Chapter 11 An Information Rate Improvement for a Polynomial Variant of the Naccache-Stern Knapsack Cryptosystem

Giacomo Micheli, Joachim Rosenthal and Reto Schnyder

Abstract We adapt an information rate improvement by Chevallier-Naccache-Stern for the Naccache-Stern knapsack cryptosystem, called the prime packing strategy, to the polynomial version of the protocol.

11.1 Introduction

In 1997 Naccache and Stern [4] proposed a new public key cryptosystem known as the *Naccache-Stern Knapsack cryptosystem*, or *NSK* for short. This system was based on modular arithmetic in the integers and had a number theoretic flavor. However, NSK suffers from a low information rate: The ratio of message to ciphertext size is less than 10% for many practical parameters. More recently in 2008, Chevallier-Mames, Naccache and Stern [2] presented several alterations to the protocol that improve the information rate at the cost of a larger public key size.

More than a decade after the NSK protocol was invented, Micheli and Schiavina presented a generalized monoid based version of the NSK Protocol [3], as well as an instance based on polynomials over finite fields. This variant suffers from the same low information rate. In this chapter, we apply the improvements of [2] to this polynomial based variant.

G. Micheli (🖂) · J. Rosenthal · R. Schnyder

Institute of Mathematics, University of Zurich,

Winterthurerstrasse 190, 8057 Zurich, Switzerland e-mail: giacomo.micheli@math.uzh.ch

J. Rosenthal e-mail: rosenthal@math.uzh.ch

R. Schnyder e-mail: reto.schnyder@math.uzh.ch

[©] Springer International Publishing Switzerland 2016 M. Baldi and S. Tomasin (eds.), *Physical and Data-Link Security Techniques for Future Communication Systems*, Lecture Notes in Electrical Engineering 358, DOI 10.1007/978-3-319-23609-4_11

11.2 Recalling the NSK Protocol

We recall here the NSK protocol and its generalization. They are both based on the following problem:

Problem 11.1 Let *L* be a positive integer, *M* be a monoid and *c*, v_1, \ldots, v_L elements of *M*. Find (if one exists) a vector $m = (m_1, \ldots, m_L) \in \{0, 1\}^L$ for which

$$c = \prod_{i=1}^{L} v_i^{m_i}.$$

In what follows, we show some instances of the problem above and the cryptographic protocol arising from them. Let \mathbb{F}_q be the finite field of order q.

Problem 11.2 Fix a positive integer L, the monoid $M = (\mathbb{F}_q[x], \cdot)$, irreducible polynomials $p_1, \ldots, p_L \in M$ and

$$c = \prod_{i=1}^{L} p_i^{m_i}.$$

for some $(m_1, \ldots, m_L) \in \{0, 1\}^L$. Find the vector m.

It is immediate that Problem 11.2 can be easily solved by reducing *c* modulo p_i for each *i*: we have in fact $m_i = 1$ if and only if $c \equiv 0 \mod p_i$.

Problem 11.3 Let g be an irreducible polynomial of degree N, L a positive integer and $M = (\mathbb{F}_q[x]/(g(x)), \cdot) \cong (\mathbb{F}_{q^N}, \cdot)$. Let $v_1, \ldots, v_L \in M$ and

$$c = \prod_{i=1}^{L} v_i^{m_i}.$$

for some $(m_1, \ldots, m_L) \in \{0, 1\}^L$. Find the vector m.

The generic instance of Problem 11.3 is now difficult compared to Problem 11.2. This gap is exploited in [3]. In what follows we recall their protocol, which we will refer to as the *polynomial NSK* or *pNSK* for short.

Alice sets up the system as follows:

- Alice chooses a finite field \mathbb{F}_q , L irreducible polynomials $p_i \in \mathbb{F}_q[x]$, an irreducible polynomial g for which $\sum_{i=1}^{L} \deg p_i < \deg g$ and a pair of integers (e, s) for which $es \equiv 1 \mod q^N 1$.
- The private key is (p_1, \ldots, p_L, s) .
- The public key is $(v_1, \ldots, v_L, \mathbb{F}_q[x]/(g(x)))$, where $v_i = p_i^e$.

The encryption of a message $m \in \{0, 1\}^L$ is performed as

$$m \mapsto \prod_i v_i^{m_i} = c \in \mathbb{F}_q[x]/(g(x)).$$

Alice can then decrypt by computing $c^s \in \mathbb{F}_q[x]/(g(x))$ and reducing the result modulo p_i for each *i*, since $c^s \mod g(x)$ (together with its factorization in terms of the p_i) suitably lifts to $\mathbb{F}_q[x]$ using the property $\sum_{i=1}^{L} \deg p_i < \deg g$.

