
Chapter 11
An Information Rate Improvement
for a Polynomial Variant
of the Naccache-Stern Knapsack
Cryptosystem

Giacomo Micheli, Joachim Rosenthal and Reto Schnyder

Abstract We adapt an information rate improvement by Chevallier-Naccache-Stern
for the Naccache-Stern knapsack cryptosystem, called the prime packing strategy,
to the polynomial version of the protocol.

11.1 Introduction

In 1997 Naccache and Stern [4] proposed a new public key cryptosystem known as
theNaccache-Stern Knapsack cryptosystem, orNSK for short. This systemwas based
on modular arithmetic in the integers and had a number theoretic flavor. However,
NSK suffers from a low information rate: The ratio of message to ciphertext size
is less than 10% for many practical parameters. More recently in 2008, Chevallier-
Mames, Naccache and Stern [2] presented several alterations to the protocol that
improve the information rate at the cost of a larger public key size.

More than a decade after the NSK protocol was invented, Micheli and Schiavina
presented a generalized monoid based version of the NSK Protocol [3], as well as
an instance based on polynomials over finite fields. This variant suffers from the
same low information rate. In this chapter, we apply the improvements of [2] to this
polynomial based variant.
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11.2 Recalling the NSK Protocol

We recall here the NSK protocol and its generalization. They are both based on the
following problem:

Problem 11.1 Let L be a positive integer, M be amonoid and c, v1, . . . , vL elements
of M . Find (if one exists) a vector m = (m1, . . . mL) ∈ {0, 1}L for which

c =
L∏

i=1

vmi
i .

In what follows, we show some instances of the problem above and the crypto-
graphic protocol arising from them. Let Fq be the finite field of order q.

Problem 11.2 Fix a positive integer L , the monoid M = (Fq [x], ·), irreducible
polynomials p1, . . . , pL ∈ M and

c =
L∏

i=1

pmi
i .

for some (m1, . . . mL) ∈ {0, 1}L . Find the vector m.

It is immediate that Problem11.2 can be easily solved by reducing c modulo pi

for each i : we have in fact mi = 1 if and only if c ≡ 0 mod pi .

Problem 11.3 Let g be an irreducible polynomial of degree N , L a positive integer
and M = (Fq [x]/(g(x)), ·) ∼= (Fq N , ·). Let v1, . . . , vL ∈ M and

c =
L∏

i=1

vmi
i .

for some (m1, . . . mL) ∈ {0, 1}L . Find the vector m.

The generic instance of Problem11.3 is now difficult compared to Problem11.2.
This gap is exploited in [3]. In what follows we recall their protocol, which we will
refer to as the polynomial NSK or pNSK for short.

Alice sets up the system as follows:

• Alice chooses a finite field Fq , L irreducible polynomials pi ∈ Fq [x], an irre-
ducible polynomial g for which

∑L
i=1 deg pi < deg g and a pair of integers (e, s)

for which es ≡ 1 mod q N − 1.
• The private key is (p1, . . . , pL , s).
• The public key is (v1, . . . , vL ,Fq [x]/(g(x))), where vi = pe

i .
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The encryption of a message m ∈ {0, 1}L is performed as

m �→
∏

i

vmi
i = c ∈ Fq [x]/(g(x)).

Alice can then decrypt by computing cs ∈ Fq [x]/(g(x)) and reducing the result
modulo pi for each i , since cs mod g(x) (together with its factorization in terms of
the pi ) suitably lifts to Fq [x] using the property

∑L
i=1 deg pi < deg g.

The originalNSK is obtained by replacingFq [x] byZ and irreducible polynomials
by prime numbers.

11.3 Prime Packing

In what follows our goal is to show that a direct adaptation of the NSK packing
presented in [2] is also possible in the case of the polynomial variant. We pack the
irreducible polynomials up to degree d as follows: Let b, t ∈ N be positive integers
for which bt ≤ π(d), where π(d) is the number of irreducible polynomials up to
degree d. Partition the first (according to any ordering respecting the degree) bt
polynomials in t sets {Si } each of size b satisfying that for all i, j ∈ {1, . . . , t}, if
f ∈ Si and h ∈ S j we have

i ≤ j ⇒ deg( f ) ≤ deg(h).

More informally, we pack the polynomials up to degree d into t packs, each of
them containing the b polynomials of the lowest possible degree. Let us denote
by p j,i the i th polynomial living in the j th box S j , again ordered by degree. In
particular, we have deg p j,i ≤ deg p j,b for all i and j . The protocol will then be
modified as follows. The space of messages becomes {1, . . . , b}t , we require now
only

∑t
j=1 deg p j,b < deg g = N . Again, let es ≡ 1 mod q N − 1.

The public key is set up as
({v j,i }i, j ,Fq [x]/(g(x))

)
, where again v j,i = pe

j,i .

