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Preface

In recent years, communication and data security is becoming of paramount
importance, and some significant academic and industrial research efforts are being
directed in this area.

Besides classical approaches to security, new paradigms are taking root, with
immense potential in a number of scenarios. Among them, physical layer security is
one of the most fascinating, though partly unexplored research areas. The first
impulse to this approach has been given in the seventies with Wyner’s study on the
wiretap channel, and since then this field knew an exponential growth. The chance
to exploit the random and unique character of the transmission channel to achieve
security and authentication is very attractive, and may pave the way to new and
more user-oriented security solutions.

However, physical layer security is still not sufficiently mature to provide
practical solutions to be included in current communication systems and standards,
therefore some effort is still needed in this direction. On the other hand, classical
solutions rely on computational security techniques, like cryptography, and work at
the data-link layer, assuming perfect transmission at the physical layer. This is a
known limit of classical security techniques, especially when they are used over the
wireless channel, which always represents a great security challenge, due to its
intrinsic broadcast nature. In several occasions, the use of classical security solu-
tions over the wireless channel has resulted in overlooked security threats and
vulnerabilities, thus demonstrating the need for a more comprehensive security
design, starting at the physical layer. Despite this, the integration of physical and
data-link layer security techniques is still in initial stages. Other channels, as the
powerline communication channel, pose similar problems as the wireless trans-
missions, as well as many privacy concerns for the applications usually running on
this medium.

The enhancing communication security by cross-layer physical and data-link
techniques (ESCAPADE) research project supported by the Italian Ministry of
Education aims at providing a contribution in the direction to fill the gap, by
studying innovative and practical physical and data-link layer security techniques,
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as well as their integration. The Workshop on Communications Security (WCS
2014) was organized in the framework of the project to foster discussion among
researchers working in both these fields, with the aim to address important open
problems in the relevant areas and exchange new ideas concerning the links
between them.

This book originates from the workshop, and collects extended versions of the
works presented on that occasion, together with some relevant invited contribu-
tions, addressing some of the most important problems in the two fields of physical
and data-link layer security techniques. We believe that this can provide a useful
collection of reference material to those interested in these areas, thus fostering the
adoption of mixed physical and data-link layer security solutions.

The first part of the book is devoted to physical layer security, with an invited
tutorial on advances in this area, starting from a general view and then focusing on
some specific scenarios and practical techniques. Among them, we find the use of
fading channels and practical codes to achieve security, which are two important
solutions in this area, addressed in detail in the next two chapters. Then, two
important variants of the basic physical layer security setting are considered, that is,
transmission over broadcast channels with confidential messages and extraction of
secret keys from the wireless channel. The implementation of these techniques in
practical scenarios is then addressed by two chapters on key extraction in ultra
wideband transmissions and power line communication networks. The security
features of two special settings are then studied. In fact, the next two chapters focus
on security in compressed sensing—where the aim is to reduce the sampled size of
signals—and fuzzy vaults—which aim at providing secure authentication based on
biometric features. The latter chapter opens the second part of the book, which is
devoted to computational security techniques, with contributions concerning
cryptosystems, like the Naccache-Stern and AES schemes, and their cryptanalysis.
The last two chapters of the book provide an insight into the implementation of
security and authentication techniques in practice, which is an important target to
achieve by any newly introduced security solution.

The editors wish to gratefully acknowledge Franco Chiaraluce and Nicola
Laurenti for their precious help throughout the ESCAPADE project, and Nicola
Maturo and Giacomo Ricciutelli for their tireless support concerning the organi-
zation of WCS 2014.

We also want to thank Matthieu Bloch, Arsenia Chorti, David Elkouss, Frederic
Gabry, Ingmar Land, Ayoub Otmani, Edoardo Persichetti, Francesco Renna,
Davide Schipani, and Aydin Sezgin for having reviewed the chapters and helped to
improve the book quality.

Ancona, Paris Marco Baldi
June 2015 Stefano Tomasin
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Chapter 1
Physical Layer Security: A Paradigm
Shift in Data Confidentiality

Arsenia Chorti, Camilla Hollanti, Jean-Claude Belfiore and Harold
Vincent Poor

Abstract Physical layer security (PLS) draws on information theory to characterize
the fundamental ability of the wireless physical layer to ensure data confidentiality.
In the PLS framework it has been established that it is possible to simultaneously
achieve reliability in transmitting messages to an intended destination and perfect
secrecy of those messages with respect to an eavesdropper by using appropriate
encoding schemes that exploit the noise and fading effects ofwireless communication
channels. Today, aftermore than 15 years of research in the area, PLShas the potential
to provide novel security solutions that can be integrated into future generations
of mobile communication systems. This chapter presents a tutorial on advances in
this area. The treatment begins with a review of the fundamental PLS concepts and
their corresponding historical background. Subsequently it reviews some of the most
significant advances in coding theory and systemdesign that offer a concrete platform
for the realization of the promise of this approach in data confidentiality.
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2 A. Chorti et al.

1.1 Introduction

1.1.1 Historical Background

In the design of any communication system two fundamental requirements are taken
into consideration: (i) reliability in the exchange of information between a source
node (in our context, commonly referred to as Alice) and an intended destination
(Bob), and (ii) security in terms of data confidentiality and message integrity with
respect to an adversary (Eve). These two aspects in the design of any actual communi-
cation system have traditionally been addressed separately. This divide is reflected in
a decisive difference in the setup of the elementary models proposed first by Claude
Shannon for the investigation of the two issues, depicted in Figs. 1.1 and 1.2.

In terms of reliability, a noisy transmission channel was assumed to connect Alice
and Bob. On the other hand, for the study of security a noiseless medium linking
Alice, Bob and Eve was considered. Using this latter model, Shannon proved in [32]
that in the noiseless scenario perfect secrecy (unconditional security) in a symmetric
key encryption system can be achieved only when the entropy of the security key
is at least equal to that of the message; i.e., one needs to use a “one-time-pad” to
achieve perfect secrecy in this setting. As a consequence of this pessimistic result, the
conclusion that perfect secrecy is not attainable in realistic communication systems
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Fig. 1.1 Reliability model

Fig. 1.2 Data confidentiality model

was drawnand alternative approaches to securitywere sought basedon computational
complexity properties.

Nowadays, practical cryptographic approaches are built to alternatively achieve
semantic security, i.e., to withstand polynomial time chosen plaintext and chosen
ciphertext attacks [11]. State of the art authenticated encryption schemes that guar-
antee data confidentiality and integrity have been built around the assumption that
the underlying symmetric key block ciphers are semantically secure; however, no
formal proof exists to-date for the most advanced block ciphers, including the AES-
128, AES-196 and AES-256. Notably, for symmetric key authenticated encryption
schemes to work the existence of a “shared” source of entropy that can be accessed
by bothAlice and Bob and that is inaccessible to Eve is still required, and, the entropy
of this source should be sufficient to support a computational complexity proof in
the semantic security setting. In protocols in which the keys are only used once this
source of randomness is necessary for the continuous update of the symmetric keys.
On the other hand, if the keys are used multiple times this source of randomness is
used to update complementary parameters, e.g., initialization vectors (IVs), nonces
or salts of the particular enciphering schemes used.

On the other hand, in public key authenticated encryption schemes no pre-
shared secret is assumed and the security of such schemes relies on the (unproven)
intractability of certain “hard” algebraic problems typically involving the use of large
prime numbers and elliptic curves. Furthermore, from a practical point of view, the
computational resources required by such protocols are significant; this is a serious
limiting factor in power limited or mobile applications. As a result, novel approaches
for securing next generation mobile systems are needed.
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1.1.2 Physical Layer Security

Recently, a fundamentally different approach to security has emerged from the area of
information theory under the generic term physical layer security (PLS). PLS encom-
passes all keyless security technologies that can ensure perfect secrecy by exploiting
a source of entropy typically considered a foe rather than a friend: the noise and the
interference in real communication media. PLS was pioneered by Wyner and was
founded on the observation that Shannon’s noiseless model in [32] is unnecessarily
restrictive. In fact, in all realistic communication settings the observations of Bob
and Eve are different realizations of a joint probability distribution (the output of the
transmission channel).

Wyner [35] investigated the so called wiretap channel model in which Eve’s
channel is a degraded version of the main channel between Alice and Bob, depicted
in Fig. 1.3. He proved that in this setting Alice and Bob can exchange informa-
tion reliably (with asymptotically zero error rates) and with perfect secrecy (with
asymptotically zero rate of information leakage) with the use of a suitable pair of
encoder/decoder functions. The rate at which information can be transmitted secretly
from the source to its intended destination was termed an achievable secrecy rate,
and the maximal achievable secrecy rate was termed the channel’s secrecy capacity
(SC).

Maurer [22] and Ahlswede and Csiszár [1] investigated the potential use of noisy
channels for secret key distillation and introduced the concept of secret key capacity
(SKC), in analogy to the SC.Key generation at the physical layer has been extensively
discussed as it offers unique opportunities to generate symmetric secret keys without
the overhead of public key encryption. In this context, there exist two different
approaches: the channel-type model approach and the source-type model approach.
According to the former, a random sequence is transmitted over the channel and
observed by Alice and Bob. In the latter Alice and Bob observe a common source
of randomness, e.g., their channel gains in a reciprocal transmission medium setting
(for example in slow fading channels).

Fig. 1.3 Wyner’s model
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To exploit either approach in order to distil a shared secret key, Bennet et al. [3]
proposed a concrete three-step approach:

1. Advantage distillation: Alice and Bob identify from a set of correlated observa-
tions the ones over which they have an “advantage” with respect to Eve.

2. Information reconciliation: These observations are then further processed to “rec-
oncile” discrepancies in order to obtain a mutual shared secret.

3. Privacy amplification: The shared secret is hashed with a universal hash function
in order to remove redundancy and produce a uniformly distributed key sequence
without leaking information to Eve.

In the following sections we will briefly review the SC of the most important
classes of channels and the design of the respective state-of-the-art encoders for
secrecy. Subsequently, we will discuss in detail the feasibility of PLS technologies
and outline open research issues and future directions of study. This review will be
concluded with an overview of the key points regarding PLS technologies.

1.2 Secrecy Capacity of Important Classes of Channels

Following Wyner’s contribution, the SC of the scalar Gaussian wiretap channel was
analyzed in [16]. It was shown that in this class of channels the SC, denoted by Cs ,
is given simply as the difference of the capacities of the main link, denoted by Cm ,
and of Eve’s link, denoted by Ce, i.e.,

Cs = (Cm − Ce)
+ (1.1)

with (·)+ = max(·, 0). In [6], Wyner’s approach was generalized to the transmission
of confidential messages over broadcast channels, depicted in Fig. 1.4.

The broadcast channel with confidential messages (BCC) [6] investigates the
scenario in which Alice wishes to broadcast a common message to both Bob and
Eve and a confidential message only to Bob. The channel is modeled through a joint
probability distribution function for Bob’s andEve’s observations, conditioned on the
channel input (broadcast by Alice). It was shown in [6] that the SC is the maximum
of the difference of the mutual information of the link between Alice and Bob and

Fig. 1.4 Criszár and Körner’s model



6 A. Chorti et al.

of the mutual information in the link between Alice and Eve, expressed as follows
when the rate of the common message is set to zero:

Cs = max
pU X (u, x)

U → X → Y Z

I (U ; Y ) − I (U ; Z), (1.2)

where U denotes the output of the source,1 X the input of the channel, Y the
observation at the intended destination and Z the observation of the eavesdropper,
while the maximization is over all possible joint input distributions pU X (u, x) and
U → X → Y Z form a Markov chain.

As a result, in contrast to the Gaussian wiretap channel, depending on the joint
distribution of Bob’s and Eve’s observations, it can be possible to have a non-zero SC
even in the non-degraded case, i.e., even when Eve has a better channel than Bob on
average. Such an example is the BCC fading channel, see [18] for more details. For
the fading BCC where the confidential message for one receiver must be perfectly
secret from the other, it was demonstrated that the secrecy capacity is non-zero even
when on average Eve’s channel is better than Bob’s channel. This can be achieved
if the transmitted encoded symbols are multiplexed over the time slots during which
Bob’s channel fading gain is larger than Eve’s fading gain. The key to achieving
the SC of the fading channel is optimal power allocation; see [9] for the ergodic
fading channel and [18] for the the parallel Gaussian BCC. Finally, a positive SC
can be achieved with only statistical channel state information of the eavesdropper’s
channel, by multiplexing the codewords across all fading realizations [5].

The SC of the multiple-input multiple-output (MIMO) channel allowing an arbi-
trary number of antennas at the transmitter, legitimate receiver, and eavesdropper
was derived in [24], after a considerable amount of previous work that had provided
partial proofs or bounds in some limited cases. Since the broadcast channel is not
degraded, a new proof technique involving a study of a Sato-like outer bound via the
solution of a certain algebraic Riccati equation was introduced. The SC turned out to
be the expected one—the results indeed revealed the difference of the mutual infor-
mation to the legitimate receiver and that to the eavesdropper maximized over the
input distribution, similarly to the previous cases. The MIMO SCwas independently
proved in various other works using different techniques, see [12, 13] among many
others. The concept was later extended to the case of three messages (one common
and two confidential messages) and to the imperfect secrecy setting by Ekrem and
Ulukus [8] and Liu et al. [20], as well as to the delayed channel state information
(CSI) feedback case by Yang et al. [37].

In the MIMO multi-receiver case with an external eavesdropper, the SC was
derived in [8], and a variant of dirty-paper coding with Gaussian signals was shown
to be capacity-achieving. An interesting feature was that the previous converse proof

1The channel prefixing random variable U accounts for randomness introduced in the encoding
process.
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techniques turned out to be insufficient, and thus a new proof technique involving
the Fisher information matrix and the generalized De Bruijn identity was adopted.

Furthermore, the multiple-access channel (MAC) with one or two confidential
messages was studied in [17] in the binary and Gaussian cases. Inner and outer
bounds on the capacity-equivocation region were obtained, where the equivocation
(or, conditional entropy) characterizes the level of secrecy maintained at the eaves-
dropper. In the case of a degraded MAC, the region was explicitly characterized.

Regarding relay networks, the first study of the SC of the relay channel with
confidential messages has appeared in [26] while further analyses followed [10, 27];
these contributions established that the SC of one-way relay channels is zero, unless
the source-destination channel is better than the source relay channel. In essence,
relay topologies of practical interest in which the link to the relay is better than
the direct link were shown to be inherently insecure. Due to this limiting result,
subsequent work focused primarily on cooperative relay channels with trustworthy
relays [2].

1.3 Code Design for Secrecy

Theoretical limits on the SC of wiretap channels have been extensively studied for a
broad set of scenarios. On the other hand, the richness of results for the characteri-
zation of capacity-equivocation regions is in sharp contrast with the limited amount
of actual wiretap code designs, an area in which little is yet known. Theoretical
approaches suggest that such code designs should possess a nested code structure
and (probably) exploit stochastic encoding. The term “double-binning” encoders
was introduced to describe such nested structures with an “outer encoder” essen-
tially generating public codewords that act as cosets to secret codewords generated
from an “inner encoder”. Nevertheless, designing explicit SC achieving codes based
on this principle is a challenging task as it requires a fine understanding and analysis
of a code’s algebraic structure. As a first step to facilitate such designs, Ozarow and
Wyner proposed the so-called wiretap II codes [28] adhering to the scenario in which
the channel to Bob is a noiseless binary channel, while Eve experiences erasures.

As noted previously,Wyner proved that both robustness to transmission errors and
a prescribed degree of data confidentiality can simultaneously be attained by channel
coding without any secret key. Wyner replaced Shannon’s perfect secrecy with the
weak secrecy condition, namely the asymptotic rate of leaked information between
the transmit message and the channel output at Eve’s side should vanish as the code
length tends to infinity. Unfortunately, it is still possible for a scheme satisfying weak
secrecy to exhibit some security flaws, e.g., the total amount of leaked information
may go to infinity, and now it is widely accepted that a physical-layer security scheme
should be secure in the sense of Csiszár’s strong secrecy, i.e., the total information
leakage should vanish when the code length tends to infinity.

In this framework, recently Mahdavifar and Vardy [21] have proposed polar wire-
tap codes for symmetric binary input channels and demonstrated that they can be SC
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achieving for long lengths. Alternatively, the most exploited approach to the design
of practical codes so far has been to use low density parity check (LDPC) codes
[34], both for binary erasure and symmetric channels and for Gaussian channels
with binary inputs.

An important recent development concerns the case of the Gaussian wiretap chan-
nelwith a power constraintwhich has been addressed by using lattice codes [19]. This
channel model is key in further developments since coding schemes for it include
bothmodulation and coding. Importantly, strong secrecy for anymessagewas proven
in this situation in [19]. The proposed coding scheme uses two nested lattices, a fine
and a coarse one. A point in the fine lattice is the sum of a coarse lattice point and a
point of minimal energy which is in the fine lattice, but not in the coarse lattice. This
latter point is similar to the remainder of a Euclidean division.

The proposed coding scheme works as follows:

• A sequence of pseudorandom bits labels the points of the coarse lattice.
• The data labels the pseudo remainder.

If the lattice scheme is correctly designed, then the legitimate receiver, Bob, can
reliably decode the fine lattice while Eve has no information concerning the data. A
lattice scheme which is good for the wiretap channel is designed in the following
manner:

• The fine lattice is good for coding.
• The coarse lattice is good for secrecy, which means that its “flatness factor” [19]
vanishes when the code length goes to infinity.

Figure1.5 shows Eve’s likelihood when the noise variance is small and large.
When it is large, then Eve cannot distinguish the points of the fine lattice (almost
identically distributed). When the flatness factor is small, then points are almost
undistinguishable for Eve. The flatness factor is closely related to the theta series of
the coarse lattice, which was first studied by Oggier et al. [25].

Fig. 1.5 Eve’s likelihood when using a two-dimensional lattice. The flatness factor measures the
span
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1.4 Privacy Amplification Techniques

As explained in Sect. 1.3, the SC and the SKC are asymptotic metrics—achieved
as the length of the respective encoders becomes arbitrarily long. These metrics are
defined according to a “weak secrecy” requirement so that the rate of information
leakage to Eve should be arbitrarily small. As noted previously, the adequacy of this
secrecy definition has been questioned on the grounds that the absolute amount of
information that can be observed by the adversary is not bounded and in general can
be non-negligible.

In this context, Maurer and Bennet et al. [3, 22] and other related work [23] have
proven that the use of privacy amplification techniques can effectively transform a
weakly secure channel to a strongly secure channel, in which the adversary can at
most observe a negligible absolute amount of information. Favorably, it was demon-
strated that the definitions of the SC and of the SKC can be strengthened without any
penalty in terms of achievable rates. Interestingly, strong secrecy can be obtained
fromweak secrecy “for free” through the use of a public feedback channel, in essence
extending the one-way communication models to two-way communication models.

The core idea behind these techniques is the use of appropriate feedbackmessages
chosen to provide enough side information to Bob’s secrecy decoder to completely
resolve any residual ambiguity, while at the same time leaking only a negligible
absolute amount of information to Eve.

–Toy example: Let us assume the following scenario of a two phase secret key dis-
tillation process. First, Alice broadcasts a random bit sequence. For the sake of
simplicity, let us assume that Bob and Eve obtain independent noisy observations
of this sequence and respective “soft” bit sequences at the outputs of their decoders.
In the second phase of the key distillation Bob broadcasts the positions of his most
“reliably decodable” bits (bits he decoded with probability arbitrarily close to unity).
Assuming that there is sufficient noise in the channel and the sequences are long
enough, the probability that Eve has reliably decoded the exact same subsequence as
Bob becomes negligible. Finally, Alice and Bob distill their common keys by using
a universal hash function to compress the mutually established subsequence. As a
result of the use of an information reconciliation phase and of a privacy amplification
phase Alice and Bob have thus distilled a secret key while the absolute amount of
information leaked to Eve is kept arbitrarily small.

In the key distillation example discussed above the adversarial channel need not
be degraded with respect to (w.r.t.) the main channel; it suffices that it is not almost
noiseless, i.e., that Eve cannot reliably decode thewhole sequence. In analogy, the use
of feedback to ensure secrecy can be further generalized to enable the broadcasting
of secret messages in non-degraded channels.

–Toy example: let us assume the case in which Alice wishes to transmit a secret mes-
sage d to Bob while the links between Alice, Bob and Eve are scalar Gaussian
channels and the main link is noisier than the eavesdropping link. Under these
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Table 1.1 Privacy amplification in non-degraded Gaussian channel

First phase

Bob transmits Local random symbol x

Alice receives x + n, n ∼ N (0, σ 2
m)

Eve receives x + w,w ∼ N (0, σ 2
e ), σ 2

e ≤ σ 2
m

Second phase

Alice transmits Encoded symbol f (d + x + n)

Bob’s optimal decoder Cancels out x and retrieves d from f (d + n)

Eve’s optimal decoder Retrieves d from f (d + n − w) (degraded
channel w.r.t. Bob)

assumptions, the SC of the one-way Gaussian channel between Alice and Bob is
zero. However, this negative setting can be reversed by allowing for two-way com-
munication between Alice and Bob as described in Table1.1.

1.5 Applications of PLS Technologies and Extensions
to Systems with Active Attacks

In the absence of a feedback channel and under the assumption that only the statistics
of the adversarial channel are known, the question of feasibility of PLS technolo-
gies can be reduced to whether the intended destination has a measurable statistical
advantage w.r.t. to the adversary. There exist important realistic scenarios in which
such opportunities can be substantiated, as described in the following.

1.5.1 Massive MIMO and Small Cell Systems

Fifth generation (5G) technologies with hundreds of antennas at the base stations
can be promising candidates for the use of PLS technologies. In massive MIMO
systems [7] there can exist channel degrees of freedom (DoF) that are unobservable
by the adversary. As an example, based on the transmitter gain pattern the signal-
to-interference-plus-noise-ratio (SINR) is not necessarily higher in receivers in the
proximity of the base station. The possibility of designing adaptive beamforming
strategies accounting for the generation of highly secure regions of a guaranteed
minimum SC arises. In parallel, millimeter wave, wireless optical systems and in
general small cell networks are prominent candidates for the use of PLS techniques
due to the sharp decline in signal quality outside a short range radius around the
transmitter.



1 Physical Layer Security: A Paradigm Shift in Data Confidentiality 11

1.5.2 Multiple Access and Multi-user Cooperative Networks

In multiple access systems the employment of interference alignment techniques has
been demonstrated to offer concrete opportunities for employment of PLS technolo-
gies, e.g. see Koyluoglu et al. [14]. Using interference alignment along with secrecy
precoding, it has been proven that in a generic K user Gaussian interference channel
K−2
2K secure DoF can be achieved by each user in the ergodic setting when only the
statistics of the adversarial channel are available. Furthermore, in cooperative net-
works with K legitimate users and E eavesdroppers the probability that the SC is
below a target rate, denoted by Pout , has been shown to exhibit an abrupt phase tran-
sition characteristic as shown in Fig. 1.6 [5]. As a result, in largemulti-user networks,
the feasibility of PLS can be incorporated into the network architecture design.

1.5.3 Interference Assisted PLS Technologies

In non-degraded one-way wiretap channels the use of helping interferers (HIs) has
been extensively investigated in the literature, e.g. [33]. In the generic HI framework
a transmitter sends a confidential message to its intended receiver in the presence of
a passive eavesdropper whose reception is jammed with the help of an independent
interferer. The achievable secrecy rate and several computable outer bounds on the SC
of thewiretap channelwith anHIwere evaluated in [33] for both discretememoryless
and Gaussian channels.
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1.5.4 OFDM Systems

Orthogonal frequency division multiplexing (OFDM) is a ubiquitous signaling
technique for current mobile, WiFi and other systems. Thus, in the application of
PLS, consideration of OFDM systems is an important element. This problem was
addressed by Renna et al. [29, 30] by considering the physical layer of an OFDM
transmitter/receiver pair in the presence of an eavesdropper that might either use an
OFDM structure or choose a more complex receiver architecture. The analysis was
made possible by modeling the system as a particular instance of a high dimensional
MIMO wiretap channel. The problem of determining the SC was formulated as a
maximization problem under a trace constraint, and simple expressions were given
for its high signal-to-noise (SNR) limit.

1.5.5 Backscatter Systems

Backscatter wireless communication lies at the heart ofmany practical low-cost, low-
power, distributed passive sensing systems. The inherent cost restrictions coupled
with the modest computational and storage capabilities of passive sensors, such as
radio frequency identification (RFID) tags, render the adoption of classical security
techniques challenging; which motivates the introduction of PLS approaches in this
setting. This problem has been studied in [31], where, first, the secrecy rate of a basic
single-reader, single tag RFID model was studied. Then, the unique features of the
backscatter channel were exploited to maximize this secrecy rate.

1.5.6 Use of PLS Technologies Against Active Eavesdroppers

PLS techniques have been investigated for their potential use against various types
of active attacks [36]. Lai et al. [15] proposed a straightforward application of PLS
for authentication purposes. The use of double-binning secrecy encoders was studied
with the outer bin containing a public message and the inner bin a secret key to be
used for authentication purposes. Furthermore, in [4] impersonation type of attacks
were considered, with the active eavesdropper using false feedback to mislead the
transmitter w.r.t. the achievable secrecy rate. Interestingly it was shown that in the
high SNR regime the SC of such broadcasting systems is in essence unaffected by
these type of attacks.
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1.6 Open Research Issues and Future Directions in PLS

During the last 15 years considerable research effort has concentrated on the area
of information theoretic security. Today, the fundamental limits of secure commu-
nications over noisy channels have been established in the form of the respective
capacity equivocation regions as discussed in Sect. 1.2. Furthermore, practical cod-
ing schemes that achieve the SC of certain channels have already come to light as
discussed in Sect. 1.3. Despite significant results in the above-mentioned areas, a lot
remains to be done before PLS technologies can be incorporated into practical engi-
neering designs and their full potential for secure transmissions over noisy channels
is achieved.

The first and foremost challenge in this direction is the design of explicit low com-
plexity secrecy code constructions; unsurprisingly, similarly to the baseline scenario
without secrecy constraints, this has proved to be a challenging task. In spite of exist-
ing results for certain specificmodels such as the discrete memoryless channel, much
remains to be done. The most promising designs of secrecy encoders so far are based
on polar codes and lattice codes; however, these schemes require large block lengths
and therefore are only practical for delay unconstrained applications, e.g., e-mail
exchange. Unfortunately, they cannot be employed in delay constrained applications
such as multimedia streaming or in networks with computationally limited devices
such as wireless sensors. Secrecy encoder designs at short andmedium block-lengths
is the single foremost important open issue that needs to be investigated in the PLS
framework.

Furthermore, several topics related to jointly authenticated and confidential trans-
missions remain unchartered areas of research. The exploitation of shared random-
ness techniques to establish a common source of randomness that is provably inac-
cessible to attackers could in principle form the basis of such schemes. In the same
framework, the design of cross-layer security protocols is still in its infancy. Such
designs could have the potential to exploit the unique properties of PLS techniques
in demanding wireless scenarios such as ad hoc and device-to-device networks in
which centralized key management schemes are not attainable and computational
and power resources are constrained. Furthermore, the joint employment of PLS and
encryption has only been considered from the viewpoint of independently using the
respective approaches at different layers of the OSI protocol; no joint consideration
of crypto-PLS designs yet exists. To this end, the systematic study of PLS in the
active eavesdropping setting would be necessary, extending existing active attacker
threat models to account for noisy communication channels.

1.7 Conclusions

Today, despite the indisputable success of established cryptographic approaches,
recent advances in communications, networking and computing technologies require
a paradigmshift in information security. In fact, the decentralized, relayed, virtualized
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or even un-managed (device-to-device), and heterogeneous nature of modern net-
works (e.g., 5G) renders the generation, management, and storage of secret keys
particularly challenging under current security protocols. Additionally, the recent
advances in the area of quantum computing have elicited the urgency of investigat-
ing alternative approaches to information security that do not rely on assumptions
regarding the computational complexity of the associated problems.

Including the physical layer of communication systems in the security design has
the potential to lead to this necessary paradigm shift. Several information-theoretic
results suggest that the imperfections inherently present in a communicationmedium
(fading, thermal noise, interference) may be harnessed to conceal information from
potential eavesdroppers by coding at the physical-layer itself. In essence, the noise
present in the communication channel can be exploited to achieve secrecy similar to
one-time-pad encryption. After more than a decade of intense research in the area
of PLS the fundamental limits of secure communications over noisy channels are
now better understood and practical coding schemes that achieve the promise of
information-theoretic results have come to light. Thus there is sufficient momentum
and underlying science for PLS techniques to be considered for incorporation into
practical engineering systems.
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Chapter 2
Secure Communication in Wiretap
Channels with Partial and Statistical
CSI at the Transmitter

Eduard Jorswieck, Pin-Hsun Lin, Sabrina Engelmann and Anne Wolf

Abstract One major challenge in physical layer security for confidential
communication is the lack of channel state information at the transmitter about the
channel to the passive eavesdropper. Depending on the attacker and channel assump-
tions, the statistical or deterministic channel uncertaintymodel is applied.The chapter
reviews recent results for both uncertainty models and compares different signaling
and pre-coding schemes and their achievable average and outage secrecy rates in fast
and slow-fading wiretap channels. In addition to wiretap coding, artificial noise and
non-Gaussian layered signaling are necessary to guarantee non-zero secrecy rates in
scenarios where Gaussian wiretap codebooks do not work.

2.1 Introduction and Model

Information theoretic security can provide unconditional perfect secrecy on the phys-
ical layer [3, 12]. In general, the legitimate link needs some advantage over the
attacker, which is a passive eavesdropper in this chapter. Thus we focus on data con-
fidentiality. In a wireless communication setup, onemajor challenge for knowing and
exploiting the advantage provided by the fading channel is channel uncertainty. One
way to tackle the problem of channel uncertainty is to incorporate this into the infor-
mation theoretic description of the channel. This leads to uncertain channel states
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Fig. 2.1 General wiretap channel model

and thereby to the (CWC) and (AVWC) models described in [19]. In this chapter,
we focus on slow and fast fading wiretap channels with deterministic and statistical
(CSI) at the transmitter.

2.1.1 Signal Model

Let us consider the general wiretap channel model in Fig. 2.1. The received signal at
Bob and Eve is given by

Y = √
H X + Φ, Z = √

G X + Ψ (2.1)

where the (AWGN) Φ and Ψ and the transmitted signal X are statistically indepen-
dent at the two receivers, and we have a usual power constraint at the transmitter
E[X2] ≤ P with perfect CSI at the receivers. The transmit (SNR) is denoted by
ρ = P

σ 2 with noise variance σ 2.

2.1.2 Channel Model and CSI

In general, the fading channel can be fast or slow fading [23]. In addition, the uncer-
tainty about the channel state can be modeled deterministically by a region of uncer-
tainty or statistically according to some error distribution. Depending on the fading
channel model, the right performance metric needs to be chosen. We distinguish the
following three different channel models and CSI scenarios.

1. Slow fading channel with deterministic uncertainty: The channel G to the eaves-
dropper stems from a set of possible realizations Γ and the legitimate link needs
to be prepared for the worst (compound channel approach).

2. Slow fading channel with statistical uncertainty: The channel is quasi-static block
fading and it keeps (approximately) constant during the transmission of one code-
word.With statistical CSI the right performancemeasure is the outage probability.
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3. Fast fading channelwith statistical uncertainty: In fast fading, the channels change
from channel use to channel use. With statistical CSI, the average rate is the right
performance metric.

2.1.3 Reliability and Confidentiality Model

The wiretap channel as described above is characterized by its input alphabet X ,
the output alphabets Y ,Z and the channel distribution p(Y, Z |X). A (2n Rs , n)-
code consists of a message set W , a stochastic encoder and a decoding func-
tion. The average decoding error probability for equi-probable messages is P(n)

e =
1
M

∑M
w=1 Pr

(
ŵ �= w|x (n)sent

)
, where x (n) is the channel input vector with length n.

A secrecy rate Rs is achievable if for any ε0 > 0 there is a (M, n)-code such that
M ≥ 2n Rs and P(n)

e ≤ ε0 and (weak secrecy criterion) [4]

n Rs − H(W |z(n)) ≤ nε0. (2.2)

In the case with CSI at the transmitter, the secrecy capacity is given by

max
p(X |U )p(U )

I (U ; Y |H) − I (U ; Z |G) (2.3)

with the following special result for the non-degraded Gaussian (SISO) wiretap
channels with perfect CSI at the transmitter [10].

max
p(x |h,g)

[I (X; Y, H) − I (X; Z , H, G)]+.

This expression is evaluated in [4] for the Gaussian SISO wiretap channel and in [9]
for the Gaussian (MIMO) wiretap channel.

2.2 Statistical Uncertainty in Fast Fading

In fast-fading wiretap channels only few secrecy capacity results are known in some
specific cases such as the legitimate and eavesdropper channels are (iid) with the
same distribution except the variances [15, 16], for block fading [7], and for the case
without CSI anywhere [17].

The order of the legitimate and the eavesdropper channel are of fundamental
interest when it comes to the computation of the secrecy rate. Therefore, let us repeat
the definitions of physical and stochastic degradedness.
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Definition 2.1 The wiretap channel is physically degraded if the transition distri-
bution function satisfies PY Z |X (y, z|x) = PY |X (y|x)PZ |Y (z|y), i.e., if X, Y, Z form
a Markov chain X − Y − Z .

The wiretap channel is stochastically degraded if its conditional marginal dis-
tributions are the same as those of a physically degraded wiretap channel, i.e., there
exists P̃Z |Y such that P(z|x) = ∑

Y PY |X (y|x)P̃Z |Y (Z |Y ).

Definition 2.2 Denote the set of feasible set as
SD+ = {(H, G) : H andG form a degraded wiretap channel with positive secrecy
capacity}.
However, the fading channels H and G are usually characterized in terms of the
following statistical orders [21].

Definition 2.3 For given random variables X and Y the usual stochastic order
(st), the convex order (cx), the concave order (cv), the increasing convex order
(icx), the increasing concave order (icv), and the Laplace transform order (Lt)
are respectively defined as

X ≤st Y if E[ f (X)] ≤ E[ f (Y )] for all increasing f

X ≤cx(cv) Y if E[ f (X)] ≤ E[ f (Y )] for all convex (concave) f

X ≤icx(icv) Y if E[ f (X)] ≤ E[ f (Y )] for all increasing convex (concave) f

X ≤Lt Y if E[exp(−s X)] ≤ E[exp(−sY )] for all s > 0. (2.4)

Definition 2.4 Define the following sets Sst = {(Hr , He) : Hr ≥st He}, Scx =
{(Hr , He) : Hr ≥cx He}, and Sicx = {(Hr , He) : Hr ≥icx He}.

The following results explain the relationship between the information theoretic
inspired degradedness and the stochastic orders. The order relations in (2.4) operate
on the (CCDF) denoted by F̄·(x) for the channel. The proofs can be found in [14].

Theorem 2.1 Assume there is only statistical CSI of H and G at the transmitter.
If the stochastic order between H and G is in the feasible set, the ergodic secrecy
capacity with statistical CSI at the transmitter is

CS = 1

2
(EH [log(1 + ρH)] − EG[log(1 + ρG)]) . (2.5)

The proof in [14] is based on Sato upper bound and the observation that the linear
MMSE estimator of Y from Z is optimal for Gaussian input distribution. Note that
similar proofs for full CSIT cases can be found in [5, 9]. The difference here is that
only statistical CSIT of both channels are available.

Lemma 2.1 If H is stochastically larger than G, then it is a degraded wiretap
channel.
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Fig. 2.2 Assume the
magnitudes of the main and
eavesdropper channels are
two independent Rayleigh
random variables with
variances σ 2

H > σ 2
G with

CCDF shown right
F̄H (x) > F̄G(x) and secrecy
capacity in (2.5)

The idea of the proof is based on an artificial construction of a virtual joint distri-
bution of the channel output Y and Z which has the same marginal distribution and
thereby the same secrecy capacity. This virtual joint distribution is created by

F̄H̄ ,Ḡ(h, g) = min{F̄H (h), F̄G(g)}.

Then, it can be shown that this joint distribution leads to a degraded channel.
In Fig. 2.2, there is one example where the main channel is stochastically larger

than the eavesdropper channel.
In Fig. 2.3, there is another example where the two channels, the main channel as

well as the eavesdropper channel do not fulfil the stochastic order relation. Therefore,
we cannot conclude that the channels are degraded and the secrecy capacity result
from (2.5) may not hold.

This leads immediately to the question, whether the characterization using the
stochastic order is complete in the sense that it is an equivalent condition for degrad-
edness. The following result shows that this is not the case.

Fig. 2.3 Assume the
magnitudes of the main and
eavesdropper channels are
two independent
Nakagami-m random
variables with shape
parameters
(m, w) = (2, 1.25) for H and
(3, 2) for G. Then, they are
not in the feasible set and the
secrecy capacity is unknown
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Fig. 2.4 The relation
between different stochastic
orders and the set of
degraded channels with
positive secrecy capacity
which is encircled by the
dashed line

Lemma 2.2 The usual stochastic order H ≥st G is sufficient but not necessary to
generate an equivalent degraded wiretap channel.

The proof is based on a counter example of a channel pair which is not stochastically
ordered but still results in a degraded channel.

Having this negative result, it seems reasonable to check the other orders for their
relevance to express degradedness. The increasing convex order does not provide a
clear characterization.

Lemma 2.3 The increasing convex order is not sufficient to guarantee (H, G) ∈
SD+ , i.e., SD+ ∩Sicx �= ∅ and SD+ � Sicx . (H, G) ∈ SD+ does not necessarily
imply H ≥icx G, i.e., Sicx � SD+ .

The proofs of these two results is based on another example of a quite general
setup in which the CCDFs of H and G have an arbitrary number of intersection
points resulting in H �icx G with degradedness and positive secrecy capacity.

As another order, the increasing convex order allows to express a condition for
which the channels are not degraded.

Lemma 2.4 If (H, G) ∈ SD+ , then H �cx G. If H ≥cx G, then (H, G) /∈ SD+ .
That is, SD+ ∩ Scx = ∅.

The proof is based on a similar construction as for the increasing convex order
above.

In Fig. 2.4, the results above are illustrated. The set corresponding to the increasing
convex order contains both the set of convex and stochastic order. The intersection
of the set of the convex and stochastic order are exactly those channels which are
degraded and have zero secrecy capacity.1 Furthermore the setSD+ has parts outside
the set of the increasing convex order. Finally, the set corresponding to the convex
order is outside the set SD+ .

1The Venn diagram in the conference version [13] is not correct in the sense that the set of cx should
not be included in SD+ .
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Another question regarding the non-degraded case arises: can we do better with
non-Gaussian codebooks? The answer is positive and the following layered scheme
is motivated by the deterministic model [1]. In the deterministic model, we assume
Alice transmits q-bit and the number of bits successfully transmitted through the
fading main and Eve’s channels are modelled by iid random sequences Nr -bit and
Ne-bit. Assume each bit is transmitted in a single layer. We also assume that there
is full CSI of the main channel at Bob and both the main and Eve’s channels at Eve
known causally. By adapting the scheme in [24] from the broadcast channel to the
wiretap case, we have the following result. Here, the CCDF for the discrete random
variables are denoted by F̄N·(n).

Theorem 2.2 The secrecy capacity of the binary erasure wiretap channel is

CS =
∑

n∈I
F̄Nr (n) − F̄Ne(n), (2.6)

with I = {n|F̄Nr (n) > F̄Ne(n)}.
The proof has two parts: For achievability, each message in each layer is iid

Bernoulli with p = 1/2. The auxiliary random U is set to X and only those layers
with positive secrecy rates are activated. For the upper bound (converse), another
virtual joint distribution with same marginals is created taking the maximum of the
individual CCDFs, called channel enhancement. This results in a degraded channel
for which the secrecy capacity is known. Fortunately, both upper and lower bounds
match.

The next step is to bring the conceptual idea to the Gaussian channel setup. First,
this result has two implications for the Gaussian wiretap channel. On the one hand,
it leads directly to the following (genie-aided) upper bound:

Theorem 2.3 With ρ = 1, the capacity upper bound of the fading Gaussian wiretap
channel with statistical CSIT is

CU B
S = 1

2

∫

H∈I
[log(1 + h) fH (h) − log(1 + h) fG(h)]dh, (2.7)

with I = {h|F̄H (h) > F̄G(h)}.
The proof is based on the channel enhancement forwhichGaussian input is known

to be optimal.
On the other hand, it also leads to the following achievable scheme: The binary

expansion model is given by

Y =
∞∑

n=1

√
3H Xn2

−n + Φ (2.8)

where Xn is the n-th digit of X and Bernoulli distributed with p = 1/2. Thus X is
uniformly distributed in [−1, 1].
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Theorem 2.4 The achievable ergodic secrecy rate is
∑

n∈{k:Rk>0} Rn where the
ergodic secrecy rate of the layer n is given by

Rn =
(
EH [h(X + Φ) − h(V (h)

n )] − EG [h(X + Ψ ) − h(V (h)
n )]

)+
(2.9)

where V (h)
n follows the (PDF)

f
V (h)

n
(ν) =

2n−1
∑

k=1

(
F̄(h)

G (ν − 1 + 2−(n−2)k + 2−n) − F̄(h)
G (ν − 1 + 2−(n−2)k + 3 · 2−n)

)
,

F̄ (h)
G is the CCDF of Gaussian distribution with zero mean and variance 1/(3h).

The proof is based on a calculation of the mutual information expressions for the
main and the eavesdropper channel for each layer exploiting the properties of the
binary expansion model in (2.8).

The are several observations fromTheorem2.4: It seems from the expressionof the
rate of layer n that we can also select the layer which contribute with positive secrecy
rates like in the case with perfect CSIT. This is not true since the transmitter does not
know the exact channel realization for the statistical CSIT setup. Furthermore, there
are cases in which Gaussian signalling outperform the achievable rate in Theorem
2.4. The reason is that the layered scheme has a uniform input distribution and does
suffer from a shaping loss.

Note that the discrete signalling, e.g., (QAM) used in [11] is a special case of the
proposed layered scheme in the complex field. For example if we set n = 2 then
we obtain 4-PAM asX = {−3/4,−1/4, 1/4, 3/4}. This scheme suggests a simple
parallel encoding and modulation of the layers.

In Table2.1, we report several examples of different Nakagami-m fading channels
with parameters (m, w) and the achievable secrecy rates with Gaussian signalling as
the state of the art. For simplicity, the considered number of layers in the proposed
scheme is up to 3. Therefore, the numerically computed achievable secrecy rates are
a lower bound of the proposed ergodic secrecy rates.

The results in Table2.1 show that under Nakagami-m channels, the proposed
achievable scheme inspired by layered signalling outperforms Gaussian signalling
in several cases. In some cases (second row), it can improve the connectivity of
confidential data transmission.

2.3 Statistical Uncertainty in Slow Fading

In the slow-fading scenario, we consider a MISO link between the legitimate as
well as between transmitter and eavesdropper nodes. The signal model from (2.1) is
refined accordingly
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Y = hH wX + Φ and Z = gH wX + Ψ, (2.10)

with MISO channel vectors h and g and beamforming vector w. The instantaneous
achievable secrecy rate is given by

RS =
[
log

(
1 + ρ|hH w|2

)
− log

(
1 + ρ|gH w|2

)]+
(2.11)

with optimal beamforming vector under perfect CSI given by the generalized eigen-
vector which belongs to the generalized maximum eigenvalue νmax(I + ρhhH , I +
ρggH ) [20]. If only statistical CSI is available at the transmitter, outages will occur
depending on the realization of the random fading channels. Wemodel the CSI at the
transmitter by g = √

κd+√
1 − κ g̃ where d is the known or estimated component of

the channel and g̃ is unknown and random according to an iid Gaussian distribution.
By κ the quality of the CSI is modeled.

In literature three outage events are distinguished: the overall secrecy outage
event [2] E1 = {RS < Rε

S}, the union of secrecy outage events [8] E2 = {log2(1 +
ρ|hH w|2) < Rε

S)} ∪ {1/nH(W |Z) < Rε
S − ε0} or the two secrecy outage events

[26] E3 = {log2(1+ρ|gH w|2) > RT − Rε
S} and E4 = {log2(1+ρ|hH w|2) < RT }.

Within this chapter, we use the overall secrecy outage event E1.
Since the transmitter does not know the channel to the eavesdropper perfectly,

it might be useful to apply (AN) to the transmit strategy [18]. The programming
problem without (AN) is formulated as follows:

min
‖w‖2≤1

Pr
(

log2
1 + ρ|hH w|2
1 + ρ|gH w|2 < Rε

S

)

, (2.12)

The programming problem with AN in the null-space of the main channel reads:

min
‖w‖2≤ϕ,trW W H =(1−ϕ),h H W=0

Pr

⎛

⎝log2
1 + ρ|hH w|2
1 + ρ|gH w|2

1+ρ‖gH W‖2
< Rε

S

⎞

⎠ . (2.13)

Table 2.1 Comparison of ergodic secrecy rates between Gaussian and layered signalling for
different fading channel distributions

(m, w) of H (m, w) of G Gaussian ratea Layereda

(10, 1) (1, 1.2) 0.0057 0.0318

(10, 1) (1, 1.4) 0 0.0131

(1, 1) (0.2, 1) 0.1247 0.1292
ain bits per channel use
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The solution to (2.12) requires the following special beamforming vectors
wM RT = h/‖h‖, wZ F = ∏⊥

d h/‖∏⊥
d h‖ and w⊥

Z F = ∏
d h/‖∏

d h‖|. The proof of
the results can be found in [6].

Theorem 2.5 Let τ ∈ [0, 1]. Then the optimal beamforming vector w solving (2.12)
is given by w(τ ) = √

τw⊥
Z F +√

1 − τwZ F . The secrecy outage probability ε can be
expressed with the Marcum Q-function of the first order Q1 as

ε = Q1

⎛

⎝

√
2κτ

1 − κ
‖d‖,

√
2 − 2Rε

S+1 + 2ρ|hH w(τ )|2
2Rε

S ρ(1 − κ)

⎞

⎠ . (2.14)

The proof of this result relies on the intuition that Alice has basically only two
goals: at first, to maximize the received signal power at Bob to have better reliability.
Second, to minimize the received signal power at Eve to have better confidentiality.
The first goal corresponds to the direction of the known component h. The second
goal corresponds to the direction of the knowncomponent for the statistical channel g.
It can be shown that a linear combination of both directions is sufficient.

The solution from Theorem 2.5 is illustrated in Fig. 2.5. It can be observed that
the quality of the CSI has a large impact on the achievable outage probability.

The optimal transmit strategy for the case with AN is parametrized by three
parameters, the beamforming weight τ , the power splitting parameter ϕ and the
power weight to the known channel and the null space component ξ .

