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1 Introduction

Caenorhabditis elegans is a non-parasitic nematode which, due to its many conve-
nient features has become an important model in biology research; for example, it
was the first animal whose genome was completely sequenced. This nematode was
proposed as a model organism by Sydney Brenner in 1965 (Garcia-Sancho 2012).
Since then, it has been used in cell biological, genetic and neurobiological studies of
higher eukaryotes. Between 1970 and 1980, the complete cell lineage of this worm,
from the fertilized egg to adult, was characterized by laser ablation and microscopy
(Sulston et al. 1983). Electron microscopy and serial sectioning allowed for the
reconstruction of the entire nervous system (White et al. 1986), together with the
genetic and genomic data generated in the 1990s (Coulson et al. 1991). This organ-
ism has become a powerful tool for the discovery and functional characterization of
eukaryotic genes (Dimitriadi and Hart 2010). Many aspects of C. elegans as a toxi-
cological model have been reviewed in an excellent paper by Leung et al. (2008). In
this state-of-the-art review, the authors present an update on that report, focusing on
toxicity end points and assessments for many types of environmental pollutants.

2 Biological Features of C. elegans

The body of an adult C. elegans is approximately 1 mm long. Its transparency
allows viewing of cell types in all stages of development. It has a simple nervous
system of 302 neurons as an adult, where each neuron has a unique position
(Dimitriadi and Hart 2010; Giles and Rankin 2009). Most organisms are hermaph-
rodites, with two ovaries, oviducts, a cavity for storing sperm called the sperma-
theca, and uterus (L’Hernault 2009). Hermaphrodites produce sperm as L4 larvae
and oocytes during early adulthood; they reproduce by self-fertilization and there-
fore cannot fertilize other hermaphrodites. The males, which appear spontaneously
with a frequency of less than 0.3 %, are able to fertilize hermaphrodites. The repro-
ductive cycle of C. elegans lasts 2.5-4 days at room temperature, and with a usual
lifespan of 12-20 days (Giles and Rankin 2009).
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Eggs

Fig. 1 Life cycle of C. elegans. Images were acquired using a dissection microscope Nikon smz
745T with 4x magnification

Embryonic development culminates in the generation of an L1 larva of 550 cells,
after 113 cells have died by apoptosis. After four larval stages, the hermaphrodite
worm becomes an adult organism with 959 cell nuclei (some syncytial), 302 of
which are neurons. Males have 1031 cell nuclei. The mature adult is fertile for 4
days, and it can live between 10 and 15 additional days. Each adult hermaphrodite
lays between 200 and 300 eggs, at intervals of about 20 min. Furthermore, the cycle
time depends upon the temperature of incubation (Garcia-Sancho 2012). When
environmental conditions are adverse, for example, during food shortages, high
temperatures, or high population densities, successful reproduction is unlikely.
Under such conditions, C. elegans can halt its development passing into an alterna-
tive L3 stage called dauer, which can survive for months. During this stage, the
nematode does not feed and its cuticle is tougher. Nematodes can re-enter the repro-
ductive life cycle at L4 when conditions are more favorable (Wang et al. 2010b).
Figure 1 shows the complete cycle of C. elegans.

3 Advantages of Using C. elegans as a Biological Model

C. elegans is used as a model in genetic research because of its convenient features.
First, its transparency allows for transgenic proteins fused to fluorescent markers to
be visible in living animals in in vivo experiments (Giles and Rankin 2009). Its
generation time is short (4 days) and it occurs by self-fertilization, ensuring rapid
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reproduction in the laboratory (Zhuang et al. 2014) since each adult hermaphrodite
produces 200-300 progeny (Megalou and Tavernarakis 2009).

Its excellent performance as a model in genetics has led to the development of
many tools and resources, including thousands of characterized mutants and RNA
interference libraries, useful for silencing gene expression (Giles and Rankin 2009;
Megalou and Tavernarakis 2009). RNA interference (RNAi) with this organism is
relatively simple, and therefore gene silencing is often used to dissect signaling
pathways (Adam 2009).

C. elegans has been used in toxicological research, from the whole animal level
to the level of individual cells (Zhuang et al. 2014). It is cultured in the laboratory
in a nematode growth medium (NGM), which contains NaCl, agar, peptone, choles-
terol, K;PO,, KH,PO,, K,HPO, and MgSO,. Another suitable culture medium is K
agar, which also contains KC1 (Meyer et al. 2010). The worms are maintained in an
incubator at 20 °C and the bacteria Escherichia coli OP50 is utilized as a food
source (Giles and Rankin 2009). The K medium prepared with KCl and NaCl is the
liquid used to transfer worms to fresh dishes and to carry out bioassays (Williams
and Dusenbery 1990).

4 Applications in Medicine

C. elegans is a model organism that has been important in the studies carried out to
identify and understand the functioning of the machinery in nuclear transportation
(Adam 2009). It has helped to elucidate biochemical pathways involved in diseases,
such as obesity (Finley et al. 2013; MacNeil et al. 2013), diabetes (Estevez et al. 2014;
Shi et al. 2012), and Alzheimer’s disease (Diomede et al. 2014; Lublin and Link 2013).
C. elegans is an excellent model to investigate aging because of its short lifespan, its
susceptibility to oxidative stress and the similarities with the human aging process
(Chatterjee et al. 2013; Pang and Curran 2014). This nematode has also been employed
to identify biochemical pathways and mechanisms of action of new drugs, especially
antihelmintics (Kumarasingha et al. 2014; Lublin and Link 2013; Wu et al. 2012b).

