is treated as a polynomial
multiplied in the Galois Field (GF) (28) with the following matrix (the reader
must refer to [33] for more details):

0

B

B

@

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

1

C

C

A

d. “AddRoundkey”.

3. “Final round”, which is composed of the three following steps: “SubByte”,
“ShiftRow” and “MixColumn”.

AES can be considered as secure since, up to date, it can only be broken by a
brute force attack, which consists of testing all possible combinations of plaintext
in order to find the encryption key. For instance, with this attack, 2128 operations are
needed to recover an AES key of 16 bytes. Notice that the AIX (Adaptive Image
Exchange), which is a HIPAA-compliant Medical Image Exchange that allows a
practitioner or healthcare establishments to share medical images, uses the AES
with 16-byte keys (https://www.pacscubevie.com/docs/aixhipaa.pdf). This key size
is also accepted by the DICOM standard, which however allows using longer keys.
In [80], Snyder et al. recommend the use of AES with 32-byte keys in order to

https://www.pacscubevie.com/docs/aixhipaa.pdf


19 Encryption and Watermarking for medical Image Protection 501

Fig. 19.2 General scheme of the AES algorithm

ensure a good compromise in-between the level of confidentiality and computation
time. Indeed, data encryption induces delays in data access and consequently on the
hospitals’ workflow.

Block Cipher Modes of Operation The concept of mode of operation refers to
the manner in which blocks of plaintext (a sequence of bytes) are treated at the
encryption stage (resp. decryption stage). There exist many modes of operation:
Electronic Codebook (ECB), Cipher Block Chaining (CBC), Output Feedback
(OFB), Cipher Feedback (CFB), Counter (CTR), etc. (see [86]). The CBC mode of
operation is recommended by DICOM when using AES. As depicted in Fig. 19.3,
when the CBC mode is activated the plaintext block is combined with the previous
ciphertext block through a xor operation, before being encrypted with the above
AES process. If we denote Be

i the encrypted version of a block Bi and Be
i�1 is the

previously encrypted block, Be
i is given by: Be

i D AES.Bi ˚ Be
i�1/.

19.3.2.2 The RC4 Stream Cipher Algorithm

General Principles of Stream Ciphers The basic way a stream cipher algorithm
works is described in Fig. 19.4. It combines the bits/bytes of plaintext T D
Œt1; : : : ; ti; : : : ; tn� with a secret keystream of bits/bytes K D Œk1; : : : ; ki; : : : ; kn�

issued from a pseudo random number generator (PRNG), through a xor operation,
typically. The keystream generation depends on a secret key Ke. Thus, bits/bytes of
cipher text C D Œc1; : : : ; ci; : : : ; cn� are usually defined as: ci D ti ˚ ki

The specificity of such stream cipher algorithms resides in how the bit/byte
keystream is generated by the PRNG (the reader should refer to [86] for the
description of well-know stream ciphers’ PRNGs). Notice also that although the
xor-operator is most frequently used, some have instead proposed to use the addition
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Fig. 19.3 AES encryption in CBC mode. Bi, Be
i and Ke denote the plaintext block, the encrypted

block and the encryption key, respectively. iv is a random initialization vector

Fig. 19.4 Encryption/decryption processes of a stream cipher algorithm

modulo-d operation (i.e., ci D .ti C ki/mod.2d � 1/, where d is the image depth)
[92] in order to be able to use the arithmetic operations.

Some of the main advantages of this type of algorithms are that they are
simple and operate at a higher speed than block cipher algorithms. However, we
should not that the latter algorithms are more secure due to the complexity of
the transformations they are based on.

Presentation of the RC4 Algorithm RC4 is a very popular stream cipher
algorithm. It is used in standard security protocols like TLS [37], WEP (Wired
Equivalence Privacy [57]) and WPA (Wi-Fi Protocol Access [6]). The algorithm
relies on the xor-operation between the plaintext and the keystream issued by the
RC4 PRNG. The latter is based on two steps:

– “Initialization”, where a table of 256 bytes is filled by repeating the encryption
key as often as necessary.

– “Byte keystream generation”, where the elements of the table are combined by
applying permutations and additions to generate the keystream.
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19.4 Watermarking: An A Posteriori Protection Mechanism

19.4.1 Principles, Properties and Applications

Watermarking [31, 32, 55, 87] embraces the principles of information hiding, which
also includes steganography [32, 46, 55, 87], a discipline as old as cryptography,
and uses them to establish secret communication. By definition, information hiding
allows the insertion of a message within a host document by modifying it in an
imperceptible way. When it is applied to an image (host signal), the pixels’ gray-
level values of the image are modified or modulated so as to encode a message.
If for steganography there is no a priori link between the message and the host
content, its objective being at first to secretly communicate the message, this is
not the case for watermarking. Indeed, watermarking purposes find their origin in
the 90s when, with the Internet advances, where questions arose about intellectual
property protection of digital data: how to protect digital content that can be recopied
without loss of quality? How to be certain that a buyer will not illegally redistribute
his or her copy? : : : Questions that can be answered by embedding or watermarking
the buyer or owner identifier. Nevertheless, the main interest of watermarking is that
it leaves access to the data, while maintaining them protected by the watermark:
watermarking is an a posteriori protection mechanism. Since then, watermarking
has been proposed for other applications as well as in other domains, like in
healthcare, where the protection of intellectual property is of less concern. Different
watermarking applications are foreseen in healthcare [26], which depend on the
relation in between the message and its host, as discussed below.

Image Authenticity Control Image authenticity control can be ensured by insert-
ing a proof of the image origin and of its attachment to one patient. The underlying
question is how to build a relevant “authenticity code”. Herein, DICOM can
conveniently be exploited as it imposes the creation of a Unique Identifier (UID) for
any acquired images. The UID refers to the machine, health institution, patient, time
and date of the examination, etc. Consequently, one can get a simple authenticity
code by combining such a UID with a patient identifier. It becomes therefore
possible to verify that the UID and the patient identifier present in the header
DICOM file are identical to those embedded into the image. Notice that patient
identifiers are sometimes defined in a legislative way [78]. In France, for example, a
National health identifier exists since 2007 (Article L1111-8-1 of the public health
code [57]). Such identifiers must be used with care as they may induce privacy
issues. Indeed, they reveal the exact patient identity. Beyond that, an authenticity
code can be used to establish secure links between Electronic Medical Records of
one patient [27]. For instance, images can be watermarked with the unique identifier
of the medical report they are related with. From the image pixels, it will be possible
to know that the images have been already analyzed, while making possible to
retrieve the report.
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Fig. 19.5 The principle of watermarking chain

Image Integrity Control Image integrity control based on watermarking of a
proof, allows verifying that the host data have not been altered or modified by non-
authorized persons. In the case of medical images, one common solution consists
in embedding a digital signature or a cryptographic hash [86] computed over the
image or some parts of it [61, 72]. We recall that a cryptographic hash function is an
algorithm which transforms a message of arbitrary size into a hash of fixed and small
size (e.g., 160 bits in the case of the SHA-1—Secure Hash Algorithm [42, 86]),
while inter alia having good dispersion properties (two similar documents have very
distinct hashes). Instead of using a cryptographic hash which is very sensitive to
any host modifications, it is possible to embed a perceptual hash [86] that will raise
an alarm only for some unauthorized modifications. In [29], the authors embed a
set of image signatures (cryptographic hashes and an image moment signature) that
allow them to: detect an image modification occurred; localize the image tamper
and by complementarity indicate which parts of the image can trustfully be used;
and identify the nature of the modification. Some others [22, 64] have proposed
to extend in healthcare the concept of self-correcting images introduced by Fridrich
and Goljan [47]. The basic idea is to embed into the image redundant data that allow
reconstructing the image content after it has been modified.

Metadata Insertion The purpose of this application is to insert watermarked
metadata that can facilitate the use of the host content or its management, or to
make it more informative. Very few studies have been conducted on this theme in
healthcare [28, 65]. In [75], the record indexing information is embedded into the
media content to identify the media. This makes possible to repair damaged index
tables of a relational database by completing missing pieces of information from
the watermarked images or data. Beyond these examples where database coherence
and safety can be improved, one can also offer new services. In [28], within the
framework of an e-learning application, images are watermarked with an “image
knowledge digest” which semantically describes the image content while providing
rules for comparing images in terms of diagnosis or lesion.

19.4.1.1 A General Chain of Watermarking

A classical watermarking scheme is composed of two steps, as shown in Fig. 19.5:

• Watermark insertion process, which allows inserting a message within an image
by modulating its pixels or some transformed coefficients (e.g., DCT—Discrete
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Cosine Transform [81], TFD—Discrete Fourier Transform [90]). Note that the
“distortion” introduced or the signal of difference between the original image and
its watermarked version constitutes the watermark. This watermarking process
usually depends on a secret watermarking key which can be used, for instance,
to secretly select pixels or coefficients to watermark. There exist several types of
watermarking modulations, some of which are described in Sect. 19.4.2.

• Watermark detection/extraction process. Detection is a prerequisite to message
extraction, but both processes can be blind or non-blind [49, 51] depending on
the need to have or not access to the original image. It is obvious that methods
requiring accessing the original image at the detection process are limited in
terms of applications. In between blind and non-blind schemes we can find
semi-public schemes [31], where the watermarking key contains some pieces
of information about the original image (such as a summary of it); pieces that
will help the decoder to extract the message.

19.4.1.2 Basic Properties of a Watermarking Algorithm

Watermarking algorithms are characterized by a set of different properties
in-between which a tradeoff has to be established:

Robustness: A watermark is considered as robust if after a transformation or an
“attack” of the watermarked image, the watermark is still available. Attacks are
categorized as either malevolent or innocent. By definition, an innocent attack is
a process foreseen in the exploitation cycle of images. It corresponds generally
to processing operations, like filtering and lossy compression (e.g., JPEG—
Joint Photographic Experts Group). On the contrary, a malevolent attack aims
at removing or modifying the watermark for an illegal use of the image.

Capacity of insertion: It corresponds to the amount of information that one can
embed into an image and is usually expressed in bpp (bits of message per pixel
of image), i.e., the number of bits of message that is embedded per image pixel.

Reversibility: This property ensures that once the watermark is detected and
extracted, it can be removed from the image, i.e., inverting the distortions
introduced during the insertion process, allowing the recovery of the original
image. Such a property is often desired in applications where the quality of
documents is a strong constraint, as in healthcare.

Security: The basic idea behind this property is that the watermark should be
very difficult to counterfeit without the knowledge of the watermarking key as
for cryptography. Notice that a robust watermarking scheme is not necessarily
secure [50]. To enhance message security, some propose to asymmetrically
encrypt it before its embedding [80]. So, even though a “pirate” may extract
the information, he or she cannot access the clear message or generate a valid
message without knowledge of the encryption keys.

Imperceptibility: By definition a watermark should be invisible to the user. For
medical images, this notion of “imperceptibility” is important. Indeed, modifying
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the gray-level values of a medical image may induce risks of misinterpretation.
The measure of image degradation today revolves around objective measures
like the Peak Signal to Noise Ratio (PSNR), the Signal to Noise Ratio (SNR)
[56], and the Normalised Root-Mean-Square Error (NRMSE) [43]. Although
these solutions are not always representative, their implementation is of less
complexity and of less cost compared to a subjective evaluation. The latter
requires asking a group of users whether they can distinguish watermarked
images from the original ones.

The choice of a watermarking method depends on the application framework,
striking a compromise between different requirements. Needs of a telemedicine
application may differ from those inside the hospital. In the former case the
information is outsourced, with strong traceability issues, while in the latter case,
we have a better idea of who may access the data (see [25] for more details).

19.4.2 Watermarking Medical Images

In many aspects, imperceptibility is the main constraint in healthcare. Medical
tradition is very strict with the quality of biomedical images, in that it is often not
allowed to alter in any way the bit field representing the image (non-destructive).
Lesions or findings can be very subtle and may be masked by distortions induced by
the watermark. At the same time, it should be considered that the original captured
image often undergoes certain processing, like enhancement and contrast stretching,
windowing with parameters’ values varying from one user to another [26]. Conse-
quently, the watermark may become more or less “visible”. In [25], Coatrieux et al.
propose to differentiate three kinds of watermarking schemes, each introducing its
own constraints and limitations:

1. Lossless or reversible watermarking: Schemes in which the watermark can be
removed with the exact recovery of the original image.

2. Region of Non Interest (RONI) watermarking: This scheme is based on the
definition of some regions of interest (ROIs), to be left intact, and regions of
insertion. Because it is assumed that ROIs contain all relevant information for
the diagnosis, one can consequently revert to methods with higher capacity and
robustness, and has to ensure that the watermark in RONIs is related to ROIs.

3. All other methods: We herein refer to insertion methods that use the whole
image, and bring about imperceptible alterations in the pixels, as commonly used
in all multimedia signals. Nevertheless, a psychovisual model [59, 94, 98], like
those used for natural images so as to adapt the watermark amplitude locally
into the image, does not yet exist for medical imaging. However, if we consider
that in some applications like telemedicine the use of lossy image compression
is accepted, we can assume without too much risk that classical watermarking
schemes can be applied even though they bring different distortions. Notice that
different studies have shown that under some constraints lossy compression can
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be exploited [89]. Similar studies have however to be conducted for medical
images. In [75], robust watermarking has been considered after a physician has
selected the maximum power of the watermark just under the level of interference
with the patient diagnosis.

19.4.2.1 Basic Lossy Watermarking Modulations

Watermarking techniques can be classified in many ways. It is however habitual to
differentiate additive from substitutive modulations.

Additive Methods Starting from a message (e.g., a sequence of bits), an addi-
tive method generates a signal, a watermark which is added to the image or
a transformation of it (DCT [81], WT [8, 19, 66], etc.) Spread-spectrum based
watermarking [31, 32] is a classical example of such a kind of technique. A
simplified view of it is the following one (see Fig. 6). It embeds one bit bi of
a message by adding to the image I a pseudo-random sequence wi multiplied by
di D 1 � 2bi. As defined, the watermarked image Iw is given as: Iw D I C ˛diwi,
where ˛ controls the watermark strength or amplitude and thus allows controlling
the watermark robustness-imperceptibility compromise. ˛ can be locally computed
based on psychovisual masking [32]. The embedding of a message of N bits adds
to the image the watermark: W D PN

iD1 ˛diwi. The presence of this watermark, as
well as the message extraction, is usually based on correlation techniques, which
implies the orthogonal nature of the pseudo-random sequences wi. The sign of each
correlation product < W; wi > gives the value of the embedded bit bi.

Substitutive Methods In order to embed one symbol of a message, such a modula-
tion replaces one piece of information of an image, a feature or a characteristic of it,
with another that is issued from a dictionary that encodes the desired symbol value.
As a consequence, message detection and extraction simply stands in an image
feature re-reading or interpretation. Some well known substitutive watermarking
modulations are the Least Significant Bit (LSB) substitution and the Quantization
Index Modulation (QIM).

A. Least Significant Bit (LSB) Substitution Modulation

This algorithm is the simplest substitutive modulation [9, 24]. It replaces or
substitutes the least significant bits (LSBs) of the image pixels by those of the
message (see Fig. 7). At the extraction stage, one just has to interpret the parity
of watermarked pixels’ values so as to read/extract the message. If we denote by Pw

i
the watermarked pixel and bi is one bit of the message, then bi D LSB.Pw

i /, where
LSB(.) is a function that provides the LSB of the corresponding value. This method
provides high watermark capacity with a low image distortion: not more than one
gray-value per pixel. At the same time, it is very fragile as any modification of the
image will destroy the message.
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B. Quantization Index Modulation (QIM)

Due to its robustness and simplicity, QIM is today one of the most popular
substitutive watermarking techniques for images [92] as well as for videos [88]. It
has been also proposed for relational databases [45]. QIM relies on quantifying an
image component (e.g., group of pixels or of transformed coefficients) according to
a set of quantizers based on codebooks so as to insert a message. Basically, to each
message msi issued from a finite set of qs possible messages Ms D fmsigiD0;:::;qs , the
QIM associates the elements of a codebook Cmsi such as:

Cmsi

\

Cmsj D Ø; i ¤ j (19.1)

Substituting one component X of the image by its nearest element Xw in the
codebook Cmsi thus allows the insertion of msi. This process can be noted as:

Xw D Qmsi.X/ (19.2)

where Qmsi.X/ is a function that determines the nearest element Xw of X within Cmsi .
The distance between Xw and X corresponds to the watermarking distortion.

During the extraction step, the knowledge of the cell to which the received
version of Xw, noted as Z, belongs is enough to identify the embedded message.
The message cmsi detected at the reception is then given by:

cmsi D arg min
iD1;:::;p

jZ � Qmsi.Z/j (19.3)

Example—Let us consider one image component, such as a vector of pixels
X 2 N

N , while dividing the N
N dimensional space into non-overlapping cells of

equal size. Let us also assume the insertion of a binary message, i.e., msi 2 f0; 1g;
two codebooks C0 and C1 will thus be defined. To satisfy [Eq. (19.1)], each cell
is associated to a codebook Cmsi ; i D 0; : : : ; qs. As a consequence, one message
msi has several representations in N

N . The insertion process is conducted as
follows. If X belongs to the cell which encodes the message to be inserted, Xw (the
watermarked version of X) corresponds then to the center of this cell; otherwise,
X is moved to the center of the nearest cell that encodes the desired message.
In the case that X is a pixel value, i.e., X D x and X 2 N, C0 and C1 can be built up
by uniformly quantizing x with a quantization step �, as illustrated in Fig. 19.6.
In this example, cells centered on crosses represent C1.msi D 1/, whereas cells
centered on circles represent C0.msi D 0/. Thus, x will quantize to the nearest
cross or circle in order to encode msi.

Nowadays, Dither Modulation (DM) [20] is probably the most common imple-
mentation of the QIM, due to its simplicity based on uniform quantizers. This
scheme consists in shifting the host signal by a value (a dither) pseudo randomly
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Fig. 19.6 Example of two codebooks’ cells in the mono-dimensional space (i.e. x is a scalar
value) considering an uniform quantization of quantization step �. Symbols o and � denote cells’
centers that encode 0 and 1, respectively. d D �=2 establishes the measure of robustness to signal
perturbations

generated, known at the insertion and the extraction and belonging to the interval
Œ��=2;C�=2�, where � is the quantization step. With this modulation, the
insertion process can be expressed as follows:

Xw D Q.msi/.X C d.msi//� d.msi/ (19.4)

where d.msi/ is the dither associated to the message msi.
In order to enhance the robustness/distortion tradeoff, an improved version

of QIM has been proposed by Chen and Wornell [20]. This version, known as
Distortion Compensated QIM (DC-QIM), consists in re-injecting a fraction of the
error quantification to the quantified signal. However, both QIM and DC-QIM are
not robust against valuemetric scaling changes, which occur when modifying the
image brightness, for example. To reduce this weakness, several extensions of the
QIM were proposed. Among them are Angle QIM (AQIM) [21] and Rational Dither
Modulation (RDM) [74]. As illustrated in Fig. 19.7, for message embedding, AQIM
modulates or quantifies the polar representation angle of the vector representing
the host signal rather than its modulus. It is therefore more robust than QIM and
DC-QIM to the valuemetric scaling attack (VSA), which modifies first the signal
modulus before its phase. With RDM, the quantization step is variable and is
computed based on the previous watermarked samples.

RDM has been extended into the Perceptual-QIM (P-QIM) algorithm by
Li et al. [63]. The originality of this algorithm relies on the use of a modified
version of the Watson’s perceptually model [94] in order to ensure the invariance to
VSA, while taking into account the watermark psychovisual impact.

19.4.2.2 Lossless Watermarking

Since the introduction of the concept by Mintzer et al. in 1997 [69], several methods
have been proposed for lossless watermarking. As above, we propose to distinguish
them into two main classes: additive methods [53, 70, 84] and substitutive methods
[16, 48]. In the case of additive insertion, the message m is first transformed into
a watermark signal W next added to the host image I, leading to the watermarked
image Iw. By doing so, and without paying attention, the watermarked image may
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Fig. 19.7 Insertion of a binary message using AQIM. Xw represents the vector after the insertion
of a bit equals to “1” within a host signal X associated to a vector in the N-dimensional space if N
pixels constitute X. � is the quantization step, and circles and crosses represent the centers of the
cells that encode the bits “0” and “1”, respectively

include pixels with gray-values outside the allowable image dynamic range (e.g.,
Œ0 : : : 2d � 1� for a d-bit depth image with positive integer values), introducing
underflows (negative values) or overflows (values greater than 2d � 1). This is the
main issue to be solved in order to achieve the reversibility property.

One first solution, suggested by Honsinger et al. [53], consists in using arithmetic
modulo, that is to say: Iw D .I C W/mod.2d � 1/. Reversibility is guaranteed
by: I D .Iw � W/mod.2d � 1/. The main drawback of this solution is a salt and
pepper noise due to jumps between congruent values of the image histogram. An
improvement to this method, proposed by Fridrich et al. [48] and De Vleeschouwer
et al. [36], attenuates visual distortion by using arithmetic modulo with shorter
histogram cycles or, more specifically, by splitting the signal dynamic in ranges
of short size. However, the interest of these methods remains limited due to their
low performance in terms of capacity.

An alternative to these modulations refers to histogram shifting (HS), introduced
by Ni et al. [70]. As illustrated in Fig. 19.8, HS shifts a range of the signal histogram
with a fixed magnitude � to create a “gap” near the histogram maxima. Samples
of the signal with values associated to the class of the histogram maxima, the
“carriers”, are then shifted to the gap or kept unchanged to encode “0” or “1”.
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Fig. 19.8 Basic principle of the histogram shifting modulation: (a) original histogram, and
(b) histogram of the watermarked data

Obviously, in order to restore exactly the original signal, the watermark reader needs
to be informed of the positions of samples of values that would have been shifted
out of the dynamic range (overflows in the example of Fig. 19.8). This requires the
embedding of an overhead along with the message, which reduces the watermark
capacity. It is clear that if the histogram is uniform, it is not possible to watermark
the signal.

Since the work of Ni et al. [70], different refinements have been proposed. Instead
of working in the spatial domain, several schemes apply HS to some transformed
coefficients [96] or pixel prediction-errors [84]. Their histograms are concentrated
around one single class maxima located at zero. This maximizes HS capacity and
also simplifies the re-identification of the histogram classes of maximum cardinality
at the reading stage. It also appears, from the most performant schemes at the
moment [54, 84], that working with prediction-errors is the most appropriate way,
histograms are of smaller variance.

Substitutive methods can be classified into two categories: Lossless Compression
Embedding (LCE) techniques and Expansion Embedding (EE) techniques. Fridrich
et al. developed one of the first LCE techniques in [48]. They losslessly compressed
a bit-plane of the original image for data embedding. Since then, Xuan et al. have
extended this approach to the wavelet domain [95], while Celik et al. [16] developed
a generalized LSB substitutive technique.

Unlike LCE techniques, EE techniques expand the dynamic of the signal by
shifting to the left the binary representation of a signal sample h, creating thus a new
virtual least significant bit (LSB) that can be used for data insertion: hw D 2hC b,
where hw is the watermarked version of h and b is one bit of the message. EE is
combined with LSB Substitution applied to non-expandable signal samples, i.e.,
samples that cannot be expanded because of the limited dynamic of the signal
or because of distortion constraints. Thus, one just has to read samples’ LSBs to
read the message. Again some reconstruction overhead needs to be embedded to
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store substituted original LSBs, as well as the position of expanded samples. EE
was experimented on: the difference between two adjacent pixels [93], vectors of
adjacent pixels [3], wavelets coefficients of pixel blocks [62], etc.

Nowadays, most methods take advantage of HS and EE modulations at the same
time [54, 84]. To do so, EE modulation is applied instead of simply shifting by a
fixed amplitude samples of the carrier-classes. More clearly, HS is first use to create
a gap in the pixel predicted error histogram, while EE is used to encode data in
created gap. The capacity is the same as with HS but the distortion is minimized.
The scheme presented in [29] is better than any of these solutions even though it
only uses HS and can thus be improved if combined with EE. The originality of
this scheme is twofold, it is based on: a “Dynamic Histogram Shifting Modulation”,
which adaptively takes care of the local specificities of the image content and allows
message embedding in textured areas where other methods fail to do; and on a signal
sample classification, which purpose is to identify risks of underflows and overflows
[28] and the most suited lossless modulation locally into the image [73].

19.5 Combining Encryption with Watermarking

Different approaches have been proposed to take advantage of the complementarity
of encryption and watermarking mechanisms. Their basic objective is to ensure
data confidentiality through encryption, while adding new security functionalities
by watermarking. These new functionalities can be made available either in the
spatial domain, i.e., after data have been decrypted, and/or in the encrypted domain.
Actually, if most of these solutions focus on copyright protection, they can find
an important place in the healthcare domain. In this section, we provide a brief
overview of these solutions and further introduce a joint watermarking-encryption
strategy, we originally proposed in the healthcare domain [12, 13] but not limited to.

19.5.1 Continuous Protection with Various Security Objectives:
A State of the Art

Technically, depending on the way that watermarking and encryption are merged,
we suggest to discriminate four main categories of methods:

1. Watermarking Followed by Encryption (WFE): In this case the host signal is
first watermarked and then encrypted.

2. Encryption Followed by Watermarking (EFW): In this case a watermark is
embedded into the host signal after its encryption.

3. Commutative Encryption and Watermarking (CEW): This case regroups
techniques that simultaneously belong to the first two categories. More clearly,
watermarking and encryption operations are independent and commutative, in
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the sense that the host signal can be watermarked then encrypted or encrypted
then watermarked. The result, i.e., the watermarked and encrypted signal, is the
same in both cases.

4. Joint Watermarking-Decryption (JWD): In this case a watermark is embedded
during the decryption process.

Beyond the aforementioned categories, there is a fifth one that we have recently
introduced in [12, 13] and we call Joint Watermarking-Encryption (JWE); it
corresponds to the case where a watermark is embedded during the encryption
process. We depict one implementation of such a scheme in Sect. 19.5.2 and we
illustrate how it can be used to allow a user to verify the reliability of a document
being encrypted or not.

19.5.1.1 Watermarking Followed by Encryption

This category regroups the first methods proposed in the literature. As depicted in
Fig. 11, they simply consist of first embedding a watermark within the host data and
then encrypting the data [60]. The embedded message can only be extracted after
decryption. The main application for which these methods have been proposed is
copyright protection. That is why in general, the watermark is embedded in a robust
manner [60].

Nevertheless, a few applications have been devoted to medical data. In [83],
the image is enriched with the insertion of patient data before being ciphered. In
[79, 80], U. R. Acharya et al. propose to improve the security of patient records,
some text or graphical signals, that are encrypted and then inserted into one image of
the patient. Embedding is conducted by using LSB substitution in the spatial domain
[79] or in the discrete cosine transform domain in the case that JPEG compressed
images are considered [80].

19.5.1.2 Encryption Followed by Watermarking

Herein, the pursued objective is to watermark host signals in an encrypted form (see
Fig. 12). These methods can be distinguished depending on if the watermarking
modulation used is reversible or not. As for the previous class of methods, copyright
protection constitutes the main application of these methods.

Non-reversible Watermarking of Encrypted Data The majority of these meth-
ods are based on homomorphic encryption, where the host signal is entirely
encrypted using a homomorphic cryptosystem [18, 67, 82]. Let us consider M D Mi,
where i D 1; : : : ; n, to be the set of plaintexts and C D Ci, i D 1; : : : ; m, to be the
set of ciphertexts. An encryption algorithm E is said homomorphic if it satisfies the
following relationship [44]:

8Mi; Mj 2 M; E.Mi ?s Mj/ D E.Mi/ ?e E.Mj/ (19.5)
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where?s and ?e represent operations in M and C, respectively. ?e corresponds in
general to the multiplication operation, while ?s can be an operation of addition,
multiplication, xor, etc. Specifically, based on the homomorphic property, an
operation in the encrypted domain or, more clearly, on the ciphertext (e.g., ‘�’,
‘C’, : : :) is translated into another operation on the plaintext (e.g., ‘C’,‘�‘, : : :). It
becomes then possible to modify an encrypted image and to insert a watermark.

However, with this kind of approach, the embedded watermark is only available
in the spatial domain. Indeed, the watermark is inserted in an encrypted form into
the encrypted file and implies the detection of a “decrypted” watermark into the
clear image. The approach described in [76] is another strategy which focuses on
the authentication of the image’s origin. It consists in embedding in the encrypted
gray-levels of the image the secret key used for its encryption. This key is encrypted
twice with RSA: the first time with the private key of the sender (for authenticity),
and the second time with the public key of the recipient (confidentiality). Here, a
stream cipher algorithm is used to encrypt the image. At the reception, the encrypted
key is extracted from the encrypted image which is next decrypted.

Reversible Watermarking of Encrypted Data These methods allows watermark-
ing an encrypted signal in a reversible manner. The embedded watermark is removed
from the encrypted data before the decryption process. Methods have been proposed
to exploit the statistical properties of the encrypted and of the original signal in order
to read and remove the watermark.

For example, in [77], Puech et al. insert a message into the encrypted image
by substituting one bit of a pixel block with one of the message. At the recipient
side, each block of the image is decrypted twice, testing the two possible values
of the modified bit (0/1). The position of the watermarked bit must be known. The
decrypted block with the minimum standard deviation is the original block. Indeed,
a false bit generally prevents the correct document decryption, which appears as
a noise. Another example of such an approach is given in [97], where a lossless
compression is applied onto the encrypted image LSBs. The space gain is then
used for message insertion. Again, inserted data are only available in the encrypted
domain and need to be removed before or during the image decryption process.

19.5.1.3 Commutative Encryption and Watermarking

These techniques are often based on partial encryption [52] or invariant encryption
[85]. In the latter case, the host signal is encrypted so that some of its features
remain invariant to the encryption and decryption processes. These features are used
for watermark insertion. For example, in [85], the image is encrypted by means of a
random permutation of pixel positions without changing their gray values. The latter
are watermarked using a histogram-based watermarking scheme before or after the
encryption process [23]. Nevertheless, these “invariant” or “non encrypted” features
can be exploited for an attack.
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With such an approach, the embedded information is thus available in both
encrypted and spatial domains. With partial encryption, only some parts of the
host signal are encrypted, e.g., some Most Significant Bit (MSB) planes, while
the rest is watermarked [10, 14, 15]. For instance, in [14, 15], the image is firstly
decomposed into levels using the Haar wavelet transform. All coefficients are then
transformed into bits and arranged in the form of bit planes. The Most Significant
Bit planes of the image are encrypted using the AES, and the Least Significant Bit
planes are watermarked using the QIM. In practice, these techniques are interesting
in applications where large volumes of data (e.g., image or videos databases) are
treated.

19.5.1.4 Joint Watermarking-Decryption

Joint watermarking-decryption systems have been proposed in the framework of
video-on-demand for identifying a posteriori or tracing the buyer. They consist in
embedding the fingerprint (the buyer’s identifier) at the client side or more precisely
during the decryption process. The objective is to reduce time computation and
complexity on the server side (see Fig. 13). Basically, the same encrypted version
of an original document is sent to all clients. At the client side, the decryption and
watermarking operations are conducted simultaneously using the client decryption
key; a key that is different from one client to another and which will induce
differences in between clients’ documents. These differences correspond to the
watermark, that is to say to the client fingerprint, which uniquely identifies him
or her.

The first scheme of this category of methods was proposed by Anderson et al.
[7] in 1997 and is known as Chameleon, the principle of which is as follows. Let us
consider the plaintext or clear text is constituted of bytes (e.g., grayscale pixels).
During the encryption operation, four entries of a random look up table (LUT)
are selected and then xor-ed with a plaintext component to obtain the ciphertext.
The decryption process is similar to that of encryption, except that the decryption
LUT is different. This one is derived from the encryption LUT by injecting errors
in some entries. As a consequence, the deciphered text will be slightly different
from the original text. To enhance the robustness against the collusion attack, i.e.,
when several clients combine their copies (e.g., by making their average), different
extensions of Chameleon have been proposed. Among them are the fingercasting,
proposed by Adelsbach et al. [2], and the solution suggested by Celik et al. [17]
which operates with arithmetic operations and LUTs composed of real numbers.

The majority of methods that combine watermarking and encryption are intended
to protect copyright. Because of their need for robustness, these methods introduce a
strong distortion in the host signal. As discussed in Sect. 19.4.2, these methods may
not be appropriate for medical images. Even though some are reversible, their poor
scalability is also an inconvenience. Practitioners want quick access to their data.
Beyond that, most of these methods give access to the embedded watermark only
in one domain: encrypted or spatial domain. In some scenarios, it is nevertheless
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interesting to access the watermark in both domains. This, for example, allows a
user to verify the reliability of an image and to determine to which patient the image
is associated to, without decrypting it. Nowadays, few solutions give access to the
embedded watermark in both domains. They are essentially based on partial and
invariant encryption techniques. Because these techniques do not encrypt all the
data, they are faster. But at the same time, one may question their security. A better
response is achieved if data are fully encrypted while giving access to watermarking
functionalities, images being encrypted or not. As we will see in the next section,
this is the case of the JWE approach.

19.5.2 A Joint Watermarking-Encryption (JWE) Approach

Security of medical images, as of any medical data, is expressed in terms of
confidentiality, reliability and availability (see Sect. 19.2). Medical data reliability
is important for medical practice, as it can be seen as one component of information
quality establishing a degree of trust in the data practitioners’ handle. The Joint
Watermarking-Encryption (JWE) approach, originally studied by Bouslimi et al. in
the framework of medical imaging [12, 13], has been proposed for the purpose of
ensuring confidentiality (by encryption) and reliability control (by watermarking)
of data, these ones being encrypted or not. The basic idea is to merge watermarking
and encryption into a single (joint) operation in order to give access to a message,
some image security attributes (e.g., reliability proofs and so on), available in both
domains. But, as we will see, this is not the only benefit of this approach.

With JWE, one can gain in time computation since it is not necessary to
decrypt the image to access the watermark, a costly operation in particular when
huge volumes of data are considered. At the same time, being able to access
image security attributes while not decrypting the image, maintains confidentiality
protection continuity. Another benefit of merging watermarking and encryption
into a single algorithm is that it is not necessary to know the decryption key
when accessing the watermark into both spatial and encrypted domains. So, image
reliability can be verified by entities that are not authorized to access the image
content, but allowed to verify its reliability. Such situations can be found in
image sharing frameworks with multiple network intermediaries (e.g., information
systems or others network nodes), or within an information system where one
can then check if electronic patient records are really those of the patient, without
accessing their content.

One last benefit of joint watermarking-encryption compared to other approaches
based on invariant or partial encryption (see Sect. 19.5.1.3) is that the host signal
is fully encrypted. However, such a solution has also its constraints. Once an image
is jointly watermarked-encrypted, the watermark available in the encrypted domain
is read-only and cannot be modified.



19 Encryption and Watermarking for medical Image Protection 517

Me, Ms

Ke, Kws, Kwe

Kwe

Ke Kws

Me

Ms
Iwd

Image
(I)

JWE
Algorithm

Watermarked
encrypted

Message
reader (fe)

Message
reader (fs)

Decryptionimage (Iwe)

Fig. 19.9 General system architecture of a JWE algorithm. Me, Ms, Ke, Kws and Kwe are the
message available in the encrypted domain, the message available in the spatial domain, the
encryption and the watermarking keys in the spatial and the encrypted domain, respectively

In this section, we detail a joint watermarking-encryption approach which merges
Quantization Index Modulation (QIM) with an encryption algorithm: a stream
cipher algorithm (e.g., RC4) or a block cipher algorithm (e.g., AES). Notice that
using AES in CBC mode makes this approach compliant with the DICOM standard.

19.5.2.1 General Principles of the JWE System

As depicted in Fig. 19.9, a JWE algorithm conducts data encryption and watermark-
ing in a single operation process and allows the user to insert two messages, Ms

and Me, that will be available in the spatial and encrypted domains, respectively.
If encryption ensures data confidentiality, watermarking on its side is used so as to
verify data integrity and authenticity.

To sum up, if we consider the JWE function Wemb, the joint watermarked-
encrypted version Iwe of an image I is given as:

Iwe D Wemb.I; Ms; Me; Ke; Kws; Kwe/

where Ke, Kws and Kwe are the encryption and the watermarking keys in the
spatial and encrypted domains, respectively. Two watermarking functions fe and
fs are considered so as to extract embedded messages Me and Ms from Iwe and its
decrypted version Iwd, respectively: Me D fe.Iwe; Kwe/IMs D fs.Iwd; Kws/.

19.5.2.2 JWE System for Verifying Image Reliability

In practice, Ms and Me contain some security attributes that are not necessarily
the same. Nevertheless, in the case one wants to assess the image reliability in
each domain, these attributes must correspond to an authenticity code AC, which
identifies the image origin (e.g., about 600 bits by combining the French National
Identifier with the DICOM Unique Identifier [12]), and an integrity proof. In the
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spatial domain, integrity is ensured by making use of a secure hash function (e.g.,
SHA) computed on the image bit subset that is not modified by the watermarking
process. Consider nmb this subset of bits, the message available in the spatial
domain, Ms, is thus defined as: Ms D< AC; SHA.nmb/ >.

In the encrypted domain, integrity can be controlled by verifying the presence
of a secret pseudo random sequence of bits generated using a secret watermarking
key. One alternative proposed in [12] consists in considering the integrity of the
watermarked-encrypted image is valid if one can retrieve the bits of such a secret
random sequence at some specific locations within the SHA signature of each
watermarked-encrypted block bytes. Working with the SHA, rather than directly
on the encrypted bit-stream, increases the detection performance of the system
in case of data modification (the reader should refer to [12] for more details). In
consequence, the verification of the image authenticity and integrity in the encrypted
domain, relies on extracting Me given by: Me D< AC; PRNG.Ke

w/ >.

19.5.2.3 JWE Implementation Based on QIM

The following implementation merges Quantization Index modulation (QIM) and
an encryption algorithm E, which can be a stream cipher algorithm (e.g., RC4) or a
block cipher algorithm (e.g., AES). It allows inserting one message mei of Me and
one message msi of Ms within a block Xi of the image I.

A. QIM Adapted to Encryption

In order to insert simultaneously mei and msi within Xi, and to avoid any interferences
between them, Bouslimi et al. propose to adapt the QIM according to the following
principles [12, 13]. Each codebook Cmsi is decomposed into sub-codebooks Cmsimej

such as:

Cmsi D
q
[

jD1

Cmsimej

Cmsimej \ Cmsimej D ¿; j ¤ k

where mej is a message issued from a finite set of possible messages M2 D
fmejgjD1;:::;q . Thus, msi and mej are embedded simultaneously within Xi by replacing
it with Xiw, which corresponds to the nearest element of X in Cmsimej . The sub-
codebook construction is intimately linked to the encryption algorithm. Considering
an encryption algorithm E and its encryption key Ke, sub-codebooks Cmsimej are built
so as to verify:

Cmsimej D fY 2 Cmsi=fe.E.Y; Ke/; Kwe/ D mejg (19.6)
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The choice of the function fe is closely related to the goals to be achieved by the
JWE system in the encrypted domain. To assess image reliability in the encrypted
domain, according to the strategy depicted in [12], fe is given as:

fe.E.Y; Ke/; Kwe/ D hk

where hk corresponds to the kth bit of H, the hash of the encrypted version of Y,
i.e., E.Y; Ke/. The choice of the rank k depends on the watermarking key in the
encrypted domain Ke

w.

B. Implementation with a Cipher Algorithm: The AES in CBC
Mode and the RC4

Depending on the selected encryption algorithm, some other constraints have to be
considered when building the subcodebooks Cmsimej . In the case E corresponds to
the AES in CBC mode (see Sect. 19.3.2.1), Ye is given by [see Eq. (19.6)]: Ye D
AES.Y ˚ Xe�1; Ke/, where Xe�1 is the previously encrypted block of bytes or set
of pixels. So, the construction of Cmsimej depends also on the previous encrypted
block. Unlike the AES, the RC4 encrypts each byte separately (see Sect. 19.3.2.2).
When it is used, Ye is given by [see Eq. (19.6)]: Ye D ye

1; : : : ; ye
i ; : : : ; ye

n with ye
i D

yi ˚ ki, where ki corresponds to the ith byte of the keystream k generated by the
RC4 according to the secret key Ke. Thus, the decomposition of each codebook into
sub-codebooks depends also on the keystream bytes which are different.

Notice that the size N of each block Xi depends on the image bit depth and of
the adopted encryption algorithm. Indeed, in the case of an 16 bit encoded image,
because the AES works with blocks of 16, 24 or 32 bytes, N will be equal to 8, 12
and 16 pixels, respectively.

19.5.2.4 JWE Approach Performance and DICOM Interoperability

This approach is compliant with the DICOM standard in the case it works with the
symmetric cipher algorithm AES in CBC mode of operation and the cryptographic
hash function SHA, both recommended by this standard. To evaluate its perfor-
mance, this approach has been tested over: 100 ultrasound images of 576�690 pixels
of 8 bit depth, and 200 positron emission tomography (PET) images of 144 � 144

pixels of 16 bit depth. An example of the obtained results is provided in Fig. 19.10.
The capacity rate depends on the size N of the block Xi. Since in this experiment
one bit of each message is embedded within a block, capacity rates achieved in
each domain are of 1/N bpp. The corresponding capacities are about 24,000 and
2592 bits for ultrasound and PET images, when N equals 16 and 8, respectively.
They are large enough compared to the requirements for verifying the reliability
of an image, which is about 1,000 bits (one digital signature—160 bits—and one



520 D. Bouslimi and G. Coatrieux

Fig. 19.10 Examples of the images used for evaluation (using AES): (a) original PET image,
(b) joint watermarked/ciphered image, (c) deciphered watermarked image, and (d) difference
between the original image and the decrypted watermarked image

authenticity code—600 bits). With these capacities and working with the AES in
CBC mode, obtained PSNR values are about 60 dB and 105.26 dB for ultrasound
and PET images. The image distortion is thus low.

Nevertheless, the joint watermarking/encryption process is on average two times
longer than the “original” encryption algorithm (i.e., the RC4 or the AES in CBC
mode). This difference is caused by the sub-codebook construction. However, it is
important to notice that it offers access to new security functionalities (i.e., verifying
the integrity of encrypted data without accessing their original content and so on)
and that the execution time for image decryption is not impacted: it is the same as
for simply encrypted images (i.e., not watermarked). For more details, the reader
must refer to [12].
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19.6 Conclusion

In this chapter, we gave an overview of the security needs for medical images during
their storage, transmission, sharing. In particular, when looking at digital content,
healthcare professionals must ensure data confidentiality, availability and reliability.
We also put in evidence the complementarity of encryption and watermarking
mechanisms, and the interest to merge them in order to provide an a priori and
a posteriori protection at the same time, watermarking being used so as to offer
security services (e.g., reliability control) even if the data are encrypted. Different
approaches have been discussed but their use and adaptation to the medical domain
is at its very beginning, and they have to be further explored. We also presented
a very recent joint watermarking/encryption approach that we think can find real
practical use in healthcare. By giving access to two distinct messages in the spatial
domain and the encrypted domains, respectively, one can verify the image reliability
even though it is encrypted. Due to the use of the AES in CBC mode, this approach
is also compliant with the DICOM standard, in the sense that even if a system has
no watermarking functionalities it can still handle the images.

Today, one of the upcoming great challenges comes with the emergence of ‘big
data’İ [40] poses a great challenge regarding their security. for which actual data
protection mechanisms remain limited because of the amount of information to
manage. That is also the case of encryption and watermarking and, in years to come,
new solutions have to be developed.

References

1. Abbas, A., Khan, S.: A review on the state-of-the-art privacy-preserving approaches in the
e-health clouds. IEEE J. Biomed. Health Inform. 18(4), 1431–1441 (2014)

2. Adelsbach, A., Huber, U., Sadeghi, A.: Fingercasting-joint fingerprinting and decryption of
broadcast messages. Transactions on DHMS II. Lecture Notes in Computer Science, vol. 4499
pp. 1–34. Springer, Heidelberg (2007)

3. Alattar, A.M.: Reversible watermark using the difference expansion of a generalized integer
transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)

4. Allaërt, F.A., Dusserre, L.: Security of health information system in France: what we do will
no longer be different from what we tell. Int. J. Biomed. Comput. 35, 201–204 (1994)

5. Allaërt, A., Quantin, C.: Responsabilités et rémunérations des actes de télé-expertise. Journal
de Gestion et d’Economie Médicales 30(4), 219–229 (2012)

6. Alliance, W.F.: Wi-fi Protected Access: Strong, Standards-Based, Interoperable Security for
Today’s Wi-Fi Networks, pp. 492–495. White paper, University of Cape Town (2003)

7. Anderson, R.J., Manifavas, C.: Chameleon: a new kind of stream cipher. In: 4th Int. Workshop
Fast Software Encryption (FSE), pp. 107–113 (1997)

8. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform.
IEEE Trans. Image Process. 1(2), 205–220 (1992)

9. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(3.4),
313–336 (1996)



522 D. Bouslimi and G. Coatrieux

10. Boho, A., Van Wallendael, G., Dooms, A., De Cock, J., Braeckman, G., Schelkens, P., Preneel,
B., Van de Walle, R.: End-to-end security for video distribution, the combination of encryption,
watermarking, and video adaptation. IEEE Signal Process. Mag. 30(2), 97–107 (2013)

11. Bouslimi, D., Coatrieux, G., Roux, C.: A telemedicine protocol based on watermarking
evidences for identification of liabilities in case of litigation. In: IEEE 14th International
Conference on e-Health Networking, Applications and Services (Healthcom), pp. 506–509
(2012)

12. Bouslimi, D., Coatrieux, G., Cozic, M., Roux, C.: A joint encryption/watermarking system for
verifying the reliability of medical images. IEEE Trans. Inf. Technol. Biomed. 16, 891–899
(2012)

13. Bouslimi, D., Coatrieux, G., Roux, C.: A joint encryption/watermarking algorithm for verifying
the reliability of medical images: application to echographic images. Comput. Methods
Programs Biomed. 106, 47–54 (2012)

14. Cancellaro, M., Battisti, F., Carli, M., Boato, G., De Natale, F.G.B., Neri, A.: A joint digital
watermarking and encryption method. SPIE 6819, 68, 191C (2008)

15. Cancellaro, M., Battisti, F., Carli, M., Boato, G., De Natale, F.G.B., Neri, A.: A commutative
digital image watermarking and encryption method in the tree structured haar transform
domain. Signal Process. Image Commun. 26(1), 1–12 (2011)

16. Celik, M., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. Proc. IEEE ICIP 2,
157–160 (2002)

17. Celik, M., Lemma, A., Katzenbeisser, S., van der Veen, M.: Look-up table based secure client-
side embedding for spread-spectrum watermarks. IEEE Trans. Inf. Forensics Secur. 3(3),
475–487 (2008)

18. Charpentier, A., Fontaine, C., Furon, T., Cox, I.: An asymmetric fingerprinting scheme based
on tardos codes. In: 13th International Conference on Information Hiding (IH), vol. 6958,
pp. 43–58 (2011)

19. Chakrabarti, C., Vishwanath, M., Owens, R.: Architectures for wavelet transforms: a survey. J.
VLSI Signal Process. Syst. Signal Image Video Technol. 14(2), 171–192 (1996)

20. Chen, B., Wornell, G.: Quantization Index modulation: a class of provably good methods for
digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443
(2001)

21. Chen, C., Wu, X.: An angle QIM watermarking algorithm based on Watson perceptual model.
In: Fourth International Conference on Image and Graphics, pp. 324–328 (2007)

22. Chiang, K., Chang-Chien, K., Chang, R., Yen, H.: Tamper detection and restoring system for
medical images using wavelet-based reversible data embedding. J. Digit. Imaging 21(1), 77–90
(2008)

23. Chrysochos, E., Fotopoulos, V., Skodras, A.N., Xenos, M.: Reversible image watermarking
based on histogram modification. In: 11th Panhellenic Conf. of Informatics (PCI), pp. 93–104
(2007)

24. Costa, M.: Writing on dirty paper. IEEE Trans. Inf. Theory 58, 782–800 (2003)
25. Coatrieux, G., Maître, H., Sankur, B., Rolland, Y., Collorec, R.: Relevance of watermarking

in medical imaging. In: IEEE EMBS Conference on Information Technology Applications in
Biomedicine, pp. 250–255 (2000)

26. Coatrieux, G., Maître, H., Rolland, Y.: Tatouage d’images médicales: perception d’une marque.
In: SETIT (2003)

27. Coatrieux, G., Puentes, J., Lecornu, L., Cheze Le Rest, C., Roux, C.: Compliant secured spe-
cialized electronic patient record platform. In: 1st International Transdisciplinary Conference
on Distributed Diagnosis and Home Healthcare (D2H2), pp. 156–159 (2006)

28. Coatrieux, G., Le Guillou, C., Cauvin, J.M., Roux, C.: Reversible watermarking for knowledge
digest embedding and reliability control in medical images. IEEE Trans. Inf. Technol. Biomed.
13(2), 158–165 (2009)



19 Encryption and Watermarking for medical Image Protection 523

29. Coatrieux, G., Huang, H., Shu, H., Roux, C., Luo, L.: A watermarking based medical image
integrity control system and an image moment signature for tampering characterization. IEEE
J. Biomed. Health Inform. 17(6), 1057–1067 (2013)

30. Cox, I., Miller, M., Bloom, J., Honsinger, C.: Digital Watermarking, vol. 53. Springer, Berlin
(2002)

31. Cox, I., Kilian, J., Leighton, F., Shamoon, T.: Secure spread spectrum watermarking for
multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

32. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography.
Morgan Kaufmann, Los Altos (2007)

33. Daemen, J., Rijmen, V.: AES Proposal: The Rijndael Block Cipher. Technical report, Proton
World Int.1, Katholieke Universiteit Leuven, ESAT-COSIC, Belgique (2002)

34. David, S., Mendelson, M.: RSNA Image Share 2012. In: SIIM (2012)
35. De Moor, G.: Standardisation in health care informatics and telematics in Europe: CEN TC

251 activities. Stud. Health Technol. Inform. 6, 1–13 (1993)
36. De Vleeschouwer, C., Delaigle, J., Macq, B.: Circular interpretation of bijective transforma-

tions in lossless watermarking for media asset management. IEEE Trans. Multimedia 5(1),
97–105 (2003)

37. Décret nı 2010-1229 du 19 octobre 2010 relatif à la télémédecine
38. Devlin, B., Cote, L.: Data warehouse: from architecture to implementation. Addison-Wesley

Longman Publishing Co., Amsterdam (1996)
39. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol, Version 1.2 (2008)
40. Diebold, F.: A Personal Perspective on the Origin(s) and Development of ‘Big Data’: The

Phenomenon, the Term, and the Discipline. Sage, London (2012)
41. Dusserre, L. and Allaërt, F.A. and Quantin, C.: Pmsi et déontologie. Le Pmsi : questions

juridiques et éthiques. In: Actes du colloque Information Médicale, Secret et droits d’accès
des acteurs, pp. 75–79 (1991)

42. Eastlake III, D., Jones, P.: Us secure hash algorithm 1 (sha1). Technical report, RFC 3174
(Informational) (2001)

43. Eskicioglu, A., Fisher, P.: Image quality measures and their performance. IEEE Trans.
Commun. 43(12), 2959–2965 (1995)

44. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP
J. Inf. Secur. 2007(1), 1–15 (2007)

45. Franco-Contreras, J., Coatrieux, G., Cuppens, F., Roux, C., Cuppens-Boulahia, N.: Robust
lossless watermarking of relational databases based on circular histogram modulation. IEEE
Trans. Inf. Forensics Secur. 9(3), 397–410 (2014)

46. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications.
Cambridge University Press, Cambridge (2009)

47. Fridrich, J., Goljan, M.: Protection of digital images using self embedding. In: Symposium on
Content Security and Data Hiding in Digital Media (1999)

48. Fridrich, J., Goljan, J., Du, R.: Invertible authentication. In: Proceedings of International
Conference SPIE, Security and Watermarking of Multimedia Content, pp. 197–208 (2001)

49. Fung, C., Gortan, A., Godoy, Jr., W.: A review study on image digital watermarking. In: The
Tenth International Conference on Networks (ICN 2011), pp. 24–28 (2011)

50. Furon, T., Bas, P.: Broken arrows. EURASIP J. Inf. Secur. 2008, 3 (2008)
51. Guru, J., Damecha, H.: Digital watermarking classification: a survey. Int. J. Comput. Sci.

Trends Technol. 2, 8–13
52. Herrera-Joancomartí, J., Katzenbeisser, S., Megías, J., Minguillón, D., Pommer, A.,

Steinebach, M., Uhl, A.: ECRYPT European network of excellence in cryptology. First
summary report on hybrid systems, D.WVL.5 (2005)

53. Honsinger, C., Jones, P., Rabbani, M., Stoffel, J.: Lossless recovery of an original image
containing embedded data. US Patent application, Docket No.: 77102/E-D (1999)



524 D. Bouslimi and G. Coatrieux

54. Hwang, H., Kim, H., Sachnev, V., Joo, S.: Reversible watermarking method using optimal
histogram pair shifting based on prediction and sorting. KSII Trans. Internet Inf. Syst. 4, 655
(2010)

55. Katzenbeisser, S., Petitcolas, F.: Information Hiding Techniques for Steganography and Digital
Watermarking. Artech House, Boston (2000)

56. Kutter, M., Petitcolas, F.A.P.: A fair benchmark for image watermarking systems. In: Electronic
Imaging ’99. Security and Watermarking of Multimedia Contents, vol. 3657 (1999)

57. Lashkari, A., Towhidi, F., Hosseini, R.: Wired equivalent privacy (WEP). In: International
Conference on Future Computer and Communication (ICFCC), pp. 492–495 (2009)

58. Légifrance: Loi n 2002-303 du 4 mars 2002. http://www.legifrance.gouv.fr/affichTexte.do?
(2002)

59. Liu, K.: Human visual system based watermarking for color images. In: Fifth International
Conference on Information Assurance and Security (IAS), vol. 2, pp. 623–626. IEEE, New
York (2009)

60. Loytynoja, M., Cvejic, N., Lahetkangas, E., Seppanen, T.: Audio encryption using fragile
watermarking. In: Proc. IEEE Int. Conference on Information, Communications and Signal
Processing, pp. 881—885 (2005)

61. Lee, H., Kim, H., Kwon, K., Lee, J.: Digital watermarking of medical image using ROI
information. In: Proc. IEEE Int. Workshop Healthcom, pp. 404–407 (2005)

62. Lee, S., Yoo, C., Kalker, T.: Reversible image watermarking based on integer-to-integer wavelet
transform information forensics and security. IEEE Trans. Inf. Forensics Secur. 2(3), 321–330
(2007)

63. Li, Q., Cox, I.: Using perceptual models to improve fidelity and provide resistance to valumetric
scaling for quantization index modulation watermarking. IEEE Trans. Inf. Forensics Secur.
2(2), 127–139 (2007)

64. Liew, S.C., Zain, J.M.: Reversible tamper localization and recovery watermarking scheme with
secure hash. Eur. J. Sci. Res. 49(2), 249–264 (2011)

65. Manasrah, T., Al-Haj, A.: Management of medical images using wavelets-based multi-
watermarking algorithm. In: International Conference on Innovations in Information Tech-
nology, pp. 697–701 (2008)

66. Meerwald, P., Uhl, A.: Survey of wavelet-domain watermarking algorithms. In: Photonics West
2001-Electronic Imaging. International Society for Optics and Photonics, pp. 505–516 (2001)

67. Memon, N., Wong, P.: A buyer-seller watermarking protocol. IEEE Trans. Image Process. 10,
643–649 (2001)

68. Menezes, A.J., Van Oorshot, P., Vanstone, S.: Handbook of Applied Crytography. CRC Press,
Boca Raton (1996)

69. Mintzer, F., Lotspiech, J., Morimoto, N.: Safeguarding digital library contents and users: digital
watermarking. D-Lib Mag. (1997)

70. Ni, Z., Shi, Y., Ansari, N., Wei, S.: Reversible data hiding. Proc. IEEE Int. Symp. Circuits Syst.
2, 912–915 (2003)

71. Paillier-99, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Proceedings of the International Conference on the Theory and Application of Cryptographic
Techniques (EUROCRYPT), vol. 1592, pp. 223–238 (1999)

72. Pan, W., Coatrieux, G., Montagner, J., Cuppens, N., Cuppens, F., Roux, C.: Medical Image
Integrity Control Combining Digital Signature and Lossless Watermarking. Lecture Notes in
Computer Science, vol. 5939, pp. 153–162. Springer, Heidelberg (2009)

73. Pan, W., Coatrieux, G., Montagner, J., Cuppens, N., Cuppens, F., Roux, C.: Reversible
watermarking based on invariant image classification and dynamical error histogram shifting.
In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 4477–4480 (2011)

74. Pérez-González, F., Mosquera, C., Barni, M., Abrardo, A.: Rational dither modulation: a high-
rate data-hiding method invariant to gain attacks. IEEE Trans. Signal Process. 53(10), 3960–
3975 (2005)

http://www.legifrance.gouv.fr/affichTexte.do?


19 Encryption and Watermarking for medical Image Protection 525

75. Piva, A., Barni, M., Bartolini, F., De Rosa, A.: Data hiding technologies for digital radiography.
Proc. IEE Vision Image Signal Process. 152(5), 604–610 (2005)

76. Puech, W., Rodrigues, J.: A new crypto-watermarking method for medical images safe transfer.
In: Proc. of the 12th European Signal Processing Conference (EUSIPCO’04), pp. 1481–1484
(2004)

77. Puech, W., Chaumont, M., Strauss, O.: A reversible data hiding method for encrypted
images. In: SPIE Electronic Imaging, Security, Forensics, Steganography, and Watermarking
of Multimedia Contents, p. 68191E (2008)

78. Quantin, C., Jaquet-Chiffelle, D., Coatrieux, G., Benzenine, E., Allaert, F.: Medical record
search engines, using pseudonymised patient identity: an alternative to centralised medical
records. Int. J. Med. Inform. 80(2), e6–11 (2011)

79. Rajendra-Acharya, U., Acharya, D., Subbanna Bhat, P., Niranjan, U.: Compact storage of
medical images with patient information. IEEE Trans. Inf. Technol. Biomed. 5(4), 320–323
(2001)

80. Rajendra-Acharya, U., Niranjan, U., Iyengar, S., Kannathal, N., Min, L.: Simultaneous storage
of patient information with medical images in the frequency domain. Comput. Methods
Programs Biomed. 76, 13–19 (2004)

81. Rao, K., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications. Aca-
demic, San Diego (1990)

82. Rial, A., Deng, M., Bianchi, T., Piva, A., Preneel, B.: A provably secure anonymous buyer–
seller watermarking protocol. IEEE Trans. Inf. Forensics Secur. 5(4), 920–931 (2010)

83. Rodrigues, J., Puech, W., Fiorio, C.: Lossless crypto-data hiding in medical images without
increasing the original image size. In: 2nd International Conference on Advances in Medical
Signal and Information Processing, pp. 358–365 (2004)

84. Sachnev, V., Kim, H., Nam, J., Suresh, S., Shi, Y.: Reversible watermarking algorithm using
sorting and prediction. IEEE Trans. Circuit Syst. Video Technol. 19(7), 989–999 (2009)

85. Schmitz, R., Li, S., Grecos, C., Zhang, X.: A new approach to commutative watermarking
encryption. In: 13th Joint IFIP TC6 and TC11 Conf. Communications and Multimedia Security
(2012)

86. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Interna-
tional Thomson Publishing, Paris (1997)

87. Shih, F.: Digital Watermarking and Steganography: Fundamentals and Techniques. CRC Press,
Boca Raton (2012)

88. Singh, J., Dubey, A.: MPEG-2 video watermarking using quantization index modulation.
In: IEEE 4th International Conference on Internet Multimedia Services Architecture and
Application(IMSAA), pp. 1–6 (2010)

89. Singhal, N., Lee, Y., Kim, C., Lee, S.: Robust image watermarking based on local Zernike
moments. In: IEEE 9th Workshop on Multimedia Signal Processing, pp. 401–404 (2007)

90. Smith, S.W.: The discrete fourier transform, Chap. 8. In: The Scientist and Engineer’s Guide
to Digital Signal Processing, 2nd edn. California Technical Publishing, San Diego (1999)

91. Snyder, A., Weaver, A.: The e-logistics of securing distributed medical data. In: Proceedings of
IEEE International Conference on Industrial Informatics (INDIN 2003), pp. 207–216. IEEE,
New York (2003)

92. Subramanyam, A., Emmanuel, S., Kankanhalli, M.: Robust watermarking of compressed and
encrypted JPEG2000 images. IEEE Trans. Multimedia 14(3), 703–716 (2012)

93. Tian, J.: Reversible data embedding using a difference expansion,. IEEE Trans. Circuits Syst.
Video Technol. 13(8), 890–896 (2003)

94. Watson, A.B.: DCT quantization matrices optimized for individual images. In: Human Vision,
Visual Processing, and Digital Display IV (SPIE’1993), vol. 1913, pp. 202–216 (1993)

95. Xuan, G., Chen, J., Zhu, J., Shi, Y., Ni, Z., Su, W.: Lossless data hiding based on integer wavelet
transform. In: Proc. MMSP, pp. 312–315 (2002)



526 D. Bouslimi and G. Coatrieux

96. Xuan, G., Yao, Q., Yang, C., Gao, J.: Lossless data hiding using histogram shifting method
based on integer wavelets. IWDW 2006. Lecture Notes in Computer Science, vol. 4283,
pp. 323–332. Springer, Heidelberg (2006)

97. Zhang, X.: Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics
Secur. 7(2), 826–832 (2012)

98. Zhu, X.: A new spatial perceptual mask for image watermarking. In: 19th International
Conference on Pattern Recognition (ICPR), pp. 1–4. IEEE, New York (2008)



Chapter 20
Privacy Considerations and Techniques
for Neuroimages

Nakeisha Schimke and John Hale

Abstract This chapter presents key issues and techniques for preserving privacy
of neuroimage datasets. Neuroimages pose unique challenges to medical privacy
and image datasets. In addition to PII commonly found in medical image meta
data, the data in a neuroimage itself may contain distinctive facial features that
permit the identification of a subject. The chapter begins with a discussion of the
identifying properties of neuroimage data, along with established processes and
popular tools for storage, analysis and processing. Next, privacy risks and hazards
of neuroimages are explored, including those posed by meta data and data alike.
Volume rendering and facial reconstruction provide platforms for re-identification
of sanitized neuroimage data. Tools for scrubbing meta data and for defacing
neuroimage data are essential components to neuroimage archive and repository
workflow pipelines.

20.1 Introduction

As the demand for neuroimage repositories and databases grows, so does the
importance of protecting subjects and ensuring their privacy. Large scale interorga-
nizational research efforts have the potential to transform neuroscience by fostering
an open scientific environment and making datasets available for peer review and
further study. However, the task of protecting subject privacy and implementing
HIPAA (Health Insurance Portability and Accountability Act) [24] compliance
measures can be overwhelming. While HIPAA-related measures seek to maintain
subject privacy, they can encumber the researcher with tedious tasks. This burden
can be alleviated through the development and implementation of an efficient
solution for removing identifiable facial features from neuroimages and through
integrating the process into an existing workflow to minimize the impact on the
researcher.
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There are two potential exploits of facial approximations that threaten anonym-
ity: (a) verifying a subject’s identity from a list of potential subjects (confirmation),
and (b) formulating the subject’s general appearance and creating a profile for
potential subjects (novel identification).

While these applications of forensic reconstruction may require advanced soft-
ware and training, it is conceivable that structural data could be used to identify a
patient, thereby violating the HIPAA Privacy Rule.

This is of particular concern when a subject is a member of a small subset of a
population, as is often the case in neuroimaging studies. Though re-identification
may seem unlikely, a publicly available “sanitized” dataset was recently used to
dispute a diagnosis given in the case of a rare disorder. A young woman claimed
to be diagnosed with a rare disorder following a flu shot. She announced her
case to the media, which subsequently ran a story disclosing geographic location
and a general timeline. The scientific community doubted the diagnosis, and with
these details, searched the Vaccine Adverse Event Reporting System (VAERS)—
a publicly accessible, but sanitized database. Her particular entry in the VAERS
database was found. Given the rarity of the symptoms, time of diagnosis, age and
metropolitan area, it was an easy exercise to locate her entry, including evaluations
that questioned the claimed diagnosis, instead ascribing it to psychogenic origins
[30, 34, 44].

This improbable case highlights the need for re-evaluation of the guidelines for
protecting patient data and what can be used to identify the patient. Current mea-
sures, including HIPAA, are vague on what exactly should be considered protected
health information (PHI). Names, dates, and unique identifiers are established PHI,
but in the aforementioned case, other data were aggregated to identify the individual.
The subject’s approximate age, state of residence, and an estimated timeline helped
narrow down the list of potential entries, already shortened to those mentioning
the rare disorder. This case demonstrates the need for stronger de-identification
requirements for shared datasets in order to maintain the highest possible level of
privacy.

Redacting the PHI metadata may not sufficiently de-identify the data: the neu-
roimage may also identify the individual. High resolution images contain detailed
facial features that can be used to create an approximation of the subject’s likeness.
To maintain subject anonymity and meet HIPAA requirements, neuroimages must
be defaced prior to sharing. Existing defacing efforts simply skull strip the neuroim-
ages [56], which has the potential to remove brain tissue and often requires manual
tuning of parameters. Other approaches are computationally intensive but leave the
entire brain volume intact [10].

This chapter presents key issues and techniques for preserving privacy of neu-
roimage datasets. Identifying and vital properties of neuroimage data are described,
along with processes and tools for their storage, analysis and processing. Privacy
risks are posed by exploitation of neuroimage data and meta data alike. Any
comprehensive privacy preserving solution for neuroimage datasets should consider
both to satisfy legal and regulatory requirements in research and medicine.
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20.2 Neuroimage Data

As a primary modality for neuroimage acquisition, structural magnetic resonance
imaging (MRI) has led to numerous advancements in medicine and an improved
understanding of both structure and function of human physiology and neurology
[35, 60]. However, the infrastructure to acquire and use MR images is expensive. It
relies on costly equipment and requires specialized resources to operate. Modern
scanners produce high resolution images that demand large amounts of storage
space [56, 57]. Once the data is stored, analysis can be computationally expensive.

In addition to the infrastructure related challenges, there are other limitations.
It is often difficult to find subjects, and small studies may not have the statistical
power that increased enrollment would provide. Subject diversity may also impact
statistical power [14, 57]. Subjects must be compared once a set of images are
obtained, and there will be slight variations in the scans between subjects and
sessions.

There are several widely used software packages for processing anatomical
images [3, 12, 19, 20]. These tools provide core functionality for the images them-
selves (viewing, skull-stripping, alignment, 3D rendering, landmark identification,
spatial registration, surface mapping, transformation to common space, region of
interest identification, etc) and several are extensible. FreeSurfer [19] from Harvard
is a tool for the analysis of cortical and sub-cortical structures. BrainVoyager [12]
is a commercial tool for analysis and visualization of both structural and functional
neuroimages. The freely available AFNI [3] suite is primarily for the processing,
analysis and display of functional MRI (fMRI) data to map brain activity rather than
structural anatomy. FSL [20] from Oxford is also freely available, and comprises a
library of tools for fMRI, MRI, and DTI analysis and display.

Another challenge in neuroimage analysis is the slight anatomical differences
between individual brains that can interfere with results. One method for resolv-
ing these differences is to transform the brain volume to a standard coordinate
system [26]. By mapping well known anatomical landmarks from an individual
subject’s brain to a standard brain, neuroscientists can evaluate neuroimages
between subjects more easily.

The sharing and reuse of datasets can reduce some of the upfront costs involved.
Collaboration enables institutions to pool data to increase the number of scans
and diversity of subjects, increasing statistical power and reliability. Large scale
collaboration and inter-organizational access to datasets will increase the flow of
information, reducing the upfront costs of a large neuroimaging effort and meeting
the requirements for publicly available data set forth by the NIH and neuroimaging
journals [32]. Data sharing also enables external validation of neuroimaging studies.

The discussion concerning privacy in neuroimaging data has focused on two
distinct entities: (1) the researcher and the scientific community, and (2) the
patient [53]. Data sharing raises concerns over intellectual property, but it also
requires quality control and release of study data to prevent the misuse of data.
Patient privacy requires the removal of personally identifiable information so that
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the subject cannot be tied to the study. The community is aware of the privacy
issues, but there is still a need for further examination of the privacy concerns in
neuroimages. While some journals and data repositories require neuroimages to be
sanitized before submission, there is no standard for neuroimage de-identification.