Theorem 2.6 The optimal solution to (2.13) is given by the parameters τ ∈ [0, 1],
ϕ ∈ [0, 1] and ξ ∈ [0, 1] with achievable instantaneous secrecy rates

Fig. 2.5 Secrecy outage
probability ε for MISO with
4 transmit antennas,
uncertainty model with fixed
angle of 65◦ between h and
d, which is given by

arccos |hd |
‖h‖‖d‖ for a fixed

target secrecy rate Rε
S = 0.8

bits per channel use
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Fig. 2.6 Secrecy outage probability ε, derived by Theorem 2.6 for target secrecy rate Rε
S = 0.8

bits per channel use and SNR of 10 dB for the same angle of 65◦ as in Fig. 2.5

RS =
[
log2(1 + ρϕ|hH w(τ )|2)

− log2

⎛

⎜
⎜
⎝1 + ρϕ|gH w(τ )|2

1 + ρ(1 − ϕ)

(

ξ |gH
∏⊥

h d

‖∏⊥
h d‖ |2 + 1−ξ

nT −2

∑nT −2
k=1 |gH uk |2

)

⎞

⎟
⎟
⎠

]+

(2.15)

with uk spanning an orthonormal basis to the span of h and d.

The proof of this result has two main parts. In the first part, it is shown that the
same linear combination of directions as for the case without AN is optimal here,
too. In the second part, it is shown that it is optimal to distribute the remaining power
for the AN component in the null space of the two known channels h and d.

The solution in Theorem 2.6 and the gain by using AN is illustrated in Fig. 2.6.
The results for the statistical uncertainty of the eavesdropper channel show that in

slow fading channels, the secrecy outage probability can be significantly minimized
by using AN. Furthermore, by smart beamforming, depending on the quality of the
CSI, the secrecy outage probability can be further reduced.
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2.4 Deterministic Uncertainty

For the deterministic uncertainty scenario, we consider a MIMO link between all
three nodes. The signal model is modified accordingly and channels H and G
are matrices. For simplicity, we assume that all nodes have the same number of
antennas n. To model the lack of CSI at the transmitter about the channel G, we
assume that it is only known that G belongs to some uncertainty set, i.e.,

G ∈ G = {G ∈ C
n,n | tr(G H G) ≤ g}. (2.16)

The constraint in (2.16) corresponds to the sum channel gain from the transmit-
ter to the eavesdropper. If the legitimate nodes know the minimum distance of the
attacker to the transmitter, they can compute a corresponding suitable g. The transmit
covariance matrix Q is power constrained by the set Q = {Q � 0 | tr(Q) ≤ P}.

The resulting achievable secrecy rate under worst case G is given by

R+
S = max

Q∈Q
min
G∈G

[
log det(I + ρQ H H H) − log det(I + ρQG H G)

]+
. (2.17)

Fortunately, the following characterization of the max-min solution to (2.17)
simplifies the problem [25]. The eigenvalues of H H H and G H G are denoted by
α1, . . . , αn and β1, . . . , βn , respectively. The eigenvalues of the transmit covariance
matrix Q are identified by λ1, . . . , λn .

Theorem 2.7 The following vector programming problem is equivalent to problem
(2.17), i.e., the optimal eigenvectors of Q and G H G diagonalize H H H:

max
λ∈L

min
β∈B

[
n∑

k=1

log2(1 + ρλkαk) − log2(1 + ρλkβk)

]+
(2.18)

with L = {λ ∈ R
n | λ1, . . . , λn ≥ 0 and

∑n
k=1 λk ≤ P} and B = {β ∈

R
n | β1, . . . , βn ≥ 0 and

∑n
k=1 βk ≤ g}. This problem can be further reformulated

into

max
λ∈L

min
β∈B

n∑

k=1

[log2(1 + ρλkαk) − log2(1 + ρλkβk)]+. (2.19)

This characterization is obtained if the structure of the vector problem above is
exploited by using a set of n parallel encoders instead of a joint encoder, which allows
an individual encoding of the information for the resulting n parallel channels.

Furthermore, the optimal solution to the minimization problem in (2.19) with
respect to β for fixed λ is given by
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β∗
k =

[
1

μ
− 1

ρλk

]αk

0
, (2.20)

with μ > 0 such that
∑n

k=1 βk = g.

The proof of the theorem comprises two parts, which correspond to the derivation
of the optimal transmit directions of G H G and Q for a given channel matrix H using
Hadamard’s inequality, which provides a bound on the determinant of a positive
(semi-)definite matrix.

Note thatL andB are compact convex sets. Furthermore, the objective function
in (2.19) is continuous and (quasi-)concave onL for all β ∈ B and also continuous
and (quasi-)convex on B for all λ ∈ L . By the minimax theorem in [22], the
saddle-point property holds and min and max can be swapped in (2.19).

Since there is no closed-form solution for the outer maximization problem, upper
and lower bounds on the secrecy rate expressions are derived by taking a proper
super- and sub-set of the setB.

Fig. 2.7 Worst-case secrecy
rates with upper and lower
bounds for four antennas at
all nodes, P = 1, g = 2 and
channel realization
α = [3.9, 1.5, 1.0, 0.6]

In Fig. 2.7, the numerically optimized worst-case secrecy rate is shown together
with some lower and upper bounds for which a closed form solution exist. It can be
observed that the secrecy rate saturates for high SNR because the unknown negative
term in (2.19) will not vanish. Furthermore, there is a large gap between lower and
upper bound which increases with SNR. As future research, we envision to tighten
these bounds. However, even without perfect CSI of the eavesdropper link, a certain
secrecy rate can be achieved.

2.5 Conclusions

Uncertainty is one major challenge in physical layer security for confidential com-
munication. Based on channel and CSI models, we have developed different cod-
ing/precoding schemes and have derived achievable secrecy expressions.
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The important conclusion for confidential wireless system design is to carefully
model the channel statistics (e.g. fast or slow fading) as well as the available CSI at
the legitimate transmitter about the eavesdropper link. Based on these models, the
correct objective function and constraints are derived.

In general, it holds that the more CSI, and the better the adaptivity and flexibility
at the legitimate transmitter, the higher the achievable secrecy rates.

We have excluded multi-user networks with confidential messages, helper or
friendly jamming nodes, public feedback, practical code design and many other
issues. Some of these scenarios are partially addressed in the literature and some still
contain open research problems.
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Chapter 3
MIMOME Gaussian Channels with GMM
Signals in High-SNR Regime: Fundamental
Limits and Tradeoffs

Francesco Renna, Nicola Laurenti and Stefano Tomasin

Abstract Achievable secrecy rates over a multiple-input multiple-output multiple-
eavesdropper (MIMOME)wiretap channel are considered, when the legitimate users
have perfect knowledge only of the legitimate channel state and the eavesdropper
channel is drawn from a (possibly unknown) continuous probability density. Legiti-
mate users are assumed to deploy more antennas than the eavesdropper. A signaling
transmission based on K -class Gaussian mixture model (GMM) distributions is pro-
posed, which can be considered as an artificial-noise augmented signal, where the
noise statistics are data-dependent. The proposed scheme is shown to achieve the
secrecy capacity, log K , in the high signal-to-noise ratio (SNR) regime. Moreover,
the tradeoff between secrecy and reliability at finite SNR is explored via the char-
acterization of an upper bound to the error probability at the legitimate receiver, an
upper bound to themutual information leakage to the eavesdropper and via numerical
simulations.

3.1 Introduction

Wireless channels are inherently susceptible to eavesdropping due to their broadcast
nature. In response to such issues, the application of information theoretic secrecy
principles to widely used communication systems has represented a rising research
topic, in an effort to extend security to the lowest layers. Seminal works from the 70s
have established the secrecy capacity of a wiretap channel, that is the maximum rate
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at which agent Alice can transmit a secret message to agent Bob while not revealing
any information to an eavesdropper agent Eve. Their focus was centered first on
the analysis of discrete memoryless and Gaussian channels [12, 22]. Since then, a
number of different scenarios have been investigated, including the broadcast channel
with confidential messages (BCC) case where multiple receivers require a common
message and possibly a different secret message each [3], the case of secret message
transmission over parallel channels [1, 13], fading channels [20] and the multiple-
input multiple-output multiple-eavesdropper (MIMOME) case [10, 15, 19], even
particularized toOFDM transmission [18]. In this chapter we focus on theMIMOME
channelwhich findsmany important applications inwireless communication systems
where the transmitter and the receivers are equipped with multiple antennas.

In particular, we consider the case in which both Alice and Bob have perfect
knowledge of the channel state information (CSI) of their legitimate channel,whereas
they do not know the channel to Eve, which is assumed to be drawn from a continuous
probability density. A similar scenario was considered in [8], where the eavesdropper
channel is not known to the legitimate terminals, even statistically and Alice and
Bob were assumed to deploy more antennas than Eve. The same framework was
generalized in [7] to the BCC case with an adversarial eavesdropper whose channel
is unknown to the other three terminals. In both works, achievable secrecy rates were
obtained by using wiretap coding schemes. However, explicit coding constructions
to achieve such rates were not provided. In [4] the uncertainty in the CSI of both
channels by Alice and Bob is modeled by bounding channel estimate errors inside a
given ellipsoid, and the worst-case secrecy rate under such constraints is derived in
the low-SNR regime.

We present an explicit construction of wiretap codebooks and we evaluate the
corresponding achievable secrecy rates. In particular, we consider the scenario in
which the transmitted symbols are randomly generated from a continuous set, the
secret message determining only the statistics of the random symbol through a map
that is known to all agents. A similar approach has been proposed in [17], where a
multiplicative Gaussian wiretap channel is considered. In that case the transmitted
codeword is obtained by multiplying a binary message vector with entries in {0, 1}
by a diagonal random matrix with independent zero-mean unit-variance Gaussian
entries. Themessage vector is assumed to be sparse (i.e., withmany zeros). Assuming
that Eve has fewer observations than Bob through a known and fixed channel matrix,
it is shown that secret transmission is possible and lower and upper bounds to the
secrecy capacity are derived, when Alice has knowledge of both channels. With a
similar precoding technique, [14] guarantees perfect secrecy by assuming complete
ignorance by Eve about the state of the legitimate channel.

In this chapter, differently from [17], we do not restrict the transmitted message
to be taken from a binary sparse distribution but we allow denser discrete signaling.
As a result, the transmitted signal is a Gaussian mixture model (GMM) multivari-
ate vector. The considered scheme can be thought also as a generalization of an
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artificial-noise transmission scheme, where noise statistics are data-dependent. We
carry out our analysis in the finite-dimension regime, that is, we assume the number
of antennas at Alice, Bob and Eve to be finite. Moreover, we assume that the anten-
nas at both Alice and Bob outnumber those at Eve, and leverage such advantage
to provide secrecy for the legitimate terminals. We then focus on the low-noise (or
equivalently, high-SNR) regime, characterizing the achievable rate of this scheme in
the absence of noise, where secrecy is provided by the different channels between
the agents. We tailor the statistics of the message vector to maximize the secrecy
rate. The main results provided in this chapter are the following:

1. we devise a system for information-theoretic secrecy at the physical layer where
the transmitted signal is generated from one of K different Gaussian distributions
with indices {1, . . . , K } and the informative message is the chosen distribution
index;

2. we prove that in the high-SNR limit, the maximum secrecy rate that can be
achieved by such a system equals the unconstrained capacity, log K , even when
Alice only has statistical knowledge of the channel to Eve;

3. we provide a constructive way to design GMM inputs that achieve the maximum
secrecy rate in the high-SNR limit;

4. for finite SNR values, we characterize the trade-off between reliable decoding at
the legitimate receiver and mutual information leakage to the eavesdropper.

Throughout this chapter, vectors (respectively, matrices), both deterministic and
random, are denoted by boldface lowercase (respectively, uppercase) Latin or Greek
letters, while log denotes the base 2 logarithm. The symbols det(·) and pdet(·) denote
the determinant and the pseudo-determinant, respectively, of a square matrix. P[A]
represents the probability of the event A, whereas E[·] denotes the expectation oper-
ator and I(·; ·) is the mutual information between two random variables. We also use
the symbol [x]+ = max{x, 0}. null(A) and rank(A) denote the null space and rank
of A, respectively. R(A) denotes the linear space generated by the columns of A.

3.2 System Model

We consider a wireless MIMOME transmission scenario, as depicted in Fig. 3.1, in
which agent Alice (A) aims at transmitting to agent Bob (B) a secret message u which
must be kept secret to a third agent Eve (E). Alice is equipped with ma antennas,
while Bob and Eve have mb and me antennas respectively, with me < mb < ma .
Between each couple of antennas an AWGN flat static channel is available, whose
gain does not change for the duration of the entire transmission. At time t , Alice
transmits a column vector x of ma real symbols on her antennas.1 The MIMOME
channel is modeled by matrices H ∈ R

mb×ma and G ∈ R
me×ma , the signal vectors

1Extension to complex-valued transmission is left for future study.
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Fig. 3.1 Systemmodel. The confidential message u is encoded into the information bearing index c

received by Bob and Eve have dimension mb and me, respectively, and they can be
written as

y = H x + wb

z = Gx + we,
(3.1)

where wb, we ∼ N (0, Iσ2) represent AWGN noise. We assume that Alice and
Bob know H , whereas they do not know G, which is assumed to be drawn from a
continuous probabilty density function (pdf), which is also unknown to the legitimate
users. On the contrary, Eve is assumed to have perfect knowledge of both channel
matrices.

We consider an average power constraint on the transmitted signal, i.e.,

E[xT x] ≤ P. (3.2)

3.2.1 Transmission Technique

We assume that Alice and Bob agree before transmission on a set of K column
vectors of size ma ,µk , k = 1, . . . , K , and K ma ×ma positive semidefinite matrices
Σk , k = 1, . . . , K . These vectors and matrices are assumed to be also known to Eve.
At each transmission Alice encodes by an error correcting code the message u of
Bu bits into the bit sequence b of Bb bits (block enc in Fig. 3.1). The code rate of
the error correcting code is therefore Bu/Bb. Then a mapper follows, which maps
log K bits into the symbol c ∈ {1, . . . , K } (block map in Fig. 3.1). However, c is not
directly transmitted on the channel, as in a regular non-secure transmission scheme. In
fact, in order to provide secrecy we consider a non deterministic modulator, where in
order to transmit symbol c, the corresponding transmitted vector x is randomly taken
from the multivariate normal distributionN (µc,Σc) (block Gaussian generator in
Fig. 3.1), whose mean and variance are uniquely determined by c. The randomness
employed by the modulation will be leveraged to prevent Eve from decoding the
secret message. In other words, the message will determine the mean and covariance
of the random Gaussian vector that will be transmitted on the channel.
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In particular, let pk be the probability that message k = 1, . . . , K is transmitted.
Then the input signal x ∈ R

ma has a GMM distribution with pdf

fx(a) =
K∑

k=1

pkν(a;µk,Σk), (3.3)

where

ν(a;µk,Σk) =
exp
(
− 1

2 (a − µk)
T Σ−1

k (a − µk)
)

√
(2π)n detΣk

(3.4)

is the pdf of a multivariate normal distribution. In other terms, the input signals are
drawn with probability pk from the Gaussian distributionN (µk,Σk).

Also, the power constraint can be rewritten now as

E[xT x] =
K∑

k=1

pk tr(Σk + µkµ
T
k ) ≤ P. (3.5)

Note that whenΣc = Σ for c = 1, . . . , K , i.e., all symbols have the same correla-
tion matrix, we obtain an artificial noise transmission system, where the information
is conveyed by vectors µc, c = 1, . . . , K , and the Gaussian component of the trans-
mitted signal is the artificial noise. Instead, when Σc are different for each c, we
obtain a system where the artificial noise is data-dependent, therefore also the cor-
relation actually carries information on the data. The performance of this non-trivial
generalization of the artificial noise system is here investigated.

3.2.2 Receiver Architecture

The receiver aims at reconstructing the data bit sequence from the received vector
signal y. This is achieved by a detection block that classifies the received signal in
order to obtain the probability that symbol c was used to generate the transmitted
Gaussian vector (block det in Fig. 3.1). Then a (soft) version b̃ of the bits b is passed
to the error correction decoder to obtain û (block dec in Fig. 3.1). The description of
this receiver is out of the scope of this chapter, where we aim at characterizing the
performance of the systems in terms of maximum achievable rates in the high SNR
regime. As a relevant example, consider the case in which the covariance matrices of
the received (noise-free) symbols HΣc HT have all distinct null spaces. Then, in the
absence of noise, Bob can take a decision on the transmitted symbol by projecting
y into all possible K null spaces of HΣc HT, with c = 1, 2, . . . , K and choose the
value c∗ for which the projection gives the projected mean value Ncµc, where the
rows of Nc form an orthogonal basis of null(HΣc HT ).
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3.3 Achievable Rate in the Low-Noise Regime

In this section, we characterize the secrecy rates that are achievable in theMIMOME
scenario described in Sect. 3.2. We consider the secrecy rate Rs achieved in the low-
noise regime, i.e., in the limit σ2 → 0. We will also describe explicitly how to
design input sources that achieve the maximum of the achievable secrecy rates in the
low-noise regime, i.e., the low-noise secrecy capacity.

In the following we show that the achievable rate in the low-noise regime is log K
bit/symbol. This result will be provided by Theorem 3.1 that will show that there exist
correlation matrices Σc and means µc that at the same time provides an asymptotic
zero error probability for Bob, while leaking no information on c to Eve. Before
showing this result we consider the following lemma, that outlines a construction
of input covariance matrices that will be used to prove the achievability of secrecy
capacity.

Lemma 3.1 Let H ∈ R
mb×ma be given such that rank(H) = mb < ma and let

s < mb. Let U ∈ R
ma×mb a matrix whose columns form an orthonormal basis for

null(H)⊥. Let

• define W ε ∈ R
mb×mb a matrix such that all bottom left minors of W k

ε are non-
zero for k = 1, . . . , K and for a sequence of ε converging to zero, and such that
lim
ε→0

W ε = I ,

• Imb×s is the matrix consisting in the first s columns of the identity matrix Imb ,
• define matrix

V ε,k = W k
ε Imb×s, (3.6)

• define
Σk(ε) = U V ε,k V T

ε,kU T . (3.7)

Then, ∀ε > 0 there exists a set of positive semidefinite matrices {Σk(ε)}k=1,...,K with
rank rank(Σk(ε)) = s, ∀k, that jointly satisfy the following:

1. rk � rank(HΣk(ε)HT ) = s, ∀k
2. rk� � rank(H(Σk(ε) + Σ�(ε))HT ) = min{mb, 2s}, ∀k, �

3. there exists a unique Σ(0), such that lim
ε→0

Σk(ε) = Σ(0), ∀k.

Proof See the appendix.

Example 3.1 Let Īmb denote the reverse identity matrix

Īmb =

⎡

⎢⎢⎢⎣

0 · · · 0 1
... . .

.
. .

. 0

0 . .
.

. .
. ...

1 0 · · · 0

⎤

⎥⎥⎥⎦ . (3.8)
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Matrix W ε = Imb + ε Īmb satisfies conditions of Lemma 3.1. In fact, we can note
that, in this case, it holds

W k
ε = 1

2

[
(1 + ε)k + (1 − ε)k

]
Imb + 1

2

[
(1 + ε)k − (1 − ε)k

]
Īmb , (3.9)

and, therefore, conditions in Lemma 3.1 hold if ε > 0 and ε 
= 1. A further example is
obtained by expressing W ε in terms of the Cayley transform [6] of an anti-symmetric
matrix:

W ε = (I − ε(A − AT ))(I + ε(A − AT ))−1 (3.10)

where A is a random matrix drawn from a continuous pdf. In particular, in this case
we note that W ε is unitary and the probability that any sub matrix of W k

ε is not full
rank is zero.

We are now ready to show the result on the secrecy capacity of the proposed
scheme.

Theorem 3.1 Consider the MIMOME system described in (3.1) with me < mb <

ma antennas, GMM transmission and discrete input c ∈ {1, . . . , K }. Assume that
Alice has perfect knowledge of the channel towards Bob, H , and that G is assumed be
drawn from a continuous density onRme×ma . Then there exist GMM input parameters
{pk}, {µk} and {Σk(ε)} such that

lim
ε→0

lim
σ2→0

I( y; c) = log K (3.11)

and for all η > 0
lim
ε→0

P [I(z, c) ≥ η] = 0. (3.12)

Then, in the low-noise regime, the secrecy rate

sup
ε

lim
σ2→0

Rs(ε) = log K , (3.13)

is achievable with probability 1 and it coincides with the secrecy capacity, which is
achieved by choosing pk = 1/K and µk = 0, for k = 1, . . . , K , and Σk(ε) as in
Lemma 3.1.

Proof See the appendix.

It is relevant to observe that the signaling scheme determined by the input covari-
ance matrices in Lemma 3.1 guarantees that, asymptotically, I(z; c) → 0 for any
realization of the eavesdropper channel matrix G, with probability 1. This result
has been shown to hold in the low-noise limit σ2 → 0, thus implying that, for all
values σ2 > 0, the mutual information to Eve still asymptotically approaches zero,
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since adding noise decreases the quality of communication. Therefore the proposed
scheme provides secrecy even without the knowledge of the eavesdropper channel
and, most notably, without requiring the use of wiretap codes. In fact, simple error
correcting coding can be used and secrecy is obtained directly by leveraging the fact
that the mutual information at the eavesdropper can be reduced asymptotically to
zero by tuning the parameter ε. Moreover, in the low-noise regime, such scheme
achieves the secrecy capacity log K .

From Theorem 3.1 we also observe that when the scheme is designed in order to
maximize the secrecy rate, a solution significantly different from the artificial noise
scheme is obtained. Indeed, the same mean µc is used for all symbols, which are
instead distinguished by the covariance matrices Σc.

3.4 Asymptotic Behavior

We now explore how the low-noise limit described in the previous section is
approached when σ2 > 0. In particular, we aim at deriving design criteria useful
for a noisy scenario by analyzing the impact of non-zero mean classes on the infor-
mation leakage and by deriving low-noise expansion for the error portability at the
legitimate receiver and the mutual information at the eavesdropper.

3.4.1 Design of Input Mean Values µk

We start by considering the choice of the input mean values µk . As already shown
in the proof of Theorem 3.1, also when choosing µk = 0, for k = 1, . . . , K it is
possible to guarantee that the (uncoded) symbol error probability associated to the
maximum a posteriori (MAP) decoder at Bob approaches zero when σ2 → 0.

On the other hand, the following lemma considers the effect of input means onto
the information leakage to Eve. More specifically, we consider here an upper bound
to I(z; c) = h(z) − h(z|c), where h(·) denotes the differential entropy. Conditioned
on c = k, the random vector z follows the Gaussian distribution with mean Gµk and
covariance GΣk(ε)GT + Iσ2 and we can write the conditional differential entropy
of z given c as

h(z|c) =
K∑

k=1

1

2K
log
[
(2πe)me det

(
GΣk GT + Iσ2

)]
. (3.14)

Moreover, we can consider the upper bound to the differential entropy of z given
by the differential entropy of a multivariate normal distribution with the same mean
vector and covariance matrix, that is by writing [2]



3 MIMOME Gaussian Channels with GMM Signals in High-SNR Regime … 41

h(z) ≤ hG (z) = 1

2
log
[
(2πe)me det (Σ z(ε))

]
, (3.15)

which leads to the upper bound to the information leakage to Eve

Ī(z; c) = hG(z) − h(z|c) (3.16)

= 1

2
log
[
(2πe)me det (Σ z(ε))

]

−
K∑

k=1

1

2K
log
[
(2πe)me det

(
GΣk(ε)GT + Iσ2

)]
. (3.17)

Note that, in general, when µk 
= 0, the mean and covariance of the eavesdropper
observation z are given by

µ[z] = Ez =
K∑

k=1

pk Gµk

Σ z = E(z − µz)(z − µz)
T

=
K∑

k=1

pk G
(
Σk + µkµ

T
k

)
GT

−
K∑

k,�=1

pk p�G(µkµ
T
� )GT + Iσ2. (3.18)

The following lemma states that using zero-mean classes minimizes the upper bound
to the information leakage in (3.17).

Lemma 3.2 Given the positive semidefinite matrix Σ z in (3.18), it holds

log det(Σ z) ≥ log det

(
K∑

k=1

pk GΣk GT + Iσ2

)
. (3.19)

Proof Consider the difference matrix

Δ = Σ z −
(

K∑

k=1

pk GΣk GT + Iσ2

)

=
K∑

k=1

pk Gµk(Gµk)
T −

K∑

k=1

pk Gµk

K∑

�=1

p�µ
T
� GT . (3.20)
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Note that Δ is the covariance matrix of a discrete random vector taking values in the
alphabet {Gµ1, . . . , GµK } with probability mass function (pmf) {p1, . . . , pK }, and
thus, it is positive semidefinite. Then, by leveraging Weyl’s Theorem (see Corollary
4.3.3 in [9]), we can conclude that the ordered eigenvalues of Σ z are all greater or
equal than the corresponding ordered eigenvalues of the matrix on the left hand side
of (3.19), thus proving the inequality.

3.4.2 Error Probability

In the following, we analyze the behavior of the (uncoded) symbol error probability
at Bob by assuming pk = 1/K and µk = 0, for k = 1, . . . , K , and Σk(ε) as in
Lemma 3.1.

We consider first the case K = 2. In this case, the symbol error probability
associated to a MAP decoder can be written as

P[ĉ 
= c] =
∫ +∞

−∞
min{p1 · p( y|c = 1), p2 · p( y|c = 2)}d y, (3.21)

where p( y|c = 1) and p( y|c = 2) represent the conditional pdf of the legiti-
mate receiver input when the transmitted symbol is equal to 1 or 2, respectively.
Note that these conditional pdfs are zero-mean, Gaussian, with covariance matrices
HΣ1(ε)HT + σ2 I and HΣ2(ε)HT + σ2 I , respectively. Then, on noting that

min{a, b} ≤ √
ab, a, b ≥ 0, (3.22)

we can express the Bhattacharyya upper bound of P[ĉ 
= c] as [5]

Perr = √
p1 p2

∫ +∞

−∞

√
p( y|c = 1)p( y|c = 2)d y = 1

2
e−B12 , (3.23)

where

Bk� = 1

2
log

1
2det

(
H (Σk(ε) + Σ�(ε)) HT + 2σ2 I

)
√
det
(
HΣk(ε)HT + σ2 I

)
det
(
HΣ�(ε)HT + σ2 I

) .

For K > 2, on applying the union bound, we obtain an upper bound to the error
probability P[ĉ 
= c] as

Perr = 1

K

K∑

k=1

∑

�
=k

e−Bk� . (3.24)
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In the high-SNR regime, the upper bound can be expanded as [16]

Perr =
( gc

σ2

)−d + o

((
1

σ2

)−d
)

. (3.25)

The diversity-order d determines the slope of the upper bound to the error probability
(in a logarithmic scale), and it is given by

d = min
k 
=�

d(k, �) = min
k 
=�

1

4
(2rk� − rk − r�), (3.26)

where

rk = rank(HΣk(ε)HT ) (3.27)

rk� = rank(H(Σk(ε) + Σ�(ε))HT ). (3.28)

On the other hand, the coding gain gc represents the power offset of the upper bound
to the error probability (in a logarithmic scale) and it is given by

gc =
⎡

⎣
∑

(k,�)∈Sd

1

K
2rk�

[
vk�√
vkv�

]− 1
2

⎤

⎦
− 1

d

, (3.29)

whereSd is the set of pairs of indexes corresponding to pairs of classeswithminimum
diversity-order, that is, Sd = {(k, �) : k 
= �, d(k, �) = d}, and

vk = pdet(HΣk(ε)HT ) (3.30)

vk� = pdet(H(Σk(ε) + Σ�(ε))HT ). (3.31)

Then, on leveraging the results in Lemma 3.1, we can characterize the diversity-
order achieved by the GMM inputs described in Theorem 3.1, as it is straightforward
to verify that

d =
⎧
⎨

⎩

0 , if mb ≤ s
(mb − s)/2 , if s < mb < 2s
s/2 , if mb ≥ 2s

. (3.32)

Therefore, we can conclude that the diversity order does not depend on ε and it is
just a function of s and the number of antennas at Bob. On the other hand, the coding
gain depends on ε.

Figure3.2 shows an example of the upper bound (dashed lines) and true symbol
error probability (solid lines) to Bob for a given value of H . In the high-SNR regime,
the upper bound is characterized by the diversity-order d and the coding gain gc.
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Fig. 3.2 Example of the
upper bound (dashed lines)
and true symbol error
probability (solid lines) to
Bob for a given value of H .
In the high-SNR regime, the
upper bound is characterized
by the diversity-order d and
the coding gain gc

3.4.3 Information Leakage to Eve

For a given value of G, we can also provide a high-SNR, first-order expansion of the
upper bound to the mutual information leakage to Eve I (σ2) = Ī(z; c) in (3.17).2

We assume pk = 1/K and µk = 0, for k = 1, . . . , K , and Σk(ε) as in Lemma 3.1
and we can write

I (σ2) = I (0) + I ′(0) · σ2 + o(σ2), (3.33)

where

I (0) = 1

2
log det

(
K∑

k=1

1

K
GΣk(ε)GT

)
−

K∑

k=1

1

2K
log det

(
GΣk(ε)GT

)
(3.34)

and

I ′(0) = 1

2 ln 2

⎡

⎣tr

⎛

⎝
(

K∑

k=1

pk GΣk GT

)−1⎞

⎠−
k∑

k=1

pk tr

((
GΣk GT

)−1
)⎤

⎦ .

(3.35)

Figure3.3 shows an example of the high-SNRexpansion of themutual information
leakage to Eve for a given value of G. Actual value (solid lines) and first-order
expansion (dashed lines).

2The following expansion is valid for all possible values of the channel matrix G except for a set
with null measure.
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Fig. 3.3 Example of the
high-SNR expansion of the
mutual information leakage
to Eve for a given value of
G. Actual value (solid lines)
and first-order expansion
(dashed lines)

3.5 Numerical Results

In the previous sections, we have described a transmission strategy which achieves
a secrecy rate equal to log K in the low-noise regime without the need of wiretap
coding. In this section, we focus on finite SNR values, assessing the equivocation
rate [21]

Re = [I( y; c) − I(z; c)
]+

. (3.36)

We consider an error correcting code with rate Rc = I( y; c) and recall that, when
the equivocation rate Re is equal to the transmission rate Rc, then we have perfect
secrecy [22]. We set ma = 10, mb = 6 and me = 4, respectively.

Figure3.4 shows the cumulative distribution function (CDF) of the equivocation
rates obtained when the legitimate channel matrix H contains the first mb rows of
an ma-dimensional discrete cosine transform (DCT) matrix, whereas the eavesdrop-
per channel matrices are randomly generated with i.i.d. zero-mean, unit-variance,
Gaussian entries. The SNR is equal to 35dB, the numbers of classes of the trans-
mitted signals are K = 2 and K = 8, and ε = 0.01 and ε = 0.005. We also
report the value of the secrecy rate RH that is achieved by the wiretap coding scheme
described in [8].We can notice that, when K = 2, our scheme provides a much lower
equivocation rate than the secrecy rate of [8]. Moreover, on increasing the number of
transmitted classes to K = 8, higher equivocation rates are achieved than the secrecy
rate of [8], at the expense of a higher information leakage towards Eve.

We then consider the case in which also H is generated at random with i.i.d.,
zero-mean, unit-variance Gaussian entries. Alice is assumed to know the current
realization of the legitimate channel coefficients, and she could arguably optimize
the values of K and ε to maximize the equivocation rate under a given constraint
on the probability that the leakage to the eavesdropper overcomes a given threshold.
Nevertheless, we assess approximately the performance of the system by considering
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Fig. 3.4 CDF of the
equivocation rates Re with
fixed H . SNR = 35dB,
ε = 0.01, 0.005. ma = 10,
mb = 6 and me = 4,
K = 2, 8. The dashed
vertical lines represent the
transmission rates Rc

Fig. 3.5 CDF of the rate
Re/Rc (solid lines) and of
the ratio RH /Rc (dashed
lines). SNR = 25dB.
ma = 10, mb = 6 and
me = 4, K = 2 and
ε = 0.1, 0.05, 0.01, 0.005

the case in which K = 2, SNR = 25dB, and by choosing ε = 0.1, 0.05, 0.01, 0.005.
Figure3.5 shows the CDF of Re/Rc, i.e., the secure fraction of the transmitted rate.
For comparison, we also report the CDF of RH /Rc, where Rc is still the code rate
of our scheme. We observe that, by taking ε ≤ 0.01, only 20% of the channel
realizations correspond to information leakages to Eve that are larger than the 10%of
the transmitted rate. Moreover, for such values of ε, the transmission rate guaranteed
by our scheme is higher than the secrecy rate of [8] for the large majority of channel
realizations.
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3.6 Conclusions

In this work, we have studied secrecy rates achieved over a MIMOME channel when
transmitted signals are drawn from a K -classes GMM distribution and when the
secret message is encoded into the index representing the chosen Gaussian distri-
bution among the K classes. We have considered the case in which the transmit-
ter and the legitimate receiver have perfect knowledge of the legitimate channel,
whereas they do not know the eavesdropper channel, which is drawn from a (possi-
bly unknown) continuous probability density. On the other hand, we have assumed
that the legitimate user can deploy more antennas than Eve.

We have shown that, in the high-SNR regime, the secrecy capacity associated to
this scenario is equal to the capacity without secrecy constraints, i.e., log K . We have
also provided a constructive description of a class of GMM distributions that achieve
the secrecy capacity in the high-SNR regime by nulling the mutual information
to Eve.

The reliability and secrecy performance of the system when the noise power σ2 is
strictly greater than zero have also been considered. In particular, we have provided
a high-SNR expansion of an upper bound to the uncoded symbol error probability
at Bob associated to the capacity achieving inputs. Moreover, we have provided a
high-SNR expansion of an upper bound to the corresponding mutual information
leakage to Eve. Such expansions can offer the means to properly design the tradeoff
between secrecy and reliability in implementation scenarios where the effect of noise
cannot be neglected. Finally, the tradeoff between reliable decoding and information
leakage to the eavesdropper is also explored via numerical simulations for the case
of coded transmissions.

Appendix

Proof of Lemma 3.1

It is clear from (3.7) and (3.6) that rank(Σk(ε)) = s, ∀k, ε. Then, sinceR(Σk(ε)) ⊂
R(U) andR(U) ⊥ null(H), then rank(HΣk(ε)HT) = rank(Σk(ε)) and condition
(1) follows.

In order to prove condition (2), observe that

rk� = rank(H(Σk(ε) + Σ�(ε))HT) = rank(V ε,k VT
ε,k + V ε,�VT

ε,�) (3.37)

as R(Σk(ε)) ⊥ null(H). Moreover,
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rank(V ε,k VT
ε,k + V ε,�VT

ε,�) = mb − ν(V ε,k VT
ε,k + V ε,�VT

ε,�) (3.38)

= mb − dim
[
null(V ε,k VT

ε,k) ∩ null(V ε,�VT
ε,�)
]

(3.39)

= mb − dim
[
null(VT

ε,k) ∩ null(VT
ε,�)
]

(3.40)

= mb − dim null

([
VT

ε,k
VT

ε,�

])
(3.41)

= mb − ν([V ε,k V ε,�]T) (3.42)

= rank([V ε,k V ε,�]) (3.43)

= rank
(
[Imb×s W�−k

ε Imb×s]
)

. (3.44)

Then, by leveraging the previous assumption on the bottom left minors of W k
ε , we

have that the bottom left (mb − s)× s sub matrix of W �−k
ε is full rank, and therefore

condition 2) holds.
Finally, condition 3) follows from the fact that lim

ε→0
W ε = Imb , and we have

Σ(0) = U
[

I s 0
0 0

]
UT. (3.45)

Proof of Theorem 3.1

The converse part of the proof is trivial, and it is based on the fact that the secrecy
capacity is always lower or equal than the capacity without secrecy constraints, that
implies

Cs ≤ max
c

I( y; c) ≤ H(c) ≤ log K , (3.46)

whereH(c) is the entropy of c and the upper bound in the right hand side is achieved
when pk = 1/K , for k = 1, . . . , K .

In order to provide the achievability part of the proof, we consider the achievable
secrecy rates that are obtained by imposing u = c and we consider separately relia-
bility and secrecy. In this case, the error correcting code is not used and û is the hard
decision taken on b̃. We assume that the transmitter adopts a signaling scheme with
pk = 1/K and µk = 0, for k = 1, . . . , K . Moreover, given ε > 0, the input covari-
ance matrices are obtained from the construction described in Lemma 3.1 where s
is chosen such that me ≤ s < mb. From the lemma we conclude that for any two
distinct values c1 
= c2, 1 ≤ c1, c2 ≤ K , the null spaces of the covariance matrices
HΣc1 HT and HΣc2 HT are distinct. Let us consider a decoder that computes

αc = ||Nc y||, (3.47)
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where Nc is a matrix containing a basis of the null space generated by HΣc HT ,
and then chooses

ĉ = argmincαc. (3.48)

In the absence of noise this decoder achieves zero error probability since the null
spaces of Σc are all distinct and therefore

lim
σ2→0

P[ĉ 
= c] = 0. (3.49)

More in general, the Bhattacharyya upper bound to the error probability associated
to a MAP decoder at Bob, Perr in (3.24), can be shown to approach zero in the high-
SNR regime, i.e., following the steps of [16] we again conclude that (3.49) holds.
Then, by leveraging Fano’s inequality [2], we can state that

lim
σ2→0

H(c| y) = 0, (3.50)

where H(·|·) denotes the conditional entropy, and, therefore,

lim
σ2→0

I( y; c) = H(c) = log K . (3.51)

Consider now the information leaked to the eavesdropper

I(z; c) = h(z) − h(z|c). (3.52)

First note that even if c is known at the eavesdropper, the transmitted signal x is
not completely known to Eve, since it is randomly generated from the Gaussian
distribution N (µc,Σc). Conditioned on c = k, the random vector z follows the
Gaussian distribution with mean Gµk = 0 and covariance GΣk(ε)GT + Iσ2 and
we can write the conditional differential entropy of z given c as

h(z|c) =
K∑

k=1

1

2K
log
[
(2πe)me det

(
GΣk GT + Iσ2

)]
. (3.53)

Note in particular that since x|c is still a random vector, h(z|c) 
= h(w).
Then, note that the eavesdropper observation z follows the GMM distribution

fz(b) =
K∑

k=1

1

K
ν(b; 0, GΣk GT + Iσ2), (3.54)

and we can consider the upper bound to the information leakage to Eve that is
obtained by upper bounding the differential entropy of z by that of a multivariate
normal distribution with the same mean vector and covariance matrix,
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µz = 0 (3.55)

Σ z(ε) = 1

K

K∑

k=1

Σk(ε) + Iσ2, (3.56)

respectively, that is by writing [2]

h(z) ≤ hG (z) = 1

2
log
[
(2πe)me det (Σ z(ε))

]
. (3.57)

Such upper bound is given by

Ī(ε, G) = hG(z) − h(z|c) (3.58)

= 1

2
log

[
(2πe)me det

(
K∑

k=1

1

K
Σk(ε) + Iσ2

)]
(3.59)

−
K∑

k=1

1

2K
log
[
(2πe)me det

(
GΣk(ε)GT + Iσ2

)]
.

Observe that such value is random, as it is a function of the random matrix G,
moreover, it is also a function of the parameter ε, which determines the expression
of the input covariance matrices. Then, we consider a further upper bound to the
information leakage to Eve, which is obtained by considering a noiseless channel
to the eavesdropper, i.e., by imposing σ2 = 0. On recalling that G is drawn from a
continuous density, we can show that, for all η > 0, it holds

lim
ε→0

P
[
Ī(ε, G) ≥ η

] = 0. (3.60)

In particular, the Markov’s inequality provides

P[Ī(ε, G) ≥ η] ≤ E[Ī(ε, G)]
η

. (3.61)

Moreover, when σ2 = 0, we have

Ī(ε, G) = 1

2
log det

(
K∑

k=1

1

K
GΣk(ε)GT

)
−

K∑

k=1

1

2K
log det

(
GΣk(ε)GT

)
(3.62)

except for a set of values G that has a null measure. Hence,
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lim
ε→0

E[Ī(ε, G)] = (3.63)

lim
ε→0

E

[
1

2
log det

(
K∑

k=1

1

K
GΣk(ε)GT

)
−

K∑

k=1

1

2K
log det

(
GΣk(ε)GT

)]
=

(3.64)

lim
ε→0

E

[
1

2
log det

(
K∑

k=1

1

K
GΣk(ε)GT

)]
− E

[
K∑

k=1

1

2K
log det

(
GΣk(ε)GT

)]

(3.65)

where thematrices GΣk(ε)GT are non-singular sinceme ≤ s. It is therefore possible
to evaluate the limit as ε → 0 inside the expectation operator. In fact, we note that
the expectations in (3.65) can be expressed in closed form [11]. Then, by leveraging
condition 3) in Lemma 3.1, we also have that, for ε → 0, all Σk(ε) converge to the
same matrix, thus leading to

lim
ε→0

E[Ī(ε, G)] = 0 (3.66)

Note that the result (3.60) holds for all input covariance matrices verifying condition
3) in Lemma 3.1. Therefore, the same inputs that guarantee the reliability condition
(3.51) also guarantee the absence of information leakage to Eve.

Lastly, from (3.60), recalling that Ī(ε, G) is an upper bound of I(z; c), we obtain
(3.12).
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Chapter 4
Performance Analysis of Transmission over
AWGN Wiretap Channels with Practical
Codes

Marco Baldi, Franco Chiaraluce, Nicola Maturo and Stefano Tomasin

Abstract The wiretap coding problem has been addressed since a long time from an
information theoretic standpoint. This has permitted to find the ultimate achievable
limits under the hypothesis of random coding, which however is far from practice.
Some families of practical codes have also been already considered in this scenario,
but their achievable secrecy has mostly been assessed in asymptotic conditions (i.e.,
under the hypothesis of infinite codeword length) and using discrete channel models.
In this chapter, we analyze the performance of practical codes over the Gaussian
wiretap channel by using suitable metrics which take into account the codeword
length and even the specific code structure. This way, we are able to assess the
performance of real codes in the finite code length regime, and compare it with the
ultimate achievable limits. We focus on low-density parity-check codes as they are
among the most viable candidates for the use in this setting.

4.1 Introduction

The wiretap channel model [25] is the first and main reference model for physical
layer secure transmissions, and it is well known that perfect secrecy can be achieved
over the wiretap channel under the hypothesis of ideal random coding [14, 25].
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However, apart from the theoretical model, the need to implement real transmissions
with practical codes may force them to be far from perfect secrecy, and such a risk
needs to be quantified.

4.1.1 Previous Works

Some families of practical codes, like low-density parity-check (LDPC) codes and
polar codes, have been shown to be able to achieve the wiretap channel secrecy
capacity in the asymptotic regime (i.e., with infinite codeword length) [13, 17,
22]. However, despite this provides a very important new insight into the design of
practical codes for the wiretap channel, it is not easy to predict how far from the
secrecy capacity the secret throughput will be when the codeword length is reduced
to some (finite) practical value. Moreover, many previous works consider discrete
channel models (like the binary erasure channel (BEC) or the binary symmetric
channel (BSC) models) for both the main and wiretapper’s channels. However, the
most interesting applications of physical layer security techniques are recognized
to be in wireless communications, therefore a continuous channel model (like the
additive white Gaussian noise (AWGN) channel model, with or without fading) is best
suited for describing the physical layer. On the other hand, it is not realistic to suppose
that an eavesdropper of a wireless link is forced to discard the soft information coming
from the channel, and to use hard detection.

More in detail, an interesting family of two edge type LDPC codes has been
proposed in [1, 18, 19] for the use in wiretap coding schemes exploiting Wyner’s coset
encoding technique. These codes are shown to achieve weak secrecy in asymptotic
conditions (i.e., at infinite code lengths) over wiretap channels modeled as BECs.
In addition, in [19] some results for finite length codes are provided, but still only
over BECs. The weak secrecy criterion used in these works requires that the mutual
information between the secret message and the eavesdropper’s observation goes to
zero rate-wise, rather than in absolute terms, as needed by the strong secrecy criterion.
More recently, the same setting of a wiretapper BEC and a coset encoding technique
has been considered in the proposal of a scheme able to achieve strong secrecy
rather than weak secrecy [21], by exploiting large-girth LDPC codes. However, this
result only holds in the asymptotic regime, i.e., for infinite length codes. Another
scheme which has been proven to achieve perfect secrecy is based on polar codes
[9]. However, also in this case such a target is achieved for discrete channels and
infinite length codes, while no result is provided for finite length codes. Indeed, all
evidence up to now suggests that perfect secrecy (interpreted as zero information
leakage about the secret message in absolute terms, rather than rate-wise) may not
be achievable by using short length codes, or in general finite length codes.

Another recent trend which is important to mention concerns some attempts to
study the problems of physical layer security and wiretap coding in more general
terms, and also exploring their links with computational security and cryptography.
The work [7] studies the general problem of finding efficiently invertible extractors,



4 Performance Analysis of Transmission over AWGN Wiretap Channels … 55

which involves wiretap protocols. However, also in this case, the focus is on asymp-
totic security notions used to search for asymptotic optimal wiretap protocols over
discrete, memoryless, and symmetric channels. In [5], the security notions classi-
cally used for transmissions over the wiretap channel are reviewed, and their links
with the more robust notion of semantic security used in cryptography are explored.
The authors also propose a new coding scheme characterized by polynomial-time
decoding and achieving the secrecy capacity for the case of BSCs. Such a scheme
can be extended to other discrete memoryless channels, but continuous channels
(like the AWGN channel) are not taken into account. One of the very few works on
coding for Gaussian wiretap channels is [16], where the authors address the problem
of practical code design and propose a secure nested code structure. The authors
derive the achievable rate-equivocation region based on the threshold behavior of
good code sequences, that is, by considering the performance of code ensembles in
the asymptotic regime, without taking into account finite length codes.

4.1.2 Error Rate Used as a Secrecy Metric

The bit error rate (BER) and codeword error rate (CER) are very common metrics
for assessing the transmission reliability in practical terms, since they are quite easy
to estimate for any fixed coding and modulation scheme, even through numerical
simulations. An approach to use these metrics also for security has been proposed in
[12], where the condition of being subjected to a BER close to 0.5 was imposed to the
eavesdropper in order to achieve security. Then, the differential evolution technique
was used to design optimized LDPC codes with the aim of achieving the desired BER
performance for both the authorized receiver and the eavesdropper. The quality ratio
between their two channels, defined as the security gap, was also used as a metric,
which should be kept as small as possible. A similar approach has been followed
in [2].

When used for assessing reliability, the error rate-based metrics can be easily
related to other, information theoretic metrics, like the conditional entropy (for which
we can exploit Fano’s inequality). The same is instead not straightforward when we
aim at measuring security. A bridge between information theoretic and error rate-
based security metrics can be found in [24], where the authors propose a secret key
sharing scheme for the wiretap channel. The same approach, based on the eaves-
dropper’s equivocation rate on the secret message, has also been used to study coded
transmissions over the Gaussian wiretap channel [23] and parallel channels [3],
in the finite code length regime. The work [23] considers punctured LDPC codes,
while in [3] the focus is on more classical coding schemes (like Bose-Chaudhuri-
Hocquenghem (BCH) codes).
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4.1.3 Our Contribution

In this chapter, we address the problem of measuring the reliability and secrecy
performance from an information theoretic standpoint in the finite codeword length
regime. For this purpose, as in the mentioned previous works, we exploit the link
between the equivocation rate and the error rate in order to explore the capacity-
equivocation regions of the codes we consider. Using the equivocation rate as a
security metric also allows us to compare the performance achieved in the finite
codeword length regime with that achievable in the asymptotic regime. We also
focus on LDPC codes as a prominent solution for wiretap coding, but, differently
from [23], we consider non-punctured LDPC coded transmissions, which are more
common in practice with respect to punctured transmissions. We aim at finding good
codes both in terms of reliability and security through a very simple code optimization
approach. With respect to existing literature, the main contributions of this chapter
are as follows.

