
Chapter 10
Subspace Fuzzy Vault

Kyle Marshall, Davide Schipani, Anna-Lena Trautmann
and Joachim Rosenthal

Abstract Fuzzy vault is a scheme providing secure authentication based on fuzzy
matching of sets. A major application is the use of biometric features for authenti-
cation, whereby unencrypted storage of these features is not an option because of
security concerns. While there is still ongoing research around the practical imple-
mentation of such schemes, we propose and analyze here an alternative construction
based on subspace codes. This offers some advantages in terms of security, as an even-
tual discovery of the key does not provide an obvious access to the features. Crucial
for an efficient implementation are the computational complexity and the choice of
good code parameters. The parameters depend on the particular application, e.g. the
biometric feature to be stored and the rate one wants to allow for false acceptance.
The developed theory is closely linked to constructions of subspace codes studied in
the area of random network coding.
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10.1 Introduction

Fuzzy vault is the term used by Juels and Sudan in [7] to describe a cryptographic
primitive, in which a key κ is hidden by a set of features A in such a way, that
any witness B, which is close enough to A under the set difference metric, can
decommit κ. Fuzzy vault is related to the fuzzy commitment scheme of Juels and
Wattenberg [8], which gives a solution for noisy hashing of data for the Hamming
distance. This and a dual version of it, the fuzzy syndrome hashing scheme, were
considered by the authors in [1, 4, 17].

The motivation for fuzzy vault is related to the growing interest in using fuzzy
authentication systems, i.e. systems that do not require an exact match, but rather
a partial one, between two sets. Instances include the use of biometric features for
authentication, personal entropy systems to allow password recovery by answering a
set of questions with a level of accuracy above a certain threshold, privacy-protected
matching to allow find a match between two parties without disclosing the features
in public.

In early biometric authentication systems, comparison of a biometric was done
against an image stored locally on the machine, rather than in some hashed form. For
security purposes however, passwords are normally stored in hashed form.Moreover,
since biometric data is irreplaceable in the sense that once compromised it cannot be
changed, storing the data in un-hashed form can pose a significant security risk [3].
Biometric data is inherently noisy, however, so direct hashing of a user’s features
would prevent the authentic user from accessing the system, as no error tolerance in
the matching would be allowed. Using error correcting techniques, the fuzzy vault
is a scheme that can recover a secret key hidden by features even in the presence
of noise. Recent advancements have been made in the pre-alignment of biometrics
(cf. [11] and references therein), specifically fingerprints, allowing for comparative
methods without storage of the image itself. These advancements make fuzzy vault
a promising and feasible cryptographic solution for noisy data.

Recently, much work has been done in the area of error correcting codes in pro-
jective space. These codes turn out to be appropriate for error correction in random
network coding [9], and are referred to as error correcting random network codes,
projective space codes, or subspace codes. The aim of this chapter is to show that
the construction of the fuzzy vault in [7] can be extended and adapted to work for
subspace codes in an analogous way with advantages and limitations. Namely, we
present a construction for a fuzzy vault based on constant dimension subspace codes,
a class of error correcting codes in projective n-space over a finite field Fq . For illus-
tration, an example will be provided by using spread codes, a particular class of
subspace codes.

The rest of the chapter is organized as follows: Sect. 10.2 provides preliminaries,
terminology and refreshes the original fuzzy vault scheme. Section10.3 presents the
new scheme based on subspace codes. Section10.4 relates to security and exam-
ples and lastly Sects. 10.5 and 10.6 give further considerations and concluding final
remarks.
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10.2 Preliminaries

Denote by Fq the finite field with q elements, where q is a prime power. The set
difference metric d� is defined as

d�(A, B) := |(A\B) ∪ (B\A)|, A, B ⊆ Fq

and the Hamming metric dH is defined as

dH (u, v) := |{i | ui �= vi }|, u = (u1, . . . , un), v = (v1, . . . , vn) ∈ F
n
q .

Let g1, . . . , gn ∈ F
∗
q be distinct elements. A k-dimensional Reed-Solomon code

C ⊆ F
n
q can be defined as

C = {( f (g1), . . . , f (gn)) | f (x) ∈ Fq [x], deg( f ) < k}.