Also pressing are the rules set forth by HIPAA/HITECH requiring strict measures
to manage protected health information (PHI). These specify items considered
to be PHI, and while most of these items are well-defined (e.g. names, dates,
social security numbers), they also include “full face photographic images and
any comparable images” and any other unique identifying number, characteristic
or code [24].

The specification for the DICOM (Digital Imaging and Communications in
Medicine) standard allows manufacturers to specify tags to be automatically embed-
ded within a DICOM image [31]. These tags range from scanner and acquisition
parameters to the subject’s personal data, including names, identifiers, and dates. It
is rather straightforward to remove identifiable well-defined fields, but it is a more
challenging task to determine and redact vague identifiers. However, the relevance
of the original neuroimage may not always be retained when redacting data; for
some studies, it may degrade the quality of the data to remove particular details,
such as age, that are relevant to the study.

A larger question looms: Are neuroimages themselves considered PHI? And if
so, how can they be shared without breaching the privacy of the subject? Decidedly,
neuroimage data can hold visual features that can be used to uniquely identify a
subject. Structural MRIs, for example, are of such a resolution that high fidelity
facial reconstruction is well within the realm of possibility [43]. Approaches to
preserving privacy for medical images include strategic removal or transformation
of identifying features.

20.3 Privacy Risks with Medical Images

This section explores the privacy risks in neuroimage datasets and how these
datasets can be exploited to violate individual privacy and/or to re-identify a subject.
It discusses the current state of facial reconstruction and recognition and their
accuracy with respect to re-identification.

20.3.1 Neuroimage Privacy Threat Scenarios

Neuroimages contain a wealth of information about a subject. The meta data
may contain personally identifying information (PII). The neuroimage data itself
may contain unique features capable of identifying a subject. In addition, the
data may reveal conditions, diagnoses or features deemed private information. In
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Fig. 20.1 Re-linkage using an imaging database

isolation, knowledge of these attributes may not constitute a privacy breach, but in
combination they commonly do.

There are four potential conditions of neuroimages (and medical images in
general) that can be combined to breach subject privacy:

1. The image reveals a condition or diagnosis.
2. The image is used to link the patient to other records.
3. The existence of the image is used to infer a condition or diagnosis.
4. The image contains uniquely identifying features.

The first is the straightforward case where an image directly reveals a condition,
such as an x-ray revealing a broken bone or a neuroimage revealing a tumor.
This, combined with the ability to associate a neuroimage with a patient identity,
constitutes a breach of privacy. The second case addresses the re-linkage problem,
where multiple “de-identified” datasets are aggregated to re-identify a subject. In
one exercise, “anonymized” medical records from the Massachusetts Group Insur-
ance Commission were linked to voter registration lists [51]. Using the overlapping
fields (birth date, zip code, sex), the medical records of the Massachusetts governor
were identified. An example of re-linkage in a medical imaging context is shown in
Fig. 20.1.

An existential threat may occur without ever viewing the actual image, presuming
the image can be connected to an individual. For example, a subject who is part of
a neuroimaging study may be assumed to have a condition even though they are
part of a control group. Similarly, it may be inferred that a patient who receives a
diagnostic scan has an injury.

In the fourth case, the image itself contains inherently identifiable information. If
a uniquely identifying landmark or anomaly is present, it may be difficult to remove
without sacrificing the usefulness of the image. This also includes facial features
present in high resolution neuroimages, which can be effectively redacted without
damaging the image. In this case, removing identifying meta data is not a solution—
the neuroimage data itself poses the problem.
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20.3.2 Volume Rendering and Facial Recognition

In high resolution structural neuroimages, facial features may be highly visible,
allowing for a volume rendering of the entire head that results in a face. These
volume renderings can be exploited in two ways: (1) the approximation can be used
to create a profile of the unknown subject to narrow a potential list of possible
subjects, or (2) the subject’s appearance can be used to identify him by visual
inspection or through facial recognition. Either of these cases relies heavily on
the ability to create a realistic and accurate approximation of the subject. This is
a non-trivial task, particularly when computerized forensic reconstruction methods
attempt to automate a manual task that is often artistic in nature and therefore
subjective. Facial recognition, too, is hindered by algorithms that do not perform as
well as human recognition. However, the ability to create an image that is instantly
recognizable as a human face requires further consideration.

The ability to recreate medical images in three-dimensions is a powerful analysis
tool. Imaging software provides the ability to interact with the resulting volumes.
When applied to structural neuroimages, the result is a face, shown in Fig. 20.2.

The canonical medical image package, 3D Slicer [1], provides a wide range
of parameters. Threshold levels, color, and opacity can be specified, and various
lighting situations can be simulated. Other packages, such as the AFNI Render
Volume Plugin [33] and MRIcron [39], offer similar functionality.

Facial reconstruction is a forensic technique used to reconstruct a likeness of the
subject from the skull. Rather than exact reproduction, its purpose is to produce
an approximation that can be used to narrow down a list of subjects or generalize
his appearance [61]. Manual facial reconstructions were originally conducted in the
absence of recognizable tissue, requiring estimation of tissue depths at reference

Fig. 20.2 Volume rendering
from 3D Slicer
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points in the face. This is as much an artistic process as it is scientific, and
reconstructions may vary between artists. The use of modern imaging techniques
like MRI and CT include some tissue in addition to the skull, guiding depth
selection. Accompanying metadata, such as age, gender, and weight, can also be
used to guide the reconstruction process to deliver a more accurate approximation.

Facial recognition can be applied using a variety of techniques to achieve either
novel identification, attempting to discover an identity (or list of identities) without
prior knowledge of the subject, or identity confirmation, where the subject is
compared to another potential subject (or list of subjects). Metadata can be used
to guide a facial recognition search, narrowing down the potential subjects using the
basic non-PHI fields such as gender and age.

A fundamental disadvantage of facial recognition is the reliance on a large
database of faces for comparison. It is also difficult to validate matches; the
returned result may be a closer match to the subject than the actual subject.
Beyond computational and storage requirements of executing facial recognition
searches, collecting and maintaining such a database raises privacy concerns. The
database would also need to be periodically updated and re-evaluated for maximum
effectiveness.

Literature surveys [2, 11, 63] indicate that the reported performance of facial
recognition is high, particularly when factors such as light, pose, or expression
were tightly controlled. Performance, however, tends to decrease dramatically when
increasing the size and variation of images within the database.

The current limitations and relatively poor performance of existing facial
recognition techniques make it tempting to dismiss the potential for re-identification
based on flawed assumptions: facial recognition will never improve, and only cor-
rect identifications are potentially problematic. The latter argument fails to consider
the damage caused by an incorrect identification. While a correct identification may
reveal sensitive information, challenging a false identity may require the individual
to reveal their medical records.

The problems plaguing facial recognition techniques are not easily confronted
nor are they impossible to solve, and researchers in the field are making progress.
Facial recognition techniques are detailed with links to recent advances at the Face
Recognition Homepage [22]. A NIST report on face recognition illustrates the
improvements in the field with a significant decrease in the false non-match rate
and false match rates from 1993 to 2010 [23].

Hardware advances can also improve the state of facial recognition. Increased
storage capacity and computing power allow higher resolution images to be stored
and compared more quickly. Facial recognition software tends to struggle when
viewing angles and lighting vary [63]. Volume rendering software for structural
neuroimages can generate multiple images with a wide range of light sources and
angles to match the source photograph.

Novel solutions, such as CAPTCHA,1 used to combat similar issues with optical
character recognition (OCR) are being adapted for use in facial recognition. This

1The CAPTCHA system presents a test that is difficult for a machine but easy for humans [4, 21].
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idea has been applied to images as the Google Image Labeler [5], using human brain
power in a game to label images, an area with which computer vision techniques
struggle. Facebook offers social authentication [38], a CAPTCHA that requires
users to correctly identify their friends in pictures. These approaches harness the
capabilities of human vision and recognition to bridge the performance of computer
vision techniques, blending automated and manual approaches. However, these
solutions rely on correct image tagging and therefore may be prone to errors
introduced by tagging.

20.3.3 Re-identification Using Structural MRI

An ideal case for re-identification would occur when an MRI series is obtained for
a specific patient, and volume rendering is performed on the dataset. The resulting
face is used to search a large database of faces, and a match is found using one of
any number of facial recognition techniques. This resulting match is validated by
visual inspection.

There are a number of obstacles before this use case becomes a typical scenario.
The following sections describe this use case and what challenges are faced at each
step, offering alternative examples that circumvent these challenges, demonstrating
the need for implementing privacy controls rather than waiting until the “ideal” use
case can be easily exploited.

Software packages like 3D Slicer [1] offer basic volume rendering and require
little previous experience with facial reconstruction or volume rendering. While
these approximations may not be accurate, they can be enough to ascribe an identity
to a subject. The impact of incorrect re-identifications should also be considered.
If reconstruction and recognition techniques are perceived as sound and proven
technologies, then the resulting approximations and matches will be given more
weight, even if they are inexact or incorrect.

There are three primary categories of facial recognition algorithms [46, 63]:
(1) holistic approaches using the whole face, (2) feature-based approaches using
specific features (e.g., eyes, nose, mouth, etc.), and (3) hybrid approaches that
combine both holistic and feature-based techniques. In any of these three cases,
removing the specific features (as opposed to removing the entire face region) used
for feature-based techniques, should significantly degrade performance of facial
recognition as well as reconstruction.

MRI-based approaches could help mitigate some of the problems with current
facial recognition systems. For example, various lighting and angles could be
simulated from the reconstruction to match the target photographs. Advancements
in computational power and storage space make solutions such as this a distinct
possibility to improve upon current resource-limited approaches.

Concerns about the feasibility of facial recognition applied to neuroimages are
largely the same as the issues with photograph-based recognition. The language
of the HIPAA Privacy Rule classifies “full facial photographic or comparable
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images” as PHI. Thus, if neuroimage-based recognition can elicit similar results to
photographs, they must be protected as if they were facial photographs by HIPAA
bound entities.

Neuroimage datasets typically contain valuable metadata. Even if the accompa-
nying metadata is not considered PHI, it can still be used to reveal the identity of the
subject. Data such as gender, ancestry, and age are not immediately apparent from
the MRI, nor are they particularly identifying on their own in most cases; however,
when combined with the image data, they can be applied to assist in finding or
validating a match.

It has been demonstrated that seemingly innocuous data can be used to re-
identify individuals when applied to small subsets of the population [37, 44]. In
the VAERS case, the metadata alone was enough to find a probable match, and
though there was never any confirmation as to the subject’s identity, it was enough to
damage the claims of the subject. (This raises another interesting scenario for MRI
re-identification: if facial recognition and reconstruction techniques are viewed by
the public as technologically sound, then incorrect re-identification can be equally
harmful to a suspected subject as an accurate re-identification.)

20.4 Privacy Preservation Techniques for Medical Images

This section describes techniques and approaches to preserving privacy in medical
images, and neuroimage datasets specifically. It discusses standard de-identification
techniques, including skull stripping and defacing processes, relates them to prevail-
ing regulatory standards for patient privacy, and offers metrics and characteristics
of sound privacy preserving tools for neuroimages. This section also presents a
view of popular neuroimage archival and collaboration initiatives, and the privacy
considerations and solutions associated therewith.

20.4.1 De-Identification Techniques

While facial reconstruction techniques are not foolproof, it is reasonable to assume
that with external knowledge such as diagnoses or geographic region of research
institution, a reconstruction could be used to narrow the list of potential patients
or to confirm a patient’s identity. With this in mind, it is necessary to implement a
technique that maintains the highest possible level of privacy for patients without
encumbering the researcher. An automated defacing effort would benefit both
research institutions and clinical practices, ensuring that sanitization is always
performed but without interfering with the task of collecting or analyzing the
images.

Several techniques have been proposed to de-identify structural MRI data, but
none have yet emerged as a standard method. These techniques range from removing
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Fig. 20.3 Skull Stripping: 3dSkullstrip in AFNI (left); BET in FSL (middle); HWA in Freesurfer
(right) [41]

all non-brain tissue (skull stripping) to removing only facial features (defacing).
Skull stripping is the process of segmenting brain and non-brain elements to
remove extraneous tissue (such as eyes, skin, etc) and bone that may interfere with
analyses [18, 45, 50]. Skull stripping techniques rely on the ability to differentiate
between brain and non-brain tissue and are used for improved registration, cortical
segmentation, and cortical flattening. They are particularly useful for structural MRI
due to the high spatial resolution of acquired images. The primary challenge with
any of the skull stripping methods is the difficulty of brain segmentation. It is often
a subjective process even when performed manually, and manual segmentation can
take up to two hours to perform [18, 50]. Using a manual approach for correcting an
automated segmentation may offer a balance between efficiency and accuracy, but
is still costly in terms of time and resources. Figure 20.3 shows the results of skull
stripping a structural MRI image using three tools.

In contrast to skull-stripping, defacing is a de-identification process in which
the goal is to remove only facial features. Defacing techniques should remove a
sufficient amount of non-brain tissue to render the subject’s face unidentifiable
and unable to be reconstructed. The main objective is de-identification rather than
segmentation, and these algorithms can be conservative by including anything that
may be brain tissue and only discarding areas that have zero probability of being
brain. This avoids some of the more complex regions, such as the optical nerves
that can often complicate the process [50]. However, skull stripping techniques
developed for a whole brain volume may be sensitive to removal of non-brain
tissue and defaced volumes may be more challenging to skull strip. Skull stripping
parameters may also be chosen to favor the specific region of the study at the
expense of other regions. There are also potentially desirable features, such as CSF
and electrode placement, that may be removed by skull stripping [10]. Thus, it is
preferable to retain as much non-identifying tissue as possible to maximize data
reusability.

The MRI Defacer in [10] defaces images by removing identifying features only,
leaving the brain and most of the surrounding non-brain tissue intact. The algorithm
relies on an atlas constructed by manual labeling of facial features. An optimal linear
transform is computed for the input volume. It then creates a mask of all voxels with



20 Privacy Considerations and Techniques for Neuroimages 537

Fig. 20.4 Defacing: Quickshear (top); MRI Defacer (bottom) [41]

a non-zero probability of being brain tissue, preserving voxels and surrounding areas
with any possibility of being brain tissue. The remaining voxels are then removed if
they have a non-zero probability of being a facial feature, thus removing only facial
features with zero probability of being brain tissue. In general, this solution does
not negatively impact subsequent skull stripping techniques, and, in some cases,
improves it. This approach relies on an atlas constructed using T1-weighted data and
therefore is only valid for T1-weighted images. Other images, such as T2-weighted
images, require a specific face atlas for each type. The results of this method are
shown at the bottom of Fig. 20.4 (sagittal—left; coronal—right).

Other defacing approaches seek more efficient strategies for de-identifying
neuroimage data. The Quickshear Defacing method uses a convex hull to identify
a plane that divides the volume into two parts, one containing facial features and
another the brain volume, and removes the voxels on the facial features side [42].
This method, the results of which are shown at the top in Fig. 20.4 (sagittal—left;
coronal—right) is a practical alternative to competing solutions and can provide
performance gains and preserve valuable data.
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Adoption of any of these de-identification techniques must be predicated on
an objective evaluation and consideration of relevant regulatory and compliance
requirements. The HIPAA Privacy Rule provides a mechanism for research purposes
through which some PHI can be preserved as a “limited dataset” [24], containing
PHI relevant to the study but not enough to be identifiable. Limited datasets may
contain geographical information (city, state, zip), dates and other identifying num-
bers, characteristics, or codes, but must exclude facial photographs. HIPAA deems
a dataset to be sufficiently de-identified in either of the following circumstances:

1. A formal determination by a qualified statistician.
2. The removal of specified identifiers of the individual and of the individual’s

relatives, household members, and employers is required, and is adequate only if
the covered entity has no actual knowledge that the remaining information could
be used to identify the individual [24].

The Privacy Rule does not quantify the acceptable limits of identifiability, though it
states that zip codes must be excluded if they contain fewer than 20,000 people.

Determining an acceptable threshold is a difficult task, especially as compu-
tational power and storage capacities improve. The HIPAA threshold of 20,000
people per zip code is considerably narrowed when accounting for other metadata.
Applying a filter for gender would roughly halve that number to 10,000 [55], and
other subsets of the population may be even more vulnerable to metadata filtering.
Defining a threshold that considers minimal exposure for variably sized populations
may be more difficult than simply omitting or restricting the metadata. It can be said
that facial approximations generally do not produce an exact likeness of the original
subject. However, the resulting facial reconstruction can yield enough information
to create a general profile for the subject which can then be used for identification.

The primary objective of defacing is feature removal to obscure the subject’s
identity and sufficiently reduce the risk of re-identification. This can be done by
removing all non-brain tissue or only tissue that can be used in facial reconstruction
and recognition. Feature removal refers to the removal of a whole feature (e.g. the
nose), and partial feature removal refers to the removal of a portion of a single
feature (e.g. the tip of the nose).

It is tempting to assume that, because skull stripping is already integrated into the
analysis workflow, no further de-identification is necessary. However, skull stripping
algorithms are widely varied, and different approaches or parameter sets can yield
different volumes. Inconsistencies or inaccurate parameter selection may lead to
loss of desired brain tissue, as well as difficulty when performing meta-analysis and
other future studies that rely on uniform preprocessing.

Some defacing techniques attempt to remove all non-brain tissue with a non-zero
probability of being facial tissue. Like the limited dataset, it may not be necessary
to completely redact all identifiable features when removing a subset of the features
can render the subject unrecognizable. Removing more features may not always
be desirable, but the inherent risk of leaving features can be evaluated based on the
purpose of data sharing. The goal of defacing is to render the subject unrecognizable
to both human perception and automated facial recognition software. It is not
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Table 20.1 Landmarks used
in facial
reconstruction [13, 15, 36, 52]
and corresponding feature
memberships

Reference number Landmark Feature

1 1 Supraglabella External

2 2 Glabella External

3 3 Nasion Nose

4 4 End of nasals Nose

5 5 Mid-philtrum Mouth

6 6 Upper lip margin Mouth

7 7 Lower lip margin Mouth

8 8 Chin-lip fold External

9 9 Mental eminence External

10 10 Beneath chin External

11 32/11 Frontal eminence External

12 33/12 Supraorbital Eyes

13 36/15 Suborbital Eyes

14 37/16 Inferior malar Eyes

15 46/25 Lateral orbit Eyes

16 45/24 Zygomatic arch, midway External

17 44/23 Supraglenoid Mouth

18 51/30 Gonion External

19 47/26 Supra M2 Mouth

20 49/28 Occlusal line Mouth

21 50/29 Sub M2 Mouth

– 34/13 Lateral glabella Eye

– 35/14 Lateral nasal Nose

– 38/17 Lateral nostril Nose

– 39/18 Naso-labial ridge Mouth

– 40/19 Supra canina Mouth

– 41/20 Sub canina Mouth

– 42/21 Mental tubercle ant. External

– 43/22 Mid lateral orbit Eyes

– 48/27 Mid-masseter muscle External

– 52/31 Mid mandibular angle External

The left column refers to [36], and the second column
to [15]. The far right column indicates feature classification

necessary to remove all facial features to obscure the subject’s identity, but enough
features should be removed so that the remaining features are not enough to
re-identify the individual or reconstruct the removed features.

When considering the three categories of automated facial recognition techniques
(whole face, feature based, and hybrid), feature removal can significantly impact
the performance of all three approaches. The resulting reconstruction should also
be unrecognizable upon visual inspection. Facial features should not be able to be
recreated using symmetry or any residual tissue.
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There are a number of facial landmarks that are used in facial reconstruction
[36, 52] and facial recognition [46]. In the former, facial landmarks represent
anatomical points on the skull that can be reliably located and where soft tissue
depths are known. Commonly used cranial landmarks (32 including both left and
right points according to Phillips and Smut, and 52 according to De Greef et al.)
with well-researched tissue depths are listed in Table 20.1. The additional landmarks
appearing in De Greef et al. are based on reliability of location and inclusion in
previous studies [15]. The goal of defacing is to obscure a subset of these landmarks
so that the remaining calculable ratios violate uniqueness between subjects.

Studies in facial recognition by humans can provide guidance in determining
which features to remove. One study suggests that faces are recognized by individ-
ual features, particularly the eyes, nose, mouth, and eyebrows, though recognition
is also influenced by holistic processing [49]. These features are grouped into two
primary categories: internal features (eyes, nose, mouth) and external features (hair
and jawline), which are traditionally considered less reliable [47, 48]. It has been
shown that configuration, or the relative placement of the internal features, plays an
important role in human face recognition [9, 48].

Another study demonstrated that subjects match familiar faces on internal
features more quickly than unfamiliar faces, but matching on external features
shows no difference between familiar and unfamiliar faces [62]. This agreed with
the findings of an earlier study by Ellis et al. that found both internal and external
features important in identifying unfamiliar faces, with internal features more
significant than external for familiar faces [17].

A robust defacing solution should validate the results to ensure that (1) only non-
brain tissue is removed and all brain tissue is preserved, and (2) that the remaining
facial tissue is not sufficient to create an approximation or compare using facial
recognition. It should be noted that the latter does not ensure that re-identification
will not be possible. In some cases, the PHI in the limited dataset may be enough to
identify the individual even without the MRI.

With freely available software, it is easy to create a facial image from an
MRI, shown in Fig. 20.2, even without previous neuroimaging experience. While
the image is instantly recognizable as a human face, the subject’s identity may
not be easily discerned. However, an inexact rendering may lead to incorrect re-
identification that can potentially be damaging to the subject and the “re-identified”
individual.

For neuroimaging studies, the number of subjects enrolled is often small
[40, 58, 59] and frequently includes small subsets of the population, such as those
with a specific disorder or from a specific age group. It is necessary to carefully
evaluate the limited dataset to ensure that re-identification is not possible from
the metadata, even without the addition of the image data. Even if the metadata
is enough to re-identify the individual, an unredacted neuroimage can be used to
lend credibility to the re-identification.
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The following traits are desirable in a defacing technique but are not considered
primary characteristics:

• Legacy processing. Defacing techniques should work on legacy datasets as well
as those produced by modern scanners. Skull stripping mechanisms may not
perform as well on legacy data due to the wide variation in quality [18].

• Flexibility and transparency. Flexibility and openness in methods used to
identify brain tissue and remove non-brain tissue create an agile environment
that can easily adapt to future improvements in both re-identification and
de-identification.

• Ease of use. An effective de-identification method should run without user
intervention and only require interaction when an error is encountered. The
implementation should detect potential hazards, such as brain tissue removal or
impartial feature removal, and notify the user.

• Data management. The creation of multiple subsets of data may introduce
inconsistencies in the datasets. It may also increase the potential of a privacy
breach if the researcher inadvertently shares the original dataset rather than
the de-identified version. It is therefore preferable to have a data management
component that interfaces with the defacing algorithm to ensure that only the
defaced dataset is shared with external collaborators.

A performance metric for a general neuroimage de-identification technique
focuses on the two primary objectives of defacing: Facial Feature Removal (FFR)
and Brain Volume Preservation (BVP). There are many more factors to crafting
successful de-identification approach as discussed in the previous section, but these
are the most significant factors and can be easily quantified.

There are two potential methods for determining a defacing score: a binary score
that indicates whether or not a face is present, and a more granular score that
reflects the percentage of voxels that belong to facial features. The latter is a more
specific quantification, but it is difficult to implement. It requires a labeled face atlas
and a transformation to atlas space. As with the MRI Defacer face atlas, different
acquisition methods may require different atlases, and a transform to a canonical
space may not be completely accurate. The measure may also be skewed by the
accuracy of the atlas. The atlas would need to be hand labeled, and this is a fairly
subjective process that may not abstract well to other datasets. Tailoring an atlas to a
specific dataset may be more time consuming than manually checking images to see
if the facial features are sufficiently removed. A voxel-based percentage may benefit
from appropriate weighting of various voxels belonging to a particular feature.

A binary score sacrifices granularity for speed and versatility. This method is
easier to implement and does not rely on an atlas. It uses face detection mechanisms
to determine if a face is present in the resulting volume rendering. Manual user
inspection can be used instead of an automated approach. This does not offer the
specificity of a voxel-based quantification, and the face detection methods may not
be completely accurate. False negatives may be more complicated to detect in a
binary score than a voxel-based score.
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The binary scoring method does not require a resource intensive transform or
rely on a previously hand-labeled atlas or weighting, and therefore it is a more
general solution. It uses the Viola-Jones detector implemented in OpenCV and the
corresponding training set. The facial feature removal score is

SF D
(

0 if a face is detected

1 otherwise
(20.1)

with an ideal value of zero.
The brain volume is represented by B, the set of all voxels that are classified as

brain tissue. V is the number of voxels in B removed by the defacing technique. The
brain tissue preservation score SB represents the percentage of voxels mistakenly
discarded, with an ideal value of 0:

SB D V
B

(20.2)

This percentage-based approach weighs all voxels that are potentially brain tissue
as equally significant, including cerebrospinal fluid and other non-brain tissues
identified as brain voxels by the masking technique. Moreover, a large number
of voxels in the brain mask can skew the results, a problem exacerbated by the
increasing trend in neuroimage resolution. For example, if the brain mask contains
over one million voxels, a loss of 100,000 voxels results in a retention score
of 90 %, which may seem like an adequate rating. However, a loss of 10 % of
the brain volume may be unacceptable depending on the situation, and it may
be more beneficial to examine the raw number of discarded voxels. This score
applies only to the identifiability of the neuroimage itself as inherently identifiable
through facial features and does not consider the presence of any metadata.
Improper de-identification of metadata may undermine any defacing effort, and the
comprehensive dataset should be evaluated for potential re-linkage.

Since distinguishing brain and non-brain tissues is a challenging problem, this
metric is only as accurate as the brain mask that it is measured against. If the
brain mask does not contain all desirable brain tissue, then the resulting metric
may return an inflated score; conversely, a mask that contains too much extraneous
tissue will deflate the score. These scores offer a metric for evaluating defacing
mechanisms. For any dataset, it may be preferred to manually evaluate both the
efficacy of defacing and preservation of brain tissue, but the scores can be used as a
preliminary sweep to identify potentially problematic images or as a sanity check.
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20.4.2 Privacy in Neuroimage Archives and Collaboration
Initiatives

Initiatives and archives designed to spur large-scale research and collaboration
through the sharing of neuroimage datasets must integrate privacy and security
controls into their frameworks. Many establish workflows and pipelines decorated
with redaction and sanitization tools for archivists and researchers.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [6] is a successful
example of multisite neuroimaging collaboration. The funding of ADNI has enabled
the collection of MRI and PET images, as well as other data. By 2010, data
had been collected from patients at over forty sites and distributed to over 1,300
investigators [54]. As of 2015, ADNI data has been cited in 487 publications and
downloaded over 8 million times [7, 8] ADNI has produced promising results,
inspiring collaborative efforts for other diseases [25].

The Laboratory of NeuroImaging (LONI) at UCLA [27] provides the infras-
tructure for ADNI. A web based application is used to upload data to the archive,
and the data are de-identified and validated at the site-level so that sensitive patient
data is not transmitted. LONI advises that face images may be reconstructed from
certain MR images under HIPAA and therefore should be considered PHI. LONI
also provides the LONI De-identification Debablet [28], a Java tool for removing
metadata from image files with psuedonymous identifiers. For datasets that do not
require project approval, by accepting the terms of use, the downloader agrees that
they will not attempt to re-identify the data.

The fMRI Data Center is a repository for peer-reviewed neuroimages and related
study data published in the Journal of Cognitive Neuroscience [56]. While no
longer open for new data submissions, the subject privacy policy holds researchers
responsible for sanitizing their own data prior to submission, but the Data Center
also performs a scan of submissions to remove any potentially identifying data
overlooked by the researcher. Researchers may also submit skull stripped images
to prevent reconstruction of the subject’s face; otherwise, the Data Center will apply
skull stripping to the images before they are made available. This dual approach
adequately protects the privacy of the subject but the researcher must either perform
sanitization or let the Data Center bear the responsibility. It has the potential to strip
data it determines to be uniquely identifying without notifying the researcher and
thus threatens the integrity of the data. Altering the data while it is not under control
of the researcher may have wider implications on the quality of the dataset.

The Extensible Neuroimaging Archive Toolkit (XNAT) developed at Washington
University in St. Louis [29] is an open software framework that provides data man-
agement and control for neuroimaging studies and related data. XNAT is designed
to facilitate multi-institutional research collaboration through data management
and control. Data flows through XNAT in five phases: (1) Data Acquisition, (2)
Quarantine, (3) Local Use, (4) Collaboration, and (5) Public Access. In the Data
Acquisition phase, data is uploaded to XNAT and is subsequently quarantined.
There, the user validates it before viewing and analyzing it. Users can then create
subsets of the data that can be sent to collaborators or released for public viewing.
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The current version of XNAT provides basic support for sanitizing patient data.
The DICOMBrowser tool [16] allows users to view or edit DICOM metadata
both manually and with batch processing. It is offered in both a graphical and
command-line interface. The flexibility of XNAT allows researchers to upload
data in multiple formats with varying study parameters. However, this presents a
challenge when standardizing a sanitization process; it requires the end user to tailor
the anonymization process to a particular study or session through scripts based on
the DICOM tag key-value pairs.

20.5 Conclusion

Neuroimages and structural MRI are playing an increasingly prominent role in
diagnostic medicine. Moreover, collaborative research initiatives can transform
neuroscience by fostering an open scientific environment that makes neuroimage
datasets available for peer review and study.

The collection, use and disclosure of neuroimage data encumbers serious con-
sequences for individual privacy. Neuroimage datasets constitute PHI in two ways:
(i) the meta data associated with them contains personal and revealing demographic
information and (ii) the data itself may contain identifying features. In addition,
neuroimage datasets may reveal medical conditions or other characteristics an
individual may wish to remain confidential. In some cases, the mere knowledge
of the very existence of such data for an individual might constitute a violation of
privacy.

Frameworks and platforms for storing and sharing neuroimage data must,
accordingly, integrate privacy preserving solutions geared toward image data. Such
technologies either sanitize the personally identifying meta data associated with
neuroimages or transform the neuroimage data itself so that re-identification is
difficult or impossible. Their selection and adoption should be based on objective
performance metrics that are meaningful in the context of prevailing regulatory
guidelines and compliance standards.
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Chapter 21
Data Privacy Issues with RFID in Healthcare

Peter J. Hawrylak and John Hale

Abstract Radio frequency identification (RFID) provides a means to implement
the “last-mile” connection in a connected world, often referred to as the Internet of
Things (IoT). RFID has been widely used in the retail and construction sectors for
supply-chain management, and has provided significant benefits to those sectors.
RFID has also been employed by healthcare to improve supply-chain management
and monitor the locations of patients and providers to improve service offerings. The
wireless and low-cost aspects of RFID introduce privacy concerns. However, there
are some privacy issues related to the use of RFID, including tracking and the ability
of an attacker to obtain sensitive data that is stored in the RFID tag. This chapter
will explore the use of RFID in healthcare and identify issues relating to privacy
that need to be addressed in these use-cases. An overview of RFID technology
is presented followed by an overview of applications of RFID in healthcare. The
privacy issues are then identified and potential solutions described. The privacy
issues identified can be addressed using proven and standard security practices,
many of which are already implemented by healthcare providers. A discussion of
how to extend these practices to include RFID technology is provided.

21.1 Introduction

Radio frequency identification (RFID) is a key component of the connected world
and the Internet of Things (IoT). There are many applications of RFID in medicine,
from managing inventory to monitoring patient’s health. The wireless nature of
RFID coupled with the requirement for a low unit price of RFID tags introduces
several privacy concerns. This chapter provides a brief overview of the use-cases of
RFID in medicine and then provides a thorough analysis of the privacy issues and
risks associated with these systems. Solutions to these risks are hypothesized and
the impact of the proposed solution is estimated on the original use-case.
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21.1.1 RFID as a Technology

RFID is a form of wireless technology, which has wide adoption in supply chain
management (inventory tracking), and will play a key role in the development and
deployment of the Internet of Things (IoT). RFID provides the last-mile connection
between the asset or object and the larger information system, i.e., the Internet.
RFID systems consist of two basic components, the RFID tag, which is attached to
assets, and the RFID reader, which provides the gateway between the tags and the
larger information system (Internet).

RFID tags contain a unique identifier (UID) that is used to identify a single RFID
tag out of a group of RFID tags. This is in contrast to a barcode system where the
barcode represents the serial number of the item, but is not unique; the quantity of
items is determined by the manual process of scanning the barcode on each item.
The UID of the RFID tag can also double as an address, or IP address, for the tag
and item it is associated with. In this manner RFID provides a way to assign IP
addresses to objects to create the IoT. RFID tags that provide only their UID are
referred to as “license plate” RFID tags as they just provide a license plate for an
item but no additional information.

A RFID tag can provide higher functionality beyond the license plate tag, by
including additional re-writable memory or sensors in the tag. These tags are
sometimes referred to as “data-rich tags.” The additional memory can be used
to store information such as product expiration dates or to provide a record of
maintenance activities on an item.

RFID tags generally fall into one of three categories, passive, battery assisted
passive (BAP), and active, based on how they are powered. Passive tags do not
have an on-board power source and must harvest their operating energy from
their ambient surroundings. Often, they harvest energy from the radio frequency
(RF) signal from the RFID reader. Passive tags communicate using backscatter
communication, which is low-power and does not require the tag to contain a
transmitter. Tag cost and operating energy requirements are the major limiting
factors in functionality provided by passive tags.

BAP tags are positioned between passive and active RFID tags in terms of
functionality and cost. BAP tags include a on-board power source (e.g., a battery)
for non-communication operations, such as sensing between reads. Communication
is accomplished using backscatter. The inclusion of the power source allows the
BAP tag to use all of the RF energy from the reader transmission for backscatter
resulting in a longer read (communication) range compared to a passive tag. BAP
tags are widely used applications that require sensing or monitoring because they
can take readings between reads. Passive tags are only powered during the read and
that is the only time they can take a reading.

Active tags are typically the most costly, have an on-board power source,
and use an active (powered) transmitter and receiver. They support long-range
communication and can communicate in areas unfriendly to RF communication
(e.g., significant RF noise). Communication ranges vary based on the type of
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transceiver and battery in the tag. Typical ranges for active tags in RFID and
RTLS applications range from tens of meters to several kilometers. Active tags
are widely used to monitor conditions, such as intrusion detection in shipping
containers, and transmit alerts of abnormal conditions (e.g., over a satellite link).
In addition, active tags are often used to track objects and people in a real-time
location system (RTLS). The active transmitter and receiver support advanced
location determination algorithms to be executed to determine the precise location
of the tag.

There are several RFID communication protocols that are used in RFID systems.
Differences between these protocols include the frequency bands used, data for-
matting, data encoding, and supported commands. All protocols provide a means
to obtain the UID from the RFID tag, but several include support for reading and
writing small user-memories on the RFID tag. These user memories are between
100-bits to several mega-bits (Mb).

From a frequency band perspective RFID systems operate in four different bands:
125–135 kHz, 13.56 MHz, 433 MHz, and 860–960 MHz. The 125–135 kHz band
supports low-frequency (LF) RFID systems. These systems are typically passive and
operate in the near-field. They are used for livestock and animal tracking because
to the ability of the LF signals to penetrate animal tissue. The read-range (distance
between the reader and tag, when the tag can be successfully read) is about 30 cm.

The 13.56 MHz band supports high-frequency (HF) RFID systems. These sys-
tems are passive RFID systems and operate in the near-field. HF RFID is used in
many access control systems (badge systems), contactless payment, public transit
fare collection, and supply chain management. The 13.56 MHz band is designated
as an industrial, scientific and medical (ISM) band worldwide, which means that
it can be used without a license anywhere in the world. This makes HF RFID a
good choice for implementing systems that need to work around the world. HF
RFID provides better read ability when tags are in the presence of liquid and HF
RFID has been identified as one option for using RFID to meet ePedigree mandates
for pharmaceuticals. HF antennas are typically designed using a loop structure and
some examples of HF tags are shown in Fig. 21.1.

The 433 MHz band supports ultra-high frequency (UHF) active RFID systems.
These systems are used to track large assets such as shipping containers and have a
read-range of up to several hundred meters. They can communicate with the reader
in environments that are not friendly to radio frequency (RF) communication (e.g.,
large amounts of metal such as on a cargo ship).

The 860–960 MHz band supports UHF passive RFID systems. These systems are
used in supply-chain management and inventory tracking applications. There is no
frequency band in this range that is available worldwide. Thus, each country uses
a different frequency band in this introduces problems in the design of the antenna
for the RFID tag. Specifically, it is difficult to design an antenna that will work
well over the entire 100 MHz band and still meet the low price point and small area
requirements for RFID tags. Often, the size of the object being tagged limits the
size of the RFID tag. The EPCglobal organization manages the Electronic Product
Code (EPC) numbering system that manages the tag UIDs used by different users.
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Fig. 21.1 Passive HF RFID tags

The EPC number is used as a key to lookup the item in a central database where
detailed information about that item is stored. Thus, it is important that each user
assigns UIDs from within a set of numbers that are assigned to them. This is similar
to how IP addresses are allocated and managed. UHF antennas are typically based
on a dipole instead of a loop. Examples of UHF tags are shown in Fig. 21.2.

The UHF passive RFID systems also support the inclusion of batteries to create a
BAP RFID system. The typical application of a UHF BAP RFID system is to attach
sensors to the RFID tag to monitor conditions between read events. Table 21.1 shows
frequency band, corresponding RFID system type, the applicable ISO standards, and
typical applications of these systems.

The remainder of this chapter is structured as follows. Section 21.2 presents the
privacy needs for medical data and provides a high-level framework for accessing
privacy concerns and to define when a breach occurs. Next, Sect. 21.3 presents
applications of RFID in medicine, with a focus on applications for inventory
tracking, tracking people, and device management. The use of RFID in each area
are presented along with example applications. Then, Sect. 21.4 describes the risks
to privacy associated with these three use-cases for RFID in medicine. Section 21.5
presents some potential solutions to these issues. Finally, Sect. 21.6 concludes this
chapter by summarizing the issues and solutions that were presented.
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Fig. 21.2 Passive UHF RFID tags

Table 21.1 The frequency band, RFID type, corresponding ISO standard, and typical applications

Frequency band RFID type ISO standard Typical application

125 kHz LF ISO 18000-2 • Livestock and pet tracking

13.5 MHz HF ISO 18000-3 • Public transit fare
• Access control systems

433 MHz UHF (active) ISO 18000-7 • Tracking shipping containers

860–960 MHz UHF (passive) ISO 18000-6 (air interface)

• ISO 18000-61 (Type A)
• ISO 18000-62 (Type B)
• ISO 18000-63 (Type C)
• ISO 18000-64 (Type D)

• Supply chain management

21.2 Dimensions of Privacy in Medicine

Privacy in the modern age is commonly concerned with controlling the disclosure
of identifiable information. Today, medical data is often digitized and transmitted
between information technology (IT) systems to facilitate diagnosis, treatment and
care. Much of that data is often considered to be protected health information (PHI),
as it contains sensitive and identifying information. PHI includes items such as data
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of birth, home address, contact information (e.g. home address, telephone numbers,
and email address), emergency contacts, treatment details, and medical history.

The foundations of medical privacy rest in principles promoted by the 1973
HEW Report, a study conducted by The Secretary’s Advisory Committee on
Automated Personal Data Systems within the Department of Health, Education,
and Welfare [1]. The study [1] established a Code of Fair Information Practices
comprising five ideals:

1. There must be no personal-data record-keeping systems whose very existence is
secret.

2. There must be a way for an individual, to find out what information about him is
in a record and how it is used.

3. There must be a way for an individual to prevent information about him obtained
for one purpose from being used or made available for other purposes without
his consent.

4. There must be a way for an individual to correct or amend a record of identifiable
information about him.

5. Any organization creating, maintaining, using, or disseminating records of
identifiable personal data must assure the reliability of the data for their intended
use and must take reasonable precautions to prevent misuse of the data [1].

The Code of Fair Information Practices profoundly shaped the Privacy Rule in
The Health Insurance Portability and Accountability Act (HIPAA) of 1996. HIPAA
was passed by the U.S. Congress with five objectives: improving portability and
continuity of health insurance coverage; combating waste, healthcare fraud, and
abuse; promoting medical savings accounts; improving access to long-term care
services; and simplifying health insurance administration [2, 3]. HIPAA’s Privacy
Rule establishes conditions to preserve patient privacy in healthcare systems. Other
aspects of HIPAA deal with privacy indirectly by incorporating provisions intended
to preserve security properties of patient data in any form.

Concerning privacy, HIPAA prescribes how an individual’s PHI can be collected,
used, or disclosed. Identifying information such as billing records, data entered by
healthcare providers, patient information stored in the computer system, and the
health insurer’s information about treatment and care, are protected by HIPAA. The
Privacy Rule permits access to PHI only when providing treatment, paying medical
providers for services, protecting public health, giving reports to law enforcement,
or when a patient has explicitly authorized a third party. HIPAA applies to any
organization that touches PHI. This includes healthcare providers, health plan
providers, and business associates.

The 2009 Health Information Technology for Economic and Clinical Health
(HITECH) Act gave the U.S. Department of Health and Human Services (HHS)
the authority to create programs for private and secure electronic health information
exchange [4]. The Omnibus Rule by the Office for Civil Rights clarified and
expanded the scope of HITECH’s and HIPAA’s privacy and security provisions. This
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rule increases the liability of business associates, broadens the right of individuals to
PHI access and notice, and increases privacy protection for genetic information [5].

The Office of the National Coordinator (ONC) in HHS has adopted eight privacy
principles essential for privacy solutions in healthcare information systems [6]:

1. Individual Access: Simple and timely access for individuals to their personal
health information.

2. Correction: Ability of an individual to dispute and correct erroneous personal
health information.

3. Openness and Transparency: Openness and transparency of policies, proce-
dures and practices relating to an individual’s medical records.

4. Individual Choice: Ability of an individual to make informed decisions regard-
ing the collection, use and disclosure of their personal health information.

5. Collection, Use and Disclosure Limitation: Appropriate control of the collec-
tion, use and disclosure of personal health information governed by the necessity
to accomplish a specific purpose.

6. Data Quality and Integrity: Reasonable effort to guarantee personal health
information has not been altered inappropriately and that information is accurate.

7. Safeguards: Application of security controls to preserve the confidentiality,
integrity and availability of medical records and personal health information.

8. Accountability: Monitoring and reporting of events and actions in HIEs that
potentially constitute breaches, misuses or violations of privacy and security.

The wireless nature of RFID introduces and magnifies several privacy concerns.
Specifically, the wireless communication link provides the attacker the ability to
launch an attack from a distance. An example of such an attack is using a rogue
RFID reader to retrieve (read) the data from an RFID tag that contains medical
data about a patient, in order to obtain that patient’s PHI. Solutions to address this
concern and other potential attacks are presented later in this chapter. Further, the
low-cost and low-power (especially for passive tags) requirements for the RFID tags
limit the available security and privacy measures that can be implemented. However,
most of these concerns can be addressed using typical techniques.

A recent analysis of security concerns for RFID tags [7] of Gen-2 and ISO 18000-
63 [8] passive ultra-high frequency (UHF) tags identified four major categories of
attacks: interception, interruption, modification, and fabrication. Of these intercep-
tion is a direct threat to privacy because personal information could be obtained
from the transmission or the intercepts used to track a person. Tracking can be used
to extract further personal information about the person by linking the rooms of
the medical facility they visit to the services provided by those rooms (e.g., cancer
treatment). One application is to reduce waiting times [9] by keeping track of the
location of patients and providers.
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21.3 RFID in Medicine

RFID and RTLS offer many benefits to medicine and have been successfully applied
to address several issues. A general overview of these technologies can be found in
the following: for RFID [10–14], and for RTLS [15–17].

This chapter focuses on the following use-cases of RFID and RTLS technology
in medicine: (a) inventory tracking, (b) tracking people, and (c) medical device
management. These use-cases are described in further detail in the following
sections.

21.3.1 Inventory Tracking

Inventory tracking and supply chain management is a major use-case for RFID,
especially in the retail sector [18]. Tracking inventory and linking the use of supplies
to the appropriate patient is a major issue for most hospitals. RFID has been used to
create “smart cabinets” that are able to link supplies that are removed to a particular
patient [11]. This enables better billing accuracy and can be linked into hospital
inventory management systems to ensure that supplies are reordered when they are
needed. Several users have realized savings from a reduction in the number of items
that expire before use from such systems [19–21].

Another use of RFID is to monitor whether or not a patient is taking their
prescribed medications. One implementation uses a specially designed drawer with
a RFID reader and RFID tags on each medicine container to track when a patient
removes medicine from the drawer [22]. This system records what medications were
removed and replaced, but does not verify the dose of the medication taken (e.g.,
how many pills were removed). An expansion of this system was implemented to
include the ability to record the weight of the medication container before and after
removal [23]. Another system incorporates a video camera to track medication for
elderly patients to ensure compliance with the prescribed instructions [24]. Another
medication compliance system uses a RFID reader contained (at least the antenna)
in a necklace with a tag in each pill to monitor when a pill is ingested [25]. General
RFID systems integrated into hospitals can be used to help providers maintain
supply levels and can potentially allow them to move closer to the just-in-time
inventory process used in many retail establishments [26]. Other uses include using
RFID systems to track the location and status of digital infusion pumps [27].

21.3.2 Tracking People

RFID and RTLS provide a means to track people in an environment. There are a
number of means to determine the location of the RFID tag in an environment,
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including range estimation based on signal strength [28–32] time-of-arrival/flight
[33–36], and angle of arrival [37, 38]. Other more advanced options to get better
accuracy are possible.

The medical applications in this area often focus on tracking patients of care-
facilities [39] and tracking locations of patients and staff members in a doctor’s
office for scheduling purposes. Several researchers have also investigated using
RFID to locate and track patients and providers for the purpose of improving
workflow planning and management [40]. The ability to track patients allows the
care facility to monitor the location of at-risk patients (e.g., those suffering from
memory loss diseases) and to be alerted if the patient leaves the facility or enters
an a restricted or unsafe area. One study looked at the use of a commercial RTLS
system to monitor the entry/exit points of a hospital [41]. Alerts are triggered when
a patient passes through a entry/exit point. One benefit of monitoring only entrance
and exit points is a reduction in the number of RFID readers needed to monitor a
facility. This reduces the cost of the system. However, the downside of this is that the
patient’s location cannot be tracked inside the facility but only at entry/exit points.
This is effective for many facilities because they only need to monitor the entrances
and exits points and not the entire facility.

Systems have also been deployed using RFID and other Internet of Things type
technologies to track how a person interacts with their environment [24, 42, 43].
These systems can be used to help manage patients suffering from cognitive diseases
while allowing them to remain in their homes or have more independence compared
to a traditional nursing home.

Other systems track the location of patients and can be used to help control
the spread of infectious disease. One such system was implemented in a hospital
in Taipei to help control the SARS virus [44] by identifying patients with SARS
symptoms or diagnosed with SARS, and also by identifying the individuals that
were in contact with a person newly diagnosed with SARS. This system helped to
isolate those patients with SARS and those medical workers assigned to treat SARS
patients from the rest of the hospital’s population. Many other RTLS systems have
been applied to improve processes in hospitals [9, 45–48].

21.3.3 Device Management

RTLS systems have been used to track and locate devices and equipment within a
hospital [41]. These RTLS systems differ from those issuing alerts when people
leave a facility without authorization in that they track the location of devices
(objects) in the entire facility. One concern with wireless location systems is being
able to read through walls in a building. For example, this could result in the system
indicating that an asset is in room 314 when it is actually next door in room 315.

RFID provides the ability to track inventory, including medical supplies and
pharmaceutical drugs. Inventory tracking using RFID is a common application of
the technology in the retail sector. In the retail sector RFID is being used to reduce
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the time (man-hours) required to take inventory [49, 50] and in some instances can
be used to give a merchant an instant view of inventory on hand in their store. This
information is then used to ensure that the optimal product selection [51] is available
on the store shelves to customers and that something ordered over the Internet is
actually available for pickup in the store.

Similar methods can be applied to healthcare to track medical supplies. RFID can
be used to link supplies used to a particular patient, to help ensure that each patient is
charged for only those supplies that they use. The hospital can use this information
to improve the accuracy of their inventory and can reorder needed supplies so that
they arrive just-in-time for their use. Another use of RFID is to identify the patient
to verify their medications [52]. This helps reduce the occurrence of the medical
issues arising from giving patient A, patient B’s medications. This application also
simplifies the nurse’s task in delivering the medications and should result in less time
being spent on delivery of the medication, allowing more time for patient interaction
and providing care service.

A RFID system was pilot tested in a hospital in Cyprus to identify patients and
track inventory in the pharmacy [26]. Identification of patients is a key factor in
providing the correct medical treatment and is often the root-cause for medical
mistakes. One such application of this technology is to link the patient to their
medication to ensure that each patient receives the proper medication and dosage.
In the system presented in [26] the pharmacists found benefit in the improved and
quick inventory features provided by the system, which helped them to maintain the
optimal supply of medication in the pharmacy.

21.4 Issues and Risks

Privacy issues differ from security in that privacy is geared to the collection, use,
and release of confidential information. Security is concerned with confidentiality
and also data integrity and availability. With respect to privacy, the requirement
to have access to the data—availability—is often at odds with the need to maintain
confidentiality of the data. For example, a secure system that provides sufficient con-
fidentiality will provide privacy protection. However, in medicine, it is sometimes
hard to enforce access control, especially in response to an emergency situation.
For these emergency type situations several medical databases allow qualified
medical professionals to gain access to a patient’s medical information for treatment
purposes, even if they do not normally have access rights to that information.
Medicine introduces limits on the time required to obtain information (e.g. or risk
the patient dying) that in other industries (e.g. financial institutions) are not present
and allow for alternative means of authenticating the user or providing a redacted
version of the data to the user to allow them to perform their task. The low cost
nature of RFID tags makes the inclusion of strong security options difficult. Further,
passive RFID devices must harvest enough energy to power the tag during strong,
and often long, cryptographic operations. An overview of security and privacy
concerns relating to RFID is found in [53].
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Fig. 21.3 Basic exchange between an RFID tag and reader

Tracking is difficult to prevent because the mainstream RFID protocols require
each tag to have a unique identifier. A typical RFID exchange begins with the reader
retrieving the UID from one tag and then using the UID to carry out a higher-level
communication where data (from the user data section) of the tag is read by the
reader. Alternatively, the higher-level communication session could be used to set
operating or security parameters of the tag, or to write data to the tag’s user memory.
All tags support the capability to retrieve the UID, but not all support the higher-
level functions (or have user memory). Figure 21.3 shows the basic components of
the RFID exchange. The first part recovering the UID is supported by all RFID tags,
while the second part (higher level communication) is supported by some tags.

There are several proposed solutions to address tracking [54–56], but most
require significant infrastructure on the part of the system. This large infrastructure
overhead may not be feasible for pervasive systems such as those envisioned in
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the IoT. The Internet of Things concept requires every device to have a unique
address (similar to an IP address) and this means that these devices will be easy to
track, which is often beneficial for the Internet of Things applications, but troubling
from a privacy standpoint. Ideally, the same RFID tag could be used to provide
information and services from the point of manufacture (or assignment) to the point
where it is discarded or returned (recycled). This is one of the goals of the EPC
numbering system. New additions to the EPC Gen-2 protocol (basis for the ISO
18000-63 standard) include commands to support security features to authenticate
readers to tags and to provide communication channels that ensure confidentiality
and integrity of the data and higher-level commands passed between the reader and
tag [57].

The EPC number provides a unique key to search in a centralized database
to obtain additional information about a RFID tag and the item or person it is
associated with. This process allows the RFID tag to contain only “license plate”
data to link the tag to an entry in the database. Hence, RFID tags providing only
a unique ID that can be used as a search key for a database are termed “license
plate tags.” Figure 21.4 shows this process. Typically, a user-interface is involved
to present data to the user and often times offers data entry capabilities to the user.
First, the RFID tag is singulated, which means that it is identified by the reader
out of the collection of RFID tags present. Once singulated, the RFID reader can
retrieve the tag’s EPC number and can perform higher-level operations (e.g. read
and write user-memory) with the tag. The EPC number is then used by the reader
to query the central database. The central database holds detailed information about
the tag and associated asset and provides this information to the user-interface. At
this point, the user can request additional operations to be performed on the tag or
can alter data in the database. This model separates the data storage from the RFID
tag and this has benefits from a privacy perspective because strong authentication
procedures can be implemented to protect the database and the tag only carries the
EPC number (license plate). One drawback of this division of information is that the
data may not be available to the user if they do not have a connection to the central
database.

A recent survey of RFID applications in healthcare found that privacy was a
significant factor in the success or failure of an RFID deployment that involves
tracking individuals, but not assets [17]. The concern includes both patients and
healthcare providers. While the EPC Gen-2 protocol and ISO 18000-63 standard
include support to permanently disable the digital components on a RFID tag,
through a kill command, using this feature prevents the RFID tag from being used in
the future. Physical means can also be used to achieve similar results by damaging
the antenna by including a removable piece in the antenna to reduce the read range
to a few centimeters [58].

One of the difficulties is that for hospitals to adopt RFID and RTLS technology
the system needs to be able to integrate with the other systems present in the
hospital [59]. These systems include data entry and collection systems, central
databases, and user interfaces. The data entry and collection systems need to be
able to interact with the RFID readers directly or through middleware (e.g., a device
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Fig. 21.4 Using the EPC number to retrieve additional information about the tag and associated
asset

driver) software to have the readers establish and manage communication between
the larger system and the RFID tags. The middleware or the reader can also process
the RFID tag data and present it in a format expected by the hospital’s larger system.
The medical database needs to include additional fields to hold tag UIDs to link
those to a particular patient or asset, and must supply space to hold additional data
provided by the RFID system. The user interfaces must provide the ability to interact
with the RFID components, including input for the data that is stored in each tag
and provide a means to select a particular tag (e.g., a list of asset serial numbers
or patients). The need to share data among different systems introduces potential
privacy concerns. However, these concerns can be addressed by ensuring that all
components in the larger system comply with the facility’s privacy requirements.

RFID provides a platform to expand this sharing of information and can even
be used to store small subsets of a person’s medical information. In one system
[60] RFID tags are used to store a patient’s critical care information in plain-text
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to allow first-responders to quickly access this information, without having to move
the patient, to provide treatment while waiting for their information to be retrieved
from their insurance provider. This system is also useful in areas where there is
no access to the patient’s health provider. However, this system does not address
privacy issues well because the data is stored as plain-text allowing anyone to read
it, but this feature is needed to provide the access for the first-responders. This
example represents one key issue with privacy: how to limit access to the data from
unauthorized users, while providing as many authorized users access as possible.

Confidentiality of information is another key concern for users in healthcare.
Encryption is one standard means of protecting the confidentiality of information
and can be used to protect the data stored in the RFID tag. While RFID tags offer
limited support for high-strength cryptology, the encryption could be performed on
the reader side and then the encrypted data stored on the tag. Further, higher-strength
authentication and encryption methods can be employed by the backend system
(e.g., database) to ensure confidentiality and availability of the information. Care
must be taken to ensure that an attacker cannot infer information from the encrypted
text (e.g., identify which tags have data about a cancer medication). One method
of this attack is to use the Select command in the Gen-2 protocol to search user-
memory on tags to identify tags with a particular bit pattern [7]. However, this attack
can be prevented by using a hash function to help randomize the encrypted text that
is stored in the tag for each instance.

21.5 Solutions

Tracking is a difficult problem to address in RFID because of the need to have the
tag function with readers spread over a wide geographic area and controlled by a
number of different institutions. However, the read ranges of most passive RFID
systems are less than 5 m in free space (e.g., an open air environment) so this makes
tracking someone exclusively using RFID readers difficult. Physical surveillance
would most likely be a better option, because using RFID readers would require a
large reader infrastructure and the attacker to have access to all of those readers (e.g.,
they must hack into each reader). In healthcare, access to a patient’s medical history
(file) or electronic health record would provide the attacker with more information.

Confidentiality of the data stored in the RFID tag can be protected using encryp-
tion. New additions to the Gen-2 specification provide support for stronger encryp-
tion of data and for the establishment of confidential communication channels [57].
Further, ISO is developing a family of standards, ISO 29167, to standardize the
deployment of security options (called “suites”) for RFID systems described in the
ISO 18000 series of standards. ISO 29167-1 provides the requirements and basis
for identifying the different security options; other parts in the ISO 29167 series
(ISO 29167-11 defines the PRESENT-80 security suite) will define implementation
of individual security options for RFID. These standards provide a unified blueprint
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for developers and users to implement security options for RFID systems to meet
the requirements for healthcare.

Moving the encryption and decryption operations to the backend systems, the
facility’s internal authentication system can be employed to prevent unauthorized
access to data. The license-plate tag offers some benefits from the privacy standpoint
because it contains no information other than the unique search key used during the
database query process to obtain the record matching the patient (patient is linked
to a unique serial number stored in the RFID tag). An attacker obtaining the tag’s
ID would still need to obtain access to the facility’s system to access the patient’s
PHI which is stored in the database and not on the tag. If the attack can get into the
facility’s database (system) they have no need to interact with the RFID side of the
system because the database contains the PHI and personal contact information for
all of the facility’s patients.

21.6 Conclusion

This chapter presented use cases of RFID and IoT technology in healthcare. Privacy
issues associated with these technologies specific to the healthcare sector have been
identified and potential solutions discussed. Tracking and confidentiality of infor-
mation were the two privacy threats present in the healthcare environment. Tracking
is the most difficult issue to eliminate because most mainstream commercial RFID
protocols are based in part on the ability of the reader to retrieve the tag’s ID number.
While some methods have been proposed to address tracking RFID tags by using
pseudo-IDs that change with each read (inventory) these methods require significant
infrastructure and result in a closed system. In such a closed system, the RFID tag
will only be able to be accessed (read) by readers within that system. This is in
contrast to the IoT vision where devices, such as RFID tags, will work seamlessly
with any reader to allow the RFID tag to provide maximum value or service to
the user. Moving to a connected or IoT world will require systems that can support
the authentication of many low-functionality devices efficiently. Physical tracking is
probably a better alternative to tracking using RFID readers. Basic physical security
practices, such as limited access areas (e.g., not allowing the general public into the
exam areas without an escort) can prevent most tracking, either physical tracking
or tracking using handheld RFID readers. Security solutions exist to address the
other issues associated with RFID systems in medicine. In summary, the ability for
patients to opt-out of using the RFID systems should be sufficient, as this will allow
those who wise to avail themselves of the benefit to do so, it will also allow those
that do not want the risk of tracking via RFID tags to accomplish that too.

The confidentiality of data stored in the RFID tag is of greater concern. The
result of unauthorized access to medical data stored in the RFID tag’s user-memory
is a significant threat to privacy. However, this situation is easy to prevent, through
the use of encryption to protect the stored data from unauthorized access. This will
prevent the attacker from being able to use of interpret the data in the event that they
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are able to retrieve it from the tag. Further, the new security features of the EPC Gen-
2 specification and new family of ISO standards defining how to implement security
and the associated security implementations (ISO 29167 family of standards) harden
the RFID tags to resist unauthorized access of their user memory.

In conclusion, RFID and IoT technologies have already been used in healthcare
to provide significant savings to providers, improve patient safety (e.g., ensure
each patient receives the correct medications), and reduces patient waiting times
have been deployed and show proven results. RFID has been used in a number of
hospitals to track hand washing compliance which is one of the top ways to prevent
the spread of infections. In most cases, compliance levels increased after installation
of such a system. The privacy concerns identified in this chapter (tracking and
confidentiality of data) can be addressed by standard solutions and procedures
already employed by healthcare providers.
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Chapter 22
Privacy Preserving Classification of ECG
Signals in Mobile e-Health Applications

Riccardo Lazzeretti and Mauro Barni

Abstract Privacy protection is an emerging problem in mobile Health applications.
On one hand, cloud services enable to store personal medical data, making them
always available, and providing preliminary analysis on them, on the other hand,
storing personal health data entails serious threats to users privacy. Privacy pre-
serving solutions, such as Secure Multi-Party Computation techniques, give to non-
trusted parties the opportunity of processing biomedical signals while encrypted.
This chapter focuses on the development of a privacy preserving automatic diagno-
sis system whereby a remote server classifies an ElectroCardioGram (ECG) signal
provided by the client without obtaining neither any information about the signal
itself, nor the final result of the classification. Specifically, we present and compare
three secure implementations of ECG classifiers: Linear Branching Programs (a
particular kind of decision tree) with Quadratic Discriminant Functions, Linear
Branching Programs with Linear Discriminant Functions and Neural Networks.
Moreover we describe a protocol that permits to evaluate the quality of an encrypted
ECG. The chapter provides a signal processing analysis aiming at satisfying both
accuracy and complexity requirements. The described systems prove that carrying
out complex tasks like ECG classification in the encrypted domain is indeed possible
in the semi-honest model, paving the way to interesting future applications wherein
privacy of signal owners is protected by applying high security standards.

22.1 Introduction

The healthcare industry is on the edge of an unprecedented revolution made possible
by the widespread diffusion of Information and Communication Technology (ICT).
ICT, in fact, has a lot to offer in terms of personalized online self-service, medical
error reduction, customer data collection and more. Mobile healthcare applications
based on e-cloud services and remote data storage systems, add a further very
promising perspective to this on-going revolution. Yet, concerns regarding the
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privacy of the users of e-health services risk to slow down or even inhibit the
diffusion of these new services, causing a huge societal and economical damage.

Storing and distributing the biomedical signals and other privacy-sensitive data
in encrypted form is an obvious solution to the above concerns, which, however,
comes at the price of reduced flexibility and efficiency of e-health services. If
biomedical signals and data were available only in encrypted form, functionalities
like content-based queries or signal analysis for remote diagnosis could not be
easily implemented thus depriving e-health systems of some of their most appealing
features.

The possibility of processing biomedical signals while they are encrypted would
clearly provide a secure and elegant way to overcome the above problems. Such an
apparently unfeasible task is indeed possible thanks to the possibilities offered by
s.p.e.d. (signal processing in the encrypted domain) technology [18, 33], whereby
it is possible to process biomedical and other data without revealing the content
of the data, and even the processing results, to non-intended users. A simple, yet
rather general, scheme for s.p.e.d. applications, encompasses the presence of two
players: one party, hereafter referred to as the Client (C) owns a signal that has to
be processed in some way by the other party, hereafter referred to as the Server
(S). Since C and S do not trust each other, S must process the signal owned by C
without getting any information about it, not even the result of the processing. At
the same time, S wants to protect the information it uses to process the signal, since
this represents the basis of the service it offers. More specifically, given a general
functionality f ./, whose specific instantiation is defined by a set of parameters p
and an input signal x, the computation of f .xI p/ in a s.p.e.d. framework requires
that S, who knows p, is able to compute the result of f .xI p/, without getting any
information about x and the result of the computation. At the same time, C should
get no information regarding p.

From a technical point of view, s.p.e.d. protocols may adopt two different
approaches based, respectively, on Homomorphic Encryption (HE) [20, 45] and
Secure Multi-Party Computation (SMPC) [25, 43].1 The former approach relies
on the particular homomorphic properties of some cryptosystems, for which one
operation on a pair of non-encrypted values (e.g. an addition) corresponds to a
simple operation (e.g. a multiplication) on the encrypted messages. For example,
by using Paillier cryptosystem [39], it is possible to evaluate the sum of encrypted
values without decrypting them. This allows to evaluate any linear operation on the
server’s side, while other operations can be implemented by interacting with the key
owner. The STPC approach to s.p.e.d. relies on the seminal works by Goldreich [19]
and Yao [49, 50], in which the possibility of computing any functionality described
by an acyclic Boolean circuit on private data was demonstrated. By using Yao’s
Garbled Circuits, two parties can jointly evaluate a boolean circuit. The first party
“encrypts” the circuit and sends his input bits in encrypted form to the other party,
which in turn “decrypts” the circuit gate by gate by using his encrypted inputs

1When only two players are involved, SMPC reduces to Secure Two Party Computation (STPC).
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together with the received ones as decryption keys. The complexity of the protocols
depends on the functionality to be evaluated, sometimes making the Homomorphic
Encryption preferable to Garbled Circuit, or vice versa. Hybrid solutions, exploiting
the best characteristics of the two approaches, have been proposed as well [30, 32].
The idea is to split the protocol in subprotocols and evaluate each of them with the
technique having the lowest complexity. Then the blocks are connected by using
interfaces based on additive blinding.

In this chapter we describe a specific application in which s.p.e.d. technology
is used for the development of a privacy preserving automatic diagnosis system
whereby a remote server classifies an ElectroCardioGram (ECG) signal provided
by the client without obtaining any information about the signal itself and the
final result of the classification. Specifically, we present and compare the secure
implementation of three different ECG classifiers, based respectively on Linear
Branching Programs (a particular kind of decision tree) with Quadratic Discriminant
Functions [4], Neural Networks [7] and Linear Branching Programs with Linear
Discriminant Functions, here addressed for the first time. In order to allow a fair
comparison among the different implementations, all of them rely on the same
features. In addition to the design of an accurate and efficient ECG classification
algorithm, the deployment of reliable remote healthcare solutions requires that
possible errors made by remote patients, who can not rely on the assistance of
expert medical personnel, are corrected or at least detected. In the case of ECG
classification, for instance, it is possible that the user connects the electrodes in a
wrong way, thus sending to the server a poor quality signal. This, in turn, increases
the probability of a classification error. For this reason, we end this chapter by
presenting a protocol that allows the evaluation of the quality of ECG signals by
working on encrypted data.

Rather than providing full-fledged solutions, the goal of this chapter is to
show that reliable ECG classification in the encrypted domain is indeed possible.
Particular attention is given to describe the trade-off between classification accuracy
and efficiency. As a matter of fact, the central question in s.p.e.d. technology is
not whether a certain functionality can be computed, but how efficiently this can
be done. As it will be clear from the subsequent sections, designing an efficient
s.p.e.d. protocol requires that the representation of the input and intermediate values
of the computation is carefully studied to simplify the protocol without sacrificing
the accuracy of the computation. In a similar way, the classification algorithm must
be simplified as much as possible, by reducing the number of operations whose
implementation in s.p.e.d. setting is most problematic.

The chapter is organized as follows. In Sect. 22.2, the exact ECG classification
problem we face with is defined and the plain version of the classification algorithm
the s.p.e.d. protocols rely on is described. Section 22.3, introduces the basic
cryptographic primitives at the basis of any s.p.e.d. protocol. The description
focuses more on the usage and functional properties of the primitives rather
than on their mathematical definition. The security model used throughout the
chapter is presented as well. Section 22.4 describes a s.p.e.d. implementation
of Linear Branching Programs (LBP) which will be the basis for the first two
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ECG classifiers presented in the chapter, namely a LBP classifier based on a
quadratic discriminant function (Sect. 22.4.2) and a LBP classifier based on a linear
discriminant function (Sect. 22.4.3). Section 22.5 presents the third classifier, based
on a s.p.e.d. implementation of Neural Networks (NN). Section 22.6 describes a
protocol for the evaluation of the quality of encrypted ECG signals. The chapter
ends with some conclusions in Sect. 22.7.

22.2 Plain Protocol

Before describing the s.p.e.d. implementation of three different ECG classifiers, we
present the plain domain algorithm for ECG classification at the basis of the s.p.e.d.
protocols.

The goal is to classify single heart beats according to six classes: Normal
Sinus rhythm (NSR), Atrial Premature Contractions (APC), Premature Ventricular
Contractions (PVC), Ventricular Fibrillation (VF), Ventricular Tachycardia (VT)
and SupraVentricular Tachycardia (SVT). The classification algorithm that inspired
the protocols described here derives from the system introduced by Ge et al.
([21] and [1, Chap. 8]). Specifically, it relies on a rather general technique based
on Autoregressive (AR) models for ECG description and a subsequent Quadratic
Discriminant Function (QDF) classifier where each ECG interval corresponding to
one heart beat is modeled by means of a fourth order AR model.

The choice of the algorithm is justified first of all by the good classifica-
tion accuracy it ensures, secondly because it can be easily implemented in a
s.p.e.d. framework. The overall architecture of the classifier is summarized by
the block diagram in Fig. 22.1. The input of the system is a filtered ECG chunk
composed by 300 samples surrounding the R peak (the highest peaks of a heart beat
signal). The samples are modeled by a fourth order AR model whose parameters,
together with two additional parameters accounting for the modeling error, are used
by the QDF block to produce the feature vector that will be used in the subsequent
classification. Each block of Fig. 22.1 is described in the following.

