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Implementation and Improvement
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on 6-Round AES
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Abstract The Partial Sum Attack is one of the most powerful attacks, independent
of the key schedule, developed in the last 15 years against reduced-round versions
of AES. In this chapter, we introduce a slight improvement to the basic attack which
lowers the number of chosen plaintexts needed to successfully mount it. Our ver-
sion of the attack on 6-round AES can be carried out completely in practice, as
we demonstrate providing a full implementation. We also detail the structure of our
implementation, showing the performances we achieve.

12.1 Introduction

The research on the cryptanalysis of block ciphers partly deals with studying and
proposing attacks on their reduced-round versions. Results on reduced versions are
very interesting, since they help to better understand the behavior of a cipher, pointing
out weaknesses in its structure which can eventually lead to attacks on the full version
or characterize the security margin of the cipher.

In 2000, Ferguson et al. [5] introduced one of the most effective attacks, inde-
pendent of the key schedule, developed in the last 15 years against reduced-round
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versions of the Advanced Encryption Standard [3, 4], the Partial Sum Attack.
Specifically, they developed attacks against AES reduced to 6, 7 and 8 rounds. The
attack on 6-round is particularly powerful and its complexity is in the range which
is referred to as practicable in the literature. It improves a previous attack which
was first described in [3]. The latter is based on integral cryptanalysis, a general
technique which is applicable to a large class of SPN block ciphers. This technique
was originally designed by Lars Knudsen in the paper presenting the block cipher
Square [2], as a specific attack against its byte-oriented structure. This is the reason
why this class of attacks is commonly known as Square Attack. Since AES inherits
many properties from Square, this attack can be easily extended to reduced-round
versions of the Advanced Encryption Standard.

In this chapter, we introduce a slight theoretical improvement to the Partial Sum
Attack on 6-round AES which lowers the number of chosen plaintexts needed to
successfully mount it, and we describe the structure of our full implementation. After
examining the literature which was developed after the publication of [5], we are not
aware of any effective implementation of this attack. Therefore, we strongly believe
that our implementation is the very first and, mostly, we show that it is completely
practicable. Moreover, we believe that our effort allows a deeper understanding of
the attack workflow and can point out some other weaknesses neither discovered nor
exploited so far.

We would like to underline that a remark similar to the observation which our
improvement is based on can be found in [12], although we achieved this result inde-
pendently. Nevertheless, we believe that our analysis is more careful and detailed.
In fact, the hypotheses which lead to this theoretical result are inherently strong,
since they require the reduced-round cipher to “behave” like a random permutation.
However, the attack we are dealing with strongly exploits the fact that AES can be
easily distinguished from a random permutation. Therefore, it was not clear a priori
whether these properties, or a good approximation of them, were actually satisfied
in a real scenario. Thanks to our implementation which exploits the aforementioned
improvement, we investigated these assumptions and explored how well the theoret-
ical model describes an actual execution of the attack. In particular, the experimental
results show that the number of false positives obtained closely matches that which
was expected from the theoretical analysis. For a detailed explanation, we refer to
Sect. 12.3.2.

The rest of the chapter is organized as follows: in Sect. 12.2, we briefly introduce
the Square Attack and its extensions and we subsequently describe the Partial Sum
Attack in detail. In Sect. 12.3, we present ourmain results. First, we explain our slight
theoretical improvement, pointing out the issues that its implementation involves.
We then detail our implementation and provide the results of our computations. In
particular, we achieved to recover a full 6-round key in less than 12 days with 25
cores.
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12.2 Preliminaries

