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Abstract The wiretap coding problem has been addressed since a long time from an
information theoretic standpoint. This has permitted to find the ultimate achievable
limits under the hypothesis of random coding, which however is far from practice.
Some families of practical codes have also been already considered in this scenario,
but their achievable secrecy has mostly been assessed in asymptotic conditions (i.e.,
under the hypothesis of infinite codeword length) and using discrete channel models.
In this chapter, we analyze the performance of practical codes over the Gaussian
wiretap channel by using suitable metrics which take into account the codeword
length and even the specific code structure. This way, we are able to assess the
performance of real codes in the finite code length regime, and compare it with the
ultimate achievable limits. We focus on low-density parity-check codes as they are
among the most viable candidates for the use in this setting.

4.1 Introduction

The wiretap channel model [25] is the first and main reference model for physical
layer secure transmissions, and it is well known that perfect secrecy can be achieved
over the wiretap channel under the hypothesis of ideal random coding [14, 25].
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However, apart from the theoretical model, the need to implement real transmissions
with practical codes may force them to be far from perfect secrecy, and such a risk
needs to be quantified.

4.1.1 Previous Works

Some families of practical codes, like low-density parity-check (LDPC) codes and
polar codes, have been shown to be able to achieve the wiretap channel secrecy
capacity in the asymptotic regime (i.e., with infinite codeword length) [13, 17,
22]. However, despite this provides a very important new insight into the design of
practical codes for the wiretap channel, it is not easy to predict how far from the
secrecy capacity the secret throughput will be when the codeword length is reduced
to some (finite) practical value. Moreover, many previous works consider discrete
channel models (like the binary erasure channel (BEC) or the binary symmetric
channel (BSC) models) for both the main and wiretapper’s channels. However, the
most interesting applications of physical layer security techniques are recognized
to be in wireless communications, therefore a continuous channel model (like the
additive white Gaussian noise (AWGN) channel model, with or without fading) is best
suited for describing the physical layer. On the other hand, it is not realistic to suppose
that an eavesdropper of a wireless link is forced to discard the soft information coming
from the channel, and to use hard detection.

More in detail, an interesting family of two edge type LDPC codes has been
proposed in [1, 18, 19] for the use in wiretap coding schemes exploiting Wyner’s coset
encoding technique. These codes are shown to achieve weak secrecy in asymptotic
conditions (i.e., at infinite code lengths) over wiretap channels modeled as BECs.
In addition, in [19] some results for finite length codes are provided, but still only
over BECs. The weak secrecy criterion used in these works requires that the mutual
information between the secret message and the eavesdropper’s observation goes to
zero rate-wise, rather than in absolute terms, as needed by the strong secrecy criterion.
More recently, the same setting of a wiretapper BEC and a coset encoding technique
has been considered in the proposal of a scheme able to achieve strong secrecy
rather than weak secrecy [21], by exploiting large-girth LDPC codes. However, this
result only holds in the asymptotic regime, i.e., for infinite length codes. Another
scheme which has been proven to achieve perfect secrecy is based on polar codes
[9]. However, also in this case such a target is achieved for discrete channels and
infinite length codes, while no result is provided for finite length codes. Indeed, all
evidence up to now suggests that perfect secrecy (interpreted as zero information
leakage about the secret message in absolute terms, rather than rate-wise) may not
be achievable by using short length codes, or in general finite length codes.

Another recent trend which is important to mention concerns some attempts to
study the problems of physical layer security and wiretap coding in more general
terms, and also exploring their links with computational security and cryptography.
The work [7] studies the general problem of finding efficiently invertible extractors,
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which involves wiretap protocols. However, also in this case, the focus is on asymp-
totic security notions used to search for asymptotic optimal wiretap protocols over
discrete, memoryless, and symmetric channels. In [5], the security notions classi-
cally used for transmissions over the wiretap channel are reviewed, and their links
with the more robust notion of semantic security used in cryptography are explored.
The authors also propose a new coding scheme characterized by polynomial-time
decoding and achieving the secrecy capacity for the case of BSCs. Such a scheme
can be extended to other discrete memoryless channels, but continuous channels
(like the AWGN channel) are not taken into account. One of the very few works on
coding for Gaussian wiretap channels is [16], where the authors address the problem
of practical code design and propose a secure nested code structure. The authors
derive the achievable rate-equivocation region based on the threshold behavior of
good code sequences, that is, by considering the performance of code ensembles in
the asymptotic regime, without taking into account finite length codes.

