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Abstract The authors and their team members have been working on developing
implementable techniques for the objective rapid assessment of structural health
(RASH) just after major natural and man-made events or in the context of main-
tenance over a period of time. They used the system-identification techniques by
eliminating some of its weaknesses. For easier implementation, the excitation
information was completely ignored. To locate defects and their severity at the local
element level, the structures were represented by finite elements. By tracking the
changes in the stiffness parameters of each element, the location(s) and severity of
defects are assessed. The team conducted extensive analytical and laboratory
investigations to verify all the methods. They had to overcome several challenges
related to the conceptual and analytical development, data processing, and the
presence of uncertainty in the every phase. To consider nonlinearity in the system
identification process, a method known as Generalized Iterative Least
Squares-Extended Kalman Filter-Unknown Input (GLIS-EKF-UI), was developed
earlier. Since it failed to identify structures in some cases, the authors recently
proposed a new method denoted as Unscented Kalman Filter—Unknown Input-
Weighted Global Iterations (UKF-UI-WGI). With the help of informative exam-
ples, the superiority of UKF-UI-WGI over GLIS-EKF-UI is documented in this
paper. Since at the beginning of an inspection, the defects and their severity are
expected to be unknown, the authors recommend UKF-UI-WGI for the rapid
assessment of health of infrastructures.
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1 Introduction

ICRESH-ARMS 2015 provides a unique opportunity to discuss all the issues
related to Prognostic and Structural Health Assessment. In fact, the first two issues
of Life Cycle Reliability and Safety Engineering published by the Society for
Reliability and Safety (SRESA) in 2015 are dedicated to the related topics. The
related areas have become one of the most active research topics and have attracted
multi-disciplinary interest. Extending life of infrastructures instead of replacing
them has become a major challenge to engineers [9]. Structural health assessment
just after a natural event or a man-made event has also become a part of inspection
protocol. Non-destructive evaluation or inspection techniques of various degrees of
sophistication are developed to help the assessment process. Smart sensing tech-
nologies, high quality data acquisition systems, mitigation techniques for noise
contamination, digital communications, sophisticated computational techniques,
etc., have been developed. This general area is commonly known as structural
health assessment (SHA) or structural health monitoring (SHM).

Any automated monitoring practice that seeks to assess the health of a structure
can be considered as SHM [7]. It implies that the health of a structure can be
monitored in an automated manner by tracking the initiation or growth of a defect
already present in the system. Since visual inspections may not be adequate for this
purpose, sensors and the interpretation of their readings are essential for SHM. In
spite of its recent impressive developments, it is not generally used in real world
applications. Continuous accurate measurements of any output is a major challenge
considering power sources necessary for operation, data transfer and storage, failure
or sensors getting out of calibration, etc. The users generally assume that the
technology is not fully developed for practical applications.

Objective rapid assessment of structural health (RASH) is essential just after a
visual inspection or after a major natural event like strong earthquake or high wind
or man-made event like blast or explosion, or in the context of maintenance. There
is a potential for significant loss of economic activities in a region without such
assessment. There are significant developments in the related areas. These areas are
the subject of this paper.

2 Rapid Assessment of Structural Health

All defects are not equally important in maintaining the overall structural health.
Thus, some of the major objectives of RASH are to locate defects at the local
element level, assess their severity, and take remedial actions when necessary. If
defects are repaired, it is important to know if they are repaired properly and all
major defects are identified. To achieve these objectives, the process of listening to
audible variations of responses due to tapping of structural surface has been used
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over centuries. Visual inspections at regular intervals are also suggested in many
design codes. They can be broadly categorised as non-model based non-destructive
inspection (NDI) techniques. If location of a defect is known, the profession now
have technological sophistication to inspect it using instrument-based Penetrate
Testing, Magnetic Particle Testing, Radiographic Testing, Ultrasonic Testing, Eddy
Current Testing, Acoustic Emission Testing, Thermal Infrared Testing, etc.

For most large civil infrastructures, the location, number, and severity of defects
may not be known in advanced. Sometimes, defects may be hidden behind obstruc-
tions like fire-proofingmaterials. Thus, instrument-based non-model approaches may
not satisfied our needs. In the recent past, a consensus started developing about the use
of measured time domain dynamic responses at the global level to assess the current
structural health at the local element level. By appropriately tracking the signature
embedded in the measurements, the structural health can be assessed.

The research team at the University of Arizona has been working on developing
testing protocols for RASH for over two decades. After conducting extensive lit-
erature review, the team concluded that to locate defects, number, and their severity,
it will be helpful if structures are represented by finite elements and their dynamic
responses are measured in time domain representing their current state. By com-
paring the identified dynamic properties, essentially the stiffness properties of the
elements, with the expected values, or reference values obtained from the design
drawings, or changes from the previous values if inspections are carried out peri-
odically, or variations from one member to another with similar sectional proper-
ties, the location(s), number, and severity of defects can be established at the
element level. The concept is based on the axiom that the presence of defects will
alter the dynamic responses and by tracking the signature embedded in the
responses, the structural health can be assessed rapidly.