Autoregressive Modeling: An AR model [12] is a linear predictor that attempts
to estimate the value of a sample sn from the previous p samples .sn�1; sn�2;

: : : ; sn�p/, through an equation having the following form:

sn D
p
X

iD1

aisn�i C �n (22.1)

AR
Modeling

ECG
chunk ResultFeture

Extraction
Quantization QDF Classification

Fig. 22.1 Block diagram
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where faigiD1::p are the AR coefficients, f�igiD1::N is the prediction error sequence
and p is the model degree. A good AR model chooses the AR coefficients which
minimize the mean square error between the original sequence and the one
predicted by the model. As shown in [21], for an accurate description of ECG
signals an AR model of order p D 4 is sufficient.

Feature Extraction: Six features are extracted form the AR model. The feature
vector is the following:

f D .f1; f2; f3; f4; f5; f6/
T D .a1; a2; a3; a4; n1; n2/

T (22.2)

The first four features are the coefficients of the AR model; the last two features
measure the quality of the predictor by counting the number of samples wherein
the amplitude of the AR model respectively exceeds or not exceed an empiric
threshold set to th D 0:25 maxn .j�nj/, hence n1 is the number of times that j�nj <
th and n2 is the number of times that j�nj > th.

Quadratic Discriminant Function: With QDF classifications, the classifier
operates on a composite feature vector x instead than the feature vector f.
The composite vector contains the features in f, their square values and their
cross products, namely:

x D .1; f1; : : : ; f6; f 2
1 ; : : : ; f 2

6 ; f1f2; : : : ; f1f6; f2f3; : : : ; f2f6; : : : ; f5f6/
T

D .x1; x2; : : : ; x28/
T (22.3)

The goal of this step is to project the vector x onto six directions wi, obtaining
a 6-long vector y D Wx, whose elements are used in the classification tree
described in the next step. The sign of each yi value identifies the path that has
to be chosen in the relative node. The rows of matrix W are the vectors wi.
The matrix W contains part of the knowledge embedded within the classification
system, and is computed by relying on a set of training ECG’s. In particular, the
matrix W is computed by minimizing the mean square error between the actual
vector y and the target values of y. A vector used for the training set is said yt.
The desired output for each of the diseases is given in Table 22.1.

Table 22.1 Classification
pattern (“�” means that the
value of the variable does not
influence the classification)

y1 y2 y3 y4 y5 y6 Disease

1 1 � 1 1 � NSR

1 1 � 1 � 1 NSR

1 1 � 1 -1 � APC

1 1 � 1 � -1 PVC

-1 � -1 � � � VF

-1 � 1 � � � VT

1 -1 � � � � SVT
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Fig. 22.2 The decision graph leading to ECG segment classification. Given the array y1; : : : ; y6,
the tree is traversed according to the result of the comparison of the values with 0 in each node,
following the true (T) or false (F) edges

Let us now consider the estimation of a single row of W, that is wi. During the
training, for each ECG segment j, the composite feature vector fc

j is computed.
Assuming that D is the number of ECG segments used for the training of a
particular wi, the vector that minimizes the error between the target output and
the actual one is given by

wi D .XT
i Xi/

�1 XT
i yti: (22.4)

where Xi D .x1; x2 : : : xD/ is a D � 28 matrix containing the composite feature
vectors of the training set, and where yti D .yi1; : : : ; yiD/T is the column vector
of the ith component of the target vector responses (yij 2 f�1;C1g).

Classification: To classify an ECG segment, the output y of the QDF is used
in the nodes of the classification tree given in Fig. 22.2, whose structure,
presented in [1, Chap. 8], is designed to better separate the classes. The structure
of the tree depends on the fact that there is a multiple dichotomy of six
classes of samples. The Euclidean center distance between these classes were
computed for determining the groupings of classes at each stage, obtaining that
APC/NSR/PVC, VT/VF and SVT form one group respectively due to small
values of the Euclidean center distance within the same group and large values
between different groups.

The path along the tree is chosen according the signs of the yi values. The
first node separates VT/VF (y1 < 0) from APC/NSR/PVC and SVT (y1 < 0).
Similarly, in the second node (based on y2), VT and VF were differentiated. In the
third stage (y3), SVT was distinguished from NSR, APC and PVC. In the later
stages (y4; y5; y6), NSR, APV and PVC were distinguished from each other and
classified.
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Table 22.2 QDF-based classification results (results from [1, Chap. 8])

Testing
NSR APC PVC SVT VT VF

Accuracy
data set result (%)

140 NSR 135 3 1 0 1 0 96:4

140 APC 8 131 0 1 0 0 93:5

140 PVC 4 0 133 2 1 0 95:0

140 SVT 0 1 2 137 0 0 97:9

140 VT 0 0 0 0 136 4 97:1

140 VF 0 0 1 0 4 135 96:4

Table 22.3 QDF-based classification results obtained in the tests

Testing
NSR APC PVC SVT VT VF

Accuracy
data set result (%)

140 NSR 132 8 0 0 0 0 94:3

140 APC 22 118 0 0 0 0 84:3

140 PVC 0 2 138 0 0 0 98:6

140 SVT 0 0 0 140 0 0 100:0

140 VT 0 0 0 0 100 40 71:4

140 VF 0 0 0 0 26 114 81:4

22.2.1 Classification Results

The classification results on test data provided by Ge et al. in [1, Chap. 8] are given
in Table 22.2. The authors selected 200 heart beats for each class and used 60 of
them for training, the others for testing. The mean classification accuracy is 96:1 %.

We re-implemented the protocol proposed by Ge et al. and, since the dataset
used in the original paper was not available, a different dataset has been used in the
experiments. The new dataset was still obtained from PhysioBank [24]. The dataset
is built by selecting 200 samples of each class from 1 or at most 2 patterns. From
these samples, 60 samples are selected at random for each class and used to build the
training set. The others have been used for the test set. The performance we obtained
on the new dataset are lower than those given in [21], the goal here, however, is only
to demonstrate that a s.p.e.d. implementation of the protocol can provide results
comparable to a plain implementation with a reasonable complexity. The algorithm
developed was able to classify correctly 88:3 % of the test set. Table 22.3 shows the
corresponding confusion matrix. In the rest of the chapter we will always refer to
this table.

22.3 Cryptographic Primitives

In this section, we present the cryptographic primitives behind the proposed
protocols, namely Homomorphic Encryption (HE) [45] and Garbled Circuits (GC)
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[49]. Also Oblivious Transfer (OT) [19] is presented, being an important component
of the GC tool. We conclude the section by presenting how HE and GC can be
connected to develop more efficient protocols.

Before describing the tools, we discuss the security model adopted throughout
the chapter. The semi-honest security model [25, Chap. 3.1] is considered here,
according to which the involved parties are assumed to follow the protocol but try
to learn as much as possible from the exchanged messages and their private inputs.
Despite its simplicity, designing and evaluating the performance of protocols in the
semi-honest model is a first stepping stone towards the development of protocols
with stronger security guarantees. The security of the Paillier HE, here considered,
and GC in the semi-honest setting are demonstrated in [39] and [38] respectively,
while the security of their composition in hybrid protocols is proven in [30].

The complexity of privacy preserving protocols depend on many factors. Compu-
tational complexity is of course the most interesting measure, however it depends on
the architecture of the devices used for the computation and is usually measured as
the CPU runtime. A more abstract measure can be provided by counting the number
of the most expensive operations. On the other hand, the communication complexity
of different solutions can be easily compared by measuring (or estimating) the
bandwidth required by each protocol. The number of communication rounds
required by the protocols is also an important quantity, since each transmission
round introduces a delay due to network latency.

22.3.1 Homomorphic Encryption

With an additively homomorphic, asymmetric, encryption scheme, it is possible to
obtain the encryption of the sum of two values a and b available in encrypted form
through another operation � evaluated on the corresponding ciphertexts. In other
words, by denoting with �
� the encryption operator, we have �aC b� D �a� � �b�,
where equality indicates that the decryption of �aC b� and �a� � �b� results in the
same plain value a C b. Considering that the product between two values, one of
them available in non-encrypted form, can be implemented by repeated sums, it
is generally possible to implement the product between an encrypted value and a
known integer quantity by means of an operation �, i.e. �ab� D �a� � b.

The most widely used additively homomorphic cryptosystem is Paillier cryp-
tosystem [39] with plaintext space ZN and ciphertext space Z

�
N2 , where N is a T-bit

RSA modulus and a ciphertext is represented with 2T bits. For short term security
T D 1248 [23]. By using Paillier cryptosystem, addition and product are mapped
respectively into product and exponentiation, i.e. �aC b� D �a� 
 �b� mod N2 and
�ab� D �a�b mod N2. More complex functionalities, such as bit decomposition
[47] and comparison [15], can be evaluated by interacting with the owner of the
decryption key. The communication complexity of HE-based protocols is mainly
related to the number of ciphertexts to be transmitted and the number of rounds
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necessary for the evaluation of the protocol. The computational complexity is
usually measured in terms of number of modular exponentiations, where encryption
and decryption complexities are assumed to be similar to exponentiations.

Multiplicative homomorphic cryptosystems exist as well [17, 44], allowing the
evaluation of products between encrypted values, but they have a lower practical
utility with respect to additive HE.

Fully Homomorphic Encryption schemes allow both the evaluation of additions
and products in the encrypted domain. C. Gentry [22] introduced the first secure
Somewhat Homomorphic Encryption (SHE) and Fully Homomorphic Encryption
(FHE) schemes, working on binary data. SHE allows the evaluation of a limited
number of additions and multiplications, while FHE extends SHE to bypass such
a restriction by performing several re-encryptions of the encrypted values during
the computation at the price of a huge increment of memory and computational
complexity, thus making all FHE schemes proposed so far highly impractical.
Actually, as shown in [14], the key generation with small security needs 36 s and
the public key size is 9.6 MB, while with large security key generation it needs
43 min and the public key is 802 MB long. Re-encryption needs 10.5 s with short
security and more than 14 min with long security. Although key generation and
transmission are really expensive, they are executed only once and their complexity
can be acceptable, on the other side re-encryption is frequently performed, making
secure protocols slow. By using the original Gentry’s SHE scheme and subsequent
improvements, it is possible to evaluate binary circuits composed by up to a
maximum number of XOR and AND gates directly on S’s side without interacting
with C, thus making protocols based on SHE very appealing for clients equipped
with low power devices. Efficient SHE solutions can be designed to evaluate
circuits having a given (small) number of AND gates and then transformed into
more expensive FHE solutions, if necessary. Luckily in most s.p.e.d. protocols, the
number of required operations is known in advance, thus making the use of protocols
based on SHE possible.

A further simplification has been introduced in [42], where a SHE scheme
operating on integer values is introduced, thus allowing to encrypt each input
directly, instead of decomposing it into bits and then use bitwise encryption. On
the negative side, SHE (or FHE) schemes working on integers permit only the
evaluation of polynomial functions (up to a certain degree for SHE).

22.3.2 Oblivious Transfer

An Oblivious Transfer (OT) protocol [19] allows one party, the chooser, to select
one out of two (or more) inputs provided by another party, the sender, in a way that
protects both parties: the sender is assured that the chooser does not receive more
information than it is entitled, while the chooser is assured that the sender does not
come to know which input he received.
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OT protocols consist of two phases: an offline and an online phase. It is
customary to move the set up operations and a great part of the most computationally
expensive operations to the offline phase, which is performed during inactivity
periods, and during which the chooser and the sender run several OT protocols
computed on random values. In such a phase, a great number of OTs can be
evaluated in parallel by using the OT extension presented in [3], which permits to
evaluate up to 700,000 OTs per second over a common wi-fi link. During the online
phase, the results of the precomputed OTs are used to update the OTs to the actual
values [8], through the transmission of only 2m bits in 2 rounds for each OT [27],
where m is the message bitlength.

We indicate with OTk
m the parallel execution of k OT protocols operating on

m-bits long messages.

22.3.3 Garbled Circuits

Any boolean circuit containing no cycle can be privately evaluated on secret inputs
by using Yao’s Garbled Circuits (GC) [49, 50]. Despite several optimizations
proposed later, the overall protocol for GC evaluation is still similar to the first
one proposed by Yao. As shown in Fig. 22.3, a GC is evaluated in three steps.
During the garbling step, one party, the sender, associates a couple of secrets (one for
each logical value) to each wire of the circuit and garbles each gate by encrypting,
for each row of the corresponding truth table, the secret associated to the output
by using the two secrets associated to the inputs. In the transmission phase, the
sender transmits the garbled tables to the other party, the receiver. Moreover the
sender transmits the secrets associated to its input wires, while the receiver obtains
the secrets of his input wires by means of an OT protocol. Finally, during the
evaluation phase, the receiver decrypts the secrets, gate by gate, starting from the
gates connected to the inputs (for a detailed description of each of the above steps
we refer to [36]).

Fig. 22.3 Garbled circuit
scheme

Garbling

Evaluation

input circuitinput

output

Transmission

Receiver Sender
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Thanks to a number of recently proposed optimizations, the complexity associ-
ated to the garbling, transmission and evaluation of XOR gates can be neglected
[31], while for each non-XOR binary gate, thanks to the Garbled Row Reduction
scheme [41], binary gate garbling requires the computation of 3 Hash functions and
the transmission of 3t bits, where t is a security parameter (t D 80 for short term
security). In addition, gate evaluation requires the computation of a Hash function
with probability 3=4.2 With regard to the transmission of input secrets, for each
input bit of the sender, a secret of t bits is transmitted, while for each input bit of
the receiver an OT is evaluated (2t bits transmitted online). By considering that the
values associated with the wires are correlated [31], additional bandwidth in the
OT extension protocol can be saved as shown in [3]. Other optimizations can be
obtained by observing that the gates of the circuit can be topologically sorted to
pipeline the circuit generation and transmission [26], and by using fixed-key AES
in gate garbling [9].

We underline that if the sender and the receiver know in advance the to-be-
evaluated function, garbling and circuit transmission can be performed offline, when
the inputs are not yet available.

22.3.4 Hybrid Protocols

The use of hybrid protocols permits to efficiently evaluate functionalities for which
full-HE or full-GC solutions would not be efficient (or even impossible). Given
that GC and HE rely on different ways of representing data, conversion from
homomorphic ciphertexts to garbled secrets (or vice versa) must be performed
by resorting to interfacing protocols based on additive blinding. In particular, by
referring to the protocols described in [32], it is easy to derive that the conversion of
an `-bit value from HE to GC requires the on-line transmission of additional 2TC7`t
bits, while the conversion from GC to HE requires an overhead of 2TC.`C�/5t bits,
where � is an obfuscation security parameter (usually � D 80). Hybrid protocols
have been used to develop efficient solutions for biometric identification [11, 13, 46],
biomedical analysis [4, 6, 7, 37], secure approximated general function evaluation
[40], etc. have been proposed. Other cryptographic primitives can also be used in
hybrid protocols. For example, in [16], the authors present a framework, called ABY,
that efficiently combines secure computation schemes based on Arithmetic sharing,
Boolean sharing, and Yao’s garbled circuits.

2The garbling of a d-input gate requires the computation of 2d � 1 Hash functions and the
transmission of .2d � 1/t bits, while gate evaluation requires the computation of a Hash function
with probability 1� 1=2d .
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22.4 Privacy Preserving Linear Branching Program

In this section, we formally introduce Linear Branching Programs (LBP) [7], and
show how they can be implemented in a s.p.e.d. framework [4, 5, 7]. We then
introduced two different ECG classifiers based on LBP.

22.4.1 Linear Branching Programs (LBP)

A Branching Program (BP) is a classification tool based on decision graph that
can be easily implemented by relying on STPC tools [29]. In BP, starting from
the root, in each node the left or right sub-tree is chosen according to the value
of a discriminant feature, until a classification leaf is reached. A Linear Branching
Program (LBP), such as the one shown in Fig. 22.2, is an evolution of standard BP,
where the decision is not performed according to a single feature, but according to
the result of a scalar product (a linear operation) between an array of features and
an array of discriminant features. Such solution is useful to separate elements of
different classes in more steps, where the first steps distinguish among groups of
classes and then the choice of the classification class is performed in the leaves. A
formal definition of LBP is given below.

Definition 22.1 (Linear Branching Program). Let x.`/ D Œx.`/
1 ; ::; x.`/

n �T be the
attribute vector of signed `-bit integer values. A binary Linear Branching Program
(LBP) L is a triple hfP1; ::; Pzg; Left; Righti. The first element is a set of z nodes
consisting of d “decision nodes” P1; ::; Pd followed by z � d “classification nodes”
PdC1; ::; Pz.

Decision nodes Pi, 1 � i � d are the internal nodes of the LBP. Each Pi WD
D

w.`/
i ; t.`

0/
i

E

is a pair, where w.`/
i D Œw.`/

i;1 ; ::; w.`/
i;n � is the linear combination vector

consisting of n signed `-bit integer values (“weights”) and t.`
0/

i is the signed `0-bit

integer value (“threshold”) with which w.`/
i x.`/ DPn

jD1 w.`/
i;j x.`/

j is compared in the

node. Left.i/ is the index of the next node if w.`/

i x.`/ � t.`
0/

i ; Right.i/ is the index

of the next node if w.`/
i x.`/ > t.`

0/
i . Functions Left./ and Right./ are such that the

resulting directed graph is acyclic.
Classification nodes Pj WD

˝

cj
˛

, j 2 fd C 1; : : : ; zg are the leaf nodes of the LBP
consisting of a single classification label cj each.

Given a LBP L and an input vector x.`/, the evaluation starts from the root

node P1. If w.`/

1 x.`/ � t.`
0/

1 , we move to decision node indicated by Left.1/, else

to Right.1/. Repeat this process recursively (with corresponding w.`/

i and .t.`
0/

i /),
one of the classification nodes is reached, obtaining the classification c D L.x.`//.
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In the general case of LBPs, the bit-length `0 of the threshold values t.`
0/

i has to be
chosen according a worst case analysis aiming to determinate the maximum value
of the linear combinations [4], obtaining `0 D 2`C dlog2 ne � 1.

In the following, we describe two possible s.p.e.d. implementations of a generic
LBP: a full-GC protocol and a hybrid protocol.

22.4.1.1 Full-GC Implementation

We here describe a boolean circuit implementing LBP that can be evaluated by
using GC. First, S garbles a boolean circuit C implementing the LBP. Such circuit
has `-bit inputs x.`/

1 ; : : : ; x.`/
n , provided by C and `-bit input w.`/

i;j and `0-bit S’s

input t.`/
i , with i 2 f1; : : : ; dg; j 2 f1; : : : ; ng, provided by S. The output of the

circuit is composed by the bits �1; : : : ; �d that obliviously computes the intended
functionality as described below.

The circuit is composed by d sub-circuits, one for each node and a 6-input gate
returning the final classification. For each node i, with 1 � i � d, the circuit shown

in Fig. 22.4 implements �i D .w.`/
i x.`/ > t.`

0/
i / D .

Pn
jD1 w.`/

i;j 
 x.`/
j > t.`

0/
i /. First

of all the magnitudes of the feature elements x.`/
j are multiplied by the magnitude

Fig. 22.4 Linear selection circuit (part of C) of a node
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Table 22.4 Protocols for secure evaluation of private LBPs

Classification
Moves

Asymptotic communication complexity
protocol GC OT HE

Full-GC 2 .2nd`2 C nd`0/3t OTn`
t

Hybrid 4 6d`0t OTd`0

t .nC d `0

T��
ed/2T

of the corresponding weight w.`/
i;j (by using the multiplication circuit MUL`�1 [34]),

while the sign of the product is determined by using XOR gates with the sign of
the features and the corresponding weights as inputs. Afterwards, the outputs of the
products are represented with 2`�2 bits and each of them is summed or subtracted to
the others, according to the corresponding product sign, by using n� 1 ADDSUB`0

circuits [34]. The scalar product result y.`0/
i DPn

jD1 w.`/
i;j 
 x.`/

j is then compared with

the threshold t.`
0/

i by using a comparison circuit (CMP`0

>) [34] that outputs �i. Finally
the d values �i are input to a d-input gate that returns the string of the corresponding
class. The resulting circuit is composed by� 2nd`2C nd`0 non-XOR 2-input gates
and a d-input gate [4].

Considering only the precomputation of OT and transmitting the circuit during
the online phase, the communication complexity of the full-GC protocol, shown
in Table 22.4, corresponds to the complexity of the OTn`

t protocol (2t bits online
for each input bit composing the feature vector) plus the size of the garbled circuit
(3t bits for each non-XOR gates). The whole communication is performed in two
rounds.

22.4.1.2 Hybrid Implementation

A secure LBP implementation can also be obtained by using a hybrid protocol,
as shown in Fig. 22.5. The idea is to compute the products (the most expensive
part in the full-GC solution) by relying on HE and then using GC to evaluate the
comparison, whose HE implementation is expensive, and the classification tree.

We assume that C has already generated a key-pair for the additively homo-
morphic encryption scheme and has sent the public key pkC to S. C encrypts the
elements of his composite feature vector and sends the encrypted values �x.`/

1 �; : : : ;

�x.`/
n � to S. Using the additively homomorphic property, S can compute the scalar

product between these ciphertexts and the weights w.`/
i as �y.`0/

i � D �
Pn

jD1 w.`/
i;j x.`/

j �,
1 � i � d.

Afterwards, the values y.`0/
i must be obliviously compared with the thresholds

t.`
0/

i . HE-based comparison is an expensive operation, hence a GC implementation

is preferable. The ciphertexts �y.`0/
i � are converted into the corresponding garbled
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Fig. 22.5 Hybrid LBP protocol. For simplicity we assume that all the yi values can be packed in a
single ciphertext

values through a “HE to GC” interface (see Sect. 22.3.4). The y.`0/
i values must be

blinded before being sent to C. To reduce the required bandwidth of the interface,
several values can be packed together into a single ciphertext. We assume that the
plaintext space of the HE cryptosystem (ZN) is large enough to contain the sum of
the blinding value and the bitwise concatenation of d0 values, i.e. d0 D b.T��/=`0c,
where � is a blinding security parameter. Hence dd=d0e ciphertexts are obtained.
In the following, we suppose for simplicity that only a ciphertext is obtained. To
pack the values together, the encrypted values �2`0�1 < y`0

i < 2`0�1 are shifted
into the positive range .0; 2`0

/ by adding 2`0�1. Afterwards, they are concatenated

by computing �yp� D �
Pd

iD1 2`0.i�1/.y`0

i C 2`0�1/� DQd
iD1.�2

`0�1��y`0

i �/2`0.i�1/
. The

packed ciphertext �yp� now encrypts a d`0 bit value.
S blinds the encrypted value �yp� in order to hide the encrypted plaintext from

C. To do so, S adds a randomly chosen value r 2 Zd`0C� under encryption before
sending it to C, who can decrypt the resulting ciphertext but does not get to know
the plain value yp. Afterwards, a circuit C0 is evaluated by using GC. The circuit C0
has the d`0 least significant bits of ypC r and r as inputs, together with the threshold
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Fig. 22.6 Privacy-preserving ECG diagnosis

values t.`
0/

i and outputs the classification result. First of all the blinding value r is

removed by using a SUBd`0

block (a subtraction circuit [34] composed by d`0 non-

XOR gates), then the result yp is split into the d values y.`0/
i that are compared with

the threshold value t.`
0/

i in d CMP`0

blocks (`0 non-XOR gates each) and finally the
decision tree is evaluated through a d-input gate.

The asymptotic communication complexity of the hybrid LBP protocol (shown
in Table 22.4) consists of n C d

d0 Paillier ciphertexts of size 2T bits each, garbled
circuits of size � 2d`0 non-XOR gates (each one having size 3t), and a parallel
OT protocol OTd`0

t . Two rounds are necessary to send the homomorphic encryptions
plus those of the underlying OT protocol (the garbled circuit can be sent with the
last message of the OT protocol).

22.4.2 ECG Classification Through LBP and Quadratic
Discriminant Functions

In order to describe how LBP’s can be used for privacy-preserving ECG classifier,
we observe that the classification algorithm based on the QDF functions and the
classification tree (described in Sect. 22.2) is nothing but an LBP with an `-bit
representations composite feature vector x.`/ as attribute vector, and six nodes

Pi D
D

w.`/
i ; 0

E

; i D 1; ::; 6, where w.`/
i are `-bit representations of the projection

vectors. In this way, the general scheme for the privacy-preserving implementation
of the classifier assumes the form given in Fig. 22.6.

The composite feature vector is computed by C on plain data. Such a choice
does not jeopardize the security of the system from the server’s point of view,
since S is not interested in keeping the structure of the classifier secret, but only
in preventing users from knowing the matrix W D Œw1 : : : w6� and the classification
tree. On the contrary, all the steps from the projection onto the directions wi’s,
until the final classification are carried out securely. Note that with respect to
the overall architecture depicted in Fig. 22.1, a quantization block is introduced
before the encryption of the composite feature vector. The need for such a block
stems from the observation that the parameters a1; a2; a3; a4 resulting from the AR
model estimation procedure are usually represented as floating point numbers, a
representation that is not suitable for s.p.e.d. protocols which can be applied to
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integer numbers only. For this reason, the elements of the composite feature vector
x and the coefficients of the matrix W are quantized and represented in integer
arithmetic for subsequent processing. Note that the choice of the quantization step,
and consequently the number of bits used to represent the data (` in the LBP
terminology), is crucial since on one hand it determines the complexity of the overall
secure protocol and on the other hand it has an impact on the accuracy of the ECG
classification.

In contrast to the protocol described in Sect. 22.2, the sixth feature is omitted,
obtaining the feature vector f D Œa1; a2; a3; a4; n1� and hence the composite feature
vector x is composed by 21 values. This omission is due to the fact that the removed
feature can be expressed as n2 D 300 � n1, where 300 is the number of samples in
each chunk, and in the QDFs each product involving n2 (its square values and its
products with other features) can be expressed as a function of n1.

22.4.2.1 Quantization Error Analysis

The quantization error introduced passing from x to x.`/ and from wi to w.`/
i impacts

on the classification accuracy. Such impact is analyzed to determine the number of
bits needed to represent the attribute vector and the linear combination vectors of the
LBP. The value of ` influences the complexity of the secure classification protocol.

To start with, we observe that quantization is applied to the composite feature
vector x, that is used to compute the vector y, through multiplication with the
matrix W. After such a step, only the signs of y are retained, hence it is sufficient to
analyze the effect of quantization until the computation of the sign of y. As to the
processing steps carried out by the client prior to quantization, we assume that all the
blocks until QDF are carried out by using a standard double precision floating point
arithmetic. In order to simplify the notation, we consider the computation of one
coefficient of the vector y. The function to be computed is a simple inner product:
y D wx D P

j wjxj where the index i has been omitted, and wj and xj are real
numbers. The quantized version of the above variables can be expressed as follows:

wq;j D bk1wje;
xq;j D bk2xje;

(22.5)

where k1 and k2 are positive integers chosen so that the values involved in the
computation do not exceed a given bitlength and the error is lower than a target.
From a worst case analysis (see the details in [7]), it results that 54 bits are necessary
to represent each of the 21 features in x and the elements in W and guarantee
a final error lower than 10�5. However, we may expect that in practice a good
classification accuracy can be obtained also with less than 54 bits. To investigate
this aspect, a simulator has been implemented to detect experimentally which is the
minimum number of bits needed. The results obtained by running the simulator on
the ECG dataset are shown in Fig. 22.7. This figure shows that ` D 44 is sufficient
to guarantee the same performance of a non-quantized implementation.
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Fig. 22.7 Classification accuracy of dataset using 21 and 15 features

While classification accuracy is a primary goal in plain domain implementations,
where the protocol runs in negligible time, in s.p.e.d. applications the protocol
complexity is so high that a small accuracy loss can be accepted if it results in a
significant complexity improvement. In order to further speed up the protocol, a
version of the ECG classifier with a reduced number of features has been tested.
Specifically, the composite feature vector size is reduced by eliminating also the
feature n1. In this way, we obtain a 15-coefficient x. Obviously the reduction of
the feature space also results in a reduction of the accuracy, but this reduction is
quite negligible: experiments, in fact, indicate that the accuracy decreases only from
88:33 % to 86:30 %. On the other hand, as it will be shown later, by removing one
feature we gain a lot from a complexity point of view. Such a gain is already visible
in Fig. 22.7, showing that with the reduced set of features, a value of ` as low as 24 is
enough to obtain the same performance of a non-quantized version of the classifier.

22.4.3 ECG Classification Through LBP and Linear
Discriminant Functions

In the previous section, we have shown that the complexity of ECG classification
can be reduced by discarding a single feature at the expense of a small accuracy
loss. In this section we show that a greater complexity reduction can be obtained
by using Linear Discriminant Functions (LDF) instead of QDF, again with a loss of
few percentage points in the accuracy of the classification.

In the classification tree defined in Sect. 22.2, linear functions are used instead
of quadratic functions. Hence the feature vector f D Œa1; a2; a3; a4; n1� is used, i.e.
x D f. This provides many advantages. First of all also, the bitlengths of the feature
vector and weight vectors wi are reduced and the number of products necessary to
compute y D Wx is reduced as well. Moreover, the maximum value that a single
feature can assume is also reduced, since no second order elements are present. In
fact, from the worst case analysis we obtain that 33 bits are sufficient to correctly
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Fig. 22.8 Classification accuracy of dataset using 5 and 4 features

represent the magnitude of features and weights. Indeed, as in the QDF case, less
bits could be used to represent the values. Once again the minimum number of
bits can be determined by measuring the accuracy as a function of the bitlength
used to represent the inputs. Figure 22.8 shows the results obtained with n D 5

and n D 4 features respectively. We can see that an accuracy of 85:95 % can be
reached by using ` D 22 (excluding sign) when the feature vector is composed by 5
features. By discarding n1 the accuracy decreases to 83:33 %. However, as Fig. 22.8
shows, a similar accuracy can be guaranteed already with ` D 15 bits, where errors
respect the floating point implementation make the classification accuracy increase
to 83:35 %.

22.4.4 Complexity Analysis

The communication complexity of the Hybrid and the GC protocols is estimated
by relying on the analysis carried out in the previous section. The communication
complexity is evaluated by considering a C++ implementation of the two protocols.
The security parameters are the bitlength T of the RSA modulus for Paillier
encryption [39], and the bitlength t of the symmetric security parameter for the
GC protocol. For the tests, the following security parameters are chosen according
to common recommendations [23]: T D 1248; t D 80 for short-term security
(recommended use up to 20103), T D 2432; t D 112 for medium-term security (up
to 2030) and T D 3248; t D 128) for long-term security (up to 2050).

The following configurations have been considered:

�1: QDF, n D 21 and ` D 54 bits, as obtained from the theoretical estimations;
�2: QDF, n D 21 and ` D 44 bits, the lower value obtained from the practical

tests;

3Tests were performed in 2009. Anyway these values are still widely used today.
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Table 22.5 Estimated communication complexity of LBP with QDF

Configuration Features n ` Accuracy (%)
Protocol Short-term Medium-term Long-term
type security security security

�1 5 21 54 88.33 GC 21.5 MB 30.1 MB 34.4 MB

hybrid 65.8 KB 95.6 KB 111.6 KB
�2 5 21 44 88.33 GC 14.4 MB 20.1 MB 23.0 MB

hybrid 55.2 KB 80.8 KB 94.7 KB
�3 4 15 24 86.30 GC 3.1 MB 4.4 MB 5.0 MB

hybrid 31.7 KB 46.9 KB 55.3 KB
�4 5 5 22 85.95 GC 0.9 MB 1.2 MB 1.4 MB

hybrid 26.0 KB 37.2 KB 43.1 KB
�5 4 4 21 83.33 GC 0.6 MB 0.9 MB 1.0 MB

hybrid 24.1 KB 34.4 KB 39.8 KB
�6 4 4 15 83.35 GC 0.3 MB 0.5 MB 0.5 MB

hybrid 17.8 KB 25.5 KB 29.6 KB

�3: QDF, n D 15 and ` D 24 bits, obtained by discarding feature n1;
�4: LDF, n D 5 and ` D 22 bits, the smallest bitlength guaranteeing an

acceptable accuracy;
�5: LDF, n D 4 and ` D 21 bits, n1 is discarded;
�6: LDF, n D 4 and ` D 15 bits, the value bitlength is decreased respect to �5.

The estimated communication complexity of the ECG classification protocols
is provided in Table 22.5. Offline precomputation of OT is used, but not the
transmission of the circuit during precomputation. Note that since `0D112 (in the

worst case of �1) and d D 6, all the y.`0/
i values can be packed in a single ciphertext.

The computation complexity of the first three configurations has been measured
by running the hybrid and GC protocols, both implemented in C++ using the Miracl
library.4 The measured complexities for short-term security are shown in Table 22.6,
as reported in the original paper [5]. The third configuration has been tested even for
medium-term security. The tests were performed on two PCs with 3 GHz Intel Core
Duo processor and 4 GB memory connected via Gigabit Ethernet. The computation
complexity for the client and the server are separated into CPU time and total
time which additionally includes data transfer and idle times. We highlight that
in the tests, OT has not been precomputed and garbled row reduction was not
implemented. From these measurements we draw the following conclusions.

Different strategies can be sued to decrease the protocol complexity. By discard-
ing only the sixth feature in the QDF and quantizing the features with 24 bits (§3),
we have a slightly loss of accuracy of the protocol (� 2 %). A similar accuracy loss
(� 2:4 %) has been obtained by opting for a LDF (�4) instead of a QDF. This is

4http://www.shamus.ie.

http://www.shamus.ie
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Table 22.6 Performance of protocols for secure ECG classification through
LBP

Computation
Protocol Client (s) Server (s)

Configuration Features n ` type CPU Total CPU Total
�1 5 21 54 Hybrid 2.3 35.4 5.4 34.2

GC 7.2 64.5 17.3 64.7
�2 5 21 44 Hybrid 2.0 29.0 4.8 27.6

GC 4.7 48.5 11.5 48.8
�3 4 15 24 Hybrid 1.3 18.7 3.3 16.2

GC 1.3 17.5 3.1 19.2
�3a 4 15 24 Hybrid 6.5 40.5 16.3 30.9

GC 3.0 20.4 4.6 20.8
a medium-term security

acceptable because an ECG may be processed in a very short time, opening the way
to real time processing. On the other hand, accuracy decreases by other 2.5 % points
in configurations �5 and �6.

The performance improvements obtained in the configuration �2-6 are due
to a reduced number of features and smaller values of `. The first one results
in a lower number of products, affecting particularly the complexity of the GC
implementation, and the bandwidth of the hybrid implementation; the second
one affects the number of gates composing each block of the circuits, especially
products.

The bandwidth in the GC protocol (MB) is an order of magnitude larger than
that of the hybrid protocol (KB). However, the GC protocol requires only two
transmission rounds, while the hybrid protocol requires 4 rounds. Configuration �4
is indeed preferable to the �1-3 configurations making use of QDF, but the accuracy
loss (3 %) from configuration �4 to configuration �5 is not acceptable given the
slight performance improvement. Only the small complexity of configuration �6
can justify the choice of using both LDF and four features. On the other hand the
privacy preserving implementation does not provide the same results of a floating
implementation in the plain domain.

The computation complexity has been measured as runtimes for configurations
�1-3. In �1 and �2 the runtime of the Hybrid protocol is three times lower than
that of the GC protocol (CPU time) and two times faster if we consider the total
time, whereas for the optimized test case �3 both protocols have approximately the
same computation complexity. Configurations �4-6 has not been tested. However,
given the smaller parameter sizes with respect to configuration �3, we expect that
configurations �4-�6 have runtimes in the order of some seconds.

For medium-term security, the GC protocol is substantially better than the Hybrid
protocol. Increasing the security parameters has a more dramatic effect on the
computational complexity of the Hybrid protocol than on that of the GC protocol
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(see test �3 vs. �3a). This effect results from the asymmetric security parameter T
being almost doubled, whereas the symmetric security parameter t is only slightly
increased.

We can derive that by representing the quantized features with a lower number of
bits (the minimum that permits a correct evaluation) and omitting the feature related
to the AR model error or opting for the LDF, the communication and computation
complexities decrease significantly, thus making the small accuracy loss acceptable.
However the highest accuracy loss due to the joint use of LDF and 4 features is not
justified by the performance gain.

22.4.4.1 More Efficient LBP Implementations

We conclude this section underlying that a more efficient LBP implementation
can be obtained by introducing precomputation in the full-GC and Hybrid LBP
protocols, i.e. not only by using OT precomputation, but also moving circuit
garbling and transmission to an offline phase (details in [7]).

22.5 Privacy Preserving Classification by Using Neural
Network

In this section, we present an alternative privacy preserving ECG classification
protocol based on artificial Neural Networks (NN) [7]. NNs are well-know machine
learning structures used in many different fields ranging from approximation to
classification. NNs are widely used as classifiers and, in general, they give good
results if the set used to train the network is representative of all the considered
classes and the generalization grade is good enough (see [28] or [2]).

22.5.1 Neural Network Design

Finding the right topology for a NN is not a simple task due to the fact that NNs have
several degrees of freedom including: number of hidden layers, neurons per hidden
layer and form of activation functions. In most cases, a two layer NN is sufficient
to obtain good classification accuracy, therefore in the rest of the chapter we focus
on NNs with two layers, that is NNs in which the inputs are connected to a hidden
layer, that, in turn, is connected to the output layer. Each neuron weights the inputs
through a scalar product and uses the result in an activation function. As shown in
Fig. 22.9, each neuron, or perceptron, evaluates a scalar product among the weights
w D .w1; w2; : : : ; wn/ and the input vector x D .x1; x2; : : : ; xn/T and adds up the
bias b:
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Fig. 22.9 A perceptron
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after this, the activation function is applied producing the neuron output:
z D f .y/ D f .bC w x/.

A NN is composed by a cascade of layers. Usually only two layers are used. The
first layer is named the hidden layer and is composed by nh neurons connected to
the inputs, while the second one is the output layer, composed by no neurons. Wh is
a matrix of size nh � n whose elements are the weights of the connections between
the inputs and the hidden layer, while bh is a vector of length nh that contains the
biases of the neurons. The element Wh.i; j/ D whIi;j is the coefficient used to weight
the jth input in the ith node of the hidden layer. The output of the hidden layer, a
vector of length nh, is

zh D fh.yh/ D f .bh CWh x/; (22.7)

where the ith element zhIi D fh.yhIi/ D fh.bhIi CPn
jD1 whIi;j xj/ is the output of the

corresponding neuron, and the activation function fh.
/ is applied component-wise
to all the values of the input vector. The output of the hidden layer is then connected
to the neurons of the output layer. The weights of the output layer are arranged in
a matrix Wo of size no � nh whose element Wo.i; j/ D woIi;j is the coefficient used
to weight the output of the jth node of the hidden layer in the ith node of the output
layer. The bias vector of the output layer is bo and has length no, while the output of
the neuron is

zo D fo.yo/ D fo.bo CWo zo/ (22.8)

where zoIk D fo.yo/ D boIk CPnh
iD1 woIk;izhIi is the output of the kth neuron of the

output layer.
The activation function fh in the hidden layer can differ from the activation

function in the output layer. In fact in the NN described below the neurons of
the hidden layer apply the satlin.
/ function (details below) while the output layer
applies the identity function, i.e. zo D yo. This choice is motivated by the necessity
of solving conflicts that may arise. In fact we expect that only one output neuron
returns a positive value, but sometimes two or more output neurons erroneously
classify the input in the associated classes. If more neurons have a positive output,
the one returning the highest value is chosen for classification through a maximum
selection tree, hence the NN classification result is o D ARGMAXfzog.
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Fig. 22.10 Transfer functions. (a) tansig. (b) satlin

We now describe the NN design for the ECG classification. The number of inputs
is determined by the number of features the classifier relies on. Only the features
coming from the AR model are used and hence n D 4. The number of output layers
corresponds to the number of diseases the NN should distinguish, so we have no D
6. The degrees of freedom we have, then, are nh, the number of neurons in the hidden
layer, and the activation function in the hidden layer.

The activation function is chosen so to ease a s.p.e.d. implementation. A common
choice would be the Hyperbolic Tangent Sigmoid transfer function tansig.x/ D
2=.1C e�2x/ � 1, widely used in NNs (Fig. 22.10a). Unluckily, the tansig.
/
function is difficult to implement in a s.p.e.d. protocol, hence the satlin.
/ transfer
function (Fig. 22.10a), defined by

f .y/ D satlin.y/ D
8

<

:

1 if y > 1

y if � 1 < y < 1

�1 if y < �1;

(22.9)

is used.
To choose nh, some tests have been carried out trying to reach the same accuracy

provided by the LBP-based classifier in configuration �3. There is not a rule to
choose the correct number of neurons for the hidden layer. NNs with a number of
neurons varying from 4 to 15 neurons have been tested. A training set was built
by using as samples the pair: .x; o/ where, as said before, x is the feature vector
.a1; a2; a3; a4/ and o is a six-component vector, having value 1 for the index of the
class the ECG signal belongs to and �1 elsewhere.5 In the experiments the dataset
has been split into a training set (containing 140 ECG sequences) and a test set
(with the remaining 60 signals).6 As shown in Fig. 22.11, the smallest NN giving a

5This kind of Neural Network is often called NN with fired output.
6NN network training requires a large dataset, hence authors had the necessity to choose a bigger
training set than the one used for the LBP implementation, where the training and test dataset size
have been chosen according to [21].
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Fig. 22.11 Classification accuracy as a function of the number of nodes in the hidden layer and
satlin as activation function

Fig. 22.12 Neural network structure. In the ECG classification protocol n D 4; nh D 6 and
no D 6

classification accuracy larger than 86:30 % has nh D 6 neurons in the hidden layer.
The steps composing the NN are shown in Fig. 22.12.7

22.5.2 Quantized Neural Network Classifier

For a s.p.e.d. implementation we need to introduce a quantized version of the NN
classifier described so far. Specifically, the multipliers qi, qh, qo are introduced to
quantize, respectively, the inputs of the NN, and the parameters (weights and biases)
of the hidden and the output layers. In the following, we use the symbols `i, `h, `o to
indicate, respectively, the number of bits needed to represent the quantized version
of the inputs and the quantized parameters of the hidden and output layers, including
the sign bits.

By defining the quantized input as xq D bqixe and the quantized weights as
Whq D bqhWhe, the quantized output vector zhq of the hidden layer is:

zhq D QSATLIN.yhq/ D QSATLIN
�

bhq CWhq xq
�

; (22.10)

7Many other NNs have been trained by changing the number of neurons and the activation
functions, as well as the training method, before choosing the NN described here. See [7] for
details.
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where the biases bhq D bqiqhbhe have been multiplied by both qi and qh, to make the
bias homogeneous with the term qiqhWh x. They need to be represented with `bh D
`i C `h � 1 bits. The components of yhq are obtained as the sum of 5 components:
the products between the inputs and the weights and the bias. Considering that the
magnitude of the components of xq and Whq are represented with `i � 1 and `h � 1

bits respectively, each element in yhq needs `yh D `iC`hC2 bits, including the sign.
The SATLIN function of Eq. (22.9) is replaced with its quantized version defined as
follows:

QSATLIN.yhq/ D
8

<

:

qiqh if yhq � qiqh

yhq if �qiqh < yhq < qiqh

�qiqh if yhq � �qiqh

(22.11)

where saturation occurs when the magnitude of the input is equal to qiqh corre-
sponding to a unitary magnitude of the non-quantized inputs. Due to saturation,
the output of QSATLIN can be represented with less bits than its input, namely
`q D 1C dlog2.qiqh/e bit at most (one bit represents the sign), so each component
in zhq requires at most `q bits, less than its input yhq.

A similar analysis can be applied to the output layer, where the boq D bqoqhqiboe
components are represented with `bo D `q C `o � 1 bits and

zoq D yoq D boq CWoqyhq; (22.12)

where each component of yoq requires `yo D `q C `o C 2 bits (as before one
bit is used for the sign). At this point, the output of the maximum function that
completes the classification is o D ARGMAXfzoqg and, since o is just the index of
the largest component, the number of bits necessary to represent it is the logarithm
of the number of neurons in the output layer, i.e. dlog2 noe D 3 bits. Finally
the NN classification result is o D ARGMAXfyog that can be represented with
dlog2 noe D 3 bits.

22.5.2.1 Representation vs. Classification Accuracy

We are now ready to determine the minimum number of bits necessary to represent
the values involved in the computations, in order to obtain the same accuracy of
a floating point implementation. This is a crucial step, since the size in bits of the
input features and that of the classifier parameters have an immediate impact on the
complexity of the s.p.e.d. implementation.

The minimum number of bits necessary to reach the same classification accuracy
of the LBP classifier has been obtained by running a simulator that evaluates
the classification accuracy of the NN in the case `i D `h D `o, obtaining the
classification accuracy shown in Fig. 22.13. To guarantee the same classification
obtained by the LBP classifier, at least `i D `h D `o D 13 bits must be used. These
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Fig. 22.13 Classification accuracy as a function of `i, `h, `o

Fig. 22.14 Classification accuracy in function of `o, with `i D `h D 13

numbers of bits (namely `i and `h) are those necessary to correctly represent the
integer part of the input features and NN parameters multiplied by the quantization
factors qi and qh.

The results of the scalar products in the hidden layer are used as input of the
QSATLIN.
/ function that gives an output with magnitude bounded by qiqh, hence
it can be represented with `q D dlog2 qiqhe C 1 D 18 bits, including the sign bit.
As a further test, the number of bits used for the output layer has been reduced
once the bitlength of the parameters of the hidden layer has been fixed. As shown in
Fig. 22.14, letting `o D 8 is sufficient to guarantee the same accuracy.

22.5.3 Privacy-Preserving GC-Based NN Classifier

In this section we describe a GC implementation of the NN (this section is based on
the system presented in [7]).

The inputs to the NN are determined according to the analysis carried out in
the previous section and shown in Table 22.7. Secrets are associated to C inputs by
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Table 22.7 Inputs to the GC
implementation of the neural
network

Input Owner Bitlength

xq C n � `i D 4 � 13 D 52

Whq S nh � n � `h D 312

bhq S nh � `bh D 150

Woq S no � nh � `o D 288

boq S nh � `bo D 150

evaluating an OT52
t , while S directly transmits the secrets associated to his 900 bits.

The final output, represented in 3 bits, is provided to C, while all the intermediate
values are hidden to both C and S. The circuit is constructed by instantiating each
block of Fig. 22.12 through boolean circuits, as described below.

Hidden layer—scalar products: The inputs xq and Whq are given in sign-
magnitude representation so that their component-wise product can be easily
computed: the magnitude is the product of the input magnitudes using n 
 nh

MUL blocks [34] while the sign is computed “for free” by XORing the input
signs. Now, depending on the sign, the magnitudes of the products are added
to or subtracted from bhq by using a cascade of nh ADDSUB blocks [34]. The
output yhq is a vector with nh D 6 components of 28-bit signed values in 2’s
complement representation.

Hidden layer—activation functions: Afterwards, for each of the nh D 6 neu-
rons the QSATLIN activation function is evaluated: first, the 28-bit input is
converted from 2’s complement into sign/magnitude representation with an
ADDSUB block. Then, the QSATLIN function, defined in Eq. (22.11) is evalu-
ated by a circuit implementing QSATLIN.yhq/ D sign.yhq/ 
min.abs.yhq/; qiqh/

(we omit the index of the neuron for simplicity). The minimum is computed by
comparing the magnitude of yhq with qiqh using a CMP block [34]. Depending
on the outcome of this comparison, the magnitude of the outcome is either the
magnitude of yhq or qiqh selected with a MUX block (a multiplexer circuit [34]).
The output zhq is a vector of nh D 6 components of `q D 18-bit signed values in
sign/magnitude representation.

Output layer—scalar products: The value yoq D boq C Woqyhq is computed
similarly to bhq CWhqxq. The output yoq is a vector with no D 6 components of
28-bit signed values in 2’s complement representation.

Output layer—maximum selection: Finally, the index of the maximum value o
(3 bits) is provided to C and is determined with an ARGMAX block that selects
the maximum input value and returns his identifier (the index of the node) [34].

In total, the circuit has 52 input wires corresponding to the inputs from C, 900

input wires for the inputs belonging to S, and at most 16; 921 2-input non-XOR
gates. The costs for this NN-based ECG classification protocol with symmetric
parameter t are summarized in Table 22.8.
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Table 22.8 Complexity of NN-based ECG classification protocol

Short-term Medium-term Long-term
Implementation Moves security security security

Full-GC 2 505:5 KB 707:8 KB 808:9 KB

Hybrid 8 61:6 KB 98:8 KB 120:3 KB

x
×

Wh

+

bh

SATLIN ×

Wo

+

bo

ARGMAX
ozh yoyh

HE GC HE GC

Fig. 22.15 Hybrid implementation of the neural network

22.5.4 Privacy-Preserving Hybrid NN Classifier

The NN can be also implemented by using a hybrid protocol, alternating HE and GC
subprotocols, as shown in Fig. 22.15. The following analysis assumes that the same
setting (and bit-lengths) used so far are adopted. As before, C inputs the encrypted
vector �xq�, while S inputs Whq, bhq, Woq and boq. The final output is provided to
C, while all the intermediate values are hidden to both C and S.

Hidden layer—scalar products: The scalar products in the first step are imple-
mented by using HE. C sends the encrypted features to S which evaluates six
scalar products on encrypted data. Then S packs the resulting yhq in a single
ciphertext and blinds it with a random value Rh. Finally the value is sent back
to C. Considering that the scalar product results can be represented by using
28 bits, the packed value is composed by 168 bits and the random value has
to be represented with 168C � bits (usually � D t). In total 5 ciphertexts are
transmitted in 2 moves for a total bandwidth of 10T bits.

Hidden layer—activation functions: The QSATLIN activation functions are
evaluated by using GC. C decrypts the ciphertext received and inputs the
168 least significant bits to a GC, through an online OT168

t , while S inputs the 168

least significant bits of Rh and other 6 random values, each one represented with
18 C � bits, used to blind the outputs of the activation functions. The circuit is
composed by the SUB block that removes the obfuscation, the QSATLIN circuit
(as described in Sect. 22.5.3) and finally 6 ADD circuits needed to blind the
activation function outputs zhq. This step requires 2 moves and the transmission
of 168 
 t bits for the OT, 168 
 t C 6 
 .18 C �/ 
 t bits as S’s input secrets and
540C 6� non-XOR gates of size 3t.

Output layer—scalar products: C encrypts the 6 blinded outputs obtained by
the GC section and transmits the ciphertexts to S, which removes the blinding
and then evaluates 6 scalar products on encrypted data. Then S packs the result
in a single ciphertext and blinds it with a random value Ro. Finally the value is
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sent back to C. Considering that the scalar product results can be represented by
using 28 bits, a single pack of 168 bits is obtained and the random value must be
represented with 168C � bits. In total 7 ciphertexts are transmitted in two rounds
for a total bandwidth of 14T bits.

Output layer—maximum selection: In the last step, the index of the maxi-
mum value is retrieved by using GC. C decrypts the received ciphertext and
inputs the 168 least significant bits into a GC, through 168 online OT’s, while
S inputs the 168 least significant bits of Ro. The circuit is composed by the
SUB block that remove the obfuscation and the ARGMAX block [34]. In this
phase, requiring 2 moves, 168 
 2t bits are transmitted for the OT, 168 
 t bits are
transmitted as S’s input secrets and 427 non-XOR gates of size 3t are sent from
S to C.

The communication complexity of the hybrid protocol is shown in Table 22.8.

22.5.5 Comparison with the LBP Solution

Comparing Tables 22.8 and 22.5, we can see that the full-GC based NN requires
a lower bandwidth than LBP (505:5 KB for NN and 3:1 MB for LBP with short
term security). The bandwidth of the hybrid NN decreases with respect to the
full-GC NN, but is higher than that of the hybrid LBP, making the latter more
efficient. The reason is that, as shown in Sect. 22.3, the 12 bit values to be multiplied
are so small that the HE and GC implementations are roughly equivalent. The
hybrid implementation of the NN requires the use of homomorphic protocols for
the scalar products in both layers, the first one followed by a circuit implementing
the QSATLIN function, and the second one followed by the ARGMIN circuit. The
small benefit given by the use of HE is canceled out by the need to implement three
interfaces between GC and HE subprotocols. The eight moves of the hybrid NN are
also relevant, as each move introduces some delay due to the latency of the network.

On the other hand, circuit garbling and transmission can be moved on a setup
phase, leaving only OT and circuit evaluation in the online phase, while few basic
operations (for example the computation of exponentiations involving only random
values) can be precomputed in the HE part.

In summary we can state that the LBP classifier is preferable from a communi-
cation complexity point of view when considering the total amount of data sent in
setup and the online phases. On the other hand, the NN protocol relies only on fast
symmetric encryption operations, hence resulting in a better performance from a
computational complexity perspective, an advantage that becomes more significant
for long term security, since the security parameters of asymmetric cryptosystems
are going to increase more rapidly than those of symmetric cryptosystems.

By considering the classifier structures underlying the two protocols, we see that
the NN ensures a twofold advantage since: (1) it allows to work on a smaller feature
vector (four features instead of the 15 components of the composite feature vector
required by the LBP classifier), and (2) it requires a smaller number of bits for
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the representation of the feature vector and the parameters of the classifier. This is
partially due to the presence of hard limiting activation functions avoiding that the
inner results of the computation grows in magnitude. Due to the above properties
the GC implementation of the NN protocol does imply a too large penalty for the
necessity of working entirely with boolean instead of arithmetic circuits.

With respect to LBP with LDF, NN has a slightly higher complexity, but it
guarantees a better accuracy.

We conclude our discussion by observing that the complexity of both protocols
depends on the number of features used to classify the ECG signals. In the NN
case, the dependence of the size of the classifier on the number of features is not
easy to determine. On one hand, it results in an increase of the size of the input
layer of the NN, with a linear impact on the complexity of the part of the protocol
corresponding to the computation of the input of the hidden layer. On the other hand,
it is likely that the number of neurons in the hidden layer will have to increase as
well thus resulting in a superlinear dependence of the complexity on the number
of features. The overall complexity increases, however, the increase is likely to be
less than quadratic, given that the size of the output layer will remain constant. In
the LBP case the dependence is at least quadratic due to the inclusion within the
composite feature vector of the quadratic terms.8 For this reason, we expect that the
NN structure is going to become even more advantageous if the number of features
considered by the classifier increases.

22.6 Privacy Preserving Quality Evaluation

In order to avoid that possible errors due the inexperience of patients, who have
not experience with placing the ECG electrodes, properly impair the result of the
classification, it is necessary that the quality of the ECG signal is evaluated by the
server before running the classifier. For the above reason, in this section we describe
a protocol which allows the service provider to evaluate the quality of the to-be-
classified ECG signal, without disclosing any information about the signal itself.
The protocol first computes the SNR (Signal to Noise Ratio) of ECG signal, then
it takes a binary decision about the quality, to decide whether to go on with the
classification or not.

22.6.1 SNR Evaluation in the Encrypted Domain

The quality measure we are looking for belongs to the class of no-reference
measures, since, in the scenario examined in this chapter, a noise-free version of

8Of course the size of the decision tree may change as well.
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Fig. 22.16 Scheme to compute the SNR

the ECG signal is not available. For sake of generality, we focus on a simple scheme
in which the quality of a signal is given by the Signal-to-Noise-Ratio (SNR) between
the originally measured signal s and a filtered version of the signal, denoted by Ns, as
shown in [6]. The rationale behind this choice is that the filtered (de-noised) signal
represents the ideal signal corresponding to s. Furthermore, the removed noise, i.e.
the distance of Ns from s, represents a measure of the quality of the measurement s.
A natural choice is to represent the SNR, defined as the ratio between the energy
of Ns and the energy of the noise n D Ns � s, in dB, i.e. by using a logarithmic scale.
The reason for such a choice is twofold: first of all this is a consolidated practice
in signal processing, moreover we will show that by replacing the computation of a
ratio with the computation of the difference of two logarithms, the complexity of a
secure protocol for the evaluation of the SNR is considerably reduced. The general
structure of the quality evaluation algorithm is reported in Fig. 22.16. We assume
that the ECG signal has already been preprocessed to remove known sources of
noise such as the interference from the Electrical Grid.

We now describe each block of Fig. 22.16 in details, by describing possible
s.p.e.d. implementations of the various blocks.

Filtering: A denoising filter is a linear operator that can be applied in the
encrypted domain by using homomorphic encryption as proposed in [10]. An
integer low-pass FIR filter, supposed to be intellectual property of S, is used
[6]. The filter, having cut off frequency fc D 20 Hz, is optimized in such
a way to minimize the number of coefficients. It has an amplification factor
amp D 64 and order kc D 82, with only 47 non-zero coefficients, only six
of which are non-unitary. The filter coefficients satisfy the following symmetry
condition: ci D ckc�i, hence a filtered sample can be computed as Nsi D c0si C
Pkc=2

jD1 .cjsiCj C cjsi�j/: The maximum filter coefficient is 8 and the coefficients
assume values in the set K D f0; 1; 2; 4; 5; 6; 7; 8g. To filter the signal, each
product �cjsi� 8i D 1; : : : ; n 8j D 0; : : : ; kc=2 is first computed as

�sicj� D
8

<

:

1 if cj D 0;

�si� if cj D 1;

�si�
cj else:

(22.13)



22 Privacy Preserving Classification of ECG Signals in e-Health Applications 601

Since there are only six non-null and non-unitary coefficients, only 6k products
are computed. Then the filtered samples are obtained as

�Nsi� D �c0si�

kc=2
Y

jD1

.�cjsiCj��cjsi�j�/ 8i D 1; : : : ; k: (22.14)

Noise Estimation: The noise signal n is estimate by subtracting s and Ns sample-
wise .ni D si� Nsi/. Since the integer filter is applied in the encrypted domain, the
amplification factor amp must be considered. Thus, to correctly derive the noisy
part of the signal, s must be multiplied by the same factor, obtaining �ni� D
�amp � si � Nsi� D �si�

amp � �Nsi�
�1 8i D 1 : : : k.

Energy Computation: To compute the SNR the energy of Ns and n must be
evaluated. This can be done by using an interactive protocol9 computing �Ex� D
�
Pn

iD1 x2
i � D

Qn
iD1�x2

i �, applied to both Ns and n, that returns �ENs� and �En�.
SNR Computation: The final step of the quality evaluation procedure is the

computation of the SNR:

SNR D 10 � log10

Es

En
D 10

log2 10
� log2

Es

En
: (22.15)

Notice that it is easier to compute the difference between two logarithms rather
than the logarithm of a ratio. In addition, the factor 10= log2 10 is only a constant
and therefore can be neglected. As a result, the SNR can be computed securely as:

SNR D log2

ENs
En
D log2 ENs � log2 En: (22.16)

While (22.16) is an exact equality when dealing with real numbers, in secure
protocols it is only an approximated relationship since an integer logarithm is
used. Furthermore, we observe that computing the integer logarithm (base 2) of
a binary positive integer number is equivalent to detecting the minimum number
of bits necessary to represent the number (in our case the energy is positive by
definition). Equation (22.16) can be easily implemented by using a GC.

To switch from HE to GC, the interface described in Sect. 22.4.1.2 can be
used: S obfuscates ENs and En and sends them to C that, after decryption, uses
them as inputs to a GC prepared by S. The Boolean circuit starts by removing
the obfuscations from the energies, then it evaluates the logarithms and finally
computes the SNR by subtracting the result of the logarithms. As shown in [6],
logarithm computation is performed in two steps: in the first one the input value
is processed so that it has zero values before the most significant 1 and a sequence
of 1 in the remaining bits, in the second step the bits equal to 1 are counted. This

9The computation of the square value needs interaction with the decryption key owner.
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can be easily implemented by using a boolean circuit. The protocol is applied to
both the energy ENs and En and the output of the first step is denoted with !.ENs/
and !.En/. Then the SNR is simply computed by counting the bits equal to 1 in
both !.ENs/ and !.En/ through a COUNT circuit [6] and then subtracting the two
values. Note that the protocol returns blog2 Ec C 1, but after the subtraction the
two C1 terms are discarded.

A more efficient implementation can be obtained as follows. Given the two
energies ENs and En the first part of the protocol is applied to both values obtaining
!.ENs/ and !.En/. The SNR is obtained by evaluating COUNT.!.ENs/˚ !.En//,
in fact the result of the xor is a binary string containing a number of 1’s equal to
the result of the difference.

The only thing that still needs to be done is the computation of the SNR sign,
for which it is sufficient to evaluate the relation ENs < En which has the same
complexity of a subtraction circuit.

22.6.1.1 Protocol Complexity

We now give an estimate of the complexity of the SNR protocol outlined above, by
considering the optimization in the final part. We start by considering the number
of bits for an accurate representation of the involved signals and values. In the
Physiobank database each sample si is represented with `s C 1 D 11 bits, hence
the maximum value that the samples can assume is maxs D 210 � 1 D 1023. We
consider the computation of the SNR of 30 s of signal, sampled at 360 HZ (for a total
of k D 10; 800 samples).10 Given these parameters, we can compute the bitsize of
all the data involved in the computation as shown in Table 22.9.

In the filtering phase a high number of ciphertexts is transmitted. The commu-
nication complexity can be reduced by using the composite signal representation

Table 22.9 Number of bits necessary to represent the values obtained by
a worst case analysis

Variable name Maximum value Magnitude bitlength

Original sample si 1023 `s D 10

Filter coefficients cj 8 `c D 4

Filtered sample Nsi 114; 576 `Ns D 17

Noise signal n 180; 048 `n D 18

Signal energy ENs; En 350; 106; 648; 883; 200 `E D 49

SNR SNR 49 `SNR D 6

10This choice is motivated by the fact that 30 s are sufficient for SNR evaluation and do not
introduce a big delay in further computation.
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Table 22.10 SNR protocol
data transfer

Section Bits

HE 5,393,856

C input secret transmission (online OT) 68,480

C input secret transmission 34,240

Garbled table transmission 149,040

Total 5,645,616

of [10], i.e. packing the ECG samples in np ciphertexts. The communication
complexity of the SNR protocol for short-term security [6] is summarized in
Table 22.10.11

22.6.2 SNR-Based Quality Evaluation

The final assessment of ECG quality is carried out by computing a block-based
version of SNR [37]. Specifically, the signal is subdivided into small segments and,
for each of them, we compute the SNR as indicated in the previous section. Finally,
the mean and variance of the segment-wise SNR are computed and used together
with the SNR of the whole signal to make a final decision. The use of the variance
is justified by the observation that while the electrode contact noise has a minor
impact on the mean SNR, an occasional burst of noise of small length can be better
detected by examining the SNR variance.

In the following, we describe the steps necessary to reach a decision based on
the following set of features (SNR, segment-SNR mean, segment-SNR variance)
extracted during the privacy preserving protocol. The plain implementation of the
protocol is summarized in Fig. 22.17. In the remainder of this section, we assume
to evaluate � seconds of an ECG signal s D fs1; : : : ; s�fsg, where fs is the sampling
frequency and each sample is represented with `sC 1 bits (`s bits for the magnitude
and 1 for the sign).

Filtering and noise computation: The protocol starts as described in Sect. 22.6.1.
The signal s D fs1; : : : ; s�fsg is encrypted by C and transferred to S. The
encrypted signal �s� is filtered by S to produce the signal �Ns�. Finally S computes
the encrypted noise signal �n�, i.e. the encryption of the difference between the
signals s and Ns, still using HE.

Energy and SNR Evaluation: The signals �Ns� and �n� are subdivided into seg-
ments of w samples, obtaining m D b�fs=wc segments fs D ffs1 : : : fsmg and
fn D ffn1 : : : fnmg, where each segment is composed by the encryption of w
samples. For simplicity, we assume that �fs D mw. For each pair of signal

11The communication complexity estimate is performed by considering T D 1248 (instead of
T D 1024, as in the original paper), garbled row reduction and OT precomputation.
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Fig. 22.17 Sequence of steps performed to evaluate the quality of an ECG signal

and noise segments .fsi; fni/ the SNR is evaluated by using the hybrid protocol
described in Sect. 22.6.1, obtaining SNRf

i as garbled secrets. The SNRf values are
not the final result, in fact they have to be used in later computation and hence
kept secret. To avoid their disclosure to C, the GC subprotocol blinds them by
adding random values, each `SNRf C � bits long, where `SNRf is the bitlength of
the segment SNR.

We underline that the computation of the SNR of the whole signal can be
obtained starting from the energy of the segments previously computed. In fact

SNR D log2

Pmw
jD1.fsj/

2

Pmw
jD1.fnj/

2
D log2

Pm
iD1
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i
j/
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2
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m
X
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C adds together all the segment energies Efsi and all the segment energies Efni ,
obtaining the energies Ex and En of the whole signals, obfuscated by a value that
is the sum of the obfuscations introduced in each segment, still known by S.
Finally, SNR is obtained by another circuit for SNR evaluation having a larger
input bit-length and hence a larger number of gates.

Mean and Variance computation: Once all the obfuscated SNRf
i and SNR val-

ues are obtained, C encrypts them and transmits the ciphertexts to S, who can
remove the obfuscation by using the homomorphic properties of the cryptosys-
tem and compute their mean and variance by using HE.

The computation of the SNRs mean would require a division by m. If m is
public (or known), this is a cheap operation. However, if m is a private value, the
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division operation can be expensive and requires an interactive protocol [35, 48].
An additional disadvantage is that this protocol would introduce a rounding error.
An alternative is to avoid the division by m. Then, the mean is amplified by
a factor of m, the accuracy is preserved and the complexity of the protocol is
reduced since interaction with C is not necessary. The amplified mean is simply
computed by S as �SNR� D �

Pm
iD1 SNRf

i � D
Qm

iD1�SNRf
i �.

The computation of the variance can be performed by using an interactive pro-
tocol. Given the amplified mean, the SNRf values must be amplified by the same
factor before computing the variance. Moreover, following the same approach
used for the mean, division by m is avoided and thus, the resulting variance
is amplified by a factor m3. Considering that C already has the SNRf

i values
obfuscated with a random value rSNRi , S can send the obfuscated SNR mean
�SNR C r� (where r 2 Z`C� , given the bitlength ` of SNR) to C who
decrypts it and computes

m
X

iD1

�

m.SNRf
i C rSNRi/� .SNR C r/

�2

:

Finally C encrypts the result and sends it back to S who removes the obfuscation
value

P

i.m rSNRi � r/2 � 2
P

i.m SNRf
i � SNR/.m rSNRi � r/ thanks to HE

properties, thus, obtaining the encrypted amplified variance ��SNR�.
Classification: Each feature previously computed (the overall SNR, the segment-

SNR mean and the segment-SNR variance) can be used in a single-feature
classifier that compares the feature with a threshold obtained in a training phase.
In [37] it is shown that by combining the three features, the accuracy of the
classification is higher than by using a simple linear classifier. Specifically, the
signal quality is classified by evaluating the following inequality:

aC b �SNR C c SNR C d SNR > 0

where the coefficients a; b; c; d are obtained by training. If the inequality is
verified, the signal is classified as noisy and ECG classification is not carried
out.

In the tests, training was carried out in the plain domain separately for each
subject by using ECG recorded in a supervised environment so that the weight
vector w D Œa; b; c; d� is obtained, with the same procedure described in (22.4).
Because Œa; b; c; d� are real values, they are quantized and represented with
integer numbers. We also observe that the scalar product can be implemented by
resorting to HE. In short, signal quality classification is carried out by computing:

�aC b �SNR C c SNR C d SNR� D �a� ��SNR�b �SNR�c �SNR�d:

The sign of the scalar product is used for the classification, while the magnitude
gives an indication of its reliability. High values are more reliable than small
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ones. Noticing that both sign and magnitude are useful for the classification and
depending on the privacy requirements of S and C, the protocol can choose to
disclose the scalar product result to C. Hence, S sends the encrypted magnitude
and sign values to C who decrypts them and performs the final classification
(determines to which class the particular measurement belongs). If S prefers to
keep the magnitude secret, it can obfuscate the scalar product by using a random
value and then transmit a comparison GC having the obfuscated value and the
random value as inputs.

22.6.2.1 Complexity Analysis

The MIT-BIH Arrhythmia Database12 has been used in the experiments. The
signals were divided into intervals and classified as noisy or clean according to the
annotation available in the database, even if the type of noise was not explicitly
specified. An interval is considered clean if no samples are affected by noise,
otherwise it is considered as noisy. The data set has been extended by adding
artificial electrode contact noise stored in the MIT-BIH Noise Stress Test Database13

to whole clean segments and partially (only to a randomly chosen section of the
segment).

To evaluate the quality of the signal, � D 30 s of the signal have been
analyzed. The signal and the filter have the characteristics outlined in Sect. 22.6.1
and Table 22.9. The 30 s of signal (t � fs D 10; 800 samples) are subdivided into
m D 30 segments, each with length equal to one second (w D 360 samples).

The bit-length analysis based on a worst-case assumption [37] gives the results
reported in Table 22.11. The maximum value that each variable can assume may be
easily determined by a logarithm computation.

