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Abstract The paper studies dynamics modelling and control design for elastic sys-
tems with distributed parameters. The constitutive laws are specified by an integral
equality according with the method of integro-differential relations. The original
initial-boundary value problem is reduced to a constrained minimization problem
for a nonnegative quadratic functional. A numerical algorithm is developed to solve
direct and inverse dynamic problems in linear elasticity based on the Ritz method
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type criteria of solution quality. The efficiency of the approach is demonstrated on
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and discussed.
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1 Introduction

The design of control strategies for dynamic systems with distributed parameters
has been actively developed in recent decades. Optimization of dynamic models of
elastic structures is an important problem arising in a large variety of applications in
science and engineering. Theoretical foundations of optimal control problems with
linear partial differential equations (PDEs) and convex functionals were established
by Lions [17, 18]. Linear hyperbolic equations are studied in [1, 4]. An introduction
to the control of vibrations can be found in [13]. Oscillating elastic networks are
investigated in [10, 14, 16]. Since accurate modelling of these systems leads to a
description in terms of PDEs, control design is usually based on specific approaches
to solving direct and inverse problems.

Two different methods to the control design for distributed parameter processes
can be emphasized. In the first approach, (the so-called late lumping), the control
is directly designed for distributed parameter models and then converted to a finite-
dimensional approximation. The infinite-dimensional control strategies can rely on
specific spectrum analysis of the linear system operator (see, e.g., [3, 7]). The control
method considered in [5] enables one to construct a constrained distributed control
in closed form and ensures that the system is brought to a given state in a finite
time. This method is based on a decomposition of the original system into simple
subsystems by the Fourier approach. In [9], a numerical approach for the solution of
PDE-constrained optimal control problems is adapted to hyperbolic equations. The
method of choice proposed there is either a full discretization method for small size
problems or the vertical method of lines for medium size problems.

In applications, the second approach, early lumping, is used for numerical control
design. In accordance with this approach, the initial-boundary value problem is first
discretized and reduced to a system of ordinary differential equations (ODEs), e.g.,
by means of the Rayleigh-Ritz or Galerkin methods. A family of Galerkin approx-
imations based on solutions of the homogeneous beam equation was constructed
and sufficient conditions for stabilizability of such finite-dimensional systems were
derived in [19]. Alternatively, the finite-difference or finite-element method (FEM)
can be used as it is shown in [2, 6]. The direct discretization approaches are also
known in optimal control theory (e.g., see [15]).

Oneof the disadvantages of the early lumping is that it is rather difficult to relate the
discretized system with its original distributed model. However, this connection can
be estimated by following the method of integro-differential relations (MIDR) [12].
These estimates allow us to qualify finite-dimensional modelling, refine a coarse
solution and make necessary corrections of the control law. TheMIDRwas extended
in [11] to the optimal control design of elastic rodmotions. In the paper, this approach
is combined with the Ritz method and FEM to minimize the mean energy distributed
in an elastic structure during controlled processes.

The paper is structured as follows: In Sect. 2, the PDE system that models the
elastic rod dynamics is introduced. A variational formulation of the considered
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initial-boundary value problem is proposed in Sect. 3. In Sect. 4, a finite element
algorithm is described based on this generalized statement. An optimal control prob-
lem for the elastic structure is formulated in Sect. 5. In the next section, the inverse
dynamic problem is related with the proposed variational formulation of the direct
problem. Section7 is devoted to the FEM procedure including the successive mini-
mization of the constitutive and control functionals. In Sect. 8, a numerical example of
system modelling and optimization is presented and discussed. Finally, conclusions
and a brief outlook are given.

2 Modelling of Elastic Rod Dynamics

As an example of elastic structure dynamics, longitudinal displacements of a thin
rectilinear elastic rod are considered. In the Lagrange coordinate system, one end of
the rod at x = 0 can move in accordance with some control law u(t), whereas the
other end at x = L is free of load [11]. No external distributed forces are supposed.