The original NSK is obtained by replacing $\mathbb{F}_q[x]$ by \mathbb{Z} and irreducible polynomials by prime numbers.

11.3 Prime Packing

In what follows our goal is to show that a direct adaptation of the NSK packing presented in [2] is also possible in the case of the polynomial variant. We pack the irreducible polynomials up to degree *d* as follows: Let $b, t \in \mathbb{N}$ be positive integers for which $bt \leq \overline{\pi}(d)$, where $\overline{\pi}(d)$ is the number of irreducible polynomials up to degree *d*. Partition the first (according to any ordering respecting the degree) *bt* polynomials in *t* sets $\{S_i\}$ each of size *b* satisfying that for all $i, j \in \{1, ..., t\}$, if $f \in S_i$ and $h \in S_j$ we have

$$i \le j \Rightarrow \deg(f) \le \deg(h)$$

More informally, we pack the polynomials up to degree *d* into *t* packs, each of them containing the *b* polynomials of the lowest possible degree. Let us denote by $p_{j,i}$ the *i*th polynomial living in the *j*th box S_j , again ordered by degree. In particular, we have deg $p_{j,i} \leq \deg p_{j,b}$ for all *i* and *j*. The protocol will then be modified as follows. The space of messages becomes $\{1, \ldots, b\}^t$, we require now only $\sum_{j=1}^t \deg p_{j,b} < \deg g = N$. Again, let $es \equiv 1 \mod q^N - 1$.

The public key is set up as $(\{v_{j,i}\}_{i,j}, \mathbb{F}_q[x]/(g(x)))$, where again $v_{j,i} = p_{j,i}^e$. The secret key is analogously $(\{p_{j,i}\}_{i,j}, s)$. The encryption of a message $m = (m_1, \ldots, m_t) \in \{1, \ldots, b\}^t$ is performed as

$$m \mapsto \prod_{j=1}^{t} v_{j,m_j} = c \in \mathbb{F}_q[x]/(g(x)).$$

Alice can then decrypt by computing $c^s \in \mathbb{F}_q[x]/(g(x))$ and reducing the result modulo $p_{j,i}$ for each i, j, as before.

It is now easy to compute the information rate and public key size: The information rate is $\frac{t \log b}{N \log q}$, and the public key has size $bt N \log q$.

b	t	Information rate (%)	Public key size (kbit)
pNSK	130	7.9	215
5	130	18.3	1074
10	130	26.1	2149
30	130	38.6	6447
50	127	43.4	10496
70	109	40.4	12612

Table 11.1 Information rate and public key size of prime packing for q = 6287, deg g = 131 and various box sizes

11.3.1 Example Parameters

As an example, consider the medium prime case q = 6287. We compare the information rate and public key size of our scheme in the case deg g = 131 for various values of the box size *b* in Table 11.1. Computations were done using Sage [6]. The first row corresponds to the original pNSK (which is not quite the same as setting b = 1). Note that for small box sizes *b*, we always get t = 130 boxes. This is because it is possible to use only degree 1 polynomials for the $p_{j,i}$. As *b* becomes larger, this is no longer possible, and the information rate suffers.

Evidently, the information rate can be greatly improved at the cost of a much larger public key size. This cost can be somewhat reduced by applying the "powers of primes" technique of [2], and we will do so in Sect. 11.4.

11.3.2 Asymptotic Information Rate

As in [2], we can obtain linear bandwidth by setting the number of packs equal to their size. Indeed, we show that if we set n := b = t, then the information rate of pNSK using prime packing is asymptotically equal to $\frac{1}{2}$.

To analyze the information rate, we first need to find the degree of the *n*th irreducible polynomial p_n , according to any order respecting the degree. In [3, Sect. 3.2.2], it was shown that the number of irreducible polynomials in $\mathbb{F}_q[x]$ of degree at most *d* is asymptotically equal to $\frac{q}{q-1}\frac{q^d}{d}$. Hence, the polynomials with a given degree *d* should be numbered roughly between $\frac{q}{q-1}\frac{q^{d-1}}{d-1}$ and $\frac{q}{q-1}\frac{q^d}{d}$. Thus, if the polynomial p_n has degree d_n , we have

$$rac{q}{q-1}rac{q^{d_n-1}}{d_n-1}\lesssim n\lesssim rac{q}{q-1}rac{q^{d_n}}{d_n},$$

where $a_n \leq b_n$ means that $\limsup_{n \to \infty} a_n/b_n \leq 1$. Taking logarithms gives

$$(d_n-1)-\log_q(d_n-1)\lesssim \log_q n-\log_q \frac{q-1}{q}\lesssim d_n-\log_q d_n,$$

which asymptotically is the same as

$$d_n - 1 \lesssim \log_q n \lesssim d_n.$$

We hence see that $d_n = \deg p_n \sim \log_q n$.