• We consider continuous wiretap channels (no restriction on the use of soft infor-
mation by Eve) and finite length codes.

• We take into account the specific code structure (no code ensembles).
• We relate the wiretapper’s equivocation rate to the error rate, thus providing an

information theoretic secrecy metric which is, at the same time, relevant to the
specific code and comparable with the ultimate achievable limits.

The organization of the chapter is as follows. In Sect. 4.2, we define the channel
model and the metrics we use throughout the chapter. In Sect. 4.3, we use these
metrics to assess the ultimate performance achievable in asymptotic conditions. In
Sect. 4.4, we show how the same metrics can be applied to the finite codeword length
regime, and in Sect. 4.5 we draw some conclusions.

4.2 Channel Model and Metrics

In the Gaussian wiretap channel model, Alice transmits a ks-bit secret message M
by encoding it into an n-bit codeword X , through a binary linear block code C . The
choice of the transmitted codeword X not only depends on the secret message bits,
but also on kr random bits which are used to implement a form of nested coding
[10]. The code C has information length k = ks + kr and codeword length n.
Its rate is Rc = k/n. The secret message rate is Rs = ks/n. Both the authorized
receiver (Bob) and an eavesdropper (Eve) receive Alice transmission, and they have
full knowledge of the code C . Bob’s and Eve’s channels are impaired with AWGN,
and their received vectors are noted by Y and Z , respectively. In order to achieve
successful transmission of M , we must achieve the following targets:
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1. reliability target: the secret message M must be reliably decoded by Bob (i.e.,
with a sufficiently small error rate),

2. security target: Eve must be unable to gather any (or almost any) information
about M .

From both the security and reliability standpoints, we aim at finding suitable
metrics to be used for measuring performance in the finite code length regime, and
comparing it with that achievable in asymptotic conditions.

4.2.1 Reliability Metrics

Concerning the reliability target, the following metrics can be used:

• In asymptotic conditions (infinite length codes), without any constraints on the
choice of the code, the ultimate performance limit is represented by the chan-
nel capacity, which coincides with the highest code rate that can be used to
achieve error-free transmission. We consider a continuous binary-input channel
with AWGN and signal-to-noise ratio (SNR) per bit Eb

N0
, having capacity:

C

(
Eb

N0

)
= 1 − 1√

2π

∫ ∞

−∞
e− (y−√

Eb/N0)
2

2 log2

(
1 + e−2y

√
Eb/N0

)
dy. (4.1)

• In asymptotic conditions (infinite length codes), but with the constraint to use
LDPC coded transmissions, the density evolution technique [8, 20] can be used
to compute a decoding threshold, in terms of SNR, above which transmission can
occur without errors.

• In the finite code length regime, the performance of practical LDPC codes can
be assessed through Montecarlo simulations, and the SNR needed to achieve a
sufficiently low decoding error probability can be estimated.

4.2.2 Security Metrics

Concerning the security target, the concepts of strong secrecy and weak secrecy are
classically used for wiretap coding schemes [6, 15]. The definitions of strong and
weak secrecy are in the asymptotic regime. In fact, we say that we have strong secrecy
when the amount of information leaked about M through observing Z vanishes as n
goes to infinity, i.e., lim

n→∞ I(M; Z) = 0, where I(x; y) denotes the mutual information

between x and y. Similarly, we have weak secrecy when the rate of information leaked
about M through observing Z vanishes as n goes to infinity, i.e., lim

n→∞ I(M; Z)/n =
0. Despite this, we can use notions similar to strong and weak secrecy also in the finite
code length regime. In fact, both of them are based on the information leakage about
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the secret message, measured in terms of the mutual information between the secret
message and the wiretapper’s observation. The difference is that for weak secrecy the
information leakage is measured rate-wise, while for strong secrecy it is measured
in absolute terms. Therefore, we could measure these quantities in the finite code
length regime as well.1 Another, similar way of measuring the information leakage
about the secret message is by using the wiretapper’s equivocation on the secret
message, as done in Wyner’s original work [25]. According to [25], perfect secrecy
is achieved when the wiretapper’s equivocation rate on the secret message equals
the entropy of the data source. In this case, we use again a rate-wise measure of the
information leakage, which is weaker than the notion of strong secrecy. However,
as outlined in Sect. 4.1, all evidence up to now suggests that strong secrecy may not
be achievable with finite length codes. Based on these premises, in the following we
use the wiretapper’s equivocation rate as a secrecy measure. We make this choice
since it allows to relate the secrecy metrics with the error rate, as we will show next,
which is an important feature to take into account the specific code structure in the
performance assessment.

By denoting as H(·) the entropy function, the wiretapper’s equivocation rate is
simply defined as Re = 1

n H(M |Z). Since we suppose to deal with independent and
identically distributed secret messages, the source entropy rate is equal to Rs , and
perfect secrecy is achieved when the equivocation rate Re equals the secret message
rate Rs :

R̃e = Re/Rs = 1. (4.2)

We denote R̃e as the fractional equivocation rate. Obviously, the ultimate limit
achievable by the equivocation rate is represented by the secrecy capacity Cs =
[CB −CE ]+, where CB and CE are Bob’s and Eve’s channel capacities, respectively.
It is well known that the wiretapper’s equivocation rate on the secret message can
also be expressed as [6, 15]:

Re = 1

n
[H(X) − I(X; Z) + H(M |Z , X) − H(X |M, Z)] , (4.3)

where H(X |M, Z) is the entropy of X conditioned on receiving Z and knowing the
secret message M .

4.2.3 Fictitious Receiver

In order to estimate H(X |M, Z), we can suppose the existence of a fictitious receiver
which is in the same position as Eve’s, but, differently from Eve, he knows the secret
message M . We name this other subject Frank, and include it in our communication

1Obviously, in the finite length regime Bob’s error probability cannot be vanishing. Therefore, in
order to apply these metrics in such a regime, the reliability target must be converted into requiring
that Bob achieves some sufficiently small error probability.
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Fig. 4.1 Wiretap channel
model with fictitious receiver Alice BobBob's

channel

EveEve's
channel

Yn

Zn

Xn

Frank

M

M

model, which is depicted in Fig. 4.1. The letter M inside Alice’s and Frank’s boxes
points out that the message M is known to both Alice and Frank. Frank receives from
the channel the same vector Z received by Eve and then tries to perform decoding
for recovering the kr random bits, which represent the only source of uncertainty for
him in order to retrieve X .

In (4.3), we have I(X; Z) ≤ nCE , H(X) = k and H(M |Z , X) ≤ H(M |X) = 0.
Concerning the term H(X |M, Z), by Fano inequality we have H(X |M, Z) ≤ 1 +
krη, where η is the decoding error probability (or CER) experienced by Frank. Based
on these considerations, we can find a lower bound on the wiretapper’s equivocation
rate on the secret message as [23]:

Re ≥ 1

n
[k − nCE − krη − 1] =

= Rc − CE − (Rc − Rs)η − 1

n
= R∗

e . (4.4)

This way, we find a secrecy metric which takes into account the code length, and
therefore it is suitable to assess performance also in the finite code length regime,
which is of interest for practical codes. Furthermore, this metric depends on Frank’s
CER, which can be easily estimated, for practical codes, through numerical simu-
lations. Looking at (4.4), one could think that an optimal solution is to impose that
Eve and Frank have a very low SNR. In this case, we have η ≈ 1 and CE ≈ 0. Under
these hypotheses, and by considering sufficiently long codes to make the term 1

n
negligible, we would have R∗

e ≈ Rs . Unfortunately, this apparently optimal solution
is not viable for the following reasons:

• Fixing a small value of η as Frank’s performance target is beneficial for security.
In fact, if Frank’s error rate on the sole random bits is small, this means that Eve’s
equivocation will be concentrated on the secret message bits, which is what we
want to achieve.

• Allowing a not-too-degraded channel for the eavesdropper is also beneficial, since
this means that security can be guaranteed even when Eve is not far from Bob. This
is an important aspect which is also caught by the analysis based on the security
gap.
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Fig. 4.2 Parity-check matrix
of the considered codes

BAH = 

ks kr r

C

Based on these considerations, we want to achieve a value of R∗
e as high as possible,

without renouncing to impose a small value of η. This requires to optimize Frank’s
performance as well, in such a way that he is able to achieve good decoding perfor-
mance (i.e., small η) with small SNR, which means having a small capacity CE of
(Frank’s and) Eve’s channel.

Let us consider LDPC coding and let us suppose (without loss of generality)
that encoding is systematic. Let the transmitted codeword be c = [M |R|P], where
M is the ks-bit secret message, R is the kr -bit random message and P is the r -
bit redundancy vector added by the encoder. In real world secure transmissions,
systematic encoding shall be avoided, especially if source coding is not perfect (as
always occurs in practice). For this purpose, the use of an information bit scrambler
is advisable [2]. Nevertheless, in our analysis, which is aimed at estimating the
performance achievable, the hypothesis of systematic coding can be maintained,
since it helps simplifying the analysis. Under this hypothesis, we can describe the
code C through a lower triangular parity-check matrix H. More precisely, we can
divide the matrix H into three blocks as shown in Fig. 4.2. These three blocks, named
A, B and C in the figure, have size r × ks , r × kr and r × r bits, respectively. C
is a lower triangular matrix, which is a sufficient condition to perform systematic
encoding.

Bob, who does not know in advance either the secret or the random message, must
use the whole matrix H to perform decoding. Eve is in the same condition, although
she receives the signal through a different channel. Frank, instead, can take advantage
of the perfect knowledge of M , and only needs to recover the random message R.
Therefore, he can precompute A · MT = s, were T denotes transposition. Then,
he can use the following reduced parity-check system to look for the vector [R|P]
having syndrome s:

[B|C] · [R|P]T = H′ · c′T = s. (4.5)

Obviously, decoding for a vector having an all-zero syndrome (as usual) or a
different syndrome is equivalent, due to the code linearity. Hence, Frank can perform
decoding through the reduced LDPC code defined by H′ = [B|C], which has rate
RF = kr/(kr + r). The code rate for Bob and Eve instead coincides with the overall
code rate, i.e., Rc = k/n. Through simple arithmetic, we find
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RF = Rc − Rs

1 − Rs
. (4.6)

From (4.6) we have RF
Rc

= 1− Rs
Rc

1−Rs
and, since Rc < 1, we have RF

Rc
< 1. Therefore,

Frank’s advantage of knowing the secret message M translates into his ability to
work with a lower code rate with respect to Bob and Eve, i.e., with an increased error
correction capability.

4.3 Asymptotic Performance

A first important benchmark is represented by the performance achievable in optimal
conditions, which represents the ultimate bound we will aim at approaching when
working with practical, finite length codes.

4.3.1 Ideal Codes

Let us first consider the hypothesis of working with optimal codes, i.e., codes able to
reach the channel capacity. Under this hypothesis, Rc coincides with Bob’s channel
capacity CB , while RF coincides with Frank’s channel capacity CF . Moreover, since
Eve and Frank experience the same channel, Eve’s channel capacity is CE = CF =
RF . Therefore, the secrecy capacity can be written as Cs = Rc − RF . Then, replacing
RF with the r.h.s. of (4.6), we obtain the following expression for the fractional
secrecy capacity, which provides the ultimate bound on R̃e:

C̃s = Cs

Rs
= 1 − Rc

1 − Rs
. (4.7)

We have chosen some values of the code rate Rc of the type 1/x or x/(x +1), with
x integer, ranging between 1/5 and 4/5. For all of them, we have computed C̃s as a
function of Rs , and the results are reported in Fig. 4.3. From the figure we observe that
C̃s is a monotonically increasing function of Rs , as expected from (4.7), and it reaches
1 when the secret message rate reaches its maximum, i.e., Rs = Rc. Apparently, this
brings us to the conclusion that we should fix Rs = Rc in order to maximize C̃s

and achieve optimal performance from the secrecy standpoint. This would mean to
renounce transmitting randomness to confuse the eavesdropper. However, moving
on the curves of Fig. 4.3 (i.e., fixing Rc) means also varying the SNR of Eve: in
particular, from (4.6) we can obtain the value of RF associated with a couple Rs

and Rc. Since we are considering rates coincident with capacities, the value of RF

corresponds to a capacity of the Eve’s channel and therefore to a specific SNR value,
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hypothesis of ideal (capacity achieving) coding
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Fig. 4.4 Bob’s and Eve’s channels SNR and their ratio (security gap) versus secret message rate
(Rs ) for Rc = 0.5, under the hypothesis of ideal (capacity achieving) coding

through the binary input additive white Gaussian noise (BIAWGN) channel capacity
(4.1). As Rs → Rc we have that Eve’s SNR tends to zero (as RF tends to zero, too).
This trend is shown in Fig. 4.4, where we fix Rc = 0.5 and plot the Bob’s and Eve’s
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channels SNR under the hypothesis of ideal coding, for varying Rs . In the figure
we also report the value of the security gap. As expected, while the SNR of Bob’s
channel is fixed (as the code rate), when Rs approaches Rc the SNR of Eve’s channel
converges to zero and the security gap diverges. Therefore, in order to have non-zero
Eve’s SNR and a finite security gap we must consider Rs < Rc, and this requires the
use of randomness. However, the choice of a value of Rs not too small compared to
Rc is obliged in order to achieve high values of C̃s .

4.3.2 Infinite Length LDPC Codes

Another valuable assessment in the asymptotic regime can be done by taking into
account the specific LDPC code structure. In fact, any LDPC code can be represented
through a Tanner graph, that is a bipartite graph having two groups of nodes, variable
and check nodes, corresponding to the codeword bits and the parity-check equations,
respectively. An edge exists between the j th variable node and the i th check node
if and only if the (i, j)th element of H is 1. The number of edges connected to a
node is called the degree of that node. The code Tanner graph can hence be described
through the following two polynomials, which define the variable and check node
degree distributions:

λ(x) =
dv∑

i=2

λi x i−1, ρ(x) =
dc∑

j=2

ρ j x j−1. (4.8)

In (4.8), dv and dc are the maximum variable and check node degrees, respectively,
and the coefficient λi

(
ρ j

)
is the fraction of edges connected to the variable (check)

nodes with degree i ( j). For this reason, we say that these two polynomials describe
the degree distributions from the edge perspective. Alternatively, λ(x) can be con-
verted into the polynomial ν(x) = ∑dv

i=1 νi x i , which describes the same distribution
from the node perspective. The coefficients νi and λi are related as follows:

νi = λi/ i
∑dv

j=1 λ j/j
,

λi = νi · i
∑dv

j=1 ν j · j
. (4.9)

The same procedure can be applied to the polynomial ρ(x) to obtain another poly-
nomial, c(x), which represents the same distribution from the node perspective. The
code rate can be computed starting from λ(x) and ρ(x) as:

Rc = 1 −
∑dv

i=2 ρi/ i
∑dc

j=2 λ j/j
. (4.10)
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Efficient, low complexity LDPC code decoding algorithms are based on the belief
propagation principle, which exploits an iterated exchange between the nodes of the
code Tanner graph of soft messages concerning the reliability of each received bit.
Therefore, the Tanner graph node degree distributions determine the performance of
an LDPC code under belief propagation decoding. The density evolution technique
[20] allows to estimate the performance achievable in the asymptotic regime (i.e.,
under the hypothesis of infinite length codes with Tanner graphs free of closed loops),
under belief propagation decoding, by an LDPC code described through its degree
distribution pair (λ(x), ρ(x)). In short, the method consists of computing the statis-
tics of the decoder messages and their evolution during the iterations of the decoding
algorithm, in such a way as to estimate the probability that decoding converges to
an error-free codeword. Using a Gaussian approximation for the probability distri-
butions of the decoder messages has been shown as a good solution to reduce the
computational complexity without losing accuracy [8]. Through density evolution, a
channel quality threshold can be found, above which the code is expected to converge
to error-free estimations in asymptotic conditions. When we deal with AWGN chan-
nels, as in our case, such threshold is expressed in terms of an SNR value. Density
evolution can also be used to optimize the code degree distributions, that is, to find
degree distribution pairs able to achieve minimum values of the channel threshold.

Differently from classical transmission problems, in the considered setting we
have a code chosen by Alice which is used by three receivers: Bob, Eve and Frank.
In particular, Bob and Eve use the same code, defined by H, while Frank uses the code
defined by H′, according to (4.5). Since we want both Bob and Frank to achieve good
performance, we need to optimize both H and H′. These two codes have different
rate, and the second parity-check matrix is somehow contained in the first one. This is
quite a new and challenging code optimization problem, which can be faced through
a density evolution-based joint optimization of the two codes, as done in [4]. In this
chapter, instead, for the sake of simplicity we follow a greedy approach, that is, we
first optimize the smallest code, defined by H′, and then, having fixed its degree
distributions, we optimize the largest code, defined by H, in an incremental way. In
the next section we provide an example of optimization and compare the asymptotic
performance with that achievable in the finite code length regime.

4.4 Finite Length Performance

Based on the analysis developed in the previous sections, we can estimate the relia-
bility and security performance achievable by some finite length LDPC codes, and
compare it with that achievable in asymptotic conditions.

For this purpose, we first choose the code rate Rc and the secret message rate Rs .
Given their values, we need to find an optimized degree distribution pair for both
Bob’s and Frank’s codes. This must be done by taking into account that Frank’s
code parity-check matrix is contained in Bob’s code parity-check matrix, according
to Fig. 4.2. Then, the value n of Bob’s code length is fixed, and Frank’s code length
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follows as n′ = (1 − Rs)n. Given the two codes length and rate, as well as their
optimized degree distributions, we can design their parity-check matrices through
the Progressive Edge Growth (PEG) algorithm [11].

The performance achieved by these two codes can then be assessed through numer-
ical simulations. In particular, we can fix two target values for Bob’s and Frank’s
CER (ζ and η, respectively), and estimate the limit SNR, in terms of Eb

N0
, which is

needed on the two channels in order to achieve the target CERs.
Let us consider, as an example, the following choice of the code parameters:

• Rc = 0.5
• Rs = 0.4
• RF = 0.16667
• n = 10,000 or n = 50,000

In order to find good distribution pairs for both Bob and Frank, we use the greedy
approach described in the previous section, with some heuristics in order to ensure
that both distributions have good asymptotic thresholds but are also practically feasi-
ble through the PEG algorithm (in the sense that it succeeds in allocating all the edges
without introducing short closed loops in the associated Tanner graphs). For the latter
purpose, we also aim at keeping the average variable node degree in Frank’s distrib-
ution below 4, since we have verified that this allows to achieve practical codes with
better performance than by using higher average degrees. This way, for Frank’s code
we have obtained the following degree distributions (from the node perspective):

{
ν(x) = 0.1268x6 + 0.186x3 + 0.6872x2,

c(x) = 0.2382x4 + 0.7682x3,
(4.11)

which correspond to a density evolution threshold equal to Eb
N0

= −0.32 dB. Bob’s
degree distribution has been obtained starting from Frank’s distribution and adding
only degree-3 variable nodes, which has resulted to be a simple and efficient solu-
tion. This way, for Bob we obtain the following degree distributions (from the node
perspective):

{
ν(x) = 0.07608x6 + 0.5116x3 + 0.41232x2,

c(x) = 0.63184x6 + 0.36816x5,
(4.12)

corresponding to a density evolution threshold equal to Eb
N0

= 1.1 dB.
Starting from these distributions, and using the PEG algorithm, we design Frank’s

and Bob’s code parity-check matrices with (n = 10,000, n′ = 6,000) and (n =
50,000, n′ = 30,000). Through Montecarlo simulations of transmission over the
AWGN channel with binary phase shift keying (BPSK), we estimate the value of
Eb
N0

which is needed to reach ζ = η = 10−2 when these codes are used. These Eb
N0

values allow us to assess the performance in terms of reliability and security both in
asymptotic and in finite code length conditions.
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Table 4.1 Performance ( Eb
N0

in dB and C̃s or R̃∗
e in bit/s/Hz) achieved in ideal, asymptotic and finite

length conditions by Frank and Bob in the considered setting (Rc = 0.5, Rs = 0.4, RF = 0.16667,
ζ = η = 10−2)

Condition Frank’s Eb
N0

Bob’s Eb
N0

C̃s or R̃∗
e

Ideal −1.07 0.19 C̃s = 0.83

n → ∞ −0.32 0.85 R̃∗
e = 0.77

n = 50,000 0.4 1.05 R̃∗
e = 0.69

n = 10,000 0.8 1.3 R̃∗
e = 0.65

The results obtained are reported in Table 4.1, where we provide the estimated Eb
N0

values for Bob and Frank. The corresponding values of SNR per codeword bit can
be simply obtained by multiplying them by Rc and RF , respectively. We remind that
the SNR per codeword bit of Frank’s and Eve’s channels is the same by definition. In
the table we first consider the ideal condition, that is, when both Frank’s and Bob’s
codes are ideal and achieve capacity. For this case, besides the Eb

N0
values, we provide

the value of C̃s , computed according to (4.7). The other rows of the table instead
consider LDPC codes: first in asymptotic conditions (based on density evolution),
and then in the finite code length regime. For these cases, besides the Eb

N0
values, we

provide the value of R̃∗
e = R∗

e /Rs , where R∗
e is computed according to (4.4).

From these results we observe that the considered code parameters do not allow
to achieve perfect secrecy, as expected, since all the values in the last column of the
table are below one. On the other hand, under the hypothesis of infinite length LDPC
codes, a fractional equivocation rate ≥ 0.77 is reached, which is not far from the
fractional secrecy capacity limit (0.83) corresponding to the case of ideal coding.
Using finite length LDPC codes yields some further losses, as expected. However, if
we use codes with length n = 50,000 bits, for the considered parameters we achieve
a fractional equivocation rate ≥ 0.69, which means that about 70 % or more of the
secret message bits are actually secret from an information theoretic standpoint. This
is a useful measure, which tells us that we have a practical coding loss of about 30 %
on the uncertainty (and hence the security level) of each transmitted message.

4.5 Conclusion

We have addressed the problem of assessing the reliability and security performance
of practical coded transmissions over the AWGN wiretap channel. Differently from
most previous analyses, which work in the asymptotic (i.e., infinite code length)
regime, we have focused on the finite code length regime, and also taken into account
the specific code structure. For this purpose, we have resorted to an information
theoretic measure of secrecy which advocates Wyner’s definition of perfect secrecy,
and is also applicable in the finite code length regime.
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This has permitted us to estimate the performance achievable by practical, finite
length LDPC coded transmissions and to compare it with the ultimate limits achiev-
able in ideal and asymptotic conditions. This tool has permitted us to show that
practical coded transmissions incur in a practical coding loss which prevents them
from achieving the ultimate performance limits.
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Chapter 5
Broadcast Channels with Confidential
Messages: Channel Uncertainty, Robustness,
and Continuity

Rafael F. Schaefer, Andrea Grigorescu, Holger Boche
and H. Vincent Poor

Abstract Thebroadcast channel with confidential messages (BCC)models the com-
munication scenario in which a transmitter sends simultaneously common and con-
fidential information to two receivers. The common information must be received
by both receivers while the confidential information is designated for one receiver
only and must be secured against the other one. The performance of this system
is usually characterized by its secrecy capacity region determining the maximum
transmission rates. In this chapter, the issue of whether this secrecy capacity region
depends continuously on the system parameters or not is examined. In particular, this
is done for compound channels, in which the users know only that the true channel
realization is constant for the whole duration of transmission and this comes from
a pre-specified uncertainty set. The secrecy capacity region of the compound BCC
is shown to be robust in the sense that it is a continuous function of the uncertainty
set. This means that small variations in the uncertainty set result in small variations
in secrecy capacity.
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5.1 Introduction

Error correction and data encryption are usually strictly separated in current com-
munication systems. While error correction is typically realized at the physical layer
transforming the unreliable communication channel into a reliable bit-pipe, data
encryption is done on top of that with the help of cryptographic principles. A draw-
back of this approach is its reliance on the assumption of insufficient computational
capabilities of non-legitimate receivers.

Nowadays, information theoretic approaches to security are intensively discussed
to complement such cryptographic techniques. By taking the properties of the noisy
communication channel into account, information theoretic approaches establish
reliable communication and data confidentiality jointly at the physical layer. Infor-
mation theoretic security was initiated by Shannon [36] and continued by Wyner,
who introduced the now-popular wiretap channel in [39]. Subsequently, this was
generalized to the broadcast channel with confidential messages (BCC) by Csiszár
and Körner [14]. This area of research provides a promising approach to achieve
unconditional security and to embed secure communication into wireless networks.
It is not surprising that it has drawn considerable attention recently; see for exam-
ple [7, 22, 27, 28, 32, 40] and references therein. Accordingly, it has also been
identified by operators and national agencies as a key technique for future secure
communication systems [16, 18, 21].

Wireless communication systems are inherently vulnerable to eavesdropping due
to the open nature of the wireless medium. Indeed, transmitted signals are received
by intended users but are easily eavesdropped upon by non-legitimate receivers.
These observations make the above discussed studies particularly crucial for wire-
less systems. However, many of the previous works lack in practical relevance as they
usually assume perfect knowledge of all channels (including those to potential eaves-
droppers). But practical systems will always be limited in channel state information
(CSI) due to the nature of the wireless medium and estimation/feedback inaccuracy.
Moreover, malevolent eavesdroppers will not share any channel information with the
legitimate users making eavesdropping even harder. Accordingly, limited CSI must
be assumed to ensure reliability and confidentiality.

In this chapter, the concept of compound channels [5, 38] is considered, which
makes a first step in the direction ofmore realistic CSI assumptions. In thismodel, the
actual channel realization is assumed to be unknown. The users know only that the
true channel realization belongs to a known uncertainty set and that this realization
remains constant for the entire duration of transmission. Secure communication over
compound wiretap channels has been studied in [4, 17, 23, 26, 34, 35]. Despite all
these efforts, a general single-letter characterization of the secrecy capacity remains
unknown (if it exists at all). Such a description has been found only for certain special
cases such as degraded channels or certain MIMO channels.

In this chapter, the compound broadcast channel with confidential messages
(BCC) is considered. In this communication problem, a transmitter aims to send
a common message to two receivers and, at the same time, a confidential message
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to only one of them keeping the other receiver in the dark. This channel provides
a useful model for studying wireless networks involving both multicast and unicast
messages, such as subscription content-delivery systems. First studies can be found
in [24, 33] and, similarly to the compound wiretap channel, a general single-letter
characterization of the secrecy capacity region remains unknown. Only a multi-letter
description has been established so far.

The following analysis is motivated by the observation that the performance of
a communication system should depend continuously on its system parameters. In
the context of compound BCCs, this means that small variations in the uncertainty
set should only lead to small variations in the secrecy capacity; i.e., that the system
will be robust to the uncertainty. Since otherwise, if small changes would lead to
dramatic losses in performance, the approach at hand will most likely not be used.
Surprisingly, the question of continuity of capacities is rarely discussed. Some work
for the compound wiretap channel and arbitrarily varying wiretap channel can be
found in [10, 11].

The aim of this work is to extend these concepts and ideas to the compound BCC.
For this purpose, the compound BCC is introduced in Sect. 5.2 and a distance concept
to measure how “close” two compound BCCs are in Sect. 5.3. The main contribution
of this work is then that the secrecy capacity region of the compound BCC is con-
tinuous in the uncertainty set. This shows that small variations in the uncertainty set
only lead to small variations in the secrecy capacity. Finally, a concluding discussion
is given in Sect. 5.4. Parts of this work have been presented before in [20].

Notation
Discrete random variables are denoted by capital letters and their realizations and
ranges by lower case and script letters, respectively; all information quantities and
logarithms are taken to the base 2;N andR+ denote the sets of non-negative integers
and non-negative real numbers; (0, 1) and [0, 1] denote open and closed intervals
between 0 and 1; H(·), H2(·), I (·; ·) are the entropy, binary entropy, and mutual
information, respectively; X − Y − Z denotes a Markov chain of random variables
X , Y , and Z in this order; the set of all probability distributions is denoted byP(·);
conv(·) denotes the convex hull closure; ‖ν − μ‖ =: ∑

a∈A |ν(a) − μ(a)| is the
total variation distance of measures μ and ν on A ; lhs =: rhs means the value of
the right hand side (rhs) is assigned to the left hand side (lhs); lhs := rhs is defined
accordingly.

5.2 Compound Broadcast Channels with Confidential
Messages

In this section we introduce the compound broadcast channel with confidential mes-
sages (BCC) in which the actual channel realization is unknown to the transmitter
and both receivers. They know only that this realization remains constant during the
entire duration of transmission and belongs to a known uncertainty set.
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5.2.1 Compound Broadcast Channels

Let X , Y , and Z be finite input and output alphabets of the transmitter and
both receivers respectively. Let S be a finite state set. For each channel state
s ∈ S , input and output sequences xn ∈ X n , yn ∈ Y n , and zn ∈ Z n of length
n, the discrete memoryless broadcast channel is given by Pn

Y Z |X,s(yn, zn|xn) =:
∏n

i=1 PY Z |X,s(yi , zi |xi ). Since there is no cooperation allowed between receiver
1 and 2, it suffices to consider the marginal channels only which are denoted by
W n

s (yn|xn) =: ∏n
i=1 Ws(yi |xi ) and V n

s (zn|xn) =: ∏n
i=1 Vs(zi |xi ) respectively.

This allows us to define the marginal compound channels to both receivers by the
families of channels for all s ∈ S as

W =: {
Ws : s ∈ S

}
and V =: {

Vs : s ∈ S
}
.

Definition 5.1 The discrete memoryless compound broadcast channel W is given
by the families of pairs of compound channels with common input as

W =: {
W ,V

} = {
(Ws, Vs) : Ws ∈ W , Vs ∈ V

}
.

Remark 5.1 In what follows wewill callW also the uncertainty set of the compound
BCC. In [10, Sect. II-B] it is discussed why it is reasonable to specify the uncertainty
set by the set of channel matrices (W ,V ) and not by the state set S itself. Indeed,
two compound channels can be “close” in their set of channel matrices although their
state sets may differ considerably.

5.2.2 Codes for Compound BCCs

In the communication problemat hand, the transmitter sends over the compoundBCC
simultaneously a common message M0 to both receivers and a confidential message
M1 to receiver 1, which must be kept secret from receiver 2. The corresponding
compound BCC is depicted in Fig. 5.1.

We consider a block code of arbitrary but fixed length n. LetM0 =: {1, . . . , M0,n}
be the set of common messages and M1 =: {1, . . . , M1,n} the set of confidential
messages. We frequently make use of the abbreviation M =: M0 × M1.

Definition 5.2 An (n, M0,n, M1,n)-code for the compound BCC consists of a sto-
chastic encoder at the transmitter

E : M0 × M1 → P(X n), (5.1)
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Fig. 5.1 Compound broadcast channel with confidential messages. The transmitter encodes mes-
sages M0 and M1 into a codeword Xn = E(M0, M1) and transmits it over the compound BCC to the
receivers, which have to decode their intended messages (M̂0, M̂1) = ϕ1(Y n

s ) and M̂0 = ϕ2(Zn
s )

for any channel realization s ∈ S . At the same time, the second receiver has to be kept ignorant of
M1 in the sense that maxs∈S I (M1; Zn

s ) ≤ δn

i.e., a stochastic matrix, and decoders at receivers 1 and 2

ϕ1 : Y n → M0 × M1 (5.2a)

ϕ2 : Z n → M0. (5.2b)

Remark 5.2 Note that since the actual channel realization is unknown to the trans-
mitter and both receivers, the encoder (5.1) and decoders (5.2)must not depend on the
state s ∈ S (and therewith not the particular (Ws, Vs)), i.e., they must be universal
with respect to the state setS (and uncertainty setW).

When the transmitter has sent the message pair m = (m0, m1) ∈ M and the
receivers have received yn ∈ Y n and zn ∈ Z n , their decoders are in error if
ϕ1(yn) �= (m0, m1) or ϕ2(zn) �= m0. Then for an (n, M0,n, M1,n)-code of Definition
5.2, the average probabilities of decoding error for receivers 1 and 2 and channel
realization s ∈ S are

e1,n(s) := 1

|M |
∑

m∈M

∑

xn∈X n

∑

yn :ϕ1(yn) �=(m0,m1)

W n
s (yn|xn)E(xn|m0, m1)

e2,n(s) := 1

|M |
∑

m∈M

∑

xn∈X n

∑

zn :ϕ2(zn) �=m0

V n
s (zn|xn)E(xn|m0, m1).

Since reliable communication is required for all s ∈ S , we consider the maximum
average error probabilities, i.e. e1,n = maxs∈S e1,n(s) and e2,n = maxs∈S e2,n(s).

The confidential message M1 has to be kept secret from receiver 2 for all channel
realizations s ∈ S . Therefore, we requiremaxs∈S I (M1; Zn

s ) ≤ δn for some δn > 0
with M1 the random variable uniformly distributed over the set M1 and Zn

s =
(Zs,1, Zs,2, . . . , Zs,n) the output at receiver 2 for the channel realization s ∈ S .
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This criterion is known as strong secrecy [13, 29] and the intuition is to control the
total amount of information leaked to the non-legitimate receiver. This leads to the
following definition.

Definition 5.3 A rate pair (R0, R1) ∈ R
2+ is said to be achievable for the compound

BCC if for any τ > 0 there is an n(τ ) ∈ N and a sequence of (n, M0,n, M1,n)-codes
such that for all n ≥ n(τ ) we have 1

n log M0,n ≥ R0 − τ , 1n log M1,n ≥ R1 − τ ,

max
s∈S

{
ē1,n(s), ē2,n(s)

} ≤ λn,

and

max
s∈S

I (M1; Zn
s ) ≤ δn (5.3)

with λn, δn → 0 as n → ∞.
The closure of the set of all achievable rate pairs (R0, R1) is the secrecy capacity

region CS(W) of the compound BCC W.

Remark 5.3 One might argue that the secrecy criterion (5.3) should reflect the fact
that the common message M0 is available at receiver 2 as side information. In [33] it
has been shown that incorporating this type of side information does not change the
secrecy capacity. Accordingly, (5.3) can be generalized tomaxs∈S I (M1; Zn

s |M0) ≤
δn (or equivalently to maxs∈S I (M1; M0, Zn

s ) ≤ δn if M0 and M1 are independent)
at no cost.

5.2.3 Capacity Results

The discrete memoryless compound BCC has been studied in [19, 33]. In [33] an
achievable secrecy rate region and a multi-letter outer bound have been established.
Based on this, [19] presents a precise multi-letter characterization of the correspond-
ing secrecy capacity region.

Proposition 5.1 ([33, Theorem2]) An achievable secrecy rate region for the com-
pound BCC W is given by the set of all rate pairs (R0, R1) ∈ R

2+ that satisfy

R0 ≤ min
s∈S

min
{

I (U ; Ys), I (U ; Zs)
}

R1 ≤ min
s∈S

I (V ; Ys |U ) − max
s∈S

I (V ; Zs |U )

for random variables U − V − X − (Ys, Zs) forming a Markov chain with Ys and
Zs the random variables associated with the outputs of the channels Ws and Vs.
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Furthermore, the generalized secrecy criterion (cf. Remark 5.3) goes exponen-
tially fast to zero and the decoding error of the confidential message M1 at the
non-legitimate receiver 2 goes exponentially fast to one.

A single-letter expression for the secrecy capacity region is still unknown (if
it exists at all). However, a multi-letter outer bound has been established in [33,
Theorem3] which yields a multi-letter description of CS(W) of the compound BCC
W in [19]. For this purpose, let n ∈ N be arbitrary but fixed and we define the rate
region Rn(W, U, V, Xn) as the set of all rate pairs (R0, R1) ∈ R

2+ that satisfy

R0 ≤ 1

n
inf

s∈S
min

{
I (U ; Y n

s ), I (U ; Zn
s )

}
(5.4a)

R1 ≤ 1

n

(
inf

s∈S
I (V ; Y n

s |U ) − sup
s∈S

I (V ; Zn
s |U )

)
(5.4b)

for randomvariables satisfying theMarkov chain relationshipU−V −Xn−(Y n
s , Zn

s ).
Then, we define the region

Rn(W) =
⋃

U−V −Xn

Rn(W, U, V, Xn),

i.e.,Rn(W) is the union of the regionsRn(W, U, V, Xn) over all random variables
satisfying the Markov chain relationship U − V − Xn .

Theorem 5.1 ([19]) The secrecy capacity region CS(W) of the compound BCC W
is the convex hull closure of the union of the regions Rn(W) over all n ∈ N, i.e.,

CS(W) = conv(
⋃

n∈N
Rn(W)). (5.5)

Remark 5.4 The union of the rate regions
⋃

n∈NRn(W) may itself not be convex,
which necessitates the convex hull in (5.5). Note that all rate pairs in the convex hull
can be achieved by time sharing between rate pairs in Rn(W).

5.3 Continuity of the Compound Secrecy Capacity Region

In this section we analyze the secrecy capacity region CS(W) of the compound
BCC W. The main result will be that CS(W) depends in a continuous way on the
uncertainty set W. To do so, we need a suitable concept to measure the distance
between two compound BCCs. This is introduced first.
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5.3.1 Distance Between Compound BCCs

Let (W, V ) and (W̃ , Ṽ ) be two broadcast channels with finite input and output
alphabetsX ,Y , andZ . We define the distance between the two marginal channels
(to receivers 1 and 2 respectively) based on the total variation distance1 as

d(W, W̃ ) =: max
x∈X

∑

y∈Y

∣
∣W (y|x) − W̃ (y|x)

∣
∣

d(V, Ṽ ) =: max
x∈X

∑

z∈Z

∣
∣V (z|x) − Ṽ (z|x)

∣
∣

and the distance between two BCs as

d
(
(W, V ), (W̃ , Ṽ )

) =: max
{
d(W, W̃ ), d(V, Ṽ )

}
.

To extend this concept to compound BCs, let W1 = {(Ws1 , Vs1) : s1 ∈ S1} and
W2 = {(Ws2 , Vs2) : s2 ∈ S2} be two finite compound BCs with marginal compound
channels Wi = {Wsi : si ∈ Si } and Vi = {Vsi : si ∈ Si } for i ∈ {1, 2}. We define
the distance between two marginal compound channels to receiver 1 as

d1(W1,W2) = max
s2∈S2

min
s1∈S1

d(Ws1 , Ws2)

d2(W1,W2) = max
s1∈S1

min
s2∈S2

d(Ws1 , Ws2)

and to receiver 2 as

d1(V1,V2) = max
s2∈S2

min
s1∈S1

d(Vs1 , Vs2)

d2(V1,V2) = max
s1∈S1

min
s2∈S2

d(Vs1 , Vs2).

Definition 5.4 Let W1 and W2 be two compound BCs. The distance D(W1,W2)

between W1 and W2 is then defined as

D(W1,W2) = max
{
d1(W1,W2), d2(W1,W2), d1(V1,V2), d2(V1,V2)

}
.

This concept is suitable to characterize how “close” two compound BCs are. In
addition, it can also be used to quantify how well one compound BC approximates
another one.

Finally, to compare different rate regions, we define a distance between two sets
as follows.

1Note that the distance can also be defined based on another norm. This follows from the fact that
the output alphabets Y and Z are finite. A norm other than the total variation distance would only
result in slightly different constants.
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Definition 5.5 Let R1, and R2 be two non-empty compact subsets of the metric
space (R2+, d) with d(x2, y2) = ∑2

i=1 |xi − yi | for all x2 = (x1, x2) and y2 =
(y1, y2). We define the distance between two sets as

DR(R1,R2) = max
{
max

r1∈R1

min
r2∈R2

d(r1, r2), max
r2∈R2

min
r1∈R2

d(r1, r2)
}
.

5.3.2 Continuity of the Secrecy Capacity Region

Now we are in the position to study the behavior of the secrecy capacity of the
compound BCC. In particular, we are interested in the question of what happens if
there are variations in the uncertainty set. Obviously, one is interested in a continuous
behavior of the secrecy capacity. Since small changes in the uncertainty set should
only lead to small changes in the corresponding secrecy capacity region.

For the following analysis, we need some technical results stated in the following.
Similar results appeared first in the area of quantum information theory [2, 25] and
have recently been extended to the compound wiretap channel in [10, 11].

The following lemma is also stated in [10, 11].

Lemma 5.1 Let X and Y be finite alphabets and ε ∈ (0, 1) be arbitrary. Further,
let (X, Y ) and (X̃ , Ỹ ) be random variables according to joint probability distribu-
tions PXY , PX̃Ỹ ∈ P(X × Y ) with ‖PXY − PX̃Ỹ ‖ ≤ ε. It holds that

∣
∣H(Y |X) − H(Ỹ |X̃)

∣
∣ ≤ δ1(ε, |Y |) (5.6)

with δ1(ε, |Y |) =: 2ε log |Y | + 2H2(ε).

Proof The proof follows the idea of [2] for quantum sources. We obtain sharper
constants by considering classical probability distributions only in this work. For
completeness, the details can be found in the appendix. �

Lemma 5.2 Let X and Y be finite alphabets and W, W̃ : X → P(Y ) be arbi-
trary channels with

d(W, W̃ ) ≤ ε

for some ε > 0. For an arbitrary n ∈ N, letU andV be two finite sets, PU ∈ P(U )

the uniform distribution of U, PV |U : U → P(V ) the conditional distribution of
V given U and E(xn|v), xn ∈ X n conditioned on v ∈ V , an arbitrary stochastic
encoder. We consider the probability distributions

PU V Y n (u, v, yn) =
∑

xn∈X n

W n(yn|xn)E(xn|v)PV |U (v|u)PU (u)

PU V Ỹ n (u, v, yn) =
∑

xn∈X n

W̃ n(yn|xn)E(xn|v)PV |U (v|u)PU (u).
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Then it holds that

∣
∣I (V ; Y n|U ) − I (V ; Ỹ n|U )

∣
∣ ≤ nδ2(ε, |Y |) (5.7)

with δ2(ε, |Y |) =: 4ε log |Y | + 4H2(ε).

Proof The proof is an adaptation of the proof in [10, 11] for the compound wiretap
channel (which itself goes back to a proof idea in [25] for quantum capacities). The
details can be found in the appendix. �

Remark 5.5 Note that the right-hand side of (5.6) and (5.7) depend only on the
size of the output alphabet Y , but they are independent of the size of the auxiliary
alphabets U and V , the conditional distribution PV |U , and the chosen stochastic
encoder E .

The previous lemma shows that whenever two channels are close, certain condi-
tional mutual information terms are close as well. We use this observation to prove
the following result which states that two similar compound BCCs have similar
corresponding secrecy rate regions, cf. (5.4).

Lemma 5.3 Let ε ∈ (0, 1) and n ∈ N be fixed. Further, let W1 and W2 be two
compound BCCs and U, V , and Xn be random variables satisfying the Markov
chain relationship U − V − Xn. If

D(W1,W2) ≤ ε

then it holds that

DR(Rn(W1, U, V, Xn),Rn(W2, U, V, Xn)) ≤ δ(ε, |Y |, |Z |)

with δ(ε, |Y |, |Z |) = δ′(ε, |Y |, |Z |) + δ′′(ε, |Y |, |Z |), δ′(ε, |Y |, |Z |) =: 4H2
(ε) + 4εmax{log |Y |, log |Z |}, and δ′′(ε, |Y |, |Z |) =: 4ε log |Y ||Z | + 8H2(ε).

Proof For any particular choice ofU , V , and Xn , the rate regionsRn(W1, U, V, Xn)
and Rn(W2, U, V, Xn) are

Rn(W1, U, V, Xn) =
{

R0,S1
≤ 1

n infs1∈S1
min{I (U ; Y n

s1), I (U ; Zn
s1)}

R1,S1
≤ 1

n infs1∈S1
I (V ; Y n

s1 |U ) − 1
n sups1∈S1

I (V ; Zn
s1 |U )

}

and

Rn(W2, U, V, Xn) =
{

R0,S2
≤ 1

n infs2∈S2
min{I (U ; Y n

s2 ), I (U ; Zn
s2 )}

R1,S2
≤ 1

n infs2∈S2
I (V ; Y n

s2 |U ) − 1
n sups2∈S2

I (V ; Zn
s2 |U )

}

,

i.e., they are rectangles described by the rates (R0,S1 , R1,S1) and (R0,S2 , R1,S2)

satisfying (5.4a) and (5.4b) respectively.
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Note that both regions are rectangles sharing the corner point (0, 0). Therefore,
the longest distance between these two sets is given by the maximum corner points
(A0S1

, A1S1
) and (A0S2

, A1S2
), where

A0Si
= max

(R0,Si ,R1,Si )∈Rn(Wi ,U,V,Xn)
R0,Si

denotes the maximum common rate and

A1Si
= max

(R0,Si ,R1,Si )∈Rn(Wi ,U,V,Xn)
R1,Si

the maximum confidential rate of region Rn(Wi , U, V, Xn), i = 1, 2. With this
observation, the distance DR(Rn(W1, U, V, Xn),Rn(W2, U, V, Xn)), cf. Defini-
tion 5.5, is

DR(Rn(W1, U, V, Xn),Rn(W2, U, V, Xn)) = |A0S1
− A0S2

| + |A1S1
− A1S2

|.
(5.8)

Thus, it remains to evaluate both terms on the right hand side of (5.8), i.e., the
difference between the maximum common rates |A0S1

− A0S2
| and the difference

between the maximum confidential rates |A1S1
− A1S2

|.
Common Message Rate
From (5.4a) we see that there are four cases that may occur:

1. A0S1
= 1

n infs1∈S1 I (U ; Y n
s1) and A0S2

= 1
n infs2∈S2 I (U ; Y n

s2)

2. A0S1
= 1

n infs1∈S1 I (U ; Zn
s1) and A0S2

= 1
n infs2∈S2 I (U ; Zn

s2)

3. A0S1
= 1

n infs1∈S1 I (U ; Y n
s1) and A0S2

= 1
n infs2∈S2 I (U ; Zn

s2)

4. A0S1
= 1

n infs1∈S1 I (U ; Zn
s1) and A0S2

= 1
n infs2∈S2 I (U ; Y n

s2).

In the following we treat these cases individually. For the first case, we have

∣
∣
∣A0S1

− A0S2

∣
∣
∣ =

∣
∣
∣
1

n
inf

s1∈S1

I (U ; Y n
s1) − 1

n
inf

s2∈S2

I (U ; Y n
s2)

∣
∣
∣. (5.9)

Let η > 0 be arbitrary. There exists an ŝ1 = ŝ1(η) such that

inf
s1∈S1

I (U ; Y n
s1) ≥ I (U ; Y n

ŝ1
) − η. (5.10)

Since D(W1,W2) < ε, there is an ŝ2 = ŝ2(ŝ1) such that

d(Wŝ1 , Wŝ2) < ε. (5.11)
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We can now apply Lemma 5.2 (with U in (5.7) of Lemma 5.2 being constant and U
in (5.9) taking the role of V in (5.7) of Lemma 5.2). By (5.11), we then have

∣
∣
∣I (U ; Y n

ŝ1
) − I (U ; Y n

ŝ2
)

∣
∣
∣ ≤ nδ2(ε, |Y |). (5.12)

Combining (5.10) and (5.12) we obtain

inf
s1∈S1

I (U ; Y n
s1) ≥ I (U ; Y n

ŝ2
) − nδ2(ε, |Y |) − η

≥ inf
s2∈S2

I (U ; Y n
s2) − nδ2(ε, |Y |) − η.

