
Chapter 9
Security Aspects of Compressed Sensing

Tiziano Bianchi and Enrico Magli

Abstract In this chapter, wewill consider the security achievable by the compressed
sensing (CS) framework under different constructions of the sensing matrix. CS can
provide a form of data confidentiality when the signals are sensed by a random
matrix composed of i.i.d. Gaussian variables. However, alternative constructions,
based either on different distribution or on circulant matrices, which have similar CS
recovery performance as Gaussian random matrices and admit faster implementa-
tions, are more suitable for practical CS systems. Compared to Gaussian matrices,
which leak only the energy of the sensed signal, we show that generic matrices leak
also some information about the structure of the sensed signal. In order to character-
ize this information leakage, we propose an operational definition of security linked
to the difficulty of distinguishing equal energy signals and we propose practical
attacks to test this definition. The results provide interesting insights on the security
of generic sensing matrices, showing that a properly randomized partial circulant
matrix can provide a weak encryption layer irrespective of the signal sparsity and
the sensing domain.

9.1 Introduction

Compressed sensing (CS) has recently been proposed as an efficient framework for
acquiring sparse signals represented by few nonzero coefficients in a suitable basis
[8]. CS relies on the fact that linear measurements of a sparse signal enable signal
recovery with high probability when the measurements satisfy certain incoherence
properties with respect to the signal basis. Interestingly, measurements acquired
using linear projections generated according to a random sensing matrix have such
properties [3]. The low complexity acquisition and reduced energy consumption
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offered by CS can be beneficial to several applications, as shown by recent works
on spectrum sensing [9], wireless sensor networks [11], network anomaly detection
[15]. Hence, assessing whether the randomness in the acquisition process implicitly
provides some kind of confidentiality is an important open problem.

In the literature, the security of CS has been analyzed following two main para-
digms. A first approach is to argue that CS provides computational secrecy if viewed
as a cryptosystem, since looking for the correct sensing matrix over the key space
is a computationally intractable problem [16, 17]. However, this approach does not
provide any formal security proof regarding CS. The second approach is to consider
the security of random linear measurements according to an information theoretic
framework [19]. As correctly pointed out in [17], CS does not provide information
theoretic secrecy, since the mutual information between the measurements and the
sensed signal is always greater than zero. However, it is possible to prove that CS
measurements asymptotically reveal only the energy of the signal [2] and that nor-
malizing the measurements can provide a perfectly secure channel in the case of
Gaussian sensing matrices [1].

The results in the previous works are based on the central limit theorem and
the properties of the Gaussian distribution and are valid when the elements of the
sensing matrix are i.i.d. random variables. Moreover, they consider a scenario in
which the sensing matrix is continually updated, implementing a sort of one time
pad. Such requirements are usually too demanding for practical CS systems. Using
fully random matrices requires either storing or generating on the fly a great amount
of random values. Moreover, the generation of Gaussian distributed values may be
difficult in low complexity systems.

The above problems can be solved in practice by resorting to structured matrices
[7, 12] and generating the sensing matrix according to simpler distributions, like
the Bernoulli one. However, even if such constructions guarantee similar recovery
properties as fully random matrices made of Gaussian i.i.d. values, their security
properties are still not fully understood. In this chapter, we will analyze the security
of practical sensing matrices according to an alternative security definition based on
the performance of a detector which tries to distinguish different signals from their
measurements. We will also provide useful bounds to characterize the security of
CS according to this definition and validate such bounds in simple scenarios through
simulations.

9.2 Background

9.2.1 Compressed Sensing

A signal x ∈ Rn is called k-sparse if there exists a basis Φ such that x = Φϑ
and ϑ has at most k nonzero entries, i.e., ||ϑ||0 ≤ k. According to the compressed
sensing framework, a k-sparse signal can be exactly recovered from m < n linear
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measurements
y = Ax (9.1)

by solving a non-convex minimization problem [4, 8].
In practice, if the entries of A are i.i.d. variables from a sub-Gaussian distribution,

then exact recovery of k-sparse signals can be achieved with very high probability
by solving the convex minimization problem

ϑ̂ = argmin
ϑ

||ϑ||1, subject to AΦϑ = y (9.2)

as long as m = O(k log(n/k)) [3].