It has minimumHamming distance dmin,H (C ) = n −k +1 and cardinality |C | = qk

[12].
A constant dimension (subspace) code is a subset of the Grassmannian Gq(k, n),

the set of all k-dimensional subspaces of Fn
q . The subspace distance defines a metric

on Gq(k, n), given by

dS(U, V ) := dim(U + V ) − dim(U ∩ V ), U, V ∈ Gq(k, n)

for U, V ∈ Gq(k, n) [9]. While finding good subspace codes is still an open research
problem, there are many candidates now, including the Reed-Solomon-like and
spread code constructions [9, 13]. An explicit construction of a spread code can
be found in [13], and it is this construction we use as the definition of a spread code:
Let p(x) ∈ Fq [x] be an irreducible monic polynomial of degree k and P ∈ F

k×k
q be

its companion matrix. Let n = ks for s ∈ N. Then,

S = {rowsp(A1 | · · · | As) | Ai ∈ Fq [P], (A1 | · · · | As) �= (0 | · · · | 0)}

is called a (k, n)-spread code, where rowsp(A) is the row space of a matrix A. From
the definition, one can see that the minimum subspace distance of a spread code is
dmin,S(S ) = 2k and that the cardinality is |S | = qn−1

qk−1
.

For practical purposes we need a unique representation of subspaces, and we will
choose their matrix representation in reduced row echelon form (i.e. the matrix in
reduced row echelon form whose row space is the respective subspace) as such.

We will now briefly revisit the fuzzy vault scheme [7]. We will refer to the follow-
ing description (cf. also [6]), although we are aware of different interpretations of
the scheme throughout the literature, especially in terms of the decoding algorithms
and parameters [16]. Since this scheme is based on polynomial evaluation, it will
henceforth be called the polynomial fuzzy vault (PFV) scheme.
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Let κ = (k0, k1, ..., k�−1) ∈ F
�
q be the secret key and κ(x) = k0 + k1x +

...k�−1x�−1 ∈ Fq [x] the corresponding key polynomial. Let A ⊂ Fq\{0} be the set
of genuine features with |A| = t > �. Furthermore, let λ : Fq → Fq be a random
map such that λ(x) �= κ(x) for all x ∈ B. Choose r > t and select a set B ⊂ Fq\A
such that |B| = r − t . Construct the sets

Pauth = {(x,κ(x)) | x ∈ A},
Pchaff = {(x,λ(x)) | x ∈ B},

V = Pauth ∪ Pchaff .

We will call Pauth the set of authentic points, Pchaff the set of chaff points and V
the set of vault points.

The remaining parts of the fuzzy vault are a code and a corresponding error
correcting decoding algorithm. The code is the �-dimensional Reed-Solomon code
C ⊆ F

t
q ,

C = {( f (g1), . . . , f (gt )) | f (x) ∈ Fq [x], deg( f ) < �},

whose defining distinct evaluation points g1, . . . , gt are the points in A, i.e. the
genuine features. The key polynomial κ(x) gives rise to a codeword ofC . If a witness
attempts to gain access to the key, the witness submits a set of features W ⊂ Fq . Let
Z ⊆ V be the set of vault points (x, y)with x ∈ W . As the error correction capability
of C is 
(t − �)/2�, the witness needs |Z ∩Pauth | ≥ t −
(t − �)/2� = (t + �)/2�
to recover κ(x) with the decoding algorithm.

To simplify the setting and have a more workable model, assume that |W | = t
and that B = Fq\A. Then |Z | = t and we can rewrite d�(A, W ) = 2t −2|A∩W | =
2t − 2|Z ∩ Pauth |). Thus the witness gains access to the key if

d�(A, W ) ≤ 2t − (t + �) ⇐⇒ d�(A, W ) ≤ dmin,H (C ) − 1.

It was shown in [15] that certain reasonable parameters for the PFV scheme cause
the system to be susceptible to a brute force attack. Choi et al. in [2] speed up
the attack by using a fast polynomial reconstruction algorithm. These attacks may
indicate that additional security measures should be taken to prevent the loss of a
user’s features. A different type of security analysis is provided in [6].