Small vibrations of the elastic rod can be described by the linear equations

{t, x} ∈ Ω : p = ρ(x)wt and s = κ(x)wx , (1)

{t, x} ∈ Ω : pt = sx (2)

with the initial and boundary conditions

t = 0 : p = p0(x) and w = w0(x),

x = 0 : w = w0(0) + u(t) with u(0) = 0, x = L : s = 0.
(3)

Here,Ω = (0, T )× (0, L) is the time-space domain, T is the time instant, ρ denotes
the function of rod linear density, and κ is its distributed stiffness. The linear momen-
tum density p(t, x), the normal stresses in the cross section s(t, x), and the displace-
ments w(t, x) are unknown functions. Some initial momentum density p0(x) and
displacements w0(x) are given.

The choice of the example is stipulated by its practical relevance and possible
extensions. The equations of elastic rod motions (1)–(3) describe also a wide class
of dynamic systems with distributed parameters, starting with the classical spring
model, including the elastic shaft torsion, and so on. Although the rod considered in
the paper has internal parameters uniformly distributed along its length, the proposed
algorithm can be easily generalized onto the non-uniform case. Nevertheless, the
hyperbolic system with constant geometrical and mechanical parameters can serve
itself a useful application for numerical verification of the control algorithm.
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3 Variational Statement of the Direct Dynamic Problem

The solution p∗(t, x), s∗(t, x), w∗(t, x) of the initial-boundary value problem
(1)–(3) may not exist in the classical sense (this depends on regularity of the func-
tions κ(x), ρ(x), p0(x), w0(x), u(t)). To generalize the problem, we consider an
integral statement of the constitutive laws proposed in [11] instead of the local for-
mulation (1).

Let us introduce two auxiliary constitutive functions needed to relate the momen-
tum density and velocities as well as the normal stresses and strains along the elastic
rod in accordance with (1):

η(t, x) = wt − p

ρ(x)
, ξ(t, x) = wx − s

κ(x)
. (4)

On the solution these functions must be equal to zero.
For the direct problem of elastic rod motions, the generalized statement can be

formulated as follows: Find the functions p∗(t, x), s∗(t, x), w∗(t, x) such that the
integral equation

Φ[p, s, w] =
∫

Ω

ϕ dΩ = 0 with ϕ = 1

2

(
ρ(x)η2 + κ(x)ξ2

)
(5)

holds as well as the constraints (2) and (3). Here, Φ is the constitutive functional
in the energy norm with ϕ as the function of quadratic residual for the constitutive
equations (1).

It is worth noting that the integrand ϕ defined in (5) has a dimension of linear
energy density and nonnegative. This fact directly follows from properties of ϕ,
which imply that the functional Φ is also nonnegative. This allows us to reduce the
integro-differential problem (2), (3), (5) to a variational one: Find those functions
p∗(t, x), s∗(t, x), w∗(t, x) that minimize the functional

Φ[p∗, s∗, w∗] = min
p,s,w

Φ[p, s, w] = 0 (6)

subject to the constraints (2) and (3).
Denote the actual and arbitrarily chosen admissible momentum, stress, displace-

ment fields via p∗, s∗, w∗ and p, s, w, respectively. Define

p = p∗ + δp, s = s∗ + δs, w = w∗ + δw,

where δp, δs, δw are the respective variations of momentum density, stresses, and
displacements. Then,

Φ[p, s, w] = Φ[p∗, s∗, w∗] + δΦ + δ2Φ.
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Here, Φ[p∗, s∗, w∗] = 0 in accordance with (5). The first variation of the functional
can be presented as the sum δΦ = δpΦ + δsΦ + δwΦ of the variations with respect
to the unknowns p, s, w. It follows from the quadratic structure of the functional Φ
that the second variation δ2Φ = Φ[δp, δs, δw] is also nonnegative.