3 System Identification-Based Rash

By measuring dynamic excitation and response information, the stiffness parameter
of all the elements in the finite element representation can be evaluated using an
inverse mathematical concept commonly known as the system identification
(SI) technique. However, Maybeck [21] correctly pointed out that deterministic
mathematical models and control theories do not appropriately represent the
behavior of a physical system and thus the SI-based method may not be appropriate.
The research team successfully demonstrated that SI-based concept can be used for
RASH if the different sources of uncertainty are accounted for appropriately and the
system parameters are evaluated in an optimal sense using proper data processing
algorithm.
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3.1 System Identification with Unknown Input

One of the basic requirements for RASH is the simplicity in the inspection process.
It is known to the profession that measuring dynamic excitation forces in the field
condition can be very error prone due to inherent noises in the sensors and con-
tamination due to multiple sources of excitation which is beyond the control of the
inspector. It will be very desirable if a system can be identified using only measured
response information completely ignoring the excitation information. The team
developed several such techniques, commonly known as Iterative Least Squares
with Unknown Input (ILS-UI) [24], Modified ILS-UI or MILS-UI [19], and
Generalized ILS-UI or GILS-UI [18]. Mathematical concepts used to develop them
cannot be discussed here due to lack of space but widely available in the literature.
One major advantage of these procedures is that they are not very sensitive to the
noises present in the response time histories.

3.2 System Identification with Unknown Input and Limited
Response Information—Kalman Filter

One major deficiency of the methods discussed in the previous section is that they
require response time histories at all DDOFs. To assess health of real infrastruc-
tures, it may be practically impossible and very expensive to install sensors at all
DDOFs. In most cases, only a small part of the structure can be instrumented. When
available responses are limited, generally Kalman filter (KF)-based concept is used.
Kalman filter [15, 16] is a set of mathematical equations that provides efficient
computational means in a recursive manner to estimate the state of a process, in a
way that minimizes the mean of squared error, and calculates the best estimate of
states from the noisy sensor responses [12, 26]. It is a time domain filter and is very
powerful in several aspects. One of its limitations is that it is applicable for linear
systems. If KF is used for RASH, the identification process becomes nonlinear.
This is due to the fact that the identification of the unknown parameters jointly with
dynamic responses is a nonlinear identification problem even if the structural
system is linear. For nonlinear SI, extended Kalman filter (EKF) will be an
attractive choice. It extends the linear Kalman filter to handle nonlinear systems
based on a first-order linearization of the nonlinear statistical distributions of the
variables. For RASH, EKF is an important requirement.

To implement EKF for RASH, the excitation force and the initial state vector
must be known. The first requirement will defeat the purpose of SHA without input
or ILS-UI. The second requirement is the final product of any inspection strategy
and will not be available at the initiation of the inspection process. These two
implementation requirements essentially limit the use of the basic KF concept for
RASH.
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Since EKF is very powerful, the team [25] decided to generate the required
information to implement it. Suppose only a small part of the structure is instru-
mented. For the ease of discussion, it will be denoted as substructure. It is assumed
that the responses at all DDOFs of the substructure will be measured. Then, the
ILS-UI concept can be used to identify the stiffness parameter of all the elements in
the substructure. All the beams and columns in the whole structure are expected to
have similar cross sectional properties. Assuming the substructure contains a beam
and a column element, all the elements in the whole structure can be assigned
respective properties and the initial state vector of the structure will now be
available. One very attractive attribute of ILS-UI is that it identifies the unknown
excitation time history. Thus, with the introduction of the substructure concept, the
two implementation requirements of EKF can be satisfied and the health of large
real structural systems can be assessed using limited noise-contaminated responses
without using any information on excitation.

The concept just discussed is known as Generalized Iterative Least Squares—
Extended Kalman Filter—Unknown Input or GILS-EKF-UI. It can be implemented
in two stages. In Stage 1, based on the available response information, a sub-
structure can be identified. Using ILS-UI on the substructure, the unknown exci-
tation time history and the stiffness parameter of all the elements in the substructure
can be identified. The information will help to develop the initial state vector for the
whole structure. Then in Stage 2, the EKF concept will be used to identify the
stiffness parameter of all the elements in the structure. In this way, the number,
location, and severity of defects can be assessed very accurately. The mathematical
theories behind the two stages are discussed very briefly below.

4 Mathematics of Gils-Ekf-Ui

4.1 Stage 1—ILS-UI

The governing differential equation of motion using Rayleigh damping for the
substructure can be expressed as:

Msub €XsubðtÞþ ðaMsub þ bKsubÞ _XsubðtÞþKsubXsubðtÞ¼fsubðtÞ ð1Þ

whereMsub is the global mass matrix, generally considered to be known; Ksub is the
global stiffness matrix; €XsubðtÞ; _XsubðtÞ, and XsubðtÞ are the vectors containing the
acceleration, velocity, and displacement, respectively, at time t; fsub(t) is the input
excitation vector at time t; and α and β are the mass and stiffness proportional
Rayleigh damping coefficients, respectively. The subscript ‘sub’ is used to denote
substructure.
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The global mass and stiffness matrix can be formulated using standard proce-
dure. The stiffness parameter for the ith element, ki is defined as EiIi/Li, where Li, Ii
and Ei are the length, moment of inertia, and modulus of elasticity, respectively.
The P vector contains all the unknown parameters and can be defined as:

P ¼ k1 k2 � � � knesub bk1 bk2 � � � bknesub a½ �T ð2Þ

Using the least squares concept, it can be estimated as [24]:

P ¼ ATA
� ��1

ATF ð3Þ

where A matrix contains the measured displacement and velocity responses at time
point t; F vector contains the unknown input excitations and the inertia forces at
time point t; and the responses are measured at equal interval of Δt for q time points.
Since the input excitation fsub is unknown, the force vector F in Eq. (3) is partially
known and the iteration process cannot be initiated. To start the iteration process,
the excitation information can be initially assumed to be zero for all the time points
as discussed in [18]. The iteration process is continued until the excitation time
history converges at all time points, considering two successive iterations, with a
predetermined tolerance level. A tolerance level is set to be 10−8 in this study.

It is important to note that only acceleration time histories will be measured
during an inspection. However, velocity and displacement time histories are nec-
essary to implement the concept. The acceleration time histories can be succes-
sively integrated to generate the velocity and displacement time histories as
discussed in more details in [8, 10, 22].

4.2 Stage 2—Implementation of EKF Concept

To implement the EKF concept, the differential equation in state-space form and the
discrete time measurements can be expressed as:

_ZðtÞ ¼ f ½ZðtÞ; t� ð4Þ

YðkÞ ¼ h ½ZðkÞ; t� þVðkÞ ð5Þ

where ZðtÞ is the state vector at time t; _ZðtÞ is the time derivative of the state vector;
f is a nonlinear function of the state; YðkÞ is the measurement vector; h is the
function that relates the state to the measurement; VðkÞ is a zero-mean, uncorre-
lated, white noise process with variance R(k), and represented by
E½VðkÞ VTðjÞ� ¼ RðkÞdðk � jÞ, where dðk � jÞ is the Kronecker delta function; that
is dðk � jÞ = 1 if k = j, and dðk � jÞ = 0 if k ≠ j.
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For a structure represented by N number of degrees of freedom and L number of
elements, the vectors ZðtÞ and _ZðtÞ are of size (2 N + L) × 1, L is the total number of
unknown stiffness parameters. They are formed in the following way:

ZðtÞ ¼
Z1ðtÞ
Z2ðtÞ
Z3ðtÞ

2
4

3
5 ¼

XðtÞ
_XðtÞ
~K

2
4

3
5 ð6Þ

_ZðtÞ ¼
_XðtÞ
€XðtÞ
0

2
4

3
5 ¼

_XðtÞ
�M�1½KXðtÞþ ðaMþ bKÞ _XðtÞ � fðtÞ�

0

2
4

3
5 ð7Þ

where ~K ¼ k1 k2 � � � kne½ �T is column vector of size (L × 1).
For the identification of the whole structure, acceleration responses will be

measured at a fewer (B) number of DDOFs. The accelerations will be integrated
twice to obtain the velocities and displacements, as described in [22]. The vector
YðkÞ will have size (2B × 1) and will contain information on observed displace-
ments and velocities.

Therefore, the discrete time measurement model is linear and it can be expressed
at any discrete time k as:

YðkÞ ¼ H � ZðkÞþVðkÞ ð8Þ

where matrix H is the measurement matrix of size 2B × (2 N + L).
The filtering process in EKF can be started after initialization of state vector

Zð0j0Þ, which can be assumed to be Gaussian random variable with state mean
Ẑð0j0Þ and error covariance of Pð0j0Þ i.e., Zð0j0Þ�N½Ẑð0Þ;Pð0Þ�.

The initial error covariance matrix Pð0j0Þ contains information on the errors in
the observed displacement and velocity responses, and in the initial values assigned
to the unknown stiffness parameters of the whole structure. It is generally assumed
to be diagonal and can be expressed as:

Pð0j0Þ ¼ Pxð0j0Þ 0
0 Psð0j0Þ

� �
ð9Þ

where Pxð0j0Þ is a (2 N × 2 N) diagonal matrix, contains initial error covariance for
observed responses; Psð0j0Þ is a (L × L) diagonal matrix, contains initial error
covariance for matrix ~K. In the present study, a value of 1.0 is considered for the
diagonal entries of Pxð0j0Þ. Jazwinski [12] and Al-Hussein and Haldar [2, 4]
pointed out that the diagonal entries for Psð0j0Þ should be large positive numbers to
accelerate the convergence of the local iteration process. A value of 1000 is used in
this study.