Since this inequality holds for all η > 0, we obtain

inf
s1∈S1

I (U ; Y n
s1) > inf

s2∈S2

I (U ; Y n
s2) − nδ2(ε, |Y |).

By changing the roles of S1 and S2 in the previous derivation, we also get
infs2∈S2 I (U ; Y n

s2) > infs1∈S1 I (U ; Y n
s1) − nδ2(ε, |Y |) so that

∣
∣
∣ inf

s1∈S1

I (U ; Y n
s1) − inf

s2∈S2

I (U ; Y n
s2)

∣
∣
∣ ≤ nδ2(ε, |Y |).

Using the same line of argument as for the first case above, we accordingly have for
the second case

∣
∣
∣ inf

s1∈S1

I (U ; Zn
s1) − inf

s2∈S2

I (U ; Zn
s2)

∣
∣
∣ ≤ nδ2(ε, |Z |).

In the third and fourth case, one maximum common rate depends on Y and the other
on Z . For the third case, we have

B0S1
= 1

n
inf

s1∈S1

I (U ; Zn
s1) ≥ 1

n
inf

s1∈S1

I (U ; Y n
s1) = A0S1

B0S2
= 1

n
inf

s2∈S2

I (U ; Y n
s2) ≥ 1

n
inf

s2∈S2

I (U ; Zn
s2) = A0S2

.

This necessitates further case studies and we have six possibilities to relate the two
previous inequalities:

1. B0S1
≥ A0S1

≥ B0S2
≥ A0S2

and Lemma 5.2 implies

|A0S1
− A0S2

| ≤ |B0S1
− A0S2

| ≤ δ2(ε, |Z |)

2. B0S1
≥ B0S2

≥ A0S1
≥ A0S2

implying
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|A0S1
− A0S2

| ≤ |B0S1
− A0S2

| ≤ δ2(ε, |Z |)

3. B0S1
≥ B0S2

≥ A0S2
≥ A0S1

implying

|A0S1
− A0S2

| ≤ |A0S1
− B0S2

| ≤ δ2(ε, |Y |)

4. B0S2
≥ A0S2

≥ B0S1
≥ A0S1

implying

|A0S1
− A0S2

| ≤ |A0S1
− B0S2

| ≤ δ2(ε, |Y |)

5. B0S2
≥ B0S1

≥ A0S2
≥ A0S1

implying

|A0S1
− A0S2

| ≤ |A0S1
− B0S2

| ≤ δ2(ε, |Y |)

6. B0S2
≥ B0S1

≥ A0S1
≥ A0S2

implying

|A0S1
− A0S2

| ≤ |A0S2
− B0S1

| ≤ δ2(ε, |Z |).

We can use the same line of argument for the fourth case to bound the distance
between the two maximum achievable common rates. As a conclusion, it then holds
for all cases that

|A0S1
− A0S2

| ≤ max{δ2(ε, |Y |), δ2(ε, |Y |)}
= 4H2(ε) + 4εmax{log |Y |, log |Z |}. (5.13)

Confidential Message Rate
It remains to evaluate the confidential message rate. Using the same line of argument
as in the first case for the common message rate, we get

|A1S1
− A1S2

|=
∣
∣
∣
1

n
inf

s1∈S1

I (V ; Y n
s1 |U )− 1

n
sup

s1∈S1

I (V ; Zn
s1 |U )

− 1

n
inf

s2∈S2

I (V ; Y n
s2 |U )+ 1

n
sup

s2∈S2

I (V ; Zn
s2 |U )

∣
∣
∣

≤ 1

n

∣
∣
∣ inf

s1∈S1

I (V ; Y n
s1 |U ) − inf

s2∈S2

I (V ; Y n
s2 |U )

∣
∣
∣

+ 1

n

∣
∣
∣ inf

s2∈S2

I (V ; Zn
s2 |U ) − inf

s1∈S1

I (V ; Zn
s1 |U )

∣
∣
∣

≤ δ2(ε, |Y |) + δ2(ε, |Z |)
≤ 4ε log |Y ||Z | + 8H2(ε). (5.14)

Putting (5.13) and (5.14) together yields the desired result proving the lemma. �
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Now we are in a position to state and prove the main result of this work. The
following theorem shows that whenever two compound BCCs are close, their corre-
sponding secrecy capacity regions are close as well.

Theorem 5.2 Let ε ∈ (0, 1). Let W1 and W2 be two compound BCCs. If

D(W1,W2) ≤ ε, (5.15)

then it holds that

DR(CS(W1),CS(W2)) ≤ δ(ε, |Y |, |Z |).

Proof For any choice of random variablesU , V , and Xn satisfying theMarkov chain
relationship U − V − Xn , we define the sets D1,B1 ⊂ R

2+ as

D1 =
⋃

n∈N

⋃

U−V −Xn

Rn(W1, U, V, Xn)

B1 = CS(W1)\
⋃

n∈N

⋃

U−V −Xn

Rn(W1, U, V, Xn)

so that D1 ∪ B1 = CS(W1). Now, let (R0S1
, R1S1

) ∈ D1. Then there exists an

n ∈ N and random variables Û , V̂ , and X̂n satisfying the Markov chain relationship
Û − V̂ − X̂n such that (R0S1

, R1S1
) ∈ Rn(W1, Û , V̂ , X̂n). From Lemma 5.3 and

(5.15) it then follows that

DR(Rn(W1, Û , V̂ , X̂n),Rn(W2, Û , V̂ , X̂n)) ≤ δ(ε, |Y |, |Z |).

This means that there exists a rate pair

(R0S2
(R0S1

), R1S2
(R1S1

)) ∈ Rn(W2, Û , V̂ , X̂n)

such that

|R0S1
− R0S2

| + |R1S1
− R1S2

| ≤ δ(ε, |Y |, |Z |).

Now, for any rate pair (R̂0S1
, R̂1S1

) ∈ B1, there exist two rate pairs

(Ṙ0S1
, Ṙ1S1

), (R̃0S1
, R̃1S1

) ∈ D1

such that

R̂0S1
= λṘ0S1

+ (1 − λ)R̃0S1

R̂1S1
= λṘ1S1

+ (1 − λ)R̃1S1
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for some λ ∈ (0, 1). Now, for each (Ṙ0S1
, Ṙ1S1

) and (R̃0S1
, R̃1S1

) there exist

random variables U̇ , V̇ , Ẋn Ũ , Ṽ , and X̃n satisfying the Markov chain relations
U̇ − V̇ − Ẋn and Ũ − Ṽ − X̃n such that (Ṙ0S1

, Ṙ1S1
) ∈ Rn(W1, U̇ , V̇ , Ẋn) and

(R̃0S1
, R̃1S1

) ∈ Rn(W1, Ũ , Ṽ , X̃n). Then from Lemma 5.3 and (5.15) we have

that there exist rate pairs (Ṙ0S2
(Ṙ0S1

), Ṙ1S2
(Ṙ1S1

)) ∈ Rn(W2, U̇ , V̇ , Ẋn) and

(R̃0S2
(R̃0S1

), R̃1S2
(R̃1S1

)) ∈ Rn(W2, Ũ , Ṽ , X̃n) such that

|Ṙ0S1
− Ṙ0S2

| + |Ṙ1S1
− Ṙ1S2

| ≤ δ(ε, |Y |, |Z |)
|R̃0S1

− R̃0S2
| + |R̃1S1

− R̃1S2
| ≤ δ(ε, |Y |, |Z |).

This means there is a rate pair (R̂0S2
, R̂1S2

) ∈ CS(W2) with

R̂0S2
= λṘ0S2

+ (1 − λ)R̃0S2

R̂1S2
= λṘ1S2

+ (1 − λ)R̃1S2
.

In addition, we have

|R̂0S1
− R̂0S2

| = |λṘ0S2
+ (1 − λ)R̃0S2

− λṘ0S1
+ (1 − λ)R̃0S1

|
≤ λ|Ṙ0S1

− Ṙ0S2
| + (1 − λ)|R̃0S1

− R̃0S2
|

≤ δ′(ε, |Y |, |Z |) (5.16)

and similarly

|R̂1S1
− R̂1S2

| ≤ δ′′(ε, |Y |, |Z |). (5.17)

Now (5.16) and (5.17) results in

|R̂0S1
− R̂0S2

| + |R̂1S1
− R̂1S2

| ≤ δ(ε, |Y |, |Z |).

Thus, we can conclude that for every rate pair (R0S1
, R1S1

) ∈ CS(W1) we can find
a rate pair (R0S2

(R0S1
), R1S2

(R1S1
)) ∈ CS(W2) such that

|R0S1
− R0S2

| + |R1S1
− R1S2

| ≤ δ(ε, |Y |, |Z |). (5.18)

Similarly, we can use the same line of argument to show the other direction: for every
rate pair (R0S2

, R1S2
) ∈ CS(W2) there is a rate pair (R0S1

(R0S2
), R1S1

(R1S2
)) ∈

CS(W1) such that (5.18) holds. This completes the proof. �



84 R.F. Schaefer et al.

5.4 Discussion

This work was motivated by the question as to whether the secrecy capacity region
of the compound BCC depends continuously on the uncertainty set or not. We have
shown that the compound BCCmodel is robust, i.e., small changes in the uncertainty
set lead only to small changes in the secrecy capacity region. The continuous behavior
of the secrecy capacity is a necessary condition for the existence of codes that are
robust against small variations in the uncertainty set, since otherwise, a discontinuous
behavior of the secrecy capacity would immediately rule out the existence of robust
codes. For future work, a detailed analysis of such robust codes is the next step for
making this concept interesting for practical applications.

For compound channels the true channel realization is unknown. However, a cru-
cial assumption is that it remains constant for the entire duration of transmission.
Weakening this assumption leads to the concept of arbitrarily varying channels
(AVCs) [1, 6, 15], in which the channel realization is allowed to vary in an unknown
and arbitrary manner from channel use to channel use. The corresponding arbitrar-
ily varying wiretap channel (AVWC) has been studied in [3, 8–12, 30, 31, 37] and
interesting phenomena appear. In contrast to the compound wiretap channel, it now
matterswhether traditional deterministic/unassisted codeswith pre-specified encoder
and decoder are used, or more sophisticated codes, where the choice of encoder and
decoder is coordinated based on coordination resources such as common randomness
available to all users. There are situations in which the traditional approach leads to
zero capacity, while the coordinated approach yields a positive capacity. Moreover,
the unassisted secrecy capacity of the AVWC turns out to be discontinuous in the
uncertainty set [10, 11], while common randomness allows recovering of the con-
tinuous dependence of the secrecy capacity on the uncertainty set [31, 37]. As a first
step, in [19, 20] it has been demonstrated that the unassisted secrecy capacity region
of the arbitrarily varying BCC depends on the uncertainty set in a discontinuous way.
But it is an interesting and open question to find a complete characterization of this
behavior (as in [31, 37] for the AVWC).
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Appendix

The following proofs of Lemmas 5.1 and 5.2 are adaptations of [2] and [25] where
similar results were proved in the context of quantum information theory. How-
ever, we obtain bounds with better constants by restricting the analysis to classical
probability distributions only.
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Proof of Lemma 5.1

The proof of this lemma can also be found in [10, 11] and is given here for com-
pleteness. It follows [2] where a similar result is presented in the context of quantum
information. However, we are able to get a better constant by using the fact that
H(Y |X) ≥ 0 for all PXY ∈ P(X ×Y ). This is in contrast to the quantum version
in [2].

Let PXY , PX̃Ỹ ∈ P(X × Y ) be joint probability distributions with ‖PXY −
PX̃Ỹ ‖ ≤ ε. We assume that

∑

x∈X

∑

y∈Y

∣
∣PXY (x, y) − PX̃Ỹ (x, y)

∣
∣ = ε (5.19)

is satisfied with equality since otherwise ε in (5.19) could be replaced with a smaller
ε̃ < ε accordingly.

We define the function

f (x, y) =: ∣
∣PXY (x, y) − PX̃Ỹ (x, y)

∣
∣ (5.20)

and set

p∗(x, y) = (1 − ε)PXY (x, y) + f (x, y)

for all (x, y) ∈ X × Y so that p∗ ∈ P(X ,Y ) is a joint probability distribution
onX × Y .

Further, we set

p̂(x, y) = 1

ε
f (x, y), (5.21a)

and

q̂(x, y) = 1

ε

(
(1 − ε)

[
PXY (x, y) − PX̃Ỹ (x, y)

] + f (x, y)
)
. (5.21b)

Next we check that p̂ and q̂ are well defined such that they are indeed probability
distributions. p̂(x, y) ≥ 0 for all (x, y) ∈ X × Y is obviously true. It remains to
verify that q̂(x, y) ≥ 0 for all (x, y) ∈ X × Y is also satisfied.

If PXY (x, y) ≤ PX̃Ỹ (x, y), then

− f (x, y) ≤ PXY (x, y) − PX̃Ỹ (x, y)

≤ (1 − ε)
(
PXY (x, y) − PX̃Ỹ (x, y)

)

≤ 0
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so that q̂(x, y) ≥ 0. On the other hand, if PXY (x, y) > PX̃Ỹ (x, y), then

0 < (1 − ε)
(
PXY (x, y) − PX̃Ỹ (x, y)

)

≤ PXY (x, y) − PX̃Ỹ (x, y)

≤ f (x, y)

so that q̂(x, y) ≥ 0 also in this case. From the definition of p̂ and q̂ in (5.21) and
(5.19)–(5.20) it can further easily be verified that

∑

x∈X

∑

y∈Y
p̂(x, y) =

∑

x∈X

∑

y∈Y
q̂(x, y) = 1

which shows that p̂ ∈ P(X × Y ) and q̂ ∈ P(X × Y ) are joint probability
distributions.

With this we can rewrite p∗ as

p∗(x, y) = (1 − ε)PXY (x, y) + ε p̂(x, y) (5.22a)

= (1 − ε)PX̃Ỹ (x, y) + εq̂(x, y) (5.22b)

for all (x, y) ∈ X × Y . Next, we show that (5.22a) implies

∣
∣H(Y |X) − H(Y ∗|X∗)

∣
∣ ≤ ε log |Y | + H2(ε). (5.23)

To do so, we use the fact that the conditional entropy is concave, i.e.,

H(Y ∗|X∗) ≥ (1 − ε)H(Y |X) + εH(Ŷ |X̂).

With this, we have

H(Y |X) − H(Y ∗|X∗) ≤ H(Y |X) − (1 − ε)H(Y |X) − εH(Ŷ |X̂)

= ε
(
H(Y |X) − H(Ŷ |X̂)

)

≤ εH(Y |X)

≤ ε log |Y |. (5.24)

Using the concavity of the entropy

H(X∗) ≥ (1 − ε)H(X) + εH(X̂)

and the upper bound on the joint entropy

H(X∗, Y ∗) ≤ (1 − ε)H(X, Y ) + εH(X̂ , Ŷ ) + H2(ε),
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we get

H(Y ∗|X∗) = H(X∗, Y ∗) − H(X∗)
≤ (1 − ε)H(Y |X) + εH(Y ∗|X∗) + H2(ε)

and further

H(Y |X) − H(Y ∗|X∗) ≥ −ε
(
H(Y ∗|X∗) − H(Y |X)

) − H2(ε)

≥ −εH(Y ∗|X∗) − H2(ε)

≥ −ε log |Y | − H2(ε). (5.25)

Now, (5.24) and (5.25) yield

∣
∣H(Y |X) − H(Y ∗|X∗)

∣
∣ ≤ ε log |Y | + H2(ε)

which shows (5.23). (By the same arguments, one can show that (5.22b) implies
|H(Ỹ |X̃) − H(Y ∗|X∗)| ≤ ε log |Y | + H2(ε).)

Finally, this yields

∣
∣H(Y |X) − H(Ỹ |X̃)

∣
∣

= ∣
∣H(Y |X) − H(Y ∗|X∗) + (

H(Y ∗|X∗) − H(Ỹ |X̃)
)∣
∣

≤ ∣
∣H(Y |X) − H(Y ∗|X∗)

∣
∣ + ∣

∣H(Ỹ |X̃) − H(Y ∗|X∗)
∣
∣

≤ 2ε log |Y | + 2H2(ε)

which is (5.6), proving the lemma. �

Proof of Lemma 5.2

The proof presented in the following is based on [10, Lemma2]. Let 0 ≤ k ≤ n be
arbitrary. We define

PU V Y k
1 Ỹ n

k+1
(u, v, yk

1 , yn
k+1) =:

∑

xn∈X n

k∏

l=1

W (yl |xl )

n∏

l=k+1

W̃ (yl |xl )E(xn |v)PV |U (v|u)PU (u).

So we have

I (V ; Y n|U ) − I (V ; Ỹ n|U ) =
n−1∑

k=0

(
I (V ; Y k+1

1 Ỹ n
k+2|U ) − I (V ; Y k

1 Ỹ n
k+1|U )

)
.
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For all 0 ≤ k ≤ n − 1 it holds that

I (V ; Y k+1
1 Ỹ n

k+2|U ) − I (V ; Y k
1 Ỹ n

k+1|U )

= I (V ; Y k
1 |U ) + I (V ; Yk+1Ỹ n

k+2|Y k
1 U ) − I (V ; Y k

1 |U ) − I (V ; Ỹ n
k+1|Y k

1 U )

= I (V ; Yk+1Ỹ n
k+2|Y k

1 U ) − I (V ; Ỹ n
k+1|Y k

1 U )

= I (V ; Ỹ n
k+2|Y k

1 U ) + I (V ; Yk+1|Ỹ n
k+2Y k

1 U )

− I (V ; Ỹ n
k+2|Y k

1 U ) − I (V ; Ỹk+1|Ỹ n
k+2Y k

1 U )

= I (V ; Yk+1|Ỹ n
k+2Y k

1 U ) − I (V ; Ỹk+1|Ỹ n
k+2Y k

1 U )

= H(Yk+1|Ỹ n
k+2Y k

1 U ) − H(Ỹk+1|Ỹ n
k+2Y k

1 U )

− H(V Yk+1|Ỹ n
k+2Y k

1 U ) + H(V Ỹk+1|Ỹ n
k+2Y k

1 U ). (5.26)

We want to analyze the right-hand side of (5.26). For 0 ≤ k ≤ n − 1, it holds that

‖PU V Y k+1
1 Ỹ n

k+2
− PU V Y k

1 Ỹ n
k+1

‖
=

∑

v∈V

∑

u∈U

∑

yn∈Y n

∣
∣
∣PU V Y k+1

1 Ỹ n
k+2

(u, v, yk+1
1 yn

k+2) − PU V Y k
1 Ỹ n

k+1
(u, v, yk

1 yn
k+1)

∣
∣
∣

=
∑

v∈V

∑

u∈U

∑

yn∈Y n

∣
∣
∣

∑

xn∈X n

( k+1∏

l=1

W (yl |xl)

n∏

l=k+2

W̃ (yl |xl)

−
k+1∏

l=1

W (yl |xl)

n∏

l=k+2

W̃ (yl |xl)
)

E(xn|v)PV |U (v|u)PU (u)

∣
∣
∣

=
∑

v∈V

∑

u∈U

∑

yn∈Y n

∣
∣
∣

∑

xn∈X n

k∏

l=1

W (yl |xl)

n∏

l=k+2

W̃ (yl |xl)
(

W (yk+1|xk+1)

− W̃ (yk+1|xk+1)
)

E(xn|v)PV |U (v|u)PU (u)

∣
∣
∣

≤
∑

v∈V

∑

u∈U

∑

yn∈Y n

∑

xn∈X n

k∏

l=1

W (yl |xl)

n∏

l=k+2

W̃ (yl |xl)

∣
∣
∣W (yk+1|xk+1)

− W̃ (yk+1|xk+1)

∣
∣
∣E(xn|v)PV |U (v|u)PU (u)

=
∑

v∈V

∑

u∈U

∑

xn∈X n

( ∑

yn∈Y n

k∏

l=1

W (yl |xl)

n∏

l=k+2

W̃ (yl |xl)

∣
∣
∣W (yk+1|xk+1)

− W̃ (yk+1|xk+1)

∣
∣
∣
)

E(xn|v)PV |U (v|u)PU (u)
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=
∑

u∈U

∑

xn∈X n

∑

yk+1∈Y

∣
∣
∣W (yk+1|xk+1)

− W̃ (yk+1|xk+1)

∣
∣
∣E(xn|v)PV |U (v|u)PU (u)

< ε
∑

v∈V

∑

u∈U

∑

xn∈X n

E(xn|v)PV |U (v|u)PU (u) = ε.

This shows that the total variation between the joint probability distribution PUVYk Ỹ n
k+1

and PU V Y k+1Ỹ n
k+2

is smaller than ε. Then by Lemma 5.1 it holds that

∣
∣
∣H(Yk+1|Ỹ n

k+2Y k
1 U ) − H(Ỹk+1|Ỹ n

k+2Y k
1 U )

∣
∣
∣ < 2ε log |Y | + 2H2(ε) (5.27)

and
∣
∣
∣H(V Yk+1|Ỹ n

k+2Y k
1 U ) − H(V Ỹk+1|Ỹ n

k+2Y k
1 U )

∣
∣
∣

=
∣
∣
∣H(V |Ỹ n

k+2Y k
1 U ) + H(Yk+1|V Ỹ n

k+2Y k
1 U )

− H(V |Ỹ n
k+2Y k

1 U ) − H(Ỹk+1|V Ỹ n
k+2Y k

1 U )

∣
∣
∣

=
∣
∣
∣H(Yk+1|V Ỹ n

k+2Y k
1 U ) − H(Ỹk+1|V Ỹ n

k+2Y k
1 U )

∣
∣
∣

< 2ε log |Y | + 2H2(ε). (5.28)

Inserting (5.27) and (5.28) into (5.26) we obtain

∣
∣
∣I (V ; Y k+1

1 Ỹ n
k+2|U ) − I (V ; Y k

1 Ỹ n
k+1|U )

∣
∣
∣ ≤ 4ε log |Y | + 4H2(ε) := δ2(ε, |Y |).

(5.29)
This gives in particular the following upper bound for the difference between
I (V ; Y n |U ) and I (V ; Ỹ n|U ):

∣
∣
∣I (V ; Y n|U ) − I (V ; Ỹ n|U )

∣
∣
∣ ≤

n−1∑

k=0

∣
∣
∣I (V ; Y k+1

1 Ỹ n
k+2|U ) − I (V ; Y k

1 Ỹ n
k+1|U )

∣
∣
∣

≤ nδ2(ε, |Y |)

proving the lemma. �
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Chapter 6
End-to-End Key Establishment with Physical
Layer Key Generation and Specific
Attacker Models

Stefan Pfennig, Elke Franz, Sabrina Engelmann and Anne Wolf

Abstract Physical layer key generation got much attention during the last time.
However, the need of a common physical channel implies that only point-to-point
keys can be generated. In this chapter, we investigate approaches how these point-
to-point keys can be used for a secure establishment of end-to-end keys between
two users who can only communicate over a multi-hop network. We start with a
review of physical layer key generation taking different attacker models into account.
Subsequently, we introduce general approaches for the end-to-end key establishment
in the presence of various attackers who differ in their behavior and their area of
control. We discuss four different path selection algorithms for the key establishment
and evaluate their performance by means of simulations. The results show that the
end-to-end key establishment can be protected by means of physical layer keys with
a reasonable effort if suitable path selection is applied.

6.1 Introduction

Cryptography is a fundamental technique for securing digital communication, par-
ticularly, for ensuring confidentiality, integrity, and accountability of transmitted
messages. Of course, cryptographic systems cannot perform their function without
establishing the required keys. We have to consider that the security of the key estab-
lishment crucially influences the security of the cryptosystem. Within this chapter,
we focus on the use of symmetric cryptography since it requires less computational
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effort than asymmetric cryptography and, therefore, provides better performance.
However, a drawback of symmetric cryptography is the fact that we need a prior
secure exchange of the secret key between the communication partners. In general,
existing protocols require that the communication partners already possess a secret
that can be used to derive a new cryptographic key, or that a trusted party is involved
in the key exchange [3].

In [10] it was shown, that symmetric point-to-point keys can be generated on the
physical layer. For instance, the key may be generated from random characteristics
of the wireless channel, which are only available to the communication partners.

The goal of this chapter is to present approaches how such physical layer point-
to-point keys can be used for a secure exchange of end-to-end keys between two
users who can only communicate over a (multi-hop) network. We consider different
attacker models which are mainly characterized by the role and the behavior of the
attacker.

In Sect. 6.2, we present the system model and specify the attacker models that
are studied within this chapter. Section6.3 gives an overview of the fundamentals
of physical layer key generation and demonstrates how point-to-point keys can be
generated between two nodes. In Sect. 6.4, we discuss protocols that allow the es-
tablishment of secret end-to-end keys under consideration of the specified attacker
models. Section6.5 concludes and gives an outlook.

6.2 System Assumptions and Attacker Models

6.2.1 System Model

We consider a scenario where two users, a sender S and a receiver R, wish to
establish a secret key for securing their communication by means of symmetric
cryptography.We assume that there is no direct link between them. Thus, they have to
communicate with each other over multiple hops.We assume that a wireless network
is used to forward this communication. The nodes (or relays) in this network are called
forwarders. In the most general case, these forwarders may be arbitrarily distributed
and connected. Within this chapter, we assume that we have a multi-hop network
with m · � forwarding nodes that are positioned in � different groups (see Fig. 6.1).
Each group F i with i ∈ {1, 2, . . . , �} consists of m nodes F1,i ,F2,i , . . . ,Fm,i .
The nodes of groupF i have only links to the nodes of the neighboring groupsF i−1
and F i+1, but they can communicate with all nodes of these groups directly. The
senderS and the receiverR are only connected to the nodes of the groupsF 1 and
F �, respectively. Hence, they have to transmit their messages over � + 1 hops.

This system model is motivated by the high-performance low-energy computing
platformHAEC that is currently under design [5]. The HAEC architecture contains a
number of boards with 3-D stacked processor chips that are optically interconnected.
Nodes of neighboring boards are fully linked using wireless links. Since we only
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Fig. 6.1 System model

consider wireless communication in the scope of this chapter, we refer to the inter-
board connections only. The groups in our system model represent the nodes of one
board, the links between the groups correspond to the wireless connections between
neighboring boards.

We assume that point-to-point keys are generated by means of the physical layer
between nodes of adjacent groups. These point-to-point keys are denoted by kS ,F j,1 ,
kF j,i ,F j ′,i+1

and kF j,�,R with j, j ′ ∈ {1, 2, . . . , m} and i ∈ {1, 2, . . . , � − 1} as

illustrated in Fig. 6.1. The communication for the establishment of the end-to-end
key kSR between the sender S and the receiver R is protected by means of the
physical layer point-to-point keys.

6.2.2 Attacker Models

In order to assess the security of the key exchange, possible attacks need to be consid-
ered. As a first step, we have to define the attacker models. Generally, we assume that
sender and receiver are trustworthy. Likewise, we assume that two adjacent nodes
who want to generate a physical layer point-to-point key are trustworthy with respect
to this key exchange. However, they are not necessarily trustworthy for the end-to-
end key exchange, i.e., theymight be interested in learning the exchanged end-to-end
key or disturbing a successful key exchange. In the context of our investigations, we
particularly consider the following aspects to describe the attacker:

6.2.2.1 Behavior

A passive attacker only eavesdrops the communication, while an active attacker is
able to jam or to interrupt the communication, hence, modify or even delete trans-
mitted messages.
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6.2.2.2 Area of Control

This aspect describes how many links or forwarding nodes can be controlled by
an attacker. Instead of one attacker who controls more than one link or node we
can equivalently assume multiple attackers who cooperate to increase their area of
control. Since both scenarios result in the same situation from the perspective of the
honest users, we will use the first point of view in the following.

6.2.2.3 Role

Generally, we distinguishwhether the attacker is an insider or an outsiderwith regard
to the communication that is necessary for the key exchange.

A more detailed description of the possible roles of an attacker can only be done
with respect to the layer that is discussed. At the physical layer, an insider is part
of the communication network. More exactly, the insider has direct links to the
legitimated nodes A and B who wish to generate a physical layer point-to-point
key. We assume thatA andB have already communicated with this node in former
time slots. Hence, they may have knowledge about their channels to such an attacker.
In contrast, an outsider is an external entity that does not belong to the communication
network. Consequently, the legitimated nodes do not have reliable knowledge about
their channels to such an attacker. Thus, we will distinguish between network nodes
and external entities at the physical layer.

At upper layers, we do not consider physical channels, thus, wework with another
distinction between insiders and outsiders. An insider participates in the communica-
tion that is necessary for the key exchange. Since sender and receiver are trustworthy
by definition, an insider can only be a forwarder on the path between sender and
receiver. All other attackers are outsiders to this communication. This covers both
external entities and network nodes who do not participate as forwarders in this com-
munication. As discussed in Sect. 6.4, the protection against both types of outsiders
is the same. Within this chapter, we do not consider active insiders at upper layers.

6.3 Physical Layer Key Generation

6.3.1 Fundamentals of Physical Layer Key Generation

In this section, we give an overview of the fundamentals of physical layer key gener-
ation before we discuss in the following sections which approaches can be used for
the scenario and the different attacker models specified in Sect. 6.2.

Key generation on the physical layer is widely discussed in literature nowa-
days (see [2, Chap. 4] and [8, Chap. 9] for an overview). Mainly, there are two
different approaches that need to be distinguished: the source-type model and the
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channel-type model. For both models, the main idea is the same: Two users, A and
B, want to generate a common secret key by means of the physical layer. For that
purpose, they use a certain advantage they have over an eavesdropperE , i.e., a passive
attacker. For the source-type model, such an advantage is thatA andB can observe
correlated sequences from a common source of randomness, whereas E has either
no access to this source or can only observe another sequence, which differs from
the realizations obtained byA andB. For the channel-type model, the advantage of
A and B over E is the current realization of their communication channel, which
cannot be observed by an eavesdropper that is located at another position. Exploiting
their particular advantage over the eavesdropper,A andB want to agree on a com-
mon key. Ideally, they can communicate over an authenticated and noiseless public
channel with unlimited bandwidth in order to exchange some information for the key
agreement. The communication strategy has to guarantee that the key is kept secret
from E who has perfect access to this public channel. Finally, both generate an indi-
vidual key based on the information that is then available to them. The requirements
for a secret key agreement are formulated as follows [8, Chap. 9] and [2, Chap. 4]:

1. The keys that are generated by A andB have to be equal with high probability.
2. The generated keys have to be independent of the public communication and the

further observations of the eavesdropper.
3. The generated keys have to be approximately uniformly distributed over the key

alphabet.

Here, it is assumed that all involved parties are allowed to know the applied codebook
as well as the public communication strategy in principle. The rate of the secret key
generation can be measured. A secret key rate is called achievable if there exists a
public communication strategy such that the requirements above are fulfilled. The
secret key capacity Ck is the maximum achievable secret key rate. For a formal
definition of the secret key rate and capacity, we refer to [1] or the references above.

6.3.1.1 Source-Type Model

In the source-type model (see Fig. 6.2), two legitimated nodes, A and B, observe
correlated sequences Xn and Y n of length n from a common source of randomness.
These sequences are used to generate a shared key between both parties. In gen-
eral, the eavesdropper E also has access to this source of randomness and observes
a sequence Zn of length n, which is correlated with the sequences of A and B.
The source, which is modeled as a discrete memoryless source [1, 10] or a memo-
ryless Gaussian source [2, Sect. 5.1.3], is an i.i.d. source with the joint probability
mass / density function pXY Z .

The secret key capacity Ck of the source-type model is upper- and lower-bounded
by [2, Chap. 4]:

I (X; Y ) − min {I (X; Z) , I (Y ; Z)} ≤ Ck ≤ min {I (X; Y ) , I (X; Y |Z)} ,
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Fig. 6.2 Source-type model
for key generation
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where I (X; Y ) and I (X; Y |Z) are the mutual information between the random vari-
ables X and Y and the conditional mutual information between X and Y given Z . For
some special cases, closed form expressions of the secret key capacity are known.
These are the cases if (X, Y ) are independent of Z and if X , Y and Z form a Markov
chain in the order X → Y → Z or Y → X → Z . A typical application of the
source-type model is the key generation from the channel characteristics. For in-
stance, the channel state of the reciprocal wireless channel between A and B can
be used as source of common randomness. The eavesdropper E has no (or only very
limited) access to the channel state information of this channel. The nodes A and
B send pilot signals, which enable the partner to estimate the current channel state.
These estimates are then used to generate the common secret key.

6.3.1.2 Channel-Type Model

In the channel-type model (see Fig. 6.3), one legitimated node (A ) generates a ran-
dom sequence and transmits it over the wireless channel to the other legitimated
node (B). This random sequence is used to generate the common key between A
and B. In general, there exists also a channel between A and the eavesdropper E .

Fig. 6.3 Channel-type
model for key generation
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Consequently, E gets a correlated observation of the random sequence. The bounds
on the secret key capacityCk of the channel-typemodel are very similar to the ones of
the source-type model. The only difference is that the node A has an additional de-
gree of freedom to choose the probability mass/density1 function pX that maximizes
the mutual information expressions [2, Chap. 4]:

max

{

max
pX

[I(X; Y ) − I(X; Z)] ,max
pX

[I(X; Y ) − I(Y ; Z)]

}

≤ Ck ≤ max
pX

min {I(X; Y ) , I(X; Y |Z)} .

For special cases, closed form expressions of the secret key capacity can be derived
analogously to the source-type model.

6.3.1.3 Sequential Key Distillation

For both models, an appropriate coding scheme and a key agreement protocol for
the public authenticated noiseless channel are necessary in order to get a key that is
only known by the nodesA andB. The steps of such a key agreement protocol are
presented in the following using the example of the source-type model.

• Advantage Distillation: The nodes A and B try to find observations where they
have an advantage over the node E and discard all other observations.

• Information Reconciliation: The nodes A and B process their observations in
order to correct errors and match their observations.

• Privacy Amplification: The nodes A and B agree on a hash function in order to
generate a common key.

These steps, which follow the randomness sharing process we presented above, do
not provide further options for a possible attacker, since all information in these steps
is locally processed at nodesA andB or exchanged over the public channel. Thus,
the key agreement protocol is not within the focus of this chapter. More details on
the single steps of the protocol can be found in [2, Chap. 4].

6.3.2 Key Generation in Presence of Passive Attackers

Now,we consider the generation of point-to-point keys between nodes of neighboring
groups. Thus, we can draw our attention to an adapted system model (see Fig. 6.4),
which can be derived from the original system model in Sect. 6.2. We regard two
nodes (A and B in Fig. 6.4) that can directly communicate with each other over
a wireless link and want to generate a common secret key in the presence of one

1For the case with continuous channel alphabets, we have to further add a constraint on the second
order moment of the channel input X , see [14].
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Fig. 6.4 System model for the key generation on the physical layer

or more passive attackers. A passive attacker is an eavesdropper, who is interested
in the secret key that is generated between the nodes A and B. In the context of
physical layer key generation, we have to distinguish between eavesdroppers who
are part of the communication network (like E1 in Fig. 6.4) and external entities (like
E2 in Fig. 6.4), who are completely alien to the legitimated nodes.

6.3.2.1 Eavesdropping Network Nodes

Due to the fact that the eavesdropper is part of the communication network, we can
assume that the nodes A andB also communicate with the eavesdropping node E1
in other time slots. Therefore, it is reasonable that the nodes A and B know their
particular channels to the eavesdropper and the corresponding channel statistics. In
this case, either the key generation according to the source-type or the key generation
according to the channel-type model can be used. Which one is preferable, strongly
depends on the channel characteristics. The channel-typemodel is better controllable
by the legitimatednodes, as the probability distributionof the randomsequence canbe
chosen. It is mainly suitable for slowly varying or static channels, where the channel
state remains (nearly) constant for a comparatively long time, since the achievable
secret key rate is mainly determined by the randomness of the transmitted sequence.
In contrast, the secret key rate that is achievable according to the source-type model
depends on the random process of the source of common randomness, which might
be quite inefficient, e.g., if we do not have a channel characteristic that changes often
enough.

In order to ensure that the generated key is kept secret from all possibly eavesdrop-
ping network nodes, it is necessary to consider a kind of worst-case scenario. This
can be achieved by modeling a compound channel that comprises all network nodes
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of the neighboring groups as possible eavesdroppers. In this case, we always have
to take into account the best possible eavesdropper for each key generation process.
A detailed analysis of the compound wiretap channel was carried out in [7] in the
context of secrecy rate optimization. For the channel-type model with a Gaussian
multi-antenna channel, worst-case approaches can be found in [12, 13], where the
set of possible eavesdropper channels was defined by an upper bound on the sum of
all channel gains and a channel estimation error that is bounded by a certain norm
constraint, respectively.

6.3.2.2 Eavesdropping External Entities

In this case, the eavesdropper is not part of the communication network and con-
sequently it is not reasonable that the nodes A and B have any knowledge about
their channels to the eavesdropper E2. Nevertheless, we can make some assump-
tions on the quality of such an eavesdropper channel, e.g., depending on the possible
positions, where an external eavesdropper can be, the propagation conditions etc.
Hence, the key generation according to the channel-type model, where the key is
extracted from the transmitted sequence, should only be used in combination with
an appropriate worst-case analysis. But protecting the key against the best possible
eavesdropper will definitely reduce the achievable key rate. In this case, it seems to
be more suitable to choose the source-type model in order to generate secret keys.
Here, we can assume that we have no or only very weak correlation between themain
channel from A to B (and vice versa) and the possible eavesdropping channels to
E2. Nevertheless, the reciprocity of the wireless channel between the nodesA andB
is a necessary condition if we use the state of the fading channel as source of common
randomness. In order to achieve high secret key rates, the variation of the channel
must be sufficiently large. For instance, a fast fading channel, which varies relatively
fast compared to the transmission time of a codeword, could be a good source for
secret key generation. Multi-path scattering and non-line of sight channels are also
quite helpful in this situation. The secret-key generation from a source-type model
was for instance studied in [4, 6, 11], where pilot-based channel estimation proce-
dures were used for secret key agreement in multi-antenna scenarios with correlated
channels. The impact of the spatial channel correlation on the achievable secret-key
rate was analyzed and optimal precoding schemes were derived.

6.3.2.3 Cooperating Eavesdroppers

Multiple cooperating eavesdroppers can be interpreted as one “more powerful” eaves-
dropper with an accordingly adapted channel characteristic. Thus, the achievable
secret key rates might decrease, but the system principally works as shown above.



102 S. Pfennig et al.

6.3.3 Key Generation in Presence of Active Attackers

Active attackersmay jam the key generation process on the physical layer. Permanent
jamming, which could be treated as an additional noise, only reduces the channel
quality, which would consequently decrease the achievable secret key rates for both
models presented above. A time varying jamming is more challenging for the key
generation, since it may affect the channel estimation phase. If the key is generated
according to the source-type model, there is the risk that the channel reciprocity is no
longer given. In this case, the key bits that would be generated from these differently
estimated channel states would probably not be the same at the nodesA andB, but
this problem should be detected and solved by the key agreement protocol afterwards,
however at the expense of the achievable rate. If the key is generated according to the
channel-type model, time varying jamming could make the key generation process
vulnerable, since awrong channel estimation at nodeA could lead to awrong coding
and resource allocation strategy. If one of the nodesA andB detects such jamming
behavior, it could be a good choice to pause the key generation process for a certain
time.

6.4 Protocols for End-to-End Key Exchange

6.4.1 End-to-End Key Exchange in Presence of Passive
Outsiders

For the following discussion, we assume that all network nodes successfully estab-
lished physical layer point-to-point keys. We start with a rather weak attacker. We
assume that the attacker is an external entity that is only able to eavesdrop the com-
munication between two nodes. Thus, the senderS can generate the end-to-end key
kSR and transmit it hop by hop to the receiver R using an arbitrarily chosen path,
e.g., fromS over the nodesF1,i with i ∈ {1, 2, . . . , �} toR. To prevent the attacker
from gaining any information, each link is encrypted using the physical layer point-
to-point keys (in this example, kS ,F1,1 , kF1,1,F1,2 , . . . , kF1,�,R ). Additionally, the
point-to-point encryption ensures that the key is kept secret from all other network
nodes, which are also passive outsiders in this scenario.

6.4.2 Key Exchange in Presence of Active Outsiders

First, we again consider only external entities as potential passive attackers. In
contrast to the scenario above, we now assume that the external entity is additionally
able to jam or modify the communication. Since all network nodes are assumed to be
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trustworthy again, the idea for the end-to-end key establishment is similar to the one
we presented in Sect. 6.4.1. The difference is that each point-to-point communication
is also authenticated by means of the available point-to-point keys. Additionally, the
receiver should acknowledge the receipt of a valid key. This acknowledgmentmust be
also authenticated and relayed by the forwarders to the sender. This allows the sender
to switch to another (if possible link-disjoint) path and to retry the key exchange on
this path, if the acknowledgment does not arrive within a certain time. Under the
assumption that there exists at least one path between the sender and the receiver
which cannot be jammed by the attacker, the sender can exchange the key with the
receiver after a finite amount of time. Of course, we cannot assure availability of the
system if all links between two adjacent groups of forwarders are jammed.

Again, the protection method additionally works against all other network nodes,
which are then (passive or active) outsiders, too. Since the point-to-point keys are
used for the authentication, even such an outsider cannot unnoticeably modify the
transmitted key kSR because he cannot compute a corresponding message authen-
tication code for the modified key.

6.4.3 Key Exchange in Presence of Passive Insiders

Since each network node knows his point-to-point keys, a forwarder who is involved
in the key exchange can learn the end-to-end key kSR and decrypt the subsequent
communication. It is not possible to prevent the success of such an insider attack by
using just a single path without asymmetric cryptography. Thus, we need at least one
additional node-disjoint path. In principle,we could use one path for key transmission
and the other one for communication. Alternatively, the sender can use both paths
for the transmission of two different keys kSR1 and kSR2 . After the transmission,
sender and receiver locally compute kSR = kSR1 ⊕ kSR2 , where ⊕ denotes
the binary XOR. This solution provides the advantage that both paths can be used
afterwards for the encrypted communication.

Another option is to exchange keys of half the required length and concatenate
them later to save transmission overhead [9]. However, parts of the key may reveal
some plaintext information or, at least, the search space for a brute-force key attack
shrinks. Thus, we recommend the XOR method, since an attacker cannot gain any
information from knowing all keys except one.

6.4.3.1 Passive Attacker with a Larger Area of Control

In this scenario, we assume a passive attacker who controls at most a network nodes.
Thus, we need at least a + 1 keys and different paths for key distribution such that
kSR = ⊕a+1

j=1 kSR j contains at least one key kSR j that is unknown to the attacker.
To fulfill this condition, there must be at most m −1 attackers in each groupF i with
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i ∈ {1, 2, . . . , �}. This implies that there is at least one trustworthy node per group
F i and if we use all possible combinations of links between the nodes, there will be
at least one kSR j that is confidential.

In our systemmodel (Fig. 6.1) withm ·� forwarders, there existm� different paths,
i.e., potential partial keys. Thus, even for small values of m and �, it will be really
expensive to use all paths, for larger values it will be even impossible.

In the next section, we investigate howmany paths are really necessary to achieve
a certain level of security against an attacker that controls a certain amount of nodes.
Additionally, we look on principles for choosing the paths to further reduce the
necessary number of paths.

6.4.4 Evaluation

In order to derive formulas for the number of required paths, we assume that the
nodes which are controlled by an attacker are equally distributed on the groups.
Furthermore, this assumption makes it more likely that at least one node per group
is trustworthy, which is a necessary condition for establishing a secret key.

For c randomly chosen paths, we can calculate the probability p for choosing at
least one trustworthy path:

p = 1 −
(

1 −
(
1 − a

m · �

)�
)c

. (6.1)

Since
(
1 − a

m·�
)� is the probability for a path to be trustworthy, we can calculate the

number c of randomly chosen pathswe need on average to get at least one trustworthy
path:

c = 1
(
1 − a

m·�
)�

. (6.2)

However, “on average” means that in a certain number of cases this number does
not suffice to get a trustworthy path. Therefore, we can introduce a value ε that
determines the chance for an attacker to be successful, i.e., to control at least one
node in each of the c randomly chosen paths. If we set ε accordingly to our demands,
we can calculate the number cε of necessary paths:

cε = log(ε)

log
(
1 − (

1 − a
m·�

)�
) . (6.3)
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6.4.4.1 Advanced Path Selection

All equations in the previous section hold under the assumption of randomly chosen
paths. The question is whether we can do better. As starting point, we assume that
there is only one group of forwarders, i.e., � = 1. Hence, we can simplify (6.1) to

p = 1−( a
m

)c. If we use each path only once, the equation changes to p = 1− (m−a
c )

(m
c)

.

Hence, the probability increases for all c > 1.
Generalizing that for arbitrary values of �, we can think of 4 different methods for

choosing a path. These methods are called Rand, Once, Smart, and Once Smart.
They are explained in the following and illustrated in Fig. 6.5.

Rand: We simply select random paths without memorizing them for
next choices. Thus, there is no need for memory (Fig. 6.5a).

Once: We select a random path but ensure that we use each whole
path only once. Thus, we need to memorize all chosen paths
(Fig. 6.5b).

Smart: Thismethodworks in rounds.Within one round, each forwarder
can be used only once. Since each group of forwarders consists
of m nodes, we can choose m paths that are (node- and link-)
disjoint within one round. When all nodes are selected, a new
round starts. We just need to memorize the forwarders selected
within one round, which results in a reasonable memory con-
sumption (Fig. 6.5c).

Once Smart (OS): As the name suggests, Once Smart is a combination of Once
and Smart. Basically, we use the Smart scheme but in ad-
dition, we also memorize all paths chosen in former rounds.
Thus, we do not reuse a path and choose disjoint paths as of-
ten as possible. However, this results in the highest memory
requirements (Fig. 6.5d).

6.4.4.2 Results

As mentioned above, (6.1)–(6.3) only hold for random path selection. In order to
assess the suggested improved path selection algorithms, they were simulated for a
network with m = 4 and � = 2. For each algorithm and each possible number of
attackers a ∈ {1, 2, . . . , (m − 1) · �}, the simulationwas run 1000 times to determine
the average numbers c and the numbers cε that are necessary to select at least one
trustworthy path with a probability of 99%, i.e., ε = 0.01. To verify the results, the
averaged numbers were compared to the estimated values computed by means of
(6.2) and (6.3).
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Fig. 6.5 Example of choosing 3 paths consecutively with the 4 different path selection algorithms
for a small network with m = � = 2. a Rand: Due to the random selection, parts and whole paths
could be reused. b Once: Whole paths could be used only once, but parts of a path could be reused.
c Smart: Neither parts nor whole paths could be reused within one round (m paths per round).
However, paths could be selected again in the next round. d Once Smart: There are only (path-
and node-)disjoint paths within one round (like Smart). Additionally, whole paths could not be
reused in later rounds

Figure6.6 confirms that the averaged numbers for Rand correspond to the es-
timated numbers (Est). It also shows that Once requires fewer paths than Smart
for a higher number of attackers a. For a smaller number of attackers, the opposite
holds. The reason for this relation is that we need more paths with a growing number
of attackers. The more paths are chosen, the more likely they are used again. Since
Once prevents that whole paths can be selected again, it performs better if repetitions
are likely. For a lower number of attackers, fewer paths are needed and, therefore,
repetitions are less likely. Hence, Once performs similar to Rand. Smart delivers
disjoint paths per round. This is beneficial for a lower value of a, since we do not use
an attacked node twice. However, the benefit diminishes with increasing a and we
get a behavior like Rand, since we use paths more often. As expected, OS combines
the benefits of both suboptimal algorithms Once and Smart. Thus, OS performs
best for each value of a.