We recall that the encryption process of AES-128, -192 and -256 consists of an ini-
tial key addition followed by the application of 10, 12 and 14 round transformations,
respectively. The initial key addition and every round transformation take as input an
intermediate result, called the state, and a round key which is derived from the cipher
key through the key schedule. The state is always treated as a 4 × 4 matrix whose
coefficients belong to F28 . The output of any round is another state. The round trans-
formation is a sequence of four processing steps: SubBytes, ShiftRows, MixColumns
and AddRoundKey. The SubBytes (SB) step is the only non-linear transformation of
the cipher. It is an invertible byte substitution that operates independently on each
byte of the state, according to an S-box. The S-box, which is henceforth indicated as
γ, consists of the multiplicative patched inversion over F28 , followed by an invertible
affine transformation. The ShiftRows (SR) step is a byte transposition that cyclically
shifts the rows of the state over different offsets. Specifically, let si,j and s′

i,j be the
state bytes in position (i, j) before and after the ShiftRows transformation, respec-
tively. Then s′

i,j = si,(j+i) mod 4 for i, j ∈ {0, 1, 2, 3}. The MixColumns (MC) step
is a linear transformation which operates on the state column-by-column, treating
each column as a polynomial over F28 [x]. This polynomial is thenmultiplied modulo
x4 + 1 with the fixed polynomial m(x) = (α + 1)x3 + x2 + x + α, where α ∈ F28 is
such that α8 = α4 + α3 + α + 1. Finally, in the AddRoundKey (ARK) transforma-
tion, the state is bitwise XORed with the corresponding round key. By SubBytes−1,
ShiftRows−1, MixColumns−1 and AddRoundKey−1, we denote the inverses of the
aforementioned steps. The final round differs from the others since the MixColumns
step is removed. For further details on the structure of AES, we refer to [3, 4].

In the following sections, we first give an overview on the Square Attack on 4-
round AES and we briefly introduce its extensions. We then describe the Partial Sum
Attack in detail.

12.2.1 Square Attack

The Square Attack is a chosen plaintext attack, which is independent of the specific
choices of the S-box of the SubBytes function, the multiplication polynomial of the
MixColumns transformation and the key schedule. For the sake of clarity, however,
we will often refer to the specific parameters used in AES.

In order to explain how this attack can be performed, we first introduce the fol-
lowing definition.

Definition 12.1 A Δ-set is a set of 256 AES states that differ in one of the state
bytes (called active byte) and are equal in the other state bytes (called passive bytes).
In other words, if U is a Δ-set, for every x, y ∈ U we have
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{
xi,j �= yi,j if (i, j) is active

xi,j = yi,j if (i, j) is passive

where i, j ∈ {0, 1, 2, 3}.
As it is explained in [4], the Square Attack on 4-round AES is heavily based on

the following property.

Proposition 12.1 Let b(l)
i,j be the byte in position (i, j), i, j ∈ {0, 1, 2, 3}, of the lth

state of a Δ-set after three rounds. Then

256∑
l=1

b(l)
i,j = 0. (12.1)

In other words, the states at the end of the third round are balanced, i.e. all bytes
at the input of the fourth round sum to zero. Note that the initial key addition is
implicitly assumed and not counted in the number of rounds.

Let us consider a 4-round reduced AES, in which the fourth round is a final round,
i.e. it does not include MixColumns. This implies that every byte of the ciphertext
only depends on one byte of the input of the fourth round. The Square Attack on 4-
round AES can then be mounted as follows. For any lth state of aΔ-set, 1 ≤ l ≤ 256,
let c(l)

i,j , where i, j ∈ {0, 1, 2, 3}, be the ciphertext byte in position (i, j). Let k(4)
i,j be a

guess for the byte in position (i, j) of the 4th round key (which is the last key used).
For any (i, j), if the value of k(4)

i,j is correct, the following equation holds:

256∑
l=1

γ−1
(

c(l)
i,j + k(4)

i,j

)
=

256∑
l=1

b(l)
i,(j+i) mod 4 = 0, (12.2)

where b(l)
i,j is the byte in position (i, j) of the lth state of a Δ-set after the application

of three rounds, and γ−1 is the S-box of SubBytes−1.
If Eq. (12.2) does not hold, the assumed value for the key byte must be wrong.

This check is expected to eliminate all wrong key bytes, except for one value that
could satisfy (12.2) by chance. To be more precise, the following result holds.