Let us express explicitly the first variation of the functional Φ and, consequently,
the system of Euler–Lagrange equations with the corresponding natural conditions
for the variational problem (2), (3), (6). For this purpose, the relation between the
momentum function p and the stress function s imposed by the differential equa-
tion (2) should be used together with the corresponding relation between their vari-
ations

δpt = δsx .

The necessary condition of stationarity is obtained after integration by parts of
the relation for δΦ and taking into account the problem constraints (2) and (3),

δpΦ + δsΦ + δwΦ = 0, (7)

δpΦ = −
∫

Ω

ηδp dΩ, δsΦ = −
∫

Ω

ξδs dΩ,

δwΦ = −
∫

Ω

(ρ(x)ηt + (κ(x)ξ)x ) δw dΩ

+
L∫

0

[ρ(x)ηδw]t=T dx +
T∫

0

[κ(x)ξδw]x=L dt.

From (7), we see that δΦ = 0 over all admissible variations δp, δs, δw if the equalities
(1) hold.

Introduce an auxiliary function

ζ(t, x) = −
t∫

0

η(τ, x)dτ

and get the expression for the first variations with respect to p and s after some
equivalent transformations as follows

δ pΦ + δsΦ =
∫

Ω

ζ tδp dΩ −
∫

Ω

ξδs dΩ

=
∫

Ω

(ζ x − ξ) δs dΩ +
L∫

0

[ζ δp]t=T dx +
T∫

0

[ζ δs]x=0 dt. (8)
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By using (7) and (8), it is possible to derive the Euler-Lagrange system with the
corresponding boundary and terminal conditions

ρ(x)ζ t t − (κ(x)ζ x )x = 0, ξ = ζ x ;
ζ |x=0 = ζ x |x=L = ζ |t=T = ζ t |t=T = 0.

(9)

This homogeneous system is a terminal-boundary value problem with respect to the
variable ζ(t, x). It can be shown that there is only a trivial solution of this problem
and hence ξ = 0 and η = 0. In other words, if the solution p∗, s∗, w∗ of the
problem (1)–(3) exists in the classical sense then the system of necessary conditions
(9) together with the essential constraints (2) and (3) is equivalent to the original
problem of elastic rod motion (1)–(3). This means that the statement (2), (3), (5) is
given correctly in terms of the calculus of variations.

4 Finite Element Technique Based on the Ritz Method

The system (1)–(3) is solved by variational approach, which is a modification of
the Ritz method based on the MIDR discussed in [12]. The law of momentum
balance (2) holds automatically if two auxiliary functions (kinematic w̃(t, x) and
dynamic r̃(t, x)) are introduced such that

p = r̃x (t, x) + p0(x), s = r̃t (t, x), w = w̃(t, x) + w0(x). (10)

The initial and boundary conditions for the new variables w̃ and r̃ are defined as
follows:

t = 0 : w̃ = 0 and r̃ = 0, x = 0 : w̃ = u(t), x = L : r̃ = 0. (11)

Let us restate the initial-boundary value problem (1)–(3) in the variational form.
Find the functions w̃∗(t, x) and r̃∗(t, x) subject to the constraints (11) and such that

Φ[w̃∗, r̃∗] = min
w̃,r̃

Φ[w̃, r̃ ], Φ = 1

2

∫

Ω

(
ρ(x)η2 + κ(x)ξ2

)
dΩ, (12)

η = w̃t − r̃x + p0(x)

ρ(x)
, ξ = w̃x + w′

0(x) − r̃t

κ(x)
,

Here,η and ξ are the constitutive functions (4) expressed through thenew independent
variable w̃ and r̃ .