The absolute number of paths grows with an increasing number of attackers a in
a given topology. Hence, we normalized the average number of paths required by
each algorithm (cAlg) by dividing these values by the number of paths required by
Rand (cRand) in order to visualize the performance gains of the path selection al-
gorithms. Figure6.7a represents the normalized values c̃Alg = cAlg

cRand
. Corresponding

results for m = 9, � = 3 and m = 16, � = 4 are shown in Fig. 6.7b, c, respectively.

All the three plots confirm the characteristic that has already been seen in Fig. 6.6b.
Smart performs best in case of amedium number of attackers (best results at approx-
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Fig. 6.6 Numbers c and cε of necessary paths for choosing at least one trustful path using different
path selection algorithms. a Average number c of necessary paths for m = 4 and � = 2. b Number
of necessary paths cε with ε = 0.01 for m = 4 and � = 2

imately a = m·�
2 ), while Once works best in case of many attackers (best results at

a = (m − 1) · �). The performance of OS corresponds to the minimum of Once and
Smart. However, the advantages of the three path selection algorithms over Rand
diminish with larger networks.

To get an impression of the overall gain of each path selection algorithm, the nor-
malized values c̃ and c̃ε were averaged over all a ∈ {1, 2, . . . , (m − 1) · �}. Table6.1
shows the averaged values for networks of different sizes. The values confirm that
the benefits of improved selection algorithms diminish with increasing network size.

Table6.2 illustrates the absolute number of paths for some exemplary values of
m, �, and a. Especially for larger topologies, the need for different paths is moderate.
For a network with m = 16, � = 4 and half of the nodes being malicious, less than
a thousandth of all available paths (64 of 65536) was necessary to get at least one
trustworthy path with a probability of at least 99% in our simulations. Since there
exist 16 node- and link-disjoint paths in such a topology where a key establishment
is possible in parallel, we expect to need only 4 rounds to establish a secure key.
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Fig. 6.7 Relative average number c̃ of necessary paths needed for choosing at least one trustful
path for a different number of attackers a and for different topologies. a Normalized average c̃ for
m = 4 and � = 2. b Normalized average c̃ for m = 9 and � = 3. c Normalized average c̃ for
m = 16 and � = 4
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Table 6.1 Averaged normalized costs for different path selection algorithms in comparison to
Rand

m � AVG c̃
Smart

AVG c̃
Once

AVG c̃
OS

c̃ε=0.01
Smart

c̃ε=0.01
Once

c̃ε=0.01
OS

4 2 0.84820 0.82454 0.75701 0.63247 0.60353 0.42954

9 3 0.91442 0.94021 0.86166 0.82958 0.88953 0.73169

16 4 0.94782 0.97756 0.92330 0.89012 0.96256 0.84156

Lower values mean less effort and a performance gain

Table 6.2 Absolute values for Rand and OS for different topologies

m � a AVG c Rand AVG c OS cε=0.01 Rand cε=0.01 OS # of paths

4 2 3 2.623 2.068 10 4 16

9 3 6 2.143 1.952 8 6 729

9 3 13 7.415 6.112 33 25 729

9 3 20 60.373 54.016 279 226 729

16 4 16 3.151 2.953 13 10 65536

16 4 32 15.663 14.364 71 64 65536

16 4 48 254.645 253.032 1227 1192 65536

m, � and exemplary number a of attackers

6.5 Conclusion

We have shown that a point-to-point physical layer key generation is possible in
the presence of passive and active attackers, although the achievable secret key rate
significantly depends on the given scenario. These point-to-point keys can be used to
ensure confidentiality and integrity of an end-to-end key exchange if we just consider
outside attackers. In the case of passive insiders, we need to transmit partial keys
on different paths to establish a confidential end-to-end key. If there is at least one
trustworthy path and this path is used for transmission of a partial key, the combined
end-to-end key is kept secret from the attacker. However, using all available paths to
ensure confidentiality is either highly costly even for smaller networks or impossible
for larger networks due to the exponential growth of paths with larger networks.
Hence, we evaluated a reasonable number of paths and how to select them best for
different networks of forwarders. We have shown that with a good path selection we
can significantly reduce the number of necessary paths to find a trustworthy one and
therewith establish a confidential end-to-end key with a certain probability 1−ε that
can be set accordingly.

However, this evaluation is just a first step on the feasibility of end-to-end keys
established bymeans of physical layer point-to-point keys. For continuation, we need
to look on the performance of the physical layer key exchange to compare the effort
of the proposed scheme to common key exchange protocols. Furthermore, it is also
necessary to consider active insiders. One possible direction is to investigate the use
of majority schemes.



110 S. Pfennig et al.

Acknowledgments This work is supported in part by the German Research Foundation (DFG) in
the Collaborative Research Center 912 “Highly Adaptive Energy-Efficient Computing” and by the
Federal Ministry of Education and Research of the Federal Republic of Germany (Förderkennze-
ichen 16 KIS 0009, Prophylaxe). The authors alone are responsible for the content of the chapter.

References

1. Ahlswede R, Csiszár I (1993) Common randomness in information theory and cryptography—
part I: secret sharing. IEEE Trans Inf Theory 39(4):1121–1132

2. Bloch M, Barros J (2011) Physical-layer security: from information theory to security engi-
neering. Cambridge University Press, Cambridge

3. BoydC,MathuriaA (2003) Protocols for authentication and key establishment. Springer, Berlin
4. Engelmann S, Wolf A, Jorswieck EA (2014) Precoding for secret key generation in multi-

ple antenna channels with statistical channel state information. In: Proceedings of the IEEE
international conference on acoustics, speech, and signal processing (ICASSP), Florence, Italy

5. FettweisG,NagelW,LehnerW(2012) Pathways to servers of the future. In:Design, automation
and test in europe conference exhibition (DATE), pp 1161-1166

6. Jorswieck EA, Wolf A, Engelmann S (2013) Secret key generation from reciprocal spatially
correlated MIMO channels. In: Proceedings of the 56th IEEE global communications confer-
ence (GLOBECOM), Atlanta, USA, invited

7. Liang Y, Kramer G, Poor HV, Shamai (Shitz) S (2009) Compound wiretap channels. EURASIP
J Wirel Commun Netw

8. Liang Y, Poor HV, Shamai (Shitz) S (2009) Information theoretic security. Found Trends
Commun Inf Theory 5(4-5):355–580

9. Ling H, Znati T (2007) End-to-end pairwise key establishment using node disjoint secure paths
in wireless sensor networks. IJSN 2(1/2):109–121

10. Maurer UM (1993) Secret key agreement by public discussion from common information.
IEEE Trans Inf Theory 39(3):733–742

11. Tomasin S, Jorswieck EA (2014) Pilot-based secret key agreement for reciprocal correlated
MIMOME block fading channels. In: Proceedings of the 57th IEEE global communications
conference (GLOBECOM), Austin, USA

12. Vía J (2014) Robust secret key capacity for the MIMO induced source model. In: Proceedings
of the IEEE international conference on acoustics, speech and signal processing (ICASSP),
Florence, Italy

13. Wolf A, Jorswieck EA (2011) Maximization of worst-case secret key rates in MIMO sys-
tems with eavesdropper. In: Proceedings of the 54th IEEE global communications conference
(GLOBECOM), Houston, USA

14. Wong TF, BlochMR, Shea JM (2009) Secret sharing over fast-fadingMIMOwiretap channels.
EURASIP J Wirel Commun Netw



Chapter 7
Experimental Results on Secret-Key
Extraction from Unsynchronized
UWB Channel Observations

Gianni Pasolini, Enrico Paolini, Davide Dardari and Marco Chiani

Abstract Wireless channel reciprocity can be exploited by two users willing to
achieve confidential communications over a public channel as a common source of
randomness for the generation of a secret key. In this chapter, the important issue of
signal synchronization between the two users is discussed and a simple and practical
solution is proposed to overcome this problem. The proposed scheme is tested with
a real measurements campaign aimed at extracting secret-keys from the physical
parameters of ultrawide bandwidth channels in an indoor scenario. The proposed
solution is proved to be effective, as shown in the numerical results that provide an
insight on the rate of agreement between the keys separately generated by the two
users.

7.1 Introduction

Over the last few years, the importance of wireless communications in everyday life
has dramatically increased owing to the widespread diffusion of smart devices, such
as tablets and smartphones, enabling ubiquitous communications and a broad range
of services and applications. The issue of privacy in wireless networks is becoming,
therefore, more and more relevant, especially for security-critical services such as
electronic payments and eHealth [24].
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Unfortunately, the intrinsic broadcast nature of the propagation medium makes
wireless communications highly susceptible to eavesdropping. The adoption of reli-
able and effective cryptographic techniques is thus mandatory to protect transmitted
data from being disclosed to unintended parties.

Currently used ciphers exploit the computational hardness of recovering the mes-
sage from the ciphertext without knowing the key (computational security) [5]. The
confidentiality of data relies on symmetric or asymmetric ciphering: in the former the
sender and the recipient share a common key that is used to perform both encryption
and decryption, whereas in the latter the sender encrypts data with one key (public
key) and the recipient uses a different key (private key) for the decryption.

It is well know that symmetric ciphering suffers from the fundamental problem of
key distribution, whereas asymmetric ciphering is computationally intensive, espe-
cially for low complexity devices subject to severe energy constraints (as expected in
Internet of Things applications) [9]. Moreover, it is based on the unproven assump-
tion that certain one-way functions are hard to invert [5]. Therefore, asymmet-
ric ciphering techniques may potentially be compromised if computational power
increases dramatically or efficient methods for solving the underlying mathematical
problems are discovered [2].

Recently, information-theoretic security has been proposed to complement or
replace classic cryptographic techniques, with the purpose to increase the security
of wireless communications or to reduce the implementation complexity. It does not
require a preliminary key exchange and it is stronger than computational security
because no assumptions on the eavesdropper’s computational power is needed and
perfect secrecy can be theoretically achieved (unconditional security) [11].

The basis of information-theoretic security dates back to Shannon, who provided
an example of perfect cipher, namely one-time pad, inwhich themessage is concealed
by adding (modulo 2) a random secret-key of the same length. Shannon defined a
cipher system to be perfect if the mutual information between the message M and
the ciphertext C is zero, i.e., I (M; C) = 0, by assuming that the eavesdropper has a
perfect copy of C . He then proved that perfect secrecy is achievable only when the
entropy of the random secret key K is larger than or equal to that of M (i.e., when
the size of the key is at least as large as the size of the message) [6].

The pessimistic Shannon’s assumption of perfect availability of C at the eaves-
dropper was successively relaxed byWyner [26] with the introduction of thewire-tap
channel model, in which the eavesdropper has only a degraded version of C . Starting
from this model he showed that (virtually) perfect secrecy can still be reached with-
out sharing a secret-key, provided that the legitimate parties have some “advantage”
with respect to the eavesdropper. Specifically, the secrecy capacity, defined as the
largest achievable secret communication rate, of the wire-tap channel is different
from zero (i.e., the secret communication is possible) only if the channel from the
sender to the legitimate receiver is “stronger” than the channel from the sender to
the eavesdropper. A problem with advantage-based methods is that some knowledge
about the eavesdropper channel quality is required [10] and the advantage (channel
state) is often not under control of the legitimate parties [1, 20].
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Another approach is to use a common source of information between intended
parties, partially unknown to the eavesdropper, and exploit it to generate a common
secret key K to use for message ciphering over a public channel [21]. Maurer [16]
showed that, as opposed to the wire-tap channel, the sender and the receiver can still
agree on a secret key evenwhen the channel secrecy capacity is equal to zero, provided
they have access to a common source. He proved that key agreement can be reached
through an iterative exchange of messages over a public channel fully accessible to
the eavesdropper. The secret keys so generated may then be used either in one-time
pad cipher schemes, or as secret keys for existing symmetric-key encryption systems.

As firstly proposed in [8], radio propagation characteristics may also be used
as common source of information for secret key agreement. Owing to the channel
reciprocity, in fact, this information represents a common source of randomness
exploitable by both ends of a communication link to separately generate a common
encryption key. Any eavesdropper, located in a different position with respect to the
legitimate users, will not observe the same channel and therefore will hardly be able
to guess the same key [17].

Several solutions have been proposed that aim at generating secret-keys observing
some channel-dependent characteristic. A channel metric commonly adopted for the
key generation is, for instance, received signal strength (RSS), because it is usually
provided by wireless devices [18]. Other suggested key generation strategies exploit:

• the magnitude or phase information of narrowband channels [22];
• the frequency diversity of wideband communications (e.g., orthogonal frequency
division multiplexing (OFDM) [7] or ultrawide bandwidth (UWB) communica-
tions [13, 15, 25]);

• the spatial diversity of multiple-input multiple-output (MIMO) systems [17].

Besides the available physical layer, the choice of the metric depends also on its
sensitivity to possible imperfect reciprocity issues caused by implementation aspects.
The different front-ends (amplifiers, filters, etc.) of the legitimate users’ devices may
have a detrimental impact on the correlation of the channels. Similarly, accurate time
synchronization between the legitimate users is a critical issue potentially able to
dramatically reduce the correlation between their observations.

In this chapter we focus on the UWB technology that, owing to its fine time
resolution (in the order of nanoseconds), can provide accurate and information-
rich measurements of the channel response to some stimulus and can be favorably
employed for secret-key extraction [25]. Throughout the chapter, we highlight a
main issue in exploiting the UWB technology not addressed in previous works on
the subject, represented by the critical time synchronization of the legitimate users’
observations. Even in the case of a perfect channel reciprocity, in fact, the waveforms
acquired by the two legitimate users are likely to be misaligned in the time domain.
This issue, arising when performing experimental activities using real devices, is
usually neglected by key generation algorithms proposed by the literature in the
field. In order to exploit the channel reciprocity, however, any actual implementation
of key generation algorithm must adopt effective countermeasures to overcome this
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issue. In this chapter an original solution is presented that makes the key generation
algorithm insensitive to time misalignments. Its effectiveness is evaluated with a
measurements campaign in an indoor scenario, with the purpose to highlight the
impact of system parameters on the key generation process and its robustness to
attacks. Since our main purpose is to present the new approach, its feasibility is tested
using standard techniques to extract the secret-key from the received waveforms. A
fine tuning of the involved parameters or the implementation of more sophisticated
ad-hoc techniques are out of the scope of this chapter.

7.2 Problem Statement

Alice and Bob are legitimate users willing to establish a secure wireless connection
in the presence of a passive eavesdropper,1 denoted in the following by Eve. Thanks
to the wireless channel reciprocity, the channel between Alice and Bob represents a
common source of randomness that can be jointly exploited by the two legitimate
users to separately generate a common secret-key. The eavesdropper, being in a
different position with respect to Bob and Alice, observes a different channel and is
thus prevented, in principle, from generating the same key. The key is then used to
encrypt and decrypt Alice and Bob’s communications over a public channel.

A typical sequential key generation algorithm consists of the following steps [3]:

• Randomness sharing (or channel probing), which corresponds to the observation
by bothAlice andBob of some channel feature (e.g., impulse response, magnitude,
phase rotation, RSS, frequency selectivity);

• Advantage distillation, an optional step aimedat “distilling”observations forwhich
Alice and Bob have an advantage on Eve;

• Information reconciliation, that is devoted to correct the keys mismatch due to
noise, interference, asymmetric equipments, etc. This step is usually preceded or
jointly implemented with a quantization phase of the observed metric. Key agree-
ment can be reached through public discussions over a channel fully accessible by
the eavesdropper (the public channel);

• Privacy amplification, a deterministic independent processing of the common bit
sequences in order to generate a secure secret-key. Hash functions can be con-
veniently used, for instance, to increase the key security, as they are designed to
generate significantly different outputs even with similar inputs. Therefore, even
slight mismatches of Eve’s key with respect to the legitimate key produce, after
the hash function processing, significant discrepancies.

With respect to the aboveoutlinedkeygenerationprocedure, this chapter addresses
steps 1 (Randomness sharing) and 3 (Information reconciliation), which are dis-
cussed in the following.

1Throughout the chapter we assume that the eavesdropper does not take any action apart from trying
to listen Alice and Bob’ transmissions without being detected.
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7.3 Frequency Domain Randomness Sharing

The randomness sharing step is aimed at generating correlated observations of some
channel-dependent feature to be used by Alice and Bob as a common source of
randomness for the key generation. To exploit channel reciprocity for shared secret-
key generation, the legitimate users send alternatively to each other a known probing
signal p(t) having center frequency f0 and bandwidth W . Denote by rxy(t) the signal
received by node y ∈ {Alice,Bob,Eve}\{x} corresponding to the probing signal sent
by node x ∈ {Bob,Alice}, given by

rxy(t) = sxy(t − τxy) + ny(t), (7.1)

where sxy(t) is the response to p(t) of the channel between nodes x and y, τxy the
communication delay between nodes x and y, and ny(t) the AWGN.

When channel reciprocity holds, we have sAlice Bob(t) ≈ sBobAlice(t), whereas
in general Eve, due to her different position, is expected to experience a channel
response significantly different from that seen by Alice and Bob.

The secret-key generation algorithm task consists of observing rxy(t) in a proper
time interval with duration Tob and of deriving a sequence of bits according to some
specific method. We assume the observation interval includes the whole channel
response2 and, as worst case, that also Eve is aware of the algorithm adopted by
Alice and Bob as well as of p(t).

As pointed out in the introduction, existing key generation algorithms based on
channel reciprocity work in the time-domain and tacitly assume a perfect time syn-
chronization among Alice and Bob [13]. A time mismatch, even in the order of
100−200 ps, might prevent time-domain based algorithms to work properly. Unfor-
tunately, in practical UWB systems synchronization algorithms can hardly reach a
precision below 1 ns, making most of the proposed time-domain based schemes not
applicable in general [4].

To overcome this issue, we propose an alternative algorithm whose performance
is independent of the timing mismatch, thus not requiring a tight synchronization
among nodes. Denote by r(t) = s(t − τ ) + n(t) the signal received by the generic
node (Alice, Bob or Eve). Without loss of generality the noise component can be
expressed as n(t) = ñ(t − τ ) by preserving the same statistical characteristics due to
the stationarity of the random process. Consider the Fourier transform R( f ) of r(t)
calculated in the observation interval Tob. It can be expressed as

R( f ) = S( f ) e− j2π f τ + Ñ ( f ) e− j2π f τ , (7.2)

2This requires a mild synchronization among Alice and Bob which does not pose any challenging
issue from a practical viewpoint.
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where S( f ) and Ñ ( f ) are the Fourier transforms of s(t) and ñ(t), respectively, taken
in the same observation interval Tob. Next, introduce the filtering function

Π( f ) =
{
1 if f ∈ [

f0 − W
2 , f0 + W

2

]

0 otherwise.

It is immediate to show that the signal defined as

Z( f ) = |R( f )|Π( f ) =
∣
∣
∣S( f ) + Ñ ( f )

∣
∣
∣ Π( f ) (7.3)

does not depend on τ . By sampling Z( f ) in K frequencies fk uniformly distributed
in the interval [ f0 − W/2, f0 + W/2] we can construct a sequence zk = Z( fk), for
k = 1, 2, . . . , K , of samples that can be used successively as source of randomness
to generate the secret-key, regardless synchronization mismatches.

Operatively, the above technique may be implemented at each receiver by sam-
pling the waveform received over the observation window Tob, performing the fast
Fourier transform (FFT) of the obtained samples and taking the amplitude of each
frequency-domain sample. The price to pay for the transformation (7.3) is the loss
of half of the overall available information exploitable from the channel response.3

This will lead to a potential reduction of the generated secret-key length.

7.4 Information Reconciliation

At the end of the randomness sharing step, both Alice and Bob have derived their
own set of frequency domain samples zk = Z( fk), for k = 1, 2, . . . , K .

In our experimental setup both Alice and Bob skip the optional advantage dis-
tillation phase and start the information reconciliation procedure, according to the
following steps:

• The set of frequency domain samples is passed through a uniform quantization
procedure. Each node, either Alice or Bob, adapts its quantizer dynamic range to
make it coincident with the dynamic range of derived amplitude-spectrum. This
means that, in the frequent case where the amplitude-spectra derived by Alice and
Bob have different dynamic ranges, the quantization steps they adopt are different.
This solution allows to cope with possible (very likely) differences between Alice
and Bob’s front-end gains (amplifier gains, connector attenuations, etc.).

• In order to reduce the mismatch between the quantized amplitude-spectra derived
byAlice andBob, censored regions are possibly introduced around thequantization
thresholds. Both Alice and Bob discard those frequency-domain samples of their
respective quantized amplitude-spectra that fall within the censored regions and

3This is due to the fact that, using this technique,we cannot exploit the information content associated
with the channel response phase spectrum.
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communicate to the counterpart the indexes of discarded values. The effect of this
step is twofold: on the one side it increases the key agreement probability between
Alice and Bob, removing possible ambiguities. On the other side, it reduces the
amount of information available for the key generation, which results in shorter
secret-keys.

• The quantized amplitude-spectra, deprived of censored values (if any), are Grey-
coded by each node in order to minimize the amount of wrong bits in case of
quantization mismatch between Alice and Bob. This step, performed by both
Alice and Bob, produces two sequences of bits that constitute the raw keys to
be reconciliated through an exchange of messages over the public channel.

• The public phase of the adopted reconciliation technique is the one suggested in
[25] for the linear block coding case. More specifically, the technique is based
on an (n, k) linear block code C that is known to both legitimate users (and to
the eavesdropper) and on its standard array. The standard array of C is a table
having 2n−k rows and 2k columns, each entry of which is one of the 2n possible
binary words of length n. Letting H be a parity-check matrix ofC , each row of the
standard array is associated with a specific syndrome, in that all 2k length-n binary
words in the row generate the same syndrome when multiplied by the transpose
of H . All words in the same row form a coset and the first word in the row is dubbed
the coset leader. The cosets are indexed from 0 to 2n−k −1 while the elements in a
coset are indexed from 0 to 2k − 1. The first row of the standard array contains all
2k codewords, in an ascending Hamming weight order (so that its coset leader is
the all-0 codeword). The coset leader of any other row is a binary length-n pattern
of minimum Hamming weight, yielding the syndrome associated with that coset,
while each other word in the coset is the bit-wise sum of the coset leader with the
corresponding codeword in the first row.
The reconciliation technique works as follows. Both legitimate users perform a
segmentation of their raw keys into fragments of length n bits each. One of the
two legitimate users, say Alice, transmits to the other, say Bob, the index of
the coset to which the fragment belongs and takes note, without transmitting,
of the correspondent column index. The coset indexes are transmitted on a public
channel accessible to Eve. For each received coset index, Bob identifies, in the
standard array of C , the column index of the length-n word in the coset that is
at minimum Hamming distance from the corresponding fragment in his raw key.
Both Alice and Bob replace their length-n fragments with the length-k column
indexes so generated. A key of t k bits, for some integer t > 1, is thus obtained
from a raw key of t n bits.
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Fig. 7.1 Indoor scenario where the waveforms acquisition experiments were carried out. Alice
and Bob were in fixed positions; four different Eve’s locations were considered for each Bob-Eve
distance

7.5 Numerical Results

7.5.1 Randomness Sharing: Experimental setup

In order to implement the randomness sharing step using impulse radio UWB sig-
nals, we performed a measurements campaign in the hardware laboratory of our
Department, an indoor scenario composed of walls, furniture, and instrumentation.

Time Domain PulsOn 410 nodes [23] were employed to impersonate Alice, Bob,
and Eve. Each of these radio devices owns a Broadspec planar elliptical dipole
antenna and its equivalent isotropically radiated power (EIRP) is equal to−12.8 dBm.
The generated UWB signal has a frequency band centered at 4.2GHz. Channel
probing was performed by transmitting UWB waveforms with a time duration in
the order of 2 ns. To increase the signal-to-noise ratio (SNR), an integration factor
Ns = 1024 has been used. The amplitude of the acquisitionwindowwas Tob = 21 ns,
allowing to capture multipath components due to the cluttered environment. Finally,
the sampling time was set to 61.03 ps.

A floor plan of the environment where measurements were acquired is shown in
Fig. 7.1, in which the positions of Alice, Bob, and Eve are also illustrated. As it can be
seen, Alice and Bob nodes were kept in a fixed position for all measurements, 4.5m
far apart, while different positions of Eve were considered. The node impersonating
Eve was positioned, in particular, at a distance dEve of 20, 30, and 40cm from Bob.4

4It has been shown via extensive measurement campaigns that indoor UWB channels become
independent for antenna displacements larger than about 15cm [19].
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Fig. 7.2 Examples of UWBwaveforms acquired by Alice and Bob over some time window having
the same amplitude for both users. The two waveforms are approximately equal to each other apart
from a shift in the time domain (synchronization error) and from a scaling factor (this latter due to
different front-end characteristics)

For each distance dEve, four Eve’s positions were considered, with angular separation
of 90◦ one to the other in the circle of radius dEve centered at Bob.

Under channel reciprocity conditions, the signals received by Alice and Bob are
approximately equal, apart from a possible misalignment τ in the time domain and
a scale factor due to front-end differences. An illustrative example is reported in
Fig. 7.2, that shows two UWB waveforms collected by Alice and Bob during our
measurements. In Fig. 7.3 the corresponding amplitude spectra are shown along with
the spectrum derived by Eve, positioned at 20cm from Bob, starting from the signal
received from Alice. As it can be observed, apart from a scale factor due to front-
end asymmetries, Alice and Bob’s spectra show a good agreement, that confirms
the effectiveness of the method proposed in Sect. 7.3. The spectrum derived by Eve,
instead, shows significant differences with respect to the previous ones. In general,
the correlation between the spectra derived by Eve and those derived by Alice and
Bob depends on the propagation scenario and the position of Eve with respect to the
legitimate users [12–14].

7.5.2 Measured Performance

By means of the previously described experimental setup, we finally derived the
secret-keys generated by Alice, Bob and Eve on the basis of the actual UWB signals
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Fig. 7.3 Example of amplitude spectra at Alice, Bob and Eve, with Eve at 20cm from Bob. Eve’s
spectrum has bee derived starting from the signal received from Alice

they observed in the indoor scenario depicted in Fig. 7.1. All of them were collected
and the performance of the proposed key generation algorithm was investigated in
terms of:

• Agreement rate between Alice and Bob’s secret keys, defined as the ratio between
the number of Alice and Bob’s keys that exhibited a perfect matching and the total
number of generated keys;

• Eve success rate, defined as the ratio between the number of Eve’s keys that
perfectly matched the key on which Alice and Bob agreed and the total number of
generated keys;

• Key length, i.e., the length of the secret-keys on which Alice and Bob reached an
agreement.

These performance metrics have been investigated under different conditions
in terms of:

• Eve’s distance from Bob. For each distance dEve ∈ {20, 30, 40 cm}, the random-
ness sharing and information reconciliation steps were executed 2000 times for
each of the four positions of Eve around Bob. It follows that 8000 secret-keys were
generated for each dEve.

• Number nbits of bits used to quantize the received signal’s amplitude-spectrum.
Numerical results have been derived, in particular, considering nbits = 2 and
nbits = 3, with 2nbits representing the corresponding number of quantization
intervals.
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Fig. 7.4 Alice and Bob agreement rate for dEve = 20cm

• The amplitude Δ of censored regions. In the following, all performance metrics
are investigated as a function of Δ

q , with q = max{Z( f )}
2nbits denoting the amplitude of

the quantization interval. Please note that, owing to possible differences of Alice
and Bob’s front-ends, the amplitude-spectra separately derived by the legitimate
users could have different dynamic ranges, as shown in Fig. 7.3. It follows that, in
general, Alice and Bob operate with different values of q.

The key agreement rate between Alice and Bob is investigated in Fig. 7.4 as a
function of both Δ

q and nbits , in the case dEve = 20cm.As expected, this performance

metric improves for increasing values of Δ
q , regardless the value of nbit : removing

the samples of the amplitude-spectrum that fall near the quantization boundaries
reduces, in fact, the key mismatch events. The comparison between the two curves
shows, moreover, that the choice of nbit has a significant impact on the experienced
agreement rate: a remarkable performance degradation is observed, in fact, simply
passing from nbit = 2 to nbit = 3. Please notice, however, that the choice of nbit

impacts also on the secret-key length, hence, in order to get a complete picture of
the key generation performance from Alice and Bob’s perspective, this performance
metric deserves a specific investigation.

Figure7.5 shows, on this regard, the mean value of the key length and the cor-
respondent standard deviation as a function of Δ

q in both cases of nbit = 2 and
nbit = 3, with dEve = 20cm. Please recall that mean values and standard deviations
were derived considering only those keys for which Alice and Bob experienced an



122 G. Pasolini et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

20

40

60

Δ
q

ke
y
le
ng
th

[b
its
]

nbits = 2
nbits = 3

Fig. 7.5 Mean key length and related standard deviation for dEve = 20cm

agreement. As far as the impact of Δ
q is concerned, it is straightforward to understand

that for increasing values of Δ
q the number of samples of the amplitude-spectrum

that are discarded increases as well, which results in shorter secret-keys. Figure7.5
also shows that larger values of nbits , although more critical in terms of agreement
rate, lead to less dispersed and larger (hence more secure) key lengths.

The key security issue is investigated, in particular, in Fig. 7.6, that shows the role
played by dEve and Δ

q on Eve’s success rate in the case nbit = 2. The increasing

trends of the curves for increasing values of Δ
q is not surprising: also Eve benefits, in

fact, from the removal of the ambiguous samples of the signal amplitude-spectrum.
The impact of dEve on Eve’s success rate is, instead, less intuitive. In the scenario

we considered it appears, in fact, that the threat posed by Eve increases as her distance
from Bob gets larger. Observe, however, that although the cross-correlation between
the channels experienced by Eve and the legitime users’ channel asymptotically
tends to zero as dEve increases, it is also true that the way such cross-correlation
approaches to zero could not be monotonically decreasing. It follows that, locally,
increasing values of dEve could correspond to increasing values of the channels’
cross-correlation, and therefore to higher Eve’s success rates. Let us stress, however,
that as long as Δ

q ≤ 0.25, the presence of Eve does not significantly undermine the
secrecy of Alice and Bob’s communications, even for the very short dEve distances
here considered. Please notice that for nbit = 2, values of Δ

q in the range 0.2–0.25
provide both an agreement rate larger than 90% and an Eve’s success rate close to
zero.
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7.6 Conclusions

In this chapter we addressed secret-key generation on the basis of correlated channel
observations carried out by two legitimate users willing to encrypt their commu-
nications over a public channel. We proposed, in particular, an original strategy to
cope with the issue of time synchronization, which is particularly critical whenUWB
signals are used to probe the channel. The results of the experimental activity we
carried out to validate our solution were presented, showing both its effectiveness
and its sensitivity to relevant parameters that affect its performance.
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Chapter 8
Physical Layer Security in Power Line
Communication Networks

Alberto Pittolo and Andrea M. Tonello

Abstract This chapter digs into the secrecy provided and guaranteed at the physical
layer, named physical layer security (PLS), over power line communication (PLC)
channels for in-home networks. The PLC scenario peculiarities are briefly discussed
in terms of channel characteristics and noise features. The effects of the channel
properties on the performance are evaluated, in terms of the achievable secrecy
rate, starting from the single-input single-output (SISO) scheme with additive white
Gaussian noise. The results are also compared to themore commonwireless scenario,
namely a scenario where the channels are independent and experience Rayleigh fad-
ing as a consequence of rich scattering. Furthermore, the performance improvement
attainable with the use of multiple-input multiple-output (MIMO) transmission is
discussed. The effect of increasing the transmission band 2–30 to 2–86 MHz and
the effect of colored spatially correlated noise is also investigated. Moreover, a non
uniform power allocation strategy, provided by the application of an alternating
optimization (AO) approach is evaluated. A comparison with the channel capacity,
achieved without secrecy constraints, is also performed. The experimental results are
provided relying on measured noise and channel responses.

8.1 Introduction

In recent years we have witnessed a fast and worldwide increase of data connectivity
demand. This is due to the widespread use of social media services and multimedia
content access. In order to satisfy this continuously growing amount of data transfer
needs, new wireless and wireline technologies and standards have been developed.
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Among the no-new-wires technologies, power line communication (PLC) has gained
momentum due to its ability to offer high data rates exploiting the existing power
delivery infrastructure. Broadband PLC operates in the band 2–30 MHz, e.g., the
HomePlug AV (HPAV) compliant modems [7]. The latest HomePlug AV2 (HPAV2)
[24] devices use orthogonal frequency division multiplexing (OFDM), together with
multiple-input multiple-output (MIMO) transmission over multiple wires, and an
extended band of 2–86 MHz. They can reach data rate in excess of 500 Mbit/s.

However, it is important not only to offer high data rates but also to grant secu-
rity, especially in a multiuser network context where confidential communications
and transactions are exchanged. Although cryptographic mechanisms are generally
used, physical layer security can strengthen security by implementing strategies at the
physical layer. As the wireless communication medium, the PLC scenario is intrinsi-
cally broadcast. Hence, the communication channel is shared among the users in the
network so that a transmitted signal can reach each node belonging to the network.

There are essentially two ways to think and provide secrecy in a communication
system. At the high levels of the ISO/OSI stack, named complexity-based security,
and at the physical layer (the lowest of the ISO/OSI stack levels), known as physical
layer security (PLS) [19] or information-theoretic security. The main differences are
summarized below.

Complexity-based It is themost common and deployed approach. It includes all
the methods and the cryptographic techniques such as the
data encryption standard (DES) or the RSA. This crypto-
graphic approach assumes the adversary to have limitations
on the computational power and/or available resources.
Thus, the computational resources required to extract and
decrypt the originalmessage (the plaintext) from the encryp-
ted one (the ciphertext) render it practically infeasible for
the adversary in a reasonable time.

Information-theoretic This approach was formulated by Shannon [18] and it is
widely accepted as the strictest notion of security. Indeed,
in this case, the adversary has unlimited resources, nev-
ertheless no information has to be released. This concept
underlies the formulation of the PLS, which exploits the
physical medium time, frequency and spatial diversity in
order to complement and enhance the security provided by
other layers.

AlthoughPLShas been deeply investigated and analyzed for thewireless scenario,
little effort has been spent for the PLC case. A preliminary discussion about PLS
on PLC has been made by the authors in [15]. Then, the study has been extended in
[17] considering the effects of the PLC channel, as well as analyzing the multi-user
case. Subsequently, a study about PLS over MIMO PLC channels, in the 2–28 MHz
frequency range and with additive white Gaussian noise (AWGN), has been carried
out in [25].
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In order to perform an analysis of PLS in PLC, it is important to firstly understand
the properties of the PLC network and the channel properties. As it will be clear
in the following description, the PLC context significantly differs from the wireless
context.

8.1.1 Properties of the PLC Channel and Network

Even thoughwireless andPLCcommunication scenarios have some similarities, such
as the broadcast nature, they significantly differ in channel statistics and properties,
background noise and achievable performance. For example, the highly uncorrelated
channel assumption, which usually holds in wireless networks, is no longer valid for
PLC networks. This is, since wireless networks are essentially based on a star-style
structure, while PLC ones deploy a tree topology, with multiple branches departing
from the same node, see Fig. 8.1. In this configuration, the links to the end nodes share
part of the wires up to a particular node, named pinhole or keyhole, where branches
depart. This network topology leads to what is known as keyhole effect [1, 3], which
typically affects PLC scenarios. The keyhole effect in cooperative multi-hop PLCs
has been recently studied in [11]. As later clarified, this phenomenon causes spatial
correlation among the channels and limits the performance.

Another prominent characteristic is the frequency correlation between the sub-
channels of a multi-carrier transmission scheme, mainly due to cross-talks and cou-
pling effects. Furthermore, the PLC channels are affected by fading which exhibits
different statistics from the wireless channels. Indeed, while wireless fading has
a well-known Rayleigh amplitude distribution [20], the PLC scenario shows log-
normal fading statistics [6, 21], as demonstrated in the following.

A final key feature that should be taken into account is the type of background
noise. Unlike the wireless case, the PLC scenario is subject to colored Gaussian noise

Fig. 8.1 Tree structured scheme of a typical PLC network topology



128 A. Pittolo and A.M. Tonello

with an exponential decreasing profile, as discussed in [22]. Consequently, all these
channel and noise properties affect the performance achievable on PLC networks
with respect to the wireless case, typically affected by uncorrelated Rayleigh fading
under AWGN.

8.1.2 Main Contributions

In the following, a brief description of the power line channel is provided, discussing
its features and main properties, as well as the achievable performance in terms
of maximum secrecy rate. To simplify the presentation first, a simpler single-input
single-output (SISO) scenario in the 2–28 MHz frequency range and under AWGN,
is considered. The specifications comply with the HPAV standard [7]. In this con-
figuration set up, the effects of the PLC channel properties on the secrecy rate are
evaluated and discussed, comparing the main results with a typical wireless case.
In particular, independent and Rayleigh fading channels are assumed, as typically
happens for rich scattering urban mobile channels.

Then, the multiple-input multiple-output (MIMO) transmission scenario is con-
sidered. The power allocation problem is assessed by applying an alternating opti-
mization algorithm. The MIMO transmission considered exploits not only the
differential transmission modes over three wires, but also an additional receiving
mode, named common mode (CM). The analysis relies on real channel and noise
measurements and fulfills the HPAV2 standard specifications [24]. These assump-
tions allow to provide results of practical relevance.

8.2 PLC Wiretap Channel

The communication channel configuration where a transmitter Alice wishes to send
a secret or confidential message x to an intended receiver Bob, so that no information
can be inferred by an eavesdropper Eve, is known as wiretap channel, see Fig. 8.2.
Eve represents the adversary which tries to detect and disclose the message x having
an arbitrarily high amount of available computational resources, as the information-
theoretic secrecy foresees. The quantities h A, hB and hE correspond to the channel
state information (CSI) between Alice, Bob, and Eve, respectively; the two latter join

Fig. 8.2 Overall wiretap channel scheme
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at the same point, the keyhole κ , while, y and z are the received signals at Bob and
Eve, respectively. Note that for theMIMO scheme discussed in Sect. 8.4 the CSIs h A,
hB and hE are described by matrices, while the signals x , y and z become vectors.

The wiretap channel was firstly analyzed and introduced byWyner in [23], where
the secrecy rate was firstly found for a simple degraded wiretap channel. In this
communication scenario, the channel to Bob (hB) is considered less noisy than Eve’s
who receives a degraded, or noisier, version with respect to Bob. This assumption
simplifies the analysis, enabling the derivation of the secrecy limits.

Amore general broadcast scenario was considered by Csiszár and Körner [4]. The
studied generic broadcast channel represents the case inwhich the channel fromAlice
(h A) is assumed as ideal and the channels to Bob (hB) and Eve (hE ) are statistically
independent. This configuration is suitable to represent star-stile networks, such as
rich scattering wireless scenarios.

The model depicted in Fig. 8.2 offers a sufficiently general setup by including a
keyhole channel structure and can model other communication configurations with
the proper assumptions. The branch node κ represents the keyhole, or pinhole from
which the links to Bob and Eve depart. Thus, the transmitted signal needs to cross
the keyhole and travel an identical section, represented by h A, before reaching the
intended receiver and the eavesdropper. This introduces spatial correlation and a
rank-deficiency of the communication channel, limiting the achievable secrecy rate
performance [1, 3, 11]. The keyhole channel scheme in Fig. 8.2 resembles a tree-style
network, which is the typical underlying structure of PLC networks.

8.2.1 Secrecy Capacity

The secrecy capacity of the system in Fig. 8.2 represents the amount of information
(e.g. bit/s) that can be reliably transmitted to the receiver. This means that the aver-
age decoding error probability approaches zero at the intended receiver, while the
uncertainty at the eavesdropper, usually expressed by the equivocation rate, equals
the secrecy rate. This way, no information is released to the eavesdropper, which
cannot decode the messages from Alice at any positive rate lower than the secrecy
capacity. For further details the reader is referred to [9]. In the following, a SISO
scheme is considered, but all the results can be extended to the MIMO communica-
tion scenario. The secrecy capacity, namely the maximum achievable secrecy rate,
is defined as [13]

CS = max
fX ∈F

[I (X; Y ) − I (X; Z)]+, (8.1)

where fX and F represent the probability density function (pdf) of the channel
input X and the set of all the possible pdfs for X , respectively. Instead, I (X; Y ) and
I (X; Z) stand for the mutual information among X , Y and X , Z , respectively. Note
that [q]+ = max(q, 0). The mutual information terms I (·) are convex in fX , this
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allows the formulation of a lower bound RS for the secrecy capacity in (8.1), given
by [9]

CS ≥
[

max
fX ∈F

[I (X; Y )] − max
fX ∈F

[I (X; Z)]
]+

= RS . (8.2)

Since it is known how to maximize the mutual information terms, the lower bound
in (8.2) is typically used for the calculation of the achievable secrecy rate.

As discussed in the following, the PLS turns out to be an optimization problem
aiming at maximizing the information rate among the intended users, while keeping
the eavesdropper completely ignorant about the message and unable to distill any
information. As mentioned in Sect. 8.1, the PLS exploits all the available channel
features in order to grant and enhance the secrecy of the system. In this regard, it is
essential to investigate and study the main PLC channel features.

8.2.2 Channel Properties

In order to assess the effect of the PLC channel properties on the performance, the
statistical behavior of the channel is herein discussed. As mentioned in Sect. 8.1.1,
the PLC networks, due to their underlying structure and to the physical medium,
exhibit different phenomena with respect to the wireless scenario. In the following,
the main features are individually analyzed relying on channel measurements carried
out in three home sites [21]. The 2–86 MHz frequency range is considered.

8.2.2.1 Statistics

One of the most important properties to assess is the channel gain (|h|2) statistics.
Toward this end, the statistical analysis of the measurements is made relying on the
likelihood function, defined as [14]

�(ϑ) =
∏

X∈X
p(X |ϑ), (8.3)

where X ∈ X represents the set of measured samples, while p(·) and ϑ are the
probability density function (pdf) and the parameters, obtained by the estimation, of
the fitting distribution. The higher the value provided by the likelihood function, the
better the tested distribution fits the measured data.

The test is performed on the measured channel gains for all the main and well
known distributions, such as: exponential, gamma, log-normal, normal, Rayleigh,
Weibull and log-logistic. For each distribution, the parameters that provide the best
fit are found. The value obtained by each pdf is depicted in Fig. 8.3, which shows the
logarithmic version of (8.3) as a function of frequency.
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Fig. 8.3 Best log-likelihood value of the measured channel gains for each tested distribution X

It is noted that the highest score is obtained by the log-normal distribution, along
the entire frequency range. This means that, in this case, the measured PLC channel
gains are log-normally distributed with good approximation [21]. However, also
other statistical distributions, such as log-logistic,Weibull and gamma, obtain similar
scores. This is due to the pdf shape of all these distributions, which is very similar,
with the main difference limited to the tails. Since the network structure, the loads,
and the reflections and propagation effects can be different in different scenarios,
log-normality does not strictly apply in all contexts. However, it is noticeable that
the PLC channels do not exhibit Rayleigh fading, contrariwise to what happens in
the wireless case [20].

8.2.2.2 Frequency Correlation

Since broadband PLC is considered, multi-carrier modulation (OFDM) is adopted
at the physical layer. This is the modulation scheme used by the HPAV and HPAV2
standards. In OFDM the broadband channel is partitioned in a number of paral-
lel sub-channels whose responses can be correlated. The degree of this correlation
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is evaluated in terms of normalized covariance matrix between the sub-channel
responses, defined as

Rhh(i, j) = Chh(i, j)√
Chh(i, i)Chh( j, j)

. (8.4)

The normalized covariance matrix Rhh contains the pairwise covariance coefficient
between each pair of sub-channels, identified by the indices i and j . Chh is the
covariance matrix whose elements are defined as

Chh(i, j) = E[(h(i) − μi )(h( j) − μ j )], (8.5)

where the operator E[·] denotes the expectation, h(i), h( j) the i-th and j-th sub-
channel gains and μi , μ j their mean (μ = E[h]), respectively. The expectation is
performed on the channel measurements.

The normalized covariance is evaluated on the logarithmic, or dB, version of the
channels gains, which is normally distributed. Thus, it becomes easier to generate and
simulate correlated log-normal randomchannels, starting from independent normally
distributed realizations. Figure8.4 depicts the normalized covariancematrix between
the measured sub-channels in dB scale. It can be noted as certain sub-channels
are more related to some others, where the colors become darker, as happens for
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the sub-channels in the upper right corner, which identifies high frequencies. This
phenomenon is due to the crosstalk among the wires and to the coupling effects,
which become prominent at higher frequencies.

8.2.2.3 Spatial Correlation

The spatial correlation represents the correlation coefficient, or degree of correlation,
among the main channel and the wiretapper channel. With reference to Fig. 8.2, the
main channel, denoted by hM , refers to the communication link amongAlice andBob.
Thus, it is given by the product of the two channels in cascade, as hM = h AhB . The
wiretap channel, denoted by hW , instead, refers to the communication link between
Alice and Eve, given by hW = h AhE .

Since the transmitting and receiving plugs are known, the measurements are care-
fully divided among the main and the wiretapper channel so that the corresponding
channels share the same transmitting plug. Therefore, the communication scheme
resembles that depicted in Fig. 8.2.

The correlation coefficient ρ among the main and the wiretapper channel, in dB
scale, is depicted in Fig. 8.5 as a function of frequency. As can be seen, the value is
quite high over the entire frequency range, with some peaks and minimums confined

0 10 20 30 40 50 60 70 80 90

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Frequency [MHz]

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (

ρ)
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at certain carriers (frequencies). The spatial correlation herein shown is mainly due
to the keyhole effect caused by the underlying network structure.

8.2.3 Noise Properties

As mentioned in Sect. 8.1.1, not only the channel properties affect the PLC per-
formance. Also the background noise must be taken into account. Contrariwise the
wireless case, affected by white Gaussian noise, PLC networks are subject to colored
Gaussian background noise. Depending on the PLC context, different noise floors
and profiles have been documented [22]. A typical noise power spectral density
(PSD) profile is depicted in Fig. 8.6.