5 Toxicity Endpoints

Bioassays to assess the effects of a toxicant on C. elegans can be carried out through
different endpoints. The normal procedure for acute exposure consists of the incuba-
tion of young adults in the K medium containing the toxicant at several concentra-
tions, usually without food. In long term exposure assays, worms in the L1 stage are
used; in this case E. coli OP50 is added as food (Zhuang et al. 2014). When worm
reproduction is not required during an experiment, since brood size may affect the
results, 5-fluorodesoxiuridine is used to inhibit DNA synthesis (Wu et al. 2012a).
Endpoints can be grouped according to their effects on biological parameters, for
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Toxicity studies with C. elegans ]

| End%oints |

I Effects in biological parameters I I Molecular markers I
| Lethality I——l Growth | | Oxidative stress I——{ Protein expressionl
I Reproduction I——[ Fertility I IGene expression|——| DNA damage I
| Locomotion |——| Lifespan | | GFP reporters |——| RNAI |
|Aut0ﬂuorescence|——| Metabolism | | Cell apoptosis |——{ Cell cycle arrest |

I Feeding I——[ Development I

Fig. 2 End points toxicity on C. elegans. Toxicity studies with C. elegans could be carry out through
two kinds of endpoints, those evaluate effects in nematode biology and those use molecular markers

instance, lethality, growth, locomotion, and reproduction. It is also possible to use
molecular markers to determine oxidative stress, changes in gene or protein expres-
sion, DNA damage, or green fluorescence protein (GFP) expression. A classification
of endpoints, commonly utilized in toxicity research using C. elegans as model is
shown in Fig. 2.

Some of the frequently used endpoints related to toxicity assessment using
C. elegans are presented below. These assays are usually performed employing
concentration-response curves.

5.1 Lethality

This assay is performed to determine the death rate derived from acute toxicity in a
concentration-response curve basis. 10+ 1 young adults are transferred in micro-
plates which contain different concentrations of the toxicant and a negative control.
The exposure is carried out at 20 °C during 24 h in the absence of food. Then, the
number of live and dead worms is counted through visual inspection using a dissect-
ing microscope (Williams and Dusenbery 1990; Ellegaard et al. 2012; Helmcke and
Aschner 2010; Kim et al. 2012; Wu et al. 2012a; Zhuang et al. 2014). Death is
assumed when there is no movement during an observation period of 30 s (Rui et al.
2013; Shen et al. 2009; Wang et al. 2009a; Wu et al. 2013).
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5.2 Growth

The effect of a toxicant in the development of the nematode can be evaluated by
measuring the body length of synchronous worms before and after exposure, then
comparing them to a vehicle-control. The bodies of the worms are observed employ-
ing a light microscope with 10X magnification and with image analysis software,
such as Image-Pro® Express, ImageJ, or Fiji (Boyd et al. 2010; Cha et al. 2012; Hoss
et al. 2009b; Meyer et al. 2010; Roh and Choi 2011; Shen et al. 2009; Wang et al.
2010a; Yu et al. 2013a, b). Some authors have reported the warming of the worms
to 50 °C in order to make them straight and ease the process of measuring their
length (Wang et al. 2009a). The immobilization of the worms can also be achieved
by using sodium azide (Turner et al. 2013). Growth can also be evaluated by regis-
tering the length of a curve, drawn from the tip of the head to the tip of the tail along
the dorsal-ventral half of the animal intestine, using the reference line. Width mea-
surements are taken in the vulva, drawing a line on the ventral side of the animal
between the front edge and the posterior periphery of the vulva (Rudel et al. 2013).
Other authors have proposed measuring the surface area for the flat worm (Rui et al.
2013; Wu et al. 2013; Zhuang et al. 2014). Currently, some laboratories have high-
tech equipment, such as COPAS Biosort, which measures the optical density of the
worm as an endpoint of growth (Hunt et al. 2012, 2013). The advantage is that the
COPAS Biosort can analyze hundreds of nematodes per minute, and it can also
evaluate mortality and fluorescence statistics (Hunt et al. 2012; Sprando et al. 2009).
For growth assays, some authors perform 24 h exposure periods with E. coli OP50
as food (Boyd et al. 2010; Cha et al. 2012; Roh et al. 2009), whereas in other stud-
ies, E. coli uvrA, previously killed by UVA radiation is used; in this case, the expo-
sure is carried out for 72 h and feeding is re-dosed every 24 h (Turner et al. 2013).