Proposition 12.2 If (X(l))1≤l≤256 is a sequence of independent uniformly distributed
random variables with values in F28 , then the probability

P

[
256∑
l=1

X(l) = 0

]
= 2−8.

Proof Let X and Y be two discrete independent random variables, with density
functions f1(x) and f2(x) respectively. The convolution f3(x) = [f1 ∗ f2](x) =∑

y f1(y)f2(x − y) is the density function of the random variable Z = X + Y . Since X
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Table 12.1 Estimated probability to obtain a zero sum for a random set of plaintexts and for a
Δ-set at the end of the 3rd round

Random set Δ-set

0.003904 0.007794

Number of trials: 2 · 104

and Y take values in F28 , their sum Z takes values in F28 too. Therefore, the density
function of Z is an uniformly distributed random variable, since it is the circular
convolution of two independent uniformly distributed random variables. This result
can be easily extended to the sum of an arbitrary number of random variables. ��

Before proceeding with the analysis of the attack, we would like to stress that
the hypotheses of Proposition 12.2 are inherently strong. In particular, the bytes of
the state at the end of the 3rd round are assumed to be independent and uniformly
distributed. Although these are natural assumptions for modeling the attack, it is
not clear a priori whether they hold even in practice. We thus performed some tests
which aimed to estimate the probability to obtain a zero sum for a random set of
256 plaintexts and for a Δ-set at the end of the 3rd round. The values reported in
Table12.1 were obtained by averaging the estimates we collected using 2 · 104

random sets and 2 · 104 different Δ-sets, encrypted through an equal number of
random keys, respectively.

As Table12.1 shows, the tests we performed give evidence that Proposition 12.2
well describes the behavior of the cipher even at the end of the 3rd round.As expected,
for a random set of 256 plaintexts there exists (on average) only one value which
satisfies Eq. (12.2) by chance. In the case of a Δ-set, the estimate is roughly 1/128,
since both the correct key byte and another random value satisfy (12.2).

Since checking Eq. (12.2) for a single Δ-set is expected to leave only 1 over 256
of the wrong key assumptions as a possible candidate, the 4th round key can be
found with a sufficiently large confidence using two different Δ-sets. Henceforth,
this crosscheck will be referred to as verification step.

All in all, two Δ-sets have to be used, and all 16 bytes of the 4th round key
need to be recovered. Therefore, the working factor consists of 29 encryptions and
29 · 24 = 213 evaluations of Eq. (12.2).

In [4], Daemen et al. describe how this attack can be extended adding one round at
the end or one round at the beginning. Combining the basic attack on 4 rounds with
both extensions yields the Square Attack on 6-round AES. We can sketch this attack
as follows. For the extension by one round at the end, the attacker has to perform a
partial decryption of two rounds instead of only one, implying that four more bytes
of the final round key need to be guessed. The idea for the extension by one round at
the beginning consists of choosing a set of 256 plaintexts which, at the end of the first
round, results in aΔ-set with a single active byte. This requires to guess four bytes of
the initial round key k(0). We refer to [4] for further details on these two extensions.
In both cases, we need to guess five key bytes instead of one. By combining these
two methods, nine bytes need to be guessed.
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12.2.2 Partial Sum Attack

Without considering the verification steps, the Square Attack on 6-round AES
requires the storage of 232 chosen plaintexts and the corresponding ciphertexts.
Moreover, (28)9 = 272 steps are needed for guessing nine key bytes, when it is
applied to only recover 4 bytes of the 6th round key. Therefore, it is completely out
of reach for current computing resources.