Now we can approximate the degree of g:

$$N = \deg g = 1 + \sum_{i=1}^{n} \deg p_{in}$$
$$\sim \sum_{i=1}^{n} \log_q(in) \sim \sum_{i=1}^{n} \log_q(n^2) \sim 2n \log_q n$$

For the first \sim , note that the indices of p_{in} in the sum are all at least *n*, and so only the asymptotic behavior of deg p_{in} is relevant. Finally, we get for the information rate

$$\frac{t\log_2 b}{N\log_2 q} \sim \frac{n\log_2 n}{2n\log_q n\log_2 q} = \frac{n\log_2 n}{2n\log_2 n} = \frac{1}{2}.$$

11.4 Powers of Primes

In [2, Sect. 4], prime packing was applied to a variant of NSK using a base larger than 2 in order to further improve information rate and reduce public key size. This method can also be applied to the polynomial NSK variant.

As in Sect. 11.3, we again choose a degree *d* and integers *b* and *t* satisfying $bt \leq \overline{\pi}(d)$, and we partition the first *bt* irreducible polynomials into *t* sets S_i of size *b*. We further choose an integer parameter $\ell \geq 1$. We again denote by $p_{j,i}$ the *i*th polynomial in the *j*th box, ordered by degree. As before, we need an irreducible polynomial $g \in \mathbb{F}_q[x]$ of large degree as our modulus, but this time, we require that $\sum_{j=1}^{t} \ell \deg p_{j,b} < \deg g = N$. Again, we choose integers *e* and *s* with $es \equiv 1 \mod q^N - 1$ and set $v_{j,i} = p_{j,i}^e$. The public key is $(\{v_{j,i}\}_{i,j}, \ell, \mathbb{F}_q[x]/(g(x)))$ and the private key is $(\{p_{j,i}\}_{i,j}, s)$.

For each box S_i , we now have more options available for encryption than simply choosing one element of S_i : we can choose up to ℓ elements, allowing repetitions, and multiply those. Each of these possibilities corresponds to a *b*-tuple in $T = \{(k_1, \ldots, k_b) \in \mathbb{N}^b \mid k_1 + \cdots + k_b \leq \ell\}$. As shown in [2, Appendix A], there

are $\binom{b+\ell}{\ell} = B$ such tuples, and there is a bijection $\varphi \colon \{1, \ldots, B\} \to T$ that can be computed efficiently [5]. Hence, we use the message space $\{1, \ldots, B\}^t$, and we encrypt a message $m = (m_1, \ldots, m_t)$ as

$$m \mapsto \prod_{j=1}^{t} \prod_{i=1}^{b} v_{j,i}^{k_{j,i}} = c \in \mathbb{F}_q[x]/(g(x)),$$

where $\varphi(m_{j}) = (k_{j,1}, ..., k_{j,b}) \in T$.

Decryption is again done by lifting and factoring c^s and inverting φ .

We can again give a formula for information rate and public key size. The information rate is $\frac{t \log B}{N \log q}$, and the public key still has size $bt N \log q$.

11.4.1 Toy Example

We present a small example to clarify the "powers of primes" method. Let q = 2, and we consider a system with t = 2 packs of b = 3 irreducible polynomials each. Let furthermore $\ell = 2$. The first six irreducible polynomials are

$$p_{1,1} = x \qquad p_{2,1} = x^3 + x + 1 p_{1,2} = x + 1 \qquad p_{2,2} = x^3 + x^2 + 1 p_{1,3} = x^2 + x + 1 \qquad p_{2,3} = x^4 + x^3 + 1.$$

We need $\ell \deg p_{1,3} + \ell \deg p_{2,3} = 12 < \deg g = N$, so we choose

$$g = x^{13} + x^4 + x^3 + x + 1.$$

We randomly choose secret exponents e = 6020 and $s = 6380 \equiv e^{-1} \mod 2^{13} - 1$. The public elements are now given by $v_{j,i} \equiv p_{j,i}^e \mod g$:

$$\begin{aligned} & v_{1,1} = x^{11} + x^{10} + x^9 + x^8 + x^6 + x^5 & v_{2,1} = x^8 + x^7 + x^6 + x^5 + x^4 + 1 \\ & v_{1,2} = x^{11} + x^{10} + x^9 + x^8 + x^6 + x & v_{2,2} = x^{12} + x^{11} + x^6 + x^5 + x^3 \\ & v_{1,3} = x^{12} + x^{11} + x^{10} + x^9 + x^5 + x^3 + x^2 + 1 & v_{2,3} = x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^2. \end{aligned}$$