4.1.2 Error Rate Used as a Secrecy Metric

The bit error rate (BER) and codeword error rate (CER) are very common metrics
for assessing the transmission reliability in practical terms, since they are quite easy
to estimate for any fixed coding and modulation scheme, even through numerical
simulations. An approach to use these metrics also for security has been proposed in
[12], where the condition of being subjected to a BER close to 0.5 was imposed to the
eavesdropper in order to achieve security. Then, the differential evolution technique
was used to design optimized LDPC codes with the aim of achieving the desired BER
performance for both the authorized receiver and the eavesdropper. The quality ratio
between their two channels, defined as the security gap, was also used as a metric,
which should be kept as small as possible. A similar approach has been followed
in [2].

When used for assessing reliability, the error rate-based metrics can be easily
related to other, information theoretic metrics, like the conditional entropy (for which
we can exploit Fano’s inequality). The same is instead not straightforward when we
aim at measuring security. A bridge between information theoretic and error rate-
based security metrics can be found in [24], where the authors propose a secret key
sharing scheme for the wiretap channel. The same approach, based on the eaves-
dropper’s equivocation rate on the secret message, has also been used to study coded
transmissions over the Gaussian wiretap channel [23] and parallel channels [3],
in the finite code length regime. The work [23] considers punctured LDPC codes,
while in [3] the focus is on more classical coding schemes (like Bose-Chaudhuri-
Hocquenghem (BCH) codes).
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4.1.3 Our Contribution

In this chapter, we address the problem of measuring the reliability and secrecy
performance from an information theoretic standpoint in the finite codeword length
regime. For this purpose, as in the mentioned previous works, we exploit the link
between the equivocation rate and the error rate in order to explore the capacity-
equivocation regions of the codes we consider. Using the equivocation rate as a
security metric also allows us to compare the performance achieved in the finite
codeword length regime with that achievable in the asymptotic regime. We also
focus on LDPC codes as a prominent solution for wiretap coding, but, differently
from [23], we consider non-punctured LDPC coded transmissions, which are more
common in practice with respect to punctured transmissions. We aim at finding good
codes both in terms of reliability and security through a very simple code optimization
approach. With respect to existing literature, the main contributions of this chapter
are as follows.

• We consider continuous wiretap channels (no restriction on the use of soft infor-
mation by Eve) and finite length codes.

• We take into account the specific code structure (no code ensembles).
• We relate the wiretapper’s equivocation rate to the error rate, thus providing an

information theoretic secrecy metric which is, at the same time, relevant to the
specific code and comparable with the ultimate achievable limits.

The organization of the chapter is as follows. In Sect. 4.2, we define the channel
model and the metrics we use throughout the chapter. In Sect. 4.3, we use these
metrics to assess the ultimate performance achievable in asymptotic conditions. In
Sect. 4.4, we show how the same metrics can be applied to the finite codeword length
regime, and in Sect. 4.5 we draw some conclusions.

4.2 Channel Model and Metrics

In the Gaussian wiretap channel model, Alice transmits a ks-bit secret message M
by encoding it into an n-bit codeword X , through a binary linear block code C . The
choice of the transmitted codeword X not only depends on the secret message bits,
but also on kr random bits which are used to implement a form of nested coding
[10]. The code C has information length k = ks + kr and codeword length n.
Its rate is Rc = k/n. The secret message rate is Rs = ks/n. Both the authorized
receiver (Bob) and an eavesdropper (Eve) receive Alice transmission, and they have
full knowledge of the code C . Bob’s and Eve’s channels are impaired with AWGN,
and their received vectors are noted by Y and Z , respectively. In order to achieve
successful transmission of M , we must achieve the following targets:
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1. reliability target: the secret message M must be reliably decoded by Bob (i.e.,
with a sufficiently small error rate),

2. security target: Eve must be unable to gather any (or almost any) information
about M .

From both the security and reliability standpoints, we aim at finding suitable
metrics to be used for measuring performance in the finite code length regime, and
comparing it with that achievable in asymptotic conditions.