The basic filtering process in EKF is the same Kalman filter (KF), i.e. propa-
gation of the state mean and covariance from time k to one step forward in time
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k + 1, and then updating them when the measurement at time k + 1 becomes
available. Mathematically the steps can be expressed as:

(i) Prediction of state mean Ẑðkþ 1jkÞ and its error covariance matrix P̂ðkþ 1jkÞ
for the next time increment k + 1 as:

Ẑðkþ 1jkÞ ¼ ẐðkjkÞþ
Zðkþ 1ÞDt

kDt

_̂ZðtjkÞdt ð10Þ

Pðkþ 1jkÞ ¼ Uðkþ 1jkÞPðkjkÞUTðkþ 1jkÞ ð11Þ

(ii) Using measurement Yðkþ 1Þ and Kalman gain Kðkþ 1Þ available at time
k + 1, updated state mean Ẑðkþ 1jkþ 1Þ and error covariance matrix
P̂ðkþ 1jkþ 1Þ can be obtained as:

Ẑðkþ 1jkþ 1Þ ¼ Ẑðkþ 1jkÞþKðkþ 1Þ½Yðkþ 1Þ �H � Ẑðkþ 1jkÞ� ð12Þ

Pðkþ 1jkþ 1Þ ¼ ½I�Kðkþ 1Þ H� Pðkþ 1jkÞ ½I�Kðkþ 1Þ H�T
þKðkþ 1Þ Rðkþ 1Þ KTðkþ 1Þ ð13Þ

where

Kðkþ 1Þ ¼ Pðkþ 1jkÞHT ½HPðkþ 1jkÞHT þRðkþ 1Þ��1 ð14Þ

where,Uðkþ 1jkÞ is the state transfer matrix from time k to k + 1; Kðkþ 1Þ and
R(k + 1) is the Kalman gain matrix and diagonal noise covariance matrix,
respectively, at time k + 1. Detail procedure for calculation of U, K, and M can
be found in [17]. The symbol � stands for matrix multiplication. In the present
study, diagonal entries in the noise covariance matrix RðkÞ are considered to be
10−4.

5 UKF Based SI Concept

As will be discussed later, GILS-EKF-UI was successfully verified by conducting
extensive analytical and laboratory investigations. In the laboratory investigations,
the transverse acceleration time-histories were measured by capacitance
accelerometers and angular rotation by autocollimators [20, 23]. To avoid con-
tamination by other sources of excitations beyond the control of the inspector,
responses were collected at a high sampling rate, 4000 cycles per second, for a
fraction of a second. More recently it was observed that GILS-EKF-UI failed to
converge or identify a structure when the sampling rate is much lower than what
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was used for the laboratory investigation. Upon further investigations, the authors
concluded that the major reason for the non-convergence is the presence of higher
level of nonlinearity. GILS-EKF-UI is supposed to identify a system in the presence
of some degree of nonlinearity but the threshold is not known at this time. The
first-order linearity used in EKF may not be sufficient to address more severe level
of nonlinearities in the responses.

The authors [1] concluded that the unscented Kalman filter (UKF) concept can be
used for highly nonlinear system identification problems. The UKF concept was
developed by Julier et al. [14] to address the shortcoming of EKF. The UKF concept
was developed based on unscented transformation (UT) with the underlying
assumption that approximating a Gaussian distribution is easier than approximating
a nonlinear transformation. UKF uses deterministic sampling to approximate the
state distribution as a Gaussian Random Variable. The sigma points are chosen to
capture the true mean and covariance of state distribution. They are propagated
through the nonlinear system. UKF determines the mean and covariance accurately
to the second order, while the EKF is only able to obtain first order accuracy [13].

The main difference between the EKF and UKF procedures is in the prediction
step, i.e. prediction of the state vector and its error covariance using mathematical
model of the system. They are the same in the updating step. In the prediction step
of EKF, Jacobian matrices are used to linearize the nonlinear equations so that the
linear KF can be used. However, in the prediction step of UKF, a number of state
vectors or so-called sigma points is generated and then propagated through the
nonlinear equations to get more accurate estimate. Thus, to implement the UKF
procedure, instead of using Eqs. (10) and (11) of the EKF procedure, the following
equations are necessary.

5.1 Sigma Points Calculation Step

At the current state vector ẐðkjkÞ, sets of 2n + 1 symmetric sigma points are
generated so that they have the same mean and covariance of ẐðkjkÞ as following:

v0ðkjkÞ ¼ ẐðkjkÞ

viðkjkÞ ¼ ẐðkjkÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ nÞ

p
Ccol;i i ¼ 1; . . .; n ð15Þ

viþ nðkjkÞ ¼ ẐðkjkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ nÞ

p
Ccol;i i ¼ 1; . . .; n

where

k ¼ u2ðnþ cÞ � n ð16Þ
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in which C is a square root of the covariance matrix such that PðkÞ ¼ C � CT ; Ccol;i

is the ith column of C’s matrix; n is the dimension of the state vector (n = 2 N + L);
The parameter φ determines the spread of the sigma points around the mean.
Typical range value for φ is (0 ≤ φ ≤ 1). The parameter γ is a tertiary scaling factor
and is usually set equal to 0. In fact, parameter γ can be used to reduce the higher
order errors of the mean and the covariance approximations. Note that sigma points
are a set of vectors whose components are real numbers.