5.3 Reproduction

Brood size is the end point used to evaluate whether a toxic environment affects
reproduction of the nematodes, placing exposed adult or L4 worms onto fresh plates.
The number of offspring at all stages is counted and compared with a control group
(Cha et al. 2012; Gomez et al. 2009; Hoss et al. 2009b; Hoss et al. 2013; Kim et al.
2012; Leelaja and Rajini 2013; Menzel et al. 2009; Li et al. 2012b; Roh et al. 2009;
Rui et al. 2013; Smith et al. 2013; Wang et al. 2009a, 2010a, b). Counting is facili-
tated by heating the worms to 50 °C and staining them with Bengal red (Hoss et al.
2013). In several studies the fertility rate is calculated by counting the total number
of larvae at the end of the test and dividing by the total progeny recovered to the total
parents (Rudel et al. 2013). This assay may also be carried out using the COPAS
Biosort by measuring optical density (Boyd et al. 2010). Moreover, the gonad size,
obtained by image analysis under a microscope, has been utilized to evaluate the
effects on reproductive organs (Wu et al. 2011). Toxic effects may also be seen as
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changes in the egg-laying pattern and the number of eggs or larvae at different time
intervals (Gomez et al. 2009; Smith et al. 2013). Finally, the rate of egg laying can be
estimated by placing adult worms exposed to fresh plates and counting the number
of eggs laid in 1 h (Jadhav and Rajini 2009; Shashikumar and Rajini 2010).

5.4 Fertility

Reproductive toxicity can also be assessed by calculating the percentage of L4 larvae
that develop fertilized eggs after exposure. Gravid hermaphrodites are considered to
have at least one egg inside their bodies (Hoss et al. 2009a, b; Roh and Choi 2011;
Wang et al. 2009a). To count the number of eggs in the uterus, nematodes can be trans-
ferred to a bleach solution, which dissolves the body of the worm, directly exposing
the eggs and allowing them to be counted under a light microscope (Wu et al. 2011).

5.5 Lifespan

Healthy worms at the L4 larval stage are exposed to a toxic agent, for example 24 h
and then placing them on NGM plates with E. coli OP50. To prevent the production
of offspring, 5-fluorodeoxyuridine is added. Worms are transferred to new plates
every 3 days. The number of survivors is recorded daily until all animals die. The
survival rate is calculated by dividing the number of live nematodes by the total
number of nematodes, including both live and dead worms. The lifespan is defined
as the time period between the L4 larval stage and death (Cha et al. 2012; Li et al.
2009, 2012b; Shen et al. 2009; Wang et al. 2010a; Zhuang et al. 2014).

5.6 Intestinal Autofluorescence

The intestinal lysosomal lipofuscin deposits that accumulate over time in the nema-
todes generate autofluorescence, feature used as a marker of aging. Treated nema-
todes are placed on an agar pad on a glass slide, then the fluorescent signals are
captured by a fluorescence microscope. A band filter of 525 nm is employed to detect
the endogenous intestinal fluorescence, and images are analyzed using software such
as Magnafire®. Lipofuscin levels can be measured using the software ImageJ, by
determining the mean pixel intensity in the intestine of each animal. Adults need to be
photographed on the same day to avoid the light variation related to the intensity of the
fluorescence source (Boyd et al. 2010; Helmcke and Aschner 2010; Rui et al. 2013;
Shen et al. 2009; Wang et al. 2010a; Wu et al. 2012a, c, 2013; Zhuang et al. 2014).
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5.7 Locomotion

Effects on the locomotion of nematodes have been linked to a deterioration of the
neural network which can be evaluated based on several criteria, such as head
thrash, body bend frequency, and basic movements (Yu et al. 2013a). Each exposed
nematode is transferred to a plate containing 60 pL of K medium on the top of the
agar. After a recovery period of 1 min, the number of head trashes is counted for
1 min. A head trash is defined as a change in the direction of bending in the body.
To test the body bend frequency, nematodes are collected in a second plate, and then
the number of times that the body bends in a period of 20 s is recorded. The bend of
the body is observed as a change in direction of the upper pharynx along the Y axis,
assuming that the nematodes are moved along the X axis. To test the basic move-
ments, the number of sinusoidal forward movements is counted at an interval of
20 s. Locomotion behavior of control and treated nematodes should be analyzed
simultaneously to avoid possible influences of the light-darkness cycle (Giles and
Rankin 2009; Li et al. 2009, 2012a, b; Matsuura et al. 2013; Roh and Choi 2011;
Rui et al. 2013; Wu et al. 2012a, 2013; Xing et al. 2009a; Yu et al. 2013a, b; Zhuang
et al. 2014). Alternatively, immobility is determined by counting the number of
immobile worms, usually registering a response when touched by platinum wire
(Jadhav and Rajini 2009; Leelaja and Rajini 2013; Roh and Choi 2011).

5.8 Metabolism

To assess the state of metabolism, the pharyngeal pumping speed and the average
cycle length of defecation can be evaluated. For testing the pumping rate, the nema-
todes are placed on NGM agar plates with food. After a few minutes, the pumping
movement of the pharynx is counted for a minute under a microscope (Jadhav and
Rajini 2009). To test the average cycle length of defecation, every nematode is
observed individually for a fixed number of cycles. A cycle is defined as the interval
between initiation of two successive steps of muscle contraction (Liu et al. 2013;
Wau et al. 2012a; Zhao et al. 2014a, b).