4.2.1 Reliability Metrics

Concerning the reliability target, the following metrics can be used:

• In asymptotic conditions (infinite length codes), without any constraints on the
choice of the code, the ultimate performance limit is represented by the chan-
nel capacity, which coincides with the highest code rate that can be used to
achieve error-free transmission. We consider a continuous binary-input channel
with AWGN and signal-to-noise ratio (SNR) per bit Eb

N0
, having capacity:

C

(
Eb

N0

)
= 1 − 1√

2π

∫ ∞

−∞
e− (y−√

Eb/N0)
2

2 log2

(
1 + e−2y

√
Eb/N0

)
dy. (4.1)

• In asymptotic conditions (infinite length codes), but with the constraint to use
LDPC coded transmissions, the density evolution technique [8, 20] can be used
to compute a decoding threshold, in terms of SNR, above which transmission can
occur without errors.

• In the finite code length regime, the performance of practical LDPC codes can
be assessed through Montecarlo simulations, and the SNR needed to achieve a
sufficiently low decoding error probability can be estimated.

4.2.2 Security Metrics

Concerning the security target, the concepts of strong secrecy and weak secrecy are
classically used for wiretap coding schemes [6, 15]. The definitions of strong and
weak secrecy are in the asymptotic regime. In fact, we say that we have strong secrecy
when the amount of information leaked about M through observing Z vanishes as n
goes to infinity, i.e., lim

n→∞ I(M; Z) = 0, where I(x; y) denotes the mutual information

between x and y. Similarly, we have weak secrecy when the rate of information leaked
about M through observing Z vanishes as n goes to infinity, i.e., lim

n→∞ I(M; Z)/n =
0. Despite this, we can use notions similar to strong and weak secrecy also in the finite
code length regime. In fact, both of them are based on the information leakage about
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the secret message, measured in terms of the mutual information between the secret
message and the wiretapper’s observation. The difference is that for weak secrecy the
information leakage is measured rate-wise, while for strong secrecy it is measured
in absolute terms. Therefore, we could measure these quantities in the finite code
length regime as well.1 Another, similar way of measuring the information leakage
about the secret message is by using the wiretapper’s equivocation on the secret
message, as done in Wyner’s original work [25]. According to [25], perfect secrecy
is achieved when the wiretapper’s equivocation rate on the secret message equals
the entropy of the data source. In this case, we use again a rate-wise measure of the
information leakage, which is weaker than the notion of strong secrecy. However,
as outlined in Sect. 4.1, all evidence up to now suggests that strong secrecy may not
be achievable with finite length codes. Based on these premises, in the following we
use the wiretapper’s equivocation rate as a secrecy measure. We make this choice
since it allows to relate the secrecy metrics with the error rate, as we will show next,
which is an important feature to take into account the specific code structure in the
performance assessment.

By denoting as H(·) the entropy function, the wiretapper’s equivocation rate is
simply defined as Re = 1

n H(M |Z). Since we suppose to deal with independent and
identically distributed secret messages, the source entropy rate is equal to Rs , and
perfect secrecy is achieved when the equivocation rate Re equals the secret message
rate Rs :

R̃e = Re/Rs = 1. (4.2)

We denote R̃e as the fractional equivocation rate. Obviously, the ultimate limit
achievable by the equivocation rate is represented by the secrecy capacity Cs =
[CB −CE ]+, where CB and CE are Bob’s and Eve’s channel capacities, respectively.
It is well known that the wiretapper’s equivocation rate on the secret message can
also be expressed as [6, 15]:

Re = 1

n
[H(X) − I(X; Z) + H(M |Z , X) − H(X |M, Z)] , (4.3)

where H(X |M, Z) is the entropy of X conditioned on receiving Z and knowing the
secret message M .

4.2.3 Fictitious Receiver

In order to estimate H(X |M, Z), we can suppose the existence of a fictitious receiver
which is in the same position as Eve’s, but, differently from Eve, he knows the secret
message M . We name this other subject Frank, and include it in our communication

1Obviously, in the finite length regime Bob’s error probability cannot be vanishing. Therefore, in
order to apply these metrics in such a regime, the reliability target must be converted into requiring
that Bob achieves some sufficiently small error probability.
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Fig. 4.1 Wiretap channel
model with fictitious receiver Alice BobBob's

channel

EveEve's
channel

Yn

Zn

Xn

Frank

M

M

model, which is depicted in Fig. 4.1. The letter M inside Alice’s and Frank’s boxes
points out that the message M is known to both Alice and Frank. Frank receives from
the channel the same vector Z received by Eve and then tries to perform decoding
for recovering the kr random bits, which represent the only source of uncertainty for
him in order to retrieve X .