To solve the minimization problem (11)–(12), we use piecewise polynomial
approximationswith respect to the time and space. For the triangulation of the domain
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Fig. 1 Triangulation of the time-space domain Ω

Ω shown in Fig. 1, these approximations are given by the relations

w̃ ∈ S h
w =

⎧⎪⎪⎨
⎪⎪⎩

w̃(t, x) : w̃ =
K∑

k+l=0

w(kl)
jmntk xl , {t, x} ∈ Δ jmn,

j = 1, . . . , 4, m = 1, . . . , M, n = 1, . . . , N

⎫⎪⎪⎬
⎪⎪⎭

∩ C0.

r̃ ∈ S h
r =

⎧⎪⎪⎨
⎪⎪⎩

r̃(t, x) : r̃ =
K∑

k+l=0

r (kl)
jmntk xl , {t, x} ∈ Δ jmn,

j = 1, . . . , 4, m = 1, . . . , M, n = 1, . . . , N

⎫⎪⎪⎬
⎪⎪⎭

∩ C0.

(13)

Here, Δ jmn denotes the corresponding subdomain of a triangular mesh described in
Fig. 1.

The mesh is defined by the nodes on the axes t and x as follows:

xm > xm−1, m = 1, . . . , M + 1, x1 = 0, xM+1 = 1;
tn > tn−1, n = 1, . . . , N + 1, t1 = 0, tN+1 = T .
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The domainΩ is divided by the straight lines x = xm and t = tn (see Fig. 1) into M N
rectangles Ωmn = (tn, tn+1) × (xm, xm+1) with m = 1, . . . , M and n = 1, . . . , N .

The rectangle vertices {tn, xm} are denoted by Amn with the corresponding edges
Akl Amn between Akl and Amn . For brevity, let Tmn = Amn Am,n+1 and Lmn =
Amn Am+1,n .

The diagonals of the rectangleΩmn (see Fig. 2) divide it in turn into four triangles

Δmn,1 = Bmn Amn Am,n+1, Δmn,2 = Bmn Am,n+1Am+1,n+1,

Δmn,3 = Bmn Am+1,n+1Am+1,n, Δmn,4 = Bmn Am+1,n Amn .
(14)

Here, Bmn is the intersectionpoint of the diagonals Amn Am+1,n+1 and Am,n+1Am+1,n .
Let us introduce the notation for the inclined edges of the triangle (14). We denote

Qmn,1 = Bmn Am,n+1, Qmn,2 = Bmn Am+1,n+1,

Qmn,3 = Bmn Am+1,n, Qmn,4 = Bmn Amn .

Fig. 2 Mesh structure on the rectangle Ωmn
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The unknown functions w̃(t, x) and r̃(t, x) are approximated in each of 4M N
triangles Δnmj by a complete bivariate polynomial of the order K in the Bézier-
Bernstein form [8]. In accordance with this form, the variables w̃ and r̃ in any
triangle Δ ⊂ Ω with the vertices Ai = {ti , xi } ∈ Ω , i = 1, 2, 3 (a local vertex
indexing is given bypassing the triangle contour counterclockwise) are expressed by
the relations

w(t, x) =
K∑

k+l=0

wkl BK
kl (t, x), r(t, x) =

K∑
k+l=0

rkl BK
kl (t, x),

BK
kl (t, x) = K !

k!l!(K − k − l)!bk
1(t, x)bl

2(t, x)bK−k−l
3 (t, x),

(15)

Here, the linear functions

b1(t, x) = d−1(x2 − x3)(t − t3) − d−1(t2 − t3)(x − x3),

b2(t, x) = d−1(x3 − x1)(t − t1) − d−1(t3 − t1)(x − x1),

b3(t, x) = d−1(x1 − x2)(t − t2) − d−1(t1 − t2)(x − x2),

are introduced and

d = det T, T =
⎡
⎣ t1 t2 t3

x1 x2 x3
1 1 1

⎤
⎦ ,

whereT is the extended coordinatematrix,which determinant d equals to the doubled
area of the triangle Δ. The functions bi , the so-called barycentric coordinates, have
the following properties:

bi (ti , xi ) = 1, bi (t j , x j ) = 0, i �= j, i, j = 1, 2, 3, b1 + b2 + b3 = 1.