The Partial Sum Attack [5] significantly improves the Square Attack on 6-round
AES. Ferguson et al. introduced two main ideas. First, instead of guessing four bytes
of the initial round key k(0), one can use 232 plaintexts such that one column of the
states at the input of MixColumns of the first round ranges over all possible values
of (F28)

4 and all other bytes are constant. Throughout the rest of the chapter, we
denote by Δ̄-set such a group of 232 plaintexts. For any value of the initial round
key, the corresponding ciphertexts consist of 224 groups of 28 encryptions that vary
in a single active byte at the end of the first round. In fact, imposing a particular
linear combination which ranges over all possible values of F28 and three other
linear combinations which are constant for all 256 states, we can uniquely determine
a set of plaintexts which results in a Δ-set with a single active byte at the end of the
first round. In particular, one has 224 ways to choose the values for these three linear
combinations.

Therefore, all an attacker has to do is guess four bytes of the 6th round key and
one byte of the 5th round key, perform a partial decryption to a single state byte at
the end of the 4th round, sum this value over all 232 encryptions, and check whether
the result is zero. Compared to the Square Attack on 6 rounds, the attacker needs to
guess 40 bits instead of 72.

The further idea behind the improvement introduced by Ferguson et al. consists
in organizing the partial decryption on partial sums. In order to properly understand
what partial sums are and howone can use them,we introduce the following notation,
where the pair (i, j) is used to denote the state entry (with i, j ∈ {0, 1, 2, 3}), and the
index l (with 1 ≤ l ≤ 232) denotes the lth element of a Δ̄-set:

b(l)
i,j is a byte at the end of the 4th round;

a(l)
i,j is a byte of the state at the 5th round before the application of MixColumns;

a(l)
s is the sth column of the lth state at the 5th round before the application of

MixColumns. Thus a(l)
j =

(
a(l)
0,j, a(l)

1,j, a(l)
2,j, a(l)

3,j

)	
;

c(l)
i,j is a byte at the end of the 6th round, which we refer to as the ciphertext byte;

k(h) is the hth round key and k̄(h) = MixColumns−1(k(h));
k̄(h)

i,j is a byte of k̄(h).

It is easy to show that, in order to compute the partial decryption to a state byte at
the end of the 4th round, we need to consider four bytes in each ciphertext and guess
the corresponding bytes of the 6th round key, according to one of the configurations
shown in Fig. 12.1. Observe that each configuration has exactly one byte per state
row and one byte per state column.
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1 st set config. 2nd set config. 3rd set config. 4th set config.

Fig. 12.1 The set of 4 bytes of the 6th round key (resp. ciphertexts) for the Partial Sum Attack on
6-round AES

In the following computations, with abuse of notation, we denote by Mix-
Columns−1 and SubBytes−1 the inverse of MixColumns and SubBytes applied to
a single column of the state. The relations between the a(l)’s, the c(l)’s and the k(h)’s
are easily established:

a(l)
j =

⎡
⎢⎢⎢⎢⎣

a(l)
0,j

a(l)
1,j

a(l)
2,j

a(l)
3,j

⎤
⎥⎥⎥⎥⎦ = MixColumns−1

⎛
⎜⎜⎜⎜⎝SubBytes−1

⎛
⎜⎜⎜⎜⎝

c(l)
0,j + k(6)

0,j

c(l)
1,(j−1) mod 4 + k(6)

1,(j−1) mod 4

c(l)
2,(j−2) mod 4 + k(6)

2,(j−2) mod 4

c(l)
3,(j−3) mod 4 + k(6)

3,(j−3) mod 4

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ ,

where j ∈ {0, 1, 2, 3}. When j is understood, we will remove it; for example we
denote

ξ(l) =

⎡
⎢⎢⎢⎣

ξ
(l)
0

ξ
(l)
1

ξ
(l)
2

ξ(l)
3

⎤
⎥⎥⎥⎦ := SubBytes−1

⎛
⎜⎜⎜⎜⎝

c(l)
0,j + k(6)

0,j

c(l)
1,(j−1) mod 4 + k(6)

1,(j−1) mod 4

c(l)
2,(j−2) mod 4 + k(6)

2,(j−2) mod 4

c(l)
3,(j−3) mod 4 + k(6)