Note that $B = \binom{3+2}{2} = 10$, so we can represent a message in base 10. We choose the following encoding from integers 0 to 9 to 3-tuples (k_1, k_2, k_3) satisfying $k_1 + k_2 + k_3 \le 2$.

b	l	t	Information rate (%)	Public key size (kbit)	
1	1	130	7.9	215	
2	2	65	10.1	215	
10	10	13	13.8	215	
30	1	130	39.0	6447	
42	2	65	38.9	4513	
310	26	5	38.8	2562	
83	26	5	25.1	686	

Table 11.2 Information rate and public key size of the "powers of primes" variant for q = 6287, deg g = 131 and various box sizes and bases

To encrypt the message m = 94, we hence compute

$$v_{1,1}^0 v_{1,2}^0 v_{1,3}^2 \cdot v_{2,1}^1 v_{2,2}^1 v_{2,3}^0 \equiv x^{12} + x^9 + x^8 + x^3 + x^2 + 1 = c \mod g$$

To decrypt, raise the ciphertext to *s* and factor:

$$m^{s} \equiv x^{10} + x^{9} + x^{6} + x^{5} + x^{4} + x + 1 \mod g$$

= $(x^{2} + x + 1)^{2} \cdot (x^{3} + x + 1) \cdot (x^{3} + x^{2} + 1)$
= $p_{1,1}^{0} p_{1,2}^{0} p_{1,3}^{2} \cdot p_{2,1}^{1} p_{2,2}^{1} p_{2,3}^{0}$,

from which the message is recovered.

11.4.2 Example Parameters

We again consider the case q = 6287 and compare the information rate and public key size of the "powers of primes" variant in the case deg g = 131 for different values for *b* and ℓ in Table 11.2. The first row corresponds to the original pNSK, which is obtained by setting b = 1 and $\ell = 1$.

As we can see, the "powers of primes" method allows, to an extent, for larger information rates at the same key size, or for smaller keys for a given information rate.

11.5 Security

As for the original Naccache-Stern cryptosystem, we do not know of a security proof for the pNSK, with or without our information rate improvements. However, we can recall a few considerations regarding the security of NSK from [2, 4], which also apply to our variant. First of all, note that our system is broken if one can solve a discrete logarithm problem $p_{j,i}^s = v_{j,i}$, as this directly reveals the secret key. Although the $p_{j,i}$ don't have to be released publicly, they must have low degree and can thus be guessed easily. Hence, it is important to choose parameters in such a way that the field $\mathbb{F}_q[x]/(g(x))$ is large enough to withstand a DLP attack. Compared to the original NSK, we have to be even more careful due to recent quasipolynomial attacks on small characteristic [1].

As remarked in [4], a birthday-search attack on the message is possible on all NSK variants. In our case, this happens by dividing the packs S_j into two sets T_1 and T_2 of similar size and searching for a collision in an appropriate way. For example, in the "powers of primes" situation, one could look for exponents $k_{j,i}$ such that

$$\prod_{j \in T_1} \prod_{i=1}^{b} v_{j,i}^{k_{j,i}} = c \cdot \prod_{j \in T_2} \prod_{i=1}^{b} v_{j,i}^{-k_{j,i}}$$

To prevent this, the size of the message space should be chosen to be at least twice the desired security level.

Furthermore, since $2 | q^d - 1$ for odd q, it is possible to find the parity of the number of factors $v_{j,i}$ in a ciphertext c that are quadratic nonresidues in $\mathbb{F}_q[x]/(g(x))$ by simply checking whether c itself is a quadratic residue. This is only a small information leakage, but nonetheless it should be avoided by encoding messages in such a way that this parity is always the same. A similar attack can be applied for other small factors of $q^d - 1$, so it should be chosen to have few such factors.

Acknowledgments The authors were supported by Swiss National Science Foundation grant number 149716 and *Armasuisse*

References

- Barbulescu R, Gaudry P, Joux A, Thomé E (2014) A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: Advances in Cryptology-Eurocrypt 2014. Springer, pp 1–16
- Chevallier-Mames B, Naccache D, Stern J (2008) Linear bandwidth naccache-stern encryption. In: Security and Cryptography for Networks. Springer, pp 327–339
- Micheli G, Schiavina M (2014) A general construction for monoid-based knapsack protocols. Adv Math Commun 8(3)
- Naccache D, Stern J (1997) A new public-key cryptosystem. In: Advances in Cryptology, EURO-CRYPT. pp 27–36
- 5. Stanton D, White D (1986) Constructive combinatorics. Springer, New York
- 6. Stein W, et al. (2014) Sage mathematics software (version 6.1.1). The Sage Development Team, http://www.sagemath.org