10.3 A Fuzzy Vault Scheme Utilizing Subspace Codes

Wewill now explain our newvariant of the fuzzy vault scheme, and call this particular
implementation the subspace fuzzy vault (SFV) scheme. Unlike the PFV scheme in
which the key is given by the coefficients of a polynomial, the key κ̂ in this scheme
is a subspace with a disguised generator matrix κ (not in reduced row echelon form).
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Definition 10.1 Let k ≤ n, C ⊂ Gq(k, n) a constant dimension subspace code, and
κ̂ ∈ C a secret subspace. Choose some κ ∈ F

k×n
q such that rowsp(κ) = κ̂. We will

hide the key by a set of linearly independent features A ⊂ F
k
q with |A| = k and a set

B = F
k
q\A. Let λ(x) : Fk

q → F
n
q be a random map such that λ(x) /∈ rowsp(ˇ) for all

x ∈ B. Define the sets

Pauth = {(x, xκ) | x ∈ A},
Pchaff = {(x,λ(x)) | x ∈ B},

V = Pauth ∪ Pchaff .

Pauth is called the set of authentic points, Pchaff is called the set of chaff points,
and V the set of vault points.

In order for a witness to decommit κ̂, a set W ⊂ F
k
q is submitted and the second

coordinates of the elements in the vault whose first coordinates correspond to W are
used to generate a subspace W ′. This subspace is then decoded to yield a codeword
U ∈ C . We assume that W consists of at most k linearly independent features.

For a set S ⊂ F
k
q , we will denote by 〈S〉κ the subspace spanned by the elements

{sκ | s ∈ S}. We will also assume dim(W ′) = |W |, although this may not happen,
introducing some probability of error, as we mention below. The assumption is jus-
tified by estimating its probability using counting formulas like that in the following
Lemma 10.1, whilst supposing n big enough and the second coordinates of the chaff
points being randomly chosen within their domain.

Theorem 10.1 In the setting of Definition 10.1, the vault recovers the key κ̂ if and
only if

d�(A, W ) ≤ 1

2
(dmin,S(C ) − 1).

Proof We can express W ′ = (W ′ ∩ κ̂)⊕ E for some subspace E ⊂ F
n
q . As shown in

[9], we can uniquely recover κ̂ from W ′ if and only if dS(W ′, κ̂) ≤ 1
2 (dmin,S(C )−1).

Using properties of the rank and linear algebra identities, we get

d�(A, W ) = |W\A| + |A\W |
= dim(〈W\A〉κ) + dim(〈A\W 〉κ)

= dim(〈W\A〉κ) + k − dim(〈A ∩ W 〉κ)

= dim(E) + k − dim(κ̂ ∩ W ′)
= dS(W ′, κ̂).

Indeed, as |W | ≤ k, |A| = k, and W and A are sets of linearly independent features,
Sylvester’s rank inequality implies |W\A| ≤ dim(〈W\A〉κ), while the inequality in
the other direction is obvious, therefore |W\A| = dim(〈W\A〉κ); similarly we have
|A\W | = dim(〈A\W 〉κ) and |A ∩ W | = dim(〈A ∩ W 〉κ). Also dim(κ̂ ∩ W ′) =
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|A ∩ W |, as the second coordinates of W\A generate a subspace which does not
intersect κ̂ by definition of Pchaff and given that B = F

k
q\A.

Overall, it follows that d�(A, W ) = dS(W ′, κ̂), and therefore we can uniquely
decode W ′ to κ̂ as soon as the set difference between A and W is at most
1
2 (dmin,S(C ) − 1). ��

10.3.1 Variants of the Scheme

In order to loosen the constraints on the choice of parameters, other settings and
scheme variants can be considered, although some probability of error may be intro-
duced.

For example, we can allow |A| = |W | = t ≥ k, with the features thought as
randomly chosen in the ambient space rather than linearly independent. Other looser
assumptions include also B being a proper subset of Fk

q\A.
In these cases, one needs to compare dim(κ̂∩ W ′)with |A∩ W | and dim(κ̂+ W ′)

with |A ∪ W |. For example dim(κ̂ ∩ W ′) is no bigger than k while |A ∩ W | would
be no bigger than t ; |A ∪ W | counts elements of A which do not contribute to the
dimension of κ̂; dim(W ′) may not be equal to |W | and the looser assumption on B
may reduce the dimension of W ′ even more, introducing further variability.