According to the Eq. (15), for a chosen piecewise polynomial, the total number
of parameters w(mnj)

kl and r (mnj)
kl in the mesh element Δmnj is equal to NΔ = (K +

1)(K + 2)/2. These degrees of freedom can be symbolically marked by circles as it
is shown in Fig. 2 for K = 4.

The vector ẑ = {ẑi } ∈ R
Nl consisting of all such local parameters has the dimen-

sion Nl = 8MNNΔ. The sequence of the vector components ẑi can be chosen so
that

ẑi1 = w(mnj)
kl , ẑi2 = r (mnj)

kl , i1 = j0 + k0, i2 = NΔ + j0 + k0,

j0 = 4 (2 ((m − 1)N + n − 1) + j − 1) NΔ, k0 = k(2K − k + 3)

2
+ l + 1,

m = 1, . . . , M, n = 1, . . . , N , j = 1, 2, 3, 4,

k = 0, . . . , K , l = 0, . . . , K − k.

(16)
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Here, j0 is the index of the last coefficient for the previous triangle, k0 defines one-
dimensional indexing of the Bézier-Bernstein coefficients w(mnj)

kl related with Δmnj .
Let us define the vector of discontinuous basis functions

a(t, x) = {ai (t, x)} ∈ R
Nl ,

which corresponds to ẑ in accordance with the relation

ai1 = ai2 =
{

B(mnj)
kl (t, x), {t, x} ∈ Δmnj ,

0, {t, x} /∈ Δmnj .

The Bézier-Bernstein polynomial B(mnj)
kl of the order K is introduced in the triangle

Δmnj by relations similar to (15). The corresponding indices i1 and i2 are given
in (16). In this case, the approximations of dynamic and kinematic fields can be
presented as follows:

û = ŵT(t, x)ẑ, r̂ = r̂T(t, x)ẑ, ŵ = Ewa(t, x), r̂ = Er a(t, x). (17)

Here,

Ew =

⎡
⎢⎢⎢⎢⎣

E0
w 0 · · · 0

0 E0
w · · · 0

...
...

. . .
...

0 0 · · · E0
w

⎤
⎥⎥⎥⎥⎦ ∈ R

Nl×Nl , where E0
w =

[
INΔ 0

0 0

]

Er =

⎡
⎢⎢⎢⎢⎣

E0
r 0 · · · 0

0 E0
r · · · 0

...
...

. . .
...

0 0 · · · E0
r

⎤
⎥⎥⎥⎥⎦ ∈ R

Nl×Nl , where E0
r =

[
0 0
0 INΔ

]
,

and In denotes the identity matrices of the dimension n × n.

5 Optimal Control Problem

Now we consider an inverse dynamic problem for the elastic rod model discussed
above. In accordance with the variational formulation of the initial-boundary value
problem (11)–(12), minimum of the constitutive functional Φ[r̃ , w̃] is first sought
for any sufficiently smooth function u(t) ∈ U . The control problem is to find such
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a function u∗(t) ∈ U that moves the elastic rod at the fixed time instant T to the
finale state

t = T : p = 0, w = wT = const, u = uT = wT − w0(0) (18)

and minimizes the mean energy Ē of the rod

J [u∗] = min
u∈U

J [u], J = Ē . (19)

Here

Ē = Ψ

T
, Ψ =

T∫

0

E dt, E =
L∫

0

ψ dx, (20)

ψ = 1

2

(
ρ−1(x) (r̃x + p0(x))2 + κ(x)

(
w̃x + w′

0(x)
)2)

. (21)

Here, E is the total mechanical energy of the moving elastic structure with its linear
density ψ expressed through the variables r̃(t, x, u) and w̃(t, x, u).

6 Discretization and Regularization of the Control Problem

According to (11) and (13), the admissible control function u(t) = w̃(t, 0) taken in
numerical realization has to be piecewise polynomial. Let û = [u1, . . . , uK N ]T ∈
R

K N be the vector of control parameters. In this case, the K N components of the
vector û are used to meet 2K M + 2 terminal conditions in the optimal control
problem (18)–(20). Even if the terminal values (18) are admissible for the splines
r̃(t, x) ∈ S h

r and w̃(t, x) ∈ S h
w , themomentum density and displacements resulting

from (10) with the approximations (13) for terminal constraints more general than
the piecewise polynomial ones cannot be apparently satisfied.