The communication complexity of the SNR protocol for short-term security [37]
is summarized in Table 22.12.14 The protocol transmits � 4:3 MB of data for the
classification of 30 s of ECG signal. We highlight that more efficient protocols can
be developed by moving circuit garbling, circuit transmission and S input secret
transmission to the precomputation phase.

22.6.2.2 Classification Performance

From each signal in the dataset, segments are subdivided into clean (c) or noisy
(n) according the notation in the Physiobank databases. In a real implementation an
expert decides whether the signals used for training are clean or noisy.

12http://www.physionet.org/physiobank/database/mitdb/.
13http://www.physionet.org/physiobank/database/nstdb/.
14We considered T D 1248, garbled row reduction and OT precomputation.

http://www.physionet.org/physiobank/database/nstdb/
http://www.physionet.org/physiobank/database/mitdb/
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Table 22.11 Maximum value and number of bits necessary for the magni-
tude representation of the variables involved in the computation by worst case
analysis

Variable name Maximum value Magnitude bitlength

Original signal s 1023 `s D 10

Filter coefficients c 8 `c D 4

Filtered signal Ns 114; 576 `Ns D 17

Noise signal n 180; 048 `n D 18

Segment energy Efs; Efn 11; 670; 221; 629; 440 `e D 44

Segment SNR SNRf 44 `SNRf D 6

Full energy ENs; En 350; 106; 648; 883; 200 `E D 49

SNR SNR 49 `SNR D 6

SNR mean SNR 1320 ` D 11

SNR variance �SNR 52; 272; 000 `� D 26

Another bit is needed for the sign, except for energies and SNR variance

Table 22.12 Bandwidth
(bits) required by the protocol

Section Online

HE 32,450,496

Circuit 2,551,680

C secrets to GC (online OT) 438,080

S secrets to GC 432,320

Total 35,872,576

Due to the short length of the signals in the database (30 minutes), only 60
segments can be extracted from each signals. Once classified them as noisy or clean
according to database notations, signals having less than ten clean segments or less
than ten noisy segments have been discarded, because the small number of segments
can compromise a good training. Three tests have been performed by using different
data sets. The first data set (c/n) is composed by only real clean and noisy sections.
The second (c/a) data set has been built by using clean sections and sections where
artificial noise was added to entire clean sections (a), considering them as noisy
sections. The last data set (c/p) is similar to the second one, with noise added only
to a randomly chosen interval of corrupted sections (p).

For each signal, 60 % of the segments of the different types were randomly
chosen for the training and the others were used for the testing. A different w vector
has been obtained for each individual (signal). Table 22.13 shows that the protocol
for remote ECG quality evaluation using the linear classifier guarantees quite good
classification results (� 85 %). The table also shows the performance that could be
obtained by classifying the signal by using only one of the three features computed,
i.e. the mean of the segment SNR, the variance of the segment SNR or the whole
SNR. The table contains the mean of the results of all the signals used for the tests.
It is clear from these results that the combination of all derived values with a simple
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Table 22.13 Performance of
the protocol using the linear
classifier or a single feature

Test type Linear classifier �SNR SNR SNR

c/n 0.8490 0.8158 0.7061 0.7325

c/a 0.8365 0.8005 0.8368 0.8234

c/p 0.7377 0.6729 0.6695 0.6666

linear classifier significantly improves the classification results. On the other hand
the use of only one feature does not decrease significantly the protocol complexity.

22.7 Conclusion

The need for privacy protection is steadily increasing in our society due to the
wide diffusion of online distributed services offered by untrusted parties having
a potential access to private information, like users’ preferences or other personal
data. This need is even more pressing in settings where the information to be
protected is related to the health of the users: with the appearance of more and
more online medical repositories, it is simple to imagine that in a few years the
approach to remote healthcare will be very different from the current one and it is
of the utmost importance that manipulation of sensitive data does not compromise
users’ privacy.

The availability of signal processing algorithms that work directly on the
encrypted data is of great help for application scenarios where biomedical signals
must be produced, processed or exchanged in digital format. While, in principle,
the evaluation of any functionality in the encrypted domain is always possible, the
development of efficient schemes that minimize the computational and communica-
tion complexity is not trivial, since it requires a joint design of the signal processing
and cryptographic aspects of the system.

In this chapter we have shown how s.p.e.d. technology may help to achieve
the twofold goal of allowing the processing of biomedical signals while ensuring
the privacy of the signal’s owner with reasonable communication and computation
complexity. This has been possible by considering the classification of ECG signals
by relying on STPC constructions and on a proper design of the classification
algorithms so as to ease their implementation in a s.p.e.d. framework. More
specifically, we have described two ECG classification protocols; the former is based
on a Linear Branching Program (LBP) classifier, where Quadratic Discriminant
Functions (QDF) or Linear Discriminant Functions (LDF) are used in the nodes,
the latter implements a Neural Network (NN) classifier. The optimization of the
signal processing part substantially improved the performance of both the solutions.

We also presented a protocol to evaluate the quality of an ECG signal specifically
geared towards remote health monitoring applications. The solution analyzes the
amount of noise in a biomedical signal, based on analysis of the Signal-to-Noise
ratio in small segments of the encrypted signal, rather than the whole measurement.
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For both the classification and quality evaluation protocols, a reader may wonder
whether a running time in the order of a few seconds is affordable in real life
applications. The ultimate answer to this question depends on the application at
hand, however we can observe that a running time of less than one second would be
enough for applications wherein heart beats are classified at the same pace at which
they are produced. While the protocols we have described are not that fast, their
performance are not far away from the above so-to-say real time requirements thus
encouraging further research.
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Chapter 23
Strengthening Privacy in Healthcare Social
Networks

Maria Bertsima, Iraklis Varlamis, and Panagiotis Rizomiliotis

Abstract The purpose of this chapter is to present a comprehensive approach to the
problem of privacy protection in healthcare social networks, to summarize threats
and suggest emerging technological solutions to protect users. For this purpose we
start with a definition of the term “privacy” and how it evolved through time. We
continue within the context of social networks and highlight the main privacy issues
and threats for network members. In addition, we analyze the Common Criteria for
IT security evaluation that apply to privacy, under the prism of Healthcare Social
Networks (HSNs) and present tools and methods that may enhance privacy in such
networks. Finally, we provide examples of popular HSNs, categorized according to
the purpose they serve and discuss the privacy challenges for them.

23.1 Introduction

Privacy as a concept has been studied in depth by researchers from different
disciplines such as philosophy, social sciences and law, but yet has not a commonly
accepted definition. The American judges Warren and Brandeis [31] in their article
entitled “The Right to Privacy” provided one of the oldest and most popular
definitions of privacy as a person’s “right to be left alone”. Alan Westin in
his “Privacy and Freedom” book [32] gave a more comprehensive definition of
privacy: “Privacy is the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent information about them is communicated
to others.”

Originally the term privacy was coined to the protection of the home and in
general the physical space surrounding a person. When mail first appeared as a
means of communication, the first mail privacy violation phenomena were recorded
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as early as 1624. The advent of mass media in the dawn of 1900, in conjunction
with inventions such as photography and telephony resulted in the first incidents
of breaches in private life and phone conversations. In the second half of the
twentieth century, the appearance of personal computers and computer networks
gave a rise to concerns about privacy issues and turned focus to data collection and
processing [17]. It becomes obvious that depending on the data communication,
collection, storage and processing methods that existed in every era, respective
mechanisms have been developed for violating the privacy of individuals. Thus,
the need for privacy has created the need for legislative mechanisms for protection.

Privacy has been included in the Universal Declaration of Human Rights issued
by the United Nations in 1948. According to Article 12 of the Declaration:

No one shall be subjected to arbitrary interference with his privacy, family, home or
correspondence, nor to attacks upon his honour and reputation. Everyone has the right to
the protection of the law against such interference or attacks.

Finally, according to Articles 7 and 8 of the Charter of Fundamental EU rights:

Everyone has the right to respect for his or her private and family life, home and
communications: : : and : : : the right to the protection of personal data concerning him or
her. : : : Such data must be processed fairly for specified purposes and on the basis of the
consent of the person concerned or some other legitimate basis laid down by law. Everyone
has the right of access to data, which has been collected concerning him or her, and the
right to have it rectified. : : : Compliance with these rules shall be subject to control by an
independent authority.

Although privacy cannot be restricted only to personal data, since it refers to the
general “right to solitude and withdrawal” [21], the prevention from “unauthorized
use or disclosure of data” [27] became the main objective of privacy protection
devotees.

A healthcare social network allows its members such as doctors, patients and
caregivers to communicate and collaborate in order to virtually manage the illnesses
and improve the quality of patients’ life. In advice seeking social networks,
patients and caregivers seek for advice on patient care or share experiences and
problems. Physicians on the other side, answer questions (e.g., in MedHelp or
WellSphere), provide emotional support and contribute their medical experience
(e.g., in DailyStrength or OrganizedWisdom). In patient-centric social networks
(e.g., PatientsLikeMe, SugarStats) patients share their personal medical records to
perform self-tracking. Finally, healthcare professionals join on-line social networks
(e.g., Sermo) seeking for best-practices, job openings and career tips, research and
product information, as well as the opportunity to securely communicate with their
peers. Figure 23.1 illustrates the various participants of a HSN and the information
they exchange. Professional networks (in yellow background) attract professionals,
researchers, companies and institutions, and disseminate medical information.
Patient-centric networks (in blue background) attract patients, volunteers and
professionals that wish to support patients. Physicians and nurses usually participate
in both types of networks.
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Fig. 23.1 The participants of healthcare social networks

There is not always a single way to classify a healthcare social network as advice-
seeking, patient-centric or professional and there are many HSNs that provide
services that cover the needs of patients and physicians. An interesting survey of
the different types of HSNs is provided by Melanie Swan [28].

23.2 Social Networks

The term social network was invented in 1954 by LSE’s Professor JA Barnes [2]
who examined social relationships in a Norwegian fishing village, concluding that
the entire social life of the village could be represented as “a set of points, some of
which are connected by lines”, to form a “comprehensive network” of relations.

23.2.1 On-line Social Networks

Recently, the advent of the so-called social networking sites attracted a large number
of users and brought the concept of “on-line social networks” in light. The definition
given by Ellison et al. [8], clearly defines the assets of a user that joins an on-line
social network:
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Social network sites are web-based services that allow individuals to (1) construct a public
or semi-public profile within a bounded system, (2) articulate a list of other users with whom
they share a connection, and (3) view and traverse their list of connections and those made
by others within the system.

As a result, when users join an on-line social network, such as Facebook, Twitter,
LinkedIn, Google+, etc. to mention some of them, they are invited to fill their profile
page by providing a range of personal information, then encouraged to create digital
relationships with other members of the network who either already know or want
to know and finally, are asked to maintain these relationships. As a result, they agree
to share profile and connections with other (selected) users.

In a broader definition, given by the European Agency for Information Systems
Security (ENISA) [16], on-line social networks are defined as federated identity
management spaces, where users: (a) store and manage personal data, (b) control
access to them based on credentials, (c) are able to find out who has accessed their
personal data.

For example, a user in a social network can allow access to her personal
information to her friends, to friends of her friends, or to a specific user group and
can never be sure about the real identity of an on-line user. In the case of Healthcare
Social Networks, a doctor must be able to access private patient information, only
if he can prove that he is really a doctor and he has been granted access by the user.
Doctor’s credentials (e.g., digital certificates) must be granted during registration
and after off-line verification (e.g., a phone call, or an application at the medical
association), although this is not always the case.1 The patient must be able to grant
access to her personal information at an individual user level, e.g., to her doctor only
and must also be notified when someone accesses her private data.

23.2.2 Healthcare Social Networks

In a general context, we could say that social networks can take different forms,
depending on the purpose they serve. Although general purpose social networks are
the most popular among them, we can also find professional (business) networks,
network that relate to health (healthcare), and others that are designed with ethnic,
religious or political criteria [37]. Healthcare professionals use traditional social
media networks to connect with others, but also 1 out of 3 joins social networks
to seek for a job (36 % of them are allied professionals, 33 % are nurses, 29 % are
pharmacists and 23 % physicians).2

1In autumn 2007, a weak security model has been reported for Sermo network, which allowed
non-physician applicants to register as physicians using false identities from the Internet.
2Infographic provided by MEdTech Media at: http://www.medtechmedia.com/files/
medtech_images/Infographic_SOCIAL_MEDIA_SURVEY_AMN_HEALTHCARE.jpg

http://www.medtechmedia.com/files/medtech_images/Infographic_SOCIAL_MEDIA_SURVEY_AMN_HEALTHCARE.jpg
http://www.medtechmedia.com/files/medtech_images/Infographic_SOCIAL_MEDIA_SURVEY_AMN_HEALTHCARE.jpg
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According to a more recent study carried in Greece [1], the percentage of doctors
and nurses that join social networks for professional use is similar (37 %). However,
the percentage for non-medical personnel (e.g., hospital administrative staff) is
higher (54 % of them joins social networks for professional use). In this same study,
authors detected three groups of users: (a) users aged 22–44 with a few years in
service (<10 years) who are enthusiasts of using social media both in their social
and professional activities, (b) users of the same age with more years in service
(11–20 years) who are still sceptical on using and trusting social networks and
(c) seniors (>45 years old) with an extended professional experience (>20 years),
but low familiarity with new technologies who are more reluctant in adopting them.

Gunther Eysenbach used the terms “infodemiology” and “infoveillance”, in
order to describe a new emerging approach for public health [9], based on large-
scale monitoring and data mining of information published in (health and general
purpose) social networks. Healthcare social networks allow their members such as
doctors, patients and caregivers to communicate and collaborate in order to manage
the illnesses and improve the quality of patients’ life. The on-line environment
removes distance and time barriers, enables patients to submit on-line requests for
advice and share problems and solutions with other patients and facilitates doctors to
cooperate with each other and supervise their patients. In analogy to social networks,
users in on-line healthcare networks must be ready to share their personal data,
which in this case are sensitive health data, with other network members.

In order for the healthcare network to thrive, members need to trust each other
and be confident for the secure, reliable and lawful operation of the network [4].
On-line healthcare networks have some unique characteristics, which make the
aforementioned targets hard to accomplish. They cross national borders and operate
in a continuous basis; they are responsible for securing members’ medical data
and are entrusted to preserve members’ anonymity. At the same time, they must
guarantee the reliability of both participating members and submitted content.

Usually members’ anonymity is achieved via pseudonyms (virtual identities).
This allows the identification of patients within the community and the association
to their data. Similarly the use of pseudonyms or real identities allows physicians
to clearly identify themselves to lend credibility and accountability to their on-line
communications. However, in the former case it remains to the community owners
to certify the real identity and expertise of doctors that use pseudonyms. Under
these circumstances, the smooth operation of such social networks is a heavy duty
for moderators and administrators.

The concept of privacy is strongly connected to the (social and technological)
trust of users to the network and the application provider. Users are willing to upload
their data to the on-line healthcare application, only when they are confident about
the correct use of their data, from the authorized people and for the appropriate
purpose. According to the study of Grajales et al. [15] a 76 % of the social media
users that participated believe that their personal health data could be used without
their knowledge either in order to deny them healthcare benefits (72 %) or to deny
them job opportunities (66 %). According to another study by Damschroder et al.
[6] patients are positive in sharing their medical data with experts only when they
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trust that they will be kept private and confidential in a way that patients can see and
understand; when clear and consistent consequences exist for privacy violations and
when the computerized systems are proven to be secure.

23.3 Privacy

In the following, we provide an introduction to the concept of privacy, starting
with the evolution of its meaning over the ages and focusing on how this meaning
was adapted to on-line healthcare networks. Then we distinguish between personal
and sensitive data, discuss the legal framework that rules their use, and present the
principles that must govern privacy protection and personal data. Finally, we provide
a list of potential privacy threats that apply in HSNs.

23.3.1 Background

Nowadays, the use of Internet has enabled the instant diffusion of information
and has transformed on-line social networks to repositories, where personal data is
collected, enriched, modified, shared and reused continuously [23]. Consequently,
the concept of privacy has been transformed from one’s “right to be left alone”
[21] to the ability of social network users “to control and protect personal informa-
tion” [27].

According to Rosenberg [24] privacy can be: (a) territorial, when it refers to the
physical space of an individual; (b) personal, when it protects the individual from
unwanted interventions; (c) informational, when it defines how personal data are
collected, stored and processed and who can gain or grant access to. A more recent
approach by Finn et al. [10] distinguishes seven types of privacy:

1. The privacy of the person.
2. The privacy of behaviour and action.
3. The privacy of data and image.
4. The privacy of communication.
5. The privacy of thought and feelings.
6. The privacy of space and location.
7. The privacy of association and group privacy.

Although, Finn’s work focuses on privacy and user identification, it provides a
useful list of user-identification technologies and their impact to the different aspects
of privacy. It is interesting that some of the identification technologies mentioned in
the study (listed in Table 23.1), are strongly related to medical issues (e.g., body
scanners, DNA sequencing and next generation biometrics) and definitely collect
information that must be privacy protected.
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Table 23.1 Identification techniques that may affect medical privacy (based on [10])

Technology Whole body Second generation Second generation
Type of privacy imaging scanners DNA sequencing biometrics

Privacy of the person X X X

Privacy of behaviour and action X X X

Privacy of communication X

Privacy of data and image X X X

Privacy of thought and feelings X

Privacy of location and space X X

Privacy of association X X

This example is an evidence that even the participation in on-line healthcare
networks must begin with private information sharing.

Even when more simple identification mechanisms are used in on-line healthcare
networks, users share their medical records in order to receive medical advices
from experts, to monitor the progress of their health, etc. In this context, users
reveal their data to specific users (e.g., their doctors) and hide them from others
(for example from insurance companies or their employers). Revealing medical
data could also reveal medical or psychological conditions, treatments or other
details about personal life. Privacy in healthcare networks may comprise control
over personal information (informational privacy), physical restriction to data
accessibility (physical security) and the respect of the doctor to patients’ beliefs,
thoughts, values and feelings (psychological security—confidentiality)[26].

23.3.2 Personal and Sensitive Data

“Personal data” and “sensitive data” are the two main assets of HSN users, which
must be protected or controlled within a privacy context.

According to the European Data Protection Supervisor (EDPS) glossary and
Article 2 (a) of Regulation (EC) No 45/2001 the term “personal data” may refer to:

: : : any information relating to an identified or identifiable natural person (referred to as
“data subject”), in particular by reference to an identification number or to one or more
factors specific to his or her physical, physiological, mental, economic, cultural or social
identity.

The name and the social security number are two examples of personal data,
which relate directly to a person. But the definition also extends further and also
encompasses for instance e-mail addresses and the office phone number of an
employee. Other examples of personal data can be physical characteristics, edu-
cation, labour, economic status, interests, activities, habits or any other information
found in the medical records of a patient or in the evaluation report of an employee.
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The term “sensitive data” is coined with “information that reveals racial or
ethnic origin, political opinions, religious or philosophical beliefs, membership of
a trade union, health status, social welfare, erotic life preferences, prosecutions
and convictions, etc.” (Article 10 of Regulation 45/2001; Article 8 of Directive
95/46/EC). Usually, sensitive personal data are legally protected by more stringent
regulations than simple personal data. The processing of such information is in
principle prohibited, except in specific circumstances. It is possible to process
sensitive data for instance if the processing is necessary for the purpose of medical
diagnosis, or with specific safeguards in the field of employment law, or with explicit
consent of the data subject.

Privacy is a broader concept than personal data protection, since the former
includes also “the right to be left alone, out of public view, and in control of
information about oneself”. However, personal data protection arises as a necessity
to ensure privacy and therefore constitutes a part of the privacy concept. As a
result, personal data protection is a prerequisite for guaranteeing privacy against
potential technological threats. The Health Insurance Portability and Accountability
Act of 1996 (HIPAA) recognized the possible threat to privacy from the electronic
data exchange in healthcare. HIPAA mandated the U.S. Department of Health and
Human Services (HHS) to develop regulations that protect privacy and security of
electronically-transmitted health information.

In 2000, HHS created a set of rules known as the Privacy Rule, which sets
a framework for handling medical records and other sensitive personal health
information. Privacy Rule defines safeguards, uses and disclosures and patient
authorizations and provides patients with certain rights over their health infor-
mation. In order to be properly applied, the Security Rule requires appropriate
administrative, physical and technical safeguards to ensure the confidentiality,
integrity, and security of sensitive electronic health information. However, both
HIPAA Privacy and Security Rules are designed to establish minimum standards
for the purpose of setting the “legal floor”.

Although, HIPAA and Privacy Rule cover the cases of health data stored in
electronic health records at medical facilities, this is not guaranteed for HSNs, which
are not HIPAA-covered entities. According to Grajales et al. [15]:

: : : the same information when shared on an social networking site does not have the
same protection, and potentially may lead to discrimination by a future employer or health
insurance agency, although this has not been reported in the literature to date.

The Health Information Technology for Economic and Clinical Health
(HITECH) Act was created in 2009, to stimulate the adoption of electronic health
records (EHR) and supporting technology in the United States. HITECH promotes
the meaningful use of EHRs and penalizes any improper use. HITECH and HIPAA
are separate laws that reinforce each other in certain ways. For example, HITECH
requires that any physician and hospital must perform a HIPAA security risk
assessment before gaining access to patient HER. In addition, HITECH establishes
data breach notification rules and HIPAA holds healthcare providers’ business
associates equally accountable for data breaches to the providers themselves.
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The Personal Information Protection and Electronic Documents Act (PIPEDA)
was the Canadian answer to HIPAA that became a law in 2000. PIPEDA governs
how private sector organizations collect, use and disclose personal information in
the course of commercial business. The PIPEDA compliance laws state that personal
information must be protected by security safeguards appropriate to the sensitivity
of the information, including technological measures, such as the use of passwords
and encryption. However, according a research from [3], the tested companies lack
at best, and entirely neglect at worst the data disclosure compliance issue in relation
to the data they collect.

23.3.3 Privacy Principles

The practices used by social networking sites like Facebook, Twitter or Instagram
and the various stories concerning privacy violations in such networks, make health
social network members sceptical about sharing personal data, or even posting
questions. However, they are prone to share data on specialized sites, with a
transparent security and privacy policy and healthcare professionals that they can
trust.

The protection from unauthorized access is a step towards personal data protec-
tion. However, more principles must be guaranteed in order to achieve the protection
of personal data. In this context, the Organisation for Economic Co-operation and
Development (OECD) defined in 1980 the principles that must govern privacy
protection and personal data exchange across countries. These principles are:

1. Collection Limitation Principle: The collection of personal data should be
made using fair and lawful means, and—where possible—with the consent of
the data subject. For example, in a healthcare network, patients have the right to
exercise control over what medical data to share and with whom.

2. Data Quality Principle: Personal data should be relevant to the purpose for
which they are to be used and depending on the extent necessary for this purpose
should be complete, accurate and updated. In HSNs, members must be able to
decide upon the amount and detail of medical data they share (e.g., full history,
or selected records) depending on the purpose they will be used.

3. Purpose Specification Principle: The purposes for which personal data are
collected should be specified before data collection and any subsequent use
must be limited to the fulfilment of those objectives or some fully compatible
objectives. The HSNs’ members must be informed on the purpose for which
they share data.

4. Use Limitation Principle: Personal data will not be communicated and made
available to third parties or used for purposes other than specified, unless the
data subject agrees or the law authorizes such changes. Members must be asked
for any future use that is beyond the original purpose of data sharing (e.g., a
future population analysis for a different purpose).
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5. Security Safeguards Principle: Personal data should be protected using appro-
priate mechanisms against risks such as unauthorized access, destruction, use,
modification or disclosure to third party entities. The principle applies to HSNs
in a straightforward way, in order to guarantee the safe storage of medical data.

6. Openness Principle: There should be a general openness policy regarding the
practices that relate to the collection and processing of personal data and the
identity of the body performing the collection and processing. The organization
behind the HSN must clearly state its identity and purposes of the network. When
a member wants to share his/her data to third parties, the network must be able
to provide access to data.

7. Individual Participation Principle: Each person should have the right to:

a. Receive a confirmation from the data controller administrator, that person
related data are in the data controller’s possession.

b. Receive information on the data that is of interest to him/her in a reasonable
time limit, in an understandable manner and low price (if any).

c. Be informed for the reasons that he/she cannot have a and b above and argue,
question and further claim these rights.

d. Correct or delete personal data.

As a result, HSN’s members become the real owners of their own data.
8. Accountability Principle: Any personal data controller should be accountable

regarding the implementation of those measures that promote the aforementioned
principles, which should govern the protection of personal data. As a result, the
organization behind an HSN (e.g., a hospital) is responsible for any loss, leak or
damage of sensitive information.

It is worth noting that the definition of the above principles was a first step
towards establishing rules for the management of personal data and has influenced
the legislation that currently governs the protection of personal data. The above
principles highlight the strong connection between the concepts of privacy and
protection of personal data. Table 23.2 summarizes the Privacy Principles described
by OECD and their application in HSNs.

23.3.4 Privacy Threats

According to ENISA [16] the risks for social network users can be categorized as
follows: (a) privacy related threats, (b) traditional risks of internet that embrace
the environment of social networks (SNS variants of traditional network and
information security threats), (c) risks associated with the user ID (Identity related
threats), and (d) social risks (social threats).

The most important threats for privacy, under the prism of healthcare social
networks, are summarized in Table 23.3 and are discussed in detail in the following
paragraphs.
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Table 23.2 Privacy principles and their application is HSNs

Privacy principle Application in HSNs

Collection limitation The HSNs members can control
what medical data the network collects from them for a purpose

Data quality The members can limit the
amount or detail of data collected or retained for them

Purpose Specification The members must be aware of
the purpose for sharing their medical data with the community

Use limitation The members must be asked
for any future use of their data

Security safeguards Medical data must be safe keeped

Openness
A member’s data can be made
available to other networks or third parties upon member’s request

Individual participation
A member can freely act upon
his/her data, share with others, provide or deny access

Accountability
The HSNs owners are primarily responsible for any
loss, leak or damage of data

Table 23.3 A list of privacy threats and associated risks in HSNs

Threat Risk

Digital dossier aggregation Information can become embarrassing or even damaging

Difficulty of complete The user loses control over his/her identity. Damaging information
account deletion cannot be removed, increasing the “digital dossier” effect
Secondary data collection Disclosed information used for personalization or other purposes

in a network, can also be used for targeting or discrimination

or resaled to third parties
De-anonymization attacks The true user identity may

be revealed

Inference attacks Parts of a user identity may be revealed
Identity theft Can possibly harm the reputation or credibility of

the real owner’s profile
Phising The attacker may collect

reliable information on his victims and expose it or sale it
Communication tracking User profile is created by monitoring user’s

communications. Then the information can be exposed or
exploited (“digital dossier” effect)

Information leakage Medical information may be exposed accidentally or
in purpose to unauthorized third-parties

23.3.4.1 Digital Dossier Aggregation

On-line social networks are an ideal source for user profile information. Modern
technology enables the automated aggregation of user profiles data and the storage
of all traces in order to create a digital user dossier. Such data can be used for
purposes other than those for which the user intended, or may take different meaning
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outside the initial healthcare network context. More specifically, users publish to
healthcare social networks information, which is intended for a specific audience
and may prove embarrassing for them when it goes outside this audience.

23.3.4.2 Difficulty of Complete Account Deletion

When a user leaves the social network, he/she usually wants to delete the profile data
and any other digital traces or to be able to take them off-line. However, network
providers cannot always guarantee that all traces are completely erased [16]. This
persistence of user data is yet another privacy risk. For example, even when
data are deleted from the user profile, other data such as messages or comments
exchanged with other users are not removed from the pages of those users. In
general, there is ambiguity about whether indeed the user information in social
networks is permanently deleted or copies of user data are kept in storage. The
website justdelete.me keeps an up-to-date list of the most popular sign-on websites
and describes the process for deleting user profile data. However, there is not yet a
HSN in the list.

When data are stored in third-party cloud storage services, then the ambiguity
about complete account deletion is stronger. According to U.S. Department of
Health and Human Services,3

Covered entities may disclose protected health information to an entity in its role as a
business associate only to help the covered entity carry out its health care functions not
for the business associate’s independent use or purposes, except as needed for the proper
management and administration of the business associate.

This means, that health information is stored properly on a third-party cloud-
based solution as long as the company has signed a business associates4 agreement
(BAA) with HHS. However, in the majority of HSNs the underlying agreements are
not revealed.

23.3.4.3 Secondary Data Collection

In secondary data collection, the attacker collects information about users of a social
network using secondary sources rather than the network itself. The attacker can
be any individual who wants to collect more (sensitive) information about another
member of the network. Specifically, the attacker uses sources (e.g., search engines)
outside the social network for the collection of a user’s data and then links these data
with the profile of that user. In this way, the attacker is able to gather the maximum

3www.hhs.gov.
4Health information privacy: business associates. Available at http://www.hhs.gov/ocr/privacy/
hipaa/understanding/coveredentities/businessassociates.html. Accessed June 5, 2015.

http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/businessassociates.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/businessassociates.html
www.hhs.gov
http://justdelete.me


23 Strengthening Privacy in Healthcare Social Networks 625

information about the user by any available Internet source. Such techniques can be
applied in cases where users keep their profiles private. Then through secondary
data collection, the person concerned can collect all possible information from
other internet sources [5]. The attacker can be any individual who wants to breach
other persons’ privacy with the objective to collect information, even identification
information (e.g., the social security number or the Foedselsnummer in Norway),
which often acts as a key to access personal information from a wide range of
different sources.

23.3.4.4 De-Anonymization Attacks

In many social networking sites, especially in those that focus in healthcare, users
want to protect their privacy and their anonymity by using virtual identities. At the
same time, they upload personal data, which if are properly collected, analysed and
combined with information from other sites [20] may reveal the true user identity.

De-anonymization attacks aim to reveal user identities and expose them to the
members of the network or to the public. In [25] authors present an approach to
disambiguate extracted identity information relating to different individuals through
the use of their circle-of-friends. Authors collect user information from various
social networking sites and disambiguate users by taking into account the list
of friends they share in the different social networks. These ideas can be easily
implemented by an attacker who wants to match user profiles across different
networks and construct a complete (aggregated) user profile.

A weak point that attackers exploit in order to connect information from
different networks and reveal a user’s identity are bugs in the browser monitoring
mechanisms, such as cookies and browsing history. Malicious sites, with simple
Javascript code can easily retrieve history information from popular browsers
(history-sniffing) when a user visits them [7]. In their research, Wondracek et al. [34]
used a similar history stealing technique (from the users’ browsers) and managed
to de-anonymize correctly 42 % (unique fingerprint) of the targeted users, when a
social network user visits a malicious website.

23.3.4.5 Inference Attacks

Under the umbrella of identity exposure, we can also put the inference attacks. These
attacks employ data mining techniques and data from within and outside the network
in order to infer and reveal parts of a user identity (e.g., sex, age, habits, preferences,
etc.). When sensitive data are published within the boundaries of the social network,
or outside of it, the issue of privacy-preserving data publishing arises. For example,
when a hospital publishes the patient records to a research center, it is necessary to
protect patients’ anonymity and guarantee that record linkage is not possible.

Fung et al. [12] provide a comprehensive survey of privacy-preserving data
publishing techniques (k-anonymity being the most popular among them), which
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can assist HSNs owners to protect the association of sensitive information with
specific network members. Gkoulalas-Divanis et al. [13] present a survey of
algorithms for publishing patient-specific data in a privacy-preserving way and
identify three types of possible threats from inference attacks on anonymized
published data: identity, membership and attribute disclosure.

23.3.4.6 Identity Theft

Through identity theft, an attacker can gain access to user accounts and profiles and
consequently to their contacts and communications [37]. This can possibly harm the
reputation or credibility of the real owner’s profile while he/she is unaware of the
attack. The attacker can simply pretend that he/she is the owner of the profile and
use it to communicate with potential “victims” (e.g., pretend to be a doctor and give
false advices to patients). The identity theft is rarely due to technical reasons and
is mainly due to user ignorance about security precautions [5]. A similar threat to
Identity Theft is Profile Cloning, where a user clones the profile and mimics another
user in order to gain access to his/her social connections.

23.3.4.7 Phishing

The “phishing” is an act of deception, where the attacker impersonates a trusted
entity, to acquire personal information such as sensitive private data and codes.
Recently, such attacks on social networks have grown rapidly. According to
Microsoft Security Intelligence an 84.5 % of all phishing attacks target social
networks users. The huge amount of personal information available on social
networks allows the perpetrator of such an attack to collect reliable information
on his victims and then to cheat by sending them an e-mail, which appears to come
from a legitimate user. Experiments conducted by the Indiana University showed
that phishing attacks via e-mail and by collection of data from social networks have
been successful in 72 % of the cases [16].

23.3.4.8 Communication Tracking

In the past, health care was managed mainly via interpersonal communication
between the caregiver and the patient, while today, social media offers different
modes of interaction. Recent studies in Internet-delivered therapy, especially for
issues such as anxiety and depression show that on-line communication is more
effective in alleviating mild to moderate symptoms than other methods of searching
for health advice on-line [14]. This is expected to further increase the amount of
doctor-patient communication data in the near future.

Communication tracking is a privacy threat that targets mainly the information
that users exchange in their everyday communication within the network. By
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monitoring users’ communications the attacker manages to collect much more
information than is available in their profile. This attack can also be performed by
automatically traversing all user comments in a social network.

23.3.4.9 Information Leakage

Social network members exchange information with their friends and other network
members and frequently voluntarily share sensitive data. In a survey with 166
participants, Torabi and Beznosov [29] observed that 95.8 % of users had shared
some health data through their personal accounts on social networks. Such practices
by users of social networks can result in the leakage of sensitive personal data.

Dossia, Microsoft HealthVault and Google Health in the past, provide personal
health record management services, and allow users to store medical information,
as well as personal information, on their central servers. Although they publish a
privacy policy, these policies do not include confidentiality towards the provider
and they do not allow patients to check whether the provider complies with their
privacy policy. Information leakage incidents may occur due to different reasons:

• Improper and incomplete privacy settings by the data owner. In several
cases, it becomes very complicated for the user to define his/her own privacy
settings, and the predefined privacy policies set by the application provider are
not adequate to cover all issues.

• Unauthorised access by third-party applications. Especially, when multiple
applications in the cloud can gain access to a user profile or settings, there is
always a risk for these applications to ask for more privileges than necessary, or
to take advantage of their privileges for wrong purpose.

In order to conclude this long list of privacy threats for the users of social
networks, we must add the results of an ENISA report on the top rising risks for
social networks. According to this report the top risks comprise: malicious software,
information leakage, phishing, spam, identity theft.

23.4 Privacy Requirements for HSNs

23.4.1 Privacy as System Requirement

In order to transform privacy from a general concept to a technical requirement
included in information systems development, we need a set of privacy requirements
[18]. According to the Common Criteria for Information Technology Security
Evaluation standard (CC) these requirements are:

• Anonymity: The state of a subject being non-identifiable within a set of subjects
(known as the anonymity set).
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• Pseudonymity: The state of using a pseudonym as user ID.
• Unlinkability: Defined for two or more items, unlinkability assumes that within

the system, these items are no more and no less related than they are related
concerning the a-priori knowledge.

• Unobservability: The state of an item of interest being indistinguishable from
any other item of interest.

With all the aforementioned requirements in mind, which are formally defined
in [22], privacy can be defined as a set of technical requirements which prevent the
disclosure of the identity of a user [35]. Additional requirements may comprise:
authentication, authorization, identification, and data protection.

23.5 Enhancing Privacy in OSNs and HSNs

Privacy enhancing technologies comprise the tools, applications and devices
designed to protect personal data, and assist Internet users in maintaining their
privacy and anonymity. They can also be considered as a series of measures
that protect privacy by eliminating or minimizing any unnecessary or undesirable
processing of personal data, without loss of functionality of the information system
[30]. In particular, privacy enhancing technologies provide the following options:

• They allow to minimize or eliminate disclosure, and collection of personal data
or user identification data.

• They give users the possibility to carry out transactions without disclosing their
identity.

• They allow users to exercise control over their personal data.
• They assist companies and organizations to implement policies and practices for

privacy protection.

Privacy enhancing technologies have been categorised in the past using different
classification schemes. The criteria for categorizing PETs can be the purpose they
serve (e.g., minimization of disclosure and collection of personal data) or the
technology they use to protect privacy (e.g., anonymization, encryption, etc.).

According to FIDIS (Future of Identity in the Information Society) project
classification PET tools are divided to transparency and opacity tools [11]. The
former aim at increasing users’ awareness of the processes and practices that are
followed when their personal data are processed and at helping them understand the
potential consequences of data processing. Database audit interfaces, audit agents
and log files are some examples of transparency tools.

Opacity tools, on the other hand, aim at concealing the identity of users or
to prevent linkage between users and data. Some generic examples of tools that
preserve identity privacy in social networks are MixMaster anonymous e-mail,
TOR anonymizing web surfing, Pseudonyms, etc. Not all these tools are useful
in HSNs, especially when anonymity is not an option and users can only use
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pseudonyms. However, the awareness of network members about privacy threats
and vulnerabilities is important and HSNs’ owners (e.g., hospitals) work in this
direction. For example, hospitals issue guidelines concerning how practitioners must
use social networks, what information to disclose, etc.

The Meta Group survey5 performed on behalf of the Danish government divides
PETs into two main categories. The first category concerns privacy protection and
the second privacy management. More specifically, the first category includes tools
and technologies directly are involved in the protection of privacy by concealing
information or eliminating the need for personalization of information, while the
second includes tools that support the management of privacy rules.

According to the same survey, the purpose of PETs is to cover the four main
requirements for privacy mentioned in Sect. 23.4 (i.e., unobservability, unlinkability,
anonymity and pseudonymity). In addition, they provide secondary tools (e.g., tools
for addressing spam, undesired Web content, or even unauthorized programs such
as spyware, viruses) and informational tools, which assist users in understanding
privacy issues. The long list of such tools comprises, amongst others: (a) privacy
protection tools, such as pseudonymization tools, anonymization products and
services, encryption tools, filters and blockers, track and evidence erasers, etc; and
(b) privacy management tools, such as information and administrative tools.

In a classification provided by Koorn et al. [19] PETs are grouped into four
categories: (1) general—includes encryption tools, logical access tools, biometrics,
etc., (2) data separation—they separate the processing of data that identify a person
from all other data to avoid cross linking, (3) data anonymization tools, such
as MIX routers, Onion routers, cookie management tools, etc., and (4) privacy
management systems—they automate the enforcement of security policies and
compliance control tools, such as P3P (Platform for Privacy Preferences Project).

Finally, the technical report of Shen and Pearson (2011) classifies PETs into five
categories as follows:

• PETs for anonymization.
• PETs to protect network invasion.
• PETs for identity management.
• PETs for data processing.
• Policy-checking PETs.

Privacy enhancing solutions comprise data filtering and minimization,
anonymization, noise addition, etc. In metadata approaches, privacy policies are
injected in the form of privacy rules that control access to data from different

5Privacy Enhancing Technologies—META Group Report v 1.1. 2005. Available for download
from: https://danskprivacynet.files.wordpress.com/2008/07/rapportvedrprivacyenhancingtechno
logies.pdf

logies.pdf
https://danskprivacynet.files.wordpress.com/2008/07/rapportvedrprivacyenhancingtechno
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applications. HL7 is working on a flexible standard that applies privacy and security
labels to segments of users’ personal data.6

According to a white-paper issued by the Healthcare Information and Manage-
ment Systems Society (HIMSS) about Privacy and Security Considerations from the
use of Social Media in Healthcare,7 privacy in health related social media and social
networks is achieved through a multi-step approach, which comprises the following
actions:

• Perform a social media risk assessment.
• Develop an overarching, risk-based, social media strategy consistent with orga-

nizational goals and objectives.
• Define a strategy to protect the organization’s on-line reputation and brand from

harm.
• Develop social media policies and procedures.
• Educate staff (e.g., doctors, nurses) and patients.
• Minimize regulatory and other legal/liability risks.
• Proactively monitor social media for compliance.

Yeratziotis et al. [36] claim that security and privacy do not come alone in healthcare
social networks. According to the authors, it is vital that the development of
security and privacy features for applications and websites are assessed for their
usability, which will consequently increase the continuous and effective utilisation
of the provided services. The authors propose a framework that consists of three
components: (1) a three-phase process, (2) a validation tool, and (3) a usable security
heuristic evaluation, as well as propose a list of items that must be checked to ensure
usable security and privacy. This list comprises user awareness about security and
privacy issues, user control on the privacy and security restrictions, and different
levels of configuration details depending on the users’ expertise.

In this line, the concept of Privacy-by-Design is gaining attention in the design
of HSNs. It is a system engineering approach that was developed by the former
Information and Privacy Commissioner of Ontario, Dr. Ann Cavoukian, back in the
90’s. It aims to encourage system designers to take privacy into account throughout
the whole engineering process.

Privacy-by-Design was initially expressed by deploying PETs. However, after
several years of rather unsuccessful experimentation, it is clear that a more
comprehensive approach is required. Privacy cannot and must not be an add-on,
but it must be embedded into the design of the HSN.

6HL7 Privacy, Access and Security Services (PASS) Specification. Ann Arbor, MI, USA: HL 7
International. Available for download from: http://wiki.siframework.org/file/view/PASS+Access+
Control+Conceptual+Model+Release+1.0.pdf.
7Social Media in Healthcare: Privacy and Security Considerations. HIMSS White Paper.
Available for download from: http://himss.files.cms-plus.com/HIMSSorg/Content/files/
Social_Media_Healthcare_WP_Final.pdf.

http://himss.files.cms-plus.com/HIMSSorg/Content/files/Social_Media_Healthcare_WP_Final.pdf
http://himss.files.cms-plus.com/HIMSSorg/Content/files/Social_Media_Healthcare_WP_Final.pdf
http://wiki.siframework.org/file/view/PASS+Access+Control+Conceptual+Model+Release+1.0.pdf
http://wiki.siframework.org/file/view/PASS+Access+Control+Conceptual+Model+Release+1.0.pdf
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Ann Cavoukian has identified seven Foundational Principles that must be prac-
tised in order to achieve the Privacy-by-Design objectives, and that the architects
and operators of HSNs must follow. Namely:

1. Proactive not Reactive; Preventative not Remedial: Privacy-by-Design antici-
pates and prevents privacy-invasive events before they happen. It aims to prevent
them from occurring.

2. Privacy as the Default Setting: Privacy must be the default state of the system.
No action must be required on the part of the individual.

3. Privacy Embedded into Design: Privacy is not an add-on. It must be embedded
into the design and architecture of IT systems.

4. Full Functionality—Positive-Sum, not Zero-Sum: Privacy-by-Design avoids
trade-offs between design goals. For instance, it demonstrates that both privacy
and security are possible.

5. End-to-End Security—Full Life-cycle Protection: Privacy-by-Design seeks to
protect data throughout their entire life-cycle, i.e., at the end of the process, all
data are securely destroyed.

6. Visibility and Transparency—Keep it Open: Privacy-by-Design gives the
opportunity to verify the efficiency of the privacy protection mechanism through
transparency.

7. Respect for User Privacy—Keep it User-Centric: Privacy-by-Design requires
the system designers to keep the interests of the user uppermost by empowering
user-friendly options.

23.6 On-line Social Networks in the Healthcare Domain

Healthcare social networks and user communities can be build on top of existing
social networking applications or on new platforms, which are designed on purpose.
The survey work of Grajales et al. [15] provides a good summary of social
networking applications that host healthcare networks. More specifically, authors
analyse different categories of social media which have been used by health-
care professionals, patients and researchers, such as: (1) blogs (e.g., WordPress),
(2) microblogs (e.g., Twitter), (3) social networking sites (e.g., Facebook), (4)
professional networking sites (e.g., LinkedIn), (5) wikis (e.g., Wikipedia), (6)
collaborative filtering sites (e.g., Digg), (7) media sharing sites (e.g., YouTube,
Slideshare), and (8) 3-D virtual worlds (e.g., SecondLife). They also examine the-
matic networking sites (e.g., 23andMe) and application mashups (e.g., HealthMap).

Healthcare requires privacy and anonymity, making traditional social media sites
such as Facebook and Twitter inadequate in sharing health data or personal health
experiences. This is where platforms designed specifically for supporting health
related social networks come in to the scene.
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23.6.1 Advice Seeking Networks

Patients, on the other side, access specialized social networks which focus on
healthcare subjects—especially on specific diseases, research and support around
them. In such networks, they are encouraged to connect with other patients, share
their stories, and get informed about their disease.

CureDiva,8 is a social network and on-line e-shop, targeting breast cancer
patients. It has a privacy mechanism, which allows members to choose their
preferred level of privacy on personal content. The network creates a personalized
experience for its members in order to increase their comfort.

MedHelp9 is a social media site that aims in consumer health engagement.
It has 13 million active monthly users, over 200 condition-specific communities
and provides expert forums for the health professionals to answer the questions
from health consumers directly. It offers community forums and expert blogs and a
data platform for consumers to gather data from mobile apps, web apps, and health
devices.

E-couch10 is an on-line communication tool, which provides several self-help
interactive programs that allows patients with depression, generalised anxiety and
worry, social anxiety, relationship breakdown, and loss and grief to contact experts
and ask for their support.

23.6.2 Patient Communities

ConnectedLiving11 is a private social network, which interconnects residents of
nursing homes, assisted living complexes, and other senior housing centres and aims
in creating a community of seniors, which are currently the most disconnected part
of the population. Network-members form friendship bonds with their real-world
friends within the social network and in the same time can grant access to external
social networks contents such as the members’ profile in Instagram of Facebook.

The popularity of smart-phones and the emerge of mobile health gave rise to data
intensive applications and networks where patients perform self-tracking and share
their data with doctors and the community. Self-trackers are using applications to
monitor sleep, food intake, exercise, blood sugar and other physiological states and
behaviours. Patients use the data in order to receive alerts for their health, physicians
suggest these solutions to patients so that they can have real-time feedback on the
results of a treatment and be able to adjust therapies faster [28].

8https://www.curediva.com/.
9http://MedHelp.org.
10https://ecouch.anu.edu.au.
11http://www.connectedliving.com/.

http://www.connectedliving.com/
https://ecouch.anu.edu.au
http://MedHelp.org
https://www.curediva.com/
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PatientsLikeMe,12 Smart Patients,13 FacetoFaceHealth14 are a few out of many
on-line social networks where patients share their experience using patient-reported
outcomes, find other patients like them matched on demographic and clinical
characteristics, and learn from others to improve their way of living. The goal of
such websites is to help patients answer the question: “Given my status, what is the
best outcome I can hope to achieve, and how do I get there?” [33].

23.6.3 Professional Networks

Sermo15 is the most popular social network for doctors, which however, limits
its membership to US-based doctors. NurseTogether16 is a similar professional
networking community for nurses. Doximity17 is a professional social network for
doctors only, founded in 2010, which resembles more to LinkedIn than Facebook. In
contrast to Sermo that allows anonymous postings, Doximity insists on real names.
Membership is validated by DEA number, which guarantees the true identity of a
member. The two networks have very different styles, since Sermo focuses more on
discussion forums, while Doximity emphasizes professional networking and private
messaging. In this direction, Doximity members have the ability to selectively share
contact information (e.g., cellphone number) with other members.

Each network type poses different challenges in terms of meeting the privacy
requirements. A comprehensive study of the controls needed in order to achieve
each requirement for such network types must follow in order to ensure privacy for
all types of networks. One of the main challenges that need to be further addressed
is the conflict between legal restrictions, human privacy restrictions and the need for
immediate access to a patient’s data when his health is in danger.

23.7 Conclusion

The use of Social networks and social media from patients and doctors, for health
related issues hides several privacy threats and risks, which must be properly
addressed due to the sensitive nature of patient information. Indicative types of
social networks for health include professional networks, advice seeking applica-

12https://www.patientslikeme.com/.
13https://www.smartpatients.com/.
14http://www.facetofacehealth.com.
15http://sermo.com/.
16http://www.nursetogether.com/.
17https://www.doximity.com/.

https://www.doximity.com/
http://www.nursetogether.com/
http://sermo.com/
http://www.facetofacehealth.com
https://www.smartpatients.com/
https://www.patientslikeme.com/
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tions and patient communities. This work, presented privacy risks, requirements
and available solutions, and made a first step towards a best practice guide, which
will outline both the technical and procedural countermeasures required in order to
maintain privacy, taking into account modern technology environments.
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Part IV
Privacy Through Policy, Data

De-identification, and Data Governance



Chapter 24
Privacy Law, Data Sharing Policies, and Medical
Data: A Comparative Perspective

Edward S. Dove and Mark Phillips

Abstract The sharing and linking of medical data across borders is now a key
enabler of new medical discoveries. Data are no longer simply collected and used
at a single physical site, such as a laboratory or a research institute. Instead,
communication flows between research teams within and across national borders
bring together the necessary data and expertise to clarify previously unknown
disease aetiologies. Integration of medical data and secure health records systems
now allows clinicians to develop early treatment strategies tailored to a specific
patient. As policymakers, patient advocacy groups, and biomedical researchers
gravitate toward recognizing the benefits of global data sharing, they may be
challenged by regulatory systems that were developed when the norm was using
and sharing medical data only within a single jurisdiction. This chapter describes
and compares key data privacy legal frameworks (Canada, US, UK, EU, Council of
Europe, OECD) and discusses data sharing policies adopted by major biomedical
research funding organisations (the NIH, Canadian Institutes of Health Research,
Genome Canada, Wellcome Trust) in the context of their impact on medical data
privacy. In so doing, the chapter explains not only the content, significance, and
practical usefulness of these laws, regulations, and policies as they relate to medical
data, but also identifies lingering barriers to global data sharing and suggests ways
to overcome them while maintaining robust data privacy protection.

24.1 Introduction

Data, including medical data, are the currency of the twenty first century. In our
information society, using and sharing medical data are critical to achieving both
translational and precision medicine, such as improved disease classification based
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on molecular profiles allowing tailored treatments, interventions, and models for
prevention [1, 17]. Medical data are now employed regularly “to support evidence-
based decision-making, to improve the quality of care provided, and to identify and
achieve cost efficiencies” [15].

Medical data are used not only to deliver necessary healthcare directly to
individuals—secondary uses of medical data to broaden scientific knowledge, for
both public and private benefit, are also myriad and increasing. Data have long
been used for invaluable secondary purposes that benefit society as a whole, such
as population health monitoring, healthcare quality improvement, and biomedical
research. Moreover, they are no longer collected and used only within single sites
such as clinics, laboratories, or research institutes; communication flow within and
across national borders and research teams, encompassing data from clinical and
population research, enables researchers and clinicians to connect the diverse types
of datasets and expertise needed to elucidate the molecular basis and complexities
of disease aetiology. The number of large-scale health research projects that involve
the collection of whole genome sequencing data is continuing to rise in countries
around the world.

This integration of medical data has begun to allow explanations of the aeti-
ologies of cancer, inherited diseases, infectious diseases, and drug responses.
Furthermore, integrating medical data with electronic medical or health record
systems, securely stored in research and clinical databases, can help clinicians to
develop earlier and more targeted treatment strategies for their patients. The growth
of “eHealth” technologies is streamlining the flow of medical data within and across
borders to improve quality of care and service delivery, and reduce healthcare
system inefficiencies and costs.

Using and sharing medical data, however, requires regulatory systems that
protect privacy. Depending on the context in which they are used and how they
are related to other information, medical data, whether processed by healthcare
providers in the delivery of healthcare or by researchers in the furtherance of gener-
alizable knowledge, can be highly sensitive. Respondents to a survey commissioned
by the Wellcome Trust in 2013, for example, strongly felt “that personal medical
data are confidential, private and sensitive, and should not be shared outside secure,
authorised bodies : : : and especially not with private companies such as employers,
insurance providers, and drug manufacturers. Mental health data was sometimes
regarded as particularly personal and sensitive” [77]. Studies have shown “that most
adults are concerned about the security and privacy of their [medical] data, and such
concerns are associated with an increased likelihood of non-disclosure of sensitive
information to a healthcare professional” [2].

On the other hand, in some contexts medical data may not be so sensitive. In a
2013 survey prepared for the Office of the Privacy Commissioner of Canada, for
example, “Canadians were asked, in an open-ended manner, what risks to their own
privacy concerned them the most : : : Financial information/bank fraud topped the
list, with nearly a quarter citing it (23%)”; medical data ranked near the bottom at
3 % [58]. Though medical data are not invariably more sensitive than other types
of data, it is certain enough that data processed in a medical context touch on
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important personal privacy interests. Therefore, medical data relating to individuals
(and arguably, families and communities as well) must be safeguarded, and their
sharing controlled through appropriate legislation and policy, including sound ethics
review oversight and data access mechanisms.

But what are medical data exactly? Some legal and policy instruments draw
distinctions between the terms “medical data”, “health data”, “health information”,
“protected health information”, “personal health information”, and “data relating
to health”. For example, the Article 29 Data Protecting Working Party [4–6] (an
independent European advisory body on data protection and privacy set up under
Article 29 of Europe’s Data Protection Directive 95/46/EC [28]) interprets “health
data” as a much broader term than “medical data”. In particular, they have opined
that everything from the wearing of glasses or contact lenses, to membership in a
support group with a health-related objective, to data about a person’s intellectual
and emotional capacity, or smoking and drinking habits, constitutes health data.
Medical data, on the other hand, are a narrower category of data comprising
the physical or mental health status of a “data subject” that are generated in a
professional, medical context. As the Working Party explains:

This includes all data related to contacts with individuals and their diagnosis and/or
treatment by (professional) providers of health services, and any related information on
diseases, disabilities, medical history and clinical treatment. This also includes any data
generated by devices or apps, which are used in this context, irrespective of whether the
devices are considered as “medical devices” [6].

This narrow position contrasts with the Council of Europe’s Recommendation
No. R (97) 5 on the Protection of Medical Data, which defines medical data as
“all personal data concerning the health of an individual [and those] data which
have a clear and close link with health as well as : : : genetic data” [19]. Despite
these definitional nuances, each approach speaks to data about an identifiable
individual that are related to the individual’s health or the provision of health
services to the individual. At the same time, these data touch on morally relevant
values and interests that transcend the individual [55]. Importantly, they reveal
intimate aspects, especially in the case of genomic data, of family members. Medical
data encompass information about lifestyle and behaviour; health conditions and
concerns; history of healthcare procedures and medication use; results of medical
tests; related information about family members and other individuals; and genetic
information about individuals and their blood relatives. Misuse of medical data,
especially their unwarranted disclosure, “could adversely affect the opportunities
available to individuals, including eligibility for loans, healthcare, employment
and educational opportunities, or adoption” [7]. Misuse could also lead to serious
repercussions for researchers, healthcare practitioners, and their organisations.
Experience demonstrates that individuals will only share their medical data, or
participate in or trust healthcare systems and research studies, if they know that their
data are sufficiently protected. Robust privacy protection is therefore needed, and it
is the responsibility of governments, organisations, and individuals to effectively
protect medical data.
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Yet while medical data sharing and collaboration are increasingly embraced by
policymakers, funders, patient advocacy groups, and the international biomedical
research community, inefficiencies and insufficiencies remain, in part due to
generation-old data privacy regimes originally developed to protect personal data
within single jurisdictions [63]. These regimes are not attuned sufficiently to the
evolving paradigm of large-scale, global, and data-driven biomedical research, and
thus often result in inefficient data flow and unnecessary data transfer costs and
delays. It may well be time to rethink how data privacy regimes are conceived,
and how they can both promote medical data sharing and protect medical data
privacy in a proportionate manner.

In this chapter, we provide an overview and international comparison of data
privacy laws and regulations in several key jurisdictions (including Canada, the
United States, and Europe) and also discuss data sharing policies in the context of
medical data privacy. We intend to illustrate not only the content, significance, and
practical usefulness of these laws, regulations, and policies as they relate to medical
data, but also to identify lingering undue regulatory barriers to data sharing and
suggest ways to overcome them while maintaining robust and proportionate privacy
safeguards.

24.2 Overview of Data Privacy Legal Frameworks

Privacy is considered to be a fundamental interest in almost all societies and a
fundamental right in some, such as in Europe. It is an ancient concept that has been
discussed in foundational philosophical and legal treatises (e.g., Aristotle’s Politics
from approximately 350 B.C., John Locke’s Second Treatise of Government from
1690), and has been implemented in law for thousands of years [22]. For example,
the notion of the “private sphere”, as equating to the interests of individuals, as
distinct from a “public sphere”, relating to political activities, was incorporated into
late Roman law, including in the first chapter of the two sections of the Corpus
Juris Civilis, the compilation of Roman law issued by Emperor Justinian in 533–534
CE [60].

Yet privacy is a notoriously vague term and is contextual [54]. As one report
cautions, “discussion of privacy across nations and cultures must be sensitive to the
impact of cultural norms and environments before applying universal concepts of
privacy” [78]. While taking note of numerous unresolved philosophical, ontological,
and semantic debates, we define privacy, at least in its informational dimension, as a
state of affairs whereby data relating to a person are either in a state of non-access,
or in a state of managed access such that the person is able to decide whether
and how they may be used and shared, and to know how those data are actually
used and shared. Privacy is instrumentally valuable, as it enables people to flourish
in developing personal relationships and social participation, and it is intrinsically
valuable, as it is grounded in the values of dignity, integrity, and autonomy. This
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consensus is reflected, albeit to varying degrees, in human rights declarations as
well as in data privacy legislation and policies across much of the world.

The number of global data privacy regulations and policies is vast. There are at
least 109 countries in the world as of 2015 with data privacy laws in force [35].
Despite this regulatory expanse, all data privacy legal frameworks, whether specific
to medical or other types of data, seek to create a realm of legal certainty in which
the processing of personal data can occur in a way that both benefits society and
protects individuals from harm.

Two observations deserve mention at the outset. First, data privacy legal frame-
works tend to address the “processing” of personal data, which is generally
understood to include any operation or set of operations performed on personal
data and therefore includes: collection; recording; organisation; structuring; storage;
adaptation or alteration; retrieval; consultation; use; disclosure by transmission,
dissemination, or otherwise making available; alignment or combination; and
erasure. Second, data privacy legal frameworks usually apply only to data that relate
to an identified or identifiable individual person, known as the “data subject” (hence
the terms “personal data” or “personal information”). This traditional definition is
challenged in the genetic context by the relational nature of genetic data [62].

Additionally, two caveats are in order. First, though the two concepts are closely
linked, privacy is not synonymous with data protection. Privacy is a broader concept
that embodies a range of rights and values, such as the right to be let alone, intimacy,
seclusion, and personhood. It can include control over personal data, but not all
personal data are private. Moreover, control over personal data might rest with a
person, but this is not a necessary condition for privacy. If it were, it would mean
that every loss of control was a loss of privacy and we know this is not so. Data
protection, on the other hand, seeks to protect values other than just privacy, such as
data security, data quality, non-discrimination, and proportionality. Data protection
is a “set of legal rules that aims to protect the rights, freedoms, and interests of
individuals, whose personal data are collected, stored, processed, disseminated,
destroyed, etc”. The ultimate objective is to ensure “fairness in the processing of
data and, to some extent, fairness in the outcomes of such processing.” The fairness
of processing is safeguarded by a number of principles [64].

Furthermore, “unlike privacy’s elusive and subjective nature that makes the right
different in different contexts and jurisdictions, data protection has an essential
procedural nature that it makes it more objective as a right in different con-
texts” [64]. Because some jurisdictions refer to “privacy laws” and others refer to
“data protection laws”, though both speak to protection of personal data, in this
chapter we use the imperfect but relatively catch-all term “data privacy laws”.

Second, we note that privacy is distinct from confidentiality, which relates instead
to the protection of information that a person has disclosed in a relationship of
trust with the expectation that this information will not be divulged to others
without permission or authorisation. The duty of confidentiality is reflected in self-
regulatory codes of medical and research professionals, such as codes of ethics and
medical data privacy codes, as well as in law such as the common law duty of
confidentiality, not to mention customary practices that have evolved in trusting
relationships.
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In law, data privacy frameworks are seen as protecting the personal data
component of privacy. Comprehensive human rights laws and constitutions often
address some element of personal data or informational privacy, classically framed
as protection of individuals’ privacy interests against arbitrary state interference.
For example, in Canada, informational privacy is protected under the country’s
constitution (specifically in the Canadian Charter of Rights and Freedoms) as an
implicit component of its guarantees of liberty, especially the protection against
unreasonable search or seizure by state actors.

Data privacy laws as such emerged relatively recently. Legislation protecting
certain forms of data was first enacted in 1970 by the German state of Hesse
(the statute is known as the Hessisches Datenschutzgesetz), followed by Sweden
in 1973 (the Datalagen) and, subsequently, by other countries, both in Europe and
elsewhere (e.g., the US Privacy Act of 1974, which notably applies only to personal
data held in record systems of federal agencies). Comprehensive “omnibus” data
privacy legislation emerged in the mid-1980s. Modern data privacy principles are
often traced to three reports from the 1970s [10, 47]: one written by a committee
created by the British Parliament to investigate privacy problems related to the use
of computerized data records in the commercial sector; another by an advisory com-
mittee to the US Department of Health, Education and Welfare (HEW), which called
for “attention to issues of record-keeping practice in the computer age that may have
profound significance for us all” [37]; and another from a study commission by the
US Congress that called for the protection of privacy in several sectors, including
healthcare and research [73]. The British parliamentary committee drafted a set
of regulatory principles [79] quite similar to the safeguards recommended by the
HEW report, which detailed fundamental principles of “fair information practice”
that have since been adopted in various forms at the international level, as discussed
in the following section. The international emergence of data privacy laws in the
1970s and 1980s aimed to address privacy issues generated by new technologies
such as vastly expanded computing, centralized processing of personal data, and the
establishment of large data banks.

In the biomedical context, data privacy laws have two key objectives. First,
they aim to enable free flows of data necessary for the delivery of health services,
management of public health, and biomedical research. Second, and at the same
time, they seek to establish appropriate privacy and security frameworks that protect
personal data from misuse.

Much of the discussion surrounding data privacy can be described in terms of the
appropriate relationship between these two objectives. The second objective can be
seen either more as instrumentally valuable as a means of accomplishing the first, or
as inherently valuable in itself. Where the two objectives conflict with one another,
one will sometimes be argued to override the other in particular circumstances.
There is consensus, however, that both objectives are worth fulfilling to the degree
they are reconcilable.

Because of this split purpose, data privacy laws tend to have a wide reach,
and over time their scope has expanded. To take one example, the Council of
Europe’s Recommendation No. R (97) 5 on the Protection of Medical Data provides
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that legislation protecting data privacy should apply to all medical data, whether
processed by a physician or by another person [19]. Also, the form in which personal
data are stored or used is generally irrelevant to the applicability of data privacy
laws; hence, cell samples of human tissue may be considered personal data as they
record the DNA of a person, though this remains unsettled in many data privacy laws
[11, 62].

Regrettably for biomedical research projects with an international character,
globally harmonisation data privacy standards do not yet exist, though a concerted
attempt was made with the Madrid Resolution of 2009 (International Conference
of Data Protection and Privacy Commissioners 2009 [41]). Instead, data privacy
frameworks generally fall within one of three categories: (1) comprehensive laws,
meaning omnibus data privacy statutes often grounded in human rights principles;
(2) sectoral laws that apply only to the demands of data privacy in a specific
sector, such as healthcare (though few countries have adopted specific medical data
privacy legislation); and (3) other rules or sets of rules that do not have the force
of law, but that may nonetheless entail serious consequences when violated, such
as professional codes of conduct or policy guidelines. Within each category there is
tremendous variation.

Approaches to data privacy protection differ across world regions. As Professor
Rolf Weber observes: “From a comparative perspective, European regulations are
quite advanced, setting a high level of data protection. In the United States and in
Asia, the emphasis is more on self-regulatory approaches” [75]. Some legal regimes
operate on the scale of a regional grouping of countries, such as Europe; many
apply only within a single country, while others are narrower still, for example, laws
specific only to a single province or state within a country, or even to a specific type
of industry. Laws may apply separately to public, private, or health institutions. Yet
whatever their geographic, sectoral, or institutional scope, any data privacy legal
framework may have a bearing on the processing of medical data. Consequently,
the lack of globally harmonisation data privacy standards creates numerous risks.
Professor Weber lists several (see Fig. 24.1) [75].

1. Non-compliance with national law.
2. Unauthorised release of personal information.
3. Inability to provide individuals with access to their personal information.
4. Inability to cooperate with national regulators in case of complaints.
5. Inability of the national regulator to investigate or enforce the law.
6. Inability to guarantee the protection of personal data in countries with a

low protection level.
7. Conflicts between national and foreign laws.
8. Possible access to data by foreign governments.
9. Overseas judicial decisions requiring the disclosure of data.

10. Problems with recovery or secure disposal of data.
11. Loss of trust/confidence if data are transferred and misused.

Fig. 24.1 Risks created by the lack of globally harmonisation data privacy standards
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Despite this variation, there are points of convergence. For instance, data privacy
frameworks often impose specific duties on an individual or organisation who
must determine the purposes and means of the personal data processing—the “data
controller”, also known by other terms such as “information custodian”, “covered
entity”, or “trustee”—as well as on an individual or organisation—known as the
“data processor”—who processes personal data on behalf of the data controller.
Another commonality is that generally, no restrictions apply to the processing of
personal data where the person to whom they relate has specifically consented
to that particular use, though the limitations of specific consent in the context of
certain databases (e.g., cancer registries), infrastructures (e.g., biobanks), or large-
scale or longitudinal biomedical research studies have been well documented (e.g.,
O’Neill [57]).

Privacy concerns may be assuaged by anonymization (also referred to as de-
identifying) or pseudonymising (also referred to as key-coding) medical data before
putting them to downstream uses [5]. To the benefit of researchers and medical data
custodians, fewer legal restrictions may apply to data that have been anonymised
or pseudonymised past certain thresholds. This said, many data privacy laws still
consider pseudonymised data to be personal data, and the processing of personal
data for the purposes of achieving anonymisation (i.e., the rendering of personal
data to an anonymised state) is subject to data privacy laws because prior to such
anonymisation, the data are still personal. But while scientific researchers tend to use
anonymised data wherever possible, there are three main limits to anonymisation
(see Fig. 24.2). Pseudonymisation largely lacks these weaknesses, and is a much
simpler process, yet the trade-off is that it is a weaker privacy protection measure,
and makes no claim to irreversibly obfuscating data subjects’ identities.

The growth of international biomedical research collaboration has led to
concomitant exponential growth in cross-border data flows. Data privacy legal
frameworks tend to adopt one of two general approaches with respect to cross-
border “data transfer” (i.e., sharing data within and across jurisdictional borders).
One set of frameworks requires that before medical data may be transferred, the
data controller must take specific steps to ensure that the entity receiving the
data is governed by “adequate” legislative oversight to protect the data (termed
the adequacy approach). The other set requires that data controllers take what
they consider appropriate steps to ensure adequate data protection during and
after the transfer, holding the controller accountable for any improper use that
may ultimately be made of the data by the transferee (termed the accountability
approach). Although some laws incorporate elements of both approaches, the
adequacy approach tends to be geographically oriented and relevant only to
international data transfer: legislation in the country of the transferee will either
be deemed to provide adequate protection, or not. The accountability approach, on
the other hand, tends to be organisational and to apply even to transfer within the
borders of a given country. It requires that the data transferee agree to be subject to
sufficient legally binding privacy obligations, such as through a contract.

Aside from these general trends, each data privacy framework emerges within
its own context, and each contains its own idiosyncrasies. As a comprehensive
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1. The methods and degree of de-identification required to warrant fewer
legal restrictions are not only inconsistent but almost always also unspec-
ified, causing legal uncertainty when it comes to working with medical
data [44]. This situation is partly a result of data privacy legislation that
was rarely drafted with the specific issues of medical data privacy and
contemporary biomedical research in mind. Another factor is that de-
identification (and re-identification) is a rapidly developing – and also
controversial – field, which makes it difficult to authoritatively lay down
a specific and prospective standard for de-identification in law.

2. Data privacy research is now making clear that although a dataset may
be anonymised according to conventional approaches (i.e., through ran-
domization or generalization by considering publicly available datasets),
its cross-linking with data available elsewhere (e.g., from another dataset)
can make it possible to infer data subjects’ identities. Large datasets, par-
ticularly those including extensive genomic information, cannot be com-
pletely safe from inferential exploitation and ultimately data subject re-
identification [30]. Data controllers must therefore take appropriate steps
to ensure that the medical data they hold are used only for acceptable pur-
poses within the scientific scope of a research study and in accordance
with the consent provided by patients or participants. Effort involved in
rigorously anonymising data in this case is of limited (perhaps even of
questionable) benefit.