Depending on the assumptions and parameters, one can expect to have bounds of
the form:

d�(A, W ) − δ1 ≤ dS(W ′, κ̂) ≤ d�(A, W ) + δ2,

for some δ1, δ2 ∈ N. Depending on the given threshold for d�(A, W ), one can
estimate the probability of falsely accepting or falsely rejecting the witness.

To be more precise, with the above mentioned looser assumptions, we get
dim(κ̂) = k = |A| − (t − k), dim(W ′) ≤ |W | and dim(κ̂ ∩ W ′) ≤ |A ∩ W |.
If y is an upper bound on the difference between |A ∩ W | and the maximum number
of linearly independent elements within A ∩ W (i.e. y = 0 for the hypothesis of
Theorem 10.1), we have on one side

dS(W ′, κ̂) = dim(κ̂) + dim(W ′) − 2 dim(κ̂ ∩ W ′)
≤ |A| − (t − k) + |W | − 2(|A ∩ W | − y)

= d�(A, W ) − (t − k) + 2y.

On the other side, if z is an upper bound for |W | − dim(W ′), we get

dS(W ′, κ̂) = dim(κ̂) + dim(W ′) − 2 dim(κ̂ ∩ W ′)
≥ |A| − (t − k) + |W | − z − 2(|A ∩ W |)
= d�(A, W ) − (t − k) − z.
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Note that z depends on the assumptions on the size of B and on the choice of chaff
points and the parameter n, as discussed in the first part of Sect. 10.3. I.e. z can be
neglected if n is big enough, B is the complement to A, and the chaff points are
randomly chosen. Similar bounds can also be obtained for t < k.

Incidentally, these inequalities provide an alternative proof to Theorem 10.1.

10.4 Security and Examples

Notice that we can use n as a degree of freedom to enlarge the size of the key space.
We know the following fact from [10]:

Lemma 10.1 Let k ≤ δ ≤ n. The number of δ × n matrices over Fq with rank k is
given by

Nq(k, δ, n) =
(∏k−1

i=0 qn − qi
) (∏k−1

i=0 qδ − qi
)

∏k−1
i=0 qk − qi

. (10.1)

With δ = κ we can see that we can play on n to make this number grow as we
please, in order to make it hard searching for the right set of k linearly independent
features.

Moreover, the complexity of such a brute force attack should be combined with
the difficulty of determining the rank of an arbitrary k × n matrix over Fq . The naive
approach, using Gaussian algorithm, requires at most n(k2 − k) field operations, and
in case the field is F2 at most n(k2−k)/2. There exist fast algorithms for determining
the rank of amatrix but these are only asymptotically better and are oftenmuchworse
for small values of k and n.

10.4.1 Other Attacks

When |A| = t > k, not only may some difficulty in decoding arise, but if t is much
bigger than k, other types of brute force attacks may be devised. In the following a
strategy is described which tries to find a set in Fn

q containing k linearly independent
vectors that are meant to reveal the authentic features.

Assume now to have t authentic points and r − t chaff points, with the set of
features {x1, ..., xt } being a set of random elements of Fk

q . We can assume that the
second coordinates of the authentic set {x1κ, ..., xtκ} contain a set of k linearly inde-
pendent vectors in F

n
q . Indeed, given Lemma 10.1, we can compute the probability

that x1κ, ..., xtκ contains a set of k linearly independent vectors as

Nq(k, k, t)

qkt
,
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that is the probability that (x1, ..., xt )
T is a rank k matrix. For common vault parame-

ters, and especially for larger t , this value is close to 1, so as to justify our assumptions.
Now, the expected number of subsets of size δ out of r > δ random points in F

n
q

that span a k-dimensional space can be estimated as

αq(k, δ, n) =
(r
δ

)
Nq(k, δ, n)

qδn
. (10.2)

Ideally, an attacker would want to find a δ0 ≤ |A| = t so that αq(k, δ0, n) < 1 in
order to have a high probability of recovering the key in the event that the δ0 points
span a space of dimension k. On the other side, to counter this type of attack, one
tries to keep k very close to t and r big enough, so that αq does not get small.