3,(j−3) mod 4

⎞
⎟⎟⎟⎟⎠ ,

for 1 ≤ l ≤ 232. Let N be the byte matrix of MixColumns−1. Working out the
product, we have

a(l)
j =

⎡
⎢⎢⎢⎣

N0 · ξ(l)
0 + N1 · ξ(l)

1 + N2 · ξ(l)
2 + N3 · ξ(l)

3

N3 · ξ
(l)
0 + N0 · ξ

(l)
1 + N1 · ξ

(l)
2 + N2 · ξ

(l)
3

N2 · ξ(l)
0 + N3 · ξ(l)

1 + N0 · ξ(l)
2 + N1 · ξ(l)

3

N1 · ξ
(l)
0 + N2 · ξ

(l)
1 + N3 · ξ

(l)
2 + N0 · ξ

(l)
3

⎤
⎥⎥⎥⎦ ,

where, in the specific case of AES (see Sect. 12.2),

N0 = α3 + α2 + α

N1 = α3 + α + 1

N2 = α3 + α2 + 1

N3 = α3 + 1.



188 F. Aldà et al.

Thus we can compute a state byte at the end of the 4th round as follows:

b(l)
i,(j+i) mod 4 = γ−1

(
a(l)

i,j + k̄(5)
i,j

)
, (12.3)

where i ∈ {0, 1, 2, 3} and γ−1 is the S-box of SubBytes−1, as usual. Observe that
in (12.3) γ−1 is applied to a(l)

i,j + k̄(5)
i,j rather than to a(l)

i,j + k(5)
i,j . The latter would be

wrong, since k(5)
i,j is added after the application of MixColumns.

In order to identify a possible right guess, we have to check if
232∑
l=1

b(l)
i,(j+i) mod 4 = 0.

This sum can be expressed as

232∑
l=1

γ−1
(

N−i · ξ
(l)
0 + N1−i · ξ

(l)
1 + N2−i · ξ

(l)
2 + N3−i · ξ

(l)
3 + k̄(5)

i,j

)
, (12.4)

where the indices −i, 1− i, 2− i, 3− i are all meant to be reduced modulo 4, giving
a remainder in {0, 1, 2, 3}.

If we trivially execute this summation, given 232 ciphertexts and 240 possible key
guesses,we have to sum272 different values,which does not significantly improve the
basic Square Attack. As it is pointed out in [5], Expression (12.4) can be organized
in a more efficient manner. Once the row i is fixed, for each t ∈ {0, 1, 2, 3}, it is
possible to associate a partial sum x(l)

t to each set {ξ(l)
0 , . . . , ξ

(l)
t }, defined as follows:

x(l)
t :=

t∑
z=0

Nz−i · ξ(l)
z .

In particular,
x(l)
2 = x(l)

1 + N2−iξ
(l)
2 and x(l)

3 = x(l)
2 + N3−iξ

(l)
3 .

In order to simplify the notation, let (c(l)
0 , c(l)

1 , c(l)
2 , c(l)

3 ) be the 4-tuple formed by
the lth ciphertext’s bytes, extracted according to one of the configurations described
above.Guessing the keyvalues andusing the partial sums,we candefine the following
maps

(c(l)
0 , c(l)

1 , c(l)
2 , c(l)

3 ) 
−→ (x(l)
1 , c(l)

2 , c(l)
3 ) 
−→ (x(l)

2 , c(l)
3 ) 
−→ x(l)

3 .

Using a similar notation, let (k0, k1, k2, k3) be four values for the 6th round key,
whichwewant to guess, arranged in the sameconfiguration chosen for the ciphertexts,
and let k4 be a guess for the 5th round key byte k̄(5)

i,j . The Partial Sum Attack is
organized as follows.
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• We start with the list of 232 4-tuples (c(l)
0 , c(l)

1 , c(l)
2 , c(l)

3 ). Guessing k0 and k1, we

can compute each triple (x(l)
1 , c(l)

2 , c(l)
3 ).