5.9 Development

The effects of toxicants on the development of nematodes can be investigated by
counting the number of individuals in each stage of their life cycle: egg, L1, L2, L3,
L4 and adults, at regular time intervals up to 96 h after treatment (Roh and Choi
2011). The development through the larval stages can be estimated using the fol-
lowing criteria: L1 if they have four or fewer gonadal cells; L2 if they possess over
four gonadal cells which have begun to spread along the length of the animal; L3 if
there is a further extension of the gonad, and vulval morphogenesis has started; L4
if there is a dorsal rotation of the gonad; and adults if they have observable eggs
(Helmcke et al. 2009). Entrance into the dauer state can be used to analyze toxicity,
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since dauer formation is induced by causing starvation in nematodes. Usually,
treated nematodes in state of gravidity are placed on agar plates until laying eggs at
20 °C. This progeny is changed to 27 °C, and 72 h later. The organisms in the dauer
stage are counted (Wang et al. 2010b).

5.10 Feeding Behavior

Some toxics can affect the feeding and foraging behavior in C. elegans. Jones and
Candido (1999) described a procedure to assess feeding behavior by monitoring the
decline in the density of the bacterial food in liquid cultures of nematodes by mea-
suring absorbance at 550 nm. Another method consists of the use of agar with round
holes located equidistant from the center of the dish. Each hole is filled with bacte-
rial suspension in K medium. Toxic solutions are placed in different holes, and
nematodes are inoculated in the center of the plate. The number of nematodes in the
interior of each hole is counted at various intervals of time. This test shows whether
the test nematodes try to avoid contaminated food (Monteiro et al. 2014).

5.11 Oxidative Stress

Several markers of oxidative stress can be determined in worms after exposure to the
examined agent, both within the organism and the supernatant (Helmcke and
Aschner 2010; Leelaja and Rajini 2012; Shashikumar and Rajini 2010). The produc-
tion of reactive oxygen species (ROS) and oxidative damage may be determined by
fluorescence measurements, usually labeling the nematodes with 5-(y-6)-
chloromethyl-2',7’-dichlorodihydrofluorescein diacetate (Eom et al. 2013; Leelaja
and Rajini 2013; Li et al. 2012a; Rui et al. 2013; Wu et al. 2012a, 2013; Zhuang et al.
2014), and reading with a laser scanning confocal microscope (Eom et al. 2013;
Helmcke and Aschner 2010; Rudgalvyte et al. 2013; Liu et al. 2012; Wang et al.
2010a; Wu et al. 2012a). Oxidative damage on macromolecules has been analyzed
by detecting carbonylated proteins (Wang et al. 2010a, b; Wu et al. 2011). Moreover,
oxidative stress can be evaluated by quantifying changes in gene expression of oxi-
dative stress-related genes by Real Time PCR or GFP reporters, such as sod-1, sod-
2, sod-3, sod-4, sod-5, gst-4, gst-5, gst-8, gst-24 and gst-42 (Rui et al. 2013).

5.12 Patterns of Gene Expression

One method used to investigate the change in expression of genes in C. elegans
exposed to environmental pollutants is the use of DNA microarrays or Real Time
PCR (Eom et al. 2013; Menzel et al. 2009; Li et al. 2012a; Roh et al. 2009; Roh and
Choi 2011; Rudgalvyte et al. 2013). As reference genes, act-1 (Zhuang et al. 2014;
Wang et al. 2014a) and ubg-1 (Wu et al. 2011) are commonly used. This method
has been applied to evaluate the effect on C. elegans gene expression for various
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environmental toxicants, such as river sediments (Menzel et al. 2009), veterinary
drugs (Zhuang et al. 2014), sodium fluoride (Li et al. 2012b), nanoparticles
(Eom et al. 2013), and metals (Roh et al. 2009; Wang et al. 2014b; Rudgalvyte et al.
2013) among others.

5.13 Protein Expression

Induction of proteins by exposure to pollutants can be evaluated by traditional tech-
niques such as ELISA and Western Blot. The ELISA technique was used to deter-
mine HSP90 protein expression in wild type C. elegans exposure to zinc at different
temperatures (Wang and Ezemaduka 2014). Western blots were used to evaluate the
effect of lead on HSP90 expression (Wang et al. 2014b).

5.14 DNA Damage

C. elegans has been used to evaluate DNA damage through various techniques. One
approach is the use of the gPCR technique to detect damage and DNA repair. This
test works on the principle that DNA damage inhibits the progression of the poly-
merase used in qPCR (Roh et al. 2009; Li et al. 2012b). The amount of long PCR
product provides a measure of the frequency of the injury (Leung et al. 2010).
Another alternative is the comet assay, which was used to evaluate the genotoxic
profile of river sediment (Menzel et al. 2009). More recently, the pathway of base
excision repair has been proposed as a mechanism to assess the damage to DNA by
specific qPCR (Hunter et al. 2012). Transgenic strains can also be used to assess
DNA damage. The strain xpa-1 is deficient in the mechanism of nucleotide excision
repair, and its growth is significantly affected when there is damage to DNA.
Therefore, the growth assay on this strain is an indicator of genotoxicity (Leung
et al. 2010). The transgenic strain hus-1::GFP is utilized to assess DNA damage.
HUS-1::GFP foci represents DNA double-strand breaks, allowing quantification by
counting the number of bright foci per 20 pachytene gonadal germ cells (Hofmann
et al. 2002) which can be observed and counted under a fluorescence microscope
(Wang et al. 2014a).