We will approximate the complexity of a brute force attack following this
approach. The attack is similar in approach to that proposed in [7] and depends
on finding a suitable δ0, so that the probability of δ0 random vectors in Fn

q spanning
a subspace of dimension k is small.

It is noted in [15] that the average number of attempts for a user to guess δ points in
the authentic set is

(r
δ

)
/
(t
δ

)
< 1.1(r/t)δ for r > t > 5. Given that it takes n(δ2−δ)/2

operations to row reduce a δ ×n binary matrix, we obtain the following upper bound
for the expected time to recover the key.

Lemma 10.2 In the above settings, let δ0 be so that α2(k, δ0, n) < 1 from Eq. (10.2).
On average, an attacker can recover the secret key in C · (r/t)δ0 operations, where
C < 0.55 · n(δ20 − δ0).

10.4.2 Example Using Spread Codes

As an example of how to construct a vault using subspace codes, we will use spread
codes, as defined in Sect. 10.2.

Spread codes are somewhat restrictive in that the minimum distance is completely
determined by k, unlike other subspace codes where one can trade off the distance
with other parameters. Nevertheless we illustrate the construction using spread codes
because of their simplicity.

Example 10.1 Let us assume that the features belong to F16
2 , so that k = 16. In this

case, we can recover the key if and only if the set difference is at most 15. We are
free to choose n as long as it is a positive integer multiple of k. For example we can
choose n = 96 so that we have roughly 280 keys.

Note that an (n, k)q spread code can be decoded inO((n − k)k5) field operations
over Fq , as shown in [5]. For more information on spread codes and other decoding
algorithms, the reader is referred to [5, 13, 14].
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10.5 Further Considerations

One of the disadvantages of using a biometric for security is that once an attacker
knows a user’s features, the user can never use a biometric scheme based on those
features again.In the PFV finding the key is essentially equivalent to finding the
features, as they are immediately retrievable as the first coordinates of the points in
the authentic set, i.e. by testing whether these correspond to evaluations of the key
polynomial. In the SFV, instead, an attacker who is capable of obtaining κ̂, has no big
advantage in recovering x1, ..., xt from x1κ, ..., xtκ, not knowing which particular
κ was used to generate the second coordinates of the authentic points. Ideally, to
make the system even more resilient, the user should have the features obscured, for
instance one might want to store in the vault a hash of the features, instead of the
features themselves, as

Pauth = {(h(x), xκ) | x ∈ A}
Pchaff = {(h(x),λ(x)) | x ∈ B},

for a suitable hash function h. There is also another important reason to use hashes
as above in the system. In fact, suppose that an attacker finds an element in the
unhashed version of the vault whose first coordinate is a linear combination of other
first coordinates of other elements in the vault. Then he can check whether its second
coordinate is also a linear combination (with the same coefficients) of the corre-
sponding second coordinates of the other elements. If this happens he can argue that
the element belongs to Pauth . Clearly also this attack can be prevented by taking t
close to k, besides using an hash function to hide the first coordinates.

10.6 Conclusions

We have proposed a new authentication scheme based on noisy data like biometric
features. The idea has similarities with the fuzzy vault scheme and works in the set
difference metric, but it exploits the new setting of subspace codes. We have pre-
sented a main theorem with two alternative proofs that shows under which distance
conditions authentication succeeds with respect to the code parameters. We have
also showed the possibility of considering a few variants based on slightly differ-
ent assumptions and how the main theorem can be generalized. This can allow more
flexibility for the choice of parameters and for future applications. The security of the
scheme has been analyzed, whereby brute force attacks require bigger computational
costs comparedwith traditional schemes. This however comeswith a price, that is the
computational complexity of state of the art decoding schemes for subspace codes
is also rather high. There are also a few other nice features of the new scheme, for
example its resilience to exposing the features even if the key were compromised.
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Future research includes enhancing the scheme or devising alternative schemes
based on subspace codes that would enable more efficient and flexible parameter
profiles or decoding scenarios. Also considering examples with families of codes
other than spread codes may help suggest future steps towards an actual deployment
in practice.
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