• We then guess k2, and compute each pair (x(l)
2 , c(l)

3 ).

• Similarly, we guess k3, and compute each value of x(l)
3 .

• Finally, guessing the value of k4, we can compute Expression (12.4) and check
whether the result is zero.

12.2.3 Complexity

In the first phase one guesses 2 bytes and processes 232 ciphertexts bytes. For each
choice of k0 and k1, one more byte has to be guessed, but only 224 triples have to be
processed. In the third phase, k3 has to be guessed but one has only to process 216

pairs. This holds similarly for the other two phases. Summing up all the contributions,
we obtain that 250 operations are required for a single Δ̄-set of 232 elements.

12.3 Implementation and Improvement

The results described in this work started from Aldà’s Master’s thesis [1], where he
developed a C++ code of the Partial Sum Attack and introduced (independently of
[12]) the improvement specified in Sect. 12.3.2.

12.3.1 High-Level Scheme of the Implementation

To the best of our knowledge, this is the very first implementation of the Partial Sum
Attack on 6-round AES. In this section, we explain the main ideas and principles we
used in our implementation. We refer to Sect. 12.3.3 for further technical details on
our implementation.

As it is displayed in Fig. 12.2, the steps involved in the attack are very simple.
At the beginning of the attack, a Δ̄-set with 232 elements has to be encrypted. In
this way, we can obtain and store the 4-tuples (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ), formed by the

lth ciphertext’s bytes, extracted according to one of the configurations described in
Sect. 12.2.2. Extending the idea introduced in [5], it is sufficient to count how often
each 4-tuple appears during the computation. As there are only 232 possible 4-tuples,
we do not have to store all (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ) values. Since Expression (12.4) has to

be computed in a field of characteristic 2, it suffices to count modulo 2. In fact, only
the summands which appear an odd number of times give a non-zero contribution.
Hence, a single bit suffices for each count and it is possible to store our list of 4-tuples
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k0,k1 k2 k3 k4

232

224

216

28

Final sum

Fig. 12.2 The workflow of the Partial Sum Attack

in a 232-bit vector. Therefore, the space requirement for 232 counters is just 232 bits,
which correspond to 0.5GB.

We then start a loop over 216 possible values of k0, k1. For each pair (k0, k1),
we compute the partial sums x(l)

1 and store the triples (x(l)
1 , c(l)

2 , c(l)
3 ). Using the same

rationale, it suffices to count the parity of times each triple occurs. Again, we store all
parities in a 224-bit vector. Moreover, we observe that, using an appropriate sorting, it
suffices to compute the value x(l)

1 every 216 elements: in fact, this value only depends

on c(l)
0 , c(l)

1 , k0 and k1. Thus, if 1 ≤ l, h ≤ 232, we have

{
c(l)
0 = c(h)

0

c(l)
1 = c(h)

1

=⇒ x(l)
1 = x(h)

1 .

This observation significantly reduces the number of computations involved in this
step, allowing entire blocks of bits to be updated at the price of very few calculations
(see Sect. 12.3.3 for further details).

The same ideas can be similarly applied to the second step. For each value k2, one
computes the partial sums x(l)

2 , counts the parity of times each pair (x(l)
2 , c(l)

3 ) occurs

and stores it in a 216-bit vector. As before, it suffices to compute the value x(l)
2 every

28 elements: in fact, this value only depends on x(l)
1 , c(l)

2 and k2.

In the third step, for each value k3, we compute the partial sums x(l)
3 , count how

many times each x(l)
3 occurs and store its parity in a 28-bit vector. Unlike the previous
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steps, this must be done scanning every entry of the 216-bit vector, since both x(l)
2

and c(l)
3 must be used in the computation of x(l)

3 . Finally, looping over the value k4,
it is possible to compute the final sum and check whether the result is zero.