9.2.2 Security Definitions

Let us call the set of possible plaintextsP , the set of cipher texts C and a key K . A
private key cryptosystem is a pair of functions eK : P → C , dK : C → P such
that, given a plain text p ∈ P , and a ciphertext c ∈ C , we have that dK (eK (p)) = p
and that it is unfeasible, without knowing the key K , to determine p such that
eK (p) = c.

A cryptosystem is said to be perfectly secure [19] if the posterior probability of
the ciphertext given the plaintext p is independent of p, i.e., if

P(c|p) = P(c). (9.3)

Given a perfectly secure cryptosystem, an attack cannot be more successful than
guessing the plaintext at random.

Following the approach in [1], we define a CS-based cryptosystem where the sig-
nal x is the plain text p, the sensingmatrix A is the secret key K and themeasurement
vector y is the cipher text c. The encryption function eA is the matrix multiplica-
tion between the sensing matrix A and the signal x ; the decryption is achieved by
solving the problem in (9.2). We assume that each sensing matrix is used only once
(one-time sensing matrix (OTS) scenario), and that different sensing matrices are
statistically independent. Under this scenario, we can assume that the adversary has
only knowledge of the measurements y (ciphertext-only attack (COA) scenario),
since the knowledge of plaintext/ciphertext pairs (x, y) does not reveal anything
about the unknown plaintexts. CS-based cryptosystems cannot achieve in general
perfect secrecy [1, 17]. However, weaker security notions may apply, as we will
show in the next sections.
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9.3 Security of the Measurements

In this section, we summarize the main results regarding the security of CS mea-
surements. In the first subsection, we review the security of fully random sensing
matrices, i.e., when the matrix entries are i.i.d. random variables. In the second sub-
section, we address the security of partial circulant random sensing matrices, which
have an important role in the deployment of practical CS systems.

9.3.1 Fully Random Matrices

Let us consider the OTS cryptosystem defined by y = Ax . Let us denote with I (x, y)

the mutual information between x and y [5], and define Ex = ||x ||22. We have the
following important result [1]:

Theorem 9.1 If [A]i, j are i.i.d. zero-mean Gaussian variables, then the OTS cryp-
tosystem satisfies I (x; y) = I (Ex ; y).

The above result says that an OTS cryptosystem using an i.i.d. Gaussian sensing
matrix does not reveal anythingmore about x than its energy andwhat can be inferred
by knowing its energy. It is worth noting that this is true irrespective of the sparsity
degree of x , that is, x does not necessarily have to be sparse. In the following, we
will denote such a cryptosystem as Gaussian-OTS (G-OTS) cryptosystem.

The special properties of Gaussian sensing matrices can be exploited to obtain a
perfectly “secured” version of the G-OTS cryptosystem. Let us modify the G-OTS
cryptosystem so that only normalized measurements are transmitted, i.e., using as
ciphertext the vector

uy =
{

y/
√
Ey Ey > 0

U Ey = 0
(9.4)

where U is a random vector uniformly distributed on a unit radius m-sphere. We
denote it as SG-OTS.

Theorem 9.2 The SG-OTS cryptosystem is perfectly secure, i.e., P(uy |x) = P(uy).

Proof It is easy to verify that for a Gaussian A the vector y is spherically distributed,
i.e., uy is uniformly distributed on the unit radius m-sphere irrespective of x . ��

9.3.2 Circulant Matrices

Due to the complexity of performing the product Ax when A is a fully randommatrix,
some authors have suggested to use partial circulant matrices generated from a row
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of i.i.d. variables [12, 18, 21]. Such matrices have the following form

A =

⎡
⎢⎢⎢⎣

a1 a2 a3 . . . an

an a1 a2 . . . an−1
...

...

an−m+2 an−m+3 an−m+4 . . . an−m+1

⎤
⎥⎥⎥⎦ (9.5)

where thefirst rowaT = [a1, a2, . . . , an] is a vector of i.i.d. variables fromaGaussian
or sub-Gaussian (e.g., Bernoulli) distribution. Partial circulant matrices have similar
recovery performance as fully random matrices [21]. Moreover, they can be diago-
nalized using a discrete Fourier transform (DFT) as

A = PW H �W (9.6)

where W is the unitary DFT matrix, � is a diagonal matrix whose nonzero elements
are the DFT of the sequence [a1, an, an−1, . . . , a2], i.e., the first column of the n × n
fully circulant matrix generated from aT , and P is a m ×n matrix that selects the first
m entries of a vector of n elements. Thanks to the above decomposition, the product
Ax can be efficiently implemented using a fast Fourier transform (FFT). Moreover,
the cost of transmitting or generating the sensing matrix is also sensibly reduced,
since only n random values are required.