The displayed PSDs refers to the noise measured at the star-style receiving modes
for the MIMO scheme described in Sect. 8.4.1. As can be noted, the common mode
experiences a higher PSD with respect to the other three modes. The effects on the
channel performance of these colored noise PSD profiles, together with the spatial
correlation between themodes, are discussed in Sect. 8.4. In the following, the effects
of the PLC channel properties on the achievable secrecy rate are evaluated for the
simpler SISO scheme under AWGN.
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8.3 SISO Scheme Under AWGN

Asdescribed in Sect. 8.2.2, PLCnetworks are subject to a variety of physical phenom-
ena. In order to asses how these phenomena affect the PLS performance, different
types of random channels are generated through a numerical model. In particular, the
impact of the channel statistics, the frequency and spatial correlation, as well as the
keyhole effect, is evaluated generating random channels responses with the appro-
priate statistics. Furthermore, this approach allows the PLC and the wireless scenario
comparison, relying on channel responses with different distributions. To facilitate
the comprehension, the SISO channel is considered first.Moreover, to fairly compare
wireless and PLC scenarios, the same background AWGN noise is assumed.

8.3.1 Optimization Problem Formulation

Asdiscussed in Sect. 8.1, the evaluation of the secrecy capacity for themodel depicted
in Fig. 8.2 involves solving an optimization problem. Assuming OFDM transmission
with N carriers or sub-channels, the received signals by Bob and by Eve, at the c-th
carrier, can be written as

yc = hM,cxc + nB,c, (8.6)

zc = hW,cxc + nE,c, (8.7)

respectively, where, the transmitted signal on carrier c is xc.Moreover, hM,c and hW,c

are the main and the wiretapper channels, while nB,c and nE,c represent the effect of
the additive Gaussian noise, with zero mean and variance σ 2

n . The transmitted signal
and the noise are assumed to be statistically independent from each other and for
each sub-channel c. Moreover, as usually happens, the power at the transmitter is
limited by a total power constraint

∑N
c=1 |xc|2 ≤ PT , where PT is the total available

power. Finally, perfect channel state information (CSI) is assumed at the transmitter
side. Thus, Bob and Eve know their own channel, while Alice has access to both
channel gains to Bob and Eve. This case resembles the situation in which Eve is not
an adversary, but simply an unintended user of the same network.

The secrecy rate of the system model discussed in Sect. 8.2 can be computed
according to (8.2) [13], as

RS(Px) =
N∑

c=1

[

log2

(

1 + αc Px,c

σ 2
n

)

− log2

(

1 + βc Px,c

σ 2
n

)]+
, (8.8)

where Px,c is the transmitting power on the c-th sub-channel, whereas αc = |hM,c|2
and βc = |hW,c|2 are the channel gains of the main and the wiretapper channels,
respectively. The power allocated on each sub-channel is organized in a vector Px =
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[Px,1, . . . , Px,N ], which corresponds to the transmitter power allocation strategy for
a given channel realization. Note that the secrecy rate in (8.8) is upper bounded by
∑N

c=1

[
log2(αc/βc)

]+ for arbitrarily large power Px and can turn out to be small if
the channel does not provide enough diversity.

The secrecy rate optimization problem for the multi-carrier system aims at max-
imizing the quantity in (8.8), under a total power constraint, and it is formulated as

max
Px

[RS(Px)] subject to
N∑

c=1

Px,c ≤ PT and Px,c ≥ 0. (8.9)

To perform a fair analysis, the total power PT equals the sum of the HPAV PSD
constraint over the used sub-channels. Although, as seen, this is a non-convex opti-
mization problem, it has been shown in [8] that the optimal power allocation strategy
is to not allocate power on the sub-channels in which Eve has a higher gain than
Bob, i.e. when αc ≤ βc. Consequently, the resulting problem becomes convex and
can be easily solved through the Karush-Kuhn-Tucker (KKT) conditions [2]. For a
more complete and general treatment the reader is referred to [9, 17].

8.3.2 Effects of Channel Characteristics on Performance

The typical PLC channel properties, discussed in Sect. 8.2.2, are herein evaluated in
terms of achievable secrecy rates. Hence, the first step is to compute the statistical
parameters and the degree of frequency and spatial correlation, starting from real
channelmeasurements. The evaluation is performed relyingon1300 in-homechannel
measurements in the 2–28MHz frequency range, carried out in different house sites,
as specified in [21]. The specifications comply with the HPAV standard [7].

For the secrecy rate computation, a signal-to-noise ratio (SNR) of 80 dB has been
assumed, without taking into account the channel attenuation. This SNR value is
typical in PLC networks since, usually, the PSD at the transmitter is constrained
at −50dBm/Hz, while the noise PSD floor equals −130 dBm/Hz. The secrecy rate
achieved over the channel measurements is compared to that of the numerically sim-
ulated channel realizations, generated taking into account different channel effects
as follows. For further details the reader is referred to [17].

1. Independent channels: the main and the wiretapper channels are independently
generated with a log-normal distribution.

2. Keyhole effect: three independent log-normal channel realizations are generated
for the Alice’s, Bob’s and Eve’s channels (h A, hB and hE , respectively), see
Fig. 8.2. The parameters are imposed so that the mean and the variance of the
main and wiretapper channels turn out to be equivalent to those of the channel
measurements. This is made possible exploiting the properties of the product of
log-normal variables.
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3. Spatial correlation: in this case, the main and wiretapper channels are generated,
with a log-normal distribution, according to the measured correlation coefficient
discussed in Sect. 8.2.2.3. The frequency correlation is not considered.

4. Frequency correlation: the log-normally generated channels exhibit the same
frequency correlation of the measured channels, analyzed in Sect. 8.2.2.2, but are
spatially uncorrelated.

5. Keyhole effect and frequency correlation: the same procedure in 2 is applied to
frequency correlated channels. Thus, the frequency correlation and keyhole effect
are jointly considered.

6. Spatial and frequency correlation: the generated channel realizations are affected
by both frequency correlation and spatial correlation, between the main and the
wiretapper channels, as usually happens in real PLC networks.

The secrecy rate, for all the above listed channel realizations, has been computed
solving (8.9), as in [17]. The secrecy rate complementary cumulative distribution
function (CCDF) is depicted in Fig. 8.7. It can be seen as the CCDF for the measured
channels completely differs from that of the independent channels in both trend and
average secrecy rate, summarized in Table8.1. Also when considering the spatial
correlation or the keyhole effect the trend does not change, although there is an
average secrecy rate reduction. When the frequency correlation is introduced, the
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Table 8.1 Average secrecy rate for different simulated PLC channel phenomena

Scenario Channel type Average secrecy rate (Mb/s)

Wireless Independent 95

PLC Independent 62.5

PLC Keyhole effect 44

PLC Spatial correlation 41.1

PLC Frequency correlation 62.9

PLC Keyhole + frequency correlation 43.7

PLC Spatial + frequency correlation 38.9

PLC Measurements 37.4

CCDF trend improves. Moreover, it closely approaches the measured one when also
the keyhole effect or the spatial correlation are taken into account. The agreement
can also be noted looking at the average secrecy rates summarized in Table8.1.
This analysis demonstrates that the channel statistics, together with the frequency
and spatial correlation, constrain and limit the PLC channel performance. As a final
remark, the results in Fig. 8.7 validate the implemented numerical model for the
channel generation.

8.3.2.1 Wireless Versus PLC

It is interesting to compare the secrecy rate attainable in wireless channels character-
ized by statistically independent Rayleigh fading and in PLC channels that exhibit
correlated log-normal fading. As above specified, in order to perform a fair compari-
son, an equal SNR of 80 dB (without considering the channel attenuation) is assumed
for both scenarios. The secrecy rate CCDF is reported in Fig. 8.7 where it is shown
that the wireless case outperforms the PLC one. The difference is noticeable also in
terms of average secrecy rate, displayed in Table8.1.

8.4 MIMO Scheme Under Colored and Correlated Noise

The limits on the secrecy rate, due to thePLCchannel characteristics, can bemitigated
exploiting the spatial domain end extending the used bandwidth. The performance
improvements provided by theMIMOtransmission schemewith an additional receiv-
ing mode, namely the common mode (CM), the bandwidth extension up to 86 MHz
and a novel alternating optimization (AO) approach are herein assessed. It has already
been proved in [25] thatMIMO transmission can increase PLS performances on PLC.
However, the work considers numerically generated channels with two transmitting
and receiving modes in the 2–28MHz frequency band, under AWGN. In this section,
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Fig. 8.8 MIMO Δ-style transmitting and star-style receiving modes according to STF-410

the analysis is further extended relying on real channel and noise PSDmeasurements.
As specified by the HPAV2 [24], the 2–86 MHz bandwidth is considered, and the
maximum number of possible transmitting and receiving modes are exploited, as
described in the following. These assumptions provide actual performance results
that can be viewed as a target for future devices development.

8.4.1 MIMO Structure

In today’s houses, power supply networks usually consist of three different wires,
namely the phase (P), the neutral (N) and the protective earth (E). Hence, due to
Kirchhoff’s laws, only two Δ-style modes can be exploited at the same time. Where
Δmode means to inject the differential signals between pair of wires, see Fig. 8.8 for
details. Instead, at the receiver side, the signals can be observed between one con-
ductor and a reference plane, referred to star-style mode. Beyond the three available
star-style modes, one additional mode, given by the coupling between the wires and
the physical earth, can be exploited, namely the common mode (CM) [5]. The CM
is given by the current that flows in the three conductors, which has the same inten-
sity and direction. Thus, a 2 × 4 MIMO transmission scheme can be implemented
between the transmitter and the receiver side.

8.4.2 Alternating Optimization Algorithm

The secrecy rate maximization belongs to the family of non-convex optimization
problems, which are non-trivial and not easily solvable. This is because the secrecy
capacity is obtained by the maximization of the difference of two convex terms,
as shown in (8.1). The optimization becomes even more difficult when considering
MIMO wiretap channels, with one or multiple eavesdroppers. Anyway, to provide
a solution, an alternating optimization (AO) approach has been proposed in [12].
The secrecy capacity optimization problem has been reformulated with an equiva-
lent expression which can be brought back to two convex optimization problems,
alternatively solved, as briefly described in the following.
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For each used sub-channel, the secrecy rate maximization in (8.9) can be refor-
mulated for the MIMO transmission scheme as follows

CS = maxX
[
log2 |I + HM

H XHM| − log2 |I + HW
H XHW|] , (8.10)

subject to Tr(X) ≤ Pc, X � 0,

where X is the covariance matrix of the transmitted signal x , while HM and HW rep-
resent the main and wiretapper MIMO channel matrices, respectively. Furthermore,
Pc is the PSD constraint on the c-carrier and X � 0 means that X must be positive
semidefinite. The identity matrix is represented as I. The optimization problem in
(8.10) is properly reformulated exploiting the following lemma [10].

Lemma 8.1 Let E ∈ C be any N × N positive definite matrix (E � 0). Consider
the function f (S) = −Tr(SE) + log2 |S| + N, then

log2 |E−1| = max
S�0

f (S), (8.11)

and the optimal solution to the right-hand side of (8.11) is S∗ = E−1.

Hence, applying Lemma 8.1 via setting E = I + HW
H XHW, the problem in

(8.10) can be reformulated as

maxX,S
[
log2 |I + HM

H XHM| − Tr
(
S(I + HW

H XHW)
) + log2 |S|] , (8.12)

subject to Tr(X) ≤ Pc, X � 0, S � 0,

where S denotes a Hermitian positive semidefinite matrix. For simplicity the constant
N has been dropped. The problem in (8.12) is still non-convex with respect to (w.r.t.)
both X and S. However, it can be verified that the problem is convex w.r.t. either X
or S, fixing the other decision variable. This property motivated the use of an AO
approach. Defining Xn , Sn the solutions for the n-th iteration, the following two
optimization problems are alternatively solved

Sn = argmaxS�0
[
log2 |S| − Tr

(
S(I + HW

H Xn−1HW)
)]

, (8.13)

Wn = argmaxW
[
log2 |I + HM

H XHM| − Tr(HW
H SnHWX)

]
, (8.14)

subject to Tr(X) ≤ Pc, X � 0.

As mentioned, both the problems (8.13) and (8.14) are convex, and can be alterna-
tively solved, as done by the AO algorithm. The solution is guaranteed to converge
at a KKT point. For further details the reader is referred to [12].

The solution reported in [12] assumes AWGN. Herein, it is extended to the more
complicated colored and correlated Gaussian noise scenario. A non-uniform power
allocation solution is found. The results rely on real channel and noise assumptions.
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8.4.3 Results for the MIMO Scenario

The focus is on the MIMOwiretap channel. The transmitter exploits the twoΔ-style
transmitting modes, while both Bob and Eve use all the four star-style receiving
modes, as discussed in Sect. 8.4.1. The performance is evaluated exploiting 353
MIMO channel measurements, carried out through an experimental measurement
campaign across Europe and collected by the ETSI special task force 410 (STF-
410) [5]. The considered frequency range is 2–86 MHz, and the PSD constraint
at the transmitter is −50 dBm/Hz in the 2–30 MHz, while −80 dBm/Hz in the
30–86 MHz, according to the latest HPAV2 standard [24]. Moreover an AWGN and
a colored and correlated Gaussian background noise are considered. For the colored
noise the exponential profile is taken from the STF-410 noise PSD measurements,
while the spatial correlation is implemented between the modes as discussed in
[16]. The white noise, instead, has been generated so that it exhibits a total power
equivalent to the colored one in the considered bandwidth. The channels are equally
divided and assigned to the intended receiver and to eavesdropper, respectively.

Under the above system specifications, the secrecy rate achieved over the 2 × 4
MIMO wiretap channel is evaluated and depicted in Fig. 8.9. As a term of com-
parison, two different noise models are taken into account, white and independent
in Fig. 8.9a, and colored and correlated in Fig. 8.9b. Furthermore, the performance
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achieved with the allocation strategy provided by the AO algorithm is compared to
that achieved under uniform power allocation (identified by the subscripts AO and
UN, respectively).

The comparison is made in terms of secrecy rate CCDF. It can be noted as the AO
algorithm translates into a performance improvement for both consideredbackground
noise models. This is evenmore evident looking at the average secrecy rate displayed
in the boxes. In practice, an increase of about 30 and 20% has been noticed for the
AWGN and the colored and correlated noise, respectively.When considering colored
and correlated noise the performance increases further. This happens since the noise
correlation makes easier its cancellation at the receiver side. As a further term of
comparison, the channel capacity, achieved without any secrecy constraint, is also
computed and depicted in Fig. 8.9. It can be noted as its average value is almost
four times higher than the average secrecy rate. This consideration gives the idea
on the cost in granting and providing secrecy and confidentiality, in terms of PLS
performance.

8.4.3.1 Overall Comparison

A comparison between the SISO and MIMO scenarios is reported in this section.
The average secrecy rate, averaged over the channel realizations, of the two trans-
mission schemes for different frequency ranges and background noise models, is
summarized in Table8.2. As a term of comparison, both the SISO database (DB), dis-
cussed in Sect. 8.3.2 (identified by ‘our DB’), and the ETSI measurements, described
in Sect. 8.4.3, are considered. Moreover, various power allocation strategies are
assumed.

The results show that when considering the 2–28 MHz frequency range and the
keyhole effect, with the same transmitting plug for the main and the wiretapper
channels, the average secrecy rate for the SISO scheme is not very high. This, even
though the optimization problem is subject to a total power constraint, as detailed
in Sect. 8.3.1. However, the SISO channel performance for the house sites (our DB)
almost doubles when considering the entire database, irrespectively of the transmit-
ting plug. Indeed, with this choice, the channels used in the simulation are more

Table 8.2 Average secrecy rate comparison for different transmission schemes, frequency ranges,
power allocation strategies and background noise

Transmission Frequency Background Power Measurements Secrecy rate

scheme range (MHz) noise allocation database (Mbit/s)

SISO 2–28 AWGN Optimal Our DB (same Tx) 37.4

SISO 2–28 AWGN Uniform Our DB (all) 52.8

SISO 2–28 AWGN Uniform ETSI (all) 62.9

MIMO 2–28 AWGN Uniform ETSI (all) 90.4

MIMO 2–86 Measured AO ETSI (all) 332

Two distinct databases are considered
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uncorrelated. For comparison purposes, in this case a uniform power constraint,
equal to the HPAV PSD limit, is considered. However, this assumption does not
significantly affect the achievable performance, as detailed in [17].

Now, the ETSI measurements are considered under the same uniform power con-
straint and AWGN. Focusing on the reduced 2–28 MHz frequency range and con-
verting the 2× 4 Δ-style to star-style MIMO scheme into a Δ-style to Δ-style SISO
channel, it can be seen as the average secrecy rate is only slightly higher compared
to that achieved on the whole DB of the other measurement campaign. Thus, the two
different scenarios can be compared. If the spatial dimension is exploited through
MIMO transmission, the performance increases further. Moreover, the bandwidth
extension up to 86 MHz, the real background noise assumption, together with the
AO algorithm, provide a drastic increase in the achievable secrecy rate.

It can be concluded that the keyhole effect significantly limits the achievable
secrecy rate. However, the performance improves through MIMO transmission,
bandwidth extension, real noise assumption and non uniform power allocation.

8.5 Final Remarks

It has been shown that PLS over PLC is possible, although constrained and limited
by the channel properties and the network characteristics. The results show that PLC
channels exhibit log-normal fading, with frequency correlation, due to coupling and
cross-talk, and spatial correlation, mainly caused by the underlying network struc-
ture. The typical tree-structured PLC network topology gives rise to what is known
as keyhole effect, which causes spatial correlation and rank deficiency. As showed,
these effects, together with the channel statistics, limit the PLS performance. Fur-
thermore, the comparison among wireless (characterized by Rayleigh fading) and
PLC scenarios (characterized by correlated log-normal fading) shows that the for-
mer outperforms the latter in terms of secrecy rate, under the same SNR assumption.
However, the performance can be improved through the exploitation of the spa-
tial dimension, via the use of MIMO transmission, extending the transmission band
2–28 to 2–86 MHz, and exploiting the power allocation provided by the AO algo-
rithm. The performance improves furtherwhen colored and spatially correlated back-
ground noise is considered. The results have been obtained with measured channels
and noise PSD. Therefore, they have practical value and provide an indication of the
achievable level of secrecy if physical layer mechanisms are considered.
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Chapter 9
Security Aspects of Compressed Sensing

Tiziano Bianchi and Enrico Magli

Abstract In this chapter, wewill consider the security achievable by the compressed
sensing (CS) framework under different constructions of the sensing matrix. CS can
provide a form of data confidentiality when the signals are sensed by a random
matrix composed of i.i.d. Gaussian variables. However, alternative constructions,
based either on different distribution or on circulant matrices, which have similar CS
recovery performance as Gaussian random matrices and admit faster implementa-
tions, are more suitable for practical CS systems. Compared to Gaussian matrices,
which leak only the energy of the sensed signal, we show that generic matrices leak
also some information about the structure of the sensed signal. In order to character-
ize this information leakage, we propose an operational definition of security linked
to the difficulty of distinguishing equal energy signals and we propose practical
attacks to test this definition. The results provide interesting insights on the security
of generic sensing matrices, showing that a properly randomized partial circulant
matrix can provide a weak encryption layer irrespective of the signal sparsity and
the sensing domain.

9.1 Introduction

Compressed sensing (CS) has recently been proposed as an efficient framework for
acquiring sparse signals represented by few nonzero coefficients in a suitable basis
[8]. CS relies on the fact that linear measurements of a sparse signal enable signal
recovery with high probability when the measurements satisfy certain incoherence
properties with respect to the signal basis. Interestingly, measurements acquired
using linear projections generated according to a random sensing matrix have such
properties [3]. The low complexity acquisition and reduced energy consumption
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offered by CS can be beneficial to several applications, as shown by recent works
on spectrum sensing [9], wireless sensor networks [11], network anomaly detection
[15]. Hence, assessing whether the randomness in the acquisition process implicitly
provides some kind of confidentiality is an important open problem.

In the literature, the security of CS has been analyzed following two main para-
digms. A first approach is to argue that CS provides computational secrecy if viewed
as a cryptosystem, since looking for the correct sensing matrix over the key space
is a computationally intractable problem [16, 17]. However, this approach does not
provide any formal security proof regarding CS. The second approach is to consider
the security of random linear measurements according to an information theoretic
framework [19]. As correctly pointed out in [17], CS does not provide information
theoretic secrecy, since the mutual information between the measurements and the
sensed signal is always greater than zero. However, it is possible to prove that CS
measurements asymptotically reveal only the energy of the signal [2] and that nor-
malizing the measurements can provide a perfectly secure channel in the case of
Gaussian sensing matrices [1].

The results in the previous works are based on the central limit theorem and
the properties of the Gaussian distribution and are valid when the elements of the
sensing matrix are i.i.d. random variables. Moreover, they consider a scenario in
which the sensing matrix is continually updated, implementing a sort of one time
pad. Such requirements are usually too demanding for practical CS systems. Using
fully random matrices requires either storing or generating on the fly a great amount
of random values. Moreover, the generation of Gaussian distributed values may be
difficult in low complexity systems.

The above problems can be solved in practice by resorting to structured matrices
[7, 12] and generating the sensing matrix according to simpler distributions, like
the Bernoulli one. However, even if such constructions guarantee similar recovery
properties as fully random matrices made of Gaussian i.i.d. values, their security
properties are still not fully understood. In this chapter, we will analyze the security
of practical sensing matrices according to an alternative security definition based on
the performance of a detector which tries to distinguish different signals from their
measurements. We will also provide useful bounds to characterize the security of
CS according to this definition and validate such bounds in simple scenarios through
simulations.

9.2 Background

9.2.1 Compressed Sensing

A signal x ∈ Rn is called k-sparse if there exists a basis Φ such that x = Φϑ
and ϑ has at most k nonzero entries, i.e., ||ϑ||0 ≤ k. According to the compressed
sensing framework, a k-sparse signal can be exactly recovered from m < n linear
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measurements
y = Ax (9.1)

by solving a non-convex minimization problem [4, 8].
In practice, if the entries of A are i.i.d. variables from a sub-Gaussian distribution,

then exact recovery of k-sparse signals can be achieved with very high probability
by solving the convex minimization problem

ϑ̂ = argmin
ϑ

||ϑ||1, subject to AΦϑ = y (9.2)

as long as m = O(k log(n/k)) [3].

9.2.2 Security Definitions

Let us call the set of possible plaintextsP , the set of cipher texts C and a key K . A
private key cryptosystem is a pair of functions eK : P → C , dK : C → P such
that, given a plain text p ∈ P , and a ciphertext c ∈ C , we have that dK (eK (p)) = p
and that it is unfeasible, without knowing the key K , to determine p such that
eK (p) = c.

A cryptosystem is said to be perfectly secure [19] if the posterior probability of
the ciphertext given the plaintext p is independent of p, i.e., if

P(c|p) = P(c). (9.3)

Given a perfectly secure cryptosystem, an attack cannot be more successful than
guessing the plaintext at random.

Following the approach in [1], we define a CS-based cryptosystem where the sig-
nal x is the plain text p, the sensingmatrix A is the secret key K and themeasurement
vector y is the cipher text c. The encryption function eA is the matrix multiplica-
tion between the sensing matrix A and the signal x ; the decryption is achieved by
solving the problem in (9.2). We assume that each sensing matrix is used only once
(one-time sensing matrix (OTS) scenario), and that different sensing matrices are
statistically independent. Under this scenario, we can assume that the adversary has
only knowledge of the measurements y (ciphertext-only attack (COA) scenario),
since the knowledge of plaintext/ciphertext pairs (x, y) does not reveal anything
about the unknown plaintexts. CS-based cryptosystems cannot achieve in general
perfect secrecy [1, 17]. However, weaker security notions may apply, as we will
show in the next sections.
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9.3 Security of the Measurements

In this section, we summarize the main results regarding the security of CS mea-
surements. In the first subsection, we review the security of fully random sensing
matrices, i.e., when the matrix entries are i.i.d. random variables. In the second sub-
section, we address the security of partial circulant random sensing matrices, which
have an important role in the deployment of practical CS systems.

9.3.1 Fully Random Matrices

Let us consider the OTS cryptosystem defined by y = Ax . Let us denote with I (x, y)

the mutual information between x and y [5], and define Ex = ||x ||22. We have the
following important result [1]:

Theorem 9.1 If [A]i, j are i.i.d. zero-mean Gaussian variables, then the OTS cryp-
tosystem satisfies I (x; y) = I (Ex ; y).

The above result says that an OTS cryptosystem using an i.i.d. Gaussian sensing
matrix does not reveal anythingmore about x than its energy andwhat can be inferred
by knowing its energy. It is worth noting that this is true irrespective of the sparsity
degree of x , that is, x does not necessarily have to be sparse. In the following, we
will denote such a cryptosystem as Gaussian-OTS (G-OTS) cryptosystem.

The special properties of Gaussian sensing matrices can be exploited to obtain a
perfectly “secured” version of the G-OTS cryptosystem. Let us modify the G-OTS
cryptosystem so that only normalized measurements are transmitted, i.e., using as
ciphertext the vector

uy =
{

y/
√
Ey Ey > 0

U Ey = 0
(9.4)

where U is a random vector uniformly distributed on a unit radius m-sphere. We
denote it as SG-OTS.

Theorem 9.2 The SG-OTS cryptosystem is perfectly secure, i.e., P(uy |x) = P(uy).

Proof It is easy to verify that for a Gaussian A the vector y is spherically distributed,
i.e., uy is uniformly distributed on the unit radius m-sphere irrespective of x . ��

9.3.2 Circulant Matrices

Due to the complexity of performing the product Ax when A is a fully randommatrix,
some authors have suggested to use partial circulant matrices generated from a row
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of i.i.d. variables [12, 18, 21]. Such matrices have the following form

A =

⎡

⎢
⎢
⎢
⎣

a1 a2 a3 . . . an

an a1 a2 . . . an−1
...

...

an−m+2 an−m+3 an−m+4 . . . an−m+1

⎤

⎥
⎥
⎥
⎦

(9.5)

where thefirst rowaT = [a1, a2, . . . , an] is a vector of i.i.d. variables fromaGaussian
or sub-Gaussian (e.g., Bernoulli) distribution. Partial circulant matrices have similar
recovery performance as fully random matrices [21]. Moreover, they can be diago-
nalized using a discrete Fourier transform (DFT) as

A = PW H �W (9.6)

where W is the unitary DFT matrix, � is a diagonal matrix whose nonzero elements
are the DFT of the sequence [a1, an, an−1, . . . , a2], i.e., the first column of the n × n
fully circulant matrix generated from aT , and P is a m ×n matrix that selects the first
m entries of a vector of n elements. Thanks to the above decomposition, the product
Ax can be efficiently implemented using a fast Fourier transform (FFT). Moreover,
the cost of transmitting or generating the sensing matrix is also sensibly reduced,
since only n random values are required.

In order to generalize the concept of partial circulant matrix, in the following we
will consider sensing matrices that can be expressed as

A = PW H �W R. (9.7)

In the above notation, we assume that P select a generic subset of m indexes [21],
whereas R is a generic scrambling matrix. The above construction is somewhat
similar to the structurally random matrices proposed in [7].

Let us consider the OTS cryptosystem defined by y = Ax , where A can be
expressed as in (9.7) and the matrices P and R are public. We will denote such a
cryptosystem asOTS-circulant (OTS-C). Let us defineCv as the circular autocorrela-
tion matrix of vector v, that is, [Cv]i j = ∑n

r=1 vrvr+i− j mod n , for i, j = 1, . . . , n,
where [A]i j denotes the element in the i th row and j th column of matrix A. It is
easy to verify that Cv is a Toeplitz matrix and that its diagonal elements are equal to
Ev = vT v. We have the following result:

Theorem 9.3 If ai , i = 1, . . . , n, are i.i.d. zero-mean Gaussian variables, then the
OTS-C cryptosystem satisfies P(y|x) = P(y|PCRx PT ).

Proof Let us consider the probability distribution function P(y|x) for a given x .
Since ai are Gaussian, we have that P(y|x) is a multivariate Gaussian distribution
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with mean μy|x and covariance matrix Cy|x . It is immediate to find μy|x = E[y|x] =
E[A]x = 0, whereas we have

Cy|x = E[AxxT AT ] = E[PW H �(W Rx)(W Rx)H �H W PT ]
= n PW Hdiag{W Rx}E[(W H a)(W H a)H ]

×diag{W Rx}H W PT

= n PW Hdiag{W Rx}W H E[aaT ]Wdiag{W Rx}H W PT

= nσ2
A PW Hdiag{W Rx}diag{W Rx}H W PT = σ2

A PCRx PT

(9.8)

where diag{v} denotes a diagonal matrix defined by vector v, we use � = √
n ·

diag{W H a} and the fact that diag{u}v = diag{v}u, and we assume that ai have vari-
ance σ2

A. It follows that y depends on x only through the autocorrelation PCRx PT ,
i.e., P(y|x) = P(y|PCRx PT ). ��

The above result says that an OTS-C cryptosystem using i.i.d. Gaussian variables
reveals only some elements of the circular autocorrelation matrix of Rx , according
to the particular selection matrix P . It is worth noting that this is true irrespective of
the sparsity degree of x , that is, x does not necessarily have to be sparse.

In the following, we will consider three variants of the OTS-C cryptosystem:

1. Gaussian-OTS-C (G-OTS-C) cryptosystem, where P is fixed and public and R
is the identity matrix, implying P(y|x) = P(y|PCx PT );

2. Gaussian-OTS-singly randomized circulant (G-OTS-R1), where the selection
matrix P is randomly drawn, with uniform distribution, over all the possible
choices of m indexes out of n and kept secret whereas R is the identity matrix. In
this case, it is easy to derive

P(y|x) = 1

NP

NP∑

r=1

N (0,σ2
A Pr Cx PT

r )

where Pr denotes the r th possible selection matrix, NP = n!/(n − m)!, and
N (μ, C) denotes a multivariate Gaussian distribution with mean μ and covari-
ance matrix C .

3. Gaussian-OTS-doubly randomized circulant (G-OTS-R2), where P is chosen as
above and R is a diagonal matrix introducing a random sign flip on the elements
of x , i.e., its diagonal elements are i.i.d. Rademacher variables. In this case, we
obtain

P(y|x) = 1

NP

1

NR

NP∑

r=1

NR∑

s=1

N (0,σ2
A Pr CRs x PT

r )

where Rs denotes the sth possible sign randomization matrix and NR = 2n .
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9.4 Security Metrics

Measurements taken with a non-Gaussian or a circulant sensing matrix in general
are not distributed according to a spherically symmetric distribution. As a result, this
kind of sensing matrices provide a weaker security than Gaussian sensing matrices,
since their information leakage is not limited to the energy of x [1]. In order to
characterize this additional leakage, we introduce a security metric based on the
problemof distinguishingwhether themeasurements y comes fromoneof twoknown
signals x1 and x2. This security definition is inspired to indistinguishability definitions
commonly used in cryptography [10]. Let us consider a signal x that belongs to a two-
element set {x1, x2}; a detector is a function that given the measurements y outputs
one of two possible signals x1, x2. Formally, this can be defined as D : R

m →
{x1, x2}. Given a certain detector, we define the probability of detection with respect
to signal xi as Pd,i = Pr{D(y) = xi |x = xi } and the respective probability of false
alarm as Pf,i = Pr{D(y) = xi |x �= xi }. It is immediate to verify Pd,2 = 1 − Pf,1

and Pf,2 = 1 − Pd,1, so that Pd,1 − Pf,1 = Pd,2 − Pf,2 � Pd − Pf .

Definition 1 A cryptosystem is ϑ-indistinguishable with respect to two signals x1
and x2 if for every possible detector D(y) we have

Pd − Pf ≤ ϑ. (9.9)

According to the above definition, lower values of ϑ correspond to higher security,
with ϑ = 0 being equivalent to perfect secrecy.

Given an OTS cryptosystem defined by a sensing matrix A with a certain dis-
tribution, we can link the ϑ-indistinguishability of the cryptosystem to P(y|x1) and
P(y|x2). Let us define the total variation (TV) distance between the probability dis-
tributions PA(a) and PB(b) as δ(PA(a),PB(b)) = 1

2

∫ |PA(t) − PB(t)|dt . Let us
also denote in short δ(P(y|x1),P(y|x2)) = δ(P1,P2). We have the following:

Theorem 9.4 An OTS cryptosystem is at least δ(P1,P2)-indistinguishable with
respect to two signals x1 and x2.

Proof The sum of error probabilities in a statistical hypothesis test can be lower
bounded as [14]

Pr{D(y) = x2|x1} + Pr{D(y) = x1|x2} = 1 − Pd + Pf

≥ 1 − δ(P(y|x1),P(y|x2)) (9.10)

from which it is immediate to derive Pd − Pf ≤ δ(P1,P2). ��
In general, it is difficult to find a closed form expression for the TV distance in the

case of arbitrary distributions and/or structured matrices. However, a useful upper
bound on the TV distance can be evaluated thanks to the Pinsker’s inequality, which
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states δ(P1,P2) ≤ √
D(P1||P2)/2, where D(P1||P2) denotes the Kullback-Leibler

(KL) divergence between the distributions P1 and P2.1

9.4.1 Bounds for Fully Random Matrices

Under the assumption that the elements of y are i.i.d., it is possible to find an upper
bound for Pd − Pf by numerically evaluating the KL divergence between P([y]i |x1)
and P([y]i |x2), where [y]i denotes the i th element of vector y. Namely, we can
estimate

Pd − Pf ≤ ϑKL(x1, x2) �
√

m

2
D(P([y]i |x1)||P([y]i |x2)) (9.11)

where KL divergences can be computed numerically. In order to compute numerical
approximations of the probability density functions P([y]i |x1) and P([y]i |x2), we
can consider the characteristic function of the random variable a = [A]i j , defined
as ϕa(t) = E[e jta]. It is well known that the pdf of a random variable a can be
obtained as P(a) = 1

2π

∫ ∞
−∞ ϕa(t)e− j tadt , i.e., that the characteristic function and

the corresponding pdf form a Fourier transform pair. We have that the characteristic
function of [y]i given a generic signal x can be computed as

ϕ[y]i |x (t) =
n∏

j=1

ϕa([x] j t) (9.12)

whereϕa(t) is the characteristic function of a generic element of the sensingmatrix A.
Hence, given x1 and x2, we can use (9.12) to evaluate the characteristic functions
ϕ[y]i |x1 and ϕ[y]i |x2 , find the corresponding P([y]i |x1) and P([y]i |x2) through a
Fourier transform.

9.4.2 Bounds for Circulant Matrices

In the case of circulant sensing matrices composed by Gaussian random variables,
it is possible to exploit the fact that the KL divergence of two multivariate Gaussian
distributions has a nice closed form. Given any two different signals x1 and x2, we
have the following result:

1Actually, since KL divergence is not symmetric, a stricter bound is given as δ(P1,P2) ≤√
min (D(P1||P2), D(P2||P2)) /2. In the following sections, for the sake of conciseness, we will

always consider a single KL divergence. However, experimental results are based on the stricter
bound.
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Theorem 9.5 A G-OTS-C cryptosystem is at least ϑC (x1, x2)-indistinguishable
w.r.t. x1, x2, where

ϑC (x1, x2) = 1

2

√

log
|C2|
|C1| + Tr(C−1

2 C1) − m (9.13)

and Ch = PCxh PT , for h = 1, 2.

Proof Thanks to Proposition 9.3, we have that P(y|xh) = N (0,σ2
ACh). Hence, the

Kullback-Leibler (KL) divergence between P(y|x1) and P(y|x2) can be expressed
as [6]

D(P1||P2) = 1

2

[

log
|C2|
|C1| + Tr(C−1

2 C1) − m

]

. (9.14)

The result then follows from Pinsker’s inequality. ��
Theorem 9.6 A G-OTS-R1 cryptosystem is at least ϑR1(x1, x2)-indistinguishable
w.r.t. x1, x2, where

ϑR1(x1, x2) =
√
√
√
√ 1

4N 2
P

NP∑

r1=1

NP∑

r2=1

[

log
|C2,r2|
|C1,r1| + Tr(C−1

2,r2C1,r1)

]

− m

4
(9.15)

and Ch,r = Pr Cxh PT
r , for h = 1, 2. A G-OTS-R2 cryptosystem is at least

ϑR2(x1, x2)-indistinguishable w.r.t. x1, x2, where

ϑR2(x1, x2) =
√
√
√
√ 1

4N 2
P N 2

R

NP∑

r1=1

NP∑

r2=1

NR∑

s1=1

NR∑

s2=1

[

log
|C2,r2,s2|
|C1,r1,s1| + Tr(C−1

2,r2,s2C1,r1,s1)

]

− m

4

(9.16)
and Ch,r,s = Pr CRs xh PT

r , for h = 1, 2.

Proof For G-OTS-R1 and G-OTS-R2, we have that P(y|xh) can be expressed as a
mixture of Gaussian distributions. The KL divergence between two mixture distri-
butions Pi = ∑

r wh,rPh,r , h = 1, 2, can be upper bounded using the following
convexity bound [13]

D(P1||P2) ≤
∑

r1,r2

w1,r1w2,r2D(P1,r1||P2,r2). (9.17)

Hence, the result can be easily obtained by considering that w1,r = w2,r = 1
NP

, for

G-OTS-R1, or w1,r = w2,r = 1
NP NR

, for G-OTS-R2, and then applying Pinsker’s
inequality to the upper bound on the KL divergence. ��

For relatively large values ofn andm, the exact computationof the bounds in (9.15)
and (9.16) can become prohibitively expensive. A possible approach is to estimate
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the bound using Monte Carlo integration. Alternatively, following the suggestion in
[13], we can approximate the KL divergence between the two mixture distributions
using the KL divergence of two multivariate Gaussian distributions having the same
mean and covariance matrix. For the G-OTS-R1 cryptosystem, the covariance matrix
of the involved mixture distributions has a very peculiar form, since

[Ch]i j =
NP∑

r=1

1

NP
[Ch,r ]i j =

{
σ2

AExh i = j

σ2
A

∑
s �=t xh,s xh,t i �= j

(9.18)

for h = 1, 2. The above covariance matrix can be expressed in a compact form as

Ch = αh Im + βh11
T , where we define αh = σ2

A
n−1 (nExh − (1T xh)2) and βh =

σ2
A

n−1 ((1
T xh)2 − Exh ). According to the above representation, the KL divergence

between P(y|x1) and P(y|x2) can be approximated as

D(P1||P2) ≈1

2

[

log
αm−1
2 (α2 + mβ2)

αm−1
1 (α1 + mβ1)

+ mα2(α1 + β1) + m(m − 1)α1β2

α2(α2 + mβ2)
− m

]

(9.19)

�D̃(x1, x2).

Thanks to the above equation, an approximate security metric can be defined as

ϑ′
R1(x1, x2) =

√

D̃(x1, x2)

2
.

However, since (9.19) is not an upper bound on KL divergence, ϑ′
R1(x1, x2) does not

provide a strict security bound for the G-OTS-R1 cryptosystem.
Unfortunately, the above approach cannot be used to provide a meaningful bound

for the G-OTS-R2 cryptosystem, since in this case we have

Ch =
NP∑

r=1

NR∑

s=1

1

NP NR
Ch,r,s = Exh Im,

meaning that for equal-energy signals the approximated KL divergence is zero. Nev-
ertheless, by using the convexity bound approach, an approximate security metric
for the G-OTS-R2 cryptosystem can be obtained as

ϑ′
R2(x1, x2) =

√
√
√
√ 1

2N 2
R

NR∑

s1=1

NR∑

s2=1

D̃(Rs1x1, Rs2x2).
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Again, the exact computation of the above metric may become too expensive for
large values of n. In those cases, we can resort to Monte Carlo integration.

9.4.3 Bounds for Normalized Measurements

The normalization strategy described in Sect. 9.3 does not provide a perfectly secure
channel in the case of arbitrary sensing matrices. However, we can provide an upper
bound on the security of normalized measurements by using the above bounds that
holds for equal energy signals. Let us define uxh = xh/

√
Exh and uyh = yh/

√
Eyh ,

where yh = Axh , h = 1, 2. Then we have the following

Theorem 9.7 The upper bounds given in (9.13), (9.15), and (9.16) computed for
equal-energy signals ux1 , ux2 holds also in the case of normalized measurements of
generic signals x1, x2.

Proof Let us define y′
i = Auxi . It is easy to verify that uy′

i
= y′

i/
√
Ey′

i
= uyi . Then,

we have the following inequalities involving the KL divergence

D(y′
1||y′

2) = D(P(uy1 ,Ey′
1
)||P(uy2 ,Ey′

2
))

= D(uy1 ||uy2) + D(P(Ey′
1
|uy1)||P(Ey′

1
|uy1))

≥ D(uy1 ||uy2)

(9.20)

where we exploited the chain rule for KL divergence [5] and the fact that KL diver-
gence is always nonnegative. Hence, the proof follows from the following chain of
inequalities

δ(P(uy1),P(uy2)) ≤
√
1

2
D(uy1 ||uy2) ≤

√
1

2
D(y′

1||y′
2) (9.21)

where it is easy to verify that the right hand side of (9.21) evaluates to the upper
bound on the distinguishability of equal energy signals. ��

9.5 Attacks to CS Cryptosystems

The bounds introduced in the previous Section hold for any possible attack under
the COA scenario. However, it is interesting to evaluate the performance of practical
attacks with respect to those bounds. We consider an hypothetical scenario in which
an OTS cryptosystem is used to sense two distinct signals x1 and x2 having equal
energy. Without loss of generality, we can assume that Ex1 = Ex2 = 1. The aim
of the attacker is to guess whether the measurements conceal the signal x1 or the
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signal x2. This is a classical detection problem, where the aim is to distinguish
whether the measurements y come from the probability distribution P(y|x1) or from
the probability distribution P(y|x2).

Let us consider a detector D . The Neyman-Pearson (NP) lemma states that for
Pf = α, the probability of detection is maximized by letting D(y) = x1 whenever

�(y) = P(y|x1)
P(y|x2) ≥ τ (9.22)

where τ satisfies Pr{�(y) ≥ τ |x2} = Pf .
When the sensingmatrix ismade up of i.i.d. elements, it turns out that the elements

of y are i.i.d. as well. This permits to rewrite the optimal NP test as

�′(y) =
m∑

i=1

(log(P([y]i |x1)) − log(P([y]i |x2))) ≥ τ ′. (9.23)

Moreover, since each element of y is given by the sum of independent variables, the
distributions P([y]i |x1) and P([y]i |x2) can be numerically computed as detailed in
Sect. 9.4.

In the case of the G-OTS-C cryptosystem, the optimal NP test can be easily
obtained as

�C (y) = yT (C−1
2 − C−1

1 )y ≥ τ ′. (9.24)

In the case of the G-OTS-R1 cryptosystem, the optimal NP test would be obtained
as the ratio of two mixture distributions. Since the computation of the NP test is not
practical in this case, we consider a simpler test obtained by approximating the two
mixture distributions using two multivariate Gaussian distributions with the same
mean and covariance matrix. By using the expressions of the covariance matrices
found in Sect. 9.3, the test can be expressed as

�R(y) =
(

1

α2
− 1

α1

)

yT y −
(

β2

α2(α2 + mβ2)
− β1

α1(α1 + mβ1)

)

(1T y)2 ≥ τ ′′.
(9.25)

It is worth noting that the above test is not able to distinguish equal-energy signals
sensed with the G-OTS-R2 cryptosystem, since equal energy signals yields measure-
ments with the same covariance matrix.

9.6 Simulation Results

In this section, we evaluate the distinguishability of equal-energy signals in different
scenarios. In each experiment, for the numerical evaluation of ϑKL and the NP test
(9.23), the involved pdfs have been sampled on 10000 equispaced bins between −8
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and 8, whereas ϑR1, ϑR2, and ϑ′
R2 have been estimated via aMonte Carlo integration

using 105 random samples.

9.6.1 Upper Bound Validation

The first experiment has been carried out with the aim of assessing the different upper
bounds on the distinguishability of unit energy signals: thanks toTheorem9.7, similar
results also apply to arbitrary signals if we consider normalized measurements. In
the case of fully random matrices, the signals have been defined as [x1]i = 1/

√
n

and [x2]i = Z(α)e−α(i−1), for i = 1, . . . , n, where Z(α) is a suitable normalizing
constant such that Ex2 = 1. In Fig. 9.1 we show the numerically evaluated upper
bound ϑKL when the entries of A are i.i.d. uniform variables with unit variance
(uniform sensing matrix), for n = 1000 and different combinations of α and m
parameters. In the same plots, we also show the maximum value of Pd − Pf achieved
by the optimal NP test (9.23), evaluated over 106 independent realizations. As can be
seen, the performance of the detection attack is predicted quite well by the numerical
upper bound.

In the case of G-OTS cryptosystems based on circulant matrices, the signals have
been defined as x1 = [1, 0, . . . , 0] and [x2]i = Z(α)e−4α(i−1), for i = 1, . . . , n,
where Z(α) is a suitable normalizing constant such that Ex2 = 1. For the G-OTS-C
cryptosystem, we consider the matrix P that selects the first m rows of the n × n
circulant matrix W H �W : an advantage of this construction is that the resulting sens-
ing matrix enables several processing tasks directly on the measurements [20]. In
Fig. 9.2, we compared the theoretical upper bounds ϑC , ϑR1, and ϑR2 with the per-
formance obtained by the optimal test �C and the suboptimal test �R , respectively,
for n = 100 and different combinations of α and m parameters. The approximated
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Fig. 9.1 Distinguishability of unit energy vectors using a uniform sensing matrix: a m = 1,
n = 1000; b α = 0.1, n = 1000
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Fig. 9.2 Distinguishability of unit energy vectors using circulant matrices: a m = 2, n = 100;
b α = 1, n = 100

bounds ϑ′
R1, and ϑ′

R2 are shown as well. The performance of the detection attack
�C is predicted quite well by the theoretical upper bound ϑC , whereas the upper
bounds ϑR1 and ϑR2 appear quite loose. Interestingly, the approximation ϑ′

R1 is quite
close to the simulated performance of the detection attack �R , especially for higher
values of ϑ.

9.6.2 Expected Security

In the second experiment, we computed the numerical upper bounds and the approxi-
mated bounds for different realizations of equal-energy signals x1 and x2 and different
scenarios. Namely, we considered 1000 pairs ϑ1,ϑ2 of independent vectors with k
nonzero entries uniformly distributed on a unit norm n-sphere, where the respective
k-sparse signals were obtained by multiplying those vectors by a unitary matrix Φ.
The first scenario considered as Φ the identity matrix, i.e., the signals were sparse
in the sensing domain. The second scenario considered as Φ the discrete cosine
transform (DCT) matrix. It can be noticed that for equal energy signals a sensing
matrix with Gaussian i.i.d. entries achieves perfect secrecy [1], i.e., ϑ = 0. Hence,
the proposed experiment permits to immediately evaluate the security loss incurred
when using more structured sensing matrices.

In both scenarios we computed ϑKL for m = 1, since for m > 1 ϑKL can be easily
obtained by multiplying the distinguishability calculated previously by a factor

√
m,

whereas ϑC , ϑ′
R1, and ϑ′

R2 were computed for m = 2.
In Fig. 9.3a, we show the 0.95 percentile of ϑKL when n = 1000 and k varies

in the interval [1, 500]. As expected, if the signals are sparse in the sensing domain
the distinguishability decreases when k increases, whereas if the signal are sparse
in a different domain the distinguishability is almost constant with respect to k. In
Fig. 9.3b, we show the 0.95 percentile of ϑKL when k = 10 and n varies in the
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Fig. 9.3 Distinguishability of k-sparse unit energy signals when using different fully random sens-
ing matrix: a n = 1000; b k = 10

interval [20, 1000]. As expected, the distinguishability of signals that are sparse in
the DCT domain decreases when n increases, whereas if the signals are sparse in the
sensing domain the distinguishability does not depend on n.