The secret key is analogously
({p j,i }i, j , s

)
. The encryption of a message m =

(m1, . . . , mt ) ∈ {1, . . . , b}t is performed as

m �→
t∏

j=1

v j,m j = c ∈ Fq [x]/(g(x)).

Alice can then decrypt by computing cs ∈ Fq [x]/(g(x)) and reducing the result
modulo p j,i for each i, j , as before.

It is now easy to compute the information rate and public key size: The information
rate is t log b

N log q , and the public key has size bt N log q.
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Table 11.1 Information rate and public key size of prime packing for q = 6287, deg g = 131 and
various box sizes

b t Information rate (%) Public key size (kbit)

pNSK 130 7.9 215

5 130 18.3 1074

10 130 26.1 2149

30 130 38.6 6447

50 127 43.4 10496

70 109 40.4 12612

11.3.1 Example Parameters

As an example, consider the medium prime case q = 6287. We compare the infor-
mation rate and public key size of our scheme in the case deg g = 131 for various
values of the box size b in Table11.1. Computations were done using Sage [6]. The
first row corresponds to the original pNSK (which is not quite the same as setting
b = 1). Note that for small box sizes b, we always get t = 130 boxes. This is because
it is possible to use only degree 1 polynomials for the p j,i . As b becomes larger, this
is no longer possible, and the information rate suffers.

Evidently, the information rate can be greatly improved at the cost of a much
larger public key size. This cost can be somewhat reduced by applying the “powers
of primes” technique of [2], and we will do so in Sect. 11.4.

11.3.2 Asymptotic Information Rate

As in [2], we can obtain linear bandwidth by setting the number of packs equal to
their size. Indeed, we show that if we set n := b = t , then the information rate of
pNSK using prime packing is asymptotically equal to 1

2 .
To analyze the information rate, we first need to find the degree of the nth

irreducible polynomial pn , according to any order respecting the degree. In [3,
Sect. 3.2.2], it was shown that the number of irreducible polynomials in Fq [x] of
degree at most d is asymptotically equal to q

q−1
qd

d . Hence, the polynomials with a

given degree d should be numbered roughly between q
q−1

qd−1

d−1 and q
q−1

qd

d . Thus, if
the polynomial pn has degree dn , we have

q

q − 1

qdn−1

dn − 1
� n � q

q − 1

qdn

dn
,
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where an � bn means that lim supn→∞ an/bn ≤ 1. Taking logarithms gives

(dn − 1) − logq(dn − 1) � logq n − logq
q − 1

q
� dn − logq dn,

which asymptotically is the same as

dn − 1 � logq n � dn .

We hence see that dn = deg pn ∼ logq n.
Now we can approximate the degree of g:

N = deg g = 1 +
n∑

i=1

deg pin

∼
n∑

i=1

logq(in) ∼
n∑

i=1

logq(n2) ∼ 2n logq n.

For the first ∼, note that the indices of pin in the sum are all at least n, and so only
the asymptotic behavior of deg pin is relevant. Finally, we get for the information
rate

t log2 b

N log2 q
∼ n log2 n

2n logq n log2 q
= n log2 n

2n log2 n
= 1

2
.

11.4 Powers of Primes

In [2, Sect. 4], prime packing was applied to a variant of NSK using a base larger
than 2 in order to further improve information rate and reduce public key size. This
method can also be applied to the polynomial NSK variant.

As in Sect. 11.3, we again choose a degree d and integers b and t satisfying
bt ≤ π(d), and we partition the first bt irreducible polynomials into t sets Si of
size b. We further choose an integer parameter � ≥ 1. We again denote by p j,i the
i th polynomial in the j th box, ordered by degree. As before, we need an irreducible
polynomial g ∈ Fq [x] of large degree as our modulus, but this time, we require that∑t

j=1 � deg p j,b < deg g = N . Again, we choose integers e and s with es ≡ 1

mod q N − 1 and set v j,i = pe
j,i . The public key is

({v j,i }i, j , �,Fq [x]/(g(x))
)
and

the private key is
({p j,i }i, j , s

)
.

For each box Si , we now have more options available for encryption than simply
choosing one element of Si : we can choose up to � elements, allowing repetitions,
and multiply those. Each of these possibilities corresponds to a b-tuple in T =
{(k1, . . . , kb) ∈ N

b | k1 + · · · + kb ≤ �}. As shown in [2, AppendixA], there
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are
(b+�

�

) = B such tuples, and there is a bijection ϕ : {1, . . . , B} → T that can
be computed efficiently [5]. Hence, we use the message space {1, . . . , B}t , and we
encrypt a message m = (m1, . . . , mt ) as

m �→
t∏

j=1

b∏

i=1

v
k j,i
j,i = c ∈ Fq [x]/(g(x)),

where ϕ(m j ) = (k j,1, . . . , k j,b) ∈ T .
Decryption is again done by lifting and factoring cs and inverting ϕ.
We can again give a formula for information rate and public key size. The infor-

mation rate is t log B
N log q , and the public key still has size bt N log q.