In order to generalize the concept of partial circulant matrix, in the following we
will consider sensing matrices that can be expressed as

A = PW H �W R. (9.7)

In the above notation, we assume that P select a generic subset of m indexes [21],
whereas R is a generic scrambling matrix. The above construction is somewhat
similar to the structurally random matrices proposed in [7].

Let us consider the OTS cryptosystem defined by y = Ax , where A can be
expressed as in (9.7) and the matrices P and R are public. We will denote such a
cryptosystem asOTS-circulant (OTS-C). Let us defineCv as the circular autocorrela-
tion matrix of vector v, that is, [Cv]i j = ∑n

r=1 vrvr+i− j mod n , for i, j = 1, . . . , n,
where [A]i j denotes the element in the i th row and j th column of matrix A. It is
easy to verify that Cv is a Toeplitz matrix and that its diagonal elements are equal to
Ev = vT v. We have the following result:

Theorem 9.3 If ai , i = 1, . . . , n, are i.i.d. zero-mean Gaussian variables, then the
OTS-C cryptosystem satisfies P(y|x) = P(y|PCRx PT ).

Proof Let us consider the probability distribution function P(y|x) for a given x .
Since ai are Gaussian, we have that P(y|x) is a multivariate Gaussian distribution
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with mean μy|x and covariance matrix Cy|x . It is immediate to find μy|x = E[y|x] =
E[A]x = 0, whereas we have

Cy|x = E[AxxT AT ] = E[PW H �(W Rx)(W Rx)H �H W PT ]
= n PW Hdiag{W Rx}E[(W H a)(W H a)H ]

×diag{W Rx}H W PT

= n PW Hdiag{W Rx}W H E[aaT ]Wdiag{W Rx}H W PT

= nσ2
A PW Hdiag{W Rx}diag{W Rx}H W PT = σ2

A PCRx PT

(9.8)

where diag{v} denotes a diagonal matrix defined by vector v, we use � = √
n ·

diag{W H a} and the fact that diag{u}v = diag{v}u, and we assume that ai have vari-
ance σ2

A. It follows that y depends on x only through the autocorrelation PCRx PT ,
i.e., P(y|x) = P(y|PCRx PT ). ��

The above result says that an OTS-C cryptosystem using i.i.d. Gaussian variables
reveals only some elements of the circular autocorrelation matrix of Rx , according
to the particular selection matrix P . It is worth noting that this is true irrespective of
the sparsity degree of x , that is, x does not necessarily have to be sparse.

In the following, we will consider three variants of the OTS-C cryptosystem:

1. Gaussian-OTS-C (G-OTS-C) cryptosystem, where P is fixed and public and R
is the identity matrix, implying P(y|x) = P(y|PCx PT );

2. Gaussian-OTS-singly randomized circulant (G-OTS-R1), where the selection
matrix P is randomly drawn, with uniform distribution, over all the possible
choices of m indexes out of n and kept secret whereas R is the identity matrix. In
this case, it is easy to derive

P(y|x) = 1

NP

NP∑
r=1

N (0,σ2
A Pr Cx PT

r )

where Pr denotes the r th possible selection matrix, NP = n!/(n − m)!, and
N (μ, C) denotes a multivariate Gaussian distribution with mean μ and covari-
ance matrix C .

3. Gaussian-OTS-doubly randomized circulant (G-OTS-R2), where P is chosen as
above and R is a diagonal matrix introducing a random sign flip on the elements
of x , i.e., its diagonal elements are i.i.d. Rademacher variables. In this case, we
obtain

P(y|x) = 1

NP

1

NR

NP∑
r=1

NR∑
s=1

N (0,σ2
A Pr CRs x PT

r )

where Rs denotes the sth possible sign randomization matrix and NR = 2n .
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9.4 Security Metrics