The terminal conditions (18) can be weakened by introducing some tolerance
ε1 > 0. For example, the total energy of the rod at the end of the controlled process
can be constrained by some small value

E1 = E(T ) ≤ ε1 	 Ē .

As it has been shown in numerical calculations, the accuracy of approximate
solutions may dramatically fall down through the optimization of the control input
u(t). To regulate the error level and ensure the reliability of modelling, an upper limit
of the error functional Φ should be given

E2 = T −1Φ ≤ ε2 	 E1.
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Such a tolerance can be guaranteed by two isoperimetric conditions imposed on
the energy functionals

E1 = ε1 and E2 = ε2. (22)

After parametric optimization of the functional Φ according to (11)–(13) for a arbi-
trary vector û, the problem (18)–(20) with the integral conditions (22) is equivalent
to the following minimization: Find the control vector û∗ that moves the rod end at
x = 0 in the fixed time T to the final positionwT andminimizes the energy functional

J (û∗
) = min

û
J (û), w(T, 0) = wT ; J = Ē + γ1E1 + γ2E2, γ1,2 ≥ 0. (23)

Here, Ē is the mean energy of the rod, E1 is the terminal energy of the system, E2
is the integral error of approximate solution, γ1 and γ2 are the weighting factors
introduced to achieve the given values of E1 and E2 in accordance with (22), ψ is
the rod energy density.

The optimal control vector û∗ as well as the corresponding function u∗(t) =
u(t, û∗), the approximation of displacements w∗(t, x) = w(t, x, û∗), momentum
density p∗(t, x) = p(t, x, û∗), and normal stresses s∗(t, x) = s(t, x, û∗) are found
in accordance with the algorithm described below.

7 Numerical Algorithm of Control Optimization

As it is seen in (13), the unknown functions r̃(t, x) and w̃(t, x) on the triangleΔmnj of

the time-space mesh are defined by the parameters r (mnj)
kl and w(mnj)

kl , which number
is equal to 2NΔ = (K + 1)(K + 2). The local parameters have been collected into a
vector ẑ ∈ R

Nl with the dimension Nl = 8M N NΔ in accordance with (16) and the
approximations (13) can be presented as in (17).

By satisfying the continuous conditions imposed on the fields r̃(t, x) and w̃(t, x),
the matrix Q ∈ R

Nl×Ng is derived. It relates the global and local parameter vectors
according to the relation ẑ = Qz. The resulting continuous fields are expressed in
the vector form as follows:

r̃(t, x, z) = rT(t, x)z, w̃(t, x, z) = wT(t, x)z. (24)

For the optimal control problem, the vector of global parameters can be presented
by the relations

z = [
yT uT qT

]T ∈ R
Ng , y ∈ R

Ny , u ∈ R
Nu , q ∈ R

Nq ,

Ng = Ny + Nu + Nq , Ny = 4K M N , Nu = K N − 1.
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Here, y is the vector of designed parameters, u denotes the vector of control parame-
ters that remain after satisfying the terminal displacement condition in (23), q is the
vector of system parameters that depends only on the terminal value uT . It is always
possible to reduce the problem to the case uT = 1 by scaling and to eliminate the
vector q from consideration.

After substituting the approximation r̃(t, x, z) and w̃(t, x, z) from (13) into the
functional of (12) and integrating over the domain Ω , we obtain

Φ̃(z) = Φ[ũ, r̃ ] = 1

2
zTFz + fTz + f.