3. Nor is anonymisation of medical data particularly beneficial when re-
searchers or clinicians want to link medical data to other data sources
over time (as anonymised data have been irreversibly de-linked); to re-
contact donors to enhance research aims; to obtain additional information
or invite participation in other research projects; to communicate a clini-
cally actionable finding; to identify and correct errors or to amend medical
data when new information becomes available; or to allow donors to with-
draw their medical data from a study. Thus, while anonymisation may be
championed as a means of achieving strong data privacy protection, in
the medical data context it usually offers only limited utility to (not to
mention respect for) both researchers and patient-participants alike. As a
recent Nuffield Council on Bioethics reports notes, “Faced with contem-
porary data science and the richness of the data environment, protection of
privacy cannot reliably be secured merely by anonymisation of data or by
using data in accordance with the consent from   data subjects’. Effective
governance of the use of data is indispensable” [55].

,

Fig. 24.2 Three main limitations to anonymisation of personal data

international review is beyond the scope of this chapter, we now turn to discuss in a
comparative manner some of the most influential data privacy laws, guidelines, and
policies. The details of specific national data privacy laws and regulations are clearly
set out in the leading textbooks (e.g., Beyleveld et al. [8]; Boniface [9]; Bygrave
[10]; Greenleaf [34]; Kenyon and Richardson [42]; Kuner [45]; Power [59]; Solove
and Schwartz [61]) and are available in the free access International Privacy Law
Library (worldlii.org/int/special/privacy), located on the World Legal Information
Institute (WorldLII) website.

worldlii.org/int/special/privacy


648 E.S. Dove and M. Phillips

24.3 Data Privacy Laws and Guidelines

International instruments have addressed data privacy in some form for nearly
50 years. As Bygrave [10] notes, as early as 1968, the United Nations General
Assembly passed a resolution inviting the UN Secretary General to examine
individuals’ right to privacy “in the light of advances in recording and other
techniques” [67]. A UN report in 1976 followed, calling for countries to adopt
data privacy legislation and listing a set of minimum legislative standards [68].
In 1990, the UN General Assembly adopted a set of data privacy guidelines
that set out minimum guarantees to be legislated nationally and to be respected
by governmental international organisations to ensure responsible, fair, privacy-
friendly data processing [69]. An important early effort to codify the principles of
data privacy, including the international transfer of data, was made in 1980 by the
Organisation for Economic Co-operation and Development (OECD) [56].

Yet while the OECD and other international organisations have promoted privacy
as a fundamental value and a condition for the free flow of personal data across
borders, as well as in inspiring data privacy legislation around the world, still,
almost 50 years later, no set of principles or rules has been accepted as an
authoritative global standard. Consequently, a variety of data privacy frameworks
have proliferated.

24.3.1 The OECD Privacy Guidelines

Although the 1980 OECD Guidelines on the Protection of Privacy and Transborder
Flows of Personal Data (OECD Privacy Guidelines [56]) are non-binding and not
directly enforceable, even within OECD member countries, it would be difficult
to overstate their influence. Nearly all existing privacy and data sharing laws and
policies have adopted at least some of the principles they articulate. Turkey is the
only OECD member country (of 34, currently), other than the US in relation to
the private sector, which does not have a data privacy law implementing the OECD
Privacy Guidelines [33].

The OECD Privacy Guidelines present minimum recommended standards that
each OECD member country is encouraged to adopt for both public and private
sectors, and to supplement according to its individual needs through the creation
of domestic privacy and data transfer laws. Recently updated in 2013, the Privacy
Guidelines allow considerable flexibility in implementation by data controllers and
OECD member countries.

Their core consists of eight data privacy principles that have remained wholly
intact following the 2013 revision (see Fig. 24.3). These principles, as well as the
broader guidelines, apply only to processing of personal data, defined as “any
information relating to an identified or identifiable individual” [56]. The principles
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Collection Limitation Principle. There should be limits to the collection
of personal data and any such data should be obtained by lawful and fair
means and, where appropriate, with the knowledge or consent of the data
subject.

Data Quality Principle. Personal data should be relevant to the purposes
for which they are to be used, and, to the extent necessary for those pur-
poses, should be accurate, complete and kept up-to-date.

Purpose Specification Principle. The purposes for which personal data
are collected should be specified not later than at the time of data collection
and the subsequent use limited to the fulfilment of those purposes or such
others as are not incompatible with those purposes and as are specified on
each occasion of change of purpose.

Use Limitation Principle. Personal data should not be disclosed, made
available or otherwise used for purposes other than those specified in accor-
dance with [the purpose specification principle] except (a) with the consent
of the data subject; or (b) by the authority of law.

Security Safeguards Principle. Personal data should be protected by rea-
sonable security safeguards against such risks as loss or unauthorised ac-
cess, destruction, use, modification or disclosure of data.

Openness Principle. There should be a general policy of openness about
developments, practices and policies with respect to personal data. Means
should be readily available of establishing the existence and nature of per-
sonal data, and the main purposes of their use, as well as the identity and
usual residence of the data controller.

Individual Participation Principle. An individual should have the right
(a) to obtain from a data controller, or otherwise, confirmation of whether
or not the data controller has data relating to him; (b) to have communi-
cated to him, data relating to him within a reasonable time; at a charge,
if any, that is not excessive; in a reasonable manner; and in a form that is
readily intelligible to him; (c) to be given reasons if a request made under
subparagraphs (a) and (b) is denied, and to be able to challenge such denial;
and (d) to challenge data relating to him and, if the challenge is successful
to have the data erased, rectified, completed or amended.

Accountability Principle. A data controller should be accountable for
complying with measures which give effect to the principles stated above.

Fig. 24.3 Basic principles of national application, Part 2 of the OECD privacy guidelines [56]

encourage parsimonious data collection and use, emphasize autonomy and consent,
and promote data quality and security.

The Privacy Guidelines address data transfer on an international basis and—
especially since the 2013 revision—the main provisions on transborder data flows
include aspects of both the accountability and adequacy principles, also adding a
principle of proportionality between risks and benefits (see Fig. 24.4).

Interestingly, unlike many of the subsequent international data privacy instru-
ments, the Privacy Guidelines do not establish any “sensitive” categories of data
subject to heightened privacy requirements.



650 E.S. Dove and M. Phillips

16. A data controller remains accountable for personal data under its control
without regard to the location of the data.

17. A Member country should refrain from restricting transborder flows of
personal data between itself and another country where (a) the other coun-
try substantially observes these Guidelines or (b) sufficient safeguards
exist, including effective enforcement mechanisms and appropriate mea-
sures put in place by the data controller, to ensure a continuing level of
protection consistent with these Guidelines.

18. Any restrictions to transborder flows of personal data should be propor-
tionate to the risks presented, taking into account the sensitivity of the
data, and the purpose and context of the processing.

Fig. 24.4 Basic principles of international application: free flow and legitimate restrictions, Part 4
of the OECD privacy guidelines [56]

24.3.2 The Council of Europe Convention 108

In 1981, the year after the OECD Privacy Guidelines were released, the Council
of Europe adopted its Convention for the Protection of Individuals with regard to
Automatic Processing of Personal Data (Convention 108) [18]. While the Council
of Europe and the OECD coordinated their efforts in drafting their respective
instruments, Convention 108 differs from the OECD framework not least in that
it is the only legally binding international data protection instrument. Convention
108 [18, 20, 21] is technically a multilateral treaty dealing with data privacy, and is
currently in force in all 47 member states of the Council of Europe except for San
Marino and Turkey (the latter having signed but not yet ratified it). Furthermore,
Article 23 of the Convention uniquely allows any state in the world to become a
signatory, giving its privacy principles global potential (Council of Europe 1981).
In 2013, the Convention entered into force in Uruguay, the first country outside of
Europe to join; Morocco has received an invitation to join as well.

Since 2001, signatories have had the option of opting in to a set of added rules
contained in an Additional Protocol. The rules in this protocol are now in force in
more than two-thirds of the Council of Europe member countries and in Uruguay.
A modernization process aimed at making significant amendments to Convention
108 was initiated in 2011 and remains ongoing.

The Convention requires that each signatory enact national laws to implement
its data protection measures before the convention comes into force in the country.
Although states are still allowed a measure of flexibility in their individual imple-
mentation, it is much narrower than that allowed by the OECD Privacy Guidelines.

Convention 108 expressly prohibits processing medical data unless national
law provides “appropriate safeguards” (Article 6). Consequently, it is unlawful to
process medical data about a person absent a legitimate basis for doing so, such
as a doctor-patient relationship or the explicit consent of the data subject. A series
of Council of Europe recommendations from the early 1990s on genetic testing
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provide that genetic information should be processed in conformity with basic data
privacy principles [10]. These recommendations are supplemented by the Council
of Europe’s 1997 Convention for the Protection of Human Rights and Dignity of the
Human Being with regard to the Application of Biology and Medicine (otherwise
known as the Oviedo Convention), which provides at Article 10(1) that “everyone
has the right to respect for private life in relation to information about his or her
health”.

Moreover, the Council of Europe’s Recommendation No. R (97) 5 on the
Protection of Medical Data [19] applies the principles of Convention 108 to data
processing in the medical field in more detail. Recommendation No. R (97) 5
explicitly acknowledges that scientific research may justify conserving personal
data even after they have been used for the immediate purpose for which they were
collected, although conservation usually requires their anonymisation. Article 12 of
Recommendation No. R (97) 5 also sets out detailed proposed regulations to govern
situations in which research using anonymised data would be impossible.

Convention 108’s default position on data transfer—which it refers to as “data
flows”—between countries in which the Convention is in force is that such transfer
should not be restricted for privacy reasons [18]. Restrictions on personal data
flows are allowed, however, either when the data pass through an intermediary
that is not subject to the Convention, or insofar as a member country’s legislation
“includes specific regulations for certain categories of personal data : : :, because of
the nature of those data : : :, except where the regulations of the other [member
country] provide an equivalent protection” (Article 12(3)(a) [18]). Medical data
are an obvious example of a “certain category” that national laws can nonetheless
restrict due to their nature.

The Additional Protocol establishes that data flows to countries where the
Convention is not in force are subject to the adequacy approach. “Adequacy” in
this context is a functional concept that requires that the data protection regime
in the importing country afford a sufficient level of protection, judged according
to both the intended data processing activity (e.g., nature of the data, purpose
and duration of the processing operation or operations), and the legal regime
or measures applicable to the data recipient (e.g., general and sectoral rules of
law, professional requirements and security measures). The Additional Protocol
prohibits data transfer to non-signatories of the Convention unless either the
receiving “State or organisation ensures an adequate level of protection for the
intended data transfer,” or the data controller provides for safeguards that have been
“found adequate by the competent authorities according to domestic law” (Article
2 [20]). The Additional Protocol also allows an exception for transfers that serve
“legitimate prevailing interests, especially important public interests” or “specific
interests of the data subject”, but only when domestic law provides for this (Article
2(2)(a) [20]). The modernization proposal, in its form at the time of writing this
chapter, would incorporate a modified version of this aspect of the Additional
Protocol into the Convention itself. Instead of requiring “adequate” protection,
however, the proposed amendment demands “appropriate” protection, which it
defines as follows:
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An appropriate level of protection can be ensured by: (a) the law of that State or international
organisation, including the applicable international treaties or agreements, or (b) ad hoc or
approved standardised safeguards provided by legally binding and enforceable instruments
adopted and implemented by the persons involved in the transfer and further processing
(Council of Europe 2012:6 [21]).

Unless the measures described in subsection (b) above are involved, the proposed
amendment would allow restrictions on transfer even between parties to the Con-
vention if they originate from a country “regulated by binding harmonisation rules
of protection shared by States belonging to a regional international organisation”
[21]. The proposed amendment reformulates the public-interest and specific-interest
exceptions mentioned above, and adds another exception to restrictions on transfer if
“the data subject has given his/her specific, free and [explicit/unambiguous] consent,
after being informed of risks arising in the absence of appropriate safeguards” [21].

24.3.3 The European Union Data Protection Directive 95/46

Arguably the most globally influential data privacy scheme is the European Union’s
1995 Directive on the Protection of Individuals with Regard to the Processing of
Personal Data and on the Free Movement of Such Data (Directive 95/46 [28]).

Although EU members are already guaranteed to possess a degree of data privacy
law harmonisation by virtue of all being signatories to Convention 108, Directive
95/46 seeks to elaborate on its principles and to promote harmonisation at the
national level. Moreover, through its Charter of Fundamental Rights of the European
Union, which came into force in 2009 with the Treaty of Lisbon, the EU explicitly
conceives of personal data protection as a freestanding, fundamental right held by
everyone (European Union 2010:Article 8(1) [29]). However, the right to respect
for private life, as recognized in the 1950 European Convention on Human Rights
and the Charter of Fundamental Rights of the European Union, and the right to
data protection, as recognized in the Charter, are not absolute rights. As with all
fundamental rights, they must be balanced with other rights, including academic
freedom and freedom of scientific research, which is recognized in Article 13.

Unlike Convention 108, the privacy measures in Directive 95/46 are not directly
enforceable, but the Directive is nonetheless legally binding in the 28 EU member
states and the three European Economic Area (EEA) member countries. Directive
95/46 requires that each country establish data privacy laws implementing the
Directive’s privacy measures, although EU Directives do allow member states to
retain some discretion to implement measures in a way that accords with each
national legal tradition. The Directive has accordingly been transposed into national
law by all EU member states; by the three additional EEA member countries of
Iceland, Liechtenstein, and Norway; and it has been taken up by Switzerland in a
parallel law.

The Directive defines personal data as “any information relating to an identified
or identifiable natural person : : : who can be identified, directly or indirectly,
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in particular by reference to an identification number or to one or more factors
specific to his physical, physiological, mental, economic, cultural or social identity”
(European Union 1995:Article 2(a) [28]). It applies to all such data, irrespective of
the citizenship or residency of the data subjects, with a few exemptions, including
data used for purposes of national security.

Article 8(1) requires that states adopt a basic prohibition on processing categories
of sensitive data, including “data concerning health” [28]. Among the exceptions
to the prohibition are situations in which the consent of the data subject is given,
situations of “substantial public interest”, and an exception in article 8(3), “where
processing : : : is required for the purposes of preventive medicine, medical diagno-
sis, the provision of care or treatment or the management of health-care services,
and where those data are processed by a health professional subject : : : to : : :

professional secrecy or by another person also subject to an equivalent obligation of
secrecy” [28]. Because biomedical research is absent from this list, unless a research
project is justified by “substantial public interest” (which is undefined), it seems that
the Directive precludes national laws from ever allowing research data to escape
the basic prohibition. Nor is the effect of Article 8 on scientific research tempered
by Article 13, which allows for some privacy obligations to be softened, including
when “data are processed solely for the purposes of scientific research” (European
Union 1995 [28]). The Directive’s only other reference to “scientific research”,
a concept which it never defines, allows exemptions from notification and fair
processing duties where these would be impossible or impractical when secondary
use is made of data for “historical or scientific research” purposes (European Union
1995:Article 11(2) [28]).

As a result of the various instruments mentioned, laws in Europe that apply to
biomedical research and processing of medical data are complex. Different areas
of law, such as data privacy, tissue regulation, as well as biomedical research
regulations can all impact how medical data must be handled. There are considerable
differences in the way that European data privacy principles are implemented
in national law. In particular, there are varying definitions of “personal data”,
requirements for pseudonymisation, and rules on processing of data for biomedical
research [48]. As Briceno Moraia and colleagues note, the Directive does not always
contain all the relevant data privacy rules: “Most countries also have a specific
legislation on medical research that must be read along with the data protection
legislation to provide a comprehensive picture of the legal requirements that apply
to medical research” [48].

The Directive defines consent as “any freely given specific and informed
indication of : : : wishes by which the data subject signifies his agreement to personal
data relating to him being processed” (European Union 1995:Article 2(h) [28]).
But the practical scope of consent remains unclear. When, for example, during a
long-term biomedical research study, is a fresh consent required? Even after the
2011 publication of a thirty-eight page opinion on such questions entitled “On the
Definition of Consent” by the EU’s data protection working committee, the answer
remains unclear [4].

Article 25 of the Directive governs data transfer to countries outside of the EU
and EEA. Article 25(1) adopts the adequacy model, and Article 25(2) allows such
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transfer only if adequate protection would be provided as assessed in the context of
the particular transfer. The Directive provides a mechanism that allows transfers to
be deemed adequate where the European Commission has previously determined
that legislation governing the transferee offers adequate protection. To date, the
European Commission has found that data privacy laws in thirteen jurisdictions
provide adequate protection.

This said, Article 26 provides several exceptions that allow data transfer in other
situations. Article 26(1) provides for exceptions either with the “explicit consent”
of the data subject, to comply with certain legal obligations, or where “necessary
in order to protect the vital interests of the data subject” [28]. Article 26(2)
allows transfer absent a European Commission adequacy decision where the data
“controller adduces adequate safeguards” [28]. The principal safeguards that data
controllers may rely on are contractual data protection guarantees, binding corporate
rules (BCRs), and the EU-US Safe Harbor Agreement, the latter constituting an
agreement that allows US companies to self-certify compliance with specific privacy
principles and subject themselves to the enforcement supervision of the US Federal
Trade Commission in order to receive personal data from Europeans. It is worth
noting that publication of personal data is not considered to be transborder data
flow; only communication which is directed at specific recipients is captured by the
concept. Thus, data published in an online public register is not transborder data
flow per se.

The Directive is now set to be superseded by a new General Data Protection
Regulation, the first draft of which was released by the European Commission
in January 2012 [25, 27]. Unlike a Directive, a Regulation in principle allows
no room for legal manoeuvring by member states. The law will automatically be
transposed and applicable across the EU and EEA member states. The Regulation’s
legislative process involves a complicated interaction between the EU Parliament,
Council, and Commission—and ultimately their agreement. The EU Parliament
passed its proposed text of the Regulation in March 2014 with over 95 % support,
but an ongoing succession of controversial amendments, with varying approaches
to research and health data, make it unclear what exactly the final result will look
like when the completed Regulation finally emerges from the trilateral negotiations
between the three EU bodies.

The Regulation will likely extend the scope of EU data protection to apply
to any company, worldwide, which processes the personal data of EU residents.
Existing Data Protection Authorities (DPAs), which oversee data controllers in
certain circumstances, will be amalgamated into public “supervisory authorities”
to be established in each member state (Article 46 in drafts to date).

Although data transfer rules would remain functionally similar to what exists
already, the adequacy approach would be supplemented in the law by three
alternative means to allow data transfer outside the EU. First, data controllers would
still be able to rely on an adequacy decision made by the European Commission,
including those made pursuant to Directive 95/46 (Article 41 in drafts to date).
Second, they would still be entitled to guarantee appropriate safeguards, which must
now also apply to any subsequent transfers. Examples of appropriate safeguards
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considered by the Regulation are BCRs; standard data protection clauses adopted by
the Commission and potentially also by a supervisory authority; an approved code of
conduct or certification mechanism, either one of which must include binding obli-
gations in the third country; or authorisation by the relevant supervisory authority
of contractual guarantees or analogous administrative arrangements between public
bodies. Third, data transfer would also be allowed by the application of a listed
exception, referred to as a derogation (Article 44 in drafts to date).

The Regulation would also place a prima facie blanket restriction on processing
special categories of data—including “genetic data or data concerning health”
(Article 9 in drafts to date). In the Commission’s draft Regulation from 2012, one
set of exceptions to this general prohibition was established for health data (Article
81 in drafts to date) and another for scientific purposes (Article 83 in drafts to date).
These exceptions have been some of the most controversial and frequently amended
provisions in the draft Regulation. The drafts appear to intend that the exceptions
relevant for biomedical research are those specified for research purposes rather than
those established for health data.

In June 2015 [26], the Justice and Home Affairs Council of the European
Council agreed on its General Approach on the content of the entire Regulation.
The European Council’s version amended the Commission’s initial draft from 2012.
It removed Article 81 (processing of personal data for health-related purposes),
suggesting the Article was superfluous and noting that their proposed version
of Article 9 enshrines the basic idea, previously expressed in Article 81, that
sensitive data such as medical data may be processed for, among other purposes,
medicine (including processing of genetic data necessary for medical purposes),
healthcare, public health and other public interests, subject to certain appropriate
safeguards based on European Union law or the national law of a member state,
as well as for scientific (e.g., research) purposes, subject to the conditions and
safeguards referred set forth in Article 83. At the same time, the Council’s text
provides a consolidated Article 83 that addresses all types of derogations (i.e.,
archiving, scientific, statistical and historical purposes) from the general prohibition
on processing special categories of personal data. The draft texts retain Article
6(2) from the Commission’s initial 2012 proposal, which clarifies that processing
of (non-sensitive) personal data that is necessary for scientific purposes (including
research) is itself a lawful purpose, subject to the conditions and safeguards of
Article 83.

The Council’s text remarks in Article 83 that where personal data are processed
for archiving, scientific, statistical or historical purposes, appropriate safeguards for
the rights and freedoms of the data subject must be in place either through EU or
Member State law. The appropriate safeguards should be such as “to ensure that
technological and/or organisational protection measures pursuant to this Regulation
are applied to the personal data, to minimise the processing of personal data in
pursuance of the proportionality and necessity principles, such as pseudonymising
the data, unless those measures prevent achieving the purpose of the processing
and such purpose cannot be otherwise fulfilled within reasonable means” (European
Council 2015:195 [26]). This explicit reference to and endorsement of pseudonymi-
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sation is a similar approach to the Commission’s initial draft, but widens the scope
of potential safeguards beyond pseudonymisation.

This widening is essential, as pseudonymisation provides little protection on
its own. The technique is only effective alongside safeguards that ensure that
pseudonymised data will not be accessed by a person who will attempt to re-
identify them. However, this approach does a certain amount of injustice to its own
proportionality principle, which is abandoned when processing purposes “cannot be
otherwise fulfilled within reasonable means”. This approach would allow the most
sensitive data to be processed using the most unreasonable means to achieve the
most trifling benefit, so long as no safer approach exists. A more natural strategy
would retain a proportionality criterion in these circumstances, allowing processing
to occur only when the anticipated benefits of processing clearly outweigh the risks.

Analysis of the Regulation is necessarily incomplete and speculative as further
negotiation in EU legislative and executive bodies continues. It remains to be seen
how exactly the final Regulation will impact the processing of medical data for
research purposes, clinical purposes, or otherwise, especially as it relates to issues
of anonymisation, pseudonymisation, and consent [36].

24.3.4 UK Data Protection Act 1998

The Data Protection Act 1998 (DPA) [65] is the UK’s implementation of EU
Directive 95/46. The United Kingdom has no specific statute for patient rights and
medical research [48]. The DPA applies to personal data, meaning “data which
relate to a living individual who can be identified (a) from those data, or (b) from
those data and other information which is in the possession of, or is likely to come
into the possession of, the data controller” [65]. It also defines a subcategory of
“sensitive personal data”, meaning “personal data consisting of information as to
: : : [the person’s] physical or mental health or condition” [65].

The DPA confers on data subjects certain rights of access, rights to prevent
processing likely to cause damage or distress or for direct marketing purposes,
and rights to be free from serious effects of decisions made automatically by
personal data processing. It requires data controllers to register with an Information
Commissioner whose position the Act creates. At the core of the DPA are eight
privacy principles (see Fig. 24.5).

The situations that allow processing of personal data for the purposes of DPA
principle 1(a) are where the data subject has given consent or where the processing
is “necessary” either “to protect the vital interests of the subject,” when certain legal
obligations—including some contractual obligations—are at stake, for the exercise
of the office of certain public officials, or “for the purposes of legitimate interests
pursued by the data controller” or the transferee (United Kingdom 1998:Schedule
2 [65]).

The conditions that are additionally required by DPA principle 1(b) where
sensitive data—such as medical data—are involved are similar, though often
narrower. They include cases where the data subject has given “explicit” consent; a
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1. Personal data shall be processed fairly and lawfully and, in particular,
shall not be processed unless – (a) at least one of the conditions in Sched-
ule 2 is met, and (b) in the case of sensitive personal data, at least one of
the conditions in Schedule 3 is also met.

2. Personal data shall be obtained only for one or more specified and lawful
purposes, and shall not be further processed in any manner incompatible
with that purpose or those purposes.

3. Personal data shall be adequate, relevant and not excessive in relation to
the purpose or purposes for which they are processed.

4. Personal data shall be accurate and, where necessary, kept up to date.
5. Personal data processed for any purpose or purposes shall not be kept for

longer than is necessary for that purpose or those purposes.
6. Personal data shall be processed in accordance with the rights of data

subjects under this Act.
7. Appropriate technical and organisational measures shall be taken against

unauthorised or unlawful processing of personal data and against acci-
dental loss or destruction of, or damage to, personal data.

8. Personal data shall not be transferred to a country or territory outside
the European Economic Area unless that country or territory ensures an
adequate level of protection for the rights and freedoms of data subjects
in relation to the processing of personal data.

Fig. 24.5 The UK data protection principles, Part 1 of Schedule 1 of the Data Protection Act
1998 [65]

narrowed “vital interests” exception that nonetheless extends to interests of another
person; a much narrower “legitimate interests” exception; and where processing is
done for “medical purposes” by a health professional or a person with a similar
duty of confidentiality (United Kingdom 1998:Schedule 3 [65]). Medical purposes
here “includes the purposes of preventative medicine, medical diagnosis, medical
research, the provision of care and treatment and the management of healthcare
services.”

This list includes medical research, which is conspicuously absent from the
listed exceptions permitted by Article 8(3) of EU Directive 95/46 [28]. A report
commissioned by the European Commission in 2010 expressed the view that this
mismatch renders the DPA “blatantly in violation of the Directive” [39].

The DPA permits the use of personally identifiable or pseudonymised data for
research, as it contains a limited but important exemption for research purposes
(section 33). The exemption allows for personal data to be used, provided that (a)
the data are not processed to support measures or decisions with respect to particular
individuals; (b) the data are not processed in such a way that substantial damage or
substantial distress is, or is likely to be, caused to any individual; and (c) neither the
results of the research nor any resulting statistics are made available in a form which
identifies any individuals. If identification of individuals does take place, research
participants must not have previously been assured that only anonymised data would
be published.
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It should be noted that the Data Protection (Processing of Sensitive Personal
Data) Order 2000 [66] also governs the circumstances in which sensitive data may
be processed. Paragraph 9 states that processing of sensitive data may occur where
the processing (a) is in the substantial public interest; (b) is necessary for research
purposes (which has the same meaning as section 33 of the DPA); (c) does not
support measures or decisions with respect to any particular data subject otherwise
than with the explicit consent of that data subject; and (d) does not cause, nor is
likely to cause, substantial damage or substantial distress to the data subject or any
other person (United Kingdom 2000:Paragraph 9 [66]).

24.3.5 Canadian Privacy Legislation

In contrast to European jurisdictions, Canada and the United States, two countries
with federal systems of government, take a more fragmented approach to data
privacy. Two distinct federal Canadian laws share the primary responsibility for
privacy protection. The 1983 Privacy Act [12] governs the handling of personal
information by the federal government, and the 2000 Personal Information Pro-
tection and Electronic Documents Act (PIPEDA) [13] applies to private sector
commercial organisations.

To complicate matters, all ten Canadian provinces and its three territories each
have their own data privacy laws. Nearly all also have specific health-information
privacy laws, and all have health-information privacy provisions tailored specifically
to the health sector. Provincial private-sector data privacy law prevails over PIPEDA
where an order declaring that the former provides “substantially similar” protection
has been made by the federal government (Canada 2000:s.26(2)(b) [13]). Currently,
private-sector data privacy legislation in Quebec, British Columbia, and Alberta
prevails over PIPEDA throughout those provinces, and health-information privacy
legislation in the three provinces of Ontario, New Brunswick, and Newfoundland
and Labrador prevails over PIPEDA as it applies to health data controllers.

PIPEDA is inspired by the OECD Guidelines and is seen as a compromise
between the fundamental rights-based European approach and the United States
tendency toward industry self-regulation and multiple sector-specific privacy instru-
ments. The European Commission determined in 2002 that PIPEDA provides
adequate protection for the purposes of Directive 95/46 [28] such that personal data
of Europeans can flow to commercial organisations in Canada.

PIPEDA defines personal information as “information about an identifiable
individual, but does not include the name, title or business address or telephone
number of an employee of an organisation” (Canada 2000:s.2(1) [13]). Its ten
privacy principles derive largely from those of the OECD Guidelines (Canada
2000:Schedule 1 [13]). It follows the accountability and organisational approach
to data transfer, and holds the data controller responsible for the personal data in
its possession or custody, including data that has been transferred to a third party
for processing. Data controllers must use contractual or other means (e.g., privacy
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policies, training programs, mechanisms to enforce compliance) in order to provide
a comparable level of protection while the data are being processed by a third
party. PIPEDA does not require prior approval for data transfers and only provides
accountability after the fact.

Provincial laws, and especially provincial health information privacy laws,
provide a robust framework that is tailored with a view to appropriately managing
the disclosures allowable in health research. Data controllers may disclose medical
data without an individual’s consent to researchers provided that researchers submit
a research plan to the data controller and have in place (and make transparent)
privacy practices, policies, and procedures approved by a duly authorised body
(e.g., data protection authority) and that the data disclosed to researchers is
either in de-identified form or in identifiable form with approval of a research
ethics committee. These committees are multidisciplinary panels of medical, legal,
and ethics experts. They must generally evaluate and approve proposed research
projects, sometimes imposing additional conditions on the research plan, such as
safeguards for medical data. The approval process usually requires that the panel
assess relevant considerations such as the public interest in the research relative to
the privacy risks in the circumstances; the practicability of obtaining consent; the
adequacy of privacy safeguards adopted; and whether the research objectives can be
reasonably met without using personal medical data.

24.3.6 The HIPAA Privacy Rule

As noted above, the US takes a sectoral approach to privacy legislation. Even the
most general US privacy laws, such as the Privacy Act of 1974 and the Computer
Matching and Privacy Act, apply only to federal agencies, and so have limited
impact on medical data and their use by clinicians and researchers. Most US privacy
law is extremely narrow in scope, such as the 1988 Video Privacy Protection Act,
which prohibits video tape service providers from disclosing personally identifiable
information (e.g., video tape rentals and sales records) concerning any consumer
of such provider. Privacy provisions also often appear as incidental parts within a
broader statute whose main purpose is unrelated to privacy. A privacy provision
can be found, for example, within the chapter of the federal US Code [70, 71]
that authorises the creation of the Public Health Service. A section in the chapter
addressing “General provisions respecting effectiveness, efficiency, and quality
of health services” contains within it a subsection on the protection of personal
information obtained for research purposes by the National Centers for Health
Services and for Health Statistics [title 42, section 242m(d)].

The most relevant US data privacy law for the purposes of this chapter is the
1996 Health Insurance Portability and Accountability Act (HIPAA) [70, 72], which
specifically regulates health privacy. It was the first comprehensive US federal
Department of Health and Human Services guideline for the protection of the
privacy of “protected health information” (PHI). HIPAA’s Privacy Rule, which was
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adopted in 2002 and came into force in 2003, applies to “covered entities”, which
include healthcare providers, health plans, and healthcare clearinghouses. The 2009
Health Information Technology for Economic and Clinical Health Act (HITECH
Act) expanded HIPAA’s scope to include the “business associates” of these covered
entities and their subcontractors, such as cloud service providers processing medical
data. Additionally, in January 2013, the US Federal Register published omnibus
amendments by the Department of Health and Human Services to the HIPAA
Privacy, Security, Enforcement, and Breach Notification Rules. These modifications
also include the final versions of the HIPAA regulation amendments mandated by
the HITECH Act.

HIPAA provides that a covered entity may not use or disclose PHI except either
(1) as permitted by the Privacy Rule, or (2) as authorised in writing by the individual
who is the subject of the information (or the individual’s personal representative).
HIPAA defines information as identifiable when “there is a reasonable basis to
believe the information can be used to identify [an] individual” (United States
2014:�160.103 [70]). But HIPAA’s scope is circumscribed further, as it protects
only individually identifiable health information, though this includes “demographic
information collected from an individual” (United States 2014:�160.103 [70]).
Health information, in turn, is information that “[r]elates to the past, present, or
future physical or mental health or condition of an individual; the provision of
healthcare to an individual; or the past, present, or future payment for the provision
of healthcare to an individual” (United States 2014:�160.103 [70]).

Contrary to the claims of some commentators, the HIPAA Privacy Rule does
bear on biomedical research. While it does not regulate biomedical researchers per
se, when obtaining PHI (as defined in the Privacy Rule) from a covered entity to
use in health research, researchers must nonetheless follow the provisions of the
HIPAA Privacy Rule. Medical records-based research, in which the PHI come from
documents or databases and not directly from participants, is also subject to the
HIPAA Privacy Rule. A covered entity is permitted to use and disclose PHI for
research purposes under several conditions (see Fig. 24.6).

HIPAA is one of very few data privacy laws in the world that address data
de-identification in technical detail. It provides two options that allow data to be
considered de-identified for its purposes. First, a data controller can obtain a detailed
written opinion from a statistician assuring “that the risk is very small that the
information could be used, alone or in combination with other reasonably available
information, by an anticipated recipient to identify an individual who is a subject
of the information” (United States 2014:�164.514(b)(i) [71]). Because various
components of this provision are not clearly defined—for instance, the necessary
qualifications of the statistician—data controllers have rarely risked relying on it.

The second option, sometimes referred to as the “Safe Harbor” (not to be
confused with the formal agreement referred to above that allows US companies
to conform to the EU Directive 95/46’s extra-territorial data transfer provisions
[72]), has been much more popular. The HIPAA Safe Harbor requires that the
data controller meet three conditions. They must first remove seventeen specified
fields from each record in the dataset (sometimes referred to as “The List”, see
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• If research participants provide a written authorisation.
• If a privacy officer/board has granted a waiver of authorisation require-

ment.
• If the PHI have been de-identified.
• If the researcher uses a “limited data set” and a “data use agreement”.
• If legal permission to disclose the PHI is ongoing, or originated before

HIPAA came into effect (e.g., in an informed consent form or an IRB
waiver of informed consent).

• If it has been grandfathered by the HIPAA transition provisions for re-
search on a descendant’s information if the researcher provides the re-
quired documentation.

Fig. 24.6 Conditions under which a covered entity is permitted to use and disclose PHI for
research purposes [70]

1. Names;
2. All geographic subdivisions smaller than a State... except for the initial

three digits of a zip code if... (1) The geographic unit formed...contains
more than 20,000 people; and (2) The initial three digits of a zip code for
all such geographic units containing 20,000 or fewer people is changed to
000.

3. All elements of dates (except year)...directly related to an individual...;
and all ages over 89 and all elements of dates (including year) indicative
of such age, except that such ages and elements may be aggregated into a
single category of age 90 or older;

4. Telephone numbers;
5. Fax numbers;
6. Electronic mail addresses;
7. Social security numbers;
8. Medical record numbers;
9. Health plan beneficiary numbers;

10. Account numbers;
11. Certificate/license numbers;
12. Vehicle identifiers and serial numbers, including license plate numbers;
13. Device identifiers and serial numbers;
14. Web Universal Resource Locators (URLs);
15. Internet Protocol (IP) address numbers;
16. Biometric identifiers, including finger and voice prints; [and]
17. Full face photographic images and any comparable images[.]

Fig. 24.7 The seventeen HIPAA Privacy Rule de-identification fields (U.S. 2014:
�164.514(b)(2)(i) [71])

Fig. 24.7). They must then also remove “any other unique identifying number,
characteristic, or code” except for an optional re-identification keycode which,
if present, must be created and used according to specific rules (United States
2014:�164.514(b)(2)(i)(R) [71]). Finally, the data controller must not in fact know
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Table 24.1 HIPAA Safe Harbor example de-identification of a simple medical dataset prior
to de-identification and following de-identification (changed/removed data in bold)

Social security no. Occupation Zip code Age Patient number

Diastolic blood
pressure
recorded on 25
July 2014

248-09-1593 Civil servant 24860 90 592-0969 72.5

418-12-0635 Restaurant cook 06351 95 593-9319 79.2

721-07-4426 Mayor 79937 85 590-0393 90.3

Re-identification no. Occupation Zip code Age
Diastolic blood pressure
recorded in 2014

1 Civil servant 24800 90 72.5

2 Restaurant cook 00000 90 79.2

3 REMOVED 79900 85 90.3

that the remaining “information could be used alone or in combination with
other information to identify an individual who is a data subject” (United States
2014:�164.514(b)(2)(ii) [71]). Consider the de-identification example provided in
Table 24.1: although a person’s occupation is neither in “The List” nor will
it generally enable individual identification on its own, the third data subject’s
occupation has been redacted because when the occupation of “mayor” is combined
with the subject’s zip code, which places her in El Paso, Texas, the record offers
(considerably) more than a reasonable chance of allowing the individual to be
identified.

The HIPAA Safe Harbor de-identification framework has been criticized, princi-
pally on the grounds that without individually analysing the remaining fields, which
the data controller is under no obligation to do, it will generally be impossible
to know the likelihood of re-identification, which may be trivial. A report by the
US Institute of Medicine found HIPAA was simultaneously too strict and not strict
enough in protecting privacy:

The HIPAA Privacy Rule does not protect privacy as well as it should, and : : : impedes
important health research. The : : : Privacy Rule (1) is not uniformly applicable to all
health research, (2) overstates the ability of informed consent to protect privacy rather
than incorporating comprehensive privacy protections, (3) conflicts with other federal
regulations governing health research, (4) is interpreted differently across institutions, and
(5) creates barriers to research and leads to biased research samples, which generate invalid
conclusions. In addition, security breaches are a growing problem for health care databases
(Institute of Medicine 2009 [40]).

This said, there is no consensus view on this point. In 2011, for example, a
systematic literature review was conducted to identify and assess published accounts
of re-identification attacks on de-identified health datasets. The literature review
identified 14 accounts of re-identification attacks on ostensibly de-identified health
information, but found that only two of the 14 attacks were made on datasets that
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A limited dataset is protected health information that excludes the fol-
lowing direct identifiers of the individual or of relatives, employers, or
household members of the individual:

1. Names;
2. Postal address information, other than town or city, State, and zip code;
3. Telephone numbers;
4. Fax numbers;
5. Electronic mail addresses;
6. Social security numbers;
7. Medical record numbers;
8. Health plan beneficiary numbers;
9. Account numbers;

10. Certificate/license numbers;
11. Vehicle identifiers and serial numbers, including license plate numbers;
12. Device identifiers and serial numbers;
13. Web Universal Resource Locators (URLs);
14. Internet Protocol (IP) address numbers;
15. Biometric identifiers, including finger and voice prints; and
16. Full face photographic images and any comparable images.

Fig. 24.8 HIPAA Privacy Rule limited dataset (U.S. 2014:�164.514(e)(2) [71])

had been properly de-identified in accordance with the HIPAA Safe Harbor require-
ments. The remaining 12 attacks were made on datasets that had failed to meet
this standard of de-identification [24]. Such an anecdotal review cannot establish
the appropriateness of a data protection measure, but the debate is ongoing as to
whether the HIPAA Safe Harbor requirements appropriately address the concerns
of data privacy and of biomedical researchers. With respect to genomic data, many
commentators remark that because genomic data are inherently individuating, any
de-identification processes will provide at best limited privacy protection. Indeed,
the data in the NIH database of Genotypes and Phenotypes (dbGaP) are de-identified
in accordance with both the HHS regulations for protection of human subjects and
HIPAA Privacy Rule standards, and the NIH has additionally obtained a Certificate
of Confidentiality for dbGaP as an added precaution because of the relative ease
with which genomic data can be re-identified.

The HIPAA Privacy Rule allows a less strict variation on its Safe Harbor
called a limited dataset (see Fig. 24.8) “only for the purposes of research, public
health, or health care operations” that may be transferred by a data controller who
“obtains satisfactory assurance : : : that the limited data set recipient will only use
or disclose the protected health information for limited purposes” and undertakes to
“not identify the information or contact the individuals,” among other requirements
(United States 2014:�164.514(e) [71]). A limited dataset is similar to the de-
identified Safe Harbor dataset but requires fewer identifiers to be removed. Limited
datasets may include city, state, zip code, elements of a date, and other numbers,
characteristics, or codes not listed as direct identifiers. Typically, limited datasets
are utilised in multicentre studies when using fully de-identified data would not be
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useful. They allow researchers and others to have access to dates of admission and
discharge, birth and death, and five-digit zip codes or other geographic subdivisions
other than street address. Limited datasets do not include specified direct identifiers
of the individual’s relatives, employers, or household members.

To use a limited dataset, a researcher must sign a “data use agreement” that limits
who can use or receive the limited dataset. It requires that the researcher neither re-
identify the data nor contact the research participant and that the researcher obtains
satisfactory assurance that safeguards defined in the HIPAA rule will be used to
prevent improper use or disclosure of the limited dataset.

24.4 Data Sharing Policies

Since 1992, a parallel current to data privacy legal regimes has emerged from
the life sciences, particularly in genomics. The 1992 Guidelines for Access to
Mapping and Sequencing Data and Material Resources, adopted by the US-based
Joint Subcommittee on the Human Genome, recommended no more than a six-
month delay between the time genomic data are generated and made public. Rapid
sharing was recognized as particularly important within the field of genomics, but
a balance was struck to allow researchers “time to verify the accuracy of their data
and to gain some scientific advantage from the effort they have invested” [53].

Revised statements on rapid release of genomic and later other health-related
data were adopted in 1996, 2003, 2008, 2009, and most recently in 2011 in the
Joint Statement by Funders of Health Research. The rapid data release principle has
been expanded in some of these statements to apply to subfields such as proteomics
and metabolomics. Twenty-four hours has, in some cases, come to be the accepted
delay for prepublication release of generated data, though longer delay (e.g., several
weeks or months) for quality control and other purposes is also generally accepted.

Despite the increasing nuance and expansion to non-genomic data fields, the
rapid data-release standards in many data sharing policies have been maintained,
partly because large sets of genomic or “-omic” data have an inherently public
character (particularly if publicly funded) which demands use for public benefit,
and partly because other mechanisms have been developed to safeguard the initial
researchers’ (i.e., data producers’) interests, often by reserving the opportunity to
publish first on the data, even if other researchers have already begun to make
research use of and findings on the data. As the brief following discussion of
US, Canadian, and UK data sharing policies shows, the principle of rapid data
release and open data sharing has now often become a core element of successful
biomedical research funding, but the ways in which it is operationalized in these
policies can differ subtly.

As with data privacy regulations, data sharing policies of major biomedical
research funding organisations have aimed to promote both open data flows and
appropriate privacy protections. But data sharing policies depart from data privacy
regulations in that rather than aiming to strike an appropriate balance between
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privacy and data sharing—and with the force of law—they instead aim to minimise
or eliminate impediments to rapid data sharing that are not directly related to
privacy concerns. For example, these policies aim to counteract the inclination of
researchers to not share their data because they are overly protective of their work,
because they believe too many resources are required to make the data shareable,
because they believe their data would not be useful to others, or because they simply
cannot be bothered. As discussed below, this can result in placing medical data
controllers or researchers in a double bind [55]: they are exhorted to generate, use
and extend access to data (because doing so is expected to advance research and
healthcare); and, at the same time, they are required by law to protect privacy.

24.4.1 US National Institutes of Health

The NIH is the primary institution in the US responsible for biomedical research
and funding. It has many institutional data sharing policies. Among the most
significant for genomic research is the NIH’s 2007 Policy for Genome-Wide
Association Studies (GWAS Policy) [49]. The GWAS Policy “strongly encourages
the submission of curated and coded phenotype, exposure, genotype, and pedigree
data, as appropriate, to the NIH GWAS data repository as soon as quality control
procedures have been completed” to be made available to other researchers [49].

As a trade-off, the GWAS Policy provides that “investigators who contribute data
to the NIH GWAS data repository will retain the exclusive right to publish analyses
of the dataset for a defined period of time” up to a “maximum period of : : : twelve
months from the date that the GWAS dataset is made available for access through
the NIH GWAS data repository” [49]. “During this period of exclusivity, the NIH
will grant access through the DACs to other investigators, who may analyze the data,
but are expected not to submit their analyses or conclusions for publication during
the exclusivity period” [49].

The GWAS Policy requires that “in order to minimise risks to study participants,
data submitted to the NIH GWAS data repository will be de-identified and coded”
according to the HIPAA Safe Harbor Privacy Rule [49]. After a paper was published
showing that the GWAS data were re-identifiable (Homer et al. [38]), the NIH began
to require that researchers seek approval prior to gaining access to individual-level
dbGaP data [50].

In August 2014, the NIH released its much anticipated Genomic Data Sharing
Policy [3, 51]. This new policy, which replaces the GWAS Policy, still requires
extensive sharing of data, but, in recognition of the emergence of other large,
well-established public databases emerging around the globe, “NIH-designated data
repositories need [no longer] be the exclusive source for facilitating the sharing
of genomic data, that is, investigators may also elect to submit data to a non-
NIH-designated data repository in addition to an NIH-designated data repository.
However, investigators should ensure that appropriate data security measures are
in place, and that confidentiality, privacy, and data use measures are consistent with
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the” Genomic Data Sharing Policy [51]. A supplement to the Genomic Data Sharing
Policy separates data into five levels according to the degree of processing that has
been carried out on them, and indicates NIH expectations for data submission and
data release timelines for each level [52] (see Table 24.2).

A novel element of the Genomic Data Sharing Policy is its focus on what may
be termed “specifically broad consent” (personal communication, Bartha Maria
Knoppers), that is, an explicit expectation from the funder that “investigators
generating genomic data : : : seek consent from participants for future research
uses and the broadest possible sharing” [51]. Clearly, a necessary counterpart to
allowing investigators to actively and explicitly seek participants’ consent for the
broad sharing of their research data is that the data must be subject to strong privacy
protections, and perhaps also recognition and communication to participants that
privacy risks persist despite the de-identification of their genomic data.

24.4.2 Canadian Data Sharing Policies

Two important Canadian data sharing policies can be compared to the recent NIH
Genomic Data Sharing Policy. The Canadian Institutes of Health Research (CIHR)
is the major public federal agency that funds Canadian health research. In 2013, it
released its CIHR Open Access Policy, which affected all projects it funded, not
just those related to medical data [14]. In 2015, this policy was replaced by the Tri-
Agency Open Access Policy on Publications, which applies to CIHR, the Natural
Sciences and Engineering Research Council of Canada (NSERC), and the Social
Sciences and Humanities Research Council of Canada (SSHRC). The policy aims
to improve access to the results of research funded by these agencies and to increase
the dissemination and exchange of research results.

Under the Tri-Agency Open Access Policy, all CIHR grant recipients are
required to “deposit bioinformatics, atomic, and molecular coordinate data into
the appropriate public database, as already required by most journals, immediately
upon publication of research results” [32]. This policy notably lacks a data sharing
plan or publication embargo period. Instead, it requires only that limited types of
medical data are deposited into a public database “immediately” upon publication
of research results. While embargo restrictions may be difficult to police, they
nonetheless serve to balance improved “lead-time by restricting the ability of users
to publish conclusions based on the data” with making large quantities of data
rapidly available to the scientific community to foster scientific advancement [16].
Further, only a subset of the total research data generated by CIHR grant recipients
must necessarily be publicly deposited.

Genome Canada, the major federal Canadian funder of genomic research,
published its Data Release and Resource Sharing policy in 2008. In line with the
NIH data sharing policies, it declares that “Genome Canada-funded projects must
: : : share data and resources in a timely fashion with minimal or no restrictions”
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Genome Canada expects researchers to share data and resources as rapidly as pos-
sible. Where the goal of the project is to produce data or resources for the wider
scientific community the project must follow the data release and resource shar-
ing principles of a “Community Resource Project”, defined as “a research project
specifically devised and implemented to create a set of data, reagents or other mate-
rial whose primary utility will be as a resource for the broad scientific community.”
This definition and the associated data release and resource sharing principles were
developed at a meeting held in January 2003 in Fort Lauderdale.

Genome Canada encourages the application of the principles of rapid, pre-
publication data release to other types of projects and is working with other research
funders to promote this practice.

Genome Canada recognizes publication as a vehicle for data release, and, at a min-
imum, expects data to be released and shared no later than the original publica-
tion date of the main findings from any datasets generated by that project. For large
datasets that are collected over several discrete time periods or phases, it is reason-
able to expect that the data be released in phases as they become available or as
main findings from a research phase are published. However, at the conclusion of a
project, all data must be released without restriction.

Fig. 24.9 Extract from the genome data release and resource sharing policy [31]

[31]. The policy requires that all funding applicants submit a detailed data- and
resource-sharing plan as part of their application, which must conform to the policy
(see Fig. 24.9).

Like the Tri-Agency Open Access Policy, there is no direct discussion of an
embargo period, and like the NIH data sharing policies, Genome Canada applicants
are not required to make their data and resource-sharing plan public. The policy
provides relatively scant guidance for sharing data in a privacy-promoting manner.
Researchers need only address the question “If the data could be of a potentially
sensitive nature, how will this be handled?” which, absent any connection to relevant
data privacy regulation and ethical guidelines, suggests researchers are free to
disregard, at least for Genome Canada’s purposes, the equally important issue of
how they will handle all personal medical data in their control in a way that protects
and promotes privacy-related interests.

24.4.3 Wellcome Trust (UK)

The Wellcome Trust is the UK’s largest non-governmental funder of scientific
research. In 2010 it released its Policy on Data Management and Sharing [76], which
is reproduced in its entirety in Fig. 24.10.

The Wellcome Trust clearly exhorts its funding recipients to share research data
as widely and as quickly as possible. Like the NIH and Genome Canada data sharing
policies, it requires applicants to submit a data sharing plan. A plan is necessary only
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1. The Wellcome Trust expects all of its funded researchers to maximise the
availability of research data with as few restrictions as possible.

2. All those seeking Wellcome Trust funding should consider their approach
for managing and sharing data at the research proposal stage. In cases
where the proposed research is likely to generate data outputs that will
hold significant value as a resource for the wider research community,
applicants will be required to submit a data management and sharing plan
to the Wellcome Trust prior to an award bring made.

3. The Wellcome Trust will:
• review data management and sharing plans, and any costs involved in

delivering them, as an integral part of the funding decision.
• work with grant holders on an ongoing basis to support them in max-

imising the long-term value of key datasets resulting from their re-
search.

4. The Wellcome Trust expects all users of research data to acknowledge the
sources of their data and to abide by the terms and conditions under which
they accessed the original data.

5. The Wellcome Trust will foster an environment that enables researchers
to maximise the value of research data. Specifically, we will work in part-
nership with others to:

• ensure that key data resources are developed and maintained for use
by the research community.

• recognise the contributions of researchers who generate, preserve and
share key research datasets.

• develop best practice for data sharing in different fields – recognising
that different data types raise distinct issues and challenges.

Fig. 24.10 Wellcome Trust policy on data management and sharing [76]

if the research “is likely to generate data outputs that will hold significant value as a
resource for the wider research community”, a vague condition, but one that seems
to apply to certain types of medical data.

Two points are notable about the Wellcome Trust data sharing policy: first, its
lack of any statement about data privacy, and second, the explicit commitment
made by the Trust (1) to provide resources to researchers to help sustain key
datasets, and (2) to foster a “share and share alike” culture encouraging sharing
and recognition of those who have made their data available for sharing. Thus,
while the Wellcome Trust’s policy goes further than the NIH and Genome Canada
policies in encouraging (and financially supporting) both widespread sharing of
data and appropriate attribution for data producers, the latter being an especially
important incentive for many in the biomedical research community, it does so at
the expense of explicitly addressing the issue of how to share research data in ways
that maximise public benefit (i.e., generate improvements in health) and minimise
public harm (i.e., violations of privacy interests).

Taken together, the review of data sharing policies in this section illustrates
that several key biomedical research funders explicitly support a data sharing
culture. At the same time, the policies do not always address the need for research
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investigators to ensure that appropriate data security measures are in place, nor that
confidentiality, privacy, and data-use measures are consistently addressed across
data sharing policies (although the recent NIH Genomic Data Sharing Policy may
inaugurate future improvements in this respect). Exhorting researchers to share their
data while failing to discuss data privacy issues fosters tension between widespread
data sharing and protecting medical data privacy.

Some data sharing policies explicitly curtail any of their data sharing require-
ments that would infringe data privacy laws, and understandably so, as such policies
have no authority to override legal rules (except to the extent provided for by
the law itself, such as when a data subject explicitly consents). For this reason,
policy developments in this area depend crucially on the content of data privacy
law and thus, conversely, legislators and regulators ought to consider the benefits of
responsible medical data sharing when drafting and administering data privacy laws
and amendments that otherwise might unduly restrict the ability to share medical
data within and across jurisdictions. In an age in which medical data are shared
across borders and in places of divergent data privacy regulation, it remains to be
determined whether strong data privacy protection and the elimination of undue
biomedical research restrictions can be achieved on a global scale.

24.5 Towards Better Calibration of Biomedical Research,
Health Service Delivery, and Privacy Protection

This chapter has illustrated that existing data privacy protection frameworks may
inadequately resolve the tension between facilitating research and medical care
through data sharing while also protecting against data misuse and privacy threats.
Many legal frameworks were constructed before the emergence of Big Data
analytics, eHealth, and commonplace cross-border collaboration. Rather than pro-
tecting privacy and advancing research and health, they may now be creating
unnecessary barriers to sharing medical data across borders, and consequently
impeding scientific discovery, while also leaving important data privacy protection
gaps. As noted in an influential 2009 US Institute of Medicine Report: “If society
seeks to derive the benefits of medical research in the form of improved health
and health care, information should be shared to achieve that greater good, and
governing regulations should support the use of such information, with appropriate
oversight” [40]. In this section, we identify pathways that are available to better
calibrate these three societal pillars of biomedical research, health service delivery,
and privacy protection.

First, to achieve greater harmonisation of currently disjointed data privacy laws
around the world so as to promote more efficient and responsible sharing of medical
data, we may need to focus less on working towards a common framework of
prescriptive data privacy rules and more on developing foundational responsible
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data sharing principles, harkening back to an approach like that of the OECD
Privacy Guidelines. As Professor Weber observes:

Due to social, historical, and cultural differences : : : harmonisation [of data protection
standards] will remain at a high level of abstraction and at a low level as far as substance
is concerned. The difficulties in agreeing on the form of the legal framework, in selecting
the standards on which such an instrument would be based, in determining the scope of the
instrument, and in agreeing on an international organisation to coordinate the work are too
substantial for a high harmonisation level to be achieved soon [75].

Medical legal scholars Graeme Laurie and Nayha Sethi propose that “principles-
based regulation” (PBR), as opposed to “rules-based regulation” offers less strict
pre- and proscriptive rules for framing approaches to governance and decision-
making of health-related research using personal data. As they state, PBR is
envisaged “as the use of broadly-stated objectives, standards and values by which
individuals and institutions should conduct themselves when using data for research
purposes” [46].

Building on this concept, and extrapolating from the medical data legal and
policy instruments covered in this chapter, we posit the following principles as the
starting point of a principles-based approach to regulating the sharing medical data
around the globe in an interoperable and responsible manner:

Transparency: The data privacy regulatory system should be transparent: indi-
viduals should be able to easily understand and access information about the
collection, use, and disclosure of their medical data and privacy and security
practices. In the context of genomic data, thought should be given to providing a
mechanism for data access to blood relatives.

Control: Individuals should be able to exercise a reasonable degree of control
over their own medical data and how they are collected, used, and disclosed,
with an understanding that the scale and interconnectedness of medical data and
biomedical research may limit claims to a “right” to (fully) control the data.

Quality: Medical data should be accurate, complete, and kept up-to-date to the
extent necessary for collection purposes.

Security: Medical data should be accompanied by adequate security safeguards
with regard to the risk involved and the nature and uses of the medical data.

Proportionality: Specific regulatory obligations imposed on data controllers
should be proportionate to the reasonable likelihood of benefits arising from
medical data sharing, as well as severity of the harm posed by the processing of
medical data.

Flexibility: Regulations must be adaptable to changing norms, standards, innova-
tions, and other regulations.

Evidence-basis: Regulations should be based on foreseeable use of potentially
accessible, available, and valid data, and on current data privacy, medical, and
technological scholarship, as well as foreseeable developments on the horizon in
those fields.
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Accountability: Both medical-data controllers and data processors should be
responsible and should be held accountable for unlawful data processing down-
stream.

Risk Assessment: For any new collection, use, or disclosure of medical data,
privacy risks and strategies to mitigate them should be identified and assessed.

Transborder Flows: Sharing of medical data to other jurisdictions that offer at
least comparable safeguards for the protection of medical data should not be
obstructed on the sole basis that the data will enter a new jurisdiction.

The benefit of a PBR approach is that it can allow any given “decision-maker
to reflect on broad-based values and commonly-agreed objectives to determine
through deliberation and reflection what action best fits in accordance with the
particular value(s) advanced, avoiding reliance upon detailed anticipatory drafting
for every perceivable situation” [46]. The principles identified above, coupled with
instances of best practices (i.e., examples of “principles in action”), could help those
processing medical data to navigate the often impenetrable, obstructing thickets of
data privacy regulation.

Regulators should consider adopting a proportionate approach to data
privacy protection. Anonymised or de-identified medical data, and potentially
pseudonymised medical data, should be subject to less restrictive legislative
provisions (and thus achieve some form of legislative exemption or reduction in
regulatory burden) in the contexts and following the processes for which evidence-
based research supports their use. Privacy regulation should be continuously updated
in light of evolving methods and technologies to ensure that re-identification risks
remain remote.

At the same time, organisations using medical data should ensure that their
systems adequately protect privacy, by developing a medical data privacy plan
which, at a minimum:

• Identifies all people who will have access to the data, and proportionately controls
access to the data (including through data-use agreements that require recipients
of anonymised or pseudonymised medical data to abide by a set of privacy-
promoting conditions).

• Identifies a person as responsible for maintaining data protection safeguards.
• Establishes measures to prevent and sanction the deliberate re-identification of

individuals from medical data that have had direct identifiers removed (absent
explicit consent from participants or express legal authorisation).

• Describes the measures for protecting the physical, software, and remote-server
security of the data.

• Prevents unauthorised or unauthenticated people from accessing the medical data
through the use of e.g., firewalls, data encryption, and robust password protection
schemes.

• Assesses the risk of re-identification (if medical data are anonymised or
pseudonymised) when research studies are planned or medical data will be
shared, and reviews this risk regularly during the lifetime of the study.

• Provides a contingency plan for dealing with any breach of privacy or confiden-
tiality.
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24.6 Conclusion

Biomedical research, health-service delivery, and data privacy mutually promote
one another in the aim of arriving at a common purpose: to benefit individuals and
society. Privacy controls help individuals flourish as members of society, including
by establishing the conditions necessary for willing participation in research and the
healthcare system. Research and healthcare, in turn, contribute to better health and
community wellbeing. Both research participants and patients expect and deserve
robust privacy protection of their medical data. As biomedical research, science,
and medicine advance, and as more medical data are collected, shared, and used for
myriad purposes, protecting privacy and maintaining confidentiality are becoming
increasingly complex but vital tasks.

Researchers, clinicians, and regulators alike should be mindful of emerging
technologies that sufficiently protect (or threaten) patient and participant privacy
[43, 74]. Medical data from biobanks and cohort studies are increasingly shared
within and across institutions (and borders) to create combined datasets which can
be queried to ask complex scientific questions with due regard for data privacy
principles [55]. In this environment, technologies will increasingly be relied upon
to uphold standards of protection for the sharing of medical data. But they must
be combined with robust scientific, ethics, and data access governance systems
that anticipate and address the sharing of data with other researchers or healthcare
professionals across jurisdictions, and that explain that even if data are de-identified,
there always remains a residual risk of re-identification, though the regulatory goal
is acceptable risk [23]. Technologies must offer flexible means of processing and
widely sharing medical data while protecting privacy in accordance with applicable
legislation and policies.

Ultimately, if we are to globally harness the power of medical data safely
and securely to advance the wellbeing of individuals and society, it is critical
that regulators, organisations, and individuals alike recognize the benefits that
accrue from medical data sharing. It is equally imperative, however, that we create
interoperable data privacy governance frameworks and systems that are robust yet
flexible so that they are adaptable to new technologies and models of research and
health service delivery.

References

1. Academy of Medical Sciences: Personal data for public good: using health information in
medical research. http://www.acmedsci.ac.uk/policy/policy-projects/personal-data/ (2006).
Accessed 22 June 2015

2. Agaku, I.T., Adisa, A.O., Ayo-Yusuf, O.A., Connolly, G.N.: Concern about security and
privacy, and perceived control over collection and use of health information are related to
withholding of health information from healthcare providers. J. Am. Med. Inform. Assoc. 21,
374–378 (2014)

http://www.acmedsci.ac.uk/policy/policy-projects/personal-data/


24 Privacy Law, Data Sharing Policies, and Medical Data: A Comparative Perspective 675

3. Arias, J.J., G, G.P.K., Campbell, E.G.: The growth and gaps of genetic data sharing policies in
the united states. J. Law Biosci. 2, 56–58 (2015)

4. Article 29 Data Protection Working Party: Opinion 15/2011 on the definition of consent. http://
ec.europa.eu/justice/policies/privacy/docs/wpdocs/2011/wp187_en.pdf (2011). Accessed 22
June 2015

5. Article 29 Data Protection Working Party: Opinion 05/2014 on anonymisation
techniques. http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-
recommendation/files/2014/wp216_en.pdf (2014). Accessed 22 June 2015

6. Article 29 Data Protection Working Party: Letter from article 29 working party to paul
timmers, director of sustainable and secure society, directorate, dg connect, regarding health
data in apps and devices (5 february 2015). http://ec.europa.eu/justice/data-protection/article-
29/documentation/other-document/files/2015/20150205_letter_art29wp_ec_health_data_
after_plenary_annex_en.pdf (2015). Accessed 22 June 2015

7. BC IPC (British Columbia Office of the Information & Privacy Commissioner): A prescription
for legislative reform: improving privacy protection in BC’s health sector. https://www.oipc.
bc.ca/special-reports/1634 (2014). Accessed 22 June 2015

8. Beyleveld, D., Townend, D., Rouille-Mirza, S., Wright, J.: The Data Protective Directive and
Medical Research Across Europe. Ashgate, Aldershot (2005)

9. Boniface, M.A.: Privacy and Data Protection in Africa. Scholars Press, Saarbrucken (2014)
10. Bygrave, L.A.: Data Privacy Law: An International Perspective. Oxford University Press,

Oxford (2014)
11. Bygrave, L.A.: Information concepts in law: generic dreams and definitional daylight. Oxf. J.

Leg. Stud. 35, 91–120 (2015)
12. Canada: 1983 privacy act. http://laws-lois.justice.gc.ca/eng/acts/P-21 (1983). Accessed 22

June 2015
13. Canada: Personal information protection and electronic documents act. http://laws-lois.justice.

gc.ca/eng/acts/P-8.6 (2000). Accessed 22 June 2015
14. Canadian Institutes of Health Research: Cihr open access policy. http://cihr-irsc.gc.ca/e/46068.

html (2013). Accessed 22 June 2015
15. Cavoukian, A., Emam, K.E.: De-identification protocols: essential for protecting pri-

vacy. http://www.privacybydesign.ca/content/uploads/2014/06/pbd-de-identifcation_essential.
pdf (2014). Accessed 22 June 2015

16. Contreras, J.L.: NIH’s genomic data sharing policy: timing and tradeoffs. Trends Genet. 31,
55–57 (2015)

17. Council of Canadian Academies: Accessing health and health-related data in Canada. http://
www.scienceadvice.ca/en/assessments/completed/health-data.aspx (2015). Accessed 22 June
2015

18. Council of Europe: Convention for the protection of individuals with regard to automatic pro-
cessing of personal data. http://conventions.coe.int/Treaty/en/Treaties/Html/108.htm (1981).
Accessed 22 June 2015

19. Council of Europe: Recommendation no. r (97) 5 of the committee of ministers to member
states on the protection of medical data. http://wcd.coe.int/ViewDoc.jsp?id=571075 (1997).
Accessed 22 June 2015

20. Council of Europe: Additional protocol to the convention for the protection of individuals
with regard to automatic processing of personal data regarding supervisory authorities and
transborder data flows. http://conventions.coe.int/Treaty/en/Treaties/HTML/181.htm (2001).
Accessed 22 June 2015

21. Council of Europe: Consultative committee of the convention for the protection of individuals
with regard to automatic processing of personal data [ets no. 108]: proposals of modernisation.
http://www.coe.int/t/dghl/standardsetting/dataprotection/TPD_documents/T-PD(2012)4Rev3E
%20-%20Modernisation%20of%20Convention%20108.pdf (2012). Accessed 22 June 2015

22. DeCew, J.: In Pursuit of Privacy: Law, Ethics, and the Rise of Technology. Cornell University
Press, Ithaca (1997)

http://www.coe.int/t/dghl/standardsetting/dataprotection/TPD_documents/T-PD(2012)4Rev3E%20-%20Modernisation%20of%20Convention%20108.pdf
http://conventions.coe.int/Treaty/en/Treaties/HTML/181.htm
http://wcd.coe.int/ViewDoc.jsp?id=571075
http://conventions.coe.int/Treaty/en/Treaties/Html/108.htm
http://www.scienceadvice.ca/en/assessments/completed/health-data.aspx
http://www.scienceadvice.ca/en/assessments/completed/health-data.aspx
http://www.privacybydesign.ca/content/uploads/2014/06/pbd-de-identifcation_essential.pdf
http://www.privacybydesign.ca/content/uploads/2014/06/pbd-de-identifcation_essential.pdf
http://cihr-irsc.gc.ca/e/46068.html
http://cihr-irsc.gc.ca/e/46068.html
http://laws-lois.justice.gc.ca/eng/acts/P-8.6
http://laws-lois.justice.gc.ca/eng/acts/P-8.6
http://laws-lois.justice.gc.ca/eng/acts/P-21
https://www.oipc.bc.ca/special-reports/1634
https://www.oipc.bc.ca/special-reports/1634
http://ec.europa.eu/justice/data-protection/article-29/documentation/other-document/files/2015/20150205_letter_art29wp_ec_health_data_after_plenary_annex_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/other-document/files/2015/20150205_letter_art29wp_ec_health_data_after_plenary_annex_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/other-document/files/2015/20150205_letter_art29wp_ec_health_data_after_plenary_annex_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2011/wp187_en.pdf
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2011/wp187_en.pdf


676 E.S. Dove and M. Phillips

23. Emam, K.E., Alvarez, C.: A critical appraisal of the article 29 working party opinion 05/2014
on data anonymisation techniques. Int. Data Priv. Law 5, 73–87 (2015)

24. Emam, K.E., Jonker, E., Arbuckle, L., Malin, B.: A systematic review of re-identification
attacks on health data. PLoS One 6 (2011)

25. European Commission: Proposal for a regulation of the european parliament and of
the council on the protection of individuals with regard to the processing of personal
data and on the free movement of such data (general data protection regula-
tion). http://ec.europa.eu/justice/data-protection/document/review2012/ com_2012_11_en.pdf
(2012). Accessed 22 June 2015

26. European Commission: Proposal for a regulation of the european parliament and of the council
on the protection of individuals with regard to the processing of personal data and on the
free movement of such data (general data protection regulation) - preparation of a general
approach. http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf (2015).
Accessed 22 June 2015

27. European Parliament: Committee on civil liberties, justice and home affairs draft report on
the proposal for a regulation of the european parliament and of the council on the protection
of individual with regard to the processing of personal data and on the free movement of
such data (general data protection regulation). http://www.europarl.europa.eu/meetdocs/2009_
2014/documents/libe/pr/922/922387/922387en.pdf (2012). Accessed 22 June 2015

28. European Union: Directive 95/46/ec of the european parliament and of the council of 24
october 1995 on the protection of individuals with regard to the processing of personal data
and on the free movement of such data. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=CELEX:31995L0046:en:HTML (1995). Accessed 22 June 2015

29. European Union: Charter of fundamental rights of the european union. http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=OJ:C:2010:083:0389:0403:en:PDF (2010). Accessed 22 June
2015

30. Expert Advisory Group on Data Access: Statement for EAGDA funders on re-identification.
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@policy_communications/
documents/web_document/wtp055972.pdf (2013). Accessed 22 June 2015

31. Genome Canada: Data release and resource sharing. http://genomecanada.ca/medias/PDF/EN/
DataReleaseandResourceSharingPolicy.pdf (2008). Accessed 22 June 2015

32. Government of Canada: Tri-agency open access policy on publications. http://www.science.
gc.ca/default.asp?lang=En&n=F6765465-1 (2015). Accessed 22 June 2015

33. Greenleaf, G.: Global data privacy laws: 89 countries, and accelerating, queen mary university
of London, school of law legal studies research paper no. 98/2012. http://ssrn.com/abstract=
2000034 (2012). Accessed 22 June 2015

34. Greenleaf, G.: Asian Data Privacy Laws: Trade & Human Rights Perspectives. Oxford
University Press, Oxford (2014)

35. Greenleaf, G.: Global data privacy laws 2015: 109 countries, with european laws now a
minority. Priv. Laws Bus. Int. Rep. 133, 18–28 (2015)

36. Hallinan, D., Friedewald, M.: Open consent, biobanking and data protection law: can open
consent be ‘informed’ under the forthcoming data protection regulation? Life Sci. Soc. Policy
11, 1 (2015)

37. HEW (US Department of Health, Education and Welfare): Records, computers and the rights
of citizens: report of the secretary’s advisory committee on automated personal data systems.
http://www.justice.gov/sites/default/files/opcl/docs/rec-com-rights.pdf (1973). Accessed 22
June 2015

38. Homer, N. et al.: Resolving individuals contributing trace amounts of DNA to highly complex
mixtures using high-density snp genotyping microarrays. PLoS Genet. 4, e1000167 (2008)

39. ILRDP Kantor Ltd: Comparative study on different approaches to new privacy challenges,
in particular in the light of technological developments. http://ec.europa.eu/justice/policies/
privacy/docs/studies/new_privacy_challenges/final_report_en.pdf (2010). Accessed 22 June
2015

40. Institute of Medicine: Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health
Through Research. National Academies, Washington (2009)

http://ec.europa.eu/justice/policies/privacy/docs/studies/new_privacy_challenges/final_report_en.pdf
http://ec.europa.eu/justice/policies/privacy/docs/studies/new_privacy_challenges/final_report_en.pdf
http://www.justice.gov/sites/default/files/opcl/docs/rec-com-rights.pdf
http://ssrn.com/abstract=2000034
http://ssrn.com/abstract=2000034
http://www.science.gc.ca/default.asp?lang=En&n=F6765465-1
http://www.science.gc.ca/default.asp?lang=En&n=F6765465-1
http://genomecanada.ca/medias/PDF/EN/DataReleaseandResourceSharingPolicy.pdf
http://genomecanada.ca/medias/PDF/EN/DataReleaseandResourceSharingPolicy.pdf
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@policy_communications/documents/web_document/wtp055972.pdf
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@policy_communications/documents/web_document/wtp055972.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2010:083:0389:0403:en:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2010:083:0389:0403:en:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://www.europarl.europa.eu/meetdocs/2009_2014/documents/libe/pr/922/922387/922387en.pdf
http://www.europarl.europa.eu/meetdocs/2009_2014/documents/libe/pr/922/922387/922387en.pdf
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf


24 Privacy Law, Data Sharing Policies, and Medical Data: A Comparative Perspective 677

41. International Conference of Data Protection and Privacy Commissioners: International
standards on the protection of personal data and privacy: the madrid resolution. http://www.
privacycommission.be/sites/privacycommission/files/documents/international_standards_
madrid_2009.pdf (2009). Accessed 22 June 2015

42. Kenyon, A.T., Richardson, M.: New Dimensions in Privacy: International and Comparative
Perspectives. Cambridge University Press, Cambridge (2010)

43. Knoppers, B.M., Dove, E.S., Litton, J.E., Nietfeld, J.J.: Questioning the limits of genomic
privacy. Am. J. Hum. Genet. 91, 577–578 (2012)

44. Knoppers, B.M., Saginur, M.: The babel of genetic data terminology. Nat. Biotechnol. 23,
925–927 (2005)

45. Kuner, C.: Transborder Data Flows and Data Privacy Law. Cambridge University Press, Oxford
(2013)

46. Laurie, G., Sethi, N.: Towards principles-based approaches to governance of health-related
research using personal data. Eur. J. Risk Regul. 4, 43–57 (2013)

47. Lowrance, W.W.: Privacy, Confidentiality, and Health Research. Cambridge University Press,
Oxford (2012)

48. Moraia, L.B. et al.: A comparative analysis of the requirements for the use of data in biobanks
based in finland, germany, the netherlands, norway and the united kingdom. Med. Law Int. 14,
187–212 (2014)

49. National Institutes of Health: Policy for genome-wide association studies. http://grants.nih.
gov/grants/guide/notice-files/NOT-OD-07-088.html (2007). Accessed 22 June 2015

50. National Institutes of Health: Modifications to genome-wide association studies (GWAS)
data access. https://gds.nih.gov/pdf/Data%20Sharing%20Policy%20Modifications.pdf (2008).
Accessed 22 June 2015

51. National Institutes of Health: NIH genomic data sharing policy. http://gds.nih.gov/PDF/NIH_
GDS_Policy.pdf (2014). Accessed 22 June 2015

52. National Institutes of Health: Supplemental information to the national institutes of health
genomic data sharing policy. http://gds.nih.gov/PDF/Supplemental_Info_GDS_Policy.pdf
(2014). Accessed 22 June 2015

53. NIH-DOE Joint Subcommittee: NIH-DOE guidelines for access to mapping and sequencing
data and material resources (adopted 7 December). http://www.genome.gov/10000925 (1992).
Accessed 22 June 2015

54. Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social Life.
Stanford University Press, Stanford (2010)

55. Nuffield Council on Bioethics: The collection, linking and use of data in biomedical research
and health care: ethical issues. http://nuffieldbioethics.org/wp-content/uploads/Biological_
and_health_data_web.pdf (2015). Accessed 22 June 2015

56. OECD: The OECD privacy framework. http://oecd.org/sti/ieconomy/oecd_privacy_
framework.pdf (2013). Accessed 22 June 2015

57. O’Neill, O.: Some limits of informed consent. J. Med. Ethics 4 (2003)
58. Phoenix SPI: Survey of canadians on privacy-related issues. final report. https://www.priv.gc.

ca/information/por-rop/2013/por_2013_01_e.asp (2013). Accessed 22 June 2015
59. Power, M.: The Law of Privacy. LexisNexis Canada, Markham (2013)
60. Smith, R., Shao, J.: Privacy and e-commerce: a consumer-centric perspective. Electron.