5.15 GFP Reporters

Transgenic nematodes carrying the GFP gene fused to various stress-inducible gene
promoters have been developed for the study of various biochemical pathways. GFP
strains are placed in wells containing the sample solutions and suitable controls. The
plates are incubated at 20 °C, performing fluorescence readings within 4-6, 8-20,
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and 24-40 h for short, moderate and long exposures, respectively. GFP expression is
quantified using a fluorometer with a wavelength of 485 nm excitation and 525 nm
emission (Anbalagan et al. 2012; Anbalagan et al. 2013; De Pomerai et al. 2010;
Roh et al. 2010; Roh and Choi 2011). Alternatively, the observation of fluorescence
can be achieved under a light microscope, capturing images that are then analyzed
by specialized software (Li et al. 2009; Shen et al. 2009; Wang et al. 2010a; Polak
etal. 2014). The COPAS Biosort system has also been employed to measure fluores-
cence (Hunt et al. 2012; Turner et al. 2013). The transgenic strain F25B3.3::GFP
with fluorescence expression in neurons has been utilized to study heavy metal
(Du and Wang 2009; Helmcke et al. 2009) and pesticide toxicity (Negga et al. 2011).

5.16 RNA Interference (RNAi)

This technology has been widely used to study gene function. Bacterial RNA1 is
introduced for 48 h at room temperature for the expression of dsSRNA. Double
stranded (ds) RNA expression is induced in HT115 bacteria containing the gene-
sequence of interest inserted in the 1.4440 vector, or else the empty vector as control
(Kamath and Ahringer 2003). Approximately ten nematodes in stages L1-L3 are
placed on the plate seeded with induced RNAI1 or vector-control bacteria and incu-
bated at 20 °C. After 3640 h, the worms are transferred to another plate seeded
with the same bacteria and grown to adulthood, at which point cultures are synchro-
nised by egg isolation, and the eggs transferred onto new plates with RNAi bacteria.
To evaluate the efficiency of dsSRNA feeding over 1000 worms are evaluated by
using semiquantitative PCR (Cheng et al. 2014; Kumar et al. 2010; Roh and Choi
2011). RNAi can be used to evaluate genetic pathways involved in toxicant
responses. For instance, RNAi has been involved in the transcription of the DAF-16
factor in an unpredicted upregulation of the cyp-34A9 reporter gene by exposure to
high levels of cadmium (De Pomerai et al. 2008). In another case, gene knockdown
by RNAIi was used to determine the effects on reproduction due to PCB52 exposure;
several genes were identified as having a crucial role, being the most remarkable the
cytochrome P450s group (Menzel et al. 2007).

5.17 Cell Apoptosis

To assess apoptosis in the cells of the nematode, acridine orange is used. After expo-
sure to the toxicant for 24 h, the nematodes are immersed in mixed medium with
acridine orange at 20 °C for 2 h. Then they are placed on top of agar allowing them to
recover for 10 min. Finally, they are examined under an inverted fluorescence
microscope with an excitation wavelength of 515 and 488 nm absorption. Apoptotic
cells appear yellow or yellow-orange showing increased DNA fragmentation,
whereas intact cells are uniformly green (Li et al. 2012b; Wang et al. 2009b, 2014a, c).
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Another technique involves staining with SYTO 12 for 4 h at room temperature,
followed by seeding with food for 30 min, washing with M9 buffer, and final observa-
tion under a fluorescence microscope with a red filter (Cha et al. 2012). Alternatively,
the transgenic strain ced-1::GFP is used for visualization of apoptotic bodies in a
fluorescence microscope (Cheng et al. 2014; Kumar et al. 2010).

5.18 Cell Cycle Arrest

To investigate whether the exposure to a toxicant causes cell cycle arrest in the
germline, the number of cores of mitotic cells is determined by staining with
4’,6-diamidino-2-phenylindole. The number of mitotic nuclei present at the distal
end of the germline is counted under a fluorescence microscope (Cheng et al. 2014;
Kumar et al. 2010; Wang et al. 2014a).

5.19 Transgenerational Effects

Sublethal endpoints such as locomotion and growth can be evaluated in the off-
spring of exposed parents. Wild-type N2 nematodes at the L3 larval stage are
exposed during the time when sperm, ova and eggs begin to form, providing a win-
dow of prenatal exposure (Yu et al. 2013b). Exposed worms are placed on several
plates. Some of them are used for measuring the parents after 24 h of exposure, and
the others, for obtaining the generations. This assay has been used to assess the
effects of antibiotics (Yu et al. 2011) and heavy metals on the growth and locomo-
tion of exposed parents and their first generation (Yu et al. 2013b).

6 Toxicity Assessments

Most currently known toxicants can be assessed using C. elegans as a model. The
following are some research studies related to toxicity of environmental matrices,
metals, pesticides, nanoparticles, and other chemicals.