5.2 Prediction Step

The sigma points are propagated through the nonlinear dynamic equation as:

viðkþ 1jkÞ ¼ viðkjkÞþ
Zðkþ 1ÞDt

kDt

f ½ZðtÞ; t�dt i ¼ 1; . . .; 2n ð17Þ

The predicted state vector Ẑðkþ 1jkÞ can be shown to be:

Ẑðkþ 1jkÞ ¼
X2n
i¼0

Wi viðkþ 1jkÞ ð18Þ

and its predicted error covariance matrix Pðkþ 1jkÞ can be expressed as:

Pðkþ 1jkÞ ¼
X2n
i¼0

Wi viðkþ 1jkÞ � Ẑðkþ 1jkÞ� �
viðkþ 1jkÞ � Ẑðkþ 1jkÞ� �T

ð1� u2 þwÞ v0ðkþ 1jkÞ � Ẑðkþ 1jkÞ� �
v0ðkþ 1jkÞ � Ẑðkþ 1jkÞ� �T

ð19Þ

where ψ is the secondary scaling factor used to emphasize the weighting on the
zero’s sigma point for the covariance calculation. The value of ψ is greater than 0
and the best value is 2 for Gaussian distribution. The weight factorWi can be shown
to be:

W0 ¼ k
kþ n

i ¼ 0 ð20Þ

Wi ¼ 1
2ðkþ nÞ i ¼ 1; . . .; 2n ð21Þ
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It is important to point out here that in this study the measurement model is
linear and linear KF is used to predict the measurement vector and its error
covariance matrix.

5.3 Improvements in UKF Algorithm

When the EKF concept was used in the context of ILS-UI, i.e. the two-stage
concept used in GILS-EKF-UI, it failed to converge in some cases. The authors
observed that the use of UKF to identify large structural systems were very limited
in the literature. Most of the reported works were developed to identify shear-type
structures with very few DDOFs using long duration responses in one global
iteration. Suppose that the responses are available for q time points. The iteration
processes between successive time points in the UKF procedure are termed as local
iterations and the iteration processes for all q time points are termed as a global
iteration. The three steps of the UKF (sigma point, prediction and updating oper-
ations) are carried out for all q time points.

To obtain optimal, stable, and convergent solutions of the SI process, the authors
proposed to use several global iterations using responses collected for a fraction of
second. They noted that the error covariance matrix of the stiffness parameters
reduced significantly during the successive global iterations and the identified
stiffness values sometimes converge to the wrong values particularly when the
initial values are far from the expected values representing defective states. This
prompted the authors [3, 4] to introduce a weighted global iteration factor, w, to the
error covariance matrix after the first global iteration so that the algorithm can detect
the stiffness parameters with incorrect initial value but converges to the correct
solution. In the second global iteration, the initial values of the stiffness parameters
are the same as that of obtained at the completion of first global iteration. A weight
factor w is introduced in the stiffness covariance matrix obtained at the completion
of the first global iteration to amplify it and then used it as the initial stiffness
covariance in the second global iteration. The weighted global iteration concept can
be mathematically presented as:

Ẑ
ð2Þð0j0Þ ¼

X̂
ð2Þð0j0Þ
_̂X
ð2Þ
ð0j0Þ

~K
ð2Þð0j0Þ

2
664

3
775 ¼

X̂
ð1Þð0j0Þ
_̂X
ð1Þ
ð0j0Þ

~K
ð1ÞðqjqÞ

2
664

3
775 ð22Þ

Pð2Þð0j0Þ ¼ Pð1Þ
x ð0j0Þ 0
0 wPð1Þ

s ðqjqÞ
� �

ð23Þ

The same processes of local iterations are carried out for all the time points and a
new set of state vector and error covariance matrix are obtained at the completion of
second global iteration. The weighted global iteration processes are continued until
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the estimated error in the identified stiffness parameters at the end of two consec-
utive global iterations becomes smaller than a predetermined convergence criterion
(εs).

~K
ðiÞðqjqÞ � ~K

ði�1ÞðqjqÞ
			 			� es � ~K

ði�1ÞðqjqÞ
			 			 ð24Þ

where i represents the ith global iteration. εs is considered to be 1 % in this study.
Although the weighted global iterations play an important role in the later stage

to assure convergence; the global iteration procedure does not guarantee the con-
vergence of the iteration scheme. If they diverge, the best estimated values based on
minimum objective function �h are considered, as discussed in [4, 11].

The procedure developed this way will be denoted as Unscented Kalman Filter
—Unknown Input- Weighted Global Iterations or UKF-UI-WGI. It will be
implemented in two stages in the same way as that of GILS-EKF-UI. It will not
require any additional resources but it will improve the defect detection capability
in a significant way, as will be elaborated further with the help of several infor-
mative examples.

6 Examples

It is hoped that the sequential development processes used by the research team to
develop several RASHs for infrastructures are informative. However, during each
phase of the development, the reviewers of technical papers commented that the
procedures were reasonable from the theoretical point of view but could not be used
for the health assessment of real infrastructures. This prompted the research team to
initiate several laboratory investigations. One of them is discussed briefly below.

6.1 Example 1

6.1.1 Description of the Frame and Dynamic Testing

A two-dimensional one-bay three-story steel frame, shown pictorially in Fig. 1, was
initially tested to verify the EKF procedure [20]. To fit the testing facilities, the
frame was scaled to one-third of its actual dimensions. The scaled frame has a bay
width of 3.05 m and story height of 1.22 m. The frame consists of nine members;
six columns and three beams. Steel section of size S4 × 7.7 was used for all the
beams and columns in order to minimize the effects of fabrication defects and
differences in material properties. The frame was reconfigurable, i.e. bolted joints
were used so that the defect-free and defective members could be interchanged to
study defect detection capability. Several types of defects, very severe to minor in

176 A. Haldar and A. Al-Hussein



nature, were introduced. Some of the defect scenarios considered were removing a
member completely, loss of area of a member over a finite length, multiple cracks in
a member, one crack in a member, loosening bolts at joints, and multiple combi-
nations of these defects. The same response information was used to verify both
GILS-EKF-UI and UKF-UI-WGI in the following sections.