Commer. Res. 7, 89–116 (2007)
61. Solove, D.J., Schwartz, P.M.: Information Privacy Law, 5th edn. Wolters Kluwer, New York

(2015)
62. Taylor, M.: Genetic Data and the Law: A Critical Perspective on Privacy Protection. Cambridge

University Press, Cambridge (2012)
63. Tene, O.: Privacy law’s midlife crisis: a critical assessment of the second wave of global privacy

laws. Ohio State Law J. 74, 1217–1261 (2013)
64. Tzanou, M.: Data protection as a fundamental right next to privacy? ‘reconstructing’ a not so

new right. Int. Data Priv. Law 3, 88–99 (2013)

https://www.priv.gc.ca/information/por-rop/2013/por_2013_01_e.asp
https://www.priv.gc.ca/information/por-rop/2013/por_2013_01_e.asp
http://oecd.org/sti/ieconomy/oecd_privacy_framework.pdf
http://oecd.org/sti/ieconomy/oecd_privacy_framework.pdf
http://nuffieldbioethics.org/wp-content/uploads/Biological_and_health_data_web.pdf
http://nuffieldbioethics.org/wp-content/uploads/Biological_and_health_data_web.pdf
http://www.genome.gov/10000925
http://gds.nih.gov/PDF/Supplemental_Info_GDS_Policy.pdf
http://gds.nih.gov/PDF/NIH_GDS_Policy.pdf
http://gds.nih.gov/PDF/NIH_GDS_Policy.pdf
https://gds.nih.gov/pdf/Data%20Sharing%20Policy%20Modifications.pdf
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-07-088.html
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-07-088.html
http://www.privacycommission.be/sites/privacycommission/files/documents/international_standards_madrid_2009.pdf
http://www.privacycommission.be/sites/privacycommission/files/documents/international_standards_madrid_2009.pdf
http://www.privacycommission.be/sites/privacycommission/files/documents/international_standards_madrid_2009.pdf


678 E.S. Dove and M. Phillips

65. United Kingdom: Data protection act 1998. http://legislation.gov.uk/ukpga/1998/29 (1998).
Accessed 22 June 2015

66. United Kingdom: The data protection (processing of sensitive personal data) order 2000. http://
www.legislation.gov.uk/uksi/2000/417/schedule/made (2000). Accessed 22 June 2015

67. United Nations: General assembly resolution 2450 of 19 December 1968. Doc E/CN.4/1025
(1968)

68. United Nations: Points for possible inclusion in draft international standards for the protection
of the rights of the individual against threats arising from the use of computerized personal
data systems. Doc E/CN.4/1233 (1976)

69. United Nations: Guidelines concerning computerized personal data files (UN general assembly
resolution 45/95 of 13 December 1990). Doc E/CN.4/1990/72 (1990)

70. United States: Code of federal regulations. title 45: public welfare. part 160: general adminis-
trative requirements. http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title45/45cfr160_
main_02.tpl (2014). Accessed 22 June 2015

71. United States: Code of federal regulations. title 45: public welfare. part 164: security and
privacy. http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title45/45cfr164_main_02.tpl
(2014). Accessed 22 June 2015

72. United States Department of Commerce: Safe harbor privacy principles. http://www.export.
gov/safeharbor/eu/eg_main_018475.asp (2000). Accessed 22 June 2015

73. US Privacy Protection Study Commission: Personal privacy in an information society. US
Government Printing Office, Washington (1977)

74. Wallace, S.E., Gaye, A., Shoush, O., Burton, P.R.: Protecting personal data in epidemiological
research: DataSHIELD and UK law. Public Health Genomics 17, 149–157 (2014)

75. Weber, R.H.: Transborder data transfers: concepts, regulatory approaches and new legislative
initiatives. Int. Data Priv. Law 3, 117–130 (2013)

76. Wellcome Trust: Policy on data management and sharing. http://www.wellcome.ac.uk/about-
us/policy/policy-and-position-statements/wtx035043.htm (2010). Accessed 22 June 2015

77. Wellcome Trust: Summary report of qualitative research into public attitudes to personal data
and linking personal data. http://www.wellcome.ac.uk/About-us/Publications/Reports/Public-
engagement/WTP053206.htm (2013). Accessed 22 June 2015

78. World Health Organisation: Legal frameworks for ehealth: based on the findings of the second
global survey on eHealth. http://whqlibdoc.who.int/publications/2012/9789241503143_eng.
pdf (2012). Accessed 22 June 2015

79. Younger Committee: Report of the committee on privacy. Home Office, Cmnd 5012. HMSO,
London (1972)

http://whqlibdoc.who.int/publications/2012/9789241503143_eng.pdf
http://whqlibdoc.who.int/publications/2012/9789241503143_eng.pdf
http://www.wellcome.ac.uk/About-us/Publications/Reports/Public-engagement/WTP053206.htm
http://www.wellcome.ac.uk/About-us/Publications/Reports/Public-engagement/WTP053206.htm
http://www.wellcome.ac.uk/about-us/policy/policy-and-position-statements/wtx035043.htm
http://www.wellcome.ac.uk/about-us/policy/policy-and-position-statements/wtx035043.htm
http://www.export.gov/safeharbor/eu/eg_main_018475.asp
http://www.export.gov/safeharbor/eu/eg_main_018475.asp
http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title45/45cfr164_main_02.tpl
http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title45/45cfr160_main_02.tpl
http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title45/45cfr160_main_02.tpl
http://www.legislation.gov.uk/uksi/2000/417/schedule/made
http://www.legislation.gov.uk/uksi/2000/417/schedule/made
http://legislation.gov.uk/ukpga/1998/29


Chapter 25
HIPAA and Human Error: The Role
of Enhanced Situation Awareness
in Protecting Health Information

Divakaran Liginlal

Abstract Several contemporary studies have identified human error as a major
cause of privacy breaches in healthcare organizations. In this chapter, we first
highlight the costs healthcare organizations incur from HIPAA privacy breaches.
We then discuss the concept of situation awareness (SA) and its link with privacy
protection. Situation awareness represents individuals’ awareness of what is hap-
pening in their surroundings and their understanding of how information, events,
and actions affect their goals and objectives. Applying Endsley’s three-level SA
framework helps us to identify specific types of SA errors and build scenarios of
privacy breaches arising from SA errors. Using a taxonomy of SA errors derived
from Endsley’s work, we analyzed the 21 cases of HIPAA privacy breaches in which
the Office for Civil Rights has reached a resolution agreement. The results bring
into focus the often neglected situational aspects of privacy protection and help
to better understand the latent causes of privacy breaches along with their related
implications for policy formulation, system design, and user training.

25.1 Introduction

Since Hippocrates’ times, the importance of safeguarding a patient’s health informa-
tion has been enshrined in the Hippocratic Oath: “and whatsoever I shall see or hear
in the course of my profession, as well as outside my profession in my intercourse
with men, if it be what should not be published abroad, I will never divulge,
holding such things to be holy secret.” Today, the need to protect individuals’ health
information is of interest not only from the perspective of personal privacy but also
because of the potentially adverse effects on their employment status and insurance
coverage.
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With the rapid evolution of healthcare toward managed care and the accelerated
adoption of electronic health record (EHR) systems, information exchange net-
works, and health insurance exchanges, patients face a higher risk of loss of privacy
of their health information. Particularly, the rise in the use of Web technologies,
personal health monitoring systems, physician order entry systems, and a variety of
other clinical information systems has exacerbated the potential for privacy breaches
along with the associated costs they impose on healthcare organizations. Legislation
such as the Health Insurance Portability and Accountability Act (HIPAA) [26] and
the Health Information Technology for Economic and Clinical Health (HITECH)
[10] aims to ensure that healthcare organizations safeguard patients’ health infor-
mation against security breaches and other forms of disclosure [2].

The need to protect a patient’s health information against deliberate or inadver-
tent misuse or disclosure is enshrined in the HIPAA Privacy Rule. “Individually
identifiable health information” is defined as information, including demographic
data that relates to an individual’s past, present, or future physical or mental
health or condition, the provision of healthcare to an individual and the associated
payment information, and other information that specifically identifies an indi-
vidual. A healthcare provider, a health plan, a clearinghouse, and any healthcare
provider who transmits health information in electronic form in connection with
transactions is considered a covered entity under HIPAA. The term “protected health
information” (PHI) refers to any such information held or transmitted by a covered
entity or its business associates, in any form or media, whether electronic, paper,
or oral. The Privacy Rule upholds the rights of patients with respect to PHI held
by covered entities and their business associates. At the same time it balances the
need for disclosure of required information in the course of delivering quality care.
The Privacy Rule mandates that covered entities must use or disclose the minimum
necessary PHI for a specific purpose [9]. In addition, the HIPAA Security Rule
specifies a series of safeguards—technical, administrative, and physical—to assure
the confidentiality, integrity, and availability [12] of electronic protected health
information (ePHI). Unfortunately, even with sufficient safeguards, the reported
incidents of privacy breaches in healthcare organizations and the resulting loss of
personal health information have been on the rise [16].

Consistent with the Privacy Rule, patients have the right to access their health
information and also to know how covered entities use and disclose that information.
Covered entities must obtain written authorization for the use and disclosure of
such information except as it is needed in providing care, payment, and other
healthcare operations. Further, when violation of these rights occur, patients have
the right to lodge a formal complaint with a covered provider or health plan, or
with the U.S. Department of Health and Human Services (HHS) Office for Civil
Rights (OCR) and obtain redress, often resulting in civil monetary and criminal
penalties for the covered entity. By enforcing the Privacy and Security Rules, the
OCR helps to protect the privacy of individuals’ health information held by covered
entities. Some of the related providers and insurers may include: doctors and
nurses, pharmacies, hospitals, clinics, nursing homes, health insurance companies,
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health maintenance organizations (HMOs), employer group health plans, and certain
government programs that pay for health care, such as Medicare and Medicaid [26].

For the purposes of this chapter and within the context of healthcare, we
associate the term “privacy protection” with the actions taken by a person (e.g., a
healthcare worker or practitioner) working for a covered entity or business associate
to protect the privacy and security of an individual’s health information. We consider
privacy protection as a nonmonotonic, dialectic, and dynamic process in which the
environmental and situational contexts play an important role [9, 11, 14, 23, 27]. The
construct “situation awareness” (SA) represents individuals’ awareness of what is
happening in their surroundings and their understanding of how information, events,
and actions affect their goals and objectives [8]. Individuals with high SA levels
are likely to understand and predict a situation more accurately and control their
privacy protection behavior accordingly. The major contribution of this chapter is
this consideration of SA in protecting the privacy of health information—in other
words, the interplay between the individual, situation, and context in a healthcare
setting.

Before delving into the role of SA, one needs to understand on a global scale
the impact of privacy breaches within the healthcare sector vis-à-vis other industry
sectors and the corresponding role of human error. The IBM and Ponemon Institute
[19] study of 350 companies on the cost of data breaches in 11 countries, provides
supporting information in this regard. The highest average per capita cost is incurred
in the U.S.A and Germany. Although the average global cost of a data breach per
lost record is only about $150 across different industry sectors, the highest average
cost of $363 is incurred in healthcare organizations. Also, the loss of customers
increases the cost of data breaches and such churn is estimated to be highest
within the health and pharmaceutical industries. Most importantly, human error-
related average breach cost of $134 remains significant and not too different than
the average cost of $170 for malicious or criminal acts, which often results from
poorly configured systems or other human errors. The IBM and Ponemon study
also uncovers significant variations in the likelihood of a data breach involving a
minimum of 10; 000 records across the 11 countries surveyed. While Canada and
Germany have the least likelihood of a data breach, countries such as Brazil and
France have the highest chance of a data breach.

In capturing the situated aspects of privacy protection, we address a major
gap in the extant privacy research. Lack of SA constitutes an important cause
of human error in decision-making situations, which is the foremost, but often
ignored, cause of privacy breaches [3, 15, 18, 22]. One of the primary goals of
HIPAA is to streamline and reduce the cost of delivering healthcare. Regardless,
the implementation of HIPAA Privacy and Security Rule compliance are likely to
result in high initial costs to a healthcare organization. However, these high initial
costs are likely to be much less than the potential damage to reputation and the
salvage costs of recovering from a HIPAA-related privacy breach.

The results of this study have several practical implications for both healthcare
organizations and healthcare workers who handle PHI. The chapter is especially
relevant to healthcare systems and solutions providers, because it suggests means to
reduce incidents of privacy breaches arising from lack of SA of system users and
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operators. Equally important, the chapter provides insights into the importance of
designing privacy-enhancing user interfaces that incorporate powerful help features
and privacy alerts; it also recommends that organizations create effective employee
training programs that specifically address enhanced SA.

The remainder of this chapter is organized as follows. In Sect. 25.2, we consider
the role of human error in privacy breaches in healthcare organizations and the
related costs. Then in Sect. 25.3, we define SA and apply the [8] three-level SA
model and epidemiological framework to understand the importance of SA in
privacy protection. We illustrate how SA errors lead to privacy breaches through
an analysis of 21 cases of HIPAA privacy breaches in which the OCR has
reached a resolution agreement. Finally, in Sect. 25.4, we present the suggested SA
enhancement methods and propose avenues for future studies on this topic.

25.2 HIPAA, Privacy Breaches, and Related Costs

Since the advent of the HITECH rule, requiring organizations to notify HHS of the
discovery of a data breach, the HHS has reported the compromise of the PHI of
more than 120 million individuals! [25]. Details of the 12 largest notified privacy
breaches to date, compiled from the OCR portal [24] are shown in Table 25.1.

For the organizations involved, besides damage to their reputation, the resulting
tangible costs involved lawsuits, fines, and the need to provide free credit monitoring
and identity theft protection for affected individuals for a significant period of time.
Two notable cases are Sutter, which has been hit with multiple lawsuits that could
amount to between $944 million and $4.25 billion, and BlueCross BlueShield of
Tennessee, which paid $1.5 million in fines to the HHS and nearly $17 million
for protection, investigation, and member notification [17]. A majority of the cases
involved accidental disclosure, loss of devices containing PHI, and theft because
of improper physical safeguards. Analyzing the primary causes of these breaches
reveals that most of them arise from lost or stolen devices that were not protected
with the safeguards mandated by the Security Rule.

Since 2008, the OCR has concluded resolution agreements with 21 covered
entities. A resolution agreement, according to the OCR, is a contract signed by
HHS and a covered entity in which the covered entity agrees to perform certain
obligations (e.g., staff training) and make reports to HHS, generally for three
years. During this period, HHS monitors the covered entity’s compliance with
its obligations. A resolution agreement likely would include the payment of a
resolution amount [25]. Examining Fig. 25.1, which shows the distribution of
penalties imposed by OCR on these 21 covered entities, helps us to conclude that
more than half the cases involved payments of $1 million or more. These penalties
are above and beyond other costs incurred in salvage operations.

Five other notable breach examples reveal interesting insights into the causal
factors and the costs arising from a breach:
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Fig. 25.1 Summary of OCR
action on covered entities
since 2008
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1. The Beth Israel Deaconess Medical Center in Boston was fined $100,000 by the
state of Massachusetts. A physician failed to encrypt the PHI on his laptop, which
was stolen. The fine covered a civil penalty, legal fees, and cost of instituting a
HIPAA awareness program.

2. Triple-S Management Corp., an insurance holding company, was fined $6.8
million for improperly handling the medical records of some 70,000 individuals.
In this particular case, the covered entity reportedly mailed letters to its Medicare
Advantage patients with the Medicare numbers visible from the exterior of the
envelope.

3. A photocopier originally leased to Affinity Health Plan, a New York-based
managed care plan, was later sold to a television network. The photocopier’s
hard disk contained medical information on nearly 350,000 individuals. The
company had to pay $1,215,780 to HHS for this violation, which was caused
by overlooking the need to erase data before returning equipment to a lessee.

4. Inadequate physical security measures resulted in the theft of four unencrypted
company computers from the premises of Advocate Medical Group, resulting in
the compromise of the PHI of more than four million patients.

5. Microfilms belonging to Texas Health Harris Methodist Hospital that were given
to Shred-it for destruction ended up in various public locations. The loss of the
PHI on the microfilms resulted in the need to notify 277,000 patients of the
potential breach.

Healthcare IT News (http://www.healthcareitnews.com) carries several more
examples of such breaches. As categorized by [15], the underlying causal factors
for a great majority of the examples illustrated in this chapter represent human error
and arise from either mistakes or slips [20].

http://www.healthcareitnews.com
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25.3 Situation Awareness and Privacy Protection

In this section, we first define the SA construct, then develop its theoretical
underpinnings and its link to privacy protection. We examine how Endsley’s three-
level SA framework helps identify specific types of SA errors. Applying a taxonomy
of human error derived from Endsley’s work, we analyze prominent examples
of HIPAA privacy breaches in which the Office for Civil Rights has reached a
resolution agreement.

25.3.1 Definition of Situation Awareness

SA has been widely used as a construct in the aviation and engineering disciplines
in which quick decisions in situation-specific settings are required and the conse-
quences of such decisions can be devastating [8]. As its name implies, SA represents
individuals’ awareness of what is happening around them and their understanding of
how information, events, and actions can affect their goals or objectives. Although
several approaches exist for defining and measuring SA, a common understanding
of SA relates to the situational factors underlying the divide between a human
operator’s understanding of the status of a system and its actual status and the need
to bridge this gulf. SA is an action-level, task-oriented concept. It is affected by
knowledge, skills, perception, concerns, experience, and other factors previously
acquired by individuals. More important, it serves as a link between these prior
factors and actual behavior rather than as an aggregation and abstraction of such
factors.

One of the most widely accepted streams of SA research draws on an
information-processing model developed by Endsley in [8]. In his approach,
traditional psychological constructs such as attention, long-term memory, schemata,
automaticity, and expectation are important elements that affect SA. By associating
individual factors, environmental factors, and their interactions with SA, Endsley’s
model explains individuals’ differences in SA. Endsley states that working memory
capacity and limited attention restrict a person’s SA and that a higher level of SA
can be achieved by developing long-term memory through schemata and mental
models. Pattern matching between critical cues in the environment helps achieve
higher SA under conditions of uncertainty and incomplete information. Personal
goals and objectives are important factors that determine how attention is directed
and how information is perceived and interpreted. Endsley’s model postulates
three levels of SA: Level 1 (perception of elements in the environment), Level 2
(comprehension of the current situation), and Level 3 (projection of future status).
A higher level of SA helps in better decision-making and consequent action and is
always desirable.
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Fig. 25.2 Implications of Endsley’s three-stage model on privacy protection

25.3.2 Linking Situation Awareness to Privacy Breaches

Human error is hard to predict and prevent and is the most frequent cause of
breaches of privacy or security in organizations [3, 15, 18, 21]. We draw on Endsley’s
[8] epidemiological view of SA errors to identify such errors by level and subtype
and then link these errors to information disclosure that leads to privacy loss.
Figure 25.2 depicts how inadvertent disclosure of protected information because
of a lack of SA leads to HIPAA privacy breaches.

25.3.2.1 Level 1 SA: Failure to Correctly Perceive a Situation

Users require clear and accurate directions to acquire accurate perceptions. Data
availability is mostly related to the environment and system design. Contrary to
the common belief that the cause of human errors leading to privacy breaches
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may be attributed primarily to an individual, prior research suggests that the work
environment is critical and that users are susceptible to errors because of systemic
limitations [15]. The unavailability of data forces users to resort to guessing or to
rely on default mental models, consequently leading to errors of judgment and faulty
decisions. The presentation of data is as important as its availability. Critical data
should be presented at the expected time and in the expected space to facilitate quick
and accurate observation. Distractions need to be minimized, and careful attention
should be given to effective design of system interfaces.

Users also commit SA errors by misreading the cues provided, which in
turn leads to misperception. Misperception is often related to expectations [8].
When users find a cue at the expected time and place, they tend to assume that
the information is correct without a careful second look. This type of misperception
is rooted in psychology. The other type of misperception occurs when users simply
misread the information because of physical disorientation and end up having poor
Level 1 SA. To avoid observational failure or misperception, users must possess the
skills to distinguish critical data from noncritical data and the ability to control their
attention spans. User training, experience, and adequate monitoring may positively
affect this process, and high workloads, understaffing, and multitasking may have
negative effects. Finally, memory loss is another cause of SA perception errors. In
some cases, users observe and perceive information correctly, but later forget it. This
memory failure is related to individuals’ personal ability, but it is also affected by
lack of attention, overwork, and distractions.

25.3.2.2 Level 2 SA: Failure to Comprehend a Situation

In the comprehension stage of SA, errors may occur largely from three causes:
lack of a mental model, use of an incorrect mental model, or over-reliance on
default mental models. This stage is about how the significance and meaning
of perceived information are assimilated. Endsley [8] argued that the lack of a
mental model contributes to a low Level 2 SA. Individuals need a sound mental
model to understand the meaning of perceived information. Although users may
have a good knowledge of how the system functions, they may have developed
habits of relying excessively on default mental models. This cause of SA errors
is more frequently encountered in routine operations. Instead of integrating and
comprehending perceived information according to a sound mental model, a user
may choose to use his or her usual familiarity with the situation. In this case,
familiarity and confidence overpower perceived information and knowledge.

25.3.2.3 Level 3 SA: Failure to Project a Situation into the Future

Level 3 SA errors result from a poor mental model and over projection of current
trends. In some cases, users may have a poor model for projecting the future. This
can occur even with accurate perception and good comprehension of the situation.
In addition to the poor mental model, over-projection of current trends is another
cause of SA error. In this case, users believe the current status will continue into
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the future, although the perceived and comprehended situation says otherwise. This
type of SA error in information disclosure defies rational explanation, but laziness,
fatigue, or brashness may be contributing factors.

25.3.3 SA and HIPAA Privacy Breaches

Figure 25.3 contains a simplified illustration of the flow of information in a typical
patient visit to a healthcare network.

Registration: As part of the registration process, a receptionist collects a patient’s
identifying information and links it to an existing medical record, or if none
exists, creates one. The patient also receives a notice of privacy practices, as
required by HIPAA, and acknowledges reading and accepting its terms. The
collected information is stored in a clinical information system (indicated as EHR
in Fig. 25.3).

Treatment: A designated medical worker, often a nurse, looks up key patient infor-
mation, discusses and records the patient’s health-related concerns/symptoms,
and records the patient’s vital signs. A doctor then looks up the health history of
the patient, along with the reasons for the visit, and examines the patient. The
doctor may order additional diagnostic tests. The clinical department also sends
its billing information for the treatment so it can be forwarded to the insurance
company.

Diagnostics: The patient visits a diagnostic center where the lab staff looks up
relevant information and performs the required tests. The lab test results are sent
back to the doctor to prescribe treatment.

Prescription: The doctor may prescribe medication for the patient. This infor-
mation is often forwarded to the pharmacy. The patient visits the pharmacy,
where a clerk at the counter looks up the patient’s information and validates
insurance information. The pharmacist looks up the prescription and prepares
the medicines. The prescribed medication is then dispensed to the patient.

Payment: The insurance company receives the patient’s treatment information
from the hospital. The company assesses the patient’s insurance coverage and
determines the amount to pay the hospital and if necessary, bills the customer for
any balance. Finally, the bill is mailed to the patient, and payment is made to the
hospital.

Follow up: The hospital uses patient contact and medical information stored in the
EHR to notify the patient of follow-up checkups or other important preventive
care information. For compliance purposes this information is required to be kept
for nearly a decade beyond the last date the patient was treated.

At every stage of this information flow, we can identify plausible breach
scenarios involving loss of SA. Figure 25.4 for the registration phase illustrates how
the three stages of SA can be linked to potential HIPAA privacy violations. In what
follows, we discuss in more detail each of these three levels in the specific context of
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Level 1 SA (Perception): A registration clerk took a phone call while she
was retrieving a patient’s PHI on a station that could be accessed by oth-
ers. Without completing the registration, she left the information visible to
others on the screen and walked away to attend to another task. This is an
instance of failure to correctly perceive the situation through simple omis-
sion, memory loss, or a high task load that prevented her from observing
the required privacy practice of logging out before leaving the station.

Level 2 SA (Comprehension): A registration clerk trashed a printout con-
taining PHI without shredding it. This is a plausible case of faulty knowl-
edge or over-reliance on defaults.

Level 3 SA (Projection): A registration clerk was busy and gave a tem-
porary worker her access code to the system for the day. The temporary
worker used the code to access medical information of people she knew.
In this case, the temporary worker had not received proper HIPAA train-
ing, and the registration clerk’s poor mental model resulted in her failure
to project the potential consequences of her action.

Fig. 25.4 Example of SA errors in the registration process

Some examples are:

• Recording privacy policy agreement incorrectly because of unfamiliarity
with instructions or an oversight (Registration stage).

• Failing to provide notice of privacy practices to a father or his minor
daughter before a mental health evaluation (Registration stage).

• Displaying logbooks containing patients’ prescription information in a
manner that makes PHI visible to the public at a pharmacy counter (Pre-
scription stage).

• Mistakenly placing a customer’s insurance card in another customer’s
prescription bag (Prescription stage).

• Discussing medical status of a patient within earshot of other patients in
a waiting room (All stages).

• Flagging medical records with a red sticker with the word “AIDS” on the
outside cover and handling the records in a way that lets other patients
and staff without a need to know read the sticker (All stages).

• Faxing a patient’s medical records to the patient’s place of employment
instead of to the patient’s new healthcare provider (Follow-up stage).

Fig. 25.5 Level 1 SA error—failure to correctly perceive a situation or misperception of
information

HIPAA privacy breaches. A number of examples based on actual HIPAA breaches
that the OCR has acted upon are highlighted in Figs. 25.5, 25.6, and 25.7 for each
level of SA failure [25].
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Some examples are:

• Trashing materials containing PHI without shredding (All stages).
• Accessing PHI of family members, friends, or colleagues (All stages).
• Emailing sensitive information with recipients in the CC field instead of

the BCC field (Follow-up stage).
• Leaving a telephone message detailing a patient’s condition with the

daughter of the patient (Follow-up stage).
• Sending medical records to a disability insurance company without the

patient’s authorization (Payment stage).
• Incorrectly submitting a worker’s compensation claim or sending PHI

without authorization to a patient’s employer (Payment stage).
• Failing to provide access to medical records (Registration stage).
• Charging a patient a fee for providing medical records (Registration

stage).
• Hospital employee’s supervisor accessing and disclosing employee’s

medical record for operational or other administrative purposes without
the authorization of the employee (All stages).

• Disclosing a patient’s medical information, without the prior written con-
sent of the patient, to one of the following: (Follow-up stage)

– public media as a public safety warning,
– judicial body in response to a subpoena in certain cases, or
– a research entity for recruitment purposes.

• Incorrectly requiring a patient to sign privacy agreements over and beyond
what is guaranteed in the Privacy Rule (Registration stage).

Fig. 25.6 Level 2 SA error—failure to comprehend situation or improper comprehension of
information

Some examples are:

• Giving escalated access rights to an assistant to allow completion of a task
and not subsequently revoking the rights (All stages).

• Not purging PHI from a flash drive or other device (e.g., photocopier) that
later became accessible to others.

• Accessing sites infected with malware from computers containing unen-
crypted PHI.

• Failure to update operating system or follow other safeguards such as
encryption leading to vulnerability that is exploited.

• Using public computers to access PHI.

Fig. 25.7 Level 3 SA error—incorrect projection of situation into the future
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25.3.3.1 Level 1 SA: Failure to Correctly Perceive a Situation

Level 1 SA errors may arise from a lack of availability of supporting information
or when data is difficult to detect or perceive. The case of a covered entity failing
to provide notice of privacy practices before a mental health evaluation is a specific
example of this. However, when the required instructions and best practices are
available and presented well, achieving a high level of perception becomes more
dependent on the individuals themselves.

For healthcare employees, one of the most important pieces of information in
the context of privacy is an awareness of their surroundings and who is privy
to overhearing or seeing confidential information. Even if sufficient guidelines
and training are provided, a user may commit an SA error through an oversight.
Maintaining a high attention level is an important requirement for this task.
Discussing the medical status of a patient within earshot of other patients in a
waiting room or positioning a computer screen in such a way that unauthorized
persons can see the data it displays are both examples of this category of SA errors.
Poor perception often occurs when users are distracted by less important data and
thereby fail to properly attend to critical ones. Some examples of Level 1 SA errors
are shown in Fig. 25.5.

25.3.3.2 Level 2 SA: Failure to Comprehend a Situation

In many cases, even if information is correctly perceived, there may be a failure
to comprehend its significance or meaning. Often this arises from a lack of
an appropriate mental model for combining multiple pieces of information in
association with pertinent goals [13]. Charging a patient a fee for providing medical
records or disclosure of medical information to the judiciary or to public media, are
examples of this. However, cases such as the failure to shred material containing
PHI arises from over-reliance on default mental models. Some additional examples
of Level 2 SA errors are shown in Fig. 25.6.

25.3.3.3 Level 3 SA: Failure to Project a Situation into the Future

Although in many cases individuals are fully cognizant of what they are doing,
they have a poor model for projecting the consequences of their actions. Consider
the case of an employee giving elevated access rights to an assistant so the latter
could complete some pending tasks. This was done in good faith, but the employee’s
failure to revoke these rights so tasks could be delegated in the future exemplifies a
Level 3 SA error because of the likelihood of the assistant abusing the privilege by
viewing PHI that only her supervisor was authorized to access.

One may argue that the case of Affinity Health Plan, in which PHI was not
purged from a photocopier before its return to the lessee, falls under both Level
2 and Level 3 errors. The company’s employees not only lacked understanding of
how information was stored in the photocopier, but they also failed to project the
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consequences of the subsequent lease of the equipment, which resulted in exposure
of PHI. Mental projection is a cognitively demanding task, and people generally
perform poorly at it [13]. Examples of Level 3 SA errors are shown in Fig. 25.7.

By applying Endsley’s [8] model to HIPAA privacy breach incidents, we are able
to demonstrate the importance of improving the SA of employees through training
or well-designed user interfaces so that such actors can correctly perceive, com-
prehend, and project a situation and minimize inadvertent or harmful disclosures
of PHI. Although prior training, experience, and adequate monitoring contribute to
reductions in SA errors, high workloads, understaffing, and multitasking may have
negative effects and may result in disclosure of PHI.

25.4 Discussion and Conclusion

SA plays an important role in HIPAA compliance, especially as part of an error
avoidance strategy that focuses on preventing human errors or at least on reducing
their frequency. A mismatch between a worker’s mental understanding of a system
and the system’s actual status is often linked to error. In such cases, poor feedback
and lack of experience are considered the main causes of human error. To avoid
such errors, frequent training of users to enhance both their knowledge and skills is
highly appropriate. It is also desirable to have such recurrent training integrated into
a system’s normal operations. Similarly, user interface design has a significant role
in avoidance of errors. Privacy-enhancing technologies (PET) have gained consider-
able prominence in recent times. Whenever information is handled electronically, an
information space provides a way to organize information, resources, and services
around important privacy-relevant contextual factors. Barcodes and other memory
aids are also used to enhance awareness so as to avoid errors. All of these solutions
are closely linked to SA enhancement. It is clear that achieving a high level of SA
is crucial to the prevention of SA errors.

In summary, to reduce the possibility of SA errors, a number of best practices
that apply to all three levels are suggested. First, under the category of awareness
and education, employees who handle PHI and their supervisors should have easy
access to HIPAA guidelines and be subject to frequent awareness campaigns as
well as compliance training and evaluation [5]. In the category of administrative
controls, covered entities must institute frequent audits of privacy practices and
have supervisors periodically examine employees’ work practices. They also should
reduce work overloads, multitasking, and interruptions in workflow and take timely
and exemplary action upon detection of violations. A third category encompasses
technical controls that include increased workflow automation, privacy controls in
application software that handles PHI, and enhanced SA aids such as alarms and
decision support tools. Liginlal et al. [15, 16] discuss in greater detail these best
practices for mitigating human errors that lead to privacy breaches.

Privacy management within an organization is only one aspect of overall privacy-
related issues. Business transactions and housekeeping often require the exchange of
private information belonging to both patients and employees. With the popularity
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of highly networked business environments, individuals are frequently required to
make quick decisions with significant implications for privacy [6, 18]. Given the
highly interwoven and complicated environment the World Wide Web provides,
it is not easy for organizations to provide individual users with detailed policies
and timely instructions. When individuals fail to give proper attention to situational
factors, they are likely to commit errors that lead to privacy breaches. Higher levels
of multitasking, distraction, fatigue, or workloads experienced by users contribute
to a lower level of SA, eventually culminating in inadvertent and often harmful
disclosures of personal information. Therefore, determining whether a specific act
of disclosing information adequately meets both the individual’s need to share
information and his or her privacy protection requirements is a complex task
involving situated cognition.

There has always existed a concern that an individual’s privacy protective
behavior might inhibit the free flow of personal health information requisite to
delivering quality care. With the increasing need for individuals to disclose their
personal health information online or have their vital signs monitored by wearable
or other mobile devices, a much neglected facet of an individual’s privacy protective
behavior also becomes important. Applying SA to such personal information
disclosure to address a person’s ability to deal with a situated environment under
conditions of limited resources, such as a low attention span and limited short-term
memory, seems reasonable and meaningful. Also, as social exchange and privacy
regulation theories [1, 7] suggest, privacy needs and consequent privacy protective
behaviors are specific to users and to the environment. A user’s experience and
reputation, goals and expectations, the degree of disclosure to peers within peer
groups—with consequent pressure to reveal or hide—are all considered in those
decisions related to the boundaries of privacy disclosure. When it comes to online
disclosure of personal health information, it is often likely that users will not know
precisely the audience for their information. For example, when a patient is using
a chat feature on a healthcare website or using a mobile phone to converse with
a healthcare call center, the surroundings of the patient influence the richness of
information the patient is able to divulge. One also cannot rule out the likelihood
that the operator at the other end is not using a headset and consequently, others may
overhear the conversation. Thus, an understanding of the situation and awareness
of the features of the system are both important factors that emphasize the central
role of SA in such contexts. Thus, by introducing SA within the framework of the
privacy calculus model, the often neglected situated aspects of individuals’ privacy
behaviors can be better understood and more easily predicted.

In conclusion, the instrumentation of SA applied to information privacy yields
better insights into designing privacy-enhancing user interfaces, powerful help
features, and privacy alerts. In addition to its applicability to healthcare settings, the
SA construct can be easily applied to other contexts such as e-commerce and other
organizational settings [4, 22]. Organizations and their employees are constrained
to show more protective and conservative behavior. Organizational actions such as
training, policies, and the improvement of environmental and business processes
that are aimed at preventing human error are all important and highly recommended.
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However, if the individuals who manage sensitive information do not perform as
expected, the associated problems of human errors will not be solved. Therefore,
attention to individuals and an understanding of how and why they commit errors
are important facets of managing and preventing human errors that lead to privacy
breaches in organizations.
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Chapter 26
De-identification of Unstructured Clinical Data
for Patient Privacy Protection

Stephane M. Meystre

Abstract The adoption of Electronic Health Record (EHR) systems is growing
at a fast pace in the United States and in Europe, and this growth results in very
large quantities of patient clinical information becoming available in electronic
format, with tremendous potential, but also equally growing concern for patient
confidentiality breaches. Secondary use of clinical information is essential to
fulfil the promises for high quality healthcare, improved healthcare management,
and effective clinical research. De-identification of patient information has been
proposed as a solution to both facilitate secondary use of clinical information,
and protect patient information confidentiality. Most clinical information found in
the EHR is unstructured and represented as narrative text, and de-identification of
clinical text is a tedious and costly manual endeavor. Automated approaches based
on Natural Language Processing have been implemented and evaluated, allowing
for much faster de-identification than manual approaches. This chapter introduces
clinical text-de-identification in general, and then focuses on recent efforts and
studies at the U.S. Veterans Health Administration. It includes the origins and
definition of text de-identification in the United States and Europe and a discussion
about text anonymization. It also presents methods applied for text de-identification,
examples of clinical text de-identification applications, and U.S. Veterans Health
Administration clinical text de-identification efforts.

26.1 Introduction

Electronic Health Record (EHR) systems’ adoption is growing at a fast pace in the
United States and in Europe, and this evolution results in very large quantities of
patient clinical information becoming available in electronic format, with remark-
able potential, but also rising concern for patient confidentiality infringements. In
the U.S., the adoption of EHR systems is growing fast, reaching more than 50 %
of physician practices and 80 % of hospitals in April 2013, when only 17 % of
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physician practices and 9 % of hospitals were using an EHR in 2008 [52]. This fast
growth has been encouraged by the Health Information Technology for Economic
and Clinical Health (HITECH) Act, which authorized incentive payments [7]. These
payments are made through Medicare and Medicaid to clinicians and hospitals when
using EHRs according to meaningful use requirements. Perspectives of improved
healthcare quality also fuelled this fast growth. In Europe, most EHR adoption
efforts have been encouraged by national health improvement efforts such as the
Swedish National Patient Summary (NPO) initiative [48], the Danish Health Data
Network [33] or the Australian Personally Controlled Electronic Health Record
(PCEHR) initiative [58].

Secondary use of clinical information is essential to fulfil the promises for
high quality healthcare, improved healthcare management, and effective clinical
research. Instead of relying on existing but often biased and insufficiently detailed
diagnostic and procedure codes assigned for reimbursement and administrative
purposes only, effective clinical research and high quality and efficient healthcare
need accurate and detailed clinical information, information that can be found in
patient EHRs. Access to rich and detailed clinical information about diagnoses,
treatments, and outcomes is also required for the Positive predictive value Medicine
proposed by the National Academy of Sciences [40].

De-identification of patient information has been proposed as a solution to both
facilitate secondary uses of clinical information, and protect patient information
confidentiality. For flexibility, expressiveness, efficiency, and historical reasons,
most detailed clinical information found in EHRs is captured in free-text format,
without structure or coding. In a recent survey of U.S. hospitals equipped with
advanced EHRs, only an average of 35 % of their clinical data was captured using
structured templates, while the remaining used dictation and transcription or direct
entry, both resulting in free text content [8]. De-identification of clinical text is
a tedious and costly manual endeavor. Automated approaches based on Natural
Language Processing (NLP) have been implemented and evaluated, allowing for
much faster de-identification than manual approaches.

This chapter continues with a definition of text de-identification and a pre-
sentation of its origins. The main methods applied for text de-identification and
three examples of de-identification systems are then discussed. The question of text
anonymization is considered, and finally clinical text de-identification efforts at the
U.S. Veterans Health Administration are presented.

26.2 Origins and Definition of Text De-identification

Confidentiality of the information entrusted by a patient to a healthcare provider
has been a foundation of the confidence relationship established between them for
centuries, as expressed in the Hippocratic Oath in ancient Greece: “: : : All that may
come to my knowledge in the exercise of my profession or in daily commerce with



26 De-identification of Unstructured Clinical Data for Patient Privacy Protection 699

men, which ought not to be spread abroad, I will keep secret and will never reveal”
[39]. Breaching this confidentiality not only damages this relationship, but also
exposes the patient to financial, reputation, employment, and other identity theft
disastrous consequences. The patient may become liable for services fraudulently
obtained in his name, and incorrect information can infiltrate his medical record,
potentially even threatening his life if his blood type was altered for example,
or important medication allergies were erroneously removed. The patient may
have damaged credit history, higher health insurance premiums, loss of health
insurance coverage, and even legal troubles because of a stolen medical identify.
The U.S. Internal Revenue Service (IRS) had identified almost 642; 000 identity
theft incidents that impacted tax administration in 2012 alone, up from 245; 000 in
2010 [54].

In the United States, the 1996 Health Insurance Portability and Accountability
Act (HIPAA) and 2000 Privacy Rule (codified as 45 CFR �160 and 164) protect the
confidentiality of patient data [26] and require notification of breach of Protected
Health Information (PHI) incidents. As of September 30 2013, the Department of
Health and Human Services has received more than 86; 000 privacy rule complaints
[53] and lists 712 reports of incidents involving 500 individuals or more, including
more than 27 million patient files and averaging an astonishing 19; 000 patient files
lost every day! [51]

In the European Union, the European Convention on Human Rights and the Data
Protection Directive Article 8 offer similar legal bases, with corresponding national
legislations in each member states. Directive 95/46/EC of the European Parliament
defines “personal data” as “any information relating to an identified or identifiable
natural person (‘data subject’); an identifiable person is one who can be identified,
directly or indirectly, in particular by reference to an identification number or to one
or more factors specific to his physical, physiological, mental, economic, cultural or
social identity” [13].

The protection of data privacy is regulated in all European Union member states
by national legislation drawn up in response to the aforementioned Data Protection
Directive, which seeks to harmonize the rules of data protection throughout the
European Union.

These laws typically require the informed consent of the patient and approval
of a local ethics or internal review board to use data for research purposes, but
these requirements could be waived if data are de-identified. In the U.S., for clinical
data to be considered de-identified, the HIPAA “Safe Harbor” standard requires
18 data elements (called PHI: Protected Health Information) to be removed (see
Fig. 26.1). In the European Union, no equivalent de-identification legislation is
available. Anonymization has been defined within the law of some member states,
like Germany, where it is stated that “the modification of personal data so that
the information concerning personal or material circumstances can no longer or
only with a disproportionate amount of time, expense and labor be attributed to an
identified or identifiable individual” [16].
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1. Names.
2. All geographic subdivisions smaller than a state, including street address,

city, county, precinct, zip code or equivalents except for the initial 3 digits
of a zip code if the corresponding zone contains more than 20, 000 people.

3. All elements of dates (except year) for dates directly related to the indi-
vidual (birth date, admission date, discharge date, date of death). Also all
ages over 89 or elements of dates indicating such an age.

4. Telephone numbers.
5. Fax numbers.
6. E-mail addresses.
7. Social security numbers.
8. Medical record numbers.
9. Health plan numbers.

10. Account numbers.
11. Certificate or license numbers.
12. Vehicle identification or serial numbers including license plate numbers.
13. Device identification or serial numbers.
14. universal resource locators (URLs).
15. Internet Protocol addresses (IP addresses).
16. Biometric identifiers.
17. Full face photographs and comparable images.
18. Any other unique identifying number, characteristic, or code.

Fig. 26.1 U.S. HIPAA protected health information categories

Directive 95/46/EC does not apply to personal data rendered anonymous. It
states, “the principles of protection shall not apply to data rendered anonymous in
such a way that the data subject is no longer identifiable” [13].

De-identification corresponds to the replacement or removal of personal identi-
fiers so that linking an individual with his or her data becomes difficult. In the U.S.,
de-identification consists in the application of the HIPAA Safe Harbor standard,
replacing or removing each mention of PHI (see Fig. 26.1).

De-identification of narrative text documents is often realized manually, and
requires significant resources. Dorr et al. [14] have evaluated the time cost to
manually de-identify narrative text notes (average of 87:2 seconds per note), and
concluded that it was time-consuming and difficult to exclude all PHI required by
HIPAA. Well aware of these issues, several authors have developed applications
for automated de-identification of narrative text documents from the EHR using
methods based on NLP, starting with Sweeny’s Scrub system in 1996 [49].
These applications focused on a variable selection of PHI, ranging from patient
names only, to all PHI categories, or even everything that was not recognized as
clinical information. Most applications focused on only one or two specific clinical
document types, and only few systems were evaluated with a more heterogeneous
collection of notes.
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26.3 Methods Applied for Text De-identification

The text de-identification process is composed of two main steps: PHI detection,
and PHI removal or transformation (see Fig. 26.2). The former is often approached
as a “named entity recognition” task, and the latter consists of replacing PHI with
some tags or characters (e.g., “Mr. Smith” becomes “<Patient_name>”). Another
option is to replace PHI with synthetic but realistic substitutes (e.g., “Mr. Smith”
becomes “Mr. Jones”). This second option is often called PHI resynthesis and
has been experimented by Aberdeen and Yeniterzi et al. [1, 60] and within the
U.S. Veterans Health Administration (VHA) clinical text de-identification project
described below [20]. It adds computational complexity but offers the advantage of
allowing the rare instances of PHI that could have been missed to “hide in plain
sight,” notably improving the effectiveness of de- identification [9]. The remainder
of this section will focus on PHI detection methods.

Automated text de-identification is mainly based on two different types of
methodologies: pattern matching [4] and machine learning [37]. Characteristics of
both types of methodologies are summarized in Table 26.1. Many systems combine
both approaches for different types of PHI, but the majority uses no machine

Fig. 26.2 Examples of text de-identification with PHI tagging or resynthesis
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Table 26.1 Advantages and disadvantages of methods used for text de-identification

Characteristics Pattern matching Machine learning

Manually crafted knowledge Yes No

Manually annotated training data Yes Large quantity

Need to know all data variety Yes No

Small modifications Easy Difficult

Generalizability Limited Good

Common method examples Regular expressions,
dictionaries, rules

Support vector machines,
conditional random fields,
decision trees, Naïve Bayes

Types of PHI commonly detected Dates, ages, phone
numbers

Addresses, names

learning and relies on pattern matching, rules, and dictionaries. These resources
are usually manually crafted by experienced domain experts, at high costs, and with
limited generalizability.

Advantages of the rule-based and pattern matching de-identification methods are
that they require little or no annotated training data, and that they can be easily
modified to improve performance by adding rules, dictionary terms, or regular
expressions. Pattern matching is often implemented with regular expressions (up
to 50 or more for several systems) [23].

Dictionaries include terms typically considered PHI: proper names, locations,
healthcare institution names, and sometimes even actual names of patients or
healthcare providers in the institution the system was developed in [21, 24, 41].
These dictionaries are built from multiple sources such as the U.S. Social Security
Death Index, spell-checking lexicons that include proper names (e.g., Ispell), or lists
of geographical entities. For disambiguation, some systems also include dictionaries
of terms that are in general not considered PHI (e.g., general English terms,
biomedical terms, etc.).

Disadvantages of the rule-based and pattern matching methods are the aforemen-
tioned requirement for manually crafted multiple and complex algorithms to account
for the different categories of PHI, and the requirement for developers to be aware
of all possible PHI patterns that could occur (e.g., unexpected date formats, non-
standard abbreviations). Rule-based and pattern matching methods also may not
generalize to different datasets (i.e., data from a different institution or a different
type of medical reports) and require manual customization.

Good examples of applications using mostly rule-based and pattern matching
methods include HMS Scrubber, an application developed by Beckwith et al. for
pathology reports in the Shared Pathology Informatics Network (SPIN) [5]. It uses
50 regular expressions to detect PHI and replace it with tags indicating its category.
Another good example is the “deid” software package developed by Neamatullah et
al. for Physionet [41]. It uses lexical look-up tables, regular expressions, and rules
to detect PHI and also replace it with tags indicating its category. A last example
is “De-ID,” an application developed at the University of Pittsburgh, evaluated
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by Gupta [28], and commercialized by De-Id Data Corp. It uses rules, pattern
matching algorithms, and dictionaries to identify PHI. These dictionaries include
patient demographic information extracted from report headers. Detected PHI is
then replaced with tags indicating its category.

Among recent text de-identification applications, the majority tends to be mostly
based on supervised machine learning algorithms such as Support Vector Machines
[47], Conditional Random Fields [32], Decision Trees [44], or Maximum Entropy
[46]. These algorithms require a large collection of annotated text for training,
a resource that also requires significant work by domain experts, although text
annotation is often considered to be easier than knowledge engineering. Annotated
collections of text can also be shared as organized during the i2b2 de-identification
challenge [55]. Most systems based on machine learning also add some pattern
matching to detect PHI that tends to be regular such as telephone numbers or
social security numbers. For example, the MITRE Identification Scrubber Toolkit
(presented in more details below [1]) uses regular expressions to capture telephone
numbers, ZIP codes, dates, and other numeric identifiers, and then uses them as
features for their conditional random fields algorithm. Another example is the
system developed by Szarvas and colleagues [50] that uses regular expressions to
capture age mentions, telephone numbers, dates, and other numeric identifiers, to
then uses them with their decision tree algorithm. As shown in these examples,
pattern matching is typically applied to extract features used by the machine learning
algorithms.

The variety of features used with machine learning algorithms includes lexical,
syntactic, semantic, document-level, and collection-level features. Lexical features
(word-level features) describe the word case, punctuation, special characters,
numerical characters, and the morphology of the word (e.g., “Aa” to indicate words
starting with a capital letter). They are by far the most common type of features used
for de-identification, and are also described as the most useful for the classification
task. Syntactic features almost always include the part-of-speech of the words (e.g.,
“NN” to indicate a noun). Semantic features refer to the semantic classification
of word or phrases and include terms from dictionaries, and semantic types (e.g.,
“C0004096” to indicate “Asthma” in the UMLS Metathesaurus). Document-level
features are less common and include section headers or frequency of terms in the
document (e.g., “FamHx” to indicate that the term was found in a “Family History”
section). Collection-level features are rarely used and include word frequencies,
mostly for disambiguation.

Advantages of machine learning de-identification methods include their ability
to automatically learn to recognize complex PHI patterns, with developers of the
system only requiring little knowledge of PHI patterns. When adapted to new
document types or domains, machine learning-based de-identification systems tend
to increase less in complexity and see their processing speed slow down less than
pattern matching-based systems.

Their main disadvantage is the already mentioned need for large amounts of
annotated training data (for supervised learning [29]). Although machine learning-
based de-identification systems are typically more generalizable than pattern



704 S.M. Meystre

matching-based systems, some additional annotated training is often required when
applied to a new domain. Another disadvantage of machine learning is that it is
sometimes difficult to know the reasoning and resources used when the application
erroneously detects or misses PHI. This “black box” problem is reduced when using
algorithms like decision trees or rule learners.

Good examples of applications using mainly machine learning methods include
the Health Information DE-identification (HIDE) system developed by Gardner
et al. [25]. It uses Conditional Random Fields in an iterative classifying and
retagging process during development of the system and was focused on pathology
reports. Another good example is the MITRE Identification Scrubber Toolkit
(MIST) developed by Aberdeen et al. [1]. MIST is based on a tool implementing
Conditional Random Fields for text processing—Carafe [46]—and is described in
more details below. Finally, “BoB”, a Best-of-Breed clinical text de-identification
system for the VHA is also a good example. It was developed by Ferrandez, et al.
[20] and combines machine learning with pattern matching and rules in a stepwise
approach explained in more details below.

In general, methods based on dictionaries perform better with PHI that is rarely
mentioned in clinical text, but are more difficult to generalize [19]. Methods based
on machine learning tend to perform better overall, especially with PHI that is
not mentioned in the dictionaries used [19]. In the i2b2 de-identification challenge
[55, 56], systems based on machine learning with regular expression template
features for all PHI categories performed best. They were followed by systems
combining rules for some PHI categories with learning for others, then by systems
purely based on machine learning without regular expression template features or
rules, and finally by purely rule-based systems [55].

For a more detailed analysis of methods used for text de-identification, please
refer to publications by Meystre and colleagues [34] and by Kushida [31], with
applications to unstructured data other than text like images and biosamples.

26.4 Clinical Text De-identification Application Examples

Three examples of text de-identification applications are presented here, selected
for their originality, performance, or availability: Physionet’s deid [41], MITRE’s
MIST [1], and the VHA best-of-breed (BoB) clinical text de-identification system
[20]. This presentation includes details of the resources and methods used, as well
as performance evaluations.

26.4.1 Physionet Deid

Physionet deid was developed and evaluated with a large collection of clinical notes
from the MIMIC II database, a large database of cardio-vascular and related signals



26 De-identification of Unstructured Clinical Data for Patient Privacy Protection 705

and accompanying clinical data from intensive care units in the United States. The
deid application is based on lexical look-up tables, regular expressions, and simple
rules to identify PHI in medical text documents. It is developed in Perl and uses
four types of look-up dictionaries: names of patients and hospital staff (obtained
from the MIMIC II database), PHI names and locations which are also medical
or common words (i.e., words that are in the UMLS Metathesaurus or a spell-
checking dictionary, keywords and phrases that likely act as indicators for PHI
(“Mr.”, “Dr.”, “hospital”, “Street”, etc.), and common words and phrases likely
to be non-PHI (obtained from the UMLS Metathesaurus and the spell-checking
dictionary). Numerical PHI patterns (e.g., phone numbers) are identified with
regular expressions, and non-numerical PHI (e.g., patient names) is identified with a
combination of dictionaries, a context detection algorithm, and regular expressions.

The Deid system was evaluated with 2434 clinical notes from 163 patients
randomly selected from the MIMIC II database [41]. The notes contained 1779

instances of PHI as identified by the reference standard of three clinician reviewers
and a fourth to adjudicate disagreements. The system missed 59 instances of PHI,
with an estimated sensitivity of 96.7 % (average of all PHI types). Missed PHI
was mostly dates and location information. The system did commit numerous false
positive errors resulting in a positive predictive value of only 75 % (average of all
PHI types). However, it was noted that the readability and information content of the
de-identified notes was not compromised despite the low positive predictive value.

Deid is available with an open source license (GNU Public License version
2), and several authors adapted it to their own needs. Grouin et al. combined it
with resources inspired from MeDS [24] to de-identify French clinical text [27].
This Deid adaptation then inspired development of a new system, Medina, also
using regular expressions and dictionaries. The latter were adapted to French. When
evaluated with 23 randomly selected notes from a corpus of 21; 749 clinical notes,
these systems reached good accuracy (91 % sensitivity, 100 % positive predictive
value) with de-identification and removal of patient name and birth date, and with
Medina (83 %, 92 %), and lower accuracy with the French adaptation of Deid (65 %,
23 %). Morrison combined it with MedLEE to improve de-identification accuracy
[38]. Adding MedLEE after Deid allowed missing only 2.1 % of PHI instead of 24 %
when using Deid alone. Vellupilai and Dalianis adapted Deid to Swedish clinical
text [57]. Deid-Swe was adapted to detect the Swedish phone number and social
security number formats, and lists of Swedish terms were added. When evaluated
with a corpus of 100 clinical notes, it reached an F1-measure of 80 % for names,
but produced many false positives for other categories of PHI; its positive predictive
value was only 3–9 % and the sensitivity was 56–76 %.

26.4.2 MIST (MITRE Identification Scrubber Toolkit)

MIST, the MITRE Identification Scrubber Toolkit, was developed as a complete
system for rapid customization to new clinical text domains. It includes a web-based
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Fig. 26.3 Workflow supported by MIST and its components

graphical user interface for PHI annotation in clinical text. Other components are a
training module, a tagging module, a re-synthesis module, and an experiment engine
(see Fig. 26.3). The training module is based on Conditional Random Fields (Carafe
implementation) [59] and uses PHI annotations to learn models for each type of
PHI. The tagging module uses the trained models to detect PHI in the text. The
resynthesis module then replaces the detected PHI with realistic surrogates. Finally,
the experiment engine allows iterative training-testing cycles to adapt the system to
a new clinical text domain. MIST is described in details in [1].

When trained and tested with 1200 clinical notes of various types from the
Vanderbilt University Medical Center, MIST reached an overall sensitivity of 97.8 %
and positive predictive value of 94.3 % [1].

MIST is available with open source licenses. It was used in the U.K. by
Fernandes, Callard, and colleagues to partly de-identify mental health clinical notes.
When trained with 50 clinical notes to de-identify first and last names only, and
evaluated with 20 clinical notes, 78.1 % sensitivity and 95.1 % positive predictive
value were measured. The authors compared it with a simple dictionary-based
system that matched existing structured PHI found in the EHR, a system that
reached 88.5 % sensitivity and 100 % positive predictive value [17].

26.4.3 VHA Best-of-Breed Clinical Text De-identification
System

The VHA best-of-breed clinical text de-identification system (BoB) was developed
and evaluated in the study described in the next section. As indicated in its
name, BoB combines best-of-breed methods and resources for each type of PHI.
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Fig. 26.4 The VHA BoB components and text processing pipeline

Knowledge of the methods and resources performing the best was based on a large
literature and technology review [34], and evaluations of several existing text de-
identification applications on various clinical text corpora (more details in the last
section) [18, 19]. These evaluations demonstrated that no existing system reached
sufficient accuracy when de-identifying VHA clinical text, even when trained with
such clinical text. These findings motivated the development and evaluation of a
new system for VHA clinical text de-identification, a system combining methods
and resources allowing for the best detection accuracy with each type of PHI.

High sensitivity and high positive predictive value are often not compatible when
detecting or extracting information from text. A highly sensitive system typically
has lower positive predictive value (i.e., produces more false positives), and a
highly precise system usually has lower sensitivity (i.e., more false negatives). Text
de-identification requires very high sensitivity, but too many false positives could
damage the non-PHI information in clinical notes. To try and combine very high
sensitivity with high positive value, we developed a “hybrid stepwise” approach
for BoB. After pre-processing of the clinical text, this approach consists in starting
with a component focused only on high sensitivity, even if producing numerous
false positives, and then continuing with a filtering component that filters out false
positives (please see Fig. 26.4).

Pre-processing includes segmentation of the text in sentences, then followed by
tokenization, part-of-speech tagging, noun phrase chunking, and term normaliza-
tion. These functionalities were adapted from OpenNLP [43], with trained models
and the implementation of LVG found in Apache cTAKES [2].

The high sensitivity extraction component combines various methods to detect
all possible PHI in clinical text. A collection of about 130 regular expressions were
adapted from two existing de-identification systems [24, 41], and enriched with new
expressions to cover different PHI formats found in VHA documents (e.g., date-time
formats such as “09/09/09@1200”). Dictionaries were used with Apache Lucene
[3], implementing exact and fuzzy searches on dictionaries of first and last names
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(from the 1990 U.S. census), U.S. states, cities, and counties, countries, companies
(from Wikipedia, usps.com, and other web resources), common words (from
Neamatullah et al. [41]), clinical eponyms, and healthcare clinic names extracted
from VHA clinical notes. A machine learning module based on Conditional Random
Fields (CRF, from the Stanford NLP group [22]) follows, aiming at detecting PHI
missed by pattern matching and not found in dictionaries. This module includes
classifiers for person names, addresses, healthcare and other organizations, and
dates.

The “candidate PHI” produced by the high sensitivity extraction component is
then passed to the false positives filtering component. The latter is composed of
various Support Vector Machine (SVM, from LIBSVM [11]) classifiers. These
classifiers included a multi-class SVM and four binary SVMs, all trained with
the “candidate PHI” annotations from the high-sensitivity extraction component
and focused on categories of PHI with more false positives: person names,
numerical identifiers (e.g., dates, phone numbers, other ID numbers), and clinical
eponyms. Clinical eponyms (i.e., clinical information that bears person names
like Alzheimer’s disease or Achilles tendon) are not PHI, but could easily be
misclassified as person names and deserve specific disambiguation.

The main evaluation of BoB was based on a corpus of 800 VHA clinical notes
annotated for PHI by experts, and split in sub-corpora of 500 notes for training, and
300 notes for testing. Measured accuracy reached an average sensitivity of 92.6 %
(98–100 % for person names, social security numbers, e-mail addresses, and ZIP
codes), and 84.1 % positive predictive value [20].

26.5 Why Not Anonymize Clinical Text?

As defined above, de-identification means removing or replacing personal identifiers
to make it difficult to reestablish a link between the individual and his or her data,
but it doesn’t make this link impossible. Scrubbing and sanitization are sometimes
used as synonyms for de-identification. In contrast, anonymization corresponds to
the irreversible removal of the link between an individual and his or her data.
Anonymization is sometimes used interchangeably with de-identification, but the
former renders identification of the individual impossible, when the latter only
makes this identification more difficult.

Even if perfectly de-identified, clinical narrative text is still rich in clinical
information (as it should be). This information includes the patient family and social
history and specific clinical information that can be unique and make identification
of the patient a possibility. This risk is potentially significant. When including only
the patient age in years, the gender, the first three digits of the ZIP (postal) code,
the time in days since the last visit, and the length of stay at the hospital, 18.5 %
of the approximately 1.5 million patient records in the New York state inpatient
database for 2007 were unique [12]. At another extreme, a study based on voter
registration information (i.e., date of birth, year of birth, race, gender, and county

usps.com


26 De-identification of Unstructured Clinical Data for Patient Privacy Protection 709

of residence) estimated the re-identification risk to be between 0 % and 0.25 % in
specific U.S. states, with wide variations depending on the information available [6].
Uniqueness has been one of the methods used to estimate the risk for structured and
coded data (e.g., diagnostic codes, demographic information) re-identification, for
linking a patient identity with his or her de-identified structured and coded data. It
indicates the maximal theoretical risk, but this risk is mitigated by access difficulties
to other data sets that include this clinical information along with the patient identity.
Methods used to assess the risk for re-identification were applied to a small number
of structured and coded data only, not to narrative text [15]. Considering the richness
and variability of unique information that can be found in de-identified clinical
notes, applying the same methods would require tremendous computing power, if
not reveal intractable.

A realistic estimation of the risk for re-identification of automatically de-
identified clinical notes has been realized in a U.S. Veterans Affairs clinical text
de-identification project described in the next section [36]. It measured a very low
risk for re-identification.

The anonymization of clinical text would require the removal or transformation
of a large part of the patient clinical and social information, to ensure the absence
of unique patient records in a given patient population. Only limited research has
been realized in this field. The ERASE text sanitization system features a K-safety
approach, modeling a document as a set of terms, and applying various algorithms to
detect and then remove protected terms. An evaluation based on randomly-generated
“documents” of 100 terms assessed the impact of various factors on processing time
and proportion of terms retained, but no evaluation on realistic text documents was
realized [10].

Another approach, t-plausibility, proposes heuristic algorithms to replace pro-
tected information found in text documents with more general information (e.g.,
“Denver” replaced with “state capital”, “marijuana” replaced with “drug”) instead
of removing or hiding it. In the experimental evaluation, the authors used only 50
randomly selected words to assess the effect of their algorithms on processing time
and similarity of sanitized words sets [30].

In general, if applying these approaches to reach anonymity, the removal or
transformation of information would cause an important loss in clinical infor-
mation, making the anonymized text almost or completely unusable for any
subsequent usage, such as clinical research. Considering the very limited risk for re-
identification of de-identified clinical text, anonymizing it would only offer limited
interest and cause serious damage.

26.6 U.S. Veterans Health Administration Clinical Text
De-identification Efforts

The U.S. Veterans Healthcare Administration (VHA) Consortium for Healthcare
Informatics Research (CHIR) is a multi-disciplinary group of collaborating inves-
tigators affiliated with VHA sites across the U.S. In the context of the CHIR,
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a de-identification project focused on investigating the current state of the art of
automatic clinical text de-identification [19, 34], on developing a best-of-breed de-
identification application for VHA clinical documents (presented above [20]) and
on evaluating its impact on subsequent text analysis tasks [35] and the risk for re-
identification of this de-identified text.

The state of the art of automatic clinical text de-identification investigation
included an extensive literature review, analysis of available software systems
architecture, and testing of these systems. The literature and technology search
returned more than 200 scientific publications, but only 18 studies described
automatic text de-identification and were included in our study. We observed that
many existing systems focused on only a selection of PHI types defined in the
HIPAA Safe Harbor standard, and most systems used only one, or few, clinical
note types. Methods that performed well included machine learning approaches
based on CRF, Decision Trees, Maximum Entropy models, or SVM, combined
with dictionaries and sometimes regular expressions. This study produced rich
information about the methods and resources allowing for best accuracy with each
type of PHI. It also allowed selecting existing and available text de-identification
applications for testing and comparative evaluation.