As it was explained for the Square Attack, checking this sum for a single Δ̄-set is
expected to eliminate 255 of thewrong key assumptions (k0, k1, k2, k3, k4). It is there-
fore necessary to verify their correctness using different Δ̄-sets (verification steps).
At each positive verification, the key space is reduced by a factor 2−8. Apparently,
this implies that 6 different Δ̄-sets (or more) are needed to find the correct 5-tuple
(k0, k1, k2, k3, k4) with overwhelming probability. This result can be improved, as it
is explained in the following section.

12.3.2 Improvement

As it was already underlined, when it was published, the Partial Sum Attack rep-
resented one of the best cryptanalytic results on reduced-round versions of the
AdvancedEncryption Standard. After its publication,many other researchersworked
on the integral cryptanalysis of Rijndael (and its specification AES), finding new
extensions or improvements for this class of attacks (see for example [7, 9, 12]).
Our approach started from performing a full implementation of the attack as it is
described in Sect. 12.3.1, trying to understand where some other potentialities could
be exploited.

In the original paper [5], it is claimed that at least 6 sets of 232 plaintexts, which
form a Δ̄-set, are necessary in order to find the correct 5-tuple (k0, k1, k2, k3, k4).
However, we observed that only two Δ̄-sets suffices to determine the correct 4-
tuple (k0, k1, k2, k3)with high probability. In fact, fixing one configuration according
to which the ciphertexts bytes (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ) are extracted, one can compute

the sum in four different state bytes at the end of the 4th round (we can choose
i ∈ {0, 1, 2, 3} in Eq. (12.3)). We provide a visual example in Fig. 12.3.

If we consider each sum as independent and make use of Proposition 12.2, using
only two Δ̄-sets, the probability that for a 4-tuple (k0, k1, k2, k3) there exists for each
row a value k4 which gives a zero sum for both Δ̄-sets is (1/256)8. Note that the bytes
of the 5th round key, which produce zero sums, may be different for each row, but,
as for (k0, k1, k2, k3), their correctness should follow by the crosschecking between
the two Δ̄-sets. Therefore, checking the value of the sum on four rows at the end of
the 4th round is expected to determine, with sufficiently high confidence, the correct
4-tuple (k0, k1, k2, k3). More specifically, only one false positive (k0, k1, k2, k3) is
expected to survive to all verification steps.

The hypothesis which this result is mainly based on consists of considering the
sums on four rows as independent. As pointed out in Sect. 12.2.1, there is no certainty
that this assumption holds perfectly in practice. Intuitively, even though the bytes
involved in the sums belong to the same state and their correlation is hence nonzero,
the diffusion and confusion introduced by the round transformations should make
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5th round

SB SR ARK MC

6th round

SB SR ARK

Swap

Fig. 12.3 The state bytes at the end of the 4th round (in the top-left matrix) which can be computed
for a configuration according to which the ciphertexts bytes (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ), for 1 ≤ l ≤ 232,

are extracted

it negligible after few rounds. The experimental results we performed using our
implementation (which exploits the aforementioned improvement) show that using
only two Δ̄-sets and computing the sum on four rows do not eliminate all wrong
guesses, as we expected. In particular, besides the correct 4-tuple, we obtained on
average one false positive, independently of the configuration chosen.Althoughmore
tests are needed in order to provide a better estimate, our results already indicate that
the probability of false positive closely matches the expected one. Moreover, we
believe that future analyses in this direction could point out further properties of the
cipher, which may lead to other improvements of the attack.

All in all, we observed that the number of chosen plaintexts which are necessary
in order to mount the attack (with high confidence) can be reduced from 6 Δ̄-sets of
232 elements to only 2. In order to lower the probability of false positives (but still
enhancing the basic attack described in [5]), we also performed some attacks using
3 Δ̄-sets, checking the sum on four rows at the end of the 4th round. As expected, in
this setting we did not observe any false positive.