The frame consists of 9 members; 3 beams and 6 columns. The frame is rep-
resented by the finite element (FE) with 9 elements and 8 nodes. Each node has
three DDOFs; two translational and one rotational. The support condition at the
bases is considered to be fixed. Therefore, the total number of DDOFs for the frame
is 18. The actual stiffness parameters ki, defined in terms of (EiIi/Li), for the beam
and column are estimated to be 96500 and 241250 N-m, respectively. The first two
natural frequencies of the defect-free frame were estimated experimentally to be
f1 = 9.76 Hz and f2 = 34.12 Hz. Then, assuming the same damping for the first two
significant frequencies, a procedure suggested in [6], is used to calculate the
Rayleigh damping coefficients α and β. They are found to be 1.1453681 and
0.0000871, respectively. The frame is excited by a sinusoidal load f(t) = 1.4 sin
(58.23t) N applied at node 1, as shown in Fig. 2. Before conducting any test,
numerous analytical verifications were carried under various testing conditions. For
the analytical verifications, the responses of the frame in terms of displacement,
velocity and acceleration time histories were numerically generated using a com-
mercial software ANSYS (ver. 15.0) [5] at all 9 DDOFs (responses at nodes 1, 2
and 3) of the substructure for all cases. The frame is identified using responses from
0.02 to 0.32 s with time increment of 0.00025 s providing a total of 1201 time
points. For the laboratory investigation, the translational and rotational acceleration

Fig. 1 The pictorial view of
the frame
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time histories were measured. They were successively integrated to generate
velocity and displacement time histories as suggested in [8, 22].

6.1.2 Identification of the Defect-Free State of the Frame

To implement both the GILS-EKF-UI and UKF-UI-WGI methods, the substructure
used is shown in double lines in Fig. 2. The stiffness parameters of the two elements
in the substructure using ILS-UI in Stage 1 are identified and the results are
summarized in Table 1. The results indicate that the substructure is identified very
accurately. As mentioned earlier, ILS-UI also identifies the unknown excitation
force. Both the actual and identified excitation time histories are shown in Fig. 3.
The figure clearly indicates the unknown excitation time history is also identified
very accurately.

The errors in measurement noises (R) in Eq. 5 are one of the important factors
that influence the identification of the stiffness parameter. Two different values of
R (10−3 and 10−4) are considered in this study. Using the information from Stage 1,
the stiffness parameter of all the nine members of the whole frame is identified
using the GILS-EKF-UI and UKF-UI-WGI methods. The results are summarized in
Table 2. As commonly used in the literature, the errors are defined as the percentage
deviation of identified values, representing the current state, with respect to the
initial theoretical values. The maximum acceptable error in the identification is
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Table 1 Stiffness parameter
(EI/L) identification for the
substructure—defect-free
frame

Member Nominal (N-m) Identified Change (%)

(1) (2) (3) (4)

k1 96500 96502 0.002

k4 241250 241255 0.002
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about 10 % reported in the literature [2]. The results in Table 2 clearly indicate that
both methods identified the stiffness parameters of all the members reasonably well
for both measurement errors. In an overall sense, UKF-UI-WGI identified the frame
more accurately than GILS-EKF-UI. Since the differences in identified stiffness
parameters are relatively small, the health of the frame can be considered as
defect-free.

6.1.3 Health Assessment of Defective Frame

After successfully identifying the defect-free frame, several defective states of the
frame were considered, as discussed earlier. Only two defect scenarios are pre-
sented in the following sections.
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Fig. 3 Actual and identified
force time histories using
ILS-UI for defect-free case

Table 2 Stiffness parameter (EI/L) identification for defect-free frame

Member Nominal (N-m) Error in Identification (%)

R = 10−4 R = 10−3

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 96500 0.002 −0.069 0.000 −0.030

k2 96500 0.062 0.091 0.064 0.054

k3 96500 0.047 0.096 −0.102 −0.065

k4 241250 −0.063 −0.063 −0.004 −0.007

k5 241250 −0.237 −0.073 −0.063 −0.001

k6 241250 −0.096 0.013 −0.003 0.009

k7 241250 −0.338 −0.104 −0.011 −0.015

k8 241250 −0.032 −0.222 −0.011 −0.040

k9 241250 −0.105 −0.206 −0.016 −0.039
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Defect 1
In defect 1, member 3, the beam at the first story level, is considered to have one
defect. The cross-sectional area of member 3 is considered to be corroded over a
length of 30.5 cm, located at a distance of 30.5 cm from node 5. It is pictorially
shown in Fig. 4. The defect is shown in Fig. 5a in the finite element representation.