Measurements taken with a non-Gaussian or a circulant sensing matrix in general
are not distributed according to a spherically symmetric distribution. As a result, this
kind of sensing matrices provide a weaker security than Gaussian sensing matrices,
since their information leakage is not limited to the energy of x [1]. In order to
characterize this additional leakage, we introduce a security metric based on the
problemof distinguishingwhether themeasurements y comes fromoneof twoknown
signals x1 and x2. This security definition is inspired to indistinguishability definitions
commonly used in cryptography [10]. Let us consider a signal x that belongs to a two-
element set {x1, x2}; a detector is a function that given the measurements y outputs
one of two possible signals x1, x2. Formally, this can be defined as D : R

m →
{x1, x2}. Given a certain detector, we define the probability of detection with respect
to signal xi as Pd,i = Pr{D(y) = xi |x = xi } and the respective probability of false
alarm as Pf,i = Pr{D(y) = xi |x �= xi }. It is immediate to verify Pd,2 = 1 − Pf,1

and Pf,2 = 1 − Pd,1, so that Pd,1 − Pf,1 = Pd,2 − Pf,2 � Pd − Pf .

Definition 1 A cryptosystem is ϑ-indistinguishable with respect to two signals x1
and x2 if for every possible detector D(y) we have

Pd − Pf ≤ ϑ. (9.9)

According to the above definition, lower values of ϑ correspond to higher security,
with ϑ = 0 being equivalent to perfect secrecy.

Given an OTS cryptosystem defined by a sensing matrix A with a certain dis-
tribution, we can link the ϑ-indistinguishability of the cryptosystem to P(y|x1) and
P(y|x2). Let us define the total variation (TV) distance between the probability dis-
tributions PA(a) and PB(b) as δ(PA(a),PB(b)) = 1

2

∫ |PA(t) − PB(t)|dt . Let us
also denote in short δ(P(y|x1),P(y|x2)) = δ(P1,P2). We have the following:

Theorem 9.4 An OTS cryptosystem is at least δ(P1,P2)-indistinguishable with
respect to two signals x1 and x2.

Proof The sum of error probabilities in a statistical hypothesis test can be lower
bounded as [14]

Pr{D(y) = x2|x1} + Pr{D(y) = x1|x2} = 1 − Pd + Pf

≥ 1 − δ(P(y|x1),P(y|x2)) (9.10)

from which it is immediate to derive Pd − Pf ≤ δ(P1,P2). ��
In general, it is difficult to find a closed form expression for the TV distance in the

case of arbitrary distributions and/or structured matrices. However, a useful upper
bound on the TV distance can be evaluated thanks to the Pinsker’s inequality, which



152 T. Bianchi and E. Magli

states δ(P1,P2) ≤ √
D(P1||P2)/2, where D(P1||P2) denotes the Kullback-Leibler

(KL) divergence between the distributions P1 and P2.1

9.4.1 Bounds for Fully Random Matrices

Under the assumption that the elements of y are i.i.d., it is possible to find an upper
bound for Pd − Pf by numerically evaluating the KL divergence between P([y]i |x1)
and P([y]i |x2), where [y]i denotes the i th element of vector y. Namely, we can
estimate

Pd − Pf ≤ ϑKL(x1, x2) �
√

m

2
D(P([y]i |x1)||P([y]i |x2)) (9.11)

where KL divergences can be computed numerically. In order to compute numerical
approximations of the probability density functions P([y]i |x1) and P([y]i |x2), we
can consider the characteristic function of the random variable a = [A]i j , defined
as ϕa(t) = E[e jta]. It is well known that the pdf of a random variable a can be
obtained as P(a) = 1

2π

∫ ∞
−∞ ϕa(t)e− j tadt , i.e., that the characteristic function and

the corresponding pdf form a Fourier transform pair. We have that the characteristic
function of [y]i given a generic signal x can be computed as

ϕ[y]i |x (t) =
n∏

j=1

ϕa([x] j t) (9.12)

whereϕa(t) is the characteristic function of a generic element of the sensingmatrix A.
Hence, given x1 and x2, we can use (9.12) to evaluate the characteristic functions
ϕ[y]i |x1 and ϕ[y]i |x2 , find the corresponding P([y]i |x1) and P([y]i |x2) through a
Fourier transform.

9.4.2 Bounds for Circulant Matrices

In the case of circulant sensing matrices composed by Gaussian random variables,
it is possible to exploit the fact that the KL divergence of two multivariate Gaussian
distributions has a nice closed form. Given any two different signals x1 and x2, we
have the following result:

1Actually, since KL divergence is not symmetric, a stricter bound is given as δ(P1,P2) ≤√
min (D(P1||P2), D(P2||P2)) /2. In the following sections, for the sake of conciseness, we will

always consider a single KL divergence. However, experimental results are based on the stricter
bound.
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Theorem 9.5 A G-OTS-C cryptosystem is at least ϑC (x1, x2)-indistinguishable
w.r.t. x1, x2, where

ϑC (x1, x2) = 1

2

√
log

|C2|
|C1| + Tr(C−1

2 C1) − m (9.13)

and Ch = PCxh PT , for h = 1, 2.