In (4.3), we have I(X; Z) ≤ nCE , H(X) = k and H(M |Z , X) ≤ H(M |X) = 0.
Concerning the term H(X |M, Z), by Fano inequality we have H(X |M, Z) ≤ 1 +
krη, where η is the decoding error probability (or CER) experienced by Frank. Based
on these considerations, we can find a lower bound on the wiretapper’s equivocation
rate on the secret message as [23]:

Re ≥ 1

n
[k − nCE − krη − 1] =

= Rc − CE − (Rc − Rs)η − 1

n
= R∗

e . (4.4)

This way, we find a secrecy metric which takes into account the code length, and
therefore it is suitable to assess performance also in the finite code length regime,
which is of interest for practical codes. Furthermore, this metric depends on Frank’s
CER, which can be easily estimated, for practical codes, through numerical simu-
lations. Looking at (4.4), one could think that an optimal solution is to impose that
Eve and Frank have a very low SNR. In this case, we have η ≈ 1 and CE ≈ 0. Under
these hypotheses, and by considering sufficiently long codes to make the term 1

n
negligible, we would have R∗

e ≈ Rs . Unfortunately, this apparently optimal solution
is not viable for the following reasons:

• Fixing a small value of η as Frank’s performance target is beneficial for security.
In fact, if Frank’s error rate on the sole random bits is small, this means that Eve’s
equivocation will be concentrated on the secret message bits, which is what we
want to achieve.

• Allowing a not-too-degraded channel for the eavesdropper is also beneficial, since
this means that security can be guaranteed even when Eve is not far from Bob. This
is an important aspect which is also caught by the analysis based on the security
gap.
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Fig. 4.2 Parity-check matrix
of the considered codes

BAH = 

ks kr r

C

Based on these considerations, we want to achieve a value of R∗
e as high as possible,

without renouncing to impose a small value of η. This requires to optimize Frank’s
performance as well, in such a way that he is able to achieve good decoding perfor-
mance (i.e., small η) with small SNR, which means having a small capacity CE of
(Frank’s and) Eve’s channel.

Let us consider LDPC coding and let us suppose (without loss of generality)
that encoding is systematic. Let the transmitted codeword be c = [M |R|P], where
M is the ks-bit secret message, R is the kr -bit random message and P is the r -
bit redundancy vector added by the encoder. In real world secure transmissions,
systematic encoding shall be avoided, especially if source coding is not perfect (as
always occurs in practice). For this purpose, the use of an information bit scrambler
is advisable [2]. Nevertheless, in our analysis, which is aimed at estimating the
performance achievable, the hypothesis of systematic coding can be maintained,
since it helps simplifying the analysis. Under this hypothesis, we can describe the
code C through a lower triangular parity-check matrix H. More precisely, we can
divide the matrix H into three blocks as shown in Fig. 4.2. These three blocks, named
A, B and C in the figure, have size r × ks , r × kr and r × r bits, respectively. C
is a lower triangular matrix, which is a sufficient condition to perform systematic
encoding.

Bob, who does not know in advance either the secret or the random message, must
use the whole matrix H to perform decoding. Eve is in the same condition, although
she receives the signal through a different channel. Frank, instead, can take advantage
of the perfect knowledge of M , and only needs to recover the random message R.
Therefore, he can precompute A · MT = s, were T denotes transposition. Then,
he can use the following reduced parity-check system to look for the vector [R|P]
having syndrome s:

[B|C] · [R|P]T = H′ · c′T = s. (4.5)

Obviously, decoding for a vector having an all-zero syndrome (as usual) or a
different syndrome is equivalent, due to the code linearity. Hence, Frank can perform
decoding through the reduced LDPC code defined by H′ = [B|C], which has rate
RF = kr/(kr + r). The code rate for Bob and Eve instead coincides with the overall
code rate, i.e., Rc = k/n. Through simple arithmetic, we find
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RF = Rc − Rs

1 − Rs
. (4.6)

From (4.6) we have RF
Rc

= 1− Rs
Rc

1−Rs
and, since Rc < 1, we have RF

Rc
< 1. Therefore,

Frank’s advantage of knowing the secret message M translates into his ability to
work with a lower code rate with respect to Bob and Eve, i.e., with an increased error
correction capability.