The web and flange thicknesses are considered to be reduced by 20 % of their
original values. The loss of thicknesses will result in the reduction of the
cross-sectional area by 19.13 % and the moment of inertia by 17.02 % from the
defect-free case. The identified stiffness parameters for all nine members using the
GILS-EKF-UI and UKF-UI-WGI methods are summarized in Table 3. In all cases,
the maximum changes occur in member 3, indicating it contains the defect. The
results also indicate that both methods can be used for RASH of the frame.
Defect 2
In defect case 2, member 3 is considered to have two defects. The first defect is the
same as that in defect case 1. For the second defect, the cross-sectional area is also

Fig. 4 Defect in member 3

30.5cm3.05m

5 6

30.5cm

30.5cm

30.5cm
3

3.05m

5 6

30.5cm

30.5cm
3

(a)

(b)

Fig. 5 Defects in the frame
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considered to be corroded over a length of 30.5 cm but it is located at a distance of
30.5 cm from node 6, as shown in Fig. 5b. The identified stiffness parameters for all
members using the GILS-EKF-UI and UKF-UI-WGI methods are summarized in
Table 4. In all cases, the maximum changes occur in member 3, indicating it
contains the defect. The reduction in the stiffness parameter of member 3 for defect
2 is more than that of defect case 1. It is clearly indicated that the defect in case 2 is
more severe than that in case 1. The results also indicate that both methods can be
used for RASH of the frame.

Table 3 Stiffness parameter (EI/L) identification for defect 1

Member Nominal (N-m) Change in Identification (%)

R = 10−4 R = 10−3

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 96500 −0.008 −0.107 0.048 0.037

k2 96500 −0.023 0.115 −0.481 −0.314

k3 96500 −2.551 −2.609 −2.371 −2.472
k4 241250 −0.057 −0.009 −0.015 0.000

k5 241250 −0.366 −0.148 −0.040 −0.024

k6 241250 −0.211 −0.158 −0.091 −0.104

k7 241250 −0.398 −0.099 −0.062 −0.058

k8 241250 −0.239 −0.402 −0.192 −0.229

k9 241250 −0.321 −0.411 −0.200 −0.237

Table 4 Stiffness parameter (EI/L) identification for defect 2

Member Nominal (N-m) Change in Identification (%)

R = 10−4 R = 10−3

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 96500 0.131 0.028 0.061 0.022

k2 96500 −0.347 −0.159 −0.199 −0.141

k3 96500 −4.997 −5.088 −5.189 −5.055
k4 241250 −0.071 −0.025 −0.091 0.004

k5 241250 −0.222 −0.020 −0.329 0.016

k6 241250 −0.223 −0.193 −0.069 −0.055

k7 241250 −0.467 −0.176 −0.223 −0.192

k8 241250 −0.440 −0.594 −0.421 −0.653

k9 241250 −0.508 −0.599 −0.449 −0.661
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6.2 Example 2

In Example 1, both the GILS-EKF-UI and UKF-UI-WGI methods appear to
identify the defect spot and the severity accurately. To demonstrate the superiority
of UKF-UI-WGI over GILS-EKF-UI, this second example is considered.

6.2.1 Description of the Frame

A two-dimensional frame with a bay width of 9.14 m and story height of 3.66 m, as
shown in Fig. 6, is considered. The frame has a total of 25 members; 10 beams and
15 columns. The beams and columns are made of W21 × 68 and W14 × 61 sec-
tions, respectively, of Grade 50 steel. The frame is modeled by 18 nodes in the finite
element (FE) representation. Each node has three dynamic degrees of freedom
(DDOFs); two translational and one rotational. The support condition at the base
(nodes 16, 17, and 18) of the frame is considered to be fixed. The total number of
DDOFs for the frame is 45. The actual theoretical stiffness parameter values ki
evaluated in terms of (EiIi/Li) are calculated to be 13476 kN-m and 14553 kN-m for
a typical beam and column, respectively. First two natural frequencies of the frame
are estimated to be f1 = 3.598 Hz and f2 = 11.231 Hz, respectively. Following the
procedure described in [6], Rayleigh damping coefficient α and β are calculated to
be 1.7122088 and 0.00107326, respectively, for an equivalent modal damping of
5 % (commonly used in model codes in the US) of the critical for the first two
modes.

The frame is excited simultaneously by two sinusoidal loadings. The first
loading, f1(t) = 3 sin(18t) kN is applied horizontally at node 1, and the second
loading, f2(t) = 2 sin(22t) kN is applied horizontally at node 13, as shown in Fig. 6.
For this example, the information on responses are numerically generated using a
commercially available software ANSYS (ver. 15.0) [5]. The responses are
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obtained at 0.0001 s time interval. After the responses are simulated, the infor-
mation on input excitations is completely ignored. Responses between 0.02 and
0.32 s providing 3001 time points are used in the subsequent health assessment
process.

6.2.2 Identification of the State of the Frame

Two substructures are considered to assess the health of this large frame. They are
shown in Fig. 6 with double lines. Using responses at 18 DDOFs in the sub-
structures, the stiffness and damping parameters and the time history of unknown
input force are identified using the ILS-UI procedure in Stage 1, initially for the
defect-free state of the frame. The errors in identification of the stiffness parameters
are shown in Table 5. From the results, it can be observed that the errors in the
identified stiffness parameter of the five members in the substructures are very
small. The damping coefficients and excitation time history are also identified very
accurately.