Three systems, mostly based on pattern matching and dictionaries (HMS scrub-
ber [5], the Medical De-identification System (MeDS) [24], and the MIT deid
software package [41]), and two machine learning-based systems (MITRE Identifi-
cation Scrubber Toolkit (MIST) [1], and the Health Information DE-identification
(HIDE) [25]) were installed locally and tested with the 2006 i2b2 de-identification
challenge corpus [55], and a corpus of various VHA clinical documents [19].
When evaluated “out-of-the-box” with the VHA corpus, the pattern matching and
dictionary-based systems only allowed for low accuracy, even if considering “fully-
contained” partial matches (i.e., PHI found by the system at least overlapped with
the en-tire PHI annotation in the reference standard). The sensitivity (see Fig. 26.5)
of these systems averaged across all PHI types was measured between 0 % and
34 %, and the positive predictive value (see Fig. 26.5) between 0 % and 40 % only,
but accuracy (see Fig. 26.5) was excellent with some PHI types like social security
numbers and ZIP codes. Also, when considering partial matches, person names and
other “textual” PHI were well de-identified by some rule-based systems (MeDS
and the MIT deid system). The two machine learning-based systems were evaluated
using a ten-fold cross-validation experiment, and obtained better positive predictive
value in general. Their sensitivity varied between 0 % (for ages above 89) and 100 %
(for ZIP codes), and increased when using dictionaries (Table 26.2). BoB reached
the highest sensitivity in almost all categories (MIST had the highest sensitivity with
healthcare unit names), demonstrating the need for capturing PHI features specific
to VHA clinical text.

When comparing different configurations and uses of dictionaries at the PHI level
(i.e., PHI or non-PHI, without considering the accuracy for each PHI type separately
like in Table 26.1), BoB reached the highest sensitivity.
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Fig. 26.5 Typical metrics for de-identification applications

Table 26.2 Sensitivity of machine learning-based text de-identification applications (partly
reproduced from [19]

PHI categories MIST 1 HIDE 1 MIST 2 HIDE 2 MIST 3 BoB

Patient name 0.835 0.776 0.862 0.855 0.850 0.980

Relative name 0.440 0.360 0.520 0.840 0.440 0.920

Healthcare provider name 0.858 0.845 0.900 0.886 0.862 0.943

Other person name 0.333 0.555 0.555 0.555 0.555 0.888

Street or city 0.796 0.732 0.809 0.841 0.777 0.943

State or country 0.804 0.750 0.817 0.838 0.797 0.878

Deployment 0.868 0.811 0.849 0.773 0.773 0.887

ZIP code 1 1 1 0.800 1 1

Healthcare unit name 0.792 0.733 0.827 0.741 0.786 0.811

Other organization name 0.582 0.516 0.604 0.450 0.527 0.725

Date 0.960 0.940 0.963 0.934 0.956 0.971

Age above 89 0.250 0 0.250 0 0 1

Phone number 0.912 0.846 0.934 0.846 0.901 0.956

Electronic address 0.500 0.500 0 0.500 0 1

SSN 0.963 0.963 0.963 0.963 0.963 1

Other ID number 0.906 0.851 0.894 0.845 0.912 0.917

Overall (macro-avg) sensitivity 0.737 0.699 0.734 0.729 0.694 0.926

No dictionary: MIST 1 and HIDE 1; selection of dictionaries: MIST 2 and HIDE 2; all
dictionaries: MIST 3 and BoB (not possible with HIDE)

HIDE (without dictionaries) reached the highest positive predictive value
(Table 26.3). When giving more weight to sensitivity than to positive predictive
value, BoB reached the highest F2-measure (0:904) (see Fig. 26.5).

To evaluate the generalizability of these machine learning-based systems, we
trained them with the 2006 i2b2 de-identification challenge corpus, and tested them
with the VHA clinical notes corpus [18]. This study demonstrated the limited
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Table 26.3 Overall (micro-averaged) performance at the PHI level (partly reproduced
from [19])

MIST 1 HIDE 1 MIST 2 HIDE 2 MIST 3 BoB

Positive predictive value 0.926 0.936 0.715 0.933 0.700 0.836

Sensitivity 0.888 0.853 0.904 0.863 0.883 0.922

F1-measure 0.907 0.893 0.799 0.897 0.781 0.877

F2-measure 0.895 0.869 0.858 0.877 0.839 0.904

No dictionary: MIST 1 and HIDE 1; selection of dictionaries: MIST 2 and HIDE 2; all
dictionaries: MIST 3 and BoB (not possible with HIDE)

Table 26.4 Sensitivity of
de-identification applications
when generalized to a
different type of clinical notes

i2b2 PHI categories MIST HIDE BoB

Patient 0.584 0.437 0.604

Doctor 0.549 0.392 0.600

Location 0.428 0.344 0.639

Hospital 0.645 0.487 0.839

Date 0.869 0.869 0.988

Age above 89 0 0 0

Phone number 0.948 0.810 0.845

ID 0.854 0.348 0.795

Overall macro-average sensitivity 0.610 0.461 0.664

generalizability of these text de-identification systems, even if some PHI types
allowed for good accuracy (mostly numeric identifiers and dates; see Table 26.4).

When evaluating BoB, the problem of false positive errors altering clinical
information became evident and motivated a study of the impact of de-identification
on the informativeness and clinical information content of de-identified clinical
notes [35]. After de-identification, most key clinical data and the overall meaning
and understanding of documents were retained, even if one system removed all
line spacing, paragraph breaks and indentation from the report, making it more
difficult for the human reader to interpret and understand. To examine the impact
on clinical information, counts of SNOMED-CT [42] concepts found by an open
source information extraction application before and after de-identification of a
corpus of VHA clinical notes were compared. The impact of de-identification
was very limited, with only about 1.18–3.04 % less SNOMED-CT concepts found
in de-identified versions of the VHA corpus. Many of these concepts were PHI
erroneously identified as clinical information.

To study this impact in more details, we examined the overlap between problems,
tests, and treatments annotated in the 2010 i2b2 NLP challenge corpus [56],
and automatic PHI annotations from BoB. Overall, only 0.81 % of the clinical
information exactly overlapped with PHI, and 1.78 % partly overlapped. Automated
text de-identification’s impact on clinical information is therefore small, but not
negligible, and improved clinical acronyms and eponyms disambiguation could
significantly reduce this impact.
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Assessing the risk for de-identified text re-identification (i.e., establishing the
identity of the patient discussed in the text) prove to be a difficult undertaking.
Methods used to assess the risk for re-identification of de-identified data were
applied to a small number of structured and coded data only (e.g., demographics,
location) [6, 15], not to narrative text, and clinical documents are rich in clinical and
social information that can be unique and could be used to re-identify a patient. Most
automatic clinical text de-identification systems evaluated in the aforementioned
studies allowed for a sensitivity of 88–99 % when detecting PHI [19, 34]. This
means that some PHI is missed by these systems. Even if this is rare, would
researchers using the de-identified clinical documents, or even healthcare providers
who took care of the patients mentioned in the documents, recognize these patients
when examining the documents?

To answer this question, a collection of 86 discharge summaries from patients
hospitalized at the Salt Lake City VHA Medical Center acute medicine department
(internal medicine and medical intensive care unit) between 1 and 3 months before
the beginning of our study were automatically de-identified with PHI “resynthesis”.
Physicians working in this department (five attending physicians, two chief medical
residents, one subspecialty fellow, 11 medical residents) were then asked to read
these de-identified notes and try identifying the patients described in the notes.
Each note was examined by two physicians independently. Three physicians thought
they had recognized a patient, citing reasons like specific procedures, diagnoses,
signs, or imaging results. They often couldn’t give any identifying information (e.g.,
patient name), and when they could, the information was compared with the correct
patient identity. In the end, no “recognized” identity was correct and therefore no
de-identified discharge summary could be re-identified.

As a conclusion, text de-identification methods and resources customized for
VHA clinical text allowed for high accuracy detection and removal or transforma-
tion of PHI, with very limited impact on clinical notes readability, interpretability,
and information content. The remaining clinical and social information, as well as
PHI that could have been missed, didn’t allow re-identifying any automatically de-
identified discharge summaries, even when examined by the people most likely
to recognize the patients described in these notes: physicians who worked in the
hospital unit the patients were hospitalized in.

26.7 Conclusion

This chapter offered an overview of clinical text de-identification, from its definition
and history, to methods used and examples of de-identification systems. Advantages
and issues with pattern matching and rule-based methods versus machine learning-
based approaches were discussed, and the clinical text de-identification studies
realized at the U.S. Veterans Health Administration were explained in details.

For future efforts, limitations of text de-identification such as generalizability dif-
ficulties and lower accuracy with specific types of PHI (e.g., healthcare organization
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names) offer opportunities for further research. The recognition of the theoretical
risk for re-identification caused by remaining unique clinical information is a reason
often cited for refusing re-lease of de-identified data, even if early evidence indicates
that this risk is very low, if not absent. Stronger evidence in this field would support
increased de-identified clinical data sharing and availability, allowing for enhanced
research based on this invaluable resource
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Chapter 27
Challenges in Synthesizing Surrogate PHI
in Narrative EMRs

Amber Stubbs, Özlem Uzuner, Christopher Kotfila, Ira Goldstein,
and Peter Szolovits

Abstract Preparing narrative medical records for use outside of their originating
institutions requires that protected health information (PHI) be removed from the
records. If researchers intend to use these records for natural language processing,
then preparing the medical documents requires two steps: (1) identifying the PHI
and (2) replacing the PHI with realistic surrogates. In this chapter we discuss
the challenges associated with generating these realistic surrogates and describe
the algorithms we used to prepare the 2014 i2b2/UTHealth shared task corpus
for distribution and use in a natural language processing task focused on de-
identification.

27.1 Introduction

Before researchers can use electronic medical records (EMRs) outside of the
institution that generated the records, it is critical they remove all protected health
information (PHI) from the documents. In the United States, the Health Insurance
Portability and Accountability Act (HIPAA) [12] provides “safe harbor” guidelines
which define what information is considered PHI. The list of PHI includes infor-
mation such as patient names, ID numbers, phone numbers, email addresses, and
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Admission Date :
06/07/99

Discharge Date :
06/13/1999

HISTORY OF PRESENT ILLNESS :

Mr. John Smithis a 60 year old male was
last admitted in early January to
Massachusetts General with chest pain.
He was attended by Dr. Burke, then later
treated by Dr. Amy Pagan and Luke Strauss,
RN.

Smith is a bartender who primarily works at
Publick House, but sometimes works week-
days at Cheers.

Admission Date :
06/10/72

Discharge Date :
06/16/2072

HISTORY OF PRESENT ILLNESS :

Mr. Thomas Bensonis a 60 year old male was
last admitted in early January to
Orlando Regional with chest pain.
He was attended by Dr. Newcomb, then later
treated by Dr. Yuridia Joy and Milo Brock,
RN.

Benson  is a  Food Service Manager who
primarily works at Ideal Industries, but some-
times works weekdays at JITB.

Fig. 27.1 A fabricated sample medical record before and after surrogate generation

so on. We refer to the process of removing PHI from EMRs as “de-identification”.
Researchers tasked with de-identifying EMRs face two challenges: (1) Identifying
all the PHI in a medical record, and (2) replacing the PHI with some type of
placeholder or surrogate.

In charts and other structured medical data, it may be sufficient to replace
a patient’s name with a generic placeholder such as “[**PATIENT NAME
12345**]”. However, in data that is intended to be read naturally, such as hospital
discharge summaries and correspondence between doctors, it is important that
the de-identification process maintains the discourse structure and readability of
the original text. This readability is important both for humans who may want to
make use of the text, but also for natural language processing systems that may use
the text for training.

We refer to replacing identified PHI with natural-sounding replacement data as
“surrogate generation”, though it is sometimes referred to as “re-identification”1

[23]. We maintain that the surrogate generation process should be implemented in
such a way that the replacement data retain the same forms as the original and, as
much as possible, the same internal temporal and co-reference relationships.

Figure 27.1 shows a sample record that has gone through the surrogate generation
process. The left side shows the “original” text (a medical record fabricated for this
chapter); the right side shows the processed record.

In this chapter we focus on the task of surrogate generation by discussing related
work (Sect. 27.2), the HIPAA definitions of PHI and whether they are sufficient for

1Somewhat confusingly, “re-identification” is also sometimes used to refer to determining a
person’s true identity from de-identified data [7], so we avoid that term for the remainder of this
chapter.
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true de-identification (Sect. 27.3), the data used for this case study (Sect. 27.4), and
the difficulties associated with generating realistic surrogate PHI in clinical data and
the approaches we took in generating surrogate PHI for the 2014 i2b22/UTHealth3

natural language processing (NLP) shared tasks (Sect. 27.5) [25, 30]. Finally, we
discuss potential errors introduced by the surrogate generation process (Sect. 27.6)
and the relationship between de-identification and surrogate generation (Sect. 27.7).

27.2 Related Work

Studies have shown that the majority of the U.S. population can be identified using
only their gender, date of birth, and ZIP code [10, 28]. Another recent study found
similar results for Canadian residents using records of people’s addresses over an
11 year period [7]. If a patient’s true identity were to be reconstructed from poorly
de-identified medical records, that breach of trust could potentially endanger future
research that relies on sharing de-identified medical records.

In order to test the efficacy of the 18 HIPAA categories for protecting patient
identities, Lafky et al. [17] performed a study to determine how easily de-identified
records could be linked back to the patient’s true identity. They obtained (with IRB
approval) a set of approximately 15,000 de-identified patient records. These patients
were all from a minority ethnic group, which the researchers thought would make
the identification process easier. They then obtained a list of individuals from a
commercial data repository; the list was matched to the ethnic group and geographic
area (the specifics of the information in this list were not discussed). They identified
unique patient records, and then matched them against the commercial data. Once
they thought a match was found, another team verified their guess against the
original records. In the end, only two patients of the 15,000 were correctly identified.
Lafky’s research demonstrates that eliminating or pseudonymizing the 18 HIPAA
categories of PHI makes the chance of determining patients’ true identities very
low, although not entirely impossible.

In a more recent study, Meystre et al. [22] explored whether doctors could
recognize their own patient’s de-identified notes. The authors used their own
automated system to remove PHI from recent clinical notes (1–3 months old), then
asked physicians to try to identify their patients. None of the doctors correctly
identified their patients.

These studies show that good recognition of PHI is critical for patient protection,
and indeed, much of the research in the area of EMR de-identification is in building
systems that locate and categorize PHI in EMRs. As Li et al. [19] recently noted,
Conditional Random Field algorithms (CRFs) [16] are a prominent approach to
finding PHI and similar tasks, such as named entity recognition. Gardner and Xiong

2Informatics for Integrating Biology and the Bedside.
3University of Texas Health Science Center at Houston.
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[8] report similar findings, and this observation was reinforced during the 2014
i2b2/UTHealth NLP shared task. This task featured a track on de-identifying clinical
narratives [25, 30], and of the top ten systems, five of them used CRFs to identify
PHI [24].

However, a CRF trained on gold-standard PHI data is not necessarily enough
for complete de-identification, as the results from the 2014 i2b2/UTHealth shared
task show [24], and researchers have been looking at other methods to improve
automated systems. Interesting recent approaches include augmenting models with
data from public medical texts [20] and clustering clinical narratives by complexity
prior to de-identification [19].

While PHI identification is a critical component of the surrogate generation
process, the focus of this chapter remains on surrogate generation itself. We refer
readers interested in de-identification systems to two recent review articles on the
subject: Kushida et al. [15] and Meystre et al. [21], as well as Chap. 26 in this
volume.

For the remainder of this chapter we focus our attention on surrogate generation
systems and procedures that researchers have used to de-identify authentic narrative
EMRs to make the records available for researchers outside their home institutions.
As we noted earlier, some datasets make use of generic placeholders or other
forms of obfuscation when removing PHI [1, 2, 8, 11, 13]. This chapter focuses on
surrogate generation techniques that preserve the readability of the natural language
found in the original documents, so the remainder of this section predominantly
examines surrogate generation systems in that paradigm, and the methods they used.

One of the first surrogate generation systems was Scrub [27], a system that
matched the format of the replacement text to the original text. For dates, Scrub
would group the detected dates to a point such as the first of the closest month. For
names, Scrub used a look-up table, so that the same name in the original file would
always be replaced with the same surrogate.

In creating the MIMIC II Clinical database, which is part of PhysioNet [9],
Clifford et al. [3] used a two-step approach. First, they used the system created
by Neamatullah et al. [23] to identify the PHI. Next, Neamatullah et al. describe
generating realistic surrogate PHI to test their de-identification system, but the final
version of the full MIMIC II corpus “scrubbed” the PHI by replacing the identified
PHI with placeholders in the format “[** (data) **]”. “(data)” represents either a
date-shifted piece of temporal information, or a marker to indicate what type of PHI
it replaced, such as “First name 213” or “Hospital 57”. Each set of patient records
(both narrative and tabular) has its own randomly-assigned date shift.

Douglass et al. [6] annotated PHI by hand and replaced them with realistic
surrogates in a set of 2646 nursing notes from MIMIC II. The authors state that
they shifted dates by a random number of weeks and years, while preserving days
of the week. They generated names by mixing and matching from a list of Boston
residents, and replaced locations with randomly selected small towns or, in the case
of hospitals and wards, with information about a fictitious hospital. They maintained
co-reference by making sure repeated mentions of the same authentic PHI were
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replaced by the same surrogate PHI. At the end of surrogate generation, a human
reviewed the suggested surrogates and had the option to modify the surrogate PHI
to ensure that it was reasonable.

Uzuner et al. [29] used an earlier version of the realistic surrogate generation
methodology we describe in this chapter, and one similar to that used by Douglass
et al. [5]. Specifically, for strings such as ID numbers and phone numbers, they
replaced the existing digits and letters with randomly-generated ones. For dates
they retained the relations between times by offsetting all dates in a record by
the same number of days, and ensured that the surrogate dates were properly
formatted. For names of people and places, they randomly generated names by
selecting syllables from existing names and mixing them together. Finally, to
deliberately introduce ambiguity into their surrogates, they replaced some of the
randomly-generated person names with medical terms, such as disease names and
interventions. We modified the system used by Uzuner et al. [29] to create the system
described in this chapter.

Deleger et al. [4] also used realistic surrogates. They generated surrogate names
by randomly selecting male, female, unisex, and surnames from lists compiled from
the US Census Bureau. They obfuscated phone numbers, ID numbers, and email
addresses by randomly selecting new digits or letters as needed. Deleger et al.
took a somewhat different approach to generating dates and locations than the other
surrogate generation projects we have discussed so far. Rather than date-shifting by
some amount of time or randomly selecting locations from a pre-existing list, they
used the PHI in the corpus itself to compile lists of the different types of locations
(streets, cities, etc) and different date formats (“November 2, 2013”, “4/27/03”).
Then, they shuffled dates and parts of locations between documents in the corpus.

Removing all PHI from a record and replacing it with surrogate information
protects patient privacy, but surrogate PHI is not always perfect. Yeniterzi et al., [31]
recently compared the performances of a machine learning-based de-identification
tool when trained and tested on different combinations of surrogate and authentic
(the authors refer to it as “original”) PHI. They found that when they trained the
system on surrogate (“resynthesized”) PHI, the system did not perform as well on
authentic PHI because of the regularization imparted by the surrogate generation
process.

In fact, the resynthesized-to-authentic model had the lowest performance of
the four comparisons they performed, with f-measures ranging from 0.47 to 0.81.
Authentic-to-authentic and resynthesized-to-resynthesized both did well (0.93–1.00
and 0.96–0.99, respectively), with the third-best performance on authentic-to-
resynthesized (0.78–0.89). The fact that the systems performed best when trained
on similar data suggests that, in order to provide the best out-of-the-box de-
identification on authentic records, de-id systems must either be trained on authentic
data (which is rarely possible) or that the resynthesized data must mimic natural
language as closely as possible.

Using realistic surrogates maintains the discourse structure of the documents
and helps train machine learning systems for de-identification of authentic PHI.
However, most papers that discuss systems that generate surrogate PHI dedicate
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only a paragraph or two to the surrogate generation process. In this chapter, we
present a solution that generates realistic surrogate PHI while maintaining both
coreference chains and temporal continuity within the narrative, and benefits from
human oversight for best results. The remainder of this chapter discusses our
surrogate generation method in detail, including the algorithms we used for certain
types of PHI, the difficulties posed by the narrative texts, and the need for human
intervention in the surrogate generation process. We hope that by creating better
surrogate PHI for publicly-available data sets that we can improve the performance
of de-identification systems designed on these data even on authentic medical
records.

27.3 PHI Categories

HIPAA defines 18 categories of PHI of “the [patients] or of relatives, employers, or
household members of the [patients],” that must be removed from medical records.4

These categories are described in Table 27.1.
As written, categories 1–17 do not include the names of doctors or other

medical personnel, names or locations of hospitals or medical facilities, or any other
information that identifies a person who is not a patient or directly related to the
patient.

However, in our experience with de-identifying medical records, and based on the
aforementioned studies on determining the real identity of individuals with minimal
information [7, 10, 28], we have found it beneficial to adopt a risk-averse policy
towards de-identification and surrogate generation. Our goal is to ensure patients’
privacy and to protect their identities, therefore it behooves us to make our best
effort to remove any of the information in a record that a malicious person could use
to identify a patient.

Consider the situation where an EMR mentions that a patient sees “Dr. Lau of
Belfast Hospital”, but upon investigation one can learn that not only does Dr. Lau
only see a few patients a year, she only treats patients with paranoid schizophrenia,
and she was only at Belfast Hospital from 2001–2002. In this case, information
about the doctor and the hospital, when triangulated with external knowledge from
other sources, could lead to patient identification.

To minimize such risks, we expand our definition of the HIPAA category 18 to
include the following:

• All person names in a document, including hospital staff and their user names;
• All locations, including states, countries, geographical areas (e.g., “The North-

east”), landmarks (e.g., “the Grand Canyon”), and non-generic hospital depart-
ments;

• Organizations (e.g., Simmons College, Google);
• All portions of dates, including years;

445 CFR 164.514.
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Table 27.1 HIPAA’s list of PHI categories

1. Names;
2. All geographic subdivisions smaller than a State, including street address, city, county,

precinct, zip code, and their equivalent geocodes, except for the initial three digits of a zip
code if, according to the current publicly available data from the Bureau of the Census:

a. The geographic unit formed by combining all zip codes with the same three initial digits
contains more than 20,000 people; and

b. The initial three digits of a zip code for all such geographic units containing 20,000 or
fewer people is changed to 000.

3. All elements of dates (except year) for dates directly related to an individual, including birth
date, admission date, discharge date, date of death; and all ages over 89 and all elements
of dates (including year) indicative of such age, except that such ages and elements may be
aggregated into a single category of age 90 or older;

4. Telephone numbers;
5. Fax numbers;
6. Electronic mail addresses;
7. Social security numbers;
8. Medical record numbers;
9. Health plan beneficiary numbers;

10. Account numbers;
11. Certificate/license numbers;
12. Vehicle identifiers and serial numbers, including license plate numbers;
13. Device identifiers and serial numbers;
14. Web Universal Resource Locators (URLs);
15. Internet Protocol (IP) address numbers;
16. Biometric identifiers, including finger and voice prints;
17. Full face photographic images and any comparable images;
18. Any other unique identifying number, characteristic, or code.

• Pager numbers;
• Any of the PHI types included in categories 4–17 that apply to people or

organizations other than the patient or the patient’s associates;
• Professions held by the patient or people associated with the patient (this does

not include the professions of the hospital staff);
• Any other information that potentially indicates a patient’s location or a specific

time in the document, such as references to historic events.

Figure 27.2 shows a fabricated medical record before surrogate generation;
Fig. 27.3 shows the same record after surrogate generation.

We generate surrogates for PHI in all of the HIPAA categories, including cate-
gory 18. The generated surrogates maintain co-reference between named entities
(e.g., people, locations) by replacing authentic PHI that occurs more than once
with the same surrogate, and they maintain temporal relationships by shifting all
the dates in a patient’s records forward by the same interval. We discuss specific
details of the surrogate generation process in the following sections, as well as
the issues surrounding generating appropriate surrogate information for all the PHI
categories, and the effect these surrogates have on certain types of medical research.
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Fig. 27.2 Fabricated EMR prior to surrogate generation; PHI are delineated with XML tags

27.4 Data

We developed and tested the surrogate generation algorithms described here over
years on two data sets: the 2006 and 2014 i2b2/UTHealth shared task corpora.
The 2006 corpus consists of 889 medical discharge summaries [29], which are
narrative descriptions of a patient’s hospital stay, written at the time of discharge.
The corpus contains 19,498 instances of PHI from eight PHI categories: patients,
doctors, locations, hospitals, dates, IDs, phone numbers, and ages [29].

The 2014 i2b2/UTHealth shared task corpus is made up of 1304 longitudinal
medical records (records that refer to the same patient over a period of time) for
296 patients [14]. In addition to discharge summaries, the 2014 corpus contains
other types of narrative medical records, such as inpatient notes and correspondence
between specialists and primary care physicians. The 2014 i2b2/UTHealth corpus
contains 28,872 instances of PHI [25], and uses the expanded list of PHI categories
we described in Sect. 27.3.

The 2006 corpus provided the original data on which the surrogate generation
algorithms were tested; we then refined the algorithms for use with the 2014 corpus,
as it contained a wider variety of both record types and PHI. The rest of this chapter
focuses on how we applied surrogate generation to the 2014 data set; a discussion of
the surrogate generation process on the 2006 data can be found in Uzuner et al. [29].

Both the 2006 and 2014 corpus files come from Partners Healthcare, and the
Institutional Review Boards (IRBs) of Partners Healthcare, Massachusetts Institute
of Technology, and the State University of New York at Albany approved the data
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Fig. 27.3 Fabricated EMR after surrogate generation; PHI are delineated with XML tags

preparation we describe here, as well as the release of this data under a Data Use
Agreement (DUA). The 2014 corpus data will be made available to researchers in
November 2015 from http://i2b2.org/NLP; the 2006 data is already available at the
same location.

27.5 Strategies and Difficulties in Surrogate PHI Generation

For many of the PHI categories, generating realistic surrogates is relatively simple.
For example, phone and fax numbers, URLs, email addresses, and ID or account
numbers (i.e., HIPAA categories 4–16), whether they are for patients or medical
staff, are usually alphanumeric strings of numbers, letters, and a few special
characters such as hyphens, parentheses, periods, and the ‘at’ character (@). In these
cases, it is simple to not only replace the authentic PHI with randomly-generated
surrogates, but it is also relatively easy to maintain co-references.

Figure 27.4 presents a summary of the algorithm we used to replace PHI
represented by numeric or alphanumeric sequences. By keeping track of the
category of each PHI, we were able to maintain co-reference between elements of
the same category without revealing similarities between PHI of different categories.
For example, given a document with the phone numbers (555) 123–4567 and
123–4567, as well as the medical record ID number 1234567, we can easily
maintain co-reference relationships between the two phone numbers, but we would

http://i2b2.org/NLP
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1. Isolate the string of numbers and digits; check to see if that string or a
substring already has a replacement in the appropriate PHI category.

2. Replace any digit by a randomly-generated digit.
3. Replace any lower-case or upper-case alphabetic character by a randomly-

generated lower-case or upper-case, respectively, alphabetic character.
4. Leave other characters and spacing alone.

Fig. 27.4 Generic algorithm for replacing alphanumeric strings

randomly replace the medical record ID digits without referring to the already-
replaced phone PHI.

Naturally, we implement more specific rules for various categories of PHI. For
example, phone numbers have a restriction that they cannot start with 0, and the
substring rule does not apply to medical record numbers or other account or ID
numbers. This replacement algorithm resulted in unrealistic email addresses and
URLs, however. For example: “rgs44@newhospital.org” might be replaced with
“bhg10@jrbsotnwwx.hrh”. Given the small number of email addresses and URLs in
the corpus, we generated surrogates for these by hand, though later implementations
of this system may involve more complex solutions to this problem, involving
matching pieces of addresses with names and hospitals found in the text.

While the algorithm in Fig. 27.4 is relatively simple, not all co-referent PHI are
so easily replaced. The remainder of this section addresses some of the challenges
we faced with replacing more complex PHI, as well as the approaches we took to
address them. We present these PHI in order of HIPAA categories that most closely
match them. Because we are discussing only text-based files, HIPAA categories 16
and 17 (biometrics and facial photographs) are not included in this discussion.

One challenging aspect of the 2014 i2b2/UTHealth NLP shared task corpus that
augmented the complexity of generating surrogate PHI is the longitudinal nature
of the records in the corpus. We mitigated the problem of cross-document co-
reference by merging all of the records for a single patient into a single file for the
purposes of surrogate generation. We then processed all of these records together,
thereby ensuring that co-references would not be lost between the patient’s records.
However, having multiple records per patient increased the potential for variations
and misspellings of co-referent PHI that our surrogate generator had to handle.

27.5.1 HIPAA Category 1: Names

As previously noted, the PHI in our corpus include the names of medical profes-
sionals in addition to patients and their relations. Names provide an interesting
challenge in surrogate generation because they can, and do, occur in many different
forms within the same document. Also, as previously noted, increasing the number
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of documents about a single patient correspondingly increases the number of co-
referent PHI. Over the course of multiple documents, a single patient could, for
example, be referred to as:

• Vasquez, Angela
• Angela Vasquez
• Angie
• Ms. Vasquez
• Angela M. Vasquez
• and various misspellings of these names, such as “Angel” or “Vazquez”.

Nicknames and misspellings are particularly tricky for an automated system to
catch. While it is likely that “Angie Vazquez” and “Angela Vasquez” are the same
person, it is also possible for these two names to refer to two different people, e.g.,
a patient and a doctor, something that human readers may be able to distinguish but
a simple surrogate generation system may not.

Another layer of challenge is that, in the i2b2 corpora, doctors often initial the
bottom of records to indicate they are complete, and sometimes add their hospital
system username after their own name. This means that in addition to maintaining
co-reference between full names, we needed to be able to identify initials and map
them appropriately to the full names, while differentiating them from acronyms that
may look exactly the same as these initials.

Finally, we wanted to maintain the genders of the names in the original
documents as much as possible. To help with this task, we obtained information
from the US Census Bureau and split the information into four dictionaries for
lookup: (1) surnames (2) female names (3) male names (4) unisex names. With this
resource, we approached surrogate name generation with the algorithm summarized
in Fig. 27.5.

Pre-mapping the letters of the alphabet to letters that we then used to select
surrogates had many advantages. First, it allowed us to deal easily with ambiguous
co-references in the text without having to make leaps of inference. For example,
Fig. 27.2 refers to Drs. Tillman and Thompkins. If at some point the narrative also
referred simply to “Dr. T.”, our system would not have to attempt to disambiguate
the reference. Since “Tilman” and “Tompkins” are both replaced with names starting
with the same letter (“C” in Fig. 27.3), the ambiguity in the original document is
maintained in the surrogate as well. Similarly, the alphabetic mappings allowed us
to easily replace initials and usernames without having to infer which doctor might
have signed the document.

While overall this algorithm worked fairly well, there were a few problems
with certain circumstances. First, we lacked sufficient support for nicknames and
misspellings, and so this type of co-reference had to be corrected by hand. Future
implementations will utilize a nickname dictionary as well as some rules involving
Levenshtein distances [18], which will help identify small errors or misspellings.
Second, randomly creating mappings for letters sometimes led to situations where
a letter that occurs commonly in names, such as S, would be mapped to a letter that
is much less common, such as X, meant that our dictionary would sometimes be
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1. Given a record or set of records for a single patient, create two random mappings
between letters in the alphabet: one for given names (first, middle) and one for
last names (i.e., A mapped to R, B mapped to E, etc.).

2. For each PHI in the name category, normalize the format into categories that
correspond with first name, middle name(s), surname, and suffix.

a. Check to see if any of these PHI have already been mapped to surrogates.
b. If they have, use those mappings.
c. If they have not:

i. Check against the name dictionaries to determine if the name is most
likely male, female, unisex, or a surname.

ii. Use the alphabet mapping for the appropriate name type to randomly
select a new surrogate. For example, if “Angela” is determined to be
female and A is mapped to R for this document, select a new name
from the female dictionary that begins with R.

3. If the name cannot be normalized, assume it is a set of initials and replace them
based on the alphabetic mappings. If the name is a username (initials followed
by numbers), map the initials and generate random surrogate numbers.

4. Place the new PHI/surrogate mappings in a lookup table.

Fig. 27.5 Algorithm for generating replacement names

forced to re-use the same surrogates for different PHI. This lack of names starting
with certain letters potentially added co-references and/or ambiguity where none
existed in the original file. One solution to this would be to set the letter to letter
mappings to roughly follow distributions of the census data, though this approach
could potentially lead to a PHI leak, as it would reveal information about the
authentic PHI.

Finally, randomly selecting first, middle, and last names from dictionaries
sometimes leads to extremely improbable surrogate names, especially if the system
fails to accurately categorize a name as a given name or a surname. One notable
example from an early test of our surrogate system led to the creation of a doctor
named “Pagan Trout”. Unfortunately, Dr. Trout was not included in the final
i2b2/UTHealth corpus.

27.5.2 HIPAA Category 2: Locations

The different location types we addressed were: countries, states, ZIP codes, cities,
streets, hospitals, organizations, hospital departments, room numbers, and other
locations, such as landmarks and geographic regions.

With the exception of ZIP codes, which we changed by using the algorithm
in Fig. 27.4 to generate surrogate PHI for locations we created pre-compiled lists
of different location types, and randomly selected from those when generating
surrogates. However, we had to implement special rules for certain location types.
For example, it is common for hospital names to take many different forms in even
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a single medical record. “Massachusetts General Hospital” might be referred to by
its full name, as “Mass. General”, as “Mass. Gen.” or simply as “MGH”. Therefore,
the algorithm for hospital name replacement looked for possible abbreviations and
modified the surrogate output to match the format of the original PHI.

We included hospital department names in our list of PHI in order to ensure that
a hospital could not be identified by a department name that is unique. We made
department names less identifiable by mapping them to a list of generic department
names. For example, the department of “anesthesia, critical care, and pain medicine”
would become “anesthesiology”. We left alone department names that were already
generic (i.e., “Emergency Department”, “Oncology”). Any department that could
not be mapped to a more generic version we adjusted by hand.

We also needed to correct demonyms (name for persons from a country or other
location) by hand, as the software did not check for them. If a person were described
as “from Armenia” in one EMR and “Armenian” in another, we would check to
make sure that the surrogate country of origin was the same in both EMRs, and that
the demonym took the appropriate form.

27.5.3 HIPAA Category 3: Dates and Ages

One of the tasks in the 2014 i2b2/UTHealth challenge involved a temporal analysis
of each patient’s medical records, and so we prioritized maintaining the temporal
relationships between all the dates in a patient’s set of records while still obfuscating
the authentic dates in the record. We did this by shifting all the dates in a record into
the future by the same interval, but randomly selecting the interval for each new
patient. Thus we were able to maintain continuity for each patient without revealing
any identifiable dates.

In order to shift all the dates in a patient’s records consistently, we first had to
identify all of the dates in the records and convert them to a standard format. While
co-reference is not a problem with dates in the way that it is with names, converting
dates to a standard format still poses a challenge. A date such as “September 29,
2013” is easy to parse and standardize to 2013-09-29, but many other formats
are more difficult to interpret. For example, if the same date were represented as
09/29/2013 we could easily tell that the format is mm/dd/yyyy, as “2013” is not
a valid month or day, and “29” is not a valid month. However, the date 11/10/13
is ambiguous. While the “13” represents the year in most date formats, whether
the “11” represents the 11 month or the 11th day is unclear. For our system, we
first introduced logical constraints: a month cannot be a number greater than 12,
and a day cannot be greater than 31. In cases where this logic did not help, such
as “11/10/13”, we assumed a mm/dd/yy representation, which is more common in
America where these records originated. In order to interpret the year, we assumed
that any two-digit year of 20 or less applied to the twentyfirst century, while years
ending in 21 through 99 applied to the twentieth century.
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An ambiguity that we found less easy to resolve was that of two-integer dates,
such as “04/03”. Even if we assume the American convention that this date
represents April 3rd rather than March 4th, we are still left with the possibility that
the date could represent April of 2003. Our manual review of these dates in the
original texts revealed that both uses of that format (i.e., mm/dd or mm/yy) occur in
the patient records, and we could not implement a rule to automatically shift these
dates. In the end, our system marked these dates as ambiguous and a human had to
interpret and shift them manually.

Other dates, such as named holidays (i.e., Christmas, Halloween) we mapped
to calendar dates whenever possible. Any date that could not be converted into a
standard format we marked as “unknown” and left to human interpretation. Most
often, these were cases where the dates were malformed, such as “4/301999”, which
is missing a/between the day and the year.

Once the system converted all of the dates that it could to a standard format,
the system performed a check on the span of identified dates, to make sure that the
difference between the earliest and latest date is less than 90 years. This check is
motivated by the HIPAA requirement that ages over 89 be obfuscated. If the ages in
a document are already annotated, identifying the ones that are over 89 is trivial; our
system changed all the ages over 90 to “90” and left the other ages alone. However,
if a patient is over 89 and the file lists their birth date and the current date, it would
be easy to infer their actual age if all the dates are shifted consistently. Therefore, if
the span of dates in a document is over 90 years, the system identified the earliest
dates and shifted them more years into the future than the other dates in the records.

Finally, the system randomly selected the number of years and days that it would
use to shift the dates in the record. We limited the number of years that dates could
be shifted forward to 65 years plus or minus a maximum of 20 years for the 2014
i2b2/UTHealth corpus. The number of days we shifted the dates could be positive
or negative, and we calculated this number by determining the maximum number of
days the dates could be shifted in a direction without changing the season of any of
the dates, then selecting a random number between one and the maximum. The day
shift also acted as the month shift: if we shifted all the days back by seven, October
1st would become September 24th.

However, this method of date shifting also introduces its own potential sources
for error. Consider a medical record that contains the statement “he will schedule
a follow-up for January”. The medical implication of this phrase is changed
drastically if the record is dated December 24th (implying that the patient needs
to be seen mere weeks, or even days, after that visit) or January 3rd (implying that
the patient is anticipated to be fine for another year). If our date-shifting algorithm
keeps the date on the record to be sometime in December, then “January” can
be unchanged without drastically changing the implied medical condition of the
patient. However, if “December 24th” becomes “January 9th”, and the mention of
the “follow-up in January” remains unchanged, then the patient’s implied condition
goes from being in need of close monitoring to safe for another year.

Any isolated mention of a month has the same problem. Our system addressed
this problem by assigning a hidden day-of-the-month variable to the unanchored
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months and giving that variable the value of “15”. Then it applied the normal date-
shifting algorithm, and the month would shift to the next one if the day-shift pushed
it into the next month. So, given the above example with “December 24” and the
following “January”, if the date-shift value was set to 17 then the new dates would
be “January 8” and “February”, because the “hidden” 15th of January would become
February 1st. If the date-shift was less than 17, then January would remain January.
However, any forward date-shift less than seven would mean that the December
date would remain in December, so keeping “January” unchanged would be the
appropriate action.

Our method for dealing with unanchored months is not foolproof and can add
errors into the surrogate text. For example, if the original dates were “August 2” and
“the following September”, if the dates were shifted forward by 16 days, the results
would be “August 18” and “the following October”, due to the hidden variable “15”.
An ideal approach would be to implement a system that uses the surrounding context
to infer the year in which the unanchored month took place. Unfortunately, the task
of assigning calendar dates to temporal phrases in medical records is no mean feat.
The 2012 i2b2 NLP shared task focused on temporality in clinical texts, and the
best-performing system had a 0.9 f-measure for identifying temporal expressions,
but only achieved 0.73 for accuracy of the attribute values, which included the day,
month, and year for identified dates [26].

27.5.4 HIPAA Category 18: Other Potential Identifiers

Additionally, we had to address information in the documents that did not fall into
the PHI categories we described above, but that still had the potential to compromise
information about a patient. Some EMRs contain references to specific events that
the patient took part in, such as “injured during Superstorm Sandy” or “enrolled
in HEART-FAB study”. This type of information we usually removed entirely, or
modified to be less identifiable. “Injured during Superstorm Sandy” could have
become “Injured during last week’s thunderstorm”.

27.5.4.1 Professions

As previously discussed, we included patient’s professions in the expanded set of
PHI categories. The algorithm we used to generate surrogates for professions was
relatively simple: we either selected a new, random profession from a pre-compiled
list, or we used a surrogate that had already been selected for the same PHI. From
a software perspective, this was easy to implement, but viewing professions as PHI
posed a challenge that ultimately had to be handled through human intervention.

A person’s profession can influence their health risks and outcomes. For example,
people whose occupations involve construction or other building-related work,
such as electricians and plumbers, are more likely to be exposed to asbestos,
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and therefore those workers are more at risk for mesothelioma than others.5 The
relationship between medical outcomes and professions led us to attempt to assign
new professions with roughly the same types of medical risks, thus preserving
anonymity without entirely losing potential medical causalities. Similarly, the job
held by a patient’s relative occasionally impacted the medical record. For example,
a record might state “Patient’s daughter is a registered nurse who will help him
monitor his blood pressure and blood sugar.” Changing “registered nurse” to
“lawyer” or another non-medical profession would make the sentence less logical,
while supplying “doctor” or “medical aide” as a replacement would maintain the
logic of the narrative. Our surrogate system did not implement a job hierarchy, and
so we did this portion of the surrogate generation by hand where necessary.

27.6 Errors Introduced by Surrogate PHI

We made every effort to maintain the continuity of patient’s medical histories so that
researchers could still use the files for medical NLP. However our prioritization of
patient privacy required us to make decisions that fundamentally changed the nature
of the corpus.

By shifting each patient’s records by different intervals and by randomizing the
locations in the text, we rendered the documents useless for epidemiological studies,
as researchers cannot use the data to infer trends based on shared locations and
points in time. Errors in date-shifting can lead to creating mistakes in patients’
own timelines, and if the system mistakenly generates different surrogates for
entities that are co-referent, information about the patient is again lost. Similarly,
substituting professions, even ones of similar types, may remove relevant job-related
risk factors. Finally, any modifications to a text can result in unrealistic narratives in
the form of incorrect determiners, verb tenses, and other grammatical errors.

Having a human review and edit the output can help reduce some of these
errors, such as lost co-references and grammatical issues, but this is a time-
consuming process and may not be possible for most research teams focused on
de-identification.

27.7 Relationship Between De-identification and Surrogate
Generation

The task of a de-identification algorithm should be to identify PHI, not to obliterate
it. This is because obliteration (e.g., by replacement by a marker such as “[**

5http://www.asbestos.com/occupations/.

http://www.asbestos.com/occupations/
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NAME 33 **]”) destroys information about the original format of that PHI. This
information is crucial for generating realistic surrogates.

Furthermore, a surrogate generation system may be able to do a better job
in generating surrogates if it has access to the features, patterns, and dictionary
memberships that the de-identification system used to detect the PHI. Otherwise,
it may need to re-do some of the work already accomplished by the de-identifier.
Our experience also shows that determining accurate co-references in the original
data would be a good step toward creating consistent surrogates. We have described
some fairly ad hoc methods for doing this, but a more general purpose method that
itself uses machine learning techniques to build models that identify co-reference
might be more effective. It does seem that, contrary to our initial expectations, it
is not necessarily optimal to factor de-identification and surrogate generation into
separate sequential tasks, connected only by a narrow stream of PHI annotations.

27.8 Conclusion

In this chapter we have presented some methods and algorithms for approaching
the task of realistic surrogate generation for narrative EMRs, and discuss some of
the specific approaches we used when creating the de-identified dataset for the 2014
i2b2/UTHealth NLP shared tasks.

In the United States, HIPAA regulations require that researchers can only release
medical records for research purposes if each patient has given consent or if the
records have been de-identified in order to protect patient privacy. By removing
authentic PHI and replacing them with realistic surrogates, we attempt to maintain
the narrative structure of the original records. Our method for surrogate generation
tackles PHI categories one at a time, and follows different mechanisms for
generating appropriate surrogates for each kind. It respects co-reference, maintains
ambiguities that naturally exist in the original data, but does not resolve them. It aims
to minimize the ambiguities that appear as artifacts of the process. Our experiences
show that while automated methods provide a good start at surrogate generation,
manual review and human intervention makes surrogates natural. Nonetheless, a
general method for surrogate generation comes with a cost—it can invalidate the
data for some purposes. In our case, the date shifting choices make epidemiology
research on this data untenable.

Future work in this area will need to focus on both identifying text that falls
under HIPAA category 18 and developing reasonable surrogates for that information
without removing important information about each patient’s health. A resource that
groups occupations by similar health risks could potentially help with this problem.
Improved systems for detecting co-reference, especially ones that can account for
misspellings and nicknames, would also benefit this area of research.
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Chapter 28
Building on Principles: The Case for
Comprehensive, Proportionate Governance
of Data Access

Kimberlyn M. McGrail, Kaitlyn Gutteridge, and Nancy L. Meagher

Abstract The amount of data in the world is growing rapidly. Researchers and
others see the value of these data to answer compelling questions, and sometimes
this involves linking different data sets together. Good and long-standing processes
for governing access to data exist, but these will be challenged with the amount
and breadth of data researchers wish to use. In particular, it is increasingly clear
that in this new world of data, data access governance cannot continue to rely on
traditional approaches of de-identification, anonymization and individual consent.
An alternative to these risk-minimization approaches is proportionate governance,
a process that assesses potential risks and mitigations to those risks, including the
potential public interest that is served by enabling research. We propose a flexible
and adaptable proportionate governance framework that builds on existing models.
Local adoption of this framework will require engagement with stakeholder to create
consensus around principles, and implies broad commitment to the notion of a more
open research culture.

28.1 Introduction

One of the most notable features of the last 20 years is an increasing orientation
to data [44, 45]. This orientation cuts across all sorts of areas of interest, applies
equally in the public and private sector, and certainly applies to research from many
academic disciplines. Researchers collect data on individuals and their habits and
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outcomes of interest. Clinicians collect data in order to track and care for their
patients. Administrators collect data in order to pay for and manage the distribution
and delivery of services. Cutting edge data storage technology 20 years ago was
the 100 mB zip drive; today’s average smartphone can store hundreds of times this,
making both the collection and use of data easier for everyone involved.

The collection of data generally serves a primary purpose—such as your family
doctor keeping track of your medical history to ensure you receive high quality
care—but can have power well beyond this. Data can have significant utility in their
secondary uses, defined simply as use for a purpose other than that articulated for
their original collection [7]. Routinely collected health data can have a secondary
purpose, for example, to assess the safety and effectiveness of drugs once they are
approved for use in the general population [71].

Secondary use of existing health-related data is attractive largely due to effi-
ciency, since the time-consuming and expensive process of data collection has
already been completed. Beyond this, in the case of administrative data related to the
running of or payment for health care services, the data are often population-based,
which mitigates concerns about bias and power. Researchers have been accessing
data for secondary purposes for decades, informing both health care practice and
the development of health care and public policy [67].

The power of secondary data can be extended further if different sources are
linked together. Data linkage makes it possible to identify (for example) the same
individual as he or she moves from one part of the health care system to another
[3, 9, 35]. Combining data from multiple sources is also a powerful way to expand
the sorts of research questions that can be addressed and to improve robustness
of results. This is because combining sources provides richer information on the
individuals involved, which helps control for more potential confounders [64].

Assembly and governance are two distinct processes in the development of
comprehensive linked data systems. Assembly is essentially the technical process of
building capacity for data storage, linkage across different originating data sets, and
access that may include processing. Data governance in contrast is more procedural
than technical. Governance broadly speaking refers to the necessary components
for achieving a collective goal among multiple stakeholders, and typically includes
three elements. First, some sub-group or body is given authority to act on behalf of
the group; second, a process or structure is set up to frame the decision-making
boundaries for that group; and third, it is understood that there then must be
formal accountability for those decisions [33]. Applied more specifically to data
governance and even more directly to governance of access to data, governance “: : :

refers to who holds the decision rights and is held accountable for an organization’s
decision-making about its data assets” [37]. Data governance is more complex when
it involves data from multiples sources and takes on particular importance in the
realm of health because of the sensitive nature of the information involved.

Small pockets of population-based, health research specific enterprises have
been spearheading health data connectivity and best practices in data governance
for the past 30 years [10, 28]. To this point their efforts have been focused
largely on enabling secondary uses of individual-level, health-related administrative
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data collected by public bodies. The places with longest histories are mainly in
Australia (and particularly Western Australia), the UK (in particular Oxford) and
Canada (in particular Ontario, Manitoba and British Columbia) [9, 28, 35]. More
recently, there have been significant investments by some governments in further
developing, linking, and making data available for secondary purposes, including a
AUD$20 million investment by the Australian government in the Population Health
Research Network, and £20 million invested in the UK for clinical health data (the
Farr Institute) and a further £34 million to expand to social data [13, 46, 60].

Pressures such as the increasing connectivity of data, expanding appetite for
access to large data sets, understanding in both the public and private sectors of
data as an asset, interest in data well beyond the academic research community, and
support for evidence-based policy development, all introduce new challenges for
data governance. It is no longer certain that current practices will be fit for purpose
for a new era of data. Data governance must be responsive to these new challenges,
transparent to those who wish to request access to data, robust in protecting the
interests of the individuals and institutions represented in the data, and scalable for
expanding sources of data and types of users.

This chapter explores data governance and more specifically governance over
access to data, outlining current practice and challenges to that practice, and
proposing a framework to support adjudication of secondary uses of data. Given the
nature of this volume, we use examples from health care, but the general principles
discussed extend easily to other domains as well.

The rest of the chapter proceeds as follows: Sect. 28.2 provides a summary of
common data access governance practices for secondary uses of data. Section 28.3
provides an overview of the changes that are occurring in the world of data and
data access and how those developments challenge current data access governance.
Section 28.4 briefly introduces the concepts of principled and proportionate gover-
nance for data access and provides two case studies of those in action. Section 28.5
builds on those case studies and offers an expanded, flexible governance framework,
including two worked scenarios. Last, Sect. 28.6 concludes this chapter with some
challenges for the future.

28.2 Current Approaches to Data Access Governance

28.2.1 Existing Norms for Data Access Governance

Data governance is about the processes and controls in place to cover the original
collection of data, their protection within physical and technical systems, their
disclosure and use, and ultimately their archiving or destruction. In other words,
there are governance requirements for the full data life cycle [37]. Our focus in
this chapter is more specific, on the governance requirements specifically related to
organized systems to support secondary uses of data, or the “data access” part of the
life cycle.
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Where policies and processes for data access exist, most are based on two core
elements: (1) privacy legislation, which is built upon the Organization for Economic
Cooperation and Development (OECD) privacy principles established in 1980 and
reviewed in 2013 [55], and (2) the World Medical Association’s Declaration of
Helsinki, a statement of ethical principles for medical research established in 1964
and last revised in 2013 [76], and upon which many more local statements of ethical
practices are based (e.g., [7]).

The OECD principles establish fair information principles, essentially outlining
what individuals ought to be able to expect when personal data are collected about
or from them. In the OECD principles, “personal data” is defined as data about
an identified or identifiable individual [55]. The principles include, for example,
limiting the collection of information to that which is lawful and where possible
with consent of the individual, specifying the purpose of collection, limiting the
subsequent disclosure of data, and ensuring that data are well-guarded [55].

Privacy legislation, largely based on principles, similarly pertains to identified
or identifiable information; data that are not considered personally identifiable fall
outside of the purview of legislation. Legislation also generally includes a clause
that is research-enabling, allowing for research access to identifiable information
provided (a) the research cannot be done without the data in identifiable form,
(b) risks or harms of any proposed data linkage are balanced with the benefits, and
(c) the research is in the public interest (for example, FIPPA, 1996).1

The ethics perspective augments these principles, providing guidance on how
human subjects are to be treated in the research process. There is emphasis, for
example, on protecting vulnerable populations and balancing any potential direct
harm to research subjects with public interest or benefit. In the context of secondary
data analyses, ethical guidelines tend to relate to handling of personal data, and
limiting researchers’ direct access to personal information. In Canada, for example,
the national health research funding agency provided guidance suggesting that data
linkage be done not by researchers, but by agencies trusted with that specific part of
the research process [4].

The emphasis in current norms is thus on the distinction between what is
“personal data”, meaning identified (e.g., with names) or identifiable (e.g., a
personal number that could be linked back to an individual), and “non-personal”
data, i.e., everything else.

28.2.2 The Preeminence of “Consent or Anonymize”
as Approaches to Data Access Governance

The result of this distinction has been a reliance on and preference for individual
consent for any current or subsequent use of data [19]. In a consent-based world,

1http://www.bclaws.ca/Recon/document/ID/freeside/96165_00

http://www.bclaws.ca/Recon/document/ID/freeside/96165_00
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uses and authorities and thus data access governance issues, are clearly laid out in
advance of data collection. Consent is based on the premise that individuals must
fully understand the risks and benefits of engaging in an activity in order to make an
informed choice about that engagement [7, 50]. To ensure consent is meaningful, the
individual is provided with the necessary information to make an informed decision.
What “necessary information” means is open to interpretation, but typically the
purpose, collection, use, disclosure, and retention of data must be described in some
detail, consistent with the OECD principles [55].

It has been recognized for some time that there are limits to the nature of consent.
In the case of secondary use of administrative data, for example, it is accepted that it
is not practicable to collect population-based consent on a project-by-project basis,
and that the public value of this research may well outweigh any potential harms to
individuals stemming from use of their data [4, 50, 56]. This is in part why privacy
legislation often carves out research exemptions, albeit in controlled and specific
circumstances.

Exemptions in privacy legislation, however, only apply to cases where
researchers desire access to personal data. One response to this from a decision-
making as well as privacy best practice perspective is to ensure data released are
de-identified, therefore technically without legislative or ethical restriction. “De-
identification” means personal information is removed, and in some cases data
may be aggregated or perhaps even obfuscated in some way [38, 63] but there
can remain some risk of re-identification given the right circumstances (and of
course intent). The term “anonymous” is generally reserved for data that were
either collected without any identifying information in the first place, or data that
have been de-identified to the extent that it is impossible to reverse the process [23].
From a regulatory perspective, anonymization and de-identification are considered
appropriate because either essentially makes the data a “non-human subject” [1].

Removing information for anonymization generally removes anything that might
identify an individual such as cultural, ethnic or disease factors. While protecting
privacy, this also eliminates (or at least diminishes) some research possibilities, for
example research on often neglected minority groups, individuals with rare diseases,
or individuals who live in remote locations [1]. An additional difficulty is that what
might be deemed as de-identified or anonymized in the context of a single data set
may no longer be the case if those data are linked to other information sources, i.e.,
if the data are much richer in their content [22]. A reliance on de-identification can
lead to a false sense of security, where data custodians feel that they have met their
responsibility for data protection, only to find that users develop innovative way of
revealing identities in the data [72].

Underlying all of this is an active debate about at what point data can actually be
considered de-identified or anonymous. The identifiability or potential identifiability
of data is not truly binary but instead runs along a spectrum such as seen on
the horizontal axis of Fig. 28.1, and it is difficult to draw hard lines separating
different parts of the spectrum, especially between potentially identifiable and
truly anonymous. In practice, nods are made to this challenge by referring to a
“reasonableness” or “average person” threshold, or by providing formal assessments
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Fig. 28.1 The focus on “identifiability” and “risk” in current data access processes

of the potential for re-identification [15]. Regardless, whether based on human
and/or machine input, there must be an assessment that places the data request along
a spectrum of potential identifiability, and balances that against the potential good
that could come form allowing access.

This is not to dismiss the emerging field of de-identification, perhaps especially
in cases where that function is embedded in operational data systems that can control
in real time who has access to what level of information under what circumstances
[14, 38]. Nor is it to dismiss the value of protecting individuals’ interests and
engaging them in the process of understanding how their data are and may be
used. The point is simply that there is no silver bullet or one-size-fits-all solution
[48]. There are cases where access to more potentially identifiable data—or even
fully identified data—is necessary to conduct research that has tremendous potential
public value.

Further, it is worth emphasizing, as seen in Fig. 28.1, that the existing focus on
either consent or de-identification/anonymization both attempt to control the form
of the data to minimize risk. A reliance on de-identification does not represent an
approach of balancing needs of different interests, but instead is a risk minimization
approach; data are released if the risk is essentially absent. In this scenario, “risk”
is not seen as part of an equation, but as something that must be avoided, in which
case if risk is present it is the overriding factor of concern.



28 Comprehensive, Proportionate Governance of Data Access 743

28.2.3 Existing Data Access Governance in Practice

What emerges without question is that neither a commitment to de-identification,
nor a requirement for consent, are substitutes for fully formed data access gov-
ernance. A governance system for data access provides the balancing required
between the public good that can come of use of data with the privacy interests that
are embedded in any sensitive information. Legislation and existing norms set up a
framework that provides guidance on what to consider for data access governance,
but they do not provide a specific blueprint. It is left to individual jurisdictions to set
policies and procedures that reflect their local laws, principles and objectives.

There are a number of systems of data access governance that have been
established to meet these requirements [20, 36, 43, 57]. These systems are multi-
faceted, including multiple inputs and steps. The promotion of the public interest
and the protection of individuals’ interests are two guiding principles that underpin
all of them [26, 41, 54, 70]. Using the example of university-based research, the data
access process usually involves: reviews and approvals from granting agencies for
approval of the scientific aspects of the research; ethics boards for approval of the
treatment of human subjects; and data stewards or guardians for the adjudication
of privacy-sensitivity of the data requested, knowledge of the requesters in terms
of data use and safeguarding, and the ability of the researcher’s environment to
provide secure data storage. The specific processes used differ—the forms required,
fees charged, physical location of the data and so on—but the basic process has
many commonalities. At the same time, these processes are often critiqued because
they involve many layers of review, are limited to certain classes of researchers or
certain physical locations, take a long time from start to finish, restrict the types of
questions that can be addressed and in many cases are not very transparent [39].

One factor related to the critiques of current processes for data access is the
default approach of data stewards to their assessment of risk. Referring again to
Fig. 28.1, concerns about the potential identifiability of data interact with data stew-
ards’ comfort with the implied risk, including both risk to individuals represented
in the data and reputational risk to the data provider. Data access governance in
practice requires clarity regarding where along the spectrum access will be allowed,
and what processes (if any) might help shift either the location of the request along
that spectrum or a data steward’s tolerance for risk.

There is increasing emphasis in many jurisdictions on providing technical
solutions such as safe havens and other secure research environments, where data
are stored and accessed regardless of the precise physical location of the researcher
[34, 39, 57, 62]. This is in contrast to providing access to data either by giving
researchers copies of data on media such as CDs (a practice that is less and less
common), or by providing access to detailed data, but only in specific and restricted
physical locations [32, 68]. While the latter improves access, the limit to specific
physical locations increases time and monetary costs for researchers and therefore
lessens the utility of the data [39].
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28.3 The Evolution of Data and Implications for Data
Access Governance

Against this backdrop are major changes in the world of data that present new
challenges to the existing approaches to data access governance. Three interrelated
themes we draw out here are big data, open data, and the ubiquity of collection of
personal information.

28.3.1 Big Data

The term “Big data” is used to describe data that have extreme volume (many
pieces of information taking up lots of computer storage space), variety (different
sources and forms, including structure, unstructured, text, media, etc.) and velocity
(the speed of data coming in or being accessed) [40]. The sources of data tend
to be autonomous and distributed, and the rate of new data creation is extreme,
implying that relationships that can be discovered are both complex and evolving
[77]. Some claim that 90 % of data that exist today has been created in the past 20
years; whether this is precisely true is less important than the general claim that
data, and our collective relationship to them, are changing.

Two developments in the health sphere are particularly significant in the big data
realm: the expansion of electronic medical records and the declining cost of gene
sequencing. Electronic medical records are significant because they represent an
entirely new variety of data compared to administrative data, in that they include
free text fields and other unstructured elements. Genetics data on the other hand are
significant in their volume; sequencing of genes from a single individual can result
in 500 MB of data or more. The cost of sequencing has now decreased to the point
that the larger expense is not collecting the data but instead is storing, processing
and analyzing those data [52]. Even more importantly, these data will represent a
challenge because the most powerful research resulting from them will come from
linking different data sources together—combining administrative (including health
and social data), electronic medical records, and genomics/epigenomics data [64].

In part because of the rapidly increasing breadth and depth of data, researchers
are interested in pursuing analyses that are hypothesis-generating as well as those
that are hypothesis-testing. An example of this is the genome-wide association
studies commonly undertaken in genomics research [27]. Given an abundance of
data and a limited supply of theory, researchers truly are searching for the needle
of meaning in a haystack of information. The implication is requests for access to
more detailed data for lesser defined research questions, which runs counter to many
existing governance structures as well as currently employed privacy tenets.
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28.3.2 Open Data

The “Open data” movement seeks to make as much information as possible
available to the public. Governments increasingly understand data as an asset that
has the potential to provide social and economic benefit if they are made available
for people to use [18, 24, 44]. This movement comes with significant hype and some
early signs of delivering benefit (economic and otherwise) [30], but so far there has
been minimal expansion into the health domain.

The OECD, the Research Councils UK and others differentiate the notion of
“public interest” from “public good”, with the latter referring to things that are
non-rivalrous and non-excluded and available for everyone to engage in a stable
and healthy life [53, 61]. To follow on this, the Research Councils UK undertakes
that publicly collected data and funded research are public goods, produced in the
public interest, which should be made openly available with as few restrictions
as possible in a timely and responsible manner that does not infringe intellectual
property [61]. From these perspectives, research data and scientific knowledge
should be accessible to “families, communities, commercial entities, institutions and
governments [in order to] : : : foster the public good” [31].

Efforts towards data liberation are not without concern, however, as a savvier
public with access to analytic tools can render de-identified or anonymized data
completely identifiable in unanticipated ways [25, 29, 42, 72]. Further, as technolo-
gies develop, something that was not identifiable when released could subsequently
become identifiable, pointing to the idea that the “reasonableness” standard changes
over time. Open data has a different meaning when we are talking about personal
information and inherently privacy-sensitive data. There is a big difference between
making available a century of weather pattern data and last year’s detailed records
of acute inpatient hospital use.

The motivation to make data more available needs to be balanced with recogni-
tion that privacy-sensitive data must be governed properly. Systems of governance of
data are, arguably, more important than ever. The question will be whether applying
the existing rules for data access to these emerging environments will address the
needs of all relevant stakeholders.

28.3.3 The Ubiquity of Collection of Personal Information

At the same time, the public’s relationship to privacy is changing, in part because
we are constantly asked to reveal things about ourselves in exchange for services
provided in the digital world. A 2015 editorial in Science stated things starkly
saying “Privacy as we know it is ending, and we’re only beginning to fathom the
consequences” [17]. This is not to suggest the public no longer cares about privacy,
but more that with the advent of the internet and smartphones, more personal data
than ever is shared with an expanding set of data collectors.
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The public willingly exchanges personal information for desired services, includ-
ing software applications, email, and other on-line services such as those offered
through Google. The companies offering these services can legitimately state
that they have explicit consent for the collection and use of that information.
Whether people truly understand to what they are consenting in these long texts
is questionable. In 2014 there was a short experiment undertaken by the Cyber
Security Research Institute in London to test the potential dangers of public Wi-Fi
use. The researchers offered free Wi-Fi, with a clause in the terms of service
stipulating that in exchange individuals would sign over their first-born child
[21]. Several people signed up in a short period, though the clause was clearly
unenforceable and perhaps the participants understood that.

In a similar vein, a Brooklyn artist offered points to people for various pieces
of personal information such as dates of birth, last four digits of a social security
number, etc. [58]. The points could then be exchanged for a cookie. The artist posted
her terms of use, and they included doing pretty much anything she wished with the
data. She had 380 people sign up in the course of an afternoon. This experiment
and the Wi-Fi one in London do not necessarily imply that individuals are careless
or lack concern about their personal information. Their actions may instead reflect
a belief that the people they were dealing with had no ill intent, and/or that in any
case their personal information is already “out there” [12].

28.3.4 The Limits of Existing Approaches to Data Access
Governance

The world of data itself is changing, including what data are available and how
researchers (and others) might interact with them. Governance itself then is likely
to change, and arguably must change to meet these changing expectations.

The issue of consent is particularly pointed in the brave new world of data.
As discussed, current conceptions of consent require that uses of data must be
pre-defined, explicit and time-limited. This is increasingly inconsistent with the
aspirations of many who collect data, where future uses are yet-undetermined, and
is clearly inconsistent with what the public is willing to accept, at least under some
circumstances [45]. As we look to the present and future in areas such as genomics,
big data and the rapidly expanding establishment of biobanks for medical research,
requiring this up-front and explicit enumeration of all possible uses of data can
hobble the value we could gain from them. The real societal and scientific benefits
derived from use of data will be maximized if they can be retained for a period of
time, and if they are potentially available for new and unanticipated future uses [45].

One proposed solution to this conundrum is to place less emphasis on up-front
specific consent and more on controlling users of data. This would include shifting
significant accountability to those users, including putting time limits on the storage
of personal information [45]. Consistent with this, others have called for modifying
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the notion of consent to one of consent to data access governance, which is the
processes by which adjudication about access to data would take place [51].

This discussion is particularly important because the debate about potential
identifiability of data, and the identification of where data lie on the spectrum
depicted in Fig. 28.1, becomes more complex with newer types of data, particularly
genomics information. It is understood now that genomics information is inherently
identifiable, both for individuals and even family members [42]. Furthermore,
there is a growing recognition that data once classified as non-identifiable may
become identifiable when linked with other data sets or manipulated by advanced
analytics—further blurring the ability to guarantee confidentiality and protection of
privacy to individuals. The implication is difficulty in locating a data set on the
spectrum of identifiability. The more uncertainty there is about position on the
spectrum of identifiability, the less we can rely on de-identification to protect
privacy.

Given all of these changes, there is increasing recognition that current approaches
to data access need to be modified to reflect a new reality [8, 45]. Current governance
arrangements for access to data were largely established prior to the era of the
Internet. One response is new or modified legislation, and many jurisdictions are
pursuing this option, for example introducing new sector-specific legislation which
has the potential to challenge existing norms and practices [59, 69]. More than
this, however, is a need to consider more flexible options, approaches that can
accommodate uncertainty about identifiability and future uses, expanding potential
data users, and more complex research questions.

28.4 A Comprehensive Model for Governance:
Proportionate and Principled

A governance model for research data access that is based on defined principles, and
where review is proportionate to the level of risk can provide the needed flexible,
transparent and solid foundation to address current and future challenges. At its core,
such a model involves an approach to governance that is based on both defining
how established privacy principles can be incorporated into a research data access
framework and how proportionality can be used to create a fair, trustworthy and
efficient data access review process. Each of these will be reviewed in turn, starting
with proportionality.

28.4.1 Proportionality

Proportionality is a general principle of law embedded within the regulatory
landscape, in particular European and human rights law, which considers the optimal
balance between the level of constraint imposed by a disciplinary measure and the
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severity of the proscribed act; it is an attempt to make the punishment fit the crime.
Proportionality acts as a criterion for fairness and reasonableness when applied to
complex decision-making contexts where interpretative discretion must be used [16]
and serves to “: : : regulate the spaces between hard laws” [41].

In the realm of research data access, proportionality is the practice of ensuring
that the review of research data access requests reflects the perceived risk, and
the disciplinary mechanisms for non-compliance reflect the damages that may
arise. A proportionate approach would adjust the extent and stringency of review
according to the potential risk posed by the data request, so that higher risk requests
receive more scrutiny. Adopting this type of approach for data access was a key
recommendation of the Rawlins Report, a review of the governance and regulation
of human health research conducted by the Academy of Medical Sciences at request
of the UK government. That report called for regulation that is symmetrical and
proportionate, saying “: : : approving an inappropriate study is clearly unacceptable,
but delaying or prohibiting an appropriate study harms future patients as well as
society as a whole” [73]. The idea of proportionality is also already embedded in
the ethics review process that is often (if not always) a tandem requirement for
research data access. As an example, the Canadian Tri-Council Policy Statement on
Ethical Conduct for Research Involving Humans [7] states:

Given that research involving humans spans the full spectrum of risk, from minimal to
significant, a crucial element of [research ethics board] review is to ensure that the level of
scrutiny of a research project is determined by the level of risk it poses to participants : : :

A reduced level of scrutiny applied to a research project assessed as minimal risk does not
imply a lower level of adherence to the core principles. Rather, the intention is to ensure
adequate protection of participants is maintained while reducing unnecessary impediments
to, and facilitating the progress of, ethical research [7].