4.3 Asymptotic Performance

A first important benchmark is represented by the performance achievable in optimal
conditions, which represents the ultimate bound we will aim at approaching when
working with practical, finite length codes.

4.3.1 Ideal Codes

Let us first consider the hypothesis of working with optimal codes, i.e., codes able to
reach the channel capacity. Under this hypothesis, Rc coincides with Bob’s channel
capacity CB , while RF coincides with Frank’s channel capacity CF . Moreover, since
Eve and Frank experience the same channel, Eve’s channel capacity is CE = CF =
RF . Therefore, the secrecy capacity can be written as Cs = Rc − RF . Then, replacing
RF with the r.h.s. of (4.6), we obtain the following expression for the fractional
secrecy capacity, which provides the ultimate bound on R̃e:

C̃s = Cs

Rs
= 1 − Rc

1 − Rs
. (4.7)

We have chosen some values of the code rate Rc of the type 1/x or x/(x +1), with
x integer, ranging between 1/5 and 4/5. For all of them, we have computed C̃s as a
function of Rs , and the results are reported in Fig. 4.3. From the figure we observe that
C̃s is a monotonically increasing function of Rs , as expected from (4.7), and it reaches
1 when the secret message rate reaches its maximum, i.e., Rs = Rc. Apparently, this
brings us to the conclusion that we should fix Rs = Rc in order to maximize C̃s

and achieve optimal performance from the secrecy standpoint. This would mean to
renounce transmitting randomness to confuse the eavesdropper. However, moving
on the curves of Fig. 4.3 (i.e., fixing Rc) means also varying the SNR of Eve: in
particular, from (4.6) we can obtain the value of RF associated with a couple Rs

and Rc. Since we are considering rates coincident with capacities, the value of RF

corresponds to a capacity of the Eve’s channel and therefore to a specific SNR value,
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Fig. 4.3 C̃s versus secret message rate (Rs ) for some values of the code rate (Rc), under the
hypothesis of ideal (capacity achieving) coding
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Fig. 4.4 Bob’s and Eve’s channels SNR and their ratio (security gap) versus secret message rate
(Rs ) for Rc = 0.5, under the hypothesis of ideal (capacity achieving) coding

through the binary input additive white Gaussian noise (BIAWGN) channel capacity
(4.1). As Rs → Rc we have that Eve’s SNR tends to zero (as RF tends to zero, too).
This trend is shown in Fig. 4.4, where we fix Rc = 0.5 and plot the Bob’s and Eve’s
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channels SNR under the hypothesis of ideal coding, for varying Rs . In the figure
we also report the value of the security gap. As expected, while the SNR of Bob’s
channel is fixed (as the code rate), when Rs approaches Rc the SNR of Eve’s channel
converges to zero and the security gap diverges. Therefore, in order to have non-zero
Eve’s SNR and a finite security gap we must consider Rs < Rc, and this requires the
use of randomness. However, the choice of a value of Rs not too small compared to
Rc is obliged in order to achieve high values of C̃s .

4.3.2 Infinite Length LDPC Codes

Another valuable assessment in the asymptotic regime can be done by taking into
account the specific LDPC code structure. In fact, any LDPC code can be represented
through a Tanner graph, that is a bipartite graph having two groups of nodes, variable
and check nodes, corresponding to the codeword bits and the parity-check equations,
respectively. An edge exists between the j th variable node and the i th check node
if and only if the (i, j)th element of H is 1. The number of edges connected to a
node is called the degree of that node. The code Tanner graph can hence be described
through the following two polynomials, which define the variable and check node
degree distributions:

λ(x) =
dv∑

i=2

λi x i−1, ρ(x) =
dc∑

j=2

ρ j x j−1. (4.8)

In (4.8), dv and dc are the maximum variable and check node degrees, respectively,
and the coefficient λi

(
ρ j

)
is the fraction of edges connected to the variable (check)

nodes with degree i ( j). For this reason, we say that these two polynomials describe
the degree distributions from the edge perspective. Alternatively, λ(x) can be con-
verted into the polynomial ν(x) = ∑dv

i=1 νi x i , which describes the same distribution
from the node perspective. The coefficients νi and λi are related as follows:

νi = λi/ i∑dv

j=1 λ j/j
,

λi = νi · i∑dv

j=1 ν j · j
. (4.9)

The same procedure can be applied to the polynomial ρ(x) to obtain another poly-
nomial, c(x), which represents the same distribution from the node perspective. The
code rate can be computed starting from λ(x) and ρ(x) as:

Rc = 1 −
∑dv

i=2 ρi/ i∑dc
j=2 λ j/j

. (4.10)
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Efficient, low complexity LDPC code decoding algorithms are based on the belief
propagation principle, which exploits an iterated exchange between the nodes of the
code Tanner graph of soft messages concerning the reliability of each received bit.
Therefore, the Tanner graph node degree distributions determine the performance of
an LDPC code under belief propagation decoding. The density evolution technique
[20] allows to estimate the performance achievable in the asymptotic regime (i.e.,
under the hypothesis of infinite length codes with Tanner graphs free of closed loops),
under belief propagation decoding, by an LDPC code described through its degree
distribution pair (λ(x), ρ(x)). In short, the method consists of computing the statis-
tics of the decoder messages and their evolution during the iterations of the decoding
algorithm, in such a way as to estimate the probability that decoding converges to
an error-free codeword. Using a Gaussian approximation for the probability distri-
butions of the decoder messages has been shown as a good solution to reduce the
computational complexity without losing accuracy [8]. Through density evolution, a
channel quality threshold can be found, above which the code is expected to converge
to error-free estimations in asymptotic conditions. When we deal with AWGN chan-
nels, as in our case, such threshold is expressed in terms of an SNR value. Density
evolution can also be used to optimize the code degree distributions, that is, to find
degree distribution pairs able to achieve minimum values of the channel threshold.

Differently from classical transmission problems, in the considered setting we
have a code chosen by Alice which is used by three receivers: Bob, Eve and Frank.
In particular, Bob and Eve use the same code, defined by H, while Frank uses the code
defined by H′, according to (4.5). Since we want both Bob and Frank to achieve good
performance, we need to optimize both H and H′. These two codes have different
rate, and the second parity-check matrix is somehow contained in the first one. This is
quite a new and challenging code optimization problem, which can be faced through
a density evolution-based joint optimization of the two codes, as done in [4]. In this
chapter, instead, for the sake of simplicity we follow a greedy approach, that is, we
first optimize the smallest code, defined by H′, and then, having fixed its degree
distributions, we optimize the largest code, defined by H, in an incremental way. In
the next section we provide an example of optimization and compare the asymptotic
performance with that achievable in the finite code length regime.

4.4 Finite Length Performance

Based on the analysis developed in the previous sections, we can estimate the relia-
bility and security performance achievable by some finite length LDPC codes, and
compare it with that achievable in asymptotic conditions.

For this purpose, we first choose the code rate Rc and the secret message rate Rs .
Given their values, we need to find an optimized degree distribution pair for both
Bob’s and Frank’s codes. This must be done by taking into account that Frank’s
code parity-check matrix is contained in Bob’s code parity-check matrix, according
to Fig. 4.2. Then, the value n of Bob’s code length is fixed, and Frank’s code length
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follows as n′ = (1 − Rs)n. Given the two codes length and rate, as well as their
optimized degree distributions, we can design their parity-check matrices through
the Progressive Edge Growth (PEG) algorithm [11].

The performance achieved by these two codes can then be assessed through numer-
ical simulations. In particular, we can fix two target values for Bob’s and Frank’s
CER (ζ and η, respectively), and estimate the limit SNR, in terms of Eb

N0
, which is

needed on the two channels in order to achieve the target CERs.
Let us consider, as an example, the following choice of the code parameters:

• Rc = 0.5
• Rs = 0.4
• RF = 0.16667
• n = 10,000 or n = 50,000

In order to find good distribution pairs for both Bob and Frank, we use the greedy
approach described in the previous section, with some heuristics in order to ensure
that both distributions have good asymptotic thresholds but are also practically feasi-
ble through the PEG algorithm (in the sense that it succeeds in allocating all the edges
without introducing short closed loops in the associated Tanner graphs). For the latter
purpose, we also aim at keeping the average variable node degree in Frank’s distrib-
ution below 4, since we have verified that this allows to achieve practical codes with
better performance than by using higher average degrees. This way, for Frank’s code
we have obtained the following degree distributions (from the node perspective):