The information of Stage 1 is used to initiate both the GILS-EKF-UI and
UKF-UI-WGI procedures. Then, the stiffness parameters of all 25 elements of the
frame are estimated. The stiffness parameters of all members in the frame are
identified for the defect-free state and the results are summarized in Table 6,
Columns 3 and 4, respectively, for both methods. Since the identified stiffness
parameter did not vary significantly from the expected values, the methods correctly
identified the defect-free state of the frame. The results of GILS-EKF-UI are still
within the acceptable level but not as good as the UKF-UI-WGI method. However,
it can be concluded that both filters identified the defect-free state of the frame.

After assessing structural health of the defect-free frame, one defective case is
considered for this example. In Defect 1, the cross-sectional area of member 17 is
considered to be corroded over a length of 30 cm, located at a distance of 30 cm
from node 12. The results for the substructure identification in Stage 1 using ILS-UI
are summarized in Table 5, Columns 5 and 6. As for the defect-free case, for this
defective state, the substructures are identified accurately. Using the information
from Stage 1, the whole frame is then identified using both methods in Stage 2. The

Table 5 Stiffness parameter (EI/L) identification of the substructure for Example 2

Member Theoretical (kN-m) Defect Free Defect 1

Identified Change (%) Identified Change (%)

(1) (2) (3) (4) (5) (6)

k1 13476 13476 0.001 13476 0.001

k3 14553 14553 0.001 14553 0.001

k18 14553 14553 0.004 14553 0.003

k21 13476 13477 0.003 13477 0.003

k23 14553 14553 0.004 14553 0.003
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results in Columns 5 and 6 in Table 6 clearly indicate that the UKF-UI-WGI
procedure is capable of identifying the location and severity of defect. The iden-
tification of defect location using the GILS-EKF-UI procedure for the defective
case is not straightforward. Both the UKF and EKF-based procedures identified the
reductions of the stiffness parameter of defective member 17 as 8.39 and 7.54 %,
respectively. However, the results of EKF-based procedure show that the stiffness
parameter of defect-free member 5 is increased by 11.23 %, which is more than
acceptable error. Therefore, it can be concluded that GILS-EKF-UI failed to assess
the health of the frame for the defective state. This example clearly demonstrates the
superiority of the proposed UKF-UI-WGI procedure over the GILS-EKF-UI pro-
cedure developed earlier by the research team.

Table 6 Change (%) in stiffness parameter (EI/L) identification of whole structure

Member Theoretical (kN-m) Defect Free Defect 1

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 13476 −0.05 −0.07 −0.07 −0.06

k2 13476 −0.37 0.37 −6.84 0.87

k3 14553 −0.03 −0.05 −0.07 −0.05

k4 14553 0.03 0.17 −1.96 0.20

k5 14553 0.76 −0.13 11.23 −1.00

k6 13476 −0.06 −0.02 0.73 −0.02

k7 13476 −0.04 −0.21 1.90 0.06

k8 14553 0.41 0.67 −0.12 0.62

k9 14553 0.38 0.57 −2.88 0.37

k10 14553 0.69 0.22 7.31 1.37

k11 13476 0.51 0.09 2.43 0.25

k12 13476 −0.25 0.01 −2.06 −0.71

k13 14553 −0.68 −0.55 −1.07 −0.57

k14 14553 −1.57 −0.81 −4.68 −1.69

k15 14553 0.07 −1.17 4.42 −0.13

k16 13476 0.40 0.26 0.56 −0.09

k17 13476 1.24 1.01 −7.54 −8.39
k18 14553 0.01 0.02 0.17 0.05

k19 14553 −0.69 −0.45 −1.07 −0.42

k20 14553 0.26 0.02 −1.25 −1.16

k21 13476 0.07 0.04 0.18 0.05

k22 13476 −0.52 −0.45 −1.34 −0.97

k23 14553 0.14 0.06 0.18 0.05

k24 14553 0.09 0.00 0.02 0.05

k25 14553 0.15 0.34 0.67 0.62
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7 Conclusions

The rapid assessment of structural health has become a major challenge in the
context of routine maintenance or just after major natural and man-made events.
The authors and their team members used the system-identification techniques by
mitigating its weaknesses to identify defects and their severity at the local element
level by representing real structures using finite elements. For easier implementa-
tion, the excitation information was completely ignored. By tracking the changes in
the stiffness parameters of each element the location(s) and severity of defects are
assessed. The team conducted extensive analytical and laboratory investigations to
verify all the methods. They had to overcome several challenges related to the
conceptual and analytical development, data processing, and the presence of
uncertainty in the every phase. To consider nonlinearity in the system identification
process, a method known as Generalized Iterative Least Squares-Extended Kalman
Filter-Unknown Input (GILS-EKF-UI), was developed by the team earlier. Since it
failed to identify structures in some cases, the authors recently proposed a new
method denoted as Unscented Kalman Filter—Unknown Input- Weighted Global
Iterations (UKF-UI-WGI). With the help of informative examples, the superiority of
UKF-UI-WGI over GILS-EKF-UI is documented in this paper. Since at the
beginning of an inspection, the defects and their severity are expected to be
unknown, the authors recommend UKF-UI-WGI instead of GILS-EKF-UI for the
rapid assessment of health of infrastructures.
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