Proof Thanks to Proposition 9.3, we have that P(y|xh) = N (0,σ2
ACh). Hence, the

Kullback-Leibler (KL) divergence between P(y|x1) and P(y|x2) can be expressed
as [6]

D(P1||P2) = 1

2

[
log

|C2|
|C1| + Tr(C−1

2 C1) − m

]
. (9.14)

The result then follows from Pinsker’s inequality. ��
Theorem 9.6 A G-OTS-R1 cryptosystem is at least ϑR1(x1, x2)-indistinguishable
w.r.t. x1, x2, where

ϑR1(x1, x2) =
√√√√ 1

4N 2
P

NP∑
r1=1

NP∑
r2=1

[
log

|C2,r2|
|C1,r1| + Tr(C−1

2,r2C1,r1)

]
− m

4
(9.15)

and Ch,r = Pr Cxh PT
r , for h = 1, 2. A G-OTS-R2 cryptosystem is at least

ϑR2(x1, x2)-indistinguishable w.r.t. x1, x2, where

ϑR2(x1, x2) =
√√√√ 1

4N 2
P N 2

R

NP∑
r1=1

NP∑
r2=1

NR∑
s1=1

NR∑
s2=1

[
log

|C2,r2,s2|
|C1,r1,s1| + Tr(C−1

2,r2,s2C1,r1,s1)

]
− m

4

(9.16)
and Ch,r,s = Pr CRs xh PT

r , for h = 1, 2.

Proof For G-OTS-R1 and G-OTS-R2, we have that P(y|xh) can be expressed as a
mixture of Gaussian distributions. The KL divergence between two mixture distri-
butions Pi = ∑

r wh,rPh,r , h = 1, 2, can be upper bounded using the following
convexity bound [13]

D(P1||P2) ≤
∑
r1,r2

w1,r1w2,r2D(P1,r1||P2,r2). (9.17)

Hence, the result can be easily obtained by considering that w1,r = w2,r = 1
NP

, for

G-OTS-R1, or w1,r = w2,r = 1
NP NR

, for G-OTS-R2, and then applying Pinsker’s
inequality to the upper bound on the KL divergence. ��

For relatively large values ofn andm, the exact computationof the bounds in (9.15)
and (9.16) can become prohibitively expensive. A possible approach is to estimate
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the bound using Monte Carlo integration. Alternatively, following the suggestion in
[13], we can approximate the KL divergence between the two mixture distributions
using the KL divergence of two multivariate Gaussian distributions having the same
mean and covariance matrix. For the G-OTS-R1 cryptosystem, the covariance matrix
of the involved mixture distributions has a very peculiar form, since

[Ch]i j =
NP∑
r=1

1

NP
[Ch,r ]i j =

{
σ2

AExh i = j

σ2
A

∑
s �=t xh,s xh,t i �= j

(9.18)

for h = 1, 2. The above covariance matrix can be expressed in a compact form as

Ch = αh Im + βh11
T , where we define αh = σ2

A
n−1 (nExh − (1T xh)2) and βh =

σ2
A

n−1 ((1
T xh)2 − Exh ). According to the above representation, the KL divergence

between P(y|x1) and P(y|x2) can be approximated as

D(P1||P2) ≈1

2

[
log

αm−1
2 (α2 + mβ2)

αm−1
1 (α1 + mβ1)

+ mα2(α1 + β1) + m(m − 1)α1β2

α2(α2 + mβ2)
− m

]

(9.19)

�D̃(x1, x2).

Thanks to the above equation, an approximate security metric can be defined as

ϑ′
R1(x1, x2) =

√
D̃(x1, x2)

2
.