By taking into account the structure of the vector z and quadratic form of the
functional Φ, the matrix F ∈ R

Ng×Ng and the vector f ∈ R
Ng are defined in the

form

F =
⎡
⎣Fyy Fyu 0

FT
yu Fuu 0
0 0 0

⎤
⎦ , f =

⎡
⎣fy

fu

0

⎤
⎦ ,

{
Fyy = FT

yy ∈ R
Ny×Ny Fuu = FT

uu ∈ R
Nu×Nu ,

fy ∈ R
Ny , fu ∈ R

Nu f ∈ R.

Minimum of the function Φ̃ is attained if

y = ỹ = −F−1
yy

(
Fyuu + fy

)
.

Similarly, the control functional Ĵ (z) = J [ũ, r̃ ] in (23) is quadratic with respect
to the vector z and can be represented in the form

Ĵ (y, u) = 1

2

[
y
u

]T [
Jyy Jyu

JTyu Juu

] [
y
u

]
+

[
jy

ju

]T [
y
u

]
+ J0,

where

Jyy = JTyy ∈ R
Ny×Ny , Juu = JTuu ∈ R

Nu×Nu , jy ∈ R
Ny , ju ∈ R

Nu , J0 ∈ R.

After that, the vector of design parameter ỹ is substituted into the cost function
Ĵ (y, u) and we obtain

J̃ (u) = Ĵ (ỹ(u), u) = 1

2
uTGu + gTu + G, G = GT.

As a result, the original control problem is reduced to the unconstrained minimiza-
tion for the function J̃ (u). The optimal control vector is found as u∗ = −G−1g
and the design parameter vector as y∗ = ỹ(u∗). By changing the vector z for the
optimal vector z∗ = [

(y∗)T (u∗)T q
]T

in (24) and taking into account (10), approx-
imations of the momentum density, stress and displacement fields are obtained as
p̃∗ = p̃(t, x, z∗), s̃∗ = s̃(t, x, z∗), w̃∗ = w̃(t, x, z∗).
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The relative energy error Δ of the approximate solution is given by the relation

Δ = Φ̃(z∗)Ψ̃ −1(z∗), Ψ̃ (z) = Ψ [r̃(t, x, z), w̃(t, x, z)],

where Ψ = T Ē is the energy integral over the time interval [0, T ] defined in (20).

8 Simulation and Solution Quality Estimates

We choose the dimensionless parameters of the system ρ = κ = L = 1, the initial
functions p0(x) = w0(x) = 0, and the control parameters T = 4,wT = 1, γ1 = 104,
γ2 = 10−4. The algebraic order of the approximating system is Ny = 4M N K 2. For
the test control function

u = u0(t) = 3t2T −2 − 2t3T −3, (25)

the relative integral errorΔ = E2 Ē−1 versus the dimension Ny is presented in Fig. 3.
The so-called h-convergence is depicted by solid lines for homogeneous meshes

(M = N = 1÷7) and different polynomial orders (from K = 3 to K = 6). The rate
of p-convergence when the polynomial degree is varied (K = 3 ÷ 7) is given by a
dashed line for the fixed triangulation with M = N = 1. We see that the accuracy
of numerical solutions grows up fast if the dimension increases.

Fig. 3 Relative error Δ versus the approximation dimension Ny
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Fig. 4 Local error distribution ϕ(t, x)

Local values of the solution error can be defined by the function ϕ(t, x). The
time-space error distribution is depicted in Fig. 4 for the following approximation
parameters: K = 6 and M = N = 4. The relative integral error for the mesh is
equal to Δ = 6.4 × 10−7. The mean mechanical energy over the process equals to
Ē = 0.0984.

It can be verified that there exists a piecewise polynomial solution for this specific
test control parameters. Moreover, the polynomials are defined on those triangular
subdomains of the time-space domain Ω which are bounded by the characteristic
lines

x − t = 0, x − t = 2, x + t = 2, x + t = 4.

The order of the polynomials is equal to 3 and p(t, x) = s(t, x) = w(t, x) ≡ 0 if
t ≤ x .