6.1 Environmental Samples

C. elegans has been used as a model to assess the toxicity of environmental samples
such as soils, sludges, and river sediment. The sediment of the Danube, the Rhine
and the Elbe Rivers in Germany were studied by analyzing the changes in gene
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expression profiling using DNA microarrays of the entire genome. At the same
time, the reproduction and DNA damage were evaluated using the comet assay
technique (Menzel et al. 2009). In a study of the toxicity of contaminated soils from
Germany, fertility, growth, and reproduction were evaluated using the wild type
Bristol N2 strain (Hoss et al. 2009b). Organic extracts of contaminated soil from
Spain were evaluated using transgenic strains of C. elegans carrying GFP reporter
genes driven by promoters sequences from five stress-related genes, hsp-16.2, gpx-
6, hsp-6, gst-1, and cyp34A9; allowing the identification of different mechanisms of
toxicity (Anbalagan et al. 2012). Aqueous extracts of the same soils were evaluated
using 24 similar GFP transgenic reporter strains, correlating this data with the con-
centrations of metals present in the soil (Anbalagan et al. 2013). A summary of the
results generated from these investigations is shown in Table 1.

6.2 Pesticides

In the environment, C. elegans as a free-living nematode, is exposed to various pes-
ticides used in agriculture as well as to persistent organic waste that can contaminate
soil for long periods of time (Anbalagan et al. 2013). Some of the most recent stud-
ies relating to the toxicity of pesticides in C. elegans are summarized in Table 2. As
many pesticides are neurotoxic, the well-defined nervous system of C. elegans is a
suitable tool to assess the neurotoxicity induced by these chemicals (Gomez et al.
2009; Leelaja and Rajini 2012, 2013; Lewis et al. 2013; Negga et al. 2011; Roh and
Choi 2008, 2011; Shashikumar and Rajini 2010; Meyer and Williams 2014).
Fluorescence expression by GFP reporter genes has been employed to study the
toxicity of pesticides such as Glyphosate, Paraquat, 2,4-days, Endosulfan,
Cypermethrin, Carbendazim, Chlorpyrifos, Diuron, Rotenone, DDT, Deltamethrin,
and Dichlorvos (Anbalagan et al. 2013). In another report, Chlorpyrifos was studied,
and although it did not cause severe DNA damage, it inhibited growth of xpa-1 defi-
cient strain, whose mechanism of nucleotide excision repair is deficient (Leung et al.
2010). The herbicide Glyphosate and the fungicide dithiocarbamate have been stud-
ied to assess mortality and neurological damage in C. elegans. Neuronal damage by
exposure to these pesticides was verified by using the transgenic strain F25B3.3::GFP
(Negga et al. 2011). The effect of Paraquat, Diquat, and Parathion on brood size was
evaluated with COPAS Biosort, with Paraquat showing the highest toxicity (Boyd
et al. 2010). Acetylcholinesterase activity of pesticides has also been assessed in
nematodes exposed to Fenitrothion and Monocrotophos (Leelaja and Rajini 2013;
Roh and Choi 2011). Studies with tributyltin reported that this biocide caused cell
apoptosis in C. elegans via DNA double-strand breaks (DSBs) (Wang et al. 2014a).
Furthermore, tributyltin chloride caused increased sterility and embryonic lethality
by DSBs and checkpoint activation in the germline (Cheng et al. 2014). Insecticidal
proteins such as Cry, used in transgenic corn, were studied and showed dose-depen-
dent inhibitory effects on C. elegans reproduction (Hoss et al. 2013).
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6.3 Metals

Metals, in particular those named as heavy metals, constitute one of the most impor-
tant groups of environmental toxicants, and reach the ecosystems from sources such
as oil refineries, mining, and industrial effluents, causing severe toxic effects on
living systems. This group has been one of the most studied using C. elegans as a
biological model. Several of the reports related to the effects of heavy metals on C.
elegans are presented in Table 3. The effects of different metals such as Ag, As, Cer,
Cd, Cu, Hg, Mn, Pb, Ni and Zn have been studied for several end points such as
lethality (Williams and Dusenbery 1990), lifespan, fertility, growth, intestinal auto-
fluorescence, GFP expression, morphology changes (Shen et al. 2009; Rudel et al.
2013; Hunt et al. 2012), neuronal damage, neurodegeneration, neuronal loss, and
axonal degradation (Du and Wang 2009; Xing et al. 2009a, b). On the other hand,
exposure to Zn, Cd, Hg, Cu, Fe, Cr, and As has also been monitored using GFP
transgenic reporter strains (De Pomerai et al. 2010).