However, since (9.19) is not an upper bound on KL divergence, ϑ′
R1(x1, x2) does not

provide a strict security bound for the G-OTS-R1 cryptosystem.
Unfortunately, the above approach cannot be used to provide a meaningful bound

for the G-OTS-R2 cryptosystem, since in this case we have

Ch =
NP∑
r=1

NR∑
s=1

1

NP NR
Ch,r,s = Exh Im,

meaning that for equal-energy signals the approximated KL divergence is zero. Nev-
ertheless, by using the convexity bound approach, an approximate security metric
for the G-OTS-R2 cryptosystem can be obtained as

ϑ′
R2(x1, x2) =

√√√√ 1

2N 2
R

NR∑
s1=1

NR∑
s2=1

D̃(Rs1x1, Rs2x2).
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Again, the exact computation of the above metric may become too expensive for
large values of n. In those cases, we can resort to Monte Carlo integration.

9.4.3 Bounds for Normalized Measurements

The normalization strategy described in Sect. 9.3 does not provide a perfectly secure
channel in the case of arbitrary sensing matrices. However, we can provide an upper
bound on the security of normalized measurements by using the above bounds that
holds for equal energy signals. Let us define uxh = xh/

√
Exh and uyh = yh/

√
Eyh ,

where yh = Axh , h = 1, 2. Then we have the following

Theorem 9.7 The upper bounds given in (9.13), (9.15), and (9.16) computed for
equal-energy signals ux1 , ux2 holds also in the case of normalized measurements of
generic signals x1, x2.

Proof Let us define y′
i = Auxi . It is easy to verify that uy′

i
= y′

i/
√
Ey′

i
= uyi . Then,

we have the following inequalities involving the KL divergence

D(y′
1||y′

2) = D(P(uy1 ,Ey′
1
)||P(uy2 ,Ey′

2
))

= D(uy1 ||uy2) + D(P(Ey′
1
|uy1)||P(Ey′

1
|uy1))

≥ D(uy1 ||uy2)

(9.20)

where we exploited the chain rule for KL divergence [5] and the fact that KL diver-
gence is always nonnegative. Hence, the proof follows from the following chain of
inequalities

δ(P(uy1),P(uy2)) ≤
√
1

2
D(uy1 ||uy2) ≤

√
1

2
D(y′

1||y′
2) (9.21)

where it is easy to verify that the right hand side of (9.21) evaluates to the upper
bound on the distinguishability of equal energy signals. ��

9.5 Attacks to CS Cryptosystems

The bounds introduced in the previous Section hold for any possible attack under
the COA scenario. However, it is interesting to evaluate the performance of practical
attacks with respect to those bounds. We consider an hypothetical scenario in which
an OTS cryptosystem is used to sense two distinct signals x1 and x2 having equal
energy. Without loss of generality, we can assume that Ex1 = Ex2 = 1. The aim
of the attacker is to guess whether the measurements conceal the signal x1 or the
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signal x2. This is a classical detection problem, where the aim is to distinguish
whether the measurements y come from the probability distribution P(y|x1) or from
the probability distribution P(y|x2).

Let us consider a detector D . The Neyman-Pearson (NP) lemma states that for
Pf = α, the probability of detection is maximized by letting D(y) = x1 whenever

�(y) = P(y|x1)
P(y|x2) ≥ τ (9.22)

where τ satisfies Pr{�(y) ≥ τ |x2} = Pf .
When the sensingmatrix ismade up of i.i.d. elements, it turns out that the elements

of y are i.i.d. as well. This permits to rewrite the optimal NP test as

�′(y) =
m∑

i=1

(log(P([y]i |x1)) − log(P([y]i |x2))) ≥ τ ′. (9.23)

Moreover, since each element of y is given by the sum of independent variables, the
distributions P([y]i |x1) and P([y]i |x2) can be numerically computed as detailed in
Sect. 9.4.

In the case of the G-OTS-C cryptosystem, the optimal NP test can be easily
obtained as

�C (y) = yT (C−1
2 − C−1

1 )y ≥ τ ′. (9.24)

In the case of the G-OTS-R1 cryptosystem, the optimal NP test would be obtained
as the ratio of two mixture distributions. Since the computation of the NP test is not
practical in this case, we consider a simpler test obtained by approximating the two
mixture distributions using two multivariate Gaussian distributions with the same
mean and covariance matrix. By using the expressions of the covariance matrices
found in Sect. 9.3, the test can be expressed as

�R(y) =
(

1

α2
− 1

α1

)
yT y −

(
β2

α2(α2 + mβ2)
− β1

α1(α1 + mβ1)

)
(1T y)2 ≥ τ ′′.

(9.25)
It is worth noting that the above test is not able to distinguish equal-energy signals
sensed with the G-OTS-R2 cryptosystem, since equal energy signals yields measure-
ments with the same covariance matrix.