{
ν(x) = 0.1268x6 + 0.186x3 + 0.6872x2,

c(x) = 0.2382x4 + 0.7682x3,
(4.11)

which correspond to a density evolution threshold equal to Eb
N0

= −0.32 dB. Bob’s
degree distribution has been obtained starting from Frank’s distribution and adding
only degree-3 variable nodes, which has resulted to be a simple and efficient solu-
tion. This way, for Bob we obtain the following degree distributions (from the node
perspective):

{
ν(x) = 0.07608x6 + 0.5116x3 + 0.41232x2,

c(x) = 0.63184x6 + 0.36816x5,
(4.12)

corresponding to a density evolution threshold equal to Eb
N0

= 1.1 dB.
Starting from these distributions, and using the PEG algorithm, we design Frank’s

and Bob’s code parity-check matrices with (n = 10,000, n′ = 6,000) and (n =
50,000, n′ = 30,000). Through Montecarlo simulations of transmission over the
AWGN channel with binary phase shift keying (BPSK), we estimate the value of
Eb
N0

which is needed to reach ζ = η = 10−2 when these codes are used. These Eb
N0

values allow us to assess the performance in terms of reliability and security both in
asymptotic and in finite code length conditions.
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Table 4.1 Performance ( Eb
N0

in dB and C̃s or R̃∗
e in bit/s/Hz) achieved in ideal, asymptotic and finite

length conditions by Frank and Bob in the considered setting (Rc = 0.5, Rs = 0.4, RF = 0.16667,
ζ = η = 10−2)

Condition Frank’s Eb
N0

Bob’s Eb
N0

C̃s or R̃∗
e

Ideal −1.07 0.19 C̃s = 0.83

n → ∞ −0.32 0.85 R̃∗
e = 0.77

n = 50,000 0.4 1.05 R̃∗
e = 0.69

n = 10,000 0.8 1.3 R̃∗
e = 0.65

The results obtained are reported in Table 4.1, where we provide the estimated Eb
N0

values for Bob and Frank. The corresponding values of SNR per codeword bit can
be simply obtained by multiplying them by Rc and RF , respectively. We remind that
the SNR per codeword bit of Frank’s and Eve’s channels is the same by definition. In
the table we first consider the ideal condition, that is, when both Frank’s and Bob’s
codes are ideal and achieve capacity. For this case, besides the Eb

N0
values, we provide

the value of C̃s , computed according to (4.7). The other rows of the table instead
consider LDPC codes: first in asymptotic conditions (based on density evolution),
and then in the finite code length regime. For these cases, besides the Eb

N0
values, we

provide the value of R̃∗
e = R∗

e /Rs , where R∗
e is computed according to (4.4).

From these results we observe that the considered code parameters do not allow
to achieve perfect secrecy, as expected, since all the values in the last column of the
table are below one. On the other hand, under the hypothesis of infinite length LDPC
codes, a fractional equivocation rate ≥ 0.77 is reached, which is not far from the
fractional secrecy capacity limit (0.83) corresponding to the case of ideal coding.
Using finite length LDPC codes yields some further losses, as expected. However, if
we use codes with length n = 50,000 bits, for the considered parameters we achieve
a fractional equivocation rate ≥ 0.69, which means that about 70 % or more of the
secret message bits are actually secret from an information theoretic standpoint. This
is a useful measure, which tells us that we have a practical coding loss of about 30 %
on the uncertainty (and hence the security level) of each transmitted message.

4.5 Conclusion

We have addressed the problem of assessing the reliability and security performance
of practical coded transmissions over the AWGN wiretap channel. Differently from
most previous analyses, which work in the asymptotic (i.e., infinite code length)
regime, we have focused on the finite code length regime, and also taken into account
the specific code structure. For this purpose, we have resorted to an information
theoretic measure of secrecy which advocates Wyner’s definition of perfect secrecy,
and is also applicable in the finite code length regime.
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This has permitted us to estimate the performance achievable by practical, finite
length LDPC coded transmissions and to compare it with the ultimate limits achiev-
able in ideal and asymptotic conditions. This tool has permitted us to show that
practical coded transmissions incur in a practical coding loss which prevents them
from achieving the ultimate performance limits.
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