6.4 Nanoparticles

The toxicological potential of nanoparticles (NPs) is receiving increased attention
because of their massive release into the environment. Although a number of manu-
factured NPs are employed for medical and clinical purposes, the interaction
between nanomaterials and biological systems remains unknown. For this reason,
the NPs have joined the group of Emerging Contaminants and every year more stud-
ies on the subject are performed with C. elegans (Table 4). It has been considered
that the main mechanism of nanotoxicity is oxidative stress (Zhao et al. 2014a).
Toxicity of hydroxylated fullerene nanoparticles was studied using C. elegans, and
it was demonstrated that water-soluble fullerol NPs have a potential for inducing
apoptotic cell death (Cha et al. 2012). The study of TiO, NPs was carried out by
analyzing different toxicity endpoints such as lethality, reproduction, growth, loco-
motion, intestinal autofluorescence, and oxidative stress. TiO, NPs caused severe
deficits in gut development, defecation behavior, and changes in gene expression
(Rui et al. 2013; Zhao et al. 2014a). The toxicity of TiO,, ZnO, and SiO, NPs has
been compared using endpoints including lethality, locomotion, growth, reproduc-
tion, and production of ROS. The order of toxicity was ZnO>TiO,>SiO, (Wu et al.
2013). In a study of the intake of silver NPs by image analysis, there was absorption
of silver NPs in the body, transgenerational transfer, and inhibition of growth (Meyer
et al. 2010). The lethal effects of AgNPs on C. elegans are increased if the exposure
is through E. coli OP50 (Ellegaard et al. 2012). In other research, reduction was
observed in survival and reproduction and there was interaction of Ag NPs with
biological surfaces of C. elegans, causing severe edema (Kim et al. 2012).
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Drugs and their metabolites have been classified within the group of emerging con-
taminants because of increased concentrations in the environment. The impact of
several drugs on organisms has been evaluated using C. elegans as a model (Table 5).

Table 5 Evaluation of the toxicity of drugs

Drug
Sulphamethoxazol

Sulphamethoxazol

Sulfonamides

Ethyl
methanesulfonate

Clenbuterol and
Ractopamin

Caffeine and
methadone

Nicotine

Strain
N2

N2

N2

N2,
unc-58(e665)

N2, daf-2,
daf-15, daf-16,
sgk-1, skn-1,
aak-1, age-1,
sod-2, pdk-1,
rict-1, act-1

N2,
myo-2::GFP

N2

End point
Generational effects
on locomotion and
growth

Reproduction,
growth, life span,
pharynx pumping,
lipid peroxidation
and gene expression
Lethality, life span,
growth, behavior
inhibition
Mutagenesis, gene
expression, DNA
damage

Lethality,
reproduction,
growth, locomotion,
intestinal
autofluorescence,
oxidative stress, life
span, gene
expression

Growth, optical
density, fluorescence
and reproduction
MicroRNA
expression

Result

Defects

in locomotion of
exposed parents
and first
generation were
dose dependent
Reduction in
reproduction

Concentration-
dependent toxicity
interactions
Elevated mutation
frequencies
because
embryonic cell
cycles are rapid
and DNA damage
checkpoints are
muted in embryos
Toxicity by
different
mechanisms

Alteration in
reproduction

There was
alteration of
microRNA
expression
profiles during
post-embryonic
stages

Reference

Yu et al.
(2011)

Liu et al.
(2013)

Yu et al.
(2015)

Hartman
etal. (2014)

Zhuang
et al. (2014)

Boyd et al.
(2010)

Taki et al.
(2014)

(continued)
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Table 5 (continued)

Drug
Nicotine

Nicotine

Nicotine

5-Fluorouracil

Genkwa Flos
(traditional
Chinese medicine)

Acrylamide

Strain
N2

N2, lev-1,
unc-29, bas-1,
cat-2, tph-1

N2

N2, rrf-3

N2, daf-16,
skn-1, mdt-15,
oxIs12

gst-
4::GFP::NLS,
dop-3::RFP

L. Tejeda-Benitez and J. Olivero-Verbel

End point

Reproduction and
gene expression

Nicotine preference,
taste plasticity,
locomotion

Locomotion

Cell cycle
arrest, apoptosis,
RNAI, growth,
development,
gene expression

Lethality, growth,
reproduction,
locomotion,
oxidative stress,
defecation, gene
expression

GFP and RFP
expression

Result

Loss of response
to stimuli, early
egg laying and
alterations in
genes related to
reproduction and
neuronal
development
Nicotine
preference
increased and
taste plasticity
inhibited
Reduction in
velocity of basic
movements and
paralysis
Induction of cell
cycle arrest and
germline
apoptosis.
Alteration in
vulva
development and
egg laying
Toxicity effects on
lifespan,
development,
reproduction, and
locomotion. There
was formation of
abnormal vulva
GSTs and other
phase II enzymes
were down
regulated by
XREP-1

Reference

Smith et al.
(2013)

Matsuura
et al. (2013)

Sobkowiak
etal. (2011)

Kumar et al.
(2010)

Qiao et al.
(2014)

Leung et al.
(2011)

For instance, the effects of nicotine in plasticity and locomotion (Matsuura et al.
2013; Sobkowiak et al. 2011), changes in gene expression (Smith et al. 2013), and
changes in microRNA expression (Taki et al. 2014); other studies show the effects
of caffeine and methadone on reproduction (Boyd et al. 2010); and the effects of
sulphamethoxazol on locomotion and growth of offspring of exposed parents (Yu
et al. 2011), and on reproduction, growth, lifespan, pharynx pumping, lipid peroxi-
dation, and gene expression (Liu et al. 2013); and the effect of 5-fluorouracil on
reproduction and development (Kumar et al. 2010) among others.
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6.6 Toxins

Natural toxins have also been studied using C. elegans as a biological model
(Table 6). Microcystin, a toxin produced by toxic blooms of cyanobacteria on eutro-
phic waters, produced changes in the behavior of locomotion and GFP expression
in C. elegans (Moore et al. 2014; Li et al. 2009; Saul et al. 2014). Aflatoxin 1,
generated by Aspergillus fungi, inhibited growth and formed adducts with DNA by
activation of the Cytochrome P system (Leung et al. 2010).