In Fig. 9.4a, we show the 0.95 percentile of ϑC , ϑ′
R1, and ϑ′

R2 when n = 1000 and
k varies in the interval [1, 500]. The results show that for the two considered classes
of sparse signals the security of G-OTS-C and G-OTS-R1 has a similar behavior:
the security of both cryptosystems is independent of k when the signal is sparse in the
sensing domain, whereas there is a strong dependence on the signal sparsity when the
signal is sparse in theDCTdomain, since sparser signals aremore difficult to conceal.
An intuitive explanation is that a very sparse signal in the DCT domain is heavily
correlated in the sensing domain and a circulant matrix leaks a lot of information
on this correlation. For G-OTS-R2, the security is independent of both k and the
sparsity domain, indicating that the prerandomization improves the confidentiality
of measurements.

In Fig. 9.4b, we show the 0.95 percentile of ϑC , ϑ′
R1, and ϑ′

R2 when k = 10
and n varies in the interval [20, 1000]. The security of the G-OTS-C cryptosystem
increases for large values of n when the signal is sparse in the sensing domain,
whereas it decreases for large values of n when the signal is sparse in the DCT
domain. This can be explained by the fact that a signal having a fixed sparsity in
the DCT domain becomes extremely correlated when n increases. In the case of
the G-OTS-R1 cryptosystem, the security is independent of n when the signal is
sparse in the DCT domain, whereas it significantly increases for large values of
n when the signal is sparse in the sensing domain. In the case of the G-OTS-R2
cryptosystem, the security always increases for large values of n, showing that this
second acquisition strategy guarantees the same level of confidentiality irrespective
of the sparsity domain.
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Fig. 9.4 Distinguishability of k-sparse unit energy signals when using different random circulant
sensing matrices: a n = 1000; b k = 10

9.7 Conclusions

In this chapter, we have analyzed the security of CS measurements when the sensing
matrix is either a fully random non-Gaussian matrix or a partial circulant random
matrix. Unlike the case of fully random Gaussian matrices, which reveal only the
energy of the sensed signal, we find that more general constructions also reveal some
partial information on the structure of the signal. This fact implies that normalizing
themeasurements cannot achieve a perfectly secure channel for this kind of matrices.
In order to measure this loss of security, we introduce an operational definition of
security based on the problem of distinguishing different signals and we provide use-
ful bounds for evaluating the security of various types of sensing matrices according
to this definition.

The above definition has been applied considering two classes of sparse signals.
The results indicate that non-Gaussian sensing matrices can provide a certain level of
confidentiality when signals are sparse in a DFT-like domain, however they are not
able to conceal signals that are very sparse in the sensing domain. For what concerns
circulant sensingmatrices, the results indicate that partial circulant matrices obtained
by taking the first rows of a circulantmatrix, which are interesting in practical settings
since they enable processing directly on the measurements, provide a very poor
encryption layer. The security of circulant sensing matrices can be improved by
using a proper randomization. If the sensing matrix is obtained by choosing the
rows at random, this construction provides a weak encryption layer if the signals
are sparse in the sensing domain, but is not very secure if the signal is sparse in
a DFT-like domain. If, in addition, the signs of the signal samples are randomly
scrambled before acquisition, this second construction is shown to provide a weak
encryption layer irrespective of the sparsity of the signal and the sparsity domain. It
is worth noting that the above randomized constructions, even if they do not permit
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direct processing of the measurements, still retain the computational advantages of
standard circulant matrices.
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Chapter 10
Subspace Fuzzy Vault

Kyle Marshall, Davide Schipani, Anna-Lena Trautmann
and Joachim Rosenthal

Abstract Fuzzy vault is a scheme providing secure authentication based on fuzzy
matching of sets. A major application is the use of biometric features for authenti-
cation, whereby unencrypted storage of these features is not an option because of
security concerns. While there is still ongoing research around the practical imple-
mentation of such schemes, we propose and analyze here an alternative construction
based on subspace codes. This offers some advantages in terms of security, as an even-
tual discovery of the key does not provide an obvious access to the features. Crucial
for an efficient implementation are the computational complexity and the choice of
good code parameters. The parameters depend on the particular application, e.g. the
biometric feature to be stored and the rate one wants to allow for false acceptance.
The developed theory is closely linked to constructions of subspace codes studied in
the area of random network coding.
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10.1 Introduction

Fuzzy vault is the term used by Juels and Sudan in [7] to describe a cryptographic
primitive, in which a key κ is hidden by a set of features A in such a way, that
any witness B, which is close enough to A under the set difference metric, can
decommit κ. Fuzzy vault is related to the fuzzy commitment scheme of Juels and
Wattenberg [8], which gives a solution for noisy hashing of data for the Hamming
distance. This and a dual version of it, the fuzzy syndrome hashing scheme, were
considered by the authors in [1, 4, 17].

The motivation for fuzzy vault is related to the growing interest in using fuzzy
authentication systems, i.e. systems that do not require an exact match, but rather
a partial one, between two sets. Instances include the use of biometric features for
authentication, personal entropy systems to allow password recovery by answering a
set of questions with a level of accuracy above a certain threshold, privacy-protected
matching to allow find a match between two parties without disclosing the features
in public.

In early biometric authentication systems, comparison of a biometric was done
against an image stored locally on the machine, rather than in some hashed form. For
security purposes however, passwords are normally stored in hashed form.Moreover,
since biometric data is irreplaceable in the sense that once compromised it cannot be
changed, storing the data in un-hashed form can pose a significant security risk [3].
Biometric data is inherently noisy, however, so direct hashing of a user’s features
would prevent the authentic user from accessing the system, as no error tolerance in
the matching would be allowed. Using error correcting techniques, the fuzzy vault
is a scheme that can recover a secret key hidden by features even in the presence
of noise. Recent advancements have been made in the pre-alignment of biometrics
(cf. [11] and references therein), specifically fingerprints, allowing for comparative
methods without storage of the image itself. These advancements make fuzzy vault
a promising and feasible cryptographic solution for noisy data.

Recently, much work has been done in the area of error correcting codes in pro-
jective space. These codes turn out to be appropriate for error correction in random
network coding [9], and are referred to as error correcting random network codes,
projective space codes, or subspace codes. The aim of this chapter is to show that
the construction of the fuzzy vault in [7] can be extended and adapted to work for
subspace codes in an analogous way with advantages and limitations. Namely, we
present a construction for a fuzzy vault based on constant dimension subspace codes,
a class of error correcting codes in projective n-space over a finite field Fq . For illus-
tration, an example will be provided by using spread codes, a particular class of
subspace codes.

The rest of the chapter is organized as follows: Sect. 10.2 provides preliminaries,
terminology and refreshes the original fuzzy vault scheme. Section10.3 presents the
new scheme based on subspace codes. Section10.4 relates to security and exam-
ples and lastly Sects. 10.5 and 10.6 give further considerations and concluding final
remarks.
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10.2 Preliminaries

Denote by Fq the finite field with q elements, where q is a prime power. The set
difference metric d� is defined as

d�(A, B) := |(A\B) ∪ (B\A)|, A, B ⊆ Fq

and the Hamming metric dH is defined as

dH (u, v) := |{i | ui �= vi }|, u = (u1, . . . , un), v = (v1, . . . , vn) ∈ F
n
q .

Let g1, . . . , gn ∈ F
∗
q be distinct elements. A k-dimensional Reed-Solomon code

C ⊆ F
n
q can be defined as

C = {( f (g1), . . . , f (gn)) | f (x) ∈ Fq [x], deg( f ) < k}.

It has minimumHamming distance dmin,H (C ) = n −k +1 and cardinality |C | = qk

[12].
A constant dimension (subspace) code is a subset of the Grassmannian Gq(k, n),

the set of all k-dimensional subspaces of Fn
q . The subspace distance defines a metric

on Gq(k, n), given by

dS(U, V ) := dim(U + V ) − dim(U ∩ V ), U, V ∈ Gq(k, n)

for U, V ∈ Gq(k, n) [9]. While finding good subspace codes is still an open research
problem, there are many candidates now, including the Reed-Solomon-like and
spread code constructions [9, 13]. An explicit construction of a spread code can
be found in [13], and it is this construction we use as the definition of a spread code:
Let p(x) ∈ Fq [x] be an irreducible monic polynomial of degree k and P ∈ F

k×k
q be

its companion matrix. Let n = ks for s ∈ N. Then,

S = {rowsp(A1 | · · · | As) | Ai ∈ Fq [P], (A1 | · · · | As) �= (0 | · · · | 0)}

is called a (k, n)-spread code, where rowsp(A) is the row space of a matrix A. From
the definition, one can see that the minimum subspace distance of a spread code is
dmin,S(S ) = 2k and that the cardinality is |S | = qn−1

qk−1
.

For practical purposes we need a unique representation of subspaces, and we will
choose their matrix representation in reduced row echelon form (i.e. the matrix in
reduced row echelon form whose row space is the respective subspace) as such.

We will now briefly revisit the fuzzy vault scheme [7]. We will refer to the follow-
ing description (cf. also [6]), although we are aware of different interpretations of
the scheme throughout the literature, especially in terms of the decoding algorithms
and parameters [16]. Since this scheme is based on polynomial evaluation, it will
henceforth be called the polynomial fuzzy vault (PFV) scheme.
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Let κ = (k0, k1, ..., k�−1) ∈ F
�
q be the secret key and κ(x) = k0 + k1x +

...k�−1x�−1 ∈ Fq [x] the corresponding key polynomial. Let A ⊂ Fq\{0} be the set
of genuine features with |A| = t > �. Furthermore, let λ : Fq → Fq be a random
map such that λ(x) �= κ(x) for all x ∈ B. Choose r > t and select a set B ⊂ Fq\A
such that |B| = r − t . Construct the sets

Pauth = {(x,κ(x)) | x ∈ A},
Pchaff = {(x,λ(x)) | x ∈ B},

V = Pauth ∪ Pchaff .

We will call Pauth the set of authentic points, Pchaff the set of chaff points and V
the set of vault points.

The remaining parts of the fuzzy vault are a code and a corresponding error
correcting decoding algorithm. The code is the �-dimensional Reed-Solomon code
C ⊆ F

t
q ,

C = {( f (g1), . . . , f (gt )) | f (x) ∈ Fq [x], deg( f ) < �},

whose defining distinct evaluation points g1, . . . , gt are the points in A, i.e. the
genuine features. The key polynomial κ(x) gives rise to a codeword ofC . If a witness
attempts to gain access to the key, the witness submits a set of features W ⊂ Fq . Let
Z ⊆ V be the set of vault points (x, y)with x ∈ W . As the error correction capability
of C is 
(t − �)/2�, the witness needs |Z ∩Pauth | ≥ t −
(t − �)/2� = (t + �)/2�
to recover κ(x) with the decoding algorithm.

To simplify the setting and have a more workable model, assume that |W | = t
and that B = Fq\A. Then |Z | = t and we can rewrite d�(A, W ) = 2t −2|A∩W | =
2t − 2|Z ∩ Pauth |). Thus the witness gains access to the key if

d�(A, W ) ≤ 2t − (t + �) ⇐⇒ d�(A, W ) ≤ dmin,H (C ) − 1.

It was shown in [15] that certain reasonable parameters for the PFV scheme cause
the system to be susceptible to a brute force attack. Choi et al. in [2] speed up
the attack by using a fast polynomial reconstruction algorithm. These attacks may
indicate that additional security measures should be taken to prevent the loss of a
user’s features. A different type of security analysis is provided in [6].

10.3 A Fuzzy Vault Scheme Utilizing Subspace Codes

Wewill now explain our newvariant of the fuzzy vault scheme, and call this particular
implementation the subspace fuzzy vault (SFV) scheme. Unlike the PFV scheme in
which the key is given by the coefficients of a polynomial, the key κ̂ in this scheme
is a subspace with a disguised generator matrix κ (not in reduced row echelon form).
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Definition 10.1 Let k ≤ n, C ⊂ Gq(k, n) a constant dimension subspace code, and
κ̂ ∈ C a secret subspace. Choose some κ ∈ F

k×n
q such that rowsp(κ) = κ̂. We will

hide the key by a set of linearly independent features A ⊂ F
k
q with |A| = k and a set

B = F
k
q\A. Let λ(x) : Fk

q → F
n
q be a random map such that λ(x) /∈ rowsp(ˇ) for all

x ∈ B. Define the sets

Pauth = {(x, xκ) | x ∈ A},
Pchaff = {(x,λ(x)) | x ∈ B},

V = Pauth ∪ Pchaff .

Pauth is called the set of authentic points, Pchaff is called the set of chaff points,
and V the set of vault points.

In order for a witness to decommit κ̂, a set W ⊂ F
k
q is submitted and the second

coordinates of the elements in the vault whose first coordinates correspond to W are
used to generate a subspace W ′. This subspace is then decoded to yield a codeword
U ∈ C . We assume that W consists of at most k linearly independent features.

For a set S ⊂ F
k
q , we will denote by 〈S〉κ the subspace spanned by the elements

{sκ | s ∈ S}. We will also assume dim(W ′) = |W |, although this may not happen,
introducing some probability of error, as we mention below. The assumption is jus-
tified by estimating its probability using counting formulas like that in the following
Lemma 10.1, whilst supposing n big enough and the second coordinates of the chaff
points being randomly chosen within their domain.

Theorem 10.1 In the setting of Definition 10.1, the vault recovers the key κ̂ if and
only if

d�(A, W ) ≤ 1

2
(dmin,S(C ) − 1).

Proof We can express W ′ = (W ′ ∩ κ̂)⊕ E for some subspace E ⊂ F
n
q . As shown in

[9], we can uniquely recover κ̂ from W ′ if and only if dS(W ′, κ̂) ≤ 1
2 (dmin,S(C )−1).

Using properties of the rank and linear algebra identities, we get

d�(A, W ) = |W\A| + |A\W |
= dim(〈W\A〉κ) + dim(〈A\W 〉κ)

= dim(〈W\A〉κ) + k − dim(〈A ∩ W 〉κ)

= dim(E) + k − dim(κ̂ ∩ W ′)
= dS(W ′, κ̂).

Indeed, as |W | ≤ k, |A| = k, and W and A are sets of linearly independent features,
Sylvester’s rank inequality implies |W\A| ≤ dim(〈W\A〉κ), while the inequality in
the other direction is obvious, therefore |W\A| = dim(〈W\A〉κ); similarly we have
|A\W | = dim(〈A\W 〉κ) and |A ∩ W | = dim(〈A ∩ W 〉κ). Also dim(κ̂ ∩ W ′) =
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|A ∩ W |, as the second coordinates of W\A generate a subspace which does not
intersect κ̂ by definition of Pchaff and given that B = F

k
q\A.

Overall, it follows that d�(A, W ) = dS(W ′, κ̂), and therefore we can uniquely
decode W ′ to κ̂ as soon as the set difference between A and W is at most
1
2 (dmin,S(C ) − 1). ��

10.3.1 Variants of the Scheme

In order to loosen the constraints on the choice of parameters, other settings and
scheme variants can be considered, although some probability of error may be intro-
duced.

For example, we can allow |A| = |W | = t ≥ k, with the features thought as
randomly chosen in the ambient space rather than linearly independent. Other looser
assumptions include also B being a proper subset of Fk

q\A.
In these cases, one needs to compare dim(κ̂∩ W ′)with |A∩ W | and dim(κ̂+ W ′)

with |A ∪ W |. For example dim(κ̂ ∩ W ′) is no bigger than k while |A ∩ W | would
be no bigger than t ; |A ∪ W | counts elements of A which do not contribute to the
dimension of κ̂; dim(W ′) may not be equal to |W | and the looser assumption on B
may reduce the dimension of W ′ even more, introducing further variability.

Depending on the assumptions and parameters, one can expect to have bounds of
the form:

d�(A, W ) − δ1 ≤ dS(W ′, κ̂) ≤ d�(A, W ) + δ2,

for some δ1, δ2 ∈ N. Depending on the given threshold for d�(A, W ), one can
estimate the probability of falsely accepting or falsely rejecting the witness.

To be more precise, with the above mentioned looser assumptions, we get
dim(κ̂) = k = |A| − (t − k), dim(W ′) ≤ |W | and dim(κ̂ ∩ W ′) ≤ |A ∩ W |.
If y is an upper bound on the difference between |A ∩ W | and the maximum number
of linearly independent elements within A ∩ W (i.e. y = 0 for the hypothesis of
Theorem 10.1), we have on one side

dS(W ′, κ̂) = dim(κ̂) + dim(W ′) − 2 dim(κ̂ ∩ W ′)
≤ |A| − (t − k) + |W | − 2(|A ∩ W | − y)

= d�(A, W ) − (t − k) + 2y.

On the other side, if z is an upper bound for |W | − dim(W ′), we get

dS(W ′, κ̂) = dim(κ̂) + dim(W ′) − 2 dim(κ̂ ∩ W ′)
≥ |A| − (t − k) + |W | − z − 2(|A ∩ W |)
= d�(A, W ) − (t − k) − z.
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Note that z depends on the assumptions on the size of B and on the choice of chaff
points and the parameter n, as discussed in the first part of Sect. 10.3. I.e. z can be
neglected if n is big enough, B is the complement to A, and the chaff points are
randomly chosen. Similar bounds can also be obtained for t < k.

Incidentally, these inequalities provide an alternative proof to Theorem 10.1.

10.4 Security and Examples

Notice that we can use n as a degree of freedom to enlarge the size of the key space.
We know the following fact from [10]:

Lemma 10.1 Let k ≤ δ ≤ n. The number of δ × n matrices over Fq with rank k is
given by

Nq(k, δ, n) =
(∏k−1

i=0 qn − qi
) (∏k−1

i=0 qδ − qi
)

∏k−1
i=0 qk − qi

. (10.1)

With δ = κ we can see that we can play on n to make this number grow as we
please, in order to make it hard searching for the right set of k linearly independent
features.

Moreover, the complexity of such a brute force attack should be combined with
the difficulty of determining the rank of an arbitrary k × n matrix over Fq . The naive
approach, using Gaussian algorithm, requires at most n(k2 − k) field operations, and
in case the field is F2 at most n(k2−k)/2. There exist fast algorithms for determining
the rank of amatrix but these are only asymptotically better and are oftenmuchworse
for small values of k and n.

10.4.1 Other Attacks

When |A| = t > k, not only may some difficulty in decoding arise, but if t is much
bigger than k, other types of brute force attacks may be devised. In the following a
strategy is described which tries to find a set in Fn

q containing k linearly independent
vectors that are meant to reveal the authentic features.

Assume now to have t authentic points and r − t chaff points, with the set of
features {x1, ..., xt } being a set of random elements of Fk

q . We can assume that the
second coordinates of the authentic set {x1κ, ..., xtκ} contain a set of k linearly inde-
pendent vectors in F

n
q . Indeed, given Lemma 10.1, we can compute the probability

that x1κ, ..., xtκ contains a set of k linearly independent vectors as

Nq(k, k, t)

qkt
,
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that is the probability that (x1, ..., xt )
T is a rank k matrix. For common vault parame-

ters, and especially for larger t , this value is close to 1, so as to justify our assumptions.
Now, the expected number of subsets of size δ out of r > δ random points in F

n
q

that span a k-dimensional space can be estimated as

αq(k, δ, n) =
(r
δ

)
Nq(k, δ, n)

qδn
. (10.2)

Ideally, an attacker would want to find a δ0 ≤ |A| = t so that αq(k, δ0, n) < 1 in
order to have a high probability of recovering the key in the event that the δ0 points
span a space of dimension k. On the other side, to counter this type of attack, one
tries to keep k very close to t and r big enough, so that αq does not get small.

We will approximate the complexity of a brute force attack following this
approach. The attack is similar in approach to that proposed in [7] and depends
on finding a suitable δ0, so that the probability of δ0 random vectors in Fn

q spanning
a subspace of dimension k is small.

It is noted in [15] that the average number of attempts for a user to guess δ points in
the authentic set is

(r
δ

)
/
(t
δ

)
< 1.1(r/t)δ for r > t > 5. Given that it takes n(δ2−δ)/2

operations to row reduce a δ ×n binary matrix, we obtain the following upper bound
for the expected time to recover the key.

Lemma 10.2 In the above settings, let δ0 be so that α2(k, δ0, n) < 1 from Eq. (10.2).
On average, an attacker can recover the secret key in C · (r/t)δ0 operations, where
C < 0.55 · n(δ20 − δ0).

10.4.2 Example Using Spread Codes

As an example of how to construct a vault using subspace codes, we will use spread
codes, as defined in Sect. 10.2.

Spread codes are somewhat restrictive in that the minimum distance is completely
determined by k, unlike other subspace codes where one can trade off the distance
with other parameters. Nevertheless we illustrate the construction using spread codes
because of their simplicity.

Example 10.1 Let us assume that the features belong to F16
2 , so that k = 16. In this

case, we can recover the key if and only if the set difference is at most 15. We are
free to choose n as long as it is a positive integer multiple of k. For example we can
choose n = 96 so that we have roughly 280 keys.

Note that an (n, k)q spread code can be decoded inO((n − k)k5) field operations
over Fq , as shown in [5]. For more information on spread codes and other decoding
algorithms, the reader is referred to [5, 13, 14].
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10.5 Further Considerations

One of the disadvantages of using a biometric for security is that once an attacker
knows a user’s features, the user can never use a biometric scheme based on those
features again.In the PFV finding the key is essentially equivalent to finding the
features, as they are immediately retrievable as the first coordinates of the points in
the authentic set, i.e. by testing whether these correspond to evaluations of the key
polynomial. In the SFV, instead, an attacker who is capable of obtaining κ̂, has no big
advantage in recovering x1, ..., xt from x1κ, ..., xtκ, not knowing which particular
κ was used to generate the second coordinates of the authentic points. Ideally, to
make the system even more resilient, the user should have the features obscured, for
instance one might want to store in the vault a hash of the features, instead of the
features themselves, as

Pauth = {(h(x), xκ) | x ∈ A}
Pchaff = {(h(x),λ(x)) | x ∈ B},

for a suitable hash function h. There is also another important reason to use hashes
as above in the system. In fact, suppose that an attacker finds an element in the
unhashed version of the vault whose first coordinate is a linear combination of other
first coordinates of other elements in the vault. Then he can check whether its second
coordinate is also a linear combination (with the same coefficients) of the corre-
sponding second coordinates of the other elements. If this happens he can argue that
the element belongs to Pauth . Clearly also this attack can be prevented by taking t
close to k, besides using an hash function to hide the first coordinates.

10.6 Conclusions

We have proposed a new authentication scheme based on noisy data like biometric
features. The idea has similarities with the fuzzy vault scheme and works in the set
difference metric, but it exploits the new setting of subspace codes. We have pre-
sented a main theorem with two alternative proofs that shows under which distance
conditions authentication succeeds with respect to the code parameters. We have
also showed the possibility of considering a few variants based on slightly differ-
ent assumptions and how the main theorem can be generalized. This can allow more
flexibility for the choice of parameters and for future applications. The security of the
scheme has been analyzed, whereby brute force attacks require bigger computational
costs comparedwith traditional schemes. This however comeswith a price, that is the
computational complexity of state of the art decoding schemes for subspace codes
is also rather high. There are also a few other nice features of the new scheme, for
example its resilience to exposing the features even if the key were compromised.
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Future research includes enhancing the scheme or devising alternative schemes
based on subspace codes that would enable more efficient and flexible parameter
profiles or decoding scenarios. Also considering examples with families of codes
other than spread codes may help suggest future steps towards an actual deployment
in practice.
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Chapter 11
An Information Rate Improvement
for a Polynomial Variant
of the Naccache-Stern Knapsack
Cryptosystem

Giacomo Micheli, Joachim Rosenthal and Reto Schnyder

Abstract We adapt an information rate improvement by Chevallier-Naccache-Stern
for the Naccache-Stern knapsack cryptosystem, called the prime packing strategy,
to the polynomial version of the protocol.

11.1 Introduction

In 1997 Naccache and Stern [4] proposed a new public key cryptosystem known as
theNaccache-Stern Knapsack cryptosystem, orNSK for short. This systemwas based
on modular arithmetic in the integers and had a number theoretic flavor. However,
NSK suffers from a low information rate: The ratio of message to ciphertext size
is less than 10% for many practical parameters. More recently in 2008, Chevallier-
Mames, Naccache and Stern [2] presented several alterations to the protocol that
improve the information rate at the cost of a larger public key size.

More than a decade after the NSK protocol was invented, Micheli and Schiavina
presented a generalized monoid based version of the NSK Protocol [3], as well as
an instance based on polynomials over finite fields. This variant suffers from the
same low information rate. In this chapter, we apply the improvements of [2] to this
polynomial based variant.
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11.2 Recalling the NSK Protocol

We recall here the NSK protocol and its generalization. They are both based on the
following problem:

Problem 11.1 Let L be a positive integer, M be amonoid and c, v1, . . . , vL elements
of M . Find (if one exists) a vector m = (m1, . . . mL) ∈ {0, 1}L for which

c =
L∏

i=1

vmi
i .

In what follows, we show some instances of the problem above and the crypto-
graphic protocol arising from them. Let Fq be the finite field of order q.

Problem 11.2 Fix a positive integer L , the monoid M = (Fq [x], ·), irreducible
polynomials p1, . . . , pL ∈ M and

c =
L∏

i=1

pmi
i .

for some (m1, . . . mL) ∈ {0, 1}L . Find the vector m.

It is immediate that Problem11.2 can be easily solved by reducing c modulo pi

for each i : we have in fact mi = 1 if and only if c ≡ 0 mod pi .

Problem 11.3 Let g be an irreducible polynomial of degree N , L a positive integer
and M = (Fq [x]/(g(x)), ·) ∼= (Fq N , ·). Let v1, . . . , vL ∈ M and

c =
L∏

i=1

vmi
i .

for some (m1, . . . mL) ∈ {0, 1}L . Find the vector m.

The generic instance of Problem11.3 is now difficult compared to Problem11.2.
This gap is exploited in [3]. In what follows we recall their protocol, which we will
refer to as the polynomial NSK or pNSK for short.

Alice sets up the system as follows:

• Alice chooses a finite field Fq , L irreducible polynomials pi ∈ Fq [x], an irre-
ducible polynomial g for which

∑L
i=1 deg pi < deg g and a pair of integers (e, s)

for which es ≡ 1 mod q N − 1.
• The private key is (p1, . . . , pL , s).
• The public key is (v1, . . . , vL ,Fq [x]/(g(x))), where vi = pe

i .
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The encryption of a message m ∈ {0, 1}L is performed as

m �→
∏

i

vmi
i = c ∈ Fq [x]/(g(x)).

Alice can then decrypt by computing cs ∈ Fq [x]/(g(x)) and reducing the result
modulo pi for each i , since cs mod g(x) (together with its factorization in terms of
the pi ) suitably lifts to Fq [x] using the property

∑L
i=1 deg pi < deg g.

The originalNSK is obtained by replacingFq [x] byZ and irreducible polynomials
by prime numbers.

11.3 Prime Packing

In what follows our goal is to show that a direct adaptation of the NSK packing
presented in [2] is also possible in the case of the polynomial variant. We pack the
irreducible polynomials up to degree d as follows: Let b, t ∈ N be positive integers
for which bt ≤ π(d), where π(d) is the number of irreducible polynomials up to
degree d. Partition the first (according to any ordering respecting the degree) bt
polynomials in t sets {Si } each of size b satisfying that for all i, j ∈ {1, . . . , t}, if
f ∈ Si and h ∈ S j we have

i ≤ j ⇒ deg( f ) ≤ deg(h).

More informally, we pack the polynomials up to degree d into t packs, each of
them containing the b polynomials of the lowest possible degree. Let us denote
by p j,i the i th polynomial living in the j th box S j , again ordered by degree. In
particular, we have deg p j,i ≤ deg p j,b for all i and j . The protocol will then be
modified as follows. The space of messages becomes {1, . . . , b}t , we require now
only

∑t
j=1 deg p j,b < deg g = N . Again, let es ≡ 1 mod q N − 1.

The public key is set up as
({v j,i }i, j ,Fq [x]/(g(x))

)
, where again v j,i = pe

j,i .

The secret key is analogously
({p j,i }i, j , s

)
. The encryption of a message m =

(m1, . . . , mt ) ∈ {1, . . . , b}t is performed as

m �→
t∏

j=1

v j,m j = c ∈ Fq [x]/(g(x)).

Alice can then decrypt by computing cs ∈ Fq [x]/(g(x)) and reducing the result
modulo p j,i for each i, j , as before.

It is now easy to compute the information rate and public key size: The information
rate is t log b

N log q , and the public key has size bt N log q.
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Table 11.1 Information rate and public key size of prime packing for q = 6287, deg g = 131 and
various box sizes

b t Information rate (%) Public key size (kbit)

pNSK 130 7.9 215

5 130 18.3 1074

10 130 26.1 2149

30 130 38.6 6447

50 127 43.4 10496

70 109 40.4 12612

11.3.1 Example Parameters

As an example, consider the medium prime case q = 6287. We compare the infor-
mation rate and public key size of our scheme in the case deg g = 131 for various
values of the box size b in Table11.1. Computations were done using Sage [6]. The
first row corresponds to the original pNSK (which is not quite the same as setting
b = 1). Note that for small box sizes b, we always get t = 130 boxes. This is because
it is possible to use only degree 1 polynomials for the p j,i . As b becomes larger, this
is no longer possible, and the information rate suffers.

Evidently, the information rate can be greatly improved at the cost of a much
larger public key size. This cost can be somewhat reduced by applying the “powers
of primes” technique of [2], and we will do so in Sect. 11.4.

11.3.2 Asymptotic Information Rate

As in [2], we can obtain linear bandwidth by setting the number of packs equal to
their size. Indeed, we show that if we set n := b = t , then the information rate of
pNSK using prime packing is asymptotically equal to 1

2 .
To analyze the information rate, we first need to find the degree of the nth

irreducible polynomial pn , according to any order respecting the degree. In [3,
Sect. 3.2.2], it was shown that the number of irreducible polynomials in Fq [x] of
degree at most d is asymptotically equal to q

q−1
qd

d . Hence, the polynomials with a

given degree d should be numbered roughly between q
q−1

qd−1

d−1 and q
q−1

qd

d . Thus, if
the polynomial pn has degree dn , we have

q

q − 1

qdn−1

dn − 1
� n � q

q − 1

qdn

dn
,
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where an � bn means that lim supn→∞ an/bn ≤ 1. Taking logarithms gives

(dn − 1) − logq(dn − 1) � logq n − logq
q − 1

q
� dn − logq dn,

which asymptotically is the same as

dn − 1 � logq n � dn .

We hence see that dn = deg pn ∼ logq n.
Now we can approximate the degree of g:

N = deg g = 1 +
n∑

i=1

deg pin

∼
n∑

i=1

logq(in) ∼
n∑

i=1

logq(n2) ∼ 2n logq n.

For the first ∼, note that the indices of pin in the sum are all at least n, and so only
the asymptotic behavior of deg pin is relevant. Finally, we get for the information
rate

t log2 b

N log2 q
∼ n log2 n

2n logq n log2 q
= n log2 n

2n log2 n
= 1

2
.

11.4 Powers of Primes

In [2, Sect. 4], prime packing was applied to a variant of NSK using a base larger
than 2 in order to further improve information rate and reduce public key size. This
method can also be applied to the polynomial NSK variant.

As in Sect. 11.3, we again choose a degree d and integers b and t satisfying
bt ≤ π(d), and we partition the first bt irreducible polynomials into t sets Si of
size b. We further choose an integer parameter � ≥ 1. We again denote by p j,i the
i th polynomial in the j th box, ordered by degree. As before, we need an irreducible
polynomial g ∈ Fq [x] of large degree as our modulus, but this time, we require that∑t

j=1 � deg p j,b < deg g = N . Again, we choose integers e and s with es ≡ 1

mod q N − 1 and set v j,i = pe
j,i . The public key is

({v j,i }i, j , �,Fq [x]/(g(x))
)
and

the private key is
({p j,i }i, j , s

)
.

For each box Si , we now have more options available for encryption than simply
choosing one element of Si : we can choose up to � elements, allowing repetitions,
and multiply those. Each of these possibilities corresponds to a b-tuple in T =
{(k1, . . . , kb) ∈ N

b | k1 + · · · + kb ≤ �}. As shown in [2, AppendixA], there
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are
(b+�

�

) = B such tuples, and there is a bijection ϕ : {1, . . . , B} → T that can
be computed efficiently [5]. Hence, we use the message space {1, . . . , B}t , and we
encrypt a message m = (m1, . . . , mt ) as

m �→
t∏

j=1

b∏

i=1

v
k j,i
j,i = c ∈ Fq [x]/(g(x)),

where ϕ(m j ) = (k j,1, . . . , k j,b) ∈ T .
Decryption is again done by lifting and factoring cs and inverting ϕ.
We can again give a formula for information rate and public key size. The infor-

mation rate is t log B
N log q , and the public key still has size bt N log q.

11.4.1 Toy Example

We present a small example to clarify the “powers of primes” method. Let q = 2,
and we consider a system with t = 2 packs of b = 3 irreducible polynomials each.
Let furthermore � = 2. The first six irreducible polynomials are

p1,1 = x p2,1 = x3 + x + 1

p1,2 = x + 1 p2,2 = x3 + x2 + 1

p1,3 = x2 + x + 1 p2,3 = x4 + x3 + 1.

We need � deg p1,3 + � deg p2,3 = 12 < deg g = N , so we choose

g = x13 + x4 + x3 + x + 1.

We randomly choose secret exponents e = 6020 and s = 6380 ≡ e−1 mod 213−1.
The public elements are now given by v j,i ≡ pe

j,i mod g:

v1,1 = x11 + x10 + x9 + x8 + x6 + x5 v2,1 = x8 + x7 + x6 + x5 + x4 + 1

v1,2 = x11 + x10 + x9 + x8 + x6 + x v2,2 = x12 + x11 + x6 + x5 + x3

v1,3 = x12 + x11 + x10 + x9 + x5 + x3 + x2 + 1 v2,3 = x12 + x11 + x10 + x6 + x5 + x2.

Note that B = (3+2
2

) = 10, so we can represent a message in base 10. We
choose the following encoding from integers 0 to 9 to 3-tuples (k1, k2, k3) satisfying
k1 + k2 + k3 ≤ 2.

0 �→ (0, 0, 0) 1 �→ (1, 0, 0) 2 �→ (2, 0, 0) 3 �→ (0, 1, 0) 4 �→ (1, 1, 0)

5 �→ (0, 2, 0) 6 �→ (0, 0, 1) 7 �→ (1, 0, 1) 8 �→ (0, 1, 1) 9 �→ (0, 0, 2).
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Table 11.2 Information rate and public key size of the “powers of primes” variant for q = 6287,
deg g = 131 and various box sizes and bases

b � t Information rate (%) Public key size (kbit)

1 1 130 7.9 215

2 2 65 10.1 215

10 10 13 13.8 215

30 1 130 39.0 6447

42 2 65 38.9 4513

310 26 5 38.8 2562

83 26 5 25.1 686

To encrypt the message m = 94, we hence compute

v01,1v01,2v21,3 · v12,1v12,2v02,3 ≡ x12 + x9 + x8 + x3 + x2 + 1 = c mod g.

To decrypt, raise the ciphertext to s and factor:

ms ≡ x10 + x9 + x6 + x5 + x4 + x + 1 mod g

= (x2 + x + 1)2 · (x3 + x + 1) · (x3 + x2 + 1)

= p01,1 p01,2 p21,3 · p12,1 p12,2 p02,3,

from which the message is recovered.

11.4.2 Example Parameters

We again consider the case q = 6287 and compare the information rate and public
key size of the “powers of primes” variant in the case deg g = 131 for different
values for b and � in Table11.2. The first row corresponds to the original pNSK,
which is obtained by setting b = 1 and � = 1.

As we can see, the “powers of primes” method allows, to an extent, for larger
information rates at the same key size, or for smaller keys for a given information
rate.

11.5 Security

As for the original Naccache-Stern cryptosystem, we do not know of a security proof
for the pNSK, with or without our information rate improvements. However, we can
recall a few considerations regarding the security of NSK from [2, 4], which also
apply to our variant.
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First of all, note that our system is broken if one can solve a discrete logarithm
problem ps

j,i = v j,i , as this directly reveals the secret key. Although the p j,i don’t
have to be released publicly, they must have low degree and can thus be guessed
easily. Hence, it is important to choose parameters in such a way that the field
Fq [x]/(g(x)) is large enough to withstand a DLP attack. Compared to the original
NSK, we have to be even more careful due to recent quasipolynomial attacks on
small characteristic [1].

As remarked in [4], a birthday-search attack on the message is possible on all
NSK variants. In our case, this happens by dividing the packs S j into two sets T1 and
T2 of similar size and searching for a collision in an appropriate way. For example,
in the “powers of primes” situation, one could look for exponents k j,i such that

∏

j∈T1

b∏

i=1

v
k j,i
j,i = c ·

∏

j∈T2

b∏

i=1

v
−k j,i
j,i .

To prevent this, the size of the message space should be chosen to be at least twice
the desired security level.

Furthermore, since 2 | qd − 1 for odd q, it is possible to find the parity of the
number of factors v j,i in a ciphertext c that are quadratic nonresidues inFq [x]/(g(x))

by simply checking whether c itself is a quadratic residue. This is only a small
information leakage, but nonetheless it should be avoided by encoding messages in
such a way that this parity is always the same. A similar attack can be applied for
other small factors of qd − 1, so it should be chosen to have few such factors.
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Chapter 12
Implementation and Improvement
of the Partial Sum Attack
on 6-Round AES

Francesco Aldà, Riccardo Aragona, Lorenzo Nicolodi
and Massimiliano Sala

Abstract The Partial Sum Attack is one of the most powerful attacks, independent
of the key schedule, developed in the last 15 years against reduced-round versions
of AES. In this chapter, we introduce a slight improvement to the basic attack which
lowers the number of chosen plaintexts needed to successfully mount it. Our ver-
sion of the attack on 6-round AES can be carried out completely in practice, as
we demonstrate providing a full implementation. We also detail the structure of our
implementation, showing the performances we achieve.

12.1 Introduction

The research on the cryptanalysis of block ciphers partly deals with studying and
proposing attacks on their reduced-round versions. Results on reduced versions are
very interesting, since they help to better understand the behavior of a cipher, pointing
out weaknesses in its structure which can eventually lead to attacks on the full version
or characterize the security margin of the cipher.

In 2000, Ferguson et al. [5] introduced one of the most effective attacks, inde-
pendent of the key schedule, developed in the last 15 years against reduced-round
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versions of the Advanced Encryption Standard [3, 4], the Partial Sum Attack.
Specifically, they developed attacks against AES reduced to 6, 7 and 8 rounds. The
attack on 6-round is particularly powerful and its complexity is in the range which
is referred to as practicable in the literature. It improves a previous attack which
was first described in [3]. The latter is based on integral cryptanalysis, a general
technique which is applicable to a large class of SPN block ciphers. This technique
was originally designed by Lars Knudsen in the paper presenting the block cipher
Square [2], as a specific attack against its byte-oriented structure. This is the reason
why this class of attacks is commonly known as Square Attack. Since AES inherits
many properties from Square, this attack can be easily extended to reduced-round
versions of the Advanced Encryption Standard.

In this chapter, we introduce a slight theoretical improvement to the Partial Sum
Attack on 6-round AES which lowers the number of chosen plaintexts needed to
successfully mount it, and we describe the structure of our full implementation. After
examining the literature which was developed after the publication of [5], we are not
aware of any effective implementation of this attack. Therefore, we strongly believe
that our implementation is the very first and, mostly, we show that it is completely
practicable. Moreover, we believe that our effort allows a deeper understanding of
the attack workflow and can point out some other weaknesses neither discovered nor
exploited so far.

We would like to underline that a remark similar to the observation which our
improvement is based on can be found in [12], although we achieved this result inde-
pendently. Nevertheless, we believe that our analysis is more careful and detailed.
In fact, the hypotheses which lead to this theoretical result are inherently strong,
since they require the reduced-round cipher to “behave” like a random permutation.
However, the attack we are dealing with strongly exploits the fact that AES can be
easily distinguished from a random permutation. Therefore, it was not clear a priori
whether these properties, or a good approximation of them, were actually satisfied
in a real scenario. Thanks to our implementation which exploits the aforementioned
improvement, we investigated these assumptions and explored how well the theoret-
ical model describes an actual execution of the attack. In particular, the experimental
results show that the number of false positives obtained closely matches that which
was expected from the theoretical analysis. For a detailed explanation, we refer to
Sect. 12.3.2.

The rest of the chapter is organized as follows: in Sect. 12.2, we briefly introduce
the Square Attack and its extensions and we subsequently describe the Partial Sum
Attack in detail. In Sect. 12.3, we present ourmain results. First, we explain our slight
theoretical improvement, pointing out the issues that its implementation involves.
We then detail our implementation and provide the results of our computations. In
particular, we achieved to recover a full 6-round key in less than 12 days with 25
cores.
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12.2 Preliminaries

We recall that the encryption process of AES-128, -192 and -256 consists of an ini-
tial key addition followed by the application of 10, 12 and 14 round transformations,
respectively. The initial key addition and every round transformation take as input an
intermediate result, called the state, and a round key which is derived from the cipher
key through the key schedule. The state is always treated as a 4 × 4 matrix whose
coefficients belong to F28 . The output of any round is another state. The round trans-
formation is a sequence of four processing steps: SubBytes, ShiftRows, MixColumns
and AddRoundKey. The SubBytes (SB) step is the only non-linear transformation of
the cipher. It is an invertible byte substitution that operates independently on each
byte of the state, according to an S-box. The S-box, which is henceforth indicated as
γ, consists of the multiplicative patched inversion over F28 , followed by an invertible
affine transformation. The ShiftRows (SR) step is a byte transposition that cyclically
shifts the rows of the state over different offsets. Specifically, let si,j and s′

i,j be the
state bytes in position (i, j) before and after the ShiftRows transformation, respec-
tively. Then s′

i,j = si,(j+i) mod 4 for i, j ∈ {0, 1, 2, 3}. The MixColumns (MC) step
is a linear transformation which operates on the state column-by-column, treating
each column as a polynomial over F28 [x]. This polynomial is thenmultiplied modulo
x4 + 1 with the fixed polynomial m(x) = (α + 1)x3 + x2 + x + α, where α ∈ F28 is
such that α8 = α4 + α3 + α + 1. Finally, in the AddRoundKey (ARK) transforma-
tion, the state is bitwise XORed with the corresponding round key. By SubBytes−1,
ShiftRows−1, MixColumns−1 and AddRoundKey−1, we denote the inverses of the
aforementioned steps. The final round differs from the others since the MixColumns
step is removed. For further details on the structure of AES, we refer to [3, 4].

In the following sections, we first give an overview on the Square Attack on 4-
round AES and we briefly introduce its extensions. We then describe the Partial Sum
Attack in detail.

12.2.1 Square Attack

The Square Attack is a chosen plaintext attack, which is independent of the specific
choices of the S-box of the SubBytes function, the multiplication polynomial of the
MixColumns transformation and the key schedule. For the sake of clarity, however,
we will often refer to the specific parameters used in AES.

In order to explain how this attack can be performed, we first introduce the fol-
lowing definition.

Definition 12.1 A Δ-set is a set of 256 AES states that differ in one of the state
bytes (called active byte) and are equal in the other state bytes (called passive bytes).
In other words, if U is a Δ-set, for every x, y ∈ U we have
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{
xi,j �= yi,j if (i, j) is active

xi,j = yi,j if (i, j) is passive

where i, j ∈ {0, 1, 2, 3}.
As it is explained in [4], the Square Attack on 4-round AES is heavily based on

the following property.

Proposition 12.1 Let b(l)
i,j be the byte in position (i, j), i, j ∈ {0, 1, 2, 3}, of the lth

state of a Δ-set after three rounds. Then

256∑

l=1

b(l)
i,j = 0. (12.1)

In other words, the states at the end of the third round are balanced, i.e. all bytes
at the input of the fourth round sum to zero. Note that the initial key addition is
implicitly assumed and not counted in the number of rounds.

Let us consider a 4-round reduced AES, in which the fourth round is a final round,
i.e. it does not include MixColumns. This implies that every byte of the ciphertext
only depends on one byte of the input of the fourth round. The Square Attack on 4-
round AES can then be mounted as follows. For any lth state of aΔ-set, 1 ≤ l ≤ 256,
let c(l)

i,j , where i, j ∈ {0, 1, 2, 3}, be the ciphertext byte in position (i, j). Let k(4)
i,j be a

guess for the byte in position (i, j) of the 4th round key (which is the last key used).
For any (i, j), if the value of k(4)

i,j is correct, the following equation holds:

256∑

l=1

γ−1
(

c(l)
i,j + k(4)

i,j

)
=

256∑

l=1

b(l)
i,(j+i) mod 4 = 0, (12.2)

where b(l)
i,j is the byte in position (i, j) of the lth state of a Δ-set after the application

of three rounds, and γ−1 is the S-box of SubBytes−1.
If Eq. (12.2) does not hold, the assumed value for the key byte must be wrong.

This check is expected to eliminate all wrong key bytes, except for one value that
could satisfy (12.2) by chance. To be more precise, the following result holds.

Proposition 12.2 If (X(l))1≤l≤256 is a sequence of independent uniformly distributed
random variables with values in F28 , then the probability

P

[
256∑

l=1

X(l) = 0

]

= 2−8.

Proof Let X and Y be two discrete independent random variables, with density
functions f1(x) and f2(x) respectively. The convolution f3(x) = [f1 ∗ f2](x) =∑

y f1(y)f2(x − y) is the density function of the random variable Z = X + Y . Since X
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Table 12.1 Estimated probability to obtain a zero sum for a random set of plaintexts and for a
Δ-set at the end of the 3rd round

Random set Δ-set

0.003904 0.007794

Number of trials: 2 · 104

and Y take values in F28 , their sum Z takes values in F28 too. Therefore, the density
function of Z is an uniformly distributed random variable, since it is the circular
convolution of two independent uniformly distributed random variables. This result
can be easily extended to the sum of an arbitrary number of random variables. ��

Before proceeding with the analysis of the attack, we would like to stress that
the hypotheses of Proposition 12.2 are inherently strong. In particular, the bytes of
the state at the end of the 3rd round are assumed to be independent and uniformly
distributed. Although these are natural assumptions for modeling the attack, it is
not clear a priori whether they hold even in practice. We thus performed some tests
which aimed to estimate the probability to obtain a zero sum for a random set of
256 plaintexts and for a Δ-set at the end of the 3rd round. The values reported in
Table12.1 were obtained by averaging the estimates we collected using 2 · 104

random sets and 2 · 104 different Δ-sets, encrypted through an equal number of
random keys, respectively.

As Table12.1 shows, the tests we performed give evidence that Proposition 12.2
well describes the behavior of the cipher even at the end of the 3rd round.As expected,
for a random set of 256 plaintexts there exists (on average) only one value which
satisfies Eq. (12.2) by chance. In the case of a Δ-set, the estimate is roughly 1/128,
since both the correct key byte and another random value satisfy (12.2).