Consequently, adopting an approach to requests for access to research data that
is symmetric with or proportional to the potential risk of the proposed research
depends on understanding the categories or domains that contribute to risk and how
the risk assessment maps to the resulting process for adjudication.

28.4.2 Principle-Based Regulation

Principle-based regulation has a long history of application, in both the regulation
of financial markets, and the development of human rights and privacy legislation
[41, 55, 74]. Principle-based regulation places the emphasis on specifying desired
outcomes. One notable example of a principle-based approach in action is the
OECD’s Privacy Guidelines, a set of framework principles that address the col-
lection, use, access, accuracy and destruction of personal information [55]. The
principles outlined in the Privacy Guidelines have served as a foundation for the
development of country-specific privacy legislation, including Canada’s Personal
Information Protection and Electronic Documents Act and the European Union
Data Protection Directive (95/46/EC). These principles have a long history in data
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protection in the medical field, as discussed above, but have traditionally been
thought to apply only in cases where researchers are requesting access to personal
data.

28.4.3 Case Studies Using Proportionate and Principled Access

There are two known examples of data access processes that include both principles
and proportionality. The oldest was the British Columbia Linked Health Dataset
(BCLHD) (now part of Population Data BC)2 (see Case Study A). A current, more
explicit and comprehensive approach was developed by the ScottisH Informatics
Programme (SHIP) (see Case Study B) [41, 66]. In the SHIP example, the principles
included reflect the values and attitudes expressed by stakeholders through consul-
tations [66]. SHIP proposes a principle-based approach that “: : : avoids excessive
and overly cumbersome procedures [for data access] whilst paying due regard to
real risks and seeking appropriate measures where fundamental obligations must be
met” [66]. It provides a venue for contemplation of the value and perceived benefit
of data use even when proposed activities may conflict with established norms.

Case Study A: The British Columbia Linked Health Database (BCLHD)
(1996–2002)3

The British Columbia Linked Health Database, a precursor to Population Data
BC, initially brought together core data on health care services utilization and
vital events for the province’s residents from 1985 onwards. Adjudication
of research data access requests was guided by review of five key issues
(domains). The first four had to be met. The fifth determined the potential
risk.

1. Scientific merit of the research question and method: Met either by
success in a peer review process for grant funded research, or for a student
by peer review and approval by his/her supervisory committee.

2. Ethical acceptability of the research question and method: Met with
approval from an institutional Research Ethics Board.

(continued)

2We refer to the BC Linked Health Dataset, the precursor to Population Data BC, because it was
in this original form that there was an operating proportionate governance model. Population Data
BC does not currently operate with such a model.
3The BCLHD transitioned to Population Data BC in 2009. Population Data BC aims to build
on BCLHD’s past success and is engaged in efforts to greatly expand its existing data holdings
to include educational, occupational, environmental and socioeconomic information. Over time,
Population Data BC aims to become the world’s most comprehensive data resource on factors that
influence human health, well being and development (https://www.popdata.bc.ca/).

https://www.popdata.bc.ca/
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3. Public interest value of the research: Met with success in peer review
from a public funding agency (taken as implying public interest), but also
justified by the researcher.

4. Security of data: Met by showing care of data would be in accordance
with government standards and agreements outlining conditions for data
use, return or destruction.

5. Potential identifiability of data:

(a) No person-specific information required (aggregate data release).
(b) Person-specific information but without personal identifiers, detailed

birth date or detailed postal code.
(c) Person-specific information and potential identifiers (e.g. detailed birth

date and/or postal code) but with subsequent contact with individuals
and individuals not directly affected by the research.

(d) Person-specific information and potential identifiers included in the
data, no subsequent contact with individuals but potential for research
findings to indirectly affect individuals in the future.

(e) Person-specific information and identifiers included in the data with the
intent to use information for subsequent contact.

Applications were triaged into two categories for review and approval:
fast-track review and full review. Fast track applications were those falling
under “potential identifiability of data” categories one and two; all others
were subject to full review. In practice, the data access coordinator worked
with researchers to move their requests down into category two as much as
possible; the vast majority of applications ultimately fell into this category.
Limitations of this model: This model functioned well for many years, but
was essentially a risk-minimization approach. It did not consider strategies
other than data de-identification for mitigating risk.

Case Study B: The ScottisH Informatics Programme (SHIP)
(2012–present)4

The ScottisH Informatics Programme is a Scotland-wide research platform
that provides research access to linked Electronic Patient Records held by
NHS Scotland. Adjudication of research data access requests uses SHIP’s
guiding principle and best practices, which are operationalized through four

(continued)

4SHIP recently joined the Farr Institute @ Scotland with the intent to expand the expertise,
infrastructure and cross-sectoral collaboration for data linkage developed by SHIP (http://www.
farrinstitute.org/centre/Scotland/3_About.html).

http://www.farrinstitute.org/centre/Scotland/3_About.html
http://www.farrinstitute.org/centre/Scotland/3_About.html
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key benchmarks (domains) each of which includes a spectrum of risk. The
domains and optimal (i.e., lowest risk) criteria are:

1. Safe People:

(a) Everyone in contact with the data is trained in information governance
(training materials are vetted).

(b) Applicant can demonstrate formal track record with administrative
data (publications, affiliation with an academic institution, previous
application).

2. Safe Environment:

(a) Level of information security assessed with intended access through a
SHIP Safe Haven considered optimal.

3. Safe Data:

(a) Privacy risk assessment has been undertaken by all projects.
(b) Data are reviewed in accordance with sensitivity and relation to

vulnerable populations.
(c) Risk of disclosure from linked output file from analysis assessed low

(e.g., no full dates, no rare conditions)—high risk (e.g., rare conditions,
detailed geographic area).

(d) General addressing of the privacy and ethical concerns associated with
the application.

(e) Data not used to contact individuals.
(f) Linkage previously approved for similar purposes.
(g) Subjects are aware their data may be used for these purposes/permis-

sions are in place for use.

4. Public Interest:

(a) Applicant demonstrates understanding of context and contribution of
the project to the state of public health knowledge.

(b) Study design and methods noted in application meet objective of the
study.

(c) Public interest not outweighed by commercial interest.
(d) Formal external peer review undertaken or internal review by an

academic institution.

In the SHIP model, a research coordinator reviews the project and assigns a
risk score (low, medium, high) for each benchmark. Applications are triaged
into four categories based on the total risk score. The four categories are:

Category 0: Public domain data is only requested and no risks are present.

(continued)
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Category 1: Risks are minimal and outputs are non-sensitive (e.g., the
linkage was previously approved and a safe haven system used for access
and storage).

Category 2: Issues are flagged during the review of the application includ-
ing privacy and security risks and requests for multiple linkages.

Category 3: The application fails considerably to meet an acceptable risk
score for a least one of the benchmark.

Applications in Categories 0 and 1 are reviewed only by a research
coordinator, Category 2 applications receive fast-tracked advisory board
review, and Category 3 applications require full advisory board review.
Limitations of this model: This model is currently limited to researchers
affiliated with an academic institution, does not allow for exploratory analyses
or hypothesis-generating methods and limits projects to those where public
interest outweighs commercial interests.

28.5 Building on the Present: A Flexible, Governance
Framework

The contents of this chapter show clearly that data access governance is not a new
endeavor, and there are strong foundations on which to build. Nevertheless, changes
in data, technology and the climate of data access suggest there is a need to expand
our thinking. The aim is for a flexible and adaptable governance framework that
incorporates and responds to legislative requirements, long-standing and emerging
principles, and builds on input from stakeholders. The framework must be flexible
both in being able to respond to further evolution of data and technology, and in
being adaptable to local contexts. It is for this reason that we outline a framework, a
broad structure that can be modified and applied in different ways by different users.

The proposed framework incorporates six evaluative domains, each of which
is associated with four levels of risk ranging from “low” to “very high”. These
six domains are outlined here and described in more detail below as well as on
Table 28.1:

• Science: Scientific merit and potential impact.
• Approach: Questions and analyses.
• Data: Granularity, sensitivity and justification for the data requested.
• People: Experience, affiliation.
• Environment: Technical and network infrastructure.
• Interest: Public and societal interest.
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28.5.1 Science

Science (or scientific merit) considers importance of the question(s) given existing
evidence, appropriateness of the proposed methods to answer the question(s), its
potential impact and relevance, and the suitability of the scientists to carry out the
research. Peer review is an internationally accepted benchmark for ensuring quality
and excellence in research [5] and provides an assessment of scientific merit. While
peer review is often embedded in the research funding process, funding and the
assessment of scientific merit are not always mutually exclusive, as high quality
research may not be funded because of the limited availability of funds or the
specific priorities of a competition (success rates in granting competitions in the
health sector hover around 20 % [6, 47, 49]). As such, a bar of “fundable score” is
used.

In practice, an application would be considered low risk if it was reviewed by
an external body and received a score that made it eligible for funding, even if
funding was not available, and high risk if no peer review took place. If it did not
receive a fundable score, it would not meet any conditions for data access, unless or
until changes were made to improve scientific merit. A proxy peer review process
could be developed for applications without peer review, in which applications are
scrutinized according to similar review requirements as standard funding bodies.

28.5.2 Approach

Approach considers the proposed objectives and techniques used to interrogate
the data and meet the anticipated outcomes of the research. To be clear, this is
not an assessment of methodology, as that would be covered in the “Science”
review, but instead speaks to the spectrum of hypothesis-testing (consistent with
the prevailing scientific paradigm), to the emerging field of scientific inquiry
and predictive analytics, where datasets are interrogated to discover non-obvious
patterns and correlations within the dataset, extracting value and generating new
hypotheses during the discovery phase [2, 45, 50]. Under current data access
regimes, hypothesis-testing research would be more likely to be assessed as low risk,
as it presents explicit questions and hypotheses. Hypothesis-generating research, in
contrast, with generalized research objectives and assumptions, is often assumed to
be of higher risk given its lack of alignment with existing privacy principles of data
minimization.
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28.5.3 Data

Data considers the sensitivity of the data requested (e.g. amount of data, potential
identifiability, vulnerability of study population), extent of linkage among data
sources, and the legislative and ethical requirements governing the use of data (e.g.,
request to contact participants). Data sensitivity also considers the likelihood of a
privacy breach and the impact of said breach given the sensitivity and granularity
of the data. Low risk requests would be those for aggregate data, while those that
wish to receive personal information and contact patients would be deemed very
high risk.

28.5.4 People

People represents the human element to the use of data, and includes those who
are authorized to access the data and under what conditions. Whereas previous
principles focus on appropriate uses and protections, this one looks at the individual
or individuals requesting access and places them on a spectrum of risk. This domain
is not limited to bona-fide researchers who hold an appointment at an academic
institution; it expands the user base to individuals from various organizations
who hold portfolios and research interests that might also benefit from access to
data (e.g., Health Authorities, clinicians, Non-Governmental Organizations). This
approach offers flexibility in considering who is allowed to access the data, and
focuses on ensuring that individuals are appropriately qualified and understand their
responsibilities for using the data. Baseline qualifications would focus on whether
the individual’s understanding of legal and ethical issues involved with the data
lifecycle meets the proposed research activities and the sensitivity of the data. In
practice, an application may be associated with minimal access and personnel risks
if personnel have been trained in an accredited Information Governance course; if
the applicant has a track record of working with administrative data (publications,
affiliation with an academic institution, previous application); and if terms and
conditions for data sharing between the personnel and data steward are clearly
defined in research agreements.

28.5.5 Environment

Environment refers to the network and technical infrastructure allocated for data
handling and storage. Data handling is particularly important as it pertains to linked
data, since typically this involves the highest sensitivity of data, and warrants
significant levels of scrutiny. Data storage of research extracts may vary from open
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data to storage in a pre-vetted environment or safe haven that meets information
security measures to approved situations that may operate more on a trust basis.

28.5.6 Interest

Interest refers to the likelihood that the research will result in a tangible outcome
that can be widely available to the public [75]. Interest considers the spectrum
of potential stakeholders, opinions and benefits to individual and societal interests
progressed through the anticipated research. The notion of “public interest”, the
act of ensuring that the research would be deemed acceptable by the community
at large rather than simply an identifiable individual or sub-group, is considered
a cornerstone principle of data use and protection. The difficulty is the potential
interpretation that public interests are served only by public entities, which would
rule out potential use of data by public-private partnerships, benefit-sharing models
or the private sector. A spectrum is again helpful here because while it is recognized
that private interests can make use of data that produces public value, the public does
express some unease about access to administrative data and the scope of benefit
for access requests that are influenced or driven by the commercial sector [11, 65].
Consequently, commercial interests move applications towards the higher risk end
of the spectrum.

28.5.7 Translating Risk Assessment to Review Requirements

While this discussion presents the six domains separately, there are clear intercon-
nections among them. For example, understanding the sensitivity of data requested
and linkage to other sources will influence requirements for a suitable environment
[41]. A request that proposes to use predictive analytics (“Approach”) may be asked
to limit the granularity of their request (“Data”).

This points to the fact that understanding how to conduct a risk assessment of
a project is only the first step. A review of these domains and identification of the
level of potential risk in each provides an overall view, or a heatmap, indicating
where risks reside, and what factors are in place to balance or mitigate those risks.
There is still a process that needs to be agreed on to translate the level of total
risk or “scoring” based on the table to a review process. This would include, for
example, determining whether all rows and columns are considered equal, or if
instead being “very high risk” on a particular row trumps everything else. This type
of risk assessment invites an iterative approach to categorization such as shown in
Fig. 28.2, by working with researchers at the onset or upon preliminary review to
help them minimize the privacy risks and maximize the public interest value of their
research and their skills and competencies as researchers. A project might come
in, be rated for a higher level of scrutiny, but then instead of being sent forward
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Proportionate review

High scrutinyLow scrutiny

Risk
assessment

Adjudication
decision

Mitigation of any
identified issues –
through changes
to access request

Fig. 28.2 An iterative approach to data access

through the rest of the process, it could be sent back to the researcher to ascertain
whether a lower risk rating is possible and desirable. An iterative process mitigates
unnecessary burden on researchers and review committees imposed by higher risk
applications that could be pre-emptively moved into a lower risk category, and
further enables a safe and efficient data access process.

Given the flexibility presented by principle-based frameworks and the jurisdic-
tional variance in legislative and societal requirements, it would be counterproduc-
tive for us to present a standalone process for translating the total assessed risk
“score” into predetermined review streams. Instead, the next section moves to prac-
tice, demonstrating examples of request scenarios and their potential classification
along the spectrum of risk for the six domains.

28.5.8 Adjudication Scenarios

The steps shown in Fig. 28.2 are as follows:

1. A request comes in to the coordinating body.
2. The request is assessed using the six domains addressed in the governance

framework (Table 28.1) to ascertain the level of requested detail and associated
level of risk.

3. Researchers either accept the risk assessment or modify their request to change
(presumably lower) it.

4. The risk assessment determines the proportionate review. Those that pose higher
risk require a higher level of review, e.g., minimal risk may require no further
review whereas high risk may require full review, and may be subject to
additional approval conditions, such as access allowed only in a specified data
safe haven.

5. Requests may go back to the beginning if the review recommendations prompt
researchers to modify their requests to a lower level of risk.
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In what follows, we apply the framework to two adjudication scenarios in order
to assess the overall risk.

28.5.8.1 Scenario 1

An experienced researcher (“People”) receives grant funding from a public granting
agency (“Science”) to conduct a longitudinal cohort study with specific hypotheses
about cancer development in women aged 25–50 (“Approach”). The study requests
specific de-identified individual-level data fields from the National Cancer Agency,
Ministry of Health and Statistics Agency, with annual data refreshes required for 5
years (“Data”). The researcher applies to store and access the research extracts from
an approved environment at the National Cancer Research Centre (“Environment”).
Both patient groups and the Ministry of Health are part of the research team
(“Interest”) (Table 28.2).

Table 28.2 The adjudication
scenario 1

Low Medium High Very High

Science X

Approach X

Data X

People X

Environment X

Interest X

Discussion This scenario is characteristic of a typical application that is routinely
reviewed in the data access process in British Columbia through Population Data
BC. The study meets external peer review benchmarks, and proposes to test
specific questions and defined anticipated outcomes and objectives. Furthermore
the researcher is experienced, affiliated with an academic institution with access
to a research ethics review board and has published extensively in this area. The
risk moves to the right of the spectrum as the data requested is individual-level,
will be linked, and is subject to ongoing refreshes without a determined date range.
Another medium risk characteristic is the environment where the data will be held;
given storage and access will be provided outside of the certified safe haven, the
risk moves to the right yet it remains within the lower half of the spectrum as
the alternative location has been vetted and is deemed to meet security and data
protection requirements.

28.5.8.2 Scenario 2

A new researcher (“People”) proposes an exploratory analysis (“Approach”) of
National Pharmaceutical Registry and Ministry of Health data, requesting a large
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Table 28.3 The adjudication
scenario 2

Low Medium High Very High

Science X

Approach X

Data X

People X

Environment X

Interest X

set of detailed records (“Data”) to look at individual prescription use and disease
development over time. Peer review is not in place (“Science”) however, internal
review by the researcher’s affiliated institution has been conducted. The researcher
requires significant computing power for the analysis and applies to store and access
the research extracts on a vetted safe haven (“Environment”). It is not clear what
results might come of this work, though peers express support because of the
potential for novel findings (“Interest”) (Table 28.3).

Discussion This scenario is characteristic of a request that reflects the changing
data landscape discussed in Sect. 28.3 of this chapter. The request ranks high on
the spectrum of risk for half of the domains; it challenges the existing governance
and access defaults given it has not received a fundable score through peer review,
it sets out to explore the data and generate hypotheses and requests linked, record-
level sensitive information that is not tailored to a defined set of questions or time-
period. However, the risk is low on other domains given the data will be stored on
a vetted safe haven, the research intends to foster additional insights into disease
development over time and no commercial or other private interests are at play.

28.6 Conclusion

Changes in technology, the view of data as an asset, commitment to making more
data available, the ubiquity of data collection, and growing interest in linking
different data sets, all point to a need for transparent governance models for data
access. It is no longer feasible to rely on de-identification, anonymization, or
consent as primary features of governance. Data are changing and so is the public’s
relationship to privacy. It is imperative that we develop systems of governance
for data access that reflect public values, have the public’s trust, and encourage
accountable uses of data for a spectrum of users.

The proportionate governance framework outlined here offers a comprehensive
and flexible framework for data access. It provides a way to meet increasing demand
(from both suppliers and users of data), while fully respecting the privacy and other
interests of patients and the public. It also enables expanding users beyond the
academic community into groups such as non-profits and the private sector and
innovators. It would support uses including quality improvement, data mining and
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predictive analytics. The framework is flexible enough to meet local circumstance
including legal and ethical requirements and rigorous enough to meet the needs of
data stewards and the public, who are the individuals represented in the data.

This is not to suggest, however, that implementing a proportionate governance
framework will be seamless. Adopting this form of adjudication for data access
will be a culture shift. Moving to a proportionate and risk-based approach implies
changing from a culture of risk-minimization (or avoidance) to a society that
embraces the difficult balancing act between risk and public interest, expanding
an ability to make justifiable and appropriate judgments regarding diverse data use
and users. Making this shift will require endorsement from key stakeholders, which
will only be possible if their needs and concerns are embedded in the definition of
principles and the approach to proportionality.

There are many specifics that would need to be determined in order to implement
a proportionate governance framework. A critical one is determining the factors that
differentiate low, medium, high and very high risk for each review domain. In this
chapter we provided suggested starting points, but these need to be adjusted to local
circumstance with input from stakeholders, including the public. The framework is
an outline that needs filling in. It is a tool for conversations that must lead to an
environment in which all stakeholders have their input heard and ultimately give
their consent to governance.

There are also decisions that must be made around translating risk assessment to a
review process. As with any model of governance, the devil is in the detail. Adopting
a proportionate governance framework implies broad commitment to the notion of
a more open research culture and creating consensus around important principles.
There has been a great deal of talk about the importance of using available data for
research and innovation. It is now time to address the relevant principles and how to
put them into practice.

Acknowledgements We are grateful to Dawn Mooney for the figures in this chapter, to Megan
Engelhardt for help with formatting, and to two anonymous reviewers whose comments greatly
improved the content and presentation of the material.

References

1. Anderson, N., Edwards, K.: Building a chain of trust: using policy and practice to enhance
trustworthy clinical data discovery and sharing. In: Proceedings of the 2010 Workshop on
Governance of Technology, Information and Policies, pp. 15–20. ACM, New York (2010)

2. Biesecker, L.G.: Hypothesis-generating research and predictive medicine. Genome Res. 23(7),
1051–1053 (2013)

3. Brook, E.L., Rosman, D.L., Holman, C.D.: Public good through data linkage: measuring
research outputs from the Western Australian data linkage system. Aust. N. Z. J. Public Health
32(1), 19–23 (2008)

4. Canadian Institutes of Health Research.: CIHR best practices for protecting privacy in health
research. http://cihr-irsc.gc.ca/e/46068.html (2005). Accessed 22 June 2015

http://cihr-irsc.gc.ca/e/46068.html


28 Comprehensive, Proportionate Governance of Data Access 761

5. Canadian Institutes of Health Research.: CIHR peer review manual for grant applications.
http://www.cihr-irsc.gc.ca/e/4656.html (2009). Accessed 22 June 2015

6. Canadian Institutes of Health Research.: CIHR open operating grant program competitions -
frequently asked questions (FAQ). http://www.cihr-irsc.gc.ca/e/47960.html (2014). Accessed
22 June 2015

7. Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council
of Canada.: Tri-council policy statement: ethical conduct for research involving humans. http://
www.ncehr-cnerh.org/english/code_2/ (2010). Accessed 22 June 2015

8. Cate, F. H., Cullen, P. & Mayer-Schönberger, V., 2013. Data Protection Principles for the 21st
Century, Oxford: Oxford Internet Institute. http://www.oii.ox.ac.uk/publications/

9. Chamberlayne, R., Green, B., Barer, M., Hertzman, C., Lawrence, W., Sheps, S.: Creating a
population-based linked health database: a new resource for health services research. Can. J.
Public Health (Revue Canadienne De Sant Publique) 89(4), 270–273 (1998)

10. Collins, P., Slaughter, P., Roos, N., et al.: Harmonizing research and privacy: Sandars for a
collaborative future. Phase II final report: privacy best practices for secondary data use (SDU).
http://umanitoba.ca/faculties/health_sciences/Final_Report.pdf (2006). Accessed 22 June 2015

11. Davidson, S., McLean, C., Treanor, S., et al.: Public acceptability of data sharing between the
public, private and third sectors for research purposes. http://www.gov.scot/Publications/2013/
10/1304 (2013). Accessed 22 June 2015

12. DenHoed, A.: Give Yourself Away - The New Yorker. http://www.newyorker.com/culture/
culture-desk/giving-away-personal-data-online (2014). Accessed 22 June 2015

13. Economic and Social Research Council: Big Data Investment: Capital funding - ESRC.
http://www.esrc.ac.uk/news-and-events/announcements/25683/Big_Data_Investment_
Capital_funding_.aspx (2013). Accessed 22 June 2015

14. Emam, K.E.: Methods for the de-identification of electronic health records for genomic
research. Genome Med. 3, 25 (2011)

15. Emam, K.E.: Re-identification risk assessment and anonymization process. http://www.
privacy-analytics.com/de-id-university/white-papers/understanding-risk/ (2013). Accessed 22
June 2015

16. Engle, E.: The history of the general principle of proportionality: an overview. Dartmouth Law
J. 1, 11 (2012)

17. Enserink, B., Chin, G.: The end of privacy. Science 80(1), 490–491 (2015)
18. Executive Office of the President.: Memorandum for the Heads of Executive Departments

and Agencies 3-9-09. https://www.whitehouse.gov/the-press-office/memorandum-heads-
executive-departments-and-agencies-3-9-09 (2013). Accessed 22 June 2015

19. Faden, R., Beauchamp, T., King, N.: A History and Theory of Informed Consent. Oxford
University Press, New York (1986)

20. Ford, D., Jones, K., Verplancke, J.P., Lyons, R., John, G., Brown, G., Brooks, C., Thompson,
S., Bodger, O., Couch, T., Leake, K.: The SAIL Databank: building a national architecture for
e-health research and evaluation. BMC Health Serv. Res. 9 (2009)

21. Fox-Brewster, T.: Londoners give up eldest children in public Wi-Fi security horror
show. http://www.theguardian.com/technology/2014/sep/29/londoners-wi-fi-security-herod-
clause (2014). Accessed 22 June 2015

22. Fullerton, S., Anderson, N., Nicholas, R., Guzauskas, G., Freeman, D., Fryer-Edwards, K.:
Meeting the governance challenges of next-generation biorepository research. Sci. Transl.
Med. 2(15), 15cm3 (2010)

23. Godard, B., Schmidtke, J., Cassiman, J., Ayme, S.: Data storage and DNA banking for
biomedical research: informed consent, confidentiality, quality issues, ownership, return of
benefits. A professional perspective. Eur. J. Hum. Genet. 11(2), 88–122 (2003)

24. Government of British Columbia, Ministry of Labour.: Citizens’ services and open govern-
ment: data BC concept of operations. http://www.gov.bc.ca/citz/ (2012). Accessed 22 June
2015

25. Gymrek, M., McGuire, A., Golan, D., Halperin, E., Erlich, Y.: Identifying personal genomes
by surname inference. Science 339(6117), 321–324 (2013)

http://www.gov.bc.ca/citz/
http://www.theguardian.com/technology/2014/sep/29/londoners-wi-fi-security-herod-clause
http://www.theguardian.com/technology/2014/sep/29/londoners-wi-fi-security-herod-clause
https://www.whitehouse.gov/the-press-office/memorandum-heads-executive-departments-and-agencies-3-9-09
https://www.whitehouse.gov/the-press-office/memorandum-heads-executive-departments-and-agencies-3-9-09
http://www.privacy-analytics.com/de-id-university/white-papers/understanding-risk/
http://www.privacy-analytics.com/de-id-university/white-papers/understanding-risk/
http://www.esrc.ac.uk/news-and-events/announcements/25683/Big_Data_Investment_Capital_funding_.aspx
http://www.esrc.ac.uk/news-and-events/announcements/25683/Big_Data_Investment_Capital_funding_.aspx
http://www.newyorker.com/culture/culture-desk/giving-away-personal-data-online
http://www.newyorker.com/culture/culture-desk/giving-away-personal-data-online
http://www.gov.scot/Publications/2013/10/1304
http://www.gov.scot/Publications/2013/10/1304
http://umanitoba.ca/faculties/health_sciences/Final_Report.pdf
http://www.oii.ox.ac.uk/publications/
http://www.ncehr-cnerh.org/english/code_2/
http://www.ncehr-cnerh.org/english/code_2/
http://www.cihr-irsc.gc.ca/e/47960.html
http://www.cihr-irsc.gc.ca/e/4656.html


762 K.M. McGrail et al.

26. Harmon, S., Graeme, L., Haddow, G.: Identifying personal genomes by surname inference.
Sci. Public Policy 40(25), 1–9 (2013)

27. Hirschhorn, J., Daly, M.: Genome-wide association studies for common diseases and complex
traits. Nat. Rev. Genet. 6(2), 95–108 (2005)

28. Holman, C., Bass, A., Rosman, D., Smith, M., Semmens, J., Glasson, E., Brook, E., Trutwein,
B., Rouse, I., Watson, C., de Klerk, N., Stanley, F.: A decade of data linkage in Western
Australia: strategic design, applications and benefits of the WA data linkage system. Aust.
Health Rev. (A Publication of the Australian Hospital Association) 32(4), 766–777 (2008)

29. Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W., Muehling, J., Pearson, J.,
Stephan, D., Nelson, S., Craig, D.: Resolving individuals contributing trace amounts of DNA
to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet.
4(8), e1000167 (2008)

30. Howard, A.: Open data 500: proof that open data fuels economic activity - techrepublic. http://
www.techrepublic.com/article/open-data-500-proof-that-open-data-fuels-economic-activity/
(2014). Accessed 27 Mar 2015

31. Human Genome Organisation (HUGO), Ethics Committee.: Statement on human genomic
databases. Int. J. Bioeth. 14(3–4), 207–210 (2003)

32. Information Governance/Information and Transparency/13630.: Protecting personal health
and care information: a consultation on proposals to introduce new regulations - GOV.UK.
https://www.gov.uk/government/consultations/protecting-personal-health-and-care-data
(2014). Accessed 27 Mar 2015

33. Institute on Governance.: Defining governance. http://iog.ca/defining-governance/ (2015).
Accessed 27 Mar 2015

34. Jones, K., Ford, D., Jones, C., Dsilva, R., Thompson, S., Brooks, C., Heaven, M., Thayer, D.,
McNerney, C., Lyons, R.: A case study of the Secure Anonymous Information Linkage (SAIL)
Gateway: a privacy-protecting remote access system for health-related research and evaluation.
J. Biomed. Inform. 50, 196–204 (2014)

35. Jutte, D., Roos, L., Brownell, M.: Administrative record linkage as a tool for public health
research. Annu. Rev. Public Health 32, 91–108 (2011)

36. Kelman, C., Bass, A., Holman, C.: Research use of linked health data – a best practice protocol.
Aust. N. Z. J. Public Health 26(3), 251–255 (2002)

37. Khatri, V., Brown, C.: Designing data governance. Commun. ACM 53(1), 148–152 (2010)
38. Kushida, C., Nichols, D., Jadrnicek, R., Miller, R., Walsh, J., Griffin, K.: Strategies for de-

identification and anonymization of electronic health record data for use in multicenter research
studies. Med. Care 50, 82–101 (2012)

39. Lane, J., Schur, C.: Balancing access to health data and privacy: a review of the issues and
approaches for the future. Health Serv. Res. 45(5), 1456–1467 (2010)

40. Laney, D.: 3D data management: controlling data volume, velocity, and variety. Technical
Report, META Group, Stamford. http://blogs.gartner.com/doug-laney/files/2012/01/ad949-
3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf (2001)

41. Laurie, G., Sethi, N.: Towards principles-based approaches to governance of health-related
research using personal data. Eur. J. Risk Regul. 4(1), 43–57 (2013)

42. Lin, Z., Owen, A., Altman, R.: Genomic research and human subject privacy. Science
305(5681), 183–183 (2004)

43. Manitoba Centre for Health Policy – University of Manitoba.: Faculty of
medicine – community health sciences – Manitoba centre for health policy.
http://umanitoba.ca/faculties/health _sciences/medicine/units/community_health_sciences/
departmental_units/mchp/resources/access.html (2015). Accessed 27 Mar 2015

44. Manyika, J., Chui, M., Brown, B.: Big data: the next frontier for innovation, competi-
tion, and productivity –McKinsey & Company. http://www.mckinsey.com/ insights/busi-
ness_technology/big_data_the_next_frontier_for_innovation (2011). Accessed 27 Mar 2015

45. Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution that Will Transform How We Live,
Work, and Think. Houghton Mifflin Harcourt, Boston (2013)

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://umanitoba.ca/faculties/health_sciences/medicine/units/community_health_sciences/departmental_units/mchp/resources/access.html
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://iog.ca/defining-governance/
https://www.gov.uk/government/consultations/protecting-personal-health-and-care-data
http://www.techrepublic.com/article/open-data-500-proof-that-open-data-fuels-economic-activity/
http://www.techrepublic.com/article/open-data-500-proof-that-open-data-fuels-economic-activity/


28 Comprehensive, Proportionate Governance of Data Access 763

46. Medical Research Council.: 20 million pounds for new health informatics research
institute. http://www.mrc.ac.uk/news-events/news/ 20-million-for-new-health-informatics-re-
search-institute/ (2013). Accessed 30 Mar 2015

47. MRC Success Rates.: Medical research council – our research.
http://www.mrc.ac.uk/research/funded-research/success-rates/ (2015). Accessed 27 Mar 2015

48. Narayanan, A.: No silver bullet: de-identification still does not work. https://freedom-to-
tinker.com/blog/randomwalker/no-silver-bullet-de-identification-still-doesnt-work/ (2014).
Accessed 27 Mar 2015

49. NIH Success Rates.: NIH research portfolio online reporting tools (RePORT). http://report.
nih.gov/success_rates/ (2015). Accessed 27 Mar 2015

50. Nuffield Council on Bioethics.: The collection, linking and use of data in biomedical research
and health care: ethical issues. http://nuffieldbioethics.org/wp-content/ (2015). Accessed 27
Mar 2015

51. O’Doherty, K., Burgess, M., Edwards, K., Gallagher, R., Hawkins, A., Kaye, J., McCaffrey,
V., Winickoff, D.: From consent to institutions: designing adaptive governance for genomic
biobanks. Soc. Sci. Med. 73(3), 367–374 (2011)

52. O’Driscoll, A., Daugelaite, J., Sleator, R.: “Big data”, Hadoop and cloud computing in
genomics. J. Biomed. Inform. 46(5), 774–781 (2013)

53. OECD.: OECD principles and guidelines for access to research data from public funding.
http://www.oecd.org/sti/sci-tech/ (2007). Accessed 27 Mar 2015

54. OECD.: OECD guidelines on human biobanks and genetic research databases. http://www.
oecd.org/sti/biotech/ (2009). Accessed 27 Mar 2015

55. OECD.: The 2013 OECD privacy framework. www.oecd.org/sti/ieconomy/oecd_privacy_
framework.pdf (2013). Accessed 27 Mar 2015

56. OECD.: Strengthening health information infrastructure for health care quality governance:
good practices, new opportunities and data privacy protection challenges. http://www.oecd-
ilibrary.org/social-issues-migration-health/ (2013). Accessed 27 Mar 2015

57. Pencarrick-Hertzman, C., Meagher, N., McGrail, K.: Privacy by design at population data BC:
a case study describing the technical, administrative, and physical controls for privacy-sensitive
secondary use of personal information for research in the public interest. J. Am. Med. Inform.
Assoc. 20(1), 25–28 (2012)

58. People Are Willing to give away their personal data for a Cinnamon Cookie. http://mashable.
com/2014/10/01/data-for-cookies/. Accessed 27 Mar 2015

59. Ploem, M., Essink-Bot, M., Stronks, K.: Proposed EU data protection regulation is a threat to
medical research. Br. Med. J. 346, f3534 (2013)

60. Population Health Research Network.: Our funders. http://www.phrn.org.au/about-us/phrn/
funders (2011). Accessed 30 Mar 2015

61. Research Councils UK.: RCUK common principles on data policy. http://www.rcuk.ac.uk/
research/datapolicy/ (2014). Accessed 6 Mar 2015

62. Roder, D., Fong, K., Brown, M., Zalcberg, J., Wainwright, C.: Realising opportunities for
evidence-based cancer service delivery and research: linking cancer registry and administrative
data in Australia. Eur. J. Cancer Care 23(6), 721–727 (2014)

63. Rothstein, M.: Is de-identification sufficient to protect health privacy in research? Am. J.
Bioeth. 10(9), 3–11 (2010)

64. Schneeweiss, S.: Methods for developing and analyzing clinically rich data for patient-centered
outcomes research: an overview. Pharmacoepidemiol. Drug Saf. 21(1), 1–5 (2012)

65. Sethi, N.: Public acceptability of data sharing between the public, private and third sectors for
research purposes. http://www.gov.scot/Publications/2013/10/1304 (2013). Accessed 27 Mar
2015

66. Sethi, N., Laurie, G.: Delivering proportionate governance in the era of eHealth. Med. Law Int.
13(2–3), 168–204 (2013)

67. Stanley, F.: Data for Health. Future Leaders, Sydney (2014)
68. Statistics Canada.: The research data centres program. http://www.statcan.gc.ca/eng/rdc/index

(2009). Accessed 27 Mar 2015

http://www.statcan.gc.ca/eng/rdc/index
http://www.gov.scot/Publications/2013/10/1304
http://www.rcuk.ac.uk/research/datapolicy/
http://www.rcuk.ac.uk/research/datapolicy/
http://www.phrn.org.au/about-us/phrn/funders
http://www.phrn.org.au/about-us/phrn/funders
http://mashable.com/2014/10/01/data-for-cookies/
http://mashable.com/2014/10/01/data-for-cookies/
http://www.oecd-ilibrary.org/social-issues-migration-health/
http://www.oecd-ilibrary.org/social-issues-migration-health/
http://www.oecd.org/sti/ieconomy/oecd_privacy_framework.pdf
http://www.oecd.org/sti/ieconomy/oecd_privacy_framework.pdf
http://www.oecd.org/sti/biotech/
http://www.oecd.org/sti/biotech/
http://www.oecd.org/sti/sci-tech/
http://nuffieldbioethics.org/wp-content/
http://report.nih.gov/success_rates/
http://report.nih.gov/success_rates/
https://freedom-to-tinker.com/blog/randomwalker/no-silver-bullet-de-identification-still-doesnt-work/
https://freedom-to-tinker.com/blog/randomwalker/no-silver-bullet-de-identification-still-doesnt-work/
http://www.mrc.ac.uk/research/funded-research/success-rates/
http://www.mrc.ac.uk/news-events/news/ 20-million-for-new-health-informatics-research-institute/


764 K.M. McGrail et al.

69. Stenbeck, M., Allebeck, P.: Do the planned changes to European data protection threaten or
facilitate important health research? Eur. J. Public Health 21(6), 682–683 (2011)

70. Stevens, L., Laurie, G.: The administrative data research centre Scotland: a scoping report on
the legal & ethical issues arising from access & linkage of administrative data. Technical
Report ID 2487971, Social Science Research Network (2014)

71. Suissa, S., Henry, D., Caetano, P., Dormuth, C., Ernst, P., Hemmelgarn, B., Lelorier, J.,
Levy, A., Martens, P., Paterson, M., Platt, R., Sketris, I., Teare, G., Canadian Network
for Observational Drug Effect Studies (CNODES): CNODES.: The Canadian network for
observational drug effect studies. Open Med. (A Peer-Reviewed, Independent, Open-Access
Journal) 6(4), 134–140 (2012)

72. Sweeney, L.: Matching known patients to health records in Washington state data. CoRR
abs/1307.1370 (2013). http://arxiv.org/abs/1307.1370

73. The Academy of Medical Sciences.: A new pathway for the regulation and governance
of health research. URL https://www.gov.uk/government/news/a-new-pathway-for-the-
regulation-and-governance-of-health-research (2011). Accessed 27 Mar 2015

74. The Financial Services Authority.: Principles-based regulation: focusing on the outcomes that
matter (2007). https://www.fsa.gov.uk/pubs/other/principles.pdf. Accessed 27 Mar 2015

75. The Scottish Government.: Joined-up data for better decisions: guiding principles for data
linkage. http://www.gov.scot/Publications/2012/11/9015 (2012). Accessed 27 Mar 2015

76. World Medical Association.: WMA declaration of Helsinki – ethical principles for medical
research involving human subjects. http://www.wma.net/en/30publications/10policies/b3/
(2013). Accessed 27 Mar 2015

77. Wu, X., Zhu, X., Wu, G.D., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data
Eng. 26, 97–107 (2014)

http://www.wma.net/en/30publications/10policies/b3/
http://www.gov.scot/Publications/2012/11/9015
https://www.fsa.gov.uk/pubs/other/principles.pdf
https://www.gov.uk/government/news/a-new-pathway-for-the-regulation-and-governance-of-health-research
https://www.gov.uk/government/news/a-new-pathway-for-the-regulation-and-governance-of-health-research
http://arxiv.org/abs/1307.1370


Chapter 29
Epilogue

Aris Gkoulalas-Divanis and Grigorios Loukides

Abstract This chapter provides a summary of the main topics and methods that
have been covered in the book, and it draws inferences about various important
aspects of medical data privacy. In particular, it discusses issues and techniques
related to preserving privacy in: (1) data sharing, (2) distributed and dynamic
settings, and (3) emerging applications. Furthermore, it provides an overview of key
legal frameworks for the protection of Personal Health Information (PHI) and of
techniques required to comply with these frameworks, such as text de-identification
and data governance. Moreover, the chapter discusses some promising directions in
the field of medical data privacy.

29.1 Introduction

The collected medical data increase in both quantity and complexity, and are becom-
ing an extremely valuable source for analyses that benefit both medical research and
practice. However, the privacy of medical data remains an serious concern. On the
one hand, privacy breaches continue to occur. For example, more than 600 privacy
breaches that are related to healthcare data were reported only in the last 5 years
by the U.S. Department of Health and Human Services [11]. Alarmingly, these
incidents affect more than 500 and up to 4.9 million individuals each. On the other
hand, attacks to individuals’ privacy become more sophisticated and new threats are
being continuously discovered. To address these issues and preserve data privacy,
significant efforts have been put in order to advance technology, law, and policy.

This handbook aimed to provide a comprehensive coverage of the main research
areas in medical data privacy. In the remainder of the chapter, we revisit each of
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these areas and summarize the research challenges and the solutions that have been
proposed to offer privacy. In addition, we identify some promising areas for future
research in this field.

29.2 Topics and Directions in Privacy Preserving
Data Sharing

Protecting the privacy of medical data prior to their sharing is one of the major
topics in the field of medical data privacy [4]. One of the pioneering efforts to
address privacy in data sharing is the work of Sweeney [9] and Samarati [8]. This
work demonstrated that the removal of personal identifiers, such as patient names
and phone numbers, is not sufficient to protect the privacy of individuals. This is
because other, seemingly innocuous attributes (termed as quasi-identifiers) can be
used, alone or in combination, to link a patient with their record in the shared dataset.
This attack is termed identity disclosure and constitutes a serious privacy breach.

Unfortunately, there have been several incidents of medical data publishing,
where identity disclosure has transpired. For instance, Sweeney [9] first demon-
strated this attack in 2002, by linking a claims database, which contained infor-
mation of about 135 K patients and was disseminated by the Group Insurance
Commission, to the voter list of Cambridge, Massachusetts. The linkage was
performed based on patient demographics (date of birth, zip code, and gender) and
led to the re-identification of William Weld, then governor of Massachusetts. It was
also suggested that more than 87 % of U.S. citizens could be re-identified, based
on such (triangulation) attacks. Many other identity disclosure incidents have been
reported since then [3]. These include attacks in which (1) students re-identified
individuals in the Chicago homicide database by linking the database with the social
security death index, (2) an expert witness re-identified most of the individuals
represented in a neuroblastoma registry, and (3) a national broadcaster re-identified a
patient, who died while taking a drug, by combining the adverse drug event database
with public obituaries.

To mitigate the threat of identity disclosure, various data anonymization algo-
rithms have been developed to produce a sanitized counterpart of the original dataset
that can be shared with untrusted parties. Chapter 2 surveys the most popular of
these algorithms in the context of disseminating patient demographics (relational
data) and diagnosis codes (transaction/set-valued data). The chapter explains the
objectives of the different methods, as well as the main aspects of their operation.
To protect data privacy, anonymization algorithms transform a dataset in order to
enforce a formal privacy principle, such as k-anonymity [8, 9], while preserving data
utility. There are many algorithms for applying k-anonymity and related privacy
principles to various types of data. Some examples of state-of-the-art algorithms,
discussed in detail, are those presented in Chaps. 7 and 8.
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The effectiveness of anonymization algorithms in terms of offering data utility
as well as achieving efficiency, varies significantly. Thus, it is important for a
data owner, such as a healthcare institution, to be able to evaluate a range of
algorithms and select the best one to apply to a given dataset. Until recently, this
was a tedious task, requiring substantial domain knowledge and computer science
expertise. However, recent software systems such as those discussed in Chaps. 5
and 6, have simplified the process of producing anonymous datasets by supporting
a large number of popular anonymization methods and configurations. In addition,
these systems allow, or can be easily extended to allow, the prevention of attacks
beyond identity disclosure [5, 6].

Furthermore, there are cases in which protection from a wide class of attacks is
necessary. This is possible using the principle of differential privacy [2], which is
largely independent of the background knowledge of attackers. Differential privacy
ensures that the addition or removal of any record to/from a dataset has little
effect on the outcome of a calculation. This is achieved through noise addition
(of appropriate magnitude). In several applications that can be supported with the
release of aggregate statistics and do not require publishing of (truthful) data at a
record level, differential privacy offers a good solution. As discussed in Chap. 3,
there are many algorithms for enforcing differential privacy on relational, set-
valued, as well as dynamic stream data (e.g., events produced by health monitoring
applications). The majority of these algorithms add noise to the data or to the
answers of queries that are applied to the data. Minimizing the impact of noise is
essential in order to enhance the data utility, but it is not straightforward, particularly
for high-dimensional data, as explained in Chap. 4.

While significant progress for enhancing privacy-protection in data sharing has
been made, there are still many important research issues that warrant further
investigation. First, sophisticated attacks that are possible by combining inde-
pendently released datasets must be prevented. This should be done under the
realistic assumption that coordination between the institutions that have released the
datasets is prohibited. An interesting method to prevent a class of such attacks for
demographics has been presented in Chap. 8.Further research is needed to prevent
these attacks in more complex data, such as data containing both demographics and
diagnosis codes [7], or longitudinal data [10]. In addition, it is important to design
methods that guard against these attacks, while providing guarantees for the utility
of the data in intended query answering and mining tasks. Another class of attacks
that need to be thwarted are those performed on aggregated data. These attacks have
been the focus of the statistical disclosure control community for years and have led
to various methods, which are surveyed in Chap. 9. To increase the adoption of these
methods on medical data, it is important to strengthen the protection they offer and
to adapt them to operate in web-based data sharing platforms.

Furthermore, to increase the use of privacy-preserving data sharing methods, it is
important to address scalability issues. In fact, most of the existing anonymization
methods are applicable to datasets that fit into the main memory. Thus, they
cannot be used to protect datasets with sizes of several GBs or even TBs. The
development of scalable anonymization methods that potentially take advantage of
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parallel architectures to solve this problem is therefore worthwhile. Recent steps
towards this direction are the works of [12, 13], which are based on the Map/Reduce
computing paradigm [1].

29.3 Topics and Directions in Privacy Preservation
for Distributed and Dynamic Settings

Medical data are often distributed among multiple parties, such as collaborating
healthcare researchers or healthcare organizations that form a consortium. Due to
the privacy considerations that these parties typically have, simply sharing raw
data among them is not feasible. This has led to the development of privacy-
preserving record linkage methods, which allow a set of parties to construct a
“global” data view without sharing their raw data. There are two main directions
in the development of privacy-preserving record linkage methods, as discussed in
Chap. 10. Most of these methods construct the “global” view by employing secure
multiparty computation protocols. That is, they perform the operations needed
for the record linkage using encrypted data. An alternative way is based on data
transformations, and trades-offs privacy for efficiency. That is, each party transforms
their data to enforce k-anonymity or differential privacy, and then the record linkage
(matching) is performed on the transformed data.

Despite the significant research efforts to develop privacy-preserving record
linkage methods, there are some open issues that require further investigation. In
terms of privacy, it is important to design flexible methods, which can deal with
attributes of different sensitivity as well as with malicious parties. In terms of linked
data quality, it is important to design methods that can deal with complex data and
offer high accuracy of linkage. An important step towards advancing the research
in this field is the establishment of dedicated record linkage centers, as discussed
in Chap. 11. The principle behind the operation of these centers is that human
intervention can increase the quality and privacy of linked data.

In addition, privacy-preserving methods need to deal with the dynamic aspects
of healthcare information management. This is because information is constantly
exchanged between different parties, in Health Information Exchange (HIE) sys-
tems. These systems are increasingly used for purposes ranging from patient
diagnosis and treatment to detection of medical identity theft and financial fraud.
However, they pose privacy risks, including potential misuse and unwanted sharing
of information, medical identity theft and financial fraud, as explained in Chap. 12.
These issues are amplified with the use of large quantities of complex medical data,
which are generated by mobile and large-scale networks, and health monitoring
medical devices. Tackling these issues while preserving privacy in HIE systems is
a promising direction for future research. For example, the security architecture of
HIE systems needs to protect data residing in mobile platforms and to account for
potentially vulnerable medical devices.
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Another important area for preserving the privacy of health information is the
design of access control methods. These methods determine what information
should be accessed by each party, as well as when, how, and why access to
information is performed. To control access to healthcare information in a flexible
way, the Role Based Access Control (RBAC) model can be used. This model assigns
permissions to users, based on their roles in organizations to denote specific job
functions and the associated authorities and responsibilities. RBAC can also serve
as basis for solutions that support team collaboration and workflow management,
as discussed in Chap. 13. Another way to control access to information is based on
patient consent management (i.e., give patients the ability to grant and revoke access
to their data). An approach for patient consent management that is designed to deal
with the changes to the context of data over time was presented in Chap. 14. Future
research directions in the area of consent management include the design of methods
that are suitable for mobile devices. In particular, it is interesting to investigate how
patients can preserve the control over their data and consent policies, when it is
not possible for the system to interact with the device (e.g., after the mobile device
has been stolen, lost, or destroyed). Another important direction is to design cross-
domain policies for consent management that are transferable between different
systems. Such policies can greatly simplify consent management in practice.

Furthermore, there is an increasing interest towards the use of cloud infrastruc-
tures for the storage and processing of medical data. This poses certain privacy
threats, including malicious data access, intentional data modification, and identity
spoofing, which were surveyed in Chap. 15. The majority of existing methods to
mitigate these threats are based on cryptographic primitives and are not sufficiently
scalable. Promising research directions in this field involve the improvement of the
scalability of these methods, as well as the design of techniques to automatically
determine whether or not some data must be encrypted in the cloud environment.
Another research direction is to improve the auditing and accountability capabilities
of methods for managing medical data in the cloud. This is important to warrant the
integrity and confidentiality of medical data.

29.4 Topics and Directions in Privacy Preservation
for Emerging Applications

The privacy-preserving management, sharing, and analysis of medical data is
necessary to support an increasing number of emerging applications. For example,
applications featuring genomic, medical image, and Radio Frequency IDentification
(RFID) data were discussed in the book, along with applications requiring biomed-
ical signals and health social network data.

Genomic data are essential to realize the vision of personalized medicine (i.e.,
develop drug and treatments that are tailored for a particular patient). Therefore,
they are increasingly shared among healthcare organizations. The sharing, however,
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of genomic data poses serious privacy threats, as discussed in Chap. 16. These
threats may result in privacy breaches that affect the patient, whose DNA data
are shared, as well as the patient’s ancestors and descendants. To guard against
these threats, it is possible to apply differential privacy [2] to genomic data. An
effective algorithm for enforcing differential privacy on genomic data was presented
in Chap. 17. The development of differentially private algorithms for genomic data
that optimize the utility of the data for a given analysis task, such as performing a
statistical association test or building a mining model, is very important. Another
approach for preserving the privacy of genomic data is based on cryptography.
This approach is applicable when parties are interested in obtaining the result of a
particular analysis task, as explained in Chap. 18. Examples of such tasks are genetic
association studies and medical tests. To increase the practicality of this approach, it
is essential to design methods that are appropriate for the range and complexity
of future analysis tasks (e.g., those involving multiple genomes). Furthermore,
methods that allow non-expert end-users to run computational genomic tests would
be very useful. However, the development of such methods raises questions related
to the information that needs to be presented to end-users. These questions include
how the presented information can match the expectations of the end-users and the
scientific community.

Another type of complex medical data that is becoming increasingly important in
applications is images. In fact, medical image data play a central role in healthcare
applications related to diagnosis, therapy, follow-up, and clinical research. At
the same time, medical image data must be protected from unauthorized access,
modification, and copying. This is possible using a combination of encryption
and watermarking techniques, as explained in Chap. 19. In addition, it is a legal
and ethical requirement to prevent patient re-identification from medical image
data and metadata. This requirement is particularly important for neuroimage data
and metadata, which can reveal sensitive information about individuals, including
serious medical conditions, as it was discussed in Chap. 20. While there are
significant efforts for designing frameworks and platforms for the management
of neuroimage data, privacy-preserving solutions for such data are lacking. In
particular, techniques that are based on objective performance metrics, comply with
key regulations, and can be easily integrated in large-scale platforms are needed.

Emerging applications, such as the prevention of infections in hospital environ-
ments as well as the monitoring of patients’ locations, are based on RFID data. This
type of data, however, creates two privacy issues, namely tracking of the location of
a patient, and preserving the confidentiality of data that is stored in the RFID tag.
Both issues were discussed extensively in Chap. 21. Eliminating tracking is very
important, but also challenging. This is because most existing RFID protocols are
based on the ability of the reader to retrieve the tag’s ID number, which directly
allows tracking. On the other hand, preserving the confidentiality of data stored in
the RFID tag can be achieved using encryption. The main challenge is to develop
scalable methods that are able to deal with the increasing number of RFID tags.

Healthcare applications in hospital environments also feature biomedical signals.
A very important type of signal in the context of the diagnosis of heart-related
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disorders is the ElectroCardioGram (ECG). More specifically, ECG classification
algorithms are central to the diagnosis of ventricular contractions, fibrillation, and
tachycardia. However, these algorithms need to be executed on encrypted data,
to address privacy considerations, as discussed in Chap. 22. The main challenge
here is to preserve both the representation of the ECG data and the intermediate
computation results, which are needed by the classification algorithms. Another
challenge, which becomes increasingly important, is to be able to execute these
algorithms in real-time. Both challenges warrant further research to be fully
addressed.

A different type of emerging medical applications are based on health social
network data. These applications focus on issues of patient health management,
which include providing emotional support, as well as sharing advice and medical
information. Health social network data involve personal and sensitive information
and need to be protected from attacks, including re-identification, discrimination,
profiling and sensitive information disclosure, as explained in Chap. 23. In addi-
tion, it is important to protect the communication and interactions between the
users of health social networks, which include patients, doctors, and caregivers.
Preserving privacy in health social network data is a multifaceted problem, which
needs further research. In particular, it is interesting to develop methods that allow
the privacy-preserving sharing of health network data, in accordance with user-
specified privacy policies and access controls.

29.5 Topics and Directions in Privacy Preservation Through
Policy, Data De-identification, and Data Governance

The preservation of medical data is a legal requirement, posed by various legal
frameworks. These include laws in the United States, United Kingdom, and Canada,
as well as data sharing policies and regulations that have been developed by
major research funding organizations in these countries. These frameworks are a
first, important step to protecting medical data but may also act as barriers to the
global sharing of data, as discussed in Chap. 24. In addition, the breach of privacy
laws and data sharing regulations incurs significant financial costs to healthcare
organizations. Interestingly, the cause of such privacy breaches is often human error.
Therefore, an analysis of the types of human errors is important to improve our
understanding of how these errors lead to privacy breaches and how they can be
avoided. Such an analysis was performed in Chap. 25, for the case of the HIPAA
privacy rule.

To comply with the aforementioned legal frameworks, the shared data must be
de-identified (i.e., be devoid from PHI). This is challenging to perform, particularly
in the case of unstructured (text) data, such as doctors’ clinical notes and prescrip-
tions. Both the detection and the protection of PHI entails significant computational
challenges, which are explained in Chap. 26. The detection of PHI can be performed
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based on pattern matching (e.g., based on rules provided by domain experts)
and machine learning (e.g., classification) algorithms, while privacy protection is
typically achieved by the removal or transformation of PHI. An interesting family of
transformation-based de-identification methods were reviewed in Chap. 27. These
methods replace PHI with surrogates (i.e., synthetic terms that are realistic, in the
sense that they can be read naturally) and offer high utility for certain scenarios,
such as those involving correspondence between doctors. Despite the progress
in de-identification methods, various challenges remain and offer opportunities
for future research. These include increasing the generalizability and accuracy of
de-identification methods for specific types of PHI, as well as the development of
a solid methodology for quantifying the risk of re-identification attacks based on
de-identified text data.

Another requirement that is becoming increasingly important to comply with
legal privacy frameworks, is medical data governance. This is a procedural require-
ment, which assists multiple parties (e.g., a consortium of healthcare organizations)
to achieve a common goal, such as perform a research study. Chapter 28 provided
a comprehensive discussion of medical data governance. To improve the state-of-
the-art in this area, more research is needed to deal with the fact that parties often
have different privacy and data analysis requirements, as well as with the increased
complexity of data. For instance, it is interesting to extend medical data governance
solutions to datasets derived from both EHR systems and health social networks.

29.6 Conclusion

Medical data privacy is an area with a broad spectrum of applications, ranging
from genomics to patient monitoring and health social networks. As a result,
it has attracted significant research interest from the computer science, medical
informatics, and statistics communities. This has resulted in various important and
practically useful approaches for preserving privacy that were categorized in four
areas. The chapter summarized the topics and methods in each of these areas. In
addition, it highlighted some possible directions for future work.
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Glossary

AAD Average Absolute Distance.

ABAC Attribute Based Access Control.

ABE Attribute Based Encryption.

ACA Patient Protection and Affordable Care Act.

ACP Access Control Policy.

ACTORS Automatic Creation and lifecycle managemenT Of authoRization
policieS.

ADNI Alzheimer’s Disease Neuroimaging Interface.

ADVS Attribute-based Designated Verifier Signature scheme.

AES Advanced Encryption Standard.

AHPA Additive Homomorphic Proxy Aggregation.

AIHW Australian Institute of Health and Welfare.

AMC Albany Medical Center.

ANOVA ANalysis Of VAriance.

APC Artial Premature Contractions.

APEC Asia-Pacific Economic Cooperation (privacy framework).

API Application Programming Interface.

AQIM Angle Quantization Index Modulation.

ARE Average Relative Error (measure).

BA Budget Absorption (approach).
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816 Glossary

BAM Binary sequence Alignment/Map (file).

BAT Battery Assisted Passive (tag).

BCLHD British Columbia Linked Health Dataset.

BD Budget Distribution (approach).

BMI Body Mass Index.

BoB VHA Best-of-Breed clinical text de-identification system.

BP Branching Program.

BPP Bits (of message) Per Pixel (of image).

BVP Brain Volume Preservation.

CADPP Critical Assessment of Data Privacy and Protection (community).

CAT Cornell Anonymization Toolkit.

CBA Clustering-Based Anonymizer (algorithm).

CBC Cipher Block Chaining.

CCP-CABE Constant-size Ciphertext Policy Comparative Attribute-Based
Encryption.

CDL Centre for Data Linkage (Australia).

CDR Clinical Data Repository.

CDSS Clinical Decision Support System.

CECUP Clinical Education Center for Upstate Providers.

CEI (New York State HIV) Clinical Education Initiative.

CEW Commutative Encryption and Watermarking.

CFB Cipher FeedBack.

CHeReL Centre for Health Record Linkage (Australia).

CHIR VHA Consortium for Healthcare Informatics Research.

CI Certified Institution.

CKE Content Key Encryption.

CM Classification Metric.

CNV Copy-Number Variation.

CP Cloud Platform.

CP-ABE Ciphertext Policy Attribute Based Encryption.
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CRF Conditional Random Field.

CSCW Computer-Supported Cooperative Work.

CSP Cloud Service Provider.

CSV Comma-Separated Values.

DAC Data Access Committee.

DAC Discretionary Access Control.

DAC Data Access Committee.

dbGaP database of Genotypes and Phenotypes.

DC-QIM Distortion Compensated Quantization Index Modulation.

DCT Discrete Cosine Transform.

DES Data Encryption Standard.

DFT Discrete Fourier Transform.

DICOM Digital Imaging and Communications in Medicine.

DIN Drug Identification Number.

DIS DISassociation (algorithm).

DLB Data Linkage Branch (Western Australia).

DM Discernibility Metric.

DM Dither Modulation.

DMP Dossier Medical Personnel.

DNA Deoxyribonucleic Acid.

DOS Denial of Service (attack).

DP Differential Privacy.

DP Data Provider.

DPA Data Protection Authority.

DPD Data Protection Directive.

DS4P Data Segmentation For Privacy (initiative).

DSS Data Sharing Service.

DTC Direct To Customer (service).

DTE Distribution-Transforming Encoder.

DUA Data Use Agreement.
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DUC Data Use Certification.

DVS Designated Verifier Signatures.

EC Evaluation Center.

ECB Electronic CodeBook.

ECG ElectroCardioGram.

ECMC Erie County Medical Center.

EE Expansion Embedding.

EEA European Economic Area.

EEG Electroencephalography.

EFPA Enhanced Discrete Fourier Transform.

EFW Encryption Followed by Watermarking.

EHR Electronic Health Record.

EMR Electronic Medical Record.

ENISA European Network and Information Security Agency.

EPC Electronic Product Code.

ePHI electronic Protected Health Information.

ESPAC Efficient and Secure Patient-centric Access control Scheme.

FFR Facial Feature Removal.

FHE Fully Homomorphic Encryption.

FIDIS Future of Identity in the Information Society.

FIPPA Freedom of Information and Protection of Privacy Act (Canada).

FIPS Fair Information Practice Principles.

FTC Federal Trade Commission.

GC Generalization Cost (measure).

GCP Global Certainty Penalty (method).

GDS Genomic Data Sharing (policy).

GP General Practitioner.

GPPM Genomic Privacy-Preserving Mechanism.

GPRD General Practice Research Datalink (UK).

GUI Graphical User Interface.
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GWAS Genome-Wide Association Study.

HA Health Authority.

HBC Honest-But-Curious (adversary).

HD Hellinger Distance (measure).

HE Honey Encryption (framework).

HF High Frequency.

HGP Human Genome Project.

HGS Human Genomic Study.

HHS (Department of) Health and Human Services.

HIDE Health Information DE-identification.

HIE Health Information Exchange.

HIMSS Healthcare Information and Management Systems Society.

HIPAA U.S. Health Insurance Portability and Accountability Act.

HIS Health Information System.

HITECH U.S. Health Information Technology for Economic and Clinical Health
Act.

HL7 Health Level 7 (standard).

HME Homomorphic Encryption.

HPC Health Personal Card.

HPE Hierarchical Predicate Encryption.

HS Histogram Shifting.

HSN Healthcare Social Network.

IBE Identity-Based Encryption.

IC Institutes and Centers.

ICT International Classification of Diseases.

iDASH integrating Data for Analysis, anonymization and SHaring.

ILM Information Loss Metric.

IOM Institute of Medicine.

IoT Internet of Things.

IRB Institutional Review Board.



820 Glossary

ISM Industrial, Scientific and Medical (frequency band).

IT Information Technology.

JPEG Joint Photographic Experts Group (standard).

JWD Joint Watermarking-Decryption.

KHS Key Holder Site.

KP-ABE Key Policy-Attribute Based Encryption.

K-S Kolmogorov-Smirnov (test).

LBP Linear Branching Program.

LCE Lossless Compression Embedding.

LDF Linear Discriminant Function.

LIMS Laboratory Information Management System.

LONI Laboratory for NeuroImaging.

LRU Least Recently Used (eviction policy).

LSB Least Significant Bit.

LSH Locality-Sensitive Hashing (function).

LUT Look-Up Table.

MAC Mandatory Access Control.

MCHP Manitoba Centre for Health Policy (Canada).

MCP Multi-Cloud Policy.

MD Multinomial-Dirichlet synthesizer.

MD5 Message Digest 5 (algorithm).

MeDS Medical De-identification System.

MHC Mental Health Center.

MIST MITRE corporation Identification Scrubber Toolkit.

MK Masking and Key manager.

MLE Maximum Likelihood Estimation.

MLI Minimum Linkage Information.

MPI Master Patient Index.

MRE Matching Relative Error.

MRI Magnetic Resonance Imaging.
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MRSE Multi-keyword Ranked Search over Encrypted Data.

MSB Most Significant Bit.

MU Medical Unit.

NCBI National Center for Biotechnology Information.

NCP Normalized Certainty Penalty (measure).

NHS National Health Service.

NIH National Institutes of Health.

NIST National Institute of Standards and Technology.

NLP Natural Language Processing.

NN Nearest Neighbour.

NN Neural Network.

NPO (Swedish) National Patient Summary (initiative).

NRMSE Normalized Root-Mean-Square Error.

NSERC Natural Sciences and Engineering Research Council of Canada.

NSR Normal Sinus Rhythm.

OASIS Organization for the Advancement of Structured Information Standards.

OCBE Oblivious Commitment Based Envelop (protocol).

OCR Optical Character Recognition.

OECD Organization for Economic Cooperation and Development.

OFB Output FeedBack.

ONC Office of the National Coordinator (in HHS).

ONS Office for National Statistics (UK).

ORLS Oxford Record Linkage Study.

OSN Open Social Network.

OT Oblivious Transfer.

PACS Picture Archiving and Communications Systems.

PAP Policy Administration Point.

PBE Password Based Encryption.

PBR Principles-Based Regulation.

PCE Patient Controlled Encryption.
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PCEHR (Australian) Personally Controlled Electronic Health Record (initiative).

PDP Policy Decision Point.

PDS Privacy-preserving Disease Susceptibility test.

PEP Policy Enforcement Point.

PET Privacy-Enhancing Technology.

PGP Personal Genome Project.

PHDA Priority-based Health Data Aggregation.

PheWAS Phenome-Wide Association Study.

PHI Protected Health Information.

PHR Personal Health Record.

PII Personally Identifying Information.

PIM Private Information Matching (model).

PINQ Privacy INtegrated Queries.

PIP Policy Information Point.

PIPEDA Personal Information Protection and Electronic Documents Act
(Canada).

PKE Public Key Encryption.

PPGL Privacy Preserving Group Linkage.

PPRL Privacy Preserving Record Linkage.

P-QIM Perpetual Quantization Index Modulation.

PRAM Post-RANdomization (method).

PRE Proxy Re-Encryption.

PSD Private Spatial Decomposition.

PSNR Peak Signal-to-Noise Ratio.

PSUC Prevention and Substance Use Center.

PU Processing Unit.

PVC Premature Ventricular Contractions.

QA Quality Assessment.

QDF Quadratic Discriminant Function.

QID Quasi-IDentifier/Quasi-IDentifying attribute.
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QIM Quantization Index Modulation.

RBAC Role Based Access Control.

RDBMS Relational DataBase Management Systems.

RDM Rational Dither Modulation.

RE Relative Error.

RF Radio Frequency.

RFID Radio Frequency IDentification.

RLS Record Locator Service.

ROI Region Of Interest.

RONI Region Of Non-Interest.

RRC Resource and Referral Center.

RT Relational-Transaction.

RTLS Real-Time Location System.

SA Situation Awareness.

SAIL Secure Anonymized Information Linkage.

SAM Sequence Alignment/Map (file).

SAMHSA U.S. Department of Substance Abuse and Mental Health Services
Administration.

SARS Severe Acute Respiratory Syndrome.

SDL Statistical Disclosure Limitation.

SHA-1 Secure Hashing Algorithm 1.

SHE Somewhat Homomorphic Encryption.

SHIP ScottisH Informatics Programme.

SKE Symmetric Key Encryption.

SLK Statistical Linkage Key.

SMC/SMPC Secure Multi-Party Computation (protocol).

SNB Slide Negative Binomial (distribution).

SNOMED-CT Systematized Nomenclature of Medicine-Clinical Terms.

SNP Single Nucleotide Polymorphism.

SNR Signal-to-Noise Ratio.
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SNV Single Nucleotide Variation.

SPED Signal Processing in the Encrypted Domain.

SPIN Shared Pathology Informatics Network.

SPU Storage and Processing Unit.

SSE Searchable Symmetric Encryption.

SSH Secure SHell (protocol).

SSHRC Social Sciences and Humanities Research Council of Canada.

SSL Secure Sockets Layer (protocol).

SSN Social Security Number.

SVM Support Vector Machine.

SVT SupraVentricular Tachycardia.

SWRL Semantic Web Rule Language.

SWT Standard Widget Toolkit.

TA Trusted Authority.

TC Technology Center.

TF-IDF Term Frequency-Inverse Document Frequency.

TLE Two Layer Encryption.

TLS Transport Layer Security.

TPDC Testing, Post-Exposure Prophylaxis, and Diagnosis Center.

TR Teleo-Reactive (programming).

UCSP Uniform Ciphertext by Swapping Plaintext (approach).

UCUP Uniform Ciphertext/Uniform Plaintext (approach).

UHF Ultra-High Frequency (band).

UID Unique IDentifier.

UL Utility Loss (function).

UML Unified Modeling Language.

UMLS Unified Medical Language System (US National Library of Medicine).

UNICON UNIversal Constraint ONtology.

URMC University of Rochester Medical Center.

VF Ventricular Fibrillation.
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VHA U.S. Veterans Healthcare Administration.

VSA Valuemetric Scaling Attack.

VT Ventricular Tachycardia.

WBAN Wireless Body Area Network.

WFE Watermarking Followed by Encryption.

WGS Whole Genome Sequencing.

WHO World Health Organization.

WorldII World Legal Information Institute.

XACML eXtensible Access Control Markup Language.

XML Extensible Markup Language.

XNAT eXtensible Neuroimaging Archive Toolkit.

ZIP U.S. Zone Improvement Plan (postal codes).
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