9.6 Simulation Results

In this section, we evaluate the distinguishability of equal-energy signals in different
scenarios. In each experiment, for the numerical evaluation of ϑKL and the NP test
(9.23), the involved pdfs have been sampled on 10000 equispaced bins between −8
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and 8, whereas ϑR1, ϑR2, and ϑ′
R2 have been estimated via aMonte Carlo integration

using 105 random samples.

9.6.1 Upper Bound Validation

The first experiment has been carried out with the aim of assessing the different upper
bounds on the distinguishability of unit energy signals: thanks toTheorem9.7, similar
results also apply to arbitrary signals if we consider normalized measurements. In
the case of fully random matrices, the signals have been defined as [x1]i = 1/

√
n

and [x2]i = Z(α)e−α(i−1), for i = 1, . . . , n, where Z(α) is a suitable normalizing
constant such that Ex2 = 1. In Fig. 9.1 we show the numerically evaluated upper
bound ϑKL when the entries of A are i.i.d. uniform variables with unit variance
(uniform sensing matrix), for n = 1000 and different combinations of α and m
parameters. In the same plots, we also show the maximum value of Pd − Pf achieved
by the optimal NP test (9.23), evaluated over 106 independent realizations. As can be
seen, the performance of the detection attack is predicted quite well by the numerical
upper bound.

In the case of G-OTS cryptosystems based on circulant matrices, the signals have
been defined as x1 = [1, 0, . . . , 0] and [x2]i = Z(α)e−4α(i−1), for i = 1, . . . , n,
where Z(α) is a suitable normalizing constant such that Ex2 = 1. For the G-OTS-C
cryptosystem, we consider the matrix P that selects the first m rows of the n × n
circulant matrix W H �W : an advantage of this construction is that the resulting sens-
ing matrix enables several processing tasks directly on the measurements [20]. In
Fig. 9.2, we compared the theoretical upper bounds ϑC , ϑR1, and ϑR2 with the per-
formance obtained by the optimal test �C and the suboptimal test �R , respectively,
for n = 100 and different combinations of α and m parameters. The approximated
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Fig. 9.1 Distinguishability of unit energy vectors using a uniform sensing matrix: a m = 1,
n = 1000; b α = 0.1, n = 1000
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Fig. 9.2 Distinguishability of unit energy vectors using circulant matrices: a m = 2, n = 100;
b α = 1, n = 100

bounds ϑ′
R1, and ϑ′

R2 are shown as well. The performance of the detection attack
�C is predicted quite well by the theoretical upper bound ϑC , whereas the upper
bounds ϑR1 and ϑR2 appear quite loose. Interestingly, the approximation ϑ′

R1 is quite
close to the simulated performance of the detection attack �R , especially for higher
values of ϑ.

9.6.2 Expected Security

In the second experiment, we computed the numerical upper bounds and the approxi-
mated bounds for different realizations of equal-energy signals x1 and x2 and different
scenarios. Namely, we considered 1000 pairs ϑ1,ϑ2 of independent vectors with k
nonzero entries uniformly distributed on a unit norm n-sphere, where the respective
k-sparse signals were obtained by multiplying those vectors by a unitary matrix Φ.
The first scenario considered as Φ the identity matrix, i.e., the signals were sparse
in the sensing domain. The second scenario considered as Φ the discrete cosine
transform (DCT) matrix. It can be noticed that for equal energy signals a sensing
matrix with Gaussian i.i.d. entries achieves perfect secrecy [1], i.e., ϑ = 0. Hence,
the proposed experiment permits to immediately evaluate the security loss incurred
when using more structured sensing matrices.

In both scenarios we computed ϑKL for m = 1, since for m > 1 ϑKL can be easily
obtained by multiplying the distinguishability calculated previously by a factor

√
m,

whereas ϑC , ϑ′
R1, and ϑ′

R2 were computed for m = 2.
In Fig. 9.3a, we show the 0.95 percentile of ϑKL when n = 1000 and k varies

in the interval [1, 500]. As expected, if the signals are sparse in the sensing domain
the distinguishability decreases when k increases, whereas if the signal are sparse
in a different domain the distinguishability is almost constant with respect to k. In
Fig. 9.3b, we show the 0.95 percentile of ϑKL when k = 10 and n varies in the
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Fig. 9.3 Distinguishability of k-sparse unit energy signals when using different fully random sens-
ing matrix: a n = 1000; b k = 10

interval [20, 1000]. As expected, the distinguishability of signals that are sparse in
the DCT domain decreases when n increases, whereas if the signals are sparse in the
sensing domain the distinguishability does not depend on n.