6.7 Other Chemicals

In addition to the above groups, C. elegans has been reported as a biological model
for assessing the toxicity induced by other chemicals (Table 7) such as sodium fluo-
ride (Li et al. 2012b), vinyl chloride (Nam and An 2010), benzo pyrene [a] and
B-naphthoflavone (Leung et al. 2010), ethyl methanesulfonate and DMSO (Boyd
et al. 2010), NaAsO,, NaF, Na,B,0;, valproic acid, caffeine and DMSO (Sprando
et al. 2009); and acrylamide which has been shown to induce a gst-4::GFP trans-
gene (Leung et al. 2011).

Table 6 Evaluation of toxicity of toxins

Toxin Strain End point Result Reference
Microcystin N2, Life span, Life span reduced, Lietal.
hsp-16- development, development retarded, (2009)
2::GFP generation time, | generation time lengthened,
brood size, brood size decreased,
locomotion and | locomotion inhibited
gene expression
Microcystin N2 Chemotaxis Alteration of chemotactic Moore
behavior et al.
(2014)
Microcystin N2 Life span, Deficiencies in lifespan, Saul et al.
reproduction, reproduction and growth. (2014)
growth, gene Changes in gene expression
expression were dominated by
neuromodulation
Aflatoxin p1 N2, emb-8, | DNA damage DNA damage, DNA adducts | Leung et al.
glp-1, xpa-1 | and growth by CYP activation (2010)
Bioactive N2 Survival V. coralliilyticus S2052 Neu et al.
and probiotic caused decreased survival (2014)

marine bacteria

after 72 h
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7 Conclusion

C. elegans is a powerful, suitable and robust model for toxicological studies due to
the transparency of its body, its short life cycle, easy fertilization, economical main-
tenance in the laboratory, large numbers of offspring and easy genetic manipulation.
The use of this nematode has enabled the understanding of many biochemical path-
ways activated by environmental toxicants, allowing the study of multiple endpoints
including lethality, growth, reproduction, fertility, and locomotion among others.
Additionally, the ease of obtaining transgenic nematodes allows the possibility of
studying direct changes in gene expression induced by toxicants or mixtures.
Finally, this model may be used in the assessment of toxicity of several pollutants
such as environmental samples, metals, pesticides, nanoparticles, drugs, and toxins,
among others.

8 Summary

Caenorhabditis elegans is a nematode of microscopic size which, due to its biologi-
cal characteristics, has been used since the 1970s as a model for research in molecu-
lar biology, medicine, pharmacology, and toxicology. It was the first animal whose
genome was completely sequenced and has played a key role in the understanding
of apoptosis and RNA interference. The transparency of its body, short lifespan,
ability to self-fertilize and ease of culture are advantages that make it ideal as a
model in toxicology. Due to the fact that some of its biochemical pathways are simi-
lar to those of humans, it has been employed in research in several fields.

C. elegans’ use as a biological model in environmental toxicological assessments
allows the determination of multiple endpoints. Some of these utilize the effects on
the biological functions of the nematode and others use molecular markers.
Endpoints such as lethality, growth, reproduction, and locomotion are the most stud-
ied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter
genes, such as green fluorescence protein, driven by regulatory sequences from
other genes related to different mechanisms of toxicity, such as heat shock, oxidative
stress, CYP system, and metallothioneins among others, allowing the study of gene
expression in a manner both rapid and easy. These transgenic strains of C. elegans
represent a powerful tool to assess toxicity pathways for mixtures and environmen-
tal samples, and their numbers are growing in diversity and selectivity. However,
other molecular biology techniques, including DNA microarrays and MicroRNAs
have been explored to assess the effects of different toxicants and samples.

C. elegans has allowed the assessment of neurotoxic effects for heavy metals and
pesticides, among those more frequently studied, as the nematode has a very well
defined nervous system. More recently, nanoparticles are emergent pollutants whose
toxicity can be explored using this nematode. Overall, almost every type of known
toxicant has been tested with this animal model. In the near future, the available
knowledge on the life cycle of C. elegans should allow more studies on reproduction
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and transgenerational toxicity for newly developed chemicals and materials, facili-
tating their introduction in the market. The great diversity of endpoints and possi-
bilities of this animal makes it an easy first-choice for rapid toxicity screening or to
detail signaling pathways involved in mechanisms of toxicity.

Acknowledgements The authors thank the Vice-Rectory for Research of the University of
Cartagena for its financial aid and to Carson Ward, visitor student from Purdue University, for his
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