11.4.1 Toy Example

We present a small example to clarify the “powers of primes” method. Let q = 2,
and we consider a system with t = 2 packs of b = 3 irreducible polynomials each.
Let furthermore � = 2. The first six irreducible polynomials are

p1,1 = x p2,1 = x3 + x + 1

p1,2 = x + 1 p2,2 = x3 + x2 + 1

p1,3 = x2 + x + 1 p2,3 = x4 + x3 + 1.

We need � deg p1,3 + � deg p2,3 = 12 < deg g = N , so we choose

g = x13 + x4 + x3 + x + 1.

We randomly choose secret exponents e = 6020 and s = 6380 ≡ e−1 mod 213−1.
The public elements are now given by v j,i ≡ pe

j,i mod g:

v1,1 = x11 + x10 + x9 + x8 + x6 + x5 v2,1 = x8 + x7 + x6 + x5 + x4 + 1

v1,2 = x11 + x10 + x9 + x8 + x6 + x v2,2 = x12 + x11 + x6 + x5 + x3

v1,3 = x12 + x11 + x10 + x9 + x5 + x3 + x2 + 1 v2,3 = x12 + x11 + x10 + x6 + x5 + x2.

Note that B = (3+2
2

) = 10, so we can represent a message in base 10. We
choose the following encoding from integers 0 to 9 to 3-tuples (k1, k2, k3) satisfying
k1 + k2 + k3 ≤ 2.

0 �→ (0, 0, 0) 1 �→ (1, 0, 0) 2 �→ (2, 0, 0) 3 �→ (0, 1, 0) 4 �→ (1, 1, 0)

5 �→ (0, 2, 0) 6 �→ (0, 0, 1) 7 �→ (1, 0, 1) 8 �→ (0, 1, 1) 9 �→ (0, 0, 2).
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Table 11.2 Information rate and public key size of the “powers of primes” variant for q = 6287,
deg g = 131 and various box sizes and bases

b � t Information rate (%) Public key size (kbit)

1 1 130 7.9 215

2 2 65 10.1 215

10 10 13 13.8 215

30 1 130 39.0 6447

42 2 65 38.9 4513

310 26 5 38.8 2562

83 26 5 25.1 686

To encrypt the message m = 94, we hence compute

v01,1v01,2v21,3 · v12,1v12,2v02,3 ≡ x12 + x9 + x8 + x3 + x2 + 1 = c mod g.

To decrypt, raise the ciphertext to s and factor:

ms ≡ x10 + x9 + x6 + x5 + x4 + x + 1 mod g

= (x2 + x + 1)2 · (x3 + x + 1) · (x3 + x2 + 1)

= p01,1 p01,2 p21,3 · p12,1 p12,2 p02,3,

from which the message is recovered.

11.4.2 Example Parameters

We again consider the case q = 6287 and compare the information rate and public
key size of the “powers of primes” variant in the case deg g = 131 for different
values for b and � in Table11.2. The first row corresponds to the original pNSK,
which is obtained by setting b = 1 and � = 1.

As we can see, the “powers of primes” method allows, to an extent, for larger
information rates at the same key size, or for smaller keys for a given information
rate.

11.5 Security

As for the original Naccache-Stern cryptosystem, we do not know of a security proof
for the pNSK, with or without our information rate improvements. However, we can
recall a few considerations regarding the security of NSK from [2, 4], which also
apply to our variant.
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First of all, note that our system is broken if one can solve a discrete logarithm
problem ps

j,i = v j,i , as this directly reveals the secret key. Although the p j,i don’t
have to be released publicly, they must have low degree and can thus be guessed
easily. Hence, it is important to choose parameters in such a way that the field
Fq [x]/(g(x)) is large enough to withstand a DLP attack. Compared to the original
NSK, we have to be even more careful due to recent quasipolynomial attacks on
small characteristic [1].

As remarked in [4], a birthday-search attack on the message is possible on all
NSK variants. In our case, this happens by dividing the packs S j into two sets T1 and
T2 of similar size and searching for a collision in an appropriate way. For example,
in the “powers of primes” situation, one could look for exponents k j,i such that

∏

j∈T1

b∏

i=1

v
k j,i
j,i = c ·

∏

j∈T2

b∏

i=1

v
−k j,i
j,i .

To prevent this, the size of the message space should be chosen to be at least twice
the desired security level.

Furthermore, since 2 | qd − 1 for odd q, it is possible to find the parity of the
number of factors v j,i in a ciphertext c that are quadratic nonresidues inFq [x]/(g(x))

by simply checking whether c itself is a quadratic residue. This is only a small
information leakage, but nonetheless it should be avoided by encoding messages in
such a way that this parity is always the same. A similar attack can be applied for
other small factors of qd − 1, so it should be chosen to have few such factors.
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