Since checking Eq. (12.2) for a single Δ-set is expected to leave only 1 over 256
of the wrong key assumptions as a possible candidate, the 4th round key can be
found with a sufficiently large confidence using two different Δ-sets. Henceforth,
this crosscheck will be referred to as verification step.

All in all, two Δ-sets have to be used, and all 16 bytes of the 4th round key
need to be recovered. Therefore, the working factor consists of 29 encryptions and
29 · 24 = 213 evaluations of Eq. (12.2).

In [4], Daemen et al. describe how this attack can be extended adding one round at
the end or one round at the beginning. Combining the basic attack on 4 rounds with
both extensions yields the Square Attack on 6-round AES. We can sketch this attack
as follows. For the extension by one round at the end, the attacker has to perform a
partial decryption of two rounds instead of only one, implying that four more bytes
of the final round key need to be guessed. The idea for the extension by one round at
the beginning consists of choosing a set of 256 plaintexts which, at the end of the first
round, results in aΔ-set with a single active byte. This requires to guess four bytes of
the initial round key k(0). We refer to [4] for further details on these two extensions.
In both cases, we need to guess five key bytes instead of one. By combining these
two methods, nine bytes need to be guessed.
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12.2.2 Partial Sum Attack

Without considering the verification steps, the Square Attack on 6-round AES
requires the storage of 232 chosen plaintexts and the corresponding ciphertexts.
Moreover, (28)9 = 272 steps are needed for guessing nine key bytes, when it is
applied to only recover 4 bytes of the 6th round key. Therefore, it is completely out
of reach for current computing resources.

The Partial Sum Attack [5] significantly improves the Square Attack on 6-round
AES. Ferguson et al. introduced two main ideas. First, instead of guessing four bytes
of the initial round key k(0), one can use 232 plaintexts such that one column of the
states at the input of MixColumns of the first round ranges over all possible values
of (F28)

4 and all other bytes are constant. Throughout the rest of the chapter, we
denote by Δ̄-set such a group of 232 plaintexts. For any value of the initial round
key, the corresponding ciphertexts consist of 224 groups of 28 encryptions that vary
in a single active byte at the end of the first round. In fact, imposing a particular
linear combination which ranges over all possible values of F28 and three other
linear combinations which are constant for all 256 states, we can uniquely determine
a set of plaintexts which results in a Δ-set with a single active byte at the end of the
first round. In particular, one has 224 ways to choose the values for these three linear
combinations.

Therefore, all an attacker has to do is guess four bytes of the 6th round key and
one byte of the 5th round key, perform a partial decryption to a single state byte at
the end of the 4th round, sum this value over all 232 encryptions, and check whether
the result is zero. Compared to the Square Attack on 6 rounds, the attacker needs to
guess 40 bits instead of 72.

The further idea behind the improvement introduced by Ferguson et al. consists
in organizing the partial decryption on partial sums. In order to properly understand
what partial sums are and howone can use them,we introduce the following notation,
where the pair (i, j) is used to denote the state entry (with i, j ∈ {0, 1, 2, 3}), and the
index l (with 1 ≤ l ≤ 232) denotes the lth element of a Δ̄-set:

b(l)
i,j is a byte at the end of the 4th round;

a(l)
i,j is a byte of the state at the 5th round before the application of MixColumns;

a(l)
s is the sth column of the lth state at the 5th round before the application of

MixColumns. Thus a(l)
j =

(
a(l)
0,j, a(l)

1,j, a(l)
2,j, a(l)

3,j

)	
;

c(l)
i,j is a byte at the end of the 6th round, which we refer to as the ciphertext byte;

k(h) is the hth round key and k̄(h) = MixColumns−1(k(h));
k̄(h)

i,j is a byte of k̄(h).

It is easy to show that, in order to compute the partial decryption to a state byte at
the end of the 4th round, we need to consider four bytes in each ciphertext and guess
the corresponding bytes of the 6th round key, according to one of the configurations
shown in Fig. 12.1. Observe that each configuration has exactly one byte per state
row and one byte per state column.
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1 st set config. 2nd set config. 3rd set config. 4th set config.

Fig. 12.1 The set of 4 bytes of the 6th round key (resp. ciphertexts) for the Partial Sum Attack on
6-round AES

In the following computations, with abuse of notation, we denote by Mix-
Columns−1 and SubBytes−1 the inverse of MixColumns and SubBytes applied to
a single column of the state. The relations between the a(l)’s, the c(l)’s and the k(h)’s
are easily established:

a(l)
j =

⎡

⎢
⎢
⎢
⎢
⎣

a(l)
0,j

a(l)
1,j

a(l)
2,j

a(l)
3,j

⎤

⎥
⎥
⎥
⎥
⎦

= MixColumns−1

⎛

⎜
⎜
⎜
⎜
⎝

SubBytes−1

⎛

⎜
⎜
⎜
⎜
⎝

c(l)
0,j + k(6)

0,j

c(l)
1,(j−1) mod 4 + k(6)

1,(j−1) mod 4

c(l)
2,(j−2) mod 4 + k(6)

2,(j−2) mod 4

c(l)
3,(j−3) mod 4 + k(6)

3,(j−3) mod 4

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

,

where j ∈ {0, 1, 2, 3}. When j is understood, we will remove it; for example we
denote

ξ(l) =

⎡

⎢
⎢
⎢
⎣

ξ
(l)
0

ξ
(l)
1

ξ
(l)
2

ξ(l)
3

⎤

⎥
⎥
⎥
⎦

:= SubBytes−1

⎛

⎜
⎜
⎜
⎜
⎝

c(l)
0,j + k(6)

0,j

c(l)
1,(j−1) mod 4 + k(6)

1,(j−1) mod 4

c(l)
2,(j−2) mod 4 + k(6)

2,(j−2) mod 4

c(l)
3,(j−3) mod 4 + k(6)

3,(j−3) mod 4

⎞

⎟
⎟
⎟
⎟
⎠

,

for 1 ≤ l ≤ 232. Let N be the byte matrix of MixColumns−1. Working out the
product, we have

a(l)
j =

⎡

⎢
⎢
⎢
⎣

N0 · ξ(l)
0 + N1 · ξ(l)

1 + N2 · ξ(l)
2 + N3 · ξ(l)

3

N3 · ξ
(l)
0 + N0 · ξ

(l)
1 + N1 · ξ

(l)
2 + N2 · ξ

(l)
3

N2 · ξ(l)
0 + N3 · ξ(l)

1 + N0 · ξ(l)
2 + N1 · ξ(l)

3

N1 · ξ
(l)
0 + N2 · ξ

(l)
1 + N3 · ξ

(l)
2 + N0 · ξ

(l)
3

⎤

⎥
⎥
⎥
⎦

,

where, in the specific case of AES (see Sect. 12.2),

N0 = α3 + α2 + α

N1 = α3 + α + 1

N2 = α3 + α2 + 1

N3 = α3 + 1.
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Thus we can compute a state byte at the end of the 4th round as follows:

b(l)
i,(j+i) mod 4 = γ−1

(
a(l)

i,j + k̄(5)
i,j

)
, (12.3)

where i ∈ {0, 1, 2, 3} and γ−1 is the S-box of SubBytes−1, as usual. Observe that
in (12.3) γ−1 is applied to a(l)

i,j + k̄(5)
i,j rather than to a(l)

i,j + k(5)
i,j . The latter would be

wrong, since k(5)
i,j is added after the application of MixColumns.

In order to identify a possible right guess, we have to check if
232∑

l=1
b(l)

i,(j+i) mod 4 = 0.

This sum can be expressed as

232∑

l=1

γ−1
(

N−i · ξ
(l)
0 + N1−i · ξ

(l)
1 + N2−i · ξ

(l)
2 + N3−i · ξ

(l)
3 + k̄(5)

i,j

)
, (12.4)

where the indices −i, 1− i, 2− i, 3− i are all meant to be reduced modulo 4, giving
a remainder in {0, 1, 2, 3}.

If we trivially execute this summation, given 232 ciphertexts and 240 possible key
guesses,we have to sum272 different values,which does not significantly improve the
basic Square Attack. As it is pointed out in [5], Expression (12.4) can be organized
in a more efficient manner. Once the row i is fixed, for each t ∈ {0, 1, 2, 3}, it is
possible to associate a partial sum x(l)

t to each set {ξ(l)
0 , . . . , ξ

(l)
t }, defined as follows:

x(l)
t :=

t∑

z=0

Nz−i · ξ(l)
z .

In particular,
x(l)
2 = x(l)

1 + N2−iξ
(l)
2 and x(l)

3 = x(l)
2 + N3−iξ

(l)
3 .

In order to simplify the notation, let (c(l)
0 , c(l)

1 , c(l)
2 , c(l)

3 ) be the 4-tuple formed by
the lth ciphertext’s bytes, extracted according to one of the configurations described
above.Guessing the keyvalues andusing the partial sums,we candefine the following
maps

(c(l)
0 , c(l)

1 , c(l)
2 , c(l)

3 ) 
−→ (x(l)
1 , c(l)

2 , c(l)
3 ) 
−→ (x(l)

2 , c(l)
3 ) 
−→ x(l)

3 .

Using a similar notation, let (k0, k1, k2, k3) be four values for the 6th round key,
whichwewant to guess, arranged in the sameconfiguration chosen for the ciphertexts,
and let k4 be a guess for the 5th round key byte k̄(5)

i,j . The Partial Sum Attack is
organized as follows.
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• We start with the list of 232 4-tuples (c(l)
0 , c(l)

1 , c(l)
2 , c(l)

3 ). Guessing k0 and k1, we

can compute each triple (x(l)
1 , c(l)

2 , c(l)
3 ).

• We then guess k2, and compute each pair (x(l)
2 , c(l)

3 ).

• Similarly, we guess k3, and compute each value of x(l)
3 .

• Finally, guessing the value of k4, we can compute Expression (12.4) and check
whether the result is zero.

12.2.3 Complexity

In the first phase one guesses 2 bytes and processes 232 ciphertexts bytes. For each
choice of k0 and k1, one more byte has to be guessed, but only 224 triples have to be
processed. In the third phase, k3 has to be guessed but one has only to process 216

pairs. This holds similarly for the other two phases. Summing up all the contributions,
we obtain that 250 operations are required for a single Δ̄-set of 232 elements.

12.3 Implementation and Improvement

The results described in this work started from Aldà’s Master’s thesis [1], where he
developed a C++ code of the Partial Sum Attack and introduced (independently of
[12]) the improvement specified in Sect. 12.3.2.

12.3.1 High-Level Scheme of the Implementation

To the best of our knowledge, this is the very first implementation of the Partial Sum
Attack on 6-round AES. In this section, we explain the main ideas and principles we
used in our implementation. We refer to Sect. 12.3.3 for further technical details on
our implementation.

As it is displayed in Fig. 12.2, the steps involved in the attack are very simple.
At the beginning of the attack, a Δ̄-set with 232 elements has to be encrypted. In
this way, we can obtain and store the 4-tuples (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ), formed by the

lth ciphertext’s bytes, extracted according to one of the configurations described in
Sect. 12.2.2. Extending the idea introduced in [5], it is sufficient to count how often
each 4-tuple appears during the computation. As there are only 232 possible 4-tuples,
we do not have to store all (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ) values. Since Expression (12.4) has to

be computed in a field of characteristic 2, it suffices to count modulo 2. In fact, only
the summands which appear an odd number of times give a non-zero contribution.
Hence, a single bit suffices for each count and it is possible to store our list of 4-tuples
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k0,k1 k2 k3 k4

232

224

216

28

Final sum

Fig. 12.2 The workflow of the Partial Sum Attack

in a 232-bit vector. Therefore, the space requirement for 232 counters is just 232 bits,
which correspond to 0.5GB.

We then start a loop over 216 possible values of k0, k1. For each pair (k0, k1),
we compute the partial sums x(l)

1 and store the triples (x(l)
1 , c(l)

2 , c(l)
3 ). Using the same

rationale, it suffices to count the parity of times each triple occurs. Again, we store all
parities in a 224-bit vector. Moreover, we observe that, using an appropriate sorting, it
suffices to compute the value x(l)

1 every 216 elements: in fact, this value only depends

on c(l)
0 , c(l)

1 , k0 and k1. Thus, if 1 ≤ l, h ≤ 232, we have

{
c(l)
0 = c(h)

0

c(l)
1 = c(h)

1

=⇒ x(l)
1 = x(h)

1 .

This observation significantly reduces the number of computations involved in this
step, allowing entire blocks of bits to be updated at the price of very few calculations
(see Sect. 12.3.3 for further details).

The same ideas can be similarly applied to the second step. For each value k2, one
computes the partial sums x(l)

2 , counts the parity of times each pair (x(l)
2 , c(l)

3 ) occurs

and stores it in a 216-bit vector. As before, it suffices to compute the value x(l)
2 every

28 elements: in fact, this value only depends on x(l)
1 , c(l)

2 and k2.

In the third step, for each value k3, we compute the partial sums x(l)
3 , count how

many times each x(l)
3 occurs and store its parity in a 28-bit vector. Unlike the previous
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steps, this must be done scanning every entry of the 216-bit vector, since both x(l)
2

and c(l)
3 must be used in the computation of x(l)

3 . Finally, looping over the value k4,
it is possible to compute the final sum and check whether the result is zero.

As it was explained for the Square Attack, checking this sum for a single Δ̄-set is
expected to eliminate 255 of thewrong key assumptions (k0, k1, k2, k3, k4). It is there-
fore necessary to verify their correctness using different Δ̄-sets (verification steps).
At each positive verification, the key space is reduced by a factor 2−8. Apparently,
this implies that 6 different Δ̄-sets (or more) are needed to find the correct 5-tuple
(k0, k1, k2, k3, k4) with overwhelming probability. This result can be improved, as it
is explained in the following section.

12.3.2 Improvement

As it was already underlined, when it was published, the Partial Sum Attack rep-
resented one of the best cryptanalytic results on reduced-round versions of the
AdvancedEncryption Standard. After its publication,many other researchersworked
on the integral cryptanalysis of Rijndael (and its specification AES), finding new
extensions or improvements for this class of attacks (see for example [7, 9, 12]).
Our approach started from performing a full implementation of the attack as it is
described in Sect. 12.3.1, trying to understand where some other potentialities could
be exploited.

In the original paper [5], it is claimed that at least 6 sets of 232 plaintexts, which
form a Δ̄-set, are necessary in order to find the correct 5-tuple (k0, k1, k2, k3, k4).
However, we observed that only two Δ̄-sets suffices to determine the correct 4-
tuple (k0, k1, k2, k3)with high probability. In fact, fixing one configuration according
to which the ciphertexts bytes (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ) are extracted, one can compute

the sum in four different state bytes at the end of the 4th round (we can choose
i ∈ {0, 1, 2, 3} in Eq. (12.3)). We provide a visual example in Fig. 12.3.

If we consider each sum as independent and make use of Proposition 12.2, using
only two Δ̄-sets, the probability that for a 4-tuple (k0, k1, k2, k3) there exists for each
row a value k4 which gives a zero sum for both Δ̄-sets is (1/256)8. Note that the bytes
of the 5th round key, which produce zero sums, may be different for each row, but,
as for (k0, k1, k2, k3), their correctness should follow by the crosschecking between
the two Δ̄-sets. Therefore, checking the value of the sum on four rows at the end of
the 4th round is expected to determine, with sufficiently high confidence, the correct
4-tuple (k0, k1, k2, k3). More specifically, only one false positive (k0, k1, k2, k3) is
expected to survive to all verification steps.

The hypothesis which this result is mainly based on consists of considering the
sums on four rows as independent. As pointed out in Sect. 12.2.1, there is no certainty
that this assumption holds perfectly in practice. Intuitively, even though the bytes
involved in the sums belong to the same state and their correlation is hence nonzero,
the diffusion and confusion introduced by the round transformations should make
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5th round

SB SR ARK MC

6th round

SB SR ARK

Swap

Fig. 12.3 The state bytes at the end of the 4th round (in the top-left matrix) which can be computed
for a configuration according to which the ciphertexts bytes (c(l)

0 , c(l)
1 , c(l)

2 , c(l)
3 ), for 1 ≤ l ≤ 232,

are extracted

it negligible after few rounds. The experimental results we performed using our
implementation (which exploits the aforementioned improvement) show that using
only two Δ̄-sets and computing the sum on four rows do not eliminate all wrong
guesses, as we expected. In particular, besides the correct 4-tuple, we obtained on
average one false positive, independently of the configuration chosen.Althoughmore
tests are needed in order to provide a better estimate, our results already indicate that
the probability of false positive closely matches the expected one. Moreover, we
believe that future analyses in this direction could point out further properties of the
cipher, which may lead to other improvements of the attack.

All in all, we observed that the number of chosen plaintexts which are necessary
in order to mount the attack (with high confidence) can be reduced from 6 Δ̄-sets of
232 elements to only 2. In order to lower the probability of false positives (but still
enhancing the basic attack described in [5]), we also performed some attacks using
3 Δ̄-sets, checking the sum on four rows at the end of the 4th round. As expected, in
this setting we did not observe any false positive.

Although we reached this conclusion independently, we would like to point out
that a remark similar to our observation can be found in [12]. As already observed,
we believe that our analysis is more careful and detailed, since we supported the
applicability of the hypotheseswhich this result is based on bymeans of experimental
analyses on AES. Specifically, we provided a full implementation which strongly
exploits the aforementioned improvement, and the results we obtained running the
attack showed that the number of false positives closely matches the one which was
expected from the theoretical analysis.
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Among other speed-ups we introduced, this improvement allowed us to achieve
optimal performances, showing the complete practicability of the attack, as it will
be presented in the following section.

12.3.3 Implementation’s Details

First of all,we portedAldà’s code [1] toC, to reduce the overheadofC++abstractions,
which are useful but not essential for this kind of application. During this phase,
we decided to map every Boolean vector’s element to a bit inside an unsigned
char’s array. On one hand, this process forced us to create some ancillary functions
to toggle and mask bits as necessary but, on the other hand, it had the side effect of
accelerating some functions where shifting and masking were required, because we
did it byte by byte, instead of bit by bit. Moreover, it allowed us to save space and
time while writing and reading the encrypted arrays to and from the disk, storing
every 232 array in a 512MB file and saving time while testing the attack. After
completing the porting and introducing the new memory management concepts, we
started focusing on how the memory management operations could be accelerated
and we ended up managing every group of 8 unsigned char array elements as
an unsigned long long int array, where possible. This allowed us to deal
with the allocated memory as a set of 64 bit blocks, reducing the time needed to
complete, for example, some XOR operations between these arrays. The resulting
implementation was satisfactory.

We also decided to allow the parallelization of the attack on multiple core systems
and, for this purpose, we needed to exchange information between each process. We
chose OpenMPI [6, 8] because we appreciated its documentation and the maturity
of the open source project supporting it. Porting the code from a linear to a parallel
paradigm presented no real difficulties because the attack is mainly composed by
loops, repeated for values from 0 to 255, so we decided to execute the 5 most inner
loops on each worker (a worker is a parallel process running the attack), assigning
to each of them a range of values of k0 to go through in the outer of these 5 loops.
Moreover, we shared the encrypted vectors, using NFSv4, on every system running
the attack and using the same share storage to save the guessed partial keys and to
check the status of the attack from each worker.

Our code works as follows. The master process coordinating the attack distributes
the values to each worker using the Round-Robin algorithm [11] and then
waits for replies from each of them.After finishing the attackwith one of the assigned
values, every worker reports the result to the master, if successful. If the attack with
that value was not successful, the worker checks the shared storage looking if the
current partial key has been guessed and, if so, it stops the attack, otherwise it starts
the attack with the next assigned value.

To retrieve the whole 16-byte key, the attack has to be run 4 times, according to
the four configurations shown in Fig. 12.1. The master writes 4 files that contain the
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Table 12.2 Experimental results obtained running our implementation of the Partial Sum Attack
on 6-round AES

Number of Δ̄-sets Average time (days) Memory (GB)

2 12.1 1.028

3 11.5 1.542

The keys were chosen according to the example vectors provided in [10]

partial keys guessed, and it also writes the whole key in another file when the attack
is completed for every configuration.

The final outcome of this effort was interesting in terms of memory and time used.
The attacks have been launched on 6 desktop PC, with 4 cores (Intel Pentium CPU
G640 @2.80GHz) and 8GB of RAM each, using 25 processes. The first process
coordinated the attacks, while the remaining 24 workers actually performed the
attacks. The results we obtained are summarized in Table12.2.

From these experimental results, we can note that the attacks which use 3 Δ̄-
sets are generally slightly faster, though they obviously require more memory to
be performed. This is not too surprising, since using only 2 Δ̄-sets triggers more
verification steps on different rows (as observed in Sect. 12.3.2, there are more wrong
key candidates which give a zero sum on a fixed row), which are time consuming
operations in our current implementation.

Based on the results of Table12.2, we estimate that, on average, the 128-bit 6th
round key can be retrieved in 25.8h using 256 workers.

The source code of our implementation of the Partial Sum Attack is available on
http://tdsoc.org.
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Chapter 13
A Real Life Project in Cryptography:
Assessment of RSA Keys

Riccardo Aragona, Francesco Gozzini and Massimiliano Sala

Abstract We describe a project carried out by CryptoLabTN. In this project we pro-
vide a rigorous analysis of the RSA cryptographic keys employed in the Certification
Authority (CA) to certify the keys exchange during some financial transactions. In
particular, we consider the asymptotically fastest known factorization algorithm, that
is, the General Number Field Sieve (GNFS). We estimate the computational effort
required by an attacker to break the certification keys. Our estimate differs from a
direct application of the asymptotic estimates,because in a real-life attack several
factors have to be vetted.

13.1 Introduction

In order to guarantee secrecy of the data exchange during some financial transactions,
the Certification Authority (CA) has the role to issue PKI (Public Key Infrastructure)
certificates used for authentications and keys exchange between the terminals. The
security of each transaction is enforced through the following procedure:

• generation of RSA keys and request of PKI certificate;
• mutual authentication between the terminals;
• initialization of the channel; and
• keys exchange.

We provide a mathematical evaluation of the optimal length of the RSA keys
employed in such CA. The choices about the length of a cryptographic key are
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based on a risk analysis of the possible breaking of the corresponding cryptographic
system. The risk is assessed in terms of the total amount of the assets protected by a
specific security level. The impact analysis is carried out by modeling a real-world
attacker, to provide insights about optimal lengths of RSA moduli for the CA.

We assume that the private key of each actor is sufficiently protected; it follows
that the attack scenario is the public key factorization. Therefore we conduct an
analysis of the best factorization algorithm known in literature, the General Number
Field Sieve (GNFS) [12].

Starting from an analysis of the runtime of published attacks based on the GNFS,
we estimate the computational effort employed by an attacker. Such effort depends
on the computing power of attacker. So we estimate

• hardware purchasing power of the attacker in Sect. 13.3.2
• future development of standard microprocessor performances in Sect. 13.3.3
• future development of cryptanalytic capabilities of the attacker in Sect. 13.3.4

Using these parameters we construct an attacker model. We notice that the esti-
mates found during our work, using the developed model, are significantly less than
those coming from a direct application of classical asymptotic estimates, although
obviously the two coincide at infinity.

13.2 RSA Security and Factorization of a Composite
Number

The security of the RSA cryptosystem [15] is based on

• computational hardness of the problem of factoring large numbers;
• computational hardness of recovering the plaintext from the ciphertext without
knowing the private key.

In [4] Boneh andVenkatesan showed that the factorization can bemuchmore difficult
than inverting the RSA encryption function. However, nowadays, apart from special
situations, we are not able to invert the RSA encryption function without knowing
the factorization of the RSA modulus.

The common idea of the best known attacks on RSA is to factorize the modulus
N writing it as difference of squares modulo N : in other words, given a composite
integer N , find x, y ∈ Z such that

x2 ≡ y2 mod N with x �≡ ±y mod N .

It follows that gcd(x − y, N ) and gcd(x + y, N ) are non-trivial factors of N with
probability greater or equal to 1

2 .
The most efficient factoring algorithm based on this idea is the General Number

Field Sieve.
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13.2.1 General Number Field Sieve

TheGeneral Number Field Sieve (GNFS) is an improvement to the classicalQuadra-
tic Sieve (QS) [11]. When using QS to factor a large number N , it is necessary to
search for smooth numbers (i.e. numbers with small prime factors) in Z. GNFS,
on the other hand, manages to search for smooth numbers in the ring of integers,
different from Z, of a suitable algebraic number field. Since these numbers have
smaller size, they are more likely to be smooth than the numbers inspected in QS.
This is the key to the efficiency of GNFS. In order to achieve this speed-up, the GNFS
has to perform computations and factorizations in number fields. For this reason, the
GNFS algorithm is much more complex than its ancestor QS. For more details about
the GNFS algorithm see [2, 12, 13].

GNFS complexity. The estimated complexity of GNFS for factoring an integer
N is of the form

Lo[n] = e(1.9229+o(1)) ln(n)1/3 ln(ln(n))2/3 (13.1)

where n = log2(N ) and o(1) tends to zero for n tending to infinity. For a proof of
(13.1) see [14]. Notice that this is an asymptotic estimate.

13.3 The Attacker Model

The strength of an attack on a cryptosystem directly depends on the computational
capability of the attacker. With computational capability we mean the quantity of
elementary operations that the attacker can carry out in a given time interval. The
computational capability of an attacker is also established by the quantity of memory
at his disposal.However, since the request ofmemory for this attack is close to

√
L[n],

in the following we only refer to the CPU power as parameter to evaluate the strength
of the attack.

In this work we measure the computational capability of a CPU in Floating-Point
Operations Per Second (FLOPS). This unit of measure is better suited for the evalu-
ation of an attack on an algebraic cryptosystem since various complex computations
over algebraic structures are involved at each step.Moreover the computational capa-
bility of a supercomputer is usually estimated in FLOPS. We denote 109 FLOPS by
GFLOPS.

13.3.1 Runtime for GNFS

The heuristic complexity in (13.1) of the GNFS cannot be directly used to estimate
the execution time of the algorithm. Since in this work it is necessary to estimate the
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runtime for a real life attack, we are interested in providing a more precise estimate,
at least for short lengths. From (13.1) we have the existence of a number a ∈ R,
a ≥ 0, and two functions g and h, such that the runtime is

a · e(1.9229+ g(n)) ln(n)1/3 ln(ln(n))2/3 + h(n)

with limn→∞ g(n) = 0 and limn→∞ h(n)/[a · e(1.9229+ g(n)) ln(n)1/3 ln(ln(n))2/3] = 0.
A direct (not-so-clever) application of (13.1) would be to get the runtime for finite

n using a = 1, g = 0 and h = 0. By keeping the assumption h = 0 for the n in the
range of interest, we have seen that g can be approximated rather well as

g(n) = b

ln(n)

where b has to be determined inR, b ≥ 0. Then the determination of the two constants
depends on several factors, including the relationship between runtime expressed as
number operations and runtime expressed as FLOPS.

We have thus arrived to the following formula

f (n)
.= a · e

(
1.9229+ b

ln(n)

)
ln(n)1/3 ln(ln(n))2/3

(13.2)

where parameters a and b are in the ranges

10−14 ≤ a ≤ 10−12, 10 ≤ b ≤ 100.

The output of function (13.2) is the estimated duration in seconds of the factor-
ization performed on a PC with a 2.53GHz Pentium 4 Northwood processor. We
estimate its computational power in about 2GFLOPS [5].

After proper scaling, we verified that the estimate (13.2) agrees with the runtimes
of other known factorizations [1, 3, 6, 8].

13.3.2 Hardware Purchasing Power of the Attacker

The duration of an attack depends on the budget that the attacker wants to invest to
buy hardware. We consider two scenarios:

• Network of PCs: we follow the approach used by Lenstra and Verheul [9] and
we estimate the market price for GFLOPS of hardware currently in commerce,
considering the average prices of popular processors on amazon.com;

• Supercomputers: we consider the cost of the most powerful supercomputer in the
world at the time of writing, i.e. Tianhe-2 [16].
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Comparing the two scenarios, we assume that the attacker buys hardware at the
lowest market price and we fix the parameter

P
.= 1.75 $/GFLOPS

as estimate of the purchasing power of the attacker. Our analysis was carried out in
June 2014.

13.3.3 Future Development of Standard Microprocessor
Performances

Since the CA Certificates can be used for years, it is necessary to analyze how the
costs estimated in the previous section evolve over time.

We consider a more useful reformulation of Moore’s law [10] to estimate the
future development of the microprocessor computational power. The reformulation
states that The processing power for computers doubles every 18 months. Hence we
assume that the purchasing power of the attackers increases with time, i.e.

P(d)
.= P · 2− d

18 (13.3)

where d is the number of months passed since June 2014.

13.3.4 Future Development of Cryptanalytic Capabilities of
the Attacker

The last theoretical development of GNFS dates back to 2006 [7] and in general
there have been no significant improvements in the last years, both in the algorithm
or in its implementations. Anyway, in a pessimistic scenario, we assume that the
cryptanalytic capabilities of an attacker double every 18 months, starting from June
2014, similar to what predicted by Lenstra and Verheul in 2001 [9].

13.4 Estimate of the Attack Duration

We are ready to provide the formula for the estimate of the runtime of the algorithm
GNFS. Let

n be the bits of the RSA modulus to factorize,
d be the months passed since June 2014,
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c be the budget (in $) in hand of the attacker for purchasing an hardware, and
f (n) be the formula (13.2) which estimates the time (in seconds) to factorize an

RSA modulus of n bits with a single processor of 2GFLOPS.

We obtain that the time t to factorize an RSA modulus of n bits, spending c dollars
and performing the attack d months after June 2014 is estimated to be

t = f (n) · 2

c/P
· 2− d

18 = f (n) · 1.75
c

· 21− d
9 . (13.4)

We provide an example. We suppose that an attacker wants to factorize a 1024-bit
RSA modulus in May 2015, in other words d

.= 11. We assume that the budget in
hand of the attacker for purchasing hardware is c

.= 20,000$. So we estimate the
time of factorization in

t = f (1024) · 1.75

20,000
· 21− 11

9 ≈ 3 · 109 seconds,

i.e. about 95 years.

13.5 Results and Conclusions

Our analysis provides a non-asymptotic version of the GNFS runtime formula (13.2)
that is well suited for estimation of concrete attacks. Moreover, our discussion con-
siders factors as attacker budget, advancement in microprocessor performances and
in cryptanalytic techniques. Our final formula (13.4) combines all these factors and
provides a real life estimation of GNFS attacks runtimes. Notably, our results suggest
that the considered CA keys are chosen with cryptoperiod, i.e. the time period dur-
ing which a specific cryptographic key is authorized for use, too large with respect
to their bit-strength; we advise the CA to either use stronger keys or shorten the
cryptoperiod of all the keys that are currently employed in their network.

References

1. Aoki K, Kida Y, Shimoyama T, Ueda H (2004) GNFS factoring statistics of RSA-100,
110,. . .,150. Technical report, IACR. https://eprint.iacr.org/2004/095.pdf

2. Buhler JP, Jr Lenstra HW, Pomerance C (1993) Factoring integers with the number field sieve.
The development of the number field sieve, Lecture notes in mathematics, vol 1554. Springer,
Berlin, pp 50–94

3. Bai S, ThoméE, Zimmermann P (2012) Factorisation of RSA-704with CADO-NFS. Technical
report, IACR. https://eprint.iacr.org/2012/369.pdf

4. Boneh D, Venkatesan R (1998) Breaking RSA may not be equivalent to factoring. In Proceed-
ings of EUROCRYPT 98, LNCS, vol 1403. Springer, Berlin, pp. 59–71

https://eprint.iacr.org/2004/095.pdf
https://eprint.iacr.org/2012/369.pdf


13 A Real Life Project in Cryptography: Assessment of RSA Keys 203

5. Dongarra JJ (2013) Performance of various computers using standard linear equations software.
Technical report, University of Manchester

6. Danilov SA, Popovyan IA (2010) Factorization of RSA-180. Technical report, IACR. https://
eprint.iacr.org/2010/270.pdf

7. Kleinjung T (2006) On polynomial selection for the general number field sieve. Math Comput
75(256):2037–2047

8. Kleinjung T et al. (2010) Factorization of a 768-bit RSAmodulus. In Proceedings of CRYPTO
10, LNCS, vol 6223, Springer, pp. 333–350

9. Lenstra AK, Verheul ER (2001) Selecting cryptographic key sizes. J Cryptol 14(4):255–293
10. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):

114–117
11. Pomerance C (1985) The quadratic sieve factoring algorithm. Advances in cryptology, LNCS,

vol 209, Springer, Berlin, pp 169–182
12. Pomerance C (1994) The number field sieve. In mathematics of computation 1943–1993: a

half-century of computational mathematics. Proceedings of symposia applied mathematics,
vol 48, pp. 465–480. American Mathematics Society

13. Pomerance C (1996) A tale of two sieves. Not Am Math Soc 43(12):1473–1485
14. PomeranceC (1996)Multiplicative independence for random integers. ProgMath 139:703–712
15. Rivest RL, Shamir A, Adleman LM (1978) A method for obtaining digital signatures and

public-key cryptosystems. Commun ACM 21(2):120–126
16. Top500 Supercomputer sites http://www.top500.org/system/177999

https://eprint.iacr.org/2010/270.pdf
https://eprint.iacr.org/2010/270.pdf
http://www.top500.org/system/177999


Chapter 14
Encoding in the DTMF Channel
for Two-Channel Authentication

Alessio Meneghetti, Pietro Peterlongo and Massimiliano Sala

Abstract A typical situation of authentication happens when an Internet service
needs to verify the identity of a user. The channel used for the communication could
be under attack and it is envisaged that a second channel should be employed to
thwart this threat. A type of channel which is widely available and that might be
suitable for this goal is the DTMF signaling. Telephone lines use Dual-Tone Multi-
Frequency signaling (DTMF) to communicate between devices such as a telephone
and a server. DTMF uses a sixteen symbols code. The channel presents noise which
may produce missing or doubled symbols. Given the extremely limited bandwidth,
it is essential to provide some encoding that can protect the exchanged secret from
the channel noise. This problem requires the use of Insertion Deletion Codes. In this
contribution we describe the problem and our solution, which employs a concate-
nation of Reed-Solomon codes and Tenengolts codes, that solves it in our particular
context, i.e. reduced bandwith with the goal of exchanging a secret for a two-channel
authentication protocol.

14.1 Introduction

In a communication when sensitive data are transmitted, one major issue is that of
the authentication of the user. For example, we can think of logging on an online
bank account, on an e-commerce site where credit card informations are stored, or
verify the identity of a chat user.

We can assume that the channel used for sending and receiving data is the same,
such as an Internet data connection. This brings a security problem: whatever
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authentication method you have chosen, whether login/password or cryptographic
challenge or some unusual approach, if the channel is compromised then your authen-
tication will fail or can be attacked by a man-in-the-middle attack. The only way to
overcome this limitation is by using a second communication channel, which is used
in conjunction with the first only to ensure the authentication. An example which is
often encountered is when one logs in to her online bank account, tries to transfer
funds to a different IBAN address and an SMS is sent to her phone with an OTP
(One-Time Password) to confirm the transaction. In this example the first channel
is the Internet and the second channel is the GSM network. In order to be useful,
the second channel must be as unrelated as possible from the first channel. Also, the
two channels should be accessed using different devices, e.g. a pc and a smartphone,
otherwise the compromission of the device will make the use of two channels moot.

While the ubiquity of Internet can be taken for granted, it is not so easy to identify
alternative channels that could be used. As said, one obvious could be the GSM
network, especially with SMS’s. In this chapter we propose to use a channel which
is implicit in most telephony protocols, including GSM: the use of the DTMF (Dual-
ToneMulti-Frequency). In next sectionwewill describe theDTMFand in subsequent
sectionswewill showhow to handle noise in this channel, which is themain difficulty
to overcome if we want to use it as a second channel for authentication.

14.2 Introduction to the DTMF Channel

Dual-Tone Multi-Frequency signaling (DTMF) is a communication system capable
of encoding and decoding up to 16 symbols [2]. This system is based on the pres-
ence of an integrated circuit digital encoder, which generates a standard telephone
frequency—the DTMF output—in response to input data.

Modern telephones usually have at least 12 keys keypads, namely the numbers
from 0 to 9 and other two symbols generally identified with ∗ and #. A complete
16-keys keyboard also include four more symbols, called A, B, C and D. This set of
16 symbols is thought to be a 4×4matrix, and the DTMF protocol associates to each
row and each column a unique and fixed frequency. Hence, the protocol associates
two frequencies to each symbol, and the superposition of the two is the tone that will
be sent. In Fig. 14.1 the frequencies associated to the DTMF keyboard are specified.It
is worth to remark that the 8 frequencies are specified by the protocol in order to avoid
that the sum and difference of two frequencies are not valid frequencies themselves.

Fig. 14.1 Frequencies
associated to the DTMF
keypad
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All symbols are encoded individually and the resulting tones are sent over the
channel separated by a period of silence. A transmitted tone is called mark, while the
silence between two marks is called space. The standard is a mark/space of 40/40,
namely both the marks and the spaces last 40ms. This choice is related to the fact
that most of the devices are able to decode with no errors any signal that lasts more
than 23ms. In the same way a silence that lasts more than 20ms is recognized with
no errors.

Due to the properties of the channel, in DTMF we cannot assume the classical
Binary Symmetric Channel environment. In particular, defects of the transmission
can induce insertions or deletions in the transmitted sequence, while noise can intro-
duce erasures and errors. In addition, insertions, deletions and errors might also be
caused by user’s mistakes.

We assume here that the quantity of data to be sent is small, namely few bits of
information. This allows the utilization of classical coding theory even for correcting
insertions and deletions. In fact, few bits can be encoded as a single codeword, hence
we are not interested here in the problem of separating two consecutive codewords.

14.3 Edit Distance and Block Codes

In algebraic coding theory the distances between the codewords are strictly related to
the ability of correcting errors. For example, in the case of a binary symmetric channel
no insertions or deletions can happen, hence when we receive a bitstring we can
compute the Hamming distance between the received vector and all the codewords,
and it is proved that the optimal decoding consists of finding the codeword that
minimizes the Hamming distance.

This approach cannot be used in a channel in which the probabilities of insertions
and deletions are non-zero. Assuming an insertion happened during the transmission,
the received vector does not necessarily have the same number of components than
any codeword, hence we cannot use the Hamming distance.

A generalization of the Hamming distance was introduced by V.I. Levenshtein,
which is now known as the Levenshtein distance or edit distance [4]. Given two
vectors a and b, not necessarily of the same length, we measure their distance as the
minimum number of insertions, deletions and substitutions that are needed to change
a into b.

Proposition 14.1 Consider a code able to recognize and correct up to 2t insertions
or deletions. Then the code can also correct up to t errors.

Proof Each error can be thought as a deletion followed by an insertion. Hence if we
can correct an insertion and a deletion, we can also correct an error.

Due to this proposition we could focus on codes able to correct insertions and
deletions, then, provided that the correction capability is high enough, we would also
be able to correct errors and erasures.
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Example 14.1 Let C be a d repetition code, namely each symbol of the message
(m1, . . . , mk) is repeated d times, hence the corresponding codeword is

(m1, . . . , m1, m2, . . . , m2, . . . , mk, . . . , mk).

Assuming that the number of insertions and deletions is less that d − 1, then we
can correct safely.

Moreover, if d ≥ 3, then we can correct with no mistake up to 2 deletions, 2
insertions, or 1 insertion and 1 deletion, and the latter implies that we can correct
up to 1 error.

However, we need more sophisticated codes, otherwise the redundacy would be
too large.

Let us note that the converse of Proposition 14.1 is not true. Assume for example to
have a cyclic code able to correct up to t errors. Then we cannot correct any insertion
or deletion. As an example, let us assume to send the codeword (a, b, c, d), and that
a deletion occurs in the first symbol during the transmission. The received vector
is (b, c, d), but then both the codeword (a, b, c, d) and (b, c, d, a) are at distance 1
from (b, c, d). The following proposition is a consequence of this remark.

Proposition 14.2 Cyclic codes cannot correct insertions or deletions.

Proof Consider a pair of codewords c and c̄ such that c̄ is obtained by shifting c by
one position, namely

c = (c0, c1, . . . , cn−1), c̄ = (c1, . . . , cn, c0).

If we send c and a deletion happens in the first position of c, then the receiver obtain
the vector of n−1 elements y = (c1, . . . , cn). Clearly both c and c̄ have edit distance
1 from y, hence we cannot safely decode.

14.4 Block Codes for the DTMF Channel

We consider here the problem of correcting a sent message through the DTMF
channel, under the following hypothesis:

1. Erasures, errors, deletions and insertions can happen during the transmission.
2. The message has short length.

The second hypothesis can be rephrased as

2. During the transmission a single codeword is sent.

In this work we consider the case in which the number of all possible messages is at
most 95, due to our physical constraint (see Sect. 14.5). Most of the error correcting
codes are designed to solve both the problem of separating the received vectors of
symbols into blocks, and the problem of correcting each block. The main procedure
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for addressing these problems is the usage of two codes, an external code able to
identify and separate the vector of symbols into blocks, and an internal code used to
correct the errors inside each block. The importance of the second assumption we
made is the knowledge that all received symbols belongs to a single codeword, hence
we do not need an external code to separate the symbols into blocks.

Many solutions can be applied to this problem, as the utilization of a repetition
code, whose properties were already addressed in Example 14.1, or the construction
of a code meeting a designed edit distance. However, this can be a challenge, due
to the fact that an efficient algorithm (polynomial time) computing the distance
distribution of a linear code would solve an NP-hard problem. This challenge can
be faced by the implicit construction of a code able to correct a certain number of
insertions and deletions. For example we can focus on codes able to correct a single
insertion or deletion, ingoring possible errors or erasures. Such codes can be found
in [9], and a lot of research has been made following this approach [1, 3, 5, 7]. An
advantage of the Tenengolts code is the systematic encoding, which allows efficient
encoding and decoding procedures. On the other hand, the assumption that no errors
can occur during the transmission is often irrealistic.

Our solution is discussed in Sect. 14.4.2 and employs two concatenated codes,
achieving the correction of a single correction or deletion or error or erasure,wherever
it occurs, and achieving the correction of two erasures if they happen in the systematic
part.

14.4.1 The Tenengolts Encoding Procedure

In this section we present briefly the Tenengolts code, in which the correction of
a single insertion or deletion is addressed using a non-binary systematic code with
small redundacy.

Let us consider a finite alphabet A containing q > 2 elements, identified with
the set Zq , and consider a fixed value k. Each codeword is therefore a sequence
(c1, c2, . . . , cn), to which we associate a binary sequence (b1, . . . , bn) obtained from
the formula

bi =
⎧
⎨

⎩

1 i = 1
1 ci ≥ ci−1
0 ci < ci−1

Example 14.2 The binary sequence associated to the codeword (3, 2, 6, 6) is
(1, 0, 1, 1).

Theorem 14.1 Consider a set C of sequences (c1, . . . , cn) which, together with the
corresponding binary sequences (b1, . . . , bn), solves the system

⎧
⎨

⎩

∑n
i=1 ci = β mod q

∑n
i=1 (i − 1) bi = γ mod q
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for some fixed values β and γ. Then C is a code of length n which can correct up to
a single insertion or deletion.

Consider now a fixed value k, namely the dimension of the code, and let C be the set
of codewords c such that

c = (c1, . . . , ck, ck+1, ck+2, ck+3, ck+4, . . . , ck+3+r , )

where

• c1, . . . , ck is the message m1, . . . , mk .
• ck+1 = ck+2 = ck + 1 mod q; these symbols separate the systematic part of the
codeword from the redundacy part.

• ck+3 = ∑k
i=1 ci mod q.

• (ck+4, . . . , ck+3+r ) are r symbols obtained from the q-ary representation of the
value:

v =
k∑

i=1

(i − 1)bi mod qr ,

and r = � logq k�. This means that

v =
r∑

i=1

ck+3+i q
i−1.

The set C is a systematic code

(
Zq

)k → (
Zq

)n
,

where
n = k + 3 + r.

The decoding procedure can be found in [9].

Remark 14.1 This code, as all codes able to correct one deletion, can also correct
one erasure.

14.4.2 A Code for the DTMF Channel

We now address the problem of simultaneously correcting errors, insertions and
deletions. Consider the set of possible messages Ω , such that |Ω| ≤ 95. In this
case we can map each message to a distinct element of (F9)

5. A possible choice for
an error correcting code over F9 is the [8, 5, 4] Reed-Solomon code C̄ , which can
correct up to 1 error.
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Proposition 14.3 Let C be a [n, k, d] Reed-Solomon code. Then a code obtained
by puncturing C in any position is a [n − 1, k, d − 1] code.

By applying Proposition 14.3 to C̄ we obtain a [7, 5, 3] code C ′ over F9, hence it
can still correct up to a single error.

Proposition 14.4 Let C be the code obtained by using the encoding procedure
described for the Tenengolts code to C ′. Then C is a code able to correct a sin-
gle error, insertion or deletion.

Proof Suppose that atmost one insertion or deletion happens during the transmission.
The decoding procedure for the Tenengolts code will give us a sequence (c1, . . . , c7)
of elements in F9, which can be decoded using the Reed-Solomon decoding
procedure.

We finally recall that the Tenengolts systematic encoding procedure will add to
the codewords of C ′ a redundacy of length 3+ � logq n�. In our case C ′ is a [7, 5, 3]
code, hence r = 1. Putting everything together, C is a code over F9 of length 11 and
dimension 5.

14.5 An Application

Given the ubiquity of telephones nowadays, one might think of using the DTMF
channel as a secure channel where a shared secret could be sent. Once the two peers
have a shared secret, they can use it to establish a secure communication over an
insecure channel. For example, the secret could be used to derive a symmetric key
for a block cipher or a seed for a stream cipher [6, 8]. Also, the secret could be used
in a challenge related to authentication, when one of the peers wants to prove her
identity. Of course, there are physical limitations that have to be taken into account
in this case. In particular, we cannot assume to be able to send more than 11 tones
without interfering with the telephone signalling protocols. It is this application that
we have inmind and that forces us to consider nomore than 95 distinctmessages. This
limitation forces the security-related applications to use the secret as an ephemeral
secret, since a brute force could easily break it.

14.6 Conclusions and Future Developments

The use of the DTMF channel for exchanging authentication tokens is heavily con-
strained by the small bandwidth and the channel noise. The reliability of the trans-
mission is affected by both defects of the channel and user’s mistakes, therefore we
need to add redundacy to protect the message from errors, insertions and deletions.
While classical coding theory could be applied to protect the sent informations from
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errors, to address the problem of insertions and deletionswe need to rely on particular
classes of non-binary codes, which however do not correct errors. Also, in a context
of reduced bandwidth we need to add few symbols of redundacy. To solve this prob-
lem, in this work we combine the utilization of MDS codes and insertion/deletion
codes. The proposed code is obtained by combining a Reed-Solomon code with a
Tenengolts code, and is able to correct a single error, insertion or deletion.

We have thus shown that, limited to the use of sharing a short secret for authenti-
cation in a two-channel protocol, the DTMF channel may be used effectively.

As regards possible future developments, on the DTMF channel we are limited
by its bandwidth but we could construct much longer codes for other channels,
achieving the simultaneous correction of many errors/deletions/insertions/erasures.
This is ongoing research in our group.
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