In Fig. 9.4a, we show the 0.95 percentile of ϑC , ϑ′
R1, and ϑ′

R2 when n = 1000 and
k varies in the interval [1, 500]. The results show that for the two considered classes
of sparse signals the security of G-OTS-C and G-OTS-R1 has a similar behavior:
the security of both cryptosystems is independent of k when the signal is sparse in the
sensing domain, whereas there is a strong dependence on the signal sparsity when the
signal is sparse in theDCTdomain, since sparser signals aremore difficult to conceal.
An intuitive explanation is that a very sparse signal in the DCT domain is heavily
correlated in the sensing domain and a circulant matrix leaks a lot of information
on this correlation. For G-OTS-R2, the security is independent of both k and the
sparsity domain, indicating that the prerandomization improves the confidentiality
of measurements.

In Fig. 9.4b, we show the 0.95 percentile of ϑC , ϑ′
R1, and ϑ′

R2 when k = 10
and n varies in the interval [20, 1000]. The security of the G-OTS-C cryptosystem
increases for large values of n when the signal is sparse in the sensing domain,
whereas it decreases for large values of n when the signal is sparse in the DCT
domain. This can be explained by the fact that a signal having a fixed sparsity in
the DCT domain becomes extremely correlated when n increases. In the case of
the G-OTS-R1 cryptosystem, the security is independent of n when the signal is
sparse in the DCT domain, whereas it significantly increases for large values of
n when the signal is sparse in the sensing domain. In the case of the G-OTS-R2
cryptosystem, the security always increases for large values of n, showing that this
second acquisition strategy guarantees the same level of confidentiality irrespective
of the sparsity domain.



160 T. Bianchi and E. Magli

0 100 200 300 400 500
10−4

10−3

10−2

10−1

100

101

k

ϑ

G−OTS−C identity
G−OTS−R1 identity
G−OTS−R2 identity
G−OTS−C DCT
G−OTS−R1 DCT
G−OTS−R2 DCT

0 200 400 600 800 1000
10−3

10−2

10−1

100

n

ϑ G−OTS−C identity
G−OTS−R1 identity
G−OTS−R2 identity
G−OTS−C DCT
G−OTS−R1 DCT
G−OTS−R2 DCT

(a) (b)

Fig. 9.4 Distinguishability of k-sparse unit energy signals when using different random circulant
sensing matrices: a n = 1000; b k = 10

9.7 Conclusions

In this chapter, we have analyzed the security of CS measurements when the sensing
matrix is either a fully random non-Gaussian matrix or a partial circulant random
matrix. Unlike the case of fully random Gaussian matrices, which reveal only the
energy of the sensed signal, we find that more general constructions also reveal some
partial information on the structure of the signal. This fact implies that normalizing
themeasurements cannot achieve a perfectly secure channel for this kind of matrices.
In order to measure this loss of security, we introduce an operational definition of
security based on the problem of distinguishing different signals and we provide use-
ful bounds for evaluating the security of various types of sensing matrices according
to this definition.

The above definition has been applied considering two classes of sparse signals.
The results indicate that non-Gaussian sensing matrices can provide a certain level of
confidentiality when signals are sparse in a DFT-like domain, however they are not
able to conceal signals that are very sparse in the sensing domain. For what concerns
circulant sensingmatrices, the results indicate that partial circulant matrices obtained
by taking the first rows of a circulantmatrix, which are interesting in practical settings
since they enable processing directly on the measurements, provide a very poor
encryption layer. The security of circulant sensing matrices can be improved by
using a proper randomization. If the sensing matrix is obtained by choosing the
rows at random, this construction provides a weak encryption layer if the signals
are sparse in the sensing domain, but is not very secure if the signal is sparse in
a DFT-like domain. If, in addition, the signs of the signal samples are randomly
scrambled before acquisition, this second construction is shown to provide a weak
encryption layer irrespective of the sparsity of the signal and the sparsity domain. It
is worth noting that the above randomized constructions, even if they do not permit
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direct processing of the measurements, still retain the computational advantages of
standard circulant matrices.
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