Although we reached this conclusion independently, we would like to point out
that a remark similar to our observation can be found in [12]. As already observed,
we believe that our analysis is more careful and detailed, since we supported the
applicability of the hypotheseswhich this result is based on bymeans of experimental
analyses on AES. Specifically, we provided a full implementation which strongly
exploits the aforementioned improvement, and the results we obtained running the
attack showed that the number of false positives closely matches the one which was
expected from the theoretical analysis.
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Among other speed-ups we introduced, this improvement allowed us to achieve
optimal performances, showing the complete practicability of the attack, as it will
be presented in the following section.

12.3.3 Implementation’s Details

First of all,we portedAldà’s code [1] toC, to reduce the overheadofC++abstractions,
which are useful but not essential for this kind of application. During this phase,
we decided to map every Boolean vector’s element to a bit inside an unsigned
char’s array. On one hand, this process forced us to create some ancillary functions
to toggle and mask bits as necessary but, on the other hand, it had the side effect of
accelerating some functions where shifting and masking were required, because we
did it byte by byte, instead of bit by bit. Moreover, it allowed us to save space and
time while writing and reading the encrypted arrays to and from the disk, storing
every 232 array in a 512MB file and saving time while testing the attack. After
completing the porting and introducing the new memory management concepts, we
started focusing on how the memory management operations could be accelerated
and we ended up managing every group of 8 unsigned char array elements as
an unsigned long long int array, where possible. This allowed us to deal
with the allocated memory as a set of 64 bit blocks, reducing the time needed to
complete, for example, some XOR operations between these arrays. The resulting
implementation was satisfactory.

We also decided to allow the parallelization of the attack on multiple core systems
and, for this purpose, we needed to exchange information between each process. We
chose OpenMPI [6, 8] because we appreciated its documentation and the maturity
of the open source project supporting it. Porting the code from a linear to a parallel
paradigm presented no real difficulties because the attack is mainly composed by
loops, repeated for values from 0 to 255, so we decided to execute the 5 most inner
loops on each worker (a worker is a parallel process running the attack), assigning
to each of them a range of values of k0 to go through in the outer of these 5 loops.
Moreover, we shared the encrypted vectors, using NFSv4, on every system running
the attack and using the same share storage to save the guessed partial keys and to
check the status of the attack from each worker.

Our code works as follows. The master process coordinating the attack distributes
the values to each worker using the Round-Robin algorithm [11] and then
waits for replies from each of them.After finishing the attackwith one of the assigned
values, every worker reports the result to the master, if successful. If the attack with
that value was not successful, the worker checks the shared storage looking if the
current partial key has been guessed and, if so, it stops the attack, otherwise it starts
the attack with the next assigned value.

To retrieve the whole 16-byte key, the attack has to be run 4 times, according to
the four configurations shown in Fig. 12.1. The master writes 4 files that contain the
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Table 12.2 Experimental results obtained running our implementation of the Partial Sum Attack
on 6-round AES

Number of Δ̄-sets Average time (days) Memory (GB)

2 12.1 1.028

3 11.5 1.542

The keys were chosen according to the example vectors provided in [10]

partial keys guessed, and it also writes the whole key in another file when the attack
is completed for every configuration.

The final outcome of this effort was interesting in terms of memory and time used.
The attacks have been launched on 6 desktop PC, with 4 cores (Intel Pentium CPU
G640 @2.80GHz) and 8GB of RAM each, using 25 processes. The first process
coordinated the attacks, while the remaining 24 workers actually performed the
attacks. The results we obtained are summarized in Table12.2.

From these experimental results, we can note that the attacks which use 3 Δ̄-
sets are generally slightly faster, though they obviously require more memory to
be performed. This is not too surprising, since using only 2 Δ̄-sets triggers more
verification steps on different rows (as observed in Sect. 12.3.2, there are more wrong
key candidates which give a zero sum on a fixed row), which are time consuming
operations in our current implementation.

Based on the results of Table12.2, we estimate that, on average, the 128-bit 6th
round key can be retrieved in 25.8h using 256 workers.

The source code of our implementation of the Partial Sum Attack is available on
http://tdsoc.org.
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