It turns out for the mesh topology under consideration that some of the trian-
gle edges coincide with these characteristic lines if N = 4M . In this case, the
exact solution can be found (up to the round-off error) by using the finite-element
approximations of the unknown functions r̃(t, x) and w̃(t, x) with the polynomial
order K ≥ 3. Such a superconvergence property is exploited below to obtained the
momentum, stress and displacement fields. The relative displacements of the elastic
rod w(t, x) − u(t) with the control input u = u0(t) are shown in Fig. 5 for K = 3,
M = 1, and N = 4.

The distributions of themomentum density p(t, x) and the normal stresses p(t, x)

for the same test control u0(t) are depicted in Figs. 6 and 7, respectively. Here,
the nonanaliticity along the characteristic lines can be seen more distinctively. It is
certainly difficult to approximate rather accurately place where the function breaks
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Fig. 5 Relative rod displacements w(t, x) − u0(t) for the test motion

Fig. 6 Momentum density p(t, x) for the test motion

if such a line is located inside a mesh element. These breaks cause error surges for
unappropriate meshes as it can be seen in Fig. 4.

The optimal control as a piecewise polynomial function has been found for the
given parameters K = 3, M = 1, and N = 4 (Ny = 144, Nu = 11). In Fig. 8, the
optimal control displacement of the rod end u∗(t) (dash-dot curve) is compared with
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Fig. 7 Stress distribution s(t, x) for the test motion

Fig. 8 Test control u0(t) versus optimal control u∗(t)

the test control u0(t) considered in (25) (dashed curve). The optimal input is near
to linear one, but the moderate deviation from the uniform motion u∗(t) − T −1t ,
which is traced in this figure by solid curve with the scaling factor of 10, influences
sufficiently on the whole elastic deformations of the rod.
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Fig. 9 Absolute rod displacements w(t, x) for the optimal motion

Fig. 10 Momentum density p(t, x) for the optimal motion

The optimal displacements of the rod points w̃∗ as a function of the time t and coor-
dinate x are shown in Fig. 9. The optimal momentum p̃∗(t, x) and stresses s̃∗(t, x)

are depicted in Figs. 10 and 11, respectively.
By using the obtained control law, a sufficiently low value of terminal energy

E1 = 9 × 10−11 is attained as compared with the average energy of the elastic rod
Ē = 0.0636. The relative error achieved for the optimal control does not exceed
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Fig. 11 Stress distribution s(t, x) for the optimal motion

Δ < 10−15. The weighting coefficients are chosen so that the following inequality
holds: E2 	 E1 	 Ē .

It is worth noting that any significant vibrations of the rod are not excited dur-
ing the control process. The corresponding changes in the dimension of the spline
approximation (13) and, therefore, in control dimension does not cause any signifi-
cant decreasing of the minimized mean energy for the control process as presented
in Table1.

Table 1 Optimal energy values versus approximation and control dimensions

Space intervals Time intervals Polynomial order Control
dimension

Mean energy

1 4 3 11 0.0636

1 4 4 15 0.0634

1 4 5 19 0.0633

2 8 3 23 0.0634

2 8 4 31 0.0633

2 8 5 40 0.0632
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9 Conclusions and Outlook

In this paper, a control algorithm for energy optimization in structural dynamics
has been proposed and discussed. This control strategy is based on the MIDR, varia-
tional approach, and on finite element techniques. The verification of optimal control
laws has been performed by taking into account the explicit local and integral error
estimates.

In a subsequent research, we plan to apply the optimization algorithm proposed
in this paper to more complex elastic systems with non-uniformly distributed para-
meters and to motions of 2D and 3D elastic bodies. Various mesh refinement and
mesh adaptation approaches can be applied to increase the solution accuracy. Other
dynamical models of solids, e.g., viscoelastic body and structures with geometrical
and physical nonlinearity are to be considered from the viewpoint of the calculus
of variation. Optimal problems with non-quadratic cost functions and control con-
straints and other inverse problems such as identification, measurements, etc. can
also be considered as a great challenge for the method proposed.
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